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Preface
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work. Thus, the Editors would also like to thank the new publisher, especially Ms.
Maaike Oosting and Dr. John Martin, for their interest and open-mindedness, which
helped to finish this project in time. 
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the authors’ diligence that has made these volumes as complete and timely as was
Volume 1 on its publication in 1993.

Hugo Kubinyi, BASF AG, Ludwigshafen, Germany
Gerd Folkers, ETH Zürich, Switzerland
Yvonne C. Martin, Abbott Laboratories, Abbott Park, IL, USA 
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Preface

Significant progress has been made in the study of three-dimensional quantitative
structure-activity relationships (3D QSAR) since the first publication by Richard
Cramer in 1988 and the first volume in the series. 3D QSAR in Drug Design. Theory,
Methods and Applications, published in 1993. The aim of that early book was to
contribute to the understanding and the further application of CoMFA and related
approaches and to facilitate the appropriate use of these methods.

Since then, hundreds of papers have appeared using the quickly developing techniques
of both 3D QSAR and computational sciences to study a broad variety of biological
problems. Again the editor(s) felt that the time had come to solicit reviews on published
and new viewpoints to document the state of the art of 3D QSAR in its broadest
definition and to provide visions of where new techniques will emerge or new applica-
tions may be found. The intention is not only to highlight new ideas but also to show the
shortcomings, inaccuracies, and abuses of the methods. We hope this book will enable
others to separate trivial from visionary approaches and me-too methodology from inno-
vative techniques. These concerns guided our choice of contributors. To our delight, our
call for papers elicited a great many manuscripts. These articles are collected in two
bound volumes, which are each published simultaneously in two related series: they form
Volumes 2 and 3 of the 3D QSAR in Drug Design series which correspond to volumes
9-11 and 12-14, respectively, in Perspectives in Drug Discovery and Design. Indeed, the 
field is growing so rapidly that we solicited additional chapters even as the early chapters
were being finished. Ultimately it will be the scientific community who will decide if the
collective biases of the editors have furthered development in the field.

The challenge of the quantitative prediction of the biological potency of a new mole-
cule has not yet been met. However, in the four years since the publication of the first
volume, there have been major advances in our understanding of ligand-receptor inter-
action s, molecular similarity , pharmacophore s, and macromolecular structures. 
Although currently we are well prepared computationally to describe ligand-receptor
interactions, the thorny problem lies in the complex physical chemistry of inter- 
molecular interactions. Structural biologists, whether experimental or theoretical in 
approach, continue to struggle with the field’s limited quantitative understanding of the 
enthalpic and entropic contributions to the overall free energy of binding of a ligand to a 
protein. With very few exceptions, we do not have experimental data on the thermo- 
dynamics of intermolecular interactions. The recent explosion of 3D protein structures 
helps us to refine our understanding of the geometry of ligand-protein complexes. 
However, as traditionally practiced, both crystallographic and NMR methods yield 
static pictures and relatively coarse results considering that an attraction between two 
non-bonded atoms may change to repulsion within a tenth of an Ångstrom. This is well 
below the typical accuracy of either method. Additionally, neither provides information 
about the energetics of the transfer of the ligand from solvent to the binding site. 
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With these challenges in mind, one aim of these volumes is to provide an overview of
the current state of the quantitative description of ligand-receptor interactions. To aid
this understanding, quantum chemical methods, molecular dynamics simulations and
the important aspects of molecular similarity of protein ligands are treated in detail in
Volume 2. In the first part ‘Ligand-Protein Interactions,’ seven chapters examine the
problem from very different points of view. Rule- and group-contribution-based ap-
proaches as well as force-field methods are included. The second part ‘Quantum 
Chemical Models and Molecular Dynamics Simulations’ highlights the recent ex-
tensions of ab initio and semi-empirical quantum chemical methods to ligand-protein
complexes. An additional chapter illustrates the advantages of molecular dynamics 
simulations for the understanding of such complexes. The third part ‘Pharmacophore
Modelling and Molecular Similarity’ discusses bioisosterism. pharmacophores and
molecular similarity, as related to both medicinal and computational chemistry. These 
chapters present new techniques, software tools and parameters for the quantitative 
description of molecular similarity. 

Volume 3 describes recent advances in Comparative Molecular Field Analysis and 
related methods. In the first part ‘3D QSAR Methodology. CoMFA and Related 
Approaches’, two overviews on the current state, scope and limitations, and recent 
progress in CoMFA and related techniques are given. The next four chapters describe 
improvements of the classical CoMFA approach as well as the CoMSIA method, an 
alternative to CoMFA. The last chapter of this part presents recent progress in Partial
Least Squares (PLS) analysis. The part ‘Receptor Models and Other 3D QSAR
Approaches’ describes 3D QSAR methods that are not directly related to CoMFA, i.e., 
Receptor Surface Models, Pseudo-receptor Modelling and Genetically Evolved 
Receptor Models. The last two chapters describe alignment-free 3D QSAR methods. 
The part ‘3D QSAR Applications’ completes Volume 3. It gives a comprehensive 
overview of recent applications but also of some problems in CoMFA studies. The first 
chapter should give a warning to all computational chemists. Its conclusion is that all 
investigations on the classic corticosteroid-binding globulin dataset suffer from serious
errors in the chemical structures of several steroids, in the affinity data and/or in their 
results. Different authors made different mistakes and sometimes the structures used in 
the investigations are different from the published structures. Accordingly it is not poss-
ible to make any exact comparison of the reported results! The next three chapters 
should be of great value to both 3D QSAR practitioners and to medicinal chemists, as 
they provide overviews on CoMFA applications in different fields, together with a 
detailed evaluation of many important CoMFA publications. Two chapters by Ki Kim 
and his comprehensive list of 1993-1997 CoMFA papers are a highly valuable source 
of information. 

These volumes are written not only for QSAR and modelling scientists. Because of 
their broad coverage of ligand binding, molecular similarity, and pharmacophore and
receptor modelling, they will help synthetic chemists to design and optimize new leads,
especially to a protein whose 3D structure is known. Medicinal chemists as well as agri-
cultural chemists, toxicologists and environmental scientists will benefit from the de-
scription of so many different approaches that are suited to correlating structure–activity 
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Progress in Force-Field Calculations of Molecular Interaction 
Fields and Intermolecular Interactions 

Tommy Liljefors
Department of Medicinal Chemistry, Royal Danish School of Pharmacy, Copenhagen, Denmark 

1. Introduction

In the force-field (molecular mechanics) method [1], a molecule is considered as a col-
lection of atoms held together by classical forces. These forces are described by para-
meterized potential energy functions of structural features like bond lengths, bond
angles, torsional angles, etc. The energy of the molecule is calculated as a sum of terms
(Eq. 1).

(1)
The first four terms in Eq. 1 describe the energies due to deviations of structural features
and non-bonded distances from their ‘ideal’ or reference values, Eelectrostatic is the energy 
contribution due to attraction or repulsion between charges (or dipoles) and some force-
fields use a special hydrogen-bonding term, Ehydrogen Bond. Additional terms are required
— e.g. for calculations of vibrational frequences and thermodynamic quantities.

Force-field calculations [l–3] are used in many research areas aiming at an under-
standing, modelling and subsequent exploiting of structure-activity/property relation-
ships. Such areas include conformational analysis, pharmacophore identification, ligand
docking to macromolecules, de novo ligand design, comparative molecular field analy-
sis (CoMFA) and identification of favorable binding sites from molecular interaction 
fields. Although ab initio quantum chemical computational methodology [4] today is
competitive with experiments in determining a large number of molecular properties, 
force-fields are commonly used due to the prohibitive amounts of computer time 
required for high-level ab initio calculations on series of drug-sized molecules and on
large molecular systems as those involved in ligand-protein interactions. For cal-
culations of, for example, molecular structures and conformational energies force-field
calculations may give results in excellent agreement with experiments, provided that the 
force-field parameters involved in the calculations have been accurately determined 
[1,5].

The force-fields used for calculations of molecular interaction fields and inter-
molecular interactions vary from very simple force-fields as those commonly used in 
CoMFA 3D QSAR studies [6] to the more sophisticated force-field used for the cal-
culation of molecular interaction fields by the GRID method [3,7-1 l], and the complex 
force-fields required for calculations of complexation energies and geometries of 
general intermolecular interactions between complete molecules [2]. 

The aim of this chapter is to review and discuss some recent developments and evalu-
ations of force-fields used for the calculations of molecular interaction fields and inter-
molecular energies and geometries. The review is not meant to be exhaustive, but some 

H. Kubinyi et al. (eds.), 3D QSAR in Drug Design, Volume 2. 3-17.
© 1998 Kluwer Academic Publishers. Printed in Great Britain. 

E = Estretching + Ebending + Etorsion + Evan der Waals + Eelectronic
+ Ehydrogen band + other terms
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recent studies have been selected to illustrate important current directions in the de-
velopment of force-fields and in their use in connection with 3D QSAR studies and cal-
culations of molecular interaction fields and intermolecular interactions. Thus, 
relationships between the quality of the force-field and the results of a CoMFA 3D
QSAR study will be discussed in the light of some recent investigations. New develop-
ments in the computations of molecular interaction fields by the GRID method will be
described, and recent developments in the calculations of intermolecular energies and
geometries for the biologically important cation-π and π–π systems will be reviewed.

2.

The force-field commonly used in a CoMFA QSAR study is very simple and includes
only two terms, a Lennard-Jones 6-12 potential for the van der Waals (vdW) inter-
actions and a Coulomb term for the electrostatic interactions with the probe. 
Considering the large number of successful CoMFA QSAR studies which have been
reported [12], these two terms seem to be sufficient in most cases. It may be expected
that a hydrophobic field and/or an explicit hydrogen-bond potential may, in some cases,
be advantageous. However, more experience with the inclusion of such fields is
necessary before a firm conclusion may be drawn. 

No systematic comparison of different force-fields in connection with CoMFA
studies has been undertaken. However, some interesting case studies have recently been 
reported. Folkers et al. have reviewed the results of CoMFA QSAR studies employing
the GRID force-field and the standard (Tripos) CoMFA force-field [13].The two force-
fields are significantly different. For instance, the atomic charges employed in the
calculation of the electrostatic interactions are significantly different. The GRID force-
field also includes a sophisticated hydrogen-bonding potential [8–10]. Folkers et al.
concluded that the GRID force-field generally gives better results in terms of Q2 and
standard error of prediction than the standard CoMFA force-field for an uncharged
methyl probe in cases where only the steric field contributes to the correlation. When
steric and electrostatic fields contribute more equally to the correlation, the force-fields 
tested give very much the same results.

Two recent studies, discussed below, further illuminate the question of the force-field
dependence in CoMFA QSAR studies.

2.1.

Instead of using the standard Lennard-Jones 6-12 potential, Kroemer and Hecht [14],
mapped all atoms in the target molecules directly onto a predefined grid and for each
atom checked if the center of the atom is inside or outside cubes defined by the grid.
Depending on the outcome of this check, different values (0.0 or 30.0) were assigned to
the grid point at the corresponding lattice intersection. These atom-based indicator vari-
ables correspond to what is obtained by using a simple hard-sphere approximation (with 
energy cutoff) for the calculations of vdW interactions. The indicator variables were 
used as the ‘steric field’ in a CoMFA QSAR study on five sets of dihydrofolate reduc-

CoMFA QSAR: Is there a Force-Field Dependence? 

The steric field: Is an explicit vdW potential sequired? 
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tase inhibitors and the results were compared to those obtained by using the standard
CoMFA method. A similar approach has previously been reported by Floersheim et al. 
[15]. However, in this study, the vdW surfaces of the molecules were used for the com-
putations of a ‘shape potential’ and values of 0 or 1 were assigned to grid points 
depending on whether the points were located within or outside the surface.

In terms of Q² and predictive r², the study by Kroemer and Hecht shows that the use
of atom-based indicator variables gives results at least as good as those obtained by 
using the 6-12 Lennard-Jones potential in the standard CoMFA method. Thus, in the 
context of a CoMFA QSAR analysis, a step function as the one employed by Kroemer
and Hecht, gives a description of the variation in the shapes of the molecules in 
the dataset of similar quality (or usefulness) as the Lennard-Jones 6-12 potential. An 
interesting point is that, in contrast to standard CoMFA QSAR, the use of a finer grid
(< 2 Å) in conjunction with the indicator variables improved the results significantly.
This study indicates that in general, there seems to be little to gain from fine-tuning the
Lennard-Jones 6-12 potential for CoMFA QSAR studies or introducing more accurate 
functions as, for instance, exponential functions [1] for the calculation of the vdW field.
However, considering the results obtained by Folkers et al. for the GRID versus Tripos 
CoMFA force-fields described above, an exception to this may be cases for which the 
van der Waals field is the strongly dominating contributor to the correlation.

2.2.

The accurate calculation of the electrostatic contribution is clearly the most problematic
part in the calculation of intermolecular energies and geometries by force-field methods 
[16]. The results of such calculations, in general, very much depend on the quality of 
the charge distribution employed and also on a proper balance between the electrostatic 
term and the rest of the force-field. Is there a similar strong dependence of the charge 
distribution used on the results of a CoMFA QSAR study?

In a CoMFA analysis of 49 substituted benzoic acids, Kim and Martin found that
AMI partial charges performed better than STO-3G ESPFIT charges in reproducing
Hammett σ constants [17]. The results were also found to be superior to those obtained
by using regression analysis of the charges. Folkers et al. [13] studied the influence of
the charge of the probe and the charge distribution of the target molecules for a set of
24 N²-phenylguanines. The probes used were a sp³ carbon probe with charge +1, and
oxygen probes with charges –0.85, –0.5 and –0.2, respectively. Three sets of atom- 
centered partial charges were used for the phenylguanines: (i) Gasteiger-Marsili charges 
[18] (default Tripos CoMFA charges); (ii) Mulliken charges calculated by semi-
empirical quantum chemical methodology (the Hamiltonian was unfortunately not 
reported); and (iii) charges obtained by linear least-squares fitting of atom-centered
point charges to the electrostatic potential calculated from the semiempirical wave func- 
tion (ESP-charges [19]). The vdW field was calculated by the standard Lennard-Jones
6-12 function. The use of the different probes gave significantly different Q² values and 
contributions of the fields, but the different atomic charge schemes resulted in similar 
statistical parameters. 

The eIectrostatic field: what quality of the charge distribution is required? 
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Recently, Kroemer et al. [20] have extended this type of study to include a large
variety of different methods to calculate the electrostatic field of 37 ligands at the ben-
zodiazepine inverse agonist site. A total number of 17 different charge schemes was
evaluated, including empirical charges (Gasteiger-Marsili), charges obtained from semi- 
empical quantum chemical methods (MNDO, AM1, PM3) and from ab initio quantum
chemical methods at the Hartree-Fock level, employing three different basis sets
(HF/STO-3G, HF/3-2IG*, HF/6-31G*). The semiempirical and ab initio atom-centered
partial charges were calculated by a Mulliken population analysis. as well as by linear
least-squares fitting of atom-centered point charges to reproduce the calculated electro-
static potential (ESP-charges). In addition, the molecular electrostatic potentials cal-
culated by using the HF/STO-3G, HF/3-21G* and HF/6-31G* basis sets were directly
mapped onto the CoMFA grid. In all cases, a sp³ carbon probe with a charge of +1 was
used. The vdW field was calculated in the standard way by a Lennard-Jones 6-12
potential and the results were compared to standard CoMFA QSAR.

All 17 charge schemes resulted in good models in terms of Q² (0.61–0.77)and stan-
dard error ofprediction (0.76–0.94). Although the different charge distribution schemes
were obtained at very different levels of theory, in the context of CoMFA QSAR studies
and the resulting statistical parameters there is hardly any significant difference. The
electrostatic fields calculated by the various methods were, in many cases, shown to be
strongly correlated. However, even with a low correlation between fields e.g.
between the semiempirically calculated Mulliken charges and the directly mapped elec-
trostatic potentials employing the STO-3G basis set (r² = 0.62–0.66) — the results in 
terms of Q² arc very similar (0.61-0.72).

In contrast to the similarity of the statistical parameters in the study discussed above,
the contour maps obtained by using different charge distribution schemes may differ
significantly. This has consequences for the use of contour maps in terms of a physico- 
chemical interpretation of intermolecular interactions and for the use of such maps in
the design of new compounds. Different charge distribution schemes may give contour
maps which lead the design process in different directions. The charge scheme which is
the ‘best’ one in this respect cannot unambiguously be selected on the basis of the
statistical parameters obtained. 

3. Recent Developments of the GRID Method for the Calculation of Molecular
Interaction Fields 

The GRID method developed by Goodford [7–11] is designed for calculation of inter-
actions between a probe (a small molecule or molecular fragment) and a macromolecu-
lar system of known structure in order to find energetically favorable sites for the probe.
A large number of probes including multi-atom probes are provided. The GRID method
is very carefully parameterized by fitting experimental data for proteins and small mole-
cule crystals. In addition to its primary use to find favorable probe sites in macro-
molecules, the interaction fields calculated by the GRID method have also been used
extensively in 3D QSAR studies as a replacement of the electrostatic and steric fields of
standard Tripos CoMFA. Wade has reviewed the GRID method and its use for ligand

6
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design, ligand docking and 3D QSAR [21]. Recently, Goodford has reviewed the
GRID force-field and its use in multivariate characterization of molecules for QSAR 
analysis [11].

In calculations of molecular interactions fields, a static target is generally used. With
some exceptions (see below), this has also been the case for calculations using the
GRID method. In the most recent version of GRID (version 15) [22], new features
taking target flexibility into account have been introduced. These important new fea-
tures are discussed below. In addition, a new hydrophobic probe developed by
Goodford and included in the GRID method is described. It should be noted that these
additions to the GRID method are all very new and no publications in which these
features have been used have yet appeared.

