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FOREWORD

The popular use of the term ‘‘systems biology’’ arose following the appearance of the
first full genome sequences. These genome sequences suggested that wewould have a
full delineation of themolecular components of an organism.Expression profiling and
proteomic data then could tell us when these components were actually used in a
context-specific manner.

The need to track the interrelationship of all such components created the need to
develop networks of the interactions of such components. Protein–protein interaction
maps are one manifestation of this need, stoichiometric models are another; they are,
however, amenable to rigorous mathematical analysis and prospective uses. Network
reconstruction took center stage in systems biology, as networks describe the inter-
actions between the gene products and the chemical compounds they make, provide
context for high-throughput data mapping, and give the basis for mechanistic models
that can compute phenotypic functions.

Having molecular manipulation tools and mathematical models in turn provides
tools that allow the synthesis of biological components and biological functions. We
thus witnessed the emergence of ‘‘synthetic biology.’’ It is practiced on multiple
scales, from component design, that is akin to classicalmolecular biology, to design of
whole cell functions, such as metabolic engineering.

Thus, in retrospect we can state that genomics gave rise to systems, and systems
biology in turn gave rise to synthetic biology. This of course is a simplified view, but
provides a first-order approximation to the historical origin and appearance of these
popularly used terms. This volume contains a series of chapters that highlight the
development and status of the various aspects of systems and synthetic biology.

University of California, San Diego, CA
BERNHARD Ø. PALSSON
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1

INTRODUCTION

Pengcheng Fu

Faculty of Chemical Science & Engineering, China University of Petroleum, Beijing,
18 Fuxue Road, Changping District, Beijing 102249, China

In the twentieth century, engineering sciences have inspired numerous successful
applications in the fields of manufacturing, electronics, communications, transporta-
tion, computer and networks, and so on. Compared to the engineering systems, bio-
logical systems are more complex and their mechanisms are less known. Historically,
biological questions have been approached by a reductionist paradigm that is com-
pletely different from methodologies being applied to engineering systems. This
reductionist way of thinking was based on the assumption that by unraveling the
function of all the different components the information gained could be used to piece
together the puzzle of complex cellular networks [1]. The research paradigm has
dominatedmainstream biology with enormous progresses in accumulating biological
information at genetic and protein levels. However, this is a slow and exhaustive
process that fails to adequately approach the true complexities of living phenomena
and is of limited relevance to biological systems as a whole.

The fast-growing applications of genomics and high-throughput technologies have
led to recognition of the limitations of the reductionist/atomistic viewof theworld. It is
realized that a new systems biology paradigm is needed for the next level of
understanding of the functions of the genes and proteins, and the regulation of
intracellular networks that cannot be obtained by studying the individual constituents
on a part-by-part basis. It is also realized that there is great similarity between biology
and engineering at the system level, despite their obviously different physical
implementation, and that important research challenges in biologymay have parallels
with those in complicated engineering systems [2]. This similarity forms abasis for the
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Copyright � 2009 John Wiley & Sons, Inc.

1



introduction of synthetic biology or the engineering applications within biological
systems.

Systems biology attempts to investigate the behavior and relations of all the
elements in a particular biological system while it is functioning [3,4]. It aims at
system-level understanding of biological processes and biochemical networks as a
whole. This “system-oriented” new biology is shifting our focus from examining
particular molecular details to studying the information flows at all biological levels:
Genomic DNA, mRNA, proteins, informational pathways, and regulatory networks.
Systems biology approaches seek to study the complexity of life to help in under-
standing how the cellular networks work together. To this end, the approach
emphasizes the investigation of biological phenomena by considering system struc-
tures, systemdynamics, controlmethods, and designmethods [5,6]. It requires a broad
interdisciplinary integration ofmolecular and cell biology, biochemistry, informatics,
mathematics, computing, and engineering.

Synthetic biology is a recently emerging field that applies engineering formalisms
to design and construct new biological parts, devices, and systems for novel functions
or life forms that do not exist in nature. This “engineering” biology relies on and shares
tools from genetic engineering, bioengineering, systems biology, and many other
engineering disciplines. Synthetic biology is also different from these subjects, in both
insights and approach. The synthetic biology studywill not only investigate the effects
of genetic and pathway modification or the cellular responses on genetic variation/
environmental perturbation, but also design and build biological systems with novel
cellular functions, combining in silico and in vivo experimental approaches.

Recently, synthetic biology has been redefined as (1) the design and construction
of new biological parts, devices, and systems that do not already exist in the nature
and (2) the redesign of existing, natural biological systems for useful purposes
(http://syntheticbiology.org/). More specifically, synthetic biology aims to design
and build engineered biological systems that process information, manipulate chemi-
cals, fabricate materials, produce energy, provide food, and maintain and enhance
human health and our environment (see the Wikipedia: http://en.wikipedia.org/wiki/
Synthetic_biology).

Synthetic biology is a “bottom-up” approach, inwhich basic functional elements of
replication, self-assembly, growth, metabolism, repair, signaling, and regulation are
defined and assembled into life forms or biomaterials with new properties and
behavior. Synthetic biology makes use of and is complementary to systems biology,
which focuses “from the top down” on the fully integrated networks of function and
control in living cells, and their responses to various perturbations. While preceded
by some pioneering work, systems biology and synthetic biology are the new sub-
disciplines that were invisible 20 years ago. A Google search under these cate-
gories now yields more than a million web pages and systems and synthetic biology
research departments have grown from scratch to 100þ staff in a decade or less. The
aspiration of systems biology is no less than the full mastery of cellular and multi-
cellular dynamics, both epistemic and technical. This hasmade enormous implications
for health, through the development of new treatments and (as importantly) new
preventive measures, and for agriculture and ecology more generally through the
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development of new strains, disease controls, and management processes. It also
promises/threatens a host of new security and military applications. The complemen-
tarymissionof syntheticbiology isno less than the systematicextensionofengineering,
in all its aspects, so as to encompass thebiological realmand, conversely, the systematic
integrationof biological elements into engineered systems.This encompasses practical
applications from biofuel to beer production, from sensors to cyborgs.

There are several foundational and illustrative examples regarding applications of
systems biology and synthetic biology available in the literature.

A gene deletion perturbation experimental paradigm has emerged in systems
biology beginning with research conducted by Trey Ideker, Timothy Galitski, and
Leroy Hood [3]. The authors used a systems approach to explore, expand, and refine
the understanding of the yeast galactose utilization (GAL) system. A regulatory
networkmodelwas used to predict changes in gene expression. The authors perturbed
the galactose pathway by deleting each of the nine galactose genes of interest. They
carried out replicate hybridizations in four different DNA microarrays for each
perturbed condition to obtain robust estimates of how the gene expression profile
of each knockout strain differed from that of the wild type. Expression data for each
perturbationwerevisually superimposed on themetabolic network. The predicted and
observed cellular responses to the perturbation were found to be consistent for most
cases. The authors then used the discrepancies between the predicted and observed
expression responses to suggest possible refinement to the model [3].

As another example, Pamela Silver, Professor in the Department of Systems
Biology at Harvard Medical School, and her group have successfully created a
“memory” loop in yeast cells, using two synthesized, transcription factor coding
genes. The first gene, which was designed to switch on when exposed to galactose,
created a transcription factor that grabbed on to, and thus activated, the second gene.
Cellular memory may enable the yeast cells to remember their functional network
states. In addition to the reconstructionof thedynamicsof cellmemory, the researchers
have also established a mathematical model for the prediction on the functional
outputs of the transcription factor to control how much of a particular protein the
gene shouldmake (see BiomimicryNews.com: Scientists synthesize memory in yeast
cells, 9/15/2007, http://www.biomimicrynews.com/research/Scientists_synthesize_
memory_in_yeast_cells.as). This application exemplifies the core concept that sys-
tems biology and synthetic biology should be integrated for understanding life
phenomena and creating novel biological modules to modify an existing biological
system.

More recently, Craig Venter and his synthetic biology research team have con-
structed a largest man-made DNA structure on the Earth out of laboratory chemicals.
Theyused thebacteriumMycoplasmagenetalium as the template to build the synthetic
chromosome that contains 381 genes, that is, 582,970 bp long. This wholly artificial
genetic circuit was then transplanted into a living M. genetalium cell. The resultant
“Mycoplasma laboratorium” is expected to be able to replicate itself with its
synthetically reconstructed DNA, making it the most fully synthetic organism to
date, although themolecularmachinery and chemical environment that would allow it
to replicate would not be synthetic (http://www.guardian.co.uk/science/2007/oct/06/
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genetics.climatechange). The building blocks of DNA—adenine (A), guanine (G),
cytosine (C), and thiamine (T)—are not easy chemicals to artificially synthesize into
chromosomes. A key point for the Craig Venter Institute to achieve their goal of
synthetic biology is that they could use homologous recombination (a process that
cells use to repair damage to their chromosomes) in the yeast Saccharomyces
cerevisiae to rapidly build the entire bacterial chromosome from large subassemblies
(http://www.syntheticgenomics.com/press/2008-01-24.htm). The team attempts to
continue to work for the creation of a living bacterial cell based entirely on the
synthetically made genome. It is obvious that using the same approach, existing life
forms can be modified by adding components to them or by taking components away
from them.

These examples illustrate that we are able to not only “read” the genetic code to
understand living systems but also “write” the message for the creation of new life
forms. All this fuels the need to frame these latest developments that promise to
revolutionize our understanding of biology, blur the boundaries between the living and
the engineered in a vital new bioengineering, and transform our daily relationship to
the living world.

Systems biology and synthetic biology are emerging as two complementary ap-
proaches that embody the breakthrough in biology and invite application of engineer-
ing principles. Although systems biology and synthetic biology approach biological
problems with different emphasis, they are indeed the two sides of the same coin.
Borrowing from ancient Chinese intellectual thinking, we can see systems biology and
synthetic biology asYin andYangof a research and development framework in the new
biological paradigm. For systems biology, all of the “omics” experiments are used to
discover life phenomena and to empower scientists to increase fundamental under-
standing of complex living systems. For synthetic biology, existing life forms can be
modified based on the existing body of knowledge. Since systems biology and
synthetic biology are like Yin and Yang in nature, we will keep the mutuality of
the two approaches in mind when writing the book. We will demonstrate that systems
biology relies on synthetic biology technologies to perturb and monitor responses of
the biological systems, while synthetic biology depends on the knowledge obtained
from systems biology approaches for design and implementation. The development of
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systems biology and synthetic biology is thus cyclic; understanding (by systems
biology) and creation (by synthetic biology) will continuously enhance and transform
each other and thus converge in an iterative fashion.

Wehaveassembled agroupof investigators/educatorswhoare at the cutting edgeof
biological research in bioinformatics, functional genomics, genome-scale modeling,
and systems biology and synthetic biology. This book will benefit undergraduate and
graduate students, scientific researchers, university lectures, and those with larger
managerial responsibilities. It should be of especial interest to business development
professionals working in biotechnological and pharmaceutical companies since novel
products/functions are the goals of systems biology and synthetic biology. The first of
its kind, this book aims to become an important reference book for researchers in
various engineering fields, such as chemical engineering, mechanical engineering,
and civil engineering, who consider systems analysis and engineering applications in
biology as their next frontier.

ORGANIZATION OF THE BOOK

This book is organized intomodular, stand-alone topics related to systems biology and
synthetic biology. Chapter 2, by Michael Wang and Huidong Shi, provides an
overview of the modern molecular biology to the readers from backgrounds other
than biology.Chapter 3, byXiu-FengWan andDorotheaThompson, introduces recent
advances in high-throughput technologies and functional genomics, with application
examples to illustrate how the “omics” data can be used in aid of the establishment of
the linkages between transcriptome profiling and biological functions. In Chapter 4,
Gordon Okimoto explores and discusses mathematical modeling for “omics” data
fusions to predict the global behavior of complex biological systems as networks of
interacting genes, proteins, andmetabolites. They use algorithms for cancer diagnosis
and identification of subcategories. Chapter 5, by Mitsuhiro Itaya, provides a novel
approach where awhole genome is cloned into another species. In Chapter 6, Andrew
Joyce and Bernhard Palsson present and discuss in silico genome-scale metabolic
models formicroorganisms, such asEscherichia coli and theyeast S. cerevisiae, using
the constraints-based approach. The constraints-based modeling approach they
describe, using flux balance analysis and linear programming, is currently the only
methodology capable of delivering a high, indeed a surprisingly high, degree of
correlation between the predictions of genome-scale models and independently
obtained experimental data.

Chapter 7, by Delphine Ropers, Hidde de Jong, and Johannes Geiselmann,
discusses the application of mathematical modeling to study the genetic regulatory
networks that control gene expression in an organism and the adaptation of its cells to
the environment. Illustrative examples using E. coli show that many aspects of their
structure and dynamics can be fruitfully comparedwith the principles governingman-
made systems. In Chapter 8, Vallverd�u andGustafsson bring up bioethic issues caused
by our systems biology and synthetic biology efforts. It is obvious that the benefits
from these emerging fields will far outweigh the negative impacts. However, as they
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point out, the technologies for systems biology and synthetic biology which were not
thinkable a couple of decades ago have the potential for misuse. Systems biology and
synthetic biology must be operated within a framework of safety, ethics and public
acceptance. Chapter 9 is contributed by Goutham Vemuri and Jens Nielsen. In this
chapter, the authors review the use of the yeast S. cerevisiae as a prototype for systems
biology and synthetic biology research. InChapter 10, SangYupLee et al. examine the
construction of genome-scale metabolic models in global understanding of metabo-
lism and physiological characteristics, and also in designing metabolic engineering
strategies for the enhanced production of various bioproducts. This chapter can be
related in part as application examples to the genome-scale modeling framework
outlined in Chapter 6.

In Chapter 11, Matthias Heinemann and Sven Panke sketch a draft picture of
synthetic biology as a new bio-based discipline. In their essay, synthetic biology is put
into perspective with its scientific counterpart, the field of systems biology, and also
the fundamental differences to other “bioengineering” areas such as metabolic
engineering or protein engineering. In Chapter 12, Marcus Graf, Thomas Schoedl,
and Ralf Wagner present their work for rational gene design and de novo gene
construction. Since such genes do not exist in nature, they have to be constructed and
cloned de novo from synthetic oligonucleotides. Advanced synthetic biology ap-
proaches are thus needed for generation of proteins with novel functions, new
metabolic pathways, or even artificial organisms.

Self-replication is defined as the ability of a system to direct the synthesis of
accurate copies of itself fromdispersed building blocks.Chapter 13,written byPhilipp
Holliger and David Loakes, describes the opportunities and challenges for the
engineering and bottom-up assembly of artificial self-replicating systems with
quasibiotic properties and their potential applications in molecular sensing, comput-
ing, and themanufacture of nanodevices. In Chapter 14,WilsonWong and James Liao
present and discuss synthetic approaches similar to the design of engineering
machinery for construction of biological circuits based on physical concepts, guided
by mathematical models, and constrained by biological and chemical realities. In
Chapter 15, David Greber and Martin Fussenegger discuss the state of the art in the
field of synthetic genetic networks with particular emphasis on relating network
architecture and design to network characteristics. They examine engineered devices
such as toggle switches, oscillating networks, and molecular sensors that possess
increasingly sophisticated functionality.

Chapter 16 by Hiroaki Kitano focuses on biological robustness as a fundamental
feature of living systems, whereby its relationship with evolution, trade-offs among
robustness, fragility, resource demands, and performance provides a possible frame-
work for how biological systems have evolved and become organized. In this way, the
understanding of robustness and its intrinsic properties provides us with a deeper
understanding of biological systems, their anomalies, and countermeasures to reduce
these. In Chapter 17, Wenlong Cheng et al. address the properties and functions of
oligonucleic acids used as generic, instead of genetic, materials via nucleic acid
engineering to utilize amyriadofmolecular tools,mostly enzymes, todesign andbuild
novel biological systemswith desired functions. They also discuss various approaches
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to the characterization and manipulation of oligonucleic acids and applications of
nucleic acid engineering.Chapter 18, byGuangyiWang and JuanitaMathews, reviews
the use of genetic material from marine microbes to engineer conventional hosts for
biotechnological and ecological benefits. Themajorgoal is to illustrate the application
of synthetic biology in oceanography and marine biotechnology research. In Chapter
19, in the light of these discussions, Cliff Hooker reflects at the revolution in biology
that the rise of systems and synthetic biology represents, setting it against the still
larger revolution across sciences as a whole that is the rapid expansion of complex
systems ideas, principles,methods, andmodels. Finally, inChapter 20, Fu andHooker
discuss future directions for systems biology and synthetic biology and the challenges
posed to our conception of scientific understanding and bioengineering practices.
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2

BASICS OF MOLECULAR
BIOLOGY, GENETIC
ENGINEERING, AND

METABOLIC ENGINEERING

Michael X. Wang1 and Huidong Shi1,2

1Department of Pathology and Anatomical Sciences, Ellis Fischel Cancer Center,
University of Missouri School of Medicine, M263 Medical Science Building,

One Hospital Drive, Columbia, Missouri 65203
2Department of Biochemistry and Molecular Biology, Medical College of Georgia,
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2.1 BIOMOLECULES IN LIVING CELLS

Carbon, hydrogen, oxygen, and nitrogen are the most abundant elements in living
organisms. Carbon can covalently bond to hydrogen, oxygen, and nitrogen to form
biomolecules. Small biomolecules can combine to form more complex macromole-
cules such as nucleic acids, proteins, and carbohydrates. All living cells are built with
these biomolecules.

2.1.1 Nucleic Acids

Nucleic acids carry thegenetic information in the cell. Themajor typesof nucleic acids
are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Both of them are
polymers of nucleotides.

Systems Biology and Synthetic Biology Edited by Pengcheng Fu and Sven Panke
Copyright � 2009 John Wiley & Sons, Inc.
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2.1.1.1 Nucleotides Nucleotides are building blocks of nucleic acids.
Nucleotides have three characteristic structural components: (1) base, (2) pentose,
and (3) phosphate. The bases are derivatives of two parental compounds, purine
and pyrimidine. The two major purine bases are adenine (A) and guanine (G), and
three major pyrimidines are cytosine (C), thymine (T), and uracil (U). Two types of
pentose are 20-deoxy-D-ribose and D-ribose. Deoxyribonucleotides (deoxyribonu-
cleoside 50-monophosphate), the structural units of DNA, contain 20-deoxy-D-ribose.
Ribonucleotides (ribonucleoside 50-monophosphates), the structural units of RNA,
contain D-ribose. The phosphate group gives the nucleic acid a negative charge
property.

2.1.1.2 DNA In 1953, Watson and Crick postulated a three-dimensional model
of the DNA molecule based on the available data at the time. It consists of two
helical polynucleotide strands twisted around the same axis to form a right-handed
double helix structure. The hydrophilic backbones of deoxyribose and phosphate
groups are outside the double helix, whereas purine and pyrimidine bases are stacked
inside the double helix. Each purine base of one strand is paired in the same plane
with a pyrimidine base of the other strand by hydrogen bonds. There are three
hydrogen bonds between G and C and only two between A and T. As a
result, the two antiparallel strands are not identical but complementary to each other
(Fig. 2-1a and b).

The double helix strands of DNA can be separated from each other (denatured or
melting) by heating or at extremes of pH in vitro. The temperature at which 50 percent
of the double-stranded DNA molecules separate into single strand is the melting
temperature (Tm). DNAs rich in G/C pairs have higher melting points than DNAs rich
in A/T pairs. The Tm can be calculated according to G/C content of a given DNA
fragment. On the contrary, denatured single-stranded DNAs can anneal to form a
double helix (renaturation or hybridization). High G/C content, decreasing tempera-
ture, increasing the ion concentration, or neutralizing the pH are favorable to DNA
renaturation. The nucleotide sequences of DNA can be determined. The human
genome and many other genomes of organisms have been successfully sequenced.
These sequences are available in the public database (http://www.ncbi.nlm.nih.gov/).
DNA can also be synthesized with simple, automated protocols involving chemical
and enzymatic methods such as polymerase chain reaction (PCR).

The biological significances of the double-stranded helical structure of DNA are
threefold. It stores genetic information in a form of linear nucleotide sequence with
chemically stable features; it allows the genetic information to be passed on to the next
generationof cells by semiconservativeDNAreplicationwithveryhigh fidelity during
cell division; and it acts as the template to transfer genetic information intomessenger
RNAs (mRNAs) and then amino acid sequences of proteins.

2.1.1.3 RNA RNA is usually single-stranded polynucleotides. The chemical
compositions of RNA differ from DNA in two ways: (1) sugar-phosphate backbone
contains D-ribose rather than 20-deoxyribose in DNA, and (2) nucleotide base
thymine (T) in DNA is replaced in RNA with uracil (U), which is paired with
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adenine (A). RNA can form complex three-dimensional structures by intramolecular
base pairing.

There are five types of RNAs with distinct biological functions (Table 2-1). They
aremRNA, transferRNA(tRNA), ribosomalRNA (rRNA), ribozymeRNA, and small
RNAs (micro RNA (miRNA) and short interfering RNA (siRNA)). RNAs are cell
specific. All cells have identical DNA content in a given organism; however, RNA
levels and types differ in different cell types. RNA can be synthesized from a DNA
template (transcription). In contrast,RNAcan also function as a template to synthesize
DNA (complementary or cDNA) by a reverse transcriptase. RNA is chemically
unstable compared with DNA and is degraded easily in vitro.

2.1.2 Proteins

There are thousands of different proteins that perform the bulk of cellular activities.
Proteins are the polymers of amino acids.

2.1.2.1 AminoAcids Amino acids are the building blocks of proteins. There are
a totalof20aminoacids incells.Aminoacids sharea commonchemical structure.They
have a carboxyl group and an aminogroupbonded to the same carbon atom (a-carbon).
But they differ fromeach other in their side chains orR-groups,which vary in structure,
size, and electric charge (Table 2-2). Each amino acid has its own chemical features
determinedby theR-group. For example, cysteine (R�CH2�SH) is readily oxidized to
forma covalently linkeddimeric amino acid called cystine by forming a disulfide bond.
Disulfide bonds play a special role in the structures of many proteins either in the same
polypeptide (intra) or between two different polypeptide chains (inter). Both trypto-
phan and tyrosine have similar light absorption spectrawith themaximalwavelength of
280 nm, which gives the spectroscopic properties of proteins. Amino acids have been
assigned three-letter and one-letter abbreviations (Table 2-2).

2.1.2.2 Protein Structure Protein is a polypeptide in which amino acids are
linked by a peptide bond. The linkage is formed by removing a water molecule
(dehydration) from thea-carboxyl group of one amino acid and thea-amino group of

Table 2-1 Types and functions of RNAs

Type of RNA Function

mRNA (messenger RNA) RNA that functions as the intermediary (transcript) between
DNA in the nucleus and protein production in the cytoplasm

tRNA (transfer RNA) RNA that transfers an amino acid to a growing polypeptide
chain during translation

rRNA (ribosomal RNA) RNA that is a component of ribosomes for mRNA processing
Ribozyme RNA Functions as an enzyme by catalyzing chemical reactions in

the cell
Small RNAs Include miRNA and siRNA. Functions as translational

repression and RNA degradation (RNAi)
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another amino acid. The polypeptide terminates in an amino group at one end
(N-terminal) and a carboxyl group at the other end (C-terminal). The length of
polypeptide chain varies considerably. For example, human cytochrome c has 104
amino acid residueswith themolecularweight of 13 kDa,whereas human titin protein
has 26,926 amino acid residues with molecular weight of 2993 kDa. The average size
of human proteins is about 50 kDa.

The structure of a protein is categorized into four levels: primary, secondary,
tertiary, and quaternary structures (Fig. 2-2). Primary structure is the linear order of
amino acid sequence in the polypeptide chain. Secondary structure is the local steric
interaction resulting from the hydrogen bonding betweenO andN of the C¼Oand the
N¼Hof peptide backbone. Themost prevalent elements of the secondary structure are
a-helix, b-sheet, and turn. Particular combinations of these secondary structure
elements form motifs such as helix–loop–helix. The tertiary structure is a folded
three-dimensional shape of a polypeptide resulting from long-distance interactions
between different regions of the protein molecule. The three-dimensional globular
region is known as a domain, the functional unit of proteins. The large protein contains
multiple domains. The final folded protein structure or conformation is largely
stabilized by weak interactions such as hydrogen bonds and ionic interactions by

Table 2-2 Amino acids, abbreviations, and the R-groups

Amino Acids
Three
Letter

Single
Letter R-Group, Basic Structure:

Alanine Ala A CH3�CH(NH2)�COOH
Arginine Arg R HN¼C(NH2)�NH�(CH2)3�CH(NH2)�COOH
Asparagine Asn N H2N�CO�CH2�CH(NH2)�COOH
Aspartic acid Asp D HOOC�CH2�CH(NH2)�COOH
Cysteine Cys C HS�CH2�CH(NH2)�COOH
Glutamine Gln Q H2N�CO�(CH2)2�CH(NH2)�COOH
Glutamic acid Glu E HOOC�(CH2)2�CH(NH2)�COOH
Glycine Gly G NH2�CH2�COOH
Histidine His H NH�CH¼N�CH¼C�CH2�CH(NH2)�COOH
Isoleucine Ile I CH3�CH2�CH(CH3)�CH(NH2)�COOH
Leucine Leu L (CH3)2�CH�CH2�CH(NH2)�COOH
Lysine Lys K H2N�(CH2)4�CH(NH2)�COOH
Methionine Met M CH3�S�(CH2)2�CH(NH2)�COOH
Phenylalanine Phe F Ph�CH2�CH(NH2)�COOH
Proline Pro P NH�(CH2)3�CH�COOH
Serine Ser S HO�CH2�CH(NH2)�COOH
Threonine Thr T CH3�CH(OH)�CH(NH2)�COOH
Tryptophan Trp W Ph�NH�CH¼C�CH2�CH(NH2)�COOH
Tyrosine Tyr Y HO�p�Ph�CH2�CH(NH2)�COOH
Valine Val V (CH3)2�CH�CH(NH2)�COOH

Note: All 20 amino acids share a common chemical structure. They have a carboxyl group and an amino
group bonded to the same carbon atom (a-carbon), but differ from each other in their side chains or
R-groups. The R-groups vary in structure, size, and electric charge. The chemical features of each amino
acid are determined by its R-group.
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which free energy is minimal. Interruption of the hydrogen bonds results in loss of the
secondary and tertiary structure or denaturation. Heat and extremes of pH or high
concentration of salt induce the protein denaturation. The two general classes of
proteins are fibrous and globular, based on their tertiary structures. The quaternary
structure is the arrangement of two or more polypeptide subunits that fit together in
space to form a single functional complex. For example, hemoglobin contains four
subunits, two a- and two b-subunits, with a symmetrical arrangement to form a
functional multisubunit protein to carry oxygen. Furthermore, multiple proteins can
assemble spontaneously into complex structures as functional cellular machinery,
such as replisome, ribosome, and proteasome.

The protein can be purified from the tissues by various techniques such as
chromatography and electrophoresis. The amino acid composition and sequence of
proteins can be determined chemically or by mass spectrometry. Three-dimensional
structures of proteins are determined by X-ray crystallography or nuclear magnetic
resonance (NMR) spectroscopy.Theprotein can alsobe synthesizedwith recombinant
DNA technology in significant quantity. Many useful protein databases are also
available. SwissProt, PDB, and SCOP are examples of such databases.

2.1.2.3 Protein Function Proteins are the most abundant biomolecules in
mammalian cells and consist of 18 percent of total cell weight compared with
0.25 percent of DNA and 1 percent of RNA. Proteins are the basic structural and
functionalmolecules of cells,whereasDNAandRNAsimply serve as vehicles to store
and express genetic information. The proteins carry out almost all biological activities
in the cells. There are about 200,000 different proteins in humanbody.According to its
particular structure, each protein has its specific function. However, it usually takes

Figure 2-2 Levels of the hierarchical structure in protein. The primary structure is a sequence of

aminoacids linkedbypeptidebonds; the resultingpeptide is coiled into secondarystructure,a-helix
and b-sheet; they are folded to form the tertiary structure that contains several functional domains

(illustrated are a-helix, b-sheet, and spacing–filling model of Src protein kinase (Copyright 2002

from Molecular Biology of the Cell by Albert et al, reproduced by permission of Garland Science).
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more than one protein to accomplish a biologic task. All biological activities are
archived by interaction of multiple proteins and other biomolecules such as RNA or
small molecules. Often these interactions are reversible binding a ligand through the
binding site of protein; simple examples include enzyme binding to its substrate and
the receptor binding to a hormone ligand.

The largest group of proteins with a related function is the enzymes. These proteins
specialize in catalyzing chemical reactions within cellular compartments. Enzymes
increase the rate atwhich a chemical reaction reaches equilibrium, but they donot alter
the end point of the chemical equilibrium. Enzymes can enhance reaction rates by a
factor of 105–1017 in averyheterogeneousbiochemicalmixture. Their highly effective
and specific catalytic properties largely determine themetabolic capacity of any given
cell type. The catalytic properties and specificity of an enzyme are determined by
the specific chemical configuration on the protein surface, active site. These sites are
associated with a pocket, a cleft, or a pit on the surface of the enzyme, which binds
the reactants or substrates facilitating chemical change by reducing activation energy.
Enzymatically catalyzed reactions control metabolic activities in all cells.

There aremanyproteins other than enzymes that are basic structural components of
cells or critical functional molecules in the organisms. These include such diverse
examples as collagen, the connective tissue molecule; actin and myosin, the contrac-
tile proteins; insulin, the pancreatic hormone for glucose metabolism; and immu-
noglobulins (Igs), the antibodymolecules of the immune system;histones, theproteins
integral to chromosome structure in eukaryotes, and so on.

The potential for such diverse functions rests with the enormous variation of three-
dimensional conformation that may be achieved by proteins. The final conformation
of a protein is the direct result of the unique linear sequence of amino acids. To come
full circle, the amino acid sequence of protein is determined by DNA sequence.

Any given biological function is the sum of work involving hundreds of different
related proteins. Life depends on thousands of proteins with specific properties and
functions. The activity of each protein component as well as the whole network is
highly regulated to meet physiological needs in any given time and condition. These
dynamic biochemical processes define the forms of the life. For example, the budding
yeast Saccharomyces cerevisiae contain 6000 genes. By using the two-hybrid
screening or the double mutation scoring method, a large scale of protein–protein
interactions has beenmapped.Elucidating thewhole set of proteins and the interaction
of the proteins in living cells is an important task of systems biology.

2.1.3 Polysaccharides

Polysaccharides (glycans) are carbohydrate polymers made up of manymonosacchar-
ides joined together by glycosidic linkages. The most abundant monosaccharide is D-
glucose (dextrose), a six-carbon sugar containing an aldose group and five hydroxyl
groups. Glucose and other hexose derivatives usually form a ring structure in aqueous
solutionwith eithera- or b-anomer. Thousands ofmonomers of the same type, such as
glucose, link together to form homopolysaccharides. Examples include storage poly-
saccharides such as starch and glycogen. Heteropolysaccharides contains two or more
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different monomers. Polysaccharides are very large, often branched, molecules. They
tend tobe amorphous, insoluble inwater, andhave no sweet taste. Polysaccharides have
a general formula of (CH2O)n; therefore, they are sometimes called carbohydrate.

Carbohydrates are not only the primary source of fuel and structural components of
cells but also important informational molecules. Monosaccharides can be assembled
into an almost unlimited variety of oligosaccharides, which differ in the stereochem-
istry and position of glycosidic bonds, the type and orientation of substituent groups,
and the number and type of branches. These oligosaccharides are covalently linked
withproteinsor lipids to formglycoproteinsorglycolipidsoncell surface.The specific
configuration of these oligosaccharides provides recognition sides for cell–cell
interaction, bacterial toxin, or viral adhesion onto the cells. For example, blood types
are determined by different oligosaccharides on the red blood cells.

2.1.4 Lipids

Biological lipids comprise a diverse group of molecules that are relatively water
insoluble or nonpolar. Lipids commonly found in animals or plants include fatty acids
and fatty acid-derived phospholipids, sphingolipids, glycolipids, sterols, and waxes.
Some lipids are linear aliphatic molecules, whereas others have ring structures.
Some are flexible, whereas others are rigid. The biological functions are as diverse
as their chemistry. Fats and oils are the principal storage forms of fuel. Too much
storageof fats results inobesity,which is becominga severeproblem inpublic health in
the modern society. Phospholipids and sterols are major structural components of
biomembrane. Steroid hormones, eicosanoids, and phosphorylated derivatives are
important molecules in cell signaling.

In addition to being largely nonpolar molecules, most lipids have some degree of
polar property. Generally, the bulk of their structure is nonpolar or hydrophobic acyl
chains consisting of an even number of 10–22 hydrocarbon units (CH2). They are
either saturated or unsaturated. Another part of their structure is polar or hydrophilic
containing carboxyl, hydroxyl, or phosphorated group. The bipolar feature of lipids
(polar head and nonpolar tail) makes them amphophilic molecules. In the case of
cholesterol, the polar group is amere hydroxyl group. In the case of phospholipids, the
polar groups are considerably larger.

Phospholipids, or, more precisely, glycerophospholipids or phosphoglycerides,
have a glycerol core where two fatty acid-derived ‘‘tails” are linked to the first
two carbons by ester bonds and one ‘‘head” group is linked to the third carbon by a
phosphodiester bond. The phospholipids found in biological membranes are phos-
phatidylcholine (lecithin), phosphatidylethanolamine, phosphatidylserine, and
phosphatidylinositol.

2.2 MICROSTRUCTURE AND FUNCTION OF CELLS

Biomolecules can be defined as anymolecules found in living organisms. They can be
eithermacromolecules or smallmolecules.Macromolecules include proteins, nucleic
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acids, polysaccharides, and lipids as already described. Small molecules are water,
inorganic ions, and hundreds of organic metabolites. A simple mixture of these
molecules cannot make life. All living organisms are highly organized structural
and functional systems that are characterized by their ability to metabolize and
self-replicate.

Since Leeuwenhoek first observed cells with his simple microscope in 1674, it
has been confirmed that all living organisms are composed of cells. Many animals
have trillions of cells, whereas bacteria are single-celled organisms. Cells are basic
structural and functional units of life. The defined function of a living cell is
determined by its particular structure.

Cells are small and complex.Under lightmicroscope, cells canbedivided into three
parts: cell membrane, cytoplasm, and nucleus. There are many distinct functional
structures or organelles in cells observed through electron microscope.

2.2.1 Prokaryotic Versus Eukaryotic Cells

There are 10–100 million living species in the biological universe on Earth. They
consist of two basic cell types, prokaryotic and eukaryotic. Prokaryotic cells are less
complexwith a single compartment surrounded by cellmembrane andwith no defined
nucleus. In contrast, eukaryotic cells have defined membrane-bounded nucleus and
extensive internal membrane compartments or organelles. Bacteria are single-celled
prokaryotes, whereas numerous animals, plants, and fungi are eukaryotes. Since the
genetic code in DNA is same in all living organisms, prokaryotes and eukaryotes
probably evolved from a common single-celled progenitor. Prokaryotic cells may
represent the primitive cell type onEarth and eukaryotic cell types evolved from them.
Table 2-3 shows the comparison between the two cell types. Figure 2-3 shows the
microstructure of a typical animal cell.

2.2.2 Cell Membrane

A eukaryotic cell is classically divided into three compartments: cell membrane,
cytoplasm, and nucleus. The basic architecture of cell membranes consists of a lipid
bilayer associated with peripheral extrinsic proteins and intrinsic integral proteins
(fluid mosaic model). Peripheral proteins are loosely associated with membrane
through electrostatic and hydrogen bonds or by covalently attached lipid anchors.
Integral proteins associate firmly with the membrane by hydrophobic interactions
between the interior of the lipid bilayer and nonpolar amino acid side chains.
The transmembrane sequences consist of about 20 or more amino acid residues in
either a-helix or b-barrel structure. The composition of both lipids and proteins in
the inner and outer lefts of the membrane is asymmetric. Many extrinsic proteins
on the outside surface of the cell membrane are attached by oligosaccharides
that are molecules for cell–cell interaction. The plasma membrane defines the
external boundaries of cells and regulates the molecular traffic across the boundary.
In eukaryotic cells, the biomembrane also divides cytoplasmic space into many
distinct functional compartments (organelles). Biomembranes are crucial for life;
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Table 2-3 Comparison of prokaryotic and eukaryotic cells

Characteristics Prokaryotic Cell Eukaryotic Cell

Prototype Bacteria Animal and plant cells
Structure Simple Complex
Cell size 1–10mm 1–500mm
Genome makeup DNAwith nonhistone

proteins
DNAwith histone and nonhistone
proteins forming chromosomes

DNA size 1–4� 106 bp 1–3� 109 bp
Gene number �4300 (E. coli) �25,000 (human)
Nucleus envelope Absent Present
Cell division Fission or budding Mitosis
Membrane-bounded
organelles

Absent Present such as mitochondria or
chloroplasts (plants), endoplasmic
reticulum, Golgi apparatus,
and lysosomes

Energy metabolism Variable metabolic
patterns, no
mitochondria

More unified oxidative metabolism
in mitochondria

Cytoskeleton None Complex with microtubules,
intermediate filaments, and actins

Figure 2-3 Substructures of a typical animal cell.(a) Plasmamembrane with bilayer fluid mosaic

structure. (b) Nucleus is filled with chromatin composed of DNA and nuclear proteins.

(c) Nucleolus is a nuclear subcompartment area where rRNA is synthesized. (d) Mitochondria

are surrounded by a double membrane, where ATP is generated. (e) Centriole for mitosis.

(f) Peroxisomes. (g) Rough endoplasmic reticulum, attached with many ribosomes. (h) Smooth

endoplasmic reticulum. (i) Lysosomes, biomembrane structure with an acidic lumen.

(j) Cytoskeletal fibers form networks and bundles. (k) Ribosome. (l) Golgi apparatus.

(m) Secretory vesicles store secreted proteins. (n) Nuclear envelope, a double membrane, outer

membrane, is continuous with the rough ER .
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there are two major reasons why the cell must separate itself from the outside
environment. First, it must keep its biomolecules (DNA, RNA, proteins, and
metabolites) inside the cell and keep foreign material outside the cell. Second,
it must communicate with the environment to continuously monitor the external
conditions and adapt to them and exchange the materials and energy with its
surroundings. For example, when an Escherichia coli bacterium detects a high
concentration of lactose in medium, it begins synthesizing proteins for metabolism
of lactose. It needs to pump lactose in through a lactose transporter and release
toxic metabolic products (see Fig. 2-8a). Thus, the cell membrane uses the lipid
bilayer to function as a physical barrier and the integral proteins to function as
selective biochemical transporters. Some types of transporters have ATPase activity
and pump ions (channels) or small molecules (transporters) against electrochemical
or concentration gradient.

In addition, some membrane proteins on the cell surface have specific functions in
signal reception or receptors (see Fig. 2-12). The ability of cells to receive and act on
signals in their surrounding environment is important for survival and cell–cell
interaction in multicellular organisms. Each of the cells in all tissues communicates
with dozens, if not hundreds, of other types of cells about a variety of important issues,
such as when it should grow or differentiate or die, when it should release certain
protein products such as growth factors or hormones needed by other cells at distant
sites in the body, and what other cells it should associate with to build complex tissue
architectures. These crucial decisions are made at tissue or whole body level to
maintain a dynamic living system by cell receptors and signaling.

2.2.3 Cytoplasm

The homogeneous region of the cell between the plasmamembrane and the nucleus is
defined as the cytoplasm. In fact, the cytoplasm is not ‘‘homogeneous,” but when
viewedunder an electronmicroscope, it is ahighly compartmentalized structure.After
centrifugation at high speed, the cytoplasm is separated into two fractions, supernatant
aqueous phase (cytosol) and pellet phase (organelles). The cytosol is composed of
water, ions, nutrients, and soluble macromolecules such as enzymes, carbohydrates,
RNA, and a vast variety of metabolites. The cytosol makes up some 50 percent of the
cell volume and functions as a perfect biochemical matrix in which hundreds of
metabolic reactions occur in any given moment. All protein synthesis and glycolysis
are carried out within the cytosol. On the contrary, pellet phase is rich in organelles
with diverse functions (see subsequent sections).

2.2.4 Nucleus

The nucleus is the central compartment formed with two layers of concentric
continuous biomembrane that is punctured with nuclear pores. This is where DNA
is stored and RNA is synthesized. DNA is the inherited genetic material containing all
information for the cell to live and to function. Synthesized RNAs are transported out
of the nucleus through the nuclear pores. Proteins needed inside the nucleus are
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imported through the nuclear pores. The nucleolus is usually visible as a dark or red
region in the nucleus where much of rRNA is synthesized and the ribosome is
assembled.

2.2.5 Organelles

Organelles aremembrane-bound small structureswithin eukaryotic cells that perform
dedicated functions. Structural compartmentalization creates a stable environment
and increases local concentration of reactivemolecules, thus improving the biochem-
ical efficiency. There are a dozen different types of organelles commonly found in
eukaryotic cells, including mitochondria, chloroplast (in plants), lysosomes, peroxi-
somes, ribosomes, endoplasmic reticulum (ER), Golgi apparatus, and some vacuoles.
Here, wewill focus on only a handful of organelles and their roles at a molecular level
in the cell with a brief description of the structure.

2.2.5.1 Cytoskeleton Network The cytoplasm contains numerous filaments
that form an interlocking three-dimensional network or the cytoskeleton. There are
three types of cytoplasmic filaments: microfilaments (actins), intermediate filaments,
and microtubules. They differ in diameter (from about 6 to 22 nm), protein subunits,
and specific function. The cytoskeleton provides a framework for the traffic of
intracellular organelles, the organization of enzyme pathways, mitosis, cell shape,
and cell movement.

2.2.5.2 Mitochondria Mitochondria are oval-shaped organelles formed with
two layers of biomembrane, an inner and an outer layer resulting in two internal
compartments, centralmatrix and intermembrane space.Aerobic respiration occurs in
the mitochondria. Many enzymes for oxidative reactions including oxidation of
pyruvate, fatty acid, and citric acid cycle are enriched in the central matrix. The
inner membrane contains 80 percent of proteins where adenosine triphosphate (ATP)
is generated by linking oxidative phosphorylation. The outer membrane contains
50 percent of proteins similar to cytoplasm membrane. The mitochondria contain its
own circular DNA (16,569 bp) that encodes some proteins used in oxidative phos-
phorylation. The existence of the doublemembrane and complete genetic systemhave
led many biologists believe that mitochondria are the descendants of some bacteria
that has been endocytosed by a larger cell a billion years ago and coexist in an
endosymbiotic relationship.

2.2.5.3 Chloroplasts These organelles are the site of photosynthesis in plants
and other photosynthesizing organisms. Similar to mitochondria, they also have a
double membrane.

2.2.5.4 Endoplasmic Reticulum The ER is an extensive network of biomem-
brane-bounded sacs, the site for many biosynthesis. There are two types of ER, rough
and smooth. RoughER is attachedwithmany ribosomeswhere RNA is translated into
protein. The smooth ER is the site for fatty acid, steroid, and phospholipid synthesis.
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2.2.5.5 Golgi Apparatus (Complex) Like ER, Golgi apparatus is a stack of
flattened membrane vesicles. This organelle modifies (such as glycosylation) and
packages newly synthesized proteins from rough ER into small membrane-bound
vesicles. These vesicles can be targeted to various locations in the cell and secreted out
of the cell.

2.2.5.6 Lysosome This organelle contains a group of enzymes to digest large
biomolecules into small monomeric subunits. All lysosomal enzymes have high
activity at acid pH in lumen and collectively termed acid hydrolases. When the
enzymes are released into cytoplasm, their activity is diminished.

2.2.5.7 Peroxisomes Unlike mitochondria, peroxisomes contain several oxi-
dases for fatty acid oxidation, but do not produce ATP. Instead, the energy is released
into heat. In addition, H2O2 can be formed and degraded by catalase, important
reactions for detoxification, as in the cases of ethanol and other toxic molecules.

2.3 SYNTHESIS OF BIOMOLECULES IN LIVING CELLS

2.3.1 Bioenergetics: The Law of Order

Each cell can be viewed as a tiny chemical factory. Cells require an ongoing supply
of energy to carry out various kinds of work, including synthesis, movement,
concentration, charge separation, the generation of heat, and bioluminescence.
The energy required for these processes comes either from the sun or from the
organic molecules such as carbohydrates, fats, and proteins. Organisms including
plants, algae, and certain groups of bacteria are capable of capturing light energy by
means of photosynthetic reaction. This group of organisms is called phototrophs.
Another group of organisms is called chemotrophs because they require the intake of
chemical compounds such as carbohydrates, fats, and proteins.All animals, fungi, and
most bacteria are chemotrophs.

The flow of energy through cells is followed by the laws of thermodynamics.
Bioenergetics is the application of thermodynamic principle in the biological system.
The first lawof thermodynamics (conservation) states that energy is always conserved,
it cannot be created or destroyed, but energy can be converted from one form into
another. The second lawof thermodynamics states that ‘‘in all energy exchanges, if no
energy enters or leaves the system, the potential energy of the state will always be less
than that of the initial state.” The second law provides a measure of thermodynamic
spontaneity, although this only means that a reaction can go and says nothing about
whether it will actually go or at what rate. Free energy change, DG, is a measure of
thermodynamic spontaneity and is defined so that negative values correspond to
favorable reaction andpositivevalues represent unfavorable reaction.AnegativeDG is
a necessary prerequisite for a reaction to proceed, but it does not guarantee that the
reaction will actually occur at a reasonable rate. The presence or absence of an
appropriate catalyst such as an enzyme will determine the rate at which a reaction
can occur.
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2.3.1.1 Energy Carrier Adenosine triphosphate is a universal ‘‘energy curren-
cy” in the cell and it can store and release the energy efficiently. Adenosinemay occur
in the cell in the unphosphorylated formorwith one, two, or three phosphates attached,
forming adenosine monophosphate (AMP), adenosine diphosphate (ADP), and
adenosine triphosphate (ATP), respectively.ATP is extremely rich in chemical energy,
in particular between the second and third phosphate groups. The net change in energy
of the decomposition of ATP into ADP and an inorganic phosphate is �12 kcal/mol
in vivo and �7.3 kcal/mol in vitro. This massive release in energy makes the
decomposition of ATP extremely exergonic, and hence useful as a means for
chemically storing energy. Many biochemical reactions that occur inside a cell are
coupled with the formation or decomposition of ATP.

2.3.1.2 Electron Carriers Most of the energy of eukaryotic cells is generated
from oxidizing fuel molecules, which involves the transfer of electrons from fuel
molecules to oxygen. The fuel molecules are oxidized, while the oxygen is reduced.
The electron carrier molecules of choice are nicotinamide adenine dinucleotide
(NAD) and its relative nicotinamide adenine dinucleotide phosphate (NADP), two
of themost important coenzymes in the cell. The oxidized forms,NADþ andNADPþ,
serve as electron acceptors by acquiring two electrons, thereby generating the reduced
formNADH and NADPH. However, only one proton accompanies the reduction. The
other proton, produced as two hydrogen atoms are removed from the molecule being
oxidized, is liberated into the surrounding medium.

2.3.2 Enzymes as Catalysts of Life

Enzymes allow many chemical reactions to occur within the homeostasis constraints
of a living system. Enzymes function as biological catalysts. The use of enzyme can
decrease the free energy of activation of chemical reactions. The first step in catalysis
is the formation of an enzyme–substrate complex. By bringing the reactants closer
together, chemical bonds may be weakened and reactions will proceed faster than
without the enzyme.Anenzyme-catalyzed reaction proceeds via an enzyme–substrate
intermediate and follows Michaelis–Menten kinetics, which is characterized by a
hyperbolic relationship between the initial reaction rate (velocity, v) and the substrate
concentration [s].

Enzymes are regulated by many ways to adjust their intracellular concentrations
and activity levels tomeet the cellular needs. First, all protein enzymes are sensitive to
temperature andpH.Changes in temperature or pHmaydenature the enzymeandmost
enzymes are adapted to operate at a specific pH or pH range. Second, enzyme activity
is influenced not only by substrate availability but also by products, alternative
substrates, substrate analogues, cofactors, and coenzymes. The binding of the
substrate to the active site of an enzyme alters the structure of the enzyme, placing
some strain on the substrate and further facilitating the reaction. Cofactors are
nonproteins essential for enzyme activity. Ions such as Zn2þ and Cu2þ are cofactors.
Coenzymes are nonprotein organic molecules such as NADþ or NADPþ bound to
enzymes near the active site. Additional control mechanisms include allosteric
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regulation. Most allosterically regulated enzymes catalyze the first step in a reaction
sequence and are multisubunit proteins with multiple catalytic subunits and multiple
regulatory subunits. Each of the catalytic subunits has an active site that recognizes
substrates and products, whereas each regulatory subunit has one or more allosteric
sites that recognize specific effector molecules. A given effector may either inhibit or
activate the enzyme, depending on which form of the enzymes is favored by effector
binding. Such amechanism is commonly employed in feedback inhibition. Often one
of the products, either an end or near-end product, acts as an allosteric effector,
blocking or shunting the pathway. The biosynthesis of enzymes in living cells is ,
also subjected to various regulations at transcriptional and translational levels
described subsequently.

2.3.3 Metabolism and Metabolic Pathways

Metabolism is all of the biochemical reactions that occur within a cell. This includes
the biosynthesis of complex organic molecules such as nucleic acids, proteins, lipids,
and carbohydrates (anabolism) and the degradation of these large molecules into
smaller, simpler ones with the release of chemical energy (catabolism) in the form of
ATP. Catabolism can be carried out either in the presence of oxygen (aerobic
conditions) or in the absence of oxygen (anaerobic conditions). The energy yield
ismuch greater in the presence of oxygen,which probably explains the preponderance
of aerobic organisms in the world. However, anaerobic catabolism is also important,
both for organisms in environments that are always devoid of oxygen and for
organisms and cells that are temporarily deprived of oxygen. Photosynthesis, a
phototrophic energymetabolism, is an important biochemical process inwhich plants,
algae, and some bacteria acquire the energy of sunlight to produce food. Ultimately,
nearly all living things depend on energy produced from photosynthesis for their
nourishment, making it vital to life on Earth.

Metabolismusually consists of sequences of enzymatic steps, also calledmetabolic
pathways. Metabolic pathways are of two general types: anabolic pathways are
connected with the synthesis of cellular components and are usually involved in a
substantial increase in molecular order and require energy, whereas catabolic path-
ways are involved in the breakdown of cellular constituents and release energy.
Catabolic pathways play two roles in cells: they give rise to the small organic
molecules or metabolites that are the building blocks for biosynthesis and the
production of energy that is used to synthesize the macromolecules and other cellular
function.

Avery large number of metabolic pathways including both catabolic and anabolic
pathways have been discovered and they can be found in various databases on the
Internet. The KEGG collection (http://www.genome.jp/kegg/) of metabolic and
regulatory databases currently has a record of 54,622 metabolic pathways. As an
example, Figure 2-4 shows themost common andwell-known carbohydrate catabolic
pathway, including glycolysis, pentose–phosphate (PP) pathway, fermentation, and
aerobic respiration in recombinant E. coli. Using glucose as a prototype substrate,
catabolism under both anaerobic and aerobic conditions begins with the glycolytic
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pathway, a 10-step sequence of reactions in which glucose is converted to pyruvate
with the net production of two molecules of ATP per molecules of glucose. In the
absence of oxygen, reduced coenzymegeneratedduringglycolysismust be reoxidized
at the expense of pyruvate, leading to fermentation end products such as acetate,
lactate or ethanol, and carbon dioxide. The most common and well-known type of
glycolysis is the Embden–Meyerhof (EMP) pathway. Compared to fermentative
process, aerobic respiration gives the cell access to much more of the free energy
that is released by the oxidation of organic substrates. The completion of catabolismof
carbohydrates beginswith the glycolytic pathwaysmentioned above, but the pyruvate

Figure 2-4 Central metabolic pathways in a recombinant E. coli expressing three genes for poly-

3-hydroxybutyrate (PHB) synthesis. Glycolysis, fermentation, TCA cycle, and PHB synthesis

pathways are shown. Genes encoding the important metabolic enzymes are also indicated (italic

letters). Major regulatory effects are indicated as either activation (þ ) or inhibition (�). Kinetic

regulators are highlighted: fructose-2, 6-P2, citrate, and acetyl-CoA for glycolysis; acetyl-CoA,

oxaloacetate, and succinyl-CoA for TCA cycles. Key allosteric effectors are NADþ, ADP, and AMP

as activator and acetyl-CoA, NADH, and ATP as inhibitors.
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is converted to acetyl CoA. The acetyl CoA is then oxidized fully by enzymes of the
tricarboxylic acid (TCA) cycle. The reduced coenzymes (NADH, FADH2) are further
reoxidized by the electron transport system and generated additional ATP.A total of 38
molecules of ATP are generated permolecule of glucose inmost prokaryotic and some
eukaryotic cells. This is a factor of 19 timesmore energy per sugarmolecule than what
the typical anaerobic reaction generates. The small molecules such as acetyl-CoA and
energy such asATP,NADH, andNADPHgenerated by these catabolic reactions can be
used for biosynthesis of other cellular products and cell mass. ATP, NADH, and
NADPH are continually generated and consumed. NADPH, which carries two elec-
tronsat ahighpotential, provides reducingpower in thebiosynthesisofcell components
frommore oxidized precursors. Figure 2-4 also illustrates a biopolymer PHB synthetic
pathway that is introduced intoE.coliby recombinantDNAtechniques. In recombinant
E. coli, PHB can be synthesized from acetyl-CoA by a sequence of three enzymatic
reactions catalyzed by b-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase.
Moreover, key reaction types are used repeatedly in metabolic pathways.

2.3.4 Regulation of Metabolism

As already discussed, metabolic pathways form as a result of the common occurrence
of a series of dependent chemical reactions. These reactions are carefully regulated to
ensure that the rate of product formation is tuned to actual cellular need. The end
product of the pathway depends on the successful completion of all sequential
reactions, each mediated by a specific enzyme. Also, intermediate products tend
not to accumulate, making the process more efficient. The metabolism is regulated at
two levels to achieve the overall cellular ‘‘fitness” and balance. First, catalytic
activities of many enzymes are directly regulated by allosteric interactions (as in
feedback inhibition) and by covalent modification. These processes regulate the
activity of preexisting enzymes in both catabolic and anabolic pathways. Most of the
constitutive enzymes such as the enzymes operating in glycolysis and TCA cycles are
regulated at this level. Several key regulatory steps in glycolysis and TCA cycles are
highlighted in Figure 2-4. Second, the amounts of many enzymes are controlled by
regulation of the rate of protein synthesis and degradation. The processes of end
product repression, enzyme induction, and catabolite repression are involved in the
control of synthesis of enzymes. End product repression and enzyme induction are
mechanisms of negative control that lead to a decrease in the transcription of proteins.
Catabolite repression is considered a form of positive control because it leads to an
increase in transcription of proteins. Many inducible or repressible enzymes are
regulatedat this level.Such examplesof enzyme induction andcatabolite repression (i.
e., repression and induction of lac operon, see Fig. 2-8a) will be discussed subse-
quently. In addition, the movement of many substrates into cells and subcellular
compartments is also controlled. Distinct pathways for biosynthesis and degradation
contribute to metabolic regulation. The energy charge, which depends on the relative
amounts of ATP, ADP, and AMP, plays an important role in metabolic regulation. A
high-energy charge inhibits ATP-generating (catabolic) pathways and stimulates
ATP-utilizing (anabolic) pathways.
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2.4 THE INFORMATION FLOW IN LIVING CELLS

Aswediscussed, the cell is thebasic structural and functional unit for all living species.
In cells the genetic information is carried by DNA molecules and its specificity is
determined by the sequence of nucleotides. The proteins are functional forms of life
and perform most cellular activities. The largest group of proteins with a related
function is enzymes. In this section, we will discuss how genetic information flow
transmits from one generation to the next; how genetic information is expressed as
functional proteins; and how expression is controlled in a living cell by cell signaling.
On the other hand, genetic information can also be inherited epigenetically.
In addition, genetic, epigenetic, and biochemical information flow are integrated
for final cellular controls.

2.4.1 Genetic Information Flow

The so-called central dogma of molecular biology comprises the three major
biological processes: replication, transcription, and translation. Replication is the
copying of parental DNA to form daughter DNAmolecules with identical nucleotide
sequences aswell as identical epigeneticmodifications.Transcription is theprocess by
which the genetic information stored in DNA sequence is copied precisely into
messenger RNA. Translation is the genetic information encoded in messenger RNA
being translated into a polypeptide.With the completion of humangenomeproject and
with genome sequences of many other species available, these processes can be
studied at genome levels (Fig. 2-5).

Figure 2-5 New central dogma of molecular biology. The classical central dogma

(DNA!RNA!protein in single gene) has been redefined at whole genome level. Ultimately,

the total phenotypic characteristic of an organism is determined by the proteome and the whole set

of functional proteins and their interactions.

26 BASICS OFMOLECULAR BIOLOGY, GENETIC ENGINEERING, ANDMETABOLIC ENGINEERING



2.4.1.1 DNA Replication Genome is defined as the complete set of
genetic information carried by a cell in the organism. DNA is the primary material
that carries genetic information. For many viruses and prokaryotes, the genome
consists of one linear or circular DNA molecule. In the eukaryotic cell, DNA is
packed inmultiple chromosomes and confinedbynuclear envelope in thenucleus. The
size of genome is quite different among species. The human genome contains
3.2� 109 nucleotide pairs, divided into 22 different autosomal chromosomes and
2 sex chromosomes, while prokaryote E. coli contains 4.6� 106 nucleotide pairs in a
single circular DNA. Eukaryotic chromosomes consist of numerous highly
coiled DNA/histone complex or nucleosome connected by linker DNA. Each nucleo-
some contains the protein core of eight histones (two copies each of H2A, H2B, H3,
and H4) and a 200 bp segment of DNA. The histone core is encircled by DNA
fiber (Fig. 2-11).

With these basic concepts in mind, we will discuss the chemical mechanism of
heredity inwhich thegenetic information ispassed fromacell to itsdaughter cells at cell
division and from one generation to the next through the reproduction of organisms.

DNA replication is semiconservative; each strand of double helix of DNA can be
used as the template to synthesize a new complementary strand of DNA (Fig. 2-6a). It

Figure 2-6 DNA replication. (a) Two strands of parental DNA helix are unwound and used as

templates to produce new daughter strands. The outcome is two copies of identical DNA, each

containing one of the original strands and one new complementary strand (semiconservative

replication). (b) Themain biochemical steps (see text) and the proteins involved in DNA replication

are illustrated.
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is carried out in three identifiable phases: initiation, elongation, and termination.
The replication starts at the origin and usually precedes bidirectionally. Parental
double helix DNA must be separated from one another (denaturation) to be the
templates. This process is accomplished by many enzymes such as helicases and
topoisomerases under normal physiological condition. DNA is then synthesized in the
50 ! 30 direction by DNA polymerases. Since the two strands of a DNA are antiparal-
lel, this 50 ! 30DNAsynthesis can takeplace continuouslyononlyoneof the strands at
a replication fork (the leading strand). On the other strand (lagging strand), the short
DNA fragments are synthesized discontinuously as Okazaki fragments, which are
subsequently ligated and the gaps are filled by ligase. The complex of many proteins
and enzymes at the replication fork is called replisome. The key component in
replisome is DNA polymerase. Most cells have several DNA polymerases. In E. coli,
DNA polymerase III is the primary replication enzyme (Fig. 2-6b). Eukaryotic
chromosomes havemany replication origins and proceed at multiple sites by utilizing
DNA polymerase a.

The fidelity of DNA replication is maintained by several mechanisms: (1) base
selection by DNA polymerase according to template nucleotide following the role of
Watson–Crick base pairing (A/T; C/G); (2) 30 ! 50 proofreading exonuclease activi-
ty that is part of most DNA polymerases, and (3) specific DNA repair systems for
mismatch correction.

Epigenetic information such as DNA methylation is also inherited during DNA
replication. As a result, the two replicated DNAmolecules in parental cell are exactly
the same sequences andmethylcytosine content are equally divided into two daughter
cells. Once the two daughter cells receive the same genetic material and epigenetic
information, heredity is pursued.

2.4.1.2 From DNA to RNA—Transcription As discussed above, genomic
DNA contains all information to build a cell or organism. Although the genome in all
somatic cells (except lymphocytes) in a given multicellular organism is same, the
structure and function of the different types of cells are totally different. Hepatocytes
are different fromneurons.Myocytes are different fromepithelial cells. Thedifference
is not due to DNA, but mRNAs and proteins.

Thecentral dogma is an early attempt tounderstandhow the aminoacid sequence of
the protein is determined by nucleic acid sequence of DNA based on following
observations. First, theDNA is confined in the nucleus, while protein synthesis occurs
in association with ribosomes in the cytoplasm. Second, RNA is synthesized in the
nucleus and then transported to the cytoplasm. Third, RNA is chemically similar to
DNA. Collectively, these observations suggest that genetic information, stored in
DNA, is transferred to an RNA intermediate (mRNA), which directs the synthesis of
proteins.

The process bywhich RNAmolecules are synthesized on aDNA template is called
transcription. It results in anmRNAmolecule complementary to theDNAsequence of
one strand (template strand) of the double helix DNA.

LikeDNA replication, transcription is also a complicated biochemical process and
many protein factors and enzymes are involved. However, transcription occurs only in
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particular DNA regions. The process of transcription can be divided into four phases:
initiation, elongation, termination, and processing. During initiation, RNA polymer-
ase binds to a specific site in DNA (the promoter), locally melts the double-stranded
DNA to reveal the unpaired template strand, and polymerizes the first twonucleotides.
There are as many as 30 polypeptides (general transcription factors) assembled as an
initiation complex facilitating the initiation. During strand elongation, RNA poly-
merase (II in eukaryotic DNA)moves along the DNA,melting sequential segments of
the DNA and adding nucleotides to the growing RNA strand.When RNA polymerase
reaches a termination sequence in the DNA (terminator), the enzyme stops transcrip-
tion, leading to the release of the completedRNAand dissociation of the enzyme from
the template DNA. RNA polymerase and transcription factors can be reused for the
next round of transcription.

In eukaryotic DNA, the initial primary transcript (pre-mRNA) very often contains
noncoding regions (introns) interspersed along coding regions (exons). Transcripts
from genes containing introns undergo splicing, the removal of the introns and joining
of the exons, which is catalyzed by small nuclear RNAs in the spliceosome. During
processing, the ends of nearly all primary transcripts are alsomodified by addition of a
50-cap and 30-poly (A). Then the mature mRNAs are exported through the nuclear
pores to cytoplasm for protein synthesis (Fig. 2-7).

Not all DNA sequences in genome are used for coding RNAs or proteins. In fact,
only a small fraction of genome is coding sequence in eukaryotes. For instance, only

 AAATAA                                                         ATAT ATG

Promoter          +1           Start codon      Exon Intron Stop codon   Transcription termination

TGA

3?-UTR5?-UTR                     Open reading frame                  

Transcription

5′- capping

3′- Polyadenylation

Splicing

Gene

Pre-mRNA

Pre-mRNA

Pre-mRNA

Mature mRNA

Figure 2-7 Gene transcription. The regulatory region and the coding region of a gene are

illustrated in upper panel. The steps of transcription and mRNA processing are illustrated.

In both prokaryotes and eukaryotes, a promoter such as TATA box, located upstream of transcrip-

tion start site (þ1), is required for RNA polymerase binding and transcription initiation. ThemRNA

processing occurs in eukaryotes only. The newly synthesized pre-mRNA needs to be processed,

which includescapping50-endwith7-methylguanylate, addingpoly (A) tail at 30-end, and removal of

introns and connection of exons.
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1.2 percent of human genome DNA codes RNAs then proteins. In genome, the region
that directs the synthesis of a single polypeptide or functional RNA (such as tRNA) is
called agene.Agene is the physical and functional genetic unit composedof a segment
of DNA. A gene consists of a regulatory region and a coding region. A human has
proximally 25,000 genes, whereas E. coli contains about 4288 genes. However, these
genes are not always expressed in the cells. Hepatocytes express only liver function-
related genes, whereas neurons express only brain function-required genes. However,
some housekeeping genes needed for basic cellar activities express in all cells.

Gene expression is tightly controlled in a given cell type at any givenmoment in the
organisms.Transcription is themost important control point,which canbe activated or
repressed. Inprokaryotes, the classical exampleof transcriptional control is lacoperon
in E. coli. The lac operon encodes three enzymes for the metabolism of lactose. For
transcription of the lac operon to begin, the s70 subunit of the RNA polymerase must
bind to the lac promoter, which lies just upstream of the transcription start site. When
no lactose is present, binding of the lac repressor protein to a sequence called the lac
operator, which overlaps the transcription start site, blocks transcription initiation by
the polymerase. When lactose is present, lactose molecules bind to specific binding
sites in each subunit of the tetrameric lac repressor, causing a conformational change
in the protein thatmakes it dissociate from the lac operator.As a result, the polymerase
binds to promoter to initiate transcription of the lac operon (Fig. 2-8a).

Transcriptional control in eukaryotes is much more complicated than that in
prokaryotes. There are at least three types of promoter proximal elements: silencer
element, upstream activator sequence (UAS), and core promoter (TATA box, initiator
(INR), and downstream promoter elements (DPE)). These proximal elements, located
within 200 bp of transcription start sites, direct the basal level of transcription. In
contrast, enhancers and suppressors may be located up to 10 kb either upstream or
downstream from a promoter. The transcription activator or repressor protein binds to
enhancers or suppressors and interacts with basal transcriptional machinery to
enhance or repress the transcription. In most cases, the action is mediated by a set
of other proteins, the so-called coactivators or corepressor (Fig. 2-8b). Furthermore,
transcription activity can also be affected by changing the chromatin configuration.
Histone acetylase and deacetylase complex, as well as DNA methylation in CpG
islands, can regulate transcription initiation. The epigenetic regulation is important in
normal development and pathological processes (Section 2.4.2).

The discovery of miRNA and siRNA has elucidated additional mechanisms of the
posttranscriptional control. BothmiRNAs and siRNAs contain 21–23 nucleotides that
are generated from longer hairpin-like double-stranded precursor RNA (�70 bp) by
DICER ribonuclease.One strand of the shorter duplex intermediateRNA is assembled
into amultiprotein, RNA-induced silencing complex (RISC). ThemiRNA in complex
forms imperfect hybridswith sequences in 30-untranslated region (30-UTR) of specific
target mRNAs and represses the translation initiation. The siRNA in complex forms
a perfect hybridwith targetmRNAand leads to degradation of targetmRNA.Hundred
types of miRNA and siRNA have been identified in higher eukaryotes. The double-
stranded RNA (dsRNA) containing these small RNA sequences can be constructed or
synthesized and then introduced into a cell in vitro or in vivo. It provides a huge
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potential to specifically knockdown or silence a gene at posttranscriptional level. The
target mRNA can be viral (such as HIV) or oncogenic gene transcripts (Fig. 2-9).

2.4.1.3 From RNA to Protein—Translation There are three basic types of
RNAs in cells, namely,mRNA, tRNA, and rRNA.OtherRNAspecies includemiRNA,
siRNA, and snRNA (Table 2-1). All these RNAs somehow play a specific role in
mRNA-directed protein synthesis or translation.

mRNA Genetic information stored in DNA in the form of a nucleotide sequence
is transcribed into mRNA. The nucleotide sequence in mature mRNA contains

Figure 2-8 Transcription regulation in prokaryotes and eukaryotes. (a) A prokaryotic regulatory

unit, operon. Transcription is inducedby the substrate that binds to and releases the repressor from

the operator, and then RNA polymerase binds to the promoter and initiates the transcription. (b) A

eukaryotic regulatory unit. The corepromoter containsTATAbox (TATA), initiator sequences (INR),

and downstream promoter elements. A complex arrangement of multiple enhancers interspersed

with silencer and insulator elements that can be located 10–50kb either upstream or downstream

of the core promoter. Transcription is initiated at core promoter regions by interactions of the RNA

polymerase II core complex, general transcription factors (TFIID), and multiple subunits of

cofactors including TBP-associated factors (TAFs). Transcription factors binding enhancer or

silencer regulate the transcription by interaction with TAFs or other cofactors.
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continuous degenerated triplet nucleotides that determine specific amino acids called
codons.Each triplet nucleotide (or codon) in themRNA is, in turn, complementary to a
triplet nucleotide (anticodon) corresponding tRNA. Each tRNA carries a specific
amino acid that is correctly inserted into the polypeptide chain during translation. The
complete genetic codes have now been elucidated (Table 2-4). Many amino acids are
encoded bymore than one codon. TheAUGcodon formethionine is themost common
start codon,while three codons (UAA,UGA,UAG) function as stop codons specifying
no amino acids. The region of mRNA from the start codon to a stop codon is called
the reading frame. The 50-cap (7-methylguanylate) and poly (A) tail define the 50- and
30-ends ofmRNA.The region between the 50-cap and the start codonAUG is known as
the 50-untranslated region (50-UTR). The region from the stop codon to the start point

Figure2-9 RNA interference.BothmiRNAandsiRNAare cleaved from their precursors, the large

double-stranded RNAs, by the Dicer ribonuclease. After binding to multiple proteins and forming

RISC, one strand of 21–23 nucleotides hybridizes the target mRNA and degrades mRNA (by

siRNA) or inhibits the translation (by miRNA). The gene expression is inhibited by this posttran-

scriptional regulation.
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of poly (A) tail is known as 30-untranslation region (30-UTR). The pre-mRNAs are
matured (processing) in nucleus, transported to cytoplasm, and used as templates for
protein synthesis during translation. The processes of pre-mRNAmaturation include
adding 50-cap, poly (A) tail, and splicing (Fig. 2-7).

tRNA There are 64 types of tRNAs found in eukaryotes. All tRNAs have a similar
three-dimensional structure including an acceptor arm for attachment of a specific
amino acid and a stem-loop with a three-base anticodon. Each type of amino acid has
its own set of tRNAs,which bind the specific amino acid and carry it to thegrowing end
of a polypeptide. The anticodons in each tRNA can base-pair with its complementary
codon in themRNA, bywhich the nucleotide sequence in themRNA is translated into
amino acid sequence in the peptides.

rRNA The rRNA associates with a set of proteins to form ribosomes. These
large ribonucleoprotein complexes move along an mRNA and catalyze the assembly
of each amino acid into peptide chain. Both prokaryotic (70S) and eukaryotic (80S)
ribosomes consist of a small and a large subunits. Each subunit contains numerous
different proteins and one major rRNA molecule. The topological structure of the
ribosome has been elucidated in detail. The genes encoding rRNA are in the nucleolus
region.

Table 2-4 The genetic code in mRNA

Second Position

First Position U C A G Third Position

U Phe Ser Tyr Cys U
Phe Ser Tyr Cys C
Leu Ser Stop Stop A
Leu Ser Stop Trp G

C Leu Pro His Arg U
Leu Pro His Arg C
Leu Pro Gln Arg A
Leu Pro Gln Arg G

A Ile Thr Asn Ser U
Ile Thr Asn Ser C
Ile Thr Lys Arg A
Met Thr Lys Arg G

G Val Ala Asp Gly U
Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

Note: The first base of the codon (50-end) is shown in the left column and the second base is shown in
the third row. The third base in the right column plays lesser specific role; AUG (for Met) is most
common initiator codon. Sometimes GUG and UUG are also used. The three termination codons (UAA,
UGA, and UAG) match no aminoacyl-tRNA and are recognized by termination factors for translation
termination.
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Protein Synthesis Similar to DNA replication and RNA transcription, translation
is a highly organized and regulated biochemical process in which many proteins
factors are involved. It can be divided into three phases: initiation, elongation, and
termination.Before translation initiation, each amino acid needs to be activated byone
of the 20 specific aminoacyl-tRNA synthetases. As the result, the amino acid is linked
to the acceptor arm of tRNA by a high-energy bond, aminoacyl-tRNA.

During initiation, the small ribosomal subunit binds tomRNAnear translation start
sitewith the initiator tRNA carrying the amino-terminal methionine (Met-tRNAiMet).
Then the large subunit and multiple initiation factors (eIF2, 3, 4, 5) also bind to form
initiation complex. The complex precedes the scan along mRNA (50 ! 30) until
it encounters the start codon AUG. The anticodon (50CAU30) of Met-tRNAiMet is
base-paired with the start codon AUG in mRNA at P-site of ribosome.

During chain elongation, each incoming aminoacyl-tRNA moves through three
ribosome sites, A, P, and E. First, the new aminoacyl-tRNA binds to the A-site that
makes Met-tRNAiMet move to the P-site, the large rRNA subunit catalyzed peptide
bond formation between Met and incoming amino acid. At the same time, the
ribosome undergoes conformational change and moves one codon down along the
mRNA, the unacylated tRNAiMet is shifted to the E-site from the P-site and the
peptidyl-tRNA from the A-site to the P-site. In the next step, the incoming aminoacyl-
tRNAbinds to theA-site andunacylated tRNAiMet is ejected from theE-site.The cycle
repeats and the chain is elongated. This process is fast and accurate. A peptide of 100
amino acid residues needs only 5 s to synthesize (Fig. 2-10).

Figure 2-10 Translation. Translation is initiated from formation of initiation complex with fMet-

tRNAmet binding to start codonAUG inmRNA.The secondaminoacyl-tRNAenters theA-site of the

ribosome. The peptidyl transferase of rRNA ribozyme in large subunit catalyzes the peptide bond

formation between fMet-tRNAmet and the second aminoacyl-tRNA, The ribosome moves one

codon toward the 30-end of mRNA. The third incoming aminoacyl-tRNA binds the A-site of

ribosome. The cycle is repeated and newly synthesized peptide is elongated until it hits the

stop codons. The translation is then terminated. Many protein factors are involved in translation.
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At the termination phase, when the peptide chain-bearing ribosome reaches a stop
codon (UAA, UGA, UAG), the elongation stops since no tRNA molecules with antic-
odons matches the stop codons. The release factor eRF1 then enters the ribosomal
complex and cleaves the peptide chain from tRNAatP-site. Thepeptides spontaneously
fold into the active three-dimensional forms. The tRNA and two ribosomal subunits are
dissociated and released. The ribosome is recycled for the next round of translation.
In most reactions, GTP binding proteins hydrolyzing GTP to GDP provide the energy.

2.4.1.4 Posttranslational Modification of Proteins Although proteins are
the end products of the genetic information flow, theyneed additionalmodifications to
become the functional molecules. Posttranslational modification means the chemical
modification of a protein after being translated. It is the last step in protein biosynthesis
for many functional proteins. Posttranslational modification may involve the forma-
tion of disulfide bridges and attachment of any number of biochemical functional
groups, such as carbohydrates, acetate, phosphate, and various lipids. Enzymes may
also remove one ormore amino acids from the ends of the polypeptide chain or cut the
polypeptide in the middle of the chain. For instance, proinsulin is cut twice after
disulfide bond formation to form the active formof insulin. In other cases, two ormore
polypeptide chains that are synthesized separately may associate to form the quater-
nary large protein, such as immunoglobulin and hemoglobulin. The most common
posttranslational modification is glycosylation by which the carbohydrate chains are
added to the side chains of the peptides to form glycoprotein. The carbohydrate chains
are important for cell–cell recognition (sugar code).Notably, glycosylation is absent in
bacteria and is somewhat different in each type of eukaryotic cells. Protein phosphor-
ylation is part of common mechanisms for controlling the function of a protein, for
instance, activating or inactivating an enzyme by protein kinase in cell signaling
pathways (see Fig. 2-12).All proteins are eventually degraded by ubiquitin-dependant
proteolysis in a large protein complex, proteasome.

2.4.2 Epigenetic Inheritance

In classic genetic inheritance, traits are passed from one generation to the next via
DNA sequences in the genome. Differences in a DNA sequence specify differences in
a trait. Epigenetic inheritance involves passing a trait from one generation to the next
without the difference in DNA sequence, but DNA structure. Known mechanisms of
epigenetic inheritance include changes in molecular structures in the DNA (such
as DNA methylation) or histones (such as histone methylation and acetylation),
chromosome remolding, and RNA interference (RNAi) so that while the gene (DNA
sequence) is the same, the gene expression is different (Fig. 2-11). For example, genes
switch on and off in response to hormonal signals.Changes inmolecular conformation
around the gene can influence the gene transcription. This can change developmental
processes and can alter the course of diseases or result in genomic imprinting. The
study of epigenetic inheritance is known as epigenetics.

Epigenetic inheritance systems allow cells of different phenotype but of identical
genotype to transmit their phenotype to their offspring. Proteins or chemical groups
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that are attached to DNA and modify its activity are called chromatin marks. These
marks are copied when DNA replicates. For example, cytosines in eukaryotic DNA
can be methylated (5-methylcytosine). The number and pattern of such methylated
cytosines influence the functional state of the gene: low levels of methylation
correspond to high level of gene expression, whereas high levels of methylation
correspond to low levels of gene expression.Although there are randomchanges in the
DNA methylation pattern, specific changes induced by environmental factors do
occur. After DNA replication, maintenance DNA methyltransferases (DNMT 1) at
replication forkmake sure that themethylationpatternof theparentalDNAiscopied to
the daughter strand ofDNAprecisely. In such away, the pattern ofDNAmethylation is
maintained from parental cells to the daughter cells. If the DNAmethylation occurs in
the germ cells, the pattern can be inherited from one generation to the next. In a few
cases, expression of a gene solely depends onwhether it is inherited from themother or
father. This phenomenon is called genomic imprinting. The molecular mechanism of
genomic imprinting isDNAmethylation.The insulin-likegrowth factor-2 (Igf-2) gene
is one example of an imprinting gene. In this case, only the copy of Igf-2 gene from
paternal side is transcribed, whereas the maternal copy of Igf-2 gene is silenced by
DNA methylation. The loss of Igf-2 imprint is associated with carcinogenesis,
especially in colorectal cancer.

During the course of evolution, accidental deamination of unmethylated C gives
rise to U, which is recognized by DNA repair system, uracil DNA glycosylase. The U
in DNA sequence is excised, then replaced with C, and again restored in the original
DNA sequence. However, deamination of a methylated C in the genome tends to be
eliminated and replaced by a T by DNA repair system. As a result, most dinucleotide
C–G sequences have been lost because of the elimination of methylcytosine.
The remaining residual C–G sequences are distributed very unevenly in the genome.

Figure 2-11 Cell epigenetics and gene silencingmechanisms. Cell epigenetic systemconsists of

DNA methylation and histone methylations (pentagon), histone acetylation (triangle), chromatin

(nucleosome) remodeling, andRNAi. Interaction between these components results in transitionof

euchromatin to heterochromatin and the transcription is inactivated (silenced) permanently.
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In some regions, dinucleotide C–G sequences are present at 10–20 times more than
their averagedensity, calledCpG islands.TheCpGdinucleotidediffers fromC–Gbase
pairing.TheCpG islands are often located in the promoters of the housekeepinggenes.
The housekeeping genes encode many proteins that are essential for cell basic
metabolism and viability and are therefore expressed in most cells all of the time.
Inmost cases, theCpG islands seem to remain in anunmethylated state in all cell types.
However, some tissue-specific genes, which code for proteins needed only in selected
types of cells, are also associatedwith CpG islands. For instance, DNAmethylation in
the dividing fibroblasts gives rise to only new fibroblasts rather than some other cell
types, even though the genome is identical in all cells.

If theCpG islands in promoter regions are abnormallymethylated, the transcription
will be blocked by the binding ofmethyl binding protein complex and the genewill be
silenced. In the case of cancer cells, many tumor suppressor genes are inactivated by
DNA methylation in CpG islands surrounding the promoters. Abnormal epigenetics
including DNA methylation pattern is a hallmark of cancer cells (Fig. 2-11).

2.4.3 Cell Signaling and Integrated Controls

Aswehavediscussed so far, there are four basic components in a living cell: functional
structure, metabolism, energetic transfer, and information flow. The information flow
can be divided into genetic flow and biochemical signaling. The integration of these
two pathways results in the final control of the system. The genetic flow has been
discussed in detail. This section will focus on the biochemical signaling.

For single-celled organisms to survive, cells must sense the changes in their
environment and make adaptive responses constantly. These responses include a
movement toward the nutrients or away from the toxin, changes of the metabolic
patterns, and induction of certain protein expression. The lac operon in bacterial
genome is an example of this type of control (Fig. 2-8a).

For a multicellular organism, cells not only need to adapt to their surrounding
environment but also need to communicate with their neighboring cells and to adjust
their behaviors and function to fit thewhole systemneeds. The human body consists of
about 50 trillion cells with 200 different cell types; the whole body control is carried
out by anerve systemandanendocrine systemconductedbycell signal transductionor
cell signaling. In general, a cell signaling pathway consists of seven components:
ligand, receptor, transducer, effector, second message, amplifier, and target (Fig. 2-
12a). The ligands can be a hormone, neurotransmitter, growth factor, or even a gas
(such as nitric oxide orNO). The concentration of the ligands is usually extremely low
and it requires very specific binding to its receptor. There are various types of cellular
receptors, including nuclear receptors and cell surface receptors. The nuclear recep-
tors are proteins specific for steroid hormone binding. The cell surface receptors
usually are integrated cell membrane proteins consisting of extracellular domain,
transmembrane domain, and cytoplasmic domain. There are at least seven super-
families of surface receptors binding different types of ligands to conduct different
signaling pathways (Fig. 2-12b). The specificity of binding to the ligand is determined
by the specific three dimensions of extracellular domain, while the cytoplasmic
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domain usually has kinase activity. The transducer transmits the signal from the
membrane into the cells. The various G-proteins functioning as the transducer trigger
the effecter enzymes to produce the second message. The second message is usually
small molecules, such as cAMP, cGMP, Ca2þ , inositol 1,4,5-triphosphate (IP3), or
1,2-diacylglycerol (DAG). An amplifier is a series of protein kinases, such as protein
kinases A, B, C, or tyrosine protein kinase. The signal is amplified by a cascade of
kinase reactions. The target is either an enzyme, ion channel, or a gene. Signal
transduction research is concerned with the mechanisms by which cells receive,
interpret, integrate, and act upon information received. There are extensive interac-
tions or cross talks between the pathways.The final output of cell signaling is the result
of changes of cell metabolism, function, or gene expression.

There has been an explosion of information in recent years related to the signal
transduction mechanisms whereby cell surface receptors transmit external stimuli,
delivered in the form of hormonal or other environmental cues, to the intracellular
response machinery in the cytoplasm and nucleus. Particularly, it is now widely
recognized that signal transduction abnormalities involving the changes of gene

Figure 2-12 Cell signal transduction pathways. (a) A simplifiedmodel of a cell signal transduction

pathway includes multiple components: ligand, receptor, transducer, effector, second message,

amplifier, and targets. A ligand molecule binds to a receptor protein, thereby activating an

intracellular signaling pathway that is mediated by a series of signaling proteins. Finally, one or

moreof these intracellular signalingproteins interactswith the target proteins, either in cytoplasmor

nucleus, altering cell metabolism or gene expression. (b) Examples of signal transduction path-

ways in eukaryote. These pathways are important for cell metabolism and gene regulation.

A detailed description can be found in the references.
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expression play important roles in several major human diseases. These findings have
fueled a massive scientific effort aimed toward the identification and functional
dissection of various signaling pathways. Furthermore, a substantial proportion of the
current effort inmodern drug discovery is founded on the premise that pharmacologic
manipulation of signaling proteins will prove beneficial in the prevention and
treatment of major human diseases.

2.5 GENETIC ENGINEERING OF LIVING CELLS

The term genetic engineering refers to the process of manipulating genes, usually
outside the organism’s normal reproductive process. It often involves the use of
recombinant DNA technologies for the isolation, manipulation, and reintroduction
ofDNAinto cells ormodel organisms andultimately to express a protein.Thegoal is to
introducenewcharacteristics suchas increasing theyieldofacrop species, introducing
anovel trait, or producing anewproteinor enzyme.The completions of the sequencing
of the human genome, aswell as the genomes ofmany agriculturally and scientifically
importantplants andanimals,havesignificantly increased theopportunities forgenetic
engineeringresearch.Expedientandinexpensiveaccess tocomprehensivegeneticdata
has become a reality, with billions of sequenced nucleotides already online and
annotated. Genetic engineering has become the gold standard in biotechnology
research,andmajor researchprogresshasbeenmadeusingawidevarietyoftechniques.

Figure 2-12 (Continued ).
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2.5.1 Recombinant DNA Technology

RecombinantDNAtechnology is a set of techniques used for cutting apart and splicing
together different pieces of DNA. The pieces of foreign DNA are introduced into
another cell or organism and continue to produce their own coded proteins or
substances within the new host cell. The cell becomes a factory for the production
of these foreign proteins. The techniques for the introduction of foreign genes into
bacteria were first developed in the early 1970s. In 1978, Herbert Boyer used
recombinantDNAtechnology toproduce recombinant human insulin, the first product
of biotechnology, asweknow it today.Althoughmanymethods are available, the basic
procedure ofmaking recombinantDNA involves the following steps (see Fig. 2-13 for
an overview):

Isolating DNA. The first step in making recombinant DNA is to isolate donor
and vector DNA. The procedure used for obtaining donor and vector DNA
depends on the nature of the resource. The bulk of DNA extracted from
the donor will be nuclear genomicDNA in eukaryotic cells or themain genomic
DNA in prokaryotic cells; these types of DNA are generally the ones
required for analysis. Bacterial plasmids are commonly used vectors, and these
plasmids must be purified from the bacterial genomic DNA. DNA isolation is
now simple with various commercial kits allowing a fast and chemically safe
technique.

Cutting and Joining DNA. The cornerstone of recombinant DNA technology is a
class of bacteria enzymes called restriction endonucleases. Restriction enzymes
recognize a specific nucleotide sequence and cut both strands of theDNAwithin
that sequence. To date, over 3000 restriction crosses have been identified and
they can be found in the restriction enzyme database (REBASE, http://rebase.
neb.com/rebase/). The first restriction enzyme named EcoRI was identified in
E. coli. The DNA fragments produced by EcoRI digestion have overhanging
single-stranded tails (called sticky ends) that reanneal with complementary
single-stranded tails on other DNA fragments. If two pieces of DNA digested
with same restriction enzyme are mixed under the proper conditions, DNA
fragments from two sources form recombinant molecules by hydrogen bonding
of their sticky ends. The enzymeDNA ligase covalently links these fragments to
form recombinant DNA molecules.

Vectors or Plasmids. ‘‘Vector” is a carrier DNA molecule that can bring a foreign
DNA fragment into a host cell. ‘‘Cloning vector” is used for reproducing the
DNA fragment and ‘‘expression vector” is used for expressing certain genes in
the DNA fragment. Commonly used vectors include plasmid, Lambda phage,
cosmid, and yeast artificial chromosome (YAC). Vector DNA molecules are
able to independently replicate themselves and the DNA segment they carry.
They also contain a number of restriction enzyme cleavage sites that are
present only once in the vector. One site is cleaved with a restriction enzyme
and is used to insert a DNA segment cut with the same enzyme. Vectors usually
carry a selectable marker such as antibiotic resistance genes or genes for
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Figure 2-13 The recombinant DNA technology enables individual fragments of DNA from any

genome to be inserted into vector DNAmolecules such as plasmids and transformed into bacteria.

Eachof such recombinantDNAmolecules can thenbeused for the productionof foreignproteins in

microorganisms and for creating transgenic plants and animals.
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enzymes missing in the host cell. These markers can distinguish host cells that
carry vectors from host cells that do not carry vectors. Many genetically
engineered plasmid vectors are now available, and certain features make it
easier to identify host cells carrying a plasmid with an inserted DNA fragment.
Although only a single plasmid may enter a host cell, many plasmids can
replicate themselves in the host cell so that several hundred copies are present.
When used as vectors, such plasmids allow more copies of cloned DNA to be
produced.

DNA Library. DNA library is a collection of many cloned DNA fragments. There
are two types of DNA library. The genomic library is made of DNA fragments
representing the entire genome of an organism. The cDNA library is generated
from complementary DNA molecules synthesized from mRNAmolecules in a
cell. Therefore, the cDNA library contains only the coding region of a genome.
To prepare a cDNA library, the first step is to isolate the total mRNA from the
cell type of interest. Because eukaryotic mRNAs consist of a poly-A tail, they
can easily be separated. ADNAstrand complementary to eachmRNAmolecule
is then synthesized by the enzyme called reverse transcriptase. After the single-
stranded DNA molecules are converted into double-stranded DNA molecules
by DNA polymerase, they are inserted into vectors and cloned.

Polymerase Chain Reaction. PCR is an enzyme reaction that targets a segment of
DNA and then produces multiple amounts of the same segment; it is based on
the ability of a DNA polymerase enzyme that can synthesize a complementary
strand to a targeted segment of DNA. The PCR reaction mixture contains
appropriate amounts of four deoxyribonucleotides and two short DNA oligo-
nucleotides (each about 20 bases long), called primers, which have sequences
complementary to areas adjacent to each side of the target sequence. If chosen
well, the primer sequences will be unique in the entire genome and match only
the place specifically chosen, thus limiting and defining the area to be copied.
Figure 2-14 illustrates step-by-step the process of PCR reaction. Repeated
heating and cooling cycles multiply the target DNA exponentially, since each
new double strand separates to become two templates for further synthesis.
Theoretically, the number of target sequences produced equals 2n; that is, 20
PCR cycles can amplify the target by a million fold.

DNA Sequencing. The ability to sequence cloned recombinant DNA has greatly
enhanced our understanding of gene structure, gene function, and the mechan-
isms of regulation. The most common method of DNA sequencing (Sanger
sequencing) is based on dideoxy chain termination. In this procedure, a single-
stranded DNA molecule whose sequence is to be determined is extended by
DNA polymerase, similar to elongation during DNA replication. In addition,
each tube contains a small amount of one of the four base-specific analogues
called dideoxynucleotides (e.g., ddCTP). When ddCTP is incorporated into the
extension, termination takes place at each of the C nucleotides in the newly
synthesized DNA. A similar stop occurs with the other ddNTPs (Fig. 2-15).
As the reaction proceeds, the tubes accumulate a series of DNAmolecules that
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differ in length by one nucleotide at their 30-ends. The fragments from each
reaction tube are separated in four adjacent lanes (one for each tube) by gel
electrophoresis (Fig. 2-15). Electrophoresis separates DNA fragments in each
lane that differ in size by a single nucleotide. The nucleotide sequence of the
DNA can be read directly from bottom to top, corresponding to the 50–30

sequence of the DNA strand complementary to the template. The newly
developed florescence labeling and multiple channel capillary electrophoresis
technology have greatly enhanced the speed and capacity of sequencing. Most
recently, massively parallel sequencing technologies developed by several
companies such as 454 Life Science, Solxa, and Applied Biosystems have
dramatically increased the sequencing throughput. Now it is possible to
sequence a bacterial genome in several hours to several dayswith the automated
sequencing machine.

2.5.2 Genetically Modified Microorganisms

Organismscontaining introduced foreignDNAin theirgenomeare referred to as being
transgenic. The introduced foreign gene is called a transgene. Hence, bacteria
containing eukaryotic gene are transgenic bacteria. A major use for many of these
transgenic microorganisms is to produce proteins that have immense commercial
value.Numerous studies have focused on findingways to produce themefficiently and
in a functional form. As illustrated in Figure 2-13, the gene encoding a foreign protein

Figure 2-14 The polymerase chain reaction. (1) Double-stranded DNA containing the target

sequence. (2) The strands are separated by heating at 94�C. (3) Two primers have sequence

complementing primer binding sites at the 30-ends of the target gene on the two strands. The DNA

is allowed to cool to about 55�C, which allows the primers to stick to the single-stranded DNA at

either end. (4) Taq polymerase then synthesizes the first set of complementary strands in the

reaction. The final product is double-stranded DNA, which comes from the region defined by the

primers. Steps 2–4 can be repeated to produce (in theory, if the process is 100 percent efficient) 2n

times the amount of template DNA (where n¼number of cycles).
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can be cloned into an expression vector and transformed E. coli for protein synthesis
under the control of a specific promoter, that is, lac promoter. Now various expression
systems are available for overproducing foreign proteins in E. coli. The first human
gene product manufactured using recombinant DNA and licensed for therapeutic use
was human insulin, which is produced in E. coli. There are hundreds of therapeutic
recombinant protein products in the market since then.

The use of genetically engineered microorganisms is a cost-effective, scalable
technology for the production of recombinant proteins. However, the production of a
functional protein is intimately related to the cellular machinery of the organism

Figure 2-15 DNA sequencing with the dideoxy chain termination method. Single-stranded DNA

template and single-stranded primer labeled with fluorescein are mixed and aliquoted into four

tubes.(a) In the presence of DNA polymerase and a mixture of the four deoxynucleotides (dGTP,

dATP, dTTP, and dCTP), primer extension occurs from the primer/template annealing site.

(b) Random stops in extension are then generated by adding to each tube one of the dideox-

ynucleotides (ddNTP). The reaction results in a mixture containing variable lengths of extended

DNAsegments. (c) Finallyeach reactionmixture is separatedelectrophoretically in the gel track (or

a capillary electrophoresis system) corresponding to the dideoxynucleotides added. As illustrated

in the first lane, ddATPwill produce two random stopswhere there is an adenine nucleotide and so

two double-stranded DNA products are formed at corresponding sites. The remaining three

dideoxynucleotides will do likewise in their individual reactions. The DNA sequence is read

from bottom to top as illustrated in the figure.
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producing the protein. Posttranslational modifications usually performed in higher
eukaryotes, for example, correct folding, disulphide bond formation,O- andN-linked
glycosylation, and processing of signal sequences are absent in the bacterial expres-
sion system. Therefore, eukaryotic expression systems have been developed, such as
yeast (S. cerevisiae and Pichia pastoris), the insect cell/baculovirus system, and the
plant cell and mammalian cell culture systems.

2.5.3 Transgenic Plants

Because of their economic significance, plants have long been the subject of genetic
engineering aimed at developing improved varieties. Progress is being made on
several fronts to introduce new traits into plants using recombinant DNA technology.
Since it is able to grow a whole plant from a single cell, researchers can engage in the
genetic manipulation of the cell, let the cell develop into a completely mature plant,
and examine the whole spectrum of physiological and growth effects of the genetic
manipulation within a relatively short period of time. The most commonly used
cloning vector for making transgenic plants is the ‘‘Ti” plasmid. This plasmid is
carried by the bacterium known as Agrobacterium tumefaciens, which has the ability
to infect plants. When these bacteria infect a plant cell, a 30,000 base pair segment of
the Ti plasmid, called T DNA, separates from the plasmid and incorporates into the
host cell genome (Fig. 2-16). Therefore, the Ti plasmid can be used to shuttle
exogenous genes into host plant cells. Foreign genes such as bacterial, plant, or
mammalianDNAengineeredwithplant regulatory elements canbe inserted into theTi
plasmid and then be placed back into the A. tumefaciens cell. That cell can be put into
plant cells either by the process of infection or by direct insertion. The foreignDNA (T
DNAand the inserted gene) can be incorporated into the host plant genome and passed
on to future generations of the plant. For the plant cell types that are not susceptible to
A. tumefaciens transfection, naked DNA molecules can be delivered into the target
cells by using other gene delivery methods such as microinjection, electroporation,
and particle bombardment, which will be discussed subsequently. These develop-
ments, important in the commercial application of plant genetic engineering, render
the valuable food crops of corn, rice, and wheat susceptible to a variety of manipula-
tions by the techniques of recombinant DNA and biotechnology. In recent years,
progress has been made to improve nutritional quality, increase insect, disease, and
herbicide resistance, and salt tolerance.

Moreover, the production of foreign proteins in transgenic plants has become a
viable alternative to conventional production systems such as microbial fermentation
or mammalian cell culture. Transgenic plants, acting as bioreactors, can efficiently
produce recombinant proteins in larger quantities than those produced using mam-
malian cell systems. Plant-derived proteins are particularly attractive, since they are
free of human diseases and mammalian viral vectors. Large quantities of biomass can
be easily grown in the field and may permit storage of material prior to processing.
Thus, plants offer the potential for efficient, large-scale production of recombinant
proteinswith increased freedomfromcontaminatinghumanpathogens.Awidevariety
of other therapeutic agents have been derived from plants, including antibodies,
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vaccines, hormones, enzymes, interleukins, interferons (IFN), and human serum
albumin (HSA).

2.5.4 Transgenic Animals

A transgenic animal is one that carries a foreign gene that has been inserted into its
genome. The foreign gene is constructed using recombinant DNA methodology.
Transgenic sheep and goats that express foreign proteins in their milk have been
produced. Transgenic chickens are now able to synthesize human proteins in the egg

Figure 2-16 Generation of a transgenic plant through the growth of a cell transformed by T-DNA.

(a) The Ti plasmid is isolated from Agrobacterium cells, (b) subjected to standard recombinant

DNA procedures to insert the desired DNA into the T-DNA region of the plasmid, and then (c) put

back into Agrobacterium. (d) Cultured plant cells are infected with bacteria containing

the recombinant plasmid, and (e) these plant cells are then used to regenerate whole plant.

The resulting transgenic plants contain the recombinant T-DNA region stably integrated into the

genome of every cell. (modified with permission from Becker WM, Reece JB, and Poenie MF. The

World of the Cell, 3rd ed. Copyright 1996 The Benjamin/Cummings Publishing Company).
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whites. These animals should eventually prove to be valuable sources of proteins for
therapeutic purpose.

Mice are typically the most important models for mammals. Much of the general
technology developed inmice can be applied to humans andother animals. Transgenic
mice are produced by microinjection of recombinant DNA into the pronucleus of a
fertilized oocytes. Figure 2-17 illustrates step-by-step the generation of a transgenic
mouse. First, the DNAmolecule containing the gene of interest (e.g., the insulin gene)
is constructed by using recombinant DNA methods. The vector DNA also contains
promoter and enhancer sequences to enable the gene to be expressed by host cells. The
recombinant DNAmolecule is then transfected into the cultured embryonic stem (ES)
cells and successfully transfected ES cells will be selected. Second, the transformed

Figure 2-17 Generation of transgenic mouse carrying recombinant DNA.(a) Embryonic stem

cells are transfected with foreign DNA. Many ES cells will take up the DNA, but this will involve

different sites in the mouse genome because of random integration. In a very rare case, the

integration will involve the correct part of the genome by a process of homologous recombination.

(b) Colonies of ES cells are grown. (c) DNA is isolated from pools of colonies. The colony that has

DNA integrated into the corrected position in the genome by homologous recombination can be

identified byPCR. (d) ES cells that have the homologous recombinedDNAare injected intomouse

blastocysts. (e) If the transgene has also integrated into the germline, then some transgenic eggs

or spermwill be produced and the next generation ofmicewill be fully transgenic—where every cell

contains a copy of the foreign DNA (modified with permission from Trent RJ.Molecular Medicine,

3rd ed. Copyright 2005 Elsevier Academic Press).
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ES cells aremicroinjected into an early embryo. The resulting progenies are chimeric,
having tissue derived from either recipient or transplanted ES cells. The early vectors
used forgene insertion could place thegene (from1 to 200 copies of it) anywhere in the
genome. However, if you know some of the DNA sequence flanking a particular gene,
it is possible to design vectors that replace the gene. The replacement gene can be one
that restores function in a mutant animal or knocks out the function of a particular
locus.

All genes are associated with specialized DNA sequences such as promoters and
enhancers that support transcription. Once in the nucleus, exogenous DNA requires a
strong promoter and enhancer upstreamof the transgene for its expression. The human
cytomegalovirus (CMV)promoter has beenused extensively to drive the expressionof
transgenes inmammalian cells. However, these viral promoters result in uncontrolled
expression of transgenes. The uncontrolled expression of the transgene during
embryonic development could also be lethal if it is not normally expressed at this
time. Attempts controlling gene expression in transgenics involve the use of inducers,
for example, chemical or hormonal signaling molecules. This was possible because
the inserted gene had a promoter element that was inducible when exposed to the
signal. There are also techniques with which transgenic mice can be made where a
particular gene gets knocked out or introduced in only one type of cell.

2.5.5 New Tools for Gene Knockdown

The sequence-specific interaction of short nucleic acids with target RNAs or DNAs
can be exploited as a tool for targeted inhibition of gene expression. These methods
have been used in a wide variety of applications ranging from understanding the
function of a given gene tomolecular therapeutics. Although themechanisms of these
twomethods differ, the problems for effective application are quite similar since both
antisense oligonucleotides (AOs) andRNA interference are subject to artifacts such as
off-target effects and CpGmotif immune stimulation. It may be necessary to validate
findings made using one method through use of a second approach.

2.5.5.1 Antisense Oligonucleotides The evidence that small AOs could
specifically inhibit gene expression was discovered in 1978 by Zamecnik and
Stevenson, who demonstrated that viral replication could be blocked by treating
infected cells with an AO that was complementary to a portion of the viral mRNA.
Since then, there have been thousands of published reports describing the application
of AOs both as research tools and as medicines. Synthetic 15–25mer nucleotides
could enter living cells and might be tailored to target and elicit RNAse H-mediated
cleavage ofmRNAmolecules, and subsequently lead to reduced production of a target
protein. Using this technology, researchers could quickly determine specific gene
functions in organisms at any stage of their life cycle. Although AOs have became a
great research tool, some difficulties had been anticipated, such as finding ways to
make AOs resistant to extracellular nucleases that would degrade them before they
entered cells and devising efficientmeans of gene delivery. Other challengeswere less
anticipated, including finding a systematic way to predict which portion of a selected
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mRNAwould make the best target. Still other hurdles came in the form of startling
surprises. Foremost among them was the discovery that the DNA dinucleotide
sequence C–G has immune stimulatory action that has nothing to dowith the intended
antisense effects.

2.5.5.2 RNA Interference As we discussed earlier, a newly discovered group
of small RNA (miRNA and siRNA) regulate gene expression at posttranscriptional
level (Fig. 2-9). RNAi refers to the inhibition of gene expression in a sequence-
specific fashion by double-stranded RNA. Although this method has only been in
routine use in mammalian systems for 7–8 years, it is currently being successfully
used in thousands of labs and ambitious whole genome screening projects. The most
straightforward approach to RNAi is use of duplex RNAs made by chemical
synthesis. Like AOs, RNAi occurs when oligonucleotides form base pairs with
target sequences within specific mRNAs to silence them. Although the RNAi
processes are complex, the end results are conceptually similar to what occurs
when using AOs: The presence of an oligonucleotide inhibits a specific mRNA
function, leading to a decrease in the amount of protein translated by that mRNA.
In contrast to the antisense process using AOs, however, RNAi uses synthetic RNAs
to mimic naturally occurring processes. These natural processes involve, for
example, genomically encoded microRNAs for fine-tuning the regulation of gene
expression and siRNAs for potentiating certain host–microbe interactions.
Researchers have uncovered examples of siRNAs or microRNAs acting at tran-
scriptional and posttranscriptional levels. As molecules that interfere with posttran-
scriptional (i.e., translational) events, the microRNAs may interact with their mRNA
targets either destructively or reversibly, depending upon the biological circum-
stance. Each of these new RNAi functions inspires novel applications for research
and treatment tools. In addition, the fact that applied RNAi mimics real cellular
processes has led some researchers to argue that harnessing RNAi for therapeutic
uses has a much greater likelihood of succeeding than an unnatural process such as
AO-mediated mRNA silencing. The level of enthusiasm for RNAi has been
extraordinary. In 2002, Science proclaimed RNAi to be the ‘‘breakthrough of the
year”—and that was just an early milestone.

2.5.6 Gene Delivery

Both viral and nonviral vectors can be used for delivering a gene into the cell nucleus.
These vectors carry exogenous DNA or RNA (including siRNA and AOs) across the
cell membrane into the nucleus to allow transcription. Since the nucleases in the
endolysosomes and cytoplasm actively degrade free nucleic acid, the vectors have to
escape from the degradation process before unpackaging their genetic materials and
inserting into the host cell genome. The vectors also need to cross the plasma
membrane into the nucleus of target cells, either by passive diffusion through the
nuclear pore complex or by an energy-dependent translocation that requires a group of
proteins called importins. Therefore, for a successful gene delivery, a number of
cellular barriers must be overcome.
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Viruses use multiple mechanisms to infect their host cells efficiently, either by
fusion with the cell membrane or by receptor-mediated endocytosis, followed by
nuclear localization of the viral genome. As a result, viral vectors are able to mediate
gene transfer with higher efficiency and possibility of long-term gene expression.
Most modern viral vectors are unable to replicate freely, owing to the deletion of
essential genes, and carry little risk of proliferation or reversion to wild type. Their
main drawback is that they tend to be immunogenetic and cause the acute immune
response,which limits their invivopotential. In addition, viral vectors can alter cellular
function after transduction. The limitation in the size of the transgene that recombinant
viruses can carry and issues related to the production of viral vectors present additional
practical challenges.

Approaches of nonviral gene delivery have also been explored using physical and
chemical approaches. Physical approaches, including needle injection, electroporation,
gene gun, ultrasound, and hydrodynamic delivery, employ a physical force that
permeates the cell membrane and facilitates intracellular gene transfer. For instance,
electroporation uses brief pulses of high-voltage electricity to induce the formation of
transient pores in the membrane of the host cell. Such pores appear to act as passage
ways through which the naked DNA can enter the host cell; microinjection involves
the direct injection ofmaterial into a host cell using a finely drawnmicropipette needle.
In addition, particle bombardment actually shoots DNA-coated microscopic pellets
through a plant cell wall and delivers the foreign DNA into the host cell. The chemical
approaches use synthetic or naturally occurring compounds as carriers to deliver the
transgene into cells. For instance, the cell and nuclear membranes can be made more
permeable to DNA following coprecipitation of DNA with calcium phosphate and
DNA can also be packaged into cationic liposomes that are able to cross the cell
membrane. Nonviral vectors are less able than their viral counterparts to overcome the
problemsof binding, escape fromendosomes, uncoating, and transport into the nucleus.
Thus, they possess lower transfection efficiency. As a result, new strategies to improve
internalization and endosomal escape of nonviral vectors are being developed.

2.6 METABOLIC ENGINEERING OF LIVING CELLS

Metabolic engineering is a powerful approach to the understanding and utilization
of metabolic processes and has become a new paradigm for the improvement of
cellular properties or metabolite production. As the name implies, metabolic
engineering emphasizes the targeted and purposeful modification of metabolic
pathways found in an organism. Built largely on the theoretical and computational
analysis of a biosystem, the field has embraced a growing number of genome-scale
experimental tools. The rapid expansion of genomics information across various
species and the integration of system biology approach have transformed our ability
to carry out metabolic engineering approaches. As such, we are on the cusp of a new
age of metabolic engineering involving many applications that address the new
challenges in the 21th century including energy, pollution, global warming, food
and human health.
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2.6.1 Principle of Metabolic Engineering

Metabolic engineering can be defined as directed modification of cellular metabolism
and properties through the introduction, deletion, and modification of metabolic path-
ways by using recombinant DNA technologies. Much of this effort has focused on
microbialorganisms,but importantworkhasbeendoneinplants, insects,andanimals. In
aglobal sense, this isnotdifferent fromwhatgenetic engineershavebeendoing for years
with phenotypic improvements resulting from the manipulation of genes directly
involved in creating the product of interest. However, with metabolic engineering,
the focus is placed on understanding the larger metabolic network inside the cell in a
systematic fashion. Thousands of chemical and biological reactions occur in a typical
cell, which serve amultitude of purpose critical formaintaining cellular physiology and
fitness within its environment; this reinforces the need for a systematic approach to
understand the cellular activities as awhole.Aswe discussed earlier, various knownand
unknown regulatory (i.e., transcriptional, translational, enzymatic, signal transduction)
mechanisms exist in a cell to manage and direct the resource to process that optimize
cellular fitness.Thus, changingpathways thatdonot improve fitnessorevendetract from
the fitness within a population often lead to relatively small improvements in product
formation despite large increase in specific enzymatic activities.Metabolic engineering
approaches embrace techniques that fill the gaps between genetic engineering and
classical strain improvement.Metabolic engineers place the emphasis onunderstanding
the mechanistic features that genetic modifications confer, thereby adding knowledge
that can be used for relational approaches while searching the metabolic landscape.

Metabolic engineering also employs concepts from reaction engineering and
thermodynamics for the analysis of biochemical reaction pathways. Although it
shares common fundamentals with traditional biochemical engineering, the focus
has shifted away from equipment to analysis of cells as integral units. Another novel
aspect of metabolic engineering is the emphasis it places on integrated metabolic
pathways as opposed to individual reactions. As such, metabolic engineering is
concerned with complete bioreaction networks and issues of pathway synthesis,
thermodynamic feasibility, and pathway flux and flux control. An enhanced perspec-
tive of metabolism and cellular function can be obtained by considering reactions in
their entirety rather than in isolation from one another; this is of central importance in
understanding the metabolic network. The main issue is amplification and/or redis-
tribution of pathway flux. This is very different from chemical plant scale-up issues.
Instead of increasing the capacity of a processing plant by increasing the capacity of
its units, one now attempts at increasing the capacity of a single cell by amplifying the
activity of some key enzymes.

Various metabolic engineering strategies have been widely applied for the more
efficient production of desired metabolites and biomolecules. Metabolic engineering
is an iterative process: cycle of genetic modification–analysis of metabolic conse-
quences of change (identifying limitations)–choice of next genetic modification (see
Fig. 2-18 for a hypothetical example). Measurement requires the ability to assay a
large part of the network and extract as much information about the effect of an
imposed network perturbation as possible. Another important part of metabolic
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engineering is being able to perform the desired genetic perturbations efficiently. A
variety of molecular engineering techniques are currently available to create gene
deletion or overexpress genes of interest. However, it is essential for metabolic
engineer to be able to precisely change the activities of certain enzymes in a desired
pathway, as the desired change in activity may not be deletion (no activity) or
overexpression driven by a strong promoter (order of magnitude change in activity).
In some cases, a deletion is not possible as the enzyme is required for cell survival.
Likewise, strong overexpression can result in deleterious outcomes such as the
accumulation of toxic intermediates in a pathway.

2.6.2 Molecular and Computational Tools for Metabolic Engineering

Metabolic engineering relies upon methods that perturb the genome, measure fluxes,
and analyze the state of the cell, such that the cell’s network architecture can be

Figure 2-18 The iterative approach of metabolic engineering. Iterative perturbations and sys-

tematic phenotype and genotype characterizations yield system insight into the integration of high-

throughput data sets. In this schematic, wild-type cells are engineered to overexpress enzyme E3

with the goal of increasing the low yield of product Y. However, because of network interactions,

overexpression of E3 has a minimal effect on the accumulation rates of either products Yor X. To

improve the yield of product Y, multiple steps in the network will have to be targeted and genetically

modified. To identify these targets, various omics technologies will be used to generate an

integrated profile of cellular networks in the recombinant or mutant strain. And then, comparative

analyses of omics profiles are conducted to identify the target pathways for the overproduction of Y.

Gene manipulation is carried out within the suggested candidate genes and characterizations of

the new strainwill be repeated. The graycircles indicate the pool size ofmetabolites in the network.

Arrow thickness depicts relative flux magnitude of the corresponding reactions (modified with

permission from Stephanopoulos G, et al. Nature Biotechnology 2004; 32:1262 Copyright 2004

Nature Publishing Group).
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elucidated and effective targets for genetic manipulation can be identified. Both
experimental and computational tools have been developed for identification of
targets of metabolic engineering.

2.6.2.1 Mathematical Tools for Analysis Metabolic flux analysis (MFA) is
based on a known biochemistry framework. A linearly independent metabolic matrix
is constructed based on the law of mass conservation and on the pseudo-steady-state
hypothesis on the intracellular metabolites. The accumulation rate of metabolites in
the metabolic network may be expressed as

xi ¼
X

ajrj ði ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; nÞ ð2-1Þ

where xi is the accumulation rate of metabolite i, aj is a stoichiometric coefficient, and
rj is the flux through reaction j. Equation 2-1 can be expressed in matrix form as

Ar ¼ x ð2-2Þ

where A is an m� n matrix of stoichiometric coefficients, r is an n-dimensional
flux vector, and x is anm-dimensional metabolite accumulation rate vector. Typically,
the system that results is an underdetermined system where m> n. However,
under certain conditions, some pathways are inoperative and can be neglected.
The system may become completely determined or overdetermined and can be
solved along with the measurements of external or internal fluxes. Determining
the fluxes often requires themeasurementsmade by incorporating 13C-labeling; as the
labeled substrate proceeds through the metabolic network, the pools of metabolites
that are downstream from the substrate become labeled. At the steady state, the
fraction of labeled substrate in a given pool can be used to calculate the flux through
the pathway. Noninvasive methods of analysis such as nuclear magnetic resonance
can also provide information on the structure of the biochemical network as well as
flux measurements.

Metabolic control theory (MCT) was independently developed by Kacser and
Burns and Heinrich et al. to identify the kinetic constraints in a biochemical network.
With MCT, the control structures are quantified as mathematical formulation based
on the so-called elasticity coefficients and control coefficients. Especially useful
are the flux control coefficients (FCCs), which quantify the influence of the
individual reaction rates (or enzyme activities) on the overall flux through the
pathway. This approach is used to determine the rate-limiting reaction in a network.
However, a single rate-limiting step may not exist and several steps may share
the control of the metabolic network. The FCC of an enzyme is defined as the
relative effect of modulating the amount of an enzyme on the flux through the desired
pathway. Equation 2-3 shows the flux control coefficient CJ

i of an enzyme Ei on the
flux J.

CJ
i ¼

dJ

dEi

Ei

J

� �
ð2-3Þ
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The FCC is essentially a sensitivity coefficient of the flux with respect to various
enzymes. An important property of the FCC is that summation of all the FCCs
affecting a particular flux must equal unity (Eq. 2-4).X

i

CJ
i ¼ 1 ð2-4Þ

AnFCC that approached unitywould imply a rate-limiting step.MCTis a powerful
tool for qualitative studies of metabolic pathways. A serious drawback of the
method is, however, the requirement that either the elasticity coefficients or the
control coefficients have to be measured. This is not an easy task because it
requires independent variation of the activity in vivo of all the enzymes within the
pathway.

2.6.2.2 Metabolic Profiling and Metabolomics Metabolomics is the ‘‘sys-
tematic study of the unique chemical fingerprints that specific cellular processes leave
behind”—specifically, the study of their small-molecule metabolite profiles. Small-
molecule metabolites are critical in regulating transcriptional and translational
processes andmeasuring the abundance of smallmetabolites provides a broad glimpse
of the metabolic cellular state. Small molecules possess a wider range of chemical
characteristics and are more difficult to measure. Complex profiles obtained using
techniques such as nuclear magnetic resonance, liquid chromatography–mass spec-
trometry (LC–MS) and electrochemical array (EC) are typically analyzed for differ-
ences and changes in patterns of small molecules. Statistical analyses, using pattern
recognition software even prior to identification of specific metabolites, allow a rapid
means of finding specific markers for disease, toxicity, or some other process.
Metabolic profiling typically involves the generation of patterns of analysts, contain-
ing both known and unknown compounds, to differentiate one sample group from
another using these statistical analysis and pattern recognition software tools.
However, unlikepreviouslymentioned isotopic-labelingmethods,metabolic profiling
does not attempt to establish the intracellular flux, making these experiments more
convenient.Nevertheless, itmaybe that themetabolite profiles provideenough similar
information such that, when combined with protein and transcript profiles, a fairly
complete picture of the cell is obtained that can be used to solve some more complex
systemic problems.

2.6.2.3 High-Throughput Methods of Gene Manipulation The recent
development in high-throughput methods of gene manipulation provides a way of
rapidly screening for new targets ofmetabolic engineering. In the case of bacteria, the
large libraries of knockout mutants can be generated quickly by using transposable
elements and subsequently screened for improved physiological performance. High-
efficiency transformations can generate libraries of as many as 109 genetic variants.
Transposon mutagenesis also enables a high-throughput form of mutagenesis where
there is only one mutation introduced per cell. In a similar manner for mammalian
cells, large-scale screening techniques using genome-wide RNAi provide an
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opportunity for metabolic engineering in human and animal cells. This technique
can be used to ablate all specific genes in the genome of an organism. Bacteria
library containing vectors expressing siRNA against all genes of several model
organisms are now commercially available. This technique was found to be very
efficient for the study of genes involved in cellular metabolism, confirming not
only the several genes already known to be involved in this process but also finding
several others not previously linked to the control of cellular metabolism in
Caenorhabditis elegans.

2.6.3 Application of Metabolic Engineering

Metabolic engineering has many areas of applications. Introduction of new pathways
enables us to use nature’s diversity to meet human needs in a sustainable way. Strain
improvement of microorganisms through metabolic engineering will improve pro-
ductivity, lower costs, reduce environmental pollution, and generally improve results
in a wide variety of industries and areas, including pharmaceuticals, chemical
bioprocess, food technology, agriculture, environmental bioremediation, and biomass
conversion. The prospective categories of chemicals to be produced by metabolically
engineered microorganisms include nutriceuticals, fine chemicals, vitamins, preser-
vatives, sweeteners, minerals, nutrisupplements, pharma intermediates, pharmaceu-
ticals, amino acids, acidulents, cosmetics, and food ingredients.

Using metabolic engineering to redesign plants could potentially improve
nutritional value of crops (e.g., essential amino acid supply for storage proteins,
vitamin content, modifying lignin to enhance forage digestibility), create new
industrial crops (e.g., modified fatty acid composition of seed triglycerides,
pharmaceuticals, polyhydroxybutyrate synthesis), alter photosynthate partitioning
to increase economic yield, enhance resistance to biotic and abiotic stresses such as
infectious disease, and reduce undesired (toxic or unpalatable) metabolites.
Furthermore, the potential exists to produce therapeutic proteins (i.e., antibody)
in plants, which could eliminate the need for large-scale fermentation or cell culture
facilities and could only require purification and formulation processes. There are
many opportunities and challenges for metabolic engineers in this area, including
increasing protein production, controlling glycosylation, and altering desirable
metabolic pathway.

In addition to its application in industrial and agricultural biotechnology,metabolic
engineering principles can also be applied to medical research and practice. For
instance, flux measurements and metabolite profiling can be conducted on primary
cells and/or body fluids isolated from patients’ sample for investigating disease
initiation, progression and treatment effect. These types of work may lead to the
identification of surrogate markers for diagnosis or prognosis of certain diseases as
well as molecular targets for new drug development. Metabolic profiling of urine or
blood plasma samples can also be used to detect the physiological changes caused by
toxic insult of a chemical or drug. Advances in this area promise to contribute to
personalized medicine by incorporating patient-specific genetic and metabolite
profiles.
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2.7 SUMMARY

In this chapter, we first discussed the major types of biomolecules including nucleic
acids, carbohydrate, proteins, and lipids; assembly of the biomolecules into subcellu-
lar level (organelles) and cell; and the information flow including genetic and
epigenetic inheritance and biochemical signaling. We further discussed the major
metabolic pathways of biomolecules, linked energy production (bioenergetics) and
metabolism, and integrated controls of metabolism and gene expression. Finally, we
discussed the application of molecular technology in industry, agriculture, and
medicine. We highlighted the important new discoveries and developments in each
field. We hope that it will provide a primer and a framework to understand systems
biology. The postgenomic era presents new opportunities as new challenges to all
fields related to biology. A variety of new technologies allow studying the basic
biological processes in the central dogma at whole genome level. Comparative
genomics, transcriptomics, proteomics, structural genomics, and metabolomics be-
comeactive research subjects.However, how to integrate transcriptomics, proteomics,
andmetabolomics information to drawa complete picture of a cell or a givenorganism
is one of the big challenges. Thus, systems biology emerged. It is likely that the use of
postgenomic tools will allow identification of far more complicated functional
interactions between protein–protein, protein–DNA, and even protein–metabolite.
The incorporation of spectroscopic approaches for metabolic profiling and flux
analysis combined with mathematical modeling will contribute to the development
of rational metabolic engineering strategies and will lead to the development of new
tools to assess temporal and subcellular changes in metabolite pools. New technolo-
gies for pathway engineering, includinguse of heterologous systems, directed enzyme
evolution, engineering of transcription factors, and application of molecular/genetic
techniques for controlling biosynthetic pathwayswillmove themetabolic engineering
approach to the next level. The accumulated new data will provide the basis for
systems biology to interpret the function of a biological system at molecular level in
the quantitative manner; this in turn will allow modification or redesigning of the
biosystems for future applications.
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3.1 INTRODUCTION

Traditional biological studies generally target the structure and function of a
specific gene or protein. Generally, a specific hypothesis is generated for a specific
biological problem and then tested by an experimental design (Fig. 3-1). In the
1990s, the first high-throughput technologies were invented for biological studies
and included genome sequencing, proteomics, DNA chips, and protein chips.
These technological advancements have created a new field of bioinformatics and
computational biology. The combination of bioinformatics and high-throughput
technologies has re-shaped traditional biological studies; through these technolo-
gies, biologists will be able to generate better biological hypotheses, and also
streamline the traditional methods, which has proven to be much more efficient
than traditional biological study (Fig. 3-1). As these technologies become increas-
ingly more mature and economically feasible, more and more laboratories are
using these methods. In this chapter, we briefly introduce four high-throughput
technologies and then focus on the details of three technologies: genomic
sequencing, proteomics, and DNA and protein chip technologies. We also illustrate
chip technologies using two applications.
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3.2 HIGH-THROUGHPUT TECHNOLOGIES

3.2.1 Genomic Sequencing

Genomic sequencing, which ultimately revolutionized the field of biology, was
invented by Nobel Laureate Frederick Sanger in 1981 [1]. This technique involves
the separation of fluorescently labeled DNA fragments according to length on
polyacrylamidegels via electrophoresis (PAGE). Through automation, each sequenc-
ing run can yield 500 bp to 1 kb of sequence data with a modern sequence machine.
DNA-sequencing technology is another milestone in understanding the evolution,
structure, and function of biological systems since the discovery of the DNA structure
by Watson and Crick in 1953. However, additional complementary technologies are
required for sequencingcompletegenomes sincegenomic sequencesmaybeas longas
billions ofbases (Table3-1). For instance, thehumangenome is about 3.3billionbases.
A typical bacterial genome ranges from several hundred kilobases to more than 10
million bases. Themodel bacteriumEscherichia coliK12, for example, has a genome
comprising about 4.67 million bases.

In1983,FrederickSanger invented the shotgun-sequencing strategyand sequenced
the first complete genome, bacteriophage l, which has 48,502 bases [2]. Without
parallel advances in super computational techniques, the applications of shotgun

Table 3-1 Wide ranges in genome size

Species Genome Size (Mb) Species Genome Size (Mb)

HIV 0.0097 S. cerevisiae 11.72
SARS-CoV 0.030 C. elegans �100
Mycoplasma genitalium 0.59 A. thaliana �125
Escherichia coli 4.67 Homo sapien �3,300

Biological systems

High-throughput technologies

functional genomics
Traditional biology

Hypotheses

Genomic sequences
DNA chip
Protein chip
Proteomics

Bioinformatics

Figure 3-1 New scientific technologies for high-throughput measurements and functional

genomics.
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genomesequencingwerenot fully realizeduntil 12years later. In1995, through theuse
of super computational facilities, theHaemophilus influenzae genomic sequence was
published by J. Craig Venter from the Institute for Genomic Research (TIGR) and
Nobel LaureateHamilton Smith of JohnsHopkins University [3]. The human genome
sequence project was launched in 1990 andwas eventually completed in the year 2003
with a large collaboration of international effort by the International Sequencing
Consortium (http://www.intlgenome.org/). It should be noted that the contribution of
computational biologywas crucial to the successful completion of the human genome
sequence project.

Figure 3-2 shows a simplified procedure for the shotgun genome-sequencing
strategy. To sequence a large sequence, shotgun genomic sequencing first breaks the
sequence randomly several times into small fragments of about 1,500 bases by
enzymes or physical shearing and then sequences these individual fragments. The
computer is able to connect the sequences based on the overlapping ends between
these sequences. The size of this large sequence will be less than 150 kb. This is
because, for a largegenome, the sequence needs to be separated into smaller fragments
of about 150 kb, each of which will be cloned into bacterial artificial chromosome
(BAC) vectors. Each of these large fragments is called a contig and can be sequenced
using the shotgun-sequencing method. By using BACs, these contigs can be mapped,
as BAC records the positions where the contigs come from the genomic sequence.

3.2.2 DNA Microarray

The DNA microarray, also known as a DNA chip, contains thousands of arrayed
probes, each composed of a short oligonucleotide or cDNAfragment. The inventionof
DNAchip technologyhasmade it possible to study the functions of thousands of genes
at the same time, allowing for biological study in a more systematic way. The

ATGCATGCAATT ATCAAGGTT
GGTTCCCCATGC

ATCAAGGTT
GGTTCCCCATGC

ATGCATGCAATT

ATCAAGGTTCCCCATGCATGCAATT

Figure 3-2 Simplified shotgun genome sequencing strategy.

HIGH-THROUGHPUT TECHNOLOGIES 69



fundamental mechanism underlying the DNA chip methodology is nucleotide hy-
bridization,whichhadbeenpreviouslydeduced.However, themost important concept
for DNA chips (as well as protein chips) is that these technologies facilitate the
automation of evenly spotted DNA molecules onto a surface, which will allow for
quantification of the hybridization signal. Thus, the first DNA arrays originated from
the development in the late 1980s of robotic devices (gridding robots) that make it
possible to array bacterial colonies in compact and regular patterns [4]. The original
DNA chip had approximately 10,000 spots on a 22� 22 cm2 surface. This array
allowed for rapid genomic library scanning. The functional genomics for expression
analysis with quantitative acquisition of hybridization signals was first reported in
1992 [5]. This technology was based in part on integrated mapping and sequencing
analysis of genomes.

The massive DNA sequences generated by shotgun sequencing have given us an
opportunity as well as a challenge to study the evolution, structure, and function of
these genes. Most notably, the complete genomic sequences allow us to evaluate
expression patterns on a genomic scale. DNA chip technologies and functional
genomics have been applied widely in many different fields, such as pathogenesis,
drug discovery, cancer research, cell development, cell structure, agricultural seed
selection, and even in the environmental community study [6–18]. For instance, in
drug discovery, functional genomics can be applied in basic research and target
discovery, biomarker determination, pharmacology, toxicogenomics, target selectivi-
ty, development of prognostic tests, and disease subclass determination [6]. Further
details regarding DNA chips and functional genomics are discussed in Section 3.3.

3.2.3 Protein Microarrays

DNA microarrays are used to monitor global gene expression levels based on
intracellular RNA concentration. However, the corresponding protein expression
may be different fromRNAabundance due to gene regulation at the translational level
and alternative gene splicing. Protein chip technology was invented for this purpose.
Different from DNA chips, protein chips have been used to detect the quantity of
specific proteins by measuring signals from the interactions between protein versus
protein and protein versus antibody. The target molecules can not only be traditional
proteinmolecules but also be other types ofmolecules, such as artificial proteins [19],
RNA or DNA aptamers [20], allosteric ribozymes [21], peptides, and other small
molecules [22,23]. With these extensions, protein chips can be applied to monitor the
interactions between protein versus ligand, protein versus drug, enzyme versus
substrate, and so on.

Haab et al. [24] printed a set of 115 antibody–antigen pairs to evaluate the use of
protein microarrays for specific detection and quantification of multiple proteins in
complex mixtures. About 50 percent of the arrayed antigens and 20 percent of the
arrayed antibodies provided specific and accurate measurements of their cognate
ligands at or below concentrations of 0.34 and 1.6 mg/mL, respectively. Their studies
suggest that proteinmicroarrays can provide a practicalmeans to characterize patterns
of variation in hundreds of thousands of different proteins in clinical or research
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applications. Some companies have developed antibody arrays for both investiga-
tional usage as well as clinical use for monitoring allergies and small therapeutic drug
monitoring. Similar to DNA chips, protein chips are able to perform thousands of
reactions in parallel. Thus, by using a specific antibody, we will be able to screen for
the presence of a specific protein from a specific reaction. Protein chips have become
an important proteomics technology in addition to mass spectrometry and two-
dimensional gel electrophoresis, both of which are however less sensitive than protein
chip technology.

The original idea for protein chips followed from miniaturized immunoassay
technology. In the 1980s, the development of ELISA introduced the concept of
ambient analysis, which is able to quantify the antigen–antibody reaction through a
specific enzyme-labeling assay. Similar to the DNA chip, development of this
technology was accelerated by the genome project and improved technologies in
recombinant proteins. Since most proteins used for protein arrays are made by
recombination, the protein array would be able to be connected with DNA sequence
and protein structural analysis. The functional analysis of the DNA-coding genes can
reflect their functions.

Similar to the DNA chip, the protein chip uses covalent interactions to immobilize
protein molecules onto solid surfaces by randomly conjugating the lysine residues on
proteins to amine-reactive surfaces. In many cases, the recombination proteins are
preferred since amino- or carboxy-terminal tags can be introduced so that the protein’s
functional sites can be away from the immobilization surface, which can increase the
sensitivity of protein chips via the reduction of steric hindrance. The printing
technologies for protein chips are similar to those for DNA chips, described in
Section 3.3. However, the challenge for printing processes is how to prevent
dehydration of the protein spots. Improvement in this area seems to be needed for
further development [22].

Protein chips have become an important tool for biological study. Protein chips are
mainly applied inmicro-immunoassay, inwhich arrays of different capture antibodies
are immobilized and subsequently exposed to a biological sample. These types of
protein chips can be used for diagnostics aswell as protein-profiling analysis. Specific
antibodies can be immobilized on the chip tomonitor the protein expression levels in a
tissue or a cell. The parallel analyses would be able to monitor the protein-profiling
changes for a patient and to determine the disease status or monitor the treatment or
therapy through aminimumof biopsymaterial. In reverse immunoassays, the purified
small antigens can be immobilized on the chip so that the specific antibody responses
in the bloodor local tissues canbe evaluated.The reverse immunoassay can beused for
diagnosis of various autoimmune diseases [25] or allergies [26]. These types of
analyses can be used for examining binding receptor properties as well as antibody
cross-reactivity and specificity.

The protein array has a very promising application for drug scanning since it
directly monitors the interaction between drug and a target protein. Protein chips may
be used in binding/screening assays for other small molecules, such as ligands,
RNA–DNAmolecules, and someartificial proteins.Theycanalsobeused for isolation
of individual candidatemolecules froma largepool. For instance, protein chipsmaybe
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used for studying protein–DNA interactions, especially for promoter analysis, for
investigating enzyme activity with different substrates, and for epitope mapping.

3.3 DNA CHIPS AND FUNCTIONAL GENOMICS

In this section, we first discuss the details about DNA chip manufacturing technolo-
gies, focusing primarily on how the probe is printed on the slides. Then we discuss the
probe design, sample labeling and hybridization, scanning and image analysis, data
analysis, experimental design and data interpretation, challenges of DNA chips, and
applications of DNA chips.

3.3.1 Microarray Manufacturing Technologies

Current fabrication technologies for DNA microarrays can be grouped into photoli-
thography, mechanical microspotting, or ink-jet ejection [27]. For a photolithography
array, the oligonucleotide probe is synthesized directly onto a solid surface (e.g., the
Affymetrix and NimbleGene arrays) based on a combination of chemistry and
photolithographic methods [28]. To produce the array, the reactive amine groups
from a silane reagent are attached to a glass or fused silica surface, and then the amine
groups are modified via methylnitropoperonyloxycarbonyl (MeNPOC) photoprotec-
tion. A single base can then be added to the hydroxyl groups of these MeNPOC using
a standard phosphoramidite DNA synthesis method after exposure to light. The
photoprotectionandnucleotide insertionare repeated toobtainadesiredprobe [27,29].
The lengths of these probes are generally 20–25 bases. The photolithographic array
can have amuch higher probe density than other types of arrays. Affymetrix chips can
contain about 250,000 oligonucleotides in an area of 1 cm2 while the spotted cDNA
array generally only has about 1,000 oligonucleotides in the same area. This feature
offers an important advantage for theAffymetrix array over spotted arrays,which have
much lower probe densities. In addition, the Affymetrix system is more stable and
reproducible, since it lacks the problems associated with printing spotted arrays.
However, the current price of Affymetrix arrays is still too high to bewidely accepted
as a biological tool.

A mechanically microspotted array is called a spotted array. This type of array
utilizes pins, tweezers, or capillaries to print the molecules onto glass or other solid
surfaces. Themolecules can be oligonucleotides, genomicDNA, or polymerase chain
reaction (PCR) fragments (DNA or cDNA). For protein chips, we can even print
antibodies, small drug molecules, and other small molecules. The printing process is
generally achieved by a robot monitored by a computer. Compared with the array
constructed on the basis of photolithography, a spotted array is more economical as
well as easily implemented. In addition, the spotted array can have many more
applications than the photolithography array since the array for the latter is limited to
short oligonucleotides. However, preparation of the printing material and the printing
process require considerable control, as the printing quality will directly affect the
analysis.
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Similar to a spotted array, the ink-jet ejection array prints themolecules to the solid
surface by ejecting the sample from theprint head.Different from the spotted array, the
print head during printing does not contact the slides, which can reduce the probability
of contamination. Currently, two types of noncontact ink-jet print technologies,
piezoelectric pumps and syringe-solenoid, are used for printing microarrays.
Similar to the spotted array, the ink-jet ejection array can print various molecules
on a slide. On the other hand, the ink-jet ejection array prints at even lower densities
than the spotted array.

3.3.2 Probe Design and DNA/cDNA Synthesis

Based on the DNA molecules on the slides, DNA chips can be categorized as either
DNA/cDNA microarrays or oligonucleotide microarrays. Generally, the DNA frag-
ment on DNA/cDNA microarrays is synthesized by the polymerase chain reaction
while oligonucleotides are synthesized directly by machine. To synthesize the DNA
fragment or cDNA primers, we need to design unique primers, which are generally
20–28 bases long. For genes shorter than 1,000 bases, the PCR-amplified fragments
should be as long as possible. Forgenes longer than 1,000-bases, the optimal amplified
fragments should be within the range of 500–1,200 bases. Xu et al. [30] developed
PRIMEGENS for primer design for cDNA amplification. PRIMEGENS finds the
unique fragments from a group of gene fragments or genes in a complete genome, and
then applies the Primer3 algorithm [31] to design the left and right primers for each
unique fragment. The user can change the primer specification based on their PCR
requirement. The biggest challenge for production of the DNA or cDNA array is that
occasionally PCR amplification may not be able to generate an expected yield for a
given gene. Sincewegenerally perform the reaction in 96- or 384-well plates, onemay
have to amplify individual genes separately. In addition, for complete genomic
analysis, it is difficult to ensure complete coverage, due to the cross-hybridization
between PCR fragments on the DNA/cDNA array. Furthermore, sample contamina-
tion or mishandling during amplification may generate other problems.

Due to the laborious processes for producing DNA/cDNA arrays, many labora-
tories are utilizing the oligo array. It should be emphasized that oligonucleotide
design is not a trivial process. A program for designing optimal probes will need:
(1) to minimize hybridization free energy for the target gene and maximize hybrid-
ization energy for all other genes, yet the hybridization energy depends on the
concentration of the genes, which is unknown; (2) to avoid secondary structure;
(3) to consider both strands of the genome as well as the cross-hybridization of the
coding region and noncoding region. Many oligo design algorithms and software
packages have been developed during the last several years: ProbeSelect [32],
PROBEmer [33], CommonOligo [34], Oligo Design [35], Picky [36],
OligoPicker [37], OligoArray [38], ROSO [39], and GoArrays [40]. Most of these
methods are for a complete genome array. ProbeSelect [32] is one of the most popular
methods used for oligo design for complete genome arrays. ProbeSelect first makes a
suffix array of the coding sequences from awhole genome and then builds a sequence
landscape for every gene based on the sequence suffix array. Based on sequence
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features and the sequence word rank values, ProbeSelect chooses probe candidates
and then searches for matching sequences in thewhole genome, allowing for a certain
number of mismatches. After locating match sequence positions in all genes,
ProbeSelect calculates the free energy and melting temperature for each valid target
sequence. Finally, ProbeSelect matches sequences that have stable hybridization
structures with a probe based on free-energy data and maintains high discrimination
against other targets in the genome.

For environmental functional genomics, it will be evenmore challenging to design
specific probes due to the high similarity between genes. Some algorithms have been
designed for environmental community study [41,42]. The hierarchical probe design
(HPD) program is an oligo design program especially suited for long oligo design,
allowing for analyses of functional gene diversity in environmental samples [41].HPD
designs both sequence-specific probes and hierarchical cluster-specific probes from
sequences of a conserved functional gene based on the clustering tree of the genes.

In general, DNA arrays have two advantages over oligo arrays: (1) DNA arrays
have a higher sensitivity; and (2) DNA arrays do not need detailed sequence
information; thus, DNA arrays are especially useful for environmental community
study for which we generally do not know the exact sequence information. However,
oligo arrays have two distinct advantages over DNA arrays: (1) oligo arrays have
reduced cross-hybridization, thus providing higher specificity; and (2) unlike DNA
arrays, oligo arrays do not require the intensive labor involved in PCR amplification
and DNA purification. Oligo arrays are especially popular as the cost of custom array
fabrication is steadily declining.

3.3.3 Sample Labeling and Hybridization

Sample labeling can be categorized as either direct or indirect labeling. The direct-
labeling approach directly incorporates the fluorescent tags into the nucleic acidwhen
preparing the hybridization samples. The fluorescent tags may be present in labeled
nucleotides (e.g., Cy3- or Cy5-dCTP) or PCR primers. PCR and reverse transcription
(RT)-PCR are common approaches to synthesize the labeled samples for hybridiza-
tion. To detect the mRNA concentration, we can use RT-PCR to incorporate fluores-
cently labeled nucleotides into the transcribed cDNA during first-strand cDNA
synthesis. Alternatively, mRNA can be amplified by 1,000–10,000-fold using T7
polymerase to obtain antisensemRNA(aRNA). The aRNA is then reverse-transcribed
to obtain labeled cDNA [43]. One of the advantages of the T7 polymerase-based
amplification method over other methods is that because amplification is a linear
process, all mRNAs are amplified almost equally. Another advantage is that mRNA
can be easily labeled with reverse transcriptase, which incorporates fluorescent tags
much more readily than DNA polymerase [27].

The indirect labeling approach labels the sample with fluorescence after hybrid-
ization. To label the samples, indirect labeling requires epitope insertion into the target
samples during cDNA synthesis. After hybridization, the epitopes can be bound by
specific proteins to produce the signal. Biotin is one of the commonly used epitopes,
which can be stained by a fluorescent streptavidin–phycoerythrin conjugate and
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detected via laser [44]. Some other types of indirect hybridizations are discussed by
Zhou and Thompson [27].

After labeling, the sample will be hybridized with the probes on the slide. Before
hybridization, the slide requires postprocessing, which will use ultraviolet (UV)
radiation or heat to cross-link probes to the slide. For example, postprocessing can be
done by exposing the slides to 120 mJ/cm2 using a UV cross-linker or by baking the
printed slides for 80 min at 80�C in a drying oven. Similar to traditional membrane-
based hybridization, the microarray will also need prehybridization to reduce non-
specific binding. The unbound DNA on the slides can be washed away during
prehybridization to reduce the competition of unbound DNA for the labeled samples.

After postprocessing and prehybridization, the microarray is hybridized with
labeled samples at a certain temperature, generally 42�C to 50�C, for a period of
time (overnight to several days). A key to successful hybridization is that the
hybridization solution needs to evenly cover the slide. After hybridization, the slides
need to be washed to eliminate unbound samples.

3.3.4 Scanning and Image Analysis

The next step after hybridization is quantification of the hybridization signal from the
slides. The scanning devices are generally categorized into two types: the confocal
scanning microscope and CCD camera. In general, a confocal scanner uses laser
excitation of a small region of the glass slide (�100mm2), and the entire array image is
acquired by moving the glass slide, the confocal lens, or both across the slide in two
directions [45]. The fluorescence emitted from the hybridized target molecule is
gathered with an objective lens and converted to an electrical signal with a photo-
multiplier tube (PMT) or an equivalent detector. The confocal scanningmicroscope is
the most common one used to scan microarray slides. Themain drawback of this type
of technique is that this type of device may be very expensive since each excitation
wavelength must have its own laser. In addition, the confocal scanning microscope is
also very sensitive to any nonuniformity of the glass slide surface [27]. The CCD
camera typically utilizes broadbandxenonbulb technology and spectral filtration. The
CCD system allows simultaneous acquisition of relatively large images of a slide
(1 cm2), thus, it does not require moving stages and optics. On the other hand, several
imagesneed tobecaptured fromdifferent areas and thencombined tobe representative
of the complete information on the slide. Sincemost commonly used dyes have similar
excitation and emission maxima, spectral filtration processes may have difficulty
separating excitation and emissionwavelengths, resulting in a possible source of error.

During the scanning process, the power of the excitation light is critical since the
emitted fluorescence is generally correlated with the power of the excitation light. If
the power of the excitation light is too low, the scanning sensitivitywill be too long and
manyempty spotsmaybegenerated.However, if thepower of the excitation light is too
high, the incoming photons can damage the dyes and reduce the fluorescent signals
during successive scans. More powerful light sources and/or longer laser exposure
time can lead to significant photobleaching. Generally, photobleaching should be less
than 1 percent per scan.
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Since different dyes have different quantum yields and photostabilities, the PMT
needs to be justified for each different channel prior to scanning. The order of channel
scanning may be an additional variable to gain a better image. For example, Cy5 is
more sensitive to photobleaching than Cy3. To minimize photobleaching, the Cy5
channel is always scanned first, followed by the Cy3 channel [27].

After the scanningprocess,we need to transform the image into quantitative signals.
Many software packages, such as Imagene, GPC VisualGrid, TIGR SpotFinder,
GenePix, have been developed to automatically quantify the images. Most of these
software packages are effective. The common challenges for image quantification
include (1) irregular or non-uniform spot geometries (e.g., not round, donut shape);
(2) uneven hybridization (e.g., only a portion of the scanned image is quantifiable);
(3) hybridization with high background; and/or (4) weak or saturated hybridization
signals. Thus, for better quantification, one generally needs to use the following
parameters: (1) signal/noise ratio should be more than s þ 1.96m; (2) background
area selection should be local instead of global; and (3) bad spots should be removed.

3.3.5 Data Analysis

After obtaining the quantification hybridization signals from different biological
replicates, we need to perform data normalization and statistical analysis.

3.3.5.1 Data Normalization The data normalization before statistical analysis
is important to obtain reliable results. Data normalization can control many of the
experimental sources ofvariability (systematic, not randomorgene specific) andbring
each image to the same average intensity. Data normalization is necessary to correct
for the following variabilities: (1) the use of unequal quantities of starting RNA;
(2) differences in dye incorporation; (3) differences in detection efficiencies of the
fluorescent dyes; (4) variations in the image saturation extent for different channels;
and (5) systematic biases in the measured expression levels.

Generally, there are several assumptions underlying data normalization. (1) The
average mass of each molecule is approximately the same, thus the molecule number
in each sample will be the same. (2) The arrayed elements represent a random
sampling of the genes in the organism; and (3) the number of molecules from each
sample available for hybridization is similar, thus, the total intensity for each sample
will be the same.

Data normalization includes two steps: normalization within slides and normal-
ization between slides. Normalization within slides is generally achieved by
different options [46]. First, the signals can be scaled (scale normalization) by
total intensity, mean, median, or the intensity of a group of genes. Second,
normalization can be achieved by linear regression normalization. Themost popular
method for normalization with slides is the locally weighted linear regression
(Lowess) normalization. Most normalization methods correct for differences in
intensities between channels and do not take into account systematic bias that may
appear within the data. For instance, the log2(ratio) values can have a systematic
dependence on intensity. Lowess may remove the intensity-dependent effects in the
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log2(ratio) values since Lowess normalizes the value point by point and generally
requires a defined percent for the local area (e.g., 20 percent). Lowess normalization
requires the ratio (two dyes).While normalization adjusts themean of the log2(ratio)
measurements, stochastic processes can cause the variance of the measured log2
(ratio) values to differ from one region of an array to another or between arrays. One
approach to dealingwith this problem is to adjust the log2(ratio) measures so that the
variance is the same. This method is called variance regularization. Interested
readers are encouraged to read an excellent review on data normalization by
Quackenbush [46] for more details.

Since the hybridization may vary between slides (replicates) as well as channels,
normalization is extremely important. Generally, normalization between slides uses
scale normalization (e.g., medium).

3.3.5.2 Statistical Analysis After normalization, we will be able to perform
statistical analysis to rank results by confidence with significance metrics (e.g.,
p-value). The statistical analysis will estimate the false positive (Type I errors) and
falsenegatives (TypeIIerrors), achieve thedesiredbalanceofsensitivityandspecificity,
and result in a certain amount of flexibility (and arbitrariness) for interpreting signifi-
cance metrics generated by a test.

The methods for statistical analysis depend on the experimental design. For
example, for two sample statistical tests, we can utilize parametric statistical methods
(t-test for paired and unpaired t-test) or nonparametric methods (Mann–Whitney test
for independent samples or Wilcoxon signed-rank test for paired data). We generally
assume the variations between biological replicates and technical replicates are the
same to apply the two-sample statistical test. Otherwise, we can use multivariate
statistics, such as one-way versus two-way analysis of variance (ANOVA) or the
Kruskal–Wallis method. For multiple comparison corrections, we can use Bonferroni
Correction or False Discovery Rate [47]. More details about these methods can be
obtained from the book Statistical Analysis of Gene Expression Microarray Data by
Terry Speed [48].

Many software packages, such asGeneSpring (Silicon Genetics), SAM (Stanford),
and ArrayStat (Imaging Research), have been developed for microarray data analysis.
GeneSpring is one of the most widely used microarray data analysis software tools
since it has an easy-to-use interface as well as powerful normalization and statistical
analysis capabilities (t-test, two-way ANOVA tests, one-way posthoc tests for reliably
identifyingdifferentially expressedgenes, and soon).Different computational analysis
tools for clustering, visual filtering, and pathway viewing have also been included.
Also, the user can incorporate their own scripts/programming into GeneSpring to
complete their analysis.

3.3.6 Experimental Design and Data Interpretation

Correct experimental design is the key to generation of meaningful biological results.
A good experimental designwill bemore economic since itmay save resources aswell
as slides. However, a corresponding statistical analysis should be proposed as well to
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analyze and interpret the data scientifically. Speed [48] provides a very good
illustration for experimental design.

The simplest experimental design is pairwise direct comparison between treat-
ment/experiment and control (Fig. 3-3a). For instance, we can compare the gene
expression profiles for a wild type and a mutant under a certain condition to study the
function of the mutated gene [49]; we can test the treatment effectiveness of a drug by
comparing the gene expression profiles of the treatment group to the control group.

However, in most cases, we have to compare multiple experimental conditions. In
this case, pairwise direct comparison will not meet the requirement. For example, we
need to compare the gene expression profiles at different time points during bacterial
growth [50]. In the drug experiments, we need to compare the effectiveness between
different drugs. Obviously, it will not bewise to design all pairwise comparisons since
it will be too expensive. For instance, to compare 10 conditions, one would have to
design 45 pairwise experiments. In this case, we can apply common reference design
(Fig. 3-3b).

More complicated designs include loop design (Fig. 3-3c) and pool design. The
pool design should be very carefully used since it involves the mixture of all of the
treatments and control samples as a reference sample to compare. The statistics with
different experimental designs are described in the review by Yang and Terry [51].

After the statistical analysis, reconciliation between statistical results and biologi-
cal functions is not a trivial matter since thousands of genes are involved in the data
analysis.Generally, oneoverlays functional information and allows biological context
to help decide what is of interest and what is not. We can use computational methods
(classification, clustering, promoter prediction, and so on) to assist this analysis
(Section 3.3.7). Microarray data are required to link to various public identifiers, such
as Genbank, Swiss-Prot, and Gene Ontology (GO) database. GO is the most com-
monly used public domain sources of gene classification, and it provides controlled
vocabulary hierarchies for molecular functions, biological processes, and cellular
components. Other common databases include LocusLink, HomologGene, RefSeq,
and UniGene.

Treatment Control(a)

(b)
T1 T2 T3 T4

R

(c)

T1 T2

T3T4

Figure 3-3 Experimental design for microarray. (a) Direct comparison. (b) Reference design. (c)

Loop design.
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3.3.7 Bioinformatics and Functional Genomics

The massive information that microarray profiling generates provides a great chal-
lenge for how to extract biologicallymeaningful information from the raw data. Thus,
the discipline of bioinformatics plays an important role in microarray data analysis.

Themost common approach is to deduce the coregulatedgenes (regulons) that have
similar expression patterns. Further, the regulatory motifs are expected to be a
predictor for each regulon.Manydifferent algorithmshavebeenused for the clustering
process as well as for regulatory motif prediction. Within a single experimental
condition, MotifRegressor [52] can be used to find a sequence motif. MotifRegressor
first predicts all of the possible motifs and then performs regression analysis between
microarray data andmotif strength.MotifRegressor has anadvantage in that it doesnot
require the selectionof a groupof genes to predict themotif,whichmaygenerate a bias
for motif prediction since some highly expressed genes are also indirectly regulated
genes. Formultiple experimental conditions,we can apply clusteringmethods, such as
k-means, hierarchical clustering, self-organizing maps, and minimum spanning tree
(EXCAVATOR) [53], to identify a group of potential genes with the same trend in
expression pattern. EXCAVATOR [53] is based on a new framework for representing
gene expression data, that is, theminimum spanning tree in graph theory. Through this
data representation, an expression data-clustering problem is reduced to a tree-
partitioning problem without losing information essential for the purpose of cluster-
ing. EXCAVATOR then applies an algorithm that mathematically guarantees to find
globally optimal clustering efficiently, for a general objective function. After identi-
fying the coexpressed genes in a cluster, we can apply motif prediction programs to
predict the DNA binding motifs. The most commonly used cis regulatory motif and
transcription factor DNAbinding site prediction algorithms include such programs as
Gibbs sampler [54], AlignACE [55,56], and BioProspector [57].

During the past several years, transcriptional regulatory networks have attracted
substantial interest from both the computational and biological science communities.
A number of statistical and computational methods have been applied in themodeling
of gene regulation networks [58–64]. A few regulatory networks have been de-
fined [60,65–68]. Despite this, regulatory network construction remains a great
challenge due to the requirement of large experimental data sets.

The storage and management of microarray data is critical for efficient analysis.
This, however, is a very challenging undertaking, since themany details of microarray
analysis will affect the final results. The information about the samples hybridized, the
hybridization images and their extracted datamatrices, information about the physical
array, and the features and reporter molecules all need to be included in the database.
BioArray software environment (BASE) is a Web-based customizable bioinformatics
solution for the management and analysis of all areas of microarray experimenta-
tion [69]. BASEmanages biomaterial information, raw data and images, and provides
integrated and ‘‘plug-in”-able normalization, dataviewing and analysis tools. The orga-
nizationandinterfaceofBASEwasdesignedtocloselyfollowthenaturalworkflowofthe
microarraybiologist, and is compatiblewithmost typesofarrayplatformsanddata types
(e.g., cDNA/oligos spotted on any substrate, Affymetrix, CGH on arrays, and so on).

DNA CHIPS AND FUNCTIONAL GENOMICS 79



3.3.8 Challenges of DNA Chips

AlthoughDNAchips haveadvantages of high-throughput features, these technologies
have several other disadvantages and challenges:

(1) Cost of diagnosticmicroarrays. Currently, the cheapest chips still cost the users
at least $100 per experiment even for a noncustomed array. An Affymetrix
array costs more than $400 per experiment. Currently, it is cost-prohibitive to
apply microarrays as a routine diagnostic tool.

(2) The robustness of the microarray technologies must be improved. For SNP
screening in particular, the sensitivity and specificity will need to be improved.

(3) The chip technologies need to be performed in a simplified and sturdy format
without errors. A standard package includes the experimental protocol. These
packages should tell the user how to justify the array quality in addition to
giving the intensity of chip array data. A highly efficient quality control needs
to be set up for microarray data analysis as well.

3.3.9 Development and Applications of DNA Chips

DNA chips have been widely used in many different fields. Most DNA chips focus on
the protein-coding region to study the gene expressionvalues. In addition, other types
of arrays are designed to study the function of other elements in the genomes, such as
small gene prediction, antisense gene study, gene alternative splicing, and so on.

The first significant application of DNA chips were serial analysis of gene
expression (SAGE) for expression profiles [70]. SAGE was designed based on two
principles: (1) a short nucleotide sequence tag canuniquely identify the transcript from
an individual gene provided it is from a defined position within the transcript. For
example, although the total number of human genes is expected to be of the order of
30,000, a sequence tagofonly9 nucleotides can, inprinciple, distinguish49¼ 262,144
different transcripts. (2) Concatenation of short sequence tags allows the efficient
analysis of transcripts in a serial manner. The tags from different transcripts can be
covalently linked togetherwithin a single clone, and the clonecan thenbe sequenced to
identify the different tags in that clone. SAGE has been applied successfully in
malarial parasite, yeast, plant, and animal systems [71].

ChIP-on-chip is a DNA array technique for isolation and identification of
specific protein binding sites in genomic DNA [72]. ChIP-on-chip is useful for
regulatory binding site identification, and thus, for regulatory network construc-
tion [73,74]. These regulatory binding sites can help identify the functions of the
transcriptional regulatory protein during cell development and disease progression.
The identified binding sites may also be used as a basis for annotating functional
elements in genomes. The types of functional elements that one can identify using
ChIP-on-chip include promoters, enhancers, repressor and silencing elements,
insulators, boundary elements, and sequences that control DNA replication
(http://www.chiponchip.org/).

Tiling array is a DNA array covering whole genome sequences using overlapped
fragments, and it can be applied to examine not only upstream sequences of genes but
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also intragenic and intergenic regions [75]. Tiling arrays use millions of DNA probes
evenly spaced, or ‘‘tiled” across the genome, including coding and noncoding regions
(Fig. 3-4). Tiling array has been a very useful tool for genome-wide analysis of many
important biological functions, including transcription [76], antisense gene expres-
sion [77], protein binding sites [78], sites of chromatinmodification [79], sites ofDNA
methylation [80,81], experimental genome annotation, and regulatory pathway
discovery [82].

3.4 TRANSCRIPTOME PROFILING OF AN ArcA Mutant
of Shewanella oneidensis

In this section, discussion will focus on cDNAmicroarray technology applied for the
purpose of characterizing theArcA regulon in the bacterium S. oneidensisMR-1. This
section first introduces the background of this study (Section 3.4.1) and then describes
the experimental design for this study (Section 3.4.2). The cDNA microarray and
microarray hybridization procedure are followed next in Section 3.4.3. Section 3.4.4
describes the roles of bioinformatics in this study. Section 3.4.5 describes the
transcriptome profiling of an arcA mutant. Finally, the conclusions are presented
in Section 3.4.6.

3.4.1 Background

In E. coli and other bacteria, the Arc (anoxic redox control) two-component signal
transduction system,which consists of theArcB transmembrane sensor kinase and the
cytosolicArcA response regulator,modulates gene expression in response to changing
redox conditions [83]. Under anaerobic or microaerobic respiratory conditions, ArcB
autophosphorylates and then transphosphorylates the global transcriptional regulator
ArcA, thereby enhancing the affinity of the latter protein for its target promoters [84–
87]. ArcA is a transcriptional regulator that can act as an activator or repressor in
regulating different genes in redox metabolism such as several dehydrogenases of the
flavoprotein class, terminal oxidases, tricarboxylic acid cycle enzymes, enzymes of
the glyoxylate shunt and enzymes in fatty acid degradation pathways [83,88].
Recently, ArcA was predicted to directly regulate 55 new genes involved in many
different functional categories in E. coli [89].

5′

5′3′

3′

Figure 3-4 Probe design for tiling array. The oligonucleotide probes are tiled across the whole

genomic sequence.
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S. hewanella oneidensisMR-1, a facultative gram-negative bacterium, is remark-
able for its ability to utilize a diverse array of terminal electron acceptors during
anaerobic respiration (e.g., fumarate, nitrate, nitrite, thiosulfate, elemental sulfur,
trimethylamine N-oxide (TMAO), dimethyl sulfoxide (DMSO), Fe(III), Mn(III) and
(IV), Cr(VI), and U(VI)). Because of this exceptional metabolic versatility and the
potential use of this organism for bioremediation of metal/radionuclide contami-
nants in the environment, the approximately 5Mb chromosome and the 0.16Mb
megaplasmid sequences comprising the S. oneidensis MR-1 genome were deci-
phered by TIGR [60]. Sequence annotation of the MR-1 genome revealed the
presence of an arcA homologue (SO3988) but not an arcB homologue. In this study,
whole-genome DNA microarrays for S. oneidensis MR-1 were used to define the
arcA regulon under both aerobic and anaerobic batch growth conditions.
Transcriptome analysis of an arcA null mutant and the occurrence of a predicted
sequence motif for promoter recognition by ArcA suggested that ArcA functions as
a global regulator in S. oneidensis.

3.4.2 Microarray Construction and Hybridization

3.4.2.1 Microarray Construction The S. oneidensis microarray contained a
total of 4,761 distinct elements, representing about 99 percent of the total protein-
coding capacity of the MR-1 genome [49,90] (Fig. 3-5). Of the array elements that
were spotted, 4,310 constituted PCR-amplified DNA fragments corresponding to
unique segments of individual MR-1 ORFs, whereas gene-specific oligonucleotide
probes (50-mers) were designed and synthesized for 451 predicted genes (9 percent of
the total DNAprobes arrayed) that did not yield either single products or any products
in PCR amplifications. PCR primers and oligonucleotide probes were designed using
the program PRIMEGENS [30]. PCR products and oligonucleotides were printed in
duplicate onto SuperAmine glass slides (TeleChem International, Inc.). The micro-
array also consisted of 32 elements corresponding to S. oneidensis genomic DNA
(positive controls) and 42 spots representing nine genes (amplicons) fromArabidopsis
thaliana (negative controls).

3.4.2.2 RNA Isolation, cDNA Labeling, Microarray Hybridization, and
Scanning Cultures of S. oneidensis wild-type and arcA mutant strains were
harvested at the mid-exponential point under both aerobic and anaerobic conditions,
and total cellular RNAwas isolated using the TRIzol reagent (Invitrogen, Carlsbad,
CA) according to the manufacturer’s instructions. RNA samples were treated with
RNase-freeDNase I (Ambion, Inc., Austin, TX) to digest residual chromosomalDNA
and then purified with the QIAGEN RNeasy Mini kit prior to spectrophotometric
quantitation at 260 and 280 nm.

Fluorescein-labeled cDNA copies of total cellular RNA extracted from wild-
type and mutant cells were prepared, with the exception that Cy3/Cy5-dUTP
(Perkin–Elmer/NEN Life Science Products, Boston, MA) was used in the first-strand
reverse transcription (RT) reaction. Two sets of duplicate reactions were carried out in
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which the fluorescent dyes were reversed during cDNA synthesis to minimize gene-
specific dye effects. The labeled cDNA probe was purified and concentrated by
following the manufacturer’s protocols.

The two labeled cDNA pools (wild type and mutant) to be compared were mixed
and hybridized simultaneously to the array in a solution containing 3� SSC (1� SSC
is 0.15 M NaCl plus 0.015M sodium citrate), 0.3 percent sodium dodecyl sulfate,
1 mM dithiothreitol (DTT), 40 percent (v/v) formamide, 0.8mg of unlabeled herring
sperm DNA (Gibco BRL)/mL, and 8.6 percent distilled H2O. Hybridization was
carried out in a 50�C water bath for 12–15 h.

To determine the fluorescence intensity (pixel density) and background intensity,
16-bit TIFF scanned images were analyzed using the software ImaGene version 5.5
(Biodiscovery, Inc., Los Angeles, CA). Microarray outputs were first filtered to
remove spots with poor signal quality by excluding those data points with a mean
intensity of <2 standard deviations above the overall background for both channels.

Figure 3-5 Whole genome cDNA microarray for S. oneidensis MR-1.
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Empty spots and spots flagged as poor were removed from subsequent analyses by
using ImaGene. Data transformation and normalization were carried out using
GeneSite Light (Biodiscovery, Inc.). Normalized expression ratios were imported
into ArrayStat (Imaging Research, Inc., Ontario, Canada) to determine the common
error and to remove outliers. Only those genes with an expression ratio of �2 were
included in further analyses.

3.4.3 Experimental Design and Data Analysis

3.4.3.1 Experimental Design Figure 3-6 illustrates the experimental design
for this study. To study the arcA gene in S. oneidensis, we first constructed an in-frame
deletion arcAmutant (designated ARCA) based on the method described earlier [49]
using the primers 3988-5I (50-TGTTTAAACTTAGTGGATGGGCCTCAGTTACCA
CATACCC-30), 3988-3I (50-CCCATCCACTAAGTTTAAACACCAGATACGCCAG
AAATCATCG-30), 3988-5O (50-GCTTCTGTCGATAAACACGGC-30), and 3988-
3O (50-TTACCCAATACTTAGTTCAGCAAGG-30). To monitor global changes in
gene expression in response to the arcA deletion, we compared the ARCA strain with
the DSP10 parental strain grown under aerobic and anaerobic conditions using batch
cultures. S. oneidensis parental and mutant strains were grown in Luria-Bertani (LB)
medium at 30�C under aerobic or anaerobic (with 20mM fumarate as the electron
acceptor) respiratory conditions. For theaerobic condition, cellsweregrown (60mL in
250-mL flasks) with agitation (200 rpm). For the anaerobic condition, the media
(80mL in 100-mL bottle) was purged with nitrogen gas while boiling for at least
30min prior to inoculation. To minimize differences in gene expression caused by

Figure 3-6 Experimental design for arcA regulon characterization.
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growth-related effects, samples for transcriptome measurements were taken from
exponentially growing cultures at mid-log phase.

For eachgrowth condition tested, gene expressionanalysiswasperformedusing six
independent microarray experiments, including dye swapping, which yielded a total
of 12 expression measurements per gene (three biological replicates, with each
different mRNA preparation having four technical replicates).

3.4.3.2 Phenotype Characterization of the ARCA Mutant Strain To
determine whether inactivation of the S. oneidensis arcA affects anaerobic metabo-
lism, the ability of the ARCA mutant strain to grow on and/or reduce a variety of
electron acceptors under anaerobic respiratory conditions was compared to that of the
parentalDSP10 strain [49].TheARCAandDSP10 strainswere culturedanaerobically
in Luria-Bertani media with various electron acceptors, including fumarate (20mM),
colloidal Mn (5mM), MnO2 (2mM), nitrite (20mM), MgCl2 (10mM), CrO4

(150 mM), cobalt (50mM), FeO2 (5mM), ferric citrate (5mM), FeCl3 (5mM), or
Fe-NTA (10mM). The culture turbidity was monitored spectrophotometrically at
600 nm. A growth curve was measured for the culture containing fumarate. For other
electron acceptors, the growth of the culture was evaluated using end-point culture
turbidity measurements.

The results indicated that the growth of ARCA in LB is slightly slower than the
parent DSP10 strain (Fig. 3-7) under anaerobic conditions with fumarate (20mM) as
the electron acceptor. Based on the end-point culture turbidity, the arcA deletion
mutant exhibits slower growth than the DSP10 parental strain under anaerobic
respiratory conditions with the following electron acceptors: colloidal Mn (5mM),
MnO2 (2mM), nitrite (20mM), MgCl2 (10mM), CrO4 (150mM), cobalt (50mM),

h
30252015105

e–3

e–2

e–1

e0
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O
D

60
0 

nm
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ArcA–

Figure 3-7 Comparison between the growth curves of ARCA (arcA null mutant) and the wild-type

S. oneidensis DSP10 strain grown in Luria-Bertani medium at 30�C under anaerobic (with 20mM

fumarate as the electron acceptor) respiratory conditions.
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FeO2 (5mM), ferric citrate (5mM), FeCl3 (5mM). The growth of the ARCA and
DSP10 strainswas also evaluated inM4minimummediumwith ferric citrate (10mM,
20mM, and 50mM, respectively) based on the culture turbidity at 24, 48, and 72 h,
and the results demonstrated that ARCA grew slower than the parent DSP10 strain
(data not shown).

The effect of hydrogen peroxide (H2O2) treatment at concentrations of 500 and
2500mMonmid-exponential growth of the parental and mutant strains under aerobic
conditions was also assessed. As shown in Figure 3-8, ARCAwas shown to be more
sensitive toH2O2-induced oxidative stress at different concentrations compared to the
parental DSP10 strain, suggesting that ArcAmight play a regulatory role in oxidative
stress resistance in S. oneidensis. This observation agrees with the finding that arcA
increases resistance of Salmonella enterica serovar Enteritidis to H2O2 [91].

3.4.4 Data Interpretation

3.4.4.1 Overview of Transcriptome Profiling of the ARCAMutant under
Different Respiratory Conditions A total of 654 (294 downregulated; 360
upregulated) and 504 (135; 369) genes were identified as being differentially
expressed in response to the arcA deletion mutation under aerobic and anaerobic
respiratory conditions, respectively. Comparison of the two microarray data sets
indicated that the expression levels for 248 of these genes were affected under both
aerobic and anaerobic growth conditions. The differentially expressed genes encode a
broad variety of functions, with themajority (44–52 percent) encoding hypothetical or
conserved hypothetical proteins (Fig. 3-9a and b). Genes showing changes in

Time (h)
20151050
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WT2500
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ARCA2500

Figure 3-8 ARCA is more sensitive to oxidative stress than the wild-type S. oneidensis DSP10

strain. Growth was measured kinetically with a Microbiology Reader Bioscreen C (Growth Curves

USA, Piscataway, NJ) [34]. WTand ArcA mutant were grown aerobically up to the mid-log phase

and then treated immediately with 500 and 2500mM H2O2, respectively. The cells were grown at

30�Cwith continuously extensive shaking. TheOD600 nmunitswere readwith an interval of 30min.
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Figure 3-9 Functional distribution of differentially expressed genes in the ARCA strain under
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homology classes (number of genes/percentage of genes) according to TIGR’s annotation (http://
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transcript abundance in the arcA deletion mutant under both growth conditions that
have annotated functions are involved in a number of cellular processes including cell
envelope, energy metabolism, protein fate, regulatory functions, and transport/bind-
ing proteins. Under anaerobic growth conditions, a number of genes belonging to the
functional categories of protein synthesis and purines/pyrimidines/nucleosides/nu-
cleotides were also upregulated in the arcAmutant (Fig. 3-9a). There were 27 and 19
predicted regulatory genes that showed significant differences in expression in a
DarcA genetic background under aerobic and anaerobic conditions, respectively, and
13 genes with annotated functions in regulation were differentially expressed under
both respiratory conditions. These results suggest that ArcA functions as a global
regulator in S. oneidensis, exerting a pleiotropic effect on a number of cellular
functions, and that the transcriptional effect of an arcA deletion was most profound
under anaerobic growth conditions.

3.4.4.2 Genes with Functions in Energy Metabolism A total of 66 of 87
(�76 percent) genes with annotated functions in energy metabolism showed altered
expression profiles in the arcA deletion mutant (49 under anaerobic conditions and 54
under aerobic conditions). More than half of these genes (34 genes) are involved in
electron transport function. Except for the napAGHB operon, which was upregulated
under anaerobic conditions but downregulated under aerobic conditions, all other
genes showed similar expression trends under anaerobic and aerobic conditions. For
19 cytochrome b or c genes, 13 were upregulated under either or both anaerobic and
aerobic conditions including SO4483 (cytochrome b, putative), cytochrome c family
proteins (SO1782, SO1659, SO4079–SO4078 operon, SO4142, SO4144, SO4484),
cytochrome c oxidase ccoPONQ, and diheme cytochrome c (SO4485). However, the
other six genes, cytochrome c (scyA, SO3300, SO4572, SO2727, SO0845) and
decaheme cytochrome c (SO1427) were downregulated at either or both of these
two experimental conditions. Among iron–sulfur clustering binding proteins,
SO1364, napG, and napH were downregulated 2.98-, 4.44-, and 7.50-fold under
aerobic conditions, respectively. Theother three iron–sulfur cluster proteins (SO1519,
SO1521, SO4404)were instead upregulated under aerobic conditions.Genes involved
in anaerobic metabolism such as torC (tetraheme cytochrome c), cat2 (4-hydroxy-
butyrate coenzyme A transferase), and fdhB (formate dehydrogenase) were upregu-
lated under anaerobic conditions, but dmaAB (anaerobic dimethyl sulfoxide
reductase), ifcA (fumarate reductase flavoprotein), and SO4513 (formarate dehydro-
genase) were downregulated under anaerobic conditions.

Among operons/genes-encoding enzymes involved in the TCA cycle, malate
synthase (aceBA), and aconitate hydratase 1 (acnA) were upregulated in ARCA
under anaerobic fumarate-reducing conditions, which is similar to the situation in
E. coli [89,92]. Up- or downregulation of the genes associatedwith the TCA cyclewill
affect redox generation, which reflects the role of ArcA in redox metabolism.
However, seven other operons, including citrate synthase (gltA) [93], succinate
dehydrogenase operon (sdhCAB) [94], 2-oxoglutarate dehydrogenase–succinyl–
CoA synthase operon (sucABDC) [95,96], malate dehydrogenase (mdh) [94], aco-
nitate hydratase 2 (acnB) [97], isocitrate dehydrogenase (icd) [98], and SO2222
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(fumarate hydratase) were not affected in the S. oneidensis ARCA mutant under
anaerobic fumarate-reducing conditions. Another fermentation gene, D-lactate dehy-
drogenase (ldhA), was not affected significantly under anaerobic conditions in
S. oneidensis, but was upregulated 1.85-fold in an E. coli arcA mutant in MOPS-
buffered LB with 20mM D-xylose [89,99].

3.4.4.3 Expression of Genes from Other Functional Categories Here
we discuss genes known to be regulated directly or indirectly by arcA in other
microbes. About 30 operons (including the reported gene/operons discussed above),
most of which are involved in respiratory metabolism, are presently known to be
regulated by phosphorylated arcA in other organisms [99].

The glutamate synthase operon (gltDB) was upregulated under anaerobic condi-
tions, which is similar to their up-regulation in E. coli arcAmutants under anaerobic
conditions [83,89,99]. In contrast, nine other operons related to redox metabolism,
including formate acetyltransferase (pflB), cytochrome d ubiquinol oxidase operon
(cydAB) [100–102], aldehyde dehydrogenase (aldA), fatty acid oxidation complex
(fadBA), NADH dehydrogenase (nuo) operon, the ATP binding protein operon
(cydDC) [100,101], glycerol kinase (glpK), anaerobic C4-dicarboxylate membrane
transporter (dcuB), and lipoamide dehydrogenase (lpdA) [83,92,99,103,104], were
not affected under the growth conditions tested in this study. These nine genes were
shown to be regulated by ArcA in other organisms in previous studies [83,92,99–
102,104]. The transport and binding protein, C4-dicarboxylate binding periplasmic
protein (dctP) [92], was upregulated about 2.3-fold under aerobic conditions, which is
similar to the reported trend (dctA, up-regulated 1.58) from E. coli arcA mutant
microarray data [89].

3.4.4.4 Resistance of S. oneidensis arcA Null Mutant to H2O2 Oxidative
Stress As described earlier, the ARCA mutant strain is hypersensitive to H2O2

relative to theDSP10 parental strain under aerobic conditions. The oxyR gene encodes
a transcriptional bindingprotein that regulates oxidative stress resistance inS. enterica
serovar Typhimurium and E. coli [105]. In this study, the expression of the
S. oneidensis oxyR homologue, gene SO1328, was not affected by the arcA deletion.
Also of interest was the observation that the MR-1 counterparts for such known
OxyR-controlled genes as katG (hydroperoxidase I), ahpF (alkyl hydroperoxide
reductase), gor (glutathione reductase), grx (glutaredoxin, SO2745), fur (Fur repres-
sor of ferric ion uptake), dps family protein (SO1158), and hemH (SO2018 and
SO3348) [105,106], were not affected in the ARCA strain, even though the deletion
mutant exhibited H2O2 hypersensitivity.

Nystromet al. [107] also showed that anE. coli arcAdeletionmutantwasnot able to
decrease the synthesis of the TCA enzymes malate dehydrogenase (mdh), isocitrate
dehydrogenase (aceB), lipoamide dehydrogenase E3 (lpdA), and succinate dehydro-
genase (sdh). Similarly, our transcriptome profiling of ARCA under aerobic condi-
tions demonstrated that the transcription of enzymes within the TCA cycle was not
affected significantly (Table 3-2). These enzymes are encoded by gltA, lpdA, sdhCAB,
sucABCD, mdh, acnB, aceB, icd, acnA, and acnB. The microarray data for the arcA
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deletionmutant underH2O2 stress also indicated that the expressionof thesegeneswas
not changed significantly (T. Li and J. Zhou, unpublished data, personal communica-
tion). Therefore, these TCA cycle enzymes may still produce the reactive oxygen
species (ROS) after exposure to H2O2. Nystrom et al. [107] demonstrated that E. coli
was able to overproduce superoxide dismutase to scavenge superoxide radicals
generated from aerobic respiration to defend against oxidative stress. The deletion
of sodB in Helicobacter pylori results in hypersensitivity of the mutant to oxidative
stress and adefect inhost colonization [108].Herewe found that superoxidedismutase
(sodB) was downregulated about 1.7-fold under aerobic respiratory conditions. Our
experiments also demonstrated that the gene encoding periplasmic nitrate reductase
(napA),which has been reported to be associatedwith oxidative stress resistance inH.
pylori [108,109], was downregulated 11.3-fold under aerobic respiratory conditions.
This might explain the hypersensitivity of the ARCAmutant to H2O2 oxidative stress.
In addition, we found that two heavy metal efflux pump operons (SO4597–SO4598
and SOA0154–SOA0153) were downregulated 6.7- and 25-fold, respectively. It is
unknown whether the low levels of expression of these two operons will affect the
ARCA strain’s H2O2 stress resistance capability.

3.4.5 Bioinformatics Analysis

3.4.5.1 Sequence Analysis and Structural Modeling of S. oneidensis
arcA The putative arcA gene of S. oneidensis MR-1 encodes a 238-amino acid
protein with a predictedmolecular mass of 27,220Da and a pI of 5.43. Comparison of
the deduced amino acid sequence showed that S. oneidensisMR-1ArcA shares a high
degree of identity to its homologues in E. coli (81 percent), S. enterica (81 percent),
Yersinia pestis (81 percent), V. cholerae (81 percent), and a lower degree of sequence
identity to ArcA inPasteurella. multocida (75 percent) andH. influenzae (72 percent)
(Fig. 3-10). This high level of homology at the primary sequence level strongly
suggests that these proteins share similar biological functions. Moreover, analysis of
the deduced amino acid sequence of S. oneidensis MR-1 ArcA also revealed the
conservation of the Asp54 residue in the N-terminal receiver domain and the
helix–turn–helix (HTH) DNA binding motif in the carboxy-terminal effector domain
(Fig. 3-10) [85,88]. Based on structure predictions using PROSPECT-PSPP [110],
ArcA shows high homology to the response regulator Drrb present in Thermotoga
maritima (PDB id 1p2f, 30). Drrb is a multidomain response regulator of the OmpR/
PhoB subfamily that may regulate gene transcription by binding as a dimer to s70

promoter elements [111]. In contrast to E. coli, S. oneidensis arcA is predicted to be
monocistronic, and there is no obvious cognate arcB encoded in the MR-1 genome
based on the sequence annotation [112]. This suggests that a less conserved sensor
histidine kinase might be employed by the Arc two-component signal transduction
system.

3.4.5.2 Scanning the S. oneidensis MR-1 Genome with the ArcA-P
Positional Weight Matrix Structure modeling of the deduced protein encoded
by the MR-1 arcA gene indicated a strong degree of conservation between the DNA
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binding domains of the E. coli and S. oneidensis ArcA proteins (Fig. 3-10). Thus, we
utilized the experimentally verified ArcA-P binding sites from 10 arcA-regulated
proteins to construct the ArcA-P positional weight matrix [89]. The score function of
positionalweightmatriceswas adapted from the log transformationmethod described
by Berg and Von Hippel [113]. Both strands of the S. oneidensis MR-1 genome
sequencewere scanned using a sliding window size of 15 nucleotides. The motif with
the highest matrix score was selected among all of the overlapping motifs from both
plus and minus strands. Scores of all potential ArcA-P recognition sites were
statistically analyzed using the Z test, and only those sites with 95 percent or greater
significance are presented as potential ArcA-P binding sites in S. oneidensis. For each
gene, only the promoters located within the upstream sequence from the gene start
codons are counted in this paper.

By scanning the S. oneidensis genomewith the ArcA-P recognition weight matrix,
13 tRNA and 668 protein-encoding genes were predicted to contain potential ArcA
binding sites in their upstream regions. The predicted ArcA regulon in S. oneidensis
includes 12 ORFs shown to be controlled by ArcA in E. coli: fadB, acnB, nuoA, gltB,
aceB, icd, dctP, cydA, cydD, arcA, glpK, and lldP [83,89,92] (Table 3-2). The surA
gene, which is predicted to contain an ArcA-P binding site in E. coli [89], also has a
strong arcA motif in S. oneidensis. However, the other six operons, lpdA, gltA-
sdhCAB, sucABDC, pflBA, and aldA, which are regulated by arcA in E. coli, do not
possess strong ArcA binding motifs based on this search. Among the 668 protein-
coding genes in the S. oneidensisArcA regulon, 148 genes (about 3 percent of all the
predicted genes in S. oneidensis) exhibited significant differences in transcript levels
in ARCA relative to DSP10 under aerobic and/or anaerobic conditions. Table 3-2
shows a subset of genes in S. oneidensiswith ArcA-P binding sites, which are similar
to ArcA-P binding sites in E. coli [83,89,92]. A sequence logo representation of
the predicted conserved ArcA-P binding motif for these 148 genes is shown in
Figure 3-11a. Compared with the ArcA motif in E. coli, the predicted motif has a
weaker consensus. For example, the first, third, and fifth positions in the motif have
smaller bit scores, which reflect the conservation status for each consensus position.
Another genomic scanning in S. oneidensis using the positional weight matrix
constructed from the predicted 190 binding sites for 148 genes resulted in a similar
consensus (data not shown). Most (81 percent) of the motifs are located within 300
nucleotides upstream of the translation start codon (Fig. 3-11b).

Similar to the ArcA regulon in E. coli (20), the ArcA regulon in S. oneidensis is
associated with 17 functional categories. Among the 148 genes with differences in
expression in the arcA deletion mutant (Table 3-3), 46 genes were predicted to be
positively regulated and 102 negatively regulated. Our results also showed that the
genes controlled by ArcA are involved in functions beyond redox metabolism. These
genes belong to broad functional categories and most of these genes have not been
reportedpreviously to bemembers ofArcA regulons fromother bacterial species, such
as E. coli. Eight of these genes with expression changes with more than 3-fold (up or
down)havestrongpredictedArcAbindingmotifs(Z> 3.0)andencodeHoxK(SO2099),
Pal/histidase family protein (SO3299), decaheme cytochrome c (SO1427), putative
long-chain fatty acid transport protein (SO3099), TonB-dependent receptor domain

94 HIGH-THROUGHPUT TECHNOLOGIES AND FUNCTIONAL GENOMICS



protein (SO2907),MaoCdomainprotein (SO0599),PspF (SO1806), andahypothetical
protein(SO2930).Amongtheseeightgenes,hoxK isthefirstgeneinthequinone-reactive
Ni/Fe hydrogenase operon (hoxK–hydB–hydC), which catalyzes the reversible oxida-
tion of H2 [114]. Deletion of hoxK was shown to inactivate the membrane-bound
hydrogenase inAlcaligeneseutrophus [115].These threegenes (hoxK–hydB–hydC) are
upregulatedmore than 3.9-fold under aerobic conditions. Under anaerobic conditions,
hoxK is alsoupregulatedmore than3.5-fold. Inaddition,aputativeundecaprenolkinase
(SO4274)was also predicted to have a strongArcA-P binding sitewith a Z-score larger
than 3. The undecaprenol kinase (so4274) is a cell wall synthesis gene and has been
associated with biofilm formation inMycobacterium smegmatis [116]. Recently, arcA
was found to be related to biofilm formation in S. oneidensisMR-1 [112] in which the
undecaprenol kinasemight be the functional gene target. Thesewide-ranging functions
of ArcA are also supported by its requirement for virulence in Haemophilus influen-
zae [117] andVibrio cholerae [118] aswell as a recent genome-wide study of theArcA
regulon in E. coli [89].

Figure 3-11 Identification of a predicted consensus ArcA binding motif in S. oneidensis MR-1

using computational methods. (a) Sequence logo representation of the predicted ArcA binding

motif in S. oneidensis MR-1. (b). Position distribution of the predicted ArcA motifs.
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Further DNA binding experiments have confirmed the ArcA-P binding motifs
predicted here, which include a transcriptional regulator (SO1661), decaheme cyto-
chromec (SO1427),andhoxK [120].Further investigationwillbe required toverify the
functionality of the other predicted ArcA binding motifs in S. oneidensisMR-1. We
believe these 148 genes with altered expression in the arcA deletion strain are still a
subset of theArcA regulon in S. oneidensis since someArcA-regulated genesmay not
showexpressiondifferences under the culture conditions tested. For example, amalate
oxidoreductase (sfcA) was predicted with a strong binding motif, but the gene
expressionvalueswere lower than2-foldandhigher than0.5-foldunderbothanaerobic
andaerobicconditions.ThebindingmotifpredictedinsfcAwasalsoconfirmedbyDNA
binding experiments [120]. It is also worth mentioning that pflBA has the ArcA-P
binding site inE.colibutnopredictedArcA-Pbinding sites inS.oneidensisMR-1[92].
The DNA binding experiment also demonstrated that pflBA does not have a strong
ArcA-P binding site [120].

3.4.6 Conclusions

In summary, we used microarray-based gene expression profiling to examine the
transcriptome for an arcA null mutant compared to the parental S. oneidensis DSP10
strain under both aerobic and anaerobic growth conditions. Transcriptome profiling
revealed a total of 654 (294 down regulated; 360 upregulated) and 504 (135; 369) open
reading frames (ORFs) that were differentially expressed in an arcA deletion mutant
relative to the parental strain under aerobic and anaerobic respiratory conditions,
respectively. By integrating computational motif prediction tools and microarray
analyses, we predicted an S. oneidensis ArcA regulon consisting of as many as 148
S. oneidensis genes (46 as a positive regulator and 102 as a negative regulator), which
included a number of genes shown to be under the direct control of ArcA in other
bacteria. Our results also demonstrated that ArcA in S. oneidensis acts as both a
positive and negative regulator for genes associated with various other functional
categories. Both transcriptome data analysis and motif predictions suggest the Arc
two-component signal transduction system in S. oneidensis regulates a large number
of genes that are different from those regulated by ArcA in E. coli, although they do
have overlapping regulatory functions for a small subset of genes. S. oneidensis is
typically found at oxic–anoxic interfaces in nature such as sediments and bodies of
water where oxygen is limited or absent [60] whereas E. coli primarily lives in the
mammalian gut [83]. Different living environments for S. oneidensis andE. colimight
result in the observed differences in ArcA regulon compositions during evolution for
environmental adaptation. Finally, phenotype characterization indicated that ArcA
enables S. oneidensis to resist oxidative stress.

3.5 FUTURE PROSPECTS OF CHIP TECHNOLOGY

The applications of high-throughput technologies and functional genomics have
proven to be great successes in biological studies.Array technology can be considered
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a milestone since it has revolutionized biological research (Fig. 3-1). Future develop-
ment of economically feasible custom chips will permit functional genomics tech-
niques to become routine lab tools. A standardized protocol for data analysis and
information mining needs to be completed in the future as well.
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4.1 INTRODUCTION

Breast cancer is the second leading cause of cancer deaths in the women today (after
lung cancer) and is themost common cancer amongwomen, excluding nonmelanoma
skin cancers. Early detection and more effective treatments have decreased the
mortality rate from breast cancer in recent years [1]. Still, according to the World
Health Organization, more than 1.2 million people will be diagnosed with breast
cancer each year worldwide. The American Cancer Society estimates that each year
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178,000Americanswill be diagnosedwith breast cancerwith 44,000 deaths expected.
Moreover, breast cancer is the leading cause of death among women between 40 and
55 years of age and is the second overall cause of death among American women
(exceeded only by lung cancer).

The term breast cancer refers to a collection of cells of the breast that undergo
uncontrolled growth, differentiation, and proliferation. Such a collection of cells is
known as a malignant breast cancer tumor. Malignant tumors penetrate and destroy
healthy tissues of the breast. In addition, a group of cellswithin amalignant tumormay
also break away and spread to other parts of the body. Breast cancer tumor cells that
spread from one region of the body into another are calledmetastases. One goal of this
chapter is to characterize the metastatic potential of breast cancer tumors in terms of
their global gene expression profiles.

Clinically, the presence of metastatic breast cancer in axillary lymph nodes is the
most significant factor in the overall survival of breast cancer patients [2,3]. Although
the determination of lymph node status is routine, the surgical procedure is invasive,
and the selection of lymph nodes for examination can introduce biases that result in
false negative results. Hence, the ability to assess the lymph node status of a breast
cancer tumor based on quantitative measurements derived from the tumor itself may
obviate the need for axillary lymph node dissection and themorbidity associated with
the procedure [4].

Previous attempts to correlate characteristics of primary breast cancer tumors
such as S-phase fraction, tumor grade, ploidy, hormone receptor status, and ERBB2
overexpression with lymph node status have been less than successful in terms of the
sensitivity and specificity required in clinical settings [5]. Multivariable gene expres-
sion profiling appears to have the analytical resolution necessary to complement the
known clinical markers currently used for tumor characterization [6]. In addition, the
genes, pathways, and predictive models that result from a global analysis of gene
expression in breast cancer tumors provide biological hypotheses for highly focused
studies to identify new molecular targets that may contribute to improved treatment
and personalized care, and a deeper understanding of the systems biology underlying
breast cancer metastasis and tumor growth [7].

In this chapter, modern signal processing and pattern recognition techniques that
employ thewavelet transform (WT), singular value decomposition (SVD), and neural
networks (NNs) are used to analyze microarray data to predict the spread of breast
cancer to the axillary lymph nodes based solely on the gene expression profiles of
the primary breast cancer tumor. In Section 4.2, background knowledge on breast
cancer and genomic signal processing and a description of the main clinical problem
of interest are provided; that is, assessing the distant spread of breast cancer to the
axillary lymph nodes based on the molecular characteristics of primary tumor.
In Section 4.3, a microarray data set based on normal tissue and breast cancer tumor
samples is described. In Section 4.4, results of a prior analysis on the Huang data set
by Huang et al. are summarized [4]. In Section 4.5, genomic signal processing tech-
niques such asWTand SVD are defined and discussed. The expression data matrix is
discussed in Section 4.6 and its connection to Bellman’s curse of dimensionality.
Experimental design issues for the current study are discussed in Section 4.7. Data
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preprocessing and data quality issues are discussed in Section 4.8. In Section 4.9, the
modeling of phenotypic variation using features extracted from the Huang breast
cancer data set using genomic signal processing techniques is described. Validation of
pattern recognition models derived from the Huang microarray data is described in
Section 4.10. Section 4.11 summarizes the main results of the overall study. Finally, a
discussion of the main results is presented in Section 4.12.

4.2 BACKGROUND ON METHODS AND APPROACH

The central dogma of molecular biology states that a gene is transcribed into
messenger RNA (mRNA) that in turn is translated into protein [8]. Networks of
interacting genes and proteins then give rise to emergent states and system dynamics
on these states that characterize the complex biological processes in cells, tissues,
organs, and organisms [7]. Although the central dogma has been modified somewhat
over the years, the core idea is still valid—the flow of information from genes to
mRNA to proteins—and the underlying information processing that it implies forms
the basis for life, death, and disease.

A crucial step in the information processing described by the central dogma is
the transcription of a gene into mRNA, a process also known as transcription or gene
expression. The expression level of every known gene represents the global gene
expression pattern of a biological sample. This pattern is in constant flux over space
and time and, in particular, changes as a normal cell is transformed into a cancer
cell [9]. In this light, it is reasonable to assume that global gene expression patterns of
normal and cancerous cells are quite different.

An important goal in cancer systems biology is the proper quantification of
differences in global gene expression between normal or cancer cells [4]. The genes
that underlie such differences serve as explanatory variables of quantitative models
of cancer that are predictive of clinical outcomes or discriminative between different
cancer subtypes [10]. For the first time, biologists are now able to measure the
expression of every known gene in a tissue sample using a technology called the
DNA microarray or chip. In a marriage of integrated circuit manufacturing,
nanotechnology, photonics,materials science, biochemistry, andmolecular biology,
DNA microarrays are able to measure the activity of thousands of genes simul-
taneously using thousands of distinct probes that are positioned randomly on the
surface of a small glass slide, plastic wafer, or silicon chip [11–13]. Each probe is
composed of millions of strands of DNA that are complementary to specific mRNA
target strand that we wish to quantify. Fluorescent tags are attached to the mRNA
strands contained in a special ‘‘cocktail” prepared from a biological sample. The
chip is immersed in the cocktail for a period of time under stringent conditions to
allow the different mRNA target strands to attach, or hybridize, to their comple-
mentary DNA probes. The amount of tagged mRNA that hybridizes to a specific
probe is quantified based on the intensity of the light that is emitted by the fluorescent
probe when illuminated by a beam of laser light. This measure of light intensity
serves as a surrogate measure of expression for the gene associated with the probe.
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Each probe is interrogated in this way and the individual expression measurements
are assembled into a high-dimensional vector that in aggregate provides a global
snapshot of gene activity in a given tissue sample [14].

When multiple chips are hybridized to different samples, we have a microarray
experiment. In the context of this chapter, the microarray experiment of interest
compares the global gene expression patterns of tissue samples composed of normal
cells to tissue samples composed of cancerous cells. Since not all 25,000 or so genes of
the human genome are associated with cancer, it is reasonable to assume that only a
relatively small number of genes will be differentially expressed (DE) between the
normal and tumor samples. Here, we view the collection of DE genes as a character-
izing biological state of tumor cells in terms of gene expression [15].

DEgenes that interact in thecontextofaknownsignalingor regulatorypathwayscan
be used as features for pattern recognition applications that are capable of identifying
cancer subtypes and predicting clinical outcomes prior to and during treatment [5,9].
Indeed, a list of DE genes most likely intersects with multiple signaling pathways that
control the transformation of a normal cell into a cancer cell [16].Deconvolution of this
list into pathways of functionally related, interacting genes helps to elucidate causal
mechanisms that may lead to a more personalized treatment of cancer through early
diagnosis and drugs targeted to the specific genes in specific pathways [17].

As with any other sensor system, data collected by DNAmicroarrays are contami-
nated with significant amounts of systematic (low-frequency) and random (high-
frequency) variation. The primary sources for such unwanted variation include
experimental error introduced by the data acquisition process unique to DNA micro-
arrays and biological variation that exists between different tissue samples. The
resulting p� n data matrix of a typical microarray experiment, where p equals the
number ofgenes andn equals thenumber of samples, is ill posed in thatp is greater than
n (p� n) by several orders of magnitude. This situation is analogous to having many
more unknowns than equations in a system of linear equations whereby the system in
question has no solution. Standard statistical analysis of such ill-posed data results in
models that mistake noise for signal, and hence, fail to capture the underlying
biological processes that give rise to the observed patterns of differential gene
expression [18,19]. Finally, background noise in microarray data is multiplicative
instead of additive, which can confound standard statistical analysis and modeling
techniques [20].Modern signal processing, pattern recognition, andmachine learning
techniques provide the means to properly analyze and model the noisy, high-
dimensional data sets generated by microarray experiments [21].

4.3 THE HUANG BREAST CANCER DATA SET

The global transcriptional profiles of 37 primary breast cancer tumor samples were
measured using Affymetrix U95-AV-5 GeneChip microarrays [4]. Each microarray
profiled the steady-state mRNA levels of 12,625 genes simultaneously in a single
tumor sample. Of the 37 samples that were profiled, 19 were labeled as ‘‘negative” or
low-risk samples and 18 as ‘‘positive” or high-risk samples based on microscopic
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examination of lymph node samples obtained by axillary lymph node dissection.
AmongERpositivepatients, thehigh-risk (or positive) clinical profilewas represented
by metastases involving 10 or more lymph nodes. The low-risk (or negative) profile
was defined by node negative patients of age greater than 40 years with tumor size less
than 2 cm. The main hypothesis for this experimental design asserts the existence of
global gene expression patterns capable of discriminating between the high- and low-
risk tumor samples.

Microarray data were acquired using protocols established by Affymetrix
Corporation for the U95-AV-5 GeneChip. The amount of starting total RNA for
each GeneChip hybridization was 20 mg. First-strand cDNA synthesis was generated
using a T7-linked oligo-dT primer, followed by second-strand synthesis. An in vitro
transcription reaction was performed to generate the cRNA containing biotinylated
UTP and CTP, which was subsequently chemically fragmented at 95�C for 35min.
The fragmented, biotinylated cRNAwashybridized inMESbuffer (2-[N-morpholino]
ethansulfonic acid) containing 0.5mg/mL acetylated bovine serum albumin to
Affymetrix GeneChip HumanU95Av2 arrays at 45�C for 16 h, according to the
Affymetrix protocol. The arrays contained probes that measured the expression of
over 12,000 genes and ESTs. Arrays were washed and stained with streptavidin
phycoerythrin (SAPE,Molecular Probes). Signal amplificationwasperformedusing a
biotinylated antistreptavidin antibody (Vector Laboratories, Burlingame, CA) at 3mg/
mL. This was followed by a second staining with SAPE. Normal goat IgG (2mg/mL)
was used as a blocking agent.

Each hybridized GeneChip was scanned using an Affymetrix GeneChip scanner,
and the expressionvalue for eachgenewascalculatedusing theAffymetrixMicroarray
Analysis Suite (v5.0), computing the expression intensities in ‘‘signal” units defined
by the software. Scaling factors were determined for each hybridization based on an
arbitrary target intensity of 500. Scans were rejected if the scaling factor exceeded a
factor of 25, resulting in only one reject. Files containing the computed signal intensity
value for each probe cell on the arrays, files containing experimental and sample
information, and files providing the signal intensity values for each probe set, as
derived from the Affymetrix Microarray Analysis Suite (v5.0) software, were
generated and posted on the Huang study Web site.

4.4 RESULTS OF THE HUANG STUDY

Using k-means clustering, SVD, and statistical tree models, Huang et al. discovered a
gene expression signature based on 200 genes that was able to discriminate between
high-risk and low-risk sampleswith 90 percent accuracy [4,5].Moreover, they showed
that many of the genes that defined the prognostic signature mapped to biological
processes related to breast cancer. In particular, an interferon-mediated immune
response was identified in the list of DE genes significantly changed in expression
between the positive and negative sample groups of the experiment.

In brief, the data analysis employed by Huang et al. first removed genes with
fold change less than two and maximum intensity less than nine on a log2 scale. This
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filtering step resulted in a reduction in the number of genes available for downstream
processing from 12,625 to 7030. K-means clustering was then applied to the filtered
genes to obtain 496 gene clusters. Singular value decomposition was used to extract
the first principal component of each gene cluster. This principal component was
called the ‘‘metagene” associated with the gene cluster. The 496 metagenes were
presented as input to a classification tree, where the sample space is recursively
partitioned into subsets that best fit the data based on a Bayesian measure of
association between metagenes and a binary variable encoding the lymph node status
of the samples [5]. Lists of genes were generated from the top four metagenes having
the largest marginal Bayes’ association. The list was extended by adding additional
genes that are highly correlated with any one of the top four metagenes.

Metagenes were discovered that were highly associated with lymph node status.
These discriminative metagenes were capable of predicting lymph node status in
individual patients with about 90 percent accuracy using the classification tree model
based on the microarray data. The metagenes also defined distinct groups of genes
that participated in biological processes related to metastatic breast cancer. It was
concluded that gene expression patterns can be used to accurately predict the lymph
node status of a primary breast cancer tumor based solely on the gene expression
patterns of the tumor itself [4].

4.5 GENOMIC SIGNAL PROCESSING

An important goal of bioinformatics and systems biology in cancer research is to
improve the diagnosis, prognosis, and treatment of cancer through more accurate
disease classification and patient stratification using quantitative techniques that take
full advantage of the genome-wide data generated by new technologies such as DNA
microarrays [10,22,23]. This comprehensive approach to understanding cancer allows
for the design of therapeutic strategies that are targeted to the specific cancer subtypes
that are unique to an individual patient. The hope is that a deeper understanding of the
molecular heterogeneity of cancer could potentially improve the effectiveness of
existing treatment regimens based on the ability to predict therapeutic response and
adverse effects, as well as suggest new strategies based on the identification of new
molecular targets susceptible to pharmacological intervention [9,23].

By genomic signal processing (GSP) we mean the identification, isolation, and
extraction of information from high-dimensional data, such as that produced by DNA
microarrays, that are useful for modeling and/or explaining observed changes in well-
defined clinical or biological phenotypes. In this chapter,wedescribe anumberofGSP
techniques that in aggregate enable the minimally invasive prediction of distant
changes in lymph node status based solely on the gene expression profile of the
primary breast cancer tumor.

To facilitate the application of GSP techniques, we view the prediction of lymph
node status as a problem in pattern recognition where the raw data are preprocessed,
informative genes are identified, feature patterns are extracted from the expression
profiles of these genes, and finally a pattern recognition (PR) model is formulated
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based on the extracted feature patterns [24,25]. Figure 4-1 shows a high-level
flowchart of the information processing chain used to formulate a NN model of
breast cancer metastasis based on GSP features extracted from whole genome
expression profiles. In brief, the following steps are involved: (1) the microarray
data are normalized and equalized; (2) differentially expressed genes are detected;
(3) feature patterns are extracted from the list of DE genes; (4) and a NN classifier is
trained on the extracted feature patterns. An important step in the modeling process
that is absent in Figure 4-1 is the objective assessment of predictive power of the
resultant model using cross-validation techniques, which is discussed in Section 4.11.

4.6 THE EXPRESSION DATA MATRIX

Specifically, ap� n expressiondatamatrixAraw is formedwhere eachof then columns
of Araw represents the expression profile over p genes of a tumor sample. It follows
that each of the p rows of Araw represents the expression profile of a gene over the n
samples of the microarray experiment [18]. We assume the n columns of Araw are
grouped so that the lymph node negative samples comprise first n1 columns ofAraw for
j¼ 1,2, . . ., n1 and the lymph node positive samples comprise the next n2 columns of
Araw where n¼ n1 þ n2.

Typically, p� n, (p much greater than n) where, for example, p¼ 12,625 and
n¼ 37 for theHuangmicroarray data set. This situation is known as ‘‘Bellman’s curse
of dimensionality,” which states that the number of samples needed to adequately
model phenotypic variation grows exponentially with the number of input vari-
ables [24,26]. Hence, the Huang data matrix is mathematically ill posed for analysis
using standard statistical approaches since thenumber of variables (genes) exceeds the
number of equations (microarrays) by several orders of magnitude.

NNmodels basedona largenumberof input genes (anda relatively small numberof
samples) admit a large number of possible solutions that vary widely in terms of
predictionperformance, andhence, generalize badly froma finite set of trainingdata to
the general population that were unseen during training. Methods must be used to
reduce the number of variables (i.e., dimensionality)without losing information that is
relevant to solving the discrimination or prediction problem at hand [27,28]. Standard
statistical techniques based on optimality arguments where the number of samples
grow asymptotically without bound relative to the number of variables are inadequate

Figure 4-1 Modeling phenotypic variation using DNA microarrays. (1) Raw expression data

matrix is preprocessed to remove systematic error and equalize noise. (2) Differentially expressed

genes are selected from the preprocessed data matrix. (3) Feature patterns with reduced

dimensionality and noise content are extracted from the data matrix of significant genes. (4)

The extracted feature patterns are used to train a neural network to discriminate between

phenotypic classes. The trainedneural network constitutes amodel of phenotypic variation defined

in terms of gene expression.
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for the so-called ‘‘large p, small n” problems. Indeed, microarray experiments require
statistical techniques based on asymptotics where the number of variables increases
without bound relative to the number of samples [29]. Unfortunately, the statistical
analysis of ill-posed problems is less well developed than for situations where the
number of samples is plentiful and the number of variables small.

One approach is to use Bayesian statistics to constrain the space of possible
solutions on a finite training set and automatically select parsimonious models that
generalize to a larger population [21]. Another approach is to use signal processing
techniques to select only highly informative features that reduce input space di-
mensionality, which in turn alleviates the negative impact of Bellman’s curse on the
ability of the derived model to generalize [30]. In this chapter, we describe methods
more closely aligned to the latter approach where signal processing techniques are
used to extract highly informative, low-dimensional features from expression data
matrix. These feature patterns are then used to train NN classifiers that are capable of
distinguishing benign breast cancer tumors from tumors that have spread to the
axillary lymph nodes.

4.7 EXPERIMENTAL DESIGN

Global gene expression profiles are obtained using Affymetrix HU-95 GeneChip.
EachhybridizedGeneChipwas ‘‘vectorized” into columnvectors composedof12,625
components,where each component represents the relativeexpression level of a single
transcript on a given chip [4]. As described above, the vectorized chips were arranged
to form the columns of a 12,625� 37 expression data matrix Araw of raw expression
values where columns 1–19 represented the negative samples and columns 20–37
the positive samples. The data matrix Araw was quantile normalized to obtain the
preprocessed data matrix Anrm.

A sample response function (SRF) for the Huang microarray experiment is a
mapping h:{1,2, . . ., n} ! L defined on the columns ofAnrm where L¼ {�1,1}. Note
that h reflects the phenotypic grouping of the samples such that h(i)¼�1 for
1� i� 19 and h(i)¼�1 for 20� i� 37. Note that h has the shape of a step function
on the column indices of Anrm. The ordered triple (Anrm, L, h) represents the
experimental design for the microarray experiment based on the Huang data set.
Figure 4-2 visualizes the components of themicroarray experiment (Anrm, L, h). Here,
Figure 4-2a is the step-like SRF defined by h for the microarray experiment, (Anrm, L,
h) and Figure 4-2b is a z-scored image of the data matrix log2 (Anrm) [31].

The fundamental hypothesis of microarray data analysis (FHMD) for (Anrm, L, h)
asserts the existence of a set of genes that are highly correlated with step function
h shown in Figure 4-2a. For example, a numerical measure, tg, can be computed
for each gene g defined by

tg ¼ tðxg; hÞ 	
xTg h

sg
ð4-1Þ
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where (1) xg is the expression profile of gene g over n samples; (2) sg is the standard
deviation of xg; and (3) xTg h is the correlation between xg and h. Note that
Equation 4-1 is equal to the correlation between xg and h normalized by the standard
deviation of xg, which is also known as the t-score for g. The genes are ordered by
absolute t-scores, and a subset of genes with the largest absolute t-scores is chosen
based on some statistical threshold such as p-value or false discovery rate (FDR).
The resulting list of genes is necessarily correlated with the unit step function h in
accordance with Equation 4-1 and, in the this case, represents the genes that show the
most consistent differential expression between the positive and negative samples of
the Huang breast cancer data set. Such a set of genes is said to be differentially
expressed between the two sample groups in accordance with the t-test.

Figure 4-2 The experimental design for the Huang breast cancer microarray experiment.

(a) Step-like sample response function h defined on the columns of Araw that groups the columns

of the data matrix into lymph node negative (columns 1–19) and positive (columns 20–36) sample

groups. (b) The z-scored image of the 12,625�36 expression data matrix Araw after quantile

normalization and log2 transformation.
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4.8 DATA PREPROCESSING AND DATA QUALITY ASSESSMENT

The columns of Araw are quantile normalized to facilitate comparison between the
samples represented by the columns ofAraw,which results in the datamatrixAnrm [32].
Each entry of Anrm is then log2 transformed to equalize variation over the entire range
of expression values resulting in the p� n preprocessed data matrix Alog2 [20]. The
preprocessed data matrices Anrm and Alog2 form the basis for further downstream
information processing depending on the algorithms used. For the purposes of this
chapter, our focus will be on the normalized expression data matrix Anrm. Note that
quantile normalization essentially models and removes a low-frequency, correlated
signal that corresponds to the systematic experimental error in the raw microarray
data.

The primary goal of the preprocessing step is the removal of systematic nonrandom
variation from the raw data to facilitate the comparison of gene expression across
multiple chips. The quantile normalization procedure can be described in two steps:

. Create a mapping between ranks and expression values; that is, for rank k, find
the n genes, one per array, that have rank k in terms of gene expression and
compute their average expression over the n samples;

. For each gene on each array, replace the measured expression value with the
rank-average expression for that gene.

Note that quantile normalization is an aggressive strategy that produces identical
distributions for each array. On the contrary, quantile normalization is extremely
fast, since it only requires a single sort of the data matrix, a computation of means
across sorted rows, and a single pass through the data [33]. Note that other normali-
zation schemes exist that employ nonparametric modeling techniques such as locally
weighted polynomial regression (lowess) to characterize the systematic error in
raw microarray data. One such method identifies genes that are invariant in terms
of variation between normal and disease sample classes and models the low-frequen-
cy, correlated signal in these invariant genes using a lowess-type smoother. The
resulting error model is then used to correct all the raw data for systematic error.
Normalization based on lowess smoothing of invariant genes tends to be a less
aggressive a procedure than quantile normalization.

Another important preprocessing step is the log2 transformation of the data matrix
Anrm to decouple variation in fold change from expression level. This decoupling
makes the data appear more bell shaped and hence improves the performance of
downstream statistical analysis algorithms designed to detect DE genes. Indeed, raw
microarray data have essentially a log-normal distribution, which implies that the
log2 transform of the data should be more or less normally distributed or at least
unimodal [20]. Other more powerful variance stabilization methods have been pro-
posed that view microarray data as having a normal distribution at low expression
levels, a log-normal model at high intensities, and a mixture of both at intermediate
intensities. The impact of such mixture models on classification and prediction
performance is currently being evaluated.
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The chips that comprise the Huang microarray experiment are assessed for data
quality using a number of standard statistical techniques. For example, histograms of
all 37 columns of the quantile normalized datamatrixAnrm after z-scoring are shown in
Figure 4-3. Note that sample 37 is clearly an ‘‘outlier” in distribution when compared
to the other 36 chips of the experiment. Moreover, pairwise correlation analysis of the
raw and normalized data indicates that sample 37 has relatively low correlation with
the other 36 chips. These results suggest that the expressionvalues for sample 37were
corrupted at somepoint in the data acquisition process.Hence, sample 37was removed
from this study, although we note that sample 37 was retained by Huang et al. in their
study.

4.9 THE MODELING OF PHENOTYPIC VARIATION

The modeling of phenotypic variation in terms of gene expression is a pattern
recognition problem that can be solved bymapping gene expression patterns directly
to phenotypic states using NN classifiers [21]. Such models are known as discrimi-
nant classifiers. Note that it is not necessary to delineate the biological mechanism

Figure 4-3 Histogram plots for quantile normalized, log2 transformed, z-scored microarray

data from the Huang breast cancer data set. Note that most of the samples have similar

histograms, while sample 37 is an outlier in distribution. Therefore, we removed sample 37

from the MANINI analysis since an outlier of that magnitude would distort the final perfor-

mance results.
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underlying the observed variation in disease phenotypes since the predictive model
is implemented based solely on the association between gene expression and
phenotype [15]. The proposed formulation of a discriminant pattern recognition
model for the prediction of lymph node status involves a four-step information
processing chain shown in Figure 4-1. Each step of the processing chain requires the
use of GSP techniques. Data preprocessing was described in the previous section.
Details on the remaining steps of the processing chain shown in Figure 4-1 are
described below.

The proposed GSP processing chain includes the following signal processing
components: (1) Microarray Analysis of Intensities and Ratios (MANINI) detection
algorithm for identifying DE genes, (2) pathway compression for data reduction,
(3) wavelet transformation for the separation of signal from noise, (4) singular value
decomposition for further dimensionality reduction and filtering, and (5) neural
networks for encoding the information contained in features derived frommicroarray
data using GSP techniques.

The signal processing steps outlined above can be combined in different ways
leading to different information processing algorithms. For example, the SVD of the
wavelet transformed data is known as wavelet/SVD (WSVD) signal processing.
Alternatively, the SVDof thewavelet transformof the datamatrix of genes confined to
a specific pathway specified by Ingenuity Pathway Analysis (IPA) is denoted by
WSVD/IPA signal processing. The following sections describe the different signal
processing components andhowtheyare combined to formanalysis pipelines that lead
to robust predictors of lymph node status based solely on the gene expression profiles
of the primary breast cancer tumor.

4.9.1 The MANINI Detection Algorithm

An alternative to the t-test for the supervised detection of genes highly correlated
to a given SRF is the so-called MANINI detection algorithm. The MANINI
detector was specially designed to handle small numbers of samples often en-
countered in real-world case/control microarray experiments, since in the absence
of a large number of chips, one is hard-pressed to do better than use fold change to
detect DE genes [34]. MANINI was also designed to detect DE genes with
expression profiles that are inconsistent or highly variable over the samples of
the experiment [35]. There is a growing trend in microarray data analysis toward
detecting genes in heterogeneous samples (e.g., tumor samples) with expression
patterns that may be too inconsistent for more conventional detector designs such
as the t-test [35,36].

For example, assume that a single signaling pathway is modulated between two
biological conditions. Due to sample heterogeneity and biological variation, it may be
that different components of the pathway are DE for different samples. In this case,
individual genes that participate in the pathway would be difficult to detect using the
t-test since the associated expression profiles would be highly variable over the
samples of the experiment. TheMANINI detector on the other hand would be able to
select such genes for downstream ontological and pathway analysis, where different

126 GENOMIC SIGNAL PROCESSING OF DNA MICROARRAY DATA



ensembles of functionally related genes are assigned to the common pathway towhich
they belong [7,37].

Let x and y be p� 1 column vectors representing the geometric averages of the
control and disease chips, respectively. Let

M ¼ log 2ðyÞ�log 2ðxÞ ¼ log 2
y

x

� �

and

A ¼ 1
2 log 2ðyÞþ log 2ðxÞ½ 
 ¼ log 2

ffiffiffiffiffi
xy

p� �
Figure 4-4 shows theMinus–Add (MA) scatter plot ofMversusAwhere fold change

is plotted versus average expression in log2–log2 space.
We note three things about the MA scatter plot: (1) the MA plot can be viewed

as a visualization of differential expression; (2) genes located on the periphery of
the MA data cloud are likely to be DE; and (3) the vertical variation of the MA
data cloud is a function of expression level. This suggests a strategy for detecting
DE genes by selecting only those genes that ‘‘live” on the edge of the MA data

Figure 4-4 Minus–Add scatter plot for Huang breast cancer microarray data set. Each

point represents the geometric average of expression (A-axis) and fold change (M-axis) for a

gene in log2–log2 space. Horizontal dotted lines at M¼�1 represent constant twofold change in

expression between positive and negative samples. Note the dependence of the variance ofM on

the intensity of A .
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cloud based on a threshold that adapts to the spread of the cloud as a function of
expression level [32,38]. Note that using standard twofold change as a constant
threshold for differential expression over the entire range of expression values (as
represented by the horizontal dashed lines in Fig. 4-4) is clearly inappropriate since
too many genes are called DE at lower expression levels and too few genes are called
DE at higher expression levels. A better strategy would be to adaptively threshold the
genes of the MA scatter plot based on expression level.

The MANINI detector implements this idea by ‘‘binning” the horizontal axis of
the MA plot into k quantiles. Each bin contains about the same number of genes that
have similar expression intensities. This quantization scheme also implies that all
genes in a bin have about the same degree of variation since variation is a function of
intensity. For a given bin containingm genes, we assume the signal model yi¼ si þ h
for i¼ 1,2, . . ., m. Here, si is the true expression level of the ith gene, and h�N(0,s)
is normally distributed random variable with mean zero and known variance s2.
Empirical studies show that this is a reasonable assumption for wide range of real-
world data sets. It follows that differential expression within the bin can be modeled
as a m-dimensional random vector, y¼ [yi,y2, . . ., ym]

T, where E(y)¼ [s1,s2, . . ., sm]
T

is sparse [29].By sparse it ismeant thatmost of the componentsof the true signal vector
E(y)¼ [s1,s2, . . ., sm]

T are zero.
In the field of wavelet denoising, Donoho and Johnstone showed that a signal

contaminated by zero-mean Gaussian noise can be optimally filtered by thresh-
olding the wavelet coefficients of the noisy signal [39]. The wavelet transform of a
noisy signal localizes the information content of a signal simultaneously over time
and scale. In this case, high-frequency noise is usually confined to the high-
resolution scales and low-frequency coherent signal is concentrated in the low-
resolution scales. Donoho and Johnstone found that by simply thresholding the
higher resolution wavelet coefficients of the noisy signal and then applying the
inverse wavelet transform, one can optimally estimate the true underlying signal
assuming that it is sparse [29]. Thresholding in this manner to estimate a signal
embedded in noise is called testimation. Note that thewavelet coefficients at a given
scale of resolution form a Gaussian random vector where only a few of the
coefficients are different from zero; that is, the wavelet coefficients at each scale
form a sparse random vector.

Based on the properties of theMA scatter plot, the log2 ratios within an expression
bin of aMAplot can beviewed as a sparseGaussian randomvectorwhere only a small
number of geneswithin the bin are trulyDE. This observation suggests the application
of theDonoho–Johnstone (DJ) universal threshold directly to the log2 ratios of a given
intensity bin using

ŝi ¼ yi if jyij > s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�bÞlogðmÞ

p
0 otherwise

(
ð4-2Þ

to select those genes with ‘‘true” nonzero differential expression for i¼ 1,2, . . ., m,
where ŝi is an estimate of the ith component of the true signal s and 0< b< 1 [29,39].
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Note that 1�b represents ameasure of the ‘‘sparseness” of y. It can be shown that this
disarmingly simple procedure is asymptotically optimal in a statistical sense (i.e., it
minimizes the maximum expected risk) as m grows without bound and that its
application to a noisy high-dimensional data vector amounts to a Bonferroni-type
correction for multiple comparisons [29].

Note the optimality of the estimate ŝ depends on the number of variables m
(or genes) growing without bound. This is in sharp contrast to the situation in
classical statistics where the number of samples is assumed to grow without
bound [18]. Hence, Equation 4-2 actually becomes more accurate when the
number of genes is large, provided the random vector remains sparse. This is
exactly the situation for most whole genome expression profiling studies and
precisely the opposite of what is required for standard statistical algorithms to
work properly. Hence, the MANINI detection algorithm takes advantage of the
large number of genes interrogated in a typical microarray experiment by binning
the genes into subgroups containing equal numbers of genes with similar expres-
sion levels. Since the total number of genes is large, each subgroup will have
enough genes for the DJ universal threshold to work (for that particular subgroup).
For example, the Affymetrix U133 Plus 2.0 GeneChip uses over 54,000 probe sets
to interrogate over 47,000 transcripts that represent approximately 38,000 genes
and gene variants. Binning the horizontal axis of the MA plot into 51 quantiles
results in 50 subgroups of genes where each subgroup contains 1094 measure-
ments with similar expression levels. Note also that each bin of the MA plot
contains only a few genes that are truly DE; that is, the log2 ratios in each bin
contain a sparse signal for DE. This allows the application of the DJ threshold
to most microarray experiments where the signal for DE is sparse both locally and
globally.

Note that Equation 4-2 was implemented for each bin using the mean absolute
deviation (MAD) statistic in place of s to provide a robust estimate of the variation
within the bin. Genes that exceeded the Donoho–Johnstone threshold for the
bin were called DE. The union of all genes called DE over all bins of the MA
scatter plot resulted in a list of genes that are globally DE for the microarray
experiment [31].

The MANINI detection algorithm was used to analyze the 12,625� 26 log2
transformed, quantile normalized expressiondatamatrix denotedbyA.Wesummarize
the MANINI results in Figure 4-5. Differentially upregulated genes are marked by
up-triangles, differentially downregulated genes are marked by down-triangles, and
genes unchanged in expression are represented by points. The black dashed lines
located at M¼�1 represent constant thresholds for a twofold change in expression
in either the up (M¼ 1) or down (M¼�1) direction. The quantiles of A-axis are
represented by dark and gray vertical bands shown in the body of the MA plot.
The MANINI algorithm calls a gene within a given quantile, or bin, differentially
expressed if its absoluteM-value exceeds the DJ noise-adjusted threshold for that bin.
The union of genes calledDEover all bins represents the global signal forDEdetected
by MANINI.
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In Figure 4-6, we show scaled images of the data matrices U and D composed of
genes that MANINI called significantly up- and downregulated, respectively. The
rows ofU shown in Figure 4-6a represents the samples of the experiment clustered by
similarity of their expression profiles over genes called significantly upregulated by
MANINI. A similar interpretation applies to the rows ofD shown in Figure 4-6a. The
results of the cluster analysis are summarized by a dendrogram shown on the left side
ofU andD. Moreover, the cluster structure over all samples is shown on the right side
ofFigure4-6a andb,where thenegative samples are labeled1–19andpositive samples
20–36. Both data matrices U and D are quantile normalized, log2 transformed, and
z-scored by rows.

Note that inFigure4-6aandb, the samples toa large extent segregateby lymphnode
status with some erroneous classifications that are probably due to the inclusion of
genes that are falsely called DE by the MANINI detector. This suggests that we may
be able to identify a subset of genes that are able to do a better job of discriminating
between positive and negative breast cancer tumor samples based on gene expression.
We also note that although the MANINI detector is designed to detect genes with
expression profiles that conform to a step-like response, it is also less sensitive to

Figure 4-5 MA plot summarizing the results of a MANINI analysis of the Huang breast cancer

microarray data set. Each point of the RI plot is a gene represented by average expression and

fold change. Genes represented by up-triangles were called significantly upregulated by

MANINI, while genes represented by the down-triangles were called significantly downregu-

lated. The vertical bands in the body of the MA plot represent the 50 quantiles used to segment

the A axis into disjoint bins containing approximately the same number of genes. Each bin

represents a separate and distinct DE detection problem for genes that have comparable

expression levels.
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deviations from the ideal response than standard statistics such as the two-sample
t-score and hence will call a broader range of expression patterns as statistically
significant.

4.9.2 MANINI and Signal Detection Theory

LetAnrm be a p� n normalized expression data matrix and let r represent a one-to-one
mapping of the column indices {1,2, . . ., n} of Anrm to {�1,1} defined by

rðiÞ ¼ �1 if the ith sample is a control

1 if the ith sample is a case sample

(

Here, the function r is called a response function for the experiment. Figure4-7 showsa
response function equal to the unit step function h defined for a 64-chip microarray

Figure 4-6 Scaled images of the expression data matrices for up- and downregulated DE genes

called by the MANINI detector. The rows of each data matrix are hierarchically clustered by gene

expression profile over the samples.(a) Data matrix composed of DE genes called upregulated by the

MANINI algorithm. (b) Data matrix composed of DE genes called downregulated by the MANINI

algorithm. Note that each set of genes approximately segregates the samples into two distinct clusters

containing positive and negative breast cancer tumor samples.
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experiment by

hðiÞ ¼ �1 if i ¼ 1; 2; . . . ; n1

1 if i ¼ n1 þ 1; n1 þ 2; . . . ; n1 þ n2

(

where n1 þ n2¼ n. Note samples 1–32 are controls and samples 33–64 are cases.
Let gi denote the row expression profile of the ith gene of Anrm for i¼ 1,2, . . ., p.
Then the ith gene is said to be differentially upregulated in the treated group if
gi is positively correlated with the step function h. Conversely, the ith gene is
differentially downregulated in the treated group if gi is negatively correlated

Figure 4-7 Top IPA network for downregulated genes. The network contains 35 genes with a

scoreof 55 (p-value�1.0E-55).An inferred functionof the network isCancer. Thehighlyconnected

hub gene FOS has been implicated in the regulation of cell proliferation, differentiation and

apoptosis, and MMP10 has also been implicated in tumor metastases.
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with h. We note that transcript degradation in the control and/or case classes can
also generate step-like gene expression profiles. For example, degradation of
message for the ith gene in only the control samples can falsely produce a gene
expression profile that suggests upregulation of the gene in question in the treated
samples. We will assume that strict quality control of sample preparation and
hybridization protocols will reduce message degradation and experimental
variation to a minimum.

Let y ¼ ½y1; y2; . . . ; yn
T 2 Rn be a noisy gene expression profile where each yi
represents themeasuredexpression levelofagene in the ith sample for i¼ 1,2, . . .,n. In
the context of statistical hypothesis testing, let

H0 : y ¼ h

and

H1 : y ¼ hþh

where h 2 Rn is a Gaussian, zero-mean, independent, identically distributed random
vector representing noise in the data. Then the Neyman–Pearson Lemma states that
uniformly the most powerful test for H0 versus H1 is defined by [40]

dhðyÞ ¼
1 if f ðyÞ > t

g if f ðyÞ > t

0 if f ðyÞ > t

8><
>: ð4-3Þ

where

f ðyÞ ¼ log LðyÞ½ 
 ¼ log
p1

p0

� �
¼ log

phðy�hÞ
pnðyÞ

	 

¼
Xn
k¼1

hkyk

By Equation 4-3, the test dh is called the correlation detector for the known signal h
in the noisy signal y. The step response h is called a template signal for dh. In other
words, the best strategy for detecting the presence of the known template signal h in a
noisy gene expression profile y is to correlate the two together [40,41]. Here, a
large absolute correlation implies that h is present in y, otherwise h is not present. The
key point here is to determine the threshold t on f that optimizes the balance between
sensitivity and the false positive rate defined by (1 – specificity). The response func-
tion need not be confined to be the unit step function, and in fact Equation 4-3 is quite
general and holds for arbitrary y and r.But a step-like response is the standard template
function for detectingwhat is commonly knownas differential expression between the
case and control classes of amicroarray experiment. This step-like response represents
a large and consistent difference in expression between the case and control samples of
the experiment.
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Note that fold change can be viewed as a correlation detector for the unit step
function h in the noisy gene expression profile y. Indeed, we have

hTy ¼
X
i

hiyi ¼
X

controls

hiyi þ
X
cases

hiyi ¼
X

controls

�yi þ
X
cases

yi

¼ n

2

� � 2
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and hence, fold change is an correlation detector of the unit step response in noisy data.
Since the t-test for the difference in mean expression between two sample groups is

tðyÞ ¼
2

n

� �X
cases

log2ðxiÞ� 2

n

� � X
controls

log2ðxiÞ

s
¼ 2

ns

� �
log2ðfold changeÞ

where s is the pooled sample standard deviation of y, it follows that the t-test is simply
log fold change penalized for ‘‘within-group” variations in fold change through the
estimated value for s.

Note that if the true response r deviates significantly from the step function h, then
both fold change and the t-test become suboptimal tests for differential expression (as
defined by h.) Note however, that the t-test is further penalized for large variations in
fold change through s, that is, the t-test is biased toward step-like signals that are strong
and consistent within each two-sample groups. Hence, in situations where the true
response of a gene is highly variable over the samples, as in tumor samples with
heterogeneous composition, the t-test will fail to detect these genes [42]. Also, genes
that are up- or downregulated on only a fraction of the case samples may not be
detected [36]. On the other hand, MANINI will detect genes that are modulated
intermittently across the samples of the experiment since fold change by itself is not
penalized for excessive variation. Finally, note that statistical validation of the
resulting gene list is deferred until ontological (PANTHER) or pathway analysis
(INGENUITY) can be conducted to determine the statistically significant functional
categories and pathways contained in the gene lists. A gene is then called significant if
it is contained in a significant functional category or pathway [31].
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In summary, many genes have response profiles that deviate significantly from
the step function due to intermittent up- or downregulation across the samples of the
microarray experiment [43]. Hence, such genes will remain undetected by standard
t-like tests that are designed to detect a consistent and strong step-like change in
expression across the samples of the experiment. The MANINI detection algorithm
attempts to circumvent this problem by selecting genes that exhibit high fold change
relative to a noise-adjusted threshold that varies with expression level. This detection
strategy exploits the observed relationship between variation in fold change and
expression level inmicroarraydata.Hence, a gene is not penalized for highvariation so
long as its average fold change exceeds a ‘‘universal” detection threshold that adapts to
the noise background for the gene. Significant genes are subsequently defined as
those genes that are contained in significant functional categories that signaling
pathways that are contained in the gene lists as identified using IPA and Onto-
Express [37].

4.9.3 Pathway Compression

We assume that the overrepresentation of known cancer-related pathways (as ex-
plained below) in the list of DE genes derived from the Huang breast cancer data
set represents coherent structure that characterizes the underlying biology of lymph
nodepositivebreast cancer tumors in termsofgeneexpression.Conversely,weassume
the absence of such coherent structure suggests that the gene list has little in common
with what is known about gene function and is essentially composed of randomly
selected genes representing mostly noise. We target genes contained in overrepre-
sented pathways as means of ‘‘drilling down” to those genes that are at once the
most biologically relevant and discriminative between positive and negative breast
cancer tumors. This idea is called pathway compression since it serves to reduce the
dimensionality of the resulting gene expression signature that will be used to train a
NN model for classifying breast cancer tumors as lymph node negative or positive.

IPAwas used to identify the biological networks that were perturbed in the Huang
lymph node positive breast cancer samples in the context of what is currently known
about mammalian biology derived from basic and clinical research [15,44]. Research
findings presented in peer-reviewed scientific publications aremanually encoded into
a comprehensive knowledge base of gene function and gene–gene interactions. The
IPAknowledge base contains over 200,000 full text scientific articles, a gene ontology
ofmore than 9800 human, 7900mouse, and 5000 rat genes thatweremanually curated
and parsed fromMEDLINE abstracts. A global interaction network of direct physical,
transcriptional, and enzymatic interactions observed between mammalian ortholo-
gues as described in the literature—the so-called global ‘‘interactome”—was over-
layed on the gene ontology. The resulting global interactome contained molecular
interactions involving over 8000 orthologues with a high degree of connectivity. On
average, individual genes have 11.5 interaction partners, of which 7.2 represent direct
physical interactions.

Every gene interaction in an IPA network is supported by published articles.
Furthermore, the original literature detailing the genetic interactions can be accessed
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to further examine and verify the findings. The global interactome provides a frame-
work for structuring existing knowledge regarding mammalian biology and enables
the objective validation of experimental data in the context of known genome-wide
interactions to identify significant functional pathways. This method is applicable to
data of high-throughput platforms such as microarray expression profiling, polymor-
phism analysis, and proteomics.

Significant pathways contained in MANINI-derived gene lists were identified by
first overlaying the genes identified as DE onto the global interactome. Focus genes
were then identified as those genes having direct interactions with other MANINI-
significant genes in the database. The specificity of connections for each focus gene
was calculated by the percentage of its connections to other significant genes. The
initiation and growth of pathways proceeded fromgeneswith the highest specificity of
connections, where each pathway had a maximum of 35 genes. Pathways of highly
interconnected genes were identified by statistical likelihood based on the following
formula:

IPA Score ¼ �log10 1�
Xf�1

i¼0

CðF; iÞCðN�F; s�iÞÞ
CðN; sÞ

" #

where C(n,k) is the binomial coefficient, N is the number of genes in the global
interactome, F are the number of significant genes detected by MANINI, and s is the
number of genes in the inferred pathway of which f are focus genes. Depending on the
data set, pathways with a score greater than 5 (p-value <1.0E-05) are considered
significant.

IPAwas used to identify biologically significant pathways contained in the gene list
derivedbyMANINI for theHuangbreast cancer data set.A summaryof an IPAanalysis
of 413 downregulated DE genes selected byMANINI is shown in Table 4-1. The list is
composedofpathways thatwere found tobestatisticallyoverrepresented in thegene list
based on gene function and gene–gene interactions contained in the IPA knowledge
base. The networkswere rank ordered by IPA significance score and gene descriptions,
and the number of focus genes for each network was also provided. Only networks
derived from the downregulated genes were targeted since they resulted in the most
robust NN models. Note that the top two IPA networks have p-values on the order of
10�55. Figure 4-7 shows a diagram of the top interaction network from the list (dnet1).

The network diagram for dnet1 in Figure 4-7 details the internal interactions
between the 35genes that are contained in the network.Here, eachnode of the diagram
represents a gene and each edge connecting two genes represents a documented
interaction between them. We selected only the genes contained in dnet1 for further
downstream information processing. IPA pathway analysis can be viewed as a feature
selection procedure where the genes in a significant IPA pathway are used as features
for classifying the samples of the experiment. This gene selection process is known
as pathway compression [31]. In fact, we show in Section 4.11 that genes contained in
dnet1 are able to accurately distinguish between the positive and negative samples of
the Huang breast cancer data set when analyzed using WSVD signal processing
and modeled using neural networks. Note that diseases and biological processes
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associated with the gene network dnet1 include Cancer, Cell-to-Cell Signaling and
Gene Expression. Table 4-2 shows a list of the 35 genes contained in dnet1. Although,
many cancer-related genes such as FOS and MMP10 are included in the dnet1 gene
list, and the network topology of dnet1 suggests specific biological mechanisms that
may have relevance to metastatic breast cancer, we are primarily concerned with how
well the dnet1 genes are able to discriminate between positive and negative breast
cancer tumors, ignoring for now the underlying biology.

4.9.4 Continuous Wavelet Transform

Wavelet signal processing analyzes a noisy signal, for example, the expression profile
ofageneover a rangeof scalesusingwaveletsof different locations and timedurations.

Table 4-1 IPA analysis of genes called downregulated by MANINI

Rank
IPA

Source
Focus
Genes Top Functions

1 55 35 Gene expression, cell-to-cell signaling and interaction, cancer
2 55 35 Gene expression, dermatological diseases and conditions,

genetic disorder
3 16 16 Cellular development, cellular growth and proliferation,

hematological system development and function
4 14 15 Cellular compromise, Dermatological diseases and conditions,

gastrointestinal disease
5 14 15 Inflammatory disease, viral function, immunological disease
6 14 15 Protein synthesis, lipid metabolism, small molecule

biochemistry
7 13 14 Cell signaling, cancer, cell death
8 13 14 Nervous system development and function, organ development,

cancer
9 13 14 Organismal development, lipidmetabolism, molecular transport

10 13 14 Carbohydrate metabolism, molecular transport, small molecule
biochemistry

11 13 14 Nervous systemdevelopment and function, cell-to-cell signaling
and interaction, neurological disease

12 11 13 Cellular growth and proliferation, hair and skin development and
function, cell signaling

13 11 13 Viral function, gene expression, cell cycle
14 10 12 Cellular movement, connective tissue development and

function, cell cycle
15 10 12 Energy production, nucleic acid metabolism, small molecule

biochemistry
16 9 11 Cell cycle, cellular assembly and organization, DNA replication,

recombination, and repair

Each row represents a significant IPA gene network. Note the networks are ordered by p-value. The top
network, dnet, has a p-value �1.0E-55 and contains 35 genes from the MANINI gene list. An inferred
function for dnet1 based on the function of genes contained in the network includes Cancer.
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Table 4-2 Gene list for IPA network dnet1

Affy Tag Name Description

684_at AGT Angiotensinogen (serpin petidase inhibitor, clade A, member 8)
37983_at AGTR1 Angiotensin II receptor, type 1
40960_at B4GALT1 UDP-Gal betaGlcNAc beta 1,4-galactosyltransferase,

polypeptide 1
40367_at BMP2 Bone morphogenetic protein 2
35457_at CART CART prepropeptide
2036_s_at CD44 CD44 molecule (Indian blood group)
39031_at COX7A1 Cytochrome c oxidase subunit Vlla polypeptide 1 (muscle)
1878_g_at ERCC1 excision repair cross-complementing rodent repair deficiency,

complementation group 1
2084_s_at ETV4 ets variant gene 4 (E1A enhancer binding protein, E1AF)
34818_at ETV5 ets variant gene 5 (ets-related molecule)
1408_at FGF4 Fibroblast growth factor 4 (heparin secretory transforming protein

1, Kaposi sarcoma oncogen
1363_at FGFR2 Fibroblast growth factor receptor 2 (bacteria-expressed kinase,

keratinocyte growth factor receptor
2094_s_at FOS v-fos FBJ murine osteosarcoma viral oncogene homologue
36669_at FOSB FBJ murine osteosarcoma viral oncogene homologue B
32383_at GHRHR Growth hormone releasing hormone receptor
32531_at GJA1 Gap junction protein, alpha 1, 43 kDa (connexin 43)
37447_at GPR30 G-protein-coupled receptor 30
39573_at GRIK2 Glutamate receptor, ionotropic, kainate 2
39618_at HAPLN1 Hyaluronan and proteoglycan link protein 1
32570_at HPGD Hydroxyprostaglandin dehydrogenase 15-(NAD)
1006_at MMP10 Matrix metallopeptidase 10 (stromelysin 2)
38602_at MYH6 Myosin, heavy chain 6, cardiac muscle, alpha (cardimyopathy,

hypertrophic 1)
35041_at NTF3 Neurotrophin 3
33998_at NTS Neurotensin
32472_at OXT Oxytocin, prepro-(neurophysin I)
38295_at PBX2 Pre-B-cell leukemia transcription factor 2
32001_s_at PCSK6 Proprotein convertase subtilisin/kexin type 6
35703_at PDGFA Platelet-derived growth factor alpha polypeptide
31732_at RLN2 Relaxin 2
35622_at SHC2 SHC (Src homology 2 domain containing) transforming protein 2
1511_at SHC3 SHC (Src homology 2 domain containing) transforming protein 3
36555_at SNCG Synuclein, gamma (breast cancer-specific protein 1)
34342_s_at SPP1 Secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early

T-lymphocyte activation 1)
32903_at TGFBR1 Transforming growth factor, beta receptor I (activin A receptor

type II-like kinase, 53 kDa)
39681_at ZBTB16 Zinc finger and BTB domain containing 16

Shown are Affymetrix gene tags, gene name, and gene description. Cancer-related genes include FOS,
MMP10, and FGF4. The interaction structure of these genes is shown in Figure 4-7.
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Inotherwords, thewavelet transformprovidesa timescaledecompositionofa signal of
interest [45]. Here, the term ‘‘time” is used loosely referring to some agreed-upon
sequential ordering of multiple measurements (e.g., gene expression values) that may
or may not reflect an actual temporal ordering. Themain point is that all samples have
their components ordered in the same way.

An underlying assumption of wavelet signal processing is that coherent signal and
randomnoise ‘‘live” at different scales of resolution andhence are oftenwell separated
after wavelet transformation. Moreover, noise in real-world data sets are often better
‘‘equalized” after wavelet transformation, thus making the distinction between signal
and noise even more pronounced in the wavelet transform domain. Indeed, it can be
shown that the wavelet transform ‘‘diagonalizes” a scale-invariant signal in much
the same way that the Fourier transform diagonalizes time-invariant signals. Since
scale invariance generalizes time invariance, the wavelet transform can be viewed as
a generalization of the Fourier transform. Researchers have confirmed that the
improved signal/noise separation provided by the wavelet transform results in real-
world pattern recognition applications with enhanced classification and predictive
capabilities [27,28,46].

Wavelets at different scales and times cs,t are derived from a single ‘‘mother”
wavelet c via scaling and translation operations. The wavelet transform of a given
signal f is defined by correlating fwith each waveletcs,t and summing the correlations

~f ðs; tÞ 	
ð¥
�¥

c
u�t

s

� �
f ðuÞdu ¼

ð¥
�¥

cs;tðuÞf ðuÞdu

where ~f ðs; tÞ is the CWTof f at scale s and time twith respect to the mother waveletc.
As a function of t for a fixed scale s,~f ðs; tÞ represents information in the signal having
frequencies that are localized to a spectral region that is centered on some frequency
that depends on the fixed scale s. As a function of s for a fixed time t,~f ðs; tÞ represents
information in the signal of all frequencies that is localized in some temporal
region centered on the fixed time t. Larger scale values capture coarse signal detail
(e.g., global trends), while the smaller scale values capture finer detail (e.g., transient
fluctuations and random noise). Hence, the CWT provides a means of characterizing
both local and global variation in a single signal representation.

There are an infinite number of mother wavelets to choose from depending on
the characteristic of the signal being analyzed. The mother wavelet used for the
microarray data analysis in this study is known as the Daubechies mother wavelet.
Computational studies using real and simulated data sets have shown that this
particular wavelet results in the best classification performance on the Huang breast
cancer tumor samples. This is mainly due to the shape of the Daubechies mother
wavelet that simultaneously smoothes the expression profile for a given samplewhile
capturing localized variations in the data over multiple scales of resolution.

Figure 4-8 shows the wavelet transform of quantile normalized, log2 transformed,
z-scored expression profiles of a lymph node negative tumor sample (Fig. 4-9a) and a
lymphnode positive tumor sample (Fig. 4-9b). The expression profilesweregenerated
by the downregulated genes in IPA network dnet1. In each case, the actual sample
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Figure4-9 Thecontinuouswavelet transformbasedon theDaubechiesmotherwavelet of order 4

for two sample expression profiles from the data matrix of pathway compressed genes.(a) The

sample expression profile of a lymph node negative tumor over 35 genes is shown above an image

of the CWTof the profile. The vertical axis of the CWT image represents scale, while the horizontal

axis represents samples ordered by lymph node status with negative samples first. Note that the

CWTof aone-dimensional signal is two-dimensional image. (b) ThesampleprofileandCWT image

of a lymph node positive tumor. Note how coefficients with high magnitude show different

distribution over scale and samples. Coefficients contained in rows near the bottom of the image

containmostly noise, while coefficients in rows near the top of the image represent coherent signal

characterizing differences between negative and positive tumor samples.

Figure 4-8 Eigenvalue plot for the datamatrix of genes from IPA network dnet1. Each eigenvalue

represents the variation in the direction of the corresponding eigencomponent. Eigenvalues 1–10

aremost likely to correspond to coherent signal. Eigenvalues 11–36 probably correspond to noise.
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expression profile is shown above the CWT of the profile. Note that the CWT of a
one-dimensional signal is a two-dimensional image. The vertical axis of each CWT
image represents the scale of resolution of the CWT. Not that the scale of resolution
becomes progressively coarser from the bottom up along the vertical axis. The
horizontal axis represents the tumor samples ordered by lymph node status with
the negative samples occupying columns 1–19 and the positive samples occupying
columns 20–36. Hence, each row of the CWT image represents the information
content of the profile at a particular scale of resolution, while each column represents
the information content of a particular sample over eight scales of resolution.

Themain idea of CWT signal processing is that randomnoise is concentrated at the
higher scales of resolution near the bottom of the CWT image, while lower frequency
coherent signal is concentrated in the coarser scales of resolution near the top. This
separation of signal and noise by scale enhances subsequent compression and
denoising of the data using SVD. Each CWT ‘‘image” is vectorized to generate a
one-dimensionalwavelet transformed expression profile that is used to form a column
of a CWT data matrix Awave.

In particular, let Adnet1 be the 35� 36 data matrix of quantile normalized, log2
transformed, z-scored gene expression values defined by the genes of dnet1. Each
35-dimensional column of Adnet1 is wavelet transformed over 64 scales in increments
of 8 using the continuous wavelet transform (CWT) based on the Daubechies mother
wavelet of order 4 (Daub4) that results (after vectorization) in a 240� 36wavelet data
matrix Awave. SVD was used to compress Awave down to a 12� 36 data matrix
Afeats¼ [f1,f2, . . ., f36] as explained below. Each column fj of Afeats represents a
12-dimensional vector of WSVD features that characterizes the jth sample of the
experiment for j¼ 1,2, . . ., 36. Previous research has shown that WSVD features
significantly enhance the performance of pattern recognition algorithms in real-world
applications [27,28]. In this study, we show that pathway compression coupled with
WSVD signal processing enhances the classification of high- and low-risk breast
cancer samples based solely on gene expression of the primary tumor using neural
network classifiers.

4.9.5 Singular Value Decomposition

SVD is a classical statistical technique for characterizing the linear correlation that
exists in a data matrix [47]. It is closely related to the Karhunen–Loeve transform
(random processes), principal component analysis (matrix diagnonalization), and
factor analysis (correlation structure of multivariate stochastic observations). SVD is
used in many areas of science and engineering as a means of extracting features for
pattern recognition, data compression, signal detection, and sample classification
applications. Essentially, the primary goal of SVD is to find a linear transformation
that maps a vector of noisy, correlated ‘‘time domain” measurements into a much
smaller vector of denoised, uncorrelated feature components [27,28].

Let A¼ [x1, x2, . . ., xK]
T be a p� n expression data matrix with p-dimensional

columns xi composed of noisy, correlated expressionmeasurements (superscript T is
the matrix transpose operator). We desire a linear transformation L : Rp !Rk such
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that yi¼ Lxi is a compressed eigenarray of dimensionality k (k� n) composed of
uncorrelated, denoised eigenexpression values. The fundamental theorem of linear
algebra states that under very general conditions, there exists orthogonal matrices
U andVand a diagonalmatrixS such thatA¼USVT [48]. Here,U is p� p,U is n� n,
and S is p� n. The columns of U are the eigenarrays of A, and they provide an
orthonormal basis for Rp. Similarly, the columns of V are the eigengenes of A, and
they form an orthonormal basis forRn. The square of the diagonal entries of S are the
eigenvalues, li, of A and are ordered so that lj> ljþ 1 for j¼ 1,2, . . ., n� 1. We
choose the first k eigenarrays ofU that correspond to the k largest eigenvalues (where
usually k� n) and form the matrix Utrunc with columns equal to the selected
eigenarrays. It follows that L : Rp !Rk defined by L ¼ UT

trunc is the linear transfor-
mation we seek since it maps a p-dimensional vector into a k-dimensional vector
where k� n< p. The k components of yi¼ Lxi are known as the principal compo-
nents of xi [47].

We note that the resulting feature vector yi is denoised due to the truncation of those
eigenarrays of U that are associated with the remaining (n� k) eigenvalues. It is
assumed that the truncated eigenarrays span a (n� k)-dimensional subspace contain-
ing the randomnoise component of the data.We note that the subspace spanned by the
truncated eigenarraysmay contain information that is useful for classification, andone
needs to be careful that this information is not lost in the dimensionality reduction
process. Usually, though, a visual analysis of a plot of the eigenvalues makes it clear
where the threshold should be set using, say, Kaiser’s rule [49].

Figure 4-10 shows a plot of the 36 eigenvalues obtained for the 240� 36 wavelet
data matrix Awave. Note that the eigenvalue plot becomes linear starting at about the
12th eigenvalue, so that

P12
i¼1 li represents the variation associated with coherent

signal, which accounts for 79 percent of the total variation inAwave based on the top 12
eigenarrays. The sum of the remaining eigenvalues

P36
i¼13 li represents the variation

associatedwith the noise,which accounts for the remaining 21 percent of the energy in
the data. The above analysis of the eigenvalues suggests that we retain the first 12
eigenarrays (i.e., columns) of U to form a 240� 12 transformation matrix Utrunc,
which is used to ‘‘compress” the 240� 36 data matrix Adnet1 down to a 12� 36 data
matrix y of WSVD/IPA feature vectors using

y ¼ ðUtruncÞTx

where x is a 240 component column vector of Awave. Note that each of the 36 tumor
samples is now characterized by 12 numbers instead of the original 12,625 expression
measurements. This is a huge reduction in dimensionalitywith a theoreticallyminimal
loss of information accompanied by a theoretically maximal reduction in noise [15].

4.9.6 Combining Wavelets, SVD, and IPA (WSVD/IPA)

WSVD/IPA signal processing combines wavelet signal processing SVD and IPA
pathway compression to extract signal features from the Huang microarray data set.
The WSVD/IPA feature patterns are then used to train a NN classifier to robustly
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predict lymph node status based on gene expression patterns from primary breast
cancer tumors. The NN classifier is validated using leave-one-out cross-validation
starting with the 12,625� 36 raw data matrix Araw with an outlier sample removed.

We basically follow the flowchart given in Figure 4-1. The columns ofAraw are first
quantile normalization to obtain the normalized data matrix Anrm. This normalization
step facilitates comparisons between themicroarrays of the experiment. TheMANINI
detection algorithm is then applied to Anrm to obtain lists of up- and downregulated
genes that are DE between the positive and negative samples of the Huangmicroarray
data set. This completes the gene detection phase of the information processing chain.

Ingenuity Pathway Analysis is then used to extract statistically significant path-
ways from the MANINI gene lists. The genes in the most statistically significant IPA
networks are then intersected with the MANINI gene lists to generate individual data

Figure 4-10 Network diagram for a feedforward multilayer perceptron. Each node represents a

processing unit (artificial neuron) that computes an output according to Equation 4-4. Each arrow

represents thepassingof information fromonenode to another.Note that theoutput of a givennode

is passed as an input to the every node in the next layer. Nodes in the same layer do not pass

information to eachother. Thediagramshownhasone input layer of 12 nodes, one hidden layer of 6

nodes, and a single note in the output layer. A 12-dimensional feature vector (e.g., a WSVD/IPA

expression feature pattern) is presented to the input layer of the FFMLP. The input cascades

forward through the network layer by layer and eventually results in a single output value at the

output layer of the FFMLP. This output vector is thresholded to determine the decisionmade by the

FFMLP regarding the lymph node status of the tumor that is represented by the 12-dimensional

input feature pattern.
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matrices of normalized, log2 transformed, z-scored gene expression profiles. This step
is called IPA pathway compression, since a gene selected byMANINI is passed on for
downstreamprocessingonly if it is also contained in a significant IPAnetwork.LetAnet

be the data matrix associated with a significant IPA network. The CWT is then used to
transform the columns of Anet to obtain the 240� 36 wavelet data matrix Awave. The
Daubechies mother wavelet over 64 scales in increments of 8 was used since
computational experiments suggested that these parameters resulted in the best
NN performance. Note the CWT better separates signal and noise in the wavelet
domain and enhances data compression and denoising using SVD [39,50,51].
Application of the SVD to Awave resulted in a 12� 36 matrix of WSVD/IPA feature
patterns Afeats¼ [f1,f2, . . ., f36]. Note the columns of Afeats represent 12-dimensional
feature patterns (derived from the original 12,625-dimensional gene expression
profiles) that characterize each of the 36 samples of the Huang data set. Note the
greatly reduced dimensionality of the WSVD/IPA feature vectors fj enhances NN
modeling of lymph node status by alleviating the adverse impact ofBellman’s curse of
dimensionality. TheWSVD/IPA feature vectors fj for j¼ 1,2, . . ., 36were used to train
a 12� 6� 1 NN model with 12 input nodes, 6 hidden nodes, and 1 output node to
discriminate between the positive and negative lymph node samples.

4.9.7 Neural Network Modeling of Lymph Node Status

NN models are useful for situations where there is much data, but a theory is lacking
that explains the data [24]. The focus then shifts to patterns within the data that are
associatedwith aquantifiable attributemeasured for each sample.Neural networks are
also known as data-driven models or machine learning models. In microarray data
analysis, for example, we are usually given a finite number of ordered pairs (x,y) that
associate a k-dimensional gene expression patternx 2 Rk to a unique phenotypic state
y2 {0,1}. In this case, we wish to ‘‘discover” a mapping from expression patterns to
phenotypic states {0,1} that ‘‘generalizes” to new expression patterns not contained in
the original data set [21]. This mapping allows the prediction of phenotypic states of
new patterns that were ‘‘unseen” during training of the NN model. The discovered
mapping can be implemented as a NN, which represents a massively parallel, highly
distributed computational model of observed phenotypic variation based on gene
expression patterns.

A NN is composed of elementary computational units that can be ‘‘connected” to
each other to form a network that is capable of global information processing arising
from the local interactions between the computational units. The strength of the
interaction between two computational units is encoded in a ‘‘synaptic” weight that
quantities the ‘‘strength” of the interaction between the two units [52]. The collection
of all synaptic weights can be adjusted in parallel to realize almost any continuous
mapping between two sets of variables. This emergent computational behavior can be
highly nonlinear in nature, and as a result, a NN model is capable of solving very
difficult classification and prediction problems that require complex boundaries
between the different sample classes. The form of the resulting connection diagram
is called the architecture of the network, and the computations performed by the
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network are highly dependent on this architecture. That is, the modeler has control
over how the connections are evolved so that the architecture is plastic and trainable.
Indeed, the synaptic weights of the MLP can be adjusted using a machine learning
algorithm such as backpropagation to realize an arbitrarily good approximation to any
mapping between expression patterns and phenotype suggested by the data.

A neural network architecture known as the feedforward multilayer perceptron
(FFMLP) is used to model phenotypic variation over the samples of the microarray
experiment in terms of gene expression. The FFMLP architecture arranges the
computational nodes of the network into a ‘‘hidden” layer and an output layer.
There is an additional input layer of nodes, but these nodes merely pass the input
values on to the hidden layer without computation. The hidden layer is described as
such because it is shielded from direct contact with the outside world by the input and
output layers of nodes. The FFMLP is fully connected in that every node of a given
layer is connected to every node of the next layer by an arrow representing the direction
of information flow. Finally, to every arrow is assigned an adaptive weight parameter
that mediates the flow of information between the two nodes. Training data consisting
of empirical input–output pairs are used to adjust the weights using a nonlinear
optimization algorithm (e.g., error backpropagation) to approximate the input–output
mapping that is ‘‘implied” by the data. In this way, a FFMLP can approximate any
mapping between any two sets of quantities to an arbitrary degree of accuracy [49].

Figure 4-10 shows a network diagram for a two-layer FFMLP, where each node
represents a computational unit and each arrow represents the flow of information from
one node to another. In this case, the FFMLPhas an input layer consisting of 12 nodes, a
hidden layer consisting of 6 nodes, and an output layer consisting of a single node.
Usually, the input layer is excluded froma count of layers that compose a givenFFMLP.
If the dimension of the input layer is k, then the training data set consists of ordered pairs
fðx; yÞ 2 Rk � R2g. For a given training data pair (x,y), the k-dimensional feature
vector x is presented to the input layer of theNNand the resulting output vector yNN(x) is
compared with the target vector y where the dimensionality of y and yNN are equal.

For this study, x is the WSVD/IPA feature vector for a chip hybridized to a sample
from the Huang breast cancer data set and y is either 0.05 or 0.95, depending on
whether the sample is negative or positive for lymph node involvement, respectively.
The error between y and yNN is propagated back through the NN to adjust the adaptive
weights of the NN to reduce the error in the output layer using the error back-
propagation algorithm. The learning process is iterated over all training pairs and
repeated until the aggregate error for the trainingdata is reduced to an acceptable level.
Note that training is terminated in such a way as to balance accuracy on the training
datawith the ability of the FFMLP to generalize classification performance to data not
seen during training. To enhance generalization to new data, the output of the FFMLP
is smoothed using Bayesian regularization during training.

The input to the kth node of a given layer is a linearweighted sumof all inputs to the
node from all nodes in the previous layer, given byX

j

wkjxj

THE MODELING OF PHENOTYPIC VARIATION 145



where the sumrunsoverall nodes in theprevious layer that sends a signalxj to nodek (we
assume that abiasparameter is included in the summation) andwkj is the adaptiveweight
for the connection between the two nodes [53]. The output of the kth node is obtained by
transforming the weighted linear sum with a nonlinear activation function g using

zk ¼ g
X
j

wkjxj

 !
ð4-4Þ

For a vector of values presented to the input layer of the FFMLP, the output of each
computational node in a given layer can be computed in a feedforwardmanner in terms
of the outputs of all the nodes in the previous layer.

From a theoretical perspective, the FFMLP is known as a universal approximator;
that is, it canuniformly approximate anycontinuous functionona compactdomain toan
arbitrary degree of accuracy provided the network has a sufficiently large number of
hidden units and enough data. The key problem remains how to find suitable parameter
valuesgivena set of trainingdata.Thereexisteffective solutions to thismachine learning
problem based on both maximum likelihood and Bayesian approaches. The error
backpropagation algorithm is probably themost widely usedmethod to train a FFMLP.

Inparticular, theWSVD/IPAfeaturepatterns xjextracted for each samplewereused
to train a FFMLPmodel to discriminate between the positive and negative lymph node
samples. The FFMLP had an architecture shown in Figure 4-10 compose of 12 input
nodes, 6 hidden nodes, and a single output node. The 12-dimensional WSVD/IPA
input feature vector is passed without any processing to the nodes of the hidden layer,
where each hidden node computes an output value in accordance with Equation 4-4.
The output of each hiddennode is then fed into the single output node,which computes
a weighted linear combination of inputs and transforms the result using the sigmoidal
logistic function g. A fixed threshold (equal to 0.5) is applied to the output value to
determinewhether the input feature pattern was associated with a positive or negative
breast cancer tumor.

The hidden nodes employed hyperbolic tangent activation functions with range
confined to the interval [�1,1]. The single output node employed a sigmoidal logistic
activation with range confined to the interval [0,1]. The Levenberg–Marquardt training
algorithmwithBayesian regularizationwasused to train theFFMLP tooutput avalueof
0.95 for lymph node positive samples and 0.05 for the lymph node negative samples. A
samplewas classified as lymphnodepositive if its associatedFFMLPoutput exceeded a
threshold of 0.5, otherwise it was classified as lymph node negative. The FFMLP was
trained for 20epochswith a targeted errorgoalof0.005.Trainingwasusually completed
in less than 30 s, which facilitated validation of the GSP algorithms.

4.10 MODEL VALIDATION

The robustness and accuracy of FFMLPmodels trained on the Huangmicroarray data
set was evaluated using leave-one-out cross-validation (LOOCV) analysis [4,19].
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LOOCVanalysis begins by removing, say, the kth column from the raw data matrix
Araw. This results in the column-reduced 12,625� 35 data matrix Ak

raw from which
WSVD/IPA features are extracted as described above to train aNNmodel yk(x), where
x represents a 12-dimensional WSVD/IPA feature vector. Let xk denote the WSVD/
IPA feature vector associated with the kth column of Araw that was left out. Recall that
xk was unseen during training of yk and we want to see if yk can correctly classify this
sample. By design, we say that xk is lymph node negative if yk(xk)< 0.5 and lymph
node positive otherwise. The classification result is duly recorded and compared with
the known lymph node status for the left-out sample. The entire process is repeated
36 times for each columnofAraw.The correct classification rate (CCR) is defined as the
percentage of left-out samples thatwere correctly classified.Note that for each sample
left out during the LOOCVanalysis, a different set of downregulated genes is selected
by the MANINI algorithm. This variation in the gene lists reflects the variation in the
populationof all breast tumor expressionprofiles.Weutilize this variation to assess the
robustness of NN models trained on such data.

Figure 4-11 shows a flowchart of the information processing used to validate
feature patterns for classifying breast cancer samples into high- and low-risk groups
using FFMLP classifiers. Major signal processing occurs in the orange boxes labeled
‘‘preprocess data,” ‘‘select genes,” ‘‘extract features,” and ‘‘train classifier” as shown
in Figure 4-12. In particular, gene selection based on MANINI detection and IPA
pathway compression occurs in the ‘‘select genes” box of the flowchart, and WSVD
features are extracted in the ‘‘extract features” box. Note also the parallel chain (in
green) that processes the ‘‘left-out” sample for eventual classification by the NN

Figure 4-11 Flowchart for leave-one-out cross-validation of NN models of lymph node status

based on pathway compression and WSVD signal processing. LOOCV analysis estimates the

impact of sampling variation on the prediction performance of the neural network classifier. The

robustness and accuracy of the proposed predictionmodel depends to a large extent on the quality

of the feature patterns extracted from the raw data.
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classifier trained on the remaining 35 samples. Because the algorithm used to train the
FFMLP classifier is subject to entrapment in local minima, we repeated the LOOCV
procedure 100 times to obtain some idea of the variability introduced into the training
process due to sampling variation in the data. The maximum, median, and minimum
CCRvaluesover 100LOOCVtrailswereused to evaluate theeffectivenessof different
signal processing algorithms in discriminating between positive and negative lymph
node samples from the Huang data set.

4.11 RESULTS

In this section, we present results of a LOOCVevaluation of FFMLP models trained
on WSVD/IPA features to discriminate between breast cancer tumor samples based
on lymph node status. We also assessed and compared the performance of FFMLP
models trained on two additional feature types derived using (1) SVD combined with
pathway compression (SVD/IPA) and (2) SVD compression applied to all down-
regulated genes (SVDOnly).

Figure 4-12 A comparison of WSVD/IPA, SVD/IPA, and SVDOnly features for predicting lymph

node status using neural networks. LOOCV analysis of FFMLPs trained on each feature set was

performed 100 times and plotted to assess the variation in CCR values. WSVD/IPA and SVD/IPA

features were extracted from the 35 genes that were contained in the top IPA network for all genes

calleddownregulatedgenesby theMANINIdetector. SVDOnly featureswereextracted fromall 413

downregulated genes detected by the MANINI detector. Note that the CCR plot for WSVD/IPA

features (open circles) lies uniformly above the CCR plots for SVD/IPA (stars) and SVDOnly (open

squares) features. Median CCR is 94 percent for WSVD/IPA and 72 percent for SVD/IPA and

SVDOnly.
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Figure 4-12 shows plots of 100 CCR values for FFMLP classifiers trained using
WSVD/IPA (open circles), SVD/IPA (stars), and SVDOnly (open squares) feature
patterns. Note that FFMLP models trained onWSVD/IPA feature patterns uniformly
outperform models trained on SVD/IPA and SVDOnly features. Indeed, the median
CCR value associated with WSVD/IPA features was 94 percent, while both SVD/
IPA and SVDOnly features had median CCRs of 72 percent. Hence, wavelet signal
processing improved FFMLP classification performance by 31 percent when used
in conjunction with SVD analysis and IPA pathway compression. SVD/IPA and
SVDOnly had the same median performance, but SVD/IPA had greater variation and
attained amaximumCRRof83versus 78percent for SVDOnly.This suggests that IPA
pathway compression does not provide any improvement in classification perfor-
mance over SVD alone. Table 4-3 summarizes the maximum, median, and minimum
CCR values over 100 LOOCV trials for each feature type.

Overall, wavelet signal processing and pathway compression combined to signifi-
cantly enhance the prediction of lymph node status when compared to more conven-
tional signal processing based on SVD alone. Note the option of combining SVD and
wavelet signaling processing (without the benefit of pathway compression) was not
considered since thiswould have requiredwavelet processing of data vectors of length
413 instead of 35, which is computationally intensive. Hence, the success of wavelet
signal processing in the context of this study was a direct result of the data reduction
provided by pathway compression; that is, wavelets, pathway compression, and SVD
worked hand in hand to reduce dimensionality without loss of information related to
lymph node status, and thus significantly enhancing the classification of the Huang
breast cancer samples.

Note wavelet signal processing together with pathway compression achieved a
94 percent CCR based on only 35 genes. This result compares favorably with the
90 percent CCR achieved by Huang et al. on the same data set using 200 genes and
different statistical methodology. These results suggest that the lymph node status of
breast cancer samples can be predicted in an accurate and robust manner using a
relatively small number of genes when the appropriate signal processing and data

Table 4-3 Comparison of the classification performance of the different feature types

over 100 LOOCV trials

Feature Type Max CCR Median CCR Min CCR

WSVD/IPA 94% 94% 86%
SVD/IPA 83 72 61
SVDOnly 78 72 69

Themaximum,median, andminimumCCRvalues are shown for each feature set. Note that FFMLPmodels
trained onWSVD/IPA features attained a median CCR of 94 versus 72 percent for SVD/IPA and SVDOnly
features. This result represents a 31percent improvement in prediction performance, suggesting thatwavelet
signal processing significantly enhances the classification of breast cancer tumors that have spread to the
lymph nodes. Note the median CCR for both the SVD/IPA and SVDOnly feature sets were equivalent,
although the CCR variation for the SVD/IPA features is greater than the CCR variation for the SVDOnly
features. This suggests that pathway compression without wavelet processing does not result in any
appreciable improvement in classification performance.
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compression algorithms are utilized. In this particular case, ‘‘appropriate” means
wavelet signal processing, SVD and pathway compression, and neural networks.

4.12 DISCUSSION

We have shown that combining different signal processing techniques, namely,
MANINI detection, pathway compression, wavelets, and SVD results in feature
patterns that are able to accurately and robustly discriminate between high- and low-
risk breast cancer tumors using as few as 35 genes. Specifically, FFMLP classifiers
trained on WSVD/IPA feature patterns showed a 31 percent increase in CCR in
comparison to FFMLP classifiers trained on SVD/IPA or SVDOnly features.

A key step in the robust modeling of lymph node status was the selection of genes
for downstream feature extraction andmachine learning using theMANINI detection
algorithm. Recall that the MANINI detector assigns genes having similar expression
levels into ‘‘bins”where each bin defines a separate signal detection problem based on
data that is approximately normally distributed. A ‘‘test-and-estimate” or testimation
procedure based on the DJ universal threshold (from wavelet denoising theory) was
applied to the fold change values of the genes in each bin. Genes that exceeded the
threshold were called differentially expressed. The union of genes over all intensity
bins was called differentially expressed over bins represents a global gene expression
signature for metastatic breast cancer tumors.

Recent research has shown a deep connection between statistical testimation,
sparse signal estimation, andmultiplehypothesis testingwith adjustments formultiple
comparisons [29].Hence, theMANINI detector can beviewed as an optimal estimator
ofa sparse signal that automatically accounts for the approximately600 statistical tests
performed simultaneously within each of the 50 bins of the MANINI detector. Note
also that MANINI detection throws a wide net and detects genes based on similarity
rather than absolute magnitude or consistency of expression. That is, MANINI may
call a gene DE even though it is altered in expression on only a fraction of the positive
samples of the Huang data set, so long as the average fold change over all samples
exceeds theDJ threshold for the bin towhich it belongs. The ability to detect genes that
are ‘‘intermittently” DE is important when dealing with heterogeneous data sets often
encountered in cancer research that contain weak signals for DE, or samples that are
temporally and/or developmentally out of phase.

The observed increase in FFMLP classification performance using WSVD/IPA
features is due in large part to the fact that pathway compression drastically reduces
the number of genes that must be processed while at the same time preserving
important information related to lymph node status [16]. Since significant IPA
pathways extracted from the MANINI gene list are biologically relevant in terms
of knowngene function andgene–gene interactions as embodied in the IPAknowledge
base, pathwaycompressionprovides abiologically drivenmethod for selecting a small
number of highly informative genes from which feature patterns can be extracted for
diagnostic, prognostic, and predictive applications in the clinic. Because the resultant
features are biologically based, theNNmodels trained on such features are likely to be
more robust over a larger population of samples. The results shown in Table 4-3
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suggests that NNmodels trained on gene expression signatures derived from pathway
compression generalize well to a larger population of samples.

Table 4-3 also indicates that wavelet signal processing significantly enhances the
prediction of lymph node status using NN models. Indeed, wavelet signal processing
raised themedianCCRfrom72 to94percent for anoverall improvement of 31percent.
Themain reason for this result is that wavelet analysis of a sample’s expression profile
exhibits better separation between coherent signal and random noise in the CWT
domain [45,52]. The subsequent analysis of thewavelet transformed datamatrix using
SVD results in a better estimate of the intrinsic dimensionality of thewavelet denoised
data matrix. SVD compression in thewavelet domain has been used to solve a number
of difficult pattern recognition problems, including the automated classification of
underwater buriedmines and the detection of cervical pre-cancer in three-dimensional
hyperspectral images of the cervix [27,28].

Note that wavelet signal processing ofmicroarray datawasmade feasible to a large
extent by pathway compression. Indeed, without pathway compression, sample
expression profiles of 413 genes would have to be wavelet transformed, which is
computationallyonerous. In contrast, after pathwaycompression, the resulting sample
expression profiles are no more than 35 genes long, thereby enabling the efficient use
of the CWT for data preconditioning and denoising. Moreover, the information
processing described in this chapter applies wavelet signal processing to the columns
of the datamatrix instead of the rows.Hence, the resolution of thewavelet transform is
limited not by the number of samples in the experiment, but by the number of genes
included in the pathway-compressed data matrix. Since the number of genes is
intrinsically large, this approach circumvents the problem of having too few samples
for the wavelet transform to work properly.

NN classification performance can probably be improved by including genes
contained in different IPA networks. Future work involves the use of genetic algo-
rithms to globally search for the best combination of genes, significant IPA networks,
wavelets, and model parameters that maximizes the CCR score for predicting lymph
node status in the Huang breast cancer data set. Once the optimal genes and pathways
for distinguishing positive and negative breast cancer tumors are identified, close
examination of individual genes and their interactions with other genes contained
in the selected networks could very well lead to new insights into the molecular
mechanisms underlyingmetastatic breast cancer. Here, the overarching assumption is
that predictive performance is equivalent to biological significance, thus enabling the
use of machine learning models such as FFMLPs to identify the genes and pathways
that are most biologically relevant to the spread of breast cancer to the axillary lymph
nodes. Are there networks or combinations of networks that result in evenmore robust
and accurate predictions of lymph node status than those produced by the IPAnetwork
dnet1? It is expected that modern signal processing, FFMLP/NNmodels, and genetic
search algorithms will provide an answer to this question.

Note that IPA assigned the biological function of cancer to dnet1, and moreover,
simulations suggest that the topology of dnet1 with the FOS gene as a highly
connected ‘‘hub” gene is invariant to minus-one perturbations of the data. The FOS
gene family has been implicated in the regulation of cell proliferation, differentia-
tion, and transformation. Other cellular roles include transformation, apoptosis,
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growth, activation, motility, and cell cycle progression. FOS has also been associ-
ated with cardiovascular disease. Note that the ability to accurately classify breast
cancer tumors according to lymph node status is quite different from attaining a deep
understanding of the biological mechanisms underlying the spread of breast cancer.
Be that as it may, a close examination of predictive networks and the genes they
contain could well lead to a better understanding of the molecular mechanisms
underlying metastatic breast cancer. Such mechanistic models could lead to new
diagnostics and therapeutics that significantly improve the way breast cancer is
treated and managed in the clinic.
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RECOMBINANT GENOMES:
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5.1 INTRODUCTION

Cellular life is elaboratelymanagedby linearaswell asbranchedbiochemicalpathways
andallunderlyinginformationrequiredfor thesesystemsarecontainedinthenucleotide
sequenceof thegenome.Moderngenomespossess tremendous amounts of information
selected and accumulated during responses to altering natural environmental condi-
tions. “Genome” nomenclature for proliferating species on earth is normally given to
cells higher thanbacteria as illustrated inFigure 5-1.The term“Genome” is alsoused to
describe DNA possessed by bacteriophages, viruses, plasmids, mitochondria [1], and
chloroplasts [2]. The last two are believed to have an ancient bacterial origin;with these
two systems, additional essential informative molecules must be supplemented by the
host. Given a genomic scope limited to unicellular bacteria, which are generally
regarded as simple, diversity is observed in species variations manifested not only
in taxonomic classifications but also in physical structure as illustrated in Figure 5-1.
Due to the vast exploring technologies of cloning that emerged in the last quarter-
century, our knowledge of genes and their products including RNA molecules and
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associated metabolites has tremendously increased. Gene expressions are controlled
by the complex and dynamic actions of thousands of factors as described in other
chapters of this book. Perturbing small portions of gene-circuit frameworks are studied
using genetically well-manipulatable organisms/cells [3].

Genome design, one of the topics highlighted in this chapter, requires at least two
foundational roles: (1) Writers of novel nucleotide sequence at any length to be used
as blueprint and (2) builders of high-molecular DNA who refer to the blueprint.
Recombinant genome technology, not well documented elsewhere to date, has
covered mostly the latter and will develop as the necessary tools for building any
sizeDNAmolecule. The formermust be and is being conducted through current study
of cellular life. Global attempts are described in some of other chapters where
collaborative approaches among various disciplines are seen.

The DNA described in this chapter is larger in size and includes a greater number
of genes than any other genetic entities handled in conventional recombinant gene
technologies. Topics of this chapter will focus on emerging methodology in which
complexity associated with an elevated number of genes as well as molecular
constraints imposed by the increased DNA size must be treated at a time. The
method utilizing Bacillus subtilis as a cloning host has been exploited independently
from the conventional and familiar gene cloning technologies using Escherichia coli
as a major cloning host (Fig. 5-2). Readers will be offered an overview of technical

Figure 5-1 Genome variation—sizes and structure. Approximate genome size ranges are

indicated for eukaryotes, bacteria, and archaea.Categorized structural types of bacterial genomes

are illustrated in the insert. Sizes are inmegabasepairs and the linearized lengths are scaled in the

left. DNA size covered byE. coli plasmid vector (Section 5.8.2), and the BGM vectors (Section 5.4)

are indicated.
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breakthroughs used to create recombinant genomes that would otherwise be consid-
ered impossible to obtain. TheB. subtilis cloning systempermits not only an increase in
the clonable number of genes but also flexible postcloning modifications in DNA
sequences, such as content, order, and orientations of genes. It will be assumed that B.
subtilis host and its intrinsic genetic features are not familiar to most of the readers.
Therefore, sections of this chapter will be attributed to basic explanation underlying
this novel genome vector system. I must mention that the technological breakthroughs
of several of the achievements described here are currently being employed for
practical research and industrial use. Still others remain largely in nascent forms
such as “Recombinant genome able to sustain life in diverse growth conditions.” The
intent is that the content in this chapter will not only address the genome vector
protocols but also supply enough information to establish conceptual significance.

5.2 DNA (GENE) CLONING

All the primary information to sustain life is printed in the present genome DNA
sequences of every organism, from bacterial to human cells, without exception [4].
AccordingtoDNAsequencedetermination technologywithsignificanthigher through-
put [5], whole genome sequencing has extended to genomes even from nonclonal
bacteria [6,7].

In parallelwith the ability to determineDNAsequenceswith reduced cost and time,
DNAcloning has been one of themost basic tools in biology to comprehend genes and
gene functions. The most conventional cloning method has been developed using

Figure 5-2 Cloning principle differs in B. subtilis genome vector: Essences for the B. subtilis

genome vector (left) and the E. coli cloning vector (right) are in comparison. In the left path,

designated/target DNA is finally guided in the host B. subtilis genome. Higher molecular weight

DNA obtained by modified method are used for BGM cloning. Source: Referred to Ref. [17] and

Section 5.4.2.
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E. coli as a cloning host and is summarized inChapter 2. Tremendous accumulation of
genetic and biochemical information on E. coli has supported versatile applications.
This allows recombinant gene technologies to flourish and has made E. coli compati-
ble with most research initiatives, including omics technologies introduced through-
out this book. Manipulated recombinant genes that confer genetic variation,
modulation, and perturbation of gene-circuit networks in vivo are also necessary
tools for further development of systems biology. In addition, emerging de novo
chemical synthesis technology may offer more opportunities in preparation of DNA
pieces from scratch [8], yet the gene (DNA) cloning remains an inevitable step inmost
life science fields.

E. coli has the potential to harbor huge DNA molecules up to 350 kb in size
assuming an appropriate vector choice, yet this size range remains below that of the
smallest bacterial genome, 585 kb, ofMycoplasma genitarium [9,10]. When dealing
with DNA fragments of this size, two technical skills become critically important,
target cloning of the long DNA and flexibility in target sequence manipulation.

In cloning of DNAs particularly above dozens of kilo base pair, the size limit of
PCR-mediated amplification method, preparation of nonsheared source DNAs is
crucial. Our answer will be given in Sections 5.3–5.5 where repeated assembly of
overlapping small segments leads to, via gradual elongation, final reconstruction of
the target full-length DNA.

5.3 A GENOME VECTOR SUITED FOR RECOMBINANT GENOMES

Use of the 4215 kb B. subtilis 168 genome [11,12] as a stable cloning vector was first
proposed in 1995 [13], and was supported by preceding works initiated early in
1990s [14–16]. TheBGM, standing forBacillusGenoMevector and first coined in our
related article [17], inherits a number of features absent in E. coli plasmid vector
systems. After completion of this chapter one should be able to recognize many
advantageous features of the BGM vector such as simplicity in daily handling,
technical linkage to the conventional methods. Particularly, coverage for giant
DNA segments and innovative potential for novel research in both fundamental
and applied fields should be acknowledged.

The BGM cloning steps do not employ conventional enzymes such as restriction
endonucleases and ligases that are vital in current DNA cloning methodology. On the
contrary, homologous recombination plays a central role in this cloning systemaswell
as in subsequent manipulations. As indicated in Figure 5-2, the conventional ligation
step in vitro to directly connect DNA fragment to plasmid vector is replaced by
inherent nature of the B. subtilis natural competence development/induced homolo-
gous recombination in vivo [18,19].

Readers may need some explanation as to why DNA goes into the genome of
B. subtilis and not into the E. coli genome. The fundamental nature of this process is
outlined in Figure 5-3. The key difference between the DNA uptake steps of both
strains is clear: Only B. subtilis is able, under specific culture conditions, to develop a
competent state where DNA outside the cell is actively incorporated in
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cytoplasm [19,20]. E. coli, in sharp contrast, never actively transfers DNA through
membranes and therefore import of DNA into cytoplasm must be induced via
physicochemical treatment [21]. Another fundamental feature associated with com-
petent B. subtilis is that double-stranded DNA (dsDNA) taken up by the protein
complexon the cell’smembrane surface undergoes processing so as to deliver a single-
stranded DNA (ssDNA) molecule into the cytoplasm. The cleavage site by the
nuclease and the strand selection by the transformation complex are basically
random [19]. The resultant highly recombinogenic single-DNA strand promptly
recombines with the counter homologous sequences if present in the genome
(Fig. 5-3). The mechanism for the BGM vector to integrate/clone the target DNA
is simple. As illustrated in Figures 5-2 and 5-3, twoDNA sequences that sandwich the
target DNA, generally termed as LPS, standing for landing pad sequence, must be
present/installed in the BGMgenome. Homologous recombinations between the LPS
sequences of incoming DNA and of the genome result in concomitant integration of
the internal target DNA region. Methods for preparing the embedded LPS and how a
large target DNA integrates effectively are keys to understanding the precise cloning
path of the BGM vector.

Figure 5-3 How B. subtilis incorporates DNA. (a) B. subtilis develops protein complex to actively

incorporate DNA. Single-stranded DNA is the final substrate through uptake. These active

mechanisms are not present in E. coli. (b) Insertion [I, II] and removal [III, IV] of DNA, shown

by a needle with closed circle, via homologous recombination at the flunking regions of the

B. subtilis genome.
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5.3.1 Domino Method: A Prototype

The first successful full-length target cloning reported was the complete E. coli
prophage lambda DNA, one of the earliest genomes fully sequenced [22]. During the
cloning of the 48.5 kb lambda cI857sam7 genome [13], most ideas and relevant
experimental technologies that lead to what we would later call the domino method
were established. The lambda DNA fragment alone never integrates in the B. subtilis
genome because no homologous sequence is present.Also, lambdaDNApossesses no
inherent selectionmarker effective inB. subtilis. Therefore, appropriateLPSaswell as
general selection markers to navigate the lambda DNA segment had to be prepared.

The lambda DNAs were segmented into several pieces of DNA fragments ranging
from2.4 to 16.8 kb by either of the two restriction enzymesBamHI orEcoRI. They are
cloned in the E. coli pBR322 plasmid by conventional DNA cloning method of this
host (Fig. 5-4). These pBR322-based clones are collectively called domino clones. All
share two common structural features possession of sequence overlap with the
adjacent domino clone and two identical regions of the pBR322 sequence. The
two pBR halves, amp and tet half illustrated in Figure 5-4, play essential roles and are
vital in BGMcloning at any stage. The same twopBRhalveswere integrated earlier in
particular loci of the B. subtilis genome [15]. This genome integrated pBR form,
termed as GpBR, was proven to accommodate DNA sandwiched by the two pBR
halves used as LPS. The combination of the pBR part of domino clones and the GpBR
assures that DNA integrated into the B. subtilis genome always remains flanked by
amp and tet halves of GpBR. The first domino integration is illustrated in Figure 5-5.

Figure 5-4 Domino method. Materials needed: Preparation of domino clones (right) and cloning

locus in the BGM vector (left): Domino clones are shown in linear form. The selectionmarkers, Cm

(.) and Em (*), are set up alternately. pBR322-based domino clones all share common structural

features. They are two halves of the pBR322 sequence, described as amp and tet and sequence

overlapwith thepreviousandnext dominos. The twopBRhalvesplayessential rolesas illustrated in

Figure 5-5.
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If an adjacent domino clone comes in, either of the pBR halves then can serve as a
reusable LPS. This automatically positions the other distal end sequence, not the other
pBR half, as another LPS to result in elongation of the target region as indicated in
Figure 5-5.

The full-length lambda genomeDNAreconstructed using four domino clones drew
little interest, probably because of unfamiliarity of the host B. subtilis to most E. coli
users. Given that this success occurred immediately before several whole bacterial
genome sequences become available, it may have been too early to arouse interest in
the manipulation of large DNA molecules. Through the lambda-cloning experiment
and the subsequent trials and errors in our laboratory, related technical problems have
been refined making the domino method applicable for larger sequenced genomes.

5.3.2 Domino Method: Applications to Organelle Genomes

The domino method simply requires a full set of domino clones that cover the entire
target genome. Any gaps due to lack of an available domino clone should be avoided.
This problem was resolved when a PCR methodology is combined with the prepara-
tion of dominos from sequenced genomes.

Innovative applications of the domino method have been clearly proven by
the challenges to obtain chloroplast and mitochondria genomes whose complete
sequences are known [4]. Chloroplast genomes (cpGenome) were chosen as

Figure 5-5 Domino method. Bottoming-up DNA cloning in the BGM vector: The first domino

integrates via double homologous recombinations, indicated by X, at two pBR sequences of the

domino and GpBR (shown top in the right). Integration of the second domino uses internal overlap

region as one of the homologous recombination. This elongates the internal DNA and exchanges

the marker for selection from Cm (.) to Em (*) (middle in the right). As elongation continues, two

pBR halves always remain flunking the insert and exert reusable LPS (bottom in the right). The first

domino only possesses another marker (&) to label the other end. I-PpoI site indicated by short

vertical bar is preinstalled and used to extract cloned DNA as described in Section 5.6.1.
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candidates by (1) their sizes ranging between 100 and 200 kb [2], (2) circular form,
and (3) no complete cloning report had been made. Due to their larger size, it is
difficult to prepare intact unsheared circular chloroplast DNA suitable for one-step
cloning. Instead, sheared shortened chloroplast DNA during biochemical isolation
serves as template DNA sufficient for PCR reaction.

The set of domino clones that cover the entire sequence of cpGenome from rice
(134.5 kb) were designed. A total of 31 domino clones for the rice cpGenome, 6 kb on
average and 1 kb of which serve as LPS with the adjacent domino were prepared in
E. coliviaPCRamplification.Effectivenessof themethod in theBGMvectorwas fully
demonstrated for complete cloning of the rice cpGenome [23]. The recombinant rice
cpGenome was stably maintained regardless of the two identical 21 kb-long inverted
repeat (IR) sequences that are characteristic of higher plant cpGenome. The rice
cpGenome example strongly indicates that the domino method permits any known
DNA sequence up to and probably above 150 kb, to be reconstructed in the BGM
vector.

Mitochondria genome (mtGenome), from another organelle present in nearly
all eukaryotic cells, was similarly approached. The size range of mtGenomes
exhibit great diversity in a species-dependent manner [1], compared with the
limited size range of the cpGenome. Thus, our attempts to date have been limited
to the well-studied mouse mtGenome. Mouse mtGenome (16.3 kb) is far smaller
than other mitochondria species [1] and was sequenced at approximately the same
time as the lambda genome. Interestingly, no report of its full-length cloning was
found until recently, in spite of the small size, as small as one domino clone
(16.8 kb) prepared for the lambda genome cloning [13]. The only previous success
of mouse mtGenome cloning in pBR322 based plasmid appeared to be fully
dependent on careful preparation of intact mtGenome from the mouse cell and a
fortuitous insertion site selected by the transposon vectors used [24]. However, this
pioneering work demonstrated that cloning of mouse mtGenome is not problem-
atic. Cloning of the mouse mtGenome by our domino method, separated into four
domino clones and incrementally reconstructed in the BGM vector, also had few
problems [23].

These complete cpGenome and mtGenome stably cloned in the BGM vector were
converted to a circular DNA form via a unique positional cloning method described
andbrieflymentioned inSection5.6.3.The circular formofmtGenomewasoptionally
propagated in an E. coli host using the shuttling nature of the plasmid, showing
consistent results with those who had performed similar work [24].

5.3.3 Domino Method: General Application to Gene Assembly

The primary requirement for a domino clone is possession of overlapping sequence
with the adjacentDNA.This requirement does not exclude the domino elongation step
with an unlinked DNA segment; so long as an adjacent domino clone possesses the
LPS portion as shown in Figure 5-4. In other words, target reconstructed DNA is not
limited to continuous DNA segments of the present genome. In extreme cases, all the
domino clones composed of twoDNAblocksmight bemade fromdesigned sequence.
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The domino elongation as illustrated in Figure 5-5 does not exclude such designed
DNA blocks, and consequently the final DNA is reconstructed according to the
designed blueprint.

The designed assembly of DNA blocks was demonstrated for genes involved in
de novo pigment synthesis. Eight cDNAs were prepared from Arabidopsis thaliana
coding enzymes that catalyze a series of biochemical reactions from tryptophan
to anthocyanidine, a violet-colored pigment made and stored by certain plants [25].
In our first assembly design, the order of these eight genes, dispersed in five
different chromosomal loci, was as the same order of biochemical reactions as
illustrated in Figure 5-6a. This primitive operon-like construct was built by
progressive integrational elongation using eight gene blocks as domino clones.
Similarly, the general domino method was applied to biosynthetic genes for another
pigment, carotenoids, that is synthesized and stored in orange colored plants such as
carrots as well as certain bacteria [26]. In a reassemble step of the genes included in
the natural construct plasmid pACCAR25(DcrtX) from Erwinia uredovora [27]
presented in Figure 5-6b, the expected intermediate substance lycopene was
produced in B. subtilis by the assembly/insertion of the first three genes in the
biochemical reaction [28]. Thus, the domino method has several examples of
general applications and offers rational design in DNA assembly protocol for
systems biology as well as synthetic biology. The domino method will be evaluated
by comparing it with other assemblymethods also exploited in our groups described
in Section 5.5.4.

Figure 5-6 Options in gene assembly. (a) Listed are factors considered in formation of anto-

cyanine biosynthesis cassette by the domino method in Section 5.3.3. Location of eight genes in

Arabidopsis chromosome is indicated in Figure 5-18. (b) Carotenoid cassette (Keio form) was

constructed by the domino method [61] in Section 5.5.4. Carotenoid biosynthesis by the OGAB

method in Section 5.5.4.
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5.4 DIRECT TARGET CLONING: PROTOTYPE

The domino method clarified two points, (1) any DNA segments can go into the
B. subtilis genome via the intrinsic homologous recombination system utilizing
preinstalled LPS sequences, and (2) the integrated/cloned DNA segment exhibits
high structural stability. The latter is accounted for by precise replication as part of the
B. subtilis genome and subsequent accurate segregation during B. subtilis cell
division. Sequence indiscrimination during all the integration processes of B. subtilis
guarantees the former; which is in contrast to sequence-dependent incorporation as
seen for other Gram-positive strains [20,29]. Given a quantitative evaluation for
nucleotide sequence fidelity of the reconstructed mtGenome and cpGenome [23], we
had come to a putative conclusion that the B. subtilis genome has potential to harbor
significantly large DNA repertoire with great fidelity in nucleotide sequence. The
primary concern on LPS-mediated integration/cloning protocol was how to select
foreign DNA possessing no selection markers for B. subtilis. Besides the progressive
mode in the domino method and an exceptional gap-sealing protocol by unmarked
DNA segment practiced in the lambda DNA cloning [13], the generalized selection
marker scheme was a prerequisite.

5.4.1 Counter Selection Markers for Cloning Unmarked
DNA Segments

Counter selectionmarkermakesdirect and rapid isolationof the correct integrantmore
promising. A neomycin resistance gene has been developed as a counter selection
method [30]. A protein coding sequence of the neomycin resistance gene regulated
under the Pr promoter (Pr-neo) was constructed in E. coli and integrated in the BGM
vector at unlinked locus from theGpBRas illustrated inFigure 5-7. ThePr-neo confers
B. subtilis neomycin resistance due to full expression of the neo gene product.
Meanwhile, a CI gene product encoded by the cI gene of E. coli bacteriophage
lambda binds to the Pr promoter sequence and shuts off the promoter activity. The cI
gene, if present and constitutively expressed in the BGMvector, renders theB. subtilis
sensitive to neomycin. Absence of the cI gene restores the Pr promoter activity and
makes the strain resistant to neomycin and vise versa. This small transcriptional gene-
circuit worked nicely as a counter selection system known as cI-Pr [30, 31] and has
proven useful for cloning any DNA lacking an appropriate selection marker in the
BGM vector [32–35]. More importantly, the reusable cI-Pr system allows repeated
integration of DNA segments in the same BGM vector.

5.4.2 Quality Required as Donor DNA

Target DNA for positional cloning has to be as intact as possible [33, 35]. DNA in
solution is normally fragmented into small pieces, typically dozens of kilo base pairs
on average, caused by physical shearing during isolation step from cells and
organelles. The relatively large DNA prepared in agarose gel matrix plug provides
amore intact formwithminimal breakage [12].However,DNA inside the gelmatrix is
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not a good substrate for B. subtilis transformation. Therefore, as special protocol and
gentle handling are required, we modified some DNA isolation protocols for BGM
cloning. For example, a modified genome isolation method improved to yield high-
quality DNA applied to the cyanobacterium Synechocystis PCC6803, produced DNA
fragments on average of a couple of 100 kb as indicated in Figure 5-2. This quality
DNAsupplied sufficient length for target cloning of 30–70 kb segments [33]. Thus, the
target size has to be determined by quality of prepared DNA in BGM cloning.

Ironically in contrast to the above size stipulations, the presence of huge untargeted
DNAmay result in adverse effects. For example, targeting 50 kb DNA of the 3500 kb
Synechocystis genome sacrifices efficiency of cloning due to the inhibitory action by
the remaining untargeted portion of the cyanobacterial genome present in the DNA
preparation. This shortfall is accounted for the limited number of competent com-
plexes formed on the competent cell surface; approximately 50 that take up and guide
the DNA inside the cell [19]. Competitive inhibition by irrelevant DNA during
B. subtilis transformation has been frequently observed, always resulting in marked
reduction of the number of correct BGM recombinants [34], albeit is not entirely
detrimental to the present BGM protocols.

5.4.3 Repeated Target Positional Cloning

As one can expect, no sooner was the success of target positional cloning, than target
cloning of another adjacent segment results in elongation of the target region in the

Figure 5-7 Reusable counter selection marker by a cI-Pr system. Presence (middle left) or

absence (top left) of a repressor gene (cI) suppresses or induces antibiotic resistance gene (neo)

under the Pr promoter. Replacement of the cI gene by foreign DNA confers resistance to

neomycin (bottom left) and permits another cI-Pr selection. Details are described inSection 5.4.1

and [30, 31, 36].
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BGM vector. One should recall that the cI-Pr dependent positional target cloning
system is reusable and clonedDNA in theBGMalways accompanies twohalves of the
pBR sequences at both ends. Furthermore, the second target cloning is performed so as
to adjoin to the first BGM, as logically extended, and should permit additional
positional target cloning by sliding to an adjacent region of the given BGM [36].