3.1. Identification of energetically favorable probe sites in hydrogen-bond interactions 

Hydrogen bonding is extremely important in ligand-protein interactions and therefore
Goodford and co-workers have spent much effort in developing a sophisticated and
carefully parameterized methodoly for the calculation of hydrogen-bonding inter- 
actions [8–10]. GRID has always taken torsions about the C−O bond in aliphatic al- 
cohols into account. Thus, in the interactions between an aliphatic alcohol and a probe
which can accept or donate a hydrogen-bond, the hydrogen atom and the lone pairs of
the hydroxyl group are allowed to move without any energy penalty in order to find the
most favorable binding energy between the probe and the target. For instance, for the
interaction between methanol and a water probe, virtually identical interaction energies
are calculated for a staggered and eclipsed probe position with respect to the methyl
hydrogens in methanol (Fig. 1). 

However, the energy difference between eclipsed and staggered methanol is cal-
culated to be 1.4 kcal/mol by ab initio HF/6-31G* calculations [23]. If an eclipsed
probe position results in an eclipsed conformation of methanol, there should be a 
significant energy penalty for the eclipsed arrangement shown in Fig. 1, relative to the
staggered one. To investigate this, ab initio calculations (HF-6-31G*) were undertaken
for the two hydrogen-bonded complexes by locking the O–O–C–H dihedral angle (indi- 
cated by asterisks in Fig. 1) to 180 (staggered) and 0 degrees (eclipsed), respectively, 
but optimizing all other degrees of freedom, including the position of the hydrogen

Fig. I. Staggered and eclipsed positions of H 2O in its hydrogen-bond interaction with methanol as the 
hydrogen-bond donor.

7
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Fig. 2. Staggered and eclipsed positions of H2 O in its hydrogen-bond interaction with methanol as the hy-
drogen-bond acceptor Note that methanol prefers to be in a staggered conformation in both complexes. The
asterisks mark the atoms of the dihedral angle locked in the calculations.

atom involved in the hydrogen-bond [23]. The energy difference between the eclipsed
and staggered arrangements in Fig. 1 was calculated to be 1.1 kcal/mol, only slightly
lower than that for the corresponding conformations in methanol itself. Due to the 
strong directionality of the hydrogen-bond in this case, an eclipsed position of the water 
oxygen also leads to an eclipsed conformation of the methanol part of the complex. 
Thus, it can be concluded that there is an energy penalty of approximately 1 kcal/mol 
for the hydrogen-bonded eclipsed complex in Fig. 1 relative to the staggered one. If the
hydrogen atom marked by an asterisk in the methanol part is replaced by a methy1
group, this energy penalty increases to about 2 kcal/mol. The results are very similar for
the interaction between a carbonyl group and an aliphatic alcohol as hydrogen-bond
donor.

When methanol is acting as a hydrogen-bond acceptor. the situation is different. The
two hydrogen-bonding arrangements shown in Fig. 2 are calculated to have very similar
energies [23]. The reason for this is that due to the delocalized character of the lone
pairs on the methanol oxygen atom, methanol can be staggered in both hydrogen-

Fig. 3.  GRID maps for ethonol interacting with a carbonyl oxygen probe. The left map (a) shows favorable 
interaction sites calculated by GRID version 14 or earlier, whereas (b) shows the corresponding map
calculated by GRID version 15. The hydroxy hydrogen atom is shown in one of its rotemeric slates. 
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bonded complexes. Thus, the energy increasing eclipsing in the methanol part of the 
complex is avoided.

GRID version 15 includes a new energy function which takes the findings discussed
above into account. Probes which can both accept and donate a hydrogen-bond (e.g.
H2O) may in the new version turn around compared to earlier versions of GRID and
give rise to a new interaction geometry. For interactions with probes which cannot turn 
around (e.g. the carbonyl probe), the hydrogen-bond energy may by significantly dimin-
ished in unfavorable probe positions and thus give significant changes to the GRID
contour map compared to earlier GRlD versions. This is illustrated in Fig. 3 which dis- 
plays GRID maps for the interaction between ethanol and a carbonyl oxygen probe cal-
culated by GRID with version number ≤ 14 (Fig. 3a) and GRID version 15 (Fig. 3b).

Recently, Mills and Dean have reported the results of an extensive investigation of 
hydrogen-bond interactions in structures in the Cambridge Structural Database [24].
This study provides 3D distributions of complementary atom about hydrogen-bonding
groups. Scatterplots and cumulative distribution functions clearly demonstrate that
hydrogen-bond accepting groups interacting with a hydroxyl group prefer a staggered
position, as in the left structure in Fig. 1, while hydrogen-bond donating groups are
much less localized. This is in nice agreement with the findings discussed above.

3.2. Target flexibility

An important limitation in calculations of molecular interaction fields is that flexibility
of the target is not taken into account. In 3D QSAR studies, ‘side-chain’ conformations
in the target molecules are often more or less arbitrarily assigned when the bioactive
conformations are unknown and this may give misleading results. In ligand-protein
interactions, amino acid side chains may adopt different conformations i n order to better
accommodate or better interact with a ligand. Of course, the analysis (GRID or
CoMFA) may be repeated for several different conformations, but this is prohibitively
time-consuming, especially in the case of side-chain conformations in proteins.

As discussed above, the GRID method has always taken some flexibility of the target
into account. However, side chains in the target have remained fixed in their input
conformations. A very interesting new development of the GRID method is the imple-
mentation of algorithms which take conformational flexibility of amino acid side chains
into account, allowing them to be attracted or repelled by the probe as the probe is 
moving around [22]. The new algorithm is primarly intended for proteins but it may. in
some cases, also be used for ‘side-chains’ in non-protein molecules. The amino acids
currently supported are arginine, aspartate. asparagine, glutamate, glutamine, isoleucine,
leucine, lysine, methionine, serine, threonine and valine.

The algorithm works by dividing the target molecule into an inflexible core and a
flexible side chain on an atom basis. This is automatically done by the program allowing
for differences in the local environment of the side chain. However, the user may over-
ride the default by forcing atoms into the core or out of the core into the flexible side-
chain part.

9
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So far, there is only limited experience with the ‘flexible side-chain’ option, but it is
clear that this new feature in the GRID method is a very important step forward in the
calculations of molecular interaction fields. This feature should significantly improve
the description of energetically favorable probe locations and should be very useful in,
for instance, ligand design and ligand docking.

3.3. The hydrophobic probe

To the library of GRID probes a hydrophobic probe has recently been added (probe
name DRY [22]). The hydrophic probe is designed to find locations near the target
surface where the target molecule may favorably interact with another molecule in an
aqueous environment. The energy expression for the hydrophic probe is shown in Eq. 2.

E = EENTROPY + E LJ – EHB (2)

The basic assumptions behind the construction of the probe is that the water ordering 
responsible for the entropic contribution to the hydrophobic effect is due to hydrogen-
bonds between water molecules at nonpolar (undisturbed) target surfaces. On binding of
a hydrophobic molecule, the ordered water molecules are displaced and transfered into
less ordered (higher entropy) bulk water. This is an energetically favorable process
(EENTROPY). Dispersion interactions between the two hydrophobic molecules adds to the
favorable energy (ELJ). The ordering of water at the nonpolar surface may be disturbed
by polar target atoms which form hydrogen-bonds to water molecules. This decreases
the order (increases the entropy) of the water molecules at the surface and, con-
sequently, diminishes the hydrophobic effect (EHB). In addition, there are breaking of
hydrogen-bonds which is enthalpically unfavorable. EENTROPY is calculated from the
assumption that the ordered water molecules at a nonpolar surface will form on the
average three out of the theoretically four possible hydrogen-bonds per oxygen atom.
This gives four permutations for three out of four possible hydrogen-bonds and 
EENTROPY may thus be cal culated by Eq. 3.

EENTROPY = –RT 1n4 (3)

R is the gas constant (1.987 × 10–3 kcal/mol/K) and T = 308 K. This entropic con-
tribution is assumed to be constant at an undisturbed surface. 

Dispersion interactions (ELJ) are calculated by using the Lennard-Jones function and
a water probe. EHB which measures the hydrogen-bond interactions between water
molecules and polar functional groups of the target is calculated by using the hydrogen-
bond function of the GRID force-field.

The hydrophobic probe, in general, gives wide and shallow minima. This implies that
the variance of the hydrophobic energies is small. Therefore, PLS methods which
cluster grid points into chemically meaningful regions [25] should be employed if the
hydrophobic fields are to be used as input to CoMFA/PLS. Scaling of the fields should 
not be done. As the energies obtained by using different GRID probes are already
scaled, further scaling of GRID fields is inappropriate [ 26]. 
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4.

Aromatic ring systems are of immense importance in drugs. Bemis and Murcko ana- 
lyzed 5210 known drugs i n the Comprehensive Medicinal Chemistry database [27].
Among the 41 most common frameworks, 29 contain aromatic rings and benzene
(phenyl) was found to be the most common one. 

The benzene ring system, the prototypical aromatic system. has very unique proper-
ties. It does not have a permanent dipole moment and is, in that sense, a nonpolar mole- 
cule. However, it has a strong quadrupole moment. The electrostatic potential of
benzene leads to strong attraction of a cation to the π-face of the ring system (cation–π
interactions: Fig. 4). Thus, benzene and related aromatic systems may be considered as
‘hydrophobic anions’ [28].

Amino acids containing aromatic side-chains as phenylalanine, tyrosine and trypto-
phan play an important role in protein structure and function. Thus, the understanding
of intermolecular interactions involving aromatic systems and the ability to model such 
interactions are of crucial importance for computational studies of ligand-receptor com-
plexes. These types of interactions have received considerable attention during recent
years. Significant progress in the understanding of the nature of cation-π interactions
and π–π interactions and the computational problems involved in the force- field cal- 
culations of such interactions have recently been made.

4.1. Cation–π interactions

The binding of cations to the π-face of benzene involves large binding energies. For 
instance, the binding enthalpy of Li+-benzene in the gas phase is 38 kcal/mol and the
corresponding binding enthalpy of NH4

+-benzene is 19 kcal/mol [28]. This strong inter- 
action with cations in fact makes the benzene ring competitive with a water molecule in
binding to cations. The K+-H2 O and the K+-benzene complexes have binding enthalpies 
of 18 and 19 kcal/mol, respectively [28]. It has been demonstrated that cyclophanc
hosts made up of aromatic rings are able to strongly bind cations including quaternary
ammonium ions in aqueous solution [29].

For a long time, it was generally believed that the quaternary positively charged
ammonium group of acetylcholine was interacting with an anionic site in acetylcholine
esterase. However, i t is now clear that acetylcholine in its binding to its esterase inter-
acts via cation–π interactions with aromatic ring systems, in particular to tryptophan 

Force-Field Calculations of Cation–π and π–π Complexes

Fig. 4.   Cation-π  interactions
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(W84) [30]. The importance of cation–π interactions in chemistry and biology has 
recently been reviewed by Dougheity [28].

Standard high-quality force-field methods seriously underestimate cation–π inter- 
actions. For example, the interaction enthalpy of NH4

+-benzene is underestimated by as
much as 5.8 kcal/mol even if high-quality atom-centered electrostatic potential derived 
charges are used, charges which accurately reproduce the quadrupole moment of
benzene [3 1]. 

Recently, high-level ab initio calculations have provided insight into the nature of
cation–π interactions. On the basis of MP2/6-311+G** calculations, which give very 
good agreement with experiments (binding enthalpies as well as free energies) for the
ammonium ion-benzene complex. Kim et al. [32] conclude that, in addition to
charge-quadrupole interactions, correlation effects (dispersion energies) and polar-
ization of the benzene electron distribution by the cation give very important con- 
tributions to the complexation energy. The failure of standard molecular mechanics
force-fields to handle cation–π interactions can, to a large part. be attributed to the fact
that polarization effects are not taken into account.

In general, molecular mechanics force-fields include only two-body additive potential
functions. Non-additive effects as polarization have only recently been included.
Caldwell and Kollman have developed a molecular mechanics force field which explic-
itly includes polarization and also includes non-additive exchange-repulsion [33]. This
force-field excellently reproduces the complexation enthalpy of alkali cations-benzene
and ammonium ion-benzene. Thus, as has previously been shown in other cases. for
instance in the calculations of hydration free energies of ions [34], the inclusion of
non-additive effects such as polarization is necessary for force-field calculations of
intermolecular interactions involving ions.

In a recent study, Mecozzi et al. [35] show that the variation in cation (Na+) binding
abilities to a series of aromatic systems surprisingly well correlates to the electrostatic
potential at the position of the cation i n the complex. Thus, virtually all variation in
binding energy is reflected in the electrostatic term.
Cation–π interactions are not only limited to full cations, as ammonium ions and
alkali cations but also polar molecules as H2O, NH 3 and other molecules with partial 
positive charges display this type of interaction with the π-face of benzene, albeit with 
weaker interaction energies [36,37]. This makes the cation–π type of interactions of 
great importance for the understanding of ligand–protein interactions.

The strong attractive interactions between cations and the π-face of benzene and
related aromatic ring systems have been used as an argument for a proposed stabil-
ization of the putative ion-pair interaction between the ammonium group of aminergic
neurotransmitters and an aspartate side-chain in their receptors. In models of the
binding site of these receptors, the aspartate residue is surrounded by highly conserved 
aromatic residues [38]. However, it has recently been shown on the basis of ab initio
calculations that the stabilization of an ion pair by benzene is very much smaller than 
the stabilization of an isolated cation [39]. In fact, the stabilization provided is not
sufficient to prevent hydrogen transfer from the ammonium ion to the carboxylate ion 
giving the intrinsically more stable amine-carboxylic acid complex. However, a pro-

12
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perly located water molecule in conjunction with a dielectric continuum may provide
the required stabilization [40]. 

The progress made in the understanding of cation–π interactions during recent years
has provided developers of molecular interaction fields and force-fields for calculations
of inermolecular interactions with much valuable insight.

4.2.  π–π interactions

The benzene-benzene interaction. the prototypical π–π interaction, is of great import- 
ance due to its role in the stability of proteins and in ligand-protein binding. Although it
was pointed out more than 20 years ago that benzene crystal data could not be fitted
without introducing electrostatics [41],in the context of force-field calculations benzene
continued for a long time to be considered as a nonpolar molecule interacting with other 
molecules or molecular Cragments only via non-bonded vdW interactions. However,
computational problems with such a model became increasingly evident [42].

A T-shaped type of arrangement of aromatic rings (Fig. 5) is strongly preferred in
protein structures [43–45]. High-level ab initio calculations show the T-shaped complex
to be significantly more stable than the stacked one [46]. However, a ‘parallel-
displaced’ or tilted ‘parallel-displaced’ structure may be slightly more stable than the
T-shaped one [42,47]. Although attractive vdW non-bonded interactions (dispersion) 
favor the stacked structure. the electro tic interactions (quadrupole-quadrupole) which
are attractive for the T-shaped arrangement but repulsive for the stacked one determine 
the preference for the T-shape. 

Recently, Chipot et al. [46] employed potential of mean force calculations on the 
benzene dimer and toluene dimer in the gas phase and in water. They find the T-shaped 
benzene dimer in gas phase to be lower in free energy than the stacked structure. 
Interestingly, in the toluene case, their simulations indicate that the stacked arrangement 
is slightly preferred. The results of the force-field calculations are supported by high- 
level ab initio calculations. The same difference in orientational preferences are found 

Fig. 5. Geometries of the benzene dimer.
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in simulations for aqueous solution. This leads to the provocative question if the
benzene dimer really is a good model for π–π interactions in proteins. The authors con-
clude that the rarity of stacked arrangements of phenylalanine side-chains in protein 
structures should be explained by other factors than quadrupole-quadrupole inter-
actions. They propose that steric and other interactions with neighboring functional 
groups should additionally be considered.

From a force-field point of view, a very interesting point in this study is the demonstra- 
tion that atom-centered point charges obtained by least squares fitting to ab initio calcu-
lated (6-31G**) electrostatic potentials accurately reproduce quadrupole moments and 
even higher-order multipole moments of benzene and toluene. Thus, such charges are
sufficiently accurate to treat quantitatively the important qadrupole-qudrupole interactions
in the dimers. If this also holds for other types of aromatic systems remains to be studied.

5.      Summary and concluding remarks 

Recent case studies on the force-field dependence of the results obtained by the CoMFA
3D QSAR methodology indicate that, in general, the use of a higher-quality force-field 
does not seem to lead to a significantly better 3D QSAR model in terms of statistical para- 
meters (Q² and standard error of prediction). In particular, the statistical parameters seem
to be quite insensitive to the quality of the charge distribution used for the calculations of 
the electrostatic field. However, the contour plots derived from the analysis may show 
significant differences. Whether a force-field based on a higher level of theory also pro-
duces contour plots better suited for the design of new analogs remains to be studied. 

Significant developments of the force-fields in Goodford’s GRID method for the cal-
culation of molecular interactions fields have recently been made. The most important 
new feature is that the flexibility of target side-chains may optionally be taken into 
account. In addition, the calculation of directional preferences in hydrogen-bonding to 
aliphatic alcohols has been improved and a hydrophobic probe has been included in the 
GRID library of probes. 

Progress in the understanding of intermolecular interactions of the biologically 
important cation–π and π–π type has demonstrated that such interactions can be quan- 
titatively modelled by force-field calculations. However, explicit inclusion of polar-
ization is required in the cation–π case. It has also been demonstrated that using 
atom-centered point charges obtained by least-squares fitting to ab initio calculated
electrostatic potentials, quadrupole moments and also higher-order multipole moments
of benzene and toluene can be accurately reproduced. Atom-centered point charges, can
in this case, be used to quantitatively calculate dimer properties for which quadrupole-
quadrupole interactions are important.
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1. Introduction

Classical regression techniques have long been used to correlate the properties of
a series of molecules with their biological activities in order to derive quantitative
structure–activity relationships (QSAR) to assist the design of more active compounds [1].
This approach has been successfully extended to three dimensions by using molecular co-
ordinates of the ligands to derive 3D QSARs [2]. However, the availability of the three-di-
mensional structures of many macromolecular drug targets has opened an alternative
approach to drug design, namely structure-based drug design (SBDD), in which the 
physico-chemical interactions between the receptor and a series of ligands are used to ra- 
tionalize the binding affinities [3,4]. SBDD makes use of techniques ranging from those 
employing simple scoring functions through molecular mechanics calculations to detailed 
free energy perturbation calculations employing molecular dynamics simulation [5]. Now, 
particularly as a result of recent developments in the design of targeted combinatorial li- 
braries of compounds [6], it is becoming increasingly common to have data on the activi- 
ties of a family of compounds and knowledge of the three-dimensional structure of the
target macromolecule to which they bind. While the activities of these compounds could 

* To whom correspondence should be addressed.