The LPS in target positional cloning may function as primer sequences in the PCR
amplification method. If one views the two LPS sequences and intervening target
DNA, analogous to the head, tail, and body of an inchworm, donor DNA acts as an
inchwormwalking via integration as shown in Figure 5-8. The inchworm lands first in
the tail and head because only head and tail are present between the GpBR. The body
part finally lands in the BGMat the completion of the cloning. Addition of a new set of
LPS, new “head” aligned with the new “tail” being converted from the “head” in the
previous inchworm. This sliding alteration of the two LPS guides the adjacent
secondary target DNA so as to be positioned without any gaps. The DNA segment
in the BGM vector is then elongated leaving the third inchworm available. Repeated
application by renewing “head” and “tail” sets alternately results in progressive
elongation of the target DNA until encountering certain constraints inherent in the
BGM vector (see Section 5.7.2).

Figure 5-8 Inchworm like elongation in megacloning of the Synechocystis genome. Sets of two

LPS (LPS array) are prepared separately. Internal sequence between LPS is integrated by the

mechanism shown in the right. One cycle of inchworm starts by installation of LPS array and ends

up with the incorporation of Synechocystis DNA. Details are provided in Sections 5.4.3 and 5.4.4.

Discontinuous elongation of the Synechocystis genome region 2 (Fig. 5-9 is viewed by I-PpoI

fragment size increase. I-PpoI site resides at both the ends of the GpBR in all BGM recombinants

(Fig. 5-5).
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5.4.4 Megacloning of the Synechocystis PCC6803 Genome

The method to elongate a continuous DNA bymany inchworms in the BGM vector is
termed as megacloning [36], invoking that the cloned DNA segment is in the mega
basepair (Mb) size range.Themaingoalwas touse theB. subtilisgenomeas aplatform
to clone andmanipulate DNAs above 500 kb, seemingly the upper clonable limit with
E. coli plasmids. The whole Synechocystis genome cloning stages are summarized in
Figure 5-9. Thework started in 1997, just 1 year after thewhole genome sequence data
were published [37]. The project evolved over the past years duringwhichmost works
have been spent on refining all protocols. First, it should be mentioned as to why
Synechocystis PCC6803 [37] was chosen as the target for megacloning. There are
several reasons noted at that time: The preparation of LPS by PCR-mediated
amplification requires sequence information on thewhole genome. The highmolecu-
lar weight genomic DNA prepared as shown in Figure 5-2 [33] was necessary for
technical reasons described above. More importantly, the possible expression of
cloned genes inB. subtilis hazardous for BGMuser had to be avoided [38]. Therefore,
the sequenced 3573 kb genome of the unicellular photosynthetic bacterium
Synechocystis, thought to be nonpathogenic, was indeed the only available choice
when this work started in 1997. The alleged goal ended by megacloning the whole
genome of a life form, the 3.5Mb of Synechocystis. Details are referred to in the recent
publication [36], and results are illustrated in Figures 5-9 and 5-10.

Figure 5-9 Overview of megacloning of the whole Synechocystis genome. Synechocystis

genome was putatively divided in four sectors. Separately megacloned sectors in four BGM

vectors were sequentially assembled in the subsequent process. This less straightforward way

of the whole cloning was obligatory due to inherent structural constraints of the BGM vector (or the

B. subtilis genome) as indicated in Section 5.7.2 and Figure 5-23.
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5.4.5 Novel Method for Gene Function Analyses

During inchworm walking, various intermediate recombinants carrying different
number of Synechocystis genes were stably obtained. This characteristic method
portrays a novel technique for the investigation of gene function as well as genome
function apart from other conventional DNA cloning methods. Two examples noting
the discovery of adversely influential genes are worth mentioning here: sll1652 and
rrnA (also equivalent rrnB). The gene sll1652, whose protein function remains
unknown, apparently interfered with the sporulation process of B. subtilis. The
sporeless phenotype was first found after a particular inchworm walk, as shown in
Figure 5-11. The single gene was logically identified by subsequent deletion analysis
in the BGM vector. Although the sll1652 gene could be found in the conventional
SynechocystisDNA librarymade inB. subtilis, obvious phenotypic change before and
after the presence of a defined region clearly specified the culprit gene. One more
functionalgenehasbeensimilarly suspected inadifferent region (ItayaM.andFujitaK.
unpublished observations). In contrast to the first example, the unsuspected role for
rrnA/rrnB was discovered in reverse manner. Inclusion of Synechocystis ribosomal
RNA (5S-23S-16S) encoded in the rrnA or rrnB operon resulted in large deletions from
other previously megacloned regions present.

Figure 5-10 Genome anatomy of the CyanoBacillus. A chimera (right) of the two genomes from

Synechocystis (top left) and B. subtilis (bottom left) is shown. Certain questions raised by this

unprecedented organism are introduced in Section 5.4.6 and Figure 5-12.
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5.4.6 Questions Raised by Two Genomes in One Cell

Among the many questions arising from the Bacillus–Synechocystis chimera, puta-
tively named as CyanoBacillus, the potential involvement of ribosomes is currently
being intensively investigated. Lack of Synechocystis ribosomal RNA is consistent
with our recent molecular data that a number of Synechocystis-originated transcripts
but little translated products in the CyanoBacillus. These observations imply that
ribosome and associated ribosomal RNA are key switching factors that determine
dominant cellular gene networks as illustrated in Figure 5-12. If tremendous amounts
of genes, including ribosomalRNAandprotein genes are delivered by horizontal gene
transfer (HGT),most of them are dormant in one environment butmay be retained and
utilized as functional andnecessarygeneswhenplacedunder different conditions. The
a priori consensus for current molecular phylogenic analyses [39] is consistent with
the difficulty of finding two natural rrn carriers to date [39–42]. The unusual nature of
two ribosomes in one cell remains speculative and controversial. Further investigation
ofCyanoBacillus under omics analyses or creation of a secondmegacloning example
should be conducted to access these issues.

One intriguing aspect on chimera structure of CyanoBacillus may be related to a
proposal that genome fusions and horizontal gene transfer could be deduced from
reconstruction of the phylogenetic tree of life. The hypothetical origin of the
eukaryotic cell, albeit enigmatic and complex, is that it is the result of a fusion
between two diverse prokaryotic genomes [43]. One fusion partner branches from

Figure 5-11 Comprehensible discovery of a gene from Synechocystis. An apparent sporeless

phenotype rooted bya particular inchwormwas scrutinized.Genomicmanipulation ofmegacloned

recombinants attributed the culprit gene to the sll1652 within 40 genes in the inchworm in

Section 5.4.5. The sporeless feature was finally confirmed being caused by the gene only.
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deep within an ancient photosynthetic clade, and the other is related to the archaeal
prokaryotes. The eubacterial organism is either a proteobacterium, or a member of a
largephotosynthetic clade that includes the cyanobacteria and theProteobacteria.This
scenario may be investigated by megacloning of two candidate genomes in the BGM
vector (see also Section 5.7.3).

5.5 ASSEMBLY OF GENES IN ONE DNA SEGMENT

Location of individual genes in the genome appears not to be determined by a defined
set of rules [44–47]. With respect to a set of corelevant genes, typically regarded as
operon, the conserved operons in the presently known bacterial genomes are very
limited to certain ribosomal proteins and somemetabolic pathways.Under the “selfish
operon” hypothesis [48], operons are viewed as mobile genetic entities that are
constantly disseminated via horizontal gene transfer.

The operon formation rule and the degree of HGT contribution remain controver-
sial [49,50]. Apart from the enigmatic evolutional view for the present-day operons,
we can technicallymodify the present-day gene order by the dominomethod as briefly
mentioned above. Assembly of a number of functionally related genes may be the
beginning of a drive to contemplate the ultimateman-made genomewith all necessary
genes assembled that function as the blueprint for engineered cellular life.

Figure 5-12 Ribosome switches genetic circuit by translational regulation? Synechocystis

genome possessing rrn2 (top left) and B. subtilis genome rrn1 (bottom left) do not coexist in

CyanoBacillus (center) as described in Section 5.4.6 [36]. Many numbers of transcripts from

Synechocystis genes are observed in CyanoBacillus (our unpublished observation). Capturing

rrn2 might be suitable for survival in a different growth environment. The scenario employed has

been limited only to complete genome fusion.
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5.5.1 Why Should Genes be Assembled?

Biological processes are series of enzyme-catalyzed biochemical reactions. They
include uptake or secretion of materials through the cell surface, production, or
degradation of energy-coupled catabolites and metabolites in the cell, construction of
cellular membranes/cell walls that are all responsible to sustain life. Biological
reactions possess high potential as alternatives to traditional chemical processes
for producing valuable molecules. Pioneering attempts have been made to produce
materials by introducing a series of relevant genes to carry out their biological process
in various hosts. To date, reports are concentrated in the two metabolically and
genetically well-understood hosts: E. coli and Saccharomyces cerevisiae [51–57].
These hosts are eligible for repetitive transformation, circumventing problems
associated with increased number of genes required for the biological reaction of
interest. Indeed, if all the genes separately prepared from original genomes are
included in a single-DNA segment in a row, delivery of such a biological reaction
unit to another host becomes more popular and efficient [58]. The DNAmanipulation
system to construct such recombinantDNA,knownas recombinogenic engineering, is
limited and significantly dependent on manipulation using E. coli [59]. Ordering
relevant genes into an all-in-one segment still requires laborious, time-consuming
work. This appears to be a bottleneck in outlining a comprehensive blueprint for
operon design.

5.5.2 Efficient Assembly of Genes in one DNA Segment
using B. subtilis

We exploited a method to assemble a number of genes in one DNA segment with very
few experimental steps, referred to as an ordered gene assembly in B. subtilis
(OGAB) [60]. The method, as illustrated in Figure 5-13, stems from the unique
B. subtilisDNAuptakecharacteristics. In short,multimeric formsofDNAare favorable
substrates to be obtained as plasmid through a unique B. subtilis transformation. This
consequence is due to the mode of DNA incorporation by competent B. subtilis. One
may recall that ssDNA is taken up through the transformation apparatus [19] (Fig. 5-3).
Only longer than one plasmid unit length results in replication of the full-length
complementary strand, and therefore ssDNA of monomer unit length can never be
converted to circular dsDNA plasmid. The DNA possessing tandemly repeated unit
length is a good substrate for plasmid establishment via B. subtilis transformation.

5.5.3 Assembly of Various Numbers of DNA Segments in a Plasmid

How can tandemly repeated unit-length DNA (truDNA) be prepared, and how can
multiple DNA fragments be assembled by BGM vector? Our solution was derived by
making use of staggered dsDNA ends and modified conditions for T4-DNA ligase. In
brief, all the component DNA segments have to possess protruding sequences that
specifically connect only once to a singular complimentary endofanother segment.As
shown in Figure 5-14, for example, the variable three-base sequence within an

ASSEMBLY OF GENES IN ONE DNA SEGMENT 171



endonuclease SfiI recognition sequence GGCCNNNN/NGGCC, indicated also in
Figure 5-14, is suited for this aim. Linear multimer ligation products are formed
preferentially in the presence of polyethylene glycol (PEG6000) and high salt
concentration (sodium chloride, 150mM). As shown in Figure 5-15, this condition
dramatically suppresses formation of circular products and directs remarkable truDNA

Figure 5-14 Selective ligation determines alignment of DNA blocks. Multiple protruding ends are

created by restriction endonuclease such as SfiI including variable nucleotide sequence within its

recognition sequence. Flexible design of order and orientation of six gene blocks is possible.

Figure 5-13 The DNA block assembly. Principle of one-step assembly of multimeric DNA

fragments in B. subtilis plasmid is shown. The six-gene alignment comes from the result indicated

in Figure 5-16. Details are stated in Section 5.5.2.
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production. It should be emphasized that adjustment to equal moles of all the
DNA segments is vital for ligation efficiency of truDNA. Assembly of up to six
antibiotic resistance genes, comprising the multiple antibiotic resistance gene
cassettes in an 18 kb plasmid, exhibited surprisingly high efficiency and fidelity
compared with no equivalent plasmid obtained from E. coli transformation as
indicated in Figure 5-16.

5.5.4 Application to Assemble Functionally Related Genes

In principle, the OGAB-mediated gene assembly has no limit on the number of
included genes and final DNA size. In addition, order and orientation of these DNA
fragments can be easily altered by sequence design of the protruding ends. Two recent
achievements leading to what we believe is an initial framework for “operon
designing” are described here. Two selected metabolic pathways, a pigment biosyn-
thesis and a fungicidal substance production, require five and seven enzyme-coding
genes, respectively. The pigment, a carotenoid, and the genes required for its
production are basically the same as those used in the domino method (Fig. 5-6b).
pACCAR25(DcrtX), a natural version, containing six genes under a unique promoter
[27], produces thepigment inE. coli, albeit theorder ofgenes is not alignedwith that of
biochemical reactions in vivo. Five out of the six genes that catalyze the five
biochemical reactions from FPP to give zeaxanthin were prepared as DNA pieces
and aligned in parallelwith that of the biochemical reactions in a single-DNAsegment
by OGABmethod. Due to the OGAB plasmid that carries dual replication origins for
B. subtilis and E. coli, the recombinant construct when expressed inE. coli resulted in

Figure 5-15 Conditions suitable for OGAB substrate on ligation. Multiple DNA blocks in linear

form (LF) are preferentially produced in the presence of high molecular weight polymer and at a

higher salt concentration [60]. Equivalentmole ratio for all the gene blocks is critical to formLF [60].

circular form (CF) DNA mostly formed in the regular ligation conditions appear as mixtures not

suitable even for E. coli as indicated in Figure 5-16.
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surprisinglyhigher zeaxanthin than theoriginal natural construct [61].This simple and
clear result showed that the expression level of a gene-circuit readily varies with the
gene order and orientation and raises questions on how to approach the design of such
operons, unless the natural operon is available.

Weare learning lessons in approaching another biological processwhere extremely
large proteins play roles to synthesize plipastatin, a lipopeptide fungicidal substance
whose peptide portion is a nonribosomal peptide (NRP) produced byB. subtilis shown
in Figure 5-17 [62]. The peptide portion of plipastatin is synthesized by five NRP
synthases. These five large enzymes, 289, 290, 287, 407, and 145 kDa, are encoded in
38 kb-long genomic ppsABCDE operon in Figure 5-17. Difficulties in manipulating
the huge operon and, more importantly, the resultant large transcript are expected to
allow for novel insight into gene alignment and associated mRNA design.

For plipastatin production in B. subtilis, at least twomore genes, sfp and degQ, are
required in addition to the five genes in the ppsABCDE operon [62]. The sfp (0.9 kb)
gene encodes 40-phosphopantetheinyl transferase that catalyses transfer of 40-
phosphopantetheinyl to apo-peptide synthetases to convert the peptide to the holoen-
zyme form. The degQ (0.6 kb) gene that encodes a polypeptide composed of 42 amino
acids shown to be a possible regulator for the ppsABCDE operon expression.We used
the term “gene block” to define that the DNA fragments can be significantly variable
both in number of genes present and in size. It was demonstrated that the OGAB
method permits efficient assembly of three gene blocks ranging from 0.6 to 38 kb as
predicted [62]. The two examples of zeaxanthin [61] and plipastatin [62] encourage us
to enrich our disciplines toward rational operon design that was previously considered
quite difficult.

Figure 5-16 Powerful gene assembly by OGAB method. LF preferentially yields correct OGAB

plasmid in B. subtilis, whereas CF dose not produce the expected ones in E. coli as the number of

gene blocks increases. Simplified schematic view is shown in the insert.
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5.5.5 Integration of OGAB Construct in the BGM Vector

The OGAB method yields assembled DNA segment in plasmid form due to its
formation mechanism in B. subtilis (see the insert in Figure 5-16). The plasmid
normally possesses a specific sequence used for initiation of DNA replication (ori)
independent from the chromosomal counterpart (oriC). This physically independent
character in replication as well as segregation during cell division ensures properties
advantageous for gene cloning; for example, rapid extraction of cloned plasmid.
However, in retrospect, the plasmid format sacrifices genetic stability compared with
genes integrated in the genome. Thus, function of the newly made operons should be
characterized as integrated form in the BGMvector. Attempts to integrate them in the
BGM vector are currently pending.

5.6 HOW TO PURIFY RECOMBINANT GENOMES

Much focus has been placed on the DNA-cloning process in the BGM vector. These
assembled DNA molecules then have to be delivered to another host system to
diversify applications. In particular, biomaterial production, which is regulated by a
number of metabolic genes, is advantageous if efficiently expressed in lower costing
hosts. Engineering of organelle genomes, mitochondria and chloroplast, is much

Figure 5-17 A design of operon for plipastatin bioprocess. Molecular structure of plipastatin, an

antifungalagent, isshownon top [61].Combinedstructureof lipidandpeptidescontainingaminoacid

withD-configurationandornithin is synthesized fromcomponentsby three relevant geneblocks [62].

B. subtilis plipastatine gene originally dispersed in three locations are assembled by OGAB and

function as stable operon in the genome.
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likely to establish an exciting field because organelle genomes are shown to interfere
and exchange genes among genomes in vivo, such as transfer with plant nuclear
genes [63] shown in Figure 5-18. Three methods for retrieval of the cloned segment
from the BGM vector are summarized in Figure 5-19 and stated below.

5.6.1 General Method by Sequence Specific Endonucleases

Digestion by endonuclease of the clonedBGMrecombinant and subsequent isolation/
purification of the cloned segment appear to be the most simple and straightforward
method. Extreme infrequent recognition sequences, 23-base [ATGACTCTCTTAA/
GGTAGCCAAA] for I-PpoI [64], and 18-base [TAGGGATAA/CAGGGTAAT] for
I-SceI [65] have been shownvaluable in the BGMvector [16,36]. Owing to I-PpoI site
preinstalled at both ends of the GpBR of all the BGM vectors (Fig. 5-5), linearized
DNAs produced on I-PpoI digestion are readily isolated from agarose gel resolved by
pulsed-field gel electrophoresis and can then be concentrated in liquid form. Because
of such simplicity as depicted in Figure 5-19, the method has been of great use in
primary analyses as well as pilot preparation of the cloned DNA [23,36].

5.6.2 Dissection of the B. subtilis Genome

The second method, genome dissection, largely depends on the B. subtilis genetic
systems. This method originated from the study on diversity of multiple chromosomes

Figure 5-18 Organelle genomes and nucleus genome. Nucleus and two organelle genomes,

mitochondria and chloroplast, are schematically viewed. The eight genes relevant for antocyanine

bioprocess described in Figure 5-6 are shown. Chloroplast genomes from rice and tobacco are in

circular form retrieved out of the BGM vector described in Section 5.6.3.
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in bacteria illustrated in Figure 5-1. The molecular apparatus briefly described in
Figure 5-19 made it possible to physically disconnect long genomic DNA segments.
Intrachromosomalhomologous recombinationbetween the twoDNArepeats separated
by300 kbsimplyproducedthe intervening300 kbasasecondchromosome[66,67].The
extreme stability of the reported 300 kb second chromosome, termed the subgenome in
the original report [66], exhibited extreme genetic stability via unknown mechanisms.
The observation was inconsistent with the somewhat lower stability of the original
plasmid, pLS32, whose replicational origin sequence (oriN) was required for sub-
genome replication.Later, presenceofoneof the essential genes reported byKobayashi
et al. [68] in the subgenomewas shown toaccount for thegenetic stability. In spite of the
potential ability tomake available circular subgenomes larger than 300 kbDNA by the
method, broad application remains provisional due to its somewhat complicated
procedure (ItayaM. and FujitaK., unpublished observations). Use of the conjugational
transfer plasmid may make the delivery process more convenient [69].

5.6.3 Retrieval by Copying the Segment of the B. subtilis Genome

Compared with the somewhat elaborate genome dissection method, the third method
proceeds through a yet more complicated genetic process referred to as Bacillus

Figure 5-19 Threemethods to extract the cloned DNA out of the BGM vector. Threemethods are

currently BGM vector specific. Examples for DNA resolved by the first method (Section 5.6.1) are

shown in top right modified from the data in [90]. The extracted DNA by the second (Section 5.6.2)

and third method (Section 5.6.3) is purified on density gradient of cesium chloride formed on

ultracentrifugation [21]. Retrieved plasmidDNA is clearly separated from linearDNAmostly comes

from sheared genome DNA. The molecular apparatus in the second method is also referred to in

Section 5.7.2 and Figure 5-22.
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recombinational transfer (BReT) [70]. Indeed, with the BReT system, copying aDNA
segment from the genome and pasting it into the incomplete plasmid, causes the DNA
transfer from the genome to plasmid in an apparent reverse direction as that of the
domino or inchworm cloning method. The recipient plasmid should possess two
landing pad sequences (LPS). If they are the two half pBR sequences, the intervening/
cloned DNA segment between the twoGpBR halves bridges the gap by landing to the
plasmid.As illustrated in simplifiedmanner in Figure 5-19, the complete circular form
given only by the BReT pathway should be selected by plasmid-linked markers.
Standard extraction protocol for plasmidDNAhas resulted in purification of complete
recombinant genomes of lambda [70] and organelle genomes from mitochondria and
chloroplast [23] as indicated in Figure 5-18. These are the first recombinant genomes
shown tobe convertible to another host [23].TheBReT systemhas beenwidely used to
retrieve certain B. subtilis genome regions due to technical simplicity [71,72].

5.7 WHAT IS BACTERIAL GENOME?

The ongoing in-depth genome sequencing analyses have unveiled a number of
factors in gene composition, location, orientation, accessory sequences, promoters,
and so on. Numerous examples deduced from whole genome sequencing results
unveiled that HGT plays a significant role in generating subpopulations even to-
day [9,29,39,43–47,50]. Is the concept underlying the present bacterial genomes
strengthened or amended if more number of whole genome sequence data are added?
Evolutional processes responsible for themitochondrial genomedevelopment from the
ancestor alpha purple bacteria [1] and chloroplast development from photosynthetic
cyanobacteria [2]might represent the largestHGTin history.Gene capturing suggested
in some cases [73] has prompted us to mimic the process in using laboratory expertise
and aiming at plausible phenotypic conversion uponHGT.Amore extensive reviewon
detailed diversity among the sequence-known genomes for subspecies and/or variant
genomes will be avoided here, instead focus will be on our experimental approaches,
such as genome laundering to create stable mosaic subspecies [74,75] (Figs 5-20
and 5-21) and inversion mutations to expand genome structural variants (Fig. 5-22). It
should be mentioned that these two works started before the B. subtiliswhole genome
sequencewere determined in 1997 [11].Although little conclusive gene function based
interpretation was made, I believe our primary attempt to convert nascent concepts of
plastic genomes to the real examples of gene assembly is demonstrated.

5.7.1 Genome Conversion: Stable Mosaic Genomes by HGT

Obvious traits among closely related strains, where one presents whilst another lacks,
may be explained by gain or loss of relevant genes. One of our earlier studies on
HGT [74],monitoring terminal phenotypes forNatto-production bioprocess, unveiled
both predicted andnovel constraints underlying the gene content pergenome.Weused
Natto, a traditional Japanese foodmade from boiled soybean. On the soybean surface,
a growing strain of Bacillus natto produces viscous biofilm-like materials [74].

178 RECOMBINANT GENOMES



B. natto whose genome has not been sequenced exhibits high similarity to that of
B. subtilis with respect to a physical map-based genome comparison [76]. Ability to
ferment soybean is only possessed by B. natto, and several relevant Natto genes have
been identified fromB.natto.Becauseof the similar contextof promoters and identical
ribosomalRNAsequences betweenB. subtilis andB. natto, theseNatto-relevant genes
must be lost from or deficient in B. subtilis. Therefore, consecutive replacement or
displacement of B. subtilis genome regions by B. natto genome DNA incorporated
through homologous recombinationwas performed. The genomic DNA replacement,
termed as genome laundering [74],may permit assembly of the lost or deficientNatto-
genes in the genome of nonproducer B. subtilis as illustrated in Figure 5-20. B. natto
DNA randomly launders the multiple B. subtilis genome loci via fragments of
approximately 50 kb on average—equivalent to about 50 genes. When the genome
launderingprocesswas repeated, theB. subtilisgenomegradually anddiscontinuously
becomes mosaic as a greater number of genes are introduced. Results summarized in
Table 5.1 clearly show that as degree of mosaic increases, phenotypes specific to
B. subtilis are subdued in parallel with the appearance of Natto characteristics. The
highest mosaic strain nicknamed as Natsuko7 exhibiting the most Natto traits carries
approximately 350 kb of B. natto-originated DNA segment, 8 percent of the total
4215 kbB. subtilis 168 genome [74]. The estimated degree of DNAheterogeneity was
later foundnot consistentwith the expressed proteins profile.As shown inFigure 5-21,
the apparent similarity of proteins expressed inNatusko7 to those of B. natto is biased
far greater than the 8 percent estimated from the DNA. Natusko7 thus might be
classified as B. natto. This observation postulates that the global gene networks are

Figure 5-20 Mosaic genomes yielded byHGT.Genomeparts from theB. natto transferred to and

incorporated by replacement in the B. subtilis genome. Gradual and stepwise accumulation of

Natto relevant genes converts non-Natto producer to the producer in proportion to the degree of

mosaic indicated in Table 5.1. See the details in Section 5.7.1.
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physiologically and metabolically dominated by the activity of translation even
between closely related species. In this sense, Natusko7 may represent the earliest
attempt to combine traits form the two separate genomes in one cell. But it does not
constitute a recombinant genome because the genome size as well as junction region
remain largely indiscriminatory. Rather, the Natsuko series strains listed in Table 5.1
invoked an idea for relevantDNA/gene assembly andmay be relevant in “the first truly
engineered bacterial genome.”

Table 5-1 Natsuko: Stable intermediate strain retaining both parental traits.

Traits (1,2) or (3–6) are specific to B. subtilis or B. natto.

Strain (1) (2) (3) (4) (5) (6)

B. subtilis þ þ þ þ þ þ — — — —
Natsuko1 þ þ þ þ þ þ þ — — —
Natsuko2 þ þ þ þ þ þ þ þ — — —
Natsuko3 þ þ þ þ þ þ þ þ — — —
Natsuko4 þ þ þ þ þ þ þ þ þ — —
Natsuko5 þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ
Natsuko6 þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ
Natsuko7 þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ
B. natto — — þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ
(1) Ability to develop competent.
(2) Growth on Spizizen plate.
(3) Viscosity of colonies on GSP plate at 42�C for 24 h.
(4) Natto fermentation.
(5) Protease secretion.
(6) Natto fragrance 24 h at 42�C.

Figure 5-21 Similarity in expressed protein population. Separately labeled proteins prepared

from two strains aremixed and run. In proteins resolved by two-dimensional electrophoresis, green

spots display major expression in B. natto (left) andNatuko7 (right). Similar protein profile strongly

indicates the highestNatto-producer,Natsuko7, virtuallyB. natto in spite of the expected degree of

DNA converted. See the details in Section 5.7.1.
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5.7.2 Rearrangements of Genome Structure by Inversion

Structure of the bacterial genome, a backbone for a set of genes, appears to be stably
maintained after a number of replication cycles and cell divisions. The primary
structural constraint is clearly exhibited by the diverse modes of replicons as shown
inFigure5-1.Asecondaryconstraint is shownbythesymmetryof thegenomestructure.
Tworeplicationarmsdividedby theoriC-terCaxis,opposite the locationofan initiation
and termination locus, are well defined for certain bacterial genomes [44–46].

This structural symmetry together with gene alignment, orientation, and location
seems conserved [44].

Bacterial genomeplasticity, proposed and arguedbypioneersmanyyears ago, does
not necessarily dictate apparent phenotypic changes. Thus, in-depth analysis must
wait for development of reliable and easily accessible analytical methods such as
physical map construction, and comparable sequence determination for closely
related genomes. In line with these acknowledgements, the B. subtilis genome, an
essential component of the BGM vector, is also considered to be plastic. Given
analogies to plasmid vectors, genome vectors should surely be tolerant to structural
disorder associated with DNA cloning and subsequent maintenance.

Among the naturally occurring events that induce considerable structural disorder
listed in Figure 5-22, only inversion does not produce obvious genome size change;
accordingly, resulting in little fluctuation of the gene set per genome. Yet, inversion
may alter gene order and/or orientations, as well as relative gene locations in the
genome. Experimental generation of systematic inversionmutants in the past decades
has supported the concept of bacterial genome plasticity [77–79]. Focusing on the
B. subtilis genome, there is evidence that supports both the stability [15,16,76] and the
plasticity of the 4.2Mb primary sequence [77–79].

Figure 5-22 To induce large disorder of the genome structure. Two identical sequences sepa-

rately embedded in the different loci of the genome induce inversion, deletion/dissection, or

duplication by intrachromosomal homologous recombination. Resulted rearrangement is se-

quence orientation dependent. The second method to recover the cloned DNA (Fig. 5-19) is

aided by the middle protocol here. Inversion mutagenesis is described in Section 5.7.2.
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From our attempts to invert 28 various regions of the B. subtilis genome, some
general conclusions can be drawn. Regions from the smallest 300 kb to the largest
1900 kb, covering any region of the 4215 kb B. subtilis168 genome, have been shown
to be invertible without losing mutant viability (Toda T. and Itaya M., unpublished
observations). All the inversion mutants induced by the molecular apparatus com-
monly used to create subgenomes in Figure 5-19 stably grew. The ability to form
spores, one of the phenotypes strongly associated with B. subtilis, was maintained in
all cases. In contrast, competency, another intrinsic feature important tomegacloning,
shows reduction specific to the inversion of particular regions. Significant growth
reduction was also observed in mutants possessing dramatic asymmetry around the
oriC-terC axis, and therefore restoration of growth rate seems solely dependant on
symmetry. This working hypothesis has been clearly evidenced by growth recovery in
inversion mutants that restore symmetry (Kuroki A. and Itaya M., unpublished
observations) and relocation of the origin of replication so as to make oric-terC
axis normal (Tomita, S. and Itaya,M., unpublished observation). This was highlighted
in a very practical case where elongation of Synechocystis DNA above 1000 kb was
stalled duringmegacloning as described in Section 5.4.3 [36]. Additionalmegacloning
in the opposite arm alleviated the asymmetry and allowed for the complete cloning as
illustrated in Figure 5-23. The symmetry rule seemed decisively dominant in spite of
genomesize [36].On thecontrary, theyetundeterminedoriC-terC lociofSynechocystis
PCC6803 create a particular concern, if this strain is eligible to harbor the 4.2Mb B.
subtilis genome in a similar fashion as shown in Figures 5-9 and 5-10.

5.7.3 The Largest Bacterial Genome

What is the upper size limit of a bacterial genome? The largest evidenced bacterial
genomes are from the Streptomycete genus with 9.7Mb [4]. Considering B. subtilis,

Figure 5-23 Requirement of asymmetry of the bacterial genome for rapid growth is true.

Asymmetry around oriC-terC axis observed in certain bacterial genome is obstinate to ensure

growth. Growth reduction by large DNA insertion is compensated by DNA insertion into opposite

half to restore symmetry. This was proven in Synechocystis genome megacloning [36] also

mentioned in Figure 5-9.
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where the cognate 4.2Mb became a 7.7Mb hybrid-genome, the following question
arises: Can this CyanoBacillus accept another 4.8Mb of DNA to yield a 12.5Mb
hybrid-genome?This size is comparable to the smallest natural eukaryote,S. cerevisae,
with a 12.5Mb genome [83]. Why would someone want to do this? Is it just for pure
scientific curiosity or some industrial application of these organisms with double or
triple the amount of normal DNA? Two points should be addressed here. The long-
standing question of the plausible size boundary to discriminate eukaryotes from
prokaryotes will be examined experimentally [83]. The large extra DNA serves as a
broad palette for various applications, for example, the recurrent use of existing genes
through gene duplication or lateral transfer is the most common evolutionary mecha-
nism to generate new protein-coding genes in bacteria [84].

5.7.4 Minimal Set of Genes for Life

The availability of a large number of complete genome sequences raises the question
of howmany genes are essential for cellular life [9,10,85]. Attempts to reconstruct the
core of the protein-coding gene set for hypothetical minimal bacterial cell performed
by computational as well as experimental analyses are not detailed here. The main
features of such a minimal gene set that must be present in the hypothetical minimal
cell would be informational genes (genes involved in transcription, translation, and
other related processes) and operational genes (genes involved in cellular metabolic
processes such as amino acid biosynthesis, cell envelope and lipid synthesis, and
so on).

With regard to terminology “minimal set of genes (MSG)” is not equivalent to
minimal genome. This is simply because MSG is a sum of the number of genes
elucidated and listed, but aminimal genome requires a real body inwhich the complete
nucleotide sequences must be contained. Apart from the determination that the MSG
estimated by in silico analyses varies from 206 to 254 [85] gene in number, it is
informative to discuss here how to experimentally construct the real minimal genome
DNAbody.The approach takenmaybe either top–downor bottom–up.Thegeneration
ofmutation in all of the nonessential ORFsmay be the beginning of the former case, as
B. subltilis is shown to possess the 270 essential genes required for fixed growth
conditions [68,86]. I focus on the latter case only by suggesting how to extract all the
essential genes, less than 300 in number, and combine them together in a single-DNA
sequence, preferably circular. One can imagine that it is sufficient that given DNA is
anchored in a cellular bag, and the bag is exposed in nutritionally sufficientmedia. But
the task is not that simple. Certainly, even limited in DNA structure, millions of
questions arise in de novo assembly of more than 200 genes or gene blocks relating to
the biologicalmeaningwhen examined invivo. For example, in the casewhere only 10
genes should be aligned in one DNA segment, the OGAB or possibly the domino
method experimentally permits the designed DNA assembly. However, with
lacking of information included in Figure 5-6a, no one writes the de novo nucleotide
sequence.

Intermediate approaches that may be productive and timesaving may start
from genomes with a nearly full set of essential genes present but lacking some
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of those predicted from the in silico experimentation. The Buchnella species [85],
symbionts in certain aphids, may provide several starting points en route to a full set
of essential genes. Given the Buchnella genome, being several hundred kilo base
pairs, it is plausible that by megacloning method or domino method or other
combinatorial use, it may serve as the initial body for addition of a certain number of
relevant yet lacking genes. By this scenario, modified Buchnella genome can be
clearly provided in B. subtilis cell after genome dissection method or BReT method.
The approach sounds at present controversial and remained to be experimentally
investigated.

5.8 MISCELLANEOUS USE OF THE BGM VECTOR

5.8.1 Extension of Target DNA to Present DNA Libraries

Our primary assumption of no sequence discrimination during cloning of increased
DNA sizewas strengthened by successful results demonstrated to date. The source of
natural DNAs targeted to ourBGMvector has been expanding rapidly.Also, the use of
currently available cloned DNA resources is progressing. The most likely candidates
are DNAs stocked in the prominent E. coli cloning vectors, the bacterial artificial
chromosome (BAC) [87]. In spite of the nomenclature “chromosome,” the structures
do not actually resemble true bacterial chromosomes, but are really a large plasmid
given the use of the origin of replication from the large stable conjugative plasmid
F [87]. Indeed, due to the potential to cloneDNA far larger than those considered at the
time of introduction in 1991 and its technological simplicity, BACs have greatly
attributed to DNA library construction, from mouse to the human genomes, and are
widely available. Those DNAs cloned into an E. coli BAC vector and directly
transferred to the BGM would be another DNA resource or method for DNA library
generation.ABGMvector specialized for this aimhas been developed [35]. Changing
the familiar GpBR sequences to genomic BAC (GBAC) sequences permit direct
transfer of a BAC insert ranging up to 200 kb as illustrated in Figure 5-24. It should be
emphasized that the DNAs cloned into the BGM vector, in general, automatically
serve as a long-term preservation system; owing to the ability for B. subtilis to form
spores as indicated in Figure 5-24 [35].

5.8.2 Mouse Gneomic DNA in BGM

It is often difficult withinBAC libraries to find a singleBACclone that covers an entire
genomic gene of interest that possesses a number of introns of various lengths and
controlling elements particular to the genes of higher eukaryotes. Connecting together
twoormore overlappingBAC inserts into a single clone can provide a full-length copy
of the gene of interest. Indeed, highly efficient homologous recombination systems
have been exploited in E. coli that allow for modifications of large BACs without the
use of restriction enzymes and ligases, a process called recombineering [88,89]. We
have demonstrated similar molecular processing ofmouse genomic DNA in the BGM
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vector [34,90]. Joining of the two overlapping BACs to result in a 350 kb continuous
mouse DNA segment in the BGM vector (Kaneko S. and ItayaM., unpublished data).
Both BAC and BGM methods are similar given that homologous recombination is
employed as the basicmolecularmechanism.However, I believe ourBGMsystemhas
super flexible handling to postcloning manipulation.

5.8.3 Sequence Fidelity of Recombinant Genomes

As mentioned above, genomes larger than 100 kb in purified form in solution are not
only subjected to physical shearing but also sensitive to contaminating nucleases. The
former case may invoke the problem associated with geographical preservation [29],
and the latter are technically significant considering laboratory use [21]. From our
experience in handling large DNA, most nucleases are removed via careful purifica-
tion steps, for example, washing two times as a part of the standard protocol wash,
wearinggloves, avoiding physical contactwith unwrapped instrument, preservation in
the presence of nuclease inhibitors such as chelating chemicals EDTA, etc.. Highly
concentrated DNA seems resistant to residual nucleases probably due to competitive
inhibition.

One fundamental concern for the rGenome is fidelity of thenucleotide sequences of
recombinant progenies. Of course deterioration via mutations under given
growth conditions must be selected during DNA replication, mutation inevitably
accumulates evenwith the inherent sophisticated repair systems to repairmismatch of
bases and removal and replacement of misincorporated nucleotides in the
natural genome. Two E. coli K-12 derivatives separately cultivated over 40 year

Figure 5-24 Application of the BGM vector to effective transfer from BAC library. A BGM vector

providingBACvector sequenceasLPS, openandclosedarrow, insteadof pBR322wasmade (left).

Effectiveness of the present BAC library tomore versatile use, including long-term preservation as

spore form, appears successful [35]. These are mentioned in Section 5.8.1.
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revealed nucleotide changes of 10�7 per base per year (or 1 in every 107 bases) [91].
Hence, we reach a very serious dilemma during construction of the designed
rGenomes. Unsuspected mutations may freely accumulate in proportion to both
the increase of the DNA size and number of cell divisions during prolonged cultiva-
tion. As mentioned in Section 5.4, freshly prepared mtGenome and cpGenome
exhibited no obvious nucleotide alteration [23]. Onemay evade this intrinsic problem
by resequencing the DNAwhose time and cost turns relevant recently [5].

5.9 SUMMARY

DNAcloning is one of themost basic and inevitable tools to investigate genes and gene
functions in biological sciences. Cloning strategy has changed depending on DNA
sources, cloning vehicles, and cloning hosts. Innovation of the PCR method allows
amplification of unlimited regions of DNA from various species, as well as reducing
the required amount and purity of the template DNA. Recently, chemically synthesiz-
ing DNAwithout template DNA above dozens of kilo base pair in size has been shown
to be possible andmay soon bewidely available. TheBGMvector is a powerful tool for
cloning the present genomes as a whole and for conferring subsequent modifications
and reconstruction according to the purpose of the users. General schemes from
cloning, pinpoint manipulation, and retrieval protocols are briefly described in
Figures 5-2 and 5-19, and examples of progressive elongation of fragments with or
without overlapped regions are described in Section 5.3, or in Section 5.4, respectively.

These two examples show reconstruction in the BGM vector of significantly large
andcontinuous targetDNAorgenomes.Anothermethod to assembleanumberofDNA
fragments in unitDNAblocks is to formgene clusters, so-calledman-madeoperon, and
is described in Section 5.5. Genomes from bacteriophage lambda (48.5 kb), mouse
mitochondrial genome (16.3 kb), rice chloroplast genomes (135 kb), mouse genomic
genes (up to 350 kb), and the whole genome of a photosynthetic bacterium (3500 kb)
were cloned in the BGMvector; this is far above results obtained by conventional gene
cloning and technology. The new cloning concept, readily applicable to any sequenced
DNA, confers an experimental basis for not only provisional organelle genome
engineering but also emerging recombinogenic engineering. Furthermore, the method
could be used to assemble sequence-designed DNAs that are made from scratch.

The ultimate goal based on these technologies should be of course to unveil the
nature underlying this still somewhat fragile iceberg; as well as to show how to plan
and conduct new material production systems beneficial for humans and the earth.
Efforts are being undertaken to make all protocols more conventional, hoping that the
BGM vector users work just as comfortably as listening to background music.

5.10 FUTURE PERSPECTIVES

Life activities are controlled by the complex and dynamic actions of thousands of
genes encoded by their genome. With the sequencing of many genomes, the key
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problem has shifted from identifying genes to knowing what the genes do; we need a
framework for expressing that knowledge. Further comprehensive and systematic
investigations regarding other factors listed in Figure 5-6 are required to draw at least
some foundational rules on the design of the gene cluster. Gene clusters starting from
an even small gene content exhibit various, and far different in some cases, levels of
metabolites that may influence terminal phenotypes of the cell where a number of
other gene networks may be perturbed. Gene cluster designing and molecular
construction for certain basic metabolic pathways such as glycolysis have begun
in Keio University (Tsuge et al., unpublished). It should be addressed here that the
experimental basis for OGAB and/or domino is offering to provide a substantially
large number of isomers with the same gene content. Although it seems a long-way
off for creation of genome variations and establishment of subsequent assays for
selection, this challengewould be crucial in bottoming up in facilitating the designing
of life. The idea of making the appropriate B. subtilis genome into a linear chromo-
some vector similar to the eukaryotic stable vectors, such as YAC, remains to be
initiated.

Production of designed genomes and consequently cellular life is one of the most
challenging tasks in systems biology and synthetic biology, which still remains a
nascent field. As deduced from the impact caused by gene cloning and recombinant
genetics in the last century, once technologies show any potential, many start
thinking how to use a technology to accomplish their goal. In this context, the
present achievement shows that whole bacterial genomes have now become a target
for cloning that was previously not an available option. I personally think the
present two-genome cell is just a start for teaching many readers that “genome
cloning or recombinant genomes” is becoming a reality. I personally believe
that modification/manipulation of the recombinant Genomes of Synechocystis,
would be much faster than genetic conversion of Synechocystis itself in traditional
manner.

I always recall the aimof recombinant genomes research clearly addressed35years
ago by late Dr Fujio Egami, primary director of the institute to which the author
previously worked for 20 years. He said “The primary aim of life reorganization is to
bring about fulfilled and comfortable lives for present and future human. Thus, there is
noneed tomake the same cells as those currently available.As a consequence,whatwe
need is to provide simpler and more beneficial cells for us.”

The recombinant genome technology will markedly change the style of research
not only limited to biomedical and biomaterial production, but also yielding a
significant scientific, economic, and cultural impact. Cloning DNA to some extent
mimics HGT. Finally, I would like to say that I make it a rule to keep learning from the
greatest tutor, Nature.
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6.1 INTRODUCTION TO MODELING USING THE
CONSTRAINT-BASED APPROACH

The development of high-throughput experimental techniques in recent years has led
to an explosion of genome-scale data sets for a variety of organisms. Considerable
efforts have yielded complete genomic sequences for dozens of organisms [1] from
which gene annotation provides a list of individual cellular components. Microarray
technology affords researchers the ability to probe gene expression patterns of
cells and tissues on a genome scale. Genome-wide location analysis, also known
as ChIP-chip [2], provides transcription factor binding site information for the entire
cell. Furthermore, advances in the fields of fluxomics [3] and proteomics add to the
vast quantity of data currently available to researchers. Integration of these data sets
to extract the most relevant information to formulate a comprehensive view of
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biological systems is a major challenge the biological research community [4]
currently facing. Achieving this task will require comprehensive models of cellular
processes.

A prudent approach to gain biological understanding from these complex data sets
involves the development of mathematical modeling, simulation, and analysis tech-
niques [5]. For many years, researchers have developed and analyzed models of
biological systems via simulation, but these efforts often have been hampered by lack
of complete or reliable data. Some examples of the modeling philosophies and
approaches that have been pursued include deterministic kinetic modeling [6,7],
stochastic modeling [8,9], and Boolean modeling [10]. Many of these approaches are
hindered by requiring knowledge of unknown parameters that are difficult to deter-
mine experimentally. Furthermore, the above approaches typically require substantial
computational power, thus, limiting the scale of the models that can be developed.

In recent years, however, great strides have been made in developing and using
genome-scale metabolic models of a number of organisms using another modeling
technique that is not subject to the above limitations. This approach, known as
constraint-based modeling [11–15], has been employed to generate genome scale for
organisms from all three major branches of the tree of life. While bacterial models
dominate this growing collection, a model from archaea has recently appeared, and
several eukaryoticmodels are also available (see Table 6-1 for an overviewof existing
constraint-based models).

In complimentary efforts, many analytical tools have been developed to use these
models in computational investigations of model organisms (reviewed in Ref. [12]).
One method in particular, known as flux balance analysis (FBA) [16,17], is a
powerful mathematical approach that uses optimization by linear programming (LP)
to study the properties of metabolic networks under various conditions. When using
FBA, the investigator chooses a property to optimize, such as biomass production in
microbial models, and then calculates the optimal flux distribution(s) that lead to this
result. Therefore, FBA is useful for computationally assessing the ability of an
organism to grow on a particular substrate or in a particular environment and can
also be used to assess the effect of metabolic gene deletions under various growth
conditions. Given that these types of analyses rely on computer simulation,
computational results must be confirmed at the bench through experimental means.
However, by first investigating these situations at the computer work station,
researchers can be directed to the most interesting and scientifically meaningful
experiments to perform, thus limiting the amount of time spent conducting experi-
ments of less scientific value.

In this chapter,we provide an introduction to the principles that underlie constraint-
basedmodeling and FBAof biological systems.Wegive a brief, but practical example
to introduce themethod and concepts directly. Furthermore,we discuss both the utility
and potential shortcomings of these models by reviewing several published studies
that use these models to assess gene essentiality, which is simply defined as the
study of organism viability despite harboring single or multiple gene knockouts.
Finally, we briefly discuss additional analytical techniques and interesting applica-
tions of constraint-based modeling as well as their future implications.
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6.2 BUILDING A CONSTRAINT-BASED MODEL

This section outlines the general procedure (Fig 6-1) followed in constructing a
constraint-based model with a slant toward metabolic network. Furthermore, we
introduce FBA as an example of a useful analytical method that can be used in
conjunction with these models. This model building and analysis approach can be
divided into approximately four successive steps:

1. Network reconstruction

2. Stoichiometric (S) matrix compilation

3. Identification and assignment of appropriate constraints to molecular
components

Table 6-1 Currently available constraint-based models

Organism
Total
Genes

Model
Genes

Model
Metabolites

Model
Reactions Reference

Bacteria

Bacillus subtilis 4225 614 637 754 [114]
E. coli 4405 904 625 931 [61]

720 438 627 [63]
Geobacter sulfurreducens 3530 588 541 523 [67]
Haemophilus influenzae 1775 296 343 488 [79]

400 451 461 [82]
Heliobacter pylori 1632 341 485 476 [65]

291 340 388 [64]
Lactococcus lactis 2310 358 422 621 [115]
Mannheimia succinciproducens 2463 335 352 373 [116]
Staphylococcus aureus 2702 619 571 641 [66]
Streptomyces coelicolor 8042 700 500 700 [68]

Archaea

Methanosarcina barkeri 5072 692 558 619 [69]

Eukarya

Mus musculus 28,287 1156 872 1220 [75]
S. cerevisiae 6183 750 646 1149 [71]

672 636 1038 [72]
708 584 1175 [70]

Human cardiac mitochondria 615a 298 230 189 [56]
Human red blood cell NA NA 39 32 [76]

This table summarizes model statistics for the models developed and published to date. E. coli,
Escherichia coli; S. cerevisiae, Saccharomyces cerevisiae; NA, not applicable.
aThis number is based on the protein species identified in a proteomics study of the human cardiac
mitochondria from which the components of the reconstruction were derived [117].
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4. Optimal flux distribution determination and assessment of gene essentiality via
flux balance analysis

We will consider each of the above components in turn. In addition, a simple
examplewill be provided in Section 6.2.5 to illustrate directly the concepts described
herein.

6.2.1 Network Reconstruction

The first step in constraint-based modeling, known as network reconstruction,
involves generating a model that describes the system of interest. This process can
be decomposed into three parts typically performed simultaneously during model
construction. These components, known as data collection, metabolic reaction list
generation, and gene–protein reaction relationship (GPR) determination, are detailed
in this section.

6.2.1.1 Data Collection Perhaps themost critical component of the constraint-
based modeling approach involves data collection relevant to the system of interest.
Not long ago, this was among the most challenging steps as researchers had very
limited access to amounts of biochemical data. However, the success of recent
genome sequencing and annotation projects, advances in high-throughput technolo-
gies, and the extensive development of online database resources have improved
matters dramatically.

After identifying the system or organism of interest, relevant data sources must be
identified to begin the compiling of appropriate metabolites, biochemical reactions, and
associated genes to be included in themodel. The three primary types of resources are the
biochemical literature, high-throughput data, and integrative database resources.

Figure 6-1 Constraint-based modeling. Application of constraints to a reconstructed metabolic

network leads to a defined solution space that specifies a cell’s allowable metabolic phenotypes.

Flux balance analysis uses linear optimization to find solutions in the space that maximize or

minimize a given objective. The effects of gene knockouts on the solution space and metabolic

capabilities can be assessed by simulating a gene knockout and comparing its ability to grow

in silico relative to wild type.
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Biochemical Literature Direct biochemical information found in the primary
literature usually contains the highest quality data for use in reconstructing biochemi-
cal networks. Important details, such as precise reaction stoichiometry and
reaction reversibility, are often directly available. Given that scrutinizing each study
individually is time consuming and tedious task, biochemical textbooks and review
articles should be utilized when available, relying on the primary literature used to
resolve conflicts. Furthermore, many volumes devoted to individual organisms and
organelles, such as Escherichia coli [18] and the mitochondria [19], are increasingly
available and are typically excellent resources.

High-Throughput Data Genomic and proteomic data are useful sources of infor-
mation for identifying relevant metabolic network components. In recent years,
the complete genome sequence of hundreds of organisms has been determined and
many more sequencing projects are underway [20]. This collection is dominated by
microbial and viral sequences, but several highly publicized higher eukaryotic
sequences are also available [21–24]. Furthermore, extensive bioinformatics-based
annotation efforts continue to make great strides toward automatically identifying all
coding regions contained within the sequence [25–27]. To illustrate a common
approach to gene functional annotation, consider the case in which a biochemical
reaction is known to occur in the organism, but whose corresponding gene(s) are
unknown.Sequencealignment tools such asBLASTandFASTA[28] canbeutilized to
assign putative functions based on similarity to orthologous genes and proteins of
known function in other sequenced organisms. However, it should be noted that
putative assignments represent functional hypotheses and are subject to revision
upon direct biochemical characterization. As one final note on genome annotation,
interesting efforts are also underway to automatically reconstruct networks based on
annotated sequence information alone [29].However, these automated approaches are
limited in that they can be only as good as the genome annotation fromwhich they are
derived. Therefore, considerable quality control efforts should be conducted prior to
extensive use of these networks.

The proteome of a biological system defines the full complement, localization,
and abundance of proteins. Although these data are generally difficult to obtain, data
for some subcellular components and bacteria are available [30,31]. Proteomic data
are of particular importance in eukaryotic systems modeling in which care must be
taken to assign reactions to their appropriate subcellular compartment or organelle.
Similarly, when modeling a system under a single condition, these data are important
in identifying active components.

In addition to the primary literature, genomic and proteomic data repositories can
be accessed via the Internet as can the additional resources discussed in the next
section. Some popular resources are provided in Table 6-2.

Integrative Database Resources In recent years, significant efforts have been
devoted to developing comprehensive databases that integrate many information
sources including those data types previously described. Of particular interest
are resources that have incorporated these disparate data sources into metabolic
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pathway maps. Among these resource types, Kyoto Encyclopedia of Genes and
Genomes (KEGG) [32] is perhaps the most extensive and well known. Pathway
maps fornumerousmetabolicprocessesareavailable.KEGGalsoprovides information
regardingorthologousgenesforavarietyoforganisms, thusgreatlyenhancingthepower
of this resource. Additional organism-specific database resources are also available.
EcoCyc [33] incorporates gene and regulatory information as well as enzyme-reaction
pathways particular to E. coli. The Comprehensive Yeast Genome Database
(CYGD) [34] and Saccharomyces Genome Database (SGD) [35] are other examples
of Saccharomyces cerevisiae-specific comprehensive resources. Finally, the BioCyc
resource[36,37]containsautomatedannotation-derivedpathway/genomedatabasesfor
205 individual organisms.

An additional important wealth of information can be found in resources that
provide functional information for individual genes and gene products. These
ontology-based tools strive to describe howgene products behave in a cellular context.
The most well-known resource is Gene Ontology Consortium (GO) [38,39] that
contains information for a variety of organisms. In recent years, organism-specific
ontologies, such as GenProtEC [40] for E. coli, also have appeared. In sum, these
online resources are valuable that they typically integrate information regarding
individual genes and proteins as well as information regarding their regulation and
participation in enzymatic reactions in a single location.

6.2.1.2 Metabolic Reaction List Generation The next step in defining a
constraint-based model requires clearly specifying the reactions to be included based
on themetabolite and enzyme information collected in the previous step. Ametabolic
reaction can be viewed simply as substrate(s) conversion to product(s), often by
enzyme-mediated catalysis. In light of this notion, each reaction in a metabolic
network must adhere to the fundamental laws of physics and chemistry; therefore,
reactions must be balanced in terms of charge and elemental composition. For
example, the depiction of the first step of glycolysis in Figure 6-2a is neither
elementally nor charge balanced. However, inclusion of hydrogen in Figure 6-2b
balances the reaction in both regards.

Biological boundaries also must be considered when defining reaction lists.
Metabolic networks are comprised of both intracellular and extracellular reactions.
For example, the reactions of glycolysis and the tricarboxylic acid (TCA) cycle take

C6H12O6 + ATP3- C6H11O6PO3
2- + ADP2-hexokinase

(a)

C6H12O6 + ATP3- C6H11O6PO3
2- + ADP2- + H+hexokinase

(b)

Figure 6-2 Charge and elementally balanced reactions. (a) This depiction of the hexokinase-

mediated conversion of glucose to glucose-6-phosphate is neither elementally, nor charge

balanced. (b) Inclusion of hydrogen both elementally and charge balances the reaction.
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place intracellularly in the cytosol. However, glucosemust be transported into the cell
via an extracellular reaction in which a glucose transporter takes up extracellular
glucose. An additional boundary consideration must be recognized particularly when
modeling eukaryotic cells. Given that certain metabolic reactions take place in the
cytosol and others take place in various organelles, reactions must be compartmen-
talized properly. Data is now being generated in which proteins are tagged, for
example, with green fluorescent protein (GFP) or recognized by antibodies and
localized to subcellular compartments or organelles [41–43]. Furthermore, computa-
tional tools have also been developed to predict subcellular location of proteins in
eukaryotes [44].

Finally, reaction reversibility must be defined. Certain metabolic reactions can
proceed in both directions. Thermodynamically, this permits reaction fluxes to take on
both positive and negative values. The KEGG and BRENDA online resources
(Table 6-2) are two useful resources that catalog enzyme reversibility.

6.2.1.3 Determining Gene–Protein Reaction Relationships Upon com-
pleting the reaction list, the protein or protein complexes that facilitate eachmetabolite
substrate to product conversion must be determined. Each subunit protein from a
complex must be assigned to the same reaction. Additionally, some reactions can be
catalyzed by different enzymes. Collectively, each enzyme that fits this criterion is
known as an isozyme for a particular reaction. Accordingly, isozymes must all be
assigned to the same appropriate reaction. Biochemical textbooks often provide the
general name of the enzyme(s) responsible; however, the precise gene and associated
gene product specific for the model organism of interest must be identified. The
database resources detailed in Section 6.2.1.1 and Table 6-2 assist this process. In
particular, KEGG and GO provide considerable enzyme-reaction information for a
variety of organisms. Furthermore, protein–protein interaction data sets, for example,
those derived from yeast two-hybrid experiments [45], may be useful resource
for defining enzymatic complexes in less defined situations. One must take care in
using these data because of their high false-positive rate and questionable
reproducibility [46,47].

6.2.2 Defining the Stoichiometric Matrix

The compiled reaction list canbe representedmathematically in the formof aSmatrix.
The S matrix is formed from the stoichiometric coefficients of the reactions that
participate in the defined reaction network. It has m� n dimensions, where m is the
number of metabolites and n is the number of reactions. Therefore, the S matrix is
organized such that every columncorresponds to a reaction and every rowcorresponds
to a metabolite. The Smatrix describes how many reactions a compound participates
in, and thus, how reactions are interconnected. Accordingly, each network that is
reconstructed in this way effectively represents a two-dimensional annotation of the
genome [11,48].

Figure 6-3 shows how a simple two-reaction system can be represented as an S
matrix. In this example, v1 and v2 denote reaction fluxes and are associated with
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individual proteins or protein complexes that catalyze the reactions. In the S matrix
representation, each row denotes an individual metabolite while each column
corresponds to an individual reaction. Element Sij represents the stoichiometric
coefficient of the metabolite associated with row i in the reaction associated with
column j. Furthermore, notice that substrates are assigned negative coefficients and
products aregivenpositive coefficients.Also, for those reactions inwhich ametabolite
does not participate, the corresponding S matrix element is assigned a zero value.

6.2.3 Identifying and Applying Constraints

Having developed a mathematical representation of a metabolic network in the form
of the S matrix, the next step requires that any constraints be identified and imposed
on the model. Cells are subject to a variety of constraints from environmental,
physiochemical, evolutionary, and regulatory sources [12,14]. In and of itself, the
Smatrix is a constraint in that it defines the mass and charge balance requirements for
all possible metabolic reactions available to the cell. These stoichiometric constraints
establish a geometric solution space that, in principle, contains all possible metabolic
behaviors.

Additional constraints can be identified and imposed on the model, which has the
effect of further limiting the metabolic behavior solution space. Maximum enzyme
capacity, Vmax, which can be determined experimentally for some reactions is one
example and can be imposed by limiting the flux through any associated reactions
to that maximum value. Furthermore, the uptake rates of certain metabolites can be
determined experimentally and used to restrict metabolite uptake to the appropriate
levels when mathematically analyzing the metabolic model. Additional types of
constraints have also been applied including thermodynamic limitations [49], internal
metabolic flux determinations [13], and transcriptional regulation [50–53]. This latter
topic will receive considerable detailed treatment in Section 6.4.3.

With respect to computationally assessing gene essentiality, a similar strategy to
setting the maximum enzyme capacity can be utilized. By simply restricting the
flux through reactions associated with the protein of interest to zero, a gene knockout
can be simulated. Flux balance analysis then can be used to examine the simulated
knockout properties relative to wild type, as outlined in the next section.

A + B C
v1

C + 2D E
v2

v1 v2
A -1 0
B -1 0
C 1 -1
D 0 -2
E 0 1

S =

Figure 6-3 Generating theSmatrix. The reaction list on the left is mathematically represented by

the S matrix on the right. As a convention, each row represents a metabolite and each column

represents a reaction in the network. Additionally, input or reactant metabolites have negative

stoichiometric coefficients and outputs or products have positive stoichiometric coefficients.

Metabolites that do not participate in a given reaction are assigned a zero value.
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6.2.4 Assessing the Model Using Flux Balance Analysis

Flux balance analysis is a powerful computational method that relies on optimization
techniques by linear programming [54] to investigate the production capabilities
and systemic properties of a metabolic network. By defining an objective, such as
biomass production, ATP production, or by-product secretion, linear optimization
may be used to find an optimal flux distribution for the networkmodel thatmaximizes
the stated objective. This section briefly introduces somemain concepts that underlie
FBA, with an emphasis on how FBA can be utilized to assess gene essentiality in a
metabolic network.

6.2.4.1 Linear Optimization As stated previously, the solution space defined
by constraint-based models can be explored via optimization by linear programming.
The LP problem corresponding to the search for the optimal flux distribution
determination through a metabolic network can be formulated as follows:

Maximize Z ¼ cTv

Subject to S  v ¼ 0

ai � vi � bi for all reactions i

In the above representation, Z represents the objective function, and c is a vector of
weights on the fluxes v. The weights are used to define the properties of the particular
solution that is sought. The latter statements represent the flux constraints for the
metabolic network. S is the matrix defined in the previous section and contains
themass and chargebalanced representation of the system.Furthermore, each reaction
flux vi in the system is subject to lower and upper bound constraints, represented in ai

and bi, respectively.
The solution to this problem yields not only a value for Z but also results in an

optimal flux distribution (v) that allows the highest flux through the chosen objective
function, Z. Furthermore, computational assessment of gene essentiality is performed
easily within this framework. By setting the upper and lower flux bound constraints to
zero for the reaction(s) corresponding to the gene(s) of interest, a simulated gene
deletion strain may be created. Examining the results of simulations run before and
after knocking out a gene lead to gene essentiality predictions.

Problems of this type can be formulated and solved readily by commercial software
packages,such asMatlab (TheMathWorks, Inc.,Natick,MA),Mathematica (Wolfram
Research, Inc., Champaign, IL), LINDO (LINDO Systems, Inc., Chicago, IL), and
tools available through the General Algebraic Modeling System (GAMS
Development Corporation, Washington, DC). Section 6.2.5 presents a simple, hypo-
thetical example solved using Matlab. It should also be noted that these types
of analyses yield a single answer; however, it is possible that multiple equivalent
flux distributions that yield amaximal biomass functionvalue for a given network and
simulation conditions. This topic has been explored using mixed integer linear
programming (MILP) techniques with genome-scale metabolic models [55,56],
but is beyond the scope of this chapter and will not be discussed further.
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6.2.4.2 Constraints As previously stated, the Smatrix constrains the system by
defining the mass and charge balance constraints for all possible metabolic reactions
within the system. Inmathematical terms, the Smatrix is a linear transformation of the
reaction flux vector,

v ¼ ðv1; v2; . . . ; vnÞ

to a vector of time derivatives of metabolic concentrations

x ¼ ðx1; x2; . . . ; xnÞ

such that

dx

dt
¼ S  v

Therefore, a particular flux distribution v represents the flux levels through each
reaction in the network. Since the time constants that describemetabolic transients are
fast (on the order of tens of seconds or less), whereas the time constants for cell growth
are comparatively long (on the order of hours to days) the behavior of cellular
components can be considered as existing in a quasi steady state. This assumption
leads to the reduction of the previous equation to

S  v ¼ 0

By focusing only on the steady-state condition, assumptions regarding reaction
kinetics are not needed. Furthermore, based on this premise, it is possible to determine
all chemically balanced metabolic routes through the metabolic network.

The second constraint set is imposed on the individual reaction flux values. The
constraints defined by

ai � vi � bi for all reactions i

specify lower and upper flux bounds for each reaction. If all model reactions are
irreversible, a equals to 0. Similarly, if the enzyme capacity, Vmax, is experimentally
defined, setting b to the known experimental value limits the allowable reaction
flux through the enzyme. In contrast, a gene knockout is simulated by settingbi¼ 0 for
gene i (see Section 6.2.5 andBox6-1). If no constraints on flux values through reaction
vi can be identified, then ai and bi are set to -¥ and þ¥, respectively, to allow for all
possible flux values. In practice, ¥ is typically represented as an arbitrarily large
number that will exceed any feasible internal flux (for an example, see Section 6.2.5).

A brief consideration should also be given to specifying input and output
constraints on the system.When analyzingmetabolic models in the context of assess-
ing cellular growth capabilities, input constraints effectively define the environmental
conditions being considered. For example, organisms have various elemental
requirements that must be provided in the environment in order to support growth.
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Some organisms that lack certain biosynthetic processes are auxotrophic for certain
biomolecules, such as amino acids, and these compounds alsomust be provided in the
environment. From an FBA standpoint, these issues mean that input sources must be
specified in the formof input flux constraints specified inv. For example, if one desires
to simulate rich medium conditions, flux constraints are specified such that all
biomolecules that can be served as inputs to the system, in other words all compounds
that are available extracellularly, are left unconstrained and can flow freely into the
system. In contrast, when modeling minimal medium conditions (for an example of a
large-scale analysis performed of E. coli growth simulations on minimal media, see
Ref. [57]) only those inputs required for cell growth, or biomass formation in the
formalism being considered here, are allowed to flow into the system with all other
input fluxes constrained to zero. It should also be noted that certain output flux
constraints may need to be set appropriately in order to allow for the simulated
secretion of biomolecules that may ‘‘accumulate” in the process of forming biomass.
A simple example of this is allowing for lactate and acetate secretion when modeling
fermentative growth of microbes.

6.2.4.3 The Objective Function Given that multiple possible flux distribu-
tions exist for any given network, linear optimization is used to identify a particular
solution that maximizes or minimizes a defined objective function. Commonly used
objective functions include production of ATP or production of a secreted by-product.
When assessing the growth capabilities of a microbe using its associated metabolic
model, growth rate, as defined by the weighted consumption of metabolites needed
tomakebiomass, ismaximized. The general analysis strategy asks the question ‘‘is the
metabolic reaction network able to support growth under the specified growth
conditions?” Therefore, biomass generation in this modeling framework is repre-
sented as a reaction flux that drains intermediate metabolites, such as ATP, NADPH,
pyruvate, and amino acids, in appropriate ratios (defined in the vectorc of the biomass
function Z) to support growth. As a convention, the biomass function is typically
written to reflect the needs of the cell in order to make 1 g of cellular dry weight, and
has been experimentally determined for E. coli [58]. In sum, the choice of biomass
as an objective function, cell growth, depicted as a nonzero value forZ, will only occur
if all the components in the biomass function can be provided for by the network in the
correct relative amounts.

6.2.5 A Simple FBA Example

In order to demonstrate the concepts previously introduced, this section presents a
specific example using a simple system. Figure 6-4a shows a hypothetical four
metabolite (A,B,C,D), eight reaction (v1,v2,v3,v4,v5,v6,b1,b2) network. By convention,
each internal reaction is associatedwith a fluxviwhereas reactions that span the system
boundary are denoted with flux bi. Furthermore, external metabolites A and D are
denoted with subscript ‘‘o” to distinguish them from their corresponding internal
metabolite. However, external metabolites need not be explicitly considered in the
stoichiometric network representation.
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Figure 6-4b outlines the reaction list associated with the system. Notice that the
conversion of metabolite B to C is reversible. Rather than treating this as a single
reaction, for simplicity this reaction is decoupled into two separate reactions with
individual corresponding fluxes.

The S matrix for this system is detailed in Figure 6-4c. Again, notice how this
representation follows directly from the reaction list. Metabolite substrates and
products are represented with negative and positive coefficients, respectively.
Recall that LP problems take on the following form:

Maximize Z ¼ cTv

Subject to S  v ¼ 0

a � vi � b for all reactions i

For example, if the metabolite D output is to be maximized, corresponding to
maximizing the flux through b2 the objective function is defined as follows:

Z ¼ 0 0 0 0 0 0 0 1ð Þ  v1 v2 v3 v4 v5 v6 b1 b2ð ÞT

Furthermore, in addition to themass andcharge, balance constraints imposedby the
S matrix, lower (a), and upper (b) bound vectors must be specified for the reaction
vector v. Since all reactions in this network are irreversible,which constrains all fluxes
to be positive, the lower bound vector a is set to zero.

a ¼ 0 0 0 0 0 0 0 0ð ÞT

A

B

C

D
b1 b2

v1

v 2

v3 v4

v 5

v6

D0A0

v1 v2 v3 v4 v5 v6 b1 b2
A -1 -1 0 0 0 0 1 0
B 1 0 -1 1 -1 0 0 0
C 0 1 1 -1 -10 0 0
D 0 0 0 0 1 1 0 -1

(c)  (b)  

(a)  

b1: ? A
v1: A ? B
v2: A ? C
v3: B ? C
v4: C ? B
v5: B ? D
v6: C ? D
b2: D ?

S =

Figure 6-4 An example system. (a) A four-metabolite, eight-reaction system is first decomposed

into individual reactions in (b), and then representedmathematically in theSmatrix depicted in (c).

By convention, internal reactions are denoted by vi, and reactions that span the system boundary

are denotedbybi. ExternalmetabolitesA0 andD0 neednot be explicitly represented explicitlywithin

this framework as they are outside the system under consideration.
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Upper bound values specified in vector b can be chosen to incorporate experi-
mentally determined maximal enzyme capacities, also known as Vmax values,
or some arbitrarily chosen values to explore network properties. An acceptable
example vector is

b ¼ 2 10 4 6 10 8 100 100ð ÞT

The latter two upper bound values for the respective input and output fluxes are set to
an arbitrarily large number in this case to reflect an effectively unlimited capacity.
Given the constraints on the internal fluxes, however, the actual values of these fluxes
in the calculated optimal flux distribution will never approach these values.

Utilizing the information compiled above, the Matlab function linprog() can be
used to solve for a steady-state flux distribution that maximizes for the output of
metaboliteDunderwild-type conditions, as detailed inBox6-1. It should benoted that
the defaultMatlab optimization solver is only suitable for problems of this and slightly

BOX 6-1 FBA USING MATLAB

Here, we use Matlab to solve an FBA problem for three cases using the system
shown in Fig. 6-4. The linprog() function accepts six arguments and returns two
values in the following form:

½v; Z
 ¼ linprogðc;Aeq; beq; S; b;a;bÞ
This solves the following LP problem:

Minimize Z ¼ cT � v

Subject to Aeq� v � beq

S  v ¼ b

a � v � b

Since the system does not have inequality constraints other than flux vector
bounds, Aeq is set equal to the identity matrix and beq to b, so that

Aeq  v � beq

is equivalent to

v � b

The code to solve the wild type problem (Case 6-1) of interest in Matlab’s
framework follows, using the linprog() function anda and b as defined in the text:

>>S=[-1(1000010;10-11-1000;011-10-100;0000110-1];

>> b = [0 0 0 0]’;

>> alpha = [0 0 0 0 0 0 0 0 ]’;
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>> beta = [2 10 4 6 10 8 100 100]’;

>> c = [0 0 0 0 0 0 0 1];

>> Aeq = eye (8);

>> [v, z] = linprog (-c, Aeq, beta, S, b, alpha, beta)Optimization

terminated successfully.

v = 2.0000 10.0000 0.1822 3.9137 5.7315 6.2685 12.0000 12.0000

Z = -12.0000

Note that since linprog() defaults to solving a minimization problem we use
the negative of the optimization weight vector c. Use the Matlab Help for more
details on linprog().

Case 6-1: Wild Type

Case 6-2, shown below, solves the same problem but this time after knocking
out reaction v5 by modifying the b vector stored in the beta variable:

>> beta = [2 10 4 6 10 0 100 100]’;

Case 6-2: Growth Impaired v6 Knockout

Finally, in Case 6-3 depicted below, by again modifying the beta variable a
‘‘lethal” deletion strain can be simulated by knocking out both v5 and v6:

>> beta = [2 10 4 6 0 0 100 100]’;

Case 6-3: Lethal v5 and v6 Double Knockout
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larger magnitude. Typical biological problems that involve many more variables
and constraints requiremore sophisticated optimization software such as the packages
available through LINDO Systems, Inc. and GAMS. A thorough discussion of the
algorithmic details that underlie solving FBA and other LP problems is beyond the
scope of this text. For further details, see Refs [54,59,60] .

Having used the above information to simulate the wild-type case, the upper
boundb vector can bemodified to simulate a gene deletion. For example, if wewant to
examine the effects of deleting the enzyme responsible for the conversion of
metabolite C to D, flux v6 is restricted to zero simulation.

b ¼ 2 10 4 6 10 0 100 100ð ÞT

Similarly, a v5, v6 double mutant is simulated using the following vector:

b ¼ 2 10 4 6 0 0 100 100ð ÞT

6.3 COMPUTATIONAL CHALLENGES

This chapter presents the basic steps required to reconstruct and analyze genome-scale
metabolic networks. Thesemodel systems quickly grow in size and scale, introducing
computational challenges that need to be addressed. As noted previously, with large-
scale models it becomes necessary to use a robust computational platform designed
specifically for sophisticated optimization problems, such as those developed by
LINDO Systems, Inc. and available through GAMS.

Furthermore, data management becomes difficult as models scale up in size. For
example, the most current publishedE. colimodel contains 904 genes and 931 unique
biochemical reactions [61]. Analyzing a genome-scale model within the framework
proposed in Sections 6.2.4 and 6.2.5 is possible, but would be slow, cumbersome,
and error prone. In recent years, an integrative datamanagement and analysis software
platform called SimPheny� (Genomatica, San Diego, CA) has been developed
specifically to address the data management and computational challenges inherent
in building large-scale cellular models. This versatile platform provides network
visualization, database, and various analytical tools that greatly facilitate the con-
struction and study of genome-scale cellular models.

Currently,more than a dozen genome-scalemetabolicmodels have been published
and are available (Table 6-1) for further research and analysis. Most of these models
represent bacteria and range from the important model organism E. coli [61–63]
to pathogenic microbes such as H. pylori [64,65], and S. aureus [66]. Furthermore,
recently developed models of G. sulfurreducens [67] and S. coelicolor [68] are
potentially important for their facilitation of studies that probe these organisms’
respective potential bioenergetic and therapeutics-producing properties.

Representative constraint-based models have also appeared from the other two
major branches of the tree of life. The recently developed metabolic reconstruction
ofM. barkeri [69], an interesting methanogen with bioenergetic potential, represents
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the first constraint-basedmodel ofanarchaea that hasbeenused to aid in the analysis of
experimental data from this relatively obscure group of organisms. Furthermore,
several eukaryotic models also have been developed. The metabolic models of the
baker’s or brewer’s yeast S. cerevisiae [70-72] are second only to the E. coli models
in terms of relative maturity and have been used in a variety of studies designed to
assess network properties (for recent examples, see Refs [73,74]). Metabolic models
of higher order systems are also becoming available such as a model of mouse
(Mus muculus [75]), human cardiac mitochondria [56], and red blood cell [76].

As more of these genome-scale models are developed, the issue of making
their contents available to the broader research community is of primary concern.
Given their inherent complexity, there is a need for a standardized format in which
their contents can be represented in order to circumvent potential problems associated
with the current typical means of distribution of models via nonstandard flat file or
spreadsheet format. In an effort to mitigate this deficiency, for example, the Systems
Biology Markup Language (SBML) [77], has been developed to provide a uniform
framework in which models can be represented, and the recently initiated MIRIAM
(‘‘minimum information requested in the annotation of biochemical models”)
project [78] and affiliated databases have appeared to provide greater transparency
as to the contents, and potential deficiencies of models. The adoption of these or
similar standardswill be important to the advancement of the field and in promoting its
general utility in biological research.

6.3.1 Predicting Gene Essentiality

One application of constraint-based modeling in conjunction with FBA that has been
particularly successful in computationally assessing metabolic networks is in studies
of gene essentiality. Recent studies have used genome-scale constraint-based
models to assess gene essentiality for several organisms under various growth
conditions. Each study simulated gene deletions by constraining the flux through
the associated reaction(s) to zero as described in Section 6.2.5 and Box 6.1. In this
section, we will review the results from studies performed using models of
E. coli [53,63], H. Influenzae [79], H. pylori [64,65], and S. cerevisiae [70-72] as
a platform onwhich we can highlight some of the benefits and limitations of genome-
scale metabolic models.

6.3.1.1 Escherichia coli The bacterium E. coli is historically the most studied
and perhaps the best characterized model organism to date, and is of important
industrial, genetic, and pathologic importance. Thus, E. coli is among the most
suitable organisms for metabolic reconstruction and constraints based analysis.
Accordingly, constraint-based models of E. coli have been under development since
1990 (for a historical review of the E. coli constraint-basedmodel development [62]).
Prior to the complete determination of its genome sequence in 1997 [80], E. coli
models were limited by data availability and thus included only 300 reactions.
The success of genome sequencing efforts, coupled with other high-throughput
technological advances led to a dramatic increase in size and scope of available
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models, yielding the first genome-scale models. The most current model of E. coli
K-12 MG1655 metabolism includes 904 genes, 931 unique biochemical reactions,
and 625 metabolites [61] and will soon crest the 1000 gene, 1000 reaction mark
(A. Feist, B. Palsson, personal communication).

Following the completion of the first genome-scale model, gene essentiality was
examined by investigating the effects of single-gene deletions on the metabolic
capability of E. coli [63]. Gene deletions were simulated by restricting flux through
the corresponding enzymatic reaction to zero. Each individual gene involved in the
central metabolic pathways (glycolysis, pentose phosphate pathway, TCA, and
respiration processes) was subjected to deletion under an environment of aerobic
growth on minimal glucose medium.

Eleven (rpiAB, pgk, acnAB, gltA, icdA, tktAB, gapAC) of the simulated deletion
strains failed to grow, and an additional 12 (atp, fba, pfkAB, tpiA, eno, gpmAB, nuo,
ackAB, pta) deletion strains were impaired in their growth characteristics relative
to wild type. When grown on glucose, these genes are involved in the three-carbon
stage of glycolysis, three reactions of the TCA cycle, and several points within the
pentose phosphate pathway.

This study also simulated gene deletion effects on E. coli when grown on other
minimal medium formulations. Of 79 cases tested, 68 (86 percent) of the in silico
predictions matched experimental observations. Most of the mischaracterized
growth predictions were failure to predict no growth. A later study showed that
the incorporation of transcriptional regulatory information can improve performance
of the E. coli model [53]. Furthermore, the most recent model of E. coli is enhanced
by containing elementally and charge balanced reactions, as well as GPR associa-
tions [61]. As models are further enhanced and a more detailed knowledge and
representation of the biomass formulation is acquired, the predictive performance of
these models will continue to improve.

6.3.1.2 Haemophilus influenzae H. influenzae is a Gram-negative pathogen
adapted to living in the upper-respiratory mucosa, causing ear infections as well as
acute- and chronic-respiratory infections primarily in children. Prior to development
of the first vaccine in 1985, H. influenzae type b was the leading cause of bacterial
meningitis in children less than 5 years of age. Based upon the annotated genome
sequence and known biochemical information, the metabolic network of this microbe
was reconstructed [79,81]. Four hundred of the approximately 1743 open reading
frames (ORFs) predicted to exist in H. influenzae were included in the model.
By including 49 additional reactions based on general metabolic information on
related prokaryotes, the final network consists of 461 reactions acting on 367 internal
and 84 external metabolites.

In addition to studying various systems properties of the network, gene essentiality
was assessed inH. influenzae by examining the effects of simulated gene deletions on
growth characteristics. Gene deletions were simulated by constraining the flux
through the corresponding enzyme catalyzed reaction to zero. One study examined
the single, double, and triple deletion of a set of 36 enzymes involved in central
intermediary metabolism [81]. For each simulation, the ability of H. influenzae to
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exhibit in silico growth was assessed on a defined media, with fructose and glutamate
being the two key substrates. Under these conditions, 12 genes (eno, fba, fbp, pts,
gapA, gpmA, pgi, pgk, ppc, rpiA, tktA, tpiA)were essential forgrowth and an additional
10 enzyme deletion strains (cudABCD, atp, ndh, ackA, pta, gnd, pgl, zwf, talB, rpe)
exhibited impaired growth. This result suggests that H. influenzae’s metabolic
network is less robust against single central metabolic gene deletions than
E. coli [63]. Examination of all possible double mutants for evidence of so-called
synthetic lethal interactions [82] within this set of enzymes revealed only 7 of 361
lethal gene pairs where each single deletion mutant was viable. Similarly, only 7 of
5270 lethal gene triple knockouts were observedwhere the double deletion of any two
of the gene products does not result in a null phenotype.

A related study also examined simulated gene deletion effects on an expanded 42
enzyme set under two different growth conditions [79]. When simulating growth on a
minimal media with fructose as the primary carbon source, the 11 single-gene
deletions (fba, fbp, tpiA, gapA, pgk, pgmA, eno, rpiA, tktA, prsA, ppc) failed to
grow. In order to study these same single-gene mutants under more relevant in vivo
conditions, simulations were performed in similar fashion, this time using media
supplemented with a number of carbon sources likely to be found in the host, mucosal
environment. These include fructose, glucose, glycerol, galactose, fucose, ribose, and
sialic acid. Under these conditions six mutant strains (gapA, pgk, pgmA, eno, ppc)
again failed to grow. While these predictions require experimental verification using
methods described elsewhere in this volume, these studies show the utility of
computational studies in directing the researcher to the most interesting targets.

6.3.1.3 Helicobacter pylori H. pylori is a human bacterial pathogen that
colonizes the gastric mucosa. Infection results in acute inflammation and damage
to epithelial cells, ultimately progressing to a number of disease states, including
gastritis, peptic ulceration, and gastric cancer. In comparison with the examples of
E. coli, H. influenzae, and S. cerevisiae, provided elsewhere in this chapter, a little
experimental data is available to complement the known genome sequence of
H. pylori. Recent work shows that even in the absence of extensive experimental
data, detailed metabolic models of great utility can be developed, using H. pylori as
an example [64]. Relying primarily on annotated genome sequence, a model com-
prised of 388 enzymatic reactions, corresponding to 291 of 1590 known ORFs and
403 metabolites, was developed for H. pylori.

Similar to the other modeling efforts described in this chapter, systemic properties
of this model were examined, as was gene essentiality by simulating gene deletions.
The effect of the loss of enzymatic function corresponding to a gene deletion was
assessed under four different simulated growth conditions. The growth conditions
include a previously determinedminimalmedium required to support in silico growth,
minimal medium supplemented with glucose, other carbon sources, and amino acids.

Each of the 34 reactions in the central intermediary metabolic network was
individually eliminated by constraining the flux through the reaction to zero.
Of these simulated gene deletions, only four (aceB, ppa, prsA, and tpi) failed to
exhibit simulated growth under all four conditions. These particular knockouts affect
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malate synthase activity, the pyrophosphate to inorganic phosphate conversion,
synthesis of nucleotides and deoxynucleotides, and impaired glycolytic ability.

The predictive performance of the model was also assessed via comparison with
available experimental gene deletion data for H. pylori [64]. The model accurately
predicted the growth ability for 10–17 gene deletions. Of the seven incorrect
predictions, six were predicted to be nonessential when experimental evidence
showing their essentiality. This discrepancy could signal deficiencies in the model.
For example, given that themodel is not complete, all of the relevant informationmay
not be available to accurately predict the given case. In contrast, it could also be
because of the experimental conditions not corresponding exactly with simulated
conditions. In any case, these discrepancies identify keen areas of interest to probe
with further experiments in an effort to ultimately improve and enhance the model.

An updated H. pylori was also recently developed and published [65]. This
expanded model includes 341 genes and 476 intracellular metabolic reactions.
A single-gene deletion analysis was carried out in which the growth capability of
all 341 knockouts was assessed by constraining the flux through the associated
reaction(s) to zero for FBA simulations of growth on both minimal and rich medium.
More than 70 percent of the 72 predictions for which experimental data was available
were in congruence. Furthermore, this result represents an improvement over the
previous version of theH. pylori reconstruction [64]. A simulated double-deletion, or
synthetic lethal, screenwas also carried out using this network by constraining the flux
for reactions associated with all pairwise combinations of genes in the model to zero.
Of the more than 22,000 combinations that were tested, 47 pairs involving 64 unique
genes were found to be lethal. While no corresponding experimental data exists for
validation, this effort is still quite useful in that it can direct researchers to the
potentially more interesting portions of the network for experimental investigation
in the absence of a labor-intensive high-throughput screen.

6.3.1.4 Saccharomyces cerevisiae In recent years, using the vast quantities
of data available for the baker’s yeast, S. cerevisiae, researchers have developed
a genome-scale reconstructed metabolic model using the constraint based ap-
proach [70,83]. A total of 708 metabolism related ORFs were accounted for in the
reconstructed network, corresponding to 1035metabolic reactions. An additional 140
reactions were included based on biochemical evidence without direct knowledge
of a responsible enzyme, ultimately yielding a reconstructed network containing 1175
metabolic reactions and 584metabolites. This model has been shown in most cases to
predict growth characteristics consistent with observed phenotypic functions [83].

Gene essentiality was assessed by using this large-scale model of S. cerevisiae to
computationally evaluate the effect of 599 single-gene deletions on viability [84].
In this study, growth of yeast was simulated under aerobic conditions and on complete
medium containing glucose, the 20 essential amino acids, and nucleic acids.
Ammonia, phosphate, and sulfate were also supplied. Gene deletions were simulated
by constraining the flux through the corresponding reactions to zero and optimizing
for growth, as in previous studies inE. coli [85], and performancewas gauged through
comparison with experimental data.
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The model performed remarkably well, accurately predicting the effect of
90 percent of thesemutant alleles. In concurrencewith experimental observation [86],
a small fraction of these deletion strains exhibit impaired growth and fewer are still
lethal. It should be noted, however, that the model had the most difficulty in correctly
predicting null mutant phenotypes. This can be attributed to incomplete biochemical
information, inadequate biomass equation definition, and gene regulatory effects.
Addressing each of these issues in future work will likely improve the model’s
predictive capability. Future studies might also include the examination of lethal
double mutants, also known as synthetic lethality [83,87], as thesemay provide better
insight than single deletion mutants into gene essentiality and network robustness in
S. cerevisiae.

6.3.2 Model Performance Assessment

Validating model predictions is a critical component in constraint-based model
analysis. Growth phenotype data, available for a number of knockout strains and
organisms, can be acquired from biochemical literature [88] and online databases,
includingASAP [89] forE. coli, as well as CYGDand SGD for S. cerevisiae. As noted
in the previous section, experimental growth phenotype data is available to assess
directly the predictive power of the model for three of the four organisms listed
previously, and shows that correct predictions were made in approximately 60, 86,
and 83 percent of cases for H. pylori [64], E. coli [53], and S. cerevisiae [71],
respectively. These comparisons serve two important functions: Validation of the
general predictive potential of the model and identification of areas that require
refinement. In this sense, constraint-based models are particularly useful in experi-
mental design by directing research to the most or least poorly understood biological
components. The next section details how to interpret incorrectmodel predictions and
their likely causes.

6.3.3 Troubleshooting Incorrect Predictions

In the studies discussed in Section 6.3.1, the model predictions when compared to
experimental findings failed most often by falsely predicting growth when the gene
deletion leads to a lethal phenotype in vivo. This trend indicates that themost common
cause of false predictions is because of the lackof information included in the network.
For example, certain important pathways not related to metabolism in which the
deleted gene participates may not be represented. In addition, the objective function
may not be defined properly by failing to include the production of a compound
required for growth. This case was shown to account for many false predictions when
using a yeastmetabolicmodel to account for strain lethality [72]when a few relatively
minor changes to the biomass function dramatically improved the model’s predictive
capability. Alternatively, the gene deletion may lead to the production of a toxic by-
product that ultimately kills the cell, a result for which this approach cannot account.
Furthermore, certain isozymes are known to be dominant whereas metabolic models
typically assign equal ability to each isozyme. Themodelwould predict viable growth
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for the dominant isozyme deletion whereas in vivo, the minor isozyme(s) would not
sufficiently rescue the strain from the lethal phenotype perhaps due to lower gene
expression or enzymatic activity.

An additional major error source stems from the lack of regulatory information
incorporated into the previously described models. Including transcription factor, meta-
bolic gene interactions, using a Boolean logic approach, enhance the accuracy
of constraint-based model predictions [53]. Regulatory information is available
in the primary literature, in addition to online resources such as EcoCyc and
RegulonDB [90]. Furthermore, these interactions can be derived fromChIP-chip analysis
of transcription factors and corresponding gene expression microarray data [91]. Amore
detailed treatment of this latter topic is presented in Section 6.4.3.

Incorrect predictions are less often due to false predictions of lethality. These
uncommon cases often suggest the presence of previously unidentified enzyme
activities, which if added to the model, would lead to accurate predictions. They
may also reflect improper biomass function definition, but in a different sense from the
situation described above. For example, rather than failing to include compounds
required for growth, it is also possible that certain compounds are included in the
biomass function erroneously, and may actually not be essential to support biological
growth. In any case, inaccurate [12,92] predictions are most often attributed to a
paucity of information available for inclusion in the model and not simply a failure of
the technique, thus validating the general strategy of constraint-based modeling.

6.3.4 Additional Analytical Tools

A rapidly growing collection of analytical methods have been developed for use in
conjunctionwith constraint-basedmodels [12], some ofwhichwe briefly introduce in
this section. Although many of the examples in this chapter focus on the use of
constraint-based models to assess gene essentiality, these models can also be used to
predict behavior of viable gene deletions. For example, FBA uses LP to identify the
optimal metabolic state of the mutant strain. In contrast, Minimization of Metabolic
Adjustment (MOMA) uses quadratic programming (QP) to identify optimal solutions
that minimize the flux distribution distance between a wild type and simulated gene
deletion strain [93,94]. Experimental data seems to confirm the MOMA assumption
that knockout strains utilize themetabolic network similar towild type [93]. It remains
to be determined if this is true in all situations or if the network optimizes for growth
over time following gene deletion.

A more recent method known as regulatory on/off minimization (ROOM) [95]
is another constraint-based analysis technique that uses a mixed integer linear
programming strategy to predict the metabolic state of an organism following a
genedeletionbyminimizing thenumber of flux changes that occurwith respect towild
type. In other words, this algorithm aims to identify flux distributions that are
qualitatively the most similar to wild-type in terms of the number and types of
reactions that are utilized. While MOMA seems to better predict the initial metabolic
adjustment that occurs following the genetic perturbation, ROOM, like FBA, better
predicts the later, stabilized growth phenotype.
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Constraint-based modeling also has applications in the metabolic engineering
field. Identifying optimal metabolic behavior of mutant strains using a bilevel
optimization framework has been employed by OptKnock [96]. This metabolic
engineering strategy uses genome-scale metabolic models and a dual-level, nested
optimization structure to predict which gene deletion(s) will lead to a desired
biochemical production while retaining viable growth characteristics. This technique
establishes a framework for microbial strain design and improvement and has
the potential for significant impact. These and other analytical techniques and
applications that rely on constraint-based modeling will be discussed in detail in
Chapter 11.

Additional methods have been developed to specifically assess the systemic or
topological properties of these networks [12]. Extreme pathway analysis [97]
represents one such technique that utilizes convex analysis of the S matrix to define
a cone that circumscribes all allowable steady-state solutions within the space defined
by the S matrix and its associated constraints (see Fig. 6-1 for a conceptual
representation of the this space, also known as the ‘‘solution space”). Accordingly,
all possible routes through the network can be described by nonnegative combinations
of the generated extreme pathways. This technique and analysis of the extreme
pathways themselves have been fruitful in a variety of studies (for examples, see
Refs [98–100]) and can be readily calculated for reasonably sized networks using
available software [79,101].

6.4 FUTURE DIRECTIONS FOR CONSTRAINT-BASED MODELING

Thus far, constraint-based models have had their primary success in assessing the
metabolic capabilities of cells, but fail to account for many other important aspects of
cellular biology. In the past several years, however, several efforts have been initiated
to apply the constraint-based modeling and analysis techniques to other cellular
processes. Belowwe briefly describe relatively recent work that is setting the stage for
including RNAand protein synthesis [102] aswell as other processes governed by cell
signaling [103] and transcriptional regulatory networks (TRNs) into genome-scale,
constraint-based models of the cell.

6.4.1 Modeling of RNA and Protein Synthesis

RNA and protein synthesis represent two of the primary energy drains on the cell [58]
and are of obvious vital importance in that these processes give rise to many of the
active components responsible for cellular activities. Existing constraint-based
genome-scale metabolic models do not explicitly account for these processes, rather
they are included as abstract, lumped sum quantities of monomeric amino acid, and
nucleotide triphosphate demand required to support cellular growth [104]. The
specific values for these quantities are determined from measurements of biomass
constituents [58] and are independent of the genome sequence. In order to meet this
deficiency in the field, a scalable, constraint-based framework was developed to
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capture the metabolic requirements for gene expression and protein synthesis directly
from the genome sequence [102].

The general strategy stems from the observation that RNA and protein synthesis
can be broken down into constitutive biochemical reactions that underlie the proces-
sing of these polymers. As illustrated in Figure 6-5, the expression of a given gene and
the synthesis of the protein that it encodes can bemodeled by six essential biochemical
reactions. These reactions include transcription initiation, transcription elongation,
mRNAdegradation, translation initiation, translation elongation, and tRNA charging.
Biochemical equations representing each of these processes can be compiled
(Fig. 6-5b) and used to formulate an associated S matrix (Fig. 6-5c).

Many of the previously introduced analytical tools can then be used to computa-
tionally assess the properties of the S matrix. For example, by choosing protein
production as the objective, FBA can be used to determine howmuch the protein that
the RNAand protein synthesismachinerywithin the cell can produce for a given set of
environmental conditions and resources [102]. One can also incorporate promoter
strength, transcription elongation, and translational initiation constraints on the
system if such information is known or can be approximated. Extreme pathway
analysis can also be used to assess the capabilities of these systems and their
characteristic states [102]. Thus far, however, this framework and analysis
methods have only been applied to small biological systems, namely the malate
dehydrogenase (mdh) gene and the lac operon [102]. Accordingly, the limitations
associated with studying large-scale systems in this manner remain to be assessed,
although an ongoing study of theE. coliRNA and protein synthesis network (I. Thiele
and B. Palsson, personal communication) is certain to be illuminating.

6.4.2 Modeling of Cell Signaling Networks

The signal transduction pathways that comprise cell signaling networks are responsi-
ble for many critical processes. Signaling events operate both on relatively quick
timescales, such as those that cause posttranslational protein changes, and long
timescales, such as cell cycle control, cell proliferation and migration, as well as
apoptosis. Cell signaling networks are often highly connected and complex involving
many molecular players. In an effort to quantitatively characterize their properties,
researchers are beginning to reconstruct these networks and apply mathematical
methods to analyze them.

One approach to computationally analyzing cell signaling networks relies onmany
of the same constraint-based modeling principles discussed earlier in this chapter for
metabolic networks [103,105].Thekey insight is to treat signalingpathways as a series
of biochemical transformations starting with an input (the signal) and resulting in an
output (posttranslational proteinmodification, apoptosis, etc.). Accordingly, just as in
modeling metabolic networks the first steps of this process focus on network
reconstruction. One must first identify the components in the signaling network of
interest and the interactions that occur between them. In contrast to modeling of
metabolic networkswhere enzymes andmetabolites are the primary players, signaling
networks typically include receptors and their corresponding receptor ligands,
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metabolites such as ATP andADP, as well as intracellular signal transducing proteins.
Also, these networks often include transcription factors, transcription factor binding
sites, and the resulting target genes.

The data from which components and their interactions are derived have been
traditionally difficult to obtain due to the often laborious effort involved in mapping
signaling pathways using standard molecular biology techniques. However, recent-
ly developed high-throughput, genome-scale techniques are mitigating this issue.
For example, whole genome sequencing and annotation identifies the possible
network components, ChIP-chip assays identify protein-DNA interactions, and
yeast two-hybrid assays identify protein–protein interactions. As previously noted,
Table 6-2 summarizes many useful online resources that contain publicly accessible
data. Several strategies for mapping signaling pathways and networks have been
developed in recent years by integrating these and other high-throughput data [4].
These methods have been employed to map DNA damage response as well as
developmental pathways [4] among others.

Having identified the components and interactions that occur between them, a list
of biochemical reactions that describes the cell signaling network can be listed.
A stoichiometric matrix is then derived from this list (Fig. 6-6) in verymuch the same

Figure 6-6 Constraint-basedmodeling of cell signaling networks. (a) A schematic that includes a

portion of the nuclear factor (NF)-kB signaling-related network is depicted. (b) A reaction list that

corresponds to the schematic in (a) is detailed. Reactions are included for the interaction of IkB

kinase (IKK) with the inhibitor of NF-kB (IkB)-NF-kB complex. The subsequent phosphorylation

of IkB and release of NF-kB are also shown in addition to the degradation of phosphorylated IkB

(IkBpp) and NF-kB translocation to the nucleus, and exchange fluxes required for the system.

(c) The associated S matrix is compiled based on the reaction list. System components are

depicted in each respective row, and reactions are represented in each column.
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manner as previously described for metabolic as well as RNA and protein synthesis
networks. It is important to note that each state of a component must be explicitly
accounted for in the network. For example, a proteinmust be differentially represented
in separate phosphorylated and unphosphorylated forms [105,106].

This stoichiometric framework explicitly defines the underlying network reactions
in a chemically consistent form. Accordingly, network properties can be readily and
quantitatively assessedusingpreviously introducedanalytical tools.Extremepathway
analysis, in particular, is an immensely useful tool for characterizing cell signaling
networks. Using existing software [101,107], one can enumerate the extreme
pathways using the stoichiometric matrix from the reconstructed cell signaling
network.

All routes through the cell signaling network can be described by nonnegative
linear combinations of the extreme pathways. Accordingly, network cross talk,
signaling redundancy, correlated reaction sets, as well as reaction participation and
likely relative importance are all properties that can be derived from this analysis.
Network cross talk refers to an analysis of how disjoint, overlapping, or identical
inputs can lead to disjoint, overlapping, or identical outputs within a signaling
network and are derived from pairwise comparisons of individual extreme pathways.
Strictly speaking, signaling redundancy is themultiplicity of routes through a network
by which identical inputs lead to identical outputs, but it can be further delineated
into considerations of input and redundancy alone. Correlated reaction sets are a
collection of reactions that is always either present or absent in all of the extreme
pathways. In other words, these sets of reactions represent functional modules that act
together in a given network, although the reactions themselvesmay not necessarily be
adjacent on the reaction map. Finally, reaction participation is the percentage of
pathways inwhich agivensignaling reaction isused.This relatively simple calculation
can indicate important biological insights. For example, reactions with high partici-
pationvalues are likely to be critical for network functionality while low participation
values indicate more specialized portions of the network.

Thus far, the stoichiometric approach tomodeling signalingnetworkshasonlybeen
applied to a prototypic network [105] and the human B-cell JAK (Janus activated
kinase)–STAT (signal transducer and activator of transcription) signaling net-
work [106]. While the prototypic network study served simply as proof of concept,
thework on the JAK–STATnetwork showed that the constraint-based approach can be
used to analyze real biological systems and yield quantitative insights into its
properties.Accordingly, asmore signaling networks are delineated and reconstructed,
this approach will likely be of great utility.

6.4.3 Modeling of Transcriptional Regulatory Networks

With the huge success of whole genome sequencing efforts and the appearance of
hundreds of genome sequences, there is an increased interest in understanding how the
genes within a given genome are regulated through complex TRNs). Consequently,
efforts are underway to define and catalog the set of regulatory rules for model
organisms. Due to the large number of regulated genes and associated regulatory
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proteins as well as their extensive interconnectivity, there is a significant need for
a structured framework to integrate regulatory rules and interrogateTRNfunctions in a
systematic fashion.

Previous work has integrated models of regulatory and metabolic networks to
analyze and predict the effect of transcriptional regulation on cellular metabolism at
the genome scale [50,52,53,108]. These studies developed and utilized a framework
in which regulatory rules are represented as Boolean logic rules that control the
expression of enzyme-encoding genes that ultimately facilitate metabolic reactions
within a constraint-basedmetabolicmodel of the type described previouslywithin this
chapter. The regulatory rules are defined such that metabolic enzyme genes are
determined to be present or absent based on the presence or absence of extracellular
and intracellular metabolites. If an enzyme-encoding gene is determined to be absent
then the flux through that enzyme is set to zero in themetabolicmodel, which in effect
adds a temporary constraint on the system. In effect, this is equivalent to carrying out
FBA on the network following a gene deletion.

Using an iterativecomputational scheme inwhich time, t, is divided into small steps
(usually on the order of minutes), a dynamic profile of growth can be simulated. At
t¼ 0 the metabolic model is used to predict the optimal flux distribution for the
network using FBA, as described in Section 6.2.4. The resulting flux distribution is
used as initial conditions from which the Boolean transcriptional regulatory rules are
evaluated. The rule evaluations specify the transcriptional status of enzymes for the
next time step.As noted above, if the transcriptional state of an enzyme-encodinggene
results in the absence of the corresponding enzyme the reaction flux(es)mediated by it
are set to zero for the FBAcarried out on the system for the next time step. This process
of iterative Boolean rule evaluation and FBA calculation continues for the user-
defined time span [50,52].

This type of integrated analysis of metabolic and regulatory networks has been
performed for both small prototypic systems [52] as well as for a genome-scale model
of E. coli [50] and more recently in yeast [108]. In the study of E. coli, this analysis
was performed in conjunction with dual perturbation growth experiments coupled
with genome-wide expression analysis. This systematic approach to reconstructing
and interrogating the integrated network of E. coli led to the identification of many
novel regulatory rules, and an expanded characterization of the genome-scale TRN,
based on amodel-driven analysis of multiple high-throughput data sets. Furthermore,
a recent study has also used this model in a large-scale simulation project to study
all potential network states and found them to be organized primarily based upon
terminal electron acceptor availability [57]. However, one shortcoming of this
framework is that it does not facilitate a detailed analysis of transcriptional regulatory
network properties.

In an effort to address this limitation, a structured and self-contained representation
of TRNs that can be quantitatively interrogated has been developed relying on the
principles of the constraint-based approach [109]. This strategy, which effectively
connects environmental cues to transcriptional responses, is conceptually similar
to the previously described constraint-based approach to modeling cell signaling
networks. The first step in the process involves defining the components of the system
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and interactions between them based on legacy data from traditional molecular
biology studies or from recently generated high-throughput data. In particular,
ChIP-chip data provides direct information regarding transcription factor-target
gene relationships and genome-wide expression profiling data can yield insight as
to the type of regulation. For example, when examined using conditions in which a
given transcription factor is known to be active, the upregulation of a gene identified to
be a target of the given transcription factor indicates that the transcription factor
serves as an activator, whereas downregulation of the target gene suggests that the
transcription factor acts as a repressor for that particular target gene. The environ-
mental cues or stimuli to which the transcription factors respond as well as any
required cofactors such as cyclicAMP (cAMP)must also be identified and included in
this representation.

Having gathered this type of information that describes the regulatory system of
interest, the next step is to write quasi stoichiometric, biochemical equations that
describe the regulatory logic for each interaction in the network (Fig. 6-7b). The quasi
stoichiometric nature of these equations is not required of course, but rather is used due
to the general lack of specific chemical detail for most regulatory interactions. As the
specific stoichiometry of regulatory interactions becomes available [110], however,
higher levels of detail can be readily incorporated into this framework.As is the case in
reconstructing cell signaling networks, it is important to reiterate that each state of a
component must be explicitly accounted for in the network. For example, for
regulatory networks, this case is encountered when transcription factors interact
with cofactors to form activating or inhibitory complexes.

One peculiarity of this methodology is that it requires the inclusion of the converse
of regulatory rules in addition to the regulatory rules themselves. The converse of the
regulatory rules—the regulatory reactions that lead to the inhibition of gene tran-
scription in our sample system—is necessary to reflect the lack of protein production
for a given set of environmental cues. Many regulatory rules are inhibitory, such that
the expression of a protein depends on the absence of a given metabolite or protein
product. Additional reactions that include the converse of the regulatory rules and the
absence ofmetabolites and protein productswhere appropriatemust be included in the
system.Also, note that regulatory rules of theBoolean type ‘‘OR” require twoseparate
reactions to indicate that there are two independent ways in which the target gene can
be transcribed.

A matrix can then be compiled from this list of biochemical reactions (Fig. 6-7c) in
much the sameway as was done for the other network types described previously in this
chapter. Each row of the matrix describes a component of the system and each column
represents regulatory events, or reactions. As a reminder, notice that each metabolite is
represented in both present and absent forms, as is each transcription factor. Furthermore,
the quasi stoichiometric formalism needs to be supplemented by exchange reactions that
balance the entry of external cues or stimuli into the system as well as the production of
proteins and their exit from the system. These exchange reactions describe the role of
external cues and stimuli as inputs to the regulatory system and the role of the proteins as
outputs of the transcriptional regulatory system. Therefore, columns representing the
exchange of external stimuli as well as protein products are incorporated.
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Figure 6-7 Constraint-based modeling and analysis of transcriptional regulatory networks.

(a) The lac operon regulatory system is depicted and defined to include the lac operon genes

(lacZ, lacY, lacA), the inhibitor gene lacI, the activatorCrp, and the inducer allolactose (Allo). (b) A

reaction list that summarizes the Boolean rules that capture the regulatory logic of the system is

shown. (c) The Rmatrix that corresponds to the regulatory rule list from (b) is depicted with each

row corresponding to system components and each column specifying regulatory reactions in

a quasi stoichiometric formalism. Accordingly, a ‘‘�1’’ represents a ‘‘consumed’’ component,

whereas a ‘‘þ 1’’ represents a ‘‘produced’’ component. (d) The two extreme pathways for this

system are listed in r with the corresponding reaction labels listed as well for reference. A nonzero

value indicates that the corresponding reaction is active. The negative coefficients in the second

extremepathway reflect thatAlloandCrp canbe thought of as conceptually flowing into the system.

(e) Pathway 1 is graphically illustrated and reflects the conditions for the LacI-mediated inhibition

of the lac operon. (f) The graphical depiction of Pathway 2 shows the activation of the lac operon

(i.e., inhibitionof LacI byallolactose, thusallowing for derepressionandCrp-activatedexpressionof

lacZYA). rT, the transpose of the extreme pathway vectors reported in r (depicted in thisway simply

out of space considerations).
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With a regulatorymatrix in hand,many of the analytical tools previously discussed
can be applied to assess its properties. For example, extreme pathway analysis
generates a set of vectors that encompasses all possible expression states of the
network. Recall that all possible regulatory pathways, and thus expression states can
be described as a nonnegative linear combination of these extreme pathways.
Consequently, extreme pathway analysis represents an in silico technique for evalu-
ating global characteristics of gene expression. Furthermore, the pervasiveness of
signal inputs, percentage of environments inwhich a givengene is expressed, numbers
of genes coordinately expressed, andcorrelatedgene sets represent the typeofdata that
can be readily generated based on extreme pathway analysis for a transcriptional
regulatory network.

To illustrate some of these regulatory matrix ideas, we briefly consider the lac
operon inE. coli. For the purpose of this investigation, the system is defined to include
the lac operon (lacZYA) and the proteins each gene encodes, the inhibitor of the operon
(lacI), an activator of the operon (Crp), and the intracellular inducer molecule
allolactose, which inhibits the LacI inhibitor thus activating lacZYA transcription
(Fig. 6-7a) by way of derepression.

Having defined the system (Fig. 6-7a) and Boolean rules that specify the regulatory
logic of this small transcriptional regulatory network (Fig. 6-7b), the system can be
formulated and the associatedRmatrix constructed (Fig. 6-7c). For the purposes of this
analysis, each gene/operon is depictedwithin thematrix twice: lacI and lacI�, aswell as
lacZYA and lacZYA�. The former entity represents the open form, whereas the latter,
asterisk-markedentity represents the actively transcribed formof thegene.This level of
detail isnotrequiredinformulatingRastheactivelytranscribedformofthegeneisonlya
transient entity between transcription and translation. Rather, this is meant to show
concretely that suchmechanistic detail aboutORFsandothernetwork relationshipscan
be readily incorporated into the current formalism as the data becomes available.

Extreme pathway analysis on this system yields two vectors, denoted by r
(Fig. 6-7d). Each entry in the vectors represents the activity of a reaction in the
expression state, or pathway. For reaction names prefacedwith a ‘‘v,” a 1 indicates that
the reaction is active, and a 0 indicates that it is inactive. In the remaining reactions
that specify flow across the system boundary, a 1 indicates flow out of the system (for
example, a protein is produced), a -1 indicates flow into the system, and a 0 indicates
that the associated component is neither produced nor consumed. Note that the entries
are not quantitative but denote an active connection, and further, that a series of
connections leads to a ‘‘causal path.” The first vector represents the LacI-mediated
inhibition of the lac operon. The second vector defines the inhibition of LacI by
allolactose, thus resulting in derepression and Crp-activated expression of lacZYA.
These twovectors thus represent the two expression states of the lac operon system, as
depicted graphically in Figure 6-7e and f.

Thus far, this approach has only been applied to the small lac operon system
described above and a larger 25 gene prototypic network [111]. While this proof of
concept study validates the utility of this approach for small systems, potential
complications associated with scaling this approach up to genome-scale systems
remain to be determined. Nonetheless, transcriptional regulatory network matrix
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reconstructions for model organisms will likely be important not only in studies
of regulatory network properties but also in guiding experimental programs based
upon results from these analyses.

6.4.4 The Next Big Challenge

The constraint-based approach has proven immensely successful for modeling
metabolic models and, as described in this section, is showing promise for RNA
and protein synthesis, cell signaling, and transcriptional regulatory networks.
However, as the field currently stands, each respective framework produces models
that exist as independent entities. Arguably, the ultimate goal of systems biology is to
integrate data from disparate sources and generate comprehensive models that reflect
biological reality for entire cells. Therefore, these modeling strategies present an
opportunity to take a significant step forward in realizing this aim through integrative
modeling efforts.

To elaborate, the interconnectivity between these distinct networks is clear. For
example, a simplistic, but illustrativeconceptual picture (Fig. 6-8) canbe envisioned in

Input

Enzyme

A

B D

Signaling

network

RNA and Protein
synthesis
network

Metabolic

network

Transcriptional

regulatory

network

C

Figure 6-8 The next big challenge: model integration. This chapter has illustrated the utility of

constraint-basedmodeling and analysis in computationally representingmany cellular processes.

To date, however, thesemodels have been developedandanalyzed in isolation despite the fact that

these systems are all interrelated, as shown in this conceptual figure. For example, cellular signals

or inputs are recognized by the cell signaling network, which in turn stimulate regulatory processes.

These regulatory processes mediate RNA and protein synthesis ultimately leading to the produc-

tion of enzymes that perform metabolic processes that result in cell growth or maintenance. The

dashed arrows highlight the interconnectivity of these networks in the form of shared molecular

components or feedbackmechanisms. In principle, the constraint-based formalism can be used as

a platform to capture these systems into a single picture. Accordingly, one of the next major

challenges facing thefield is to integrate thesemodelsof disparate cellular processes, thuspushing

toward one of the field of systems biology’s foundational goals: To computationally represent and

analyze models of entire cells and biological systems.
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which system inputs are recognized by cell signaling networks that in turn stimulate
regulatory processes. These regulatory processes mediate RNA and protein synthesis
ultimately leading to the production of enzymes that performmetabolic processes and
lead to cell growth or maintenance. Additional connectivity between the systems also
exists in the form of feedback processes and shared currencymetabolites such as ATP
and GTP, for example. Thus, in principle, the stoichiometric and pseudo-stoichiomet-
ric representations of the networks described in this chapter could be integrated into a
unifiedmodel of the cell.While there are certainly computational challenges that will
need to be overcome in order to facilitate the development and analysis of such a
model, this notion seems feasible and is sure to be tackled in the near future.
Representing additional cellular processes, such as differentiation, and accounting
for multicellularity await novel research efforts and represent open problems to be
addressed in the more distant future.

6.5 CONCLUSIONS

Despite the challenges outlined in the previous section associated with pushing the
field forward, constraint-based modeling and its associated analyses are (and will
remain as) powerful tools that facilitate system-level modeling [11,53,103] and
analysis of biological networks [57,99,111,112]. Furthermore, these model-based
studies can be used to help researchers prioritize experimental projects and save
considerable time at the bench. Beyond its utility as a tool for basic biological research
and in metabolic engineering applications [97,113], this computational approach also
has potential medical relevance. For example, in pathogenic microbial models, each
gene that is predicted to be essential by constraint-based modeling and analysis
represents a potential drug target that could be used to develop effective therapeutics in
the future. As more genome-scale models are developed and existing models en-
hanced, additional applications—abroad rangeof fields—will likelybecome apparent.
Consequently, the flexibility of constraint-based models will continue to be exploited
to drive the exploration of countless exciting biological questions in the future.
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7.1 INTRODUCTION

Living organisms have to adapt and respond to an ever-changing environment. The
genes of the organism are the basis of both immediate responses to these changes and
long-term evolutionary adaptation. In fact, the functional capabilities of an organism
are the result of complex interactions between the gene products encoded by its
genome, and cellular functions are therefore tightly linked to the regulation of gene
expression.

Wecall genetic regulatorynetwork thesetofgenesofanorganismand the molecular
components controlling gene expression. This control is generally exerted by proteins
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regulating thedifferent stagesofgeneexpression, that is, transcription,mRNAstability,
translation, and protein degradation. The regulators not only include proteins but also
signaling molecules allosterically modulating the activity of proteins and small RNAs
regulatinggeneexpression [1].Theultimateeffectofa regulatorofgeneexpression is to
modulate theconcentrationor activity ofageneproduct.Thecharacteristic timescale of
interactionswithin the genetic regulatory network is therefore generally determined by
the speed of transcription and translation, ranging fromseveralminutes for prokaryotes
to several hours for higher eukaryotes.

The genetic regulatory network is connected to other cellular networks, such as
signal-transduction cascades and metabolic pathways. The interactions within these
networks are typically much faster than gene regulation: The average metabolic
enzyme carries out a reaction cycle within milliseconds to microseconds, and most
signal-transduction events also involve rapid covalent modifications, such as phos-
phorylation. Even though a complete description of the functioning of an organism
will have to include all these networks and their interactions, the genetic regulatory
network occupies a central position. Modifications of gene expression are at the very
basis of developmental decisions and the response to a particular environment in the
short term (adaptation) and long term (evolution). Moreover, due to differences in
characteristic timescales, metabolic and signal-transduction pathways can often be
seen as mediating indirect interactions on the genetic level. For instance, if a
metabolite produced by a particular enzyme affects the activity of a transcriptional
regulator, we can hide the molecular details of the (fast) enzymatic reactions and
simply say that the gene coding for the enzyme indirectly regulates the activity of the
regulator [2].

Genetic regulatory networks are the product of evolutionary processes that are
better described as tinkering than engineering, in the words of François Jacob [3]. In
fact, evolution does not work according to a preconceived plan, but achieves efficient
performance by exploiting contingent events. It does not build an organism from
scratch for a well-defined purpose, but modifies and reorganizes what is already
available in order to meet arising environmental challenges. Notwithstanding these
differences, many aspects of the structure and dynamics of biological systems can be
compared with the principles governing man-made, engineered systems [4]. For
instance, biological systems can be seen as being put together from reusable parts,
assembled into modules, in much the sameway as are man-made systems. Moreover,
the questionwhich aspects of the structure of a systemallow it to reliably function over
a range of environmental conditions, in the presence of noise, can be asked of
biological and man-made systems alike. Not surprisingly therefore, living organisms
have been fruitfully compared to airplanes [5] and genetic regulatory networks to
electronic circuits [6]. In addition, the analogies between a signal-transduction
pathway and a transistor radio have inspired some insightful comments on current
biological research [7].

From the observation that the functioning of biological systems might be under-
stood in much the same way as man-made systems, it is only a small step to applying
traditional engineering methods to the study of cellular networks. This is one of the
main inspirations of the emerging field of systems biology [8], and it also underlies our
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contribution. More specifically, the aim of this chapter is to review different
approaches toward the mathematical modeling of genetic regulatory networks,
from both a theoretical and a practical point of view. Much emphasis will be put
on a point that is familiar to engineers, but is often forgotten when it comes to
biological modeling: A model is not a faithful copy of reality, but a simplified
representation adapted to a particular type of biological questions. Instead of a single
modeling approach, we therefore need a multiplicity of approaches, each capturing a
different aspect of the biological system under study.

In addition to the observation that adopting an engineering approach might lead to
fresh insights into the functioning of biological processes, the parallels between
biological and man-made systems can be pushed further by applying engineering
methods to the design of genetic regulatory networks and their actual implementation
in living cells. Such networks could be useful in a variety of ways as a test bed for the
study of naturally occurring networks or as a vector for biotechnological and medical
applications. The rise of synthetic biology [9,10] is the second major theme of this
book and is addressed in a number of other contributions, such as the chapter by
Fussenegger. In this chapter, we will describe modeling approaches that can be used
not only for the analysis of genetic regulatory networks but also for their design.
Although, in our examples, we focus on applications in the field of systems biology,
many of the theoretical and practical considerations carry over to network design in
synthetic biology.

In order to illustrate the different kinds ofmodeling approaches, aswell as the kinds
of questions that can be addressed by each of these, we focus in this chapter on one
particular model system:Escherichia coli. Although its ecological niche is the human
colon, this enterobacterium has turned out to be an excellent model system for
biological research as it is capable of persisting in diverse environments, easy to
manipulate in the laboratory, and evolutionarily close tomany pathogenic bacteria. In
this chapter,wewill showwhat thedifferentmodeling approacheshave taught us about
the stress responses of E. coli, that is, the adaptation of the bacterium to a variety of
stresses, such as a lack of essential nutrients, overcrowding, and temperature
shocks [11,12]. The capability to respond to challenges arising from its environment
is essential to the survival of the bacterium in the short and long term.

The stress responses of E. coli are controlled at the molecular level by a genetic
regulatory network integrating various environmental signals. The network involves
the interplayofnumerous signal-transduction cascades,metabolic pathways, andgene
expression interactions, which together control the reorganization of the bacterial
physiology andmetabolism in response to agiven stress [11,12].Althoughmanyof the
molecular components of the networks have been identified, currently not much is
known about how the interactions between these components give rise to the cellular
response toexternal stresses. It is clear that,whendealingwithnetworksof this size and
complexity, intuitive reasoning about the dynamical behavior of the system quickly
becomes infeasible or fraught with error. This motivates the use of modeling and
simulation approaches to better understand the survival strategies of the bacterium.

More generally, due to the enormous amount of information that has been
accumulated about cellular interaction networks [13], E. coli has become a system
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of choice formodeling and simulation studies. The first models on themolecular level
of its response to particular nutrient shifts have appeared already in the early seventies
(e.g., see Ref. [14]), while pioneering attempts to developwhole-cell models ofE. coli
adaptation appeared more than 20 years ago [15]. Recently, an International E. coli
Alliance has been founded aiming at the coordination of modeling efforts so as to
create an in silico cell corresponding to the bacterium [16,17].

In the remainder of this chapter, three different kinds of modeling formalisms are
discussed: graphs, ordinary differential equations, and stochastic master equations.
We summarize themathematical basis of the formalisms aswell as their application to
the analysis of various E. coli stress–response networks. In particular, we investigate
how these formalisms have helped address questions on (i) the structural decomposi-
tion of the stress–response network into modules and motifs, (ii) the existence of
steady states and the dynamic response of the stress–response network to external
perturbations, and (iii) the emergence of robust network behavior in the presence of
intracellular and extracellular noise. In the concluding discussion we consider which
questions are suitably addressed by each of the modeling formalisms and emphasize
the point of model pluralism. For further information, the reader may wish to consult
other reviews on the modeling of genetic regulatory networks [18–22].

7.2 GRAPH MODELS

7.2.1 Model Formalism and Analysis Techniques

Probably the most straightforward way to model a genetic regulatory network is to
view it as agraph.Formally, agraph is defined asa tuple (V,E),withVindicatinga set of
vertices, and E�V�V indicating a set of edges [23] as follows:

G ¼ ðV ;EÞ ð7-1Þ

The edges represent the relation between vertices and may be directed or undi-
rected. A directed edge is a pair (i, j)2E of vertices, where i denotes the head, and j
denotes the tail of the edge. (i, j) is an undirected edge if the order of thevertices is of no
importance. Thevertices of a graph correspond to genes or other elements of interest in
the cell, while the edges denote interactions among the genes. In the case of directed
graphs, edges point from regulating to regulated genes, for example, from genes
encoding transcription factors to the targets of the transcription factors. The graph
representation of a genetic regulatory network can be generalized in several ways. For
instance, the vertices and edges could be labeled, by adding information about genes
and their interactions.Definingadirected edgeas (i, j, s),with sequal to þ or�, allows
one to indicate whether i is activated or inhibited by j, respectively.

An example of a simple directed graph model is shown in Figure 7-1. It consists of
three genes, connected by labeled interactions that indicate whether a gene positively
or negatively regulates the expression of its target. Many of the pictures of biological
networks found in the literature can be mapped to some sort of graph representation.
Two particularly impressive examples are the mammalian cell-cycle control
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network [24] and the network regulating endomesoderm specification in the sea
urchin [25].

The representation of a genetic regulatory network as a graph allows the analysis of
its topological properties by means of graph–theoretical techniques [26,27]. The
global connectivity properties of the network can, for instance, be described by the
average degree and the degree distribution of the vertices. The degree k of a vertex
indicates the number of edges to which it is connected (if necessary, incoming and
outgoing edges can be distinguished). hki denotes the average degree andP(k) denotes
the degree distribution of the graph. These properties give an indication of the
complexity of the graph and allow different types of graphs, and therefore networks,
to be distinguished (Fig. 7-2). In classical random graphs (Fig. 7-2a), also called
Erdo��s-R�enyi graphs, the probability that a given vertex has k edges follows a Poisson
distributionP(k). That is, the vertices typically have hki edges, and the vertices having
significantly more or less edges than hki are extremely rare, as shown in part (c) of the
figure. By contrast, in scale-free graphs (Fig. 7-2b), the vertex degrees obey a power-
law distribution P(k)� k�g, shown in part (d) of the figure. Scale-free graphs are
inhomogeneous, in the sense that most of the vertices have few edges, whereas some
vertices, called hubs, have many edges and hold the graph together.

For values of the degree exponent g between 2 and 3, scale-free graphs have a
number of surprising properties. First, the average length of the path between two
vertices of the graph is proportional to log log |V|, where |V| denotes the number of
vertices of the graph [26,27]. This is even shorter than the average path length in
random graphs, which scales as log |V| and confers them the small-world property
[28]. The small-world property implies that local perturbations can quickly spread out
through the entire network. Second, the presence of hubs makes scale-free graphs
robust against accidental failures [29–31]. Whereas randomly removing a certain
number of vertices disintegrates a random graph, in a scale-free graph this mainly
affects the numerous low-degree vertices, the absence of which does not decompose
the graph. Finally, a scale-free topology may also confer robustness to the dynamical

(a)

a

b c−−
−

+

−
−

V = {a, b, c}
E = {(b, a, −), (c, a, −), (a, b, +), (b, c, −), (c, c, −), }

(b)

Figure 7-1 (a) Directed, labeled graph representing a genetic regulatory network composed of

three genes (a, b, and c) and their mutual regulatory interactions. The symbols þ and � indicate

whether the regulator gene activates or inhibits its target. (b) Formal definition of the graph in (a).
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properties of the network [32], suggesting that the latter are relatively insensitive to the
precise values of the parameters (Section 3.1).

The relation between the scale-freeness of a graph and such fundamental properties
of living systems as reactivity and robustness makes this type of graph interesting as a
model of genetic regulatory networks. In recent years quite some evidence has
accumulated, showing that genetic regulatory networks, and many other biological
and nonbiological networks, are indeed scale-free [30,31,33–39]. The results should
be interpreted with some care though. Because current data on regulatory interactions
are incomplete, only subnetworks of the actual networks can be analyzed, which may
have a different degree distribution [40,41]. Moreover, the particular graph represen-
tation chosen to model the network may bias the results, as shown by Arita for the
E. coli metabolic network [42]. Further, in the case of genetic regulatory networks,
graph models are usually restricted to direct transcriptional regulatory interactions,

(a)        (b) 

(c)        (d ) 

p(k)

k〈 k 〉

p(k) 

k〈 k 〉

Figure 7-2 Schematic illustration of the architecture of (a) random and (b) scale-free undirected

graphs [170]. The degree distribution follows (c) a Poisson distribution in random graphs and (d) a

power-law distribution in scale-free graphs. k denotes the degree of a vertex and P(k) denotes the

degree distribution. The filled vertices in (b) are hubs.
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thus ignoring indirect interactions that are mediated by metabolites binding to
transcription regulators [43].

Another example of the use of graph analysis is to study the structural decomposi-
tion of a graph into subgraphs. Here, we focus on twokinds of subgraphs:modules and
motifs. Informally speaking, amodule is a (possibly hierarchically structured) cluster
of vertices, such that the vertices within a module are strongly connected, while the
connections betweenmodules aremuch looser. The formalization of this intuition can
be achieved by means of different graph–theoretical concepts, for instance clustering
coefficients [44], shortest path distances [45], and edge betweenness, denoting the
number of shortest paths between pairs of vertices that run through an edge [46]. On a
different level of granularity, motifs are small subgraphs, consisting of a few vertices
only, which frequently recur in the graph [47–49]. More precisely, motifs are defined
with respect to a statistical background consisting of a randomized version of the
graph: a small subgraph is called a motif if it occurs significantly more often in the
original graph than in the randomized graphs.

The interest of the structural decomposition of a graph into modules andmotifs is
that the latter may correspond to a particular function of the genetic regulatory
networks. Some results validating this intuition will be presented below, in the case
of the E. coli transcriptional regulatory network [50,51]. One should be careful in
interpreting the results of such graph analyses though. As mentioned above,
currently available data are incomplete and specific modeling choices may intro-
duce a bias. Moreover, this point needs to be emphasized, the relation between
topological concepts like modules and motifs on the one hand, and the functioning
of biological systems on the other, is far from straightforward. Consider the example
of a module.

Even if some of the genes in the module are known to play a role in a particular
biological function, this may not be sufficient for concluding that the module is
responsible for the function. For instance, some of the interactions between the genes
in the networkmaynot be operative at all under the physiological conditionswhere the
function is called upon.One could counter this objection to some extent by integrating
other kinds of data in the process ofmodule identification, such as transcriptome data,
phylogenetic profiles, and biological sequences (e.g., see Refs. [52–59]). This
certainly allows formore refined answers to the questionwhich genes and interactions
are relevant for a particular biological function. However, by itself it does not explain
how the function emerges from the genes and interactions in the module. In order to
deal with the latter questions, we need dynamical models of the kind discussed in later
sections of this chapter.

In summary, graph models of genetic regulatory networks allow one to address
questions concerning the network topology, giving insights into global structural
properties like the edge distribution. In addition, they enable the identification of local
substructures like modules and motifs that may be related to the functioning of the
biological system. Graph models are applicable to genome-scale models, and the
computer tools to support the analysis exist, such as mfinder [60] and TopNet [41].
However, in order to clarify the relation between the topological properties of graph
models and the functioning of genetic regulatory networks, more powerful dynamical
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models are necessary. The capabilities and limitations of graph models will be
illustrated in the next section.

7.2.2 Modules and Motifs in the Transcriptional Regulatory
Network of E. coli

Transcription factors are key components in the control of theE. coli stress responses,
in that they link the sensing of environmental changes to the reorganization of the
pattern of gene expression, and thus to the control of metabolic pathways. Depending
on the environmental conditions, different sets of transcription factors are used by the
bacterium. We would therefore like to ask such questions as: Can we relate the stress
adaptation capabilities of E. coli to the topological organization of its transcriptional
regulatory network? More precisely, are the different sets of genes organized in
modules, for example, can we define a carbon utilization module and a nitrogen
assimilationmodule?Andmoregenerally, howcanwedefine suchmodules anddetect
themfromagraphmodel of the regulatorydependencies of thegenes of thebacterium?

The topological analysis of theE. coli networkhas beenmuch facilitated by the rich
store of information about the components of the network and their interactions,which
are published in the literature or stored in databases, like RegulonDB [61] or
EcoCyc [62]. Hence, several studies aiming at the analysis of structural properties
of genetic regulatory networks bymeans of the approaches mentioned in the previous
section have exploited the information on the E. coli network stored in
RegulonDB [33,49,63–65].

An example of the search for modules is the study by Resendis-Antonio and
collaborators [65]. Considering only genes for which experimental evidence on their
involvement in regulatory interactions is available, the authors analyzed a network
composed of 55 transcription factors controlling the expression of 747 genes. The
relations between the genes in the network of transcription factorswere determined by
computing the shortest pathdistance for everypair of genes.Basedon this information,
eight topological modules were identified using a clustering approach. Further
analysis revealed that the modules are composed of functionally related genes,
for example, involved in (i) respiration, (ii) stress response, and (iii) chemotaxis,
motility, and biofilm formation. The largest module (iv) gathers genes involved in
the assimilation of the various carbon sources. The remaining modules are com-
posed of genes involved in various cellular responses, like (v) sulphur assimilation,
(vi) nitrogen metabolism, (vii) fermentative conditions, and (viii) chromosome
replication.

The topological analysis ofResendis-Antonio et al. suggests that theE. colinetwork
possesses amodular structure,where eachmodule consists of genes that performoneor
more tasks in response to particular environmental conditions. For instance, the nac
and asnC genes, coding for transcription factors known to be involved in the control of
nitrogen assimilation, are found inside the same module [65]. Further, the carbon
assimilation module includes transcription factor genes like crp, araC, malF, fruR,
which regulate the utilization of carbon sources. Interestingly, the latter module can be
further decomposed into submodules, each submodule being specialized in the use of a
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different carbon source. One can guess that this supplementary internal organization
makes E. coli cells able to easily grow on various carbon sources and switch from the
use of one carbon source to another. Other analyses have found a similar modular
structure of the E. coli transcriptional regulatory network, though using different
approaches and arriving at a different number of modules [59,63].

Several questions regarding theE. colinetwork structure remainopen.For instance,
how is the global coordination of cellular responses to be explained? Most often, a
stress response does not involve a single module but rather a combination of modules.
For instance, E. coli uses its motility, controlled by module (iii), to seek optimal
oxygen concentrations, required for the respiration task performed by module (i). It
seems obvious that accomplishing this function requires a connection between the two
modules, which agrees with the fact that, generally, the modules are not clearly
separated from the rest of the network but tend to overlap [65]. Can these inter-
connections be characterized by means of certain topological properties?

To address this question, we need to take into account the local topology of
networks, defined in terms of motifs. Using information from RegulonDB and the
literature, Shen-Orr et al. [49] have analyzed the transcriptional regulatory network of
E. coli. They found that in this network, consisting of 855 genes and 1330 regulatory
interactions, three different motifs occur more frequently than expected: the feedfor-
ward loop, in which a transcription factor regulates a second transcription factor and
both regulate together a target gene; the single-inputmotif, inwhich a groupof genes is
controlled by a single transcription factor; and the dense overlapping regulons, in
which genes and the transcription factors controlling their expression form a highly
overlapping structure. The feedforward loop is the motif occurring most frequently
(40 times) in the E. coli network. This has been subsequently confirmed by means of
an extended version of the same network, in which an even higher number of
feedforward loop motifs were found [63]. The different motifs are not equally
distributed in the network of E. coli. In the above-mentioned study, Resendis-
Antonio and collaborators found that the feedforward loop motifs are mainly located
inside modules (71 percent of the cases), whereas the bifan motif (which forms the
basic building block of the above-mentioned dense overlapping regulons) is the main
motif connecting modules (65 percent of the cases).

What is the advantage for the cell of conserving certain network motifs? Do they
have a functional role, in addition to their structural role? The group of Alon
demonstrated both theoretically and experimentally the information-processing
task carried out by the coherent feedforward loop. Using a differential equation
model of the feedforward loop motif, they showed that its role might be to filter out
fluctuations in input stimuli and allow a rapid response when the stimuli disap-
pear [66,67]. Consider the coherent feedforward loop motif in Figure 7-3, where the
transcription factorsXandY together activate thegene z.WhenX is active and above a
threshold concentration, the input signal activating X is transmitted to the output Z
through a direct path fromX and an indirect path fromX throughY. Hence, a transient
signal is not transmitted to Z, since it does not allow the concentration of Y to reach a
threshold level high enough to stimulate the expression of gene z (Fig. 7-3). On the
contrary, a persistent input signal enables the concentration ofY to rise and eventually
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allows Z to pass its threshold level. The functioning of the feedforward loop motif is
asymmetric, since the inactivation of X leads to the rapid downregulation of z. The
above predictions have been experimentally verified for the L-arabinose utilization
system in E. coli using reporter genes [67]. In this feedforward loop motif, CRP
corresponds to the general transcription factorX andAraC to the specific transcription
factor Y, while z is the operon araBAD.

The study by the group of Alon assigns a function to a pattern of interactions, the
coherent feedforward loop, which is overrepresented in the transcriptional regulatory
network of E. coli. However, the relation between structure and function is not
straightforward, given that motifs do not usually occur in isolation, but rather overlap
to generate motif clusters [33]. Does the function of a motif change when it is
embedded within a network and interacting with many other components? The group
of Alon partially answered this question in a subsequent study on the incoherent
feedforward loop, that is, a feedforward loop in which the transcription factor X
activates genes y and z, while Y represses z [68]. Themotif was experimentally shown
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Figure 7-3 (a) Coherent feedforward loop motif in a graph representation. (b) Feedforward loop

in a genetic regulatory network, where it is assumed that bothXandYare necessary for expression

of z. (c) Dynamic properties of the feedforward loop [49] ; x, y, and z denote the concentrations of X,

Y, and Z, respectively, while ux, uy, and uz denote their threshold levels. The input signal activates X.
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to perform response acceleration, as predicted by a differential equation model [66],
despite the fact that it participates in additional interactions that were not included in
the model. However, it is not sure that this will turn out to be true in general.

7.3 ORDINARY DIFFERENTIAL EQUATION MODELS

7.3.1 Model Formalism and Analysis Techniques

As concluded in the previous section, a better comprehension of the relation between
the structure and functioning of a regulatory system requires the use of dynamical
models. Ordinary differential equations [69] are probably the most-widespread for-
malism for modeling the dynamical behavior of cellular interaction networks. In this
formalism, the concentrations of gene products (mRNAs or proteins) are represented
by continuous, time-dependent variables, x(t), t2T and T being a closed time interval
(T�R�0). The variables take their values from the set of nonnegative real numbers
(x: T ! R�0), reflecting the constraint that a concentration cannot be negative.

The regulatory interactions between genes are modeled by a system of ordinary
differential equations having the following general form:

dxi=dt ¼ fiðxÞ; i 2 f1; . . . ; ng; ð7-2Þ

where x¼ (x1,. . .,xn)
0 is the vector of concentration variables of the system, and the

usually highly nonlinear function fi: R�0
n ! R�0 represents the regulatory interac-

tions. The above system of equations describes how the temporal derivative of the
concentration variables depends on the values of the concentration variables them-
selves. Several variants of Equation 7-2 can be imagined [22]. For instance, by taking
into account input variables u, it becomes possible to express the dependence of the
temporal derivative on external factors, such as the presence of nutriments. In order to
account for the delays resulting from the time it takes to complete transcription,
translation, and the other stages of the synthesis and the transport of proteins,
Equation 7-2 could be changed into a system of delay differential equations.

In Figure 7-4, an example of a simple genetic regulatory network and its associated
differential equation model is shown, based on early work by Goodwin [70,71]. The
end product of a metabolic pathway coinhibits the expression of a gene coding for an
enzyme that catalyzes a reaction step in the pathway. This gives rise to a negative
feedback loop involving the mRNA concentration x1, the enzyme concentration x2,
and the metabolite concentration x3. The equations each express a balance between the
increase anddecrease of themolecular concentrationper unit time due to the occurrence
of the various reactions. More precisely, the equations describe the rate of synthesis of
the enzyme (k2x1) and the metabolite (k3x2), as well as the rate of synthesis of mRNA
(k1r(x3)). The nonlinear, sigmoidal Hill function r expresses that the rate of synthesis of
mRNA depends in a cooperative way on the concentration of the metabolite, which
binds and thereby activates a repressor of the gene (Fig. 7-4b). The terms�g1x1,�g2x2,
and�g3x3 indicate that the concentrations x1, x2, and x3 decrease through degradation
and growth dilution, at a rate proportional to the concentrations themselves.
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Gene a 

mRNA a 

Enzyme A 

Metabolite F 
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Active

Inactive 

Repressed gene a 

Figure 7-4 (a) Simple example of gene regulation involving end-product inhibition and (b) the

correspondingdifferential equationmodel. A is anenzymeandCa repressor protein,whileKandF

aremetabolites. x1, x2, and x3 represent the concentrationsofmRNAa, proteinA, andmetaboliteK,

respectively, k1, k2, k3 areproductionconstants,g1,g2,g3 degradationconstants, and r : R�0 !R�0

is a decreasing Hill function ranging from 0 to 1, with threshold parameter u and exponent n. All

parameter values are positive and n > 1, in order to obtain the sigmoidal shape characteristic of

cooperative interactions.
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A first dynamical property that can be studied by means of ordinary differential
equation models is the asymptotic behavior of the system, notably the occurrence of
equilibrium points and limit cycles, as well as their stability and basin of attraction.
The equilibrium points and limit cycles may correspond to functional modes of the
systems, for instance a particular growth stage or a particular response of the cell to an
external stress. The equilibrium points are simply determined by setting every dxi/dt
given in Equation 7-2 to 0 and solving for xi. In the example of the end-product
inhibition network, we thus obtain a single equilibrium point [72]. This follows from
Equation 7-2 by noting that at equilibrium x1¼ (k1/g1) r(k2k3x1/g2g3), and bearing in
mind that r is a monotonically decreasing function (Fig. 7-5a).

The stability of the equilibrium point x� can be determined by linearizing the
system of differential equations given in Equation 7-2 around x�, computing the
characteristic equation, and solving for the eigenvalues. The sign of the (real part of
the) eigenvalues then determines the stability of the system [69,73]. The characteristic
equation for the end-product inhibition network is given by (l þ g1) (l þ g2)
(l þ g3) � k1k2k3 @r(x3

�)/@x3¼ 0, where x� ¼ (x1
�, x2�, x3�)0. The equation can be

rewritten as a third-order polynomialwhose roots l are the eigenvalues. Depending on
the exact numerical values of the parameters, different configurations of eigenvalues
are found, notably (i) three negative real eigenvalues, (ii) a negative real eigenvalue
and two conjugate complex eigenvalues with negative real part, or (iii) a negative real
eigenvalue and two conjugate complex eigenvalues with positive real part. In the
former two cases, the equilibrium point is asymptotically stable, meaning that after a
(small and temporary) perturbation the systemwill eventually return to the equilibrium
point. In contrast, in the third case the equilibrium point is unstable: a perturbation
will cause the system to diverge from the equilibrium point and approach a stable
limit cycle, corresponding to sustained oscillations in the protein concentrations.
Figure 7-5b illustrates case (ii) for arbitrary but not unrealistic parameter values.

A seconddynamical propertyof interest is the transient behaviorof the system.The
transient behavior provides information on themanner inwhich the genetic regulatory
network controls the response of the system to an external perturbation, for example,
by switching from one functional mode to another. In order to predict the transient
behavior, we need to compute the solutions of the system of ordinary differential
equations 7-2. Since the models of most genetic regulatory networks of practical
interest are nonlinear, it is usually not possible to find an analytical solution. This
means that in all but the simplest caseswe have to resort to numerical simulations [74],
which yield approximations of the exact solutions. The solutions obtained by
simulation can be visualized by plotting their trajectories in the phase space, for
two or three-dimensional systems, or by simply plotting the solutions as a function of
time.This is illustrated inFigure 7-5b and c for themodel of the end-product inhibition
network. The plots show how the system adapts to a perturbation from its steady state,
by returning to this state through damped oscillations.

The analysis of the feedback inhibition network shows that it is a homeostatic
system, with a tendency to maintain a stable steady state or stable oscillations. The
negative feedback loop, arising from the (indirect) inhibition of the expression of the
gene by its own product, tends to compensate for a transient perturbation. Examples of
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negative feedback loops abound in biological systems and play an important role in
gene expression, metabolism, and signal transduction (e.g., see Refs. [75–77]). More
generally, Thomas conjectured that negative feedback loops are a prerequisite for
homeostasis [78,79]. In a similar vein, he proposed that positive feedback loops are a
necessary condition for the occurrence of multiple steady states, corresponding to
different functional modes of the system. Several proofs of the latter conjecture have
been given under increasingly general conditions [80–84]. These results illustrate the
potential of mathematical models to highlight fundamental relations between the
topology and the dynamics of regulatory networks.

The qualitative dynamics of the end-product inhibition network, the stability of the
equilibriumpointandtheoccurrenceofa stable limit cycle, aredeterminedbythevalues
for parameters in the differential equation model in Figure 7-4. For large ranges of
parameter values, the qualitative dynamics of the system remains invariant, that is, the
qualitative dynamics is robust to fluctuations in the parameter values. This robustness is
an essential propertyof living systems,whichhave tocopewith continuous fluctuations
in physiological and environmental conditions as well as with genetic variability.
Following pioneering work by Savageau (1971), the study of the robustness of
dynamical properties of regulatory networks to changes in the parameter values has
beenanactive researcharea,demonstrating robustbehaviorof thechemotaxis systemof
E. coli [85,86], the development of the Drosophila embryo [87,88], the Xenopus cell
cycle [89], and the circadian clock of Drosophila [90,91]. In the case of synthetic
networks, the ability of the system to reliably function in the presence of noise is an
important design objective. Control theory provides a range of methods that could be
used to assess the robustness of naturally occurring networks and improve the robust-
ness of synthetic networks (e.g., see Refs. [91–94]).

Although differential equation models allow making precise, quantitative predic-
tions on the dynamics of large and complex genetic regulatory networks, theymay be
difficult to apply in practice. Most regulatory networks of interest are large and
complex, possibly involving hundreds of genes, proteins, and othermolecules. If these
networks were to be modeled in the sameway as the simple autoinhibition network in
Figure 7-4, we would obtain huge models that cannot be analyzed other than by
massive numerical simulations. Apart from the fact that such simulations may be
difficult to carry out, given that numerical values for the parameters are often not
available (see below), it is not sure that the generation of time-course predictions of
hundreds of molecular components will be of much help in gaining a better under-
standing of the functioning of the system. This has stimulated an interest in strategies
for model simplification, often based on indications that the networks have amodular
structure (Section 7.2). In order to study large and complex networks, it may be more

Figure 7-5 (a) The differential equation model of the end-product inhibition network in Fig. 7-4

hasasingleequilibriumpoint. Thestabilityof this equilibriumpoint varieswith theparameter values.

(b) Asymptotically stable equilibrium point with a trajectory spiraling toward this point. (c) Time-

series representation of the solution. The parameter values are as follows: k1¼4.6mM/min,

k2¼1.8/min, k3¼ 10/min, g1¼2.5/min, g2¼ 1.2/min, g3¼ 2.1/min, u¼ 4mM, and n¼ 2. The

simulations have been carried out with Matlab.

3
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judicious to first analyze the modules individually, and only afterward the question of
how they are woven together, preferably using simpler and more abstract models for
this second step. The definition of network modules may be based on topological
criteria, not unlike thoseused forgraphmodels but usuallymoredirectly relevant to the
dynamics of the system, such as the feedback structure of the network [95–97].
Another way to define modules is based on the distinction between rapid and slow
processes in the system, for example, allowing the separation of metabolism and gene
expression in separate modules [98,99].

Even after model simplification, for most networks we will be left with large and
complex models. Their analysis requires quantitative information on the values of
kinetic constants and molecular concentrations, but unfortunately this information is
only rarely available, especially when modeling systems on the forefront of experi-
mental research. Several ways to deal with this problem have been proposed in the
literature. First of all, pushing the robustness argument further, one could argue that
important dynamical properties of actual regulatory networks do not so much depend
on particularmolecularmechanisms or precise values for the parameters, but rather on
the network topology.A second strategy is to try to estimate the parameter values from
experimental data [100]. The use of these techniques has been shown towork well on
small to medium-sized systems, in cases where the interactions are well described by
linear or quasilinear functions (e.g., see Refs. [101–104]). A third way out would be
turn to simplified models, having a particular mathematical form that simplifies their
analysis [105,106]. Examples of such models are the piecewise-linear differential
equation models proposed by Glass and Kaufmann [107] or the logical models
proposed by Kauffman [108] and Thomas [109,110].

In conclusion, differential equation models allow questions related to the transient
or asymptotic dynamics of genetic regulatory networks to be answered. Many
examples of their application exist, some of which will be discussed later in the
context of the E. coli stress response. Techniques for the mathematical analysis and
numerical solution of differential equationmodels are standard engineering tools, and
a large variety of computer programs are available, ranging from general-purpose
mathematical problem solvers likeMatlab to tools specifically adapted to the analysis
of cellular interaction networks such as Copasi [111], ProMoT/DIVA [112], Virtual
Cell [113], and XPPAUT [114].1 Due to the size and complexity of networks of
practical interest as well as the lack of precise, quantitative information on the
molecular mechanisms and kinetic constants, standard techniques for numerical
analysis may be difficult to apply in practice. Several strategies to cope with this
problem have been proposed, some of which will be illustrated in the next section.

7.3.2 Response of E. coli to Carbon-Source Availability

As seen in Section 2.2, the transcriptional regulatory network of E. coli contains a
carbon assimilation module, allowing the bacterium to use a large range of carbon

1The SBML format [115] allows models to be exchanged between different computer tools. A list of
computer tools compatible with the SBML format is available at http://www.sbml.org.
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sources under a variety of conditions. For instance, when several carbon sources are
available, the bacteria choose the ‘‘best” nutrient, meaning the nutrient sustaining
fastest growth. Hence, if E. coli is presented with two carbon sources, for example
glucose and lactose, it starts using glucose until this preferred nutrient is depleted from
the medium. Growth then temporarily arrests while the bacteriummodifies its pattern
of gene expression so as to produce the enzymes necessary for the uptake and
metabolism of lactose. This physiological response is referred to as diauxic growth.
When all carbon sources in the growthmediumhave become depleted,E. coli bacteria
are no longer able to sustain fast growth rates and enter into a stationary phase of
growth, characterized by no net change of the size of the bacterial population. In
response to carbon starvation, the bacteria completelymodify their physiology to cope
with the absence of nutrients. This implies that they conserve energy by shutting off
most biosynthetic functions andprotect theirDNAfrompotential damage,while at the
same timemaintaining aminimal metabolism in order to explore potential alternative
nutrient sources and ‘‘be ready” as soon as nutrients become available again.

Given the numerous tasks ensured by the carbon assimilation module, several
questions arise regarding its functioning: How does the module coordinate the
different responses of E. coli cells to carbon-source availability? How does the
reorganization of gene expression and metabolism emerge from the interactions
between the many components making up the regulatory network of E. coli? Can we
develop comprehensive dynamic models of these interactions that account for the
bacterial responses to carbon-source availability?

In the remainder of this section, we give two examples of differential equation
models,describing, respectively, thediauxicgrowthofE.coliandits responsetocarbon
starvation.Even thoughE. coli is awell-studied system, thedevelopmentof themodels
has been limited by the lack of quantitative information on most of the molecular
concentrations and the kinetic parameters characterizing the interactions inside the
carbon assimilation module. To overcome these constraints, different strategies were
chosen, one based on the estimation of parameter values from experimental data [116]
and the other on a more abstract description of the network [117].

The group of Gilles has developed a dynamical model describing the successive
assimilation of different carbon sources in E. coli (glucose, lactose, etc.), leading to
diauxic growth [116]. The central part of the regulatory network controlling this
process is a large, membrane-bound enzyme complex called Phospho-Transferase
System (PTS). The PTS transfers a phosphate onto the carbohydrates (e.g., glucose),
which makes the transport irreversible and prepares the carbohydrate for metabolic
breakdown and conversion into cellular energy. In the absence of glucose, the same
complex activates another membrane-bound enzyme, adenylate cyclase (Cya). Cya
produces a signaling molecule, cyclic adenosine mono-phosphate (cAMP), which in
turn binds a transcription factor, CRP (cAMP receptor protein) and enables the latter to
activate or inhibit transcription.Thepromoter of the lactose operon is oneof the targets
activated by cAMP–CRP. The same promoter is also under the negative control of the
lac repressor. This transcription factor is inactivated by a metabolite, allolactose,
which is produced in the presence of lactose. This allows derepression of the
transcription of the operon and the subsequent use of lactose as a carbon source.
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Themodel byBettenbrock and colleagues is the last in a series of detailedmodels of
thecarbonassimilationmoduledevelopedbythegroupofGilles[118–121].Whileother
models of the same system are available in the literature (e.g., see Refs. 122–124), the
Bettenbrockmodelprovidesthemostcomprehensivepicturetodate.ItdescribesthePTS
and its interactionswith several uptake systemsandmetabolicpathways, accounting for
the growth of E. coli on different carbohydrates. The network is composed of different
typesofinteractions, involvinggenetic regulatory interactions,metabolic reactions,and
reactions involved in the signal-transductionpathway.Theseweremodeledbyordinary
differential equations of the form described in Section 3.1, using kinetic rate laws
appropriateforeachtypeofinteraction,andalgebraicequationsexpressingconservation
relations among thedifferentmolecular components of the system. In total, themodel is
composed of 50 differential equations and 14 algebraic equations.

Even though the network controlling diauxic growth is a well-characterized
system, it was not always possible to include parameter values reported in the
literature in the model, as they are often obtained under different experimental
conditions and with different strains. To circumvent this problem, Bettenbrock and
colleagues have carried out their own experiments,measuring the concentration of the
various metabolites over time and have used the resulting data to estimate the value of
the model parameters by means of the ProMoT/Diva environment [112]. In this way,
some fifty uncertain or unknown parameter values could be obtained.

By means of the resulting numerical model, E. coli growth on various carbohy-
drates was simulated (see Fig. 7-6a, for example). The confrontation of these
predictions with time-series measurements performed under the experimental con-
ditions corresponding to the simulations revealed a number of contradictions that
requiredmodel revision. For instance, themodel could not account for the behavior of
the system during disturbed batch experiments, consisting of the exponential growth
of the cell on a carbon source (glycerol or lactose), followed by the application of a
pulse of glucose. Although the simulations showed glucose uptake, as observed
experimentally, theprocesswaspredicted toproceed too fast (Fig. 7-6b).The inclusion
into the model of the regulation of the pts operon allowed a much better fit of the
experimental data with the model predictions. In this instance, the model not only
confirmed what is currently known about the accumulation of carbon sources by
E. coli but also provided novel explanations of the role of certain network components
in the process.Hence, the cAMPmetabolite appears to play a key role in the short-term
adaptation to a new carbon source during diauxic growth, whereas the complex
cAMP–CRP seems to be more important for long-term adaptation.

The model of Bettenbrock and colleagues provides a detailed and rigorous
description of the molecular events underlying diauxic growth. However, the model
does not address the functioning of the carbon assimilation module in the broader
context of the genetic regulatory network of E. coli. For instance, it is known that the
PTS is closely connected to some major transcription regulators of the bacterium
called global regulators. These transcription factors control the expression of large
sets of genes in response to environmental stimuli [125,126]. More precisely, the PTS
transfers information on the lack of carbon source to the global regulators, which
reorganizegene expression and allow the bacteria to stop exponential growth and enter

252 MATHEMATICAL MODELING OF GENETIC REGULATORY NETWORKS



stationary phase upon carbon starvation. How does the growth adaptation of E. coli
emerge from the interactions between the global regulators in response to a carbon
starvation signal transmitted by the PTS?

In order to address these questions, we have developed an initial, simple model of
the network of global regulators, including six genes believed to play a key role in the
carbon starvation response (Fig. 7-7) [117]. The network includes genes that are targets
of the PTS (the global regulator crp and the adenylate cyclase cya), genes involved in
the control of metabolism (the global regulator fis), cellular growth (the rrn genes
coding for stable RNAs), and DNA supercoiling, an important modulator of gene
expression (the topoisomerase topA and the gyrasegyrAB). Although these genes have
been the focus of intensive study over the last few decades, the development of amodel

Figure 7-6 Differential equationmodel of the carbon assimilationmodule: confrontation ofmodel

predictions and experimental measurements [116]. The circles denote measurements, and the

lines denote simulation results. The biomass and the extracellular concentrations of carbohydrates

are mentioned on the curves. (a) Diauxic growth on glucose and lactose. Galactose is a product of

lactose metabolism. (b) Disturbed batch experiment with application of a pulse of glucose on

bacteria growing on glycerol. Dashed lines denote simulation results from different versions of the

model that do not take into account regulation of theptsoperonexpression.Simulation of themodel

including this additional regulatory interaction results in the continuous line.
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of the network is limited by the lack of quantitative information about the concentra-
tions of the network components and the parameters characterizing their interactions.

To overcome the lack of quantitative information, we have used a qualitative
modeling and simulation method to analyze the network [127,128]. This method is
based on piecewise-linear differential equations of the regulatory interactions and
employs inequality constraints on theparameters tomakepredictionsof thequalitative
dynamics of the system. The piecewise-linear models of genetic regulatory networks
are based on the use of step-function approximations of the sigmoidal functions
describing the regulatory interactions (Fig. 7-4b). This approximation simplifies the
analysis of the dynamics in that it allows the phase space to be subdivided into
hyperrectangular regions where the system behaves in a qualitatively homogeneous
way. The continuous dynamics of the system in the phase space can be discretized into
a state transition graph, that is, a graph composed of states corresponding to the phase-
space regions and transitions between these states. The state transition graph describes
the possible qualitative behaviors of the system and allows the attractors of the system
and their reachability to be determined.

Based on the qualitative simulations, two regulatory feedback loops were hypothe-
sized to play a key role in the response of E. coli cells to carbon starvation. A positive
feedback loop, involving fis and crp, seems to function as a switch controlling the
transition of E. coli cells between the exponential and the stationary growth phase in
response to a carbon starvation signal transmitted by the PTS. The other loop is a
negative feedback loop, a homeostaticmechanism involving fis andDNAsupercoiling,
which regulates the resumption of cellular growth when a carbon source is available
again, causing damped oscillations in certain protein concentrations. The qualitative
simulations provide a description of the ordering of qualitative events (such as the
upregulation and downregulation of key genes), which can be tested by monitoring
gene expression over time, for instance through the use of gene reporter systems.
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Figure7-7 Keygenes, proteins, and regulatory interactionsmakingup thenetwork involved in the

response of E. coli bacteria to carbon-source availability [117].
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The assimilation of carbon sources by E. coli, in particular lactose, has been the
subject of a large number of modeling studies (e.g., see Refs. 14,129–133). However,
differential equation models have also been used to model the response of E. coli to
other stresses, such as the response to a heat shock [96], bacteriophage infec-
tion [6,134,135], phosphate starvation [136], or the SOS response [103,136].

A common assumption underlying these models is that individual bacteria, under
identical conditions, respond to a stress in exactly the sameway. However, it is known
that, whereas most bacteria enter a nongrowth state in response to carbon starvation,
someof themcontinue togrowanddivide.Thesedifferent behaviors of individual cells
arise from the stochasticity of the underlying processes that is not accounted for by the
differential equationmodels. The next sectionwill elaborate this point and introduce a
modeling approach capable of dealing with the stochastic aspects of gene expression.

7.4 STOCHASTIC MASTER EQUATION MODELS

7.4.1 Model Formalism and Analysis Techniques

Ordinary differential equations provide a deterministic view on genetic regulatory
networks, in the sense that, for given parameter values and initial conditions,
Equation 7-2 has a unique solution and consequently predicts a single behavior of
the system. Real biological systems, however, are not deterministic since noise arises
inside and outside the system, due to fluctuations in the synthesis and degradation of
proteins—strengthened by the low number of molecules of each species—and
fluctuations in the environmental conditions [138–140]. As a consequence, geneti-
cally identical cells evolving under the same conditions may display different
phenotypic characteristics [141,142]. In order to capture the stochastic aspects of
cellular processes on the molecular level, different types of models can be
used [140,143,144]. Here we focus on stochastic master equations, which give a
detailed description of the biochemical reactions occurring in a cell.

Instead of continuous concentrations xi, the variables in a stochastic master
equation denote discrete numbers of molecules Xi2N. For each different species
in the system—proteins, RNA, DNA, or metabolites—a separate variable Xi is
introduced. The continuous rates of change fi(x) in ordinary differential equations
are replaced by discrete reaction events occurring with a certain probability per time
interval. We can write the following equation for the time evolution of the system:

p½XðtþDtÞ ¼ V; tþDt
 ¼ p½XðtÞ ¼ V; t
ð1�
X

j¼1;...;m
aj DtÞ

þ
X

j¼1;...;m
p½XðtÞ ¼ V�nj; t
bjDt; ð7-3Þ

whereX¼ (X1,. . .,Xn)
0,m is the number of reactions that can occur in the system,ajDt

is the probability that reaction jwill occur in the time interval [t, t þ Dt] given that X
(t)¼V, and bj Dt is the probability that reaction jwill bring the system from a state X
(t)¼V� nj to a stateX(t þ Dt)¼V in [t, t þ Dt], where nj represents the stoichiome-
tryof the reaction. Inotherwords,Equation7-3expresses that theprobability of having
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V molecules at time t þ Dt equals the sum of the probability of having already V
molecules at twith no reaction occurring on [t, t þ Dt], and the probability of having
V–njmolecules at t and reaction j occurring on [t, t þ Dt]. Rearranging Equation 7-3
and taking the limit Dt ! 0 yield the stochastic master equation (see [145] and [146]
for details):

@p½XðtÞ ¼ V; t
=@t ¼
X

j¼1;...;m
p½XðtÞ ¼ V�nj; t
bj�p½XðtÞ ¼ V; t
aj: ð7-4Þ

Compare this equationwith theordinary differential equationgiven inEquation7-2.
Whereas the latter specifies how the state of the system evolves over time, Equation 7-4
describes how the probability that the system is in a certain state evolves over time.
Notice that the variables in Equation 7-4 can be reformulated as concentrations by
dividing the number of molecules X by the cell volume.

Figure 7-8 gives an example of a negative feedback loop that is even simpler than
the one shown in Figure 7-4. It consists of a single gene a coding for a protein A that
forms a dimer capable of binding to the promoter region of a, thus inhibiting the
expression of the gene. The reactions involving the different molecular species of the
system are shown in the figure. For instance, the dimerization of the repressor is
represented by the reaction A þ A ! A2. Even for this simple system, the stochastic
master Equation 7-3 cannot be solved analytically.Under certain conditions, however,
it can be approximated by stochastic differential equations, so-called Langevin
equations, which consist of a differential equation Equation 7-2 extended with a
noise term [140,146,147]. The conditions underwhich the approximation is validmay
not always be possible to satisfy in the case of genetic regulatory networks.

An alternativeway to proceedwould be to disregard the stochasticmaster equation
altogether and directly simulate the time evolution of the regulatory system. This idea
underlies the stochastic simulation approach developed by Gillespie [145]. Basically,
the stochastic simulation algorithm (i) determines when the next reaction occurs and
of which type it will be, given that the system is in a state X(t)¼Vat t, (ii) revises the
state of the system in accordancewith this reaction, and (iii) continues at the resulting
next state. The stochastic variables t and r are introduced, which represent the time
that has passed until the next reaction occurs and the type of reaction, respectively. At
each state a value for t and r is randomly chosen from a set of values whose joint
probability density function p[t, r] has been derived from the same principles as those
underlying the master equation 7-4. This guarantees that when a large number of
stochastic simulations are carried out, the computed distribution for X at t will
approach the distribution implied by the master equation.

It is obvious that stochastic simulation is a computationally intensive process,
especially when dealing with species involving a large number of molecules and/or
with reactions occurring at high frequency. Examples are metabolic reactions, which
mayoccurmillions of times on the timescale of onegenerationof a bacterial cell [148].
Another reason is that a large number of different molecular species may need to be
taken into account, for instancewhen a protein has a large number of phosphorylation
or methylation states, each of which participates in different reactions and therefore
needs to be treated as a separate species [149,150]. Various improvements of the
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original Gillespie algorithm have been proposed, directed at reducing the computa-
tional complexity of the procedure. For instance, Gibson and Bruck [151] have
proposed amodification that reduces the number of random numbers to be generated.
Whereas this improved algorithm remains exact, in the sense that it yields results
consistent with the stochastic master equation, other algorithms address the perfor-
manceproblemsby exploitingapproximations that lower the accuracybut improve the
computational complexity. A popular approximation is the t-leap method, which
chooses the time t between two states such that the algorithm ‘‘leaps over” a large
number of frequently occurring reactions [152,153]. This speeds up the simulation in
that only a single random number needs to be generated for the latter reactions.
Another approximation is to explicitly distinguish fast and slow reactions and to use
composite reaction mechanisms based on quasi-steady-state approximations for the
fast reactions [154] or simulate the latter bymeans ofordinaryor stochastic differential
equations [155].
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Figure 7-8 List of biochemical reactions in a simple autoinhibition network. The gene a encodes a

repressor protein A that forms a dimer A2. Gene expression consists of a transcription step

(involving an RNA polymerase that binds to the promoter Pa on the DNA) and a translation step

(involving a ribosome that binds to the ribosome binding site RBSa on the mRNA). The promoter

regionPa contains a binding site for A2, which allows the protein to inhibit geneexpression.Both the

protein A and mRNA a are degraded.
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In Figure 7-9we show the results of applying the original Gillespie algorithm to the
autoregulatory feedback networkof Figure 7-8, for amaximumof 8000 reaction steps.
In comparison with the simulations of the deterministic ordinary differential equation
models in Figure 7-5, the number of A2 molecules fluctuates due to the stochastic
nature of the underlying reaction events. The figure illustrates that expression of the
gene occurs in bursts [138,142], associatedwith the binding ofRNApolymerase to the
promoter, which initiates the transcription ofmRNAmolecules, in turn translated into
proteins. It can be seen in the figure that, as the number of A2 molecules increases,
transcription initiation becomes less frequent due to the occupation of the promoter
region by the repressor protein. As a consequence, A2 reaches a stationary level of
about 65molecules. Not surprisingly, amuch higher level is reached in a variant of the
abovemodel inwhich autoregulation has been disabled, for instance due to amutation
in the promoter region that prevents the repressor from binding to the DNA (figure not
shown).

Anetworkwith the same autoregulatory feedback structure as in Figure 7-5, aswell
as its mutant variant, has been designed and constructed on a plasmid by Becskei and
Serrano [156]. Measurements of the repressor protein concentration in the two
networks, by means of a fluorescent reporter, show that the negative feedback loop

Figure 7-9 Example of a stochastic simulation of the autoinhibition network shown in Fig. 7-8,

using a Matlab implementation of the Gillespie algorithm. The figure shows the temporal evolution

of the number of molecules of threemolecular species (A2, mRNA a, and promoter Pa occupied by

RNA polymerase) over 8000 steps. The values of the kinetic constants used in the simulation have

been adapted from [141] and [148].
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has the effect of decreasing fluctuations in the concentration. This illustrates how
topological properties of the regulatory networkmay reduce the effect of noise arising
from the stochasticity of the reaction events [138,140]. Besidesmechanisms to reduce
the effect of noise, the network may also include mechanisms to amplify fluctuations
so as to increase differences between individual cells in a population. For instance,
Isaacs et al. [157] have constructed an autoregulatory feedback network with an
activator rather than a repressor protein. The positive feedback loop leads to bistability
with states of high and low expression of the gene. Due to stochasticity in gene
expression, cells may switch from a high to low expression state, giving rise to a
bimodal distribution of protein concentrations in the cell population (see also
Refs. [158,159]). The resulting population heterogeneity may have important pheno-
typic consequences, as discussed in the next section for E. coli cells. Pedraza and van
Oudenaarden [160] have shown that noise attenuation and amplification can also arise
from other mechanisms, for instance gene cascades propagating noise through the
network.

In summary, stochastic models of genetic regulatory networks focus on aspects of
gene expression that are not taken into account by the deterministic models discussed
in Section 7.3. In particular, stochastic models allow the effects of noise on the
dynamical behavior of the cell to be studied, by analyzing the way in which
fluctuations are filtered out or exploited bymeans of differentmolecularmechanisms.
A number of computer tools for the stochastic simulation of molecular reaction
systems are available, for instanceCopasi [111], STOCKS [148], and StochSim [161].
Although stochastic simulation results in closer approximations of the molecular
reality than can possibly be obtained by means of the other model types reviewed in
this chapter, it is alsomoredifficult toput inpractice.Apart from the fact that it requires
detailed knowledge of the reactions occurring in the system, notably the value of the
kinetic parameters that specify the probability density function p[t, r] [145], stochas-
tic simulation is a computationally intensive process. In many cases, conventional
deterministic models may provide an adequate description of the dynamics of genetic
regulatory networks [90].

7.4.2 Effects of Noise in the Carbon Assimilation of E. coli

We know experimentally that, even when genetically completely identical, not all
individuals of a bacterial population behave in the sameway. For example, a long time
ago already, it has been observed that in a population of E. coli cells the activity of the
lacoperon is not homogeneous [162,163]. That is, under conditions favoring the use of
lactose, the lacoperon is expressed inmost but not all cells. An intuitive explanation of
this phenomenon relies on the observation that certain kinds of molecules are present
at very low numbers in the cell. For example, only about ten copies of the lac repressor
protein are present in an E. coli cell. If these proteins are distributed randomly during
cell division, about one cell in a thousand will not contain any lac repressor just after
cell division. This would lead to derepression of the lac operon even in the absence of
lactose in the growth medium. What are the consequences of such stochastic
phenomena on the behavior of cells and their progeny? Has the cell developed
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compensatory mechanisms to cope with the fluctuations, or are they propagated
throughout the entire network?

To address these questions, several studies have analyzed the role of stochasticity in
the control of carbon assimilation in E. coli [148,164,165]. We will focus here on the
stochasticmodel of the growth of bacteria onvarious carbon sources (glucose, lactose,
andglycerol) developedbyPuchałka andKierzek [165].Using the approachpresented
inSection 4.1, theyhavedescribed thePTSand themetabolic pathways involved in the
assimilation of these three carbohydrates. In particular, a list of more than 80
molecular species and 120 reactions has been compiled, as well as kinetic parameter
values characterizing these reactions.

Stochastic simulation of such a large biochemical reaction system is extremely
computationally intensive, given that the interactions in the carbon assimilation
module take place on quite different timescales. For instance, the breakdown of
carbohydrates and signal transduction by the PTS are fast reactions (less than 1 sec)
involving large numbers of molecules, whereas the regulation of gene expression is
a slow process (several minutes) involving a very small number of molecules. As
discussed in Section 4.1, this prevents the simulation of individual reaction events
by means of the basic Gillespie algorithm. Puchałka and Kierzek have therefore
used a variant, the maximal time-step method, which dynamically partitions the
reactions into fast and slow reactions. Whereas the slow reactions are simulated
using the Gillespie algorithm, the fast reactions are treated by the t-leap method
(Section 4.1; [165]).

Stochastic simulation of the assimilation of various carbon sources by E. coli
reproduced expected andwell-knownphenomena, like the use of glucose as a preferred
nutrient. In addition, the simulations showed that stochastic fluctuations in reactions
involving a small number of molecules may propagate through the network and
influence the time course of other processes in the system, even metabolic pathways
processing largenumbers ofmolecules. For instance, during the transition fromglucose
to a mixture of lactose and glycerol, random delays in the expression of the lac operon
may favor the useofglycerol (even though lactose is thepreferrednutrient). This results
in an almost complete shutdown of the glycolytic pathway, fuelled by glucose and
lactose but not by glycerol. A striking effect of these time delays is the heterogeneity in
the induction of the lac operon within the cell population switching from glucose to a
mixture of lactose and glycerol (Fig. 7-10). Moreover, this heterogeneity in the use of
carbon sources is conserved throughout consecutive cell divisions.

The model of Puchałka and Kierzek is probably the most extensive stochastic
model to date, describing an integrated network of gene expression regulation, signal
transduction, and metabolism. There exist a few other examples of stochastic models
in E. coli, notably the model of the lysis-lysogeney decision following l phage
infection [141] and themodel of the regulation of the pap operon in a pathogenic strain
of E. coli [166]. However, as noted in Section 4.1, the development of such models
requires precise knowledge about the molecular mechanisms underlying the biologi-
cal processes, and their analysis involves high computational costs. As a consequence,
the development of stochastic models has been limited to rather small, well-charac-
terized systems.
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7.5 DISCUSSION

In this chapter, we have reviewed three different approaches toward the modeling of
genetic regulatory networks, based on graphs, ordinary differential equations, and
stochastic master equations, respectively. The approaches make different modeling
assumptions. Whereas graph models provide a static description of the network,
formalizing the structure of interactions between genes, proteins, and other network
components, ordinary differential equation and stochastic master equation models
describe the dynamic behavior of the system. However, they do so in quite different
ways. Differential equations are deterministic models, whereas master equations take
into account the stochastic nature of the underlying biochemical reaction processes.

Figure 7-10 Stochastic simulation ofE. coli growth on amixture of glucose, lactose, and glycerol,

using amodel of the carbonassimilationmodule [164].Glucose is depletedduring the first 5000 s of

the simulation. Plots A, B, C, and D show the time-course predictions for LacZ (expressed from the

lactose operon), GlpF (expressed from the glycerol operon), cAMP, and external glycerol, respec-

tively. The sawtooth patterns arise from the occurrence of a cell division every 2100 s, during which

the molecules present in the cell are distributed over two daughter cells. Plots B and D reveal that

there exists a small subpopulation of cells expressing proteins allowing the consumption of

glycerol, instead of lactose, after the depletion of glucose.
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When going from graphs to stochastic master equations, the models take into
account increasingly more aspects of physical reality. The counterpart is that this
makes them increasingly more difficult to treat in practice. In many cases, even for a
well-studied model system like E. coli, the information required for building a model
on the level of individual reactions is not available. Moreover, the computational
burden of simulating such detailed systems is high and does not currently allow its
application to large reaction systems, although technical improvements are expected
to push the limit further up [167].

In this context, it is crucial to stress that more detailed models are not necessarily
better models. A model is by its very nature a simplified representation, based on
assumptions that ignore certain aspects of reality so as to better bring out others.
This is even true for the most detailed models discussed in this chapter, stochastic
master equations, which implicitly assume that the reaction volumes are spatially
homogeneous, an assumption that is not generally true [168]. In the end, what
counts is whether a certain type of model, and thus certain types of simplifying
assumptions, are adequate for answering the biological questions at hand. As some
authors put it, the art of modeling consists in choosing the ‘‘right model for the
job” [169].

The discussion ofE. coli stress responsemodels in this chapter has confirmed that
different kinds of models are appropriate for different kinds of biological questions.
The graph models are able to answer questions about the structure of the transcrip-
tional regulatory network of the bacterium, such as the manner in which the network
is composed of building blocks like modules and motifs. However, in order to study
the dynamics of the building blocks, for instance the carbon assimilation module,
one has to resort to ordinary differential equations and stochastic master equations.
The former are well adapted for studying the steady states of a regulatory module
and the way in which the system may evolve from one steady state to another in
response to a perturbation. The latter are especially appropriate for questions about
the way the network deals with noise arising from intracellular and extracellular
processes, which in the case of noise amplification may give rise to heterogeneous
phenotypes in a genetically identical population. This was illustrated by the
differential induction of the lac operon in E. coli cells when glucose in the medium
is depleted.2

The most effective strategy for studying a complex biological system therefore
relies onmodel plurality, using different kinds of models that look at the system from
different angles. Instead of building one large supermodel, describing the entire
system on the most detailed level possible, it is more fruitful to build a hierarchy of
models, accounting for different aspects of the system on different levels of
abstraction.

2Of course, there is no one-to-one correspondence between biological questions andmodel formalisms. For
instance, the robustness of a dynamic property of the system to fluctuations in the environment can be
studied by means of a stochastic model of the biochemical reaction system, but also by varying parameter
values in a differential equation model.
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8.1 INTRODUCTION

The purpose of this study is to bring the current state of gene synthesis and synthetic
biology into the context of normative ethics, the branch of philosophy that classifies
actions as good or bad. What are the demarcation lines between existing and new
normative ethics as the technology evolves?What tools are needed by philosophers to
capture and merge or resolve conflicting synthetic biology norms in a multicultural
society, and how can we extend the conversation between philosophy and technology
on these issues?

We here have no intent to review all the exciting new applications of synthetic
biology. This information is already available in several outstanding reviews [1,2].
We further do not attempt to cover the significant regulatory and intellectual property
issues brought to light by the rapidly escalating technology. Such discussions can be
found elsewhere [3]. Our sole aimwith this publication is to invite an open discussion
on what, if any, consequences the rapidly increasing ability to build new genetic
information has on our current normative ethics.
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8.2 HISTORICAL AND CONCEPTUAL BACKGROUND

In early nineteenth century, scientists of the era believed that compounds from living
organismscouldnot be synthesized and that theypossessed anonphysical inner energy
that could self-propagate (vitalism). Compounds derived from living organisms were
labeled ‘‘organic’’ and most analytical efforts were instead focused on the inorganic
types of compounds: metals, salts, and other nonbio materials. This vitalism myth
was forever shattered in 1828 when Friedrich W€ohler synthesized urea, an organic
molecule. This revelation changedmuch of chemistry from a discovery-based science
to an engineering field devoted to the construction of novel organic molecules. Today
there are almost no limits to thekindoforganicmolecules a good synthetic chemist can
synthesize. The acceptance that organic materials can be made and modified to fit
the need of mankind in conjunction with our significant understanding of organic
chemistryhas had far-reaching consequences in today’s society, culture, and economy.

With the current advent of molecular biology, genomics, and most recently
synthetic biology, we are again breaking through an imaginary barrier as now we
have the ability to modify, edit, and create new biological entities by directly altering
the biological source code—DNA. We are no longer limited to creating chimeras of
naturally existing information, as is the case with ‘‘classic’’ genetic engineering.
Instead, as the formal rules and grammar of biological information are gradually
deconvoluted and gene synthesis technology improves, we now are able to create
designed genetic templates for nonexisting proteins, replicative units, metabolic
pathways, and, entire organisms (Table 8-1).

Synthetic biology is now emerging at the interface between chemistry, molecular
biology, engineering, and computer science. The discipline is often suggested to be the
‘‘other half’’ of systems biology (Fig. 8-1) [4]. While systems biology is focused on
cataloging all parts of biology, synthetic biology aims instead at building novel genetic
circuitry and processes from scratch based on new or existing biological parts [5].

Our increasing ability to efficiently create any genetic information imaginablewill
transform life sciences into an engineering discipline just as what happened to organic
chemistry more than a century ago.

Table 8-1 Historical milestones in creating increasingly larger and more complex

synthetic DNA

First synthetic gene 1970 Yeast tRNA Ala (207 bp) [8]
First synthetic peptide coding gene 1977 Human growth hormone (56 bp) [54]
First synthetic protein coding gene 1981 Alpha interferon (514 bp) [55]
First synthetic bacterial replicating unit 1995 Plasmid (2.7 kb) [56]
Identification of minimal genome 1999 265–350 protein-coding genes

of Mycoplasma genitalium
are essential

[57]

First synthetic enzymatic pathway 1999 >50 erythromycin analogues [58]
First synthetic genome 2002 poliovirus (7.4 kb) [59]
First synthetic metabolic operon 2004 PKS gene cluster (32 kb) [60]
First synthetic prokaryotic chromosome 2008 Mycoplasma genitalium genome [61]
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8.3 DNA AS INFORMATION CARRIER

DNAs are discrete entities of coded information just as letters in the alphabet, musical
annotation, and bits of computer code are all coded information. However, unique to
genetic information and computational code is that the medium is also the message.
The information carrier itself (be it ACGT or 100110) has the ability to perform
a defined function (metabolize glucose or query a database) without any manual
intervention. Similar to computational source code, the genetic code of synthetic
biology captures an algorithm for a function and converts it to a step-by-step protocol.

DNA, as any type of coded information, can be both written and read. Reading is
done by DNA sequencing and writing by gene synthesis. Most of the molecular
biology over the last decades has focused on reading and analyzing naturally existing
DNA sequences, as evident in the massive DNA sequencing effort of the human
genome [6,7]. In contrast, writing new genetic information in the form of synthetic
biologyhasonly recentlybecomecommonplace.Although the first synthetic genewas
made as early as 1970 [8], gene synthesis as a standard process to create completely
synthetic genetic information only appeared over the last few years.

Today we are not only able to decipher the coding sequence of ourselves and of all
other living organisms, but we are also in a positionwherewe have the technology and
knowledge to write synthetic genetic code that can operate new biological entities.

8.4 CREATING NEW BIOLOGICAL ENTITIES

A synthetic gene can be made to be an identical copy of a naturally existing gene
sequence or it can be made to be a gene that has never existed before and not even be
remotely similar to anything previously seen. Or it can be anything in between.

Genotype
(Sequence)

Phenotype
(Function)

DNA RNA Protein Function

Systems biology
(Genomics+microarray

+proteomics+metabolomics)

Synthetic biology

Figure 8-1 Systems biology, synthetic biology, and information flow. Information from genomics,

proteomics, and metabolomics can be analyzed to create models describing biological activities.

Systems biology develops methods to predict behavior of networks of these elements. Synthetic

biologycloses the loopby reversing thedirectionof information flow, creating novel genes, proteins,

and organisms based on data from naturally occurring systems. This allows testing of predictive

algorithms and the creation of new and useful biology. Figure previously published [62] and

reprinted with permission from Elsevier.
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Currently, the majority of ongoing synthetic biology efforts are directed toward
makingminor deviations fromexisting genetic information. Typical synthetic biology
applications today include efficiently making genetic constructs using ‘‘classic’’
genetic engineering that would be very labor intensive [9–12]. Even though the genes
are completely synthetic, the coded information itself is identical or very similar to
existing natural genetic information. This type of ‘‘synthetic–natural’’ genes is the
application that today drives much of the technical development of gene synthesis.

Due to the degeneracyof thegenetic code, a nucleotide sequence can be designed to
be only�60 percent identical to an existing gene, while the encoded protein is still an
exact copyof a natural protein. This degenerate property of genetic information can be
utilized to create synthetic genes for applications such asmaking genes for expression
in foreign hosts [13–16] or for making RNAi-resistant mRNA transcripts [17]. Here
the synthetic genes encode the natural protein information, but the corresponding
DNA sequence has been recoded and can be drastically different on the DNA level to
encode additional properties that are not found in the natural DNA information.

The availability and acceptance of ‘‘synthetic–natural’’ and recoded synthetic
genes are important stepping stones on the path toward completely synthetic biologi-
cal systems. The commercial demand for ‘‘synthetic–natural’’ and recoded synthetic
genes today drives the technology to make all sorts of disparate synthetic genes faster
at lower cost andwithoutmutations.This type of synthetic genes are also critical in that
they teach us the ground rules for what changes can and cannot be made in the genetic
information.

Synthetic genes have also been used to create biological entities that have no
precedence in theexistingbiologicalenvironment.Thesenewentities canbecompletely
new DNA or protein structures [18,19], genetic networks [20] with fascinating appli-
cations that include molecular computers [21], programmed pattern formation [22], an
unbeatable Tic-Tac-Toe player [23], and even a bacteria that take pictures [24].

As our understanding of the rules and grammar of biological information increases,
we expect synthetic biology constructs to deviate more and more from naturally
existing sequences. But what does this new information imply? If a nanosized
octahedron made from synthetic DNA encodes a replicon and can multiply in a
surrogate host just as a virus, does it mean it is alive? Is the octahedron a complex
organicmolecule or is it an organism?And if amolecularDNAcomputer is built into a
self-contained synthetic eukaryotic cell, is that a living calculator? The answers to
these questions belong not only to science but also to ethics.

8.5 INTRODUCTION TO NORMATIVE ETHICS IN A GLOBAL
COMMUNITY

From the very beginning of human societies, it was necessary to have a set of rules that
could guide and regulate human behavior and actions. Such set of rules would define
good aswell as bad human actions in the context of society.A subset of these rules over
time formed the basis for the judicial system.Most, if not all, of these early rules had a
supranatural foundation, that is, the ruleswereperceived tohavebeendefinedbyaGod
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or set of Gods. Later, in the Ancient Greece (fourth century BC), philosophers like
Plato andAristotle designed rational normative ethics, a tradition followed later by the
likes of Spinoza (and his geometrical style ethics), Kant (with his categorical
imperative), or Moore (with his critics to the naturalistic fallacy and his stunning
and absurd claim about ‘‘the direct object of Ethics is knowledge and not practice,’’
Principia Ethica, 1903, Chapter 1, Section 14). Both positions, supranatural and
rationalist, can be labeled as foundationalist approaches, because they find a clear
foundation for their beliefs or ideas. For them, there is one and only one truth.
Consequently, their moral codes are based on that absolute truth.

At the end of nineteenth and beginning of the twentieth centuries, several philo-
sophersmade newapproaches to the ethical analysis: Nietzsche killedGod and started
an €Ubermensch’s ethics based on new myths, whereas Wittgenstein delimitated the
possible rational, linguistic, and, therefore, thinkable spaces, excluding ethics from
rational debate; to quote, ‘‘Ethics, if it is anything, is supernatural and our words will
only express facts; as a teacupwill only hold a teacup full of water and if I were to pour
out a gallon over it’’ [25]. Wittgenstein continues to pragmatically point out the
obvious in an ethical crossroad, ‘‘the absolutely right road would be the road which
everybody on seeing it would, with logical necessity, have to go, or be ashamed for
not going.’’

This new way of thinking led to the development of an antifoundamentalist ethics
by philosophers likeEduardoRabossi orRichardRorty.Rabossi, for example, thought
that the human rights phenomenon rendered human rights foundationalism outmoded
and irrelevant [26]. From this perspective can be understood the claims of underde-
veloped countries arguing about the imposition of Christian– Occidental values as if
they were universal truths [27–29].

As monolithic religious/rationalist-based ethics is today losing its monopoly in
contemporary developed societies, an intense blend of cultures and opinions is
increasingly making its presence heard. This change is reflected in the increasingly
global perspective of a multicultural society.

An additional ethical concept that has emergedover the last fewyears is the concept
of risk society [30]. Risk society is often described as a systematicway of dealingwith
hazards and insecurities induced and introduced bymodernization itself. Risk society
specifically attempts to address howall humanbeings are connected by ecological and
industrial risks, including everything from global warming to electromagnetic radia-
tion from cell phones.

Although the globalized world now requires common global solutions for every-
thing from economic markets to law enforcement, the moral pluralism is instead
expanding and common ethics frameworks are diminishing on the contemporary
ethical arena. This contradiction has been described as the ‘‘collapse of consen-
sus’’ [31] and is making the efforts to find common solutions and compromises
increasingly difficult to achieve.

The facts and promises of biological engineering and synthetic biology create
conceptual problems about future decisions because they involve completely new and
previously unexpectedways of changing reality. For that reason, opinions like those of
Cho et al. [32], ‘‘Without prior discussion of ethical issues, the general public cannot
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develop a framework or common language to discuss acceptable issues of a new
biomedical technology, or even whether it should be used at all,’’ are premature as the
general public does not share common normative ethics. Few words have in fact so
disparate and ethically pregnant meaning as ‘‘life.’’ The meaning of the word varies
widely in the global transnational community based on respective individual beliefs
and historical and casuistic background.

Can there be a common ethical space or must we resign to a complete ethical
anarchy? This is not a problem specific for the synthetics biology community but for
any ethical problem affecting a global society. If it is true that bioethics is a specialized
part of common ethics, with its own topics of interest, we must also consider that it
belongs to the debate about sense and meaning among general ethics.

It could be argued that the general public should not decide on ethical aspects of
synthetic biology, since several studies about risk perception and scientific literacy
show that most citizens of our societies have a distorted, at best, or false ideas
about science and the concept of risk [33–35]. The counter argument however is
simple: A democratic societymust rely on democratic principles as the foundation for
ethical framework of any normative behavior.

8.6 EMOTIONS AS THE BASE FOR SYNTHETIC BIOETHICS?

The interest in the ethical aspects of synthetic biology is not only due to the moral
implications of this kind of research but also due to the cognitive implications of
ethical values for scientific practices. As previously discussed [36], theoreticians of
science studies consider nonepistemicvalues (specifically ethical andmoral values) as
alien to the scientist’s process of making rational decisions [37]. However, neurosci-
ence and the emerging field of neuroethics propose that epistemic values are inherent
to natural science [38–40]. At the same time, analysis of the emotional aspects of
human reasoning suggests that most of the moral actions imply emotional attitudes
and responses [41–43]. From an anthropocentric perspective, information is not just
information, a state, but an active quantity of data meaningful for action. We are not
perfect rational robots, nor strange Mr. Spock without emotions [44]. Minds have not
been evolutionarily designed to just capture the neutral realities but to interpret them in
a frameworkbasedonprevious experiences and in the context of other relatedpieces of
information. Only by categorizing and sorting new information into an existing
framework can we start to interact with the captured information through behavior
and actions. Emotions shape thoughts and how to relate to and acknowledge new
information. And as we now are able to create new biological data, we need to find
meanings for those pieces of information to build a framework for our understanding
of living entities and biological systems.

Results from neuroethics are suggesting that nonepistemic values, formerly con-
sidered alien to the scientific praxis, are instead anchored in the scientist’s neuronal
processes and are determining their actions. Several investigations in neuroimaging
have shown the central role of emotions in the formation of rational judgments [45–47]
and in how moral dilemmas initiate cerebral activity in the areas associated with
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emotion and moral cognition. These emotions are also socially distributed among
human communities [48,49].

It can thus be concluded that rational decisions are cognitively processed through
emotional elements that can be explained from insights derived from new advances in
neuroethics. Therefore, any kind of bioethics that can be thought must be developed
from the sentimental frame. The relationships between ethics and sentimentalitywere
initially developed by Rorty [50], at the same time when contemporary discoveries
about the limits of rationality (beyond the formal incongruence of the logical classic
research, as was demonstrated byG€odel and Russell) and the basic role of emotions in
human thinkingweremade, led contemporary efforts on ethics toward an ethics based
on emotions with strong limitations of fundamentalist positions.

8.7 ETHOBRICKS

From the perspective of the collapse of the consensus in contemporary ethics and after
the historical failures to achieve a universal ethical code, we here propose a simple
project:Create an ongoingethical frame that can offer answers to the synthetic biology
community, a kind of ethical Nash equilibriumbased on simple and shared ethobricks.
This would be an open and collaborative project (like an universal wiki), in which
different social agents (scientists, artists, civil society organizations, and so on) define
basic ethical pieces for configuring the action’s puzzle [5].

The current ethical frame for synthetic biology was defined through the social
contemporary circumstances at the time of inception.We can see the early pioneers in
this effort when reading the personal writings of the Dolly sheep’s creators [52] or we
can see it in theCriticalArt Ensemble’s conflictive artisticworks (http://www.critical-
art.net). Specially interesting is the use of synthetic biology and genetic engineering
techniques by Eduardo Kac, an artist, on hisMove 36, an open reflection on the limits
between artificial and human intelligence through the visual results of the incorpo-
ration of a synthetic gene on a new plant (http://www.ekac.org/move36.html).

Currentlywehavenot definedmeanings for thosegenetic information realities, and
we are afraid ofwhat to dowith it. This is a good starting point:We feel uncomfortable
with our actual ideas and the languagewithwhichwehavedeveloped them, andwe are
looking for a new way to understand (and modify or create) that biological reality.
Before genetic engineering and synthetic biology, humans created names for existing
semantic genetic meanings. Chimeras such as mermaids and centaurs were part of the
imaginary realm and not a real world. Ethics is an integral part of scientific decision
making (e.g., stem cells). There were clear roads in the scientific framework. But
our capacity to create new biological meanings require that we create new names and
new ethical frameworks to shape the future of living systems, including ourselves,
humans. For this we have no references, because those realities were not previously
thinkable by whatever philosophical or religious ideas we could consider. As Benner
and Sismour state, ‘‘A synthetic goal forces scientists to cross uncharted ground to
encounter and solve problems that are not easily encountered through analysis.
This drives the emergence of new paradigms in ways that analysis cannot easily
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do’’ [53]. This is the situation for synthetic biology and, as consequence, for synthetic
bioethics.

Theorigin and justificationof theproposedvaluedonotmatter.Dividing the ethical
concepts into minimal building ethobricks alleviates the need to discern between the
truthfulness of different religious, traditional, and cultural beliefs. Ethobricks can be
used to define the consensus among beliefs and how to apply ethics to the scientific
question asked. Ethobricks would be, then, small ethical blocs with which we could
regulate our present and future relationship with synthetic biology research.

With that approach, we can create a common ethical space while avoiding dis-
cussions of the foundational basis of ethics. Instead of an ethics of confrontation
between deep truths, ethobricks means a ‘‘common sense’’ ethics based on basic
emotions, flexible and adaptable to continuous changes. Once synthetic biology
community reaches a stable set of ethobricks, itwill be transformed into an ethical core
with an external belt of concepts under day-to-day supervision. All, core and external
ethical belt, are provisional but accepted ways to regulate action.

Likebiobricks, basic biological syntheticpieceswithwhich tocreatenew life forms
or processes, ethobricks are basic ethical points of departure for a common ethical
background. Very important for our approach is the consideration of synthetic biology
problems as radically new questions about life for which we have no answers
(otherwise, it would not be a problem!). And a crucial problem:We know that people
who have values based on divine beliefs or supposed universal principles cannot
convince all others the truth of their beliefs (based on divine truths as well as on
‘‘rational’’ ones). Absolute ethics is only possible from absolute beliefs. This is an
exclusionary project that separates between those who have the (ethical) truth and
those who have not.

Multicultural and democratic societies must develop ethical agreement tools to be
able to have coordinated responses to the contemporary ethical dilemmas such as
synthetic biology.

8.8 APPLYING ETHOBRICKS

Our project on ethobricks is not just as an engineering code of ethics for practitioners.
Bioethics is part of ethics, and we must always remember that ethics is a practice and
not an intellectual or mere regulatory process. It is a way of life if considered
personally, but a merged moral state if considered socially.

Thequestion is how to find commonways of life and practice?Fromour perspective,
it would be illusory to pretend to find a unique and absolute moral code for all humans.
Instead, we must negotiate provisional but reasonably stable codes for deciding our
actions. There are many application fields of ethics into synthetic biology, such as
bioterrorism, biosafety, patents, life definition, right to manipulation, and control
over research (http://openwetware.org/wiki/Synthetic_Society#Synthetic_Society.
2FUnderstanding.2C_Perception_.26_Ethics). These concepts will change in differ-
ent societies due to the transformations of their sciences, industry and technology.
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Therefore,we should try to findprovisionalways to developour activities as scientists,
as citizens, as artists, or whatever role we have in our societies.

Ethobricks cannot be regulated by ametaorganization, because it would imply that
there is an upper lever from which certain experts know the truth about the discussed
facts. Ethobricks is instead an open and continuous project that is gradually im-
plemented on legal traditions. However, there is not only one channel of debate,
because it would exclude most of the interested participants from the debate. The
equilibrium of an independent ethobrick is achieved if, for continuous space of time,
there is not a deep debate about its ethical values. Accordingly, our approach does not
imply a different way to define ethics on synthetic biology issues, but it requires a
commitment to avoid absolute values. One may think that this leads to a weak ethical
frame, but it is the only possible path forward inside true democratic societies.

Can we define the first ethobrick? Certainly yes, trust. We can and should trust the
fact that all implied participants in this ethical debate seek the best for them and their
societies (the basic pleasure of happiness). The point is, then, to harmonize for
common ethical spaces in this increasingly globalized world.

BOX 8-1 MAKING SYNTHETIC LIFE

Current list of exampleswheregenomes havebeen synthesizeddenovo. In all cases
but the T7 phage below, the synthetic genomes are very similar to the natural
counterpart. For the T7 phage genome, only a quarter of the genome was syn-
thesized and subsequently combinedwith the remainingnatural three quarters. The
synthetic quarter of the T7 genome was redesigned and is significantly different
from the natural T7 genome counterpart.

. In August 2002, Dr Wimmer (SUNY) announced that his research team had
assembled an infectious poliovirus (7.4 kb) de novo using DNA sequence of the
viral genome available from GenBank [59].

. In 2003, Dr Smith and colleagues at the Venter Institute developed a two-week
selection-based method for the de novo synthesis of a phage genome, the 5.4 kb
bacteriophage jX174 [63].

. In 2005, Dr Tumpey and colleagues at the U.S. Centers for Disease Control in
Atlanta synthesized the 1918 pandemic flu virus genome (13.5 kb) and showed
they were infectious in mice [64].

. In 2005, Drew Endy and coworkers at MIT redesigned and synthesized 12 kb of
the 40 kb T7 phage genome to make the virus simpler to model and more
amenable to manipulation [65].

. In 2008, the J. Craig Venter Institute published the first synthetic prokaryotic
chromosome (�600 kb). The DNAwas synthesized by three commercial gene
synthesis companies (DNA2.0, Blue Heron Bio, and GeneArt) and stitched
together by scientists at the J. Craig Venter Institute [61].
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9.1 INTRODUCTION

The bakers yeast, Saccharomyces cerevisiae, is arguably one of the earliest micro-
organisms to be domesticated for early biotechnological applications such as brewing
and baking.Gradually, this yeast has established itself as the primarymodel eukaryote
in the field of genetics and molecular biology. Currently, S. cerevisiae is also the most
commonly used eukaryote for bioprocess applications, owing to its flexibility in
aerobic and anaerobic modes of metabolism and its amenability to genetic manipula-
tions.With the advent of the high-throughput omics technology, it is not surprising that
S. cerevisiae served as the platform for deciphering the molecular details of chromo-
somal activity such as DNA replication and transcription as well as physiological
activity such as translation andmetabolismat a global level.Thewealth of information
on the cellular components and their structural components has greatly facilitated the
progress of yeast biotechnology and metabolic engineering. Several aspects of
S. cerevisiae fundamental metabolism have been modified and improved to meet
the endbioprocess objectives, butmore complex aspects such as expanding the rangeof
consumable substrates and the mechanism of glucose repression still remain obscure.
The primary reason impeding progress is the lack of knowledge on how the different
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cellular components, suchasgenes, proteins, andmetabolites interactwith eachother to
impart thephenotype.Thelackofdetailedknowledgeof regulationofcellularprocesses
is impeding progress inmetabolic engineering, despite rapid progress of technology in
genomics, transcriptomics, proteomics, and metabolomics areas.

The cellular processes comprise of the transfer of mass in the metabolic pathways
and the transfer of information in the regulatory and signal transduction pathways.The
regulation of these processes as a result of environmental or genetic changes is the key
step in imparting the phenotype. The information flowcommences at thegenome level
with the DNA. For a given microbial strain, the sequence of the genome remains
unvarying. The variation that beginswith the primary step in the flowof information is
transcription, the process of making mRNA. From this step forward, the abundance
of the cellular components highly depends on the environment. For example, in the
presence of high glucose concentrations, those genes whose products are required
for rapid glucose consumption are transcribed to a greater extent. The next step in
the information pipeline is the translation of mRNA into proteins. Proteins are the
structural as well as functional entities, carrying out all the cellular functions such as
adaptation, regulation, and even catalysis. The transfer of mass from the substrate to
theproduct occursdependingon theprotein availability and, therefore, proteins are the
link between the information transfer and mass transfer. A simplified schematic of
these two cellular pipelines is depicted in Figure 9-1.

Until the late twentieth century, the focus of most traditional enquiries was limited
to in-depth analysis of only a small number of cellular components (usually genes,
proteins, or signaling pathways) in relative isolation from the remaining system.
Although this reductionist approach has been extremely useful in providing detailed
description of the individual cellular components, it is to be noted that these com-
ponents do not function in isolation in the system. Therefore, their biological role has
to be elucidated in the context of the remaining components in the system. This line of
thinking is the inspiration for modern systems biology, and will be the main focus
of this chapter. This chapter begins with a historical perspective of the research that
led to the current notion of systems biology and the experimental and computational
tools available. The chapter focuses on the development and applications of systems
biology in the context of S. cerevisiae.

9.2 INTEGRATIVE PHYSIOLOGY AS THE BIRTH
OF SYSTEMS BIOLOGY

Although systems biology has entered the popular lexicon only after the millennium,
the idea is not new. The natural confluence of systems science with biology and the
representation of biological entities as systems were described as early as 1929 [18]
in Walter Cannon’s homeostasis theory that described the human body as dynamic
control system. In 1963, Jacob and Monod followed this line by implementing the
concept of control theory to the operation and regulation of the lac operon [109].
Subsequently, the concept of a holistic ‘‘systems approach‚”wasdeveloped, and itwas
in 1968 that the term ‘‘systems biology‚”was first used byMesarovic [107] to indicate
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the application of the techniques of systems scientists (whowere conventional control
engineers, physicists, and mathematicians) to experimental biology. This was one of
the early invitations for biologists to study vital biological phenomenon from a sys-
tems perspective. Development continued into the 1970s when researchers developed
biochemical systems theory and metabolic control theory to create simplified math-
ematical models of biological systems, enticing nonbiologists toworkwith biological
systems.This conceptwas immediately pickedupby several researcherswho reported
many exemplary applications of the control systems theory to life sciences in the
following decade. For example, in 1969, Yates pointed out the similarities in the
conventional mechanical and electrical control systems and adrenal glucocorticoid
control system in humans [178]. Goldbeter and Segel developed the kinetic theory of
enzyme action inmicroorganisms in 1977 [52]. This conceptwas further developed by
Iberall in 1977using the laws of irreversible thermodynamics to describe the hierarchy
in physiological systems. The results from this paper were subsequently used to

Figure 9-1 The transfer of information from DNA that defined the genotype to metabolic fluxes,

which quantify the phenotype. The genotype of a strain is a static entity, but the expression of

subsequent components is context dependent. The technology used to quantify the various

components in the information pipeline is depicted schematically along with the typical output.

It requires careful analysis to extract useful biological information out of the data. Integration of the

high-throughput data from these different stages of hierarchy in a context-dependent manner will

reveal the interactions between the various components, leading to a holistic understanding of how

the phenotype is linked to the genotype.
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describe several other regulatory phenomena in living systems [71]. Gradually, these
conceptswere developed to describemodeling of the structure, control, and optimality
of metabolic networks [61].

Along with systems theory, cybernetics played a key role in drawing parallels
between the information transfer in electronic systems and biological systems.
Moreover, with the development of a formal framework for studying the design of
biological networks in terms of error correction, feedback and feedforward control
loops, and other circuit concepts, the confluence of the two fields became even more
obvious. Together with systems theory and cybernetics, another field that contributed
to early systems biology was the field of reaction engineering. The focus of reaction
engineering is on the properties of complex reaction networks while monitoring
the individual reactants. Although in classical reaction engineering it is possible to
calculate important thermodynamic and kinetic parameters, the description of bio-
logical systems is far from such quantification. As the application of the concepts
of control systems and reaction engineering in biology gained popularity, there was
also a simultaneous progress in the development of experimental techniques and
high-throughputmethods, particularly the ability to sequence complete genomes. The
availability of complete genome sequences provides abundance of information,
but without any rules pertaining to how the cell processes the genomic information.
In addition, the RNA microarray-based expression technology expedited the pro-
gress in understanding the transfer of information from the genome to proteins. The
paradigm shift in the approach to study biological systems from a reductionist
approach to an integrative approach provides a new meaning to the integrative
approaches developed thus far and has given birth to the modern meaning of systems
biology. Systems biology, in a very general way, can be defined as the integration of
genomic, proteomic, transcriptomic, and metabolomic data using computational
methods for a holistic understanding of systemic functions. In the context ofmetabolic
engineering, this definition can be interpreted as the unification of information from
the flowofmass and energy (inmetabolic pathways) and the flow of information from
the DNA (transcriptional regulatory pathways and signal transduction pathways).
Understanding how the flowof information and the flowofmass occur in tandem is the
fundamental tenet of systems biology.

9.3 SYSTEMS BIOLOGY AS AN ENGINEERING DISCIPLINE

Weare currently at a crossroads in proceedingwith the study of biology. The paradigm
shift in the study of biology from a descriptive science to a well-defined quantitative
discipline reflects the need to incorporate the theories and principles developed in
other disciplines, particularly engineering sciences. The Human Genome Project
validated the discovery-driven approach to systems biology for augmentation of the
previous purely hypothesis-driven paradigm. With the completion of the human
genome and the genomes of various other species, we are now introduced to a number
of genes we have never even known existed before. At the same time we are also
troubled with the disturbingly finite size of this gene list, and we quickly learned that
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the diversity of the genes could not approximate the diversity of functions within an
organism. The key to this discrepancy is in the combinatorial use of the gene products
to impart the diversity. This section will bring out the engineering concepts that are
highly applicable in the progress of systems biology.

Systems are central to engineering. The traditional concepts of analysis, synthesis,
and design that form the core of the engineering discipline are unified in the systems
approach, as shown in Figure 9-2. The system is first decomposed into well-defined
subsystems and each subsystem is analyzed for its components and functionality.
This defines the analysis component, represented by the left arm in the figure. The
knowledge gleaned from the components of the subsystems is assembled into larger
and larger subsystems, until the complete system is synthesized. The methodology
described here is also known as the bottom-up approach. As applied to biological
systems, all the information of individual genes, proteins, metabolites, and so on is
gathered, followed by assembling these components in the context of the observed
phenotype.Therefore, each levelof information processing shown inFigure 9-1 serves
as one subsystem. Such a model designed by the bottom-up approach should be
capable of describing exactly how the cell functions in response to a certain genetic or
environmental alteration. Other less commonly used approach in systems analysis are

Identification of
subsystems 

Functionality of
the components in

the subsystem  

Functional
understanding of
the subsystem  

Integration of
the subsystems 

System validation and
performance testing 

Systems approach

Holistic
knowledge 

Figure 9-2 One iteration in the cycle of analysis and synthesis using the bottom-up approach to

systems biology. As in other disciplines, the system is first defined, followed by the identification of

subsystems it comprises of. The components that make up the subsystem are studied in detail for

their functionality to understand their role in the context of the whole system. The knowledge from

these components is assembled to synthesize bigger subsystems until the complete system is put

together and functionally evaluated. This approach reflects the implementation of the classic

engineering principles of analysis and synthesis in the context of biological systems.
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the top–down approach where the rules are defined for all the individual components
identified by the analysis, allowing them to freely interact with each other.

There are three fundamental concepts that an engineer uses to understand a
system: emergence, robustness, and modularity. An inherent property of complex
systems is that they are larger than the sum of their individual parts, a property known
as ‘‘emergent property.‚” The properties of a cell cannot be deduced based on the
properties of DNA, RNA, or proteins. It takes a holistic understanding using systems
level analyses for a comprehensive understanding of these emergent properties. The
robustness of a mechanical or an electronic system is judged on its ability to maintain
its functionality despite perturbations. Similarly, a biological system maintains its
phenotypic robustness in the event of environmental and genetic perturbations and is a
strong determinant in evolution. The feedback and feedforward control loops that
comprise a biological or nonbiological system impart robustness to these systems.
The third concept central to systems is their modularity. An engineer would define
modularity as a subsystem, as shown inFigure 9-2. It is a collection of components that
perform a distinct function through interactions and has clear inputs, control process-
es, and outputs. In biology, modularity refers to a set of components that have close
interactions and share a common function. An example of a module of a subsystem in
a biological system is the respiratory chain, which is composed of several genes,
proteins, cofactors, and regulators that work together in the transport of electrons to
oxygen with concomitant energy generation. From an evolutionary perspective,
modularity contributed to robustness by restricting the change (malfunction) to the
subsystem, thereby decreasing the severity of system failure.

9.4 HIGH-THROUGHPUT EXPERIMENTAL TECHNIQUES

Although the development of the systemic concepts and applying them to biology
appealed to a large community of researchers, the lack of experimental techniques to
verify the results of the analogy limited the progress of systems biology in 1980s and
1990s. The recent exponential increase in the availability of biological information
in the form of genome sequences, RNA, and protein abundance and metabolic flux
analysis to quantify physiology transformed systems biology into one of the most
exciting scientific developments. Having provided an overview of the concept of
systems biology and its evolution to the present-day notion, we devote this section to
the experimental techniques that contributed to the advancement of the field from
integrative physiology to systems biology.

9.4.1 Yeast Genome Sequencing

The main catalyst behind the rapid progress is the ability to sequence complete
genomes. Since the completion of sequencing of the genome of the first independently
living organism, Haemophilus influenzae, genome sequencing became a routine
procedure with the genomes of several microorganisms, including S. cerevisiae
becoming available. The landmark invention that triggered this explosion was the
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invention of nucleotide sequencingmethod by Frederick Sanger [140] and subsequent
automation of the process. Sequencing of the yeast genome was the offshoot of a
broad international consortium, acting upon a consensus reached in 1988 [1], that was
committed to working on a 15-year massive effort to sequence the human genome,
supported by a $3 billion funding. The recommendation of this consensus was that
the genome sequences of some other eukaryotes should be determined alongside the
human genome. The ‘‘model‚” eukaryotic genomes specifically chosen were those
of yeast (S. cerevisiae), a nematode worm (Caenorhabditis elegans), and a fruitfly
(Drosophila melanogaster). New and faster DNA sequencers were developed, fol-
lowing this initiative and sequencing individual genes became a routine process in
yeast. Another landmark result in eukaryotic sequencing was the determination of
the complete sequence of a whole chromosome (chromosome II in S. cerevisiae) in
1992 [117]. Subsequently, therewere several reports of sequencing large fragments of
the individual chromosomes in S. cerevisiae, which provided the foundation for
completion of the chromosome sequencing. Figure 9-3 shows the time line when

Figure 9-3 The time line of significant events in the sequencing of the S. cerevisiae genome. The

sequencing of the individual chromosomes paved the path for determining the complete

genome sequence. The final draft of the genome sequence was completed in 1996. This is a

collaborative effort that required several laboratories across the globe.
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the sequences of the other chromosomes became available. The availability of the
individual chromosome sequences finally led to determining the nucleotide sequence
of the first eukaryotic genome, S. cerevisiae, in 1996 [50]. Thus, the yeast genome
became thepioneer eukaryoticgenomeandyeast researchcommunitywas theprimary
beneficiary of this knowledge of the complete sequence.

A dramatic transformation of yeast research ensued that presaged similar trans-
formations in the approach to research on other model organisms, as their sequences,
became available. This transformation began with technical improvements that
accelerated research involving DNA cloning and recombinant techniques. The
same consortium that played a key role in yeast genome sequencing undertook
another major project of producing deletion mutants of every yeast open reading
frame (ORF) [48,173],which led to the development of awhole class of genome-scale
genetic methods. The estimated number of ORFs in S. cerevisiae is 6034, spread over
the16 chromosomes.Acomparativeanalysis of the completegenomeof yeastwith the
genomes of other model organisms and humans validated the conservation of
sequence and function in evolution, despite the difference in the size and number
of genes. This observation of ‘‘grand unification‚” has particularly useful ramifica-
tions in functional genomics. It became clear that a similarity in sequence is an
important factor in assuming functional similarity. Therefore, comparative genomics
permits the elucidation of a gene or protein in one organism to be applied to the same in
another ‘‘lesser‚” known organism. Since yeast is still the most tractable eukaryotic
system, much of the annotation of basic cellular functions in other eukaryotes,
including humans, have functional identity in yeast. The availability of the entire
genome sequence permits the asking of new kinds of research questions that can be
answered only when one has truly comprehensive information about an organism. As
previously mentioned, the sequence is the static entity and stable part in the organism
under all conditions. It is the interplay between flow of information from the DNA
sequence and flowofmaterial in themetabolic network that imparts the variation. The
subsequent sections will describe the high-throughput methods that have made the
quantification of this variation possible and contributed to systems biology.

9.4.2 Transcriptomics

9.4.2.1 Microarrays The genome basically defines the phenotypic space an
organism can operate within and all phenotypic changes ultimately originate at the
transcription level. The availability of genome sequences induced the development
of technologies to quantify transcriptional activity on a genome scale and to identify
the nature of information flow at the transcription level. Once the entire genome
sequence became known, it became possible, for the first time, to study expression of
all the genes at once; earlier one could study genes only a few at a time. The very idea
of what constitutes ‘‘specificity‚” has been changed by the ability to study expression
of all the genes without exception. It is now a routine procedure to simultaneously
measure the abundance of mRNA species of every ORF in the genome using two-dye
spotted arrays [141] or GeneChips [102] in an organism that respond to a specific
stimulus or stress. One of the earliest genome-wide transcription characterizations
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was to study the expression changes of all the genes in S. cerevisiae in response to
metabolic shift from growth on glucose to diauxic shift to growth on ethanol [28].
Identifying similarities in the transcriptional profile, the role of many previously
uncharacterized geneswas predicted, based on the assumption that coexpressed genes
are coregulated. Since then, there has been tremendous interest in quantifying
gene expression in response to various conditions and, consequently, the number
of publications using gene expression microarrays has exponentially increased over
the past 10 years (Fig. 9-4).

Prior to the availability of complete sequences, cDNA clones from cDNA banks
werePCRamplified and roboticallyprintedontoglass slides,whichwereused to study
gene expression [103,141]. On the other hand, in the photolithography technique,
which is popularized by Affymetrix, synthetic linkers are adhered to a glass surface
using photosensitive groups, and a lightmask is used to direct light to specific areas on
the glass to remove the exposed groups. A new mask is used to direct coupling at
other sites, and the process is repeated until the desired sequence and length of the
oligonucleotide is synthesized. Thismethod,which is very similar to the production of
computer chips, is very efficient in high-throughput generation of identical arrays.
However, the method is quite expensive in the design phase and the DNA array
generated using this method is not flexible when the new genes need to be added. A
completely newarray needs to be redesigned if new features are to be added.A slightly
modified version of this method that resolves this issue is the ink-jet printing of

Figure 9-4 The number of publications in peer-reviewed journals that contained the words/

phrases ‘‘microarray,’’ ‘‘global gene expression,’’ or ‘‘oligonucleotide array’’ in the title or in the

abstract. The exponential increase in the interest in quantifying global gene expression stems from

the availability of the genomes of the variousmodel organisms:S. cerevisiae (1996),E. coli (1997),

C. elegans (1998), Arabidopsis thaliana and Drosophila melanogaster (1999), and, finally, human

(2000). This technology has arguably revolutionized the concept of systems biology.
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60mer oligonucleotides [10,68]. This method can generate new arrays or modify
the gene content by reprogramming the synthesis of the new set of oligonucleotide
sequences. The availability of the genome sequences for several model organisms has
facilitated several researches to PCR-amplified genes (either a selected few or the
entire list of open reading frames) fromchromosomalDNAor design oligonucleotides
to develop arrays that are very specifically suited for their purpose. Transcriptional
profiling by global gene expression technology is a paradigm of the convergence
of several technologies, such as DNA sequencing and amplification, synthesis of
oligonucleotides, and fluorescence biochemistry. Transcriptional profiling is based on
the fundamental base pairing ability of the nucleotides. The conventional terminology
is to refer to robotically printed sets of PCR products or conventionally synthesized
oligonucleotides on glass slides as microarrays [30,141], whereas high-density arrays
of oligonucleotides that are synthesized in situ using photolithography are referred to
as GeneChips [101,102], although here we refer to both as microarrays. Numerous
reviews have been published that describe the methodologies and analytics behind
these methods.

For S. cerevisiae, extensive applications of microarrays have been reported, and
there are many examples of analysis of genome-wide responses to several environ-
mental and genetic perturbations. These initial transcription applications relied on
existing knowledge to confirm some of the results as a means of validating new
discoveries. For example, the application of microarrays to the classical study of
aging and cell cycle identified several previously known genes in addition to
discovering several new ones. Although the cell division cycle in yeast is known
to regulate the expression of several histone genes [63], the transcriptional changes in
the genomewere followed in synchronized yeast cells during various stages of the cell
cycle [21,147]. About 7 percent of the genome oscillated with the cell cycle, and
every chromosome contained at least one cell cycle-dependent gene. By correlating
the expression of the oscillating gene with the stage of the cell cycle, hundreds of
transcriptswere discovered that exhibited rhythmic expression trends exhibiting close
periodicity to the cell cycle. Based on the cell cycle stage, these genes were grouped
into different clusters, and analyzing the upstream sequences of genes from the same
cluster revealed binding sites for several known as well as unknown transcription
factors, indicating the involvement of additional transcription factors in regulating
gene expression during the cell cycle. Considering that a large number of human
proteins have high homology to yeast proteins, this research could have important
applications in understanding human aging.

Microarrays have been extremely useful in understanding regulation and metabo-
lism in yeast. For example, studying the transcriptional responses of S. cerevisiae
to growth limitation by carbon, nitrogen, phosphorus, sulfur, or oxygen enabled the
identification of gene clusters that are involved in sensing nutrient limitation and
trigger alternate pathways to minimize stress [11,150]. The stress response induced
by nutrient limitation during steady-state growth is apparently different from that
observed in normal stationary phase cultures, and that some aspect of starvation,
possibly a component of stress response, may therefore be required for triggering
metabolic reprogramming associated with diauxic shift as demonstrated by
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transcription profiling [14,138]. Another important feature of yeast metabolism that
was characterized by microarrays is that of glucose repression. Yeast preferentially
metabolizes glucose while repressing the genes required for the uptake of several
other carbon sources. It also induces the expression of genes required for glucose
metabolism such as the glucose transporters and those in glycolysis. Although someof
the key players in this complex signal transduction cascade were known for a long
time, the true complexity involved in this process is just beginning to be gauged. The
central components in the glucose repression pathway are MIG1, a DNA-binding
transcriptional repressor, and its homologue, MIG2, a protein kinase, SNF1 and its
associated regulators such as SNF4, and a protein phosphatase, GLC7 and its
regulatory subunit REG1. The binding of MIG1 upstream of many of the genes
seems tobe themost prevalentmechanismbywhich the repressionpathwayacts. In the
presence of glucose, Mig1 is localized in the nucleus where it is dephosphorylated
and represses gene expression. Upon removing glucose, Snf1 phosphorylates Mig1
and transports it out of the nucleus, resulting in derepression of the genes sensitive
to glucose. It is believed that AMP (or even more likely the AMP:ATP or ADP:ATP
ratio) signals the phosphorylation/dephosphorylation of Mig1. Several excellent
reviews have been written detailing the state-of-the-art knowledge about this mecha-
nism [87,134,155]. The glucose induction pathway is triggered by a completely
different mechanism, which induces the HXT and HXK genes for glucose uptake and
phosphorylation, respectively. In this pathway, the key components are a transcrip-
tional repressor, RGT1, a protein complex, SCF (SCF complexes are named for their
constituent proteins: Skp1, Cdc53 and Cdc34, and an F-box-containing protein), and
membrane-bound glucose sensors, SNF3 and RGT2. Upon sensing glucose, Rgt1
binds to the glucose sensors and generates a signal that causes the SCF complex to
inactivate the Rgt1 repressor, thereby enabling glucose uptake andmetabolism. In the
absence of glucose,Rgt1 binds to theHXTpromoters and represses their transcription.
In this process, Grr1 (glucose repression resistant) plays a key role through ubiqui-
tinating the proteins involved in the signal transduction pathway. The expression of
GRR1 is independent of the carbon source and both the mRNA and protein are
constitutively expressed in S. cerevisiae in low amounts, thus supporting the role of
Grr1p being a regulatory protein [121,122].

Microarrays played a key role in elucidating the regulatory role of GRR1 in
glucose induction. Upon comparing the transcription profiles in Dgrr1 with its
isogenic control strain, we observed large transcriptional changes spread out over
different parts of the metabolism [172]. Several genes of the TCA cycle, respiration,
and oxidative phosphorylation were induced while many transporters and amino
acid biosynthetic geneswere repressed inDgrr1. SinceGrr1 has also been implicated
to play a key role in regulating glucose transport, profiling the transcriptional
response of the hexose transporters in S. cerevisiae indicated strong repression of the
low-affinity transporters (HXT1, HXT3) and one high-affinity transporter (HXT4)
while inducing another high-affinity transporter (HXT8) and HXT16, a hexose
permease. These results indicate differential regulation of even the different
high-affinity transporters.Analysis of the sequence upstreamof thesegenes revealed
the binding sites for the transcription regulators, suggesting a key role for Rgt1 in the
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repression mechanism. Similarly, upon the identification of a second homologue
forMIG1, YER028, microarray experiments revealed its glucose-dependent trans-
cription repressing nature [105]. Subsequent DNA binding assays revealed that
the binding affinities of MIG1, MIG2, and YER028 are different, although they
recognize the same binding sequence. Transcription profiling also revealed that
about 50 percent of the genes that responded to MIG1 or MIG2 were of unknown
function. High-throughput experiments such as these could help identify genes that
could serve as indicators to sense nutrient limitation and so on for inverse metabolic
engineering applications.

One such example of transcriptome-guided inversemetabolic engineeringwas that
of designing a strain with enhanced galactose uptake capability [119]. Overcoming
glucose control over galactosemetabolism has industrial interest in prompt utilization
of galactose that is present in lignocelluloses and beet molasses along with glucose.
The GAL system that contains genes responsible for the uptake of galactose is sub-
jected to dual regulation of glucose repression and galactose induction. Galactose
induces the GAL system by an ATP-dependent mechanism where the transducer
protein Gal3 interacts with Gal80 [149,177]. In forming a complex with Gal80,
Gal4 binds to the activator sequences in the GAL system, expressing the structural
genes, GAL2, GAL1, GAL7, and GAL10 [174]. These genes code for galactose per-
mease, galactokinase, galactose-1-phosphate uridylyltransferase, and UDP-glucose
4-epimerase, respectively (Fig. 9-5) and are responsible for galactose uptake and its

Figure 9-5 Despite the similarity between galactose and glucose, yeast consumes galactose

almost three times slower than it can consumeglucose. The uptake andmetabolismof galactose in

the pathway is shown up to its entry in the glycolysis, where its subsequent metabolism is identical

to that of glucose.Using inversemetabolic engineering strategies and global transcription analysis,

we increased the rate of galactose consumption.
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subsequent conversion to glucose-1-phosphate in the Leloir pathway. Therefore,
deleting Gal6, Gal80, and Mig1 increased galactose uptake rate by about 40 percent
and upon comparing the transcription profile in this strain and in aGal4 overexpressed
strain with a reference strain, there was no clear reason for the enhanced galactose
uptake rates. BesidesGAL4, GAL6, and GAL80, only the PGM2 transcript, encoding
themajor isoform of phosphoglucomutase, exhibited a statistically significant change
(of about 1.5 fold) and overexpressing PGM2 resulted in a 70 percent increase in
galactose uptake rate [15]. This case study presents a microarray-guided approach for
inverse metabolic engineering, where the targets for metabolic engineering are
identified by screening various strains.

Engineering the redoxmetabolism is an attractive target for metabolic engineering
applications since it plays a crucial role in determining growth efficiency and product
formation. Despite the importance of redox in metabolism, little knowledge exists
about the transcriptional changes that emulate following a redox perturbation. As a
fundamental study to identify redox-sensitive genes, a S. cerevisiae strain with co-
factor modifications in the glutamate generation pathway was compared with the
reference strain [16]. Gdh1 (encoding glutamate dehydrogenase) is one of the prin-
cipal NADPH-consuming pathways in biomass synthesis, consuming more than half
of NADPH generated. The sustenance of the Dgdh1 strain is ensured by substituting
this pathway with the glutamate synthase reaction (GS-GOGAT), encoded byGDH2,
which uses NADH as the cofactor (Fig. 9-6). Therefore, the switching of Gdh1 with
Gdh2 perturbs the redox balance without disturbing biomass generation. Not surpris-
ingly, comparing the transcript levels between the mutated strain with those in the

Figure 9-6 Engineering cofactor utilization by replacing the GDH1 gene with GDH2 in

S. cerevisiae [16].
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reference revealed that several genes responsible for the regeneration ofNADPHhave
altered expression. This study indicates a possible redox-dependent regulation among
these genes, as revealed by the gene expression analysis.

The current use and application ofmicroarray technology is tremendously valuable
to systems biology. Aftermore than 10 years of its conception, the rate-limiting step in
microarray technology is not in the technical aspects, but rather in the data handling.
Currently, only a small fraction of the data generated in a microarray experiment is
being used tomake inferences for functional testing. This significantly undermines the
potential ofmicroarrays in the ability to investigate the genomic responsewhen only a
handful of genes undergo further study. The next technological leap for microarray
technology lies not in the study of model organisms, but in the interrogation and
analyses of uncharacterized or evenmixed cell samples whose complete genomemay
not be available.

9.4.2.2 Serial Analysis of Gene Expression The genome sequences of all
eukaryotes are large and contain enormous number of genes, the functions of most of
which are yet to be elucidated. In the transcription stage of information transfer, each
ORF synthesizes widely varying number of mRNA species. Techniques based on
subtractive hybridization and differential display have been useful in identifying the
differences among transcripts. However, these methods provide only a partial picture
and may miss transcripts expressed at low levels. Oligonucleotide arrays were useful
in comparing the expression of thousands of genes in a variety of tissues, including
small cell populations, but they are limited to analyzing only previously identified
transcripts. In contrast serial analysis of gene expression (SAGE)allowsquantification
and simultaneous analysis of a largenumberof transcriptswithout theprior knowledge
of the genes [160]. The SAGE technique can be used in a variety of applications,
including analysis of the effect of drugs on tissues, identification of disease-related
genes, and elucidation of disease pathways. This method produces 9–10 base
sequences or ‘‘tags‚” that uniquely identify one mRNA species. These unique tags
are concatenated serially into long DNA sequences for high-throughput sequencing.
The frequency of each tag in the sequence quantifies the abundance of the correspond-
ing transcripts. The resulting sequence data are analyzed to identify each gene
expressed in the cell and the levels at which each gene is expressed. This information
forms a library that can be used to analyze the differences in gene expression between
cells. The frequency of each SAGE tag in the cloned multimers directly reflects the
transcript abundance. Therefore, SAGE results in an accurate picture of gene
expression at both the qualitative and the quantitative levels.

The transcriptome, as defined above, was described for the first time in
S. cerevisiae [161]. To maximize the representation of the genes involved in normal
growth and cell cycle, SAGE libraries were generated from three stages of cell cycle:
exponential phase, S-phase arrested, and G2/M phase arrested. The number of SAGE
tags required to define the yeast transcriptome depends on the desired confidence to
detect low-abundance mRNA species. Employing this method to determine the
complete set of yeast genes expressed under a given set of conditions (the transcrip-
tome), 4665 genes (approximately 75 percent of the predicted protein-coding ORFs)
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were detected, with most genes being expressed at low level. Among the highly
expressed genes were those corresponding to well-defined metabolic functions and
energy generation under the three stages [161]. Using the SAGE method, metabolic
modules that are subject to suppressed translation under normal conditions (trans-
lation on demand) were identified in S. cerevisiae [8]. This study, which investigated
the relation of transcription, translation, and protein turnover on a genome scale,
demonstrated significant posttranscriptional control of protein levels for a number of
different compartments and functional modules in eukaryotes using S. cerevisiae as a
model organism, a concept that is missed when exclusively focusing on transcript
levels.

Like other genome-wide analyses, SAGE analysis of the yeast transcriptome also
has several limitations. For example, a small number of transcripts that lack the
appropriate site for tagging could not be detected by this method. Second, there is a
basal level of frequency only above which the transcripts could be detected. Despite
these limitations, theSAGEmethod has established itself as amore accuratemethod to
quantify global and local snapshots of gene expression.

9.4.2.3 Chromatin Immunoprecipitation Genome sequencing and micro-
arrays have provided the ability to simultaneously quantify the expression of the entire
genome to study transcription. The transcription of genes highly depends on the
environment, and the level of expression of a particular gene is controlled by
transcription factors (TFs), which bind to the specific DNA sequences upstream of
the gene either inducing it or repressing it. Almost every gene in eukaryotic cell is
regulatedby several positiveandnegativeTFs that recognize the specific binding sites.
TF–DNA interaction in a living cell is a complex process with most TFs interacting
with other sequence-specific binding proteins and general transcription machinery.
These protein–protein interactions (PPI) may affect DNA binding characteristics of
the TF of interest. A comprehensive understanding of where enzymes and their
regulatory proteins interact with the genome in vivo would greatly increase our
understanding of the mechanism and logic of critical cellular events. Detailed in vitro
studies of DNA–protein interactions have provided, and will continue to provide,
useful information; it is clear that studies of TF–DNA interactions are critical to
understanding the cause and effect relationship between transcription and environ-
ment. However, these traditional methods of investigation have failed to create high-
resolution, genome-wide maps of the interaction between a DNA binding protein and
DNA. For example, the DNA binding properties of a protein determined by in vitro
oligo selection or gel–shift assays are often poor predictors of a factor’s actual binding
targets invivo. The studyofTF–DNAinteractions hasundergoneamajor revolutionby
overcoming this limitation, owing to the development of combining chromatin
immunoprecipitation (ChIP) with DNA microarray analysis (ChIP–chip analysis).

The first ChIP-to-chip experiments were reported at more or less the same time
by the Young and Brown groups [77,131]. Both studied TF–chromatin binding in
S. cerevisiae. Yeast is a good model system for TF–DNA interaction studies for many
reasons, one of which is that its genome is much smaller than that of mammals,
allowing genome-wide microarrays. DNA fragments from cells grown under
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controlled experimental conditions that are bound to the transcriptional regulators are
recovered by a ChIP assay using an antibody specific to the protein of interest and are
hybridized to DNA microarrays that contain the complete set of intergeneic regions.
The strength of hybridization intensity signal of a particular gene reflects binding of
the transcriptional regulator to the promoter site of that gene. Ranging from yeast
to cultured mammalian cells, there is surprisingly little variation in published
ChIP–chip protocols. This second generation application of microarrays reveals
the network of genes that are bound by one or more transcriptional regulators and
presents a very powerful experimental methodology into revealing the first step
in transcriptional regulation by identifying gene sets that are bound by the same
transcription regulators.

The ChIP–chip technique was first applied successfully to identify binding sites
for individual transcription factors in S. cerevisiae [77,96,131]. Later, also in yeast,
a c-Myc epitope protein tagging system was used to map the genome-wide positions
of 106 transcription factors [93]. Other applications including the study of DNA
replication, recombination, and chromatin structure have also been reported in
S. cerevisiae providing a wealth of information on the transcriptional regulation
governing these mechanisms. In these experiments, microarrays containing �1 kb
PCR products representing ORFs, intergeneic regions, or both were used in conjunc-
tion with a two-color experimental scheme. The PCR products in these arrays were
‘‘tiled‚” across the genome, meaning the PCR products were directly adjacent to one
another along the genome, with little or no DNA sequence between arrayed elements.
The relatively compact and nonrepetitive nature of the simple genome harbored by
yeast made such an approach feasible.

Based on known regulatory information gleaned from biochemistry, gene ex-
pression, and ChIP results, it was demonstrated that the strength of interactions
between transcription factors and genes is context dependent in S. cerevisiae [104].
Studying the changes in gene expression patterns in response to changes in cell cycle,
sporulation, diauxic shift, DNA damage, and stress, it was concluded that a few
transcription factors are always involved in regulation whereas others depend on the
stimulus, thus constantly reprogramming the regulatory network. Only a few target
genes are expressed under a specific condition. One of the ramifications of this
conclusion, based onover 7000 interactions betweengenes and transcription factors in
S. cerevisiae, is that one must use caution when extrapolating the interactions and
regulatory mechanisms identified under condition to another.

Recently, an in vitro DNA microarray technology for genome-scale characteriza-
tion of the sequence specificities of DNA–protein interactions was reported based on
the ChIP–chip protocol [110]. This technology, known as the protein binding micro-
array (PBM), allows rapid determination of in vitro binding specificities of individual
transcription factors by assaying the sequence-specific binding of those individual
transcription factors directly to double-strandedDNAmicroarrays spottedwith a large
number of potentialDNAbinding sites.ADNAbindingproteinof interest is expressed
with an epitope tag, purified, and then bound directly to a double-stranded DNA
microarray. ThePBMis thenwashed to remove anynonspecifically bound protein and
labeledwith a fluorophore-conjugated antibody specific for the epitope tag. The PBM
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technology was used to compare the binding site specificities of the three yeast TFs,
Abf1, Rap1, and Mig1 in vitro and in vivo. The PBM-derived binding site sequences
are reportedly more accurate in identifying in vivo binding sites. In addition to
previously identified targets, Abf1, Rap1, and Mig1 have been reported to bind to
several new target intergeneic regions, many of which were upstream of previously
uncharacterized open reading frames. Comparative sequence analysis indicated that
many of these newly identified sites are highly conserved across five sequenced sensu
stricto yeast species and, therefore, are probably functional in vivo binding sites that
may be used in a condition-specific manner [110].

Although the ChIP–chip method can only map the probable protein–DNA
interaction loci within 1–2 kb resolution, it also fails to distinguish between positive
and negative regulation. The development of the ChIP–chip assay has provided an
extraordinarily powerful tool for the analysis of DNA–protein interactions in living
cells or tissues on a global scale. In the near future, further advances in microarray
construction and the increased availability of useful antibodies will increase the
utility of this approach evenmore. Genomic profiling of transcription factor binding
sites, histone modifications, and so on will almost certainly emerge as a central
tool in understanding the systems biology of gene regulation in eukaryotic cells.
In addition, studies of the genomic distribution of nuclear proteins that are not
sequence-specific DNA binders, such as general transcription machinery, the
proteasome and its component pieces, DNA replication and repair complexes,
and so on will shed new light on fundamental aspects of basic genome function
and maintenance. Already, the realization that the majority of transcription factors
examined to date are localized outside the promoter sequences has contributed
significantly to our growing realization of the importance of abundant noncoding
small RNAs in the cell.

9.4.3 Proteomics

Even though global changes in gene expression provide deep insights into under-
standing transcriptional control, proteins have to be recruited to perform the process
since they are the actual functional units. Therefore, knowledge of protein abundance
reveals the extent to which regulatory proteins and transcription binding factors
participate in the resulting change in gene expression profile. Since gene function is
heavily associatedwith proteins, analysis of proteinswill divulgemore information on
protein function and the pathways they act on.Moreover, although proteins are the end
products of gene transcription, there is no one-to-one correspondence between the
number of proteins and the number of genes. Therefore, mere transcriptome analysis
does not reflect the functional profile at the protein level. This section will outline the
emerging quantitative proteomic techniques that are often first developed and tested in
S. cerevisiae. The focuswill primarily be on the twomajor proteomic technologies that
are commonly in use, 2D gel electrophoresis and liquid chromatography coupled to
mass spectrometry (LC–MS). The applications of these technologies to investigate
protein expression levels of yeast grown under different growth conditions and its
implications on systems biology are also discussed.
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9.4.3.1 2D Gel Electrophoresis and LC–MS The most common trend in
analyzing proteomes employs two-dimensional gel electrophoresis to separate pro-
teins, followed by mass spectrometry to identify proteins. On a 2D gel, proteins are
separated using isoelectric focusing (separation based on isoelectric point of proteins)
in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis
(separation based on molecular mass of proteins) in the second dimension. The
separated proteins can be visualized using a variety of staining methods such as
Coomassie blue dye, silver staining, or fluorescent dyes. Generally, in the first dimen-
sion, the proteins are brought on a strip that contains an immobilized pH gradient. By
applying an electric field over this strip, the proteins will migrate over the strip until
they reach the pH area on the strip where they will be neutral. Each protein therefore
will be separated and focused on the strip at the position of its isoelectric point. In the
second dimension, proteins are separated on their size/mass. On the resulting two-
dimensional gel each protein is present at a position that reveals its approximate pI and
mass. Although the concept of 2D gel electrophoresis was introduced more than
30 years ago, its application to proteomics has really taken off since the development
of MS-based techniques that enabled high-throughput protein identification.

As with other high-throughput technologies where S. cerevisiae was one of the
first organisms in which these methods were tested and were subsequently used
to conduct genome-level interrogations, some of the early proteomic studies in
this context were performed in S. cerevisiae. These early large-scale separation
and visualization of protein resulted in yeast reference maps, which can be used
to locate and identify proteins. The digitalized image maps from these experiments
were established by which annotated proteins can be localized and identified
directly from the image. For example, the SWISS-2D PAGE yeast database at
http://www.expasy.org/ch2d/2d-index.html presents the 2D protein pattern of yeast
in the pH range 4–9 with 101 spots identified and localized in this area so far. The
yeast protein map at http://www.ibgc.u-bordeaux2.fr/YPM/ contains a protein
pattern of pH 4–7 with 410 proteins identified. Depending on the protein staining
method, approximately 1000 proteins can be visualized on such gels. Also, sub-
proteome reference maps of, for example, yeast mitochondria, have been generat-
ed [116,146]. Similar 2D reference maps have been constructed for important
industrial yeast strains, such as an ale-fermenting strain, a wine strain, and a
lager-brewing strain. These annotated reference maps are useful tools for yeast
researchers because they can be used for 2D gel comparisons; however, because of
poor gel-to-gel reproducibility and strain variation, protein spot identities should
always be confirmed using MS.

Although the conventional trend in analyzing proteomes using two-dimensional
gel electrophoresis has had a good turnover of information, the greatest drawback in
this method is that it is heavily biased toward proteins expressed at high concentra-
tions [55]. It is also extremely labor intensive and is often hampered by poor gel-to-gel
reproducibility. Different staining methods have been developed to improve the
accuracy and the sensitivity of protein detection and quantification [125,157], yet
proteins expressed at low concentrations may not be detected accurately. Therefore,
mass spectrometers are used to detect and identify proteins on a 2D gel. Nowadays, an
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ordinarymass spectrometer can precisely determine themasses even of large proteins
(approximately 1Da precision at 50 kDa). Since determining only the mass of a
protein does not give a direct clue about its identity, twoMS techniques are commonly
used for protein identification. In the first method, a peptide fingerprint of a protein is
recorded, usually by matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) mass spectrometry. In the second, slightly more complicated method,
short amino acid sequences, the so-called sequence tags, are determined by tandem
mass spectrometry.

In the first of the twoapproaches, the protein spot to be identified is cut out of thegel
and digested (in-gel)with a protease,most often trypsin. The resulting peptidemixture
is eluted from the gel and analyzed by MALDI–TOF mass spectrometry or alterna-
tively by using electrospray ionizationmass spectrometry. Collectively, these peptide
masses form a fingerprint, which is indicative for the protein concerned. This
fingerprint is then compared to theoretically expected tryptic peptide masses for
each protein entry in the database. Generally, peptide finger printing is still the most
rapid and efficient method for protein identification. As identification occurs via
consultation of protein and genome databases, it may be apparent that their increasing
comprehensiveness greatly aids in protein identification. In the second method, the
peptideof interest is fragmented in theMSandmass analysis of the resulting fragments
allows determining the amino acid sequence from the peptide. Although these
fragmentation patterns maybe quite complicated, they generally allow the determi-
nation of partial sequences. With this partial sequence, possibly in combination with
the peptide fingerprint already obtained, the chance of a unique hit in the database is
considerably enhanced. With one or two of these short sequence tags (often no more
than five amino acids), it is often possible to unambiguously identify a protein. These
strategies, as with other technologies, come with inherent drawbacks. For example,
only those proteins that can be visualized on a 2Dgel can be analyzed. The 2D gels are
incapable of handling large proteins and in general have bad reproducibility and are
extremely cumbersome.

In recent years, proteomics methods that employ LC–MS have proven to provide
strong alternatives. LC-based technologies have several advantages compared with
2D gel-based techniques. LC–MS, which can be automated, combines high-speed,
high-resolution, and high-sensitivity separation of extremely complex peptide mix-
tures. Several 2D gel independent LC–MS–MS approaches have been introduced to
overcome some of the inherent disadvantages of 2D gels. In one approach the proteins
in the total proteome are only separated and resolvedbymolecularmass using 1Dgels.
Subsequently, this 1Dgel is cut into pieces, all proteins in such a band are digested, and
the mixture of peptides is analyzed by LC–MS and/or LC–MS–MS [129]. This
approach provides an intermediate form between analyzing the very complex large
peptide mixture obtained when digesting all proteins of a lysate and the single protein
digested when using a 2D gel. As advantages over the 2D gels, a 1D gel-based
approach is less elaborate. In addition, very large andbasic proteins are easier tohandle
using just one-dimensional gels. In a third approach, the whole cell lysate is digested
chemically or by a protease. This generates a very complex set of peptides, beyond the
separation capacity of 1D separation techniques. For the analysis of such complex
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mixtures, several multidimensional separation techniques have been introduced.
An example of an innovative online 2D chromatographic approach is the MudPIT,
the multidimensional protein identification technology [169]. In this approach, the
complete cellular protein mixture is protealyzed and the resulting peptide mixture is
then separated and analyzed using online 2D chromatography directly coupled to
tandemMS,which enables the identification of proteins by peptide sequencing. In one
of the first applications,MudPITwas used to analyze the yeast proteome and a total of
1484 could be identified [169]. The resulting data set identified proteins from all
subcellular compartments, with wide-ranging isoelectric points and molecular
weights. Moreover, low abundance proteins, such as transcription factors and protein
kinases, as well as hydrophobicmembrane proteins, were detected.More recently, the
MudPIT method was improved by adding an additional reversed phase column to the
biphasic column, resulting in an online 3DLCmethod [171].Using thismethod, itwas
possible to identify 3109 yeast proteins, which is the most comprehensive proteome
coverage reported to date.

Alongside the continuing efforts to develop reliable methods to quantify the
proteome, an important advancement in our understanding of the function is the
global identification of protein localization in the cell [47,69]. Information about
the localization of a protein reveals its function, activation state, and its potential
interactions with other proteins particularly in eukaryotic cell, which is compartmen-
talized. For example, inS. cerevisiae, 82newproteinswere discovered in thenucleolus
and were predicted to be involved in ribosomal function and, in general, the locali-
zation results had 80 percent agreement with the data in the Saccharomyces Genome
Database [69]. This study confirmedpreviously knownprotein–protein interactions in
addition to identifying newones such as those between cell structure andmorphology.
Localization of proteins depends on the cell signaling events and their state of
activation, which depends on the environmental conditions. Such intercompartmental
translocation of proteins triggers new signals. Among the various methods used to
study protein localization, variants of GFP are commonly used to tag the protein
for visualization using a light microscope [23,69]. The dynamic nature of protein
synthesis and consequent modifications, identification, and quantification of proteins
alone may not be sufficient. It is also necessary to identify complex formation in vivo
to obtain a systems view of cellular functioning.

9.4.3.2 Two Hybrid System An important goal of systems biology is the
identification of functional interactions between different cellular components. Since
microarrays and 2D gels cannot contribute to the knowledge of protein interaction,
protein–protein interactions play a crucial role in elucidating the nature of these
mechanisms. Recently, innovative methods for a comprehensive analysis of protein
interaction events and signaling pathways have been implemented to provide addi-
tional information such as the high-throughput yeast two-hybrid (Y2H) system. The
yeast system provided the perfect platform for this assay since it had the advantages of
speed, sensitivity, and simplicity in addressing an important biological question when
the identification of an interacting protein following its purification was difficult. The
Y2H system detects interaction of two proteins by their ability to reconstitute the
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activityof a split transcription factor, thus allowing the useofa simplegrowth selection
in yeast to identify new interactions. Although the test case for this assay was only a
single example of yeast proteins previously known to interact, the results led to
the suggestion that the approach might be applicable to the identification of
new interactions via a search of a library of activation domain-tagged proteins.
Subsequently, the Y2H also proved to be very applicable to study protein interactions
in any organisms, although certain types of proteins such as membrane-bound or
extracellular proteins were less amenable to this method. The Y2H assay was sub-
sequently adapted to detect protein–DNA, protein–RNA, or protein–small molecule
interactions as well as protein–protein interactions that depend on posttranslational
modifications, that occur in compartments of the cell other than the nucleus, or that
yield signals other than transcription of a reporter gene.

Since its introduction about 15 years ago [35], the assay largely has been applied to
single proteins, successfully uncovering thousands of novel protein partners. In the last
few years, however, two-hybrid experiments have been scaled up to the proteome scale
to identify the complement of all the proteins found in an organism. In the first array-
based Y2H of the whole proteome, 192 ‘‘bait‚” proteins were used to survey inter-
actions with 6000 yeast ‘‘prey‚” proteins, resulting in 281 distinct protein pairs [156].
Using a similar strategy with more ‘‘bait‚” proteins to search the yeast genome for
protein interactions, 4549 interactions were deduced, out of which a subset of 841
protein pairs were classified as ‘‘core‚” interactions, that is, highly reliable [75,76].

Despite its routine use, the classical Y2H suffers from the appearance of a large
number of false positives, even though arrays and other confirmation experiments help
to identify them. Two hybrid systems in other organisms such as bacteria or mouse
have not been used for large-scale screens, making it difficult to identify if the
reproducibility issue is specific to Y2H or if it is a general trait in all such assays.

9.4.3.3 Protein Arrays Considering the pivotal functional role proteins play
in defining the phenotype, it is important to quantify protein abundance as well as
activity. In the lines of DNA microarrays, protein arrays are rapidly becoming
powerful high-throughput tools to identify proteins, monitor their expression, and
elucidate their function and interactions within them and, more importantly, the
posttranslational changes that they undergo. Several properties of proteins make
building protein microarrays more challenging than building their DNA counterparts.
First, unlike the simple hybridization chemistry of nucleic acids, proteins demonstrate
a staggering variety of chemistries, affinities, and specificities. Moreover, proteins
may require multimerization, partnership with other proteins, or posttranslational
modification to demonstrate activity or binding. Second, there is no equivalent
amplification process like PCR that can generate large quantities of protein. Third,
expression and purification of proteins is a tedious task and does not guarantee the
functional integrity of the protein. Finally, many proteins are notoriously unstable,
which raises concerns about microarray shelf life. Despite these challenges, the
development of protein microarrays has begun to achieve some recent success.
Currently, protein arrays come in two main formats. The first, abundance-
based microarrays, seeks to measure the abundance of specific biomolecules using
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analyte-specific reagents such as antibodies. The second, function-basedmicroarrays,
examines protein function in high-throughput by printing a collection of target
proteins on the array surface and assessing their interactions and biochemical
activities. Although the applications of these arrays widely differ, they all function
on the underlying principle of detecting interaction partners. Abundance-based
microarrays include antibody microarrays and reverse protein microarrays. In anti-
body microarray, antibodies are immobilized and purified proteins and complex
mixtures are screened for antibody characterization as well as to quantify protein
abundance. Fractionated proteins or protein mixtures are immobilized in reverse
protein microarrays and single antibodies are the target screen partners. Function-
based microarrays include the standard protein microarrays, where the immobilized
component is the protein itself and proteins, antibodies, DNA, or other chemicals are
used as the screening partners in functional characterization of the immobilized
proteins and to identify their interaction partners. By far the greatest obstacle in
developing function-based proteinmicroarrays is the construction of a comprehensive
expression clone library fromwhich a large number of distinct protein samples can be
produced. In building a clone library, it is desirable to construct recombinant genes
where fusion proteins can be produced for the purpose of affinity purification and/or
slide surface attachment. Cloning the genes of interest with an inducible promoter
allows individual proteins to be expressed in high abundance. High-throughput
purification can be accomplished with the addition of C- or N-terminal tags, such
asglutathione-S-transferase or the IgGbindingdomainof proteinA.The incorporation
of fusion tags also facilitates the verification of clone inserts by sequencing across the
vector–insert junction. It is highly desirable to transform the expression vector into a
homologous or related cell type, ensuring the proper delivery of the protein product
to the secretory pathway and hence correct folding and posttranslational modifica-
tion of each recombinant protein.

Using these protein microarrays for the first time, the binding activities of three
knownpairs of interacting proteinswas investigated inS. cerevisiae [106].One protein
of each pair was printed in quadruplicate onto aldehyde slides, and the arrays were
probed with the labeled partners. The most important outcome of this research was
that the researchers were able to quantify the concentrations of the bound and solu-
tion phase proteins necessary to carry out the experiments. Thus, these experiments
demonstrated the feasibility of arraying proteins in a standard microarray format and
at feature densities comparable with those of DNA arrays. In a subsequent study, a
yeast high-density (13,000 samples per array) proteome microarray was developed
that contained full-length, purified expression products of over 93 percent of the
organism’s complement of 6280 protein coding genes [183]. A total of 5800 ORFs
were cloned as glutathione-S-transferase::His6 fusions, and expressed in their native
cells under a Gal-inducible promoter. This work represented the first systematic
cloning andpurificationof an entire eukaryotic proteomeaswell as the first large-scale
functional protein array comprising discrete functional proteins. Several different
experimentswere performedwith the arrays, including a calmodulin binding survey to
assess protein–protein interactions and a large-scale screen for phospholipid binding
specificity [182]. More recently, these proteome chips were used to study global
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protein phosphorylation in yeast [128], and this study identified over 4000 phosphor-
ylation events involving 1325proteins fromawide range of biochemical functions and
cellular roles. It was also found that these interactions even occur across different
compartments, and have helped construct the first draft of a phosphorylation map
for S. cerevisiae. These results are expected to provide valuable insights into the
mechanisms and role of protein phosphorylation in many eukaryotes since several of
these proteins are highly conserved.

In spite of these advances, the fundamental aspect that currently limits the
advancement of proteomics (in contrast to genomics) is the lack of protein ampli-
fication mechanisms analogous to PCR. Therefore, only those proteins that are
produced naturally in large quantities or by recombinant techniques can be analyzed.
Nevertheless, protein microarrays have shown considerable promise in determining
protein–protein, protein–lipid, protein–ligand, and enzyme–substrate interactions.
Protein microarrays also have great potential in drug development and clinical
diagnostics. We can expect protein microarrays for other organisms as well as for
membrane proteins in the near future. Although there is no established proteomics
technology to detect all the desired aspects of proteins, aggressive research in the area
of proteomics reflects the pivotal role that proteins play in executing metabolic
control. It is expected that proteomics will continue to be in the forefront of systems
biology research.

9.4.4 Metabolomics

The cells control the concentrations of their intracellular metabolites very rigidly.
There is normally a very low tolerance on the allowable variation in the metabolite
concentrations for a given physiological state. Conversely stated, a change in the
concentration of a metabolite beyond the tolerance level induces a change in the cell
physiology. Since they are the intermediates of biochemical reactions, metabolites
play a pivotal role in maintaining the connectivity in the metabolic network. Certain
metabolites such as ATP or NADH, which are involved in a large number of reactions
in the metabolic network, are capable of bringing about significant changes in large
parts of the metabolism [115]. The level of the metabolites is a complex function
of enzymatic properties and regulatory processes at different levels of information
hierarchy. Therefore, similar to the transcriptome and proteome, the metabolome
(global set of all the intracellular metabolites) also presents a snapshot of the
physiological state of the cell and measuring the changes in the concentrations of
intracellular metabolites would reveal an aspect of regulation (such as allosteric
inhibition/activation, metabolite–DNA binding, and so on), which cannot be studied
by anyother omic approaches described. Indeed,metabolome profile presents a closer
snapshot of metabolism than the transcriptome or the proteome, because the infor-
mation flow at this level is the closest to the phenotype (Fig. 9-1). Metabolome
profiling also presents a more complete representation of metabolism by defining the
thermodynamic equilibrium of a reaction. Therefore, metabolite profiling is now
considered an important part of systems biology, playing a complementary role to
genomics and proteomics [153,154,170]. However, this field is still in its infancy,
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mostly due to the lack of analytical techniques. In comparison to more than 6000
protein-coding genes in S. cerevisiae [50], there are only about 600 metabolites in
S. cerevisiae [118]. Thus, even though the goal of any metabolome experiment is to
quantify the level of all intracellular metabolites in a cell, tissue, or an organism, there
is no single analytical method that can measure all metabolites.

Although the technology to quantify and study the genome (consisting of 4
nucleotides as building blocks) and the proteome (consisting of 22 amino acids
as building blocks) is developed based on the similarity in their structure, the
metabolomics technology is vastly more complex owing to the highly diverse
building blocks, ranging from carbohydrates and organic acids to volatile alcohols
and ketones. Consequently, it is virtually impossible to simultaneously determine
the complete metabolome with current technologies. Nevertheless, the phrase ‘‘me-
tabolome analysis‚” is used to describe the experimental approaches employed to
quantify or detect metabolites. Currently, it is possible to quantify about 50 meta-
bolites (Fig. 9-7).Althoughmetabolite profiling has long been applied formedical and
diagnostic purposes aswell as for phenotypic characterization, particularly in plants, it
is only recently that efforts toward the development of high-throughput analyses are
being undertaken [33,34,153]. Mass spectrometry and nuclear magnetic resonance
(NMR) are the most frequently used methods of detection in the analysis of the
metabolome. The NMR is very useful in determining the structure of unknown
compounds, but comes with the drawback of expensive instrumentation. In addition,
NMR has the advantages that it is nondestructive to samples and provides rich
information on the structures of molecules in complex mixtures. On the other
hand,MS is considerablymore sensitiveand comeswith the identification of unknown
and unexpected compounds. The combination of separating the metabolites using a
gas chromatogramor liquid chromatogramcoupledwith theMS is transpiring tobe the
most promising technique for metabolite profiling, thus far. The reader is directed to a
very comprehensive review for detailed description and analysis on the different
analytical methods employed to identify and quantify metabolites [164]. The issues
related with different sampling methods and subsequent processing of the samples,
particularly from yeast cultures, are described in another paper [162].

We reported a novel derivatization method for metabolome analysis of yeast
that enabled us to measure several metabolites in the central carbon metabolites as
well as in the amino acid biosynthesis pathways. Using this methodology, we com-
pared responses of the metabolite profile in a Dgdh1 (NADPH-dependent glutamate
dehydrogenase) and GDH2 (NADH-dependent glutamate dehydrogenase) overex-
pressed mutant and its isogenic reference yeast strains under aerobic and anaerobic
conditions [165]. During aerobic growth, the level of all the TCA cycle intermediates
increased in the mutant compared with the wild type, indicating a higher TCA cycle
flux in thismutant (Fig. 9-8).An increased levelof 2-oxoglutarate reflects an alteration
in ammonium metabolism due to the thermodynamically less favorable glutamate
synthesis using NADH as the cofactor. Moreover, an elevated level of all amino acids
was observed, indicating awide change in amino acid metabolism.More recently, we
reported the identification of a pathway for glycine catabolism and glyoxylate
biosynthesis in S. cerevisiae usingmetabolite profiling and combining itwith pathway
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analysis [163]. Metabolic footprinting ability opens a new avenue in yeast systems
biology research by providing results that neither gene expression nor proteome
analysis could. Second, we demonstrated that the levels of specific metabolites could
be quantified using this method, enabling the targeted and quantitative microbial
metabolome analysis.

These examples demonstrate the immense potential of metabolite profiling in pro-
viding supplemental information to transcriptome and proteome analysis. However,
there are anumber of challenges for this nascent field.The fundamental problemarises
due to the rapid turnover time of metabolite (in the order of 2–3 s), which makes it
extremely difficult to capture a reliable snapshot of a metabolite profile. Second, the
analytical methods for identifying and quantifying these metabolites are still in its
infancy. Third, there is no robust data analysis methodology to integrate metabolite
profile in the context of genome and proteome and interpret the physiological
significance of an observed change in the metabolite level. Finally, the lack of
standards in this field results inpoor reproducibility.Recently,metabolomics ontology

Figure 9-8 Using the currentmetabolite profiling technology, we determined the differential levels

of various central carbonmetabolites [166] under various conditions, validating themethod aswell

as laying the groundwork for an integrated transcription–metabolome studies in S. cerevisiae.
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and experimental reporting standards have been proposed by the Metabolomics
Society [100] to facilitate the establishment of credibility to the large amount of
data that is being generated. Despite these challenges, there is growing belief in the
scientific community that metabolomics holds the promise to expedite the progress of
systems biology.

9.5 COMPUTATIONAL APPROACHES IN SYSTEMS BIOLOGY

The rapid advancement in the experimental approaches in measuring genome,
transcriptome, proteome, and metabolome, as described in previous sections, gives
rise to enormous data. It has now become clear that further discovery and progress in
biological research will be limited not by the availability of data but by the lack of the
right tools to analyze and interpret these data. Systems biology calls for the develop-
ment of mathematical principles to integrate these high-throughput data. From its
humble origins in control engineering and general systems theory,major challenges in
the dynamic pathway modeling have been addressed and goals realized by (1) char-
acterizing model structures that could realize the given stimulus–response relation-
ship, (2) determining values for model parameters from experimental data and
simulations, and (3) predicting the consequences of perturbations by introduction/
removal of feedback or feedforward control loops. The new fields of genomics,
proteomics, transcriptomics, and metabolomics are extremely essential not only to
divulge information in the different levels of material processing in the cell but also to
serve as precursors for realizing the larger objective of phenotypic characterization.
Computational biology now plays a predominant role in the discovery process
through automated genome reconstruction, flux balance analysis and metabolic
networks, protein structure determination, and elucidation of regulatory networks.
The synthesis arm of the systems biology cycle as depicted in Figure 9-1 heavily relies
on the robust, reliable computational biology aspects. Since the ultimate cellular
phenotype is the result of coordinated activity of multiple gene products and envi-
ronmental factors, understanding the connectivity and interaction among these
elements is pivotal.

9.5.1 Constraint-Based Genome-Scale Models

The key role of computational approaches in systems biology has been acknowledged
and accepted. The development ofmathematical models that can simulate the cellular
phenotype by integrating high-throughput data forms the foundation of systems
biology approaches. We view systems biology as an iterative process where mathe-
matical models are built and developed based on the experimental data available.
The goal of these models depends on the questions one is trying to address. For
example, to describe and understand the metabolic dynamics, one uses a detailed
kinetic model, or to study the mechanism of signaling cascades in a regulatory
network, one formulates differential equations to describe the inputs to eachmodule in
the cascade and its response. The predictions and simulations from these models are

COMPUTATIONAL APPROACHES IN SYSTEMS BIOLOGY 313



then validated by experimental methods to complete one iteration in the process of
understanding cellular properties. Any discrepancy between the model predictions
and experimental observations will be addressed by incorporating the new experi-
mental results in the model to start a new iteration. Since it is virtually impossible to
determine the kinetics of all the steps in the system, these models have an obvious
limitation. Among the several classes of mathematical models available to analyze
cellular behavior, the constraint-based linear models are the only kind that can
incorporate extensive biochemical data, genomic sequence data, and information
from metabolic pathway databases into the context of simulating and predicting
cellular metabolism and phenotype.

The development of linear metabolic models begins at the identification and
functional annotation of the ORFs in the genome sequence. The Saccharomyces
Genome Database (http://www.yeastgenome.org), Munich Information for Protein
Sequences (http://mips.gsf.de/), and Kyoto Encyclopedia of Genes and Genomes
(http://www.genome.jp/kegg) are the most commonly used databases to search for
genes, their products, and their functional role in metabolism for S. cerevisiae. A
comprehensive list of all the metabolic genes constitutes the genotype and an in silico
representation of this subset of genes is the basis for creating of in silico strains. The
gene products derived from the genes in the metabolic genotype carry out all the
enzymatic reactions and transport processes that occur within the cell (Fig. 9-9). For
example, the in silico representation of S. cerevisiae includes the genes involved in
central metabolism, amino acid metabolism, nucleotide metabolism, fatty acid
and lipid metabolism, carbohydrate assimilation, vitamin and cofactor biosynthesis,
energy and redox generation, and macromolecule production (i.e., peptidoglycan,
glycogen, and nucleotides). The reactions that are mediated by each of the gene(s) are
represented as a linear equation, and all the stoichiometric coefficients from all the
reactions are collected in the stoichiometric matrix, S, and the velocity (flux) of each
reaction is collected in the velocitymatrix v, which has the same number of rows as the
number of reactions. Any exchange fluxes that are involved inmaterial transfer across
the systemic boundary are represented by thematrix, b. Under anygiven condition, the
in silicometabolic network can then be represented as Sv¼ b [158]. The construction
of themetabolic network is covered in greater detail in other chapters of this book. The
fundamental drawback of these models is that they operate strictly on the stoichiome-
try and do not consider thermodynamic constraints and kinetics and, therefore, cannot
resolve thedirectionality of the reaction.This inherent drawback is partly addressedby
imposing constraints on the fluxes and defining their directionality and degree of
utilization asai� vi� bi,whereai andbi are the lower andupper bounds, respectively,
of the ith reaction. The values of the fluxes are estimated by imposing an objective
function, oftenmaximizing for biomass production rate, which is also expressed as an
equation that is conceptualized by including the individual biomass precursors that
contribute to the synthesis of biomass. Since typically the Smatrix is underdetermined
(thenumberofunknown fluxes is fargreater than thenumberofmeasuredparameters),
linear programming is the most commonly used procedure to estimate the unknown
fluxes. Due to the existence of an infinite number of solutions in the feasible space and
even the presence of several solutions of the flux vector that fulfils the objective
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function, it is very likely that the estimated fluxes may not accurately represent
biological reality [29]. Nevertheless, these models are extremely useful in char-
acterizing the metabolic capabilities of the cell. The first genome-scale metabolic
model of a eukaryote ever constructed was that of S. cerevisiae [39], which includes
over 800 reactions and 500 metabolites. The details of this model can be viewed at
http://www.cpb.dtu.dk/models/yeastmodel.html. Using this model, several aspects of
S. cerevisiae metabolism such as biomass yields under various carbon sources, gene
lethality and synthetic lethality, pathway utilization, and general network properties
such as connectivity were successfully studied [39].

It is commonly observed that the performance of the in silico cell, such as the rates
and yields of biomass and product formation, is far below the predicted theoretical
maxima, particularly for strains that have undergone the first iteration of metabolic
engineering. This phenomenon has detrimental impact on the utility of S. cerevisiae as
a cell factory for commercial applications. This is due to the extensive adaptive
mechanism of the cell to counteract any mutation. The stoichiometric models cannot
predict this sluggish performance of the cell but rather provide the maximum cellular
capabilities under the conditions of mutation. The discrepancy arises due to the
assumption that maximizing biomass formation drives flux distribution. Even in
response to a mutation, this approach assumes that the metabolic network could
readjust to maintain optimal flux toward biomass. Recent evidence suggests that this
could be achieved by selecting for fast growth [70]. However, in most industrial strain
improvement scenarios, cells are subject to natural selection and amodification of the
flux balance models using constraint-based linear programming approach is recently
described to predict the sluggishmetabolic phenotype [144]. This approach, known as
minimization of metabolic adjustment (MOMA), assumes minimal response of the
metabolic network to gene perturbations and suggests that the metabolic network has
an inherent inertia to change and prefers to remain as close as possible to the original
steady state (of the wild-type genotype).

9.5.2 Metabolic Pathway Analysis

The cell hasmultiple pathways at its disposal to attain its natural objective of survival.
In the process of engineering these metabolic pathways, we attempt to manipulate
these pathways to eliminate the ineffective ones or enhance the performance of the
rate-limiting ones. Whether the goal is to delete pathways or overexpress them, it is
necessary to develop an understanding of how the cell meets its metabolic objectives.
This is the goal of metabolic pathway analysis. It is an integral analytical part in the
discovery of meaningful routes in the metabolic networks, constructed as described
in the previous section. By virtue of the complexity in the wide array of feasible
metabolic pathways, it is not always intuitive which set of pathways are employed in
reaching the cellular objective. The most commonly used mathematical tool that is
used to analyze the set of all feasible pathways for robustness and efficiency is by
elementary fluxmodes (EFMs) [142].A fluxmode is a steady-state fluxdistribution in
which the proportions of the fluxes are fixed. If this steady-state solution is non-
decomposable, then it is classified as elementary. In other words, an elementary flux
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mode is the minimal set of enzymes that could operate at steady state with all the
reversible reactions assumed to proceed in the appropriate direction. Therefore, this
concept assumes three conditions in determining an EFM: a pseudo-steady-state
condition, a nondecomposability condition, and a feasibility condition.

Elementary flux modes are idealized representations of metabolism and it is very
likely that any one EFM cannot represent biological reality. Instead, the real flux
distribution is a linear combination of several EFMs, each of which has a fraction of
contribution to the final flux. When S. cerevisiae grows on glucose, all the pathways
that use other substrates are downregulated, even in the presence of a mixture of
substrates. This is clearly demonstrated using DNA microarrays during the diauxic
shift where 183 genes are induced and 203 genes are repressed at least fourfold [28].
This reflects a marked shift in the utilization of different metabolic modes, which are
the likely superpositions of other EFMs. In fact, avery strong correlationwas observed
between the EFMs, as determined for yeast grown on different carbon sources, and the
transcript measurements frommicroarray experiments [17]. Above all, the method of
determining the control-effective fluxes to calculate the theoretical transcript values
and correlating them with the experimentally derived transcript ratios demonstrates
the importance of flexibility in metabolic networks. In this regard, the EFMs have a
greater applicability over flux balance analysis. Moreover, since there is no objective
function in this kind of analysis, unlike the flux balance analysis where the objective
function is usually maximization of biomass formation, the system is not forced to
behave in a particular manner. Since the metabolic reaction system is allowed full
flexibility, it is free to choose all the possible routes toward product formation.
Metabolic pathways analysis has also been used to assign function to orphan genes
in S. cerevisiae based on convex analysis of its simplified metabolic network by
combining metabolome analysis with metabolic pathway analysis [40]. Based on this
analysis, a change in the pathway structure of deletion mutants could be combined
with the different metabolite profile for that mutant to disclose the functionality of
an orphan gene.

In many situations, the biosynthesis of a product is feasible by multiple routes
and it is interesting to identify the pathways that give maximal yield. The optimal
flux distributions, as predicted by the flux balance analysis, may not always be
obtainable, thereby making it necessary to determine the suboptimal solutions using
EFMs. The concept of EFM can also be used to predict the effects of an insertion or a
deletion of a pathway, resulting in a pathway with new functional capabilities. This
method allows a comparison of sets of admissible routes for product formation in
wild-type cell and its engineered mutant. By comparing the elementary modes in the
complete system with those in a deficient system, it can be shown whether or not an
essential biological substance can still potentially be synthesized, via a bypass in the
network system. Elementary flux modes essentially capture all the possible flux
distributions (optimal as well as suboptimal) in the metabolic network as defined by
the stoichiometricmatrix, unlike fluxbalance analysis,which returns onlyoneoptimal
solution.An important aspect ofEFMthat cannot be determinedusing the fluxbalance
analysis is that of futile cycles. Futile cycles play an important role in regulation
in eukaryotes and it is extremely important to identify them to avoid wasteful
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expenditure of cellular energy. Although such cycles are difficult to identify in large
networks, they can be detected by calculating elementary modes, which include both
cyclic and noncyclicmetabolic pathways. Thismethod is valuable for comprehending
the complex architecture of cell physiology and together with other theoretical tools
such as metabolic control theory, it can help to engineer living cells in a directed and
rational way.

9.5.3 Gene and Regulatory Networks

The information pipeline in cells is extremely efficient and can robustly respond to
multiple environmental and genetic signals. The mechanisms by which cells are able
to achieve this are still not clear due to complex regulatory circuitry in the cell. To
uncover the mechanisms that dictate the information processing, a modular approach
is the most common approach [60,92]. The high degree of complexity involved in
cellular response can be simplified by considering the large-scale genetic networks as
composed of modules of simpler components that are interconnected through input
andoutput signals, analogous to electrical circuits [130]. The analogy between genetic
circuits and electrical circuits extends beyond just the superficial level. Just as
electrical engineers construct circuits, genetic network engineers make use of the
biological equivalents of inverters and transistors to manipulate living organisms by
connecting these modules into gene regulatory networks that can control cellular
function. Two landmark studies published in 2000 [31,43] clearly illustrate this
concept, in which one describes a genetic circuit engineered into Escherichia coli
cells that oscillates asynchronously with regard to the cell division cycle [31] and the
other describes a toggle-switch circuit that can be switched between two stable states
by transient external signals [43]. In both studies, the circuits’ qualitative performance
is consistent with the predictions of relatively simple differential equationmodels that
characterize the dynamics of production, degradation, and genetic regulation.

The interactions between the functional modules in the gene regulatory networks
involve proteins, DNA, RNA, and small molecules. For example, a simple module
consists of a promoter, the genes expressed from that promoter, and the regulatory
proteins that affect the expression of the promoter. The idea behind formulating gene
networks and subnetworks is essentially to identify those genes that are commonly
bound by the same transcription factor. Since the output of amicroarray experiment is
the end result of the interplay between transcription factors and genes, this aspect has
been the focus of recent data analysis methods. Since one gene is under the control of
multiple transcription factors, the amount of control from each transcription factor is
not easy to quantify. Associating transcription with binding information for 106
transcription factors, Bar-Joseph et al. clustered coexpressed genes to reconstruct
regulatory networks in S. cerevisiae [6]. They identified established interactions as
well as discovered new interactions that they used to construct regulatory models.
Liao et al. developed a similar approach called network component analysis to
quantify the strength of interactions between genes and transcription factors [95].
The interactions were modeled as a two-layered network with transcription factors
consisting of the first layer and the genes in the next layer and the interactions between
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the two layers as edges. Implementing this technique for glucose to acetate diauxic
shift in E. coli, 16 transcription factors were found to be significantly involved in
the transition. The biggest advantage of this method is that it does not assume
independence or orthogonality of genes, unlike independent component analysis
or the principal component analysis, respectively. Although these reports demon-
strated the use of gene expression microarrays to study the regulation of specific
pathways at the transcriptional level, they still do not account for regulatory effects
brought about by proteins and metabolites interacting with DNA, and therefore such
an approach would not be feasible in higher organisms with a greater level of
complexity. As pointed out by Nielsen, the percentage of genes that are encoded for
nonmetabolic functions (particularly for regulatory functions) increases with in-
creasing cellular complexity [115]. To reveal regulatory phenomena based only on
the changes in gene expression, detailed information about interactions between
genes and their transcription factor proteins must be elucidated. Recently, it was
demonstrated that a stochastic simulation algorithm can be efficiently implemented
by using field programmable gate array devices to build a microelectronic circuit
that simulates the kinetics of biochemical networks [139]. Such devices, built as an
array of simple configurable logic blocks embedded in a programmable intercon-
nection matrix, are ideally suited to implement highly parallel architectures com-
parable in complexity to biochemical networks. The parallel architecture of this
logic-based programming can simulate the basic reaction steps in biological net-
works and since they can be scaled up efficiently, simulations of realistic biological
systems should be possible.

We are still far from completely understanding the wiring of the regulatory circuit
in a system, and the challenge lies in designing selection schemes that can be used
to drive cells containing artificially engineered gene circuits for a robust, reliable, and
noise-resistant behavior. The current paradigm for engineering regulatory circuits
is to use computational methods to incorporate the desired changes in the cell.
The engineered cells usually exhibit weak compliance with the desired objective
and by using a directed evolution selection screen, more compliant mutants could
be produced. The engineering of regulatory networks has immense applications in the
production of industrial or medically important chemicals such as proteins and
antibiotics and in the design of cells to perform complex multistage tasks such as
conversions in bioremediations or cell-specific activity for gene therapy. Avariety of
relatively simple but useful types of biological circuits similar to switches, transdu-
cers, signal processors, sensors, and actuators are already being developed from the
existing knowledge of the cellular components.

9.5.4 Protein–Protein Interactions

Proteins are the functional units in the cell and carry out most of the information
processing such as intracellular communication, signal transduction, and even gene
regulation via interaction with other proteins. Identification of protein–protein inter-
actions on a proteome-wide scale is currently one of the main challenges of systems
biology.Although the genome sequencing projects have identified the comprehensive
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set of genes and proteomic studies identified the protein abundance in several species,
there are no thorough methods to identify interactions between proteins comprehen-
sively. The current methods to identify PPIs include genetic and biochemical screens,
which identify few interactions at a time but when applied in combination produce
highly reliable results. Using a combination of expression profile reliability index to
estimate biologically relevant fraction of protein interactions and paralogous verifi-
cation method to score the interactions, over 8000 pairwise PPIs were detected in
S. cerevisiae [25]. These interactions identified by such small-scale screens represent
only a small fraction of the biologically significant interactions in yeast [53]. To
identify the PPIs on a proteome scale, several high-throughput experimental methods
have been developed such as the yeast two-hybrid assay described earlier [156],
tandem affinity precipitation [44], and high-throughput mass spectrometry protein
complex identification [64]. Although all these methods have the capability to detect
thousands of interactions, their reliability is limited due to the high occurrence of false
positives and false negatives. Besides these approaches, there also exist other
approaches to infer PPIs based on indirect evidence, such as synthetic lethality [152],
correlated expression of gene pairs [27], or identifying structural domains and
subcellular localization [114]. Despite the relatively lower confidence of the inter-
actions predicted by these methods, they are still very popular in elucidating PPIs.
Recent reports indicated that integrating data from different levels of information
hierarchy with these high-throughput methods significantly improve the reliability of
the inferred interactions [51,80,180]. The computational aspect of predicting the
interactions (e.g., between protein A and protein B) is usually based on the general
criteria such as (1) they should have appropriate domains to facilitate interactions,
(2) the expression levels of genes A and B should correlate, and (3) proteins A and B
should be localized in the same compartment.

UsingY2H assays, proteinswere assigned to functional classes on the basis of their
network of physical interactions as determined by minimizing the number of protein
interactions among different functional categories [159]. Such a functional assign-
ment is proteome wide and is determined by the global connectivity pattern of the
protein network. Using this approach, multiple functional assignments could be
possible for a given protein, depending on its interaction with other proteins. This
analysis is based on the concept that interacting proteins may belong to at least one
common functional class, and thus knowledge of the functional classification of a
subset of the proteins involved in the networkmay lead to an accurate prediction of the
functional classification of the remaining subset of uncharacterized proteins. The idea
behind this approach is to assign function to unclassified proteins based on its position
in the interaction network, also known as the ‘‘majority rule‚” assignment [143]. The
majority rule derives from the empirical observation that 70–80 percent of interacting
protein pairs share at least one function. Inmost cases, only a fewunclassified proteins
interact with more than one protein of known function and often the interacting
proteins with known functions do not generally share functionalities. In this respect,
the majority rule assignment is inconclusive because the analysis does not include
the links among proteins of unknown function. Therefore, much of the information
contained in a reconstructed protein–protein interaction network is not used. A major
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concern in implementing network-based predictive methods is the topological
accuracy of the protein interaction network. It is known that protein–protein interac-
tion data obtained from two-hybrid experiments contain a certain number of false
positive and negative results, as discussed earlier. These errors could compromise on
the quality of the predictions by incorporating spurious connections into the network
(false or missing edges).

9.6 INTEGRATING THE HIGH-THROUGHPUT DATA

The primary step in understanding any biological entity from a systems perspective is
to identify its structural organization, such as the gene interactions and biochemical
networks, followed by the dynamic interactions between them. Characterization of
biological networks requires detailed maps elucidating proteins, RNAs, promoters,
and other macromolecules. Toward this broad goal, metabolic networks [81], regula-
tory networks [93], and protein interaction networks [156] have already begun to be
established. Thesemaps are commonly represented as a static set of nodes to represent
the components (RNA, proteins, macromolecules, transcription factors, etc.) of the
network and edges to represent the interactions (activation/inhibition or induction/
repression, etc.) between them. Humanminds are incapable of inferring the emergent
properties of a system from thousands of data points, but we have evolved to intel-
ligently interpret an enormous amount of visual information. The data are therefore
transferred to visualization programs. This is the initiation point for the formulation of
detailed graphical or mathematical models, which are then refined by hypothesis-
driven, iterative systems perturbations and data integration (Fig. 9-10). For example,
using a bipartite graphical visualization, Patil and Nielsen showed similarities in
metabolic network patterns and transcriptional responses that led to the identification
of ‘‘reporter metabolites‚” in S. cerevisiae, which represent the hub of regulatory
action [124]. Similarly, topological analysis of metabolism in 43 organisms revealed
hierarchical modularity in the network organization [130]. Using the path of shortest
length in graph-theory approach, Said et al. identified that the toxicity-modulating
proteins in S. cerevisiae have more interactions with other proteins, leading to a
greater degree of metabolic adaptation upon modulating the functioning of these
proteins [137]. This result has direct implications on many human degenerative
disorders such as cancer and even aging. The authors demonstrate that the protein
interaction network is much more complex than the metabolic network, consistent
with the knowledge that signaling pathways and regulatory networks have more
complex organizational structure than the metabolic network. Although only protein
interactions were studied, deeper regulatory aspects could have been revealed by also
including protein interactions with DNA, particularly since the study focused on the
recovery of S. cerevisiae from DNA-damaging agents. As opposed to the representa-
tionof biological networks asgraphs that reflect only the static properties of system, de
Lichtenberg et al. have recently reported the dynamics of protein interactions during
the yeast cell cycle [24]. They used previously published gene expression data from
different stages of the cell cycle [21,147] and integrating it with a network of
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physically interacting proteins from public databases such as MIPS discovered that
most of the protein complexes are comprised of both constitutively and just-in-time
expressed proteins. Currently, the mathematical models that represent cellular com-
ponents and their interactions compromise either on the specificity or lack the
sensitivity. This is due to several reasons, such as a limitation in biological information
available and lack of mathematical rules to integrate the available information.
Learning how the structure changes in response to various conditions and, more
importantly, what makes the system respond in this fashion will enable identifying
precise targets for metabolic engineering [86]. Established protocols are not immedi-
ately available to guide themerger of global information from various omes indicated
in Figure 9-1. Ideker et al. [72] compared the global changes in the expression of
mRNAand proteins in S. cerevisiae in response to a series of perturbations in theGAL
regulatory system. They used the yeast galactose metabolic model as a prototype and
studied the global responses to genetic and environmental perturbations. The key
feature of this study that ismissing from the previous comparisonswas that the authors
also considered protein interactions with other proteins and with DNA in their model.
Not surprisingly, the expression of those genes that are linked by physical inter-
actions exhibited a higher degree of correlation with corresponding protein levels.
Information about protein–protein interactions in S. cerevisiae [143,156] facilitates
the integration of the resulting mRNA and protein responses with known physical
interactions to discover and/or refine gene functions. Since it is the proteins that
actually execute the genetic program,mapping global interactions between proteins
or ‘‘interactome‚” in single-celled [156] and multicellular [94] organisms is
particularly valuable in revealing the signal transduction pathways, which play
an integral part in overall regulation. These reports on transcriptome–proteome–in-
teractome analysis communicate a unified theme, suggesting strong posttranscrip-
tional as well as posttranslational control of metabolism.

Ihmels et al. [73] developed an integrated analysis methodology, called signature
algorithm for S. cerevisiae, which analyzes patterns in gene expression changes over
a large number of data sets with varying conditions to establish proximity between
genes in terms of their expression under various conditions. Although this work did
not incorporate changes in the metabolic profile as that of Ideker et al. [72] did,
physiological changes were used to provide functionalities to genes, based on
similarity profiles. The premise of organizing genes into transcription modules is
that genes that are expressed similarly under a large variety of conditions are more
likely to be coregulated than those clustered based on fewer conditions. This method
was then used to study various cellular functions as well as the global transcription
program. For example, applying this method to a S. cerevisiae data set, genes with
previously unknown (or speculated) function such as YGR067C, YGL186C, and
YJL1200C were identified with the regulation of the glyoxylate shunt, purine
transport, and lysine biosynthesis, respectively [74]. An interesting discovery
made by Ihmels et al. [74] was that only 63 percent of the isozyme pairs were not
coregulated. An experimental validation of one such prediction of isozymes not being
coregulated was that of the two glutamate dehydrogenases, encoded by GDH1 and
GDH3. In a completely independent work, these isozymes were demonstrated to be
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nonredundant and their expression is carbon dependent [26]. This result agrees
very nicely with the work of Kafri et al. [83] on identifying the nature of backup
functions that genes perform. They argue that genes that are similarly expressed do
not back up each other in the event of a mutation but rather through a transcriptional
reprogrammingmechanism that S. cerevisiae has evolved; paralogues for themutated
genes are activated onlywhen the gene in question is inactivated.Although the authors
did not discuss this aspect, this result might provide some clues to the nature of silent
mutations. Hundreds of components in the cell are organized into modules and
dynamically interact with one another. The consequent phenotype is a reflection
of these dynamic interactions. Although there is no clear boundary between these
modules, the probability of interaction of a component with k other components, p(k),
has been shown to decrease according to the power law k�2.2 [81]. However, few
widely connected components such as ATP connect a large portion of the metabolism
and result in an integrated module-free metabolic network. This dilemma has been
resolved by demonstrating thatmetabolic networks are organized in highly connected
modules that operate in conjunction with each other in a hierarchical manner [130].
Elucidating the principles that govern the nature and function of these individual
modules may be possible with help from engineering, life sciences, and computer
applications.

One of the several examples of such an integrative approach is that of identifying
overlooked genes in S. cerevisiae [91]. Although the sequence information is
extremely valuable, its ultimate utility lies in its accuracy and the completeness
with which it is annotated. The yeast genome was sequenced and published to have
6274 genes, based on eukaryotic gene finding algorithms [108]. In the integrated
approach, Kumar et al. [91] identified candidate genes by large-scale insertional
mutagenesis using amodified transposon as a simplegene trap. The expressionof each
candidate gene is independently verified by microarray analysis. Only those gene
sequences detected by both gene trapping and microarray analysis are classified as
potential candidates. In this manner, they identified 137 previously overlooked genes
in yeast, amajority of which are either short or overlap a previously annotated gene on
the opposite strand. In yet another example of high-throughput data integration, the
gene expression profiling and protein–protein interaction maps were integrated to
compare the interactions between proteins encoded by genes that belong to common
expression-profiling clusters with those between proteins encoded by genes that
belong to different clusters [45]. The clusters derived from transcription profiling
experiments were organized in a matrix, with each element of the matrix representing
all pairwise combinations of genes either in a single cluster (diagonal or intracluster
squares) or between two different clusters (nondiagonal or intercluster squares). This
kind of a correlation approach suggested that the interactome data could help identify
expression clusters with greater biological relevance. This study provides evidence
that genes with similar expression profiles are more likely to encode interacting pro-
teins and establishes a platform to integrate other functional genomic and proteomic
data, both in yeast as well as in higher organisms.

The fundamental tenet of systems biology is capturing and integrating global data
sets from biological systems from as many hierarchical levels as necessary. These
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include the static DNA sequences, context-dependent mass flow measurements in
the form of RNA and protein quantifications, regulatory measurements such as
protein–protein or protein–DNA interactions, and information flow measurements
such as signaling pathways. The data collected from these measurements are
transferred to a databasewhere it is warehoused and analyzed for emergent properties
systemic properties. The visualization methods described earlier permit a means to
integrate the phenotypic features of the system directly to protein and gene regulatory
networks. Cycles of iteration will result in a more accurate model to explain the
subsystem or even the complete system (Fig. 9-2). Once the model has achieved
sufficient level of accuracy and detail, it will allow biologists to accomplish tasks that
remained elusive until now: predict the systemic response to a perturbation and
redesign the regulatory networks to create new emergent systems. The second aspect
of the systemsbiologywill be addressed in greater detail in the next section.Therefore,
fundamentally, systems biology is a hypothesis-driven, global, iterative, integrative,
and dynamic branch in biological engineering.

9.7 SYNTHETIC BIOLOGY: STATE OF THE ART

Synthetic biology is a new and emerging direction that engineering of biological
systems has taken. It is the synthesis of complex, biologically inspired systems that
exhibit novel functionality, which do not exist naturally. This engineering perspective
may be applied at all levels of hierarchy of biological structures. Therefore, synthetic
biology is the design of biological systems in a rational and systematic way. The
realization that theway to understand the cellular complexity requires a lot more than
just compiling a ‘‘parts list,‚” as provided by the genome sequencing, for example, has
precipitated into the origins of synthetic biology. Elucidating the interaction between
the parts is central to systems biology and is providing the necessary conceptual tools
needed for synthetic biology. This nascent offspring of systems biology will share a
symbiotic relationship with the fundamental sciences to expand on the biological
controlmechanisms using engineering approaches. These approaches include, but are
not restricted to, the design and synthesis of novel genes and proteins, modifying the
genetic code, altering regulatory mechanisms and signal sensing and enzymatic
reactions, constructing multicomponent modules that impart complex phenotype,
and even generating engineered cells.

The field of synthetic biology involves taking existing biological pieces, trans-
forming them into micromachines, and creating artificial systems that mimic the
properties of living systems. By creating systems that mimic what nature has created,
scientists can discover the basic principles that rule living systems, manipulate these
systems, and eventually find treatments formanydiseases plaguinghumanity. Today’s
synthetic biologists are looking to channel genetic engineering fromahit-or-miss field
of discovery to the type of discipline used by engineers to build bridges, computers,
and buildings. This approach can translate intomore specific anticancer therapies and
antiviral drugs, as well as more efficient drug delivery systems that will have a
significant impact on the health care industry.
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9.7.1 Systems Biology and Synthetic Biology

Systems biology merely provides the analytical framework within which synthetic
biology develops. The fundamental difference between systems biology and synthetic
biology is that quite unlike systems biology, synthetic biology is not a discovery
science (Fig. 9-11). It is a new way of constructing biology by adapting natural
biological mechanisms to the requirements of an engineering approach. Similar to the
mundane origins of systems biology described in Section 9.2, the first contribution of
synthetic biology as defined above was made in 1964, when the first functional
synthetic gene was made by a research team led by Khorana [84] as part of their work
on elucidation of the genetic code. This gene, encoding tyrosine transfer RNA, was
built from basic chemicals and was successfully tested in bacteria. Subsequently, this
technology was automated and was used in making primers for polymerase chain
reactions [111] and sequencing [140]. Since the simulation tools and models that are
developed in systems biology could be used in synthetic biology, it is considered the
design counterpart of systems biology. The design process demands sophisticated
technology to target large number of components in addition to the high-throughput
approaches. Therefore, synthetic biology will take some time before it matures to the
status that systems biology is currently enjoying.

9.7.2 Synthetic Biological Circuits and Cascades

The discovery of signaling pathways controlling fundamental physiology [79] led to
the application of nonlinear dynamics to understand gene regulation analogous to
electric circuits and the development of the concept of a regulatory network.However,
in the pregenomic era, the lackof sufficient experimental techniques precluded further
expansion in this field. However, the recent explosion in the development of quan-
titative experimental methodology sparked interest in the elucidation of biological
circuits and, more recently, introduction of synthetic circuits in biological systems.
The simplest circuit is a transcriptional cascade,wheregenes are arranged in series and
each gene product regulates the expression of one or more targets downstream in the
series (Fig. 9-12). Although this concept has been optimized to perfection in natural
systems using over evolution, in synthetic biology the networks are assembled from
components that may not be related to each other. Therefore, the main obstacle in
engineering synthetic circuits is to match the impedance of the individual elements
such that they are kinetically functional in the context of the desired objective. There
are two methods to optimize a synthetic circuit. The first one employs sensitivity
analysis where randomly chosen kinetic rates are assigned to the functionality of the
components and the contribution of each element’s kinetics to the overall system
behavior can be determined from analyzing the data from a large number of runs [32].
These data can be subsequently used to manipulate or fine-tune the system to
achieve the end goal. The second approach is by directed evolution, which does
not require detailed knowledge of the component kinetics. Directed evolution is most
commonly achieved by subjecting a given component (usually a gene) in the circuit to
a randommutation followed by a screening process to select the mutants that meet the
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desired criteria. This technique has been demonstrated in the optimization of a
transcriptional cascade in E. coli [179] and cell-to-cell communication elements in
Vibrio fishcheri [22]. The former strategy of rational design of synthetic circuits by
computational approaches works well when properties dictating the component
activity are well established, as is often the case with ribosome binding sites and
operators. Directed evolution is more useful when the mechanism of the elements is
not well known.

Signaling cascades are useful in elucidating the fundamental mechanisms of
information flow in regulatory networks, and are usually characterized by having a
steady-state output that is amonotonic function of the input. The steady-state behavior
ofmost signaling cascades is similar to the digital logicwith an ultrasensitive step-like
dosage–response function, as illustrated in the case of mitogen-activated protein
kinase in S. cerevisiae [67]. The response properties of transcription cascades also
possess similar response characteristics. The dynamic and steady-state analysis of
synthetic transcriptional cascades comprising one, two, and three repression stages
has shown an ultrasensitive response to stimulus, and the sensitivity of the cascade
increases as more elements are added to the cascade [66]. Synthetic transcriptional
cascades have also been useful in studying noise propagation and in quantifying the
contribution of intrinsic and extrinsic factors to phenotypic variations [126,135].Most
of the synthetic signaling cascades havebeen studied in prokaryotes, but long cascades
are more common in eukaryotes, and therefore are more complicated. In contrary to
the prokaryotic transcriptional cascades, eukaryotes exhibit a nonmonotonous re-
sponse to stimulus, particularly in the presence of feedforward loops in the cascade.

9.7.3 Challenges for Synthetic Design

The construction of a functional synthetic network required assembling diverse
genetic elements and getting them towork together. This process involves combining
disparate components and tuning of biological parameters such as kinetic constants.
Moreover, characterization of the circuit may not be valid under all conditions. To
overcome some of these problems, several strategies have been suggested. First, the

Figure 9-12 A simple depiction of how a gene regulatory network can be represented as an

analogous electric circuit. The table on the right shows the conditions when the circuit will have an

output. The circuit indicates how the output can be generated even in the presence of a repressor

protein, making the gene circuit function like a switch.
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use of tunable elements such as transcription factors and promoters allow external
control over some of these parameters. Second, the host cell in which the synthetic
circuit has been integrated could be subjected to directed evolution in the laboratory
and selected for optimized parameters. Another strategy is to implement a robust
circuit design that is inherently insensitive to any kind of stimulus. These strategies
have their basis in natural selection and are extremely useful in incorporating synthetic
circuits in biological systems.

Another aspect of designing synthetic circuits is that of computational modeling.
Simulation of synthetic models is essential for both the analysis of natural systems
and also for engineering synthetic ones. Some of the problems that complicate the
straightforward application of mathematical modeling to synthetic circuits include
parameter sensitivity, lackofmathematical principles tomodel the complexbiological
circuits, and the inherent difficulty in distinguishing signal from noise in the circuits.
On the positive side, synthetic circuits are simpler and, therefore, are better charac-
terized than their natural counterparts; they will serve as ideal test systems to study
their natural counterparts.

Currently, synthetic biology offers the ability to study cellular regulation and
behavior usingdenovonetworks.However, in the future, synthetic biology is expected
to greatly contribute to the progress of medicine, biotechnology, and other areas of
biology. The true potential of synthetic biology will be realized when the synthetic
regulatory cascadesmentionedaboveare interfacedwith sensory inputs andbiological
responseoutputs.The inputspermit noninvasivemonitoringof external environmental
conditions and internal cell state and the outputs enable the engineered circuitry
to control metabolism, cell cycle, and so on. Although the ability to program cell
behaviors is still in its infancy, it is clear that the power to freely manipulate the set of
instructions governing the behavior of organisms will have a tremendous impact on
our quality of life and our ability to interact with and control the physical world
surrounding us. One important difference between established quantitative engineer-
ing disciplines and synthetic biology is that state-of-the-art biological modeling
tools still do not offer the same level of precision and predictive power. The future
of synthetic biology looks very promising, with two goals clearly becoming obvious:
understanding natural circuits by mimicking the natural systems and discovering
what alternate nonnatural circuit designs are possible given the biological compo-
nents. These hold the promise for immense potential in industrial as well as medical
biotechnology.

9.8 COORDINATED RESEARCH IN YEAST SYSTEMS BIOLOGY

We are currently witnessing a transition in the approach to yeast physiology from
traditional macroscopic procedures to a molecular approach and from a reductionist
approach to an integrated approach (Fig. 9-2). Research in the field of systems biology
and engineering is primarily driven by its end use and the quest for fundamental
understanding. Truly comprehensive approaches to systems biology lie at the conflu-
ence of pure basic research anduse-inspired basic research. Since such comprehensive
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approaches seem to be the future trend in studying physiology, it is necessary to
establish a common platform to enable effective information exchange between
different research groups. The generation of high-throughput global data that will
be used in the integratedmethodologies will prove to be an expensiveventure andwill
undeniably require extensive knowledge about computer modeling, physiology, and
metabolism, as well as excellent technical skills in measuring gene and protein
expression andmetabolic flux analysis.Although the current trend of generating high-
throughput data is increasingly popular, we believe that there is extremely useful
information that could still be extracted from the data that are already generated. Such
a multidisciplinary approach paves the way to establishing strong symbiotic research
collaborations. In this vein, there is also an increased government funding for systems
biology.Notably, theU.S. National Institute ofHealth’s roadmap formedical research
provides $2.1 billion in funding over 5 years with heavy emphasis on systems biology,
computational biology, and interdisciplinary programs. On a smaller scale, the U.S.
National Science Foundation has launched a funding initiative entitled, ‘‘Quantitative
Systems Biology FY 2004.‚” Also in the United Kingdom, BBSRC and EPSRC have
launched a focused research program on systems biology resulting in the establish-
ment of six national research centers tackling different aspects of systems biology.
These and similar initiatives worldwide are catalyzing a renaissance in systems
biology with special emphasis on producing a new generation of researchers trained
in their core discipline and in complementary fields as well. We will focus on the
European efforts in performing coordinated research in yeast systems biology.