Abbreviations
CoMFA Comparative Molecular Field Analysis
HSF-PLA2 Human synovial fluid phospholipase A2
PLS Partial least squares
QSAR Quantitative structure activity relationship
SBDD Structure-based drug design
SDEP Standard Deviation of Error of Predictions given by:

SDEP =

where Y is experimental activity: Y' is predicted activity; 
and N is the number of compounds

Q² Performance metric given by:

Y- <Y>)²

where <Y> is the average experimental activity 
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be improved using the techniques of classical QSAR, 3D QSAR or SBDD, none of these
alone makes full, simultaneous and systematic use of all the available information. This is
the purpose of Comparative Binding Energy (COMBINE) Analysis [7,8]. 

The ‘COMBINE’ acronym refers to combinations in terms of both data and
techniques:

1.

2.

In outline, COMBINE analysis involves generating molecular mechanics models of a
series of ligands in complex with their receptor and of the ligands and the receptor, in
unbound forms, and then subjecting the computed ligand-receptor interaction energies
to regression analysis in order to derive a QSAR relating ligand-binding constants or
activities to weighted selected components of the ligand-receptor interaction energy. 
While the chemometric analysis performed is similar to that in a Comparative 
Molecular Field Analysis (CoMFA) [9], the data analyzed in COMBINE analysis differ
by explicitly including information about the receptor-ligand interaction energies rather 
than only about the interaction properties of the ligands.

In  contrast  to  free  energy  perturbation  methods  [10,11],  a  full  sampling  of  phase 
space is not performed in COMBINE analysis: it is instead assumed that one or a few
representative structures of the molecules are sufficient when experimental information
about binding free energies is used for model derivation. Although any error in the
modelling would introduce ‘noise’ into the dataset, this can be filtered out by means of
the subsequent chemometric analysis. 

Although occasionally there is a linear relationship between binding free energy and 
computed binding energy derived from molecular mechanics calculations for single 
conformations of the bound and unbound states of a series of ligand-receptorpairs, this
is not the case in general. This is because the entropic contribution to binding can vary 
over a series of ligands and because sufficiently accurate modelling of a full series of 
compounds can be difficult to achieve. A number of authors have correlated binding 
free energies with a few terms, defined according to physical interaction type, of the
computed binding energies by linear regression [12-16]. A physical basis for such an 
analysis is provided by linear response theory which relates the electrostatic binding
energy to the electrostatic binding free energy [16]. The COMBINE method differs
from these approaches, in that more extensive partitioning of the binding energy is con-
sidered and multivariate regression analysis is used to derive a model. This is important 
for two reasons: firstly, from a modelling perspective, because it is not assumed that the 
computed components of the binding free energy can be calculated with high accuracy. 
Rather, one of the foundations of COMBINE analysis is the realization that such cal- 
culations are usually noisy, and that is why only those contributions of the binding 
energy that present the best predictive ability are selected and weighted in the resultant 
model. Secondly, it is realized that binding free energy is rarely a linear function of
binding energy. The extensive decomposition allows those components that are pre- 
dictive of binding free energy to be detected and these may implicitly represent other 
physically important interactions or even entropic terms. 

20

data on ligand-receptor structures and the measured activities of a series of ligands
are combined; 
molecular mechanics and chemometrics are combined for the analysis.



A QSAR model is derived for each target receptor studied with the COMBINE
method, as the method was specifically designed for ligand optimization. Thus, a 
derived regression model is not applicable to all ligand-receptor interactions in the way
that a general-purpose empirical ‘scoring function’ derived from statistical analysis of a
diverse set of protein-ligand complexes is designed to be [17,18]. The philosophy is
to account for peculiarities in the modelling and parameterization of a given set of 
compounds, so that both optimal and inexpensive predictive models can be derived. 

In the next section, we describe the COMBINE analysis method. This is followed by 
a description of its application to two sets of enzyme inhibitors. COMBINE analysis is 
then discussed in terms of the quality of its predictions, its pros and cons, and its future 
prospects.

2. The COMBINE Method

2.1. Theory

The goal of the COMBINE analysis procedure is to derive an expression for the
receptor binding free energy of a ligand, ∆G, of the following form.

(1)

From this expression, biological activities may be derived by assuming that these quanti-
ties are functions of ∆G.  The expression is derived by analyzing the interaction of a set of
ligands with experimentally known activities or binding affinities for a target receptor.
Conformations of the ligand-receptor complexes and the unbound ligands and receptor
are modelled with a molecular mechanics force field. It is assumed that these are represen-
tative of the full ensemble of structures that would be sampled by these molecules. From
these. ligand-receptor binding energies, ∆U, are computed for each ligand.

(2)

where Elr and Einter
lr are the total and intermolecular energies, respectively, of the

ligand–receptor complex; Er the energy of the unbound receptor r; and ∆Er is the
change in the potential energy of the receptor upon formation of the complex; and
and ∆El are the corresponding energies for the ligand 1. ∆U itself will not, in general,
correlate with ∆G, but it is likely that some of its components will. Therefore, ∆U is
partitioned into components according to physical type and which of the nl defined
fragments of the ligand and nr defined regions of the receptor are involved.

(3)
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The first two terms on the right-hand side describe the intermolecular interaction 
energies between each fragment i of the ligand and each region j of the receptor. The 
next four terms describe changes in the bonded (bond. angle and torsion) and the non- 
bonded (Lennard-Jones and electrostatic) energies of the ligand fragments upon binding 
to the receptor, and the last four terms account for changes in the bonded and non- 
bonded energies of the receptor regions upon binding of the ligand. 

The n terms, ∆ ui
sel in Eq. 1 that correlate with ∆G are selected from the ligand-

receptor binding energy. ∆ U, and the coefficients wi and constant C determined by
regression analysis. 

2.2. Implementation

The procedure for COMBINE analysis is outlined schematically in Fig. 1. There are 
essentially three steps to be followed for the derivation of a COMBINE model, namely 
modelling of the molecules and their complexes, measurement of the interactions 
between ligands and the receptor and chemometric analysis to derive the regression 
equation. Each of these steps will be considered in turn. 

2.2.1. Molecular modelling 
The three-dimensional models of the ligand-receptor complexes and the unbound 
receptor and ligands can be derived with a standard molecular mechanics program. The 
dependence of the results on the modelling protocol followed has not yet been invest- 
igated in detail. The use of different starting conformations for the receptor. the inclu- 
sion of positional restraints on parts of the receptor, different convergence criteria 
during energy minimization or different ways of treating the solute-solvent interface 
and the dielectric environment can all produce different regression equations. The sens-
itivity of COMBINE models to these factors compared to corresponding QSAR models 
that use the overall intermolecular interaction energies as regressors remains to be fully 
studied. One of the appealing characteristics of the COMBINE approach, however, is 
that, as a result of the decomposition of the intermolecular interaction energies on the 
basis of chemical fragments, artefacts in the modelled ligand-receptor complexes that 
could otherwise pass unnoticed can be easily detected. 

In general, the limited available experience indicates that energy minimization 
should be mild, so that major steric clashes are eliminated while avoiding artefact-
ual structural distortions due to inaccuracies in the modelled forces. It is particularly 
important to employ a suitable model of the solvent environment. When modelling 
explicit water molecules, inclusion of only crystallographic water molecules may not
be sufficient [30] but we have round that solvation of the ligand and receptor mole-
cules with an approximately 5 Å thick shell of water molecules produces reasonable 
results [7,8]. 

While several conformations of each molecule or complex, derived for example from 
conformational analysis or molecular dynamics simulations, could be used for 
COMBINE analysis, we have so far used only single conformations derived from
energy minimization. 
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Fig. 1.  Flowchart showing the stages of a COMBINE analysis 
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2.2.2. Measurement of the interaction energies
After modelling, ligand and receptor energies must be computed and decomposed in the 
form required for regression analysis. That is, a matrix is built with columns represent-
ing the energy components given in Eq. 3 and rows representing each compound in the
set. A final column containing inhibitory activities is then added to the matrix.

The energy decomposition scheme must, at some point, meet the two opposing ten-
dencies of the Scylla of detailing enough energy terms that the elements responsible for
the activity differences can be isolated and the Charybdis of including so many terms
that the signal-to-noise ratio is so low that the subsequent analysis fails to obtain a 
meaningful model. Recent investigations in our groups indicate that a reasonable com-
promise is to consider each residue in the receptor as contributing two interaction terms: 
one for van der Waals and one for electrostatic interactions. Inclusion of intramolecular
energies, which are a potential source of noise and cumbersome to compute, appears to 
result in little improvement in the regression models [19]. For these reasons, it is prob- 
ably advisable to omit them from the statistical analysis, although their importance can 
be expected to depend on the extent of conformational changes on binding. 

In our studies, we have found that differences in the way electrostatic interactions are
computed can have a considerable effect on the regression models [19] and Pérez et al. 
(submitted). The electrostatic energies can be given by a Coulombic expression or 
derived from solution of the Poisson-Boltzmann equation according to classical con-
tinuum electrostatic theory [20]. We are currently comparing these methods in
COMBINE analysis and our results so far underscore the general importance of con- 
sidering the desolvation free energies upon binding as additional variables. although the 
information they provide may not always be 'new’ as it can be implicitly contained in
other intermolecular electrostatic energy terms that are highly correlated with them. 
This collinearity may explain why good results can be obtained when this physically 
relevant contribution is not included in the analysis (see section 3.2 for additional 
details).

Additional terms to describe entropic contributions — e.g. freezing out of side-chain
rotamers on binding — could also be included in COMBINE analysis. This has not yet
been tested and their influence on the models derived remains to be investigated. 

2.2.3. Chemometric analysis
As a result of the large number of terms and the correlated nature of the variables. 
partial least squares (PLS) [21] is the technique of choice for deriving the regression 
equation. In PLS analysis, a model is derived by projecting the original matrix of energy
terms onto a small number of orthogonal ‘latent variables’. After this projection, the
original energy terms are given weights according to their importance in the model.
Those that do not contribute to explaining the differences in binding have negligible 
effects and just add ‘noise’. When the ratio between the really informative variables and 
these ‘noisy’ variables is too low, the PLS method may fail to obtain a model. A sens-
ible strategy to avoid this situation is to pretreat the data by setting very small values to
zero and removing those variables that take nearly constant values in the matrix. If this
pretreatment is insufficient, variable selection can be carried out, with the aim of climi-
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nating from the matrix those variables that do not contribute to improving the predictive 
ability of the model. To this end, we have employed the GOLPE method [22], in which
the effect of the variables on the predictive ability of the models is evaluated through 
fractional factorial designs and advanced cross-validation techniques Variable selection 
must, however, be carried out with care as it is prone to overfitting the data. particularly
when selection is pursued beyond a certain limit [19].

COMBINE models can be validated by following the same principles as used in other 
3D QSAR methodologies [2]. Apart from the minimum requirement of internal consist- 
ency (as evaluated by cross-validation), random exchange of the biological activities 
among the different molecules (permutation or scrambling) and the use of external test 
sets are strongly recommended, in order to highlight possible overfitting problems.

3. Applications

3.1. Phospholipase A2

The first application of COMBINE analysis [7,8] was done on a set of 26 inhibitors of 
human synovial fluid phospholipase A 2 (HSF-PLA2), an enzyme that catalyzes the
hydrolysis of the sn-2 acyl chain of phosphoglycerides releasing arachidonic acid, the pre-
cursor of several inflammatory mediators. The enzyme is mainly alpha-helical and has
about 120 amino acid residues and seven disulfide bridges. The inhibitors are transition 
state analogs that bind in the substrate binding site, a slot whose opening is on the enzyme 
surface and runs all the way through the enzyme. The key catalytic residues are His-48
and Asp-99, and a calcium ion bound to the active site is required for substrate binding.

An initial scatterplot showed a very poor correlation between biological activities 
and calculated binding energies (r = 0.21, Fig. 2a). However, the COMBINE model

Fig. 2. (a) Total calculated bindinging energy of the HSF-PLA2 inhibitors to the enzyme versus activity
versus experimental activity for the HSF-PLA2

inhibitory activity on external ‘blind’ cross-validation The predictive model was derived using two latent
variables and yielded a fitted R² = 0.92, an internally cross-validated Q² = 0.82. and an externally cross
validated Q² = 0.52. The broken line corresponds to a perfect fit, and the solid line shows the regression ƒit 
(r = 0.71).

expressed as percentage inhibition (r = 0.2 I ). (b) Predicted
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obtained for this data set showed good fitting properties and significant predictive 
ability (Fig. 2b), as assessed by a value of Q² – <Q2>s of 0.59, that is, the difference
between the estimated Q² and the average Q² obtained in 20 scrambled models [7].

Fig. 3. Schematic diagram of HSF-PLA2 complexed with a representative inhibitor (LM1228 ). Spheres rep- 
resent atoms of protein residues lining the binding site that are frequently selec ted to contribute to regression 
models in COMBINE analysis (see reference [7] and table 3 therein). The calcium ion in the active site
(shaded sphere) makes an important contribution to COMBINE models. This diagram was generated with the
molscript program [32]. 
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From the initial energy matrix, around 50 energy terms were finally selected to obtain 
the regression model. These energy contributions reflect complex relationships since 
they may have been selected because of their correlation with other variables. For this 
reason, they are better regarded as ‘effective’ energies and care must be exercised to
avoid misinterpretations. However, it is of interest to examine these energy contribu-
tions more closely. Most of the selected intermolecular effective energies correspond 
to interactions with residues in the enzyme active site. Overall, the model suggests that 
in this particular dataset the binding affinity is dominated by electrostatic interactions 
with the calcium ion located at the binding site. Several van der Waals interactions 
then modulate the affinity of the inhibitors. Some of the residues in the B helix (top 
left, Fig. 4) and the calcium-binding loop form a rigid wall sensitive to the conform-
ation of the sn-2 chain. On the other side of the binding site, two aromatic residues
form a pocket in which an inhibitor must fit in order to have optimal activity. Finally, 
the C-terminal region of the enzyme forms an additional pocket with favorable inter- 
actions for inhibitors with benzyl moieties in the sn-3 chain. It is noteworthy that other 
researchers have arrived at similar SARs for a set of indole-based compounds [23], 
which suggests that the energies selected by COMBINE analysis may have some 
physical meaning in favorable cases. On the other hand. some other interactions have 
no clear physical meaning and they seemed simply to be correlated with some other, 
physically more relevant, variables. This is the only way to rationalize many of the 
selected interactions between the phosphate group of the inhibitors and charged residues 
exposed on the enzyme surface. some of them very far away from the phosphate 
group.

3.2. HIV-1 proteinase 

Perhaps the most controversial issue that arose when the COMBINE approach was first 
reported [7,8] was the variable selection procedure. The large number of variables used 
in the original paper was a consequence of splitting the inhibitors into several fragments 
and considering intramolecular energy terms for both the protein and the inhibitors. The 
phospholipase A2 example. on the other hand, can be regarded as a particularly difficult
case. in the sense that the initial correlation between experimental activities and cal-
culated binding energies was rather poor. The high correlation between calculated inter-
molecular interaction energies (using the MM2X force field) and enzyme inhibition 
reported for a set of 33 HlV-1 proteinase inhibitors [14] prompted us to apply the 
COMBINE methodology to this same data set using the AMBER force field [24]. The 
coordinates of L-689, 502-inhibited HIV- 1 proteinase were used for the receptor, which 
included the water molecule that stabilizes the closed conformation of the dimeric 
enzyme by bridging a ß-hairpin from each monomer to the inhibitors. Adopting the
same philosophy as followed by the researchers at Merck [14], the enzyme was held 
fixed and only the inhibitors and the water molecule were allowed to relax on energy
minimization. The intermolecular interaction energies were then calculated and related 
to the biological activities by means of a simple linear regression equation. For the 
COMBlNE decomposition scheme. these interaction energies were partitioned on a per 
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residue basis. Each inhibitor was considered as a single fragment and no intramolecular 
energy terms were considered. The number of variables per inhibitor was thus equal to 
2 (van der Waals and electrostatic) times the number of protein residues ([2 × 99 amino
acids] + 1 water molecule) = 398. No variable selection was employed. The resulting
matrix was pretreated simply by zeroing those interaction energies with absolute values
lower than 0.1 kcal/mol and removing any variables with a standard deviation below 0.1
kcal/mol. This pretreatment reduced the number of variables that entered the PLS analy-
sis to around 50. It is noteworthy that the number of variables was effectively reduced
in this example, without the need for variable selection, underscoring the fact that it is
possible for a simple pretreatment of the original matrix to accomplish virtually the 
same effect. 

Plots of predicted versus observed pIC50 values obtained for the inhibitors studied 
and for an additional set of 16 inhibitors not included in the derivation of the models
[14] are shown in Fig. 4. While the internal cross-validation results are comparable in 
both cases, it is apparent that the PLS model from the COMBINE analysis (Fig. 4b) out-
performs the simpler regression equation (Fig. 4a) in external predictions (Pérez, et al., 
submitted).

Attempts to incorporate desolvation effects into a predictive model were reportedly 
unsuccessful for the HIV-1 proteinase complexes [14]. The electrostatic interaction 
energy terms incorporated into the COMBINE model described in Fig. 4b were cal-
culated by means of a continuum method, as implemented in the DelPhi program [25], 
using dielectric values of 4 and 80 to represent the molecular interiors and the sur- 
rounding solvent, respectively. The electrostatic desolvation energies of both the protein 
and the inhibitors were also included as two additional variables. Their incorporation 
into the model resulted in a slight improvement in predictive ability (Q² = 0.72 versus
Q² = 0.70 for 2 principal components) [Pérez et al., submitted]. Interestingly, the
variables whose weights were moat affected by the desolvation energy correction were 
precisely those involving the charged residues that participate in strong electrostatic 
interactions between the inhibitors and the enzyme (Fig. 5). 

4. Discussion 

4. I. Quality of results

COMBINE models for the set of HSF-PLA 2 -inhibitor complexes compare favorably 
with CoMFA models for the same inhibitors aligned as in the modelled bound com- 
plexes [ 19]. Using the same dataset and the same cross-validation method. the best 
CoMFA model (the so-called N-T-C model [19], selected for its optimal predictive 
ability for external test sets) had a Q² = 0.62 and a standard deviation of error of pre-
dictions (SDEP) = 13.5. The corresponding values obtained with COMBINE analysis 
were Q² = 0.82 and SDEP = 9.3 [7]. These figures of merit suggest a better predictive
performance for COMBINE, but it should be noted that no scrambling of the biological 
data was done in the CoMFA study, so that the methods have not been compared using
the more rigorous ‘excess’Q² value described in section 3.1.
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Fig. 5. (a) PLS coefficients for the electrostatic contributions of each residue from a COMBINE analysis on
the set of HIV- I proteinase-inhibitor complexes. Only the coefficients exhibiting significant variance are
given non-zero values and labelled. (b) PLS coefficients after incorporation of desolvation effe
coefficient of the electrostatic contribution to the desolvation of the  inhibitors (∆Gsolv) is the largest of all 
and clearly modulates some of the other interactions. The electrostatic contribution to the desolvation of the
protein, on the other hand, appears to be highly correlated with other variables. so that its presence in the
model is not required 

For the HSF-PLA 2 and HIV-1 protease examples. both the conventional and cross-
validated squared correlation coefficients provided by COMBINE analysis compared 
very favorably with the ones obtained by the classical approach of using just the overall
intermolecular interaction energies as the independent variables (Figs 2 and 4). 

A further advantage of COMBINE analysis is that it highlights those regions in the 
enzyme binding site that contribute most to the differences in activity among the 
ligands. In the two examples reported above. this analysis allowed the identification of 
mechanistically important residues, and this information may guide the design of further 
chemical modifications on the inhibitors. For the HSF-PLA, case (see Fig. 3), the 
regions detected as important for activity were largely consistent with those identified 
by CoMFA and in studies of different sets of ligands [26]. 
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4.2.

It is pertinent to consider the reason for the success of the COMBINE methodology in
predicting binding affinities, given that the method is based on an incomplete model of
molecular interactions and conformations. It has been suggested that successful binding
free energy predictions rely on multiple cancellations among the contributions that are
neglected in the model [27]. These cancellations may be fortuitous but can mostly be
expected to originate from enthalpy-entropy compensation on binding in aqueous
solution. An alternative explanation is that, within a congeneric series, it is possible that
some of' the neglected terms, particularly entropic ones, do not contribute to the binding
free energy differences because they are similar for all the members of the series.
Entropic contributions to binding free energies can be roughly divided into three sep-
arate terms: changes in translational and rotational entropy, changes in configurational
entropy and changes in solvent entropy [28]. Within a series, it is likely that values arc
approximately constant for translational and rotational entropy changes. and perhaps
also for configurational and vibrational entropy contributions. as well as for the
enthalpic changes arising from changes in the conformation of the receptor. One com-
ponent for which this cannot be expected to be the case in general, however. is the dif-
ferential solvation free energy upon binding. It has even been suggested that, within a
certain closely related series of ligands binding to a common receptor, the solvation free
energies may vary more significantly than the intrinsic ligand-receptor interactions
[29]. However, this does not mean that it is absolutely essential to incorporate this term
explicitly in the model in order to obtain good binding affinity predictions. For example,
in a study involving a series of flavonoid trypsin inhibitors [30], it was found that the
inhibitory potencies could be correlated well with calculated binding energies derived
using a simple distance-dependent dielectric for modelling electrostatic interactions and
considering only the bound state. When a continuum model was used to compute elec-
trostatic interactions, the accuracy of the computed differences in binding free energies
was increased, but for only one inhibitor was it important to take into account the dif-
ferences in solvation free energies between bound and unbound conformations. In this
example, decomposition of the binding free energy components showed that the dif-
ferences in the total electrostatic free energy of binding (including the desolvation con-
tribution) were much smaller than the corresponding differences in van der Waals
binding energies, so that it was this latter term that dominated the binding free energy
differences. A similar scenario can thus be envisaged in some of the other cases
in which reasonable correlations between in vitro activities and calculated binding
energies arc obtained without considering solvation effects.

As shown above, it is our experience that incorporation of a more rigorous treatment
of electrostatic interactions by means of continuum models and consideration of desol-
vation effects upon binding lead to an improvement of the correlations and to more
robust COMBINE models [Pérez et al., submitted]. However, the increase in predictive
ability upon incorporation of desolvation contributions has not been, in the HIV pro-
tease test case, as large as we anticipated (see section 3.2). The reason is
that some intermolecular interactions appear to be collinear with the desolvation free

Why is COMBINE successful?
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energies of the inhibitors, so that some information about the solvent effects is implic- 
itly included in the intermolecular energies (see sections 3.2 and 2.3 for additional
details).

4.3.

The COMBINE method can be applied to any dataset Tor which the following are
available:

1.

When to apply COMBINE antilysis

experimental binding or activity measurements for a series of ligands that bind to a
target macromolecular receptor; the number of measurements necessary for obtain-
ing a good model will depend on the quality of the data but 15 is a reasonable 
lower limit;
an experimentally determined three-dimensional structure of the target macromole- 
cular receptor complexed to a representative ligand. 

2.

As in other QSAR techniques, the method relies on the assumption that all ligands
analyzed bind to the receptor at the same binding site and that the binding mode can 
be deduced by comparative modelling techniques. For situations in which the binding 
mode can alter dramatically on minor modification of the ligand [31], it should in pin- 
ciple be possible to include more than one model of each complex in the analysis and 
deduce the correct binding mode from the regression analysis [32]. However, this has 
yet to be investigated in a practical application. 

While the method has so far been applied only to the binding of a series of small
molecule ligands to a protein, it should also be applicable to interactions between 
macromolecules. for instance. to predict the effects of protein mutations. 

5. Conclusion 

COMBINE analysis provides a means to exploit information about the three- 
dimensional structure of a target macromolecule and about measured activities of a 
series of compounds in order to derive a model to predict their binding free energies.
The applications described here to HSF-PLA2 and HIV proteinase inhibitors demon- 
strate that predictive models that give insight into the mechanism of inhibition can be 
derived. The predictive performance of these models compares very favorably with that 
of other regression methods that make more conventional use of molecular mechanics 
interaction energies or other QSAR techniques such as CoMFA. Analysis of the import- 
ance of different energetic terms and the effects of different chemometric protocols has 
shown how robust models can be obtained. Further work should include the exploration 
of the effects of including additional descriptors such as those that explicitly describe 
entropic changes on binding. In addition, it may be possible to obtain improvements in 
the method by optimizing modelling protocols and tailoring the chemometric tools more 
specifically towards the data extracted from the molecular  systems studied.

Further applications to different types of ligand–receptor datasets are necessary for a
complete assessment of the capabilities of the method. However, the quality of the
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COMBlNE models obtained so far is probably good enough to encourage its wide-
spread application to QSAR problems where it can assist in the design of new com-
pounds which will provide real experimental ‘blind tests’ of predictive ability. 
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1. Introduction

The pharmaceutical industry aims at the therapeutic manipulation of macromolecular
targets, collectively termed receptors, using specific ligands (drugs). These receptors are 
macromolecules specialized in recognizing a specific molecular pattern from the large 
number of surrounding molecular species with which it could interact. Several 
categories of macromolecules are included:

1 .  pharmacological receptors: macromolecular complexes that can be activated by
specific signal molecules (e.g. agonists), process followed by a specific biological 
response from the cell (organ) associated with these complexes;
enzymes: proteins that catalyze specific biochemical reactions upon substrate
(ligand) binding with (± high) specificity:
antibodies: macromolecules (receptors) that ± specifically bind antigens (hap- 
tens), then activate cellular (immune) responses in the presence of these antigens;
DNA: nucleic acid chains that (±) specifically bind drugs (e.g. antiviral or anti-
mitotic) designed to block DNA replication. 

2.

3.

4.

A major task for today's medicinal chemistry units is to reduce research costs, since 
on the average one in 10 000 screened compounds may reach the market. In the past 
decade, efforts to reduce these costs have relied on computational and, recently, com- 
binatorial chemistry. Computational chemists use (largely) theoretical methods and 
tools implemented as software to design novel cornpounds with optimized biological 
properties for a particular therapeutic target. Because vast numbers of candidate com-
pounds can be virtually generated in the computer (Fig. 1), an important tool in the
computational chemist's arsenal has become the prediction of the binding affinity of 
these virtual compounds to the given receptor. 

Once a lead compound has been obtained via screening, medicinal chemists generate 
congeneric compounds, which aim at preserving the same scaffold while replacing key 
pharmacophoric [1] features with isosteric groups  [2–7]. Van Drie et al. [5] have 
described a program ALADDIN for the design or recognition of compounds that meet 
geometric, steric or substructural criteria. whereas DOCK, a cavity-matching algorithm 
[8–11] has been quite successful in finding non-congeneric molecules of the correct
shape to interact with a receptor [12,13]. Caflisch et al. [14] have used a fragment- 
based approach to map high-affinity sites on HIV-1 protease [15] with the idea of
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Fig. 1.  The importance of affinity prediction in computational chemistry.

synthetically joining these fragments to create high-affinity ligands. A conceptually 
similar, experimentally based method, was used by Fesik et al. [16], who determined 
the relative binding modes of two low-affinity ligands by NMR, then connected them to 
create a high-affinity lead in their ‘SAR by NMR’ approach.

The importance of altering chemical properties of a given molecular scaffold has 
been recognized and used in a number of methods that are capable of generating novel 
structures in the computer [17-33]. All of these approaches attempt to help the med-
icinal chemist discover novel compounds which will be recognized at a given receptor 
and have proven successful in applications to HIV protease [34–39]. Micromolar leads
were found based on haloperidol [10], coumarin analogs [40,41], cyclic ureas [39], and 
a variety of other structures. Analogs of the coumarin and cyclic urea leads which have 
been optimized for affinity and bioavailability have been advanced toward clinical 
trials.

We have recently reviewed [42] these methods in the context of affinity prediction 
using 3D QSAR methods. De novo design methods, docking and other molecular mod-
elling techniques — e.g. computational combinatorial chemistry [43] — must handle 
large numbers of structures, typically in the thousands. and therefore need a sorting pro-
cedure in order to rank these virtual molecules. This is typically performed using a 
scoring funiction which evaluates the binding affinity by estimating the ligand-receptor
free energy of binding, ∆GL

bind
– R. Scoring functions [44-48] are empirical paradigms that

estimate, in the molecular mechanics approximation (or some other framework that esti- 
mates non-covalent interactions), the intermolecular energies of the electrostatic and 
van der Waals (vdW) forces, including a hydrogen-bonding term, some estimate of the 
entropic and desolvation costs, as well as hydrophobic interactions. The use of free- 
energy perturbation (FEP) methods [49] to calculate the ∆∆G of binding is not yet prac-
tical as it is limited to minor modifications of compounds with known activity and 
requires significant computational resources, limiting their applicability. 

An intermediate method between FEP methods and scoring functions has been pro- 
posed by Åqvist and co-workers [50-51], in their linear interaction energy approach, 
which averages the interactions between the inhibitor and its surroundings using molec- 
ular dynamics for the bound and free states only. Another intermediate method con- 
putes the standard free energy of binding for the predominant states [52] by first 
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identifying the major minima of the potential energy and solvation energy functions, 
then evaluating their contribution to the configuration integrals of the ligand, the recep- 
tor and their complex, using a conformational energy search method [53]. This
approach has been successfully applied to cyclic urea inhibitors [39] binding to HIV-1
protease [52]. 

The molecular mechanics interaction energy [54] has been used for a series of HIV-1 
protease inhibitors with limited diversity, whereas 3D QSAR methods have been more 
suitable for a series with higher diversity [55–57]. Such models could also be used to
evaluate software-generated compounds of diverse scaffolds for synthetic prioritization. 
As most of these approaches are reviewed elsewhere in this volume, we focus on the
methods that use the receptor's 3D structure to derive the scoring function.

2. Scoring Functions: General Comments

The calculation of the free energy of binding is based on the linear free energy relation-
ship (LFER) Formalism that relates ∆G0

bind , the standard free energy of binding, to the
logarithm of the dissociation constant, –logKD , at thermodynamic equilibrium concen-
trations of the ligand, [L], receptor, [R], and the corresponding [L – R ] complex, for the
reaction L + R → L – R:

(1)

where R = 8.314 J/mol/K, and T is the temperature. For T = 310 K, 2.303RT =
5.936 kJ/mol. At 37°C, ∆G0

bind is approx. 6.0*pKD (kJ/mol), or 1.42*pKD (kca/mol). In
fact, we model ∆GL

bind
R– , but we assume the same reference state, so we often substitute

∆ G0
bind with ∆GL

bind
– R The binding of a ligand to a receptor, a multi-step process, evaluated

by the total ∆ G0
bind (Eq. 1),includes sequential steps going from independent ligands and

receptors in the surrounding physiological environment to the ligand-receptor complex. 
Any accessible conformation can, in principle, change into the active one during this 
process. Entropy is lost during reversible or irreversible binding and gained in the desol- 
vation process because of the waters freed from the binding site and the ligand's hy- 
dration shell. Hydrophobic forces typically play an important role. One has to ascertain 
that no 1-ate-limiting steps occur during intermediate stages, and that non-specific 
binding does not obscure the experimental binding affinity. All the parameters that 
cannot be directly measured remain hidden (e.g. receptor-induced conformational 
changes of the ligand, geometric variations of the binding site, etc.), and the scoring 
functions use a time-sliced (frozen) model (i.e. the system is at equilibrium and time- 
independent). Kinetic bottlenecks in the intermediate steps may occur. and ∆GL

bind
– R

remains thermodynamic in nature (not kinetic). 
Several assumptions are made when deriving a scoring function, since binding free 

energy is, for most cases, approximately calculated [58]: 

1. The modelled compound, not its metabolite(s) or any of its derivatives, produces 
the observed effect. 
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2. The proposed (modelled) geometry is, with few exceptions, considered rigid for the
receptor, and modelled as a single (bioactive) conformation for the ligand which 
exerts, in this single conformation, the binding effects; the dynamic nature of this 
process, as shown for lactate dehydrogenase, which is likely to assume different 
conformational states at the binding site [59], is typically ignored. 
The loss of translational and rotational entropy upon binding is assumed to follow a 
similar pattern for all compounds; an additional entropic cost is considered for 
freezing the single-bond rotors. 
The binding site is the same for the modelled compounds. 
The binding free energy, is largely explained within a molecular mechanics
framework, and is prone to the inherent errors of the force field. 
The on-offrate is similar for modelled compounds (i.e. the system is considered to 
be at equilibrium), and kinetic aspects are usually not considered. 
Solvent effects, temperature, diffusion, transport, pH, salt concentrations and other 
factors that contribute to the overall are not considered. 

3

4.
5.

6.

7.

Quite frequently the binding free energy is expressed as the sum of the free energy 
components, conceptually shown in the master equation (Eq. 2) [58]: 

(2)

which accounts for contributions due to the solvent (∆Gsol), to conformational changes
in both ligand and protein (Gconf), to the ligand-protein intermolecular interactions
(∆Gint) and to the motion in the ligand and protein once they are at close range
(∆Gmotion). The master equation (Eq. 2) can also be written as:

(3)

where is separated at equilibrium into solvation effects (∆Gsol), and two com-
ponents for the process in vacuum: the internal energy (∆Uvac) and entropy (T∆Svac).
∆Gsol can be calculated with a variety of methods [58], while T∆Svac is often related to
the number of non-methyl single bonds [47]. Both ∆Gsol and T∆Svac are assumed to
have similar values for congeneric series, hence Eq. 3 is widely used in QSAR studies
by expanding only the internal energy term: 

(4)

which includes the steric (vdW ) and electrostatic (coul) aspects of the ligand-receptor
interaction ( and ), the distortions (distort) induced by this interaction in
both ligand and receptor ( and ) and the ligand-induced conformational 
changes of the receptor ( reprsents agonist-induced conformational re- 
arrangements of the receptor that may be an important component of signal transduction 
and are not considered to occur upon antagonist binding to the same receptor [60]. 

The receptor-based scoring functions compute, using different approximations, the 
terms of the master equation (Eq. 2), using Eq. 1 to convert the binding-affinity data into 
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its free energy equivalent. We focus here on some of the recent scoring functions that aim 
at predicting small ligands, and not proteins. For a thorough review of methods that predict 
the binding free energy, the reader is referred to the work of Ajay and Murcko [58]. 

3. The LUDI Scoring Function 

This regression-based scoring function [44] aims to predict fast and accurate binding 
affinities for de novo designed ligands generated by the LUDI [23] program. This 
approach estimates by approximating the contributions for hydrogen bonding,
for entropy due to frozen rotatable bonds due to binding and for desolvation based on 
hydrophobic complementarity, using the following master equation: 

(5)

where ∆G0 is related to the reduction in rotational and translational entropy, ∆Ghb is the
free energy associated with hydrogen-bond formation, ∆Gionic is the binding energy
from ionic interactions, ∆Glipo, is the lipophilic interaction contribution and ∆Grot is the
energy loss by freezing the internal degrees of freedom in the ligand. A penalty func-
tion, ƒ(∆R, ∆α), is introduced to track large deviations from the ideal hydrogen-bond:

where,
ƒ(∆R, ∆α) = ƒ1(∆R)ƒ2 (∆α)

and ∆R is the deviation of the hydrogen-bond length H...O/N from the ideal 1.9 Å 
value, and ∆α is the deviation of the hydrogen-bond angle N/O–H...O/N from its ideal
180° value. As defined, this function tolerates small deviations of up to 0.2 Å and 30°
from the ideal geometry. 