9.8.1 European Functional Analysis

The European Functional Analysis (EUROFAN) network precipitated from the
Yeast Genome Sequencing Network, which played a key role in yeast genome
sequencing efforts. The goal of EUROFAN, which was established 2 years after
the yeast genome sequence was published, is to provide a central repository of yeast
mutants and characterize their transcriptome and proteome profiles to elucidate
the biological function of novel genes revealed by the yeast genome sequence.
The systemic functional analysis of the yeast genome is not intended to replace
the regular biological enquiries that are conducted to answer specific questions. There
are established approaches that permit the study of biological significance of every
gene with increasing specificity. The approach implemented by EUROFAN is very
efficient since it is not necessary to perform the global analyses on all the single gene
disruption mutants. The ultimate idea of this project was to distribute the novel genes
among the various laboratories in Europe, where additional information about its
physiologic significance is evaluated. EUROFAN has now awell-curated database of
gene function formost of the novel genes, an effort still in progress, and also serves as a
genetic archive and stock center comprising yeast strains containing specific deletion
mutants containing the individual genes as well as disruption cassettes allowing their
manipulation in any laboratory or industrial yeast. This resource partly runs under the
patronage of the Yeast Industrial Platform (YIP), which ensures rapid and efficient
technology transfer to maintain European leadership in industrial yeast research.
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The EUROFAN Project B0 has characterized more than 700 novel genes with
respect to growth and morphology of deletion strains at several conditions of
media and temperature. Project B1 has carried out quantitative phenotypic analysis
of 564 deletion mutants with respect to 31 inhibitory chemicals and temperature
shift [9].OtherEUROFANprojects have focused onother postgenomic technologies
or have characterized the deletion mutants for phenotypes according to the special-
ties of the participating laboratories. The EUROFAN projects represent a major
source of phenotypic data for the novel nonessential genes targeted by the European
consortium. Details regarding the EUROFAN reports can be searched from the
MIPS site (http://mips.gsf.de/proj/eurofan) and the deletion mutants, plasmids con-
taining individual genes, and disruption cassettes are available at EUROSCARF
(http://www.uni-frankfurt.de/FB/mikro/euroscarf/index-htlm) or Research Genetics
(http://www.resgen.com). The MIPS primary gene query page has a link to the gene-
specific EUROFAN data but the results of the EUROFAN functional analyses have not
yet been linked to any yeast genome database and consequently, there is no single
downloadable compendium of the EUROFAN data. However, the results from the B0
project have been curated into YPD.A resource such as EUROFAN laid the foundation
for thorough high-throughput research using yeast to serve as a model as well as a tool.

9.8.2 Yeast Systems Biology Network

Systems biology is, by definition, multidisciplinary. It requires close collaboration of
various laboratories specializing in experimental as well as theoretical disciplines to
exploit the variety of methods to describe complex interactions in the yeast system.
Thus far, it has not been possible for any single lab to possess the economic capability
that is required to perform a variety of high-throughput experiments at the genome,
transcriptome, proteome, metabolome, and the fluxome levels as well as the com-
putational capability required to integrate data from these experiments to qualify for
a true systems approach. Therefore, it is only through the coordination of activities
in different labs such a systems approach can be realized. Despite the extensive
government and private funding that the yeast systems biologists are enjoying
worldwide, there is no concerted multilaboratory effort to coordinate and pool the
individual competences toward studying yeast. The recognition for a unified effort for
a symbiotic collaboration in yeast systems biology precipitated in launching the
Yeast Systems Biology Network (YSBN) at the XXI International Conference on
Yeast Genetics and Molecular Biology in G€othenburg, Sweden [65]. This alliance is
expected to provide a platform for fostering collaboration between experimental yeast
biologists and theoretical modelers in the ‘‘systems community.‚” The integrating
platform for the alliancewill be an internet-based functionality that generates a global
virtual research community. The wider vision of the YSBN as part of both the yeast
research and the emerging systems biology community is to work toward a compre-
hensiveunderstandingof the functionof theyeast cell,whichwill continue to serveas a
paradigm for all eukaryotic cells. The other objectives of the YSBN are developing
experimental and computational methods to iteratively improve the integration of
experimental data in computationalmodels and using the experimental approaches, in
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turn, to validate the predictions. This will facilitate easy data sharing for establishing
standards for generating and documenting high-throughput data. Another important
goal is to establish competence centers at regional as well as global levels for training
of students and researchers. It is also necessary to spread the awareness of yeast
systems biology among the general public and at the level of school education. These
activities, in turn, are expected to increase the visibility of theYSBN to attract funding
and financial support for yeast systems biology. An update on the progress of this
international collaboration and its future activities and conferences are recently
published [112].

9.9 SOCIETAL IMPACT OF YEAST SYSTEMS BIOLOGY

Systems biology, with its interdisciplinary approach to devising computational
models of complex biological systems, may very well hold the key to unlocking
the truevalue of the genome. There arevast commercial opportunities available for the
pharmaceutical, human health, biotechnology, diagnostics, and agribusiness indus-
tries within systems biology. Market projections made by Research and Markets
(http://www.researchandmarkets.com) for systems biology products and services are
expected to growat an annual compound rate of 66 percent to $785million by 2008. S.
cerevisiae has long served as a model eukaryote by virtue of the plethora of tools with
which it can be manipulated genetically. In this section, we will illustrate some cases
where similarities between yeast genes and human genes have been exploited to
understand the mechanism of disease to improve human health and drug discovery in
the pharmaceutical industry. We will also provide some case studies where novel
metabolic engineering strategies in yeast have aided the bioprocess industry.

9.9.1 Human Health

The identification of several of the orthologues of human disease genes in this
yeast has made it indispensable tool as a prototype system for medical research.
Importantly, genetic dissections of yeast physiology serendipitously led to signifi-
cant advances in our understanding of several human diseases, most notably cancer,
through the exemplary studies on the regulation of the cell cycle performed by
Hartwell et al. [59]. More recently, however, the genetic and biochemical tools
available in yeast have been recruited for the purpose of directly examining the
molecular basis and to aid in the treatment of several human diseases. High-
throughput screening methods using the technology described earlier have been
used to identify novel pharmacological targets produced in yeast or, through the
two-hybrid screen, to obtain protein partners of medically relevant gene products.
Moreover, the heterologous expression of proteins in yeast that lead to human
disease has been used to uncover physiological responses to these proteins; yeast
also encode homologues of several disease-causing proteins. In particular, the ex-
pression of specific proteins in yeast that fail to adopt their proper conformations
or whose conformation lead to a pathological state in humans has helped us to
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understand how ‘‘conformational diseases‚” arise and how eukaryotic cells respond
to malconformed polypeptides [20,90].

9.9.1.1 Mitochondrial Disorders Despite the extensive research conducted
on the structure of mammalian respiratory complexes, our knowledge of mitochon-
drial biogenesis in humans relies on yeast genetics and biochemistry. Human cDNAs
have been isolated based on their homology with newly discovered yeast genes and
have been used to rescue yeast mutants deficient in the corresponding genes. This
approachhas led to isolationofhumangenes involved inmitochondrial protein import,
expression, biogenesis, and assembly of the respiratory complexes. Although the
complete sequence of the human 16 kb mitochondrial DNA circle was published in
1981 [3], the mitochondrial gene sequence in S. cerevisiaewas achieved only in 1998
as a complement to the nuclear genome. In humans as well as in yeast, only a few
polypeptides of the respiratory complexes and ATP synthases are mitochondrially
encoded with the vast majority of the mitochondrial proteins encoded in the nucleus
and imported into the mitochondria by sophisticated machinery. Among the diseases
of mitochondrial origin, cystic fibrosis is the most common lethal, inherited disease
in North America and Europe, the common problems being breathing disorders,
pancreatic dysfunctioning, and male infertility. Although over 900 mutations have
been identified in the gene encoding, the cystic fibrosis transmembrane conductance
regulator (CFTR), a phenylalanine in the 508 position of the protein, accounts for
more than 70 percent of all the disease-causing mutations as a result of poor folding
(http://www.genet.sickkids.on.ca/cftr/). The mutant form of CFTR localizes in the
endoplasmic reticulum instead of the plasma membrane. When expressed in yeast,
CFTR expressed in the endoplasmic reticulum was degraded; however, the degra-
dation was attenuated when expressed in yeast containing a rapid-acting thermo-
sensitive allele of a cytosolic Hsp70 chaperone [181]. These results indicate that
Hsp70 facilitates CFTRdegradation.Moreover, based on the genome sequence, a new
essential mitochondrial metabolic pathway was discovered in yeast that appears as a
promising model to study human iron–sulfur clusters [85], since this pathway is
conserved in the human mitochondria as well [97].

9.9.1.2 Nutrient Sensing and Metabolic Response All organisms appear
to have the nutrient sensing mechanism that can rapidly detect changes in the
concentration of available nutrients, adjust flux through metabolic pathways, and
networks accordingly. In single-celled organisms, certain nutrients can regulate their
own uptake, synthesis, and utilization. By contrast, higher eukaryotes sense nutrient
availability primarily through endocrine and neuronal signals (e.g., insulin, glucagon,
epinephrine, and so on). However, research performed in the last decade has shown
thatmany typesofmammalian cells candirectly sense changes in the levels of avariety
of nutrients and transduce this sensory information into changes in flux through
metabolic pathways. These signal transduction pathways appear to operate both
independently from and coordinately with the hormonal pathways. Since several of
these pathways are conserved from the unicellular yeasts tomammals, theymust have
originally evolved independent of hormonal control. This conservation has proven
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extremely useful in delineating these pathways. In this section, we will discuss the
sensing and response tomacronutrients, particularly glucose, with particular focus on
the modulation of cellular energy and aging.

Yeast has also been the prototype in evaluating the onset andmodulation of cellular
energy metabolism with respect to glucose homeostasis and, therefore, plays an
important role in elucidating the mechanisms of metabolic syndrome. The metabolic
syndrome is characterized by insulin resistance, hyperinsulinemia, dyslipidaemia,
and a predisposition to type-2 diabetes, hypertension, premature atherosclerosis,
and other diseases such as nonalcoholic fatty liver. Patients with this syndrome are
usually overtly obese or have more subtle manifestations of increased adiposity,
such as an increase in visceral fat. This syndrome has reached an epidemic level in
our modern society due to a number of environmental factors, in particular overnutri-
tion and inactivity. Amajor collaborative effort between basic researchers, clinicians,
dieticians, health care authorities, and the pharmaceutical industry is required to
halt progression of this devastating clustering of diseases. The AMP-activated
protein kinase (AMP kinase) plays a key role in the modulation of cellular energy
metabolism by phosphorylating key metabolic enzymes in response to increased
AMP levels (Fig. 9-13). AMP levels rise during states of low energy charge
(i.e., reduced ATP/AMP ratios) that occur in a variety of normal processes such
as exercise and possibly also in some pathological states such as diabetes. Activated
AMPkinase phosphorylates key enzymes in both biosynthetic andoxidativepathways
and differentially modulates their activities to promote a reestablishment of normal
ATP/AMP ratios. Besides maintaining the energy balance within the cells, AMP
kinase also plays a key role in sensing intracellular ATP levels. The discovery of
naturally occurringmutations inAMPkinase that cause cardiac hypertrophy provides
direct evidence that AMPkinase has a fundamental role inmaintaining normal human

ADPAMPATP
AMP

kinase

Biosynthesis

Catabolism

Adenylate
kinase

Figure 9-13 The AMP-activated protein kinase in yeast serves as a sensor of cellular energetic

state. If the rate of ATP consumption exceeds its production (rate of biosynthesis exceeds

catabolism), the concentration of ADPwill increase, stimulating adenylate kinase to convert ADP

to AMP. The rise in the level of AMPalong with the reduction in ATP levels activates AMP kinase,

which then switches off ATP-consuming processes and stimulates catabolism. The exact

mechanisms involved in the activation of AMP kinase and its subsequent action are not yet

known.
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physiology. Moreover, the recent discovery of an upstream kinase in the AMP kinase
cascade could implicate the role of AMP kinase in cancer development [57].

AMP kinase is a heterotrimeric complex with a catalytic a-subunit and two
regulatory b- and g-subunits, and homologues of all these three subunits have been
identified in all eukaryotes [58]. The identification of these subunits in yeast, catalytic
a-subunit (SNF1 in yeast), the regulatory g-subunit (SNF4), and the scaffolding
b-subunit (three partly redundant proteins in yeast:GAL83, SIP1, and SIP2), provided
S. cerevisiae as an ideal platform to elucidate the regulation and control of AMP
kinase in humans. This conservation suggests an essential role of this complex in the
functioning of the kinase [58]. Detailed studies on S. cerevisiae SNF1 complex
revealed an intimate role of this complex in transcriptional activation of many genes
that are sensitive to glucose repression [19].Growth on sucrose requires the expression
of invertase,whereas growth on nonfermentable carbon sources requires expressionof
mitochondrial genes needed for oxidative metabolism. The expression of all of these
genes is repressed by glucose, and the SNF1 and SNF4 genes are required for their
derepression. One mechanism by which this is mediated is the phosphorylation of the
repressor protein Mig1 by the SNF1 complex (Fig. 9-14). Phosphorylation causes
Mig1 to bind to a nuclear export protein that promotes its removal from the
nucleus [82]. Therefore, the primary role of AMP kinase in yeast appears to be in
the regulation of energy metabolism by repressing ATP-consuming processes and
stimulating ATP generation via control of glucose uptake and its catabolism. Upon
activation, AMP kinase controls manymetabolic processes, ranging from stimulating
fatty acid oxidation and glucose uptake to inhibiting protein, fatty acid, glycogen, and
cholesterol synthesis. Its central role as a metabolic glucose sensor is illustrated by

Figure 9-14 An extremely simplified schematic depicted the induction and repression mechan-

isms that are triggered by the presence of high glucose concentrations. The genes responsible for

glucose metabolism (e.g., hexose transporters and kinases) are induced, whereas those respon-

sible for the metabolism of other sugars are repressed (e.g., galactose and sucrose). Currently,

there are several unknown steps involved in both the pathways andwe believe that at least someof

these uncertainties could be solved by employing systems biology techniques.
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recent studies showing that mice lacking one of the AMP kinase isoforms have
abnormal glucose tolerance and are insulin resistant [167]. Upon the discovery that
AMP kinase is themajor target of the antidiabetes drugsmetformin and rosiglitazone,
there has been tremendous interest in understanding the kinetics and action of this
enzyme [136].

The fact that several of the nutrient-sensing pathways are conserved between
humans and yeasts has proven extremely useful in studying the control and utilization
of these pathways. Another aspect of medical research where S. cerevisiae has been
usedas themodel system is in the elucidation of themechanismofaging.Traditionally,
rodents have been used to study these phenomena, analogous to the human processes.
Over the past 75 years, many studies have shown that caloric restriction extends life
span in awide variety of species, from invertebrates to rodents to mammals. So far, no
long-term studies havebeen completed in primates or conducted in humans because of
the sheer length of anyproposed study (perhaps a century ormore for human studies!).
With the recent explosion in yeast biology, coupled with the identification of the cell
cycle regulators that sharehighhomologywith thehumangenes, yeasts are takingover
as the ideal system to studyaging.Moreover, the short life spanofyeastmakes them the
convenient and preferred hosts over rodents.

Aging in budding yeast is measured by the number of mother cell divisions before
senescence. Genetic studies have linked aging in S. cerevisiae to the Sir (silent infor-
mation regulator) genes, which mediate genomic silencing at telomeres, mating-type
loci, and the repeated ribosomal DNA (rDNA) [54]. Sir2 determines life span in a
dose-dependent manner by creating silenced rDNA chromatin, thereby repressing
recombination and the generation of toxic rDNA circles. This protein also functions
in a meiotic checkpoint that monitors the fidelity of chromosome segregation [98].
Glucose enters yeast cells via highly regulated glucose-sensing transporters (HXT)
and is then phosphorylated by hexokinases (Hxk1, Hxk2, and Glk1) to generate
glucose-6-phosphate. Limiting the glucose availability by mutating HXK2 also
significantly extended the life span [98]. This is brought about by the yeast
NADþ-dependent histone deacetylase Sir2 and it is shown to be required for life
span extension by glucose restriction and low-intensity stress [2,99]. The function
of Sir2 enzymes in longevity and cell survival appears to be conserved in higher
organisms as well. Currently, it is not clear how calorie restriction stimulates Sir2
activity, whether by feedback regulation of nicotinamide, an inhibitory product of
Sir2 itself, or by increasing either NADþ or the NADþ:NADH ratio. Although it is
possible to affect Sir2 activity by genetically manipulating NADþ metabolic path-
ways, it is not known whether NADþ is a bona fide regulator of Sir2 in normal cells.
Sir2 represses transcriptionby removingacetyl groups from lysines ofhistone tails and
certain transcription factors (e.g., FOXO and p53) [62]. These findings have led to the
intriguing possibility that Sir2 acts as a metabolic sensor, via its NADþ dependence,
that links caloric intake to a transcriptional program that modulates life span. The fact
that Sir2 requires the central metabolic cofactor NADþ to catalyze protein deacetyla-
tion is surprising, since from the chemical perspective, deacetylation does not require
the destruction of a high-energy cofactor. There is also no indication that the break-
down of NADþ during the deacetylation reaction is coupled to any form of protein
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conformational change or other work. Instead, the NADþ requirement may serve to
link the activity of Sir2 to the metabolic status of the cell. Mutation of the
NADþ-salvage pathway in yeast lowers the NADþ concentration and prevents
the life span extension conferred by caloric restriction [99]. This is similar to what
was seen for Sir2mutants and led to the suggestion that Sir2 activity might depend on
the intracellular concentration of some component of theNADþ pathway (Fig. 9-15).
Support for the idea that Sir2 acts as a sensor of the NADþ /NADH ratio (or the
concentration of some other component that would be influenced by this ratio) comes
from a study on mammalian skeletal muscle cell differentiation [42]. These studies
provide strong evidence that Sir2 might be functioning as a metabolic or a redox
sensor. However, the difficulty in measuring the in vivo NADþ /NADH ratio and the
threshold value it triggers in the activation of Sir2 is inhibiting further insight into its
sensory and regulatory role.

9.9.1.3 Mechanism of Cancer Most human cancers are the consequence of
some formofgenome instability, and thereforemaintaining the stability of thegenome
is critical to cell survival and normal cell growth. In general, these aberrations occur
either due to increased rate of chromosome instability or due to increased rates of point
mutations and frameshift mutations [89]. Mismatch repair is the process by which
incorrectly pairednucleotides inDNAare recognizedand repaired.Ourunderstanding
of mismatch repair in eukaryotes relevant to cancer research mostly comes from
studies completed in S. cerevisiae and, to a lesser extent, in higher eukaryotes. This
section will deal with some of the recent insights into these issues that have emerged
from recent genetic studies in S. cerevisiae.

S. cerevisiae contains at least two genes (MSH2 and MSH1), which function in
mismatch repair in the nucleus and mitochondria, respectively. It was identified that
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Figure 9-15 In another example of nutrient sensing and metabolic response in yeast, the Sir2
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mutations in MSH2 caused high spontaneous mutation rate, a defect in the repair of
base pair mismatches with 1–4 nucleotide insertion/deletions, along with a modula-
tion of genetic recombination. This is consistent with the view thatMSH2 functions in
the major mismatch repair pathway in S. cerevisiae [36]. The human MSH2 protein
(hMSH2) was identified as a minor component of a protein fraction that was purified
by virtue of its mismatch binding activity, providing evidence that hMSH2 protein
also recognizes mispaired bases [123]. A considerable amount of evidence has accu-
mulated indicating that mutations in this gene are the primary cause of hereditary
nonpolyposis colon cancer (commonly known as colorectal cancer) in humans [37].
Colorectal cancer is the disorder where rapid cell proliferation occurs in the lining of
the large intestine, and these aberrant cells invade other tissues. This disorder most
often begins as a benign polyp, which subsequently develops into malignant cancer.
Cancer in the colon is the second largest cause of cancer-related deaths in the United
States, and if discovered in the early states, it is treatable. Evenwhen the abnormal cell
proliferation spreads into nearby lymph nodes, surgical treatment followed by chemo-
therapy has been demonstrated to be highly successful (information from Colorectal
Cancer Alliance Website, http://www.ccalliance.org/). Mapping studies have shown
that hMSH2 mapped to the chromosome 2 colon cancer locus, and analysis of
chromosome 2-linked colon cancer families revealed germline msh2 mutations that
cosegregatewith coloncancer in these families [88].Bycombining theapproachesused
to define the yeast andhumanMSHgeneswithmethods for identifying theyeastMLH1
gene in a database of cDNA sequences, the humanMLH1 (hMLH1) gene has isolated
and demonstrated to map to the chromosome 3p colon cancer locus, and mutational
analysis indicate cosegregation of hMLH1 mutants with the colon cancer locus,
providing evidence that inheriting hMLH1 mutations also causes colon cancer [145].

In the case of cancers caused by mutations in mismatch repair genes, genome
instability arises due to elevated mutation rate, although the cause behind this is not
clearly understood. However, very little is known about the molecular mechanisms
underlying the genome rearrangements, their suppression mechanisms, and the pos-
sible defects in the suppression mechanisms that could potentially lead to many
cancers. The utility of S. cerevisiae to study genome rearrangements beganmore than
20 years ago, when an extra copy of a DNA sequence was inserted at a site on an
unrelated chromosome, followed by selection for recombination [148]. This resulted
in chromosomal translocations due to mitotic recombination, similar to those seen in
leukemia. The checkpoints shown in the S-phase of the cell cycle were originally
identified to promote cell cycle delay or arrest in response to DNA damage, providing
the cell an opportunity to repair the damage (Fig. 9-16) [38]. The sensitivity of the
checkpoint-defective mutants to killing by DNA-damaging agents suggested that
these checkpoints might function in suppressing genome instability. A survey of the
S. cerevisiae genome for these checkpoints revealed that mutations that disrupt the
replication checkpoint (RFC5-1, DPB11-1,MEC1, DDC2, and DUN1) significantly
increase the rate of genome rearrangements [113]. In contrast, mutations in the genes
required for the classical G1 andG2DNAdamage checkpoints and themitotic spindle
checkpoints had little effect, suggesting that the DNA replication checkpoint in the
S-phase plays a critical role in suppression of spontaneous genome instability.
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Therefore, replication errors appear to be the cause for genome rearrangements. The
function of the replication checkpoint in suppressing genome instability likely
includes regulating cell cycle progression in response to replication errors,modulating
DNA repair functions, ensuring the establishment of sister chromatid cohesion, and
maintaining stalled replication forks in a state that allows them to restart DNA
synthesis. All of the genome rearrangements seen when this checkpoint was inacti-
vated involved deletion of a chromosome end coupled with de novo addition of a new
telomere [89]. Although data-driven systems biology in its purest form has generated
progress mainly in the area of basic research, the more general concept of combining
global data ofmultiple types is alreadymaking significant contributions, especially in
the areas of drug discovery and development.

9.9.2 Drug Discovery

The extraordinary advances in biological research over the last decade have failed to
translate into successful applications in drug discovery. Indeed, a recent analysis
reported a decline in the productivity of pharmaceutical R&D, despite a 13 percent
annual growth in investment in biomedical research from industry and govern-
ment [12]. Moreover, the pharmaceutical industry will lose nearly $80 billion in
revenue by 2008 due to patent expiration, and the current drug pipeline will replace
only a small fraction of this value [4]. The bottleneck in the drug development
technology lies in our inability to visualize the complexity of biological systems.
Threemajor issues are associatedwith identifying effective newdrugs: first, discovery
of a relevant drug target; second, identification of a drug thatwill appropriately perturb
the target; and third, assessment of the possible side effects and pharmaceutical
properties of the drug before its deployment in clinical trials. Systems biology offers
powerful new approaches for dealing with these problems.

In the long run, systems biology approach to drug discovery holds the promise
to have a profound impact on medical practice, allowing a detailed evaluation of

Figure 9-16 Different stages of the cell cycle and the checkpoints for DNA damage, replication,

and mitosis. The proteins that are believed to detect the faults at each checkpoint are indicated

below the cell cycle stage. The effect of activating the checkpoint is shown below the proteins in a

box. This figure is redrawn from Ref. [89].

SOCIETAL IMPACT OF YEAST SYSTEMS BIOLOGY 339



underlying predisposition to disease, diagnosis of disease, and the progression of
disease.However in thenear future, as a consequenceofvigorousbiomedical research,
systems biology will provide powerful means for validating new drug targets,
improving the success with which pharmaceuticals are identified. Farther into the
future, the same approaches will drive the development of early diagnostics, enabling
disease stratification, individualized therapy, and ultimately preventive drugs, based
on both genetic and environmental considerations. Although systems biology as
currently envisioned does not have a direct impact on the chemistry of identifying
drugs or pharmacological challenges of drug metabolism, it may provide rapid and
useful assays for these in the future.

Yeast can contribute to the drug discovery pipeline at an early state in identifying
potential drug targets and evaluating the physiological outcome of modulating the
activities of these targets. Although there are obvious limitations to using a micro-
organism to identify potential human drug targets, several yeast proteins share a
significant part of their primary amino acid sequence with at least one known or
predicted human protein (around 2700 at BLASTwith e-value less than 10�10 and
around 1100 at BLAST e-value <10�50). Among these are several hundred with
sequence similarity to proteins implicated in human disease [7,13]. A large number
of familiar drugs used against human targets specifically inhibit the orthologous
proteins in yeast, providing a strong case for the use of yeast physiology to identify
and study potential human drug targets. Among the conserved proteins that are
uncharacterized, functional studies in yeast will shed light upon possible utility of
the human counterparts as drug targets. Most of the proteins conserved between
yeast and humans are involved in basic cellular processes such as small-molecule
metabolism, protein synthesis, cell division, DNA synthesis and repair, secretion,
and so on. Hence, target identification in yeast has proven especially relevant for
cancer, which at the simplest level is a disorder of proliferation control caused by
accumulatedmutations.Many of the commonmutations in human cancers including
genetic and physical interactions between the mutated genes/proteins can be
modeled in yeast, greatly simplifying and accelerating directed study. The concept
of ‘‘synthetic lethality‚” a phenomenon where a combination of two innocuous
genetic mutations renders the cell inviable, has shown great promise in identifying
targets for anticancer therapy. Screening for mutation pairs that display synthetic
lethality could lead to identifying drug targets that could selectively inhibit pro-
liferation only in cells carrying a cancer-causing mutation. Such ‘‘gene-therapy‚”
applications are presumably less detrimental than chemical or radiation therapy.
Due to the obvious combinatorial problem associatedwith the experimental analysis
of all the ordered pairwise mutations (even with 6000 genes), an automated system
for creating and analyzing all pairwise combinations between a single mutant and
all of the around 5000 viable single-gene deletion mutants has recently been
described [151,152].

Theincreasingcasesoffungalinfections,particularlyamongimmunity-compromised
persons (those with AIDS and transplant patients), the need for safer and more
effective antifungals is widely recognized. Although Candida albicans and
Aspergilli have been used for the development of antifungals, S. cerevisiae presents
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a ready-made model system, particularly for azole-based antifungals. The discovery
of pathogenic strains of S. cerevisiae that display invasive filamentous growth [49] or
biofilm formation [132] provides excellent opportunity to examine the association
between gene function and hyphal growth and infective capacity and biofilm
formation, potentially leading to the identification of new antifungals. Screening
for antifungals begins with a specific target with a knownmechanism of action, since
they could be used as templates for combinatorial modifications. An ideal antifungal
should be required for the growth of yeast and should have minimal or no activity in
humans (and therefore, not be conserved in humans). Among the 1100 essential
genes in yeast, 350 do not have orthologues in humans and a subset of these genes
would make an ideal target to screen for antifungals. However, some of the most
successful antifungal compounds have properties far from the ideal criteria. For
example, morpholines inhibit the Erg2 protein in the ergosterol pathway. Deletion of
the ERG2 gene is not lethal, and it shares sequence similarity with human sigma
receptor protein [5]. The standard method used to screen for antifungals in particular
and drug targets in general is the Y2H, which has been described earlier.

9.9.3 Food and Chemical Technology

White biotechnology (or industrial biotechnology) is an emerging field that specifi-
cally caters to the needs of the chemical and environmental industry [41]. It relies
largely on using living cells like yeast as cell factories for sustainable production of
biochemicals, biomaterials, and biofuels from renewable resources. A recent study
conducted by McKinsey and Co predicts immense growth potential for white bio-
technology in the future (http://www.mckinsey.com/clientservice/chemicals/pdf/
BioVision_Booklet_final.pdf), with some of the large chemical companies such as
BASF and DSM already replacing their chemical processes with cleaner, more
efficient bioprocesses. An important component in developing yeast as a cell factory
for an economically viable, efficient bioprocess is to optimize its metabolic network
and systems biology has propelled the field of white biotechnology to new heights. In
addition to the traditional use of yeast for baking purposes and ethanol production, it is
also the system of choice for producing a variety of recombinant proteins such as
insulin and various vaccines. There are a number of advantages of using yeast as a cell
factory such as

. the availability of complete genome sequence

. its generally regarded as safe (GRAS) status

. well-defined cellular architecture

. established genetic manipulation techniques

. ease of scale-up of yeast bioprocesses

. availability of metabolic models

Besides its conventional applications in the brewing industry and as bakers yeast,
S. cerevisiae is now used for a number of other industrial applications (Table 9.1).
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9.10 PERSPECTIVE

Systems biology offers an opportunity to study how the phenotype is generated from
the genotype and with it a glimpse of how evolution has crafted the phenotype. One
aspect of systems biology is the development of techniques to examine broadly the
levelof protein,RNA, andDNAonagene-by-genebasis andeven theposttranslational
modification and localization of proteins. In a very short time we have witnessed the
development of high-throughput biology, forcing us to consider cellular processes
in vivo. Even though much of the data is noisy and today partially inconsistent and
incomplete, this hasbeen a radical shift in thewayweaddress problemsone interaction
at a time.When coupled with gene deletions by RNAi and classical methods and with
the use of chemical tools tailored to proteins and protein domains, these high-
throughput techniques become still more powerful. It is evident that a wide range
of experimental approaches are being developed for use in S. cerevisiae that will allow
functional genomics to build up an integrative view of the workings of a simple
eukaryotic cell. This should enable a deeper understanding of more complex eukar-
yotes, both by the identification of orthologous genes in the different species and

Table 9-1 Industrial applications of bakers yeast

Nonproprietary
Name Trade Name Company Reference

Pharmaceuticals Hepatitis surface
antigen

Ambirix GlaxoSmithKline [46,168]

Comvax Merck [46,168]
HBVAXPRO Aventis Pharma [46,168]
Infanrix-Penta GlaxoSmithKline [46,168]
Pediarix GlaxoSmithKline [46,168]
Procomvax Aventis-Pasteur [46,168]
Twinrix GlaxoSmithKline [46,168]

Insulin Actrapid NovoNordisk [46,168]
Novolog NovoNordisk [46,168]
Levemir NovoNordisk [46,168]

Hirudin/Desirudin Refuldan Aventis [46,168]
Urate oxidase Elitex Sanofi-Synthelabo [46,168]

Fine chemicals Epicedrol — — [78]
Lycopene — — [175]
b-carotene — BASF, Roche [175]
Artemesinin — Amyris

Biotechnologies
[133]

Flavanones — — [176]
Ascorbic acid — — [56]

Bulk chemicals Glycerol — — [120]
Lactic acid — — [127]
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also by the expression of foreign coding sequences in yeast for complementation or
two-hybrid analyses. However, many of these techniques are sufficiently general that
once they have been tried and tested in the experimentally tractable yeast system,
they should be directly applicable to the study of the functional genomics of higher
organisms.
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10.1 INTRODUCTION TO SYSTEMS BIOTECHNOLOGY

Since the first genome sequence of amicroorganismwas finished in 1995, a number of
projects for sequencing microbial genomes have been completed [1]. Currently, the
complete sequences of more than 300 genomes are available in various databases [2].
Theprocessesof sequencingandannotatingmicrobialgenomeshavenowbecomemore
routine,which resulted in the continued introduction of complete genome sequences of
new microorganisms to the life science and biotechnology community. In addition,
breakthroughs in studying biological systems at transcriptomic, proteomic, and other
omic levels have enabled the researchers to generate and analyze high-throughput data
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for the better characterization of the organisms of interest [3]. Furthermore, computa-
tional (in silico) tools for modeling and simulation of biological systems on large or
genome scale have been developed and used for deciphering the characteristics of
metabolic, regulatory, and signaling networks [4].With such advances in experimental
and computational techniques,microorganisms can be systematically engineered to be
suitable for various industrial applications that fall into a new paradigm of research
called ‘‘systems biotechnology” [3].

Systems biotechnology aims at improving the biotechnological processes by sys-
tems-level optimization of cellular metabolism, regulations and signaling circuits, and
mid- to down-stream processes altogether [3]. Understanding basic genotype–pheno-
type relationship in an organism is important, but it is not sufficient to understand and
control the entire behavior of the organism. For this reason, high-throughput technolo-
gieshavebeen indispensable tools as theyallow theexpressionofgenes tobemonitored
on global scale at transcriptional and translational level. One of the high-throughput
techniques that has helped make this progress is transcriptomics, which allows the
analysis of mRNA expression levels of the entire genes using DNA microarray.
Proteomics allows analysis of the protein contents in an organism or a given sample.
Metabolomics and fluxomics, which quantitatively profile the metabolites and fluxes,
respectively, in the cell, also occupy an important portion of the omics research to carry
out systems biotechnology research. By combining all the information generated from
these omics disciplines, it will be possible to model an organism at the systems level
(although not complete yet) and perform a systematic analysis of large-scale data using
bioinformaticsforabetterunderstandingofhowthatsystemworksandhowitcanbebest
adjusted for our applications [5,6].

Analysisof the in silicometabolicnetworkcanbeusedasapowerfulapproachfor the
identificationof drug targets and targets for the improvement ofmicrobial performance
suitable for industrial applications suchasproductionofusefulmaterials [7–9]. In silico
model is a mathematical representation of the biological system in interest and allows
researchers to perform experiments on a computer to predict physiological behaviors
muchfasterandeconomicallythantheactualexperiments.Recently,variousapproaches
for the construction of reliable metabolic network model have been suggested [1,10].

In this chapter, we describe the recent developments and trends in systems biotech-
nology research based on the in silico genome-scale metabolic models. Various
strategies are described for the reconstruction of genome-scale metabolic network.
Thereafter,wewill review their applicationswith specific examples from themetabolic
engineeringperspectives.ReadersarerecommendedtoreadChapter7inparallel,which
presents the state-of-the-art reviewon building the constraints-basedmetabolicmodels
and their use in flux balance analysis (FBA).

10.2 DATABASES AND TOOLS FOR THE RECONSTRUCTION
OF METABOLIC NETWORKS

From the last decade, unprecedentedly large amounts of information have been
accumulated from experiments in genomics and other omics research projects.
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As a result, many different databases and related applications have been developed for
researchers to use to extract suitable information for the analysis of pathways and the
reconstruction of genome-scale metabolic networks. The databases and applications
commonly used for the systems biotechnology research are listed in Table 10-1. These
databases aremainly used for the retrieval and analysis of sequences, protein analysis,
functional annotation of genes and sequences, metabolic pathways, and other infor-
mation needed for the reconstruction of metabolic networks. Here we shall focus on
the effective construction and analysis of the in silico genome-scale metabolic
networks using the information present in the databases.

Databases such as DDBJ, EMBL, and NCBI Entrez contain information regarding
the DNA, RNA, and protein sequences and other related information [11–13]. Along
with these databases, the controlled vocabularies, such as Gene Ontology (GO), are
used for standardizing the results of genome annotations. Other databases contain
information on metabolic networks such as reactions and network maps, tools for
comparative analysis, and various information on enzymes, metabolites, and other
biomolecules. For example, the automatic annotation tools import raw genome
sequences and find proper open reading frames (ORFs) and gene candidates by
applying gene finding algorithms. The databases for protein profiles and motifs are
very helpful in enhancing the quality of genome annotation and in predicting the
detailed functions of proteins by taking advantage of the conserved domains found in
the proteins [14–16].

Reconstruction of metabolic pathways is mostly based on the information from
metabolic databases [17–21].Most of these databases provide graphical references or
metabolic maps for users to find the metabolic information such as gene names,
enzyme commission (EC) numbers, and reactions that are highly interlinked within
the frame of metabolic network. KEGG is one of the most widely used metabolic
resources and provides various data on the genomes, pathways, compounds, and
controlled vocabularies. The pathway maps supplied by KEGG can be used as a
backbone for the reconstruction of the networks. The BioSilico database integrates
components of heterogeneous metabolic databases such as LIGAND, ENZYME, and
BioCyc for easy querying and comparison of metabolic information present in
multiple databases [18].

10.3 IN SILICO MODELING AND SIMULATION OF GENOME-SCALE
METABOLIC NETWORK

The first step for the reconstruction of genome-scalemetabolicmodel is the analysis of
genome information in the databases. The availability of the annotation results from
the completely sequenced genomes for many organisms makes it possible to recon-
struct the in silicomodels on a genome scale. Thus, the automatic annotation process,
which uses the reference databases and relevant information to identify potential
ORFs, is the first step for the reconstruction of in silicometabolic model. However, as
many shortcomings become obvious in the reconstruction process [22], the automatic
annotation process appears to be insufficient and various complementary processes
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Table 10-1 Databases and tools useful for the reconstruction of genome-scale

metabolic network

Database Availability Brief Description

Resources of sequences and genomic information

DDBJ [11] http://www.ddbj.nig.ac.jp/ DNA Database of Japan
EMBL [12] http://www.ebi.ac.uk/embl/ Europe’s primary nucleotide

sequence resource
Entrez [13] http://www.ncbi.nlm.nih.gov/

sites/gquery
The integrated, text-based search
and retrieval system used at
NCBI

COG [30] http://www.ncbi.nlm.nih.gov/
COG/

Clusters of Orthologous Groups

Controlled vocabularies and ontology

GO [86] http://www.geneontology.org/ A controlled vocabulary to describe
gene and gene product attributes
in any organism

KO [20] http://www.genome.jp/kegg/ko.
html

KEGG Orthology

Protein sequences, motifs, and profiles

InterPro [14] http://www.ebi.ac.uk/interpro/ A database of protein families,
domains, and functional sites

PROSITE [16] http://www.expasy.org/prosite/ A database of protein families and
domains

Metabolic databases and tools

BioCyc [17] http://biocyc.org/ A collection of pathway/genome
databases

BioSilico [18] http://biosilico.kaist.ac.kr/ Integrated metabolic databases
BRENDA [19] http://www.brenda-enjymes.info/ The comprehensive enzyme infor-

mation system
KEGG [20] http://www.genome.ad.jp/kegg/ Kyoto Encyclopedia of Genes and

Genomes
Pathway tools [25] http://bioinformatics.ai.sri.com/

ptools/
A software system for pathway
analysis of genomes and for
creating Pathway/Genome
Databases (PGDBs)

PATIKA [21] http://www.patika.org/ Pathway Analysis Tools for
Integration and Knowledge
Acquisition

Gene annotation and comparative genomics tools

Glimmer [88] http://www.cbcb.umd.edu/soft-
ware/glimmer/

A system for finding genes in
microbial DNA, especially the
genomes of bacteria and
archaea.
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are required for the validation of the constructed metabolic models. Recently devel-
oped genome-scale in silico metabolic models are listed in Table 10-2.

10.3.1 Reconstruction Using the Known Pathways and Enzymes

The common method for the reconstruction of genome-scale metabolic network has
been the utilization of information obtained from the previously constructed bio-
chemical pathways, related sequences, and proteins [1,10,23]. Such information is
mostly derived from the sequence-based search. The major advantage of metabolic
reconstruction using the sequence-based comparison is that proper function of the
genes can be quickly assigned. However, the presence of multiple relationships
between genes and metabolic reactions can cause an erroneous assignment of genes
on the metabolic map [9]. For example, imprecise annotations may occur for the
homologues within the metabolic network, which hampers the accurate assignment
of specific metabolic functions to the ORFs. Therefore, advanced curating methods
have been introduced to eliminate the limitation of sequence-based annotation
method [10].

Currently, a number of databases and tools have been developed for systems
biotechnology research. Among them, several resources have been developed to
represent the biochemical reactions and pathways on a two-dimensional space.
Representative resources are KEGG [20] and BioCyc [17,24]. These are the most
easily accessible and widely used databases on genes, enzymes, metabolites, and
biochemical reactions. In addition to these tools, numerous databases and tools for the
analysis of metabolic pathways have been released (Table 10-1). The utilization of
these resources helps to gather the information on biochemical reactions and their
location on themetabolicmap. For example, the PathoLogic software, part of Pathway
Tools that also contains MetaCyc database, automatically reconstructs the metabolic
pathways of any organism only if the annotation file is available as an input [25]. The
core algorithm in this process is that the softwarematches the enzyme in the annotation
file (input file) to the ones defined in theMetaCyc database by EC number or enzyme
name. Then, the software graphically displays the metabolic pathways and the
associated components including reactions, enzymes, substrates, and products.
The initial version of the automatically reconstructed metabolic network can be
used as a basic framework and can be upgraded by manual curation.

Table 10-1 (Continued)

Database Availability Brief Description

ERGO [90] http://ergo.integratedgenomics.
com/

Accommodation of data integra-
tion, providing the tools to sup-
port comparative analysis of
genomes

STRING [35] http://string.embl.de/ Search tool for the retrieval of in-
teracting genes/proteins
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10.3.2 Reconstruction Using Controlled Vocabulary

The interactions among the molecules in the metabolic and regulatory networks are
known to be highly complex and incompletely understood [21]. To understand this,
abstractions on different levels are used to analyze the cellular processes more
effectively and to deal with the complex network structure more easily. The abstrac-
tions can be utilized to construct and analyze the graphical representation ofmetabolic
pathways [26].

Ontologies for the standardization of the vocabularies were used for the automatic
annotation analyses in many projects. The sequence similarity can be directly related
to the potential protein functions by utilizing the ontology [27]. However, the
limitation of gene ontology is that it cannot be directly connected to cellular
metabolism. This is compensated by the application of metabolism-based orthology
concept such as KEGG orthology to the annotation process [28]. When the proper
KEGG orthology term can be assigned to a gene, the associated metabolic pathways
can be found by tracing back the hierarchical structure of KEGG orthology [28].

10.3.3 Completion of Reconstruction Using Phylogenetic
Profiles and Contexts

Astheamountofsequencedataincreasesexplosively, thenoiseinthedataalsoincreases;
accumulation of incomplete and/or wrong sequences causes obvious problems during
bioinformatic analyses [29].Annotation and analysis based only on these resources can
generate wrong results and result in incorrect interpretations. This limitation can be
overcome by employing controlled vocabulary and large-scale phylogenetic trees.
Bacteria share many functional components with a high degree of conservation in the
components. Asmentioned in Section 10.3.1, Clusters of OrthologousGroups (COGs)
use the grouping of previously annotated genes based on the sequence homology [30].
There are many ways to construct phylogenetic trees [29,31]. Different from the
sequence-based analysis, the genome-scale phylogenetic profiles use various compo-
nents of the genome such as the metabolic profiles and the distribution of gene
contents [32]. Especially, the highly conserved components such as transporters and
proteins involvedinsignalingandcarbonsourceutilizationcanbeusedtofindtheproper
orthologousgenes [33,34].Themolecular interactions andnetwork canbe identifiedby
using databases for protein–protein interaction and metabolic context such as
STRING [35]. Similar to STRING, the SEED genome annotation system is based
on the fundamental principle that the value of genome analysis increases with the
number of genomes available as a context for comparative analysis [36].

Various bioinformatic methods, such as genome context analysis that includes
chromosomal gene clustering, protein fusions, occurrence profiles, and shared regula-
torysites,canbeemployedtoobtainfurtherinformation[37].Forexample,adraftinsilico
metabolicmodelofLactobacillusplantarum showed that succinyl-CoA is involved in a
reactionrelated tomethioninebiosynthesis.However,after thephylogeneticstudiesand
pathwayanalysisof theL.plantarummetabolicnetwork, itwasconcluded thatsuccinyl-
CoAisnotproducedduetotheoperationofabranchedtricarboxylicacid(TCA)cycleand
that the actual substrate is most likely acetyl-CoA [38].
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In addition to thesemethods, several integratedprogramshavebeendeveloped.The
recent version of PathoLogic provides the function called ‘‘Pathway Hole Filler,”
which employs genome context analysis to fill in missing genes using the candidate
sequences from the database, and subsequently a Bayes classifier to evaluate the
probability of how likely the candidatehas thedesired function for themissinggenes in
the newly reconstructed metabolic network [39].

10.3.4 Completion of Reconstruction Using the Information
from Various Sources

When the metabolic network reconstruction is complete, it should be able to describe
and predict various phenotypic characteristics of the organism reasonably well under
different genotypic and environmental conditions. However, somemetabolic data are
missing, inconsistent and insufficient to fully represent the physiology of a particular
organism. In particular, reaction reversibility, substrate specificity, isoenzyme func-
tions, cofactor specificity, and absence of certain pathways can make reconstruction
process difficult.

Updated and new knowledge on themetabolic pathways and their components can
be obtained by a thorough examination of literature. For example, the initial
reconstruction of metabolic model of Streptomyces coelicolor A3(2) suggested
that valine dehydrogenase (E.C. 1.4.1.8) is an NADP-dependent enzyme.
However, after thorough examination of literature, it was found to use NAD as the
preferred cofactor [22,40]. In the case of Staphylococcus aureus N315, literature
indicates that acetate can be transported by acetate permease [41]. This transport
reaction was then added to the reconstruction model to allow proper representation of
observed physiological behavior in vivo [42].

When all the possible inconsistencies are considered, the reconstructed model
should be validated and tested to see whether mathematical methods, such as convex
analysis and linear programming, can effectively represent the physiology of the
organism under the various genetic and environmental conditions. If the results
reasonably represent what are observed in actual experiments, the reconstruction
of genome-scalemetabolicmodel is said to bedone.However, it shouldbe emphasized
that metabolic reconstruction is not truly complete but has to be upgraded
continuously as new information and knowledge on metabolic pathways and their
participating components are discovered.

10.3.5 Simulation of Genome-Scale In Silico Metabolic Network

Once the genome-scale metabolic network is constructed from the genomic and other
related information, computer-based experiments such as quantitative flux analysis,
network topology analysis, and simulation can be performed to characterize the
metabolic network under various conditions. There are twomain strategies of quantita-
tive in silico simulation of metabolic systems: static analysis and dynamic analysis.

Metabolic flux analysis (MFA), which utilizes stoichiometric matrices, has been
employed for the large-scale analyses of metabolism (see Box 10-1). MFA calculates
the intracellular fluxdistributionwithanassumptionofsteady-stateconditionanddoes
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BOX 10-1 VARIOUS MODELING APPROACHES

Metabolic Flux Analysis

MFA is a mathematical analysis of metabolic pathways in which metabolic fluxes
are calculated by constructing a stoichiometricmodel of the biochemical reactions
along with mass balances on intracellular metabolites [85]. Given a metabolic
system, the mass conservation around metabolites can be expressed as

dc

dt
¼ S  v�b

where c is the concentration vector of metabolites, S is the m� n stoichiometric
matrix inwhichm is thenumberofmetabolites andn is thenumberof reactions, and
v is the n-dimensional vector of intracellular fluxes. b is the concentrationvector of
metabolites that are diluted owing to biomass growth.Assuming the pseudo-steady
or stationary state based on rapid turnover of most metabolites and dilution effects
that are relatively small compared with the fluxes, we can simplify the kinetic
model into a static representation. Unlike the dynamic approach, static model only
considers the network’s connectivity and capacity as time-invariant properties of
the metabolic system.

S  v ¼ 0

The metabolic network can be classified as determined, overdetermined, and
underdetermined systems if the degrees of freedomare zero, negative, andpositive,
respectively.

Different approaches are undertaken depending on the degree of freedom of the
system. In general, two general methodologies of MFA have been practiced most
widely: isotopomer balance analysis and flux balance analysis. The notable
difference between these two methods is that the former is usually employed for
overdetermined systemwhereas the latter is applicable to underdetermined system.
For isotopomer balance analysis, 13C carbon labeling measurements produce the
flux data that can help solve the overdetermined system; it has been shown that the
combination of information gathered from such isotopomer measurements using
NMR and GC/MS and metabolite balancing enabled refined analysis of the
metabolic fluxes. However, it should be mentioned that isotopomer analysis has
so far been used for the analysis of small-scale metabolic networks because of the
complicatedmathematical formulation and limited availability of parameters. FBA
allows determination of intracellular fluxes even for a large underdetermined
system through linear optimization. Even though the accuracy of FBA can be
thought asnot as good as that achievablewith isotopomer analysis, it generallygives
satisfactory flux distribution under various genotypic and environmental condi-
tions.Many successful examples are available in the literature, which report the use
of FBA in various applications (see the text and Chapter 7).
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Minimization of Metabolic Adjustment

MOMA [69] is based on the same constraints as the FBA. However, quadratic
programming (QP) is used insteadof linear programming to formalize theMOMA.
The goal is tominimize the Euclidian distance from awild-type flux distribution as
follows:

Minimize ðv�wÞTðv�wÞ
Subject to S  v ¼ 0; vmin � v � vmax

vj ¼ 0; j 2 R

where w is the wild-type flux distribution and R is a set of reactions related to the
deleted genes.

Regulatory On/Off Minimization

ROOM [70] is based on the same constraints as FBA. The goal is to minimize the
number of significant flux changes. A range ½wl ;wu
 around the vectorw is defined
for nonsignificant flux change. Themixed integer linear programming (MILP) can
be formulated as

Minimize
Xm
i¼1

yi

Subject to S  v ¼ 0

v�yðvmax�wuÞ � wu

v�yðvmin�wlÞ � wl

vj ¼ 0; j 2 R; yi 2 f0; 1g
wu ¼ wþ djwj þ e;wl ¼ w�djwj�e

where, for each flux i, 1� i�m, yi¼ 1 for a significant flux change invi, and yi¼ 0
otherwise.

Optknock

The bilevel optimization framework, OptKnock, was introduced to propose
reactions to be eliminated from the E. coli network for maximizing the
production of simple compounds such as succinate, lactate, and 1,3-propane-
diol [71]. This is accomplished by calculating solutions that simultaneously
optimize two objective functions, biomass formation and secretion of a target
biochemical. This bilevel optimization algorithm is based on the fact that the
overproduction of target biochemical can be achieved by altering the structure of
the metabolic network through gene deletion such that the stoichiometry of the
perturbed network forces production of the target metabolite while normal
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biomass precursors are generated.

Maximize vbiochemicalðover yjÞ
Maximize vbiomassðover vjÞ

subject to
XM
j¼1

Sijvj ¼ 0; 8i 2 N

vpts þ vglk ¼ vglucose uptake

vATP � vATP maintenance

vbiomass � v
target
biomass

vmin
j yj � vj � vmax

j yj; 8j 2 MX
j¼M

ð1�yjÞ � K

yj 2 f0; 1g; 8j 2 M

u

where Sij is the coefficient of metabolite i in reaction j, biomass formation is
quantified as an aggregate reaction flux, vbiomass, draining biomass components in
their appropriate biological ratios, and vATPmaintenance is the non-growth-associated
minimum ATP requirement. The uptake rate of glucose vglucose_uptake is fixed and
encompasses both the phosphotransferase system, vpts, and glucokinase reaction,
vglk.K is the number of allowable reactions to be eliminated. Binary variable, yj, is
one if a particular reaction is active, and zero otherwise. An active reaction has an
upper bound, vmax

j , and a lower bound, vmin
j , obtained by maximizing and

minimizing each flux subject to the constraints.

not require rate equations and kinetic parameters. The result is a fluxmap showing the
distribution of anabolic and catabolic fluxeswithin themetabolic network.Among the
various applicationsofMFA, twogeneralonesareas follows.The first application field
is to characterize the cell’s physiology undergenetic and environmental perturbations.
MFA has been used to characterize the effects of acute metabolic perturbation,
especially, gene deletion in the organism. Itwas also performed under the combination
of rich and minimal media and aerobic and anaerobic conditions to predict which
reactions are essential for thegrowthof theorganismunder these conditions [4,42–46].
The secondapplication field is to improve theproductionofvariousproducts including
commodity chemicals by overexpression/deletion of key metabolic pathways that
already exist in the host organism or by introducing new routes of metabolism.
Of course, MFA is used to identify the candidate target genes to be manipulated.

TheMFA solution provides a snapshot of a certain pathway in a defined state, but is
insufficient to predict the dynamic behavior of metabolism. Recently, this approach
was extended to allow the prediction of dynamic behavior. Dynamic simulation of
genome-scale network model can be performed using the differential equations
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Figure 10-1 Concepts of dynamic flux balance analysis (a) and hybrid dynamic/static simulation

(b). Fluxes represented by dashed arrows are given by kinetic equations.

representing thedynamicmassbalances incorporating the reaction rate equations [47].
Oneof themajordifficulties in thedynamic simulationofmetabolicnetwork is the lack
ofaccuratekinetic equationsandparameters for the reactions in themetabolicnetwork.
The parameters also tend to vary as the environmental conditions change. Therefore,
the dynamic simulation of large-scale network requires many assumptions and is
generally restricted to the small-scale networkmodel. However, much effort has been
devoted tosolvethisproblem;astaticsimulationmethodwascombinedwithadynamic
method,which is called dynamic flux balance analysis (DFBA) [48]. Thismethodwas
developed to incorporate extracellular metabolite dynamics and substrate uptake
kinetics within the flux balance analysis for extracellular glucose, acetate, and liquid-
and gas-phase oxygen. Simple Michaelis–Menten kinetics and mass transfer kinetics
are used tomodel theglucose uptake rate, oxygen uptake rate, and the acetate secretion
rate (Fig. 10-1).When applied to the analysis of diauxic growth ofEscherichia coli on
glucose [48], the results from DFBAwere qualitatively similar to the experimental
observations. Yugi et al. [47] improved theDFBAmethod by introducing the dynamic
methods (kinetics) to the rate-limiting steps of the metabolic reactions and the static
methods (FBA) to the remaining reactions. In this method, the reactions expressed in
the form of the static model require no prior information about kinetic equations and
parameters or about the initial concentrations of metabolites (Fig. 10-1). This method
was successfully used for the simulation of the erythrocyte model [47].

The hybrid method reduced the cost for the development of large-scale in silico
models aswell as the number of experiments for the identification of kinetic properties
for dynamic simulation.

There are several software programs available for performing analyses and
simulations of genome-scale in silico metabolic network. MetaFluxNet is a software
package for the modeling and simulation of metabolic reaction networks focusing on
MFA [49,50] (Table 10-3). It also provides the management of metabolic information
and supports the systems biology markup language (SBML) and the metabolic flux
analysis markup language (MFAML) [50] for the exchange of metabolic models.
Simpheny (Genomatica, San Diego, CA) is a commercial software program for the
construction and simulation of in silico genome-scale metabolic models [51].
Simpheny allows construction of in silico cells from their molecular components
and simulation of the complete biochemical reaction network of a cell. Simpheny can
be used for the prediction of various phenotypic characteristics based on FBA.General
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Pathway Simulator (GEPASI) has been widely used for the dynamic simulation and
metabolic control analysis (MCA) of the metabolic network [52]. GEPASI contains
several predefined kinetic models for the easy construction of dynamic simulation
model. TheComplex PathwaySimulator (COPASI) is an application for the simulation
and analysis of biological networks [53]. It was developed based on the dynamic
simulation tool, GEPASI. COPASI provides various tools including model generator,
stochastic simulation tool, metabolic control analysis, and elementary mode analysis.
It also supports the SBML format for the effective description of parameters of the
kinetic equations. BioSPICE is an integrated system of the systems biologyworkbench
(SBW) that allows the sharing of computational codes invarious tools. It can be used to
developmetabolic and geneticmodels using the common software framework [54,55].

10.4 ITERATIVE IN SILICO MODEL DEVELOPMENT

Since the in silicometabolic network cannot truly represent the real cell, it needs to be
improved by iterative process. This process involves creating the metabolic network
model, obtaining experimental data, comparing the predicted outcomes with experi-
mental data, and resolving inconsistencies in the results to update the model.
Hypotheses based on the results of in silico analysis can be tested by experiments,
fromwhich themodel can be updated and improved based on the experimental results.

Table 10-3 Useful softwares for the analyses of genome-scale

in silico metabolic network

Application Web Site Address Reference Note (Usability)

MetaFluxNet http://mbel.kaist.ac.kr/lab/mfn/ [49,50] MetaFluxNet is a powerful
software package for the in
silicomodeling and simulation
of metabolic network using
metabolic flux analysis. It
supports for the generation and
management of metabolic
model using MFAML

GEPASI http://www.gepasi.org/ [52] GEPASI is a dynamic modeling
software to construct and
optimize network models with
kinetic parameters

COPASI http://www.copasi.org [53] COPASI provides tools for met-
abolic model generation, time
course simulation, and meta-
bolic control analysis. COPASI
improved the GEPASI

BioSPICE http://biospice.sourceforge.net/ [54,55] BioSPICE provides an integra-
tion framework/workbench to
integrate various tools
according to their purpose
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Both biochemical and genetic engineering experiments as well as computational tests
are parts of the iterative process. As additional data for an organism become available,
such as gene expression data and metabolic profiles, new biological information will
be discovered to further refine and improve the in silico model.

In silico microbial models have been found to correctly predict experimentally
observedbehaviorsofmicrobes invitro70–80percentof the time[43,56,57].Despite the
relatively good agreement between the model predictions and actual experimental
results, it is the 20 percent ‘‘failure” rate that is of most interest to us. These in silico
‘‘failures” point to areas of the model in which current knowledge on the organism is
lacking (such as unknown pathways in the reconstruction, unaccounted-for regulatory
interactions, etc.). These gaps in information must be filled in through new biological
discovery.Itisthroughtheiterativeprocessofmodelconstruction,testing,validation,and
revision that new information on the organismcan bediscovered for filling in thosegaps
thatwill refine and improve the in silicomodel of theorganism.By this iterative process,
the most comprehensive and predictive in silico model of the organism can be built.

The current strategy for this process is to involve both experiments and the
mathematical modeling/simulation in a feedback and iterative fashion (Fig. 10-2).
The feedback approach is based on the prediction of genetic and metabolic modifica-
tions that can be compared with the experimental results, leading to a more rational
strategy for the reconstruction of in silicomodel. Palsson et al. [58] showed that FBA
could be used to predictwhat the eventual effects of geneticmodificationswould be on
the global host cell physiology. The ability of a constraints-based model of E. coli
describing genetic modifications was examined by subjecting them to adaptive
evolution under different growth conditions.

Lee et al. [59] used this iterative approach by integrating genome and fluxome
information in the characterization of a relatively less studied bacteriumMannheimia
succiniciproducens. The genome was used to construct the genome-scale in silico
metabolic map ofM. succiniciproducens, and flux analysis was used to calculate the
succinic acid yields and flux distributions under various conditions. It was found from
the genome-scale flux analysis that carboxylation of phosphoenolpyruvate to oxalo-
acetate byPEPcarboxykinase is themost important anaplerotic pathway leading to the
efficient production of succinic acid by the reductive tricarboxylic acid cycle and
menaquinone system [59]. In this iterative process, the proteome reference map of
M. succiniciproducenswas established by 2-DEcoupledwithmass spectrometry [60],
and the results obtained were used to fine-tune the in silicometabolic network. The in
silicometabolic network thus improvedcanbeused todesignnewexperiments for flux
profiling and consequently for characterizing the metabolic characteristics under
various environmental conditions.

10.5 METABOLIC ENGINEERING BASED ON THE IN SILICO MODEL
FOR THE ENHANCED PRODUCTION OF VARIOUS BIOPRODUCTS

After the valid model is constructed, many in silico experiments can be carried out to
quantify flux distributions under the numerous conditions of interest. These in silico
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experiments make it possible to decipher the metabolic and physiological changes of
the cells under various genetic and/or environmental conditions, and consequently
establish a more rational metabolic engineering strategy to achieve desired goals.
Furthermore, plausible targets for genetic modifications can be identified to improve
the strain’s performance through the comparative study of responses observed under
various genetic and environmental perturbations (Fig. 10-3).

Currently, there are a large number ofmicroorganisms that are used industrially for
the production of bioproducts.Although thesemicroorganisms do produce the desired

Figure 10-2 Flow chart for identifying gene targets by combining computational modeling/

simulation and high-throughput experimental analyses. The outcomes of these analyses evolve

during the iterations to allow identification of new gene targets.
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bioproducts, theydonot naturally produce them to the concentrations andproductivity
high enough for commercialization. Additionally, the biological networks of micro-
organisms are robust enough to resist many changes introduced to them. Therefore,
many combinatorial experiments including genetic manipulations (gene amplifica-
tion and knockout), regulatory modification, and cultivation experiments need to be
carried out to understand themetabolic characteristics and improve the phenotype to a
desired level good enough for industrial applications. Here, in silico metabolic
modeling and simulation can be used to overcome the impossibility of carrying
out these many combinatorial experiments.

In silico organisms have been constructed to generate more knowledge about the
cell and tackle the aforementioned problems.E. coli, themost well known andwidely
used bacterium, has been used for the production of a wide variety of bioproducts
ranging fromprimaryand secondarymetabolites tobiopolymers [61–64].The in silico
E. colimetabolic networkhas been expanded to contain up to2077 reactionswith 1039
metabolites [65].However, baker’s yeast,Saccharomyces cerevisiae, has beenamodel
organism for understanding cellular physiology and compartmentalized intracellular
biochemical behavior of a eukaryotic cell. Genome-based yeast model has the
biochemical network of 1446 biochemical reactions and 1013 metabolites covering
cytosolic and mitochondrial and transport reactions [44].

Obviously, genemanipulation is avery essential tool for strain improvement for the
production of industrially valuable bioproducts.However, it is not possible to try every
possible combination of gene targets as it is very time consumingand laborious. This is
where FBA comes into play. FBA has most widely been exploited to quantitatively
analyze the metabolic system thanks to its capability to predict the phenotypic
behavior under various genetic and/or environmental conditions, and its applicability
to genome-scale metabolic models [66,67]. Herein, strategies for the identification of
gene knockout and addition targets as well as the combinatorial deletion, amplifica-
tion, and regulation are described.

10.5.1 Identifying Gene Knockout and Addition Targets

Identifying the target genes for metabolic engineering to enhance the production of
certain products is not always easy because of the large number of genes to be
considered in theorganism.Also, there is noguarantee that the identified singleor even
multiple target genes will enhance the production of the desired product due to the
robustness of the biological network against changes to be made. At the initial stage,
the potential target genes can be found through comparative analysis. The main
obstacle to obtaining a rational solution to the problem of introducing genetic
modifications is the lack of a reliable, global, metabolic model that captures stoichio-
metric, kinetic, and regulatory effects of the modifications onmetabolite interconver-
sions and metabolic flux distributions through the cellular reaction network. As a
result, strain improvement has conventionally been achieved by random approaches
whereby the target genes to be knocked out or amplified were intuitively selected
rather than systematically. Consequently, the unexpected outcomes were often
obtained. However, the genome-scale in silico metabolic model has changed a
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paradigm by enabling systemic approaches for strain improvement. Such genome-
scale model has been simulated by means of linear optimization with a particular
objective function such as maximization of cellular growth rate or production rate of
certain metabolite of industrial value. Although the optimal value obtained by linear
programming does not exactly describe the actual state of the cellular physiology, this
methodology is still worthy to consider as it provides an overall picture of the cell
metabolism, particularly carbon and energy distribution.

Ramanetal.[68]employedFBAtosearchdrugtargetsfromthemycolicacidpathway
ofMycobacteriumtuberculosis,animportanthumanpathogen.Mycolicacidconstitutes
the protective layer of this pathogen, and the inhibition of its biosynthesis has been the
drugtargetduetoitsessentiality incellgrowth,survival,andpathogenicity.Basedonthis
biochemical background, a comprehensivemodel ofmycolic acid biosynthetic system
wasbuilt,andFBAwasperformedtoidentifyessentialgenesbysystematicallyknocking
out the genes. Those genes that, when knocked out, resulted in a zero value for the
objective function, the maximization of mycolic acid production in this case, were
considered as drug targets as the pathogens cannot survive without mycolic acids.
Candidatedrug targetswere further screenedbyhomologysearchof thesegenesagainst
the human genome to ensure that the host system does not possess the similar genes,
whichmaybeunexpectedly targetedbythedrug, leadingtoadverseeffects.This studyis
aniceexampleofhow in silicoanalysescanbeapplied to thedrugdevelopmentprocess.

Since FBA does not account for the physiological changes caused by genotypic
mutation, the simulation results may deviate from the experimental data. This has led
to the development of a new algorithm called minimization of metabolic adjustment
(MOMA) (see Box 10-1). This method attempts to determine more realistic flux
distributions in knockoutmutants byminimizing the changes in the flux distribution of
the mutant with respect to thewild type instead of maximizing the biomass formation
in the mutant [69]. This method takes into account that the mutant strain is not
optimized for theproductionofmetabolites because it has not had achance to fine-tune
its newmetabolic network through evolution. This framework can be used to identify
target genes to be knocked out to present a phenotype that is closest to the wild type
(Fig. 10-4). It was found that this suboptimal profile actually lies between the wild-
type and the mutant optimals. In one study using MOMA, in silico single- and
multiple-gene knockout experiments were performed to systematically identify the
gene targets and, ultimately, increase the lycopeneyield [61].This strategy can beused
to guide the choice of gene knockout targets. This method yielded a triple knockout
mutant that produced less than 40 percent more lycopene compared with an en-
gineered overproducing E. coli strain. This study demonstrates the value of system
optimization using MOMA for the strain improvement.

Another method that is similar to MOMA is the regulatory on/off minimization
(ROOM)method (see Box 10-1).MOMA is based on theminimization of the changes
in themetabolic fluxes in themutant strain from thewild type.Theremaybeoneor two
fluxes that require huge changes to compensate for the effects themutation puts on the
system. ROOM, however, minimizes all the fluxes with respect to the wild type
regardless of anyother factors. Thismethod is based on the assumption that the system
chooses tominimize its adaptation cost through regulationof the fluxes tomaintain the
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wild-type stoichiometric and thermodynamic constraints. While both methods do not
maximize biomass for the mutant strain, ROOM, by constraining the fluxes to ‘‘run in
parallel” to the wild type, implicitly gives results under the maximum growth rates.
ROOMwas found to give similar or better prediction compared with FBA orMOMA
in knockout experiments eight out of nine times [70].

The OptKnock method is another approach of identifying the knockout targets.
This method identifies genes to be knocked out for bioproduct overproduction while
considering the cell’s needs as well (Fig. 10-4) (see Box 10-1). This approach was
applied to lactate production in E. coli under anaerobic conditions where lactate
production was maximized as an objective function in addition to the biomass
objective function. This resulted in a coupling of lactate productionwith the formation
ofbiomass [71].TheOptKnockmethodwasalso employedby the same researchgroup

Figure 10-4 Graphical representation of the principles of MOMA and OptKnock. MOMA utilizes

quadratic programming to find a metabolic state, in which artificially generated mutants try to

minimize the redistribution of intracellular fluxescompared to the optimal flux distribution ofwild type.

Consequently, MOMA identifies a suboptimal metabolic state of the mutant that lies somewhere

between the optimal state of themutant and wild type in the altered solution space. This approach is

based on the assumption that artificially generatedmutant cannot immediately redistribute its fluxes

toward theoptimal growth ratesince it hasnot undergoneevolutionarypressure for anenoughperiod

of time as wild type had. OptKnock is a framework that suggests gene(s) to be knocked out for the

enhanced production of bioproducts by considering both cell growth rate and objective metabolite

production rate.Thisapproachonlyconsiders theoptimalproductionrateof thestrainwhosebiomass

formation rate is greater than the predetermined cutoff line. As a result, it will suggest a mutant

genotype that allows faster growth only when it simultaneously produces ametabolite at faster rate.
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to optimize the production of amino acids. Additional constraints, such as ammonia
and oxygen transport by the cell, were introduced to eliminate alternative solutions.
TheOptKnockmethod is especially well suited for the study of amino acid production
system because the metabolic reactions for amino acid production are highly
regulated. Although OptKnock does not consider regulatory networks, it is satisfac-
torily acceptable because it considers the global effects of any changes made. It is
because of this global consideration on the cell that less intuitive strategies need to be
formulated by using this method [72]. In the production of amino acids, OptKnock
suggested a number of knockout strategies that could enhance the production of
various amino acids. The results of the study showed an increase in the amino acid
production compared to the current strains used in industry. For example, an alanine
yield of 91.5 percent from glucose could be achieved, which is much higher than that
(45–55 percent) currently achieved in industry [73].

Lee et al. [74] compared the metabolism ofM. succiniciproducens, a succinic acid
overproducer, with that of E. coli to engineer an E. coli strain to overproduce succinic
acid (Fig. 10-5). Several candidate genes for deletion were identified in E. coli. From

Figure 10-5 Comparison of the central metabolic pathways related to succinic acid formation

in M. succiniciproducens and E. coli. Underlined genes represent those present only in

M. succiniciproducens while those in boldface represent genes only present in E. coli.
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this comparative genome analysis and using flux analysis to reverse engineer the
metabolic network, succinic acid overproduction by E. coli could be achieved. During
this process, our understanding on the general fermentative metabolic pathways in
E. coli could be broadened. The fluxes to pyruvate and other acids were found to be the
knockout targets for redirecting metabolic pathways toward enhanced succinic acid
production.This exampleshows theeffectivenessofcombiningcomparativegenomics,
metabolic fluxprediction, geneknockout, and fermentation toward straindevelopment.

In contrast to gene knockout, FBA has also been used to identify genes to be
amplified for enhanced metabolite production. FBA on poly(3-hydroxybutyrate)
(PHB) producing E. coli predicted that the Entner–Doudoroff (ED) pathway, which
was known to be inactive under normal culture conditions, was active during the
production of PHB from glucose [64] (Fig. 10-6). This prediction was validated by
actual experiments with a mutant E. coli strain defective in the activity of 2-keto-
3-deoxy-6-phosphogluconate aldolase (Eda), a key enzyme in the ED pathway. Low
PHB accumulation in the eda mutant strain compared to its parent strain could be
restored when the eda gene was overexpressed in the eda mutant E. coli strain [64].
Also, the overexpression of the target genes (fba and tpiA) identified by FBA allowed
enhancedproductionofPHB[75].Therefore,MFAallowsnotonly theknockout targets
but also amplification targets to achieve enhanced metabolite production.

10.5.2 Combining the Deletion, Amplification, and Regulation
of the Target Genes

The in silico genome-scale metabolic model can be used to further enhance the
production of useful materials by combining the strategies of gene deletion, amplifi-
cation, and regulation. Bro et al. [76] employed the genome-scale in silicomodel for
the metabolic engineering of S. cerevisiae to improve the ethanol production. To
increase the ethanol yield and reduce the yield of glycerol, an unnecessary by-product,
a number of strategies were simulated using the previously reconstructed genome-
scalemodel ofS. cerevisiae [77].Before theyactuallyperform the simulationswith the
model, a few modifications were made to the model including incorporation of the
necessary reactions. For example, those reactions catalyzed by xylose reductase and
xylitol dehydrogenase for xylosemetabolismwere added to reflect actual experimen-
tal conditions asmicroorganismswere cultivatedon themixture of glucose andxylose.
They then performed a gene insertion analysis by adding reactions one at a time froma
pool of 3800 biochemical reactions that are derived from the LIGAND database [23].
The results of simulation by linear programming were scored based on the improve-
ment of growth and ethanol yield and decreased glycerol yield. Consequently, the
best-scored strategy, which predicted to improve the ethanol yield by 10 percent, but
completely block the glycerol formation, was chosen for the actual experiment.
According to the suggested strategy, they constructed a S. cerevisiae mutant, in
which NADP-dependent glyceraldehydes-3-phosphate dehydrogenase (GAPN) was
overexpressed, and achieved a 40 percent reduced glycerol yield with 3 percent
increase in ethanol yieldwithout affecting the specific growth rate. In a later study, the
increased ethanol yield was also achieved with a GAPN expressing strain containing
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xylose reductase and xylitol dehydrogenase, cultured on the mixture of glucose and
xylose. This study is another good example of genome-scale in silico model for the
hypothesis-drivenmetabolic engineering capable of predicting various strategieswith
acceptable accuracies. Moreover, it provides deeper insight into the metabolic
characteristics because it shows how cofactors are linkedwith one another in different
parts of the metabolic network. All benefits would lead to the more efficient way of a
desired strain development.

Figure 10-6 Metabolic network of E. coli for the production of PHB. The ED and PHB producing

pathwaysare indicatedwith thick arrows. TheEDpathwayhadbeenknown to be inactive under the

normal growth of E. coli using glucose as a carbon source. However, the simulation results of

the E. colimodel by FBA showed that the ED pathway is active. Consequently, overexpression of

the corresponding enzyme, 2-keto-3-deoxy-6-phosphogluconate aldolase, in E. coli led to the

improved production yield of PHB, and thus validated the simulation results of FBA.
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Random mutagenesis, such as transposon mutagenesis and overexpression librar-
ies, takes opposite approach to the systematical in silico analysis by randomlymutating
the host organism and, thereby, producing a wide range of mutants. Since a large
number of mutants must be screened for their improved phenotypes, smart screening
system is essential. This approach is particularly beneficial and complementary to the
in silico analysis because it can createmutants that cannot be predictedwith the current
techniques [78]. When coupled with global in silico metabolic analysis, this method
becomes powerful for identifying targets for strain improvement [61]. Furthermore, it
allows the dissection of critical subnetworkswithin the cell and a deeper understanding
of that network, such as regulatory networks. By investigating how product formation
correlates with these regulatory networks, putative molecular interactions may be
inferred and examined in subsequent perturbations.

The metabolism of a living organism is controlled by not only mass balances but
also various regulatory mechanisms such as transcriptional, translational, and allo-
steric regulations. By the incorporation of regulatory mechanisms, conditional
activation and inactivation of metabolic networks can be mimicked, and optimal
metabolic distributions can be obtained for different environmental conditions. So far,
this has been achieved by incorporating transcriptional regulation into anE. coliMFA
model based on Boolean logic [79–81]. With the inclusion of the transcriptional
regulatory mechanisms, the accuracy of the MFA results increased to match experi-
mental data better. Although this Boolean rule has been successfully combined with
stoichiometric analysis, there is an inherent limitation in this method as the gene
expression is somewhat stochastic and is not distinctive on-and-off type phenomenon
in the real biological system [82,83]. In this context, probabilistic graphical models
have been employed to model such regulatory networks, but its integration with a
genome-scale metabolic model remains to be an open problem [83,84].

10.6 CONCLUSIONS AND FUTURE PROSPECTS

In this chapter,wehavedescribed theprocesses for the reconstructionof genome-scale
in silico metabolic network using the genomic information and the applications of
these models. These genome-scale metabolic networks are being applied to various
fields.When combinedwithmetabolic engineering, the genome-scale network can be
utilizedas a fundamental platform to identifykey steps of bioproduct productionunder
different conditions.

However, the construction of the metabolic network is by no means complete.
Limitations on the network from the insufficient knowledge on the genetic character-
istics of the genome create missing information such as gaps in the network. To
complement the incompleteness of the model, experimental data should be suffi-
ciently supported. In the post genomic era, the high-throughput omics technologies
including transcriptomics, proteomics, fluxomics using 13C-labeling flux analysis,
and metabolomics can be efficiently used to validate the genome-scale model at least
in a qualitative manner. For instance, simulation results (fluxes of biochemical
reactions) of a genome-scale model can be compared with the transcriptome data
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to confirmwhether the correspondinggenes are expressed in the transcriptomeprofile.
Likewise, proteome and metabolome profiles can be compared with the simulation
results and used to generate further constraints. At present, these constraints are rather
on-and-off type (e.g., the flux is set to be zero if there is no transcription of the gene
encoding the enzyme carrying out that reaction). It is expected that an efficient
algorithm will be developed for integrating the changing levels of various omics data
in a quantitativemanner duringMFA. Such upgrade ofmodeling and simulation based
on the integrationofomicsdatawill reveal themetabolic and regulatory characteristics
more realistically and help designing strategies for the future experiments aiming at
strain improvement.Eventually, all these effortswill lead to the development of virtual
cell factory that can be used to tailor-design strains that are capable of producing
various useful materials for human life.
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11.1 HISTORY AND PERSPECTIVES OF SYNTHETIC BIOLOGY

Thefieldofsyntheticbiologyhas recently received tremendousattention.Nevertheless,
to most researchers it remains somewhat elusivewhat synthetic biology really is. Is it a
new discipline? Or is it just a new phrase for old stuff? Is it similar to the contemporary
field of systems biology as the phonetic similarity might suggest?

Briefly, no single mature concept of synthetic biology exists yet, which makes a
short historic view on the early occurrences of the term and the different proposed
conceptual backgrounds for synthetic biology a potentially good point to start. As we
will see, there are a number of different strands of origin for synthetic biology. In a
further step,we illustrate some perspectives of and requirements for synthetic biology.

11.1.1 History

To the best of our knowledge, the first user of the term ‘‘synthetic biology” was
St�ephane Leduc (1853–1939) at the Medical School in Nates, France, who had an
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interest in defining life and to create lifelike forms from chemicals. In his book ‘‘La
biologie synth�etique” published in 1912 Leduc covered a multitude of experiments
with inanimate substances that seem to mimic various animate structures—crystal
growth,mineral formations, electrolytic and colloidal solutions that react and develop
similarly as cellular structures, tissues, and nuclei. The ultimate aimwas to present the
readerwith new ideas about the nature anddefinition of life, the physicochemical basis
for biological activity, evolution, and morphogenesis. Leduc thought that the appear-
ance of forms resembling plants produced by osmotic effects in concentrated colloidal
mixtures of inorganic salts had something to tell us about the emergence of life.
Although he did not claim that these forms were actually living, even during his
lifetimeLeduc became completelymarginalized and the passion for this topic died out
in the early 1930s with the rise of cell physiology, biochemistry, and genetics.

It took then more than 60 years until the term ‘‘synthetic biology” was used for the
second time. In 1978, the Nobel Prize in Physiology and Medicine was awarded to
Werner Arber, Daniel Nathans, and Hamilton O. Smith for their discovery of
restriction enzymes and their application to molecular genetics. In an editorial
comment of the journal Gene, Waclaw Szybalski and Ann Skalka wrote: ‘‘The
work on restriction nucleases not only permits us easily to construct recombinant
DNAmolecules and to analyze individual genes but also has led us into the new era of
synthetic biology where not only existing genes are described and analyzed but also
new gene arrangements can be constructed and evaluated” [1].

Maybepromptedby this comment, ‘‘synthetic biology”headedaNature reviewona
book that discussed recombinant DNA technology in 1979 [2] and a review article
published by Barbara Hobom in 1980 in Medizinische Klinik that covered the corre-
sponding new possibilities [3]. The subsequent time of public debate on possible
accompanying biohazards led to an article on ‘‘social responsibility in an age of
synthetic biology,” published in the journal Environment [4]. Finally, in an article
published in 1986 again in a German journal (Verhandlungen der Deutschen
Gesellschaft f€ur Innere Medizin), Gerd Hobom reviewed the recent advances in
gene technology and stated that biology had left the status of a purely descriptive
scientific discipline and was now heading toward a synthetic discipline—synthetic
biology.He compared the newpossibilities of gene technology, that is, the possibility to
recombine genes from different organismswith the development of organic chemistry,
where150yearsbefore therehadbeena transition frommeredescriptionandanalysisof
naturally occurring chemical compounds to the directed synthesis of novel chemicals.
Correspondingly, he stated that the new technologies could also be viewed as tools to
create simple biological systems for further analysis [5].

While the term ‘‘synthetic biology” had been primarily used to address the new
capability of recombining existing genes so far, the synthesis of new genes came into
focus in 1988 at a conference organized by Steven Benner in Interlaken, Switzerland.
Benner, a chemist at the University of Florida, titled this conference ‘‘Redesigning the
molecules of life” after the originally intended title ‘‘Redesigning life” was considered
too provocative in the light of the ongoing recombinant DNA debates [6,7]. Benner’s
goalswere, and still are, to generatemolecules bychemical synthesis that reproduce the
complex behavior of living systems, including self-reproduction and Darwinian-like
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evolution, therebycontributing toourunderstandingof the chemistrybehind life.At the
time of this conference, although the term synthetic biologywas not explicitly used for
the ongoing endeavors, the notion of synthetic biology in the sense of designing
artificial DNA molecules was around. It took another 22 years until this notion of
chemically designingmolecules formanipulating living systemswas labeled synthetic
biology: At the annual meeting of the American Chemical Society (ACS) in San
Francisco, Benner’s colleague Eric T. Kool, professor of chemistry at Stanford
University, described his work of designing nonnatural, synthetic molecules that
nevertheless function in biological systems as synthetic biology [8].

Besides these chemical research-driven activities, another strand of synthetic
biology was initiated around the year 2000, when several groups mainly from the
biophysics communitypublishedondesigningandengineeringgenetic circuits [9,10].
The driving force of these activities was the idea that new insights into the functioning
of circuits could be obtained by theirde novo reconstruction. Taking this a step further
led to an engineering perspective of synthetic biology, aiming at the rational
construction of biological parts, devices, or systems that have new and not necessarily
natural functionality and can be employed for useful purposes.

These issues featured very prominently in the ‘‘The First International Meeting on
Synthetic Biology,” which took place in June 2004 at the Massachusetts Institute of
Technology in Cambridge, USA. We consider this meeting as the inaugural event of
the discipline. In addition to the work on designing genetic circuits, research from
various other areas such as protein engineering,metabolic engineering, and biological
chemistry was presented.

Since then, the term synthetic biology has reaped tremendous popularity, which is
reflected by the significant boost in the number of mentioning of the term ‘‘synthetic
biology” in scientific publications over the recent years (Fig. 11-1). As synthetic
biology has gained momentum, various research communities have embraced the
term, and most likely, many other disciplines will follow suit.
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11.1.2 Perspectives of Synthetic Biology

As seen before, the term synthetic biology was used in different research communities
rather independently. Today, basically, as a result of the outlined historic development,
one candistinguishbetween twodifferent perspectives of synthetic biology, the science
and the engineering perspective. We will first sketch both the perspectives and then
concentrate on the engineering perspective and illustrate this in detail (cf. Table 11-1
and [11]).

The scientific perspective of synthetic biology is mainly discovery and understand-
ing driven. Biologists are interested in learning more about how natural living systems
work by rebuilding biological systems and functions (i.e., real physical instances) from
scratch according to the current understanding and to test these rebuilt systems or
functions,verymuchin thespirit of ‘‘reverseengineering”or ‘‘reversesystemsbiology”
(cf. [12]). Chemists involved in synthetic biology try to synthesize new, nonnatural
‘‘biochemicals,” such as alternate self-replicatingmacromolecules, to ultimately study
the origin of life. Thus, the chemistry-oriented branch of synthetic biology represents a
specific field of chemical research striving to analyze and understand our living world,
which is an extension of the concept of ‘‘biomimetic chemistry”.

Synthetic biology can also be viewed from an engineering perspective. Biological
systems or their parts are used in processing chemicals, energy, information, and
materials.Unfortunately, theengineers’efforts inthisarea(e.g., intheareasofmetabolic
or protein engineering) are only decoratedwith a few success stories, reflecting today’s
limited ability to engineer biology in a directed and successful manner. In the
engineering perspective, synthetic biology aims at overcoming the existing fundamen-
tal inabilitiesbydevelopingfoundational technologies toultimatelyenableasystematic
forwardengineeringofbiologyfor improvedandnovelapplications. In thisperspective,

Table 11-1 Different perspectives of synthetic biology

Synthetic Biology
View From the
Different Sides . . . Biology Chemistry Engineering

Respective goals Rebuilding
represents a
vehicle to test our
understanding of
complex systems.

Creating new
biochemicals to
study the origin
of life.

Designing new
biological systems
in a forward
engineering manner
for useful purposes.

Synthetic biology
seen as

A research tool A specific research
area

A discipline

Also known as Reverse
engineering

Organic chemistry,
biological
chemistry

Biological engineering

In the tradition of Biology Biomimetric
chemistry

Biochemical engineer-
ing, metabolic
engineering, protein
engineering
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‘‘synthetic biology” would be synonymous to ‘‘biological engineering” and describe
another field of engineering next to, for example,mechanical or electrical engineering,
with which it would share a common set of methodologies.

Despite these fundamental differences, a common denominator exists in the
described areas of synthetic biology: All branches are similar in so far as they deal
with the designing and building of biological components, functions, and systems. In
each branch, however, the final purpose for doing so is different.

11.1.3 Synthetic Biology from the Engineering Perspective

Biology, as a scientific discipline, has traditionally focused on studying single events
or mechanisms in a more or less isolated manner, but in great detail (Fig. 11-2).
Examples are the detailed investigation on the mechanism of a specific enzyme
reaction or the in-depth analysis of a single gene’s function.

This is now complemented by the new field of systems biology, which targets at a
system-level understanding of whole biological systems [13]. Armed with detailed
mechanistic knowledge on amultitude of isolated phenomena, this newapproach aims
at a holistic understanding of biological systems with all the interactions between
different cellular processes. It is powered by the recognition that biology cannot be
understood by looking at its parts alone but requires an understanding of its systemic
characteristics and also by the advent of powerful measurement techniques (‘‘omics
techniques”) that enable this type of research.

Investigate biology

Systems biology

Traditional
biological research

Synthetic biology

Knowledge driven / science Application driven / engineering

Use biology

Metabolic engineering
Genetic engineering
Protein engineering

Tinkering in the dark

Traditional
bioengineering

New dimension of
understanding biology

New dimension of
engineering biology

Hypothesis experiment

Piece-wise analysis of
system components

tim
e

Figure 11-2 Anoverviewof certain aspects of the scientific and applied side of biologyat different

times.
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In all the previous periods of biological research from ancient times to the era of
recombinant DNA technology, the knowledge acquired was exploited by engineers for
practical applications, from dairy products and beer to metabolic and protein engi-
neering. However, the modifications of the biological material (i.e., strains, enzymes,
etc.) to achieve improved properties involved (and still involves) a great degree of
uncertainty. Indeed, the desired output of a manipulation is rarely obtained in a
straightforward manner, but requires a prolonged trial-and-error period (‘‘tinkering in
the dark”). Here, it is important to note that this is in stark contrast to the work in other
(nonbiology-related) engineering disciplines, such as mechanical or civil engineering.

Now, that systems biology promises a newquality of understanding and, at least, an
intellectual framework to understand biology from first principles, just as good as we
understand mechanics or thermodynamics, we can start to think of designing
biological systems, and ultimately we will want to do it in a way as we design other
functional objects such as cars or bridges. In other words, at least in specific areas
biology hasmatured enough to start thinking of designing biological parts in a forward
engineering manner. Such forward engineering design of biological functions or
systems we would call synthetic biology. In summary, one could argue that the
scientific discipline of systems biology paves theway for the engineering discipline of
synthetic biology aiming at the design of new and improved biological functions.

The following thought experimentmight be helpful to grasp the difference between
systems and synthetic biology:

Assume that a car was something derived from nature that had been optimized by
evolution—like a biological cell. Furthermore, assume that our knowledge about this
biological car would be very limited. The systems biologist would start investigating
the car. He would discover that there is an engine and a gearing system, and that the
engine is linked to the gearing system,which causes thewheels to turn, and eventually
he would understand how this biological system, the car, works.

In turn, the synthetic biologist would use the knowledge acquired about the gearing
system, engine, and so on and would dismantle these parts, would try to optimize
(redesign), for example, the engine, to standardize the parts so that they can be used for
other cars, but also for other systems,workon the corresponding interfaces, and finally
reassemble the parts of the car in a newmanner to build something new, for example, a
moon rocket.

11.2 WHAT IS REAL ENGINEERING?

In the last section, we have used the term engineering several times and have also
mentioned that ‘‘engineering” (as inmetabolic engineering) is not necessarily equal to
‘‘engineering” (as in mechanical engineering). Looking at a classical engineering
project, we will try to derive the characteristic features of a ‘‘true” engineering work.

11.2.1 An Engineering Example

Imagine the manufacturing of a new car. First, properly skilled mechanical engineers
are needed, whowere trained to know that an engine, a gearing system, wheels and so
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on are required, and how these parts are interconnected. With this knowledge, the
engineers make use of computer software (e.g., for computer-aided design), do
calculations, and finally come up with a design of a new car. According to their
plans, parts (e.g., headlights) are then manufactured. Previously introduced standards
(e.g., ISO standards) that are respected during the design process ensure that the
different parts will later fit together, even though they might have been produced by
different companies. Oncemanufactured, the produced partswill inmost cases first be
stored in warehouses until they are used for assembly. Note that design engineers not
only develop the plans for the fabrication of the single parts but also elaborateways for
assembling these parts (e.g., in which order) so that finally the designed car becomes a
reality as a result of a structured design process.

11.2.2 Key Features of Engineering Endeavors

From this short illustration of a typical engineering project, we can derive several
characteristic features of true engineering endeavors whose relevance to biological
engineering is worth exploring: (1) forward engineering design on the basis of know-
how, (2) abstraction, (3) standardization of components and conditions, and (4)
decoupling of system design from system fabrication. Some of the ideas presented
in the following were taken from a recent review by Drew Endy [11].

11.2.2.1 Forward Engineering Design on the Basis of Know-How In
nonbiology-related areas, engineers can usually draw on a sound knowledge base.
Phenomena relevant for design projects in chemical, mechanical, electrical, or civil
engineering are inmost cases understood from first principles or at least up to a level
that makes forward engineering design possible. The sound mastering of thermo-
dynamics and reaction kinetics (chemical engineering), mechanics (mechanical
engineering), physics (electrical engineering), or statics (civil engineering) can
serve as an example. In each of these areas, the existing in-depth understanding
permits computer-based design of new systems by going through iterations between
computer models and simulations (but in most cases not including experimenta-
tion). By this procedure, extensive testing of new design variants can be performed
in silico, which inmost cases ismore time and cost efficient and alsomuch safer than
an actual realization and real-life testing. In other words, sound knowledge acts as a
basis for real engineering and enables forward engineering designwith a predictable
outcome.

11.2.2.2 Component and Device Abstraction Engineering endeavors are
typically characterized by hierarchies of abstractions. As already indicated in the
illustration of the car fabrication, the different parts of the car are set up at different
hierarchical levels. The car (overarching top level) contains one specific part—the
engine, which at a lower level consists of a number of cylinders, which again can be
decomposed into several other parts, such as seal rings, and so on. Generally, there are
parts that cannot bedecomposed into smaller parts (suchas screws); there are parts that
consist of several other parts (such as headlights) and finally the whole system (car)
that has been built of various parts.
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This hierarchical structure has several practical advantages: First, the introduction
of system boundaries basically hides information and is thus a way to manage
complexity. People, who assemble headlights into the chassis of a car, do not need
toknow the exact bodyworkof the rest of the car. Inotherwords, abstraction is useful as
it allows individuals towork independently at each level of thehierarchy.Furthermore,
abstraction provides anorganizationor amethodologyofhow to combine theparts and
consequently supports the engineering of systems with many integrated components.

11.2.2.3 Standardization of Components and Conditions To efficiently
make use of an introduced abstraction hierarchy that principally allows for plug-and-
play of the different components, the connection and interfaces between the different
parts need to be defined, that is, standardization is required. In classical engineering
disciplines, standardization is provided by institutions such as the International
Organization for Standardization, a federation of national standards bodies, providing
standards for almost every sector of business, industry, and technology. Defined
standards for components and conditions ensure that connections or interfaces
between components fit, even when they are fabricated by different companies.
Beyond, as themetrics of tools (e.g., screw drivers) are also subject to standardization,
this guarantees that the tools match the according part (e.g., screw).

11.2.2.4 Decoupling of Design from Fabrication Another typical feature
of true engineering is the decoupling of the design process from the actual fabrication
of novel devices or systems. There are people designing new devices or systems (i.e.,
developing the plans of how to fabricate them) and other people (construction people,
craftsmen) actually realize theseplans (i.e., actually buildingor fabricating thedevices
or systems according to the specified design). This separation between design and
fabrication is realized since both tasks (design and construction) require a distinct set
of skills and expertise, which is typically not provided by the same individuals in a
mature engineering field.

Nevertheless, this decoupling of design and fabrication requires the design en-
gineers to have a sound knowledge about how things are actually produced and how
parts are assembled together. In other words: The design for an object is useless if no
way exists to fabricate it. Or, the design for parts of a car is useless if no concept is
provided of how these parts can be assembled together (e.g., in which order—compare
the planning of an assembly line). Of course, this includes the respecting the
importance of standards ranging from a common language needed between the
two interacting sets of people (the designers and the craftsmen) to the fact that it is
necessary that the craftsmen’s tools fit the designed parts.

11.3 VISION FOR SYNTHETIC BIOLOGY

11.3.1 A Little Bit of Science Fiction

To imaginewhat synthetic biology could become in the future, we just have to replace
the car with a biological cell and have to employ the outlined features of classical
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engineering disciplines. Some of the ideas presented in the followingwere taken from
a recent article published in The Scientist [14]. Imagine, for example, a cell-level
biofactory, easy to produce by cultivation, that replaces a 50-step chemical synthesis
route, for example, to a complex oligosaccharide drug molecule (such as the
antithrombotic pentasaccharide Arixtra [15]).

Thesteps fromthedesign to theapplicationof thecatalystareoutlinedinFigure11-3.
Ultimately, the design of this cellular catalyst would be straightforward, solely
computer-based, and would draw on readily available parts that simply would have
to be combined in a plug-and-play manner. Then, after the design and the genetic
construction of the strain, comprising synthesis of the required genetic segments and
assembly in a bacterial strain, the cell-based biofactory would be amplified by
cultivation and finally would be used for production of the complex oligosaccharide
starting from the inexpensive substrate.

At a first glance, one could gain the impression that this concept is verymuch in line
with the classical approach ofmetabolic engineering. However, wewill see that much
more is required than the overexpression or knockout of a few genes. For example, the
de novo design and construction of new biofunctional systemswill involve building of
novel proteins, genetic circuits, and metabolic networks.

Most likely, we would start our endeavors of designing this novel catalyst with an
organism with a reduced, possibly redesigned genome (serving as a sort of chassis on
which we can expand in a rational fashion), to which we would add additional
functionality in the form of nucleotide sequences including the required regulatory,
gene coding and other functional regions. The organism with the minimized set of
protein-coding genes would most probably have only a rudimentary set of metabolic
capabilities (to eliminate interferencewith the inserted pathways), would have lost all
elements that contribute to genome dynamics (such as transposons and insertion
elements), andwould, in general, be reduced to the specific functions that are required
for the well-characterized behavior under predefined manufacturing conditions.

To this organism with a minimized genome, we would then add the set of de novo
synthesized genes that provide the capability to synthesize the desired oligosaccharide
starting from a cheap substrate such as glucose. The amount of proteins could be
carefully controlled by adjusting the corresponding elements on the DNA, such as
promoter and ribosome binding strength. The genes of the pathway might have been
assembled from templates from different species and then adapted for the expression
in the chosenhost or theymight be the result of a rational protein engineering effort that
has conveyed the desired functionality to a specific protein. As energy and reducing
powermust be provided for this synthesis, preferably in a carefully stoichiometrically

Towards a cell-level biofactory

1. Design catalyst strain

2. Construct catalyst strain (synthesis of DNA segments and assembly)

3. Produce catalyst strain (cultivation on rich medium, and then transition to a catalytic machinery)

4. Produce chemical compound with catalyst strain (from inexpensive starting material)

Figure 11-3 Steps toward a cell-based biofactory.

VISION FOR SYNTHETIC BIOLOGY 395



balanced fashion to prevent the production of side reactions, we additionally would
have to include reactions that fulfill these tasks. For this, wewould ultimately employ
carefully characterized and readily available DNA modules that have been used for
these tasks frequently before.

To prevent unnecessary metabolic burdens in early process phases, the conversion
of the host cell to the actual catalyst would be inducible and comprehensive—for
example, to such an extent, that growth andproduction couldbe completely uncoupled
but cellular functions could be rescued for maintenance on the pathway. One
fundamental prerequisite here would be that we are able to indeed decouple specific
cellular functions from the remaining cellular activities.Oneway to achieve thismight
be thedeliberate introductionofmutually independent functionalities (orthogonality),
such as ribosomes that interact with novel ribosome binding sites (see also below) or
enzymes that depend on novel coenzymes.

But these mutually independent functionalities would hopefully also extend to the
dynamic properties of the designed pathways.Natural enzymes are frequently adapted
to the needs of the cell to maintain homeostasis and operate with metabolite
concentrations within the mM–mM range. Consequently, for an improved version
of the catalyst that produces high product titers, we need to identify the relevant
allosteric inhibitions (someofwhichmightbe still beunknownsince theyonlybecome
apparent at concentrations higher than the typical intracellular ones) and remove these
inhibitions by redesigning the respective enzymes.

The novel properties of this cellular production machine will hopefully ulti-
mately be designed and optimized at the computer. These designed components
would then be converted into the respective amino acid sequences and finally
translated into a nucleotide sequence, from which the desired functionality can be
expressed. Finally, this designed DNA sequence will then be chemically synthe-
sized, assembled with other parts and introduced in the chassis—the organism with
the minimized genome.

It is important to note that such cell-based biofactory for fine chemicalmanufactur-
ing is just anexampleofmanyconceivable syntheticbiologyprojects andapplications.
From the degree of mastership that is required to execute such a project, it becomes
clear that the implications are much more far-reaching and can be extended to any
other area for which biotechnology has been or will be considered. To be clear, today,
every ongoing synthetic biology project only scratches at a project like the one
illustrated above.

11.3.2 Potential Fields of Application

The illustration of the cell-based biofactory represents an example where a syntheti-
cally devised organism could execute various functions that allow producing a
chemical compound, a drug, or even maybe energy in the form of hydrogen from
agricultural waste. The recent and envisioned breakthroughs in biology and technolo-
gy, however, do not only present unprecedented opportunities that could restructure
and revolutionize the manufacture of chemicals, pharmaceuticals, and energy, but also
may offer uniqueways to enable carbon sequestration and environmental remediation.
In addition, several medical applications can be envisioned as well as projects
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Table 11-2 An overviewof potential areas of application for synthetic biology together

with illustrating examples

Area Examples

Production of pharmaceuticals,
chemicals, energy

Develop a bacterial or fungal cell that can be programmed
to produce complex hydrocarbon precursors (e.g., oils,
plastics), to produce hydrogen or ethanol, to convert
waste into energy, to convert sunlight into hydrogen

Chemical/biological threat
detection and decontamination

Develop a bacterial cell that can be programmed
to fix any desirable amount of atmospheric CO2

Develop a bacterial cell that swims to the threat
and decontaminates it

Medical applications Develop bacteria that can parasitize cancer cells
Develop circuits that guards against cancer, which
if activated self-deconstructs the cell

Analytics and diagnostics,
sensors and actuators

Develop bacteria, fungi, or plants that can be programmed
to monitor environmental state, but that never survive
mutation, whose DNA are not subject to horizontal
gene transfer (both coming and going)

Develop proteins that can sense any kind of harmful
chemical compound (e.g., TNT)

stemming from the field of processing of information. Here, Table 11-2 provides an
overview of potential areas of application, together with some illustrating examples.

The examples foreseen for areas not related to chemical synthesis underline that
indeed the term ‘‘metabolic engineering” is too narrow to describe the new discipline
of synthetic biology, as this term is always used in the context of chemical production
by means of manipulated biological cells. In contrast, it is envisioned that synthetic
biology will employ organisms and biological systems more broadly to solve real-
world problems, and thus it has an enormous potential for human health, renewable
energy, and the environment.

In fact, a few companies have already been founded with the goal of harvesting
someof the early benefits in the area of synthetic biology.Possibly, themost prominent
companies are the twoU.S. companies Synthetic Genomics and Codon Devices, both
founded in 2005. Synthetic Genomics wants to develop and commercialize genome
reconstruction and synthesis technologies and particularly engages in the area of
ethanol and hydrogen production. Codon Devices aim to develop a technology
platform that is expected to accurately synthesize kilobase-to-megabase-long DNA
sequences. The company’s early commercial focus is on providing engineered devices
for molecular biology research and biotherapeutics.

11.4 REQUIREMENTS FOR SYNTHETIC BIOLOGY

After portraying our vision of synthetic biology and after suggesting some ideas of
what the discipline might be able to deliver in the future, we now examine the actual
requirements to make this vision come true.
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Synthetic biology encompasses the redesign of existing, natural biological systems
for useful purposes and in the long run the design and construction of new biological
parts, devices, and systems. Generally, future synthetic biology endeavors can be
subdivided into two distinct divisions: systems design and systems fabrication (cf.
Fig. 11-4).

11.4.1 Design

Thedesigndivision of synthetic biology dealswith the forward engineering (re)design
of biological parts, devices, or systems. In the following, we will discuss the general
requirements for the design as well as the current limitations and problems in the
respective areas: (1) knowledge, (2) computational design and (3) standardization,
modularity and orthogonality.

11.4.1.1 Knowledge As outlined in one of the previous sections, every estab-
lished engineering classical discipline (such as mechanical or civil engineering) can
draw on a sound body of knowledge, ideally ranging down to the first principles. In
biology, we have not yet reached such level of in-depth understanding and conse-
quently, true biological engineering has not been possible until now. The recent
advances in the postgenomic research, however, provide hope that sooner or later we
will be able to drawon a body of knowledge that allows for such a directed engineering
of biology. Here, especially the concerted efforts of systems biology provide novel
degree of comprehension, so that systems biology could be considered as a driving
force for synthetic biology.

11.4.1.2 Computational Design As a further requisite for synthetic biology,
computational tools are necessary that enable the computer-based (re)design of
biological parts, devices, or systems and form the synthetic biologist’s computer-
aided design (CAD) software package equivalent, in analogy to the design tools
available in the areas ofmechanical or civil engineering. Suchadesign toolwouldneed

Systems
design

Tools for design
(e.g., computational tools)

Standards

Abstraction hierarchy

Standards

Biological knowledge

Systems
fabrication

Novel
biological
parts,
devices,
systems
for
useful
purposes

Synthetic biology

Tools for construction
(e.g., cloning,

DNA synthesis)

Figure 11-4 Synthetic biology encompasses systems design and fabrication. Each part has its

specific prerequisites and inputs. Ultimately, synthetic biology delivers novel biological entitieswith

improved functionality.
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to integrate the detailed available knowledge into a user-friendly program and thus
would bring this knowledge out of the realm of research into the realm of engineering.
Also in the field of synthetic biology, the designs tools would be based onmathemati-
cal models that realistically reproduce biological behavior. Using such software, the
design engineer would try to improve the behavior of a system in silico by adjusting
design parameters—a task that can also be fulfilled by automatic optimization
procedures targeting a selected objective function. Simulation capabilities imple-
mented in the design toolwould finally allow computational testing of designvariants.
Still, to obtain such design tools much research work is necessary as first rough
mathematicalmodels (e.g., describing gene transcription and translation or kinetics of
metabolic or signaling pathways) are only now becoming available [16].Moreover, to
beuseful for a forwardengineeringdesign, the employedmathematicalmodelsneed to
have predictive power. Beyond, in cases where only small numbers of molecules are
involved (such as in gene transcription and translation,where transcription factors and
mRNAmolecules only occur invery lowdiscrete numbers), themodels need to be able
to even reproduce the inherent stochasticity of such processes. This is imperative, as it
was shown that stochasticity in combination with certain system architectures can—
on a stochastic basis for decisionmaking—result in different system states [17]. Thus,
a robust design of new devices and systemsmust be able to exclude such eventualities.

Another important area for further computational design efforts is the field of
protein design: Nowadays, de novo protein structure prediction from a linear amino
acid sequence can only be achieved for small protein domains [18] and quantitative
prediction of enzymatic activity and selectivity from 3Dprotein structures, in general,
is not yet feasible—although significant progress has been made in this direction. For
example, by selecting an enhanced ‘‘dead-end elimination” algorithm, an efficient
computational procedure could be established to first convert E. coli’s periplasmic
ribose binding protein into a set of proteins with completely novel substrate binding
specificities [19] and later into a protein with triose phosphate isomerase activity [20].
The novel enzyme had a catalytic constant in the order of 0.1 s�1, which is quite a
remarkable achievement for a computational design. Nevertheless, there remains a
long way to go until true forward engineering of proteins ‘‘at discretion” becomes
possible.

Our still limited abilities in protein design only highlight another important
limitation in our current synthetic biology designs: the lack of detailed knowledge
of many important systems parameters, which synthetic biology shares with systems
biology.When trying to implement specific behaviors, it is usually possible to identify
parts that qualitatively have the required behavior (positive or negative regulation,
composite promoters, etc.). However, to organize these parts into a system with the
desired behavior, we also need the right dynamics—in other words, we need specific
DNA–protein or protein–protein binding constants, Hill coefficients, protein degra-
dation rates, and so on. However, the quantitative characterization of many systems is
by far not comprehensive enough, and even if the corresponding parameters were
measured, theymight not fit the systemwe intend to desire.Here is another big field for
protein design in synthetic biology: the rational modification of specific binding
properties.
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Alternatively, one has to resort to evolutionary methods to obtain the required
modifications. This was shown by rescuing a nonfunctional inverter gene network in
which LacI was supposed to repress the synthesis of CI repressor, but did so only
partially, so that CI was constantly synthesized [21]. Possible solutions here were
decreasing the leakiness of cI repression or reduction of the repressive effect of CI
itself. Screening a library of mutated DNA fragments covering the RBS of the cI gene
and the gene itself delivered cloneswith avariety ofmutations that, in general, seemed
to weaken the repression effect of CI, such as reducing the dimerization of CI
molecules or reducing DNA–protein interactions. In other words, directed evolution
was an excellent tool to adapt the system parameters such that the inverter character-
istic could be rescued.

11.4.1.3 Standardization, Modularity, and Orthogonality Another req-
uisite for the design in a true engineering sense is the availability of standards. Parts,
devices, or systems stored in a database (or warehouse) need to have standardized
interfaces so that a design engineer canmakeuse of these asmodules for his design in a
plug-and-play manner. A first synthetic biology warehouse, the MIT Registry of
Standard Biological Parts, has been established at the Massachusetts Institute of
Technology, Cambridge, United States of America (http://parts.mit.edu/). It uses the
standardized vector format of ‘‘idempotent vectors” that lends itself easily to assemble
andallows interoperability ofassembled sequences (https://dspace.mit.edu/bitstream/
1721.1/21168/1/biobricks.pdf). Alternatively, the NOMAD technology has been
suggested [22]. Here, vectors are designed in such a way that a DNA insertion into
an assembly vector recreates exactly the same restriction site architecture of the
assembly vector alone by exploiting restriction sites with compatible but nonreclea-
vable ends orbyexploiting type II restriction enzymes.Both techniques allowmultiple
rounds of insertion on either side of an insert. However, despite its success, initiatives
such as the MIT Registry have to be backed up in the future by more sophisticated
design tools and a large capacity to validate and document such standard parts.

Next, it is not clear whether we already measure the most useful quantitites for
engineering and, if we can agree on the set of quantitites, how tomeasure them so that
measurements can be reproduced and contributed by multiple labs. Even such an
apparently simple concept like promoter strength is poorly defined. Frequently, it is
reported in terms of protein activities. This, however, is an aggregate quantity that
integrates the number of messages produced per time from a promoter, the (again
aggregated) efficiencyof initiation of translation, the efficiencyof the translation itself
including codon usage effects, the amount of protein that has correctly folded into a
functional form and the current steady-state of protein production and degradation.
Consequently, the corresponding experiments across labs are usually difficult to
compare. Alternatively, the promoter strength could be very narrowly defined as
‘‘PoPS” (polymerases per second) that would quantitatively describe the number of
RNA polymerase molecules that pass a specific point on the DNA per time (http://
parts.mit.edu/r/parts/htdocs/AbstractionHierarchy/index.cgi). Such a quantity would
lend itself easily to comparison of many promoters, as it is much more narrowly
defined. However, it is currently unclear how to measure such a parameter directly.
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This idea of standardization of parts is inevitably linked to the concept of
modularity and functional self-containment of parts. After all, it will be almost
impossible and highly undesirable to recreate the interdependency that is character-
istic of today’s living systems. Rather, from an engineering perspective, it is much
more desirable to drawon a limited number of well-characterized and optimized parts
and devices that do not interact with each other besides the interactions that have been
introduced on purpose. This provokes, of course, the question whether such modular-
ity—composability ‘‘at discretion”—is possible in biology.

Current evidence is that it is, at least for many instances. Even though the current
failure rate when assembling modular parts on DNA level—promoters, ribosome
binding sites, coding sequences, terminators, and so on—for example, from the MIT
registry is still significant, this reflects more of a deficiency in implementing all
available knowledge into the design process than of a fundamental problem. The
composability of genetic elements is, after all, the underlying dogma of recombinant
DNA-technology.

Recent work on RNA molecules has extended the concept of modularity to gene
regulation. For example, it is possible to design modular RNA aptamer domains for
small molecules that can be coupled to antisense effector domains to regulate
translation in response to the presence or absence of small molecule effectors [23].
Aptamer domains responsive to different smallmolecules havebeen used successfully
with the same antisense domain and vice versa, demonstrating the modularity of the
concept. Taking to the extreme, this means that there is a new series of modular tools
available that can interfere in a programmable and responsive manner with gene
expression on RNA level of many different genes.

However, the modularity concept also appears to work on protein level: In
particular, the domain architecture of many regulatory proteins plays here very
much in favor of such approaches. One specific example is the design of polydactyl
zinc finger DNA binding proteins [24]. Combinations of zinc finger domains provide
the sequence specificity of theDNAbindingdomain (DBD)by recognizingessentially
a subset of three or four nucleotides per zinc finger domain. Such proteins display
modularity in two ways: typically, the DBD is functionally independent from the
effector domain and zinc finger domains are functionally relatively independent of
each other—so that by selecting a set of specific zinc fingers in silico, one can specify
arbitrary sequence specificity into a novel DBD, which can then be coupled to a novel
effector domain. This concept, though not yet truly universal, has already delivered
some spectacular successes in designingDNA-binding domains that recognized up to
18 nucleotides [25–28].

Similar functional reprogramming could also be achieved on the level of protein–
protein interactions with signaling proteins. For example, the domains of the eukary-
otic neuronal N-WASP protein, involved in actin polymerization, are very amenable to
recombination, including with domains from other proteins. These recombinations
lead, for example, to proteins that execute novel logical behavior [29].

Alternatively, nature provides examples where signaling proteins have left the
task of providing specificity within signaling pathways to scaffold proteins. These
recruit a kinase and the kinase’s substrate and assemble them in close proximity for
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phosphorylation [30]. Reorganizing such scaffolds along common kinases allows
recombining signaling pathways, so that osmotolerance could be converted to a
function of mating pathway induction.

A final point that will be essential for successful design is its orthogonality (mutual
independence). When implemented, the design has to be executed by the cell in the
intended fashion, which implies that the interactions of the design with the cell occur
only at the anticipated points. Given the high degree of interdependency of cellular
functions and one common reaction space for all the different interactions (the
cytoplasm), this is an absolutely nontrivial task. For example, it will be vital to
eliminate cross talk of gene regulatory elements such as regulatory proteins, particu-
larlywhen considering the design of large artificial networks.Apromising approach is
presented here by the concept of engineered riboregulators [31], where cis-acting
repressing parts of the mRNA and trans-acting activating RNAmolecules combine to
regulate gene expression in a fashion that could be widely extended to many genes.
Importantly,when four sets of such crRNA–taRNAcombinationswere tested for cross
talk, none could be detected, advocatingwell for the exploitation of this technology in
large artificial networks.

An alternative approachwould be to reserve subsets of specific functions in the cell
only for the execution of a design. For example, rather than feeding mRNAs of genes
that are part of the design into the common cellular ribosome pool, proper engineering
of the mRNA–ribosome pair can reserve a subset of ribosomes specifically for the
translation of onemRNA [32] and thus isolate the translation of the targetmRNAfrom
the rest.

Taking this concept a step further, it should be possible to introduce not only new
specificity with existing molecular species, but also to introduce new molecular
species. Again, this might allowwhole new sets of unique interactions that exist quasi
‘‘in parallel” to traditional cellular functions. The topic of alternative chemical
structures with self-replicative properties is explored further in Chapter 13 of this
book by Holliger and Loakes, so we are not treating it here.

11.4.2 Fabrication

The fabrication division of synthetic biology is responsible for the actual realization of
the design engineers’ plans, so that finally a new biological part, device, or system
turns into reality. Once the design engineer has delineated a novel functional module
and has converted (or, in other words, coded) this design into a sequence of nucleotide
bases, it is necessary to physically produce this strand ofDNA, possibly to assemble it
with other already existing oligonucleotide segments and finally to introduce it in an
organism (ideally with a minimal genome), which will then express the implemented
functions.

So far, our ability to extensively modify chromosomal DNAwas restricted by the
possibilities of the traditional (and laborious) molecular biology techniques, such as
traditional cutting and pasting of DNA, site directed mutagenesis, PCR and error-
prone versions of it, and so on. Actually, we rather modified or combined existing
natural DNA sequences than constructed DNA from scratch. However, this repertoire
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of competencies appears much too limited and time-consuming for the envisioned
novel functions.

11.4.2.1 DNA Synthesis Recently, however, tremendous improvements in the
speed, accuracy, and price of de novo chemical synthesis of DNA have been made, so
that these limitations will be eliminated soon (see also Chapter 12). Significant efforts
are currently being made in the development of DNA synthesis technology, so that
there is reasonable hope that existing technical challenges will be rapidly overcome,
and consequently the designers can outsource the DNA preparation task of the
fabrication division and concentrate on the actual design task. Bulk DNA synthesis
capacity appears to havedoubled approximately every18months for the last tenyears;
the commercial price of synthesis of long fragments of DNA (>500 bp) has decreased
by a factor of�2 over the past years [33]. Right now, we can witness the change from
classical DNA synthesis technology to novel forms, such as reactors based on
microfluidic concepts and photochemical methods. At present, DNA de novo synthe-
sis is performed by assembling overlapping short (25–70 bp long), chemically
synthesized oligonucleotides into longer DNA fragments in a PCR-based assembly
process [34] and has already led to the complete reconstruction of some smaller phage
genomes such as the polio virus [35,36]. These efforts are typically accompanied by
enzymatic efforts to reduce the error rate [36,37]. But many of, at least, the chemical
steps involved can now be reproduced in miniaturized forms in microfluidics chips,
where exploiting the small scale should lead to not only a reduction in the materials
costs, but also in the opportunity to provide optimized reaction conditions and thus
reduced error frequencies [38]. Taking the concept even further, oligonucleotide
synthesis can also be miniaturized on photoprogrammable chips. Coupled with error
detection by hybridization, exceptionally low error rates in the order of onemistake in
every 1400 bp are possible [39].

11.4.2.2 Chassis and Cloning of Giant DNA Finally, once we have synthe-
sized novel strands of DNA, we need to integrate them into an organism. This splits
into two aspects—the organism and the actual introduction.

We have already discussed the desire for reduced genomes in model organisms.
Taking this to the extreme, growth in the presence of a rich but synthetic and defined
medium requires as few as 206 genes, basically comprising the DNA replication,
transcriptional, and translational machinery, rudimentary DNA repair functions,
protein processing and degradation, cell division, and rudimentary metabolic and
energy functions [40]. Toward this theoretical goal, one can either substantially reduce
the relatively large genomes of established model systems and exploit the abundance
ofmolecular biology tools for thesemodel organisms, or reducevery small genomesof
other organisms in exchange of the requirement to develop novel molecular biology
tools.

With respect to the latter, nonpathogenicMesoplasma florum with very attractive
cultivation properties and a genome size of 793 kb is currently being established as a
chassis. Its genomic sequence has become recently available and molecular biology
methods have been developed (http://www.broad.mit.edu/annotation/genome/
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mesoplasma_florum.2/Info.html). A similar approach is followed withMycoplasma
genitalium, which was already carefully investigated by transposon mutagenesis for
nonessential genes [41].

Regarding the former, a prominent example is Escherichia coliwhose genome has
been reduced in various projects by 6 percent [42], 8 percent [43], or 15 percent [44],
respectively,without anynoticeable effect on the investigatedphysiological properties
andby30percent resulting in defects in cell replication [45].Bacillus subtilis’ genome
has been reduced by 8 percent, again with only minor effects on physiology [46],
confirming the observation that under controlled laboratory conditions a substantial
part of a bacterium’s genome is indeed dispensable.

The complementation of such minimized genomes will inevitably involve the
handling of giant DNA. This requires novel methods from storing via faithfully
amplifying to insertion in stable fashion into an organism. First steps in this direction
have been made recently with the megacloning technique that allowed insertion of a
3.5Mb Synecocystis genome (a photosynthetic bacterium) into the 4.2-megabase
genome of Bacillus subtilis [47].

11.5 DESIGN AND APPLICATION

There are two areas in which the ideas of synthetic biology, in our view, have already
been implemented to a substantial extent—the design of artificial genetic networks
and the design of novel production pathways for chemicals. The first topic is
intensively covered in Chapter 15 of this book by Greber and Fussenegger, so we
will concentrate on the latter subject.

In the production of novel pathways, the benefits of de novo DNA design are
particularly apparent. Here, suitable designs allow a significant acceleration of the
construction process, for example, when, codon usage is from the very beginning
optimized for each novel gene and novel DNA elements are suitably structured, for
example, by flanking restriction sites, so that the adaptation of the DNA element to
novel insights is very simple. This has played a major role in expressing polyketide
synthases in E. coli, but also in recombining their domains them in such a way that
novel polyketides could be produced [48,49].

Another project that catches verymuch the spirit of synthetic biology is the attempt
to construct from scratch a cheap terpenoid production pathway in E. coli leading to
artemisinic acid, a precursor to the antimalaria drug artemisinin. This goal requires
essentially the building of an entire new pathway in a suitable production organism,
which in this case isE. coli or Saccharomyces cerevisiae. A pathway from acetyl-CoA
to amorphadiene was created in E. coli by splicing the genes of the mevalonate
pathway of S. cerevisiae into artificial operons and de novo synthesizing the amor-
phadiene synthase gene from the plant Artemisa annua [50]. The remaining step from
amorphadiene to artemisinic acid required an A. annua cytochrome P450 monoox-
ygenase that catalyzes the remaining three oxidation steps and could so far only be
functionally expressed in S. cerevisiae, so the pathway from the S. cerevisae
metabolite farnesylpyrophosphate to amorpadiene and then to artemisinic acid was
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reconstituted in an S. cervisiae mutant engineered for farnesylpyrophosphate
overproduction [51].

Although the design of novel biological systems is only beginning, all ingredients
of the engineering approach arevisible: the role ofdenovoDNAsynthesis/fabrication,
the design of well-behaved parts on DNA and protein level, the organization of parts
into the next functional level of devices and the corresponding abstractions, and the
attempt to introduce standardization, even though for the time being only on parts
level. With the design of ever more complex systems, the need to emphasize these
elements will undoubtedly increase.

11.6 SAFETY AND SECURITY ASPECTS

The reports on the resynthesis of the genomes of the polio virus [35] and the 1918
influenzavirus [52]graphically illustrate that large scaledenovoDNAsynthesismight
also be used for activities that raise concerns about the safety of synthetic biology,
which also have been picked up by the community of synthetic biology researchers
(http://openwetware.org/wiki/Synthetic_Biology:SB2.0/Biosecurity_resolutions). If
biology is becoming indeed engineerable and we acquire indeed the capabilities to
manufacture even more complex systems according to our specifications, then the
question that arises is how we are going to manage the safety and security aspects of
this potential technological revolution successfully. The answer can be given on two
levels—organizational and technical.

From a European perspective—which is the perspective of the two authors of this
chapter—the organizational issues appear to be well taken care of. At the moment,
synthetic biology does not contain fundamentally new scientific issues that require a
reevaluation of the current safety or security standards. Rather, it tries to exploit
selected existing concepts to accelerate the progress in the application of biological
sciences. Furthermore, even though the agenda of synthetic biology is ambitious and
promising, it is for the time being exactly that—an agenda, not a reality. So even if the
goal might be the design of complex systems, our current capabilities are much more
modest. In addition, the applications that one might have in mind for synthetic
biology—for example, a more efficient production of chemicals—will typically lead
to strains that are much less fit to survive in natural environments than their none-
ngineered counterparts. With these arguments in mind, our view is that there are the
rules that apply to genetically modified organisms and just as well apply to the field of
synthetic biology. Such experimentalwork is typically regulated in considerable detail
and ethics commissions to evaluate researches that might touch upon the questions of
fundamental ethical importance are in place. Where synthetic biology has links to
technology that is already working reliably—for example, large-scale de novo DNA
synthesis, see the cases above—regulations (such as analysis of ordered large DNA
sequences) are in place that should prevent the abuse of these technologies in those
areas where these regulations can be effectively enforced. Beyond that, it is important
to note that even the capacity to produce a viral genomewithin tolerated error margins
does not produce viruses that could be applied. For the time being, such efforts would

SAFETY AND SECURITY ASPECTS 405



face the same problems that all contemporary biological weapons face (storage,
distribution, application) and which makes them difficult to manage.

The improvement of safety or security on technical grounds—the questionwhether
synthetic biology could provide techniques that render the field inherently safer—is so
far less obvious. Although some suggestions have been made as to how ‘‘synthetic
biology-engineered systems” could be prevented from interacting with the natural
environment—for example, relying on unnatural amino acids that are not available
in the environment, introducing unnatural codon amino acid assignments and the
corresponding codon sequence in genes, so that important genes could only
be translated in correspondingly synthesized organisms—these strategies have to
be tested first to confirm that the introduction of such alternate ‘‘codes of life” into the
environment does not have unexpected consequences. But this example should suffice
to illustrate that if there are concerns that synthetic biologymight pose anovel safety or
security risk, it is also likely that the accelerated development capabilities that would
go alongwith the successful progress of the fieldwoulddeliver clues onhow to address
such issues.

In summary, if synthetic biology indeed turns out to be the revolutionary approach
that we envision it to be, theremight be safety and security questions that wewill need
to address. For the time being and the foreseeable future, the potential dangers appear
to be well within the grasp of existing safety regulations.

11.7 CONCLUSION

Engineering requires a sound knowledge base and exploits a number of distinguishing
features such as forward engineering design, abstraction and standardization of
components and conditions, and the decoupling of system design from system
fabrication. While systems biology hopefully will allow the consolidation of the
knowledge base to a sufficient extent, the implementation of these engineering-
specific methodological elements into the application of biological systems is in our
view the most powerful aspect of the new discipline of synthetic biology. Adoption of
these elements would lead to a much accelerated design process that, at some point in
the not-so-distant future, will generate biological designs with a very high chance of
success andpredictability.Crucial elements in the implication of these elements are on
the design side suitable computer-based design tools, the successful establishment of
standards, the success of the concepts ofmodularity of parts and orthogonality. On the
fabrication side, further progress in the accuracy and the efficiency of large-scale de
novo DNA synthesis and assembly and the providing of suitably engineered chassis
will be the key.

11.8 TEACHING MATERIAL LINKS

. http://www.syntheticbiology.org—synthetic biology community homepage

. http://en.wikipedia.org/wiki/Synthetic_biology—Wikipedia, the free encyclo-
pedia, about synthetic biology
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. http://parts.mit.edu/—Registry of Standard Biological parts

. http://www.igem.org/—iGEM (International Genetically Engineered Machine
competition) is an international arenawhere student teams compete to design and
assemble engineered machines using advanced genetic components and
technologies.
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12.1 INTRODUCTION INTO THE FIELD

As per definition, synthetic biology combines science and engineering in order to
build novel biological functions and systems. Genetic engineering paved the way
for the development of this new field of research; for instance, in 1978, when the
Nobel prize in physiology or medicine was awarded to Werner Arber, Daniel
Nathans, and Hamilton O. Smith for the discovery of restriction enzymes and their
application to molecular genetics, one could already read in an editorial comment
in Gene that ‘‘. . .The work on restriction nucleases not only permits us easily to
construct recombinant DNA molecules and to analyze individual genes but also has
led us into the new era of synthetic biology where not only existing genes are
described and analyzed but also new gene arrangements can be constructed and
evaluated’’ [1]. Another cornerstone in genetic engineering and synthetic biology
was developed when Genentech scientists and their academic partners in 1977
generated the first example of recombinant expression of a human protein
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(somatostatin) in Escherichia coli. However, not many scientists are today aware of
the fact that the group of Boyer, Itakura, and colleagues were not only the first to
invent heterologous recombinant expression but they also did so without using a
natural gene. At that time, 9 years before the polymerase chain reaction (PCR) was
introduced into genetic engineering, it was easier rationally to design the 14 amino
acid long somatostatin gene and synthesize it with methods of organic chemistry
than to clone it using the natural template. Since then, only very limited sequence
information on the E. coli genome was available, codons preferentially used by the
MS2 phage were assumed to be beneficial for recombinant gene expression in
E. coli. However, most of the presently used genetically engineered biotherapeutics
are based on natural genes cloned by reverse transcribing message RNAs (mRNAs)
into complementary DNAs (cDNAs) and subsequent cloning using restriction
enzymes and other DNA modifying enzymes. From 1986 on, in particular
PCR-based cloning methods started soon dominating the field either by direct
amplification of genomic information or using cDNA libraries as templates for
amplification and subsequent cloning and recombinant expression.

As more genetic information became available, the clearer it got that the coding
region of a gene comprises more information than just the primary amino acid
sequence. The genetic code provides various codon options for each of the 20 amino
acids that contribute to the primary sequence of a protein except for methionine and
tryptophane, which are encoded by only one codon each. However, the codon
options are used in an unequal frequency in different species showing a clear
tendency for certain codons, which lead to the ‘‘genome hypothesis’’ postulated in
1980 byGrantham et al. [2]. They analyzed 90 genes of 7 different species and found
a nonrandom codon choice pattern, which seemed to be specific for the analyzed
species and therefore established the first codon usage table named ‘‘codon
catalog’’ [2]. Just 1 year later with more genes analyzed the same group correlated
a certain, species-specific subset of codons with mRNA expressivity, that is, the
amount of protein made by a particular messenger transcript [3]. Also Ikemura, who
synthesized the first human gene to be expressed in E. coli found a strong positive
correlation between the transfer RNA (tRNA) abundance and the choice of codons
in all E. coli genes encoding proteins that had been sequenced completely at that
time [4]. The positive correlation of codon usage and the amount of available tRNAs
in a cell was also confirmed in other unicellular (Saccharomyces cerevisiae,
Salmonella typhimurium) and multicellular (human, rat, plant, chicken, fish)
organisms [5] indicating that species-specific codon bias is a general phenomenon
and can be even used to perform phylogenetic analyses (see Fig. 12-1).

After it was generally accepted that species-specific codon bias exists and
influences expression rates, it seemed clear that recombinant gene expression can
be improved by adapting at least the codon choice of the gene of interest to the
preferred codons of the target expression host. In addition to codon choice, various
intragenic cis-acting elements heavily impact expression yields in heterologous and
even autologous cell factories. However, these elements like splice sites, TATA-boxes,
or ribosomal entry sites are highly species-specific and have to be taken into account
when rationally designing genes.
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12.2 RATIONALS OF GENE DESIGN

12.2.1 Codon Usage Adaptation Strategies

The easiest and simplest approach to design an expression host-specific DNA
sequence is to reversely translate (‘‘backtranslate’’) the amino acid sequence into
a DNA sequence using the most frequently used codon. A comparably simple
approach is to mimic the codon usage distribution that can be derived from the host’s
codon usage table. As most codon usage tables are generated on the genome-wide
codon usage distribution, this approach levels out the natural differentiation between
highly and low-expressed genes in terms of their codon usage. Using codon usage
tables based on highly expressed genes bares several other unpredictable uncertain-
ties:Howmanygenes are sufficient for the compilationof the codonusage table? Is the
different promoter strength of the highly expressed genes taken into account?
Especially for multicellular organisms tissue and compartment specificity is often
not addressed by those codon usage tables. The following chapters deal with the
different codon adaptation and gene optimization strategies that should be applied for
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Figure 12-1 Phylogenetic tree based on codon usage. For each species pair the ‘‘codon usage

distance’’ was calculated as follows: First, the difference of the frequency of each codon for each

amino acid was calculated and then the total sum of frequency differences was computed. The

resulting differencematrix was normalized with the highest difference to be set as 1. Phylogenetic

branching of the data was performed using the Fitch–Margoliash least squares algorithm by the

program ‘‘Fitch’’ (Felsenstein, J. 1989. PHYLIP—Phylogeny Inference Package (Version 3.2).

Cladistics 5: 164–166). Codon usage data was obtained from the Kazusa Codon Usage Database

(http://www.kazusa.or.jp/codon/). Kindly provided by M. Liss, GENEART (AG).
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different expression host systems. In order to be able to compare the overall codon
quality of a given gene several measurements and indices were developed. The most
accepted index is the codon adaptation index (CAI) introduced by Sharp and Li in
1987 [6]. TheCAI is ameasurement for the relative adaptiveness of the codon usage of
a gene toward the codon usage of highly expressed genes. The relative adaptiveness of
each codon is the ratioof the usageof each codon to that of themost abundant codon for
the same amino acid. TheCAI index is defined as the geometricmean of these relative
adaptiveness values. Nonsynonymous codons and termination codons (dependent on
genetic code) are excluded. CAI values are always between 0 (where no optimal
codons are used) and 1 (where only optimal codons are used).

12.2.2 Designing Genes for Prokaryotic Expression In Vivo

The adverse effect of rare codons in recombinant expression in E. coli is known for
manyyears. Itwas shown for instance that theproductionofb-galactosidasedecreased
when rare AGG codons were inserted near the translational initiation site [7]. Rare
codons for arginine seem to be the most difficult to express, but other codons such as
proline, glycine, or leucine are also problematic. Already very early studies revealed a
strong bias in synonymous codon usage for genes encoding abundant proteins such as
ribosomal proteins and elongation factors, RNA polymerase subunits, and glycolytic
enzymes [3,8,9]. A strong correlation was found between copy numbers of protein
and the frequency of codons whose cognate tRNAs were most abundant. Ikemura
first discovered that this correlation was strongest in the most highly expressed genes
which almost exclusively use optimal, that is, most frequently used codons [4,5,10]
and he suggested that this bias in codon usagemight both regulate gene expression and
should act as an optimal strategy for recombinant gene expression. Although most
frequently used codons correspond with the most abundant tRNAs, one has to keep in
mind that the total tRNA composition of E. coli increases by 50 percent as growth
rate increases tomaximum[11].However, the relativebut not the absolute tRNAlevels
stay the same, thus the most frequently used codons still provide the largest tRNA
pools feeding the translational machinery.

Therefore, it is now a widely accepted strategy for recombinant gene expression
in E. coli to change the codons of the gene of interest or alternatively to coexpress
certain tRNA-encoding genes in order to supplement tRNApools with low abundance
inE. coli. There are threeE. coli strains commercially available (Novagen, Stratagene)
coexpressing arginine encoding tRNA-genes specific for the nonfrequently used
codons AGG, AGA, AUA, CUA, CCC, and GGA codons. Although coexpression
of selected tRNAs can overcome certain expression problems due to the presence of
extreme rare arginine, proline, or glycin codons, best and consistent results will be
achieved only by adapting consequently the entire gene to most frequently used
E. coli codons [12]. For instance, the sequence of themature human IL-18 gene shows
37 rare E. coli codons (fraction<0.1) among 157 amino acids with an overall CAI of
0.58. Expression of nonoptimized IL-18 versus codon-optimized IL-18 was recently
analyzed in depth. Although supplementation with rare tRNA genes did increase
expression, Li et al. [13] found that a codon-optimized gene with a CAI of 0.84 was
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more beneficial and increased expression yields by a factor of five (see Fig. 12-2).
Although the optimized gene shows elevated GC levels compared to the wild-type
gene, which was increased from 35 percent up to 45 percent in average, the authors
neither discuss nor find any correlation between elevated expression levels and GC
content that could be thus solely coincidental. Interestingly, the authors also showed
that the biochemical properties and protein activity of the proteins produced using
wild-type gene expression and optimized gene expression were exactly the same.

In addition to codonchoice, there also seems tobean influenceofmRNAsecondary
structure on translation efficiency. Nomura et al., for instance, showed that the
presence of an 8 bp stem-loop structure preceding the Shine Dalgarno ribosomal
entry site may hamper expression and that destabilization of such an element could
increase expression dramatically [14]. Moreover, the presence of intragenic E. coli
ribosomal entry sites, as found in many mammalian genes, may lead to truncated
products during heterologous expression and should therefore be avoided throughout
the gene [15]. Hatfield et al. found by statistical analysis that certain codon pairs are
seemingly overrepresentedwithin theE. coli genome and reported a negative effect of
such codon pairs on translational efficiency because of a translational pausing
effect [16]. However, the negative activity of codon pairs could not be reproduced
by another group utilizing the T7 promoter for transcription control [17].

Finally, termination efficiencies vary significantly depending on both the stop
codon used and the nucleotide immediately following the stop codon. Efficiencies are
ranging from 80 (TAAT) to 7 percent (TGAC) indicating that TAAT is the most
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efficient translational termination sequence in E. coli and should be chosen to avoid
undesired read through products [18].

12.2.3 Designing Genes for Prokaryotic Expression In Vitro

Despite coexpression of rare tRNA in vitro a more and more popular strategy to
avoid expression problems in vivo is to choose in vitro transcription/translation
systems. In vitro expression allows upscaling for production, which is, however, still
comparably costly and more important, highly parallel screening of different protein
variants for functional analysis.

To test whether gene optimization can increase protein yields of in vitro expression
systems, differently optimized HIV-1 p24-encoding genes and wild-type p24 were
translated in vitro under the transcriptional control of T7 in a Roche RTS 100 system
using E. coli lysats (Table 12-1). Expression of different p24-encoding genes
correlated nicely with the CAI of the respective genes. Lowest expression yields
(770–831mg/mL) were obtained using the wild-type p24 gene showing a CAIE. coli of
0.54. The mammalian-optimized gene with a CAIE. coli of 0,68 (CAIH. sapiens¼ 0.98)
showed a slight increase by 35–50 percent (1061–1170mg/mL), but only the E. coli-
optimized gene with a CAIE. coli of 0.98 raised protein yields by 3–3.5-fold
(2565–2648mg/mL) (Fig. 12-3). Gene optimization with a particular emphasis on
codon choice improvement that results in high CAIE. coli values seems therefore
beneficial to increase the yields when using in vitro expression systems.

Today, several companies offer cell-free expression systems that include
chaperons and other proteins positively influencing correct folding of the translated
protein. Alternatively, in vitro expression can be also performed in cells of higher
eukaryotes such as rabbit reticulocytes or wheat germ lysats (Roche, Novartis, etc.).

12.2.4 Designing Genes for Yeast Expression

A very early study revealed in 1982 that an extreme codon bias is seen for the
highly expressed S. cerevisiae genes alcohol dehydrogenase isozyme I (ADH-I) and
glyceraldehyde-3-phosphate dehydrogenase. A proportion ofmore than 96 percent of

Table 12-1 Selected publications where synthetic genes were successfully used to

express proteins in E. coli (modified from Ref. [69])

Gene Origin Protein Name Improvement Reference

H. sapiens IL2 16-fold [19]
H. sapiens TnT 10–40-fold [20]
C. tetani Fragment C Fourfold [21]
S. oleracea Plastocyanin 1.2-fold [22]
H. sapiens Neurofibromin Threefold [23]
H. sapiens M2-2 140-fold [24]
H. sapiens IL-6 Threefold [25]
Pyrococcus abyssi Phosphopantetheine

adenylyltransferase
Below Detection
to 15–20mg/L

[26]

416 RATIONALES OF GENE DESIGN AND DE NOVO GENE CONSTRUCTION



the 1004 amino acid residues are encoded by only 25 of the 61 possible coding
triplets [27]. Only a few years later, Sharp et al. were able to show in a compiled
analysis on 110 S. cerevisiae genes that there are two groups of genes. One group
matched to highly expressed genes with a strong codon bias, which was speculated to
match abundant tRNAs [28], whereas the other group corresponded to nonhighly
expressedgenes.More than10years later, Percudani et al. [29]were analyzing thenow
fully sequenced S. cerevisiae genome and were able to identify all tRNA-encoding
genes. The respective 274 tRNA genes were assigned to 42 classes of distinct codon
specificity.Thegene copynumber for individual tRNAspecies,which ranges from1 to
16, correlated well with most frequently used S. cerevisiae codons. Moreover, they
were able to show that tRNA gene copy numbers as well as codon frequencies nicely
correlate with tRNA abundancy of the respective codon, thereby, confirming the
previous assumptions of Sharp et al.

Otheryeasts likePichiapastorisorSchizosaccharomycespombealsoshowsahighly
biased, and species-specific codon choice (see Fig. 12-1) indicating that codon choice
adaptation should also be beneficial for recombinant expression in these different
yeasts. However, codon optimization procedures dedicated to obtain very high CAI
values (>0.95)will usually result in a significantdecrease in theoverallGCcontentdue

Figure 12-3 In vitro expression of differently optimized and wild-type HIV-1 p24 in E. coli lysats:

(a, b) Theplot shows thequality of the usedcodonat the indicated codonposition. Thequality value

of the most frequently used codon was set to 100, the remaining synonymous codonswere scaled

accordingly (relative adaptiveness, see also Ref. [6]) gray line: wild-type gene or mammalian

optimized in (a) and (b), respectively; bold black line: E. coli-optimized gene. (c) Expression of

wild-type (WT),mammalian optimized (mammal), andE. coli optimized (E. coli) HIV-1 p24 inE. coli

lysats under the transcriptional control of T7 using theRocheRTS system. Cell lysats (50mL) were
harvested at the indicated time points and p24 expression measured by commercial ELISA.
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to the relative low-GCbiasofP.pastorispreferredcodons. Itwasshownfor instance that
expression of P. pastoris codon-optimized human glucocerebroside fragments can be
increased up to 10-fold abovewild-type levels, hence almost the same levels (7.5-fold)
can be achieved with a gene fragment in which rare codons were not removed, but the
overall GC content was increased [30]. Consequently, it was shown by others that it is
indeed beneficial not only to adapt codon choice but also to increase the GC content of
the encoding gene for optimal expression inP. pastoris [31–33]. Therefore, an optimal
balance has to be found between optimal codon choice andCAI values on the one hand
and overall GC content on the other hand. To test whether this might be also true for S.
cerevisiae, we tested expression of human MIP-1a-encoding genes with an optimal
codon choice (CAI¼ 1.0), but low overall GC content (36 percent) and a gene with
elevatedGCcontent (47 percent), wherewe had to introduce several nonfrequentlyGC
biased codons resulting in slightly lower CAI value (0.83). Protein yields were
compared with gene expression resulting from nonaltered wild-type gene showing a
GC content of 58 percent and a CAI of 0.56. As depicted in Figure 12-4 there seems to
be no correlation between expression yields and elevated GC content in S. cerevisiae
sincehighest expressionwasachievedwith the fullycodon-optimizedgene showing the
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Figure 12-4 Expression of differently optimized and wild-type human MIP-1a in S. cerevisiae.

(a) Theplot shows the quality of the usedcodonat the indicated codonposition. Thequality valueof

the most frequently used codon was set to 100, the remaining synonymous codons were scaled

accordingly (relative adaptiveness, see also Ref. [6]). Dotted line: wild-type gene; bold black line:
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a40bpwindowcenteredat the indicatednucleotideposition.Dotted line:wild-typegene; bold black

line: codon-optimized gene; gray line: GC content-optimized gene. (c) Transient expression of wild

type (WT),GC content-optimized (GC), and codon-optimized (CAI) humanMIP-1a inS. cerevisiae

from lysed cell pellets using commercial ELISA formats.
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lowest overall GC content. Expression yields exceeded GC-rich gene expression by a
factor of 4.5 andbya factor ofmore than 35compared towild-typegene expression.We
thereforeconclude that forbest expression results inS.cerevisiaecodonchoice seems to
be a more dominant factor than GC content.

However, mRNA nucleotide composition itself has implications on the relative
efficiency of protein expression through effects on secondary structures and stability
irrespective of codon choice [34,35]. For instance, it seems advantageous to eliminate
or avoid putative polyadenylation sites located in AT-rich DNA [36,37] in order to
avoid premature polyadenylation.

12.2.5 Designing Genes for Plant Expression

Themostprominent exampleandprobablyalso the first example toexpressa rationally
designed gene in higher plants is the insecticidal cry gene of Bacillus thuringiensis.
Transgenic plants expressing active protein usingwild-type cry genes failed to protect
from insects due to poor expression. The use of different promoters, fusion proteins
and leader sequences could not significantly increase protein expression either and
failed to protect transgenic plants from insects [38,39]. Therefore, it was speculated
that codon choice and the presence of sequence motifs not common in plants might
hamper transgenic expression rates (see also Fig. 12-5). Table 12-2 indicates the
differences in human, B. thuringiensis, rice (Oryza sativa), and Arabidopsis thaliana
codon preference. Not only prokaryotic andmammalian codon choices differ greatly,
but also the ones of monocots (rice) and dicots (A. thaliana), indicating that a general
codon usage adaptation to plant genes will not reflect their phylogenetic diversity and
consequentlywill not improve individual gene expression in the respective plant host.

Due to the preference for A or T in the third nucleotide position of preferred dicot
codons (see Table 12-2), a simple reverse translation of the amino acid sequence into
the respective encoding DNA sequence using the condon most frequently used by
dicots will lead to a nonfavorable extremely AT-rich gene. Therefore, gene design for
expression enhancement in dicots has to be carefully balanced between improving
codon usage on the one hand and increasing GC content on the other hand.

Consequently, Perlak et al. tested differently modified cry-encoding genes for
expression in tobacco and tomato plants. Among the plants transformed with the
partially modified cry gene they identified a 10-fold higher and among plants
transformed with the fully modified gene they identified 100-fold higher level of
insect-control protein compared with plants expressing the wild-type gene ([40], see
Table 12-3). Besides codon choice, they increased GC content, removed potential
polyadenylation signals, and removed putative RNA instability elements, which have
been shown previously to destabilize mRNA in other systems [41].

The very same gene design strategies were applied by others [42] to increase cryIC
expression in dicots with similar positive results. Another important factor to keep in
mind when designing genes for expression in plants is removal or avoidance of
putative active splice motifs within the coding region. Rouwendal et al. for instance
identified an 84 bp long cryptic intron within the coding region of thewild-type green
fluorescent protein (GFP) encoding gene of the jellyfish Aequorea victoria after
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transgenic expression in tobacco. Therefore, Rouwendal et al. adapted the codon
usage ofGFP for expression in tobacco.After codon adaptationwhere 42percent of all
codons were altered, the overall GC content was improved from 32 to 47 percent and
the intragenic cryptic splice sites were altered to be nonfunctional. As expected,
several transgenic tobacco lines containing the wild-type GFP gene contained a
smaller nonfunctional protein cross-reacting with GFP antiserum, whereas only one
protein of the predicted size was found in transgenics expressing the optimized GFP
gene. Thus, the authors concluded that the smaller protein was probably encoded by a
truncatedGFPmRNAcreated by splicing of an 84 bp cryptic intron present only in the
natural GFP-encoding gene [43].