Böhm [44] analyzed 45 protein–ligand complexes (affinity range = –9 to –76 kJ/mol)
taken from the Protein Data Bank (PDB) [61], and found the following equation 
by multiple-regression analysis (r2 = 0.76, S = 7.9 kJ/mol) and cross-validation
(q2 = 0.696, Spress = 9.3 kJ/mol = 2.2 kcal/mol):

(6)
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Fig. 2. predicted versus experimental pKi value for fourteen inhibitors (see reference [44]). 

The training set covered 12 orders of magnitude in binding affinity, and ligand weights 
ranging from 66 to 1047 daltons. The training set included 9 crystalline ligand–receptor 
complexes and 5 ligands docked to DHFR (see Fig. 2). This function was primarily 
aimed at small ligands and developed with the speed factor in mind (hence. just five ad- 
justable parameters). Both VALIDATE [47] and Jain’s scoring function [48] have been 
inspired by this scoring function, as reflected throughout this chapter. 

4. The Wallyvist Scoring Function 

Wallqvist et al. proposed a knowledge-based potential based on inter-atomic contact 
preferences between ligand and receptor atoms [45]. This model was parameterized by 
an analysis of 38 high-resolution protein crystal complexes taken from PDB [61]. For
these ligand–protein complexes. molecular surfaces have been generated using the
Connolly algorithm [62] and Bondi vdW radii [63]. The interface surface area for each
atom was then catalogued. using a packing score. Sab, calculated for all ab pairs with
dab ≤ 2.8 Å:

(7)

where dab is the distance between surface elements a and b, and θ(ra, rb) is the angle
formed by the surface normal vectors ra and rb at these points. For each surface element. 
the area was totaled for each atom pair and used to determine the atom–atom preference 
score, Pij, as the ratio of the total interfacial area contributed by each atom pair. Fij, nor-
malized by the product of the fractional contribution of each atom in the pair. Fi and Fj:

(8)
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where the highest- and lowest-scoring preference, Pij, were used to identify the most
and least-observed adjacent atomic surfaces in the dataset.

(9)

where αij is the sum performed for all atoms i of molecule A and j of molecule B. Due to
the paucity of data used, αij is assumed to have two physical components: one that is di-
rectly proportional to the surface area, and independent of the surface atom type, and
another that is specific to the buried atom. The coefficients γ and δ are obtained by min-
imizing – f or the 38 enzyme-inhibitor complexes whose was cal-
culated from their dissociation constant via Eq. l. The energy range was between –18
and –12 kcal/mol, and the linear fit RMS deviation was 1.5 kcal/mol (R = 0.74). The
regression analysis yields the following scoring function 

(10)

where amin = –59.0 cal/mol/Å. 
The fit, while not excellent, clearly establishes a connection between atom-atomin-

terfacial contacts and the The |∆Gpred – Gexp| error can be attributed, besides the
inherent small dataset problem, to the inter- and intra-experimental errors that occur 
upon measuring ∆Gexp. The authors further constructed an average interfacial binding
parameter α− i for each atom type in their set, largely hydrophobic in nature. Its analysis
revealed the range and details of specific interactions that are deemed important at
protein interfaces. This scoring function empirically estimates the buried surface of a 
ligand-receptor complex and is capable of specifically identifying atom-atom and
residue-residue preferences in such complexes. Some prior modelling efforts are needed 
— e.g. docking of the ligand in the binding site and some conformational analysis. 
Chemical constructions based on a given optimized surface are still an open issue. 

5. The Verkhivker Scoring Function 

This approach [46] is a knowledge-based interaction potential based on Sippl’s [64] 
knowledge-based approach, and parameterized for HIV- 1 protease [15] ligand–receptor 
complexes using the following master equation (Eq. 11) 

(11)

where ∆G L– R interaction is further subdivided in ∆Gn-n (the interaction between nonpolar
groups only) and ∆Gn-p.p–p,p–n (the interaction between polar and nonpolar groups). The
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reader is referred to the original work [46] for a complete description of each term in the 
above equation: here we just give the ligand-receptor pairwise interaction potentials as
an example. 

Using a set of 30 pairs of ligand-protein complexes of HIV-I, HIV-2 and SIV pro-
teases, a set of distance-dependent interaction potentials was derived for 12 atom pairs
relevant for protein-ligand interactions, using Sippl’s [64] original approach and the
CHARMM_19 vdW radii [65]. for a given atom pair a (ligand) and b (receptor)
separated by a distance d

(12)

where mab is the number of pairs with ligand atom of type a and receptor atom of type
b; σ is the weight given to each observation;ƒab(d) is the frequency with which this pair
of atoms is observed at interatomic distance d; andƒ(d) is the total number of atom pairs
of all types that are separated by distance d. In this work [46]. the probabilities of ob-
serving a particular distance were computed. normalized by the frequencies observed 
for all types of L–R atom pairs in the training set. then translated into mean force poten- 
tials. To minimize the effect of low-occurrence data points in the parametcrization, a 
cross-validation procedure was applied by eliminating the evaluated complex from the 
training set for the empirical calculations of the seven studied HIV-1 protease in-
hibitor complexes [46]. The authors further break down the contributions of various 
terms from their master equation (Eq. 11) for the studied inhibitors, providing a ra- 
tionale for the variation in binding affinity of these ligands. The enthalpy–entropy 
compensation effect [66] appears to be supported by their model, which provides a 
reasonable cstimute for the absolute binding free energy (Fig. 3). 

Fig. 3. Calculated versus experimemal binding free energies for seven HIV- I protease inhibitors (see 
reference [46]). 
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6. VALIDATE 

VALIDATE [47] is a hybrid approach explicitly based on (and dependent on) a QSAR 
training set paradigm that calculates physico-chemical properties of both ligand and 
L–R complex to estimate based on the following master equation (Eq. 13): 

(13)

where βI – β are the fitted regression coefficients for the master equation terms
(Eqs. 14-20), clarified below. 

6.1.

Structural complementarity is essential for the specific binding of a ligand to the re-
ceptor at the binding site. The non-bonded steric interaction energy is computed from 
the explicit sum of the Lennard-Jones potentials: 

The steric and energetic intermolecular interactions and the steric fit 

(14)

where

and rij is the distance between atom center i and atom center j, Ri,εi is the vdW radius,
epsilon value of atom i, and Ri,εj is the vdW radius, epsilon value of atom j.

The electrostatic interaction energy is the explicit sum of the Coulombic potentials 

(15)

using partial atomic charges on the ligand (qi) and the receptor (qj) from the imple-
mentation of the Amber force field within the MacroModel program. 

Additionally, we have included a steric complementarity fit (SF) to describe the
packing of a ligand in the receptor binding site. The steric fit is computed by summing 
the number of ‘good contacts’ for each atom of the ligand which is contained in the
active site. For example, antibody-steroid complexes and chymotrypsin-binding ligands 
actually contain a considerable percentage of their atoms outside of the active site, 
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while HIV protease inhibitors are largely surrounded by the receptor. VALIDATE 
defines a good contact as an instance where the vdW surface of a ligand atom is within 
a modifiable parameter, e, of the vdW surface of a receptor atom: 

where

(16)

and N is the number of ligand atoms contained in the active site: ri,rj is the van der
Waals radii of atoms i and j, and dij is the distance from atom center i to atom center j.
For SF, we investigated e* values ranging from 0.1 Å to 0.3 Å, but we reported results
for ε* = 0.3 Å only. The steric fit is also normalized by the number of ligand atoms
within the active site. 

6.2.

The lipophilicity of a hydrophobe is estimated by the energy needed to create a cavity in 
the ayucous solvent in which that molecule can tit. When hydrophobic ligands bind to 
the receptor, the energy of cavity creation is released. entropically favoring the process. 
Log P, the partition coefficient for octanol-water [67], gauges the ligand's preference
for the active site of the receptor versus the aqueous solvent. We use the fragment-based
H log P method in Hint 1.1 [ 68] to compute the ligand's partition coefficient. With the
partition coefficient. a negative value indicates a preferencc for a polar (hydrophilic) 
environment and a positive value indicates a preference for a nonpolar (lipophilic) 
environment. Based on direct observations of the nature of the binding site, for 
example. for HTV- 1 protease (predominantly lipophilic) and L-arabinose sugar-binding 
protein (predominantly hydrophilic). we cornputc the amount of hydrophilic and 
lipophilic surface area as ratios to the total surface area of the receptor active site. The 
final value of the partition coefficient is then modified based on this information: 

Ligand transfer from solution into the binding site 

PC = RC* HlogP_PC (17)

where HlogP_PC is the partition coefficient as computed by Hint 1.1, and RC = 1 if the
receptor active site is predominantly lipophilic and –1 if the receptor active site is 
predominantly hydrophilic.

The sign of the coefficient RC is determined using the sums of the lipophilic and 
hydrophilic surface areas of the active site. For a hydrophilic receptor active site with 
RC = –1, one of the following criteria must bc true: 

1. If less than tive ligands are available for this active site, all calculations must yield 
that at least 55% of the total surface of the active site is hydrophilic. 
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2. If five or more ligands are available, at least half of the calculations must yield that 
55% or more of their total surface area is hydrophilic. while the remaining cal-
culations must yield that at least a majority of the total surface area is hydrophilic. 
This decision is taken by determining the hydrophobic/hydrophilic preference of 
the active site based on surface area calculations [69] (see section 6.4), defining 
surface types in the same way as Böhm [44]: any carbon that is covalently bound to 
no more than one non-carbon is considered lipophilic, and any hydrogen connected 
to such a carbon is also lipophilic. All other atoms are considered hydrophilic. For 
protein-protein systems, a different treatnieni for this calculation was performed,
as a large portion of the protein inhibitor remains freely accessible to the solvent 
and is not bound at the active site. Since only the active site, a small portion of the
protein ligand, is desolvated by binding to the rcccptor, only the HlogP for this
region is relevant. Therefore, this region was extracted from the protein and the 
calculation was done only on this part of the molecule. 

6.3.

Changes in conformational entropy occur when the freely rotating side chains of the 
dissociated components are forced to adopt more rigid conformations on complex for- 
mation. VALIDATE estimates the change in conformational entropy by counting the
number of rotatable bonds. Nrrot. bonds. All non-terminal single bonds (except methyl 
groups) are included. For non-aromatic ring systems. the number of degrees of freedom
is of the order n – 4, where n is the number of bonds in the ring. The rotatable bond
count is: 

Con onformational entropy and enthalpy 

Nrrot. bonds = Nrntsb + ∑
i

(ni – 4) (18)

where Nrntsb is the number of non-terminal single bonds. and ni is the number of single
bonds in ring i. As for the HlogP calculations. an exception was made for protein- 
protein systems, because a large portion of the protein inhibitor is not bound and 
remains freely accessible to the solvent. VALIDATE counts only the rotatable bonds at 
the active site interface. 

The change in conformational cnthalpy. is approximated here by the amount 
of energy required for the ligand to adopt the receptor-bound conformation, defined
by:

(19)

where EL
bind. site is the energy of the ligand’s receptor-bound conformation, and EL

sol is the
energy of the ligand in solvent at its nearest local minimum. calculated by comparing
the energy of the receptor-bound conformation of the ligand to the nearest local 
minimum of the unbound ligand using the GB/SA [ 70] solvation model with the Amber 
all-atom force-field implementation in MacroModel. 
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6.4.

VALIDATE computes four components to surface complementarity. These arc lipo-
philic complementarity (nonpolar/nonpolar). hydrophilic complementarity (polar/polar,
opposite charge), lipophilic/hydrophilic (polar/nonpolar) non-complementarity. and
hydrophilic (polar/polar, like charge) non-complementarity. VALIDATE uses 256
evenly distributed points. obtained from the SASA program [69], placed on the vdW
surface of euch receptor atom whose vdW surface is within 5 Å of the atom center of
any ligand atom. If a point on this surface is within a mean solvent radius (1.4 Å for
water) of the vdW surface or a ligand atom. it is considered a contact point. Its type is 
based upon the determination of the polar/nonpolar nature of both atoms and the criteria 
discussed above. 

VALIDATE has two different types of CSA calculation. In the first method, the ab-
solute surface area between ligand and receptor (similar to Bohm [44]) is computed
using the type of contact observed for each point on the receptor surface. Lipophilic 
complementarity is counted only once, even if that point is within the distance limit 
described above of more than 1 ligand atom’s vdW surface. The total surface on each
atom for each type of contact is computed by dividing the number of contact points of 
that type by 256 (the total number of points possible) and then multiplying by the total 
surface area of the atom: 

Contact su rface a rears: the ligand–receptor interface 

(20)

where CPi is the number of contact points on atom i and ri is the vdW radius of atom i.
The second method is a pairwise summation. similar to Hint 1.1 [68]. For a single

point of surface contact of a receptor atom within the distance or n ligand, wc record a
sum of n, instead of 1, as described above. 

VALIDATE included both descriptors. as their combination improved both the fitted 
model and its predictivity. Due to the structural diversity in the training set, we ob-
served that different receptor–ligand pairs had different CSA values. We, therefore, 
scaled the computed surface areas by dividing the total surface area of HIV-1 protease
(chosen as the most representative receptor in the dataset) to the largest total surface 
area computed for a given receptor’s active site for any of its known ligands. CSA
values were then multiplied with the scaling factor.

6.6. VALIDATE results 

VALIDATE was trained on 51 receptor–ligand co-crystallized stmctures [47] available
from PDB [61] (see Table 1 ), This training set included 15 HIV-1 protease–inhibitor.
9 thermolysin–inhibitor, 12 endothiapepsin–inhibitor. 8 L-arabinose binding protein-
sugar, 4 antibody–steroid. 4 subtilisin-Novo-protein and 2 ß-trypsin–protein com-
plexes, respectively. Ligand size ranged from 24 atoms (Leu-NHOH) to 1512 atoms
(SSI M70G M73K), and the pKi was between 2.47 and 14.0. The crystal-structure based 
test set (Table 2) included 14 inhibitors which were obtained from PDB. Neither ligands 
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Table 1 

Protein–inhibitor PDB code pKi

HIV – AG1001 N/A 6.44
HIV – AG1002 N/A 6.26
HIV – AG1004 N/A 6.64
HIV – Roche N/A 6.9 1 

HlV – SC52964 N/A 10

Receptor–ligand list for the VALIDATE training set 

HIV – MVT101 4hvp 6.12

HIV – JG365 7hvp 9.62
HIV – Acetylpepstatin 5hvp 7.85
HIV – GR I 16624X N/A 8.27
HIV – U75875 1hiv 9
HIV – L-689,502 N/A 8.95
HIV – A74704 9hvp 8.35
HIV – A77003 1 hvi 10.02
HIV – Hydroxpethylene 1aaq 7.74
HIV – L-700,4 17 4phv 9.15
Thermolysin – Phosphoramidon 1 tlp 7.55
Thermolysin – N-( 1 carboxy-3phenyl)-L-LeuTrp 1tmn 7.47
Theromlysin – N-phosphoryl-L-letrcineamide 2tmn 4.1
Thermolysin – ValTryp 3tmn 5.9
Thermolysin – Lcu-NHOH 4tln 3.72
Thermolysin – ZFPLA 4tmn 10.19
Thermolysin – ZGp(NH)LL 5 tm n 8 .04 
Thermolysin – ZGp(O)LL 6tmn 5.05
Thermolysin – CH2CO-Leu-OCH3 7tln 2.47
Endothiapepsin – PD 125754 leed 4.9
Endothiapepsin – L-364.099 2er0 6.4
Endothiapcpsin – H 256 2er6 7.2
Endothiapepsin – H 261 2er7 9
Endothiapepsin – L-363,564 2er9 7.4

Endothiapepsin – PD 125967 4er1 6.6
Endothinpepsin – H 142 4er4 6.8
Endothiapepsin – CP 69,799 5er2 6.6

Endothiapepsin – CP 7 1,362 3er3 7.1

L-arabinose Bind. Prot. – L-arabinose 1ahe 56.
L-arabinose Rind. Prot. – D-fucose 1 abf 5.2
L-arabinose Bind. Prot. P254G – D-fucose 1 abp 5.8
L-arabinose Bind. Prot. P254G – L-arabinose 1hap 6.9
L-arabinose Rind. Prot. P254G – D-galactose 9abp 8
L-arabinose Bind. Prot. MI 08L – L-arabinose 6abp 7
L-arabinose Bind. Prot. MI OXL – D-fucose 7abp 5.4
L-arabinose Bind. Prot. M 108L – D-galactose 8abp 6.6
beta-Trypsin – UPTI 1tpa 14
Beta-Trypin – PTI 2pte 13.3
DB3 – progesterone 11a-ol hemisuccinate 1dbm 9.44
DB3 – 5a-prepnane -3b-ol hemissuccinate 2dbl 8.7

DB3 – Progesterone 1dbb 9
Subtilisin-Novo – Eglin c L45R 1sbn 10.3

DB3 – Etiocholanolone 1dhj 7.62

Subtilisin-Novo – CI-2 2sni 11
Subtilisin-Novo – SSI M73K 3sic 10.2
Subtilisin-Novo – SSI M70G M73K 5sic 10.2
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Fig. 4. Cross-validated PLS analysis of 51 complexes in the training set (see Table 1). q2 = 0. 776 and stand-
ard error (Spress) = 1. 139 for the six-components model (similar results obtained with SONNIC, a neural 
network program 

Table 2 Crystal structures used as test set for the VALIDATE base model

pKi

PDB code Actual Predicted

DHFR – Folate 1 dhf 7.1 7.29
DHFR – Methotrexate 1dds 8.3 6.4
Penicillipepsin – IvaVVLySta-OEt 1apt 9.4 7.71
Penieillipepsin – Iva VVSta-OEt 1 apv 7.7 8.04
Carboxypeptidase – L-benzylsuccinate 1 cbx 6.3 5.92
Carboxypeptidase – GlyTyr 3cpa 4 5.14
Carboxypeptidase – LAGp(0)F 8cpa 9.1 9.39
Alpha-Thrombin – MDI. 28050 1 ths 7.1 7
AlpIia-Thrombin – NAPAP ldwd 8.2 8.51
Trypsinogen – IleVal 2tpi 3.3 3.35
Trypsinogen – ValVal 4tpi 2.0 3.39
DNA – Daunomyein 1 da0 6.5 6.1
DNA – Netropsin 121d 8.8 9.59
DNA – 4-6-diamidine-2-phenyl indole 1d30 6.3 5.04

nor the specific receptors in this test set were included in the training set. Included were 
2 DHFR, 2 penicillipepsin, 3 carboxypeptidase, 2 α-thrombin, 2 trypsinogen and
3 DNA complexes. Actual versus predicted affinities are shown in Fig. 4 (cross-validation 
results on the training set) and Fig. 5 (test set), respectively. 