In contrast to dicots, codon adaptation to monocots elevates the GC content
automatically due to the preference for G or C in the third nucleotide position of
frequently used monocot codons. Gene optimization can therefore be focused on
removal of rare codons and other negatively cis-acting motifs as discussed above.
Jensen et al., for instance, successfully expresseda synthetically engineered (1.3–1.4)-
b-glucanase in barley (Hordeum vulgare) andwere able to elevate expression levels to
107-fold compared to the wild-type gene ([44], see Fig. 12-5).
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Figure 12-5 Codon, GC content, and expression analysis of (1.3–1.4)-b-glucanase tested for

expression in barley. (a) The plot shows the quality of the used codon at the indicated codon

position. The quality value of the most frequently used codon was set to 100, the remaining

synonymous codonswere scaledaccordingly (relative adaptiveness, seealsoRef. [6]). Dotted line:
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optimized gene. (c) Expression of recombinant heat-stable (1.3–1.4)-b-glucanase under the

control of the D-hordein gene (Hor3) promoter in T1 grains. For the codon-optimized gene, two

individual grains were analyzed, and values are given. Modified from Refs [44,45].
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Taken together, there is great potential in increasing recombinant expression in
transgenic plants using rationally designed genes. Codon choice, RNA instability
motifs, andGCcontent seem to be important factors that have to be taken into account.

12.2.6 Codon Adaptation for Mammalian Expression

Synonymous codon choice also affects gene expression in mammals. In particular
when nonmammalian genes are to be expressed in mammalian cells, the substitution
of nonfrequently used codons with more common synonyms can significantly

Table 12-3 Optimization strategy for increased cry expression in tobacco and tomato

Wild Type Partially Modified Fully Modified

Adapted codons — 10% 60%
GC content 37% 41% 49%
Polyadenylation sites 18 7 1
RNA instability element 13 7 0

Modified from Ref. [40].

Table 12-2 Comparison of codon choice of selected amino acids for mammals,

prokaryotes, and plants

Amino Acid Codon B. thuringiensis H. sapiens O. sativa A. thaliana

GCA 100 58 55 61
Ala GCC 24 100 100 36

GCG 41 28 88 32
GCT 80 65 61 100

AGA 100 100 61 100
AGG 24 95 91 57

Arg CGA 39 52 43 34
CGC 17 90 100 20
CGG 10 100 87 26
CGT 56 38 48 49

CTA 29 18 32 42
CTC 8 50 100 65

Leu CTG 10 100 82 42
CTT 38 33 57 100
TTA 100 18 25 54
TTG 23 33 57 85

% GC Total 37% 53% 56% 45%
% GC Third 25% 59% 62% 42%

Themost frequently used codon of each amino acidwas set to 100 and the remaining scaled accordingly [6].
Black bold: most frequently used codon; gray bold: rare codon. GC total, overall GC content within all
coding regions; GC third, GC content of the third nucleotide position of all codons.
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increase expression [46–50]. A very prominent example is the widely used jellyfish
Aequorea victoria green fluorescent protein. An analysis of the GFP encoding
sequence showed that the codon usage frequencies of this jellyfish gene are quite
different from those prevalent in the human genome [47]. Consequently, after having
removed rare codons the synthetic humanized GFP allowed 5–10-fold higher
expression rates compared to the wild-type cDNA in transfected mammalian cells.
In another example, inhibition of expression of viral genes in mammalian cells could
only be overcome by modification of the codon composition or by provision of
excess tRNA [49]. A dramatic increase of 10–100-fold in gene expression was
achieved when human herpesvirus (HHV) type 6- and HHV type 7-encoding genes
were optimized for mammalian expression by adapting codon choice and elevating
the overall GC content (see also Fig. 12-6).

More recently, Plotkin et al. [51] discovered systematic differences in synonymous
codon usage between genes expressed in different human tissues. They were able to
demonstrate that liver-specific genes differ in their codon choice from brain-specific
genes, uterus differ from testis genes, etc. Since differences in relative tRNA
abundancies in tissues of the same organisms were not reported so far, the authors
suggested that codon mediated translational control might be the reason for the
observed tissue-specific codon choice. Therefore, even codon choice optimization of
mammalian genes (in particular nonhousekeepinggenes) for autologous expression in
mammalian cells can have a significant impact on the expression rates. For instance,
we were able to show that expression of the human granulocyte macrophage colony
stimulating factor (GM-CSF) could be increased by a factor of 2.1 by gene optimiza-
tion and simultaneous removal of rare human codons and negative cis-acting RNA
instability elements (see Fig. 12-7). In each codon position within the optimized
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Figure 12-6 Surface and total cellular expression of HHV7 U51 in transiently transfected 293A
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coding regionofGM-CSFwhere not themost frequent human codonwas used, certain
RNA instability elements have been avoided.

12.2.7 RNA Optimization for Mammalian Expression

Humancodonusagebias seemsnotonly to be correlatingwith available tRNAsbut also
synonymouscodonsareplacedalongcodingregions inawaytominimize thenumberof
TAandCGdinucleotidesinmammaliangenomes[52].TherarityofCGdinucleotidesin
mammalian genes is usually ascribed to the tendency of CG to mutate to TG [53],
whereas the rarity of TA in coding regions is considered adaptive because UA
dinucleotides are preferably cleaved by endonucleases. Moreover, coding regions of
mammalian housekeeping genes seem to have an increased GC content compared to
low-expressing genes [54]. A correlation of mRNA expression levels with the third
nucleotide position GC in codons of mice and rat genes was found by Konu et al., sug-
gesting thathigherGClevelsmayprovide the rodentgeneswithaselectiveadvantagefor
translationalefficiency[55].Consequently,wewereabletoshowthatmRNAstabilityof
AT-richHIVgenescanbe increasedbyordersofmagnitudebyelevating theGCcontent
of the encoding mRNA from 44.1 to 62.7 percent in average thereby also reducing UA
numbers from96to11 (seeFig.12-8).The increasedamountsofavailablemessage lead
to 100-fold higher expression of the HIV Pr55gag polyprotein compared to the
nonoptimized cDNA-based gene expression [56]. This dramatic increase in expression
cannot solely be explained by solely improved translational rates, rather then by the
increased amounts of available optimized mRNA for cytoplasmatic expression. The
optimized andwild-type RNA differ in their biochemical and physiological properties
to suchagreat extent that theyevenusedifferent nucleocytoplasmaticexport pathways.
Whereas expressionof thewild-typeHIV-1gaggeneswasblockedusing leptomycinB,
an antibiotic known to directly interfere with exportin1-mediated nuclear export of
mRNAs, the expression of the optimized RNAwas not blocked [56].
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Genes of other non-HIV related pathogens such as malaria or human papilloma
virus, or certain proto-oncogenes show similar sequence properties indicating a
general mode of action of these cis-acting RNA elements and the positive effects
of RNA optimization.

When designing genes for optimal expression in mammalian cells, one therefore
has to take several parameters into account. Codon choice is one parameter to
influence the translation efficiency but, more importantly, the available mRNA levels
necessary for translation have a much larger impact on expression yields. RNA
optimization, likemodification ofGCcontent, avoidance or preferable introduction of
UA/CG dinucleotides, removal of cis-acting RNA elements negatively influencing
expression is the key for stable and high level expression in mammalian cells.
Examples for these cis-actingRNAelements are adenine-rich elements (ARE), which
are found within many cytokines, nuclear transcription factors or proto-oncogenes or
within their flanking untranslated regions and are thought to be the most common
determinant of RNA instability in mammalian cells [58,59]. Other, probably closely
related, cis-acting elements are known to destabilize or retain mRNAs and should be
avoided [60–63]. Despite these elements and ARE-directed mRNA degradation it is
known that isolated cryptic splice sites may retain mRNA within the splicing
machinery or lead to truncated transcripts [64].

12.2.8 Other Important Designing Rules for Mammalian Expression

In addition to optimizing the coding region for improved expression yields in
mammalian cells, there are other sequence elements known to be beneficial for
efficient and stable expression. InmammalianmRNAs, initiation sites usually align to
all or part of the sequence GCCRCCAUGG referred to as the Kozak sequence [65]. A
strong contribution of G directly downstream of the starting ATG was confirmed in a
study that directlymonitored the initiation step [66], thus negating the concern that this

Figure 12-8 (a) The plot shows the GC content in a 40bp window centered at the indicated

nucleotide position. Thin line: wild-type gene; bold black line: optimized gene. (b) Transient

transfection of human H1299 cells using wild-type (wtgag) and optimized (syngag) HIV-1 Pr55-

encoding genes. Cells were lysed and total RNA was isolated and subjected to Northern Blot

analysis. Pr55gagencoding transcriptswere detectedbya radiolabeled probeand standardized by

the amount of detected b-actin RNA (lower panel). The Northern Blot analysis was repeated

several times yielding comparable results. Modified from Refs [56,57].
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conservation might simply reflect a preference for certain amino acids in the second
position of eukaryotic proteins. Not only the efficiency of the translational initiation
is context dependent but also the efficiency of translational termination. In order to
avoid undesired read through by-products in mammalian expression, two stop codons
are usually recommended to ensure efficient termination. Finally, natural mammalian
transcripts always comprise and intron/exon structure and undergo complex splicing
and editing before leaving the nucleus for cytoplasmatic translation. Therefore,
expression of intronless cDNAs or artificial genes can be improved by adding an
efficiently spliced intron 50 of the coding region [67]. Finally, there is a recent report
that by removal/avoidance of certain codon pairs gene expression can be significantly
increased [68].

Taken together, gene design for mammalian expression is a sophisticated task
since many different parameters have to be optimized in parallel for optimal results.
Table 12-3 shows selected examples from literature where gene optimizations led to
increased expression results compared to wild-type expression.

12.2.9 Methods of Analyzing Genes

Most standard software offers the possibility to analyze genes, for example, con-
cerning their codon usage or GC content. Tables 12-4 and 12-5 list easy to handle
Internet-based software for the analysis of genes with respect to codon usage,
prediction of repetitive elements, and splice sites.

Further link compilations can be found on http://bioweb2.pasteur.fr/ and http://
www.expasy.org/tools/. Nevertheless all those software tools just concentrate on the
evaluation of one single parameter. As shown above, especiallywhen it comes to gene
optimization, several parameters have to be considered important. This complicates
gene optimization as it becomes a multiparameter and multitask problem:
Multiparameter as several constraints like codon choice or GC content have to be
accounted for,multitask as several jobs like local andglobal sequence alignments have
to be performed. This can only be achieved by a multiparameter process that
simultaneously takes into account all constraints. State-of-the-art multiparameter
optimization software (GeneOptimizer�,GeneartAG,Regensburg,Germany)allows
for different weighting of the constraints and evaluates the quality of codon combina-
tions concurrently. Approaches that are based on a successive modulation of para-
meters most likely spoil findings of previous optimization runs in subsequent runs (e.
g., first optimization focusing on codon choice, second on GC content).

12.3 DE NOVO GENE CONSTRUCTION

12.3.1 Oligonucleotide Synthesis—Creating Your Template

Since rationally designed DNA comprising genes, operons, or even genomes only
exist in silico, nature cannot provide a natural template for PCR-based amplification.
Therefore, the only possibleway to get access to such a rationally designedDNA is by
de novo gene synthesis. Virtually, all gene synthesis methods are based on oligonu-
cleotide synthesis causing many technical as well as cost implications.
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The chemical synthesis of short single strandDNAdates back to 1955 and provided
the directed chemical synthesis of a dithymidinyl nucleotide [85]. Over the decades
oligonucleotide chemistry was improved, but it took until the beginning of the 1980s
when the phosphoramidite approach and solid phase synthesis allowed the develop-
ment of routine oligonucleotide synthesis, as we know it today. The oligonucleotide
synthesis starts on a solid phase (controlled pore glass CPG) in 30 to 50 direction. The
first 30 nucleotide is already immobilized on theCPG solid phase and a synthesis cycle
comprising four steps builds up the desired oligonucleotide. Briefly, the first step is
deblockingwhich removes a protectivegroupof the 50-end thereby exposing a reactive
hydroxyl group at which the next nucleotide (phosphoramidite) is added (coupling
step) after activation. An overview of the cycle is depicted in Fig. 12-9.

The capping step prevents all oligonucleotides that were not elongated in the
previous coupling step from subsequent coupling steps. Finally, oxidation step
stabilizes the phosphate bond of the newly added amidite and the cycle may
commence from the beginning until the full-length oligonucleotide is synthesized.
During synthesis, there are several steps of this cycle that can lead either to deletions or
nucleotide substitutions within the desired oligonucleotide for instance due to
inefficient capping, deblocking, or removal of purines in an acidic solution. No
matter what gene synthesis method is used to build up long DNA fragments, the
sequence identity and the respective error frequency of the used oligonucleotides has a
major impact on costs, efforts, and duration of subsequent de novo gene production.

12.3.2 De Novo Gene Synthesis Methods

The field of gene synthesis was pioneered by Khorana et al. with the groundbreaking
work to synthesize a full-length tRNA encoding sequence, which took them several
years [86]. Koester et al. synthesized the first protein-encoding gene (angiotensin II)

Table 12-5 Selected web-based software tools for gene analysis

Codon usage distribution and codon usage table compilation

http://www.kazusa.or.jp/codon/countcodon.html
http://www.bioinformatics.org/sms2/codon_usage.html
http://gcua.schoedl.de/
http://www.bioinformatics.org/sms2/codon_plot.html

Repetitive or secondary structure elements

http://www.genebee.msu.su/services/rna2_reduced.html
http://bioweb.pasteur.fr/seqanal/interfaces/dottup.html

Splice site prediction

http://www.cbs.dtu.dk/biolinks/pserve2.php
http://genes.mit.edu/GENSCAN.html
http://www.fruitfly.org/seq_tools/splice.html

Reverse translation

http://www.bioinformatics.org/sms2/rev_trans.html
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just 5 years later and Itakura et al. revolutionized the field in 1977with the synthesis of
a human gene in just 6 months [87,88]. Although Itakura et al.’s work gave birth to the
field of genetic engineering and recombinant DNA technology, gene synthesis was
restricted these days by the limited availability of synthetic oligonucleotides.
DNA synthesis methods and molecular biology methods needed to coevolve to
allow high-throughput gene synthesis, as we know it today from specialized gene
synthesis laboratories, someofwhichare capable toproduce several hundredsofgenes
per month.

In principle, all gene synthesis methods used so far rely on the elongation of
hybridized oligonucleotides with long overlaps or the ligation of the phosphorylated
oligonucleotides. The latter technique was used already by Koester et al. who
phosphorylated oligonucleotides by T4 polynucleotide kinase and joined them using
T4 ligasegiving rise to adouble-strandedDNAconsistingof 33 bp.A similar approach
was used by Edge et al. to synthesize longDNA fragments, whichwere assembled and
ligated to a 514 bp long human leukocyte interferon encoding synthetic gene in
1981 [89]. After Francis Barany introduced the ligase chain reaction (LCR) using a
heat stable ligase [90], it was possible to anneal oligonucleotides for de novo gene
synthesis at high temperatures making ligation of phosphorylated oligonucleotides
a very robust, but yet labor-intensive, time consuming, and expensive gene synthesis
strategy [91].
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In 1982, 3 years before the PCR was invented by Kary B. Mullis, the gene
synthesis pioneer Itakura introduced a primer extension method enabling him to
build up short genetic sequences de novo. A subsequently filed patent application
was granted many years later in 1997 and is thus still active within the United
States for many years to come. After the introduction of PCR into genetic
engineering in 1985, several PCR-based oligonucleotide assembly methods
emerged but all of these are based on one or more primer extension steps with
subsequent amplification. This has to be kept in mind when using PCR-based
assembly methods and resulting genes for commercial purposes or for clinical
testing. By applying PCR-/primer-extension-based methods soon the 1000 bp size
barrier was broken in 1990 by the synthesis of a 2.1 kb long fully synthetic
plasmid [92]. Stemmer et al. used 132 oligonucleotides in a single primer extension
reaction of overlapping complementary oligonucleotides with subsequent PCR
amplification to assemble a 2.7 kb sized plasmid [93]. Similar approaches were
used by Withers-Martinez et al. in 1999, who assembled an apparently difficult to
construct AT-rich malaria gene [94]. In Figure 12-10 a schematic drawing shows
the principles of ligase-based and PCR-/primer-extension-based gene synthesis
methods.

Surely, onemajor cost factor in gene synthesis is still the bulk of oligonucleotides
needed for de novo gene construction. To reduce oligonucleotide costs,
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George Church et al. recently combined photo-programmable microfluids chips
with classic PCR-based gene synthesis techniques. Although use of chemicals can
be dramatically reduced, the oligonucleotides are present after release into solution
only in femtomolar concentrations per sequences that are insufficient to allow
bimolecular priming necessary for de novo gene construction. Therefore, the
oligonucleotides released from the chip need to be reamplified by PCR using
universal primers, endonuclease treatment to remove the universal priming region,
and final purification. These extensive post synthesis treatments in addition to the
setup costs of the oligonucleotide chip add up to the overall costs of this new and
visionary gene synthesis method [95].

All gene synthesis methods so far have in common that they totally rely on quality
and sequence identity of the oligonucleotides used in the assembly process. Due to the
nature of the chemical synthesis of oligonucleotides there will be a certain fraction
of oligonucleotides present showing deviations (like deletions, duplications, sub-
stitutions) from the desired end product. To test the quality and sequence correctness
of oligonucleotides, we analyzed different batches and differently long oligonucleo-
tides from a commercial source for gene synthesis. Oligonucleotides of 24mer, 44mer,
and 64mer were used to assemble a 513 bp long fully artificial gene encoding all
epitopes of the HIV-1 tat gene. A ligase-based gene assembly technique was used to
avoid introduction of PCR-based mutations. After gene assembly, cloning and
transformation 161 different clones were established, sequenced, and analyzed
(see Fig. 12-11a). Apparently, there are huge deviations in oligonucleotide quality
that differ from batch to batch even when the same oligonucleotide sequence is
ordered. There seems to be a clear tendency that the longer the oligonucleotides are
the higher the likelihood ofmutations will bewithin the final clones (see Fig. 12-11b).
This is most probably due to the fact that an increasing number of chemical reactions
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take place during synthesis leading to an increase of undesired side products.
As deduced from this example it is most likely to get a statistical clustering of
mutations within a synthetic gene. In our case, almost 90 percent of all clones showed
mutations in one specific oligonucleotide, resulting in a deletion frequency
of approximately 55 percent at position 97 and 98, respectively. Consequently,
only 2 of 161 sequenced clones showed no deviation from the desired sequence
design. Obviously, it would have been cheaper and easier to replace the low-quality
oligonucleotide batch with new one resulting in amuch higher likelihood to identify a
100 percent correct clone. In addition, gene length has clearly also influence on the
chance to identify 100 percent correct clones by sequencing screening. When 50mer
oligonucleotides with a given deviation frequency of approximately 10 percent would
be used to build up a 500 bp long synthetic gene the probability of identifying a correct
clone will be 12 percent (0.9020, 20 oligonucleotides used in assembly). One would
therefore need to screen at least 12–24 colonies to identify a 100 percent correct clone.
However, to assemble a 1000 bp gene one would need at least 40 oligonucleotides to
build up a synthetic gene. Subsequently, only 1.5 percent (0.9040) of all screened
cloneswould be correct. By doubling the gene length the screening effort increased by
a factor of 10!

Consequently, one should thereforeuseonlyoligonucleotideswithhighest possible
sequence identy, which are unfortunately not easy to access from commercial
oligonucleotide suppliers. Alternative strategies were published by several groups
trying to eliminate the fraction of mutated genes from the initial oligonucleotide
assembly product in order to reduce the sequencing screening workload in gene
synthesis. By denaturation and annealing of the crude oligo assembly product,
heteroduplexes are most probably formed by DNA products showing mutations
and homoduplexes are formed with the highest probability only from such DNA
sequences showing no mutations. In a subsequent step, the heteroduplex fraction is
removed by either enzymatic treatment, for example, T4 endonuclease VII cleav-
age [91,96] or by addition of proteins binding specifically to heteroduplex DNA and
subsequent homoduplex enrichment [97].

More recently, Cello et al. reported the synthesis of a 7.5 kb cDNA poliovirus by a
combination of PCR-based oligonucleotide assembly/PCA (polymerase cycling
assembly) and ligation methods [98]. Being one of the first genomes to be fully
created synthetically, the generation of an infectious and pathogenic virus based
entirely on a de novo constructed genome will surely be considered as a hallmark in
synthetic biology and even raised further ethical questions regarding biosafety of such
synthetic genomes. Using similar approaches, only 2 years later, Kodumal et al. of
Kosan Biosciences reported the synthesis of a contiguous 32 kb polyketide synthase
gene cluster being the longest synthetic DNA assembled from synthetic oligonucleo-
tides so far [99]. The functionality of the gene cluster was demonstrated by success-
fully expressing the polyketide synthase and producing its polyketide product in E.
coli, being the first report of a functionally operon synthesized and assembled de novo.
Just 2 years later, the same laboratory reported the synthesis of a redesigned polyketide
synthase gene cluster expressing significantly more protein that the wild-type cluster
did [100]. The last remarkable cornerstonewas set here byCraigVenterwhomanaged
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to synthesise and artificially construct the first bacterial genome of more than
500.000 bp in size [101].

Today, it is therefore not unrealistic to predict that in the years to come more
and more synthetic operons, artificial chromosomes, and synthetic genomes will be
synthesizedbeing themajor enabling technology for thenewfieldof syntheticbiology.
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SELF-REPLICATION IN
CHEMISTRY AND BIOLOGY

Philipp Holliger and David Loakes

MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK

13.1 INTRODUCTION:SELF-REPLICATION,FIDELITY,ANDHEREDITY

Self-replication involves the product-directed assembly of components to form a
new product; in its simplest form, it involves the joining of just two components. The
product acts as a template both to correctly position the two components and to allow
for efficient joining of them. The newly formed product can then dissociate to provide
a new template for further replication [1,2] (Fig. 13-1).

Important concepts for consideration are fidelity and heredity. Self-replicationmay
be perfect, in which case all products (all ‘‘offspring’’) are identical to the template (the
parents), or imperfect, in which case, offspring may differ from their parents. The
degree of perfection (or imperfection) of self-replication is called the fidelity, which
varies greatly among self-replicating systems. High-fidelity replication denotes a sys-
tem where only few alterations are introduced into the offspring molecules while low-
fidelity replicators will produce a great deal of variation in their offspring. Depending
on the system thesevariations canagain be transmitted through the next self-replication
cycle. In such a case, the self-replication systemwill display heredity. Self-replication
with heredity is a fundamental property of life and a prerequisite for evolution.

The most widely studied self-replicating systems involve nucleic acids and these
aremost relevant to extant or plausible primordial biological systems, as nucleic acids
are uniquely suited for self-replication, heredity, and evolution.Wealsobriefly discuss
chemical replicators based on autocatalytic networks or template-driven replicators
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with limited heredity (e.g., peptides, prions). However, replicators based on digital
(e.g., computer viruses) or cultural heredity (e.g., memes), or self-replicating macro-
scopic machines are beyond the scope of this review, despite striking progress in the
latter field [3]. The review will consider primarily recent literature referring to older
literature only when necessary, and is not meant to be exhaustive.

13.2 CHEMICAL SYSTEMS CAPABLE OF SELF-REPLICATION

For a number of years chemists have explored a host of molecular systems with auto-
catalytic and dynamic combinatorial properties. Some of these are capable of templat-
ing and catalyzing their own synthesis, that is, catalyze the product-directed synthesis
of more products from its constituent parts. Due to the limited complexity of such
systems, either self-replication is perfect or alterations (side reactions) are nonheredi-
tary as theywould interferewith the self-replication ability. One of the earliest reported
is a nucleoside-based system, described by Rebek and colleagues, and involves
hydrogen-bonding and stacking interactions in organic media [4–8] (Fig. 13-2).

There have been a number of reports of autocatalytic Diels–Alder reactions. The
bicyclic transition state that is formed offers a basis for efficient self-replication,
that is, for the transfer of chemical information coded in terms of both regio- and
stereoselectivity. In this example, the diene is also chiral, thus allowing for the
transfer of diastereomeric information. Following this first published report of

Figure 13-1 Scheme of a simple self-replication system (after [1,2]). A and B, building blocks;

T, template.
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the autocatalytic Diels–Alder reaction, it has been demonstrated that using a chiral-
starting material only one of the four possible diastereoisomers were formed [9].
Other groups have examined self-replicating Diels–Alder reactions [10,11] including
von Kiedrowski [9]. In addition to the advantages of being capable of self-replicating
by homochiral autocatalysis and heterochiral cross-catalysis, they are much more
efficient replicators than nucleic acids or peptides, giving rise to almost exponential
replication.

13.3 PEPTIDE SELF-REPLICATION

Peptides of a certain length fold spontaneously into three-dimensional structures
defined by their sequence. These in turnmay specifically associatewith other peptides
in defined oligomeric complexes. Peptide self-replication is generally based on a
peptide A acting as a template and promoting the template-directed ligation of two
smaller isomorphic peptides. In its simplest form, the two smaller peptides are
fragments of A (A0, A00) and ligation thus produces further copies of the parent
peptide in a homodimeric complex (Fig. 13-3).

The first self-replicating peptide describedwas a 32-residuea-helical coiled-coil
peptide based on the leucine-zipper domain of the yeast transcription factor
GCN4 [12]. It has been shown to promote thioester-mediated amide bond formation

Figure 13-2 One of the earliest self-replicating nucleoside-based systems involves hydrogen-

bonding and aryl-stacking interactions in organic media. 50-Aminoadenosine reacts with the aryl-

pentafluorophenyl ester derivative of Kemp�s triacid,which thenacts as catalyst for further coupling
reactions. The reaction involves hydrogen bonding of adenosine to the imine, as blocking of the

imine NH group leads to a 10-fold drop in catalytic rate.
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between a 15- and 17mer fragments in neutral aqueous conditions. It was subse-
quently shown that this system was also able to distinguish between native and
mutant precursor peptides.Whenmutant peptides are used there is a catalytic step in
which mutant progeny are produced, but due to changes in the hydrophobic core of
the precursor peptides the correct peptide may be preferentially produced [13,14].
This peptide replicator is also capable of chiral selectivity by efficiently amplifying
homochiral products from a racemic mixture of peptide fragments [15] and is
capable of discriminating between structures containing only a single chiral
mutation. The system demonstrates a dynamic stereochemical editing function
whereby heterochiral sequences promote the production of homochiral products.
Thus, the peptide replicator system demonstrates the emergence of fidelity of
replication.

The self-replicating peptide described by Ghadiri has been computationally
analyzed where it was found that the dynamics are governed principally by two
reversible hydrophobic interactions between the template and a peptide fragment
and between two template molecules [16]. The association of two template mole-
cules was found to be most favorable leading to a build up of the inactive template
dimer in the autocatalytic step, thus limiting the self-replication. Analysis of the
heterochiral system described by Ghadiri [15] indicated that cross-catalytic pro-
cesses involving D- and L-species play a significant role. Chiral amplification is
mainly due to the formation of meso-like species, leading to an enantiomeric excess
in the final product [17,18].

Chmielewski has developed a self-replicating peptide that is pH-dependent. The
sequence contains glutamic acid side chains such that at physiological pH the peptide
is a random coil. However, under acidic conditions the peptide adopts a coiled-coil
structure, similar to that developed by Ghadiri, which is then able to promote self-
replication [19]. As noted above, the self-replication of peptides is limited as the most

Figure 13-3 Coiled-coil peptide self-replicators are able to promote template-directed ligation

of two smaller peptides (A0, A00) producing a further copy of the parent peptide (A). Typical coupling
reactions occur with carbodiimide or thioester (shown) chemistry.
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stable species is the template dimer. Chmielewski has therefore designed a self-
replicating peptide containing a proline residue in place of one of the glutamic acid
residues in the pH-dependent replicator. The presence of the proline causes a kink in
the coiled-coil structure, which allows for more efficient separation of the template
dimer species, thus improving the efficiency of self-replication [20].

Finally, there are two examples of cross-replication between peptides and nucleic
acids. In the first example, L-a-amino-g-nucleobase-butyric acids (NBAs) were
substituted into peptides adopting coiled-coil structures to enhance peptide recogni-
tion. Templates and fragments were then synthesized containing complementary
adenine–thymine or guanine–cytosine sequences at various positions within the
peptide. While it was found that the effect of NBAs in the peptide was sequence
dependent, it was shown that the increased recognition architecture could be used
to design more efficient self-replicating peptides [21]. In the second example,
Ellington has examined the ligation of short oligonucleotides by a peptide [22].
Using a 17mer arginine-rich motif (ARM), a 35mer anti-REV RNA aptamer was
developed for ligation studies. Aptamer half-molecules bearing a 5�-iodine and a
30-phosphorothioate could be chemically ligated by cyanogenbromide in the presence
of the ARM peptide.

The systems described in this section may also have relevance for the prebiotic
synthesis of peptides. It has been demonstrated that amino acids can adsorb tomineral
surfaces where they undergo chemical ligation to form random polypeptide species.
Together with self-replication, thismay provide a process for the selective enrichment
of a defined set of peptide sequences. All of the self-replicating peptides described
so far adopt a-helical coiled-coil structures, but Ghadiri has speculated that self-
replication through b-sheet motifs are also likely [23,24].

Interesting examples of peptide self-replication are provided by prions. These are
a number of metastable proteins, which can be converted to a misfolded insoluble
form. The insoluble form is capable of catalyzing the conversion of soluble prion
protein into the insoluble form. In some cases the insoluble form is infectious and can
be transmitted within and across species giving rise to so-called transmissible
spongiform encephalopathies (TSEs), of which ‘‘mad cow disease’’ (BSE) is the
best known. Intriguingly, prions display heredity in the form of strain and species
specific characteristics, which appear to be encoded in the conformation of the prion
protein [25]. In yeast, these can provide diverse, heritable phenotypes that are
beneficial under certain circumstances. Indeed it has been proposed that prions
may act as an epigenetic switch in yeast and fungi or even as a form of molecular
long-term memory in the nervous system of A. californica [26].

13.4 NUCLEIC ACIDS

In 1953, Watson and Crick published their seminal article on the structure of DNA,
which endswith the now famous understatement ‘‘It has not escaped our notice that the
specific pairing we have postulated immediately suggests a copying mechanism for
the genetic material’’ [27]. Indeed, another 50 years of research into the structure and
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function of DNA (and RNA) have not only confirmed the proposed semiconservative
mode of replication, whereby one strand of DNA acts as a template for synthesis of
the opposing strand (and vice versa), but also has revealed that DNA and RNA are
singularly suited as molecules for information storage and transmission, for replica-
tion and heredity [28]. For one, in nucleic acids, the polyanionic phosphate backbone
dominates the physicochemical properties of the molecule (e.g., solubility) to such an
extent that changes to neither base composition nor sequence have much effect.
In otherwords, in sharp contrast to, for example, proteins, nucleic acids display similar
properties (e.g., solubility) regardless of the sequence, that is, the information encoded
within. Furthermore, charge repulsion along the polyphosphate backbone favors an
extended conformation of nucleic acid polymers facilitating their templating function
in replication and read-out of the hydrogen-bonding pattern at theWatson–Crick face
of the bases. Finally, nucleic acid polymorphism is constrained to essentially just two
apomorphic classes, A andB (there is also a left-handed helix system, Z,which occurs
only under certain conditions and is restricted to alternating purine–pyrimidine (GC)
sequences).

13.4.1 Altered Backbones

A- and B-form nucleic acids arise as a result of the restricted spectrum of furanose
(ribose or deoxyribose) sugar conformations. This relative inflexibility provides a
stable scaffold for the nucleobases and is essential for duplex stability. It is
therefore not surprising that many modifications to backbone chemistry have
led to nucleic acids that are no longer capable of forming stable duplex structures
with either DNA or RNA or themselves. A notable exception is peptide nucleic
acids (PNAs), in which the ribofuranose-phosphate backbone of DNA/RNA is
replaced by N-(2-aminoethyl)-glycine (Fig. 13-4). PNAs can hybridize specifically
and extraordinarily strongly to DNA and RNA making them of significant use in
both antisense and antigene strategies [29]. However, longer PNAs can be poorly
soluble. Nevertheless, PNA can be used in information transfer to DNA and RNA
and it has been proposed that PNA may have been involved in prebiotic evolu-
tion [34–36] (see later).

Figure 13-4 Various nucleic acid backbone modifications have been examined as alternative

genetic systems. These include peptide nucleic acid, cyclohexene nucleic acid (CeNA) and

a-L-threose nucleic acid (TNA).
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Another example is morpholino nucleosides that are neutral analogues of DNA
in which the sugar is substituted by a morpholine ring [30]. They have been shown to
bind well with RNA, and have therefore been a subject for investigation in the field
of antisense therapy [31]. However, they are poor substrates for enzymes, including
RNase-H, and act by a steric-blocking mechanism.

13.4.2 Altered Sugars

Nucleic acid chemists have also synthesized a variety of modifications to the
ribofuranose sugars inDNAandRNA in an attempt tomodifyhybridization properties
and study the determinants ofWatson–Crick-directed duplex formation. For example,
Orgel, Herdewijn, and colleagues have investigated the properties of hexose sugars
and have demonstrated nonenzymatic information transfer from nucleic acids
derived from 1,5-anhydohexitol nucleosides (HNA) [32–34] and altritol nucleosides
(ANA) [35]. A number of other hexopyranosyl- and pentopyranosyl-nucleoside
systems have been studied by Eschenmoser [36]. These systems show a remarkable
spectrum of hybridization properties in not only self-pairing systems but also cross-
pairing with DNA and RNA.

Cyclohexane- and cyclohexene-nucleic acid systems are conformationally flexible
nucleic acid mimics that can hybridize with themselves, DNA and RNA (Fig.
13-4) [37–39]. The self-pairing system is more stable than that with DNA, but is
most stable with RNA. While they are yet to be shown to be of use in information
transfer they are recognized by some enzymes as they can RNase-H activity when
hybridized with RNA, and are therefore of use as antisense agents [40].

Another sugar modification that displays interesting properties is the tetrofur-
anose a-L-threose nucleic acids (TNA) (Fig. 13-4) [41], which forms specific base
pairs with itself, DNA, andRNA. Furthermore, TNA has been shown to be functional
in replacing RNA as part of an RNA cleaving ribozyme, albeit with somewhat
reduced activity [42]. Finally, TNA templates and TNA triphosphates have been
shown to be reasonable substrates for various DNA and RNA polymerises [43–46]
and like PNA has been proposed to be involved in prebiotic evolution (see
Section 13.6).

13.4.3 Altered Bases

For the reasons discussed above, the introduction of alternative base pairing systems
into nucleic acids is much less problematic than alterations to the sugar–phosphate
backbone structure. Such systems would not give rise to alternative nucleic acid
structures, but may be used to introduce alternative or additional information content
into nucleic acids without altering their overall structure. As a result, nucleic acids
comprising modified bases are often better substrates for enzymatic replication. The
challenge here lies in devising alternative systems, which are both orthogonal to the
canonical bases as well as specific in recognition.
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There are limited ways in which such novel base-pairing schemes can be devised.
Nucleobases can be designed that will display altered recognition based on alternative
hydrogen-bonding patterns [47,48], hydrophobic interactions [49], or chelation of a
metal ion [50]. Alternatively, specificity and orthogonality can be achieved using size
and/or steric effects [51,52].

One attractive strategy for forming an alternative base pair is to use twonucleosides
that can form a specific base pair without pairing with any of the natural nucleobases.
One of the first such base pair to be described was that between isocytidine (iC) and
isoguanine (iG), in which the hydrogen-bonding groups of cytosine and guanosine are
inverted. This allows for the formation of a specific base pair with a different donor
and acceptor pattern from that of the natural base pairs (Fig. 13-5). The iC–iG pair has
been shown to be replicated by both DNA and RNA polymerases [53], including in
PCR [54]. One problem associated with this new base pair is that the iG exists in
two different tautomeric forms, the minor of which specifically pairs with thymidine,
leading to a loss of fidelity in replication reactions. Different strategies have been
developed to avoid this. For example, Benner has used 2-thiothymidine instead of
thymidine to prevent mispairing with the minor iG tautomer, as the 2-thio-group does
not hydrogen bond effectively [55], while Seela has shown that the 7-deaza analogue
of iG does form tautomers to a much reduced extent (>103-fold less) [56].

Benner and coworkers have devised a complete set of alternative hydrogen-bonded
base pairs, each ofwhich are held together by three hydrogen bonds and retain the size
and geometry of the canonical base pairs [57]. One of the more advanced pairs is

Figure 13-5 Many novel base pairing systems have been examined as an alternative genetic

coding system. Specific alternative hydrogen-bonding systems can be used in conjunction with

the native base pairs (a) such as py-DAD/pu-ADA (b) and an expanded version of native base

pairs (c). Other systems use hydrogen-bonding and steric effects (d) or non-hydrogen-bonding

self-pairs (e).
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that between 2,4-diaminopyrimidine (py-DAD (py: pyrimidine; D: H-bond donor
(e.g., NH2 group); A: H-bond acceptor (e.g., C¼O group)) and xanthine (pu-ADA)
(Fig. 13-5) [58,59]. The py-DAD/pu-ADA base pair has been shown to be a substrate
for amutant HIV-1 reverse transcriptase, which replicates the new base pair with good
fidelity in the presence of native DNA nucleotides [60].

Kool has examined the effect of size as an alternative genetic base pairing system.
In the most striking example, the natural nucleosides have been redesigned with an
expanded size by incorporation of a phenyl group between the sugar and the hydrogen-
bonding ring [51,61–63]. This size expanded system, termed xDNA (x for expanded)
(Fig. 13-5) or yDNA (y for wide), retain the features of regular DNA, such as
Watson–Crick base pairing and right-handed helicity, but possess an expanded
diameter when in a double helix [64]. When xDNA nucleosides are incorporated
into regular duplex DNA there is distortion of the backbone due to the increased size
of the base pair (2.4A

�
) [65], but a duplex comprised solely of xDNA shows enhanced

stability compared to DNA due to enhanced stacking interactions [66,67]. xDNA and
yDNA represent two novel genetic systems, possessing many of the features found
in regular DNA, but their expanded sizes should make them distinct from DNA.

A further method for developing a new base pair is an analogue that preferentially
forms a self-pair. This class of analogue tends to be planar, aromatic, and non-
hydrogen bonding, yet they can still be recognized by cellular enzymes, such as
polymerases. There are a number of such analogues reported. Romesberg, Schultz,
and coworkers have synthesized a number of analogues such as 7-azaindole (7-AI),
propynylisocarbostyrile (PICS) (Fig. 13-5) as well as some fluoroaromatic analo-
gues [68] and evaluated them as potential self-pairing nucleosides [69,70]. Various
of the analogues prepared are also recognized with reasonable selectivity by DNA
polymerases [49,68,71].

One of the most highly developed systems of novel, specific base pairing has been
designed by Hirao and Yokoyama, who used steric effects to design various novel
base pairs, two of which were found to be compatible with various cellular events.
The systems they devised replaced the pyrimidine base with a pyridone and the
purinewith aC6-modified diaminopurine (Fig. 13-5), and retained hydrogen-bonding
capability [72,73].Thepyridonewill not formstablebasepairswith thenatural purines
while if the purine base pairs with thymine it will be destabilized by a steric clash
between the pyrimidine O4 and the purine C6 modification (Fig. 13-5). These
analogues have been shown to form specific base pairs and to be recognized by
DNA polymerises [74,75], RNA polymerises [52,76–79] and in translation, allowing
the site-specific introduction of an unnatural amino acid in vitro [80].

13.5 NUCLEIC ACID SELF-REPLICATION

13.5.1 De Novo Synthesis of Nucleic Acid Polymers

In 1954, physicist George Gamow founded the RNA-tie club with a group of 20
scientists (one for each of the naturally occurring amino acids) whowere interested in
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the function of RNA. One of the original members of this group, Leslie Orgel, has
carried out significant studies in the field of self-replicating systems, and aspects of his
work are discussed in this chapter. Over the following years the relationship between
nucleic acids and proteins became better understood, but scientists such as Orgel
started to ask questions about the origins of life and in particular about the prebiotic
synthesis of nucleic acids.

While self-replication requires a template molecule to start from, these had to be
first generated de novo from precursor molecules. Ferris et al. [81–84] have investi-
gated the de novo synthesis ofRNApolynucleotides on common clayminerals such as
montmorillonite as amodel for prebiotic synthesis. Itwas shown thatmononucleotides
activated as phosphoro-imidazolides would react with other nucleotide polypho-
sphates, for example, triphosphates, to form predominantly 30, 50-linked oligonucleo-
tides in the presence of montmorillonite clay with a rate enhancement of 1000-fold
compared to the absence of montmorillonite. It has also been shown that oligonucleo-
tide 50-polyphosphates (including triphosphates) can be formed from polynucleotide
monophosphates and sodium trimetaphosphate [85]. Thus, a feasible mechanism
for the synthesis of the original RNApolynucleotides has been described.Much of the
further work carried out to investigate template-directed self-replication nevertheless
makes use of 50-imidazole-activated nucleotides as they are more reactive derivatives
for the synthesis of oligo- and polynucleotides.

13.5.2 Template-Directed Synthesis of Nucleic Acids

Orgel et al. [86] have been involved in a majority of the work in the field of
nonenzymatic template-directed synthesis of oligonucleotides. Early work from
this group demonstrated that random copolymer RNA templates could be used to
replicate RNA in solutionwithout the need for an enzyme or catalyst over several days
and at highMg2þ concentrations (Fig. 13-6).These reactions are template-dependent,
and under the reaction conditions AT base pairs are formed much less efficiently than
GC pairs. Under these conditions, oligonucleotides in the range of 20–30 nucleotides
can be produced over a period of 1 week. Analysis of the products demonstrated that
there is a mixture of 20,50- and 30,50-linkages, with the 20,50-linkages predominating.
This is probably due to the fact that the 20-hydroxyl group is six to nine times more
reactive than the 30-hydroxyl group [87,88]. Synthesis of DNA using a DNA template
and activated deoxynucleotides is much less efficient, and it has been reported that
some sequences cannot be copied [89].

Szostak has studied the nonenzymatic template-directed ligation of oligoribonu-
cleotides and shown that there is a dependence for binding tometal ions before ligation
can occur [90]. A series ofmetal ionswere assayed andMn2þ andMg2þ ions aremost
efficient for catalysis while Pb2þ and Zn2þ ions do not. They also demonstrated that
thenonenzymatic ligationproceedswithapreferencefor30–50 phosphodiester linkages
in preference to 20–50, though it is dependent on the ligation chemistry (imidazolide or
triphosphate) [91]. The preference for 30–50 linkages is in contrast to that reported by
Orgel, who reported a preference for 20–50 linkages for template-directed replication,
suggesting that the type of linkage obtained may be sensitive to reaction conditions.
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The above examples describe nonenzymatic synthesis of the complementary (�)
strand of oligonucleotides templated by the (þ ) strand. For autocatalysis to occur,
it is required that the two strands ((þ ) and (�)) separate and the (�) strand
templates the re-synthesis of the (þ ) strand. The first example of such a truly self-
replicating system was described by von Kiedrowski [92]. In this work, two
trideoxynucleotides leading to a hexameric palindromic template were used,
each trideoxynucleotide was 30-protected to prevent elongation beyond a hexamer
sequence. Initial coupling was carried out using a water-soluble carbodiimide
(EDC) under conditions that led to the hexamer template rather than pyrophosphate
dimer. Once formed, the product serves as template for further self-replication, and
being palindromic, both (�) and (þ ) strands are formed in the same reaction
(Fig. 13-7). As noted above, a possible product from the EDC-mediated coupling
reaction is an oligodeoxynucleotide with an internal pyrophosphate linkage. Such

Figure 13-6 Nonenzymatic template-directed synthesis of RNA involving activated nucleoside

monophosphates.

Figure 13-7 The first example of an autocatalytic system was described by G€unter von

Kiedrowski involved carbodiimide coupling of two trideoxynucleotides leading to a hexameric

palindromic template. Once formed, the product serves as template for further self-replication,

and being palindromic both (�) and (þ ) strands are formed in the same reaction.
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modified oligodeoxynucleotides have been examined as substrates for self-repli-
cation and shown to still carry out sequence-dependent autocatalysis despite the
phosphate modification [93].

Similar autocatalysis was observed for the synthesis of palindromic oligodeoxy-
nucleotides using EDC-mediated formation of a 30–50-phosphoramidate linkage
between the two trimer building blocks [94,95]. The kinetics of self-replication has
also been studied using fluorescently labeled tetramers by measurement of FRET
[96]. Another autocatalytic system has been described by Nicolaou [97] for the
synthesis of longer (24mer) duplex palindromic polypurine/polypyrimidine DNA.

The early work by vonKiedrowski involved the replication of self-complementary
sequences while natural replication involves the replication of complementary
sequences. Using the previous system of chemical ligation of trimers, a minimal
system for the synthesis of complementary replication has been described based on
cross-catalytic template-directed synthesis using phosphoramidate linkages [98,99].
Two self-complementary and two complementary templates compete for four
common trimeric precursors, and evidence was obtained to show that cross-catalytic
self-replication of complementary sequences occurs with an equal efficiency to
autocatalysis of the self-complementary sequence.

A common problem with replication by these systems is product inhibition,
whereby the product dimer does not efficiently dissociate. As a result of this, there
is parabolic rather than exponential amplification, and exponential amplification is
a dynamic prerequisite for Darwinian selection. Using a system-denoted SPREAD
(surface-promoted replication and exponential amplification of DNA analogues)
exponential amplification was achieved by using a step to liberate the daughter
strands from the template and cycling the amplification process [100]. More recent
work by von Kiedrowski describes the self-assembly of three-dimensional DNA
nanoscaffolds as a step toward artificially self-replicating systems on a nanometer
scale [101,102] (see Section 13.10).

13.6 RNA SELF-REPLICATION: THE RNA WORLD

The emergence of a polymer (such as RNA) capable of self-replication, mutation, and
hence evolution toward more efficient self-replication, represents an attractive and
plausible concept for the origin of life. Several strands of evidence support the
concept of such an ‘‘RNA’’ world, whereby RNAwould serve as both genetic material
as well as catalyst, preceding modern biology. These include aspects of modern
metabolism (such as nucleotide cofactors, genetic control (self-splicing introns [103],
riboswitches [104]), andmost strikingly protein synthesis [105–107] that involve RNA
and may thus represent relics from the ‘‘RNAworld.’’ The versatility of RNA to serve
asbotha receptorandcatalysthasbeen furtherunderlinedby thewide rangeofactivities
documented innaturally occurringRNAreceptors and ribozymesaswell as in the ready
evolution of novel activities using in vitro evolution methods like SELEX [108].

Despite its catalytic and conformational versatility RNA seems a somewhat
perverse choice as the primordial genetic material, because it appears to be both
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difficult to synthesize and extremely unstable under presumed prebiotic conditions.
This has led some to propose a ‘‘pre-RNAworld,’’ which utilized other polymers such
as PNA (in which the ribofuranose-phosphate backbone is replaced by an achiral
peptide backbone) or TNA (in which the ribose is replaced by a tetrofuranose), which
were superseded by RNA at a later stage. Both PNA and TNA can form stable helices
with RNA (and DNA) and interpolymer genetic information transfer should thus
be possible. Indeed, it has been shown that information can be transferred non-
enzymatically between PNA and DNA [109], DNA and PNA [110] and PNA to
RNA [111]. Using ‘‘Therminator’’ polymerase, it has been shown that TNA strands up
to 80-nucleotides long can be synthesized from a DNA template with good fideli-
ty [46,112]. Orgel and coworkers have also examined other nucleic acid systems and
found that nucleosides containing 1,5-anhydrohexital (HNA) can be used in place of
ribose to carry out templated nonenzymatic replication [32,33]. The information
transfer of HNA to RNA requires the formation of an A-form product and therefore
information transfer to DNA is inefficient [34]. The templating of information with
hexose sugars is even more efficient when the 1,5-anhydrohexital sugar is replaced
by altritol (ANA, HNA that has an additional hydroxyl group) [35]. TNA appears the
most attractive pre-RNApolymer as longPNAstrands suffer from solubility problems
due to the uncharged nature of the polypeptide backbone. Nevertheless, it remains to
be seen if TNA displays similar versatility as a receptor and catalyst as RNA.

The case for RNA has recently been further strengthened by the discovery of long
RNA polymers in eutectic ice phases [113,114], the stabilization of ribose by borate
evaporates [115], the selective uptake of ribose (compared to other aldopentoses) by
phospholipid and fatty acid vesicles [116] and the sequestration of enatiomerically
pure D-ribose from a prebiotic mixture [117]. The latter is especially significant
as the presence of small amounts of L-enantiomers of nucleosides effectively
poison chain elongation in templated nonenzymatic RNA synthesis using the natural
D-enantiomer [118].

13.6.1 The Search for an RNA Replicase

A cornerstone of the ‘‘RNA world’’ hypothesis is that there exists somewhere in
sequence space a ribozyme replicase capable of self-replication. Indeed a number of
naturally occurring as well as selected ribozymes display some ability for self-
replication, most notably through assembly and enzymatic ligation of oligonucleo-
tides [119]. Indeed, recently a self-replicating ligase ribozyme was described that
directed its own assembly from constituent parts, and in an initial phase displayed
true exponential growth [120]. This report demonstrates the potential of the approach
toward a self-replicating system. However, because of the need to provide presynthe-
sized oligonucleotide substrates and the need to retain substantial base-pairing with
the ligase, the ability of such system to evolve is restricted. More complex, multi-
component self-ligation networks [95,121] may allow the inclusion of sufficient
molecular diversity for some evolution to proceed.

A more general self-replication capability may be achieved by the use of shorter
oligonucleotide substrates, ideally activated nucleotide precursors such as the
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nucleotide triphosphates (NTPs) utilized by modern polymerases. Intriguingly, both
natural as well as evolved ribozymes have been shown to display weak primer
extension ability using NTPs as substrates [122]. In ground-breaking work, Bartel
and colleagues have evolved the primer extension capability of one such ribozyme, the
R18 replicase, to the point where template-directed replication of up 14 nucleotides is
possible [123]. As the R18 ribozyme is about 180 nucleotides long, an increase of
processivity of a little more than one order of magnitude, should bring true self-
replication within reach.

However, self-replication must proceed with a degree of fidelity, as defined by the
‘‘error threshold,’’ abovewhich genetic information encoded in the replicasewould be
irretrievably corrupted. An extensive theoretical framework on error threshold has
been developed but it is unclear to what extent these can be applied to the practical
case of an RNA replicase ribozyme. For example, the R18 replicase does appear
to display fairly substantial template-dependent differences in processivity and
fidelity [124,125], making it difficult to assign a meaningful overall mutation rate.
While a recent study indicates that ribozymes in general may have an ‘‘relaxed error
threshold’’ and thus be able to tolerate higher mutation rates than previously
assumed [126], a number of in vitro evolution studies suggest that the class I ligase
core (on which the R18 replicase is based) is rather resistant to mutation [108,127].
This may indicate that it represents a structure close to an evolutionary optimum,
suggesting that at least half of the R18 replicase might be rather sensitive to poor
fidelity in self-replication.

13.7 COMPARTMENTALIZATION: TOWARD THE DESIGN
OF A SIMPLE CELL

For Darwinian evolution to proceed a putative replicase needs a form of ‘‘genetic
packaging’’ such as confinement inside a compartment or at the very least spatial
colocalization, for example, on the surface of mineral grains. Without such diffusion-
limitation a replicase would fruitlessly replicate unrelated (and most likely inactive)
sequences and eventually disappear from the sequence pool. Theoretical studies have
also shown that limited diffusion aids replicase evolution by limiting the spread
of replication parasites [128]. Physical proximity of a replicase to its ‘‘offspring’’ thus
ensures both the growth and spread of the self-replicating entity as well as preventing
takeover by fast-replicating ‘‘parasites.’’

13.7.1 Vesicles

Compartmentalization can potentially occur in many forms. An attractive format is
vesicles comprising a bilayer of amphiphilic lipids. Such vesicles form spontaneously
upon mixing of the constituent lipids with an aqueous solution. Some clay minerals,
which promote the synthesis of polynucleotides from activated precursors, have
been found to also catalyze the formation of vesicles. Szostak, Luisi, and colleagues
[129,130] in particular have shown that vesicles comprising fatty acids as their main
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constituents can display both autocatalytic growth aswell asmultiple cycles of growth
and division. The fluid bilayer membrane also allows ready exchange of small mole-
cules across membranes and this can drive competition for limited resources, as
vesicles containing a larger amount of an osmotically-active compound (e.g., RNA)
grow in size at the expense of others. Permeability is related inter alia to the length of
the aliphatic chain and is thus in principle, controllable, with longer aliphatic chains
leading to progressively less fluid, less permeable membranes [131]. Ribozyme acti-
vity [132], DNA as well as RNA replication [131,133], long-lasting transcription and
translation [134] and even a two-stage genetic cascade have been demonstrated in
vesicles (Fig. 13-8).Vesicles are therefore potentially attractive formats for a synthetic
protocell.

From a synthetic biology perspective of engineering a suitable protocell, one of the
problems that remain to be solved is that of cell reproduction. While vesicles made
from hydrolyzable surfactants can be made to reproduce (whereby hydrolysis gen-
erates building blocks to form new vesicles) and vesicle fission and budding can be
induced by application of physical and chemical forces [130], such replication is
largely independent of vesicle content.

13.7.2 Emulsions

Although unlikely to have been relevant in prebiotic evolution, from a synthetic
biology perspective an alternative format for a protocell may be based on emulsions.
Emulsions are heterogeneous and, in general, metastable mixtures of two immiscible
liquid phases with one of the phases dispersed in the other as droplets of microscopic
size. Emulsions may be produced from any suitable combination of immiscible
liquids by stirring, homogenization, or through microfluidic methods [135]. For the
construction of a protocell so-called ‘‘water-in-oil’’ (W/O) emulsions are preferable,
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Figure 13-8 Compartmentalization in (a) vesicles and (b) water-in-oil emulsions. Both systems
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in which the disperse, internal phase forms a suspension of cell-like, aqueous
‘‘droplets’’ within an inert hydrophobic liquid matrix. Nevertheless, a O/W design
for a protocell has been proposed [136], in which the genetic material (made from
the neutral DNA analogue, PNA) is contained within lipid droplets suspended in an
aqueous phase.

As with vesicles, cell-like aqueous compartments formed in W/O emulsions
support various enzymatic reactions including coupled in vitro transcription and
translation [137,138], as well as DNA replication and PCR [139] (Fig. 13-8). The size
of aqueous compartments can readily be controlled by varying emulsion composition
and mechanical energy input (between 70 nM [140] and 150 mM [141]). Just like
vesicles, emulsions are also remarkablypermeable to smallmolecules suchas solvated
ions and (at high temperatures) even nucleoside triphosphates [139]. Reagents can
also be delivered to emulsion compartments in a controlled way using nanoemul-
sions [142]. However, even after prolonged exposure to high temperatures there
appears to be little, if any, exchange of polypeptides or nucleic acids (>30 bp) between
compartments [139].

13.7.3 Compartmentalized Evolution

In vitro compartmentalization (IVC) in emulsions allows a stable linkage of genotype
andphenotype [137] and this has been exploited for invitro evolution. IVChas allowed
the evolution of DNAmethylases with altered substrate specificity [143], a super-fast
phosphotriesterase [144] aswell as novel ribozymes [127,140]. Emulsions can also be
used to segregate self-replication reactions. Compartmentalized self-replication
(CSR) exploits this for the directed evolution of polymerases [139]. In CSR, poly-
merases catalyze the replicationof their ownencodinggene.As a result, adaptivegains
by thepolymerases translate directly intomoregenetic ‘‘offspring’’ (i.e.,more efficient
self-replication). Due to this positive feedback loop, the genes encoding polymerases
that are well adapted to the selection conditions (and therefore capable of efficient
self-replication) will increase in copy number while genes encoding poorly adapted
polymerases will disappear from the gene pool.

CSR has allowed the directed evolution of polymerases with increased thermosta-
bility, inhibitor tolerance or a generically expanded substrate spectrum [139,145].
CSR may also be regarded as a simple test bed for self-replication. For example, a
classic outcome of in vitro replication experiments is an adaptation of the template
sequence toward more rapid replication [146]. This typically takes the form of
truncation as well as mutation and (in solution) invariably gives rise to (often heavily
truncated) ‘‘replication parasites,’’ which have lost much of the genetic information
encoding the original phenotype but are optimized for replication speed. Such
parasites arise frequently, for example in PCR amplifications (primer dimers) or
in vitro evolution experiments [147]. While template evolution appears to occur in
CSR through silent mutations reducing GC content facilitating strand separation and
destabilizing secondary structures [139]. However, template truncation was not
observed (despite the considerable size of the Taq gene (2.5 kb)). Presumably, this
is due to both the strong phenotypic selection in CSR as well as the effect of
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compartmentalization, which limits the spread of parasites to the compartment, where
they occur (e.g., see Ref. 128). For a self-replicating RNA replicase, template
evolution (e.g., through mutations that destabilize secondary structures) may be a
mixed blessing and requires a trade-off between structural stability of the replicase
structure itself and its replicability.

A wide range of other forms of compartmentalization (or diffusion limitation)
are imaginable that may have played a role in prebiotic replication. These include
the surface of fine particulate matter or in porous minerals (e.g., clays such as
montmorillonite; see Section 13.5.2), eutectic ice phases [113], or aerosol droplets
in the atmosphere [148].

13.8 IN VIVO REPLICATION

All of the examples discussed so far involve ex vivo designs of self-replicating entities.
However, for various applications itmay be desirable to consider invading present-day
biological systems with self-replicating species. These already exist of course in
biology in the formof plasmids, viruses, and so on; however, these interact extensively
with the host organism. One concern when building synthetic devices is both their
potentially toxic effect on host biology, as well as the possible interference of host
cellular functions with the operation of the device.

In order to escape such interference one may ask, if it would be possible to build
synthetic self-replicating circuits that are capable of operating independently from
the rest of the cell. Such orthogonal episomes would carry their own polymerases
for specific replication and transcription ‘‘on board’’ (in analogy to many viruses) but
would still be subject to recombination, mutation, and degradation by the host genetic
machinery. It might therefore be advantageous to consider synthetic episomes that are
orthogonal in composition as well as replication. Such episomes would comprise
unnatural nucleic acids (XNA) and thus would be isolated from the host genetic
machinery by chemical, steric, or semantic differences.

The requirements for such a systemparallel inmanyways those for the polymers of
a ‘‘pre-RNA’’ world, requiring the ability of cross-talk and mutual interconversion
(transliteration) between ‘‘XNA’’ andDNA/RNA (Fig. 13-9). A design for an artificial
genetic system might therefore be preferably based on an alternative backbone
structure. This has the potential benefits of providing orthogonality, that is, synthetic
and functional isolation within the cell (as altered backbone chemistry precludes
utilization by the cellular genetic machinery) without altering the coding potential
of the nucleic acids. In other words, a genetic entity constructed this way may be built
from precursors that are sufficiently different from the natural nucleosides that they
cannot be utilized by the pre-existing genetic machinery of the cell (replication/trans-
cription/translation) and therefore do not give rise to toxicity while at the very same
time are able to communicate with it. Interestingly, just such a scenario has recently
been put forward for the origin of DNA. It proposes that such an orthogonal nucleic
acid with a modified backbone (DNA) was ‘‘invented’’ by viruses infecting riboorgan-
isms of the RNAworld in order to avoid cellular defenses (e.g., RNAses) [149].
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An alternative strategy, for which there are no known precedents in nature,
would be steric orthogonality, which may be based around the expanded DNA
(xDNA, yDNA) described by the Kool laboratory at Stanford (see Section 13.4.3).
Because the base-pairing is not altered, x, y DNA are still capable of base-pairing
with DNA and RNA but forming double helices with an expanded diameter and
higher stability due to the increased stacking of the expanded bases [62,66]. Finally,
orthogonality might simply be semantic in that genetic information encoded in such
a way that it is ‘‘meaningless’’ to the cellular host, unless specific transliterases are
provided.

A potentially important advantage of such systems could be safety. As these
transgenes would be based around nucleic acid chemistry not present in nature its
function and transmission will be entirely dependent and controlled by the supply of
orthogonal precursors. Among other things, this will provide a novel and complete
control of genetic safety issues as the propagation and inheritance of ‘‘foreign’’ genetic
material in a transgenic organismcanbe simply turnedoffand the transgeneexcisedby
removing the supply of precursors.

13.9 MOLECULAR DEVICES AND AUTOMATA

Unlike any other molecule DNA affords ready control over intermolecular associa-
tions. DNA molecules associate according to well-understood rules of complemen-
tarity providing a diverse and programmable system, with known structures and
a high degree of control over molecular interactions. DNA is thus increasingly
recognized as a material of choice for self-assembling ‘‘bottom-up’’ nanostructures
and nanodevices [150].
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For example, using stable branched structure in conjunction with ‘‘sticky end’’
cohesion has allowed the generation of, for example, DNA cubes and octahedrons as
well as two-dimensional DNA arrays some of which can be used for computa-
tion [150]. However, the conformational flexibility of DNA also lends itself to the
construction of multistate devices with a flexible response to the input conditions.
For example, Seeman and colleagues have constructed a nanomechanical device,
which exploits the structural transition between the canonical right-handed B-DNA
and left-handed Z-DNA in [CG]n-rich sequences in response to high salt concentra-
tions [151]. Thus, the device translates on input signal (ionic strength) into an
observable fluorescence signal through fluorescence resonance energy transfer
(FRET) differences of the two states. Other devices include DNA tweezers [152],
rotary motors [153], walkers [154], and even a translation machine [155].

A different class of DNA devices has been built around cycles of ligation and
cleavagewith a type II restriction enzyme. Shapiro, Benenson and colleagues showed
that this allowed the construction of DNA-based finite-state automata capable of
autonomouscomputation at themolecular level [156].One suchautomatonwas shown
to be able to analyze invitro the levels of several RNAs involved in prostate cancer and
compute an appropriate response, that is, release of an antisense molecule [157]
offering the prospect of programmable, logical control of biological processes at the
molecular scale.

Thesedevicesare assembledandsometimespoweredbyoligonucleotide fragments
and thus their topologies are not amenable to replication. However, different topologi-
cal designs arepossible. In a striking example, Joyceandcolleagues recently described
a single-stranded 1.7-kbDNA sequence that folds into a octahedron in the presence of
short DNAoligonucleotides [158]. In conjunctionwith engineered polymerases [159]
this offers the future prospect of replicable nanostructures endowed with expanded
chemical capabilities and amenable to iterative cycles of replication, mutation and
selection, bringing directed evolution to nanotechnology and material science.

13.10 CONCLUSION

For synthetic biology, self-replication should be a long-term goal for the engineering
ofmaterial devices.While the construction and implementation of circuits anddevices
in vivo (i.e., in extant biological systems) provides for self-replication as part of the
reproduction of the organism, self-replication ex vivo or as part of a whole synthetic
quasibiotic entity (e.g., a synthetic cell) may have a number of long-term advantages.
For one, it may remove some of the unpredictability and instability that can be a
consequence of integrating new functionalities into the cellular network [160].
Furthermore, the design and fabrication of synthetic conduits for self-replication
promises significant insights and advances in understanding of the transition from
prebiotic to biotic matter and the early evolution of life. Finally, self-replication as
applied to the emergent technologies such as DNA nanotechnology and molecular
automata [161] promises decisive reductions in manufacturing costs as well as
bringing the potential of Darwinian evolution to nanosensors and molecular devices.
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14.1 INTRODUCTION

14.1.1 Motivation for Synthetic Approach to Biology

The study of biology and gene regulation has traditionally been conducted using a
reductionist approach, where a complex system of biomolecules is reduced to smaller
units and each component is individually investigated. These smaller units, however,
are always connected in vivo to form a network of interacting molecules, thus, the
overall properties of the network are rarely the sum of its individual parts. Network
connectivity and topology, as well as biochemical properties of individual compo-
nents, are therefore required to completely describe the behaviors of an organism.

While the reductionist approach aims to determine the biochemical properties of
each individual component, the systems approach focuses on elucidating network
connectivity. Although these two complementary approaches hold significant promise
for characterizing the behavior of biological systems, they often do not readily yield the
design principles behind the complex networks. Due to millions years of evolution,
existing intracellular networks are complicated by many auxiliary circuits that may
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mask the basic design principle of the system. Therefore, to deduce fundamental
principles by illuminating each component in the modern-day cell is as difficult as
rediscovering fundamental laws of physics by disassembling an automobile. In an
alternative approach, dubbed the synthetic approach, hypothetical operating principles
are generated and then tested using artificially synthesized networks. The design
approachmay avoid second-order functions that are not important for the first principle.
Furthermore, synthetic networks are not limited by natural biological systems, provid-
ing a wider range of test conditions.

Thesyntheticapproachisinitiatedbyeducatedcreativity,muchlikethedesignofany
engineeringsystem.Atthisstage, theprinciple is inspiredbyphysicalandmathematical
insights, but constrained by biological and chemical realities. A prototypemathemati-
calmodel that serves as a conceptualblueprint isuseful andoftennecessary.Whensuch
a prototype model is constructed, each component needs to be implemented by
biological elements. The proper biological components such as promoters, regulators,
enzymes, andmetabolites are then identified to fulfill design specifications.Finally, the
network is ‘‘reconstituted’’ inside the cell to test the properties of the system.

The creation of artificial systems also allows exploration of potential applications
that are not displayedbynatural design.Anexampleof such application is thedynamic
metabolic feedback loop [1] that addresses the fundamental challenge in metabolic
engineering of maintaining a balance of the cell’s resources, specifically between cell
growth and metabolite production. In this circuit, a synthetic feedback controller was
constructed in Escherichia coli that allows for gene expression of the key enzyme
in lycopene production pathway to be under the control of a metabolite, acetyl-
phosphate.When grown in glucose,E. coli produces acetate, ametabolic waste, when
the tricarboxylic acid cycle (TCA) is no longer able to accommodate the incoming
glycolytic flux. Acetate production also serves as an indication that the cells have
sufficient energy and material resources and therefore represents a prime opportunity
to shift cellular resources from cell growth toward the production of metabolites.
When the level of acetate increases, its precursor, acetyl-phosphate, would also
increase and activate the production of lycopene (Fig. 14-1).

The network synthesis approach is analogous to in vitro protein reconstitution
commonly performed in the fields of biochemistry andmolecular biology. Instead, the
network is reconstituted in vivo by the selection of the proper genetic and metabolic
components. A design flow diagram is illustrated in Figure 14-2. This approach has
also been generalized to cell-free systems [2]. The design principle tested using the
synthetic approach may or may not be used in real life. However, these principles
provide focal points to search for similar designs in the cell and to examine the gap
between theoretical prediction and biological reality.

14.1.2 Challenges in Synthetic Biological Circuit Design
and Construction

The design of synthetic biological circuits shares many similarities with engineering
constructions, but faces a major complication in the form of biological uncertainties.
These uncertainties are manifested at two levels. First, the lack of detailed kinetic
parameters for biological elements prevents the precise prediction of network
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behavior. Second, the interaction of thesemoleculeswith other cellular components is
even less characterized, which causes additional difficulties. Constructions of syn-
thetic circuits are therefore challenging and often iterative. Efforts have been made to
expedite the construction process through combinatorial synthesis [3], directed
evolution [4], and the creation of standardized biological parts [5]. Nevertheless,
several synthetic circuits have already been demonstrated, which provide valuable
insights into the design principles of biological networks [3,6–10]. Most of the recent
synthetic circuits are reviewed in other chapters. The focus of this review is on
oscillation, intercellular communication, and their interaction with metabolism.

14.2 BIOLOGICAL OSCILLATORS

Figure 14-1 Dynamic metabolic feedback controller. (a) As cells grow on glucose, metabolic

waste product, acetate, and it precursor acetyl-phosphate, accumulates. To divert cellular resour-

ces toward metabolite production when acetyl-phosphate accumulates, the limiting enzymes of

the metabolic pathway are placed under the control of glnAp2 promoter. The glnAp2 promoter is

activated by the phosphorylated form of NRI and acetyl-phosphate phosphorylates NRI in the

absent of NRII [1]. (b) Production of lycopene, a reddish compound, with and without the controller.

Oscillation is a fascinating and an important phenomenon displayed by biologi-
cal systems. Biological oscillators are ubiquitous circuits with a wide range of
frequencies. They are found in numerous organisms, such as bacteria, plants, insects,
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and mammals. Oscillation also governs numerous vital processes such as global gene
expression and cell cycle.Disruptions to circadian rhythm circuits, an oscillatorwith a
1-day period, have been demonstrated to cause sleep disorders and have also been
linked to alcohol [11] and drug abuse [12,13] in mammals. Therefore, understandings
of biological oscillators can have far-reaching medical and social implications.

Althoughmanymolecular details of biological oscillators have been determined in
recent years, the network properties of these oscillators remain elusive. To gain further
insight into the design principles of biological oscillators, three synthetic oscillators
have been demonstrated so far, each of which is based on a conceptual idea that serves

Figure 14-2 Process flow diagram for the design and construction of synthetic biological

circuits. As with many engineering projects, the first step is to generate a conceptual design.

Biological components are then identified and mathematical models are constructed. After

analyzing the feasibility of the concept, the design is implemented inside the cells. Due to

uncertainties associated with biological systems, implementation of synthetic circuits tends to

be iterative. Efforts are being made to create standardized parts and infrastructures to reduce

uncertainties [5].
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as a design principle. The first two are isolated modules that do not interact with
metabolism, but demonstrate the idea of oscillation at the transcriptional level. The
third oscillator integrates gene expression with metabolism to drive the oscillatory
circuit. Theoretical discussions of biological oscillation have been sufficiently
reviewed by others [14,15].

14.2.1 Synthetic Oscillators

14.2.1.1 Three Mutually Repressible Transcription Factors and Promo-
ters Form an Oscillator The first synthetic biological oscillator to be con-
structed is the ring oscillator, termed the repressilator, by Elowitz and Leibler [16].
This oscillator involves three mutually repressible promoters that regulate the
expression of the three repressors. Repressor 1 inhibits the expression of repressor
2, and similarly repressor 2 inhibits the expression of repressor 3. Finally, repressor 3
inhibits the expression of repressor 1 to complete the circuit (Fig. 14-3a). The final
construct used LacI as repressor 1, TetR as repressor 2, and l cI as repressor 3. Aswith
every oscillator design, not all parameters of the individual components will lead to
oscillation. This is wheremathematical analysis and intuition can be helpful. Through
modeling, Elowitz and Leibler determined that components property such as tightly
regulated promoters and shorter protein half-lives can improve the likelihood of
oscillation. Hence, promoters were chosen to minimize ‘‘leakiness’’ when fully

Figure 14-3 Schematic network diagram for (a) repressilator, (b) Ninfa–Atkinson clock, and

(c) metabolator. See text for more detailed descriptions.
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repressed and degradation peptide sequences were added to each repressor to reduce
the half-life of the proteins. To observe the response of the repressilator, green
fluorescence protein (gfp) was placed under the control of one of the promoters.
This system was not designed to be synchronized and therefore the oscillation
dynamics can only be observed at the single-cell level. The period of the repressilator
is approximately 150min with 40 percent of the cells exhibiting oscillation.

14.2.1.2 A Predator (lacI)–Prey (glnG) Pair of Regulators Exhibit
Oscillation Atkinson et al. [17] later designed a synthetic oscillator
(Fig. 14-3b)with a dramatically longer period of 10–20 h and the oscillation dynamics
that can be observed in a continuous culture. The conceptual design is reminiscent of
the one proposed by Barkai and Leibler [18], which is inspired from observations of
naturally occurring oscillators. In this oscillator design, an activator enhances its own
gene expression and the expression of another regulatory protein that inactivates the
activator. Through simulation, this design consisting of a positive element coupled
with the negative element was determined to be relatively noise resistant. The actual
design created by Atkinson et al. is slightly different from the one proposed by Barkai
and Leibler. This oscillator involves a positive regulator (NtrC) that activates its own
expression and the expression of a repressor (LacI). Instead of antagonizing the
activity of NtrC, LacI represses the gene expression of NtrC. The activator, NtrC, can
be regarded as a prey that ‘‘feeds’’ into the predator LacI, which decreases the
population of the prey. Again, the authors relied on both conceptual reasoning and
mathematical modeling in their selection of the appropriate biological components.
The repressor, LacI, was placed under the control of glnK promoter. The activator,
NtrC, which is a part of a two-component system involved in the nitrogen starvation
response, was placed under the control of a modified glnAp2 promoter that contains a
LacI-binding site (Fig. 14-3b). Both glnAp2 and glnK promoters are positively
activated by NtrC, but the glnK promoter requires higher levels of activated NtrC
to be fully induced when compared to the glnAp2 promoter. The design by Atkinson
et al. did not involve anydegradation sequence and the experimentswere performed in
a continuous bioreactor under constant cell density condition (turbidostat). This
oscillator amazingly displayed oscillation dynamics at the population level, even
though the oscillation was dampened. The synchronization is probably due to the
exposure of IPTG before the experiment, which sets all the cells to the same states.
However, it is unclear how this circuit maintained synchronization throughout the
experiment.

14.2.1.3 Two Interconverting Pools of Metabolites with Nonequilibrium
Fluxes Display Oscillation Naturally occurring oscillators found in many
organisms rarely operate independently from the rest of the cell’s physiology. In
fact, the oscillators are usually linked to the global regulation of gene expression and
metabolism. As mentioned earlier, circadian rhythms can regulate alcohol and drug
intake. Conversely, alcohol intake can also affect the function of the circadian
rhythm [19–22]. This intimate relationship between intracellular oscillators and the
environment is a critical property of natural oscillators, which allows the circuit to
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sense and respond to environmental changes. The work by Fung et al. [23] mimicked
this property by integrating genetic oscillators into the central metabolism of E. coli.

The integrated gene andmetabolic oscillator byFung et al., termed themetabolator,
consists of a flux-carrying networkwith two interconvertingmetabolite pools (M1and
M2) catalyzed by two enzymes (E1 and E2), whose expressions are negatively and
positively regulated byM2, respectively. In the first stagewhere theM2 level is low,E1
is expressed, while E2 is not. A high-input metabolic flux converts M1 toM2 rapidly.
The accumulation of M2 represses E1 and upregulates E2. When the backward
reaction rate exceeds the sum of the forward reaction rate and the output rate,M2 level
decreases and M1 level increases. E1 is then expressed again and E2 is degraded,
returning to the first stage. On the other hand, if the input flux is low, M2 will not
accumulate quickly enough to cause a large swing in gene expression, and thus a stable
steady statewill be reached. This design allowsmetabolism to control gene expression
cycles, a characteristic commonly seen in circadian regulation.

The experimental design is realized with the promoter glnAp2 controlling
two genes, lacI and acs (encoding acetyl coenzyme A synthetase) (Fig. 14-3c).
Phosphotransacetylase (Pta), a reversible enzyme that catalyzes the conversion of
acetyl coenzymeA (AcCoA) to acetyl phosphate (AcP), is placed under the control of
the lacO1 promoter. The lacO1 promoter is a synthetic promoter designed to reduce
the leakiness of gene expression when repressed, while maintaining a large dynamic
range of protein expression. To obtain readout of the circuit, a green fluorescence
protein is placed under the control of another LacI repressible promoter. All proteins
were fused to an ssrA degradation peptide to reduce their half-lives. The promoter
glnAp2, in the absence of NRII (a bifunctional protein kinase/phosphatase regulation
involved in the nitrogen starvation response), can be activated by AcP [1]. Here
AcCoA corresponds to M1, AcP corresponds to M2, Pta corresponds to E1, and Acs
corresponds to E2.When the AcP level is low, LacI and Acs expression levels are also
low, and thus derepressing the lacO1 promoter, which in turn increases the production
of Pta. As Pta is being produced, it converts acetyl coenzyme A into AcP, which
activates the glnAp2 promoter and synthesizes Acs and LacI. Increasing the concen-
tration of LacI represses the transcription rate of pta, hence lowering the level of AcP.
Meanwhile, as the level of Acs increases, it converts more acetate into AcCoA. This
removes the downstream product from the AcP degradation pathway and helps lower
the level of AcP. One important aspect of this design is the interconversion of two
metabolite pools, AcCoA and AcP, through two enzymes, Pta and Acs, which are
controlled by the circuit. These two enzymes in turn, indirectly and directly, respond
to AcP.

To gain more insight into the properties of the system, nonlinear differential
equations and bifurcation analysis were employed to probe the dynamic properties of
the system. The analysis predicts that oscillation will be favored when the metabolic
influx is high. Themetabolic flux-drivendynamics represents avery important feature
of this design. An imbalance of metabolic fluxes destabilizes the steady states and
leads to oscillation. This allows themetabolator to respond to the glycolytic influx. To
test the prediction, the metabolator was cultured in different carbon sources that
support different glycolytic rates. When grown in glucose, fructose, and mannose,
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which support high-glycolytic flux, themetabolator exhibits oscillation.When grown
in glycerol however, which yields a low-glycolytic flux, the metabolator did not
exhibit oscillation. The experimental results therefore confirmed the mathematical
predictions. The construction of the metabolator demonstrates that the two-pool
network architecture produces oscillation with metabolic fluxes as the driving force
for oscillation.

To successfully design and construct the metabolator, we began with an under-
standing of the interaction between gene regulation and metabolism. Then a concep-
tual idea of the network was conceived. With the conceptual framework, biological
components were identified and the network was constructed using techniques from
microbiology and molecular biology. Mathematical models were constructed with
reasonable parameters based on the network connectivity and biological components
of choice to identify parameter space that leads to oscillation. Modeling can be very
helpful in identifying and exploring parameters that have significant impact on the
performance of the system. Many pitfalls, however, can also be associated with
modeling, such as choosing inaccurate range of parameters. Artifacts from the
simulation can lead to surprising results that defy common sense. Therefore, one
cannot blindly trust the results frommodeling and the results generated from themodel
should make intuitive sense.

14.2.2 Circadian Circuits from Cyanobacteria Also
Form Two Interconverting Pools

Interestingly, the circadian rhythm network structure found in cynaobacteria
Synechococcus elongatus also possesses two interconverting pools similar to those
described in the metabolator (Fig. 14-4). This circuit from S. elongatus is remarkably
robust. A study at the single-cell level demonstrated that the oscillation is stable at the

Figure 14-4 Similarities between the circadian circuit fromS. elongatus and themetabolator. The

overall structure of the metabolator is similar to the Kai system from S. elongatus. This structure

might represent a fundamental motif for oscillation in bacteria. The major difference between

the two systems is that the phosphorylated form of KaiC, KaiC-P, probably does not decrease the

activity of KaiA. Moreover, KaiC-P can control gene expression at genomic scale in S. elongatus.
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individual cell level without the need to synchronize with surrounding cells [24]. The
central clock components in S. elongatus are coded by the genes kaiA, kaiB, and kaiC
(‘‘Kai’’ is a Japanese word that means cycle). KaiC represses its own expression, as
well as KaiB, both of which are in the kaiBC operon. KaiA activates KaiB and KaiC
expression [25]. The traditional model for generating a circadian rhythm is the
transcription–translation oscillator (TTO) model. KaiC represses its own gene
expression, and this negative feedback loop is the core oscillator component. KaiA
sustains the oscillation by enhancing the expression of KaiC. Recent findings,
however, report data that contradicts the TTO model. KaiC phosphorylation, rather
than the transcription and translation of KaiC, seems to be the dominating factor in
controlling oscillation dynamics [26]. Tomita et al. [27] directly tested the TTOmodel
by growing S. elongates under constant darkness. In this condition, transcription
terminates in S. elongates, but the phosphorylation state of KaiC continues to display
circadian rhythmicity. More interestingly, in a subsequent report, KaiC phosphoryla-
tion was demonstrated to exhibit oscillation in a mixture that contained only purified
KaiA, KaiB, KaiC, and ATP in vitro [28]. The current model of the Kai circuit is as
follows. When KaiC is not phosphorylated, KaiA repeatedly and rapidly associates
with KaiC to enhance the phosphorylation of KaiC. When KaiC phosphorylation
reaches a sufficiently high level, its binding with KaiB is promoted, which in turn
inactivates KaiA leading to its own dephosphorylation. When KaiC is dephosphory-
lated, KaiB dissociates fromKaiC, which then activates KaiA to repeat the cycle [29].

14.2.3 Metabolism and Circadian Rhythm

Interactions between the circadian rhythm and metabolism in mammals are well
documented in literature [30]. In mammals, the main ‘‘clock’’ that controls the rest of
the peripheral systems is located in the suprachiasmatic nucleus (SCN) of the hypo-
thalamus. NPAS2 (or its homologue, Clock) and BMAL1 are the major regulators in
circadian rhythm.Theyformaheterodimer (NPAS2:BMAL1orClock:BMAL1) in the
nucleus. When this complex is activated, it binds to the DNA and expresses the clock
genes Cry and Per and clock output genes such as lactate dehydrogenase Ldh. Rutter
et al. [31] have shown that reducednicotinamide adenine dinucleotide (NAD(P)H) can
directly activate the NPAS2:BMAL1 complex with near switch-like response in vitro.

Aside fromNADH, recentwork [32,33] suggests that hemenegatively regulates the
activityof theNPAS2:BMAL1complex in thepresenceofcarbonmonoxide (CO).The
complex, in turn, activates the expression of a heme biosynthesis rate-limiting enzyme
aminolevulinate synthase 1 (Alas1). As the level of Alas1 increases, the concentration
of hemealso increases.A sufficiently high level of hemewill eventually induce its own
degradation enzyme, called heme oxygenase, which generates CO as a final product.
CO inhibits the activity of the NPAS2:BMAL1 complex and therefore, the expression
of Alas1 as well. Without Alas1, the heme level eventually reaches a sufficiently low
level to allow NPAS2:BMAL1 to become active again, thus continues the cycle.

Glucose has also been shown to interact with circadian gene expression in rat
fibroblasts [34]. In transgenic mice, the disruption of BMAL1 and Clock upsets
glucose homeostasis [35]. These mutant mice display altered diurnal variation of
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plasma glucose and triglycerides, as well as glucose intolerance and insulin resistance
with a high-fat diet. In another report,micewith amutation in theClockgene are obese
and develop metabolic syndromes such as hyperleptinemia, hyperlipidemia, hepatic
steatosis, hyperglycemia, and hypoinsulinemia [36,37]. These works once again
demonstrate the intimate link between biological oscillation and metabolism. They
also highlight the importance in elucidating the design principle of oscillation for both
fundamental understanding and potential medical applications.

14.2.4 Oscillation Frequency and Responses

As demonstrated in electronic circuits, information can be encoded into the frequency
of oscillation. Therefore, an oscillator with tunable frequency can be useful in
encoding information, thus allowing more information content to be stored and
transmitted with fewer signaling molecules. Examples of the frequency-dependent
response in natural system have already been identified in calcium oscillation and
NFkB oscillation [38–43]. A successful engineering application of encoding infor-
mation into the frequency, however, entails another challenge of constructing a
biological frequency decoder. Currently, it is not known how such decoding is
achieved in biological systems.

14.3 CELL–CELL COMMUNICATION IN BACTERIA

Intercellular communication is of paramount importance to the development of higher
organisms. Recently, numerous reports have also demonstrated the importance of
cell–cell communication in bacterial physiology. Further insight into biological
networks requires a better understanding of molecular details and system level
analysis of intercellular communication. Using well-characterized model organisms
such as E. coli and S. cerevisiae, one can construct synthetic intercellular circuits to
decipher underlying principles, similar to the approach used in developing synthetic
intracellular circuits.

14.3.1 Natural Cell–Cell Communication Systems

Bacteria have long been considered to be unicellular organisms that do not interact
with other bacteria. This notion is mainly due to the way in which studies were
performed using bacteria. Under most laboratory conditions, bacteria are grown in
pure culture. In natural environment, however, bacteria rarely livealone in pure culture
planktonic condition. Environmental biologists have long recognized the importance
of bacterial communities to biogeochemical cycling that maintain the biosphere [44].
Biofilm is one example of a bacterial community.Biofilm is composed of single specie
or multiple species. Such communities can live on biotic and abiotic surfaces and
perform diverse metabolic functions.

To coordinate population behavior, intercellular communication is essential. In the
1970s, researchers had identified a communication system in Vibrio fisheri with
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homoserine lactone as the signaling molecule termed autoinducer-1 (AI-1) [45].
V. fischeri is a bacterial symbiont that lives in the light-producing organ of the
squid Euprymna scolopes. At low cell density conditions, V. fisheri produces small
amounts of AI-1 proportional to growth. Once a threshold concentration of AI-1 is
reached, it activates the lux operon, which encodes gene products that emits light,
while producing more AI-1. Because this gene expression system was found to
respond to density, or quorum, this systemwas termed ‘‘quorum’’ sensing. Since then,
numerous examples of quorum sensing have been found in both Gram-positive and
Gram-negative bacteria with different types of diffusible molecules and regulation
mechanisms. Cellular functions that are under the control of quorum sensing include
sporulation, biofilm formation, and virulence factor expression.

In higher organisms, cellular development relies heavily on the signaling cues
generated by other cells. Complex spatial patterning has been shown to be the result of
multiple intercellular signals coupled with feedbacks. One example is the develop-
ment of left–right asymmetry in mouse embryos. The heart and other inner organs
develop an asymmetrical arrangement during morphogenesis [46]. The expression
and relay of TGF-b family signaling molecule, Nodal, has been found to be crucial in
the symmetry breaking and differentiation of left–right organs. Nodal couples with
extracellular cofactor EGF-CFC to form a positive feedback loop and substantiate
its own existence. Moreover, Nodal also induces another intercellular signal called
Lefty-2/antivin to formanegative feedback loop. In chicks,Nodalwas found to induce
a Cre-like molecule, Caronte, to relay the signal to more distal cells [47].

14.3.2 Synthetic Cell–Cell Communication Circuits

Equipping circuits with communication systems will greatly enhance capabilities of
circuits, as demonstrated by themarriage of computers and the Internet. Analogously,
capabilities of gene circuits can be greatly improved with an intercellular communi-
cation network. Engineering a communication system between cells will allow
cellular programming at a population level rather than at the single cell level.
Basu and Weiss utilized the quorum-sensing system from V. fisheri to create a
spatiotemporal pulse generator [48] (Fig. 14-5a). This circuit contains sender cells
that can produce AI and receiver cells that generate a pulse response. Using a similar
concept, but with a different network configuration, Basu et al. created spatial patterns
such as a ‘‘bulls eye’’ pattern on solid media (Fig. 14-5b) [49]. These two reports
demonstrate that spatial and temporal patterns can be created in single cell organisms,
mimicking a powerful capability commonly found in higher organisms.

You et al. [50] developed a circuit in E. coli that can sense and control its own cell
density. This circuit produces AI continuously and accumulates AI in a cell-density-
dependent manner (Fig. 14-6). As the AI level reaches a threshold, it activates a toxic
gene, which leads to cell death. This circuit is a negative feedback loop that operates
concertedly at the population level. The stability of AI is pH dependent, and therefore
the steady-state cell density can be modulated by pH. As with any negative feedback
loop, this system can potentially oscillate when operated in the proper parameter
space. In this system, thedegradationofAI isprobably too slowfor oscillation tooccur.
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When grown in a microchemostat condition, however, the constant washing of the
growth chamber facilitatesAI removal,which allows the circuit to display cell-density
oscillation [51].

14.3.2.1 Artificial Cell–Cell Communication System With only one chan-
nel of communication, the amount of information that can be transmitted is limited.

Figure 14-6 Schematic diagram of the population controller. AI is the diffusible autoinducer [50].

‘‘Kill’’ is a gene thatwhenexpressed, can inhibit growthofE. coli. The ‘‘Kill’’ geneused in this network

is ccdB, control cell death B, which interferes with DNA gyrase and causes cell death.

Figure 14-5 Intercellular communication network in E. coli based on the lux/AI system from

V. fisheri. Network configuration for (a) the spatiotemporal pulse generator [48] and (b) the pattern

formation [49]. The asterisk denotes that the protein half-life is reduced by the addition of a

degradation sequence at the end of the protein. lacIM1 is a codon modified mutant of lacI.
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This limitation constrains the capability of all the networks within the system. To
increase the information content, one solution is to generate oscillating signals and to
encode the information into frequencies. Another solution is to create additional
communication channels. The synthetic oscillators discussed in the earlier sections
had the potential to generate oscillating intercellular signals. A separate frequency
decoder circuit, however, will be needed to complete the scheme. Bulter et al. [52]
addressed the later possibility by demonstrating the design and construction of an
artificial communication system in E. coli using gene and metabolic network with
acetate as the signaling molecule. Chen and Weiss later engineered an artificial
communication system in Saccharomyces cerevisiae by incorporating Arabidopsis
thaliana signal synthesis and receptor components into the host [53]. Using the
V. fisheri AI-1 as the basis, Collins et al. created mutants of the transcription factor
LuxR that are sensitive to different autoinducers. The design strategy identified
here can also serve as a blueprint for further development of more independent
communication channels.

An intercellular communication system can be divided into two modules—signal
generation and signal detection. In designing a signal generation system, the signaling
moleculesmust be chosen so that it is diffusible. The production of the signalmust also
becontrolled. Indesigning the signal-detectionmodule, the response to the signalmust
bespecificandcannotbeageneral toxicorstress response.Thedetectionsystemshould
alsobe sufficiently sensitive to detect the broad range of signal production and tunable.

14.3.2.2 Synthetic Communication System in E. coli In the artificial
communication system in E. coli, acetate was chosen as the signaling molecule
(Fig. 14-7a). Acetate is mainly produced from the pta/ackA pathway in E. coli [52].
Acetate is typically considered as awaste product during fermentation.When theTCA
cycle cannot oxidize the carbon flux from glycolysis, Aceyl-CoA buildup is resulted.
Since Acetyl-CoA is the entry point into the TCA cycle, the production of acetate
through the pta/ackA pathway is intimately linked to the activity of the TCA cycle and
the availability of oxygen. When the pta/ackA pathway is disrupted, however, a small
amount of acetate, about 10 percent of the original level, is still produced through the
biosynthesis of arginine and cysteine. This residual production of acetate, however, is
no longer sensitive to oxygen levels.

The transport of acetate across the membrane is passive with the permeability of
acetic acid across the membrane being three orders of magnitude higher than acetate,
the negatively charged conjugate base of acetic acid. The dissociation equilibrium of
acetic acid is pH dependent. Since the intracellular pH of E. coli is homeostatically
regulated near pH7.6, thus the intracellular acetate concentration depends on theDpH,
intracellular pH minus extracellular pH, across the membrane. At high extracellular
pH, the acid–base equilibrium shifts toward acetate. At low extracellular pH, the
reverse is true. Therefore, less acetate is needed to activate theglnAp2 promoter at low
pH and to enhance the sensitivity of the glnAp2 promoter to acetate. This unique
property of weak acids/promoter interaction allows dynamic sensitivity tuning of the
system. This tuning property is the opposite of AI. AI stability is lowered when pH
decreases, therefore decreasing its sensitivity.
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For the detection module, the glnAp2 promoter described in the construction of
gene-metabolic oscillatorwas employed. The activity of the promoterwas reported by
using gfp. This circuit can exhibit cell density-dependent gene expression. The
sensitivity of this behavior can be modulated by pH and also through promoter
engineering. The NRI-P binding sequence was altered to manipulate the enhancer’s
strength. A stronger and a weaker binding sequence of NRI-P compared to the wild
type had been identified and incorporated into the quorum sensing circuit. When
performing the quorum sensing experiment with these new enhancer sequences, the
strong enhancer requires less cell density to achieve the same level of gene expression
as thewild type. Similarly, thewild type required less cell density to achieve the same
level of gene expression as the weak enhancer.

Figure 14-7 Engineering intercellular-signaling systems. (a) Artificial cell–cell communication in

E. coli and (b) S. cerevisiae. In (a), the signaling molecule is acetate, a metabolite from the central

metabolism. The detection system employs a nitrogen starvation response two-component

system, Ntr, to sense acetate. NR-I is responsive to acetate in the absence of it cognate sensor,

NR-II [52]. AcCoA, acetyl-CoA; AcP, acetyl-phosphate; OAc, acetate; HOAc, acetic acid. In (b), the

signaling molecule and detection module is borrowed from the plant Arabidopsis thaliana [53]. For

(c), the regulator luxR, which normally is sensitive to 3OC6HSL, is subjected to a dual selection

scheme that selects for mutant sensitive to another autoinducer without significant cross talk from

the original 3OC6HSL [54]. This selection involves an ON selection that select for luxR with

expanded sensitivity to different autoinducer. The ON selection, however, does not eliminate the

sensitivity to the original 3OC6HSL. Thus, the OFF selection is employed to select against the

sensitivity of 3OC6HSL.Cat is a chloramphenicol resistant gene,bla is anamplicilin-resistant gene,

and bli is a gene that inhibits the activity of bla.
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Acetate is produced in a wide variety of organisms. Moreover, AcP is also a
regulator molecule inmany bacteria. Two-component systems such the Che, Pho, and
Ntr had been shown to be capable of sensing AcP. Those two-component systems are
present in many different bacteria as well. Many other bacteria are known to possess
similar two-component systems,which can bemodified to respond toAcP.These facts
suggest that this cell–cell communication system can be universally adapted to other
bacteria. Hence, the artificial system presented here also possesses the possibility for
interspecies communication. This system can serve as a model system to understand
howcell–cell communication that differs between different species can lead to various
behaviors and phenotypes observed in nature.

14.3.2.3 Synthetic Communication System in Saccharomyces
cerevisiae In the yeast communication system, cytokinin isopentenyladenine
(IP) from the plant Arabidopsis thaliana was chosen [53] as the signaling molecule
(Fig. 14-7b). IP can be generated by adenylate isopentenyl-transferases. To sense this
signal, the cytokine receptor AtCRE1 from the same plant was chosen. This receptor
can interact with yeast’s endogenous phosphorylation-signaling pathway YPD1/
SKN7 to activate gene expression. In the wild-type strain, YPD1/SKN7 is part of a
phosphorylation pathway with SLN1, a cell–surface osmosensor hisdine kinase, and
SSK1, an aspartate response regulator.Under normal condition, SLN1phosphorylates
YPD1, which in turn phosphorylates SSK1 and represses HOG1 activity. HOG1
activity is crucial for survival in high osmolarity conditions. In normal condition,
however, HOG1 activity is lethal. The constant phosphorylation of YPD1 by SLN1 is
therefore a problem because it will render the system insensitive to IP. Deletion of
SLN1, however, results in activation of HOG1. To circumvent this problem, Chen and
Weiss removed SLN1, but overexpressed an endogenous HOG1 phosphatase to
decrease HOG1 activity. This artificial system exhibits quorum-sensing behavior
when both the signal generation module and the receiver module are present in the
same cell.

14.3.2.4 Engineering Specificity of Autoinducer Variants in
E. coli Numerous quorum-sensing signals that are based on acyl-homoserine
lactones have been identified in nature. These signaling molecules share homoserine
lactones as the same core structure, but are differentiated by their unique side chains.
The most well-studied acyl-homoserine lactone is 3OC6HSL from Vibrio fisheri.
3OC6HSL is synthesized by LuxI. When 3OC6HSL is bound to the transcription
LuxR, it activates gene expression from the Plux promoter. LuxR and its homologues
had been shown to have crosswalk among different acyl-homoserine lactones. To
utilize homoserine lactone variants as signaling molecules, Collins et al. employed a
dual selection strategy to evolve and select for LuxR mutants from V. fisheri that are
only specific to another acyl-homoserine lactone [54]. This dual selection strategy
selected for LuxR variants that activate gene expression when different AIs are
present, but remain inactive when the original AI is present (Fig. 14-7c).

The above examples represent different strategies for creating artificial communi-
cation networks. In the case with acetate, an endogenously produced metabolite is
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converted to a signaling molecule. In the case for S. cerevisiae, however, the
communication system was transplanted from another organism.

Moreover, naturally occurring signal sensors can be evolved to enhance specificity
to other signaling molecules, thus creating more channels of communication system
with less cross talk.

14.3.3 Information and Cell–Cell Communication

In cell–cell communication, gene expression is dependent on the concentration of
small molecules, such as acetate, cytokines, or various forms of autoinducers from
natural systems. It is important to note the difference between cell–cell communica-
tion system and other small molecule inducible promoters, such as the lac promoter
with IPTGas the inducer. The difference between these systems lies in the information
that the signaling molecule carries. Since cells are unable to produce IPTG, the
operator of the experiment needs to add this inducer to the culture. The inducer carries
only the desire of the operator to activategene expression andnothing else. The level of
the inducer does not reflect any information of the cells. In quorum sensing, the
signaling molecules carry cell density information, thus encoding one aspect of the
physiological state. Although the artificial cell–cell communication network is
incorporated into a quorum sensing system, the use of primary metabolites allows
encodingofmetabolic states aswell.Whenpta is disrupted, theproductionofacetate is
proportional to growth. With intact pta, acetate can be used to encode the metabolic
state of the central metabolism. The pta gene can also be transcriptionally fused to
other promoters to transfer information sensed by the promoter to other cells.

14.3.4 Identifying Communication Molecules

Every endogenously produced diffusible small molecule has the potential to be a
signaling molecule for cell–cell communication. How to differentiate a bona fide
communication signal fromothermetabolites?Winzer et al. [55] contends that the key
criterion for signalingmolecules is that its ability to respond to the signal shouldextend
beyond the needs to detoxify and metabolize the signals. The autoinducer-1 system
seems to satisfy the criteria [55,56]. Whether another autoinducer system, AI-2,
satisfies this criteria is less certain. AI-2 is proposed to be a universal signaling
molecule because of its primary synthesis gene, LuxS, is present in many different
organisms. AI-2 is produced from S-adenosylmethionine, SAM. SAM is used as a
methyl donor to DNA, RNA, and other metabolites, giving S-adenosylhomocysteine
(SAH). The subsequent step of metabolizing SAH is critical because SAH is a potent
inhibitor for SAM-dependentmethyltransferases and the cells need to regenerate their
buildingblocks.AnAI-2uptake system,Lsr transporter, has also beendiscovered. The
activation of this transporter is cyclic AMP (cAMP) dependent [57]. Hence, in the
presence of glucose, AI-2 can accumulate to a high level whereas, with glycerol, AI-2
will be consumed. The reason why the cells would excrete and later internalize AI-2
remains unclear. Winzer et al. argues that the production of AI-2 is a metabolic side-
product used to metabolize SAH, and later reuptake in a controlled catabolite
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repression-dependent manner. This excretion and reuptakemechanism is very similar
to acetate, our artificial signaling molecule. One major difference between the
synthetic systems and the AI-2 system is the response to the signal. The acetate
system inE. coli is purely artificial. The response toAI-2, although unknown, seems to
be metabolic. Our work highlights the difficulties in defining a signaling molecule in
natural systems. Before the disruption of NRII, acetate is generally considered as a
metabolic waste product. After NRII is disrupted, acetate becomes a cell–cell
communication signal. One can imagine a scenario where a metabolic waste product
in one condition can become a signaling molecule in another condition. Whether a
molecule is a signaling molecule can be condition dependent.

14.4 CONCLUSION

Some of the synthetic circuits constructed, especially the ones involve complex
dynamics such as oscillation, perform poorly when compared to their naturally
evolved counterparts. Such constructions highlight the major challenge in biological
network engineering—dealing with biological uncertainties. Therefore, the construc-
tion of synthetic circuits can be tedious. Nonetheless, synthetic circuits have served as
proof of concept and generated new insights. The shortcomings of these circuits also
raise important issues regarding biological network design, such as those related to
how fluctuation of the parameters in individual parts can affect the overall system’s
robustness.Manyexcitingworks havebeen done recently to quantify the stochasticity,
or noise, in gene expression [58–61] and the source of such stochasticity [62–66].
Based on a bioinformatics study, noise in gene expression seems to be minimized for
essential genes, suggesting the importance of noise regulation in fitness enhance-
ment [67]. Noise had also been demonstrated to play an important role in E. coli pap
operon pilli expression [68,69], bacteriophage lytic decision [70], and HIV viral
latency decision [71]. Incorporating these findings into the design of synthetic circuits
will improve the performance of the system.

The first generation of circuits is designed to operate mainly at the transcription
level in simple organisms such as E. coli and S. cerevisiae. However, life is rarely
that one dimensional. Rather, it is organized and regulated at multiple levels. To
engineer more complex behaviors, more layers of controls are needed to incorpo-
rate into synthetic circuits. Our group is focused on integrating metabolic and
transcriptional regulation. Others have engineered control at the translation level by
manipulating the three dimensional structure of mRNA and the interaction between
ribosomes and mRNA [72–74]. Protein-signaling cascades can also be altered and
manipulated by rewiring the input and output domains [75–77]. Borrowing from
enzymes’ powerful chemical synthetic capabilities, biosynthetic pathways have
been engineered and rewired to improve the yield of high-valued compounds and
to create completely new compounds [78–87]. Works have also been done to
engineer circuits, such as toggle switches, in mammalian cells [88,89]. Coupled
with the intercellular communication circuits described earlier, sophisticated net-
works that operate on a global level and involve multiple species that mimic

CONCLUSION 483



natural multicellular organisms can be created as a platform for understanding the
emergence of complex behavior. More importantly, these systems can also be
exploited for biotechnological and medical applications.

REFERENCES

1. Farmer WR, Liao JC. Improving lycopene production in Escherichia coli by engineering
metabolic control. Nat Biotechnol 2000;18:533–537.

2. Noireaux V, Bar-Ziv R, Libchaber A. Principles of cell-free genetic circuit assembly. Proc
Natl Acad Sci USA 2003;100:12672–12677.

3. Guet C, Elowitz MB, Hsing W, Leibler S. Combinatorial synthesis of genetic networks.
Science 2002;296:1466–1470.

4. Yokobayashi Y, Weiss R, Arnold FH. Directed evolution of a genetic circuit. Proc Natl
Acad Sci USA 2002;99:16587–16591.

5. Endy D. Foundations for engineering biology. Nature 2005;438:449–453.

6. Alon U. Biological networks: the tinkerer as an engineer. Science 2003;301:1866–1867.

7. Becskei A, Serrano L. Engineering stability in gene networks by autoregulation. Nature
2000;405:590–593.

8. Becskei A, Seraphin B, Serrano L. Positive feedback in eukaryotic gene networks: cell
differentiation by graded to binary response conversion. EMBO J 2001;20:2528–2535.

9. Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia
coli. Nature 2000;403:339–342.

10. Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ.
Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad
Sci USA 2004;101:8414–8419.

11. Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C,MagnoneMC, Lascorz J,
Depner M, Holzberg D, Soyka M, et al. The clock gene Per2 influences the glutamatergic
system and modulates alcohol consumption. Nat Med 2005;11:35–42.

12. McClung CA, Sidiropoulou K, Vitaterna M, Takahashi JS, White FJ, Cooper DC, Nestler
EJ. Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc
Natl Acad Sci USA 2005;102:9377–9381.

13. Abarca C, Albrecht U, Spanagel R. Cocaine sensitization and reward are under the
influence of circadian genes and rhythm. Proc Natl Acad Sci USA 2002;99:9026–
9030.

14. Goldbeter A. Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of
Periodic and Chaotic Behaviour. New York: Cambridge University Press, 1996.

15. Goldbeter A. Computational approaches to cellular rhythms. Nature 2002;420:238–245.

16. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators.
Nature 2000;403:335–338.

17. Atkinson MR, Savageau MA, Myers JT, Ninfa AJ. Development of genetic circuitry
exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell
2003;113:597–607.

18. Barkai N, Leibler S. Circadian clocks limited by noise. Nature 2000;403:267–268.

484 THE SYNTHETIC APPROACH FOR REGULATORY AND METABOLIC CIRCUITS



19. Spanagel R, Rosenwasser AM, Schumann G, Sarkar DK. Alcohol consumption and the
body’s biological clock. Alcohol Clin Exp Res 2005;29:1550–1557.

20. Rosenwasser AM. Alcohol, antidepressants, and circadian rhythms. Human and animal
models. Alcohol Res Health 2001;25:126–135.

21. Wasielewski JA, Holloway FA. Alcohol’s interactions with circadian rhythms. A focus on
body temperature. Alcohol Res Health 2001;25:94–100.

22. ChenCP,KuhnP, Advis JP, Sarkar DK. Chronic ethanol consumption impairs the circadian
rhythm of pro-opiomelanocortin and period genes mRNA expression in the hypothalamus
of the male rat. J Neurochem 2004;88:1547–1554.

23. Fung E, Wong WW, Suen JK, Bulter T, Lee SG, Liao JC. A synthetic gene-metabolic
oscillator. Nature 2005;435:118–122.

24. Mihalcescu I, Hsing W, Leibler S. Resilient circadian oscillator revealed in individual
cyanobacteria. Nature 2004;430:81–85.

25. Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson
CH, Kondo T. Expression of a gene cluster kaiABC as a circadian feedback process in
cyanobacteria. Science 1998;281:1519–1523.

26. Xu Y, Mori T, Johnson CH. Cyanobacterial circadian clockwork: roles of KaiA, KaiB and
the kaiBC promoter in regulating KaiC. EMBO J 2003;22:2117–2126.

27. Tomita J, Nakajima M, Kondo T, Iwasaki H. No transcription-translation feedback in
circadian rhythm of KaiC phosphorylation. Science 2005;307:251–254.

28. Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T.
Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro.
Science 2005;308:414–415.

29. Kageyama H, Nishiwaki T, Nakajima M, Iwasaki H, Oyama T, Kondo T. Cyanobacterial
circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in
vitro. Mol Cell 2006;23:161–171.

30. Rutter J, Reick M, McKnight SL. Metabolism and the control of circadian rhythms. Annu
Rev Biochem 2002;71:307–331.

31. Rutter J, ReickM,WuLC,McKnight SL. Regulation of clock andNPAS2DNAbinding by
the redox state of NAD cofactors. Science 2001;293:510–514.

32. Kaasik K, Lee CC. Reciprocal regulation of haem biosynthesis and the circadian clock in
mammals. Nature 2004;430:467–471.

33. Reick M, Garcia JA, Dudley C, McKnight SL. NPAS2: an analog of clock operative in the
mammalian forebrain. Science 2001;293:506–509.

34. Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y. Glucose down-
regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured
Rat-1 fibroblasts. J Biol Chem 2002;277:44244–44251.

35. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA.
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in
glucose homeostasis. PLoS Biol 2004;2:e377.

36. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A,
Losee-Olson S, Easton A, Jensen DR,et al. AT Obesity and metabolic syndrome in
circadian Clock mutant mice. Science 2005;308:1043–1045.

37. Staels B. When the Clock stops ticking, metabolic syndrome explodes. (Discussion 55.)
Nat Med 2006;12:54–55.

REFERENCES 485



38. Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the efficiency and
specificity of gene expression. Nature 1998;392:933–936.

39. Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E,
Schroeder JI. A defined range of guard cell calcium oscillation parameters encodes
stomatal movements. Nature 2001;411:1053–1057.

40. Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G,
See V, Horton CA, Spiller DG,et al. Oscillations in NF-kappaB signaling control the
dynamics of gene expression. Science 2004;306:704–708.

41. Hu Q, Deshpande S, Irani K, Ziegelstein RC. [Ca(2þ )](i) oscillation frequency regu-
lates agonist-stimulated NF-kappaB transcriptional activity. J Biol Chem 1999;274:
33995–33998.

42. Lewis RS. Calcium oscillations in T-cells: mechanisms and consequences for gene
expression. Biochem Soc Trans 2003;31:925–929.

43. LiW, Llopis J,WhitneyM, Zlokarnik G, Tsien RY. Cell-permeant caged InsP3 ester shows
that Ca2þ spike frequency can optimize gene expression. Nature 1998;392:936–941.

44. Davey ME, O’Toole GA. Microbial biofilms: from ecology to molecular genetics.
Microbiol Mol Biol Rev 2000;64:847–867.

45. Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu
Rev Cell Dev Biol 2005;21:319–346.

46. Gaio U, Schweickert A, Fischer A, Garratt AN,Muller T, Ozcelik C, LankesW, StrehleM,
Britsch S, Blum M,et al. A role of the cryptic gene in the correct establishment of the
left–right axis. Curr Biol 1999;9:1339–1342.

47. Freeman M. Feedback control of intercellular signalling in development. Nature
2000;408:313–319.

48. Basu S, Mehreja R, Thiberge S, Chen MT, Weiss R. Spatiotemporal control of gene
expressionwith pulse-generating networks.ProcNatl Acad SciUSA 2004;101:6355–6360.

49. Basu S,GerchmanY,Collins CH,Arnold FH,WeissR.A syntheticmulticellular system for
programmed pattern formation. Nature 2005;434:1130–1134.

50. You L, Cox RS, 3rd, Weiss R, Arnold FH. Programmed population control by cell–cell
communication and regulated killing. Nature 2004;428:868–871.

51. Balagadde FK, You L, Hansen CL, Arnold FH, Quake SR. Long-term monitoring of
bacteria undergoing programmed population control in a microchemostat. Science
2005;309:137–140.

52. Bulter T, Lee SG, Wong WW, Fung E, Connor MR, Liao JC. Design of artificial cell-cell
communication using gene and metabolic networks. Proc Natl Acad Sci USA
2004;101:2299–2304.

53. Chen MT, Weiss R. Artificial cell-cell communication in yeast Saccharomyces cerevisiae
using signaling elements from Arabidopsis thaliana. Nat Biotechnol 2005;23:1551–1555.

54. Collins CH, Leadbetter JR, Arnold FH.Dual selection enhances the signaling specificity of
a variant of the quorum-sensing transcriptional activator LuxR. Nat Biotechnol
2006;24:708–712.

55. Winzer K, Hardie KR, Williams P. Bacterial cell-to-cell communication: sorry, can’t talk
now—gone to lunch! Curr Opin Microbiol 2002;5:216–222.

56. Xavier KB, Bassler BL LuxS quorum sensing: more than just a numbers game. Curr Opin
Microbiol 2003;6:191–197.

486 THE SYNTHETIC APPROACH FOR REGULATORY AND METABOLIC CIRCUITS



57. Xavier KB, Bassler BL. Regulation of uptake and processing of the quorum-sensing
autoinducer AI-2 in Escherichia coli. J Bacteriol 2005;187:238–248.

58. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell.
Science 2002;297:1183–1186.

59. Raser JM, O’Shea EK. Control of stochasticity in eukaryotic gene expression. Science
2004;304:1811–1814.

60. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. Regulation of
noise in the expression of a single gene. Nat Genet 2002;31:69–73.

61. Pedraza JM, van Oudenaarden A. Noise propagation in gene networks. Science
2005;307:1965–1969.

62. Becskei A, Kaufmann BB, van Oudenaarden A. Contributions of low molecule
number and chromosomal positioning to stochastic gene expression. Nat Genet
2005;37:937–944.

63. Rosenfeld N, Young JW,AlonU, Swain PS, ElowitzMB.Gene regulation at the single-cell
level. Science 2005;307:1962–1965.

64. Volfson D, Marciniak J, Blake WJ, Ostroff N, Tsimring LS, Hasty J. Origins of extrinsic
variability in eukaryotic gene expression. Nature 2006;439:861–864.

65. Austin DW, Allen MS, McCollum JM, Dar RD, Wilgus JR, Sayler GS, Samatova NF,
Cox CD, Simpson ML. Gene network shaping of inherent noise spectra. Nature
2006;439:608–611.

66. Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O, Endy D, Pesce CG, Brent R.
Regulated cell-to-cell variation in a cell-fate decision system. Nature 2005;437:699–706.

67. Fraser HB, Hirsh AE, Giaever G, Kumm J, Eisen MB. Noise minimization in eukaryotic
gene expression. PLoS Biol 2004;2:e137.

68. Zhou B, Beckwith D, Jarboe LR, Liao JC. Markov Chain modeling of pyelonephritis-
associated pili expression in uropathogenic Escherichia coli. Biophys J
2005;88:2541–2553.

69. Jarboe LR, Beckwith D, Liao JC. Stochastic modeling of the phase-variable pap operon
regulation in uropathogenic Escherichia coli. Biotechnol Bioeng 2004;88:189–203.

70. Arkin A, Ross J, McAdams HH. Stochastic kinetic analysis of developmental pathway
bifurcation in phage lambda-infected Escherichia coli cells. Genetics
1998;149:1633–1648.

71. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV. Stochastic gene
expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic
diversity. Cell 2005;122:169–182.

72. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD. Combinatorial engineering of intergenic
regions in operons tunes expression ofmultiple genes.NatBiotechnol 2006;24:1027–1032.

73. Bayer TS, Smolke CD. Programmable ligand-controlled riboregulators of eukaryotic gene
expression. Nat Biotechnol 2005;23:337–343.

74. Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ. Engineered
riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol
2004;22:841–847.

75. Bhattacharyya RP, Remenyi A, Yeh BJ, LimWA. Domains, motifs, and scaffolds: the role
of modular interactions in the evolution and wiring of cell signaling circuits. Annu Rev
Biochem 2006;75:655–680.

REFERENCES 487



76. Dueber JE, Yeh BJ, Chak K, Lim WA. Reprogramming control of an allosteric signaling
switch through modular recombination. Science 2003;301:1904–1908.

77. Park SH, Zarrinpar A, LimWA. RewiringMAP kinase pathways using alternative scaffold
assembly mechanisms. Science 2003;299:1061–1064.

78. RoDK, ParadiseEM,OuelletM, FisherKJ,NewmanKL,Ndungu JM,HoKA,EachusRA,
Ham TS, Kirby J,et al. Production of the antimalarial drug precursor artemisinic acid in
engineered yeast. Nature 2006;440:940–943.

79. Yoshikuni Y, Ferrin TE, Keasling JD. Designed divergent evolution of enzyme function.
Nature 2006;440:1078–1082.

80. Lee TS, Khosla C, Tang Y. Engineered biosynthesis of aklanonic acid analogues. J Am
Chem Soc 2005;127:12254–12262.

81. Tang Y, Lee TS, Khosla C. Engineered biosynthesis of regioselectively modified aromatic
polyketides using bimodular polyketide synthases. PLoS Biol 2004;2:E31.

82. Schmidt-Dannert C. Engineering novel carotenoids in microorganisms. Curr Opin
Biotechnol 2000;11:255–261.

83. Schmidt-Dannert C, Umeno D, Arnold FH.Molecular breeding of carotenoid biosynthetic
pathways. Nat Biotechnol 2000;18:750–753.

84. Achkar J, Xian M, Zhao H, Frost JW. Biosynthesis of phloroglucinol. J Am Chem Soc
2005;127:5332–5333.

85. Guo J, Frost JW. Biosynthesis of 1-deoxy-1-imino-D-erythrose 4-phosphate: a defining
metabolite in the aminoshikimate pathway. J Am Chem Soc 2002;124:528–529.

86. WangC,OhMK,Liao JC.Directed evolution ofmetabolically engineeredEscherichia coli
for carotenoid production. Biotechnol Prog 2000;16:922–926.

87. Wang CW, Oh MK, Liao JC. Engineered isoprenoid pathway enhances astaxanthin
production in Escherichia coli. Biotechnol Bioeng 1999;62:235–241.

88. Kramer BP, FusseneggerM. Hysteresis in a synthetic mammalian gene network. Proc Natl
Acad Sci USA 2005;102:9517–9522.

89. Kramer BP, Viretta AU, Daoud-El-Baba M, Aubel D, Weber W, Fussenegger M. An
engineered epigenetic transgene switch in mammalian cells. Nat Biotechnol
2004;22:867–870.

488 THE SYNTHETIC APPROACH FOR REGULATORY AND METABOLIC CIRCUITS



15

SYNTHETIC GENE
NETWORKS

David Greber, and Martin Fussenegger

Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26,
CH-4058 Basel, Switzerland

15.1 INTRODUCTION

Advances in molecular manipulation techniques, together with an ever-increasing
accumulation of genetic information, are progressively opening new possibilities for
gene therapy and biomedical engineering. By combining naturally occurring genetic
components in unique ways, it has become possible to artificially engineer genetic
networks that possess increasingly sophisticated functional capabilities.Byanalogy to
electronic circuit engineering, the desired characteristics of such networks can be
rationally designed and tested through predictive modeling. Similarly to electrical
networks, genetic networks also possess ‘‘input” and ‘‘output” functionality such that
they are capable of monitoring and responding in highly defined mechanisms. The
creation of synthetic networks from well-defined modular components has enabled
researchers to investigate and test many network characteristics found in natural
genetic networks. It is from an applied perspective, however, that synthetic genetic
networks represent a truly exciting innovation. It is not difficult to envisage applica-
tions where synthetic networks could be used to manipulate cellular behavior in
a highly orchestrated way. While these concepts are still in their infancy, significant
progress has been made in the creation of first-generation synthetic networks, which
will one day enable the engineered control of cellular function to become a viable
reality.
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This chapter begins by describing the modular genetic components that form the
building blocks of engineered genetic networks. It then describes the development
of both simple and complex networks, many of which were initially developed in
prokaryotic systems, but which have been subsequently extended to eukaryotic
systems. The focus is upon describing networks that have been experimentally tested
and validated. It does not cover the extensive modeling and computational work that
has been conducted on either synthetic or natural genetic regulatory networks (readers
are referred to Chapter 7). Advances in network functionality have been made on
both the input and output dimensions. Examples of output functionality include the
generation of stable behavior, such as bistable toggle and hysteric switches, and
dynamic behavior such as an oscillatory network. From an input perspective devel-
opments include the creation of logical information ‘‘gates,” where a range of input
combinations produce highly defined outputs in a manner directly analogous to
electrical circuits; the development of transcriptional cascades, which have enabled
the range of inputs to a network to be greatly increased; and the development of novel
sensory networkswhich, for example, can detect inputswithin a defined concentration
range, or respond precisely to a rising level of an input. The chapter concludes by
presenting the initial first steps into the emerging field of semisynthetic networks.
These are prosthetic genetic networks that are capable of responding to physiological
cues so that they are effectively integrated into the host-cell’s biology. Such networks,
in response to acute or pathological cues, hold great promise for the controlled
manipulation of cellular processes such as protein synthesis, metabolism, cell growth,
and differentiation.

15.2 NETWORK BUILDING BLOCKS

While synthetic in the sense that they are artificially designed and created, synthetic
genetic networks are actually engineered from naturally occurring genetic compo-
nents. A discussion of these networks requires a basic understanding of these
components and the manner in which they interact. While gene expression can be
regulated and artificially manipulated at a number of levels, the networks described
below have only utilized a limited number of transcriptional control elements.
Hence, this overview is limited to the mechanisms and components that have been
used in these systems. A comprehensive overview of other gene control systems and
their application can be found in several recent reviews [1–3].

Transcriptional control operates at the level of mRNA synthesis through the use
of inducible transcriptional activators and repressors that are capable of binding
naturally occurring or specifically engineered promoters. The majority of systems
utilize bacterial response regulators or activators that, upon binding to a target
promoter, inhibit or activate transcription respectively. Binding of a specific molecule
to the response regulator induces an allosteric change leading to disassociation of the
regulator from its cognate promoter.

Prokaryotic gene control systems generally use inducible repressors and activators
drawn from well-documented genetic operons such as the lac operon of Escherichia
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coli [4], the tetracycline-resistance transposon Tn10 [5], or the lcI repressor of
bacteriophage lambda [6]. In each case, the respective response regulator binds to
aDNA sequence, typically a short tandem repeat referred to as the ‘‘operator,” located
within or adjacent to a promoter where it either enhances transcription or sterically
hinders the initiation of transcription. By substituting operators across different
strength promoters it has been possible to generate inducible systems with varied
induction characteristics [7].

Bacterial response regulators also form the basis of synthetic eukaryotic gene
regulation systems although given transcriptional differences they require adaptation.
This has been successfully achieved for many bacterial response regulators by
placing the operator for the response regulator adjacent to an eukaryotic compatible
promoter [8]. The response regulator thus acts as a heterologousDNA-binding protein
(DBP)whose associationwith the desired promoter canbe controlled through addition
of an appropriate inducer. If the operator is placed close to an strong constitutive
promoter (e.g., PCMV, cytomegalovirus immediate early promoter), DBP binding can
sterically prevent the initiation of transcription by RNA polymerase II machinery.
Alternatively, transcription can be actively repressed by fusing a eukaryotic tran-
scriptional silencer, such as the Kruppel-associated box protein (KRAB), to the
DBP [9]. Such systems are referred to as ON-type systems, as the addition of an
inducer leads to derepression of transcription (Fig. 15-1). In an OFF-type configura-
tion, in which addition of inducer leads to transcriptional silencing, a transcriptional
activation domain, such as the Herpes simplex virus VP16, is fused to the DBP [10].
By placing the corresponding operator site adjacent to a minimal promoter (e.g.,
PhCMVmin,minimal versionof thehumancytomegalovirus immediate early promoter),
DBP binding activates transcription from an otherwise silent minimal promoter.
Addition of an inducer results in subsequent deactivation of transcription.

As many prokaryotic antibiotic response regulators have been well described,
and given the low interference of many antibiotics with eukaryotic biology, they
represent an ideal class of inducible DBPs for eukaryotic gene control. Using the
aforementioned configurations, eukaryotic gene control systems responsive to tetra-
cyclines [11], streptogramins [12], and macrolides [13] amongst others have been
developed. As these gene control systems do not interferewith each other, they can be
readily combined. For this reason, and their nonpleiotrophic effects, they have formed
the basis of most eukaryotic synthetic gene networks. A list of the common transcrip-
tional control elements used in the assembly of both prokaryotic and eukaryotic
synthetic gene networks is provided in Table 15-1.

15.3 CHARACTERIZATION OF SIMPLE AND COMPLEX NETWORKS

The past decade has seen a progressive increase in the development and application
of both prokaryotic and eukaryotic synthetic networks. In some cases, these networks
have been relatively simple and have been used to test and investigate naturally
occurring phenomena. In other cases, the networks exhibit far greater complexity as
theyseek toreproduceorcreatemuchmoresophisticated functionality.Whenadopting
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the electrical circuit analogy it is possible to describe synthetic genetic networks in
terms of their input functionality—how the network receives and integrates specific
signals aswell as their output functionality—how the network produces andmaintains
a specific pattern of expression. Given that much of the pioneering work in synthetic
circuits was directed toward producing novel patterns of gene expression, it is
expedient to commence with network descriptions of output functionality.

In considering the design of a synthetic genetic network for a biological application
it is useful to imagine what kind of functions one might wish to create. Thus, some
applications may benefit from a mechanism that ensures a network produces a
consistent and stable response even when there are considerable random fluctuations
in either network components, inducer concentrations, or cellular components more
broadly. For other applications, onemay require a system that producesmore than one
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Figure 15-1 Molecular configuration of OFFandON synthetic eukaryotic gene regulation. In the

OFF configuration, a DNA-binding protein—typically a bacterial transcriptional repressor—binds

a specific operator site placed adjacent to a minimal promoter (PMIN). An activation domain fused

to the DBP activates polymerase-mediated transcription of a gene of interest (GOI). Addition of

an inducer specific to the DBP causes an allosteric change resulting in disassociation of the

transactivator with subsequent transcriptional arrest. In the ON configuration, the DBP is fused to

a repressor domain. Binding of DBP-TR to an operator site placed adjacent to a constitutive

promoter (PCON) represses transcription of the GOI. Again, addition of a DBP specific inducer

results in transrepressor disassociation although in this configuration, repression is abolished

resulting in expression of the GOI [8].
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discrete expression state. A mechanism that ‘‘remembers” what conditions the
network has been exposed to may be useful in applications where only a transient
pulse of an inducer is required or expected. Amechanism that not only remembers the
past but also reacts differently to subsequent changes would also be desirable. Finally,
a mechanism that produces continuous oscillations in expression readout may be
highly practical where repeated temporal expression is required. All of thesemechan-
isms have their counterpart in natural biological systems where they represent the
molecular controls for numerous basic cellular functions ranging from cellular
differentiation, cell-cycle control, and circadian rhythms. It is therefore not surprising
that genetic engineers have applied considerable effort to synthetically reproduce
these mechanisms. Apart from being useful tools, such synthetic networks also shed
considerable light on how the equivalent mechanism occurs in a natural system.

15.3.1 Expression Stability

To produce a unified and consistent outcome a biological process, whether it involves
metabolic homeostasis or cellular growth and development, must be capable of
withstanding a certain degree of variation and difference [14–16]. As cellular
biochemical networks are highly interconnected, a perturbation in reaction rates or
molecular concentrations may affect multiple cellular processes including transcrip-
tion, translation, and RNA and protein degradation—all of which impact gene
expression. Systems that, despite the influence of considerable variation and random
perturbation, are capable of remaining close to a steady state can be characterized
as stable (or robust). Existing artificial gene regulation systems are typically highly
susceptible to even modest fluctuations in regulatory components, which can signifi-
cantly affect expression performance. In contrast, many natural gene networks
intrinsically exhibit high stability. A natural question, therefore, is which mecha-
nism(s)would enable a network towithstand suchvariation?Akeydevelopment inour
understanding of how stability is maintained was through the discovery of auto-
regulatory feedback loops in which proteins, directly or indirectly, influence their
own production [17]. An autofeedback mechanism can either be negative, in which a
protein inhibits its own production, or positive, in which a protein stimulates its own
production.

Although it had been proposed that autoregulatory negative feedback loops
provide stability, thereby limiting the range over which the concentrations of network
components fluctuate, it was Becskei and Serrano who first demonstrated how
a negative feedback mechanism can increase expression stability (Fig. 15-2) [18].
By fusing green fluorescent protein (GFP) to the tetracycline-responsive repressor
protein (TetR) they were able to measure variations in TetR expression (measured by
coefficient of variation in fluorescence intensity) across a population of E. coli.
In using an established prokaryotic gene regulation system they created a negatively
autoregulated system in which TetR inhibits its own transcription, as well as an
unregulated systemwhereTetRhas no influence upon its transcription rate.Consistent
with predictions frommathematical modeling, the experimental data showed that the
autoregulated system exhibited a threefold narrower variation in expression levels
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than the unregulated system. Furthermore, through the addition of anhydrotetracy-
cline (aTc), which causes TetR to dissociate from its cognate operator thereby
reducing feedback repression, it was possible to introduce variation levels into the
autoregulated system which approached the variation levels observed in the unregu-
lated system. Hence, in this simple synthetic network negative feedback provides
a mechanism for ensuring a more stable expression state. This is consistent with
observations of expression stability in natural systems for either prokaryotes or
eukaryotes in which transcription factors are known to use both positive and negative
autoregulation to control their own production [19,20].

A key requirement for many networks and biological functions is the capacity to
producemore than one discrete stable expression state. The creation of binary, or even
multiple, expression states raises a number of possibilities for how a network can
transition fromone state to the other (Fig. 15-3). In a classic graded expression system,
an increase in the concentration of an inducer generates a graded (or continuous)
transcriptional response that, in a graphical representation, resembles a sigmoid
shape. This pattern is due to transcriptional cooperativity in which initial binding
of a transcriptional regulator to a promoter enhances subsequent binding of further
regulators to the same promoter. This can either be due to cooperative binding or
regulator multimerization [21]. Yet, in some systems the switch from one state to

Figure 15-2 Expression profile of (a) an unregulated genetic system compared to (b) an

equivalent system utilizing negative autofeedback. Both systems were based on the same

architecture in which a promoter was used to control expression of a fusion protein consisting

of the tetracycline repressor (TetR) and GFP in E. coli. In the regulated system, the promoter

contained two tetracycline repressor operator modules (PLtet01). Negative feedbackoccurs asTetR

repressors transcription from PLtet01. In the unregulated system, TetR was prevented from

interacting with the promoter by substituting the TetR operator with a different (LacR) operator

(or by the functionally equivalent step of mutating the TetR-DNA-binding domain). In this way, the

feedback mechanism was eliminated without altering other aspects of the genetic system. The

resulting distribution of expression states for the unregulated system was wider than the corre-

sponding distribution for the negative feedback system thus demonstrating the higher stability of a

genetic system employing autofeedback [18].
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another can be so swift as to almost represent discontinuous behavior.With increasing
sophistication such a quasi-discontinuous switch can have different switching
dynamics depending upon its starting point (i.e., hysteresis) or may even be self-
sustaining (i.e., toggle) and/or irreversible. In addition to providing a means of
achieving a single stable expression level, feedback regulation is also an important
mechanism for producing a binary, or bistable, expression state in response to different
input parameters [22].

15.3.2 Binary Expression

A graded transcriptional response typically results in a unimodal expression pattern
where, when viewed across a cell population, there is no evident separation of
expression states (Fig. 15-4). This remains so evenwhen an inducer is used to increase
expression—the resulting distribution is simply shifted upward reflecting an overall
increase in expression across the entire cell population. Using a common tetracycline-
responsive transactivator (TetR-VP16) and GFP reporter, it has been demonstrated
that a simple autofeedback mechanism can create a binary expression readout in
Saccharomyces cerevisiae [22]. By introducing positive feedback into the classical
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Figure 15-3 Stimulus–response profiles for (a) graded, (b) generic bistable, (c) hysteretic

bistable, and (d) self-sustaining bistable genetic networks.(a) In a graded genetic system an

increasing stimuli is progressively converted into an increasing response, which often adopts a

sigmoidal pattern due to activator or repressor cooperativity. (b) In a generic bistable network the

system exhibits quasi-discontinuous behavior whereby it only resides in one of two alternative

steady states and not an intermediate state. Through changes in stimuli beyond a threshold point it

is possible to switch or ‘‘toggle’’ the system from one state to another. (c) A hysteretic bistable

network requires differing threshold stimuli levels to switch between steady states depending upon

the starting state of the system. (d) In a self-sustaining bistable network the system remains in one

steady state indefinitely evenafter the stimulus used to create that state has been removed [37,38].
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TetR-VP16 transcription system, in which expression of TetR-VP16 positively
influences its ownproduction rate, a binary distribution patternwas producedwhereby
the cell population was clearly divided into discrete pools of ON and OFF cells.
Importantly, following progressive administration of increasing inducer levels, the
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Figure 15-4 Graded response profile of (a) a classic transcription control system relative to

(b) a bistable expression profile using a positive autofeedback mechanism. Both the classic and

autoregulated systems were based on the tetracycline-dependent transactivator (TetR-VP16)

eukaryotic transcriptional system. In the classic graded system, a strong constitutive CMV

promoter (PCMV, cytomegalovirus immediate early promoter) was used to transcribe TetR. For

the autoregulated system, the constitutive CMV promoter was replaced with a TetR-inducible

promoter (PTET) thereby creating a positive autofeedback loop. In both cases, a chromosomally

integrated TetR-inducible GFP reporter construct was used to assess expression profiles. The

classic graded system exhibits a unimodal distribution pattern which, following addition of

doxycycline, shifts progressively to the right. The autoregulated system exhibits a bimodal

distribution pattern that does not shift upon inducer addition. Rather, doxycycline addition con-

comitantly alters the proportion of cells residing in either of the two expression states [22,38].
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pools did not significantly shift relative to each other, but rather the distribution of
cells between the ON and OFF pools changed inversely. This indicates that the
autofeedback mechanism prevents cells from adopting an intermediary expression
status such that they can only reside in one of the two possible states. Despite, the
delineation of expression into one of two states, it was observed that individual cells
did not necessarily remain in a fixed state. Across a range of inducer concentrations,
a certain proportion of cells randomly flipped between states indicating that the binary
states were not entirely stable.

15.3.3 Bistability

A binary expression system that does not exhibit random switching between two
expression states is said to be bistable. Bistability is a minimal requirement for a
network to possessmemory in which the state of the network stores information about
its past [23]. In addition to bistability, a network can only possess memory where it
remains in an expression state long after the stimulus used to force it into that state
has been removed. Such a self-sustaining mechanism is analogous to a typical light
switch or toggle. Switching a light ON or OFF only requires a single transient, rather
than a persistent, input.

15.3.3.1 Bacterial Toggle A pioneering step in the development of synthetic
networkswas thecreationofaplasmid-based bistable expression switch inE.coli [24].
The switch was constructed from two inducible bacterial repressors, transcribed
from two similar strength promoters selected such that each repressor inhibited the
promoter of the opposing repressor (Fig. 15-5). By placing a fluorescent reporter gene
(GFP) downstream of one of the repressors it was possible to monitor which repressor
was currently active, and thereby the expression status of the network. Owing to the
mutually inhibitory arrangement of the two repressor genes, the network was capable
of one of the two binary states: A HIGH state in which the first repressor and
the downstream GFP reporter are transcribed from the second promoter, and a LOW
state in which the second repressor is transcribed from the first promoter. In the
absence of relevant inducers, the network can initially adopt either state, but once
committed remains in the adopted state indefinitely. However, through the addition of
a relevant inducer, it was possible to switch the network from one state to the other.
The addition of an inducer to the active repressor enables the opposing repressor to be
maximally transcribed. Once the opposing repressor has reached a certain level it
represses transcription of the initially active repressor. As the prevalence of the
opposing repressor over the initially active repressor becomes self-perpetuating, the
inducer can bewithdrawn and the network continues indefinitely in its altered state. In
this manner, the network behaves as a bistable ‘‘toggle” switch in which the
maintenance of either expression state does not require an ongoing inducer or
stimulus. Furthermore, the status of the toggle could be maintained across cell
generations indicating that network memory could be passed to progeny cells.

Six different toggle switches, employing different promoter-repressor pairs, were
designed and characterized. Together with a mathematical approach it was possible
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to predict and assess many of the properties required for bistable switching. The
interaction between toggle components was described using a simple differential
equation model based upon rate equations for each repressor’s production, repression
activity, and degradation/dilution. Importantly, two criteria were found to be critical
for robust bistability. First, each repressor had to be capable of cooperative repression
at the promoter to which it binds. Mathematical modeling predicted that it is not the
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Figure 15-5 Engineered self-sustaining bistable ‘‘toggle’’ switch in E. coli. (a) Genetic design

and (b) response profile.The genetic toggle switch was constructed from two sets of mutually

opposing repressors/promoters. In the depicted configuration, the TetR repressor inhibits tran-

scription of the Lac repressor from the PLtetO-1 promoter. The Lac repressor in turn inhibits

transcription from a Ptrc-2 promoter of the TetR repressor, a downstream ribosome-binding site

(RBS) and a reporter gene (GFP). In the absence of inducers, both repressors mutually inhibit

each other resulting in a low expression state. Addition of isopropyl-b-D-thiogalactopyranoside

(IPTG) results in derepression of the Lac repressor and subsequent full expression of the TetR

repressor and GFP (a HIGH expression state). Conversely, addition of aTc causes deinhibition of

the TetR repressor with subsequent full expression of the Lac repressor (a LOWexpression state).

In both cases, only a transient pulse of inducer is required to enable the opposing repressor to be

maximally transcribed until, in a self-perpetuating manner, it stably represses the originally active

promoter [24].
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strengthof thepromotersperse, but rather thedegreeof cooperative repression that has
a direct impact upon system robustness, defined as the ability to avoid stochastic
switching between expression states. Thus, even weak promoters should be capable
of bistability as long as cooperative repression is sufficiently high. Second, it was
predicted that the rates of synthesis of the two repressorsmust be evenlybalanced.This
was empirically confirmed in one set of toggle components that were only capable of
a single steady state due to uneven repressor synthesis rates. The different toggles also
provided insight into the dynamics of switching time—defined as the time required for
the relevant inducer tomediate a sustainable switch—although in this case the primary
determinantwas surprisingly not the rate of elimination of the initially active repressor
protein. In one toggle system, requiring IPTG-induced inhibition of a repressor, the
switching time was 6 h. In contrast, when a temperature sensitive repressor was
employed, the immediate inhibition of the repressor caused by thermal destabilization
resulted in sustainable switching occurring within 35min.

The construction and characterization of several toggle switches illustrates the
increasing utility of synthetic genetic networks. The construction of synthetic net-
workswith varying properties enabled the testing and empirical validation of physical
and mathematical approaches to gene regulation. While these approaches have been
previously applied it has not been possible to test their predictions. Synthetic gene
networks are a useful tool for this purpose and should permit the qualitative behavior
of gene regulation to be studied and described in a manner analogous to that
already conducted for enzyme regulation. It also highlights the importance of correct
component selection and compatibility in creating a network with desired specific
behavior [25].

15.3.3.2 MammalianToggle Asyntheticmammalian toggle switch capable of
bistable expression has also been created, employing the same network architecture
used in the synthetic E. coli toggle switch [26]. In this case, however, two eukaryotic
transrepressor control systems were used: the E-KRAB system that is responsive to
macrolide antibiotics such as erythromycin (EM) and the Pip-KRAB system respon-
sive to streptogramin antibiotics such as pristinamycin (PI) (Fig. 15-6). A mutually
opposing configuration, whereby each system represses expression of the other
systems’ transrepressor, generated two alternate stable expression states.

In the absence of either inducer molecule the network is balanced so long as both
systems exhibit the same (low) expression levels with neither expression system able
to prevail over the other. However, this balance can be tipped by addition of either
inducer molecule in which case expression from one system is increased while
expression from the other system is simultaneously repressed. Depending on the
inducer added, the result is one of the two alternate expression states in which
one transrepressor is expressed much more highly than the other. By placing a
reporter gene (i.e., SEAP) immediately downstream of one of the transrepressors
(i.e., Pip-KRAB), it was possible to tie SEAP expression to Pip-KRAB expression
thereby obtaining a readout of the network status. AHIGH response, corresponding to
high (or derepressed) Pip-KRAB expression, was obtained following induction with
erythromycin whereas a LOW response, corresponding to low (increased repression)
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Pip-KRAB expression resulted after induction with pristinamycin. Importantly, once
the network balance had been tipped toward one state, the change became self-
perpetuating and, following removal of the initial inducer, was not lost. This was in
contrast to isogenic control experiments using separate Pip-KRAB and E-KRAB
systems where expression levels markedly decreased following inducer removal. In
addition to self-sustainability, it was also demonstrated that the systemwas reversible,
and that the expression profile could be repeatedly switched between expression states
over a two-week period.
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Figure 15-6 (a) Genetic construction and (b) response profile of engineered self-sustaining

‘‘toggle’’ switch.The mammalian toggle switch was assembled using two antibiotic-inducible

transrepressor control systems, which were arranged to repress each other’s expression.

Erythromycin-inducible E-KRAB repressors transcription of Pip-KRAB and the human model

reporter protein SEAP (human placental secreted alkaline phosphatase)—whose translation is

modulated by an internal ribosome entry site (IRES). Pristinamycin I-inducible Pip-KRAB in turn

repressors expression of E-KRAB. In both cases, addition of the respective inducer inhibits

the repressive effect of the responsive transrepressor. Transient administration of EM results in

PETR-driven coexpression of Pip-KRAB and SEAP with concomitant repression of E-KRAB

(a HIGH response), whereas transient administration of PI results in PPIR driven expression

of E-KRAB with concomitant corepression of Pip-KRAB and SEAP (a LOW response). Both

responses were maintained in a steady state following removal of relevant inducer molecules

(nonshaded region) [26].
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These two characteristics, sustained expression stability and reversible switching,
are also key requirements for epigenetic imprinting or memory that occurs when
differential expression levels are imprinted and passed to subsequent cell generations
well after the original signal generating that expression level has been removed.
Many natural epigenetic switches have been characterized where their role has been
implicated in coordinating diverse processes such as cell fate and memory [27], plant
development [28], and lysogeny [29,30]. In this case, the synthetic mammalian
switch provides one possible model for how epigenetic imprinting may occur at
the transcriptional level in multicellular organisms. Beyond this, however, the toggle
switch may also have important therapeutic applications. Classical transcription
control systems operate in a dose-dependent manner and therefore require the
on-going presence of regulating molecules to sustain transgene expression levels.
Prolonged exposure to regulating molecules (e.g., antibiotics) can be associated with
clinical ramifications such as the selection of pathogen resistance [31] and the
accumulation of antibiotics in bone and teeth [32]. A self-sustaining, yet reversible,
genetic network that requires only a transient stimulus to establish a steady state may
provide an attractive means of overcoming such considerations.

15.3.4 Hysteresis

In a typical bistable switch movement between expression levels occurs in a quasi-
discontinuous manner once a controlling stimulus crosses a specific threshold. This
threshold is the same regardless of the direction in which the switch is being moved.
A refinement on this switch is where the threshold required to move the switch in
one direction is different to the threshold required to move it in the other direction.
Thus, the threshold required to flip the switch depends on the starting state of the
switch. This phenomenon, which can occur at molecular or macroscopic levels, is
known as hysteresis [33]. To use a nonbiological example, traffic jams often exhibit
hysteresis because the car density required to alleviate the traffic jam is less than the
density that initially caused the jam. In a genetic network, a switch exhibits hysteresis
when a different concentration of inducer is required to shift a system from one state
to another than is required for the reverse shift [18,22,24,29,34,35]. Hysteretic
behavior has been observed in several natural examples including the control of
lactose utilization inE. coli [33], and ensuring unidirectional cell-cycle progression in
eukaryotes [36]. A significant benefit of a hysteretic system is its inherent ability to
buffer againstmodest changes in the inducingmolecule. Thus, to switch a system from
one state to another and then to back again requires a far greater change in inducer
levels than in an equivalent typical bistable switch. Such devices could have broad
potential for applications in which the input signal is prone to minor fluctuations but
for which a constant all or nothing expression status is required.

Using a positive autofeedback mechanism and competitive transcriptional
mechanism, a synthetic hysteretic switch has been constructed in mammalian
cells (Fig. 15-7) [37]. The system used a tetracycline-dependent transactivator
(TetR-VP16), which induces its own transcription via positive feedback together
with a reporter gene (SEAP), as well as a competing erythromycin-dependent
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transrepressor (E-KRAB), which was capable of inhibiting the TetR-VP16 mediated
positive feedback. The hysteretic behavior of the synthetic network results from the
competitive interaction of TetR-VP16 and E-KRAB for an engineered hybrid pro-
moter (Phybrid) that was responsive to both TetR-VP16 and E-KRAB. At low-EM
concentrations E-KRAB binds Phybrid and inhibits both TetR-VP16 positive
feedback and SEAP expression (i.e., an OFF configuration). At high-EM concentra-
tions, disassociation of E-KRAB from Phybrid enables TetR-VP16 mediated transac-
tivation resulting in positive autofeedback and high SEAP expression (i.e., an ON

PSV40
E-KRAB

transrepressor

Inducer
(EM)

PHYBRID
TetR-VP16

transactivator
Reporter
(SEAP)

IRES

–

+

+

(a)

(b)

Inducer(EM)

R
es

p
o

n
se

Decreasing
inducer

Increasing
inducer

Figure 15-7 (a) Genetic design and (b) response profile of an engineered mammalian hysteretic

switch.The hysteretic eukaryotic switch is based upon a chimeric promoter (Phybrid) that drives

expression of a SEAP (human placental secreted alkaline phosphatase) reporter gene and, via an

IRES, the tetracycline-dependent transactivator (TetR-VP16). Phybrid is responsive to both TetR-

VP16, which establishes a positive autofeedback loop, as well as the erythromycin-responsive

transrepressor (E-KRAB), which is independently expressed fromaseparate constitutive promoter

(PSV40). E-KRAB inhibits Phybrid in an EMdose-dependentmanner whereby a higher concentration

of EM is required to switch the system from OFF to ON than is required to return the system from

an ON to OFF state. The switching behavior of the network is therefore dependent upon the

network’s EM cultivation history [37].
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configuration). The observed hysteretic behavior occurs due to the interaction at
intermediate EM concentrations where the prevalence of E-KRAB-mediated inhibi-
tion versus TetR-VP16-mediated positive feedback depends upon historical EM
concentration. A high historical EM concentration means a high level of TetR-
VP16 is already present, which therefore requires greater E-KRAB activity, and
correspondingly lower EM concentration, to drive the expression state from ON to
OFF. The converse applies for low historical EM concentrations where minimal to no
TetR-VP16 is present. In this case a significantly higher EM concentration is required
before TetR-VP16 autoexpression becomes self-sustaining. For TetR-VP16 to out-
compete E-KRAB full derepression of all E-KRAB activity is required which is
achieved through a relativelymuch higher EM concentration. In this process the level
of activeTetR-VP16, and therefore the extent of positive feedback, acts as amolecular
‘‘memory” of the historical EM concentration of the system. If the extent of positive
feedback is reduced, for example through tetracycline addition, which reduces the
level of active TetR-VP16 in the system, then the EMconcentration required to switch
the system between ON andOFF configurations begins to resemble a classical graded
profile thereby removing the hysteretic effect. While it was not possible to test using
the constructed system, it is plausible that if the positive feedback within the system
couldbe rendered sufficiently strong, theneven the complete removal ofEMwouldnot
be sufficient to enable E-KRAB to outcompete TetR-VP16. In such an event the
system would exhibit irreversibility.

The importance positive feedback mechanisms has long been recognized as
essential for many cellular processes and is increasingly being identified in natural
biological systems, including signaling pathways [29]. For example, thematuration of
the Xenopus oocytes involves the p42 mitogen-activated protein kinase (MAPK) and
the cell-division cycle protein kinase Cdc2, which form positive autofeedback loops.
Both mediators generate an irreversible switch-like response following transient
stimulation with the steroid hormone progesterone. If the feedback loops are selec-
tively disrupted using specific inhibitors, progesterone-induced maturation can still
occur, however, the presence of progesterone must be actively maintained. Thus,
following disruption of positive feedback the ability of the system to ‘‘remember”
a transient signal is compromised [35,38].Using synthetic genetic networks it has now
also been possible to empirically demonstrate the role of feedback mechanisms in
ensuring expression stability.

The synthetic networks described above show that either a single positive feedback
loop or a double negative feedback loop can result in bistability. Future work in
designing synthetic systems, as well as the study of naturally occurring networks,
may yet identify other mechanisms for switching and the generation of sustainable
responses to transient stimuli.

15.3.5 Oscillator

Expression stability is a common element of all the aforementioned networks.
Dynamic instability, in which transcriptional components are in a constant state of
flux, can result in an equally excitingbehavior characterized byperiodic, as opposed to
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stable, expression. Where such periods are of a consistent period and amplitude, and
require minimal to no external stimuli, the resulting behavior is oscillatory in
character. Such behavior is found in a wide range of natural systems from archae-
bacteria to eukaryotes with the most well-known example being the circadian
rhythm [39]. In humans, processes such as body temperature modulation, endocrine
production and release, and immune responses exhibit circadian oscillations [40].
Circadian clocks have been proposed to consist of autoregulatory loops that
use transcriptional feedback and high protein decay rates to maintain 24 h periodicity
[41–43]. Similarly to the creation of expression stability, several synthetic approaches
utilizing transcriptional feedback have successfully resulted in the creation of
oscillatory behavior.

15.3.5.1 Bacterial Oscillator (‘‘Repressilator’’) Elowitz et al. constructed a
plasmid-based synthetic oscillator in E. coli (termed the ‘‘repressilator”) from three
common bacterial transcriptional repressor systems that are not part of any natural
biological clock mechanism [44]. The three repressor systems were interconnected
such that they formed a cyclic negative feedback loop or ‘‘daisychain” (Fig. 15-8).
This configuration produced oscillating levels of each repressor protein. A GFP
reporter gene, carried not only on a separate plasmid but also under the control of
a promoter induced by one of the repressors, provided a readout of oscillations for that
repressor. A mathematical model was again used to predict the parameters required
for steady and repeated oscillations.Key requirements included strong promoterswith
tight induction characteristics and minimal leakiness, cooperative repression, and
comparable protein andmRNA decay rates. The first requirement was achieved using
engineered E. coli promoters that exhibited similar strong induction profiles. To
reduce repressor protein half-lives a bacterial destruction tagwas fused to the 3’-endof
each repressor. The reduction in repressor half-lives approximately from 60 to 4min
ensured that protein decay rates were similar to mRNAdecay rates of a 2min. Finally,
to ensure a cyclical readoutwas technically observable, theGFP reportergenewasalso
engineered to reduce its effective half-life.

Initial attempts focused on determining whether oscillations could be observed
across a population of cells. Using a transient dose of IPTG, an inhibitor of one of the
repressors (LacI), an attempt was made to synchronize the population at a common
point. While a single damped oscillation was subsequently observed, the lack of any
mechanism to ensure the cells remained synchronized, meant that no further oscilla-
tions could be discerned at a population level. Although not performed in this
case, cell synchronization could potentially be achieved by coupling the oscillating
network to a periodic process that is intrinsic to the cell [45], or by using a quorum-
sensingmechanismorother intercell signaling toensure that cells remainsynchronized
[46–48].Nonetheless, by following individual cells itwaspossible to observe repeated
oscillations (Fig. 15-8). Despite high variability between cells, which were attributed
to random stochastic influences, oscillatory periods of approximately 160min were
observed. Given E. coli cell division times of 50–70min, the almost threefold longer
oscillatory periods indicated that the state of the network could be successfully passed
to progeny cells.
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Figure 15-8 (a) Repressilation in bacteria: Genetic architecture of oscillatory network,

(b) fluorescent and (c) bright-field snapshots of individual cells, and (d) GFP expression profile.

Thebacterial oscillatory networkwas constructed from three bacterial repressor systemsarranged

in a cyclical negative feedback loop. The first repressor protein, lcI, inhibits transcription of the

second repressor protein LacI (from lPR), which inhibits transcription of the third repressor protein

TetR (from PLlac01), which in turn inhibits expression of the first repressor (from PLtet01) thereby

completing the feedback loop. A reporter gene (GFP) under the control of a separate Tet-

responsive promoter (PLtet01) was used to assess oscillating TetR levels. By engineering short

repressor and reporter half-lives (designated as lite) a dynamic unstable state was achieved in

which TetR repressor levels cyclically rose and fell as evidenced through direct observation of

individual cells and by GFP timecourse [44].
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Shortly thereafter, the construction of another bacterial oscillator made from
noncircadian components was reported [34]. In this case, it was constructed using
a combination of positive (an ‘‘activator” module) and negative (a ‘‘repressor”
module) feedback mechanisms (Fig. 15-9). Critical to producing a dynamic unstable
outcome was the use of a hybrid promoter, capable of responding to both an activator
and repressor, which effectively integrated the positive and negative feedback
modules [49]. The resulting competitive interaction resulted in the ‘‘burst” like
generation of activator and repressor proteins, which progressively smoothed over
time. When coupled to a reporter system capable of measuring repressor levels, the
result was a series of oscillations that progressively damped over time. However, in
contrast to the bacterial repressilator developed by Elowitz et al., it was possible to
synchronize a population of cells, via transient inhibition of the repressor, and observe
up to four damped oscillations across the entire population. Oscillatory behavior,
exhibiting periods close to 10 h, could be observed in continuous culture for up to 70 h
again indicating that the networkcouldbepassed to subsequent progenyand that itwas
muchmore resistant to intrinsic noise than the ‘‘repressilator.” Throughmathematical
modeling it was predicted that the key parameter causing damped, as opposed to
sustained, oscillations in the system was the respective differences in half-lives
between the activator and repressor proteins. Although not experimentally tested it
was predicted that sustained oscillations could be achieved by increasing the half-life
of the repressor whilst decreasing that of the activator.

15.3.5.2 A Mammalian Oscillator? Unlike other expression functions, the
development of a synthetic eukaryotic oscillator has not yet mirrored the creation of
the bacterial equivalent, although given the pattern for these developments, it will not
be surprising to see the emergence of a synthetic eukaryotic network in the near future.
However, given the intense interest in understanding the mechanisms responsible
for the natural circadian clock, it is also not surprising that attempts have beenmade to
create a synthetic clock from actual clock components.

Using the core set of positive and negative regulatory elements common to all
known circadian mechanisms, including the cryptochrome genes CRY1 and CRY2,
the period genes PER1, PER2, and PER3, and the positive transcription factors
BMAL1 and CLOCK [50–52], an attempt has been made to artificially engineer an
oscillatory clock [53]. Among these components, BMAL1/CLOCK are positive
regulators ofCRYandPERproteins that, upon accumulation over a specific threshold,
translocate to the nucleus where they negatively inhibit not only their own expression
but also BMAL1/CLOCK. In this model, BMAL1/CLOCK mediated transcriptional
inhibition is eventually relieved by PER and CRY degradation [54]. In the synthetic
approach, BMAL1 and CLOCK expressions were placed on a tetracycline inducible
‘‘positive” regulationconstructwhilePER,CRY, and adestabilized reportergenewere
placed on a ‘‘negative” regulation construct in which their expression was under the
control of a BMAL1/CLOCK/PER/CRY responsive promoter. Theoretically, turning
the systemONbywithdrawing tetracycline leads to BMAL1/CLOCKexpression that
subsequently drives expression from the negative regulation construct. Accumulation
of PER/CRY eventually leads to autofeedback inhibition of the negative regulation
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Figure 15-9 (a) Genetic design and (b) response profile of bacterial oscillatory network using

positive and negative feedback mechanisms.A bacterial oscillatory network constructed from an

activator and repressor module. The activator module forms a positive autofeedback loop in which

the NRI transactivator activates its own expression from Phybrid—a modified glnALB promoter

(Pglnk) engineered to include LacI operator sites in addition to normal NRI operator sites. NRI also

activates expression, via Pglnk, of the LacI repressor module which in turn repressors expression

of NRI via Phybrid. A reporter construct consisting of b-galactosidase and employing a LacI

repressible promoter was used to assess oscillating levels of LacI repressor. Following synchroni-

zation with a transient pulse of IPTG (an inhibitor of the LacI repressor), up to four damped

oscillations were observed across a cell population [34].
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construct that, to complete the cycle, is relieved by eventual degradation of PER/CRY.
In practice,this system was not capable of producing sustained oscillations, yet it did
nevertheless exhibit a single cycle of a clock-like oscillation, which at a minimum
establishes the possibility that homologous regulatory components can be used for
synthetic constructions and that the design and creation of a successful mammalian
clock will necessitate the incorporation of some kind of feedback mechanism. This
latter conclusion is supported by recent experimental analysis of themammalian clock
system where directed disruption of CRY-mediated transcriptional autorepression
resulted in arrhythmic phenotypes in both single- and multicell populations [51].

The aforementioned networks indicate that transcriptional feedback and feedfor-
ward processes are ubiquitous mechanisms for ensuring controlled expressionwheth-
er that output is stable, binary, toggle, hysteretic, or even for periodic oscillating
behavior. The further creation and characterization of synthetic networks will
hopefully determine whether feedback is a minimal requirement for all networks
or whether any other mechanisms could produce novel functional expression forms.

Alongside developments into unique expression states have been the concomitant
development of novel means of integrating signals—so called ‘‘input” functionality.
This has included the serial linking of transcriptional control systems to form
transcriptional cascades, the creation of electronic circuit emulating logic gates,
and the development of sophisticated sensors enabling cell-to-cell communication.

15.3.6 Transcriptional Cascades

Initial attempts in constructing regulatory cascades involved the construction of a two-
level cascade using the TetROFF and LacON systems in mammalian cells [55]. In this
simple system, the TetR-VP16 transactivator was constitutively expressed and, via a
TetR-VP16 responsive promoter, drove the expression of a LacI repressor. LacI in turn
inhibited expression of a reporter gene, via a LacI-inducible promoter. In this case,
reporter gene expression could occur either in the presence of tetracycline, which pre-
vents LacI expression, and/or in the presence of IPTG, which inhibits LacI repression
of the reporter gene. This pioneering system established the basis for interconnecting
gene control systems and successfully enabled the tight induction characteristics of the
TetOFF system to be used to for anON-type system (i.e., addition of tetracycline results
in reporter gene expression), which in their native form (i.e., TetR-KRAB) do not
typically exhibit such tight regulation. However, the high cytotoxicity of IPTG in
mammalian cells is likely to prevent any clinical application of this technology.

In a very similar approach, Imhof et al. constructed a regulator network consisting
of an engineered tetracycline-dependent transrepressor (TetR-KRAB) that controlled
the expression of a Gal4-VP16 transactivator, which in turn controlled its own
expression as well as a highly cytotoxic reporter gene (diptheria toxin A) [56].
Gal4-VP16 is an OFF-type system but exhibits typical residual leaky transcriptional
control. Tight repression of Gal4-VP16 by TetR-KRAB ensured no reporter gene
expression under noninduced conditions, whereas addition of tetracycline resulted
in derepression of Gal4-VP16, subsequent autoexpression of further Gal4-VP16,
and subsequent strong reporter gene expression. In this manner, a cascade was
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used together with a regulatory feedback loop to amplify the window of transgene
regulation resulting ultimately in extremely tight transcriptional control.

15.3.6.1 Multilevel Gene Control Most classical transcriptional control sys-
tems exhibit sigmoid-shaped dose–response characteristics where the range within
the system flips betweenON andOFF states is relatively narrow. As previously which
mentioned, this is predominantly due to the transcriptional cooperativity inherent to
most gene control systems. One consequence is thatmost current transcription control
systems operate in an all or nothingmanner (i.e., ONorOFF) and are not reproducibly
capable of intermediate levels of adjustment. It is conceivable that future gene therapy
applicationswill require precise dosingof therapeutic genes inmuch the sameway that
dosing of pharmaceuticals is critical to their successful application. All or nothing
control mechanisms may therefore be of limited use. By combining several typical
ON/OFF mechanisms in a network configuration, it has been possible to construct a
gene control system where a target gene can be accurately and repeatedly titrated to
intermediate levels [57].

Multilevel transgene controlwas achieved through the cascade arrangement of three
heterologous control systems: the tetracycline (TetOFF), macrolide (EOFF), and strepto-
gramin(PIPOFF) systems(Fig.15-10).As thesesystemsandtheir inducers (tetracycline,
erythromycin, and pristinamycin, respectively) exhibit minimal to no cross-
interference, it was possible to connect them in a linear type fashion whereby each
systemactsastheactivatorofthenextsystem.Allof theselectedsystemswereOFF-type
systemsinwhichtranscriptionisactiveintheabsenceofinducerandrepressedfollowing
addition of inducer. Here, addition of each respective inducer prevents transcription of
the next component in the cascade. However, as all of these systems exhibit minimal
residual expression following addition of inducer (referred to as ‘‘leakiness”), there is
nonetheless some activation of lower levels in the cascade. The impact of this leakiness
on total expression levels dependsupon thepoint in the cascadeatwhich itoccurs.Thus,
at ‘‘upstream” pointswithin the cascade, transcriptional leakiness is amplified by latter
stages thereby limiting the extent of overall OFF switching. For ‘‘downstream”
interventions within the cascade there is minimal opportunities for transcriptional
leakiness to be amplified. The result is that upstream interventions have less impact on
overallexpressionthandownstreaminterventions.Usingdifferent inducers it ispossible
to select the desired intervention point as each inducer affects a different point in the
cascade. Thus, expression levels of 100 percent (no cascade intervention), 70 percent
(interventionatfirst levelofcascade),40percent(interventionatsecondlevel),andclose
to 0 percent (intervention at third and final level) of a target reporter genewere possible.
Thisgeneticnetworkdemonstratedthat thetypicalON/OFFswitchingcharacteristicsof
current control systems, togetherwith residual inherent leakiness, could be exploited to
produce a system capable of intermediate expression levels in response to up to three
different inputs [57].

15.3.6.2 RegulationSensitivity Ina similar experimental approach, butwith a
different outcome, up to three bacterial transcriptional repressorswere linked in a linear
cascade [58]. Unlike the heterologous systems employed above, homologous bacterial
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Figure 15-10 Network design (a) and regulation performance of a synthetic mammalian three-

level regulatory cascade.The three-level regulatory cascade consists of three heterologous

interconnectedgene transcription systems. The tetracycline responsive promoter (PhCMV
�-1) drives

a dicistronic expression unit encoding the tetracycline-dependent transactivator (TetR-VP16) and,

via an IRES, the macrolide-dependent transactivator (E-VP16). E-VP16 subsequently drives

expression, via a macrolide-responsive promoter (PETR), of a streptogramin-responsive transac-

tivator (Pip-VP16). Finally, Pip-VP16 drives expression of the reporter gene human placental

secreted alkaline phosphatase (SEAP) from a streptogramin-responsive promoter (PPIR). The

linear arrangement ensures that SEAP expression can be controlled from a number of levels.

Shutting off expression at the top of the cascade, by inhibiting the autofeedback loop controlling

TetR-VP16 expression with tetracycline (Tet), reduces overall expression to approximately

70 percent of maximum noninduced expression. Closing the cascade further downstream, by

inhibiting E-VP16 with erythromycin, has a greater impact reducing total expression to approxi-

mately 30 percent. Finally, interventions at the bottom level of the cascade, through inhibition of

Pip-VP16 with PI, reduces expression within the system to almost baseline levels [57].
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level transcriptional cascades.Transcriptional cascadeswereassembledusingup to threebacterial

repressors linked to each other in a linear fashion. In each case the tetracyline repressor (TetR)

was constitutively expressed, induced with aTc, and system output measured by enhanced yellow

fluorescence protein (EYFP) production. In the single-level cascade, TetR bound the PLtet-01

promoter where it directly repressed EYFP production. In the two- and three-level cascades, TetR

repressedproduction of a second repressor (LacI), also fromPLtet-01. In the two-level cascade, LacI

repressed production of EYFP from Plac. In the three-level cascade, LacI repressed production

of yet a third repressor, (lCI) from Plac which in turn repressed production of EYFP from lPR-O12.

Dose–response curves for the three types of cascades reveal that the inducer range needed

to effect a change between ON and OFF states narrows with the length of the cascade thereby

increasing sensitivity to the inducer [58].
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repressors exhibit much tighter regulation performance with virtually no leakiness.
Hence, rather than creating multilevel gene control, the aim was to investigate the
impact of multilevel cascades on the regulation performance of a typical bacterial
repression system, the TetR system (Fig. 15-11). Three versions were compared; a
single-level cascade—where TetR directly represses expression of a reporter gene, a
two-level cascade—where TetR represses transcription of a second repressor which in
turn controls the reporter gene, and a three-level cascade—where yet another repressor
system was introduced between the second repressor and reporter gene.

Dose–response experiments indicated that the number of levels, or depth, of a
cascade has a significant impact upon a number of regulation characteristics. First, the
sensitivity of the cascade increases with the depth of the cascade. Thus, the system
switches between lowandhigh froma smaller range of input values. Second, the extent
of noise within the system, as seen by variation in fluorescence across a population,
while minimal at input ranges far from the transition region, increases with the length
of the cascade. Deeper cascades serve to amplify the noise around the transition point
presumably due to the extra number of transition points involved. This may limit
the utility of adding even further cascade levels as additional increases in noise
amplification around transition points may ultimately offset any further sensitivity
gains. Third, the delay in the output response of the system increases commensurately
with the depth of the cascade. This is to be expected and is largely the result of protein
production and decay rates, and repression thresholds. Interestingly, there is evidence
that time delays caused by regulatory cascades may actually be a design parameter
required for many natural gene networks [59]. Database analyses of natural networks,
which are involved in rapid and reversible gene expression in response to external
stimuli (so called ‘‘sensory” transcriptional networks), reveal that such networks
generally contain short regulatory cascades. Networks involved in slow and irrevers-
ible gene expression during development (so called ‘‘developmental” transcriptional
networks) typically contain longer cascades.

15.3.7 Logic Gates

The expression output of many cell-based regulatory networks is often a logic
response generated by one or more input signals. Due to their sigmoid-shaped
dose–response curves, most gene control systems can be regarded as the genetic
equivalent of an analog-to-digital converter. Their output is either ON orOFF across a
wide range of inducer concentrations, except for a small concentration windowwhere
transitions between the two states occur. In this regard, the analogy between genetic
networks and electronic circuitry is very compelling. This has led to the conceptuali-
zation of genetic networks as logic gates with switchboard-type truth-tables and
schematic representations that directly mirror electronic circuit diagrams [60–62].
Adapting gene control systems to Boolean language, ON-type gene control systems
represent IF type gates in the sense that expression results IF an input is present.
Conversely, OFF-type gene control systems represent NOT type gates whereby
expression results when an input is NOT present.

By utilizing several compatible heterologous gene control systems responsive to
tetracycline, macrolide, streptogramin, and butyrolactone input signals, it has been
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Figure 15-12 Boolean description, network architecture, and expression profile of five mamma-

lian BioLogic Gates. All five mammalian logic gates were constructed from heterologous mamma-

lian transcription systems. In the NOT IF gate, the butyrolactone-responsive transactivator (ScbR-

VP16) and the streptogramin-responsive transrepressor (Pip-KRAB) are constitutively expressed

and modulate expression of a reporter gene from a chimeric promoter (PSCBR,PIR) containing

operator sites for both ScbR-VP16 and Pip-KRAB. Input signals, 2-(1’-hydroxy-6-methylheptyl)-

3-(hydroxymethyl) butanolide (SCB1) and/or PI result in disassociation of ScbR-VP16 and Pip-

KRAB respectively. Expression only occurs when ScbR-VP16 is bound to the chimeric promoter

and Pip-KRAB is disassociated therefore requiring the absence of SCB1 and presence of PI. For

the NAND gate, both the macrolide-responsive transactivator (E-VP16) and the streptogramin-

responsive transactivator (Pip-VP16) are constitutively expressed. Each transactivator binds its

cognate promoter (PETR and PPIR, respectively) which drive separate expression of two copies of
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possible to design a range of eukaryotic logic circuits that follow strict Boolean logic
in their integration of two input signals (Fig. 15-12) [63]. Hence, in the NOT IF gate,
expression of a reporter gene occurs if and only if one specific input is present and the
other input is absent. In the NAND gate, expression always occurs unless both inputs
are present. The converse, where expression always occurs unless both inputs are
absent, is reflected in the OR gate. The inverse, where expression occurs only when
both inputs are absent is reflected in the NOR gate. Finally, the INVERTER gate
represents the opposite of the NOT IF gate whereby expression always occurs unless
one specific input is present and the other input is absent. Analogously to electronic
circuit design some of these networkswere constructed by linking elements in parallel
while others were constructed by combining elements in series through the use of
simple transcriptional cascades. These examples demonstrate that a considerable
range of logical switches responding in unique ways to the same two input signals
can be constructed frommodular transcriptional control components. It is imaginable
that such networks could be highly useful for gene therapy applications that require
a particular response to highly specific inputs, which could vary depending upon the
application.

Similar to electronic circuit design, the above switches were based on rational
design principles. However, a number of other approaches have also been used to
produce electronic-type circuit behavior, which produce a defined output in response
to two inputs. Guet et al. used a combinatorial method involving prokaryotic
transcriptional control systems that were randomly combined to generate a library
of networks with varying connectivity [64]. From this library it was possible to isolate
and characterize a range of diverse computational functions that produced unique
phenotypes. While such an approach may yield unexpected network architectures for

the same reporter gene. Input signals, EM and/or PI, modulate transactivator activity respectively.

Expression occurs when either or both transactivators are bound to their cognate reporter.

The presence of both EM and PI are required to disassociate both transactivators to prevent

expression. The OR gate is identical in design to the NAND gate but uses the transrepressor

versions (i.e., E-KRAB and Pip-KRAB) of the macrolide- and streptogramin-responsive transcrip-

tion control systems. Again, EM and/or PI modulate transrepressor activity respectively. In this

case, expression is blocked only when both transrepressors are operator bound which only occurs

when both EM and PI are absent. The NOR gate involves a short linear cascade between a

constitutively produced macrolide-responsive transactivator (E-VP16) which drives the expres-

sion, via its cognate promoter (PETR), of the streptogramin-responsive transactivator (Pip-VP16)

which in turn drives expression, via its cognate promoter (PPIR), of a reporter gene. Modulation of

transactivator activity is achieved throughEMandPI, respectively. In this configuration, expression

only occurs when E-VP16 is bound to its cognate operator and Pip-VP16 is disassociated from

its cognate promoter therefore requiring the absence of both EM and PI. The final gate, the

INVERTER, is identical in design to the NOR gate but uses the transrepressor versions (i.e.,

E-KRAB and Pip-KRAB) of the macrolide and streptogramin responsive transcription control

systems. Again, EM and/or PI modulate transrepressor activity respectively. The only conditions

under which expression will not occur are when E-KRAB is promoter disassociated and Pip-KRAB

is promoter associated which occurs in the presence of EM and absence of PI. For each gate, the

input and output characteristics of the Boolean description are reflected in the expression profile

of the synthetic system [63].
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a given function, the approach is not particularly amenable to forward engineering
approaches that seek to design circuits that exhibit specifically required functions. In a
related approach, Yokobayashi et al. combined rational design with an evolutionary
approach to design specific circuits inE. coli [65].Rational design basedupon existing
knowledge of well-characterized components was initially used to design a network
with a specific function. Given that the synthesized network exhibited sub-optimal
behavior, due to unexpected interactions and poor matching of network components,
a directed-evolutionary approach was then used to fine-tune (or ‘‘debug”) the system
to obtain the required function. This was achieved through sequential rounds of
localized random mutagenesis and recombination followed by phenotype screening.
Subsequent sequence analysis of successful networks revealed that many changes,
or ‘‘solutions”, were capable of producing the desired phenotype. This could be
manifested in changes which altered either protein-DNA or protein–protein interac-
tions, but which nonetheless enabled superior biochemical matching of genetic
components.

15.3.8 Sensory Networks

15.3.8.1 Signal Amplification To extend the electrical circuit analogy further,
Karig andWeiss recently developed a highly effective signal-amplifier from prokary-
otic bacterial control systems [66]. Their aim was to try and develop a means for
detecting weak transcriptional responses that, despite being difficult to detect in vivo,
are often involved in regulatory functions where only trace amounts of a gene product
are required. In typical transcriptional studies aimed at determining the conditions
under which a promoter is activated, a reporter gene is placed downstream of the
promoter and assayed under varying conditions. However, where the promoter
response is weak it is often not possible to discern any kind of activity. By placing
a repressor cascade downstream of the promoter it was possible to amplify an
otherwise undetectable promoter response. In their system, Karig and Weiss placed
the lcI repressor downstream of several Rhl quorum sensing (qsc) promoters from
Pseudomonas aeruginosa. By coupling the repressor to a fluorescent reporter, under
the control of a lP(R-O12) promoter, they were able to monitor the response of selected
promoters to acyl-homoserine lactones (AHL). As lcI is a highly efficient repressor,
even very low concentrations of lcI can completely repress lP(R-O12) thereby altering
the fluorescent reporter readout. The amplifying cascade allowed up to 100-fold
differences in fluorescence to be observed, between AHL-induced and -noninduced
conditions, for promoters whose responses were otherwise not detectable. Apart
from illustrating a biological means by which weak transcriptional responses can be
amplified, the amplifying circuit could potentially be useful for a number of
applications including the detection of trace toxins or molecules.

15.3.8.2 A Band-Detection Network One can imagine it would be useful for
a range of applications to design an input mechanism that can respond to an inducer
within a given concentration range, or perhaps one which is capable of a transient
response when a progressively increasing inducer reaches a threshold concentration.
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In a series of innovative synthetic constructions Basu and colleagues recently created
synthetic networks capable of such behavior in E. coli [67–69].

The key requirements for band-detection network are the design of modular
components that enable the detection of a low-threshold, a high threshold, and a
means of integrating the two thresholds. In this case, this was achieved by exploiting
differences in repressor activities, and by linking several bacterial repressor
systems (Fig. 15-13) [67]. Guided by mathematical analysis the band-detection
thresholds were engineered by combining high-detection and low-detection
componentry.

For both components the initial input was the same and was represented by
the extent of LuxR activity—a bacterial activator that is activated by the
inducer compound AHL. In the high detection componentry, the LuxR activator
drives expression, via its cognate promoter, of a weakened secondary repressor,
LacIM1 which if present in sufficiently high quantities prevents expression of a
reporter gene from the Plac promoter. Thus, the boundary of the high threshold is
determined by the amount of AHL required to produce enough LacIM1 to repress the
Plac promoter that in turn depends upon the relative activity of the LacIM1 repressor.
The low detection componentry also relies on the LuxR activator, but to express the
strong lcI repressor. This in turn is coupled via a transcriptional cascade to
production of wild-type LacI, which, like the LacIM1 repressor, also represses
expression of the reporter gene. In this case, the boundary of the low threshold is the
lowest amount of AHL required to prevent lcI expression thereby enabling thewild-
type LacI repressor to be fully expressed resulting in reporter gene repression. It is
only between the two thresholds that both the high and low detection componentry
fail to repress the reporter gene. Hence, the relative activity of the LacIM1 repressor
and theAHLconcentration that results in lcI expression are the two key components
that determine the size and location of the band-detection characteristics. By
altering the activity of the LacIM1 repressor, Basu et al. were able to create three
versions of the band-detection network each with differing upper detection
limits.

15.3.8.3 A Pulse-Generating Network Basu et al. also utilized the above
bacterial componentry to develop a network capable of producing a transient pulse
when exposed to increasing concentrations of AHL [69]. The pulse-generating
network produces output when a threshold concentration of increasing AHL is
reached, and then through a feedforward mechanism shuts down reporter expression
regardless of whether AHL concentration continues to rise or fall [70]. In this network
AHL again activates LuxR, which in this case is constitutively present. Activated
LuxR activates both a destabilized lcI repressor as well as directly activating reporter
gene expression via a chimeric hybrid promoter responsive to both LuxR and lcI.
Hence, increasing levels of AHL initially trigger both reporter and lcI expression.
Following a delay, lcI accumulates to a sufficient extent where it eventually shuts
down reporter expression. Like the band-detection network the pulse-generating
network provides important insights into how pulse-generating behavior could occur
in natural systems.
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Figure 15-13 (a) Genetic architecture, (b) dose–response profile, and (c) pattern formation of

a band-detection network.(a) In the band-detection network acyl-homoserine lactone (AHL) binds

LuxR, an AHL-dependent transcriptional activator, which is produced in an autoregulatory manner

from a PLuxR promoter. LuxR also drives (from PLuxR promoters) the expression of a lcI repressor
and a weakened form of the LacI repressor (LacIM1). The lcI repressor is coupled to a further

regulatory cascade which represses the expression of wild-type LacI from a lP(R-O12) promoter.

Both the weakened and wild-type LacI repress expression, to a different extent, of a green

fluroscence reporter gene (GFP) from a PLac promoter. At low AHL concentrations, LuxR is not

active such that only basal levels of both LacIM1 and lcI repressors are produced. The absence of

lcI ensures that wild-type LacI is fully expressed which consequently represses GFP expression.

At high AHL concentrations, the LuxR activator drives both high LacIM1 and lcI expression. The
presence of lcI ensures that wild-type LacI is completely repressed. However, as sufficiently

high concentrations of LacIM1 are expressed,GFPexpression remains nonetheless repressed. It is

only at intermediate concentrations of AHL that a balance is reached between sufficiently low

expression of LacIM1 to prevent LacIM1-mediated repression of PLac, and sufficiently high expres-

sion of lcI to prevent LacI expression and consequent LacI-mediated repression of PLac. At this

point insufficient repression from either LacI repressor results in GFP expression. (b) In an AHL

dose–response curve, GFPexpression is only observed within a band of AHL concentration. (c) If

AHL is chemically produced and allowed to diffuse from a defined set of ‘‘sender’’ cells (exhibiting

red fluorescence) placed within a lawn of ‘‘receiver’’ cells containing the band-detection network,

the resulting AHL gradient produces a distinctive green fluorescence pattern based upon the

spatiotemporal location of the receiver cells to the sender cells [67].
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15.3.8.4 Cellular Cross Talk and Intercell Communication The band-
detection and pulse-generation networks developed byBasu and colleagues have been
successfully used to generate spatiotemporal differentiation patterns that, much like
natural pattern formation, rely upon cell-to-cell communication and signal transduc-
tion networks [67,69]. In initial work, it was demonstrated that ‘‘sender” cells
engineered to produce AHL could influence ‘‘receiver” cells endowed with synthetic
networks capable of responding toAHL,which has diffused from the sender cells [71].
In pattern formation experiments cell-to-cell communication was commenced from
‘‘sender” cells, which produced an AHL concentration gradient. In one set of
examples, receiver cells containing the band-detection network responded to the
chemical gradient and at intermediate distances from the sender cells expressed their
reporter gene in accordance with the AHL detection thresholds within their band-
detection network (Fig. 15-13). Such cell-to-cell communication or cellular cross talk
could be engineered to result in a range of patterns, and by altering the thresholds of the
band-detection network and using different fluorescent reporter genes an impressive
array of multicolored patterns and shapes could be produced. In addition to represent-
ing a sophisticated genetic network, the formationof patterns froma synthetic network
togetherwith cellular communication represents a significant step toward reproducing
and understanding natural developmental processes. In addition to pattern formation,
intercellular communication could also be used to ensure synchronization of cellular
populations. Using E. coli as a model system it has been demonstrated that synthetic
gene networks can be used to engineer an artificial quorum-sensing mechanism that
utilizes a common cellular metabolite [72].

15.4 SEMISYNTHETIC NETWORKS

Themajorityof syntheticgeneticnetworksbuilt andcharacterized todatehaveutilized
external signals to create a desired function. To reach their therapeutic potential,
however, it will be necessary to design networks that are capable of responding not
only to external signals but also to endogenous or physiological signals. Hence,
one can imagine sophisticated networks that independently provide a therapeutic
outcome in response to pathological signals, and can also be overridden or altered
through external modulation should the need arise.While still in their infancy, several
systems integrating physiological signals—so called ‘‘semisynthetic” systems—have
already been developed.

In E. coli, semisynthetic systems have been designed, which interface various
physiological inputs into a bacterial toggle network thereby producing a sustainable
switch-like response to a transient physiological input [73]. A DNA damage sensing
network was constructed by interfacing the SOS pathway to a bacterial toggle. The
SOS pathway detects single-stranded DNA following DNA damage by activating
RecA coprotease. ActivatedRecA subsequently cleaves the lcI repressor in the toggle
circuit causing derepression of the lPR-O12 promoter, and a sustainable switch to
high LacI production (the other repressor in the toggle circuit). If LacI production is
linked to a fluorescent output, the system can detect and retain a memory of transient
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DNAdamage. In an alternate application, if the fluorescent reportergene is substituted
for a biofilmproducinggene, transientDNAdamage can induce the cells to commence
biofilm production. In a separate example, the transgenic AHL quorum sensing
pathway was interfaced to the toggle circuit. When AHL reached sufficiently high
levels, (e.g., if cell density reaches a critical density), the AHL-dependent activator
LuxR repressed the PLac promoter of the toggle thereby leading to high lcI expression.
This semisynthetic system is capable of producing a sustainable output once cell
density reaches a critical threshold.

In other prokaryotic systems, Farmer and Liao developed a feedback controller in
E. coli in which the expressed genes are key enzymes in the lycophene biosynthesis
pathway [74]. By engineering the genes to be under the control of a physiological
metabolite that is present during periods of high glycolytic flux, it was possible to
coordinate lycophene production with the energy status of the cell thereby preventing
metabolic imbalance and suboptimal productivity. Using glycolytic flux as a physio-
logical cue Liao and colleagues have also developed an oscillatory network that is
coupled to E. coli host metabolism (termed the ‘‘metabolator”) [75]. In this system,
a steady state is dependent upon the relative state of two metabolic ‘‘pools” which
under high glycolytic flux result in instability in the engineered network with
consequent oscillations.

Progress has also beenmade in developingmammalian semisynthetic systems. The
mammalian oxygen response system, in which a specific set of endogenous genes is
induced in response to low oxygen levels (e.g., VEGF), relies upon the translocation
of hypoxia-induced factor 1 alpha (HIF-1a) to the nucleus where through a series of
interactions it activates expression from promoters containing hypoxia-response
elements (HRE). Under normoxic conditions, HIF-1a is rapidly degraded thereby
preventing the low-oxygen response [76,77]. A semisynthetic network has been
created by coupling the HIF-1a response system to a mammalian heterologous
regulatory cascade resulting in multilevel gene control that can be influenced by
endogenous signals (i.e., oxygen levels) as well as external signals (Fig. 15-14) [78].
By combining three inputs, it has been possible to produce six distinct expression
states depending upon the combination of signals used.

While representing the first steps toward the therapeutic application of synthetic
networks, a major challenge remains to find and/or preferably design transcription
control systems that not only detect changes to a specific endogenous inducer but also
detect changeswithin a specified concentration range. The systemsconstructed to date
have largely relied upon serendipity and have sufficed as a proof of concept. Yet to
reach their true potential, one will need to find means of detecting and interfacing
changes to pathologically relevant molecules.

15.5 THE INFLUENCE OF ‘‘NOISE’’

Amajor influence upon the fidelity and function of both synthetic and natural genetic
networks is noise. Noise is evidenced by high fluctuation in expression levels, which if
sufficiently high enough may produce very different network outcomes both within
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Figure 15-14 (a) Genetic layout and (b) response profile of a mammalian semisynthetic regula-

tory cascade.The semisynthetic cascade is triggered by endogenous HIF-1a that, under hypoxic

conditions (HOX), is mobilized to the nucleus where it binds and activates a synthetic promoter

containing hypoxia-response elements (PHRE). Under normoxic conditions (NOX) HIF-1a is rapidly

degraded to undetectable levels. Activation of PHRE sets off a transcriptional cascade of two

heterologous transcription systems; the streptogramin-responsive transactivator Pip-VP16 which

upon expression binds its cognate promoter (PPIR) leading to expression of the tetracycline-

responsive transactivator TetR-VP16, which subsequently binds its cognate promoter (PTET)

leading to expression of a SAMY (Bacillus stearothermophilus derived secreted a-amylase)

reporter gene. In addition to sensing physiologic oxygen levels via the HIF-1a activator, the system

is also responsive to PI which interrupts the cascade at Pip-VP16, and tetracycline (Tet), which

interrupts the cascade at TetR-VP16. Up to six expression levels can be produced by different

combinations of the three inputs [78].
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andacross a cell population.Noise canbegenerated fromanumberof sources. Inmany
circuits the genetic components required for gene expression, such as promoter sites,
are typically present at very low copy levels. The result is that biochemical rates of
transcription and translation are therefore correspondingly lowand, compared to other
cellular interactions (e.g., protein–protein interactions), occur relatively infrequently.
Such infrequency can lead to large fluctuations, which due to their origination within
the genetic circuit, are referred to as internal or intrinsic noise. Noise can also be
generated externally or extrinsically of the circuit not only through stochastic variation
in cellular components required for gene expression (e.g., polymerase, transcription,
translation factors, and so on) but also through environmental or global changes that
impact all gene activity (e.g., cell division).Given themodular nature of artificial gene
networks, and the ability to rationally design them fromwell-understood components,
it has been possible to gain insight into how noise is created, how it is propagated
through a network, and finally instances where the existence of noise is in fact crucial
to the output function of a network [79]. A significant body of work has focused
upon designing synthetic networks to experimentally test predictions relating to noise
phenomena. Such insights have also been crucial for the later design of noise-tolerant
networks [80–82].

In early work on prokaryotic systems, it was shown that both intrinsic and extrinsic
sources contribute significantly to the generation of noise that places certain inherent
limits on the precision of gene expression [83,84]. It was also shown that the lower
the effective strength of a promoter, whether through reduced gene copy number,
repression, or a different cellular environment, the greater the extent of noise [83].
Other work aimed at determining whether transcription or translation is the major
point of noise creation suggests that differences in translational efficiency have a
greater impact than transcriptional differences [85] and that translational differences
can result in variation which persists long after intrinsic noise from transcription has
decayed [86].

The design and characterization of toggles, oscillators, and regulatory cascades has
led to insights into how noise is propagated through a network [80,82]. As previously
described, the presence of a simple autofeedback mechanism can reduce noise in a
genetic network [18] and this has certainly been suggested as a major function of both
positive and negative feedback mechanisms [70,87]. Failures in such mechanisms
have been attributed to certain disease states. For example, the transformed phenotype
in tumor formationhas in somecases been attributed to instability of autocrine positive
feedback loops [88]. Network connectivity can also be a major cause of noise. Using
a bacterial regulatory cascade, Pedraza and van Oudenaarden demonstrated that the
connectivity of sequential network components can result in an a total variation that
is greater than the variation intrinsic to the expression of each component gene [84].
This implies that variation in a cascade can be cumulative. Hooshangi et al. in
characterizing differences in their three-level bacterial regulatory cascade (described
above) also witnessed greater variability around input transition points [58]. Indeed,
the extentof variation canbe so significant in a cascade that variations in anupper-level
cascade within a cell population can cause the population to display bistable expres-
sion states [49,89–91]. That stochastic fluctuation can be crucial for generation of
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cellular phenotypes is becoming more and more evident. Noise can establish an
initial asymmetry that, once propagated and amplified through a network, may result
in phenotypic consequences that impact processes such as differentiation and
disease [90,92,93].

15.6 CONCLUSION

All of the engineered genetic networks thus described have utilized at least some
aspects of rational design to produce a behavior that is based upon the modular
interaction of DNA sequences and regulatory proteins. By assembling molecular
parts not normally associated with each other into different configurations, it has
been possible to produce an already impressive array of robust network behaviors.
As the number of available modules increases, and their kinetic parameters become
better characterized, and our ability to model and predict their interaction continues
to improve, it is inevitable that further novel and increasingly more sophisticated
synthetic networks will be created. Existing synthetic networks have already
provided important insights and confirmation of hypothesis on a range of natural
phenomena such as importance of feedback mechanisms, of balanced genetic
componentry, of regulatory cascades, and of noise to name a few. It can also be
expected that engineered gene networks will havemany important biotechnological
and therapeutic applications all of which aim to manipulate cellular processes at the
genetic level.
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16.1 INTRODUCTION

Systems biology aims at system-level understanding of biological systems [1,2].
Investigations of biological systems at system level are not a new concept and can be
traced back to homeostasis byWalter Cannon,Cybernetics byNorbertWeiner [3], and
the general systems theory by von Beltaranffy [4]. Numbers of approaches in
physiology have also taken a systemic view of the biological subjects. Systems
biology is gaining renewed interest today because of progress in genomics, molecular
biology, nonlinear dynamics, computational science, and other related fields.

However, ‘‘system-level understanding’’ is a rather vague notion and is often hard
to define. This is due to the fact that the system is not a tangible object. Genes and
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proteins are more tangible because they are identifiable matters. Although the system
is composed of these matters and they are components of the system, the system itself
cannot be made tangible. Often, diagrams of the gene regulatory networks and the
protein interaction networks are shown as representations of systems. It is certainly
true that such diagrams capture any one aspect of the structures of the system, but they
are still only static slices of the system.Theheart of the system lieswithin thedynamics
it creates and the logic behind it. It is science on the dynamical state of affairs.

There are four distinct phases that lead us to system-level understanding at
various levels. First, system structure identification enables us to understand the
structure of the system. While this may be only a static view of the system, it is an
essential first step. The structure shall then be identified, ultimately, in both physical
and interaction structures. Interaction structures are represented as gene regulatory
networks and biochemical networks that indicate how components interact within
and in between cells. Physical details of specific regions of the cell, overall structure
of cells, and organisms are also important because such physical structure imposes
constraints on possible interactions and the outcome of interactions impacts the
formation of physical structures. Nature of interaction could be different if proteins
involved in interaction move by simple diffusion or under specific guidance from
cytoskeleton.

Second, system dynamics needs to be understood. Understanding the dynamics of
the system is an essential aspect of the study in systems biology. This requires
integrative efforts of experiments, measurement technology development, computa-
tional model development, and theoretical analysis. Various methods, such as
bifurcation analysis, have been used, but further investigations are necessary to
handle the dynamics of systems with very high dimensional space.

Third, methods to control the system shall be investigated. One of the implications
is to find a therapeutic approach based on system-level understanding. Many drugs
have been developed through extensive effect-oriented screening. It is only recently
that specific molecular targets have been identified and lead compounds are designed
accordingly. Success in controlmethods of cellular dynamicsmay enable us to exploit
intrinsic dynamics of the cell so that its effects can be precisely predicted and
controlled.

Finally, designing the system that is to modify and construct biological system
with designed features. Bacteria and yeast may be redesigned to yield desired
properties for drug production and alcohol production. Artificially created gene
regulatory logic could be introduced and linked to innate genetic circuits to attain
desired functions [5].

Several different approaches can be taken within systems biology field. One may
decide to carry out a large-scale, high-throughput experiment and try to find out the
overall picture of the system at coarse-grain resolution [6–9]. Alternatively, working
on precise details of specific signal transduction [10,11], cell cycle [12,13], and other
biological issues to find out the logic behind them are aviable research approach. Both
approaches are essentially complementary, and, together, can reshape our understand-
ing of biological systems.

530 THE THEORY OF BIOLOGICAL ROBUSTNESS AND ITS IMPLICATION TO CANCER



16.2 ROBUSTNESS IS THE FUNDAMENTAL ORGANIZATIONAL
PRINCIPLE OF BIOLOGICAL SYSTEMS

Robustness is a property of the system that maintains a certain function despite
external and internal perturbations that are ubiquitously observed invarious aspects of
biological systems [14]. It is distinctively a system-level property that cannot be
observed by just looking at components. Specific aspects of the system, the functions
to be maintained, and the types of perturbations that the system is robust against must
bewell defined tomake solid arguments. For example, amodern airplane (system) has
a function to maintain its flight path (function) against atmospheric turbulences
(perturbations).

Bacteria chemotaxis is one of the most well-documented examples in which
chemotaxis is a function maintained against the perturbations that are changes in
ligand concentration and rate constants for the interactions involved [15–17]. The
network for segmental polarity formation duringDrosophila embryogenesis robustly
produces repetitive stripes of differential gene expressions despite variations in initial
concentration of substances involved, as well as kinetic parameters of interac-
tions [18,19]. Various aspects of robustness of biological systems have been studied
extensively, butmore remains to be explored and formalized to create solid theoretical
foundations.

Why is robustness so important? First of all, it is a feature that is observed to be
so ubiquitous in biological systems; from such a fundamental process like
phage fate decision switch [20] and bacteria chemotaxis [15–17] to developmental
plasticity [18] and tumor resistance against therapies [21,22]. This implies that
it may be a basis for principles that are universal in biological systems, as well
as being opportunistic toward finding cures for cancer and other complicated
diseases.

Second, robustness is a system-level property of the system inwhich interactions of
components give rise to this feature.Robustness in this context refers to a feature of the
system to maintain its function instead of structures or specific states. Structures or
states can be dynamically changed if they lead to maintenance of the function of the
system.

Third, robustness against environmental and genetic perturbation is essential for
evolvability [23–25]. Evolvability requires generation of variety of nonlethal
phenotype and genetic buffering [26,27]. Mechanisms that attain robustness against
environmental perturbation may be used also for attaining robustness against
mutations, developmental stability, and other features that facilitate evolvability
[14,23–25].

Fourth, it is one of the features that distinguish biological systems and man-made
engineering systems. Although some man-made systems, such as airplanes, are
designed to be robust against the range of perturbations, most man-made systems
are not as robust as biological systems. Some engineering systems that are designed to
be highly robust entail mechanisms that are also present in life forms, which imply
existence of the universal principle.
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16.3 UNDERLYING MECHANISMS FOR ROBUSTNESS

16.3.1 System Control

First, extensive systems control is used, mostly saliently negative feedback loops but
also feedforward and positive feedback controls, tomake a system dynamically stable
around the specific state of the system. An integral feedback is used in bacteria with
chemotaxis as a typical example [15–17]. Due to integral feedback, bacteria can sense
changes of chemoattractant and chemorepellant independent of absolute concentra-
tion so that proper chemotaxis behavior is maintained over a wide range of ligand
concentration. In addition, the samemechanismmakes it insensitive to changes in rate
constants involved in the circuit. Positive feedbacks are often used to create bistability
in signal transduction and cell cycle, so that the system is tolerant tominor perturbation
in the stimuli [10,12,13].

16.3.2 Fault Tolerance (Redundancy and Diversity)

Second, fault tolerance mechanisms increase tolerance against components failure
and environmental changes by providing alternative components or methods to
ultimately maintain a function of the system. Sometimes there are multiple compo-
nents that are similar to each other and are redundant. Other cases are different means
that they are used to copewith perturbations that cannot be handled by the othermeans.
This is often called phenotypic plasticity [28,29] or diversity. Redundancy and
phenotypic plasticity are often considered as opposite things, but it is more consistent
to view them as different ways to meet an alternative fail-safe mechanism.

16.3.3 Modularity

Third, modularity provides isolation of perturbation from the rest of the system. The
cell is the most significant example. More subtle and less obvious examples are
modules of biochemical and gene regulatory networks. Modules also play an impor-
tant role during developmental processes that buffer perturbations so that proper
pattern formation can be accomplished [18,30,31]. The definition of the module and
the methods of how to detect such modules are still controversial, but the general
consensus is that the module does exist and play an important role [32].

16.3.4 Decoupling (Buffering)

Fourth, decoupling isolates low-level noise and fluctuations from functional-level
structures and dynamics. One example here is genetic buffering by Hsp90 in which
misfolding of proteins due to environmental stresses is fixed, and thus effects of such
perturbations are isolated from the functions of the circuits. This mechanism also
applies to genetic variations where genetic changes in coding region that may affect
protein structures are masked because protein folding is fixed by Hsp90, unless such
masking is removed by extreme stress [24,33,34]. Emergent behaviors of complex
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networks also exhibit such buffering properties [35]. These effects may constitute
canalization proposed by Waddington [36]. A recent discovery by Uri Alon’s group
on oscillatory expression of p53 upon DNA damage may exemplify decoupling at
signal-encoding level [37], because stimuli invoked pulses of p53 activation level,
instead of gradual changes, effectively converting analogue into digital signal. Digital
pulse encoding may indicate robust information transmission, although further
investigations are clearly warranted to draw any conclusion at this moment.

An example of a sophisticated engineering system clearly illustrates how these
mechanisms work as a whole system. An airplane is supposed to maintain a flight
path following the command of the pilot against atmospheric perturbations and
various internal perturbations, including changes in the center of gravity due to
fuel consumption and movement of passengers, as well as mechanical inaccuracies.
This function is carried out by controlling flight control surfaces (rudder, flaps,
elevators, etc.) and a propulsion system (engines) by an automatic flight control
system (AFCS). Extensive negative feedback control is used to correct deviations of
flight path. The reliability of the AFCS is critically important for stable flight. To
increase reliability, the AFCS is composed of three independently implemented
modules (a triple redundancy system) all of which meet the same functional specifi-
cation. Most parts of the AFCS are digitalized, so that low-level noise of voltage
fluctuations is effectively decoupled fromdigital signals that define the function of the
system. Due to these mechanisms, modern airplanes are highly robust against various
perturbations.

16.4 INTRINSIC FEATURES OF ROBUST SYSTEMS:
EVOLVABILITY AND TRADE-OFFS

For the system to be evolvable, it must be able to produce variety of nonlethal
phenotypes [27]. At the same time, genetic variations need to be accumulated as a
neutral network so that pools of genetic variants are exposed when the environment
suddenly changes. Systems that are robust against environmental perturbations entail
mechanisms such as system control, alternative, modularity, and decoupling that also
support, by congruence, generation of nonlethal phenotype and genetic buffering.
In addition, the capability to generate flexible phenotype and robustness requires the
emergence of the bow tie structure as an architectural motif [38]. One of the reasons
why robustness in biological systems is so ubiquitous is that it facilitates evolution,
and evolution tends to select traits that are robust against environmental perturbations.
This leads to successive addition of system controls.

Systems that acquire robustness against certain perturbations through design or
evolution have intrinsic trade-offs between robustness, fragility, performance, and
resource demands. Carlson and Doyle argued, using simple examples from physics
and forest fire, that systems that are optimized for specific perturbations are extremely
fragile against unexpected perturbations [39,40]. A system that has been designed, or
evolved, optimally (either globally optimal or suboptimal) against certain perturba-
tions is called a high optimized tolerance (HOT) system. Ceste and Doyle further
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argued that robustness is a conserved quantity [41]. This means when robustness is
enhanced against a range of perturbations, it must then be paid off by fragility
elsewhere as well as compromised performance and increased resource demands.

Robust-yet-fragile trade-offs can be understood intuitively using the airplane
example yet again. When comparing modern commercial airplanes with the
Wright Flyer, modern commercial airplanes are, by a great magnitude, more robust
against atmospheric perturbations than the Wright flyer, and are thus attributed to a
sophisticated flight control system. However, such a flight control system fully relies
on electricity. In a very unthinkable event of total power failure in which all electricity
is lost in the airplane, the airplane cannot be controlled at all. Obviously, airplane
manufacturers are well aware of this issue and take all possible counter measures to
minimize such a risk. On the other hand, despite its vulnerability against atmospheric
perturbations, the Wright flyer will never be affected by the power failure because
there is no relianceonelectricity.This extremeexample illustrates that systems that are
optimized for certain perturbations could be extremely fragile against unusual
perturbations.

HOTmodel systems are successively optimized/designed (not necessarily globally
optimized, though) against perturbations in contrast to self-organized criticality
(SOC) [42] or scale-free networks [43] that are unconstrained stochastic additions
of components without design or optimization involved. Such differences actually
affect failure patterns of the system, and thus have direct implications on understand-
ing the nature of disease and therapy design.

Unlike scale-free networks, HOT systems are robust against perturbations like
removal of hubs as far as systems are optimized against such perturbations.
However, systems are generally fragile against ‘‘Fail-on’’ type failure in which
components failure results in continuous malfunction, instead of cease to function
‘‘Fail-off,’’ so that incorrect signals are kept transmitted. This type of failure is
known in the engineering field as the Byzantine Generals Problem [44], named
after the problem in the Byzantine army composed of numbers of generals
dispersed in the field, some of them traitors who sent incorrect messages to confuse
the army.

Disease often reflects the systemic failure of the system triggered by the fragility of
the system. Diabetes mellitus is an excellent example of how systems that are
optimized for near-starving, intermittent food supply, high energy utilization lifestyle,
and highly infectious conditions are fragile against unusual perturbations such as high
energy containing foods, and a low energy utilization lifestyle [45]. Due to optimiza-
tion toward a near-starving condition, the extensive control to maintain a minimum
blood glucose level is acquired so that activities of central neural systems and innate
immunity are maintained. However, no effective regulatory loop has been developed
against excessive energy intake and feedback regulations work to reduce glucose
uptake by adipocyte and skeletal muscle cells because it may reduce plasma glucose
level below the acceptable level. These mechanisms lead to a state where blood
glucose level is chronically maintained higher than the desired level, from the longer
time scale that has not been optimized for, further leading to cardiovascular complica-
tions. Similar observations have been made for autoimmune disorders where the
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evolution of robust immunity also entails proinflammatory and hyperactive immune
system [46].

16.5 SELF-EXTENDING SYMBIOSIS

So far, robustness and its relationship with evolution have been argued within the
frameworkofMendel’s genetics in a sense thatmutation and crossover throughmating
has been considered as a mechanism for evolutionary innovations. Emergence of
specificmechanisms for increasing robustness and enrichment of bow tie structure has
been discussed within this paradigm. I have previously proposed that there may be
othermeans of enhancing robustness through evolution, but by extending ‘‘self’’ with
foreign biologic substances, a notation that I termed ‘‘self-extending symbiosis’’ [47].
Self-extending symbiosis is a phenomenon where evolvable robust systems continue
to extend their system boundary by incorporating foreign biologic forms (genes,
microorganisms, etc.) to enhance their adaptive capability against environmental
perturbations, hence improving their survivability and reproduction potential. In other
words, robust evolvable systems have consistently extended themselves by incorpo-
rating nonself into tightly coupled symbiotic states.

Looking at the history of evolutionary innovations, it has become clear that some of
the major innovations are the result of acquisition of ‘‘nonself’’ into ‘‘self’’ at various
levels. Horizontal gene transfer (HGT) facilitates evolution by exchanging genes of
different species that have evolved for different optimization contexts, andwas shown
to be a frequently observed phenomenon in prokaryotes, archea, and unicellular
eukaryotes [48,49]. Microorganisms acquire novel functions, mostly to enhance their
robustness against environmental challenges, through horizontal exchange of genes.
For example, it has been argued that global emergence of antibiotic- resistant bacteria
may be caused by horizontal transfer of antibiotic genes [50–52]. Inmetazoan species,
HGT has not been reported (at best, reported highly controversially) except in some
rare instances on insect–bacteria symbiosis between the adzuki bean beetle
Callosobruchus chinensis and Wolachia [53].

The serial endosymbiosis theory by Lynn Margulis [54,55] argues that eukaryotic
cells have been created by acquiring bacteria as their organelles. This resulted in
greater functionalities of eukaryotic cells, hence more robust against environmental
challenges. Here, symbiosis resulted in incorporation of foreign biologic entity into
cytoplasm as well as into its own genome.

While HGT and endosymbiosis resulted in incorporation of foreign biologic
entity into genome and cellular structure, there are forms of symbiosis that do not
directly alter genome but essential to the survival of the species. There are species that
allow certain bacteria to be vertically inherited through the host’s oocytes as observed
in sponges, clams [56], and aphids [57]. Aphids, for example, are infected with the
genusBuchnera, resulting in an endosymbiotic relationship and acquireddramatically
improved energy utilization and terrain exploration capability. It was shown
that aphids and buchnera undergo parallel evolution where the phylogeny trees of
the host (aphids) and symbionts (genus Buchnera) are consistent [57]. A case
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of parallel evolution has also been observed in endosymbiosis of Psyllid and
Candidatus [58].

Apart from such tight coupling of host and symbiont, horizontal (environmental)
acquisition of symbionts [59] is yet another approach in extending the self by
incorporating a broader range of microbes, thereby allowing the host to be able to
adapt to a broader range of environments and nutrients. Commensal bacterial flora
are ubiquitously observed in various metazoan species, including termites [60],
cockroaches [61], prawns [62], and mammalians, and have established inseparable
relationshipswith the host organisms, and are even considered to have coevolved [63].
In human beings, the commensal bacterial flora in the gut consists of diverse
microorganisms up to 500–1000 species, amounting to about 1014 bacteria weighing
a total of 1.5 kg [64]. The human being as a symbiotic system consists of approxi-
mately 90 percent prokaryotes and 10 percent eukaryotes [65], and a random shotgun
sequencing of the whole human symbiotic system would result in predominantly
bacterial genome readouts of about 2 million genes with sporadic mammalian
genes [66]. Such commensal intestinal bacteria play a critical role in various aspects
of the host physiology.Mammalian bacterial flora has been considered to constitute an
integral part of host protection bymutually beneficial symbiosiswith the host immune
system.

The line of observations point to the characteristic property of biological systems
that the greater levels of robustness and functionalities is gained by incorporating
foreign biologic entities into their own system in the form of different degree of
symbiosis. HGT and endosymbiosis incorporate foreign entities into genome and
cellular structures, where vertical inheritance based endosymbiosis do not directly
alter the genome. Bacterial flora simply adds a layer of adaptive system that is
symbiotically interacting with mucosal immune system of the host. A general
tendency observed here is the continuous addition of external layers by symbiotic
incorporation of foreign entities, and increased level of robustness against
environmental perturbation is gained in this process.

16.6 CANCER AS A ROBUST SYSTEM

Cancer is a heterogeneous and highly robust disease that represents worse case
scenario of system failure; a fail-on faultwheremalfunction components are protected
bymechanisms that support robustness in normal physiology [21,22]. It is a robustness
hijack. Survival and proliferation capability of tumor cells are robustly maintained
against a range of therapies due to intratumoral genetic diversity, feedback loops for
multidrug resistance, tumor–host interactions, and so on.

Intratumoral genetic heterogeneity is a major source of robustness in cancer cells.
Chromosome instability facilitates generation of intratumoral genetic heterogeneity
through gene amplification, chromosomal translocation, pointmutations, aneuploidy,
and so on [67–70]. Intratumoral genetic heterogeneity is one of the most important
features of cancer that provides alternative, or fail-safe mechanisms for tumor to
survive and grow again despite various therapies, because some tumor cells may have
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genetic profile that are resistant to the therapies carried out. Although there are only a
few studies on intratumoral genetic heterogeneity, available observations in certain
types of solid tumors indicate that there are multiple subclusters of tumor cells
within one tumor cluster in which each subcluster has different chromosomal
aberrations [71–75]. This implies that each subcluster is developed as clonal expan-
sion of a single mutant cell, and creation of a new subcluster depends upon the
emergence of a newmutant that is viable for clonal expansion. A computational study
demonstrates that spatial distributionwithin a tumor cluster enables the coexistence of
multiple subclusters [76].

Multidrug resistance is a cellular-level mechanism that provides robustness of
viable tumor cell against toxic anticancer drugs. In general, this mechanism involves
overexpression of genes such as MDR1 that encodes ATP-dependent efflux pump,
P-glycoprotein (P-gp) that effectively pumps out broad range of cytotoxins [77,78].
Trials to mitigate function of P-gp using verapamil, cyclosporine its derivative
PSC833 have been disappointing [79].

Tumor–host interactions play major roles in tumor growth and metastasis [80].
When tumor growth is not balanced by vascular growth, hypoxic condition emerges
in a tumor cluster [81]. This triggers HIF-1 upregulation that induces a series of
reactions that normally function to maintain normal physiological conditions [82].
Upregulation of HIF-1 induces upregulation of VEGF that facilitates angiogenesis,
and uPAR and other genes that enhance cell motility [81]. These responses solve
hypoxia of tumor cells either by providing oxygen to tumor cluster or by moving
tumor cells to a new environment—resulting in further tumor growth or metastasis.
Interestingly, macrophages are found to chemotaxis into tumor cluster. Such
macrophages are called tumor-associated macrophage (TAM), and found to over-
express HIF-1[83]. This means that the macrophage that is supposed to remove
tumor cells may be built-in to feedback loops to facilitate tumor growth and
metastasis.

In addition, it can be considered that tumor cells may evolve through self-
extending symbiosis. If this is the case, tumor cells shall enhance their robustness
against various perturbations through horizontal gene transfer, symbiosis with other
cells in the form of cell fusion, and formation of symbiotic relationship with
surrounding environments. Interestingly, recent reports indicate that tumor cells may
be actively involved in cell fusion and uptake of chromosomes of other cells [84–
87]. In addition, artificially produced hybrodimas between antibody-producing
plasma cell and tumor cell are used for monoclonal antibody production indicating
stable maintenance of cellular function upon hybridization. These series of ob-
servations imply that tumor cells may be considered as a group of cells that have
become somewhat detached from the host system and have begun evolving
independently, so that a wide range of phenomena, such as self-extending symbiosis,
also occur on tumor cells and thereby their robustness against perturbation is
enhanced (Fig. 16-1).

So far, such phenomena have only been reported independently, and not been
placed in the perspective. Reorganizing these findings under the coherent view of
cancer robustness will provide us a guideline for further research.
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Figure 16-1 Self-extending symbiosis and cancer evolution. Self-extending symbiosis is a path

that multicellular organism might have gone through in the course of evolution. Acquisition of

nonself into self at various levels of flexibility enhances robustness of organisms against various

perturbations. Cancer may also evolve through self-extending symbiosis. Assume cancer as an

independent species diverted from somatic cell, it may rapidly evolve through bacteria-like

horizontal gene transfer, cell fusion, and microenvironment remodeling to enhance robustness

against environmental perturbation. In self-extending symbiosis, there is clear evidence of ootytes-

mediatedvertical infection. There is no conclusive report if any bacterial infection is observed in any

typeof cancer that affects robustnessof cancer against perturbation.Suchphenomenamight have

been simply unnoticed waiting for future discovery.
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16.7 THEORETICALLY MOTIVATED THERAPY STRATEGIES

Given thehighly complexcontrol andheterogeneity of tumor, randomtrial of potential
targets is not as effective as onewish it to be. There is a need for theoreticallymotivated
approach that guides us to identify a set of therapies to best counter the disease. The
implication of the theory of cancer robustness is that there are specific patterns of
behaviors and weakness in robust systems as well as rational way of controlling and
fixing the system, and such general principles also apply to cancer. Thus, theremust be
theoretically motivated approach for the prevention and treatment of cancer. This
section discusses therapeutic implications of the theory.

Strategy for cancer therapymay depend upon the level of robustness that the tumor
of a specific patient has.When robustness is low, andgenetic heterogeneity is low, then
there is a good chance that the use of drugs with specific molecular targets may
effectively cure cancer by causing the commonmode failure: a type of failure inwhich
all redundant subsystems fail for the same reason. An example of CML (chromic
myeloid leukemia) therapy by imatinib metylate (Glivec: Novertis) may provide us
some insights [88,89].Dramatic effects of imatinibmetylate for early stageCMLstem
from the fact that it selectively target BCR-ABL protein that is specifically expressed
in tumor cells and tumor growth depends on BCR-ABL [90]. Thus, it causes the
commonmode failure in tumor cells that have similar fragility. However, it is resistant
in advanced stage due to heterogeneity of mutations so that the drug cannot inhibit
diverse emergent mutant proteins [91]. For this strategy to be effective, there must be
propermeans to diagnose the degree of intratumoral genetic variations. Then, themost
effectivemolecule as a target needs to be recognized that directs the lead identification
and optimization processes.

However, for patients with an advanced stage cancer, intratumoral genetic hetero-
geneity may be already high and various feedback controls may be significantly
upregulated. In these cases, drugs that are effective in the early stage may not work as
expected, due to heterogeneous response of tumor cells and feedbacks to compensate
for perturbations. For these cases, therapy and drug design need a drastic shift from
molecule-oriented approach to a system-oriented approach. Then, the question is
which approach shall be taken to target the system, instead of the molecule. I would
consider that there are three theoretically motivated countermeasures.

First, robustness/fragility trade-off implies that the cancer cells that have gained
increased robustness against various therapies may have a point of extreme fragility.
Targeting such a point of fragility may bring dramatic effects for the disease. The
major challenge is to find such a point of fragility. Since this trade-off emerged due
to successive modifications of the system design to optimally cope with specific
perturbations, it is essential to identify the perturbations that the system is optimized
against and the underlying mechanisms that enable such optimization. For example,
one mechanism for tumor robustness is enhanced genetic heterogeneity that is
generated by chromosomal instability, so that some cells may have genetic
profile suitable for survival under the specific pressure from the therapy. Then, a
method to enhance chromosomal instability selectively in cells that already have
unstable chromosome could be one candidate. The point here is whether such
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effects can be done with sufficient selectivity. Nonselective approach to increase
chromosomal instability has been proposed [92], but it may enhance chromosome
instability of the cells that are relatively stable now and thus potentially promotes
malignancy.

Second, approaches that avoid the increase of robustness constitute the other
possibility. Since genetic heterogeneity is enhanced, at least in part, by somatic
recombination, selectively inducing cell cycle arrest to tumor cells can effectively
control the robustness. There is a theoretical possibility that such subtle control can be
done by careful combination of multiple drugs that specifically perturb biochemical
interactions. A computational study indicates that the removal or attenuation of
specific feedback loops involved in cell cycle reduces the robustness of cell cycle
against changes in rate constant [93]. The challenge is to find appropriate combination
of drugs that can effectively induce cell cycle arrest only in tumor cells, but not in other
cells. Although this approach uses combination ofmultiple drugs, there is hope to find
a set of drugs that can be administered at minimum dosage and toxicity. This
approach results in the dormancy of the tumor. Cancer dormancy has already been
proposed [94,95] and many report that induced dormancy has been found in
mouse [96,97]. However, these studies report cases where tumor cell proliferation
is offset by increased apoptosis. Since heterogeneity may increase by cell prolifera-
tion, this type of dormancy,which I call ‘‘pseudodormancy’’does not prevent increase
in heterogeneity, hence robustness is not controlled. Genuine dormancy needs to
induce selective cell cycle arrest.

Third, an approach to actively reduce intratumoral genetic heterogeneity followed
by a therapy by molecular targeted drugs may be a viable option. If we can design an
initial therapy to impose a specific selection pressure on the tumor in which there are
only cells with specific genetic variations to survive the therapy, then reduction of
genetic heterogeneitymay be achieved. Then, if a tumor cell population is sufficiently
homogeneous, a drug that specifically targets a certain molecule may have significant
impact on the remaining tumor cell population. An important point here is that
the drugs used shall not enhance mutation and chromosomal instability. If mutations
and chromosomal instability are enhanced, particularly by the initial therapy,
heterogeneity may quickly increase so that the second line therapywill be ineffective.

Fourth, one may wish to retake control of the feedback loops that give rise to
robustness in an epidemic state. Since the robustness of tumor is often caused by host
tumor feedback controls, robustness of tumor can be seriously mitigated if such
feedback loops can be controlled. One possible approach is to introduce a decoy
that effectively disrupts feedback control or invasive mechanisms of the epidemic.
Such an approach is proposed in AIDS therapywhere conditionally replicating HIV-1
(crHIV-1) vector that has only cis region but no trans is introduced [98,99]. This decoy
virus dominates the replication machinery, so that HIV-1 virus is pushed into latency,
instead of eradication. In solid tumor, an interesting idea has been expressed to use
TAMas delivery vehicle of thevector [83,100]. TAMmigrates into solid tumor cluster
andupregulatesHIF-1 that facilitates angiogenesis andmetastasis. If TAMcanbeused
to retake a control, robustness may bewell controlled and self-extending symbiosis in
cancer evolution may be aborted.
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Finally, multicomponent drugs may be designed where each component targets
molecule inwhich perturbation differentially affects tumor and normal cells.A certain
perturbation affectsmore the tumor cells but less the normal cells. Even if each of such
perturbations does not eliminate tumor cells or is not able to stop their proliferation,
theremay be specific combination of such drugs that in synergy affects drastically and
selectively the tumor cells. One extreme of such approach is the ‘‘long-tail drug,’’
recently proposed by the author, that uses large numbers of weakly interacting
compounds to affect the tumor cells [101].

16.8 A PROPER INDEX OF TREATMENT EFFICACY

It is important to recognize that, in the light of cancer robustness theory, tumor mass
reduction is not an appropriate index for therapy and drug efficacy judgment. As
discussed already, reduction of tumor mass does not mean that proliferation potential
of tumor has generally decreased. It merely means that subpopulation of tumor cells
that are respondent of the therapy were eradicated, or significantly reduced. The
problem is that the remaining tumor cells may be more malignant and aggressive, so
that therapies for relapsed tumor could be extremely ineffective. This is particularly
the case, drugs used to reduce tumormass are toxic and potentially promotemutations
and chromosomal instability in nonspecific ways. It may even enhance malignancy
but imposing selective pressures to select resistant phenotype, enhance genetic
diversity, as well as providing niche for growth by eradicating fragile subpopulation
of tumor cells.

The proper index shall be based on control of robustness: either minimizes the
increase of robustness or reduces robustness. This can be achieved by inducing
dormancy, actively imposing selective pressure to reduce heterogeneity or exposing
fragility that can be the target of therapies to follow, and retaking control of the
feedback regulations. The outcome of controlling the robustness may vary from
moderate growth of tumor, dormancy that is no tumor mass growth or significant
reduction in tumor mass. It should be noted that robustness control does not exclude
the possibility of significant tumor mass reduction. If we can target a point of
fragility of tumor, it may trigger a common mode failure and may result in
significant tumor mass reduction. However, this is a result of controlling robustness,
and should not be confused as therapy aimed that tumor mass reduction because
robustness has to be controlled to the first to actively exploit a point of fragility.
Except for the fragility attack, other options seek for dormancy that results in no
tumor growth.

However, this criterion poses a problem for drug design, because current efficacy
index of antitumor drugs ismeasured on the basis of tumormass reduction. Drugs that
induce dormancywill not satisfy this efficacy criterion; thus, they aremost likely to be
rejected in Phase-II stage. On the other hand, this means that many compounds that
have been rejected in Phase-II could be effective from the point of robustness control.
Whether such approach can be taken depends on perception change in practitioners,
drug industries, and regulatory authorities.
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16.9 CONCLUSION

This chapter discussed basic ideas behind the theory of biological robustness and its
implications for cancer research and treatment. Biological robustness is one of the
essential features of living systems that argued to be tightly coupled with evolution.
Itmayalso shape thebasic architectural featureofbiological systems that are robust and
evolvable. One of major consequences is trade-offs between robustness, fragility,
resourcedemands, andperformance.Fragility is particularly relevant todiseases.At the
same time, cancer established its own robustness. It may be the result of hijacking the
robustness intrinsic to the host system. Understanding of this complex nature of
biological systems may have profound implications for biomedical research in future.
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17.1 INTRODUCTION: NUCLEIC ACIDS

One of the ambitions of synthetic biology is to design and engineer life, a goal regarded
by many biological engineers as noble and achievable. After all, life has already been
engineered at many different levels and in many different ways, from genetic engi-
neering to tissue engineering towhole animal cloning. In the process, engineering itself
canalso learn fromlife,usingprinciplesdiscovered frombiologyalong theway toguide
engineering designs and creations. Indeed, integration of engineering with biology is
the essence of synthetic biology, and one of its most successful approaches as well.

In particular, the integration of engineering and biology at the molecular level—
molecular biological engineering—holds great promise for future systems biology.
For example, biological building blocks such as nucleic acids and amino acids can be a
novel source for new materials and devices. Indeed, the commonalities between
molecular biology and materials engineering are much greater than many of us
originally thought—both materials engineering and biology, in one way or the other,
build materials from the building blocks that are at the molecular level. Realization of
such bioengineering integration needs not only close collaboration between engineers
and biologists but alsomore urgently require a new generation of biological engineers
who arewell educated in both fields—biology and engineering.Here, wewill focus on
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nucleic acid engineering: the use of deoxyribonucleic acid(DNA) in the engineeringof
new materials, new devices, and new applications.

This chapter is mainly for engineers; it starts with a brief introduction of DNA,
ribonucleic acid (RNA), peptide nucleic acid (PNA), and locked nucleic acid (LNA).
A historical review of DNA nanotechnology will be presented followed by a detailed
review of nucleic acid engineering and its nonbiological, self-assembled structures.
Approaches of manipulation and characterization of oligonucleic acids are dis-
cussed and applications of nucleic acid engineering are presented at the end of the
chapter.

17.1.1 Nucleic Acids: DNA, RNA, PNA, LNA, GNA, and TNA

Nucleic acids, themost common ofwhich areDNAandRNA, are known to be genetic
materials. Artificial nucleic acids resulting from chemical synthesis, including PNA,
LNA, glycol nucleic acid (GNA) and threose nucleic acid (TNA), have also been
developed for various purposes.

DNA is a genetic information storage biomolecule for almost all life forms, and
genetic coding information flows from DNA to RNA to proteins (i.e., the Central
Dogma of Molecular Biology). Structurally speaking, DNA is a biopolymer whose
monomers (nucleotides) are covalently linked through phosphodiester bonds (Fig.
17-1a). Each nucleotide is composed of three structural constituents: a heterocyclic
base, a sugar group (pentose or deoxy-ribose here), and a phosphate group. The
heterocyclic bases in DNA are adenine (A), cytosine (C), guanine (G), and thymine
(T). Nucleotides are differentiated by the heterocyclic bases they carry. These four
different bases recognize each other by forming hydrogen bonds, the so-called
Watson–Crick base pairing: A with T and G with C. G–C bonding is stronger than
A–T bonding due to its three hydrogen bonds compared with the two hydrogen bonds
ofanA–Tpair.Adjacent heterocyclic bases of the samechain can stackonto eachother
as a result of the strong p–p hydrophobic interaction between the heterocyclic
aromatic rings. Provided with ideal conditions, DNA can exist as a single-stranded
DNA (ssDNA) or antiparallel double-stranded DNA(dsDNA) molecule. In most
cases, the double-stranded DNA forms a right-handed helical structure with each
helical turn of about 10.5bases.The rise of one turn is about 3.4 nmand thewidth about
2.0 nm. This most common configuration of DNA is called B-form DNA (B-DNA).
DNA can also adopt other forms of helixes (A-DNA or C-DNA) under unusual
conditions. In particular, left-handed DNA (Z-DNA) can exist with special sequences
and buffer conditions. Tomake things evenmore interesting,DNAcan also form triple
helixes or even quadruplexes—of course, in these cases, special sequences have to be
utilized. The following aspects of DNA make it an ideal genetic molecule chosen by
nature:DNA is chemically stable; its duplex structure is relatively stable but breakable
when desired; Watson–Crick ensures precise processing of genetic information.

RNA is very similar to DNA except for an additional hydroxyl group (�OH) at the
C2 position of the ribose ring (Fig. 17-1b). This hydroxyl group can participate in
hydrolysis of the phosphodiester bond and speed up the reaction; therefore, it is
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responsible for RNA’s lesser stable nature when compared to DNA. RNA usually
adopts a single-stranded structure; although it can also form a double-stranded one
with RNA itself or with DNA. RNA uses the same bases (A, G, and C) as DNA but
substitutes uracil (U) for DNA’s thymine (T). There are many types of RNA; they are
classified based chiefly on their functions. Messenger RNA (mRNA) serves as a
messenger betweenDNAand proteins; it copies genetic information fromDNA in the
transcriptionprocess and acts as a template for protein synthesis in translation process.
Transfer RNA (tRNA) carries a specific amino acid and transfers it to a growing
protein chain towhich the amino acid shouldbe added.RibosomalRNA(rRNA) is part
of the ribosomewhere protein synthesis is carried out. Most recently, small inhibitory

Figure 17-1 Molecular structure of nucleic acids: DNA (a), RNA (b), PNA (c), GNA (d), TNA (e),

and LNA (f).
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RNA (siRNA), a group of small RNA molecules capable of inhibiting specific gene
expression, was discovered.

Artificial nucleic acids have been developed for biological research and medical
applications. They can recognize and exhibit a much stronger affinity with their
corresponding counterparts (DNA or RNA) to form a thermodynamically very stable
duplex structure or other types of structures [1], but are resistant to enzymatic
degradation, compared to the DNA counterpart. Therefore, they could be used in
gene therapy to silenceculprit genes.TheseDNAanalogues havechemicallymodified
bases, or backbones, or ribose sugar moiety, compared to DNA. PNA has a neutral
pseudo peptide backbone (Fig. 17-1c), thus less soluble than DNA. The lack of charge
and electrostatic repulsion confers additional stability on the duplex involving PNA.
Both GNA and TNA have a chemically modified backbone, but still negatively
charged due to the phosphodiester bonds. The backbone of GNA is composed of
glycerol repeats linked by phosphodiester bonds (Fig. 17-1d), while that of TNA
consists of threose repeats (Fig. 17-1e). LNA has an extra bridge connecting 20 and 40

carbons of its ribose (Fig. 17-1f) [2,3]. This structural modification locks ribose in
30-endoconformation,which enhancesbase stacking induplexand, as a result, thermal
stability.Bases of nucleic acids havebeenmodifiedwith novel base pairingpatterns by
forming de novo designed hydrogen bonds, with enhanced p–p hydrophobic interac-
tion that improves thermal stability of duplexes, with fluorescent properties for
molecular probing, with additional ligands for forming coordination bonds with
metals. A thorough discussion on the subject is beyond the scope of this chapter.

Nucleic acid engineering includes chemical modification of the nucleic acid
structures as discussed above, genetic engineering that manipulates genes to express
proteins, and nucleic acid structural engineering that uses oligonucleic acids as
building blocks of superstructures. The latter has gained more and more attention
due to the rapid progress of nanobiotechnology and nanobiomaterials. This is our
focus in this chapter.

17.1.2 Self-Assembly

Self-assembly is a process through which molecules recognize each other to form
hierarchical orders of complexes and superstructures. The forces employed for
molecular recognition are usually weak and noncovalent bonding, as reversibility
is desired during self-assembling. They include electrostatic interaction, hydrophobic
interaction,VanderWaals forces, andhydrogenbonding.Weakcovalent bonds suchas
disulfide bond and coordination bond can also be used for directing self-assembling.
Self-assembly is a fundamental principle for structural organization on all scales from
small molecules to macromolecules, to cells, to our ecosystems and space.

When it comes to nanoscience and engineering, two approaches are employed to
build nanoscale structures and devices: top-down and bottom-up. In the top-down
approach, the desired structure is carved out of a bulk material; as the structure gets
smaller and smaller for applications in nanoscience, it becomes harder for this
approach to be effective. In the bottom-up approach, designed molecules can recog-
nize each other and position themselves in the final structure through self-assembly.
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Self-assembly ismore andmore recognized and employed inbuilding superstructures,
especially at the microscale and nanoscale.

17.1.3 Bottom Up: The First Step Toward a Synthetic World

In his famous presentation in 1959, Nobel laureate, physicist Richard Feynman
predicted that “There is plenty of room at the bottom” [4]—a phrase that has become
the birth symbol for nanotechnology. His prediction is becoming a reality, and we are
indeed moving from the microscale world into the nanoscale world through the top-
down and bottom-up approaches. Nanoscience has changed our life fundamentally.

In a broader sense, self-assembly and self-organization can happen at any scale,
from atom to molecule to polymer, and, of course, to oligonucleic acids and proteins.
Indeed, the entire biological system itself is a result of a complex self-assembling
system—from biomolecules including proteins, oligonucleic acids, lipids, carbohy-
drates, and so on. Naturally, a designer of life could and should learn from the natural
self-assemblies of biological molecules in living organisms.

Biological molecules, such as DNA, protein, lipid, and carbohydrates, have
nanoscale dimensions and possess molecular recognition capabilities for self-assem-
bly. The processing of genetic information from DNA to mRNA to protein involves
self-assembling of different molecules, at various hierarchical levels and with such
amazing precision. Therefore, they are especially useful building blocks in the
building of a synthetic world. We believe that future intelligent materials and devices
will be generated from biomolecules and their derivatives. DNA is probably the first
biomolecule to be utilized for that purpose, partially due to DNA’s unique properties
and advantages including high precision in base pairing, programmability, manipula-
bility, and stability.

17.1.4 DNA: Building Blocks

From a molecular perspective, DNA has many advantages over other synthetic,
chemical building blocks.

(1) We understand thoroughly the chemistry, property, and structure of both
nucleic acids and duplex structures of DNA.DNA is quite stable. For example,
DNA is 1000-fold more stable to hydrolytic destruction than protein and
almost 100,000-fold more stable than RNA [5]. DNA can be stored frozen or
dried into a powder, stable for thousand of years. Knowing 10.5 nucleotides
and 3.4 nm per turn of B-form DNA duplex and its diameter of 2.0 nm, as well
as persistence length of 50.0 nm for DNA duplex, we can design DNA
sequences to obtain a structure with exact dimensions in our mind. In a
word, DNA is programmable and predictable.

(2) DNA with designed sequences can be conveniently obtained by solid-phase
synthesis on an automatic DNA synthesizer. In fact, DNA is commercially
available. Long and natural DNA strands from PCR and biological sources can
also be used to make superstructures.
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(3) Avariety of enzymes are available for DNA manipulations, see Section 17.15
for details.

(4) Sticky ends can be employed to assemble building blocks into high-order
superstructures. Thus, sticky-ended cohesion is a convenient construction tool.

(5) State-of-the-art instrumental techniques can be used for the characterization of
DNA superstructures, such as transmission electron microscopy (TEM),
atomic force microscopy (AFM).

17.1.5 Enzymes Used in Nucleic Acid Engineering

DNA/RNA are substrates of more than 4000 different enzymes. These enzymes
are readily used for the manipulation of DNA/RNA and the analysis of designed
DNA/RNA structures. In general, these enzymes are classified into three groups:
Restriction endonucleases, Polymerases, and DNA/RNA modifying enzymes. Most of
them are usually commercially available from Promega (www.promega.com) and
New England Biolab (www.neb.com). Restriction endonucleases, also called restric-
tion enzymes, are produced by bacteria that cleave the phosphodiester bond ofDNAat
specific sites. There are numerous types of restriction enzymes,most of them cleaving
double-stranded DNA at specific recognition sequences (usually composed of 4–6 bp
and are palindromic), leaving either blunt or sticky ends. However, there are also a few
restriction enzymes called nicking endonucleases that can cleave only one strand of
DNA on a double-stranded DNA to produce DNAmolecules that are “nicked” rather
thancleaved.Polymerases, includingDNAandRNApolymerase, are the enzymes that
catalyze the polymerization of new DNA or RNA against an existing DNA or RNA
template in the processes of replication and transcription.Of particular importance are
groups of DNA polymerases isolated from the thermophilic bacterium such as
Thermus aquaticus (Taq) that is widely used in polymerase chain reaction (PCR),
one of themost important tools inmolecular biology techniques,DNA/RNAmodifying
enzymes, including ligases, nucleases, kinases, alkaline phosphatases, and others. Of
prime importance are ligases such as T4-DNA ligase that catalyzes the joining of two
DNA fragments by forming a new phosphodiester bond. Usually, ligases are used
together with restriction enzymes in the process of DNA manipulation. Nucleases
include deoxyribonucleases (DNase) and ribonucleases (RNase) that nonspecifically
cleaveDNAandRNAbackbones, either from the endofDNA/RNAmolecules or from
anywhere along the chain. T4-polynucleotide kinases and alkaline phosphatases
function oppositely in that the former catalyzes the transfer and exchange of Pi
fromATP to the 50-hydroxyl terminus of polynucleotides (double- and single-stranded
DNA and RNA), and the later removes 50-phosphate groups from DNA and RNA at
50-hydroxyl terminus.

17.2 DNA NANOTECHNOLOGY

DNA nanotechnology employs DNA as building blocks for construction of DNA
superstructures that can act as templates for arrangement of other functional
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species. Starting from building a stable DNA junction, this field has progressed from
building robust and stiff DNA motifs to 2D and 3D DNA structures. Seeman and his
colleagues are pioneers in employing DNA to construct 2D and 3D nanostructures,
which started as early as 1982 [6]. Seeman picturedDNAas hinges and joints and bolts
and braces in his designs, and by careful design of DNAbase sequences, they could be
programmed to fold and bind to each other. The resulting DNA superstructures can
be used for templated assembly of functional species such as metals, proteins, and
fullerenes.

17.2.1 DNA Junctions

DNAduplex is a linearmolecule, andwe cannot domuchwith a linear structuralmotif
as amaterial buildingblock.But likeRNA,DNAcan form“strange” structures besides
the usual double helix. These additional structures include hairpins and three- and
four-way branch points, which have importance for biological functions. Branched
DNA occurs in nature but is not stable due to its sequence symmetry. Such mobile
Holliday junction is used for exchange of genetic information by yeasts through a
process called homologous recombination. By the de novo design of DNA sequences
to remove the sequence symmetry in the four-component strands, a stable DNA
junction can be formed (Fig. 17-2) [7]. This is regarded as a milestone for DNA
nanotechnology. DNA motifs developed later are in essence reminiscent of this
DNA junction.

17.2.2 DNA Motifs and DNA Structures

Many DNA junctions [8] and topological DNA objects (DNA-truncated octahedron,
DNA cube, Barromean rings) have been reported [9]. However, the DNA junction is
not rigid and flat enough for use as a tile in the construction ofwell-behaved2Dand3D
structures. Therefore, more rigid and flat DNA motifs have been built: double
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Figure 17-2 DNA junctions: three-arm DNA junction (a) and four-arm DNA junction (b). They are

formed by annealing three or four partially complementary DNA strands. (a) reproduced from

Ref. 54; (b) reproduced from Ref. 8.
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crossover (DX) motif where four strands are bound by two crossover points [10]
(Fig. 17-3a); triple crossover (TX) where six strands are bound by three crossover
points (Fig. 17-3b); and a paranemic crossover (PX)where strandsmigrate to the other
duplex at every contact point of the two duplexes (Fig. 17-3c) [11,12].

The DX, TX, and PX DNAmotifs can be used as tiles in a way similar to floor and
wall tiles but they can also self-assemble into DNA complexes via sticky-ended
cohesion. Yan et al. created 4� 4 DNA complexes that can self-assemble into planar
square tiles (Fig. 17-4) [13] while Adleman’s group assembled hexagonal tiles [14].
Research and interest in DNA building blocks and their self-assembly have started to
catch up in the past 10 years, and a variety of crossover DNA along with a variety of
different DNA tiles have been added to the DNA construction kit, from which
extremely complicated architectures and patterns have been achieved, including
2D lattices, octahedrons, pesudo hexagonal crystals, ribbons, two-dimensional nano-
grids, and tubes [12,13,15-18].

17.2.3 Structures from Long Single-Stranded DNA

Thework described above uses synthetic DNA as a buildingmaterial. After assembly,
the reaction mixture contains the desired structure, the misfolded assemblies, and the
extra shortDNAstrands. It is difficult, however, if not impossible, to isolate the desired
product. The question then arises: can DNA from biological sources or PCR be used
forDNAnanotechnology?These are usually long and readily available in bulk.All the
sequences necessary for the designed complex can be contained in a single strand,
eliminating the need to remove short strands as in the case of synthetic DNA.
The successful structure also can be isolated and amplified with PCR or in cells to

Figure 17-3 Example of DNA motifs: double crossover (DX) (a), triple crossover (TX) (b), and

paranemic crossover (PX) (c). Each line represents a DNA strand. (a) reproduced from Ref. 10;

(b) reproduced from Ref. 12; (c) reproduced from Ref. 11.
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meetwith quantity requirements for specific applications. Recent progress has proved
that this approach is possible. Shin et al. showed that a single-stranded DNA can fold
into an octahedron [19]. The single-stranded DNA is 1.7 kb and contains all the
sequences at designed positions of the single strand to form the DX and PX motifs
discussed above. The strand is PCR amplifiable and can assemble into an octahedron
as it is designed. Rothemund described a smart way to fold plasmid DNA into two-
dimensional-shaped DNA origami, including squares, rectangles, five-pointed stars,
smiley faces, and so on (Fig. 17-5) [20]. The designed shapes were created by folding
the 7 kb single-strandedDNA, similar to paper origami and raster filling, with the help
of short “staple strands” that form duplexes with the complementary sequences on the
long single strand. In addition to binding and holding a DNA scaffold in shape, staple
strands can act as binary pixels to make any desired pattern—words, map, and so on.
In addition, the designed 2D structure can act as a nanobreadboard for functional
materials.

17.2.4 Applications

One projected application of DNA nanostructures is the templated assembly of
proteins, metals, and other materials that have potential in research and other
applications. DNA-templated protein arrays and highly conductive nanowires have
been reportedbyYanet al. as an example [13].DNAtiles canbe treated likeWang tiles,
and the self-assembly of such DNA systems can be used to perform algorithmic tasks.
The energy involved in folding and unfolding of DNA duplexes and the conforma-
tional change associated with the process also can be used in nanomechanical
devices [21].

Figure 17-4 AFM images of 2D DNA based nanogrids formed from the corrugated design:

The right panel measuring 150�150nm (b) is a surface plot of a magnified region from the left

panel measuring 500�500nm (a). Reproduced from Ref. 13.
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17.2.4.1 DNA Computing The algorithmic self-assembly of DNA can be
employed to process information. The idea of algorithmic self-assembly arose
from three lines of work: DNA computing [22], the theory of tilings [23], and general
DNAnanotechnology pioneered bySeeman [24]. In one example, “DNAbricks”were
used as molecularWang tiles [25]. The four arms of the DXmolecules (DNA brick or
tile) have different sequences corresponding to the labels on the four sides of theWang
tiles. In this way, any chosen Wang tile could be implemented as a DNA molecule.
Consequently, such a DNA system becomes programmable. In other words, algorith-
mic tasks can be carried out with a DNA system such as this. It is envisioned that
nanoscale and hierarchically structured materials with properties far beyond the
development capability of today’s materials engineering technology can be achieved
by algorithmically controlled growth processes.

17.2.4.2 DNA and Inorganic Hybrids There has been significant interest in
the rational organization of nanoscale objects, such as C60, metal nanoparticles,

Figure 17-5 DNA origami shapes: top row, folding paths. Square (a); rectangle (b); star (c); disk

with three holes (d); triangle with rectangular domains (e); sharp triangle with trapezoidal domains

and bridges between them (red lines in inset) (f). Dangling curves and loops represent unfolded

sequence. Second row from top, diagrams showing the bend of helices at crossovers (where

helices touch) and away fromcrossovers (where helices bendapart). Grey scale intensity indicates

the base-pair index along the folding path. Bottom two rows, AFM images. White lines and arrows

indicate blunt-end stacking. White brackets mark the height of an unstretched square and that of a

square stretched vertically (by a factor 1.5) into an hourglass. All images and panels without scale

bars are the same size, 165nm�165nm. Scale bars for lower AFM images: b, 1mm; c–f,

100nm [20].
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semiconductor nanoparticles, into 1D, 2D, and 3D ordered aggregates that may
possess novel electronic and optical properties with potential applications in
future nanoelectronics and nanophotonics. Such hybrid systems may also have
novel biological applications for synthetic biology. Biomineralization is a natural
process used by organisms to produce minerals. Biomolecules such as peptides
have been used in the template arrangement of metal crystals. Nucleic acid engineer-
ing may assist such a nanoparticle organization—after all, DNA is in a similar
length scale with nanoparticles, and it can be self-organized as already reviewed
earlier in this chapter. Chemical modification of DNA to carry a sulfhydryl group for
metal (Au) attachment can be easily done. Bold DNA strands can even be used to
template metal through cation–anion electrostatic interaction. In terms of DNA
structure, both linear plasmid DNA and rational designed DNA complexes can
be used.

As far as gold nanoparticles are concerned, 1D and 2D assemblies of gold
nanoparticles have been achieved using several kinds of DNA nanostructures and
various gold–DNA attaching strategies. DNA-templated 1D organization of
gold nanoparticles has been obtained through nonspecific electrostatic interactions
between positively charged gold nanoparticles and negatively charged DNA [26].
An alternative approach employs DNA sequence complementarity where one strand
is a DNA chain and the other is its complementary counterpart attached with gold.
Mao’s group reported a DNA-encoded self-assembly of AuNPs into 1Dmicrometers-
long gold nanoparticle arrays [27]. An ssDNA template composed of a repetitive
unit was generated by rolling circle DNA polymerization. Gold nanoparticles
were attached to DNA that is complementary to the sequence on RCA-obtained
ssDNA. Aligned gold oligomer (3-, 4-, 5-, and 6-) and extended arrays in the scale of
micrometers were obtained. In another report, cysteamine-modified gold nanoparti-
cles with aminomoiety were anchored onto cisplatin-functionalized DNA by ligation
of Pt atoms [28]. In addition, 2D gold nanoparticle assemblies were reported by using
2D DNA nanogrid templates fabricated from DNA tiles (Fig. 17-6) [29]. Each
nanoparticle sit only on one DNA tile within a periodic square lattice; therefore,
the nanoparticle–nanoparticle distance was uniformly controlled. As a result, gold
nanoparticles ended up in a hexagonal arrangement. In another design, a rigid 120�

synthetic vertex and short DNA strands were used to ensure the rigidity of the final
assemblies [30].

We noted that there has been growing interest in DNA/carbon nanomaterials,
motivated by possible applications in nanoelectronics, drug delivery, and biosensors.
Based on the electrostatic interactions betweenDNAand positively charged fullerene,
1D and 2D fullerene arrays were formed using linear dsDNA [31] and 2D DNA
lattices [32]. Interestingly, single-stranded DNA tends to wrap around the exterior
surface of a carbon nanotube [33,34]. The wrapping of carbon nanotubes by ssDNA
was found to be sequence dependent and the force behind this is the hydrophobic
interaction between the bases and the carbon nanotube. DNA has also been demon-
strated to insert itself into the interior of carbon nanotubes [35]. In addition, DNA
can also be covalently linked to carbon nanotubes via molecular linkers [36,37].
These hybrids may find immediate applications in gene delivery [38].
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17.2.4.3 DNA and Protein Hybrids Both DNA and protein are functional
biomolecules, and combining them will result in multifunctional nanobiosystems
with potential applications in the creation of a more functional biological systems.

Figure 17-6 The two-tile system that forms theDNAnanogrids (a). Tile A is dark and tile B is grey.

The numbers indicate the complementary “sticky” ends that allow the tiles to adhere together, with

1, and so on. The red strand on tile A is A15. The DNA(pairing with 1’ nanogrid, showing the A15

strand on each A tile (b). Gold nanoparticles on the DNA grids. The zigzagged black lines

surrounding the nanoparticles represent T15 strands (c) Reproduced from Ref. 29.
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Hybrid DNA–protein conjugates can be fabricated by either covalent or noncovalent
interactions.

The pioneering work on DNA–protein hybrids is the synthesis of the oligonucleo-
tide-staphylococcus nuclease [39]. Oligonucleotide–enzyme conjugates were fabri-
cated from thiol-modified oligonucleotide and an maleimide-modified enzyme
(calf intestine alkaline phosphatase, horseradish peroxidase, or b-galactosidase) by
coupling thiol group tomaleimide [40]. Antibodies have also been coupled with DNA
for immunoassay applications. Covalent conjugates of single- and double-stranded
DNA fragments and immunoglobulinmoleculeswere used as probes in immuno-PCR
in an ultrasensitive antigen detection method [41]. Hundred-fold enhancement in
sensitivitywas reported compared to a conventionalmethodwithout theDNA–protein
conjugate (Fig. 17-7) [42].

In addition to covalent DNA–protein linkage, a noncovalent approach based on
affinity between biotin and homotetrameric streptavidin was reported by Niemeyer’
group [43]. By thermal denaturation and rapid cooling, interesting finger ring-like
DNA streptavin nanocircles were observed whose dimensions varied from 12 nm to
55 nm [44]. In another example, Tomkins et al. fabricated nanoscale symmetrical and
nonsymmetrical dumbbells using DNA as a molecular scaffold for streptavidin
attachment [45]. Another interesting noncovalent binding of proteins with DNA is
based on DNA aptamer-directed self-assembly [46]. In this system, a DNA docking
site containing aDNA aptamer (specific to thrombin) was distributed regularly within
ordered DNA lattices. Thrombin proteins bound to these docking sites, formed a
DNA–protein hybrid array.

Figure 17-7 The self-assembled DNA-protein hybrid material for immuno-PCR (IPCR). (a) The

bis-biotinylatedDNA,Streptavidin andbiotinylatedantibodyweremixed to form thehybridmaterial.

(b) This hybrid material can be applied as a regent in IPCR. The antibody part can recognize an

antigen (target molecule). The DNA part can be amplified using PCR and detected as an amplified

signal. Reproduced from Ref. 43.
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17.2.4.4 DNA-Based Mechanical Nanodevices [47,48] To build a syn-
thetic world, mechanical devices are essential. Although the notion of nanorobotics
roaming through the blood stream is quite na€ıve, the realization of nanoscale
mechanical devices, roaming or not, is anything but fantasy. Oligonucleic acids,
especially DNA molecules are in nanometer sizes and have already been employed
to assemble a variety of nanostructures including 2D arrays and lattices, tubes,
scaffolds, and gels. A lot of knowledge has been obtained in controlling the
conformation and assembly of DNA molecules. Considering the fact that conforma-
tional changes usually accompany movement and considering the fact that DNA’s
conformations are easily controlled, it seems natural to employ DNA for mechanical
nanodevices.

Seeman reported a “nano twister” based on the conformation changes between
left-handed and right-handed DNA [48,49]. Later, a DNA-based nanotweezers was
reported by Yurke et al. in 2000 (Fig. 17-8a) [50]. (1) This DNA tweezers was
composed of several strands of DNAwith engineered pairing properties, as illustrated
in the scheme. (2) The addition of a fuel strandDNA (F), which hybridized to the open
DNA parts, caused the ends to close. (3) The subsequent addition of a complementary
strand of DNA (cF) displaced the F strand from the body, forming a very tight F–cF
double-stranded DNA. The departing of F strand (i.e., dehybridization) caused the
closed ends to open again, returning the structure to the original open state.

Figure 17-8 (a) Schemeof theDNA tweezers. Addition of a fuel strandDNA (F), which hybridized

to the openDNA parts, caused the ends to close (ii). The subsequent addition of a complementary

strand of DNA (cF) displaced the F strand from the body, forming a very tight F–cF double-stranded

DNA.The departing of F strandcaused the closedends to openagain (iii), returning the structure to

theoriginal openstate (i).Reproduced fromRef. 50. (b)Schematic drawingof theautonomousDNA

nanomotor. This DNA nanomotor consists of the deoxyribozyme part that cleaves RNA and the

tweezers. The edges of the tweezers that are connected with the compacted deoxyribozyme exist

closer (i). The DNA–RNA chimera substrate (S) as a fuel strand hybridizes and stretches the

deoxyribozyme, activating its activity (ii). The activated deoxyribozyme cleaves S at the cleavage

site (iii) and the substrate fragments (S1 and S2) dissociate from the DNA motor, which returns to

the closed state (i). Reproduced from Ref. 51.
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The continuous adding of fuel strands (F) and removing of waste (F–cF) cycled this
DNA structure from open to closed states. This first DNAmechanical tweezers is not
autonomous; fuel andwasteneed to beaddedor eliminatedbyhand.Utilizing theRNA
cutting DNAzyme, Chen et al. developed an autonomous DNA nanomotor in 2004
using DNA–RNA chimera as fuel strands (see Fig. 17-8b) [51].

Other mechanical nanodevices have also been reported recently. For example,
Yin et al. created an enzyme-assistedDNAwalker thatmoves along a double-stranded
DNA track [52]. The enzymes used were T4 ligase and restriction enzymes. The fuels
were ATP andwere consumed by ligases. Up to now, several versions of DNAwalkers
have been developed, though none has been sophisticated enough to carry out certain
functions.

17.3 DNA MATERIALS

DNA is the nature chosen genetic molecule of life; DNA is also an excellent building
block of DNA nanotechnology. From the polymer science perspective, DNA is a
biodegradable and biocompatible polymeric material, possibly with many desired
functions aswell. It is suggested thatDNAcanalsobeused inconductor andphotonics.

17.3.1 Dendrimer-Like DNA (DL-DNA) [53,54]

Dendrimers are repeatedly branched polymers, characterized by their structural
symmetry and polydispersity. As branches of dendrimers can be modified with
functional groups or molecules, they have been proposed for applications in drug
delivery and for components of advancedmaterials. Inspired by earlier and impressive
achievements from the Seeman group and others, our lab has succeeded in construct-
ing DNA junction molecules. We treat the DNA junction molecule as a repeating unit
similar to that of a dendrimer (Fig. 17-9). The junction molecules branch out
repeatedly by using sticky-ended cohesion; in this case, each generation of growth
entails a specific pair of sticky ends. In addition to sticky-ended cohesion,we useDNA
T4 ligase to form covalent bonds. Comparedwith chemically synthesized dendrimers,
dendrimer-like DNA can be assembled in a controlled manner with great precision,
high efficiency and anisotropy. We used gel electrophoresis, AFM, and TEM to
characterize assembled dendrimer-like DNA.

17.3.2 DNA-Based Fluorescent Nanobarcode [53,55]

The development of techniques for multiplexed, rapid, and sensitive molecular
detection has received great attention due to the potential applications in clinical
diagnosis, detection systems against terrorists, and environmental analysis. For
multiplexed detection, it is a challenge to identify each species with a distinct
code, and match each output signal with the species responsible for it.

Fluorescent dyes arevery sensitive to their chemical and physical environment, and
widely used for probing biomolecular structures, biological processes, and molecular
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detection. They can be covalently linked to DNA that is modified to carry a functional
group (amine or thiol) reactive to the functional group of the dyes. Our dendrimer-like
DNA is multivalent and anisotropic, and can be synthesized in a controlled hierarchi-
cal manner. The dye-carrying Y-DNA is a DNA junction molecule composed of three
strands: one has a sticky end and the other two are labeled with two different
fluorescent dyes. This sticky-ended fluorescent Y-DNA hybridizes with dendri-
mer-like DNA whose sticky ends are complementary to that of the Y-DNA. This
will amplify numbers of dyes on each nanobarcode.

WeusedourfluorescentnanobarcodetodetectmultipleDNApathogens(Fig.17-10).
To be detected by fluorescence microscopy, a strategy has to be employed where the
nanobarcodeswillbeattached,inthepresenceofitstargetDNApathogen,tomicrobeads
whose size is detectable to fluorescencemicroscopy.Wealso employed flowcytometry
technique to monitor multiplexed detection of DNA pathogen with our DNA-based
fluorescent nanobarcode.

17.3.3 DNA Bulk Material: DNA Hydrogel

We recently succeeded inmaking a DNA hydrogel and showing that it can be used for
drug delivery [56]. DNA, generally recognized as the molecule of life, has been
employed as a building block of functional materials and self-assembled super-
structures that can scaffold or template other functional species. But, no previous
work reports 3D nanostructures using DNA as the building block. Neither has a bulk
DNA material been constructed before our DNA hydrogel (Fig. 17-11). This is
significant to the field of DNA nanotechnology.

DNA is hydrophilic; hydrogel can be formed when network of such polymeric
chains takes water as its dispersion medium. Our DNA hydrogel uses the unusual
branched DNA motifs as the building unit, like those in our dendrimer-like DNA.
Our building units can be designed to have three or four branching points necessary

Figure17-9 Dendrimer-likeDNA(DL-DNA).Schematic structureof three-generationDL-DNA(a)

and AFM image of DL-DNA (four generations) on the mica surface using a SWNT (single-wall

nanotubes) tip (b). Reproduced from Ref. 54.
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Figure 17-10 Principle of DNA-based fluorescent nanobarcode. Three nanobarcodes 3G2R,

2G3R, and 1G4R, which are decoded based on the ratio of fluorescence density, are synthesized

by labeling two types of fluorescent dyes at varying ratios on the dendrimer-like DNA (DL-DNA).

Amolecular recognition element, a probe (PA, PB, andPC), is also attached to each nanobarcode.

With a preassigned code library, these nanobarcodes can be used for molecular detection.

Reproduced from Ref. 55.

Figure 17-11 Scheme of DNA hydrogel. X- and Y-DNAmonomers serve as cross-linkers to form

networked gels (a); images of X-DNA hydrogels with different patterns (b): rectangular, circular,

triangular, star, andcross (from the top left corner, clockwise). Thehydrogel is stainedwithEtBr (Top

left, top right, bottom left) or SYBR I (Top left, top right, bottom left). Reproduced from Ref. 56.
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for forming the network of the hydrogel; they assemble into a polymeric network
through hybridization of the sticky ends and covalent bonding formed by T4 DNA
ligase.

Proteins, small chemical drugs, and even live cells were encapsulated within the
gel;makingDNAgel a great candidate for use as a drug and cell delivery vector. In situ
encapsulation efficiency for porcine insulin and camptothecin is close to 100 percent.
Noburst release is observed.Azero-order release profile is obtained for camptothecin.
Up to 60 percent insulin can be released over a period of 12 days.

More recently, by incorporating genes into the DNA gel matrix, we have also
created a DNA hydrogel that is able to produce functional proteins without any living
organisms (the gel is termed as “P-gel”). The yield and efficiency of the P-gel is many
fold higher than current conventional methods. We believe that this is an enabling
technology for producingmost proteins in high yield and rapidly (usuallywithin 24 h).
This in vitro protein-producing device should be of significant value in synthetic
biology.

17.4 DNA APTAMERS AND NUCLEIC ACID ENZYMES

Aptamers are short oligonucleic acids or peptides that can bind to specific target
molecules.DNAandRNAaptamers usually consist of specific sequences and can fold
into a specific structural conformation for binding to their target. Thrombin binding
DNA aptamers have GC-rich sequences and can form G-quartet structure. RNA
aptamers aremore versatile in terms of the secondary structures it can form. Although
natural aptamers exist in riboswitches, the part of mRNA that can bind to its target
molecule; typically, however, they are obtained through an in vitro evolution process
called SELEX (systematic evolution of ligands by EXponential enrichment). In
this method, a library composed of random sequences is generated first. In vitro
evolution is engineered through a selection process followed by an amplification step
(Fig. 17-12). After several rounds, the candidates that have the potential to bind to the
target are enriched.

Aptamers have potential applications in medicine and technology. Binding of
aptamers to their target molecules can be coupled to signal producing processes in
construction of molecular biosensors. When the targets are proteins (antigens) or
enzymes, aptamers behave much like antibodies. The activity of proteins or enzymes
can be inhibited when they are targeted and bound by aptamers; therefore, it has been
proposed that aptamers have the potential to be therapeutic drugs [57]. Since aptamers
can be engineered to bind to specificmolecules, they also become a promising tool for
nucleic acid engineering [58,59].

Some oligonucleic acids have catalytic activities like enzymes; they are called
nucleic acid enzymes [60]. There are two types of nucleic acid enzymes: one
composed of RNA and the other of DNA. RNA enzymes are called “ribozymes.”
DNAenzymesare calledDNAzymes.While agreat numberofdifferent activities have
been realizedwith ribozymes (such as strand cutting and ligation), only a fewactivities
have been achieved with DNAzymes. This is likely due to two facts: first, DNA lacks
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the active hydroxy groups on its sugar back bone that can participate and catalyze
certain reactions; and second, DNA tends to form double-stranded helixeswhile RNA
is able to formvarious secondary structures such as stem loops and hairpins in addition
to duplex structures.

17.5 CHARACTERIZATIONS OF OLIGONUCLEIC ACIDS

Research using DNA as a building block for DNA complexes or for functional
materials is at the interface of biology, chemistry, material science, and engineering.
Knowledge and experimental techniques from one field is not enough. In the last part
of the chapter, we will briefly introduce some experimental techniques. Readers are
strongly advised to refer tomore specialized discussions of each technique for a better
understanding.

17.5.1 UV Spectroscopy [61]

It is important for us to know the concentration of aDNAsolution to adjust to a desired
stoichiometry. One convenient way is to measure OD260. Since all four nucleotides
absorb ultraviolet light at around a wavelength of 260 nm with a similar extinction
coefficient (also calledmolar absorptivity), the concentrationofanucleic acid solution

Figure17-12 Schematic concept of in vitroevolutionprocess:ADNA librarycomposedof random

sequences is generated first.A correspondingRNA library (optional) canbecreated through in vitro

transcription. In vitro DNA or RNA evolution is then carried out through selection (for desired

properties), followed by an amplification step. This selection and amplification process will be

repeated several times until the functional DNA or RNA are obtained.
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can be easily estimated by measuring its absorbance at 260 nm, according to Beer’s
law:A¼ « l c, whereA is the absorbance, « is the extinction coefficient, l is the cell path
length (normally 1 cm), and c is the nucleic acid concentration. As the spectroscopic
properties of nucleic acids are quite similarwithin ssDNA, dsDNA, andRNA, one can
estimate their concentrations by reading the absorbance first and then multiplying
by their specific unit absorbance. For dsDNA, an absorbance of 1 corresponds to
50mg/mL.For ssDNA, an absorbance of 1 represents a concentration of 37mg/mL.For
RNA, the value is 40mg/mL. Note that these values have been calculated using the
average « andmolecular weight. If one requires an accuratemeasurement of a specific
oligonucleic acid solution (especially if it is a short chain of nucleotides), the
extinction coefficient for the specific sequence should be used in the calculation
using Beer’s law. It can be calculated from the nucleotide extinction coefficients
contained in the sequence. This can be carried out with Web-based oligonucleotide
property calculators.

Absorbance ratios between 260 and 280 nm reflect the purity of a nucleic acid
solution. In the case of DNA extracted out of cellular mixtures, they reflect the
contamination by proteins, as most proteins have a stronger absorbance of 280 nm
compared to oligonucleic acids. Thus, the lower ratio of 260 versus 280 nm represents
more contamination (and consequently less pure nucleic acid solution). A typical
benchmark number used for a pureDNAsolution is 1.8 (260 versus 280 nm).A ratio of
2.0 is used for pure RNA solution.

OD260 is also used to characterize secondary structure and affinity of oligos. Bases
in duplex adsorb less UV light than in single-stranded state, due to base stacking and
electronic interaction in duplex. The difference between the two states is called
hypochromicity. OD260 of duplex solution increases gradually as temperature
increases. When UV spectroscopy is coupled with a thermal controller, thermal
stability of DNA duplexes can be studied. The midpoint of denaturation is called Tm,
a parameter used for comparing thermal stability.

17.5.2 Gel Electrophoresis [61]

Electrophoresis is one of the most widely used methods for purification and charac-
terization of oligonucleic acids. The principle of electrophoresis is quite simple: in an
electrical field, a molecule carrying a negative charge will migrate toward a positive
electrode whereas a molecule with a positive charge will move toward a negative
electrode. Since oligonucleic acids (DNA or RNA) are highly negatively charged
due to their phosphate backbones, theymigrate toward a positive electrode if placed in
an electric field. If a media matrix is used in the process to contain the oligonucleic
acids (typically an agarose gel or a polyacrylamide gel), the electromobility of
oligonucleic acids depends on the general shape of the nucleic acid molecules due
to the sieving property of these gels, or more accurately, the mobility is determined by
the charge–surface ratio. Generally, smaller fragments move faster than larger frag-
ments. Note that other topological parameters may also influence the electrophoretic
mobility of oligonucleic acids. For example, supercoiledDNAmovesmuch faster than
linear DNAwith the same size. It should be noted that the sieving properties of both

568 NUCLEIC ACID ENGINEERING



agarose and polyacrylamide gels are defined by the effective pore size of the gels. Gels
with smaller pores, which correspond to a higher gel percentage or more cross-linking
agents used as in the case of PAGE, are more suitable for separation or analysis of
smaller oligonucleic acids, and vice versa. Oligonucleic acids can be analyzed under
native conditionswhere formation of duplex is allowed, or under denaturing conditions
where formation of duplex is prohibited by thermal conditions (high temperature) and
denaturing reagents such as formamide and urea. Denaturing conditions are required
for purification of synthetic oligonucleotides.

Agarose is a polysaccharide extracted from seaweed. Typically, it is used for
making gels at a concentration of 0.5–3 percent. Typically, DNA fragments from
200 bp to approximately 50 kbp can be separated in an agarose gel at an appropriate
concentration. polyacrylamidegel electrophoresis (PAGE) isused to separate relatively
small oligonucleic acid molecules (from a few nucleotides to several hundreds), due to
much smaller pore sizes within polyacrylamide gels. The gel, usually in the range of
3.5–20 percent, is made by polymerizing acrylamide monomers in the presence of a
cross-linking agent:N,N0-methylene bisacrylamide.Ammoniumpersulfate is typically
used as a catalyst, and N,N,N,N0-tetramethylethyldiamine (TEMED) is added as an
accelerator.

Besides the consideration of the fragment size each type of gel is best suited for,
both gels have their advantages and disadvantages. Agarose gels are easier to cast,
nontoxic, and relatively inexpensive. Polyacrylamide gels, on the other hand, have
higher resolution in separation. For routine applications, agarosegel electrophoresis is
by far the more commonly used method.

After gel electrophoresis, gels can be stained with dyes to locate the position of
nucleic acid fragments. All the dyes for gel staining should be able to bind to
oligonucleic acids and differentiate them from the background signals. Stains-All,
a nonfluorescent dye, and fluorescent dyes such as ethidium bromide or SYBR series
are commonly used to stain the gel. The intensity of fluorescence dyes is typically used
to measure the quantity of oligonucleic acids. In addition, the bands of nucleic acid
fragments can be cut out (not stained byStains-All) and then extracted for downstream
processing.

17.5.3 Imaging

AsDNA complexes from building blocks are in the nanoscale or microscale, imaging
tools developed for nanoscience have to be used to characterize their structures. Here,
we introduce TEM and AFM.

17.5.3.1 Transmission Electron Microscopy The first TEM was built by
Max Knoll and Ernst Ruska in 1931. Since then, much progress has been made in
improving instruments and methods for exploring microscale, nanoscale, and atomic
scale objects. In nature, TEM is analogue of optical microscopy and it operates based
on the same principle as the usual optical microscopy. TEM takes advantage of the
much shorter wavelength of electrons than light; therefore, a much higher resolution
(10�10m) is achieved.The electrons inTEMare usually generated by aprocess known
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as thermionic discharge or by field emission. They are accelerated by an electric field
and focused onto the sample by a lens realized via electrical and magnetic fields.
Such a process is possible because electrons have both wave and particle properties.
Thewave properties make a beam of electrons behave like a beam of radiation, whose
wavelength depends on their energy. The wave property of electron beams can be
modulated by electrical and magnetic fields, as light is by optics.

By design, TEM is usually composed of an electron gun for generating electron
beam, condenser lenses, a sample stage, an objective lens, project lenses, and a
fluorescent screen for observing by naked eye (Fig. 17-13). Sometimes, charge-
coupled device (CCD) camera is connected to TEM to give real-time digital micro-
graphs. TEM specimens, whether a tissue or a particular material, must be supported
on a thin e-beam transparent film to image them. The evaporated carbon film usually
acts as a substrate for TEM specimen support.

TEM has been largely used for imaging, atomic structural analysis (diffraction
pattern), and chemical elemental analysis (X-ray microanalysis). The phase structure
of materials can be known by a combination of imaging and electron diffraction
studies. With the help of energy-dispersive X-ray spectroscopy (EDS) and electron

Figure 17-13 Schematic of imaging mechanism of TEM: E-beam was generated by an electron

gun, which is accelerated, condensed, and hit by samples. The transmitted portion of E-beam is

focusedbyobjective lens into an image,which is passeddown thecolumn throughproject lens tobe

enlarged. The image strikes the phosphor image screen to emit light, allowing the user to see the

image by naked eye or a CCD camera.
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energy loss spectroscopy (EELS), TEM has become a comprehensive tool to gather
information from a certain material. Since the birth of nanoscience and nanotechnol-
ogy, TEM has been the most powerful tool for characterizing nanomaterials.
For instance, carbon nanotubes were first identified by TEM.

In biology, TEM has made a great contribution to our understanding of the cell,
tissues, and even biomacromolecules such as DNA. Unlike metals, biomaterials are
usually not electronically dense and are sometimes damaged by electron beams
because of electrical charging. A solution is to stain samples with heavy metal salts,
which consist of a high atomic number of protons and electrons that can scatter
electrons efficiently. Many organic molecules in biomaterials can reduce strongly
oxidative heavymetal salts intometals giving improved contrast. These stains include
uranyl acetate, lead citrate, osmium tetroxide, and so on. Note that the small size
(andwidth) of the nucleic acid helixmakes it impossible to be imaged by conventional
electron microscopy directly, and usually needs heavy staining, and sometimes even
an additional metallic shadowing.

17.5.3.2 Atomic Force Microscopy Since Binning and Rohrer from IBM
invented scanning tunneling microscopy (STM) in 1981, scanning probe microscopy
(SPM), which uses an extremely sharp tip (10 nm) as a probe to study local properties
of samples bymeasuring variousweak forces, has been developed.AlthoughSTMhas
an atomic level of resolution, it measures the tunneling current and requires the
samples to be electron conductive. In 1986, Binning, Quate, and Gerber developed an
atomic force microscopy (AFM) that can study the topography of a substrate by
measuring the atomic force between the probe tip and the sample. And thus electron
conductivity is no longer needed.

Like all other scanning probemicroscopes,AFMuses an ultrasharp tip (1–10 nm in
radius) as a probe to scan a substrate surface. The tip is on the end of a cantilever that
elastically bends in response to the force between the tip and the sample. The bending
of the cantilever is detected by laser reflection onto photodiodes. The detected
positional signal of a reflected laser beam is then used as a feedback signal to control
the piezoelectric nanotranslator to ensure a constant force between the tip and the
sample surface (Fig. 17-14). By translating the piezoelectric response during the tip-
scanning process, AFM obtains the surface morphology (topography) with an atomic
spatial resolution.

There are twoworkingmodes forAFMdepending on theworkingdistancebetween
the tip and the sample surface: contact mode and noncontact mode.Within the contact
mode there is a special mode called the tapping mode.

In the contact mode, the tip and the sample surface make contact during scanning
(the distance between the tip and the surface is less than 10 nm). Although the
contact mode is most often used due to its higher resolution, the excessive dragging
force during a contact scanning can damage the soft sample, such as polymers
and biomolecules, and thus limits its usage for fragile samples such as oligonucleic
acids. In addition, if the sample surface is covered by layers of water or gas,
which is very common for biological substrates, the force can be distorted due to a
meniscus on the tip from a contaminated surface, leading to a mistaken interpretation
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of the morphology. Contact mode in liquid can sometimes be used to overcome
this problem.

In the tappingmode, the cantilever is oscillated at its resonant frequency.When the
tip scans above the sample surface, the tip taps the surface for a very small fraction of
the oscillating period. Because the contact occurs in an extremely short time, the
lateral force is greatly reduced compared to the contact mode. Sample damaging is
thus minimized. The tapping mode of AFM is mostly suitable for imaging poorly
immobilized samples or soft samples. A more advanced tapping mode, Mac AFM
mode, uses a magnetic field to drive a cantilever coated with paramagnetic materials,
improving imaging greatly.

For the noncontactmode, theworkingdistance of the tip is about 5–15 nmabove the
sample surface. The topographic images are constructed by measuring the attractive,
very weak forces. Although the noncontact mode does not damage samples, it is a
more difficult method due to the possibility of water contamination.

DNA is very thin (2 nm in diameter) and long (from nm to mm) and generally
nonconductive. BeforeAFMwas developed, transmission electronmicroscopy (TEM)
or scanning electronmicroscopy (SEM) had been used forDNA imaging after coating
the DNA with a layer of conductive materials. This treatment tended to distort the
DNA structure. In the case of AFM, DNA can be viewed directly either in air or in
solution. In addition, AFM is much easier to operate, and the cost is much lower than
that of TEM or SEM. Because DNA is a very soft material, the tapping mode is
preferred in imaging. Also, to strongly fix DNA onto a carrier substrate, positively
chargedmolecules such as aminopropyl-triethoxy silane (APTES) are used to coat the
substrate.

17.5.3.3 FluorescenceMicroscopy The easiest way of imaging bulkDNA is
to use fluorescence microscope. Note that DNA itself is not fluorescent. However,
many dyes can bind to DNA and fluorescence strongly, with many folds of difference
compared to nonDNA binding state, such as ethidium bromide, SYBR green, YOYO,

Figure 17-14 Schematic illustration of AFM: The tip mounted to a cantilever is scanned over a

surface. The tip–surface interactions cause cantilever deflection, which is monitored by a

photodiode.
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and POPO. The fluorescence can be detected by fluorescence microscopy or even by
the naked eye. The resolution of fluorescence microcopy is not as high as the imaging
tools discussed above, a limitation posed by light diffraction and quality of optics.
However, it is improved to some extent in confocal fluorescence microscopy.
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18.1 INTRODUCTION

The oceans cover 70 percent of the earth’s surface and are the most complicated and
dynamic of all the earth’s ecosystems; they provide the largest inhabitable space for
living organisms, particularlymicrobes [1–3].Microbes arewell known to live in every
corner of the oceans. Their habitats are extremely diverse and include, but not limited
to, openwater, sediment, estuaries, and specialized niches like hydrothermal vents and
symbiotic hosts [1,4].Microbial cellsmay account formore than 90 percent of the total
oceanic biomass [5]. For more than 3 billion years, these microscopic creatures have
mediated critical physical, chemical, and biological processes that have shaped the
planet’s habitability [2,6]. Marine microbes are responsible for about 50 percent of
global primary productivity and play a major role in global nutrient cycles, which
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can directly or indirectly impact global climate change [6–9].Due to their unique living
environments in the oceans,marinemicrobesmust adjust metabolically and physically
to escape predators and adapt to harsh environments. Accordingly, intensive evolu-
tionary pressures have forced marine microbes to evolve a wide range of metabolic
abilities for regulatory function and the production of diverse molecules. Therefore, it
comes as no surprise that themicrobial diversity of the ocean is vast and a rich source of
interesting biological materials for biotechnological applications [3,4,10].

Prior to the 1990s, our understanding of the diversity, ecological function, and
biomedical potential of microbial communities was limited by the complexity of
marine ecosystems. Recent developments in microbiological oceanography, high
throughput screeningmethods and genomics have revealed newmarine microbes and
the natural compounds that they produce. However, in marine ecosystems, less than
0.1 percent of the indigenous microorganisms can be readily recovered by standard
cultivation techniques. Therefore, our understanding of the ecological function and
biotechnological potential of most marine microbes has been greatly limited [11,12].
At present,most studies ofmarine ecology still focus onmininggeneticmaterials from
diverse marine habitats and the understanding of the diversity and structure of marine
microbial consortia [2,7,8,11,13–17]. Particularly,molecular approaches haveopened
the door to the understanding of ecological functions and the discovery of novel
metabolic pathways and natural compounds. Because most marine microbes are not
amenable to geneticmanipulation, littlework in synthetic biology has been done using
marine microbes.

There are two broad goals for synthetic biology. One is the design and fabrication
of biological components and systems using unnatural molecules, and the other is the
redesign and fabrication of existing biological systems using interchangeable parts
from natural biology [18]. Among the applications of this new field is the creation of
bioengineered microbes and possibly other life forms that produce pharmaceuticals,
detect toxic chemicals, break down pollutants, repair defective genes, destroy cancer
cells, and generate hydrogen for the postpetroleum economy. Synthetic biology is
chiefly an engineering discipline, but the ability to design and construct simplified
biological systems offers life scientists a useful way to test their understanding of the
complex functional networksofgenes andbiomolecules thatmediate life process [19].
In this chapter,we review theuse of geneticmaterial frommarinemicrobes to engineer
conventional hosts for biotechnological and ecological benefits. The major goal is to
illustrate the application of synthetic biology in oceanography and marine biotech-
nology research.

18.2 MARINE QUORUM SENSING AND SYNTHETIC
REGULATORY NETWORK

Many accomplishments have already been made in synthetic biology, including
diagnostic tools and diverse regulatory genetic circuits [18,20]. In this section, we
only summarize utilization of genetic elements of marine quorum sensing for
synthetic cell communication systems.
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18.2.1 Quorum Sensing of the Marine Symbiotic Bacterium
Vibrio fisheri

Quorum sensing is the regulation of gene expression in response to fluctuations in cell
population density [21]. Quorum-sensing bacteria synthesize and release chemical
signal molecules called autoinducers that increase in concentration as a function of
cell density. The detection of a minimal threshold concentration of an autoinducer
leads to change in gene expression. Quorum sensing was first described in two
symbiotic luminous marine bacteria, Vibrio fischeri and Vibrio harveyi [22]. In both
species, enzymes responsible for light production are encoded by the luciferase
structural operon luxICDABEG, and light emission only occurs at high cell population
density in response to theaccumulationof the secretedautoinducermolecules [22–25].
TheLuxI/LuxRquorumsensing systemofV. fisheri is the first and themost thoroughly
studied system in quorum sensing. V. fisheri is a Gram-negative bacterium that can be
free living or can form a symbiotic relationship with a variety of invertebrate and
vertebrate marine organisms [25,26]. In these symbiotic associations, the eukaryotic
host supplies the bacterium with a nutrient-rich environment so that the bacterial
culture can grow to extremely high cell densities, reaching 1011 cells/mL and emitting
light [26,27]. The quorum sensing of V. fisheri depends on the synthesis and
recognition of the autoinducer, N-(3-oxohexanoyl) homoserine lactone, also called
V. fischeri autoinducer orVAI. Thismolecule freely diffuses across the cellmembrane,
triggering the formation of the enzymes necessary for bioluminescence [28]. Thegene
product of luxI, an acylhomoserine lactone synthase, can use acyl-ACP from the fatty
acidmetabolic cycle and S-adenosylmethionine (SAM) from themethionine pathway
to synthesize the autoinducer [24,31].

The quorum sensing mechanism of V. fisheri is illustrated in Figure 18-1 and
involves several products encodedby luxoperonand luxRgene.The regulatoryprotein
encoded by the luxR gene has two binding domains, one that interacts with the
autoinducer and the other that binds to the promoter regionof the luxoperonand also to
the promoter region of the luxR gene itself. The amino terminus contains the binding
site for the autoinducer and the carboxyl terminus possesses a helix-turn-helix binding
motif, typical of many DNA binding domains. In the absence of the autoinducer, the
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CAP/CAMP 
binding site
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(ICDABEG)
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Light

Figure 18-1 Genetic organization of genes and regulatory elements within lux operon on the

chromosome of V. fisheri.
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amino terminus is able to mask the carboxyl terminus, preventing the luxR protein
from binding to the lux operon promoter region. Once the autoinducer binds to the
luxR protein, the newly formed complex binds upstream of the luxICDABEG,
promoting transcription of all the necessary components of the luciferase system [21].
The complex also acts as a negative autoregulator of the luxR transcriptional unit, by
binding near the luxR promoter. The genes containedwithin the lux operon encode for
several enzymes; luxAB encode the subunits of the luciferase enzyme, luxCDE encode
proteins required for biosynthesis of the aldehyde substrate, and another open reading
frame (luxG) exists downstream, but its function is still unknown [30]. The two
regulatory luxgenes (luxR and luxI) exist adjacent to each other, but unlike luxI, luxR is
transcribed divergently from the lux operon (Fig. 18-1). At low population density, the
luxICDABEG operon is transcribed at a basal level. Hence, a low level of autoinducer
is constantly produced along with a low level of light [32]. When the autoinducer
concentration reaches a threshold level (about 1–10 mg/mL), the cytoplasmic LuxR
can detect and bind to it [31]. Interaction of LuxR and the autoinducer unmasks the
DNAbindingdomainofLuxR,allowingLuxRtobindwith the luxICDABEGpromoter
and activate its transcription [33]. This reaction causes an exponential increase in both
autoinducer production and light emission. In addition, the LuxR and autoinducer
complex represses the expression of luxR. This negative feedback loop is a compen-
satory mechanism that decreases luxICDABEG expression in response to the positive
feedback circuits [21,34]. In the quorum sensing system, the autoinducer functions as
a communication signal for the bacteria ‘‘inside” the host as opposed to ‘‘outside” in
the seawater. The quorum sensing systemenablesV. fisheri to produce light only under
conditions in which there is a positive selective advantage for the light [21].

The regulatory region of lux operon is complicated and contains two divergently
transcribed promoters, as illustrated in Figure 18-1. The left promoter PluxL constitu-
tively transcribes the luxR gene. This promoter has a standard d70 binding region,
consisting of the �10 and �35 sequences, and a CRP/CAMP binding site, which is
involved in catabolic repression of LuxR transcription. The right promoter PluxR
controls the expression of the luxICDABEG transcript [35]. Interestingly, the lux box,
a 20 bp inverted palindromic repeat, allows dimeric binding of the LuxR protein in the
presence of the autoinducer. This dimeric binding results in a nonlinear concentration
response, a transcriptional control behavior of DNA binding proteins that is an
essential element of signal restoration and digital control of expression [35,36].
These complicated genetic regulatory elements of quorum sensing allow populations
of bacteria to simultaneously regulate gene expression in response to changes in cell
density. Quorum sensing has broad biotechnological applications, including patho-
gen/pest management, recombinant gene expression, food preservation, and drug
design [37–39]. Quorum sensing also exists in other bacteria and has been extensively
discussed in several reviews [21,29,38–44].

18.2.2 Synthetic Cell Communication Network

Engineeringofmulticellular systems thatutilizecell-to-cell communication toachieve
coordinated behavior has been one of the foci for synthetic biology. This type of
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engineered system can be used to study multicellular phenomena ranging from
synchronized gene expression in homogenous populations to spatial patterning in
developmental processes [20]. Recently, the genetic elements of V. fisheri quorum
sensing have been successfully used to engineer several cell–cell communication
systems (Fig. 18-2) [45–48].

First, genetic elements of the quorum sensing system are separated into sender
and receiver components that are integrated into two different E. coli populations
(Fig. 18-2a) [20,35]. The sender cells contain the genetic elements responsible for
autoinducer production. The receiver cells are engineered with the control element of
the lux operon, a reporter gene (GFP), and the luxR gene. The free diffusion of the
autoinducer within the medium and across the cell membranes allows the establish-
ment of chemical gradients and the controlled expression of the reporter gene. For
good control, the expression level of the luxI gene is placed under the control of the
PLtet0-1 promoter, which is upregulated by the tetR gene product in the presence of
tetracycline [49,50]. The tetR gene under the control of the constitutive promoter PN25
is chromosomally carried in a special strain of E. coli, which harbors the spectinomy-
cin resistance gene. The PLtet0-1 promoter allows the controlled expression of the luxI
gene using a varying amount of a nongrowth inhibitory version of tetracycline,
anhydrotetracycline (aTc). Therefore, the level of the autoinducer in the sender cells
can be controlled by varying the aTc concentrations [35]. The autoinducer diffused
into the receiver cells can regulate the expression of luxR and therefore the reporter
gene (GFP). In this engineered system, the levels of fluorescence in the receiver cells
are successfully controlled via aTc concentration.

In another synthetic system, positive and negative regulations of gene expression
are integrated into multicellular bacterial systems to obtain a transient response in
cell-to-cell communication [47] (Fig. 18-2b). Using aTc, the sender cells in the system
are induced to produce the autoinducer, which then diffuses to the nearby pulse-
generating receiver cells. In response to a long-lasting increase in the autoinducer
concentration, the receiver cells are engineered to transiently express a GFP. This is
accomplished by a feedforward motif, which is placed in the genetic circuit of the
receiver cells and allows them to display an initial excitation followed by a delayed
inhibition in the presence of the autoinducer [51]. The feedforwardmotif ismade upof
two transcriptional regulators, LuxR and the lambda repressor (CI) that act on the
GFP promoter. The LuxR protein when combined with the autoinducer from the
sender cells, acts as an activator of CI production, and also acts as an activator of GFP
transcription. CI acts as an inhibitor of GFP transcription, but because it has a lower
affinity for the promoter than the LuxR and autoinducer complex, it is only able to
repress GFP transcription after it has accumulated a threshold concentration. Thus,
the receiver circuits can distinguish between various rates of increase in the auto-
inducer levels and gain ability to generate a spatiotemporal behavior so that the
receiver cells only respond transiently to signal from the nearby cells but ignore signal
from sender cells, which are farther away.

Using the same cell-to-cell communication mechanism, a ‘‘population control”
genetic circuit is engineered to program the dynamics of cell population despite
variability in the behavior of individual cells by coupling quorum-controlled gene
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expression to cell survival and death [48]. This synthetic circuit can autonomously
control the density of an E. coli population through a quorum-sensing system and can
set a stable steady state in terms of cell density and gene expression that is easily
tunable by varying the autoinducer signal. As illustrated in Figure 18-2c, the luxI and

Figure 18-2 Engineered cell-to-cell communication networks using genetic elements of lux

operon from V. fisheri.(a) diagram of gradient communication system [20,35]; (b) genetic

network for pulse signal generation [47]; (c) design of ‘‘cell population control"" genetic circuit [48];

(d) design of ‘‘band-detect"" gene network [46]. Red arrow means suppression and black arrow

induction. See text for abbreviations and details.
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luxR genes are placed under the control of a synthetic promoter Plac/ara-1 in the
‘‘population control” system [52]. When isopropyl-b-D-thiogalactopyranoside
(IPTG) is present, LuxR is produced along with the autoinducer. The activated
LuxR transcriptional regulator activates the promoter PluxR from the lux operon
that controls the expression of the killer gene lacZa-ccdB. The killer gene product is a
fusion protein containing LacZa and CcdB. The LacZa portion of the fusion protein
allows themeasurement of fusion protein levels using aLacZ assay. TheCcdBportion
still has the toxicity of native CcdB, which kills susceptible cells by poisoning the
DNA gyrase complex [53]. Therefore, in the presence of IPTG, cells harboring the
genetic circuit will produce enough killer protein to maintain a stable cell density.

Another synthetic systemutilizes ‘‘band-detect” gene networks that are engineered
to allow the receiver cells to form diverse patterns around the sender cell colony
(Fig. 18-2d) [46]. As in the above two systems, the sender cells produce LuxI protein
for the biosynthesis of the autoinducer, which forms a chemical gradient around the
sender cell colony. The LuxR protein in the receiver cells activates the expression of
lambda repressor (CI) andLac repressor (LacIM1, a product of a codon-modified lacI),
which are under the control of PluxR. CI then binds to the Pl(R-012) promoter and
represses the expression of the wild-type LacI. The GFP reporter gene is under the
control of the promoter Plac, which is repressed by LacIM1 and LacI. Receiver cells
proximal to the senders encounter high concentrations of the autoinducer and
produce high levels of CI and LacIM1. Hence, receiver cells near the sender cells
will not express GFP. The receiver cells that are far from the sender cells will express
LacIM1 and CI at basal levels. Thus, the wild-type LacI will be expressed and again
suppress the expression of GFP. At intermediate distances from the senders, both
CI and LacIM1 are expressed in moderate levels in the receiver cells. However, due to
the different repression efficiency of CI and LacIM1, CI effectively represses LacI
expression while the LacIM1 concentration is below the level required for GFP
production. Hence, the GFP is produced. Overall, this feedforward loop, including
LuxR, CI, LacIM1, LacI, and GFP, attributes the desired nonmonotonic response to
the autoinducer concentrations to thegenetic circuit [54,55].Bydeliberately arranging
sender cells on solid-phase media containing a mixture of receiving cells, diverse
spatial patterns including bull’s-eyes, ellipses, hearts, and clovers can be produced
using the system [46].

18.3 RECONSTRUCTING NATURAL SYSTEM OF UNCULTURABLE
MARINE MICROBES IN MICROBIAL HOST

One of the potential applications of synthetic biology is testing our understanding
of the functions involved in biological systems [56]. Overall, research on this aspect
of synthetic biology is rare. In this section, we will briefly discuss the potential
application of synthetic biology in a marine functional ecology study. The example
described below may be relatively simple, but it illustrates how the concept of
synthetic biology can be used to understand the ecological function of unculturable
marine microbes.
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Major efforts have been made to investigate marine microbial diversity in many
different natural habitats [2,6,8,15,16]. However, our current understanding of the
ecological function of marine microbes in their natural environments is minimal.
Themajor reason for this lackof understanding can be ascribed to our limited ability to
cultivate and to genetically manipulate these marine microbes for physiological and
metabolic characterization. The vast majority (>99 percent) of marine microbes are
unculturable and therefore their ecological roles in marine natural environments
remain largely unknown. Some molecular techniques such as the FISH (fluorescence
in situ hybridization) have revealed the identity, abundance, and distribution of
selected unculturable microbes in natural marine habitats. However, the ecological
function of thesemarinemicrobes cannot be understood in thisway.Geneticmaterials
from unculturable microbes can be recovered using an environmental genomic
strategy. Functional biological components or pathways encoded in the genetic
materials can then be fabricated using the principles of synthetic biology. Large
genomic DNA fragments of uncultured marine microbes are usually recovered
from environmental genomic libraries, which are constructed using fosmid or
BAC (bacterial artificial chromosome) vectors [57,58]. Recently, a new phototroph
in the sea was identified by characterization of new type of rhodopsin from a
picoplankton bacterial artificial chromosome library [57]. Analyses of a 130 kb
environmental clone revealed a new class of genes for the rhodopsin family (named
proteorhodopsin) that has not been observed in bacteria before. Proteorhodopsin (PR)
proteins were found to be bacterial retinal-binding membrane pigments that function
as light-driven proton pumps in themarine ecosystem [56]. Subsequent investigations
indicated that proteorhodopsin occurs inmanymarine bacteria and evolves for various
lightwavelengths at different ocean depths [59–66].However, it is a great challenge to
prove bacteria containing proteorhodopsin, are a novel group of marine phototroph.
To that end, E. coli cells were engineered to use the proteorhodopsin genes. The
engineered cells acquired the net-outward transport of protons in the presence of
retinal and light [57]. Recently, analysis revealed that PR genes are linked to a
carotenoid biosynthesis gene cluster, which encodes proteins responsible for con-
verting geranylgeranly diphosphate to b-carotene [67]. In addition, a gene coding for
a homologue of the bacteriorhodopsin-related-protein-like homologue protein (Blh)
from the archaeon Halobacterium sp. NRC-1 was also found in the marine bacteria
BAC clone. Blh has been shown to be involved in the retinal biosynthesis [68]. This
indicates that bacteria possessing PR proteins also carry the ability to synthesize the
retinal chromophore and to potentially form functional PR holoproteins. Indeed,
expression of blh in the b-carotene producing E. coli cells results in the loss of the
yellow color of these cells because b-carotene is converted into a colorless all-trans
retinal by Blh. When the colorless retinal binds PR protein, the resulting complex
becomes red colored and can function as an active proton pump [67]. Thus, proteor-
hodopsin is proved to have the ability to couple light energy harvesting with carbon
cycling through nonchlorophyll-based pathways in the ocean.

In addition, the environmental genomic approach has been used to study methane-
oxidizing microbial consortia in deep sea methane seeps [69] and resulted in the
identification of the methanogenic pathway of the ANME-1 archeal groups [70].
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Unfortunately, no further functional analysis of the pathway was carried out. It is
believed that a methanogenic E. coli strain could be constructed by using this
archeal pathway. Overall, application of synthetic biology in the understanding of
marine microbial ecology is still in its infancy. Close collaboration between marine
microbial ecologists and synthetic biologists may greatly benefit the development of
both fields.

18.4 METABOLIC ENGINEERING FOR THE PRODUCTION
OF MARINE NATURAL PRODUCTS

The production of natural compounds through metabolic engineering has been one of
themajor foci in synthetic biology [18,19]. Tremendous progress has beenmade in the
production of natural compounds of terrestrial origins and is summarized in many
excellent reviews [71–76]. In this section, we review the progress of metabolic
engineering for the production of marine natural compounds. Production of valuable
marinenatural products in engineeredmicrobial hosts hasbeenanactive research area.
Some engineered hosts have shown promise in pharmaceutical and nutraceutical
industries. Like terrestrial natural products, marine natural compounds are often
produced by enzymes coded in gene clusters. Polyunsaturated fatty acids (PUFAs) are
of biotechnological interest for their beneficial properties to human health and their
importance in infant development [77]. The most important PUFAs are eicosopen-
taenic acid (EPA) and docosahexaenic acid (DHA). The 38 kb genomic fragment,
which includes all genes responsible for the production of EPA, was recovered from
the marine bacterium Shewanella putrefaciens strain SCRC-2738 [78]. Engineered
E. coli cells, with the foreign gene cluster cloned into them, produced EPA in low
yield. Also, the same gene cluster was cloned into the marine cyanobacterium
Synechococcus sp. using a broad host cosmid vector, pJRD215. The engineered
cyanobacterial cells produced EPA up to 0.56mg/g dry cells at 23�C [79]. In addition,
the production yield of EPAwas further improved by stabilizing the expression and
maintenance of the cluster in the host cells [78]. Thus, these studies provide the first
examples of EPA production in bioengineered hosts. Also, the increased understand-
ing of PUFA-related genes offers the possibility for the engineering of microbial cell
factories suitable for an alternative production of EPA and DHA.

Most microalgae are obligate photoautotroph and their growth strictly depends on
the generation of photosynthetically derived energy. Phaeodactylum tricornutum is
a unicellular nonsilicate diatom and can accumulate EPA up to 30 percent of the total
fatty acid content. Furthermore, astaxanthin is an efficient antioxidant and produced
by a number ofmarine bacteria andmicroalgae. It can be synthesized from b-carotene
by the addition of two keto groups to carbons C4 and C4’ and two hydroxyl groups to
C3 and C3’ [81]. The gene crtO encoding b-C-4-oxygenase from the green alga
Haematococcus pluvialis can convert b-carotene to astaxanthin. The cyanobacterium
SynechococcusPCCC7canproduceastaxanthinaswell asotherketo-carotenoids [82].
After the introduction of a single gene for glucose transporters glut1 or hup1, the
microalga P. tricornutum was genetically engineered to thrive on exogenous glucose

METABOLIC ENGINEERING FOR THE PRODUCTION OF MARINE NATURAL PRODUCTS 585



in the absence of light [80]. The trophic conversion of microalgae has provided
an important platform for large-scale production of PUFAs and carotenoids using
engineered microalgal cells. Metabolic engineering of conventional noncaroteno-
genicbacteria andyeasts usingcarotenoidmetabolic pathwaysgenes (e.g., crtgenes or
IPP synthetic genes) frommarine microbes has been intensively studied (for reviews,
see Refs [83,84]).