An extensive discussion of the VALIDATE results was presented in the initial publi- 
cation of this work. In the base model, the electrostatic interaction energy contributed 
only 2.7% to the final PLS model which may, in part, be explained by the inadequate 
approximations of the partial charge representation in our model derivation. The steric 
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VALIDATE Base Model Test Set

Fig. 5. Prediction of affinities of 14 crystalline complexes using the VALIDATE hose model: predictive 
r² = 0.806 and absolute average error = 0.697. 

fit parameter also failed to give a significant contribution to the overall model, but it
proved to be a major contributor in a series of 22 steroids binding to DB3, the mono-
clonal antibody against progesterone [71]. In this particular case, the surface of the
steroid ligands is approx. 45% exposed to the aqueous solvent, therefore a significant
number of ligand atoms are not in the binding site. Several limitations of VALIDATE
are addressed in VALIDATE II, discussed below.

6.7.

Compared to the LUDI scoring function [44] (see Eq. 5),VALIDATE did not explicitly
consider hydrogen-bonds (Eq. 13), as initial attempts to incorporate this parameter into

VALIDATE II: a scoring function for predicting hiv-1 protease inhibitors

VALIDATE II Model Test Set

Fig. 6. Prediction of affinities of 363 HIV-1 protease inhibitors using the VALIDATE II model: predictive
r² = 0.48 and absolute average error = 1.05.
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Table 3 

Protein–inhibitor PDB code pKi

HIV – A79285 1 dif 10.66
HIV – SB203238 1 hbv 6.37 
HIV – SKF108738 1hef 8.8
HIV – SKF107457 1heg 7.93
HI\/ – CGP53820 1hih 5.53
HIV – SB204 144 1hos 8.55 
HlV – SB206343 1hps 9.22 
HlV – VX477 1 hpv 9.22 
HIV – KNI272 1hpx 8.22 
HIV – L735524 1hsg 9.42
HIV – GR123976 1 hte 7 
HIV – GR 126045 1 htf 8.19
HIV – GR137615 1htg 9.78
HIV [GGSSG linked] – A76928 1hvc 10.96
HlV – A78791 1hvj 11.4
HIV – A76928 1 hvk 10.96 
HIV – A76889 1 hvl 9.95 
HIV – XK263 1 hvr 9.51 
HIV [V82A] – A77003 1hvs 10.3 
HlV – cyc(Phe-Ilc-Val) 1 mtr 8.4

HIV – U8554SE 8hvp 8
HIV – DMP323 [NMR average] 1 bvg 9.57
HIV – U100313 2upj 10.39
HlV – A9888 1 pro 11.3

Receptor–ligand list for the VALIDATE II training set 

HIV – SB203386 1sbg 7.74

Note: The other HIV-1 protease inhibitor complexes used in VALIDATE II are listed in Table 1. 

the base model reduced its accuracy. Since hydrogen-bonds are important in the 
receptor–ligand interaction, however. this was reflected in VALIDATE II, a scoring func-
tion developed by Ragno and Marshall [manuscript in preparation]. VALIDATE II incor- 
porales 15 additional descriptors, including 3 related to hydrogen bonds: the number of 
ideal hydrogen bonds for the ligand in water. the number of hydrogen bonds between the 
ligand and receptor and the difference between the above two. Other descriptors were the 
AMSOL-derived polarization free energy of solvation. the cavity formation free energy, 
the ligand’s dipole moment in solvent and the HOMO energy. These descriptors were 
included in an attempt to more accurately describe the electrostatic contribution to ligand 
binding, which was less than 3% in the VALIDATE base model. 

VALIDATE II model was trained using 39 HIV-1 protease inhibitor crystallographic
complexes (see Table 3) and 29 explicative variables (14 from the VALIDATE base
model). The two-PC model explains 91 % of the variance. and yields a r2 = 0.74 (stand-
ard deviation of calculation. SDEC = 0.73). and a q2 = 0.52 (standard deviation of pre-
diction. SDEP = 0.98). This wan better compared to using only the original VALIDATE 
descriptors: r2 = 0.55 (standard deviation of calculation. SDEC = 0.96) and a q2 = 0.37
(standard deviation of prediction. SDEP = 1.12), which is not surprising considering 
that the number of descriptors is double in the first method. The external test set 
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included 363 HIV-1 protease inhibitors, which were docked into the binding site using
the nearest crystalline analog as template structure, using MacroModel. The affinity
range was between 6.11 and 11.4 for the test set, and 3.92 and 11.96 for the training set. 
Actual versus predicted affinities are shown in Fig. 6 for the 363 compounds (test set).

VALIDATE II shows a proof of concept — i.e. a scoring function that can be con-
structed from crystal complexes that have no ambiguity with respect to the binding
mode. This function can be readily used to predict the affinities of compounds for which
the binding mode is not known and has to be modelled, although in its current version
the error is greater than one would like (± 1.3 kcal/mol). It was hoped that such generic
models could embody the physical chemistry of binding. The fact that the errors of
prediction for the low-affinity ligands (not included in the training set) are higher than
the errors of prediction for the high-affinity ligands suggests that this was not
accomplished. It should be pointed out that test-set ligands with low affinity have, on
average, a higher experimental error than those in the high-affinity range.

VALIDATE tested the ability of a scoring function to generalize in the case where
the binding modes were experimentally defined, with associated errors from different
assay procedures and no internal standards for reference — in other words, a basic test
of how well we can do if we get the correct binding mode of the ligand. Here one has to
deal with different errors in calculations on different receptors, which do not necessarily
cancel. By contrast, VALIDATE II was focused on an individual protein. thus leading
to some cancellation of errors in modelling the target. This scoring function tested the
ability to evaluate ligands in the situation where the binding mode is modelled in a
crude manner (with errors): ligands were docked into the binding site in an approximate
manner, by similarity to the binding mode of the corresponding transition state isostere.
Overall, the results show that VALIDATE II is tolerant to inaccuracies in the binding
mode (albeit less accurate). It was not surprising that its predictive ability is greater than
VALIDATE’S, since it was specifically trained for HIV-1 prolease.

The choice of parameters remains arbitrary due to significant cross-correlations
between parameters. For example, in the VALIDATE II model, the HOMO energy, one 
of the most significant parameters, can be omitted and another model of similar pre-
dictability can be derived from the remaining parameters. It is possible that finding the
correct binding mode may constitute a major drawback for the external prediction of
this model. The influence of this problem was significantly reduced for VALIDATE,
because we used known complexes for both the training and the test set. It may be more 
difficult to predict the effects of minor changes in structure than in getting the relative
affinities of diverse complexes approximately right. The VALIDATE II results motivate
the development of an improved scoring function to allow accurate prediction of
binding modes as we believe much of the error in our predictions comes from imprecise
orientations of the inhibitors in the complexes. 

7. The Jain Scoring Function

To overcome the problems given by incorrect orientations in the binding site, Jain pro-
poses [48]a regression-based scoring function that is both fast and tolerant to inaccurate
ligand orientations. This approach has a master equation (Eq. 21) that includes terms
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tuned with neural network-based functions that include a sigmoidal (s), a gaussian (g)
(Eq. 22), and a distance (d) (23):

(21)

(22)

(23)

where ƒ0 is the hydrophobic term, is the polar contribution, f2 estimates the repul-
sive term, both (l5.phbe) and (l6.lhbe) represent solvation and (l7.n_rot) and
(l8.log(mol.weight )) are the entropic term, respectively. Tunable linear parameters are
denoted li, whereas nonlinear ones are denoted ni. In what follows (Eqs. 24 and 26–28),
— we have attempted to eliminate what we believe were typos from the original paper
by Jain [48]. The reader is advised to compare the two versions.

The hydrophobic complementarity :

where

computes the effect of hydrogen-bonds and salt bridges, and: 

(24)

is composed of a gaussian g — that captures the positive portion of atomic contacts, and 
a sigmoidal s — that captures the portion due to steric overlap. 

The polar complementarity (Eq. 25) is summed over all pairs of polar atoms using the
charge–charge interactions (ci, cj):

(25)

(26)

(27)

is a correction term for hydrogen-bond directionality, defined using three vectors: vi

(‘out’ direction for atom i), vj (‘in’ direction for atom j) and a normalized vector bij

(from atom i to atom j), respectively. Switching atoms i and j yields the same value for
this correction term, as f1b is symmetric. The unfavorable charged contacts (Eq. 28) are
accounted for by summing contacts for all pairs of polar atoms of the same sign: 

(28)

Solvation effects arc accounted for by computing the difference between the total and
actual number of ‘hydrogen-bond equivalents’ for the protein (phbe) and ligand (lhbe),
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using the tunable parameters l5 and l6, respectively (see Eq. 21). Entropic costs are esti-
mated by counting the number of freely rotatable bonds in the ligand (n_rot) and by 
the log 10 of the molecular weight of the ligand (log(mol.weight )) , using the tunable
parameters l7 and l8 , respectively.

The function F was trained on 34 crystal structures from PDB [61], which included
several proteases (e.g., 6 thermolysin–inhibitor, 6 trypsin–inhibitor and 5 thrombin–
inhibitor complexes). two cytochrome P450–inhibitor complexes, binding proteins to fatty 
acids, galactose and retinol, among others. The affinity ranged between 2.82 and 14.0 on 
the pKd scale. When trained using ligand minimization with pose optimization (defined as 
the orientation of the ligand into the binding site prior to docking), F yields a good pair 
rank-correlation coefficient (0.95 out of 1.0) and a good root-mean-squared error of 0.72. 
The l and n values were obtained after convergence (five iterations) (Table 4). 

Table 4 1 and n values after convergence.

parameter Value Parameter Value

l0 0.0898 n0 0.6213

l2 1.2338 n2 0.1880
l3 –0.1796 n3 0.3234
l4 –0.0500 n4 0.6313
l5 –0.1539 n5 0.6139
l6 0.0000 n6 0.5000
l7 –0.2137 n7 0.5010
l8 –1.0406

l1 1–0.084 n1 0 .1339

Additional constraints were imposed by introducing a steric overlap term 

Ki,j = –10.0 (dij + (29)

where δ was set to 0.7 for complementary polar contacts and 0.1 for others (thus, a
steric overlap of 0.5 Å yields a penalty of 1.6 pKd units). This penalty was introduced
for ligand orientation optimization during docking, because F was trained on native
crystal structures, where unfavorable ligand–protein contacts are scarce, if any. How- 
ever, Kij was not included in the fina l score.

The expressions used in this scoring function are, in principle. a different functional
form from the ‘classical’ equations from molecular mechanics (e.g. Eqs. 15 and 25 are 
different representations of the charge–charge interaction). However, this approach 
yields a result that is quite similar to VALIDATE [47], in that hydrophobic contacts 
(expressed as the lipophilic CSA in VALIDATE and as f0 in F) are deemed most
important (18.5% in VALIDATE and 44% in F, respectively). Electrostatic interactions 
rank second in importance (26%), unlike in VALIDATE (less than 3%). F compares
well [48] to Böhm’s function [44], as the breakdown terms from the master equations 
yield similar values for the trypsin–benzamidine complex [48]. This function appears to 
be rapid, accurate and tolerant to ligand pose. and to produce good estimates for the 
binding affinity .
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8. The HTS Approach

For a computational high-throughput screening (HTS) objective, Rose [72] defined a 
scoring function based on the following master equation (Eq. 30): 

(30)

where is the hydrogen bond energy. ∆ Gmetal ctr. is the metal center bond energy,
∆GvdW is the Lennard-Jones interaction  energy, ∆Gdesolv.,polar is the desolvation energy
for unsatisfied donor/acceptor terms. ∆Gdesolv.,non-polar is the desolvation energy for non-
polar atoms, ∆Grot.int is the entropy  loss  due to restrictions in internal degrees of
freedom and ∆Grot/trans is the loss of rotational and translational entropy.
The HTS effective hydrogen bond potential, ∆Gh-bond, is defined as:

where the distance of an atom from the protein surface becomes essential: if dsurface >  4 Å,
then ∆Gh-bond  = –0.5 to –1 .0 kcal/mol. which also assigns a maximum for the ∆Gdesolv.,polar

term. If the same atom is on the surface, then Gh-bond ∆Gh-bond = 0.0 to –0.3 kcal/mol, and 
∆Gdesolv.,polar = 0.0. In Eq. 3 1, H is the hydrogen atom, A is the acceptor atom and D is the 
donor, γ is the angle for the donor out of the acceptor plane. while qA and QD are the
partial charges for the acceptor and donor atoms, respectively. In the HTS function, aro- 
matic carbons are treated as hydrogen-bond acceptors, whereas aromatic C-H pairs are 
treated as donors. In a similar fashion the effective metal center bond potential is defined: 

where λ is the angle of the metal out of the acceptor plane. M is the metal atom, A is the
coordinating acceptor atom and qA are formal charges. 

The HTS effective desolvation terms are: 

which is applied for all nonpolar atoms. and ∆Ai is the change in the solvent accessible
surface area upon ligand binding, and:

(34)

which is applied to all unsatisfied donor and acceptor atoms, with σi as an atom-type
specific solvation parameter fitted to the ∆Gsol of small molecules.

The entropy terms are defined as: 
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scoring functions work at all. It is well known, for example, in the field of HIV-1 pro-
tease inhibition, that different pharmaceutical companies measure the Ki or IC50 values
at pH values ranging from 4.5 to 7, at Na+ concentrations ranging from 0.001 M to
0.1 M. Both factors are known to influence KM values for the protease up to 100-fold,
hence significantly different Ki values are expected for the same ligand! In view of the
above facts, interested parties should combine their efforts by pooling together binding 
affinities for all known crystal structures of a given protein, and have them tested with
the same procedure, ideally at different temperatures as well (to observe the influence of
enthalpy-entropy compensation and thus better calibrate the model).

It is evident that attempts to calibrate scoring functions rely upon comparison of cal-
culated (predicted) and experimental values. As such, the experimental values remain 
the only reality check. With the increasing diversity of bioassays. different laboratories 
yield different affinity constants for the same reference compound, sometimes by as
much as 3 pKi units. We, therefore, believe i t is timely to propose the definition of inter-
nal standards for biological targets of major interest, both at the substrate/agonist and
inhibitor/antagonist levels. Peer-reviewed scientific journals should instruct their refer-
ees to condition acceptance for publication only upon disclosure of experimental results
for such compounds deemed as internal standards. Such compounds could then be used
for relative potency comparisons. We expect improvements in the performance of
scoring functions relying on such internal standards, thus leading to more accurate pre-
dictions. While this request may seem an overstatement, we note that two recent
reviews do not even mention the need for more accurate biological assays, despite an
elegant treatment of physico-chemical and computational aspects of the ligand-receptor
binding [52,73].

The second requirement, speed, is obviously dependent on the number of terms in the
master equation, the quality of the software implementation and the difficulty of esti-
mating each parameter, besides hardware performance. While benchmarks are not avail-
able for these scoring functions, one is inclined to believe that Jain’s or Böhm’s scoring
functions would be faster than VALIDATE on the same set of compounds. None the
less, VALIDATE has the highest diversity of the training set, which can be both an ad-
vantage (intuitively) and a drawback (as compared to VALIDATE II on the HIV-1 pro-
tease crystals). There is obviously a trade between speed and accuracy. One should be
concerned more with rapidly screening out inactives’ without too much effort and, as
such, a steric overlap penalty (Eq. 29) should be an explicit part of every scoring
function.

The presence of solvent molecules in the binding site is also an important aspect
which has not been explicitly accounted for in the above scoring functions. While the
importance of water in mediating ligand-protein interactions has been amply described
i n the literature, none of the scoring functions considers docking water molecules in the
binding site in the same run as the ligand. Such a procedure could be improved if one
considers that methods that rapidly estimate the mean residence time of a water mole-
cule [74] at the interface with biomolecules are available [75] .In combination with such
methods, the direct influence of the solvent in the binding process would be better
accounted for.
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The third requirement, tolerance to inaccuracies of the ligand
,
s orientation in the

binding site, appears to be a promising feature, provided that docking calculations we
extremely fast. Such inaccuracies are also present in the structural data, and thermal
factors should be checked prior to deriving the scoring function. The binding affinity
represents the statistical ensemble averaged over 1010 of ligand-receptor pairs, hence
the ability to predict it based on the calculations for a single conformation of both
ligand and receptor remains questionable [76].

Last, but not least, one should question the need to perform the scoring of ligands at
all. Most such procedures are aimed at de novo design software, which is used with the
explicit intention to explore the virtual chemical space in search of different, diverse, 
novel ligands. These virtual ligands are then ranked according to the scoring function,
then later inspected by the computational chemist alone or in combination with syn-
thetic chemists to evaluate synthetic feasibility of such ligands. Since the aim of this
procedure is to explore molecular diversity, one should perform a cluster analysis 
(perhaps with the use of an experimental design procedure) on all the novel ligands and
cluster them according to some similarity (or diversity) measure. Getting representative
ligands from each cluster may prove more effective than predicting their binding
affinity! In a combined procedure, one could envision a scoring function applied to
D-optimal design-selected cluster representatives prior to individual compound inspection/
selection.