Marine invertebrates such as sponges, ascidians, and bryozoans are well known for
their production of bioactive natural products, several of which are currently under-
going clinical trials [85,86]. These marine invertebrates also harbor diverse symbiotic
microbes [64,87,88]. Because many marine natural products from these marine
invertebrates resemble bacterial compounds, some of their natural chemicals have
long been proposed to be produced by their bacterial symbionts [88]. Several studies
have demonstrated that microbial isolates associated with sponges produced the same
compounds formerly isolated from sponges [89–93].However, these results do not rule
out the possibility that substances might be transported between bacterial symbionts
and their hosts via export or sequestration mechanisms [94]. Recently, several
biosynthetic pathways for anticancer compounds have been isolated from marine
invertebrates using molecular approaches [87,95,96]. Particularly, the patellamide
A and C biosynthetic pathway was identified from Prochloron didemni, a cyanobac-
terial symbiont of Lissoclinum patella. E. coli cells that were engineered to harbor this
biosynthetic pathway and its regulatory region produced patellamide A at the level of
20mg/L. Although the production yield is low, it represents the first successful case of
the production of marine natural compounds in a synthetic microbial host.

18.5 CONCLUSION

Theworld’s oceans cover the largest portion of the global surface and contain themost
complicated ecosystems. They are home to different biota ranging from tiny plank-
tonic organisms that comprise the base of themarine foodweb (i.e., phytoplankton and
zooplankton) to large marine mammals like the whales, manatees, and seals. It has
been estimated that the oceans harbor 3.6� 1029 microbial cells with a total cellular
carbon content of about 3� 1017g [97]. These microbial cells are responsible for the
vast majority of primary production and mediate all biogeochemical cycles in the
oceans [5].Considering the enormousnumber ofmicrobes, their interactionwith other
hosts, and their vast metabolic diversity, marine environments can be an enormously
rich source for novel molecular regulatory networks and pathways for new natural
compounds.

Further environmental genomic investigation ofmarinemicrobeswill contribute to
the development of synthetic biology by providing novel genetic regulatory networks
and pathways. On the other hand, synthetic biology can also benefit marine microbial
ecology by providing techniques for the functional characterization of unculturable
marine microbes. Particularly, the synthetic biology approach can provide a viable
solution for the development of interesting marine natural compounds. For example,
the valuable and powerful antimalarial drug artemisinin (a sesquiterpene lactone) is
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isolated from the sweet wormwood, Artemisia annua, at very low yield. Recently, its
immediate precursors artemisinic acid and amorphadiene have been successfully
produced at a significantly high level in engineered Saccharomyces cerevisiae and
E. coli, respectively [98,99].Thus,metabolically engineeredmicrobial hosts are likely
to solve the supply and affordability issues for this effective antimalarial drug.
Therefore, many valuable marine terpenoids such as cytotoxic eleutherobin and
sarcodictyins could also be produced in engineered microbial hosts using similar
strategies because most terpenoids use the same building blocks IPP (isopentenyl
diphosphate) and DMAPP (dimethylallyl diphosphate) for their biosynthesis.
Unfortunately, most of the key genes responsible for the production and modification
of these valuable marine compounds are still not available. At present, the application
of synthetic biology to the understanding of marine microbial ecology and marine
biotechnology ismainly limited by the availability of the novel geneticmaterials from
the marine environments.

The quorum-sensing system of V. fisheri has been successfully used to engineer
several cell-to-cell communication systems. It is reasonable to believe that diverse and
novel genetic regulatory systems will be found in marine microbial genomes using
an environmental genomics approach. Thus, these marine regulatory systems will
provide the platform for bioengineers to synthesize novel genetic circuits and cell
communication systems for diverse biotechnological applications. Collaborative
research of interdisciplinary scientists and researchers from oceanography, microbi-
ology, metabolic engineering, computer science, mathematics, informatics, and
marine biology can provide greater progress in understanding marine ecosystems
and the discovery of new techniques in synthetic biology.
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ON FUNDAMENTAL
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AND SYNTHETIC BIOLOGY
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19.1 SETTING SYSTEMS AND SYNTHETIC BIOLOGY IN CONTEXT

19.1.1 Systems and Synthetic Biology in Context

Systems and synthetic biology promise to revolutionize our understanding of biology,
blur the boundaries between the living and the engineered in a vital new bioengi-
neering, and transformour daily relationship to the livingworld. Their emergence thus
deserves to be understood in a wider intellectual perspective. Close attention to their
relationship to the larger scientific intellectual frameworkswithinwhich they function
reveals that systems and synthetic biology raise fundamental challenges to scientific
orthodoxy, but stand in the vanguard of an emerging new complex dynamical systems
paradigm now sweeping across science.

They emerge from a preceding developmental stage of science where, sketching
crudely, biology was divided between molecular biology on the one side and, on the
other, physiology (functional biology) and, on a larger scale, population genetics
(evolutionary biology), and there was relatively little commerce among these
approaches. Molecular biology and evolutionary population biology effectively
agreed on assuming simple rules for gene expression that had the effect of reducing
organism complexity to genetic complexity and so of treating the organism (reduced
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to a phenotype) as if it consisted simply of a bundle of genes. Whence, with genes
directly related to produced phenotypes through the simple gene–trait rules,
population gene frequencies could be constructed, and the diversity of complex
organic processes could be explained in terms of evolutionary natural selection
expressed in population frequency shifts. This left molecular biology to focus on the
genes, aka DNA, and evolutionary theory to focus on gene population statistics.
Caught between them, physiology focused on its own functional descriptions, cast
in terms of organism features like energy fluxes and tissue densities, as, in different
ways, did its sister domains of embryology and developmental biology.

Though somewhat a caricature, this division of conception and labor leaves the
treatment of biosynthetic pathways out of the picture; however, they are essential
for biological understanding. For they are the linkages connecting gene activity
through intracellular and then intercellular formation and functioning to organism
formation and functioning, and on, finally, to an enriched multilayered conception of
evolutionary process (see below at footnote 22). It is exactly at this locus that systems
and synthetic biology intervene.

These subdisciplines act, severally and together, as an interlevel bridge between
molecular biology and physiology, precisely by developing the treatment of bio-
synthetic pathways, and in this way create a lively, reinvigorating integration to
biology. Despite the complexity of biosynthetic pathways, scientists have been able to
study them by carrying over into biology certain engineering modeling tools, such as
control theory and electrical circuit theory and its generalization to dynamical network
theory. With genes, proteins, and metabolites as components and replication, self-
assembly, metabolism, repair, growth/death, signaling and regulation as process
elements, systems and synthetic biology using these tools to model the complexes
of processes that constitute cells, and interacting multicellular bodies like organs, in
ways analogous to those in which engineers model and regulate fighter jet aerody-
namics and multistage industrial processes.1

Of the two, synthetic biology has awider scope than systems biology since, beyond
the actual life forms of systems biology, the domain of synthetic biology also includes
novel viable life forms and bioengineering complexes inwhich specialized organisms
and/or biomaterials/processes play important roles. However, the hope underlying
work in both studies is that a cell can be adequately modeled as a dynamical pathway
network and a multicelled organism can be adequately modeled as a supernetwork
of these (and so on up). Adding inanimate engineering network components then
suffices to encompass all the wider domain of synthetic biology.

Methodologically, systems biology and synthetic biology are mutually beneficial
(symbiotic); systems biology employs to advantage the perturbational and measure-
ment methods developed by synthetic biology, while systems biology provides
knowledge of dynamical models of various useful organisms from which synthetic
biologymaywork.The key to the rise of these two interrelated subdisciplines has been
the (accelerating) emergence over the past 50 years of high-throughput experimental

1 See, among many recent texts, the nicely diagrammed overview in Ref. [1], Chapter 1.
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technologies capable of amplifying trace chemical presences to reliably measurable
quantities in practicable times and of doing so simultaneouslywith increasinglymany
cellular components. Starting with recombinant DNA techniques for single genes
in the 1970s, today the techniques are crossing the threshold of being able to
simultaneouslymonitor all the ‘‘omics” for entire, or nearly entire, cellular genomes.2

As Palsson says (op cit. footnote 1) the arrival of this data both forces and enables
the study of the cell as a system. While the earlier experimental stages were
appreciated for their capacity to identify the lists of components involved, once
this had been achieved the vast quantities of simultaneous data now available can only
be usefully simplified and comprehended in terms the interrelationships they reveal,
that is, in terms of a network model.

Method is as yet at a relatively early stage of development compared to engineering
theory, confined inmany cases to topological considerations backedby stoichiometric
considerations like flux measurements.3 Beyond this ‘‘kinetic modeling is still
severely hampered by inadequate knowledge of the enzyme–kinetic rate laws and
their associated parameter values”4 and is only recently beginning to enhance
stoichiometry with direct dynamical modeling. This is partly because data of the
kind and quality required is only recently becoming available,5 and partly because
the dynamical operations of very complex networks are still being only indirectly
studied, requiring the development of new data analysis techniques.6 The methodo-
logical challenges in this respect focus around improving the reliable identification
of circuit structure, including (1) the discrimination of partial redundancies, (2) the
development of recently initiated methods for the treatment of integrated pathways
where two or more kinds of links (e.g., metabolic and signaling) are simultaneously
partially served by the same chemical elements, (3) better understanding of cross-
pathway interaction and whether it should be treated as mere interference or evidence
of inappropriate pathway modeling, (4) the resolution of hierarchical functional
architectures, and (5) sufficiently increasing the extent and precision of dynamical
information required to accomplish all this.

As interlevel bridging theories, the emergence of systems and synthetic biology
represents a revolution in scientific biological knowledge. But, as the opening remarks
signaled, these developments also have intellectual impacts of a wider and deeper
nature that can best be appreciated when set in a wider context. First there is the larger
question of the nature of the living domain: against the earlier division between

2 See Mitsuro Itaya, Chapter 5 herein and, for example, Ref. [2].
3 Cf. Joyce and Palsson, Chapter 6 herein for deliberate development of this approach as a constraints-based
delineation of possibilities.
4 Ralph Steuer (Humboldt University, Berlin) ‘‘From topology to dynamics of metabolitic networks,”
lecture to the Bio-Modelling Network, Manchester University, UK, August 29, 2007.
5 For instance, Ref. [3], noting the capacity to directly observe functional units, remarks ‘‘By linking genes
and proteins to higher level biological functions, the molecular fluxes through metabolic networks (the
fluxome) determine the cellular phenotype. Quantitative monitoring of such whole network operations by
methods of metabolic flux analysis, thus bridges the gap by providing a global perspective of the integrated
regulation at the transcriptional, translational, and metabolic level.”
6 See, for example, Ref. [4] and the discussion of modeling in Section 20.2.6.
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a crudemechanism and amysterious vitalism, systems and synthetic biology hold out
the prospect of a reenergized naturalism for biology in which vital characteristics of
organisms are captured as natural features of certain kinds of organized chemical
systems. But to do so biological theory will have to meet some larger challenges that
stem from the nature of complex adaptive systems more generally. For example,
we still have no complete and coherent account of organization in complex systems,
much less an account that illuminates the nature of life as a particular species of
dynamical organization. Second, as this example indicates, there are still larger issues
surrounding the introduction of complex dynamical system concepts, principles, tools/
methods, andmodels into science—where they are now expanding rapidly acrossmost
of the sciences.7 It is to these two larger questions that the remainder of this essay
briefly turns—lest, not doing so, they return to confuse us.Only then shallwe be able to
properly consider the challenges ahead in biology, the topic of the closing chapter.

19.1.2 The Wider Problem of the Life Sciences

During the century bounded by the rise of organized modern public science
1850–1875 and its expansion to themassive institutions of 1950–1975, the intellectual
conception of science was dominated by its fundamental and most excitingly
progressive discipline: physics. The philosophy of science followed suit, entranced
by the prospect of simple universal laws induced from rigorous evidence and with
multifarious practical applications as the truest revelation of the creator’s rationality,
or anyway of the nature of prediction and explanation, theory and justification.
This conception encompassed chemistry, ifwith somedifficulty, and also engineering,
medicine, and ‘‘biophysics,” at least while these studies were confined to physics-like
objectives such as building houses, simple surgery, and osmotic pressure and all their
apparent other complexities were set aside as ‘‘merely practical.”

However, the hope of a universal ‘‘physics vision” would later collapse as more
lifelike systems were studied. Indeed, the chief problem with this vision became the
lack of any obvious way to incorporate the sciences of living organisms, cellular
biology, evolution, and ecology, extending to sociology, economics, and the humani-
ties generally. By the end of the nineteenth century, the prospect of a separate vitalist
foundation for these studies,where one looks to principles for livingorganisms that are
fundamentally independent of those for inanimate systems, was successfully exor-
cised from mainstream science. The vitalist view, the critique of which dates back
at least to Robert Boyle, offended against both unity under physics and the practical
naturalism—often expressed in terms of materialism, mechanism or both—that has

7 Something of the reach and richness of the complex systems revolution sweeping the sciences will be able
to be gleaned from a volume for the first time devoted to this task with 30 plus contributions by researchers
across the sciences. For author abstracts see http://www.johnwoods.ca/HPS/#Complexity. Part of a
multivolume Handbook of the Philosophy of Science now in publication and preparation, the volume’s
current working details are Cliff Hooker (Ed.) Philosophy and Foundations of Complex Systems, Vol. 10 of
D Gabbay, Paul Thagard, and John Woods (Eds) Handbook of the Philosophy of Science, Amsterdam:
Elsevier, 2006–2009.
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successfully guided scientific advance for 400 years. So the life sciences were held
in abeyance, some day to be somehow subsumed under the great general mechanical
laws. Of course, those within the excluded domains felt obliged to declare their
difference, perpetuating an often tragic conflict.8

Thus providing a more adequate understanding of the nature of the life sciences is
an urgent intellectual problem. Indeed, we still see the old opposition in action in the
latest volume by Ernst Mayr [5], a book by a prominent research biologist who has
been reflecting on the nature of biology for 40 years and through many books.
Mayr argues that biology is unique, distinct from physics, chemistry, engineering, and
all their applied forms from rockets to robotics. Although biological entities are
subject to physical and chemical laws, he says, what makes them unique is essentially
that they exhibit a suite of properties not possessed by the inanimate objects of these
disciplines, namely metabolism, regeneration, regulation, growth, replication, evolu-
tion, and developmental and behavioral teleology.

There is no doubt that Mayr is right that these are significant features of the
living world. Thus, it becomes a pressing issue to understand how systems and—
especially—synthetic biology are possible, and how they are to be understood. To do
that we need to briefly review the historical tradition that culminates in Mayr’s
contention—for it will also reveal the seeds of the contemporary promise of its
resolution through systems and synthetic biology, even while calling attention to
outstanding issues.

19.2 FORMATION OF INTELLECTUAL ORTHODOXY FOR THE FIRST
SCIENTIFIC–INDUSTRIAL REVOLUTION

19.2.1 Establishment of a Physics-Based Framework for Biology

For roughly 250 years from the publication of Newton’s Principia to the close of the
Second World War in 1945, the defining characteristic of fundamental advance in
physics was the understanding of dynamical symmetry and conservation. A sym-
metry is an invariance under some operation, for example, of spherical shape under
rotation. In physics, the relevant symmetries are the invariances, that is, the
conservation, of dynamical quantities under various continuous space–time shifts,
for example, conservation of linear motion (momentum) under shift in spatial
position or of energy under time shift. Noether gave systematic form to this in 1918
and showed that it was the invariance of the form of the dynamical laws themselves
that was expressed. Collections of the same space–time shifts form mathematical
groups, and the corresponding invariances then form dynamical symmetry groups.

8 This conflict within the research community formed the roots of Snow’s two cultures, the gulf between the
tools, styles, and goals of the sciences and the humanities. It will take at least another century to tackle this
issue properly, but within this and the closing essay the reader will find an array of systems tools, beginning
with (but by nomeans endingwith) systems and synthetic biology, that bid fair to resolve the basic root of the
problem, if not all of its branches.
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For instance, Newton’s equations obey the Galilean symmetry group. Symmetry
forms the deepest principle for understanding and investigating fundamental dy-
namical laws.9

In addition to their general dynamical symmetries, many states have additional
symmetries, for example, the lattice symmetries of a crystal. Within this framework
thermodynamics emerged, with thermodynamic equilibrium the only dynamical state
condition that could be identified for dealingwith complex systems. The advantage of
thermodynamic equilibrium states is their greater internal symmetry because all
residual motion is random (a gas is stochastically spatially symmetric). When each
equilibrium state is invariant with respect to transitory pathways leading to it (the
outcome is independent of those initial conditions), so its history can be ignored in
studying its dynamics. The dynamics itself can then be developed in a simplified form,
namely in terms of local, small and reversible—hence linearizable—departures from
stable equilibria, yielding classical thermodynamics.

The study of simple physical systems of a few components and ofmany component
systems at equilibrium supported the idea that the paradigm of scientific understand-
ingwas linear causal analysis and reduction to linear causal mechanisms, with the real
aswhatwas stable, especially invariant. ParadigmcaseswereNewton’sLawsand two-
body solar system dynamics, engineering lever and circuit equations, simple two-
component chemical rate equations, crystal lattices, and equilibrium thermodynamics
of gases.

The philosophy of science was shaped to suit, focusing on determinism, universal
atemporal (hence acontextual) causal laws, analysis into fundamental constituents
then yielding bottom-up mechanical synthesis. To this was added a simple deductive
model of explanation and prediction—deduction from theory plus initial conditions
gives explanation after the event and prediction before it—with reduction to
fundamental laws and separate contingent initial conditions becoming the basic
explanatory requirement. This supports an ideal of scientific method as logical
inference: induction from the data, where the most probable correct theory is
logically inferred from the data (cf. statistical inference in bioinformatics), deduc-
tion from theory for prediction and explanation, and falsification: deduction from
data that conflict with prediction to a failure of the predicting theory (or other
assumptions).10 However, it turns out (interestingly!) that neither the logical nor the

9 For instance, the shift from Newtonian to relativistic dynamics is a shift from Euclidean to Minkowski
space–time and a corresponding shift from the Galilean to the Lorentz symmetry group, while the shift to
nonrelativistic quantum theory, which exhibits stronger symmetries (expressing indistinguishable states), is
a shift to the unitary symmetry group. Currently the as-yet-incomplete development of relativistic quantum
theory is explored in terms of the further symmetry groups involved. Further see any of the many textbooks
on this subject. If all this seems somewhat impenetrable to a life scientist, it suffices to grasp the idea that
symmetry is the central structural feature of dynamics in physics. On the stability–equilibrium framework
see, for example, Refs [6–8] and on symmetry disruption by newer systems dynamics ideas see these and,
for example, Refs [9,10] and Brading’s Stanford Encyclopedia of Philosophy entry at http://plato.stanford.
edu/entries/symmetry-breaking/.
10 See classics of the time like Ref. [11] on induction and reduction, and on falsification see Ref. [12]. For a
contemporary version in systems and synthetic biology see Breiman in Section 20.2.6.
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methodological situation is so simple; both scientific practice and rational method
are, and must be, much more complex than this.11

The philosophy of science and the scientific paradigm together constituted the
intellectual framework of scientific orthodoxy for a century of scientific understand-
ing and the evident fit between philosophy and paradigm supported the conviction
that both were right, the logical clarity and elegance of the philosophy reinforcing
that conviction. Fromwithin this framework, the greatest challenge is that of quantum
theory to determinism and simple causality. But while this is a profound problem,
the immediate theoretical challenge is also limited since the fundamental dynamical
idea of a universal deterministic flow on a manifold characterized by its symmetries
remains at the core.12

The great formation period ofmodern biology, characterized by the rise of genetics
and its incorporation into evolutionary theory, and the subsequent emergence of
elementary molecular genetics in its support, was understood within this orthodox
framework. The simple fundamental laws of evolutionary population genetics and of
molecular genetics that underlay themwere held to provide the universal, unchanging
causal reality underlying the apparently bewildering diversity of biological phenom-
ena. The observed diversity was to be seen simply as reflecting a diversity of initial
conditions independent of these laws, whether generated as exogenous geoecological
events or as endogenous random mutations.

Reduction tomoleculargenetics thus became adefining issue. Initially this took the
form, noted earlier, of treating the phenotype as effectively just a bundle of gene–trait
pairs that determined fitness. This simplification sufficed, given their developmental
stages, for population genetics andmolecular biology, at the time. For the longer term
the reductionist paradigm, based on analysis and bottom-up synthesis, assumed
that the information gained by unraveling the separate simple mechanisms of all
the differentmolecular components could be used to provide adequate linear assembly
models of cellular and multicellular organisms. Functional analysis was based on the
similar idea of dissecting a complex system into its functional components, all theway
down to its simplest basic functions, then reducing the basic functions to simple
mechanisms, and resynthesizing. This research paradigm dominated twentieth
century mainstream biology, a time in which enormous progress also took place in
accumulating molecular information.

19.2.2 Framework-Induced Dichotomy in the Life Sciences

The consequence of this approach to biology is that either life is radically reduced to
simple chemical mechanisms and then to physics, or it has to be taken outside the
paradigm altogether and asserted as metaphysically sui generis, a realm in itself
from which flowed all of the distinctive features Mayr lists (see Section 19.1.2,
especially regeneration, replication, and teleology). Both implausible positions had

11 For overview and discussion of the situation, see, for example, Ref. [13], Chapter 2.
12 However, as the dispute betweenBohr and Einstein suggests, theremay be implicit in this challengemore
profound issues that do at least call into question the nature of intelligible reality, cf. Ref. [14].
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devoted proponents. In particular, expressed as various forms of vitalism, the latter
position has had a long history inWestern thought; especially as science emerged from
a Christian religious framework, it freed up investigation of the physical body while
leaving the mind and soul to religious teaching. Descartes, for example, drew a sharp
distinction between human body and spirit (other organisms were simply clever
automatons), regarding the human organism as a hybrid, hierarchical control system:
the spirit carried all the initiative, expressed perhaps through the pineal gland, while
the material body was reduced to an automaton responding to control orders,
a deterministic machine explained by simple physics. Kant similarly ascribed
biological processes to teleology that, while embodied, escaped material scrutiny
in themselves.

This situation formed the general approach to the scientific treatment of living
entities, whether in psychology, sociology, economics or history, and other cultural
studies. In psychology, for example, the corresponding primary choice is that between
reductionist materialism and dualism (Cartesianism). Behaviorismwas a particularly
severe formof reductionistmaterialism that dominated in the first half of the twentieth
century. It was followed by the currently dominant artificial intelligence version,
a functionally generalized behaviorism where the mind is modeled as internal
deterministic assembly and control programs, ultimately representable as digital
software. This respectively parallels the transparent phenotype and molecular mech-
anism assembly stages of biological theory as successively reductionist input/output
blackboxand thengraybox input/output transformmodels. In economicswe similarly
begin with Homo economicus, where agents are reduced to sets of preferences,
behaviorally revealed (in principle), plus a simple welfare optimization program;
only recently are agents beginning to be fleshed out with preference dynamics,
decision psychology, and collective interactions (e.g., through multiagent models
and evolutionary game theory). The philosophy of these disciplineswas shaped to suit
in ways analogous to those for biology.

These are undoubtedly the early theory building stages through which any science
has to go as it laboriously assembles better understanding. Possibly this was itself
intuitively understood by many scientists. Even so, there was enough dogmatic
conviction in science, and certainly in philosophy of science, that the results were
not pleasant for dissenters who were denied a hearing and research funding and often
ostracized. One might recall, as examples of this, the fates of Baldwin and Lamarck
and others in biology, and of Piaget in biology and philosophy, all now being at least
partially rehabilitated as the old simple dogmas breakdown, not to mention those in
entire subdisciplines such as embryology and ecology who were sidelined for many
years before they have again returned to the forefront of scientific progress.13 Yet the
problem of reconciling biology and physics was always a dilemma: either the organic

13Ultimately, embryologymust become avital application of systems and synthetic biology, since all living
systems exhibit complex developmental histories. Similarly, ecological systems theory must ultimately
become its sister science focused at the organism and population levels instead of the cellular and cell
assembly levels—exhibited, for example, through the networkmodels of Levins [15,16] and the dynamical
resiliencemodels of Gunderson, Holling, and others [17,18]. However, these interrelationships are as yet in
their early development.
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dwelled in a realm sui generis, or the reductive paradigm of physicswas too restrictive
to give a realistic account of any but the simplest of natural systems.

19.3 QUIET PREPARATIONS FOR A REVOLUTION

19.3.1 How the Emergence of the New Orthodoxy-Breaking
Concepts is Tied to the Emergence of the Basic System Tools
Used by Systems and Synthetic Biology

Yet all thewhile scientific work itself was quietly and often unintentionally laying the
groundwork for superseding these approaches, both scientifically andphilosophically.
To understand why this might be so one has only to contemplate what the previous
paradigm excludes, namely all irreversible, far-from-equilibrium thermodynamic
phenomena. This comprises the vast majority of subject matter of interest to science,
everything from supergalactic formation in the early cooling of the universe down to
planet formation, all or most of our planet’s geoclimatic behavior, all phase change
behavior, natural to the planet or not, and of course all life forms, since these are
irreversible far-from-equilibrium systems. What all of these phenomena exploit is
spontaneous instability, specifically nonlocal, irreversible dynamical departure from
their present state, whether it be the instability of a gas cloud condensing to a star,
or that of a collection of chemicals forming a continuously self-regenerating life form.
Moreover, all of these transitions represent the formation of nonequilibrium structures
and the formation of increased complexity through symmetry breaking. This is starkly
clear for cosmic condensation: the universe begins as a superhot supersymmetric
expanding point sphere, but as it expands it cools and differentiates, breaking its natal
supersymmetry; the four fundamental forces differentiate out, their nonlinearities
amplifying the smallest fluctuational differences into ever-increasing structural
features. In sum, all of these vast sweeps of phenomena are characterized by the
opposite of the symmetry/equilibrium paradigm.14

Thus it is not surprising that from early on, even while the elegantly simple
mathematics of the stability–symmetry paradigm were being developed and its
striking successes explored, scientists sensed the difficulties of remaining within
its constraints, albeit in scattered and hesitant forms. Maxwell, who formulated
modern electromagnetic theory in the later nineteenth century and sought to unify
physics, drew explicit attention to the challenge posed by instability and failure of

14An early mathematical classic on nonlinear instabilities referred to the old paradigm as the ‘‘stability
dogma,”see Ref. [19], pp. 256ff. See also the deep discussion of the paradigm by the Nobel prize winning
pioneer of irreversibile thermodynamics, Prigogine, in Refs [20–22]. I add the phase-shift cosmogony of
Daodejing, Chapter 42, translated by my colleague Dr Yin Gao, because the West has been slow to
appreciate the deep dynamical systems orientation of this tradition in Chinese metaphysics, for instance, in
medicine [23]:

The dao (the great void) gives rise to one (singularity)
Singularity gives rise to two (yin and yang)
Yin and yang give rise to three (yin, yang, and the harmonizing force)
Yin, yang, and the harmonizing force give birth to the 10,000 things/creatures.
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universality for formulating scientific laws, while his young contemporary Poincar�e
spearheaded an investigation of both nonlinear differential equations and instability,
especially geometric methods for their characterization.15 By the 1920s static,
dynamic, and structural equilibria and instabilities had been distinguished.16 A static
equilibrium requires no irreversible process to maintain it while a dynamic equilibri-
um does. Living organisms illustrate dynamical equilibria since they only persist
if maintained by flows of energy and matter through them. Either equilibrium is
unstable if its conditions are sufficiently perturbed. The system is then on a transient
trajectory until a new equilibrium is reached. Phase changes illustrate structural
instabilities, where the dynamical form itself changes during the transient trajectory.
It was discovered in the 1950s and 1960s that simple chemical reaction systems, like
that studied by Belousov and Zhabotinskii, show phase changes among dynamical
equilibria.

In engineering, nonlinearity and emergent dynamics appeared in an analytically
tractable manner with the discovery of feedback and the development of dynamical
(asdistinct from later programming) control theory.Maxwell in1868provided the first
rigorous mathematical analysis of a feedback control system (Watt’s 1788 steam
governor). By the early twentieth century General Systems Theory was developed by
von Bertalanffy and others, with notions like feedback/feedforward, homing-in, and
homeostasis at their basis, while later Cybernetics (the term coined byWeiner in 1948)
emerged from control engineering as its applied counterpart.17 Classical control
theory, which became a disciplinary paradigm by the 1960s, forms the basis of the use
of dynamical system models in contemporary systems and synthetic biology.

In 1887 Poincar�e had also become the first person to discover a chaotic determin-
istic system (Newton’s three-body system), later introducing ideas that ultimately led
to modern chaos theory. Meanwhile Hadamard 1898 studied a system of idealized
‘‘billiards” and was able to show that all trajectories diverge exponentially from one
another (sensitivity to initial conditions), with a positive Lyapunov exponent.
However, it was only with the advent of modern computers in the 1960s that
investigation of chaotic dynamics developed, beginning with Lorenz whose model
of atmospheric dynamics as a simple convective cell revealed sensitivity to initial

15 This sensitivity was already evident in the 20 years Newton delayed publication of his magisterial
Principia Mathematica, while he searched for a principled way to encompass the treatment of lunar
dynamics within its framework, a classical nonlinear three-body gravitational problem for which his doubts
have subsequently been shown amply justified.
16 Thanks to Birkhoff and Andropov, following Poincar�e. Lyapunov’s study of the stability of nonlinear
differential equations was in 1892, but its significance was not generally realised until the 1960s.
17 In 1840, Airy developed a feedback device for pointing a telescope, but it was subject to oscillations; he
subsequently became the first to discuss the instability of closed-loop systems, and the first to use
differential equations in their analysis. FollowingMaxwell and others, in 1922,Minorsky became the first to
use a proportional–integral–derivative (PID) controller (in his case for steering ships), and considered
nonlinear effects in the closed-loop system. By 1932, Nyquist derived a mathematical stability criterion for
amplifiers related to Maxwell’s analysis and in 1934 H�azen published the Theory of Servomechanisms,
establishing the use ofmathematical control theory in such problems as orienting devices (e.g., naval guns).
Later development of the use of transfer functions, block diagrams, and frequency-domainmethods saw the
full development of classical control theory.
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conditions, which offered a possible explanation of why, even with enormously
increased data collection, long-termweather prediction remained elusive.By themid-
1970s chaos had been found inmanydiverse places, including physics (both empirical
and theoretical work on turbulence), chemistry (the Belousov–Zhabotinskii system),
and biology (logistic map population dynamics and Lotka–Volterra equations for
four or more species), and the mathematical theory behind it was solidly established
(Feigenbaum, Mandelbrot, Ruelle, Smale, and others).

This historical account is unavoidably selective and sketchy, but it sufficiently
indicates the slow build up of an empirically grounded conceptual break with the
simple symmetry/equilibrium orthodoxy. However the new approach still often
remained superficial to the cores of the sciences themselves. In physics this is for
deep reasons to do with the lack of a way to fully integrate instability processes,
especially for structural instabilities, into the fundamental dynamical flow framework
(at present they remain interruptions of flows), the lack of integration of irreversibility
into fundamental dynamics,18 and the related difficulty of dealing with global
organizational constraints in flow characterization (specifically the difficulty of
dealing with the autonomy constraint that characterizes coherent metabolisms for
living creatures19). For biology all that had really developed was a partial set of
mathematical tools applied to a disparate collection of isolated examples that were
largely superficial to the then core principles and dynamics of the field.

We now say complexity was discovered, and indeed science came to distinguish
a range of new systems from those that could be more thoroughly treated because
they were few bodied with simple dynamics or many bodied but either unordered
(random) or highly ordered (crystal-like). But therewas then no principled framework
for understanding systems thatweremanybodied, nonlinear, sufficiently ordered to be
organized, and dynamically labile; indeed, the problem of fully characterizing
complexity in a principled manner remains open.20

Nonetheless, by the late 1970s it is clear in retrospect that science had begun to pull
together many of the major ideas and principles that would undermine the hegemony
of the simple symmetry/equilibrium orthodoxy. Instabilities were seen to play crucial
roles in many real-life systems—they even conferred sometimes valuable properties
on those systems, such as sensitivity to initial conditions and structural lability in
response. These instabilities broke symmetries and in doing so produced the onlyway
to achieve more complex dynamical conditions. The phenomenon of deterministic
chaos was not only surprising to many, but to some extent it pulled apart determinism
fromanalytic solutions, and so also fromprediction, andhence also pulled explanation

18 Prigogine [21] had even proposed to modify the Schrodinger equation to circumvent its entrenched
linearity and accommodate irreversible dissipation. However irreversible thermodynamics has subsequent-
ly made some internal progress through the work of Morowitz and others. As for quantum theory (about
which Einstein had earlier similarly complained) subsequent experience with relativistic quantum theory
suggests that the problem has to be tackled at a much deeper level, if it can be tackled at all from within our
present flow conception of dynamics.
19 On this use of autonomy, see, for example, Refs [24–26]. Its incorporation into systems and synthetic
biology remains an outstanding theoretical task (see the concluding essay herein).
20 See further Section 19.7 and the concluding essay herein and Ref. [27].
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apart from prediction. It also emphasized a principled, as opposed to a merely
pragmatic, role for human finitude in understanding the world.21 The models of phase
change especially, and also those of far-from-equilibrium dynamical stability, created
models of emergence with causal power (‘‘top-down” causality), and hence difficulty
for any straightforward idea of reduction to components.22 And, although not appre-
ciateduntil recently, theycreatedanalternativeparadigmfor situation-dependent rather
than universal, laws.23 Thus, responses like that of Duhem in The Aim and Structure of
Physical Theory to retain the simple symmetry/equilibrium orthodoxy despite being
aware of the results of Poincar�e and Hadamard became less and less reasonable, and a
new appreciation for the sciences of complex dynamical systems began to emerge.
These are thevery ideas that, allied to the development of generalized network analysis
emerging fromcircuit theory, chemical process engineering, and elsewherewould later
underlie contemporary systems and synthetic biological modeling.

19.3.2 Preparations for Change in Biology

This period also quietly set the stage for the undoing of geneticism, the simple
gene–traitmodel noted at the outset, and that later paved theway for themore intimate
introduction of complex systems methods into the heart of biology. Genetics had of
course emphasized the importance of what lay inside the cell but, as noted in
Section 19.1.1, geneticism made the phenotype irrelevant to biological theory and
explanation. However, in physics Prigogine (following Schrodinger and Turing)
worked on irreversible thermodynamics as the foundation for life (Footnotes 14,
18), modeling organisms as far-from-equilibrium systems sustained only by a
continuous throughput of matter and energy, thereby importing suitably ordered
energy (negative entropy) from their environment in order to create and maintain
internal organization and discharging the inevitable less ordered waste products
that result. (Biologically, this amounts to food and water intake and excreta output.)
This generates a (high level) metabolic picture in which the full internally regulated
body is essential to life. In this conception, it is organism activity, metabolic and
behavioral, that supports development, regeneration, reproduction, and senescence for
individuals and ultimately also for communities and ecosystems. This encompasses
all Mayr’s distinctive properties (see Sections 19.2 and 19.4.1).24

During the immediate postwar period in which Prigogine and others were
developing these ideas, cellular biology was revived and underwent a rapid develop-
ment, partly driven by new, biochemical-based problems (understanding kinds and
rates of chemical reactions like electron transport, and so on) and partly by new
instrumentation (electron microscope, ultracentrifuge) that allowed much more

22 For a systems biology illustration and discussion see Refs [28,29].
23 See further Section 19.7 below and the concluding essay herein; for the basic idea, see Ref. [30].
24 See also, for example Ref. [31].

21 The point being that any finite creature can only make finitely accurate measurements, independently of
any further constraints arising from specific biology or culture; there is always a residual uncertainty,
and chaotic dynamics will amplify that uncertainty over time.
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detailed examinationof intracellular structure andbehavior. In consequence, therewas
an increasing molecular understanding of genetic organization, especially develop-
ment of RNA roles in relation to DNA, of regulator genes and higher order operon
formation and of the roles of intracellular biochemical gradients, intercellular
signaling, and the like in cellular specialization and multicellular development.
All this prepared the ground for envisioning the cell as a site of many interacting
biochemical processes, in which DNA played complex interactive roles as some
chemicals among others, rather than the dynamics being viewed as a consequence
of a simple deterministic genetic program. Genetics was replaced by ‘‘omics”
(genomics, proteomics, metabolomics, and so on).25

During roughly the same period, 1930–1960, Rashevsky and others pioneered the
application of mathematics to biology. With the slogan mathematical biophysics:
biology:mathematical physics:physics, Rashevsky proposed the creation of a quanti-
tative theoretical biology and was an important figure in the introduction of quantita-
tive dynamicalmodels andmethods into biology, ranging frommodels of fluid flow in
plants to various medical applications. That general tradition was continued by his
students, among them Rosen, whose edited volumes on mathematical biology of the
1960s and 1970s did much to establish the approach. Indeed, as Rosen remarks, ‘‘It is
no accident that the initiative for System Theory itself came mostly from Biology; of
its founders, only Kenneth Boulding came from another realm, and he told me hewas
widely accused of ‘selling out’ to biologists.”26

In this traditionvarious physiologists begandeveloping the use of dynamic systems
to model various aspects of organism functioning. In 1966, for example, Guyton
developed an early computermodel that gave the kidneypreeminence as the long-term
regulator of blood pressure, with other systems only able to regulate pressure in the
short term, and went on to develop increasingly sophisticated dynamical network
models of this kind. The next generation expanded these models to include intracel-
lular dynamics. Tyson, for example, researched mathematical models of chemical
systems like Belousov–Zhabotinskii in the 1970s, passing to cellular aggregation
systems likeDictyostelium in the 1980s and to intracellular network dynamic models
in the 1990s, and this was a common progression.27 See also the increasingly
sophisticated models of timing.28 In this manner physiology has supported a smooth
introduction of increasingly refined dynamicalmodels into biology, providing a direct
resource for contemporary systems and synthetic biology.

There has also been a correlative revival of a developmental perspective in biology,
in embryology generally and early cellular differentiation in particular. This became

25 See, for example Refs [32,33]
26 OnRashevsky see, for example Ref. [34], http://www.kli.ac.at/theorylab/AuthPage/R/RashevskyN.html.
For many years (1939–1972) he was editor and publisher of the journal The Bulletin of Mathematical
Biophysics. For Rosen, see http://www.panmere.com/rosen/booklist.htm#bkrosen and the concluding
essay. The quote comes from his Autobiographical Reminiscence at http://www.rosen-enterprises.com/
RobertRosen/rrosenautobio.html.
27 Among other resources see respectively http://www.umc.edu/guyton/, http://mpf.biol.vt.edu/people/
tyson/tyson.html. Compare the work of Hogeweg, for example: http://www.binf.bio.uu.nl/master/.
28 Refs [35–38].
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linked to evolutionary ‘‘bottlenecks” and evolutionary dynamics generally to form
evo-devo as a research focus. Added to this was work on epigenetics and nonnuclear
inheritance, especiallymaternal inheritance, and earlyworkon enlarging evolutionary
dynamics to include roles for communal (selection bias, group selection) and
ecological factors, culminating in the holistic ‘‘developmental systems”movement.29

Ecology too has been studied as a dynamic network (Lotka/Volterra, May, Levins,
and others), as an irreversible far-from-equilibrium dissipative flux network
(Ulanowicz) or food-web energetics system (Odum), as a spatiotemporally differen-
tiated energy andmatter flow pathway network (Pahl–Wostl) self-organizing through
interorganism interaction (Holling, Sol�e/Bascompte) and as an organized complex
dynamic system employing threshold (bifurcation) dynamics, spatial organization
and exhibiting adaptive resilience (Holling, Walker, and others), responding in
complex, often counterintuitive, ways to policy-motivated inputs.30 All these features
are found within cells, albeit more tightly constrained by cellular regenerative
coherence, and fruitful cross-fetilization should eventually be expected, perhaps
particularly with respect to the recent emphasis in both on understanding the
coordination of spatial with functional organization.

All of these scientific developments, still in process, work toward replacing black
box geneticism with a larger model of a mutually interacting set of evolutionary/
developmental/communal/ecological dynamic processes.31 Although still a collec-
tion of diversemodels andmethods, dynamical networkmethods are emerging across
these disciplines as a shared methodological toolkit.32 In combination, these devel-
opments present a picture of life as a complex system of dynamic processes running
on different groups of timescales at different spatial scales, with longer term, more
extended processes setting more local conditions for shorter term, less extended
processes, while shorter term, local products accumulate to alter longer term, more
extended processes.

This conceptionnowextends intomedicine (especially throughChinesemedicine),
psychology (through mathematical psychology, especially neuropsychological and
social interaction dynamical modeling), and economics (through econophysics,
evolutionary economics).33 From there the conception extends still more widely
(but more diffusely) through the social sciences and management (dynamical/
evolutionary game theory, human–natural interaction dynamical networks), military
theory, technology theory, and even the nature of science itself (research resource
webs, economic and interactionist dynamics of knowledge).

The earlier physics paradigm of simple universality, symmetry, and (static)
equilibrium no longer dominates. The new dynamical ideas are still based in the
same fundamental dynamics, but derive from an aspect of them that has hitherto
remained hidden, the complex spatiotemporal coordination of nonlinear dynamical

29 See, respectively, for instance, Refs [39–43], the title itself indicating something of themacro intellectual
landscape in which the idea emerged, and Ref. [44].
30 See, among many others, the following works and their references: Refs [16–18,45–53].
31 Cf., for example, Ref. [54] and references in footnote 29.
32 For a recent review see Ref. [55].
33 See, respectively, and among many others, Refs [23,56–59].
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interactions to form organized, far-from-equilibrium systems that arise through
symmetry-breaking amplification and propagation of asymmetrical variations
(however generated). It is this aspect of dynamics that is now coming to dominate
research across the sciences. Although biology will come to have an unprecedented
centrality for it, this century will not be known as the century of biology (as is
sometimes said), but, more fundamentally, as the century of complex systems
dynamics. And it offers for the first time the genuine prospect of natural, productive
integration among a range of scientific disciplines based on interrelating the dynam-
ical models being employed in each.

19.4 TOWARD A NEW COMPLEX SYSTEMS PARADIGM
AND PHILOSOPHY

19.4.1 Complexity ofComplexSystemsand theUniquenessofBiology

The complex systems that constitute our life world are characterized by deterministic
dynamics that manifest the following properties:

(1) Nonlinear interactions; nonadditivity

(2) Irreversibility; nonequilibrium constraints; dynamical stabilities

(3) Amplification; sensitivity to initial conditions, especially to ‘‘rare” events

(4) Finite deterministic unpredictability; edge-of-chaos criticality

(5) Symmetry breaking; self-organization; bifurcations; emergence

(6) Enabling and coordinated constraints

(7) Coordinated spatial and temporal differentiationwith functional organization

(8) Intrinsically global coherence and organization; modularity; hierarchy

(9) Path dependence and historicity

(10) Constraint duality; supersystem formation

(11) Autonomy; anticipativeness; adaptiveness

(12) Multiscale and multiorder functional organization; learning

(13) Model specificity/model plurality; model centeredness

Roughly, properties lower on the list are increasingly richly possessed by living
systems and present increasing contemporary challenges to our dynamical under-
standing. The diversity and the domain-specificity of these properties explain the
diversity of notions of complexity, and the challenges to understanding that they
continue to pose undermines hope for any unified account of complexity in the near
future.

Many of these terms arewell known and have already been explained or illustrated;
they will be assumed understood. Some are in common usage and often considered
well knownbut in fact present ongoing challenges tounderstanding (self-organization,
emergence, and organization); these will be assumed here as sufficiently intuited and
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briefly reconsidered in the closing essay. Finally, some others are likely less well
known though straightforward: constraints (enabling, coordinated and dual),34 path
dependence,35 and model specificity/plurality and centeredness,36 while autonomy
(cf. footnote 20), anticipativeness, and adaptiveness are briefly discussed in the
concluding essay.

It should be noted that the shift to complex systems represents enrichment—albeit a
massive enrichment—of the classical symmetry–stability–invariance dynamical
framework, not its wholesale abrogation. It is just that it took some centuries to
understand this. For instance, a dynamical attractor basin specifies a set of dynamical
states within which the dynamical laws take on a stable, self-contained form. For a
dynamics with several attractor basins and energetically determined transient paths
connecting them, this provides an immediate model of sets of local, energetically
dependent laws. Parameter-dependent deformations of this basin topology, where
some basins may disappear and others arise, then provide cases of the emergence of
higher order context (parameter) dependent law domains. More disruptive discontin-
uous bifurcations, for example, from fluid conduction to convection or blastula
formation and internal phase difference, represent a more serious rift in the classical

34 The term ‘‘constraint” implies limitation, most generally in the present context it refers to limited access
to dynamical states (equivalently limiting dynamical trajectories to subsets of state space); this is the
common disabling sense of the term. But it is crucial to appreciate that constraints can at the same time also
be enabling, they can provide access to new states. Thus, a skeleton is a disabling constraint, for example
limiting the size of hole through which a body can fit; but by providing a jointed frame for muscular
attachments it also acts to enable a huge range of articulatedmotions, transforming an organism’s accessible
niche, initiating armor and predator/prey races, and so on. This is the general aspect of the duality of
constraints, but it has a specific application in the system/supersystem context where system constraints
may contribute to enabling supersystem capacities, for example the role of mitochondria in eukaryote
energy production, and supersystem constraints may free up system constraints, for example wherever
multicellular capacities permitmember cells to specialize. In all of these cases there has to be a coordination
of component constraints to achieve the final effect: the many component bones of a skeleton have to be
quite specifically coordinated so as to achieve an articulation that facilitates fitness-providing behaviors,
mitochondrial functioning has to be integrated with the larger cellular processesfor its products to innervate
the cell.
35 Path dependence occurs when initially nearby dynamical trajectories subsequently diverge as a function
of small differences in their initial conditions. It is brought about by amplification, for example in selection-
reinforced amplification of small genetic differences generating diverging developmental or speciation
trajectories, where the source of amplification may be bifurcations, feedback, or simply suitable
nonlinearities.
36 Complex systems of the kind described typically requiremany parameters to adequately characterize, for
example specifying the rate and storage characteristics of the many processes they sustain. Model
specificity refers to the capacity to select parameter values so as to specialize the model to the
characterization of some unique individual and/or situation, while model plurality refers to the converse
capacity to capture the characterization of a plurality of individuals/situations within its parameter ranges.
These features are the basis for formulating valid generalizations across populations and, conversely, for
deducing feature ranges in individuals from more broadly characterized populations. Model centeredness
refers to the fact that systems of these kinds typically manifest nonanalytic dynamics (their dynamical
equations lack analytical solutions) whence it is necessary to explore their dynamics computationally. This
places computational modeling at the center of their scientific investigation in a strong manner and
highlights the unique contribution of computers to cognition (all its other uses being pragmatic, if often
valuable).
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fabric since the idea of an analytic but condition-dependent superdynamics for state
space fails, or has so far eluded construction; but even here both the conditions
under which they occur and the nature of their outcomes arise from the underlying
general dynamics.

Comparing this list of complex system properties with Mayr’s earlier list
characterizing biological systems (Section 19.2) we can see that, at least in principle,
complex systems provide resources for modeling, and hence explaining, each of
them: metabolism, regeneration, growth, replication, evolution, regulation, and
teleology (both developmental and behavioral). Metabolism, for example, refers to
the organized network of biochemical interactions that convert input matter and
negentropy (food andwater) into usable forms and direct their flows to various parts of
the body as required, for example, for cellular respiration. The individual biochemical
reactions are largely known.However it remains a challenge to characterizemultilevel
processes like respiration, comprising processes from intracellular Krebs Cycles to
somatic cardiovascular provision of oxygen and removal of carbon dioxide, processes
thatmust bemade coherent across the entire body. In this conception, global coherence
is a result of internal regulation at various functional levels (intracellular and
intercellular, organ and body), and we now have massive information about the
individual multifarious feedback and switching processes that contribute to somatic
and, neurally, to behavioral regulation. These same capacities, placed in the context of
globally organized multiscale functional organization and adaptive retention,
in principle also model all the basic properties of agency, including human agency,
in particular the teleology distinctive of intentional intelligence.37 The challenge
global coherence poses is to understand how these processes are interrelated so as to
produce the regulated dynamical labilities and equilibria that the explanation of
organism capacities demands. Here systems and synthetic biology, together with
neurobiology, have a central contribution to make.

Pursuit of every scientific framework, that is, of a philosophy and paradigm, is
underwritten by a practical act of faith that its cognitive apparatus, including concepts,
classes of models and underlying mathematics, and experimental instruments,
techniques, and interpretations, is adequate to understand the domain concerned.
Here that faith revolves around the adequacy of complex systems concepts, models,
and techniques as deployed in roughly the scheme just presented.

19.4.2 Need for a New Scientific Framework

The world has turned. The old orthodox framework for science that sufficed for the
study of simpler systems, physical systems of a few components and of many-
component equilibrium systems, no longer suffices; science has discovered the
power of complex systems. The B�enard cell, Belousov–Zhabotinsky reaction,
and Dictyostelium aggregation have replaced the slingshot, gas, and crystal as model
systems. With them has emerged the general model of a complex organization
of dynamic processes running on different groups of timescales at different spatial

37 For an outline, see Refs [25,26] and the concluding essay.
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scales, with longer term, more extended processes setting more local conditions
for shorter term, less extended processes and shorter term, local products accum-
ulating to alter longer term, more extended processes. Minimally this development
calls for the articulation of a new framework adequate for the de facto deployment
of complex systems models throughout the sciences, and especially in biology.

The old framework that supported a paradigm of linear causal analysis, reduction,
symmetry, static stability (equilibrium), and invariance is being replaced by a new
complex systems paradigm focused on multiscale nonlinear networked dynamical
interrelationships, symmetry-breaking self-organization of complexity, partial un-
predictability, context-dependent laws, complex global organization with partial
hierarchical modularity, path dependence and historicity, and the unavailability of
closed-formed analytic solutions and consequent model centeredness.

Correlatively, instead of a philosophy of science focusing on determinism,
identification of universal atemporal (hence acontextual) causal laws and reduction
achieved through analysis followed by linear, bottom-up analysis reduced to closed
formed analytic solutions, we now need a philosophy of science focusing on dealing
with multiple simultaneous, multiscale interdependencies, validity of top-down as
well as bottom-up analysis, the entwinement of emergence and reduction, domain-
bound (context-dependent) dynamical laws (causality makes limited sense in these
contexts) that accept historically unique individuals as the norm, and limited know-
ability and controllability. In consequence, the simple induction-based resolution of
theory development must be replaced (it never worked anyway), but now with an
account rich enough to encompass these complications, and while the bare logical
forms of deductive explanation and falsification survive, they toowill need correlative
enrichment to illuminate realistic scientific method. In short, a substantially revised
philosophy of science is required.

These are still new ideas in science, despite their being manifest everywhere, and
the new philosophy of science will need to be underpinned by clarified conceptual/
theoretical accounts of these new features, especially complexity, self-organization,
emergence, order/organization, information, system causality, reduction, and analy-
sis/synthesis. Some progress has been made and will be commented on in the closing
essay. Often this will have counterintuitive (really counterclassical) consequences,
for example, reduction as naturalization (kind reduction through function-to-dynam-
ics mapping) is entwined with emergence as antireductive top-down constraint
formation, each relying on the other and both dictated by nonlinear dynamics.
These in turn are needed to rethink explanation, prediction, control, and scientific
method, for example, the statistical treatment of data and error identification.
A coherent form of all of this is the necessary foundation for continuing to embrace
the practical act of faith in the adequacy of the dynamical systems approach (Section
19.7), and its empirical confirmation the necessary ground for affirming that com-
mitment as rational rather than merely faith.

These new ideas and practices also create new, and sometimes unexpected,
scientific associations. In particular we note that, whereas biology and engineering
were divided literally by the study of the living and the dead under the old paradigm,
under the new complex systems paradigm they acquire amutual affinity. As engineers
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have increasingly studied systemswith similar complexity characteristics to those listed
above, whether as sophisticated aeroplane control systems,multisensor, ‘‘intelligent”
distributed signaling systems, or traffic flowsystems, theyhavebeen forced to face the
same issues over multiscale functional organization as do biologists. They have
pursued robotics, their version of organisms, and used such exploratory methods as
genetic algorithms, their version of evolution. Bioengineering increasingly integrates
organisms into engineering designs, such as using bacteria to process waste water in
artificial wetland design or, genetically engineered, to generate energy in industrial
photosynthesis, and conversely in the synthesis of artificial life forms using engineer-
ing genome models. Thus, contemporary engineers would recognize the complex
systems characterizations of Mayr’s biologically distinctive features as belonging in
principle to their field as well.

Further afield, multiagent adaptive modeling in economics, social organization,
intelligent firms, military conflict, and much more now find affinity with the general
methodsof thecomplexsystemsapproach.So thedevelopments considered in thisbook
are themselves taking place in the wider context of a systems-led transformation of
scientificconcepts,principles,andmethods thatarehavinganincreasinglydeep impact.
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In this book, we have discussed a number of applications of systems biology and
synthetic biology. In fact, the scope and potential applications of systems biology and
synthetic biology are not yet fully defined. As we ponder the future directions in
biology research, there remain many open issues, including those that are discussed.

20.1 OUTSTANDING SPECIFIC ISSUES

20.1.1 Systems Biology and Synthetic Biology for the
Investigation of Nonprotein-Coding RNAs

The epoch of systems biology and synthetic biology began when whole-genome
sequences for various organisms started to accumulate. The amount and precision of
this information made it possible to map the coding and noncoding regions and the
hierarchy of regulatory mechanisms, relationships among structural and functional
assemblies, subcellular organelles and compartments, and interaction with external
signals. One of the most important discoveries of the last few years has been the
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identification of small, nonprotein-coding RNAs (ncRNAs) that act as integral
regulatory components of cellular networks [1]. ncRNAs serve an astonishing variety
of functions and thus play important roles in many intracellular processes, from
transcriptional regulation, gene silencing, chromosomal replication, through RNA
processing and modification, mRNA stability and translation, to protein degradation
and translocation, and so on [2]. The size of ncRNAs range from about 20 nt for the
large family of microRNAs (miRNAs) that modulate development inCaenorhabditis
elegans, Drosophila, and mammals [3–8] to 100–200 nt for small RNAs (sRNAs)
commonly found as translational regulators in bacterial cells [9,10] andup to10,000 nt
for RNAs involved in gene silencing in higher eukaryotes [11–13]. There are two
approaches to searching for ncRNAs: computation methods that focus on intergenic
regions and expression-based methods that examine expression levels of the tran-
scripts [2]. Systematic identification and characterization of ncRNAs in genomes has
become one of the most exciting challenges in cellular and development biology.

Among the noncoding RNA genes that produce functional molecules instead of
encoding proteins, a large number of newly identified RNAs have been found to
function as regulators [1]. These regulatoryRNAs (reRNAs) impact all the steps in the
genetic information pathways, and may serve as transcriptional regulators, transla-
tional regulators, modulators of protein function, or regulators of RNA and protein
distribution. Study of many of these RNAs in bacteria and eukaryotes has shown a
surprisingly high degree of similarity between regulatory RNAs in all types of
organisms [1]. Therefore, insights gained by investigation of the regulatory role of
reRNAs using one system are applicable to other systems as well. reRNAs are now
recognized toplay important roles as regulatory elements, yet littleworkhasbeendone
on a global scale to identify these intracellular regulators. Elucidation of correlations
between expression levels of regulatory RNAs and cell metabolism such as photo-
synthesis and respiration may reveal the occurrence of hitherto unknown regulatory
mechanisms. This information may clarify the mechanisms of gene expression and
gene regulation. Itmay also facilitate rational engineering of the signaling, regulatory,
and metabolic networks for desirable cellular functions.

Compared to protein-codingRNAs, ncRNAs are relatively small. ncRNAs are hard
to find by classical mutational screens because they are inherently immune to
frameshift or nonsense mutations [14]. Therefore, limitations exist for both computa-
tion-based and expression-based ncRNA detection methods. Recently, research
efforts have been made to carry out systematic ncRNA gene-identification screens
along three main lines: cDNA cloning and sequencing tailored to find new small non-
mRNAs [15]; specially designed cDNA cloning screens for a new regulatory RNA
gene family of miRNAs [3–5]; and comparative genome analysis for general ncRNA
gene finding [16–18].

Systematic identification and characterization of ncRNAs in bacterial and eukary-
otic genomes has become one of the most exciting challenges in cellular and
development biology. There exists a controversial ‘‘introns-first” theory [19] that
states that from the evolutionary point of view, the ncRNA molecules predate the
origin of protein translation and therefore predate the exons surrounding them. It is
believed that the contemporary introns housing functional RNAs are ancient relics of

616 OUTSTANDING ISSUES IN SYSTEMS AND SYNTHETIC BIOLOGY



the RNAworld genome organization, and the newer protein regions surrounding them
represent sequences that were originally noncoding and from which protein genes
were eventually spawned [20].On the contrary, search for newncRNAshas resulted in
finding many such ncRNAs with apparently well-adapted and specialized biological
roles in the cellular transcription machinery [14].

Now can we use systems biology approaches to strive to understand how informa-
tion flow in cells is adjusted by particular reRNAs, and how expression, function, and
turnover of these reRNAs themselves are controlled. Elucidation of correlations
between expression levels of reRNAs andmetabolic flux distributions under different
environmental perturbations may reveal the occurrence of hitherto unknown regula-
tory mechanisms. This information may clarify the mechanisms of gene expression
and gene regulation. The next issue iswhetherwe can facilitate rational engineering of
the signaling, regulatory, and metabolic networks containing ncRNAs for desirable
cellular functions.

20.1.2 Dimension Reduction in Systems Biology and Synthetic
Biology Applications

Systems biology is inherently a universe in which every ‘‘ome”—genome, transcrip-
tome, proteome,metabolome, interactome, phenome, and soon, is another dimension.
We have to reduce this dimensionality through integration in order to comprehend,
evaluate, and make use of the information. Integrating and evaluating the knowledge
bases with their highly disparate nomenclature and frames of reference is arguably the
greatestmethodological challenge in this newdiscipline.Oneexample is the concisely
described work of Toyoda and Wada, who have developed means of defining the
dimensions of several data sets in common terms and projecting the intersections of
these sets in two dimensions [21]. Their premise is that the intersections have four
defining properties: data set, position, dynamics, and probability that the putative
relationship actually exists. The implementation of their ‘‘genome-phenome super-
highway” (GPS) for human, mouse, the worm Caenorhabditis elegans, and the
mustard plant Arabidopsis thaliana may be found at http://omicspace.riken.jp/gps.

Each ‘‘omic” domain has its own unique annotation terminology and attributes,
which has led to the development of unique ‘‘markup languages” compatiblewith the
Internet HTML, Perl, and other computational data-handling conventions. These
include ‘‘G-language” for the genomics environment [22], CellML, MathML, and
SBML (systems biology markup language) [23], to name a few.

Given the huge amount of data produced in array-based studies, how does one
(a) assess its reliability, (b) interpret it in a systematic, unbiased way, and (c) deter-
mine the completeness of the data set? A substantial literature has been developed just
to address each of these questions. Chen et al. [24] provide a brief introduction and
guide to the reliability and analysis aspects. Reliability is affected by the physical
quality and composition of the array, stringency of the experimental conditions,
background gene expression, and similarities among the probes. Nonlinear responses
are inherent in biological systems, so appropriate nonlinear multivariate analysis is
essential. Further research is needed to enable efficient database search, development
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of programming language and data fusion for systems level understanding in biology
and the integration of well-characterized biological parts into genetic circuits and
metabolic networks for desired end products.

20.1.3 The Quest for the ‘‘Minimal Organism’’ and the Creation of
Artificial Life Forms

Systemsbiologists andsyntheticbiologists are interested indetermining the smallest set
of genes, molecules, and structures for replication, growth,metabolism, and regulation
that comprises life. Study of such aminimal gene set and its features may shed light on
the basics of cellular function, help to determine the subset of essential genes in most
species, and improve functionality. Theoretical and experimental efforts have been
madeusingcomparativegenomicsandsystemsanalysis todeterminethe listofessential
genes for a suite of minimal functions that many organisms have in common [25]. The
smallest possible group of genes from small genomes is presumed necessary and
sufficient for sustaining the functional growth of cells in the presence of a full
complement of essential nutrients and in the absence of environmental stress [26].

Methods for making estimates of the ‘‘minimal gene set” by experimental biology
include saturating transposon mutagenesis (gene knockout) [27] and gene silencing
with antisense RNA [28], and so on. These genes can also be computationally
identified from the well-studied organisms with small genomes by comparison of
essential and nonessential proteins across related genera [29], and using a database of
essential genes [30]. For example, Mycoplasma genitalium contains the smallest
genome of any organism, and has a minimal metabolism. Glass et al. [31] have used
global transposonmutagenesis to isolate and characterize the gene disruptionmutants
for100different nonessential protein-codinggenes.Theyhave identified382essential
genes from the 482 M. genitalium protein-coding genes. Disruption of some genes
accelerated theM.genitaliumgrowth. The resultingM.genitaliummutants represent a
close approximation to the minimal set of genes needed to sustain bacterial life, with
little genomic redundancy [32]. Another study, analyzing viable gene knockouts in
Bacillus subtilis, M. genitalium, and Mycoplasma pneumoniae, has resulted in a
similar estimate [33]. It was found that approximately 80 genes out of the 250 in the
original minimal gene set are represented by orthologs in all life forms. For �15
percent of the genes from the minimal number of genes, viable knockouts were
obtained inM.genitalium [25].Escherichia coli is also usedas amodel system forgene
knockout to create a reduced ‘‘clean genome.” Fred Blattner’s team [34] has removed
about 750 ‘‘redundant genes” and planned to delete 500–600 more genes to approach
the ‘‘core genome” that may be common to all organisms. It was claimed that after the
gene removal, the constructswere observed tobemoregenetically stable and to exhibit
increased protein synthesis and electroporation efficiency [34].

The quest for the minimal genomewill improve our understanding of theworkings
of bacterial lives at systems level. On the other hand, the ultimate dream of the
synthetic biologists is to create novel life forms that do not exist in nature. For this
purpose, minimal organisms may be built up by designing a modular system from
‘‘ground zero” that can be given functions. It may involve the design and assembly of
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genetic circuits andmetabolic pathways and evenwhole chromosomes from chemical
components of DNA. Researchers in Synthetic Genomics Inc. (http://www.synthe-
ticgenomics.com/index.htm) have achieved this technical feat by chemically making
DNA fragments in their laboratory and developing newmethods for the assembly and
reproduction of the DNA segments.

The goal is to obtain a synthetic chromosome, and eventually a synthetic cell for the
construction of ‘‘biofactories” for the energy, chemical, and pharmaceutical industries.
The synthetic chromosome created in Synthetic Genomics, Inc. was named
Mycoplasma laboratorium. It can be transplanted into a living cell where it should
‘‘take control” of the cellular metabolism. AlthoughM. laboratoriumwas claimed as a
man-madebacterium, there exist somequestionsabout it because thepartially synthetic
life formwascomposedofbuildingblocks fromalreadyexistingorganisms.Evenwhen
thewholechromosomecanbesynthesizedfromchemicalcomponents,willweconsider
the engineered cells to be new life forms, or should we also require the synthesis of
ribosomes and other components necessary for the expression of genetic information
contained in the genome before accepting the result as an ‘‘authentic” new cell?

20.1.4 Systems Biology and the Evolution of Organelles

The properties, genomes, and functions of plastids andmitochondria are an obligatory
part of systems biology studies of eukaryotes. Genomic and biochemical studies have
established that mitochondria most likely evolved from the rickettsial group of a-
proteobacteria [35].The reRNAsequences in thegenomesofaerobicmitochondria are
most homologous to those of a-proteobacteria, specifically those of Rhodospirillum,
Bradyrhizobium, and Rickettsia [36]. Homologues of 18 different rickettsial proteins
are encoded in mitochondrial DNA, and in yeast, the nuclear genome encodes more
that 150mitochondrial proteins with homologues inRickettsiales [37]. The rickettsial
pathway for ATP production and that of aerobic mitochondria are virtually identical,
and the individual enzymes are orthologs. The properties of rickettsia as an obligate
intracellular pathogen, its ability to transport molecules in either direction across its
cell walls, and other key factors firmly support the concept that aerobic mitochondria
evolved from a-proteobacteria.

Anaerobic environments ranging from sea floor sediments to the gastrointestinal
tracts of vertebrates and invertebrates are populated by extremely diverse communi-
ties of lower single-cell andmulticellular eukaryotic life forms. Some eukaryotes have
adapted to anaerobic life by using alternate mitochondrial respiratory pathways, such
as reduction of fumarate to succinate, using rhodoquinone instead of ubiquinone as
electron carrier [38,39]. These organisms retain their mitochondria and have been
called ‘‘Type I anaerobic eukaryotes.” Additional organisms with ‘‘anaerobic mito-
chondria” include the fungus Fusarium oxysporum that uses a nitrate respiration
pathway, platyhelminthes that utilize fumarate respiration, and trypanosomes that
produce succinic acid while making ATP (summarized by Rotte et al. [40]). Perhaps
most unusual is the mitochondrion of the anaerobic ciliate protist Nictotherus ovalis,
which generates ATP with protons as the terminal electron acceptor, thus producing
molecular hydrogen [41,42].
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A second group of primitive anaerobic eukaryotes, most notably the parasitic
trichomonads such as Tritrichomonas fetus in cattle, Trichomonas vaginalis in
humans, some ciliated protozoa, and the cattle rumen chytrid fungi Neocallimastix
and Piromyces have developed hydrogenosomes—an organelle with intriguing
similarities and differences compared to anaerobic, as well as aerobic mitochon-
dria [43]. Hydrogenosomes produce ATP as well as hydrogen. Although mito-
chondria use pyruvate dehydrogenase, the TCA cycle to regenerate CoA�SH,
and molecular oxygen as the terminal electron acceptor, hydrogenosomes have
pyruvate-ferredoxin oxidoreductase, no TCA cycle, succinate-acetate CoA trans-
ferase and succinyl-CoA synthase to regenerate CoA�SH, and protons as the
terminal electron acceptor [40]. Hydrogenosomes and mitochondria use the same
‘‘transit peptides” for protein importation. Other proteins common to both organ-
elle types include Hsp 10, Hsp 60, and Hsp 70, the succinyl-CoA synthase subunits
a and b, and similar variants of ATP-ADP translocase. Early studies found no
DNA in hydrogenosomes. In 1998, Akhmanova et al. [42] described genomic DNA
in putative ‘‘hydrogenosomes” in the anaerobic ciliate Nictotherus ovalis. In
retrospect, it appears more correct to describe the organelle in this species as
an anaerobic mitochondrion.

The discovery of single-celled eukaryotes that had no mitochondria or hydro-
genosomes originally suggested that these organisms were ancestors of eukaryotes
that had the organelles (presumably endosymbionts of bacterial or archaean
origin). These simple eukaryotes of four types—Metamonads, Microsporidia,
Parabasalia, and Archamoebae—were grouped as a subkingdom called
Archezoa [44] to distinguish them from Mitozoa, the subkingdom of all eukaryotes
that contain mitochondria [45]. Ribosomal RNA sequencing indicated that the
Archezoa predated the other known eukaryotes, and Archaezoan ribosomes were
70S, corresponding to those of prokaryotes. However, subsequently it was shown
that several Archaezoa contained enzyme-coding mitochondrial DNA
sequences [46]. Trichomonas, a Parabasalian, were found to contain hydrogeno-
somes, Microsporidia undergo meiosis and have tubulin genes that relate these taxa
to fungi, and at least one type of Metamonad expresses a chaperonin immuno-
chemically homologous to mitochondrial cpn60. In summary, the more recent and
definitive research indicates that Archezoa are among the earliest eukaryotes, but
they do not predate the endosymbiosis of mitochondria and hydrogenosomes [44].
That various Archezoa lack mitochondria, hydrogenosomes, peroxisomes, or other
organelles as presumptive endosymbionts has been called, ‘‘. . .a secondary reduc-
tion caused by their parasitic lifestyle.” [45]

In summary, a critical mass of genomic, proteomic, and phylogenetic data has
finally accrued to support a comprehensive hypothesis for the origin of eukaryotes,
consistentwith the knownproperties of anaerobic and aerobicmitochondria, aswell as
hydrogenosomes.This hypothesis takes into account themetabolic pathways, electron
transport chains, protein importation signals [47], gene loss and transfer to the host cell
nucleus [48,49], assembly of Fe–S centers and their incorporation into apopro-
teins [50], chaperonins, enzymes, and lipids of the endoplasmic reticulum and nuclear
envelope membranes.
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How,and fromwhat progenitors, did the first single-cell andmulticelled eukaryotes
develop? How did the nucleus, mitochondria, chloroplasts, and other organelles
originate? What primal events led to the formation of chromosomes? Or the mechan-
ismsof cell division?Ormeiosis and sexual recombination?At themolecular level, the
following questions include: How and when did RNA and DNA first develop? What
transformed a world based on RNA as a carrier of genetic information and enzymatic
activity into one in which the genetic information resided in DNA, and enzymatic
catalysis was endowed in proteins?

A great deal of evidence acquired over the past 30 years supports the theory that
mitochondria and hydrogenosomes originated as bacteria that developed an endo-
symbiotic relationship with eukaryotes. Various hypotheses have been forwarded to
reconcile experimental data with how, and at what stage of evolution, the symbiosis
occurred.

20.2 OUTSTANDING GENERAL ISSUES

An appropriate framework for systems and synthetic biology requires the con-
struction of a naturalistic paradigm and philosophy of science for biological
research. That project remains incomplete. In what follows a number of component
issues in that project are discussed. Although progress toward a naturalistic
understanding has been made in each case, there are also future unresolved
challenges to the task.

20.2.1 Mechanism and Reduction

While the new high-throughput experimental technologies can profile all the
chemical components within a cell as whole, and this has an interest in itself,
the ultimate goal is to understand cellular physiology, that is, to understand how
these components deliver cellular functioning. To do this it is necessary to study the
dynamical interrelations among the components. And because the componentsmust
clearly interrelate in multiple ways to deliver function, it will be the complex
dynamical system they jointly comprise that must be uncovered. It is this object that
is the common core of systems and synthetic biology, and it is its representation as a
complex dynamical system that forms the basis of their distinctively new and
powerful modeling tools—and raises the issues in Section 20.1 (see Section 20.2.6
for a further issue within this claim)

This raises a basic ontological issue (i.e., one concerning what exists): what is the
relationship between physiologically described function and biochemically described
dynamical states and processes? The obvious response to make is that the two are one
and the same; that, for example, aerobic cellular respiration is nothing but ATP
synthesis through glycolysis, Krebs cycling, and electron transport. This is reduction
by identification. The physiological function of respiration is identically reduced to, is
identical to, and so nothing other than the dynamical system process. (All this
assuming that the biochemical systems models involved are empirically supported
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and predictively and explanatorily adequate; an assumption made throughout this
discussion.1)

There is a large philosophical literature on reduction, some of it proclaiming
reduction and much arguing against reduction, especially in biology. Yet, from a
scientific point of view it would be anomalous to claim anything less than a
reduction, for example, to claim instead just a correlation between the occurrence
of functional and biochemical systems properties, because this would leave
unexplained duplicate realities, one functional and the other dynamical. Against
the advice of Occam’s razor, it would leave two realms mirroring each other but
running in parallel, for no substantive reason. In what follows the state of
philosophical debate is briefly summarized, from a commonsense scientist-friendly
point of view, in order to focus on the specific issues at stake for systems and
synthetic biology.

20.2.1.1 General Objections Perhaps surprisingly, one group of philosophi-
cal objections to reduction in general argues that correlationmust be accepted because
identification is impossible. These arguments largely turn on semantic (meaning)
considerations: talk of functioning, for example, of respiring, the argument goes, has a
very differentmeaning from talk of biochemical states and state transitions, so the two
can never be identified, even if they are 1:1 correlated. The proper response to this kind
of objection is to point out that it relies on a priori claims about semantics that are very
unlikely in the face of what we know scientifically about language: roughly, that its
recent evolutionary emergence, rapid dynamical shifts in vocabulary, syntax, and
semantics as historical conditions change, and action-centered intentional basis, all
suggest that current semantics are better treated as themselves shifting dynamical
emergents, not a priori constraints.2 There would need to be better reasons than these
to defeat a general identification of the two subject matters described.

Another group of arguments turns on the fact that themirroring is often not precise,
that often there will be particular phenomenological conditions (e.g., ‘‘respiration”)
that do not nicely reduce to exactly corresponding underlying conditions (e.g., ‘‘ATP
synthesis”) of exactly the same scope. This is true, and not only because of the
anaerobic organisms and other energy storage molecules, but also because of the
complexdynamics. For instance, evenKepler’s lawsof planetarymotiondonot reduce
exactly to a theorem of Newtonian mechanics because planet–planet interactions
produce small deviations from Kepler’s generalizations. This will be a common

1The issue of when andwhy that assumption is reasonable is just the general issue of the nature of scientific
method at large. It turns out that scientific method is much more complex (and interesting!) than the neat
logicalmodels towhich the philosophers had hoped to reduce it, andmust itself be understood in dynamical
systems terms, but this is another story—see Ref. [51] and, for example, Ref. [52].
2 For those interested in the technicalities, a same-dynamical-role criterion of property identity is a useful
small first step toward a more plausible alternative semantics and this already suffices to license
identification of functions with dynamical processes, should other substantive requirements be met.
This is argued in Part II of Ref. [53]. For a bioorganizational approach to the underlying intentionality,
see Ref. [54].
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situation wherever a more complex dynamics underlies more phenomenological
observations. In such cases, surely, so long as the departures from strict correspon-
dence can also be explained by the underlying (reducing) dynamics, the reduction can
be considered successful. Call the last the explanatory principle.

This works well for cases where the departures are small. However, there are
also large departures, such as in the relationship of phlogiston chemistry to
oxygen chemistry, where we deny that phlogiston exists even if its postulation
served to codify a number of chemical relationships that survive the replacement.
And there are intermediate cases, for example, the imperfections of the thermo-
dynamics–statistical mechanics relation. How are these to be treated? To decide
we need to remind ourselves that for science reduction is not only about
satisfying metaphysical curiosity, from a methodological point of view, but it
is also primarily about extending explanation and evaluating the potential errors
involved in using the phenomenological model to explain, in place of the
underlying one. (Hence the explanatory principle above.) From this perspective,
reduction is ultimately about the capacity to systematically replace one kind of
description (the more phenomenological one) with another kind (the more basic,
theoretical one) that is equally or more precise and equally or more predictively
and explanatorily powerful. This satisfies the key cognitive aims of science.
Reduction by identification then forms one extreme of a spectrum, where component
ontology as well as relational structure is conserved under the replacement. The other
extreme is occupied by cases like phlogiston where significant relational structure, but
not ontology, is conserved under replacement.3 Mismatch along the spectrum means
that some nonconservation is melded with identificatory reduction. However, the key
point remains that when the explanatory requirement holds, overall reduction is
obtained.

20.2.1.2 Geneticism These general issues aside, an important part of the
philosophical objection to specifically biological reduction has really been to
geneticism, to the idea that organisms could be reduced to just a collection of
genes and gene-determined traits. Modern biology agrees with this objection, DNA
is one biochemical component among many—if with a distinguishable role—and it
is the dynamical system of all of them that sustains function. But, conversely, the
whole biochemical system now becomes the reduction candidate for physiology, so
the objection to geneticism does not defeat reduction, but just shifts its focus. Setting
aside that literature as well, there remains only those objections that are specific to
reduction of functions to systems dynamics.

20.2.1.3 Reduction of Function to Dynamics Some objections to this
have to do with the fact that our commonsense day-to-day function talk is rather

3 Beyond that, sheer discontinuous replacement would occur, but it is hard to think of a substantial case in
science. For the replacement view, see Part I of Ref. [53] and, more informally and accessibly, Ref. [55].
P. M. Churchland’s elegant overall strategy, more subtle but powerful than it may appear, is itself explained
in Ref. [56].
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imprecise for marrying up to dynamical systems specifications, while others stem
from the related problem that vague function descriptions can seem to cut across
what turn out to be the dynamical process distinctions. These can all be resolved
through a little careful analysis of language.4 This is useful to know in a field like
biology where talk of functions is ubiquitous, but often more pragmatic than
precise, especially considering that only features that have functional consequences
are likely to be modeled.

Setting general objections to reduction from function talk aside aswell, brings us at
last to the substantive conditions for function to system process reduction. First, we
specify a function as a map from inputs to outputs. For example, cellular respiration,
crudelyglobally specified, is the function that takes foodandwatermolecules as inputs
and outputs carbon dioxide. Note that more specific functional maps capturing the
process detail can clearly be constructed as required. Corresponding to this in the
molecular description is a dynamical process—that is, a metabolic map carried by
(biochemical) dynamical laws—that takes oxygen and glucose as inputs and yields
ATP (and perhaps other energy storage) and carbon dioxide as outputs. Then the
obvious requirement for identificational reduction is that the respiration functional
map be embeddable into the corresponding biochemical process map without
distortion (homomorphically embeddable). A further coherence condition is equally
obvious: the collection of all such embedded dynamical maps, together with any
nonfunctional data concerning the system, should provide a single coherently unified
biochemical model of the cell genome that preserves or increases predictive and
explanatory power.5 The embedding criterion essentially captures recent conceptions
of a function to mechanism reduction, reducing both the cell and multicellular
organisms to complexes of mechanisms.6

There is an inherent underdetermination by any function, taken in isolation, of its
correct embedding. Although this has sometimes been taken as a fundamental
objection to reduction, it ultimately reduces to a pragmatic issue of sufficient data.
The problem is nicely illustrated in the case of the output of a network of electrical
generators having a frequency variation less than that of any one generator; some kind

4 See Part III of Ref. [53] and, briefly, Ref. [57], Part V, case I and case II end.
5 See Part III of Ref. [53] and, briefly, Refs [56] and [57]. The basic reduction requirement, that functional
maps are mirrored by dynamical maps, is in fact just the application of Nagel’s [58] deductive reduction
conception, rightly understood. Nagel shows how scientists arrive at reduction of a law L2 or propertyP2 of
theoryT2 respectively toa lawL1orpropertyP1of theoryT1by first showinghowtochooseconditions (realor
idealized) underwhich it is possible to construct inT1 a lawL1 or propertyP1 thatwillmirror (be a relevantly
isomorphic dynamical image of) the dynamical behavior of L2 orP2. From that the reduction is shown to be
possible through the identification of L2 or P2 with the mirroring L1 or P1. Indeed, the requisite ‘‘bridging”
conditions canbededuced fromthemirroringcondition, and thenassertedas identitieson thebasis thatdoing
so will achieve a reduction, supported in that light by claims of spatiotemporal coincidence or appeal to
Occam’s razor.
6 See especially Refs [59, 60]. However, the conception of mechanism here does not yet adequately reflect
the importance of process organization to cellular function [61], an outstanding issue for future develop-
ment. Further on organization, see Sections 20.2.3 and 20.2.4.
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of feedback governing process is at work, but is it a real governor or simply the
functional appearance of one at the network level? The latter is possible because
connecting the electrical generators in parallel automatically creates a phase-stabi-
lizing mutual interaction among them without the need for a real governor.7 This
question is resolved by gathering other data about the network–this is the point of the
unification criterion above.

Nonetheless serious issues remain with the overall position. Rosen, for example,
argued that organisms could not be complexes of mechanisms in any compositional
sense and that theywere indeed notmechanisms.8Disentangling the aspects involved,
there remain these systems issues that must be resolved: (1) self-organization and
emergence, (2) the nature of the complexity in ‘‘complex of mechanisms,” and (3) the
specific implications of self-regeneration for (1) and (2). Of these (1) and (3) will
pose specific challenges for reduction. Conversely, however, a thoroughly dynamical
systems approach will allow us to understand the subtle intertwining of reduction and
its failure in emergence within a unifying framework, providing a full, naturalist
account of reduction and emergence in systems and synthetic biology. These three
issues are now discussed separately and in order.

20.2.2 Self-Organization and Emergence

In all systems it is true that the interacting components together create a dynamics that
would not otherwise be present. When the outcome is surprising or unexpected or too
complex to be readily understood, scientists are apt to talk about self-organized
emergent patterns. There are many reasons why leaving things like that is unsatisfac-
tory, among them that (i) no significant feature is addressed, our subjective surprise,
and so on, keeps shifting and has no substantive association with reality, and (ii) this
criterion is dynamically so weak as to trivialize these ideas. But when it comes to
strengthening the requirement, there is currently huge diversity of opinion about both
the concepts, self-organization and emergence. Two broad approaches to identifying
something more penetrating can be distinguished, one epistemic and the other causal
or dynamical.

The epistemic approach tightens up the subjectivity by adding a clause along the
lines that self-organization occurs when the resulting system dynamics could not
have been predicted from the known interaction rules of the components. Since the
dynamics is entirely internal to the system, it is properly referred to a self-
organized.

This approach is attractivebecause there aremanycomplexbehavioral patterns that
arise from the simplest interaction rules, for example,with social insects (hives of bees
and termitemounds), city traffic, and even simple population dynamics as reflected in
the logistic equation. However, it still ties the definition of evidently physical

7 For this example see Ref. [62] and further Part III of Ref. [53].
8 See Refs [63, 64]. Rosen’s objections have to do with the role of global organizational constraints on
organisms and are discussed under Section 20.2.4 below.
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properties to a cognitive test, and anyway proves difficult to formulate satisfactorily.9

So we pass to the option of a causal/dynamical criterion.
One causal/dynamical distinction stands out, and fixing on this avoids a long detour

through a tortuous literature. The distinguished difference is between patterns that
dynamically constrain their components—that show ‘‘top-down” dynamical
constraints—and those that do not. Consider the formation of an iron bar from cooling
molten iron. In this phase transition a macroscopic pattern of intermolecular relations
is formed, the iron crystal, which does thereafter have the power to constrain the
movements of its molecular components through the formation of a new macroscale
force constituted in the ionic lattice bonds formed. Its formation alters not only
individual component behavior but also the specific dynamics under which they are
now able to move: there are lattice vibrations and a Fermi conduction band in place of
liquid molecular dynamics, that is, the phase change alters the force form of the
dynamical equations that govern component behavior. The new macroscale force is
able to retain the constraint relationship invariant under component fluctuations and
exogenous perturbations, through lattice dissipation of these perturbing energies as
sound and/or heat.10

By contrast, from intersecting shallow waves on a gently undulating beach there
emerges themost beautiful and intricate patterns, but there is no comparable constraint
formed by their interaction; shift the underlying sand structure and the dynamics can
shift to entirely other patterns. Similarly, there is no dynamical constraint internal to
social insect societies comparable to the ferric crystal force and compelling their insect
members to satisfy hive and mound laws, or compelling city drivers to create traffic
jams, and so on. All of these patterns are produced by dynamical interactions of
components and thus reflect their ‘‘bottom-up” dynamical constraints, but only some
also express top-down dynamical constraint.

It is natural to choose the formation of a new top-down constraint as a criterion of
emergence for just this characterizes the coming into being of a new dynamical
existence.The iron top-downconstraint formationconstitutes the coming intobeingof

9As it stands, the text formulation is intolerably vague: Predicted by whom? Knowing what? Using what
tools? And it makes an apparently ontological distinction (the existence of emergent behavior) depend on a
cognitive condition (humanpredictive capacity). If, in response, the criterion is instead formulated along the
lines of ‘‘cannot be derived from the set of interaction rules,” then these problems are lessened, but only to be
replaced by the problem of what counts as an acceptable derivation. If derivation includes computational
modeling of collective dynamics then almost all dynamics counts as derivable and nothing self-organizes.
(Perhapsnoncomputabledynamicsmightbeconsideredanexception,but since thisoccurs inquantumtheory
and other ‘‘wave” dynamics, it seems a peculiar boundary.) If instead derivation is restricted to logical
deduction thenalmost everything self-organizes since thedemandfor analyticclosed-formsolutions fails for
almost all sets of differential equations. No satisfactory criterion of in-between scope is readily formulable.
10 The iron bar is a new macroscale level with respect to its molecular constituents because it has its own
characteristic dynamical interaction form. All other talk of levels either concerns measurement (liquid
level), gravitation (level surface), or ismetaphorical (semantic, social, abstraction, theory . . . levels) and can
thus be paraphrased away—or is confused. Note that the presence of a top-down constraint does not fully
determine the specific dynamical form of the system; both the virtual and real electrical governor
arrangements (see footnote 7 and text) exhibit the same phase-stabilizing top-down constraint.
Distinguishing between them is the electrical engineering ‘‘system identification” problem.

626 OUTSTANDING ISSUES IN SYSTEMS AND SYNTHETIC BIOLOGY



anew, individuatedcapacity to dowork, expressedboth endogenously indissipationof
perturbations and exogenously in rigid body action. It is the arrival of a newdynamical
individual characterized by a new dynamical form.11 The character of the new
individual is constituted by its capacity to do new work. To broaden the criterion
further would be to conflate genuine interactive emergencewith themere emerging in
time of a pattern (as ‘‘from concealment”).

Real emergent dynamical filtering insures that macroscopic properties have the
stability we find them to have, making the macroscopic world as viably simple to
survive in as it is for macroscopic creatures like us. But it also applies to smaller-scale
structures; cellular metabolic regenerative organization and the cellular structures it
sustains, for example, are emergent top-down constraints and cellular function would
not be stable without them.12 But by providing higher level structure for lower level
processes, all these constraints actually underpin the reduction of the functions served
to dynamical processes (and of course the constraints themselves and attendant
structures to dynamical compounds of the components whose interactions constitute
them).13 Emergence heralds the presence of an irreducibly new dynamical existent;
reduction to the components alone fails.Yet, contrary to the standard viewof reduction
and emergence as opposed, this discussion shows that emergence and reduction are
intricately interwoven and mutually supportive.

There is no physicalmystery about thiswhen a dynamicalmodel of emergence is to
hand since it is precisely what the filtering consequent upon formation of a new
dynamical constraint provides. In this way, we naturalize emergence for science. And
it is precisely on that general basis, andonlyon that basis, thatwecan track causal paths
‘‘up” and ‘‘down” through the component/supracomponent levels and thus, come to

11 In a more traditional philosophical language, the iron bar is supervenient on its molecules; nothing about
the bar can change without the change being dynamically grounded in appropriate molecular changes. But
dynamical analysis provides a much richer language in which to discuss the possibilities. First, it specifies
top-down behavioral constraint formation in terms of change in dynamical form, the change in form
describing the causal power this novel constraint possesses. (This also distinguishes such effects as
nonepiphenomenal.) Second, the dynamics itself shows how the constraint, a (relatively) macrolevel state/
property, is determined by the states/properties of its microconstituents and so is supervenient on them, yet
can nonetheless also constitute a constraint on them. Here dynamics gives the constraint a subtle status that
eludes conventional formal analysis, combining what common philosophical assumption opposes. (See
Refs [57] and [65].) Thus, dynamical determination, there being only one dynamical possibility for the
collective dynamical state/property, cannot be equated with logical determination—the collective dynam-
ical state/property is logically derivable from but can be expressed as a logical sum of its constituent states/
properties. The former is specified as the constituents fixing all space–time trajectories so as to allow only
one macropossibility, but these trajectories may be computationally strongly inaccessible, for example,
through all critical point phase transitions. The neuroscientist Roger Sperrywas among the early adopters of
a top-down constraint model of mind emergence, see in later summary [66].
12 For a systems biology illustration and discussion see Refs [67] and [68].
13Metaphysical aside. If there are unique, unchanging, spatiotemporally local, fundamental dynamical
entities (e.g., chemical ions as biochemical atoms) then there is no fundamental emergence, only existential
emergents having these entities as ultimate components in various dynamical compounds. But top-down
constraint formation of itself does not require this. Fundamental nonlinear fields would yield the same
emergent result and there are no such local components, while mutant spatiotemporally local fundamental
components would issue in fundamental kind emergence.

OUTSTANDING GENERAL ISSUES 627



understand cellular and multicellular organization. However, there remains a
challenge for science, though not specifically for biological science, to find a full
analytic mathematical treatment of the top-down formation process that permits a
more rigorous and general discussion of when, where, and how it occurs, in biological
systems in particular. The ‘‘how” is the difficult part.

While this seems the proper way to deal with emergence, it might be allowed that
self-organization should be more broadly defined to capture simply the central idea
that the resulting pattern is brought about through the interactions of the system
components. The colloquial term ‘‘organize,” as in ‘‘get organized,” encourages this
wide connotation. This position is permissible; all that then matters is that the
definition of the term is clear, as Alice’s Humpty Dumpty allowed. Under the wider
usage self-organization is coextensive with organization (widely interpreted) but
neither coincides with emergence, while under the narrower constraint-formation
usage, self-organization coincides with emergence, but neither coincides with
organization. As noted at the outset, there is no worthwhile definition to be
had that sits between these two options. In my view, it leads to clearer, stronger,
more scientifically useful conceptions of organization, self-organization, and
emergence to adopt the latter usage. For instance, the formation of a crystal is a
clear case of emergence, but not of any significant organization (see subsequently),
yet it is a paradigm self-organizing process in the sense of top-down constraint
formation.14

An immediate consequence worth noting is that self-organization need have
little to do with organization proper. This is as it should be. Organization is a
relational condition of systems where components play distinct roles but the roles
are so interrelated as to produce a coherent global outcome. A simple illustration is
found in theway the parts of a car engine are interrelated so as to deliver torque from
fuel ignition; a profound example lies in intracellular organization. Self-organiza-
tion is simply constraint formation and, as the case of crystallization shows, need
not involve the emergence of any organization. Crystal formation is, rather, an
instance of von Feurster’s correctly named principle of order-(not organization)-
from-noise (i.e., from random reassortment). von Feurster’s own example of
shaking coins down through successively smaller size filters orders them by size
but does not organize them in any interesting sense. The unfortunately wide
colloquial connotation of ‘‘organize” conflates order and organization, which
are important to distinguish in understanding what is distinctive of living systems
(see subsequently).

20.2.3 Organization and Complexity

Complex systems are complex, not only because they have many components, but
fundamentally also because they are organized.15 This raises two complementary

14 For this position see Ref. [69].
15All of the further properties they may show—see 19.4.1—are forms of organization.
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issues, the nature of organization as a form of complexity and the nature of the
constraints that ensures overall functionality. Here we focus on the former issue and
address the latter issue in the next section.

We begin with order, the basic relational notion of which organization is a
special form. The root notion of complex order is that derived from algorithmic
complexity theory: the complexity of the order in a pattern is measured by the
length of its shortest, most compressed, complete description. A crystal lattice is
simply ordered: it has a short compressed description given by fixing the locations
of all ions as multiples of crystal plane distances away from any one reference ion.
A gas, by contrast, has a very long minimal description and hence is maximally
complexly ordered because its component molecules are all moving at random, so
the position of each has to be separately specified. The crystal is highly ordered
and the gas highly disordered. By contrast, an organized system is one where a
number of distinct kinds of components playing unique roles nonetheless interre-
late so that together they support one or more overall, global functions; a car
engine and an organism are paradigm cases. The extremes of order are equally
inhospitable to organization; a highly ordered system is too uniform, and a highly
disordered system is too random, to support the variety of specific interrelation-
ships required for organization. The relation of the piston rod movement in a car
engine to that of the behavior of the fuel injector is very different from its relation
to the exhaust muffler temperature, yet all combine to produce harmonious
functioning. The variety in the relationships explains why too simple or high
orderedness restricts organization, while the occurrence of the systematic inter-
relationships among the components explains why too complex or low orderedness
equally restricts organization. Organization occurs in an intermediate ‘‘window” of
ordered complexity between extremes. Thus, complex organization, as in living
cells, is not straightforwardly complex in the sense of algorithmic complexity, but
in some other sense.

Subtle, multiple different coordinations—that is, correlations—are required for
complex organization if its very different component roles are to jointly serve a
function. That is, it involves nested, higher order correlations of correlations. Very
complexly organized systems, like cells, multicellular organisms, and cities are
characterized by many layers or orders of correlations of correlations. Let us mean
by a system’s organizational depth roughly the number of nestings of subordering
relationswithin it (cf. cellswithin organswithin bodieswithin communities). Then the
complexity of an organization is better measured by its organizational depth than it is
by algorithmic complexity.

But it is still not a very satisfactorymeasure, primarily because it does not take into
account the appearance of top-down constraints within nested systems, that is, it
misses regulatory hierarchy and modularity. The class of all merely nested systems
includes, but is much wider than, that of the organized systems, since organized
systemsmust also sustain a global function. To achieve a global function an organized
system exhibits a highest order global correlation expressing a global constraint (to
performing its functions), with nested sets of lower order correlations within that,
someof themmodularizedby lower order top-downconstraints.Wehaveas yet noway
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to properly take all these features fully into account, and hence no satisfactory
definition of organizational complexity.16

More importantly for science, we have as yet neither a real capacity to represent
organization mathematically, nor a real capacity to investigate it experimentally. The
mathematical framework for dynamical modeling in most of science, including
systems and synthetic biology, is that of differential equations (d.e.s) as vector fields
on differential manifolds, for example, on system phase space. But these modeling
resources, powerful though they are for modeling the energetics of processes, do not
explicitly describe the physical organization of the system—a metabolic cycle and a
pendulum, for instance, may be modeled as equivalent dynamical oscillators. In a
phase space only theglobal dynamical states and their time evolution are specified, not
the organized processes that produce the dynamics; hence, it cannot capture organi-
zation. There is at present no obvious resolution to the general theoretical problem of
how to incorporate organizational principles into dynamical models in a principled
way. Correspondingly, the parameters we can measure are either component fea-
tures—biochemical concentrations and the like—or higher order regulation para-
meters, such as respiration rate. There are no experimental techniques for detecting
organization directly. Rather, it is reconstructed in retrospect after system relation-
ships, in the genome for instance, have been reconstructed fromwhat we canmeasure.
Thus, a future challenge to systems and synthetic biology is to become more
understanding of dynamical organization, both theoretically and experimentally.

20.2.4 Autonomy and Living Organization

The most basic global biological function is the regeneration of the body through
metabolism, utilizing intakes of air, water, and food; for without this nothing else is
possible. It is clearly a global function because it concerns the regeneration of the
whole body. Autonomy, a form of recursive self-maintenance, is the name given to the
global organizational constraint that must be met in order to support metabolic
function. It is worth explicitly identifying autonomy because of its useful roles.
For instance, it uniquely picks out the living systems fromwithin thewider domain of
complex, organized, nonlinear, dissipative (entropy increasing) and irreversible,
chemical and biological systems, providing an unbiased, operational criterion of
life hitherto missing and especially needed in exobiology. It also suffices to provide a
naturalistic grounding for agency (see subsequently) and fruitfully frames the evolu-
tion of intelligence (see subsequently), thus also providing a framework for (organi-
cally) intelligent robotics. Let us explore the idea.

Finite systems sustaining dynamical equilibria far-from-(static)-equilibrium must
do so by irreversibly taking in ordered or low entropy energy andmaterial components
from their environment and exporting it to material components carrying dissipated,

16Gell-Mann [70] discusses effective complexity and logical depth (see Ref. [71]) as other possibilities, but
neither is satisfactory for various reasons he notices, but fundamentally because these too are general
dynamical conceptions and do not directly include top-down constraints (for some further discussion see
Ref. [69]).
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less ordered, or higher entropy energy. These open systems must be organized: by the
Morowitz theorem they must have at least one, and typically have many, closed-loop
processes running within them.

For instance, a candle flame creates a thermodynamic asymmetry between itself
and its environment, including an organizational asymmetry as it both preheats its own
fuel supply (oil or wax) and creates a convection air current that delivers fresh oxygen
to the flame. By supporting these two cyclical processes, the candle flame process
contributes to the maintenance of the process temperature; in those partial respects, it
is self-maintained (including of its self-maintenance capacity). But it has no self-
regulatory capacity: should the flamediedown, it does not causemoreoxygen andwax
vapor to flow in to revive it or cause a search to bring about delivery of other means to
revive it, in contrast to hungry animals actively searching for food to revive them-
selves. The locus of regulation of these latter processes, if any, lies outside the flame
process.

Living beings from single cells ‘‘up” are also among these open, irreversible,
partially self-maintenance systems that maintain a state asymmetry with their
environment. But unlike the candle they display a self-regulatory capacity that is
extensive and active. Internally, as self-regenerating systems their cyclic processes
must contribute to re-creating each other, that is, each process must partially
regenerate the material constraints for themselves and/or others to work, requiring
a highly organizedweb of cyclic process-constraint interdependencies.17 Hence there
must be strong mutual internal regulation of activity if internal coherence is to be
maintained. Externally, organisms actively search for, and intake, requisite ordered
energy and materials and excrete wastes, all the while avoiding or ameliorating
damage. This requires active regulation of behavior. Even single cells regenerate
themselves metabolically and partially regulate their environmental experience.
Multicellular animals perform the same overall tasks, only with an expanded range
of self-regulatory capacities, for both internal interaction (e.g., the cardiovascular
resource delivery and waste removal system) and external interaction (e.g., neurally
regulated sensory and neuromuscular motor systems, and so on) to match their
expanded regenerative requirements.18

There are two broad cyclic processes involved in this activity, internal metabolic
interaction and external environmental interaction, and these need to be coordinated:
the environmental interaction cycle needs to deliver energy and material components
to the organism in a usable form and at times and locations the metabolism requires to
complete its regeneration cycles. The presence of these two thus synchronized cyclic
processes resulting in system regeneration is the broadest functional sense of what is
meant by a system’s being autonomous. Though the detail, especially the dynamical
boundaries and self-regulatory capacity, vary, this autonomy requirement picks out all
and only living individuals—from cells, to multicellular organisms to various multi-
organism communities, including many business firms, cities, and nations. In all

17 These are what Kaufman [72] calls work-constraint cycles.
18 They are models of self-regulation, including active self-maintenance of their self-maintenance
capacities. Hence they are recursively self-maintained—see Ref. [73].
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autonomous systems, the locus of living process regulation lies more wholly within
them than in the environment—hence, the root sense of autonomy in the traditional
sense.19 Birds organize twigs tomake nests, but twigs themselves have no tendency to
organize nests or birds.

Autonomy is a subtle global constraint on the organization of interaction for whole
organisms in their environmental context. In contrast to gases and crystals, dividing a
cell in two typically does not produce two new cells because the fundamental global
process organization that produces cell-type cohesion has been disrupted. Clearly,
autonomy is an emergent property of the cell as a whole. In fact, emergence is a
ubiquitous feature of the far-from-equilibrium systems. Comparing living systems to
inanimate systemshighlights thedistinctivecharacterof living interactiveorganization:

Comparative System Order

Property System Kind
Gas Crystal Cell

Internal bonds None Rigid, passive Adaptive, active
Directive orderinga Very weak, simple Very strong, simple Moderate, very complex
Constraints None Local Global
Organization None None Very high

aDirective ordering is spatiotemporally selective energy flow.

Entities are properly treated as genuine agents when they have a distinctive
wholeness, individuality, and perspective on the world and their activities are self-
regulated, normatively self-evaluated, willful, anticipative, and adaptive.
Autonomous systems are inherently all of those things:

. Self-Regulation. We have already seen that autonomous systems are strongly
self-regulated in both their internal and external interaction, making them the
distinctive primary locus of their regulation. And because the self-regulation is
in service of maintaining an internally coherent whole, they have a distinct,
individual reference point for their activity that provides them a distinctive
perspective on the world.

. Normative Self-Evaluation. Autonomous self-regeneration constitutes the fun-
damental basis for normative evaluation because it is the sine qua non and
reference point for all else. Autonomy is the condition against which the
outcomes of system processes are measured for success or failure. In single
cells the measurement is simply continued existence or not. Multicellular
systems have developed many internal, partial, and indirect surrogate indicators

19On autonomysee furtherRefs [51,54,64,75] and references therein. Self-governance lies at the core of our
commonsense conception of autonomy.However,we aremost familiarwith the idea of autonomy as applied
to persons and political governance, but these are sophisticated notions applied to sophisticated systems
whose trappingsmaydistract from fundamentals.We need to return to basic principles operating in all living
systems to construct a naturalist notion that will ‘‘grade up” across the evolutionary sequence to our
sophisticated concept.
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for autonomy satisfaction and its impending violation, often based around
closure conditions for their important subprocesses, for example, hunger (im-
pending violation) and food satiation (satisfaction). It is these specific surrogate
signals (cf. also thirst/fluid satiation, pain/pain-freeness)we think of as the basic,
primitive norms guiding behavior, but they are literally grounded in turn in the
obtaining of autonomy, from which they derive their normative character.

. Willfulness.Awill is the capacity to dowork (i.e., transform energy) in relation to
the self whose will it is. The constitution of the autonomy constraint, which
focuses directive organization on the generation of behavior to achieve self-
regeneration, constitutes just such a distinctive capacity.

. Anticipation. To anticipate is to act now in relation to some future state, event, or
process. Anticipation is thus an integral feature of autonomous systems because
of their need to interact with their environment in ways achieving future closure
outcomes that contribute to maintaining autonomy. The interactive relationship
between the present action performed and the future, autonomy-evaluated
outcome required is the most basic form of anticipation.20 The willful perfor-
mance of anticipative interactive activity against a normative evaluation criteri-
on provides a root sense of action.

. Adaptedness, Adaptiveness. An organism is adapted when it possesses an
autonomy-satisfying set of traits in its life environment. Conversely, an organ-
ism’s ecological niche comprises the range of life environments for which its
traits provide satisfaction of autonomy. An organism’s adaptiveness is its
capacity to alter its specific traits in mutually coordinated ways so as to adapt
to, that is, satisfy autonomy in, awider range of life environments than its current
one.

20.2.4.1 Intelligence and Intentionality Agency of this kind provides an
organizational platform for characterizing, and understanding the evolution of,
intelligence and intentionality. There are three major aspects determining a system’s
anticipative capacities: the width of its interactive time window, the degree of
articulation of the autonomy-related norms that it can use, and the high-order
interactive relationships that it can effectively regulate. Between them, these features
characterize the dimensions of intelligent/intentional capacity, and their roughly joint

20 The root notion of anticipative action for Rosen [63] is that of a sequence of subactions that together
achieve a closure condition and for which each subaction exists only because it is a member of that closure-
achieving sequence. Each element then anticipates the next and the sequence anticipates the closure
outcome. While this is too broad to provide any distinctively agency sense of anticipativeness, since any
cyclically regenerating system (e.g., an autocatalytic polymer) counts as acting anticipatively, it does
capture the central functional character of anticipation. Elementary systems like single cells will only
exhibit action sequences where what anchors the repeated activation of the elements is just their belonging
to a closure-achieving sequence. A distinctive agency sense of anticipativeness emerges when Rosen’s root
condition is applied to autonomous systems, since only these define a principled sense of it being the system
itself that is anticipatory.
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evolution traces the emergence of mind. And because of their preceding properties,
autonomous systems can also be provided with action-centered informational and
semantic characterizations, to complete the sense of agency. Organism information is
modeled as reduction in downstream process regulation uncertainty. (‘‘Shall I do A or
B?Given the result ofmy last interaction, B is the thing to do.”) Organism semantics is
that of the anticipated norm-referenced, autonomy-satisfaction provided by an action.
These conceptions of information and semantics grade back to the actions of single
cells, though the stronger the self-directed anticipative organization involved, the
richer the semantic and informational structures sustained. In this context intention-
ality is conceived as a high-order regulatory capacity for fluid, meaningful goal-
directed management of interaction. Intelligence and intentionality coevolve making
use of a common self-regulatory apparatus. This avoids the common but implausible
split between the two, respectively into problem solving and referential capacities.21

In sum, autonomy promises to provide the broad organizational framework from
withinwhich a fully naturalized conception of organisms can be developed in terms of
the naturalistic intertwined emergences and mechanistic reductions that reveal their
biochemical organizational depth. Of course, from a scientific point of view, the devil
lies in providing the details. And the challenges in doing so are not only to do with
coping with complications, but they also run deeper.

20.2.4.2 Challenges Posed by Autonomy Science, as discussed in
Section 20.2.3, has only weak tools for studying organization. It has equally weak
tools for studying global constraints, especially spatiotemporally extended global
constraints like autonomy. These are at present not representable in the differential
equation/phase space formalism. Although autonomy, like any dynamical constraint,
must in principle be representable as a limitation on system accessibility to dynamical
states (viz., constraint to those satisfying autonomy), there is at present no modeling
methodology for constructing its constraint representation. So, while it is always
possible to capture the dynamical consequences of internal organization by modeling
system plus environment as a system of coupled component subsystems, there is no
principled, internally motivated basis for reversing the process to extract organization
from the dynamics, that is, for individuating the system in a principledway.22This is as
much a challenge for theoretical robotics as for theoretical biology.

Dually, the challenge posed to practical construction and regulation/control in
biology and robotics is equally deep because, if the account of autonomy (and of
autonomy-based cognition) is even roughly correct, it provides a set of organizational
requirements for this task that will prove far from simple tomeet. For instance, despite
using the label ‘‘autonomous agent,” there are at present no truly autonomous robots in

21 This interaction-centered semantics is very different from, and more powerful than, standard direct
referential semantics, for it captures directly the unlimited implicit possibility content in our action-
differentiated grasp on reality. Bickhard argues that in this way it resolves the frame problem and is anyway
ultimately the only coherent naturalist semantics, see for example Ref. [76]. Further see Refs [54] and [74]
and Section 20.2.4.
22One thinks instinctively of the coupling of equations as the requisite tool, but so far as I am aware there is
as yet no well-defined way to characterize either organization or globalness of constraints in these terms.
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this organizational sense. Robotics uses a very limited formal notion of autonomy
(something like invariant dynamical form) and limited performance criteria (typically
confined to a single task) and an equally limited satisfactionmethod. This is as yet very
far from even incorporating normative signals into the body coherence of robots, let
alone the complexity required for self-regeneration and the capacity for fluid
management of multidimensional environmental and internal interaction processes
in relation to that (cf. Ref. [4], footnote 17). Similar constraints currently apply to our
capacity to understand,much less synthesize, real biological systems.Despite calls for
the simulation of biological autopoietic cells, we remain far from being capable of
doing so.

Robert Rosen argued that living systems were not mechanical, that they could not
be reduced to congeries of mechanisms (see Section 20.2.1), not simply because
reduction in general failed, but for deeper structural reasons. Yet reduction to
mechanisms is evidently what systems and synthetic biology aim to do. The gist
of Rosen’s objections (their final 1991 version [14] is couched in an arcane modeling
language) is that holistic, organizational features like autonomy are central to being
alive and these cannot be captured by analysis into mechanisms—indeed, our present
general modeling tools must necessarily fail to adequately capture such features. He
argued that these limitations, largely unrecognized and unexamined, represented a
powerful limitation on the development of biological science. Cloning is hailed still,
even while the profession knows that, though a technical feat, it is limited to
intercellular nuclear transfer, and the entire cytoplasmic apparatus of the globally
coherent regenerative cell is simply ignored.

There is some point to Rosen’s line of objection.Metabolic regeneration is central,
does exhibit autonomous organization, and currently cannot be adequately modeled
dynamically. The emergence of high-order global functional coherence expressed in
adaptive intelligence offers another version of this challenge. Rosen argues that this
difficulty ismademorepointed by the fact that often thecomponents inmetabolismare
only thus because of the character of the whole (cf. Rosen on anticipation, footnote
20). This seems to make it impossible to understand such systems without
postulating the global dynamical organization at the outset, stymieing attempts
to synthesize the organization from its components. If, in addition, the components
are formed during the self-organization of the whole process, then the argument is
reinforced.

Especially these last cases are real challenges to substantive biological theory.
However, the scientists involved might argue that new tools to understand them are
being developed, albeit slowly, and this shows that they should be recognized as so
manymethodological challenges rather thanoverwhelmingaprioridemonstrationsof
the separation of biology from natural science. Hogeweg, for example, has pioneered
the use of computational models to understand the ways in which spatial segregation
processes can lead to the survival of entities,whethermolecules, viruses, organisms, or
even prebiotic entities, where an unsegregated model would predict their extinction,
and also illuminate multilevel selection and evolution processes. Hogeweg employs
cellular automata (CA)models to capture the spatial organization necessary to explain
the outcome. This is possible because CAs are inherently and explicitly relationally
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organized (though in a generalized, not narrowly spatial, way), even while able to
incorporate some aspects of local dynamical interaction. Dynamic networks are
similarly inherently and explicitly relationally organized, while currently they are
largely used to express functional relationships, they too can be adapted to express
spatial relationships. In ecology, for example, there is increasing attention tomodeling
spatial organization and these kinds of modeling tools can be used to model
intracellular spatial relationships.23 Even so, there is no inherent capacity in any of
these tools to represent either organization per se or globalness of constraints. But it
may be that in future, as need and capacity to model spatial organization grows, more
and powerful such tools will alleviate these problems.

20.2.5 Condition-Dependent Laws and the Unity of Science

Scientists in systems and synthetic biology often regard their approach more as
‘‘model building” than as ‘‘theory” or ‘‘law” centered; this is understandable in a
domain where nearly every variation results in differing functional capacities and
behavioral patterns. Compared to the grand universal, invariant laws of physics, these
local idiosyncratic behavioral patterns do not count as laws; so, especially whenmost
biological systems are yet too complex to predict, it is more useful to simply model
each system and try to understand it on that basis. But of course biologists do use laws
in constructing their models, the laws of (bio-)chemistry; if these did not operate the
same-everywhere biology would be much harder than it already is. Even so,
the complication arises from the fact that the operational invariance largely occurs
at the ion–ion interaction level.Hown-body, k-component ion systemsoperate is often
a strong and sensitive function of the initial and boundary conditions, especially
organizational conditions, obtaining and that is why no simple set of laws can be
deduced in advance. Indeed, self-organization precisely occurs because of the
sensitivity of dynamical form to dynamical initial and boundary conditions
(see Section 20.2.2).

But the last equally provides license to extend the notion of law to such cases. For
since self-organization involves a new dynamical form, it is reasonable to say that it
obeys new dynamical laws characteristic of that form. Moreover, the idea that true
laws have to be specified independently of any initial and boundary conditions is a
conceit of physics, and perhaps ultimately not true there either considering that even
fundamental laws evidently changed form as the big bang cosmos cooled. But once
that independence requirement is dropped we are free to see biology as replete with
real behavioral laws, it is just that they will be condition-dependent, or ‘‘special” (as
some philosophers say).24 For instance, condition—a cooling mould of liquid iron
in contact with a heat reservoir of lower temperature, emergent laws—rigid body
(not fluid) dynamics, crystalline (not fluid) conduction of electricity, heat, and

23 See, for example, Hogeweg [77–79]. On spatial modeling in ecology see, for example, Refs [80] and [81]
and references therein.
24 See Ref. [82] for an early insight of this kind. We now see that this condition is not unique to life, for
instance, it characterizes at least all dynamics that shows self-organization.
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sound. Put that way, condition-dependent laws are commonplace even in physics,
and certainly throughout all the other sciences. It is just that condition-dependent
laws are often on that account hard to predict or use for prediction, but that is a
different, epistemic issue.

Why not push condition-dependence further to include every instance of change in
initial and/or boundary conditions? For instance, the specific force of gravity changes
between the Sun–Saturn and Sun–Earth subsystems because of the changing masses
involved.Why not claim all these as equally condition-dependent laws?Well, because
it is the same general law that is involved; the diverse cases are unified by a single
lawful interaction form. This is not so for the iron bar and other cases involving self-
organization. However, surely the self-organization cases are equally a consequence of
the underlying universal dynamics, and simply produced under specific initial and/or
boundary conditions; if it is just that at present we cannot analytically represent self-
organization then that should not stop us from allying them to the previous simpler
cases. This is so, but there are two important differences marking off the self-
organization cases: (i) it heralds the presence of an irreducibly new dynamical
existent, (ii) the dynamical form itself alters accordingly, so there is no common
universal law form. Thus, they represent a genuinely interesting set of conditions.

However, there are also interesting mid-way cases. Self-organization through
something as radical as phase change is not the only way to induce the formation
of a new constraint condition; inducing a Hopf bifurcation of the dynamics (where a
smooth parameter change alters the dynamic attractor landscape) is another, as is
simply beingmoved fromone local energywell to another in an unchanged dynamical
landscape of a system. In each case changed initial and/or boundary conditions lead to
changeddynamical laws.Although thewell-shift casesmaybe set asideon thegrounds
that they too are unified by a common dynamics (represented by the landscape), the
formerHopf-bifurcation cases alsomanifest a changed dynamical formand deserve to
belong to the self-organization cases, as do other kinds of dynamical bifurcations.
Polanyi once argued, in effect, thatwhatwas distinctiveof living systemswas that their
governing lawswere so strongly dependent on initial and/or boundary conditions [32].
Polanyi had in mind at least the way that information can alter the basis of behavior in
living systems. If the impact of an information-conveying signal on an organism is
dynamically equivalent to a Hopf or other bifurcation, then Polanyi’s living systems
can all be brought under the same dynamical paradigm.

The same considerations apply to dynamicalmodels of thegenome. Theremaybe a
wide variety of dynamically different forms that a genome can take up as various of its
processes alter its own initial and/or boundary conditions so as to induce a dynamical
bifurcation, for example, create and insert a new catalyst into the protein dynamics,
thus forming special laws for that condition. These effects can propagate historically.
The emergence of a new constraint with new dynamics may lead to the subsequent
dynamical formation of still further top-down constraints, and so new entities, that
would not have been dynamically possible without that preceding formation event.
Indeed, something like that must be the overall dynamical form of development.
Moreover, this cascade of dynamical consequences is marked by its initiating
formation event and thus exhibits dynamical fixation of (these) historical constraints.
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Such path-dependent dynamics occur throughout ecology (e.g., somatic and niche
symbioses), economics (e.g., in off-highway development and technological learn-
ing), and the social sciences (fashion, and so on), but are not unknown in physics, for
example, in hysteresis.

Needless to say, biology will not splinter into an unprincipled disunity under these
complex dynamics.25 Once again, these bifurcations will still be dynamically deter-
mined by, and identified in terms of, their dynamical constituents and governed by
laws that themselves are thus grounded in the underlying universal dynamics. This is
precisely what the biochemistry of the dynamical networkmodels is meant to show. It
will also encompass the many changes that consist of less profound dynamical
transitions falling under the same dynamical form (even shifting between strange
and other attractors). And the requirement to ‘‘match-up” the dynamics of different
spatiotemporal scales and domains provides a further important unifying component.
For example, unifying molecular chemistry and cellular biology requires interpreting
cellular processes in biochemical terms that immediately generate many penetrating
tests because of the requirement to match up the two descriptions—for instance all of
the function to process reductions.

All this provides a shared dynamical framework interconnecting emergent variety
in intimate ways that make it possible to successfully model complex genome
dynamics and even development, navigating through the complex world of emergent
but interconnected cellular and intercellular levels and laws. This gives a strong sense
in which biological science remains unified evenwhile acknowledging more strongly
initial and/or boundary condition-dependent laws than simple physics and chemistry
waswont to consider. The challenge to biological science is to recognize explicitly and
better understand this plethora of law types and shifts, so as tomake explicit their basis
and their theoretical and methodological implications.

20.2.6 Limits of Knowability

The advent of complex systemsmodels introduces new considerations concerning the
manner and limits of scientific knowability.By this it is notmeant the pragmatic fact of
vastly more complex systems generating vastly more extensive sets of data than can
practically be managed (cf. Section 20.1.2). Rather, the interest here is in principled
limits on knowledge. Discussion is limited to knowledge of complex systems and is
even so preliminary.26

An immediate consideration is the limit on analytic solvability to achieve ‘‘closed
form” symbolic representation of dynamics, that is, a single formula giving the

25 See, for example, Ref. [83], and for the complex dynamical unity response presented here see Ref. [57],
footnote 4, and Section 20.2.5. It should be added that the conception of laws as simple universal
generalizations, common among philosophers and scientists alike, is simplistic, science shows a far
more complex and rich spectrum of laws—see Ref. [84].
26 For more fundamental limits on knowability deriving from quantum theory, see for example Ref. [70],
and for something of the variety of forms knowledge limits can take, see Ref. [85].
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universal solution to a set of dynamical equations.27 But as we move beyond simple
sets of independent linear differential equations toward nonlinear, partial differential
equations in interdependent coupled equation sets, we find that the dynamics they
represent rapidly becomes very complex and the equation sets lack analytic solutions.
Beyond this again lie bifurcations; these have no analytic representationwithin which
their dynamics is exhibited, as the standarddynamical systemsdo, andcannot haveone
in standard dynamical terms precisely because they change their dynamical form, that
is, change their dynamical representation, and as a function of their own initial/
boundary conditions. In all these cases, as noted in Chapter 19 (see footnote 36), it
is then necessary to explore their dynamics through numerical approximation and
temporal iteration. Their dynamics is exhibited in extended form in space and time,
rather than being condensed into a single abstract relation among symbols. This places
computational modeling at the center of their scientific investigation in a strong
manner and highlights the huge, and unique, contribution of computers to scientific
knowledge.

However, it should not be forgotten that in most cases computational modeling
provides only a numerical approximation, not exact values.Again, inmost cases this is
not a problem since the degree of approximation can be increased at will. But
mathematical science contains many noncomputable functions,28 that is, functions
where information crucial to identifying it is lost at any level of finite approximation.
Many superposition or ‘‘wave” phenomena (classical and quantum) are of this kind
where wavelet information at indefinitely small scales is important to identifying the
whole function. A comparable situation occurs when chaos (a ‘‘strange” attractor) is
involved. Because nearby chaotic trajectories diverge exponentially from one another
(at all points along their trajectories), any approximation will be invalidated by some
trajectories within the approximation range—often quickly, one of the earliest
discoveries of chaos (byLorenz, using a coupled triad of partial differential equations)
concerned just such divergence brought about from slightly different rounding errors.
Thus, though computational numerical approximation represents a huge expansion of
our capacity to know complex dynamics, it also represents a selective, but important,
diminution in our knowledge capacity.

The exponential divergence of dynamical trajectories characteristic of chaotic
attractorsmanifests sensitivity to initial conditions. Small differences in the conditions
determining the initial dynamical state are eventuallyamplified into largedivergences.
This can happen with nonlinear dynamics generally, it does not require chaos;
bifurcations are examples. In suchcircumstances, prediction is limitedby the accuracy
of knowledge of the initial system state, that is, of the initial conditions. This is so even

27 Curiously, this is equivalent to science constructing a compressed symbolic description of reality, in the
sense of algorithmic complexity theory. Could the latter’s difficulties with defining organization be
reflected in some characteristic of the former? And what has this to do with Rosen’s [64] more abstract
concerns with modeling?
28 That is, mathematical functions, not biological functions. Mathematical functions are many: one maps
from a domain to a range, hence unique on the range. One distinctive merit of the proposal to model
biological functions as input/output maps is that this relates them directly to mathematical functions and
hence, via modeling, to dynamical maps and so to biochemical processes.
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though the system dynamics is deterministic, and so exactly one precise trajectory
happens. Since all human knowledge (indeed all creaturely knowledge) has finite
resolution, prediction is permanently parted from determinism. Self-organization
ensures that this extends to prediction of condition-dependent laws—in particular to
predicting self-organized intracellular dynamics.

Limits on predicting the behavior of intelligent agents provides a further class of
special cases. Even simple sensory agents can on occasion amplify very small signals
(perhaps a few light quanta) into large behavioral differences, so that even smaller
uncertainties in those signals or in the internal state created will place limits on
predicting behavior. Even where these details are knowable in principle another limit
typically biteshard: suchcomplex systemshaveconsiderable logical depthand for such
systems the time required tomake a prediction is in principle large,29 added towhich is
the time required to obtain all the relevant state andprocess information to do so.Often,
those times are much longer than the time horizon for relevant prediction and action,
whence one’s interaction with them is always on the basis of some uncertainty. Slow,
long-running ‘‘agendas” in human personal development can produce surprising
behaviors that defeat even decades of contrary data about a person. Another version
of the same limit applies when an agent alters its own environment on too fast a
timescale for it toknow theconsequencesof itspast actionsbefore it acts again.Humans
have always been in this predicament and continue notoriously to be so, as witness
climate change, peakoil, nuclear proliferation, stability of financialmarkets, and so on.

Finally, an important methodological issue has recently opened up concerning the
most effective statistical means of extracting knowledge of genome organization and
dynamics from the large data sets generated by contemporary high-throughput
experimental technologies, data often sparsely distributed in large-dimensional
parameter spaces. A classic paper by Breiman [36] opposes two approaches to the
data:model learning andmachine learning. Inmodel learning, a class ofmathematical
models specified by parameter values is chosen as a presumedmodel of the underlying
reality from which the data is taken and its parameters are interpreted in terms of the
entities and potential dynamical processes thought to constitute the underlying reality.
The problem for statistical methodology is then to use the data in an unbiased way
to estimate the parameter values and so fix the particular model involved. This model
can subsequently be tested by its prediction of new data and the parameter values
re-estimated as required.

In machine learning, by contrast, no model is specified, rather the data are used to
‘‘tune” a machine-learning process (some one of a large class of convergent mathe-
matical adaptation or self-correction processes, for example, neural nets, run on
computers). The tunedmachine is then used to predict further data and is tested against
it. The tuned machine state may have no obvious understanding in physical model
terms; indeed its state dimensions, hence parameters, emerge from the tuning process
and may be very large. Nonetheless, in a variety of situations it provides superior
predictive performance and, with modeling goodness-of-fit tests often too weak to
select among a variety of models, it emphasizes prediction as a self-sufficient goal of

29 For discussion see Refs [69] and [70].
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science. This threatens to pull apart prediction from ontological-dynamical under-
standing as epistemic goals of science and thus, represents a distinctive constraint
on scientific knowledge. Where it provides intelligible insight into underlying
processes, it is essentially a form of induction from data, just as the previous model
learning approach can be considered a form of hypothetico-deductive falsification,
linking these alternatives to amuchmoregeneral andvenerable debate about scientific
methodology (empiricismversusPopperianism, and soon). There is a livelyversionof
the debate in systems biology [37,38].

To the philosophically minded the machine-learning language may, however,
suggest much more, specifically the prospect of either (1) a new phenomenological
empiricism, where data are again uncritically glorified and last century’s well-
abandoned extreme claims of solely reconstructing theory from it (cf. behaviorism)
reemerge, or (2) a kind of postmodern antirealism in which scientific investigations
each use their own separatemachine-learning states, each state employedwhile ever it
is predictively adequate, with discussion of underlying reality considered a sign of
nostalgia for grand schemes, implicit attempts at ideological hegemony or mental
confusion.This is not theplace todiscuss either the foundationsof statisticalmethodor
the fate of grand conceptions. Rather, abandoning the extremes represented by 1 and 2
above, I want to briefly suggest consideration of amiddle-ground approach tomethod
recognizing the utility of both induction and hypothetico-deduction in context.

It is surely a false dichotomy to oppose prediction to understanding, since each is
necessary to the other: understanding without prediction is ignorant and uncritical,
prediction without understanding is weak and fragmented. The former is obvious for
any finite, comprehensively fallible species like us commencing research in ignorance.
The outcomes of predictive tests underpin acceptance/rejection of any proposed
models and hence of improved understanding. The latter rests on the way a confirmed
dynamical model can direct research much more effectively than simply trying to
collect more data per se. For instance, such models distinguish law-like relations (as
energy transform processes) from mere correlations or noisier relations, and also
identify the sources of noise and bias, including in the interaction between system and
data-gathering instruments—all of which structure future-testing regimes and assess-
ment regimes, including the filtering and correction of data itself. And as before,model
matching across scales and domains widens and focuses this role.

In addition, the machine-learning approach still relies on the choice of data
categories, experimental setup, and appropriate instruments and probes to generate
its data. But all such choices make presumptions about the character and salience of
features in the underlying reality. For instance, instruments have systematic errors and
limitations and unlesswe have sound insight into how the instrumentsworkwe cannot
knowwhat theirdefects areandhencehowtoprocessdata. (Astrikingdemonstrationof
this comes from the quantum theory proof that even core classical measuring devices
haveinherenterror rates,ofwhichsciencehadbeenentirelyunsuspecting.) Instruments
themselves are understood through empirically validated theoretical models.30

30 Often enough using the very theories they are used to test. But this is largely OK, see Ref. [89]. On data
choices, see, for example, Ref. [90].
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Bycomparison, in all these casesmachine learning can only combine the data pools
without direction, there being no methods within data lists alone for simulating
dynamical discrimination and unification, systematic data errors and data limitations.
Even identifying random data errors may cause problems here, since these have
somehow to be distinguished from inherent dynamical fluctuations in the system, the
latter behaving as noise except near bifurcations where their form may be critical to
understandingsystemdynamics.All this leadsto insatiabledemandsforsufficientdata,
ultimately extending to encompass all science and the entire universe as ablock—not a
good theory of epistemic (learning) strategy for finite agents beginning in ignorance.

On the other hand, machine learning often finds patterns in high-dimensional data
where our knowledge of models is initially poor and complex dynamical process lie
behind the data. All of which suggests that a pragmatic mixed strategy is called for,
reinforced by the many approaches in use that combined parametric and nonpara-
metric modeling. If you know nothing about the domain but have enough data (data
rich, hypothesis poor), then machine learning may be the best approach, while if you
know a lot about the domain then, especially if only a small range of data is available
(hypothesis rich, data poor), model learning is surely the best bet. And in between,
knowledge-wise and data-wise, the features of the best-mixed model will no doubt
vary complexly with context.
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Horizontal gene transfer (HGT), 169, 535,

536
genome, 179

Huang breast cancer microarray data set,
127

Minus–Add scatter plot, 127
Huang data matrix, 121
Huang microarray experiment, 123, 125
data set, 142
experimental design, 123
histogram plots, 125

Human cytomegalo virus (CMV) promoter,
48, 497

Human serum albumin (HSA), 46
Human symbiotic system, 536
Hybrid dynamic/static simulation, 367
Hysteresis, 502–504

In silico experiments, 369
In silico genome-scale metabolic models,

356, 372, 376
simulation, 363, 367

In silico microbial models, 369, 372
In vitro compartmentalization (IVC), DNA

methylases evolution, 454
In vitro evolution methods, see SELEX

In vitro evolution process, 567
evolution experiments, 454
schematic concept, 567

In vivo replication experiments, 455–456
In vitro replication experiments, 454
Inducible/repressible enzymes, 25
Ingenuity pathway, 144
Ingenuity pathway analysis (IPA), 137
gene interaction, 135
network, 132, 135

Insulin-like growth factor-2, 36
Intellectual orthodoxy, 597
Intercellular-signaling systems, 480
Intercellular communication system
signal detection, 479
signal generation, 479

Interferon-mediated immune response, 119
Intragenic cis-acting elements, 412
Introns, 29, 184, 450, 616

Kepler’s laws of planetary motion, 622
Kinetic modeling, 595
Kruppel-associated box protein (KRAB), 491

Lac operator, 30
Lac operon, 25, 30, 37,217, 224–226, 259,

260, 262, 290
activity, 259

Lac repressor, 499
Lac repressor protein, 30
Lactate dehydrogenase, 475
Lactose binding sites, 30
Lagging strands, 27
Landing pad sequences array (LPA), 162, 166
array, 166
sequences, 166

Leading strands, 27
Leave-one-out cross-validation (LOOCV)

evaluation, 148
Liquid chromatography-mass spectrometry

(LC-MS), 54
LuxR mutants, 481
LuxR variants, 481

MA scatter plot, 128, 130
Macromolecules, 9, 16, 19, 23, 321, 390, 552,

571
Mad cow disease, 443
Malignant tumors, 116
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Mammalian cell, 426
expression host, 426

Mammalian expression, 421, 423
codon adaptation, 421–423
RNA optimization, 423–424

Mammalian hysteretic switch, 503
genetic design, 503

Mammalian three-level regulatory cascade,
511

Mammalian toggle, 500–502
Man-made operon, 186
Man-made systems, airplanes
Marine microbes, 577
Marine symbiotic bacterium, 579

quorum sensing, 579
vibrio fisheri, 579

Markup languages, 621
Mass spectrometry, 310
Mathematical modeling, 499
Mechanical/electrical control systems, 289
Membrane-bound enzyme complex/

phospho-transferase system(PTS),
251

Membrane bound organelle, 20
Metabolator, 471

flux-carrying network, 473
schematic network diagram, 471

Metabolic control theory (MCT), 53
analysis, 368

Metabolic engineering, 9, 50, 51, 52, 55, 369,
372, 585

gene deletion, amplification/regulation,
376

gene identification, 372
Metabolic fluxes, 473

analysis, 363, 364
driven dynamics, 473
stoichiometric matrices, 363

Metabolic flux analysis markup language
(MFAML), 367

Metabolic map, 628
Metabolic network, 356, 364

reconstruction databases/tools, 356
Metabolic pathways, 23, 24, 364, 376

ADP, 24
AMP, 24
NAD, 24
types, 23

Metabolic profiling technology, 54, 309, 312

Metabolic regeneration, 635
Metabolism/circadian rhythm, 475–476
Metabolites, 171
Metabolome experiment, 310
Metabolomics, 54
Metagenes, 120
Metastasis, 537
Microarrays transcriptomics, 294–300
Microarray analysis of intensities and ratios

(MANINI), 126
analysis, 130
derived gene, 136
detection algorithm, 126–131
detector, 126, 130, 148
gene, 143
signal detection theory, 131–135

Microarray data, 116, 119, 151
Microarray data identifiers, 78
gene ontology (GO) database, 78
GeneBank, 78
Swiss-Prot, 78

Microarray hybridization, 82–84, 118
experimental design/data analysis, 84–85
microarray construction, 82
cDNA labeling, 82
RNA isolation, 82

Microbial cells, 577
Microbial marine microbes, 583
Microstructure/function of cells, 16–21
microstructure/function of cells, 16–21

Minimization of metabolic adjustment
(MOMA), 316, 373

Minus–Add scatter plot, 127
MIT registry, 400, 401
Mitochondria, 20
genome, 162

Model formalism/analysis techniques,
238–250

Modern signal processing, 118
Morpholino nucleosides, 445
Mouse genomic DNA, 184–185
Mouse mtGenome, 162
mRNA,2, 10, 12, 28, 29, 31, 32, 34, 48, 49, 74,

85, 217, 218, 236, 245
genetic code, 33
mRNA cleavage, 32

Multicellular organism, 37
Multimeric DNA fragments, 172
Mycobacterium tuberculosis, 373
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Mycolic acid, 373
Mycoplasma genitalium, 404, 622
Mycoplasma genitarium, 158
Mycoplasma laboratorium, 3
Mycoplasma pneumoniae, 622

NADH, 25, 310
invasion process, 456

NADP-dependent glyceraldehydes-3-
phosphate dehydrogenase (GAPN),
376

NADPH-consuming pathways, 299
Nanostructures/nanodevices, 456
Natural genetic system, 456
Naturalistic paradigm, 625
Network bistability, 498
bacterial toggle, 498–500
hysteresis, 502–504
mammalian toggle, 500–502
oscillator, 504–505
bacterial/repressilator, 505–507
mammalian, 507–509

Neural network models, 144, 147, 533
Newton’s equations, Galilean symmetry

group, 598
NOMAD technology, 400
Noncoding regions, see Introns
Nonequilibrium fluxes display oscillation,

472–474
Noninvasive methods, 53
Nonprotein-coding RNAs, 620
characterization, 620
gene-identification screens, 620
role/size, 620

Nonviral gene delivery, 50
Nuclear magnetic resonance (NMR), 53, 310
Nuclear pores, 19
Nucleic acid engineering, 554
alkaline phosphatases, 554
enzymes, 554
kinases, 554
ligases, 554
nucleases, 554

Nucleic acids, 9–12, 48, 443–447, 448, 549
deoxyribonucleic acid, (DNA), 9, 550
glycol nucleic acid (GNA), 550
introduction, 549
locked nucleic acid (LNA), 550
peptide nucleic acid (PNA), 550

polymorphism, 444
ribonucleic acid, (RNA), 9, 550
structural modification, 444
template-directed synthesis, 448–450
threose nucleic acid (TNA), 550

Nucleoside-based systems, 441
aryl-stacking interactions, 441
molecular presentation, 441

Nucleotide precursors, nucleotide
triphosphates (NTPs), 452

Nucleotide sequence, 10, 276
sequencing method, 293

OGAB-mediated gene, 173
OGAB method, 173, 175
Okazaki fragment, 27, 28
Oligonucleic acids, 567
characterizations, 567–573

Oligonucleotide synthesis, 428
cycle description, 428

Oligonucleotides overlapping assembly,
429

ligase-based methods, 429
PCR primer extension, 429

One-step assembly method, principle, 172
Online data resources, 198–199
Open reading frame, 29
Operon design, plipastatin bioprocess, 175
Operon regulatory model, 31
Ordinary differential equations, 245
Organelle genomes, 176
Organelle genomes/nucleus genome,

architecture, 176
Oscillatory network, 506, 508
genetic architecture, 506
genetic design, 508

Oval-shaped organelles, see Mitochondria

Pattern recognition (PR) model, 120
PBR halves, 160
PBR322 plasmid, 160
PCR amplifications, 454
PCR-amplified genes, 296
PCR-based assembly methods, 429
PCR-based cloning methods, 412
PCR-based gene synthesis techniques, 430
PCR-mediated amplification method, 158
PCR products, 302
Peptide nucleic acid, 444, 550

654 INDEX



Peptide replicator, 442
32-residue a-helical coiled-coil peptide,

441
Peptide self-replication, 441–441

32-residue a-helical coiled-coil peptide,
441

Peptide sequences, 472
Phaeodactylum tricornutum, 585
Phenomenological model, 624
Phylogenetic tree, 413
Physics-like objectives, osmotic pressure,

596
Plant-derived proteins, 45
Plant expression, 419

gene designing, 419–421
Plasma membrane, 49
Plipastatin bioprocess

design operon, 175
schematic presentation, 175

PNA, role, 445
PNA see Peptide nucleic acid
Polymerase chain reaction (PCR), 42, 43,

412
Polysaccharides, 15, 16

D glucose/dextrose, 15
glycosidic linkages, 15
hexose derivatives, 15
polysaccharides, 17
proteins, 16

Population frequency shifts, 594
PpsABCDE operon, 174
PR genes, 584
Probe Design and DNA/cDNA synthesis, 73
Prokaryotic gene expression in vitro, 416

gene designing, 416
Prokaryotic gene expression in vivo, 414–416

expression analysis, 415
gene designing, 414

Prokaryotic/mammalian codon, 419
Proteins, 2, 5, 9, 12–16, 18–20, 23, 26, 28, 29,

38, 40, 43, 46, 55, 70, 88, 288
cellular activities, 12–15
folding, 13
kinases, 38
microarrays, 70–72
peptide bond linkage, 12
posttranslational modification, 35
structure, 12, 13
domain, 13

levels, 13
motifs, 13
synthesis, 34–35, 44

Protein-protein binding constants, 399
Protein-protein interactions (PPI), 301,

319–321
Protein purification techniques, 14
chromatography/electrophoresis, 14

Protein-signaling cascades, 483
Proteomics, 303
gel electrophoresis/LC-MS, 304–306
hybrid system, 306
metabolomics, 309–313
protein arrays, 307–309

Prototype mathematical model, 468
Pulse-generating network, 517
genetic architecture, 518

Quorum-sensing signals, 481

Random/scale-free undirected graphs, 240
Rate-limiting reaction, 53
Rational normative ethics, 276–278
Rationals of gene design, 413
adaptation strategies, 413

Recombinant DNA technology, 40, 45, 392
Recombinant genomes, 158, 160, 175
domino method, 160, 185
genome vector, 158–159
prototype, 160–161
purification, 175–178

Recombinant viruses, 50
Redox metabolism, 299
Regulatory network model, 3
Relaxed error threshold, 452
Replication parasites, 454
Replicators, 439–440
Repressilator, 471
Restriction enzymes, 40, 160, 184, 388, 400,

411, 412, 457, 554, 563
BamHI, 160
EcoRI, 160

Retinal-binding membrane pigments, 584
Reversible enzyme, 473
Ribonucleic acid (RNA), 12, 33, 10, 450, 550
aptamer domains, 401, 443
chemical compositions, 10
induced silencing complex (RISC), 30
interference, 32, 48, 49
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Ribonucleic acid (RNA) (Continued )
molecular presentation, 449
nonenzymatic template-directed synthesis,

449
polymerase molecules, 400
polynucleotides synthesis, 448
protein synthesis modeling, 216
receptors, 450
replicase, 451–452
RNA molecules, 155, 401
self-replication, 450–451
types and functions, 12

Ribosomal RNA sequencing, 624
Ribosome-binding site (RBS), 396, 499
RNA/protein synthesis, 218
constraint-based modeling, 218

RNAi-resistant mRNA transcripts, 276
RNA intermediate, 28, 29, 117, 257, 551. See

also messenger RNA
RNA, see Ribonucleic acid
Robustness system, 532, 536
cancer, 536
genetic heterogeneity, 536
intrinsic features, 533
self-extending symbiosis, 535–536

Robustness theory, 531
mechanisms, 532–533
decoupling/buffering, 532
modularity, 532
redundancy/diversity, 532

S-adenosylhomocysteine (SAH), 482
Saccharomyces cerevisiae, 4, 15, 213, 287,

372
genes, 310, 413
genome, 293, 413

Sample response function (SRF), 122
Schizosaccharomyces pombe, 417
Scientific-industrial revolution, 597–599
Scientific paradigm, 598, 599
Selection marker, 165
Self-directed anticipative organization,

634
Self-extending symbiosis, 535, 538
Self-replication, 439. See also Fidelty/

Heredity
Self-replication/fidelity/heredity, 439
Self-replicating circuits, 455
Self-replicating entity, 452

Self-replicating peptide, 442, 443
prions, 443

Self-replication system, 440
bicyclic transition state, 440

Semisynthetic networks, 519
Sensory networks, 516
band-detection network, 516–517
pulse-generating network, 517–519
signal amplification, 516

Sequence alignment tools
BLAST, 197
FASTA, 197

Sequence-based comparison, 359
Sequence homology, annotated genes, 362
Sequence specific endonucleases, 176
Sequence-specific interaction, 48
Serial analysis of gene expression (SAGE),

300
libraries, 300
technique, 300

Shewanella oneidensis, 81, 585
expression differences, 96–106
transcriptome profiling, 81–82
whole genome cDNA microarray, 83

Shewanella putrefaciens, 585
SCRC-2738, 585

Shotgun genome sequencing
DNA sequences, 70

Sigmoidal Hill function, 245
Signal amplification, 516
Signal processing components, 126
Signal processing SVD/pathway, 142
Signal transduction pathways, 39, 217, 237
receptor tryosine kinases, 39
Wnt receptors, 39

Signaling molecules, 236
Signaling networks, 217, 356
modeling, 217–221

Single-input motif, 243
Single-stranded polynucleotides, 449, 450,

550. See also RNA
Singular value decomposition (SVD),

141–142
compression, 151
Stability-symmetry paradigm, 601
Standardization/Modularity/Orthogonality,

400
Stochastic master equation models, 255–259
model formalism/analysis techniques, 255

656 INDEX



Stoichiometric constraints, 202
Stoichiometric matrix, 201

definition, 201
schematic presentation, 202

Stoichiometric models, 316
Strain improvement microorganisms, 55
Streptomyces coelicolor, metabolic model,

363
Succinic acid, metabolic pathways, 375
Surface-promoted replication and

exponential amplification of DNA
analogues (SPREAD), 450

Synechococcus elongatus, 474
Synechocystis DNA library, 168
Synechocystis genes, 168
Synechocystis genome, 165, 170
Synechocystis PCC6803 Genome, 167

anatomy, 168
megacloning, 167
schematic presentation, 167

Synechocystis ribosomal RNA, 168, 169
Synthetic approach, 467

regulatory and metabolic circuits, 467
Synthetic bioethics, 278–279

emotions/ethical aspects, 278
Synthetic biological circuit, 468, 470
Synthetic biology, 2, 4, 273, 275, 329, 387,

388, 389, 390, 391, 397, 398, 404,
405, 549, 577, 578

dimension reduction, 621
engineering endeavors features, 393
component/device abstraction, 393–394
decoupling fabrication, 393

formation of, 597
genetic circuits, 578
osmotic pressure, 596
potential areas, 397
safety/security aspects, 405–406
systems design/fabrication, 398

Synthetic cell-cell communication circuits,
477–478

Synthetic gene networks, 328, 468, 489, 491,
493

genetic transcriptional components, 493
network building blocks, 490–491
network characterization, 491–494
binary expression, 494–498
bistability, 498
expression stability, 494–496

Synthetic regulatory network, 578
Systematic evolution of ligands by

exponential enrichment (SELEX),
450

Systemsbiology,2, 4, 327,529,593, 594,619,
621, 623

dimension reduction, 619
evolution of organelles, 623–624
integrative physiology, 288–290
osmotic pressure, 596

System dynamics, 288, 290, 313, 329, 625
System-level phases, 530
Systems/synthetic biology issues, 625–633
autonomy, 630
geneticism, 627
intelligence/intentionality, 633
self-organization, 625
Systems biology, prototype, 287
Systems biology markup language (SBML),

210
Systems biology workbench (SBW), 368
Systems biotechnology, 355
Systems paradigm/philosophy, 607–611

Tandemly repeated unit-length DNA
(truDNA), 171

TATA-box, 29, 412
promoter regions, 31

TBP-associated factors, 31
TEM imaging mechanism, 570
Template-directed synthesis, 448, 449
nonenzymatic template-directed ligation,

448
phosphoramidate linkages, 450

Template-driven replicators, 439
Termination codons (UAA, UGA, UAG),

32
TetR-DNA-binding domain, 495
Tetracycline-responsive repressor protein

(TetR), 494
Tetracycline-responsive transactivator (TetR-

VP16), 496, 497
Therapeutic agents, 45
Therminator polymerase, 451
Thermodynamic asymmetry, 631
Thermodynamic equilibrium, 598
Thermodynamics law/conservation, 21
a-L-threose nucleic acids (TNA) strands,

451
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Transcription, 28–31
factors, 238, 242, 243, 251
transcription phase, 28
elongation, 29
inititation, 29
termination, 29

Transcription activator/repressor protein,
binding activity, 30

Transcriptional cascades, 509, 512
genetic architecture, 512

Transcriptional regulatory network, 250
modeling, 221–226

Transgenic animal
Transgenic microorganisms, 43
Transgenic plant, 46
Translation, 26, 31–35
Transmissible spongiform encephalopathies

(TSEs), 443
Transmission electron microscopy, 569–571
Tricarboxylic acid cycle (TCA), 468
tRNA-encoding genes, 417
Tumor-associated macrophage (TAM), 537,

540
Tumor cells, 537
Tumor mass reduction therapy, 541
chromosomal instability, 541
drug efficacy, 541

Two-tile system DNA nanogrids, 560

Universal approximator, 146
Upstream activator sequence (UAS), 30
UV spectroscopy, 567

Vectors/plasmids, 40, 42, 48–50, 55, 69, 122,
156, 162, 167, 176, 181, 184, 187

Violet-colored pigment, 163
Viral/nonviral vectors, 49

Water-in-oil (W/O) emulsions, 453
Watson Crick model, 10, 443
Wavelet signal processing, 137, 151
Weak acids/promoter interaction, 479
Whole-genome sequences, 619
expression profiles, 115, 122
experimental design, 122

expression profiling studies, 129
Wild-type GFP gene, 420
World Health Organization, 115
WSVD/IPA signal processing, 142
WSVD signal processing, 141

Yeast artificial chromosome (YAC) vector, 40
Yeast cell expression, 416
gene designing, 416–419

Yeast systems biology network, 331
mitochondrial disorders, 333
nutrient sensing/metabolic response, 333
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