Overall, the above results show that the receptor-based scoring function methodology 
holds promise and has room for improvement. With the proper selection of the training 
set (which one could bias for the therapeutic target of choice), and i f thermodynamic
aspects are accounted for (perhaps with the use of microcalorimetry), one can expect
quite good results from applying the scoring function. None the less, one has to bear in
mind that novel chemistry (in novel ligands) may behave in unpredicted manner, hence
one should always expect (and welcome) the unexpected. 
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A Priori Prediction of Ligand Affinity by Energy
Minimization

M. Katharine Holloway
Molecular Design and Diversity, Merck Research Luboratories, West Point, Pennsylvania 19486,

U.S.A.

Quantitative a priori prediction of the affinity of a ligand for its receptor is, in a sense,
the holy grail of structure-based molecular design, ideally allowing one to optimize the
number and kind of compounds designed for a program prior to any chemical synthesis.
Historically, several approaches have been employed to calculate and/or predict binding
affinity.

The free energy of binding can be calculated directly via Free Energy Perturbation
(FEP) calculations [1]. The relative binding energies for pairs of inhibitors are deter-
mined using a thermodynamic cycle in which the structure of one inhibitor is perturbed
into the structure of another, both in the receptor site and in solvent. This approach has
been reported to yield relative free energies that are accurate to ± 1 kcal/mol with
respect to experiment. However, due to the amount of computer time required, these
calculations are impractical for routine assessment of the binding affinity of proposed
compounds.

Other more efficient approaches have included: Comparative Molecular Field
Analysis (CoMFA) [23], the Hypothetical Active Site Lattice (HASL) [4], HINT hy-
drophobicities [5], solvent accessibility [6] or solvent-induced interactions [7], atom-
atom contact preferences [8,9], a general mean field model [10,11] and scoring algo-
rithms for database search or de novo design methods [12–16], as well as energy
minimization methods.

This chapter will focus on computational studies which employ energy minimization
in an X-ray or modelled active site as the means to predict the affinity of a ligand for its
receptor. These studies fall into two categories: (a) energy-component approaches –
i.e. those that incorporate receptor-ligand energy values as one term in a sum of binding
energy contributions or as part of a 3D QSAR; and (b) energy-only approaches – i.e.
those that employ energy minimization methods alone to predict ligand affinity.

1. Energy-component Approaches 

Recent approaches that incorporate energy minimization as part of a larger binding
energy equation or 3D QSAR have included Marshall’s VALIDATE [17], Ortiz and
Wade’s COMBINE [18] and the empirical free energy evaluation method of DeLisi
[19,20].

The VALIDATE method incorporates 12 physico-chemical and energetic parameters,
including the electrostatic and steric interaction energy between the receptor and ligand
computed using the AMBER force field in MacroModel. A predictive 3D QSAR was
derived for a diverse training set of 51 crystalline complexes. including HIV-1 protease,
thermolysin, endothiapepsin, ß-trypsin and subtilisin-Novo inhibitors; antibody(DB3)-

H. Kubinyi et al. (eds.), 3D QSAR in Drug Design Volume 2. 63–84.
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bound steroids; and L-arabinose binding protein-bound sugars. The ligands ranged in 
size from 24–1512 atoms and the pKi values ranged from 2.47 to 14.0. The best fit equa- 
tion, using PLS analysis, yielded an r2 = 0.849 with a standard error of 1.006 log units
and a cross-validated r2 = 0.776. This QSAR was found to be predictive for at least two
of three test sets of enzyme-inhibitor complexes: 14 structurally diverse crystalline 
complexes (predictive r2 = 0.81, absolute average error = 0.70 log units), 13 HIV pro-
tease inhibitors (predictive r2 = 0.57, absolute average error = 0.73 log units) and 
11 thermolysin inhibitors (predictive r2 = 0.72, absolute average error = 1.48 log units).
For more details of this approach see the chapter by T.I. Oprea and G.R. Marshall in 
this volume. 

The COMBINE approach utilizes only the intermolecular interaction energy between 
the receptor and its ligand, but employs a unique method that partitions the energy 
among receptor and ligand fragments and subjects these energy components to statisti-
cal analysis. This is proposed to enhance contributions from mechanistically important 
interaction terms and to tune out noise due to inaccuracies in the potential energy func- 
tions and molecular models. For a set of 26 synovial fluid phospholipase A2 inhibitors,
the direct correlation between interaction energies. computed using the cff91 DIS- 
COVER force field, and percent enzyme inhibition was very low, r = 0.212. However.
with the COMBINE approach. employing PLS fitting and the GOLPE variable selection 
procedure, good correlations with percent inhibition were observed (r2 = 0.92,
cross-validated r2 = 0.82). For more details of this approach see the chapter by Wade
et al. in this volume. 

DeLisi and co-workers employ an empirical free energy evaluation that computes the 
binding free energy as a sum of various free energy contributions, including the inter-
action energy between the receptor and ligand computed with the CHARMm force field
The binding of nine serine endopeptidase inhibitors [19]; biotin, iminobiotin and thio-
biotin to streptavidin [ 19]; five peptide antigens to MHC Class I receptors [19]; and six 
peptide-based HTV-1 protease inhibitors [20] have been examined using this methodol- 
ogy. The calculated empirical free energies are in good agreement with experiment 
and/or FEP calculations for the first three cases. For the HIV-1 protease inhibitors, the
method is used to guide docking of the ligands via minimization of the free energy func-
tion, leading to better agreement with the observed bound structure (RMSD = 1.21 Å) 
than minimization of the CHARMm energy function (RMSD = 1.69 Å), although both
correlated well with In Ki values (empirical energy function, r = 0.970; CHARMm 
energy function. r = 0.967). 

2. Energy-only Approaches

Recent approaches that primarily employ energy minimization methods to predict 
ligand affinity have included studies of the binding of (a) influenza sialidase inhibitors 
[21], (b) aldehyde substrates for aldose reductase [22], (c) thrombin inhibitors [23],
(d) serine proteinase inhihitors [24], and HIV-1 protease inhibitors [25–29]. 

Taylor and von Itzstein [21] performed calculations on the mechanism of sialoside 
cleavage by influenza virus sialidase and its inhibition by transition-state analogs such 
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as 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en). Minimized enzyme– 
inhibitor complexes for Neu5Ac2en and two analogs were generated employing a con- 
bination of molecular dynamics and molecular mechanics calculations with the CVFF 
force field. The computed intermolecular binding enthalpies correlated qualitatively 
with the observed Ki values.

Subsequently. De Winter and von Itzstein [22] performed calculations on the binding
of substrates (D-xylose, L-xylose and D-lyxose) to wild-type human aldose reductase 
and two site-directed mutants, H110A and H110Q. Three diffe rent protonation states of 
His110 were examined: (1) Nε2-H or HisI, (2) Nδ1-H or HisII, and (3) Nε2-H and Nδ1-H
or His+. Minimum energy conformations for each enzyme–substrate complex were gen-
erated via a combination of molecular dynamics sampling and molecular mechanics
minimization with the AMBER program. The solvation energy of these complexes was
evaluated using DELPHI. An excellent correlation was observed between the calculated 
average interaction enthalpy, both with (r = 0.94) and without solvation (r = 0.87), and
the measured log(Km) values for the HisI wild-type and H110A and H110Q mutant
models, while there was no correlation for the other two wild-type models, HisII and 
His+. Thus it is proposed that the key residue His110 is neutral and protonated at Nε2

when an aldehyde substrate is bound to human aldose reductase. Further, the log( Km) of
a fourth substrate. D-glucose, was correctly predicted (predicted = –0.93; observed = 
–0.94) from the correlation equation which included solvation, log(Km) = 2.72 + 0.241
(average interact ion enthalpy). 

Grootenhuis and van Galen [23] examined the binding of 35 non-covalently bound 
inhibitors of human thrombin in the argatroban, TAPAP and NAPAP series with pKi

values ranging from 3 to 8. Energy minimization of the inhibitors in the X-ray structure 
of thrombin was performed using the CHARMm force field. Various electrostatic 
models were examined (ε = 1. r, 4r), as well as flexibility of the enzyme active site and
the inclusion of solvation corrections. The correlation between the CHARMm inter- 
action energy and pKi was best (n = 32, r = 0.81, cross-validated r2 = 0.60, standard de-
viation = 0.97 log units) when the enzyme active site was held rigid, with a distance
dependent dielectric constant (ε = r) employed during energy evaluation but not during
energy minimization. The equation of the best fit line was Einter = –4.23 (pKi) – 54.74.
Preliminary investigation of solvation effects using Eisenberg’s solvation function
did not improve the correlation. For more details of this work see the chapter by
R.M.A. Knegtel and P.D.J. Grootenhuis in this volume (p. 99 ff). 

Kurinov and Harrison [24] performed calculations, using the AMMP molecular 
mechanics program, on a series of 18 compounds containing hydrophobic groups and 
basic amines in order to predict their ability to inhibit bovine trypsin. Fifteen of the 
compounds were predicted to be inhibitors and three compounds were predicted not to 
be inhibitors, based on the presence or absence of a low-energy binding geometry 
within 2 Å of the known benaamidine binding site. The binding energies calculated for 
the compounds predicted to inhibit trypsin were found to correlate (n = 15, r = 0.755:
n = 14, r = 0.857) with the observed logKi values, which ranged from –1.15 to –4.00. In
addition, the compounds that were predicted not to inhibit trypsin did not inhibit 
trypsin. The slope of the correlation line was observed to be less than RT; this was 
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attributed to neglect of solvation and entropic terms. It was found that an all-atom po-
tential with no cutoff radius was essential to obtain a good correlation and that the flex- 
ibility of the ligand must be included (here via molecular dynamics) in order to properly 
represent the distribution of conformations. Subsequent X-ray structure determination 
of six of the inhibitors co-crystallized with trypsin indicated good overall agreement 
between the predicted and observed binding modes. Interestingly, the enzyme structure 
varied little from one X-ray structure to another, leading to the conclusion that trypsin is 
relatively rigid in its inhibited form, thus only flexibility of the inhibitor, not the 
enzyme, need be considered in predicting binding modes and energies. 

HIV-1 protease inhibitor binding has been cxamincd by four different groups. Weber 
and co-workers initially examined [25] three HIV-I protease inhibitors, MVT-101,
JG365, and U85548e, for which X-ray structures had been determined. These structures 
were minimized using the CVFF force field, using a distance dependent dielectric 
model to mimic solvation effects. A ‘high’ dielectric model, ε = 4r, was found to
produce minimized complexes and binding energies that were in better agreement with 
the X-ray structure and Ki measurements than did a ‘low’ dielectric model, ε = r. Using
this protocol, the calculated interaction energy of the three inhibitors with HIV-1 pro-
tease ranged from –53 to–56 kcal/mol, but were not correlated with observed Ki.

However, subsequent examination [26] of a set of 21 modelled peptide substrates of
HIV-1 protease with single amino acid substitutions at P4 to P'3 led to calculated interac-
tion energies for the corresponding tetrahedral intermediates that correlated well with 
the observed kcat/Km (n = 21, r = 0.64; P1 – P'1 only, n = 8. r = 0.93; P2 – P'2 only.
n = 14, r = 0.86). These calculations were performed using the AMMP molecular
mechanics program and a constant dielectric model (ε = 1 ). Side-chain conformations
for the peptide substratec were determined via systematic search. The catalytic mechan- 
ism and factors influencing the catalytic efficiency of the different substrates were dis- 
cussed in relation to the models: in particular. it was proposed that the ordered water
molecule observed in many X-ray structures between the inhibitor and enzyme ‘flaps’ 
acts as the nucleophile rather than the more traditional hypothesis of a water activated 
by the catalytic aspartie acids, AspA25 and AspB225. For more details of this work see the
chapter by I.T. Weber and R.W. Harrison in this volume (p. 115 ff). 

Miertus and co-workers [27] examined a set of eight peptide-based HIV-1 protease 
inhibitors, modelled on the hexapeptide MVT-101 structure. Enzyme–inhibitor calcula- 
tions were performed using the CVFF force field: short molecular dynamics runs were 
performed to relieve strain in manually constructed inhibitor models: solvation effects 
mere evaluated with the Polarizable Continuum Method, with = 80 representing a 
polar environment. Summation of total complexation and solvation energies led to 
values that were used to prioritize inhibitors for synthesis. e.g. incorporation of nega-
tively charged residues at P

2
or P'

2
improved the energy and was consistent with im-

proved inhibition [28]. Varying the protonation state of the basic amine in these reduced 
peptide inhibitors led to uniform changes in the complexation energy, but some vari- 
ability in the solvation energy by modulating the overall charge on the inhibitor. 
Variation of the central transition state mimic was also examined; inclusion of a second 
hydroxyl or amine to the U-85545e reference structure was predicted to be favorable. 
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Viswanadhan and Reddy [29] examined a series of 11 peptidomimetic HIV-1 pro-
tease inhibitors with structural variation at the P'2 position. Energy minimizations were
performed with the AMBER force field and solvation energies were computed using an 
explicit water shell. The binding enthalpy resulting from these calculations compared 
favorably to FEP calculations for seven of the inhibitor pairs. Hydrophobic interaction 
energies were also computed but found to correlate less strongly (n = 7, r = 0.72, stan-
dard deviation = 1.05 kcal/mol) than the calculated binding enthalpies (n = 7, r = 0.92,
standard deviation = 0.57 kcal/mol) with the observed binding energy.

We have also examined the binding of HIV-1 protease inhibitors using energy mini-
mization methods [30,31], with the goal of predicting activities and prioritizing syn-
thesis for proposed inhibitors a priori. For this purpose, a training set of 33 inhibitors
with structural variation at the P'1 and P'2 positions was employed to derive a correlation
between the computed enzyme-inhibitor interaction energy and the observed IC50

values. The inhibitors employed in the training set are shown in Tables 1 and 2. They 
were selected based on variety of structure and activity: 16 inhibitors (2–17) contained

Table 1 
set of HIV-1 protease inhibitors.

Experimental IC50 values and calculated enzyme-inhibitor interaction energies for the P1, training
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Table 2
set of HIV- 1 protease inhibitors. 

Experimental IC50 values and calculated enzyme–inhibitor interaction energies for the P2' training 
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Table 2 (continued)

modifications in P'1 and 16 inhibitors (18–33) contained modifications in P'2; pIC50

values ranged from 4.523 to 10.000. 
An initial model of 1 was constructed based on the X-ray structures of renin in-

hibitors bound in the active sites of fungal aspartyl proteases such as Endothiapepsin 
and Rhizopus pepsin. Models of 2–33 employed the model of 1 as a template. The in- 
hibitor models were minimized in the active site of the L-689,502 inhibited HIV-1 pro- 
tease X-ray structure [32] using the MM2X force field [30]. In all calculations the 
inhibitor was completely flexible and the enzyme was completely rigid. Dielectric con-
stants of 1.5 for intramolecular interactions and 1.0 for intermolecular interactions were
employed. All titratable HIV-1 protease residues were charged with the exception of
Tyr59 and one of the pair of catalytic aspartates, AspA25, which was protonated on Oδ1.
The latter protonation slate was chosen based on pH rate profiles which suggest that
the catalytic aspartates of the fungal aspartyl proteases Penicillopepsin and Rhizopus
pepsin [33] and the HIV-1 protease [34] share one negative charge.

The computed total energy, Etot, is a sum of the intramolecular energies of the
enzyme. Eenz, and the inhibitor, Einh, and the intermolecular (or interaction) energy,

stant and is not computed. Einter corresponds to the sum of the van der Waals (Evdw ) and
electrostatic (Eelec) interactions between the inhibitor and the enzyme.

Einter, between the enzyme and the inhibitor. Since the enzyme is held fixed, Eenz is con-
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Etot = Eenz + Einter + Einh

Einter = Evdw + Eelec

Einter should correspond to one component of the overall free energy or binding, ∆Gbind,
with other significant contributions being: the solvation/desolvation of the enzyme, in- 
hibitor and enzyme-inhibitor complex: the flexibility of the enzyme; the energy associ- 
ated with achieving the bioactive conformation of the enzyme and inhibitor; and the
entropy changes associated with binding. However. one might expect Einter to correlate 
with ∆Gbind if other effects are not dominant — i.e. if the enzyme structure does not
vary much from one inhibited complex to the other. if the inhibitors occupy the same 
binding sites and have similar conformation and character. and if entropy changes are 
relatively constant. Indeed, the computed Einter values listed in Tables 1 and 2 correlate
well with the experimental observation, pIC50, as shown in Fig. 1, with the following 
relationship:

pIC50 = –0.169(Einter) – 15.707 (1)

n = 33, r2 = 0.783, cross - validated r2 = 0.770, s = 0.675

Separation of Einter into the van der Waals. Evdw, and electrostatic, Eelec, components, as
depicted in Fig. 2, indicated that neither correlated as well individually with pIC50 as the
sum of the two, Einter . This is consistent with the observation that both hydrophobic
binding — i.e. steric complementarity — and hydrogen-bonding interactions — i.e.
electrostatic complementarity — are critical to the activity of HIV-1 protease inhibitors. 

Fig. 1. Calculated enzyme–inhibitor interaction energy (Einter) versus experimental enzyme inhibition (pIC50)
for the training set of inhibitors. 
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Variation of the protonation state and protonation site of the catalytic aspartic acids, 
AspA25 and ASPB225, indicated that the observed correlation between Einter and pIC50 was
essentially independent of protonation state. As shown in Table 3, the correlation 

Fig 2. Electrostatic (diamonds) versus
Einter (circles), for the training set of

us van der Waals (squares) contributions to the interactions energy,
hibitors 1–33. Equations of the best-fit line and correlation coefficients

are: Eelec: pIC50 = –0.23.3(Eelec) – 5.1988, r2 = 0.436; Evdw: pIC50 = –0.221(Evdw) – 10.270, r2 = 0.602;
Einter: pIC50 inter) – 15.707. r2 = 0.783.

Table 3 effect of aspartie acid (A25 and B225) protonation state on the correlation between observed plC50
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coefficient is similar for all protonation states with the possible exception of the com-
pletely ionized species in which both aspartates are negatively charged. This is consist-
ent with calculations by Tossi [28] (see above), which indicate that varying the
protonation state of the secondary amine in reduced peptide inhibitors leads to uniform 
changes in the complexation energies within a series.

However, the observed correlation was not independent of the force field employed
as shown in Table 4. Similar calculations with the CHARMm force field [35] led to an
r2 of 0.520 between Einter and pIC50. We postulated that the better correlation obtained
with the MM2X force field might be due to the consistent charging scheme employed.
Indeed, incorporation of the MM2X charges in the CHARMm calculations led to a
significant improvement in the correlation (r2 = 0.683). Thus, the MM2X force field
and, in particular, the MM2X charges, appear superior to the CHARMm force field and 
charges for this specific application. This is interesting in light of some of the other 
studies of this kind which employed the CHARMm force field (see above). 

We also examined the contribution of other key factors in binding — e.g. the flexibil-
ity of the enzyme active site, the difference in energy between the solution and bound 
conformations of the inhibitor and the solvation/desolvation of the inhibitor and the 
enzyme. Including the flexibility of the enzyme active site did improve the correlation 
in the context of CHARMm minimization [31]; unfortunately, these calculations were 
not possible with the MM2X force field. 

Including the difference in energy between the solution and bound conformations of 
the inhibitor was attempted by subtracting from Einter the difference in intramolecular 
energy between the free and bound inhibitor conformations. Two different dielectric 
constants ε = 1 and ε = 50) were employed to model the free inhibitor conformation
that was the closest local minimum to the bound conformation. Neither dielectric model 
led to energy differences that had a significant effect on the correlation [31]. This sug-
gests that either there is no real energy penalty paid for the inhibitor to achieve the 
bioactive conformation or, more likely, that the penalty is similar for the inhibitors in 
the training set. 

Table 4 
correlation with PIC50 for 1–33.

The effect of computational parameters such as force field, charge model and solvation, on the 

Computed value r2

Einter (MM2X) 0.784
Einter (CHARMm) 0.520
Einter (CHARMm, MM2X charges) 0.683
ESolv,1 (BMIN 0.079
Esolv,1 (BMIN), excluding 9 0.156

Einter (MM2X) & Esolv,1 (BMIN) 0.786

Einter (MM2X) &Esolv,Tot (BMIN) 0.789
Inhibitor surface area 0.303
Inhibitor volume 0.319

Esolv,Tot (BMIN) 0.118
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The effects of solvation were included using the BATCHMIN GB/SA [36] con-
tinuum solvation method with the MM2 force field [37]. Solvation energies were 
computed for the rigid enzyme active site, for each free inhibitor, and for each enzyme-
inhibitor complex. However, neither the solvation energy of the inhibitor (Esolv,I) nor the 
total solvation energy (Esolv,Tot = Esolv,E-I – Esolv,E – Esolv,I) improved the correlation when 
employed in a multiple linear regression with the Einter values as shown in Table 4. This 
is consistent with a low correlation between the computed solvation energy and the 
observed activity (r2 = 0.079 and 0.118 for Esolv,I and Esolv,Tot, respectively). Even when
the outlier 9 was excluded from the regression between Einter and Esolv,I, the correlation 
was only slightly improved. It is interesting to note that the surface area and volume
computed for the bound inhibitor conformation correlated better with pIC50 than the 
BATCHMIN GB/SA solvation energies. Clearly, solvation/desolvation effects are 
important to the overall binding process. However, these results indicate that either 
solvation effects vary little for this set of inhibitors or that we have not properly 
approached the computation of solvation effects. The inability to improve the cor-
relation with the inclusion of a solvation term is in agreement with the results of 
Grootenhuis and van Galen [23] who employed an Eisenberg solvation function for a 
series of thrombin inhibitors. 

Thus, we have discovered nothing that improves the predictivity of our original cor-
relation between Einter and pIC50, despite the fact that the other energetic factors are 
clearly key contributors to binding affinity. 

In order to demonstrate that the observed correlation is not specific to this training set
of inhibitors, we examined two other sets of HIV-1 protease inhibitors — i.e. cyclic 
urea inhibitors 34–37 from DuPont-Merck [38] and hydroxycoumarin and hydroxypy-
rone inhibitors 38–68 from Upjohn [39]. Both sets of inhibitors differ significantly from 
the Merck set, in that they are water-displacing templates in which an oxygen of the in-
hibitor occupies the binding site of a critical ordered water molecule located between 
the flaps of the enzyme and the inhibitor in the X-ray structures of HIV-1 protease/ 
inhibitor complexes. Additionally, the activity measure for these datasets are Ki, not
IC50. These cannot be compared directly since Ki is an intrinsic property, while IC,,
varies as a function of the assay conditions — e.g. as a function of substrate, pH and salt 
concentration. Thus, we can derive correlations between the calculated Einter and the ob-
served pKi values, given in Tables 5–8, for each of the additional training sets (DuPont-
Merck, r2 = 0.967; Upjohn, r2 = 0.606) or for the combination of the two (r2 = 0.759).
The individual correlations are illustrated in Fig. 3 for the DuPont-Merck inhibitors and 
Fig. 4 for the Upjohn inhibitors. However, it would be ill-advised i.e. comparing apples 
to oranges) to attempt to correlate Einter with the observed pIC50 or pKi, values for the 
entire set of Merck, DuPont-Merck and Upjohn inhibitors since there is no standard of 
reference for their activity. 

Note that the correlation for the Upjohn series of inhibitors, while very good, is not as 
strong as that for the Merck or DuPont-Merck series. This may result from the fact that 
these inhibitors were assayed as diastereomeric mixtures. while the modelling was 
performed on a single structure that was consistent with the more active diastereomer, 
67, of the separate mixture 65–68.
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Fig. 3. Calculated enzyme-inhibitor interaction energy (Einter) versus experimental enzyme inhibition (pKi)
f o r the DuPont-Merck inhibitors.

Fig. 4. Calculated enzyme-inhibitor interaction energy (Einter) versus experimental enzyme inhibition (pKi)
for the Dupont-Merck inhibitors. 

Employing the initial correlation for the Merck series of inhibitors described in Eq. 1,
we were able to make predictions of activity for inhibitors prior to synthesis — i.e. true
predictions and not post hoc explanations of activity. A set of compounds, 69-79, for
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which activities were predicted, is shown in Table 9 with the computed Einter and
predicted and observed pIC50 values. The accuracy of these predictions is illustrated
graphically in Fig. 5. Here, the line is one of unit slope, not a correlation line. The
average unsigned error Cor the predicted set of compounds is 0.59 log units across a
range of 5.10 log units — i.e. only about a factor of 4. In many cases. this is cornparable
to the error inherent in the measurement of a biological activity.

It must be emphasized that we made many more predictions than are shown in
Table 9; these are only examples. In addition, when our prediction for a compound was 
unfavorable, it was frequently not synthesized; or when a prediction was favorable, the 
exact compound that was modelled was not synthesized, but rather an analog. 

As can be seen in Table 9, this approach was able to distinguish small differences in 
structure/activity between two diastereomers, 71 and 72, as well as gross differences in 
structure/activily between the inverted pair or inhibitors 70 (Ro-31-8959) and 73, which
occupy the same binding sites but in the opposite direction. The 6-membered lactam
ring in 69 was correctly predicted to fit poorly in the active site, although the analogous
5-merubered lactam was a potent inhibitor (IC50  = 37 nM) [40].

However, the most significant prediction, for 76, involves an interesting feature of 
HIV- 1 protease–inhibitor complexes. Due to the symmetrical nature of the enzyme,
some inhibitors, such as Ro-31-8959, 70 [41], are observed to bind in the active site in
two directions in the X-ray structure with respect to the flaps, that in their closed H-
bonded form introduce the asymmetry that is the direction marker. This bidirectional 
binding is illustrated in Fig. 6. The hypothesis that 1 and 70 might bind in the active site
in opposite directions, as illustrated in Fig. 7, could explain the preference for inverse 
stereochemistry at the transition state hydroxyl. Based on this hypothesis. the hybrid 
inhibitor 76, which contained the C-terminal halves of both 1 and 70, was designed. It
was predicted (IC50 = 2.8 nM), and subsequently observed (IC50 = 7.6 nM), to be a
potent HIV- 1 protease inhibitor.

Fig. 5. Plot of predicted pIC 50 versus observed PIC50 values for the inhibitor whose activity was predicted a
priori (prior to assay). The line is one ofunit slope, i.e. predicted plC50 = observed pIC50.
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Fig. 6. An illustration of the symmetrical nature of the HIV-I protease. The X-ray structures [41] of both o-
rientations of Ro-31-8959, 70, in cyan and yellow, are shown in the enzyme active site, represented by a green
α-carbon ribbon. The β-hairpin structures which loop across the front of the image are the flaps. The ordered 
water molecule which sits between the flaps and the inhibitor is displayed in the foreground us a ball-and-
stick figure; the catalytic aspartic acids are displayed in the background as stick figures. 

It was the first in a novel series of inhibitors that led to CRIXIVAN®, 80, an HIV-1
protease inhibitor which was approved for the treatment of AIDS in March 1996. A

Fig. 7. A comparison of the model of 1 in light gray oriented in an N → C fashion and the X-ray structure
(reference [41]) of 70 in dark gray oriented in a C →  N fashion in the HIV-I protease active site. 
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Observed Ki, pK i and calculated enzyme-inhibitor interaction energies for Dupont-Merck cyclicTable 5 
urea HIV-1 protease inhibitors (reference [38]). 

Table 6 
coumarin HIV-1 protease inhibitors (reference [39]). 

Observed Ki, pKi and calculated enzyme-inhibitor interaction energies for Upjohn 4-hydroxy- 
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Table 7
pyrone HIV-1 prortease inhibitors (reference [39]).

Observed Ki, pKi and calculated enzyme-inhibitor interaction energies for Upjohn 4-hydroxy-2-
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Observed Ki, pKi and calculated enzyme-inhibitor interaction energies for Upjohn 4-hydroxy-2-Table 8
pyrone HIV-1 protease inhibitors (reference [39]).

comparison of the modelled structure of 76 and the X-ray structure [42] of 80 is
depicted in Fig. 8.

Fig. 8. A comparison of the model of 76 in dark gray and the X-ray structure (reference [42]) of 80
(CRIXIVAN®) in light gray as bound in the HIV- I protease active site 
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Table 9
predicted set of HIV-1 protease inhibitors.

Calculated enzyme-inhibitor interaction energies and predicted and observed pIC50 values for the
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Table 9 (Continued)

3. Conclusion 

Direct computation of a ligand’s affinity for its receptor — e.g. via free-energy per- 
turbation calculations — can be costly and time-consuming. However, simple rapid com-
putational alternatives can be eniployed to predict the affinity of a ligand for its receptor. 
These approaches include energy minimization of the ligand in a modelled or crystallo- 
graphically determined receptor site. either alone or as one component of an energy 
equation or 3D QSAR. They can allow the prediction of activity a priori (i.e. prior to 
synthesis and assay). thus permitting pre-screening of ideas and prioritization of ligands 
for chemical synthesis. Due to their speed, they are amenable to use with large numbers 
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and types of compounds for a given receptor target and a given assay system. The
obvious shortcomings of most energy minimization methods are neglect of solvation/de-
solvation, receptor flexibility, ligand flexibility and entropic effects. In general, they
appear to be most successful when employed for a set of ligands that occupy similar sites 
on a receptor whose structure does not vary greatly from one ligand/receptor complex to 
another. While this sounds restrictive, it is often the case in the optimization of a ligand 
structure, either via single compound synthesis or the design of a modular or combinator-
ial library. We have demonstrated the utility of such an approach in the rational design of
HIV-1 protease inhibitors, which facilitated the design of CRIXIVAN®, an HIV-1 pro-
tease inhibitor indicated for the treatment of AIDS.
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1. Introduction

Computer-assisted molecular model ling (CAMM) comprises a variety of computational
methodologies intended to quantitatively or qualitatively describe molecular properties. 
In some cases, the field has advanced to a state where accurate predictions are possible
(e.g. geometric and electronic properties of small molecules). In other cases, however, 
the properties are complex and require either advances in theory or substantial increases 
in computational power (e.g. protein folding). One application of CAMM that has
received considerable attention over the past two decades entails its use as an aid in
drug-design. Ideally, CAMM would provide rapid and accurate prediction of drug-
target binding affinities such that a large and structurally diverse population of potential
targets could be evaluated and thereby prioritized prior to chemical synthesis. In reality,
methodologies have been advanced that either provide qualitative rank ordering of a
large number of molecules in a relatively short period of time or. at the other extreme, 
generate quantitatively accurate predictions of relative binding affinities for structurally
related molecules using substantial computing power. Consequently, techniques that
increase speed without greatly compromising accuracy (or vice versa) are of value to
drug-discovery programs.

Advances in protein crystallography and molecular simulations have greatly aided 
computer-assisted drug-design paradigms and the accuracy of their binding affinity pre-

ligand in the binding site to calculation of relative binding affinities using molecular dy-
namics simulations in conjunction with the TCP approach [3,4]. Figure 1 shows a
flowchart employed by drug-discovery groups for structure-based drug-design.
Typically, the process begins by generating a working computational model from crys-
tallographic data which includes the development of molecular mechanics parameters 
for non-standard residues, building any missing segments, assigning the protonation 
states of histidines, and orientation of carbonyl and amide groups of Asn and Gln amino
acid residues based upon neighboring donor/acceptor groups. Inhibitor design is then
aided by a variety of visualization tools. For example. hydrophobic and hydrophilic
regions of the active site are readily identified by calculating the electrostatic potential
at different surface grid points. Frequently, the information gained on the characteriza-
tion of the active site is supplemented by analyses of ligand conformational energies. 

These studies are often followed by an estimation of binding affinity which is per-
formed at three different levels or complexity (Fig. 1) depending on computational
power, time and resources. namely: (i) qualitative predictions based on docking/ visual-
ization and molecular mechanics calculations; (ii) quantitative predictions based on

H. Kubinyi et al, (eds. ), 3D QSAR in Drug Design, Volume 2. 85–98.
© 1998 Kluwer Academic Publishers. Printed in Great Britian.

dictions [12]. Methods of inhibitor design range from graphical visualization of the 
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Fig. 1. Flowchart for the structure-based drug-design Paradigm.
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TCP calculations: and (iii) semi-quantitative predictions based on regression methods
that incorporate interaction variables (intra- and intermolecular interaction energies) and
ligand properties (desolvation, log P, etc.). Based on the predicted binding affinities,
top-scoring compounds are synthesized and tested for activity. In this review, applica-
tions of the TCP methods for predicting the binding affinity quantitatively are first dis-
cussed, followed by a review of methods used to predict ligand binding affinity
qualitatively. These methods are then compared with more recent structure-based 3D
QSAR approaches.

2. Free Energy Perturbation Methods 

Thermodynamic cycle perturbation (TCP) has been reported to predict accurately the
relative binding affinities between two related inhibitors. Accurate prediction of ligand
binding affinity will be dependent on the accuracy of each factor that effects binding.
One important factor often neglected in most approximate methods used to determine 
relative binding affinities is desolvation. The importance of desolvation to binding
affinity is clearly evident in calculations using the TCP method. For example, TCP cal-
culations on transition state inhibitors bound to thermolysin carried out by Merz and 
Kollman [5] predicted that the replacement of an -NH group with a methylene group
would not be detrimental to binding affinity, despite the loss of a good hydrogen bond
between the NH and a backbone amide carbonyl. The principal reason shown clearly by
the calculation was due to differences in inhibitor desolvation. This prediction, which
was made ahead of biochemical measurements, was later confirmed experimentally [5].

More recently, several research groups used the TCP method and calculated relative
binding differences of HIV-1 protease inhibitors. Reddy et al. [6] evaluated the relative
binding affinities of JG365 and its analog (JC365A) lacking the penultimate valine
residue. The calculated difference in the relative binding free energy (3.3±
1 . 1 kcal/mol) is in good agreement with the experimental value of 3.8 ± 1.3 kcal/mol.
This calculation showed that the loss of main-chain hydrogen bonds of the valine and its
side-chain hydrophobic interactions with protein residues leads to considerable loss of
potency for the JG365A. The observed binding preference for JG365 was explained by
the stronger ligand-protein interactions, which dominate over an opposing contribution
arising from the larger desolvation of JG365 relative to the truncated analog (JG365A).
Ferguson et al. [7] computed the relative binding affinities of the S and R enantiomers
of JG365 and reported good agreement with experiment. Tropshaw and Hermans [8]
employed the TCP slow-growth method to estimate the relative binding affinities of the
S and R enantiomers of JG365 and showed good agreement with experiment.
Calculations by Rao et al. [9] for other HIV-1 protease inhibitors showed good agree-
ment with experiment. Reddy et al. [10]evaluated a large set of related analogs using
computer-assisted drug-design methods that combine molecular mechanics, dynamics,
TCP calculations, inhibitor design. synthesis, biochemical testing and crystallographic
structure determination of the protein-inhibitor complexes. The calculated relative
binding free energies were successfully incorporated into the design of novel HIV-1
protease inhibitors. This study involved a large set of molecules whose relative binding 
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affinities were predicted using TCP method prior to synthesis, and were later confirmed
by experimental measurements.

Though the TCP method is theoretically more accurate, it suffers from some practical
limitations. Firstly, it requires substantial computational resources for the development
of high-quality force-field parameters, as well as for the molecular dynamics/Monte
Carlo calculations (a typical mutation takes about 1 week of CPU time on IBM
RS6000/590 workstation). Secondly, the technique is limited to analogs that differ by
relatively small structural changes, because it is often difficult to obtain well-converged
results for larger mutations. Thirdly, exploring the available conformation space within
a reasonable amount of time is often difficult for a molecule with many rotatable bonds
(e.g. peptidomimetic inhibitors of HIV- 1 protease). Consequently, the TCP method has
not been widely used in drug-design. It should be noted, however, that with increased
computational resources and improved force-field parameters, this method offers
virtually unlimited potential.

3. Estimation of Binding Affinities 

While the TCP method is useful in the prediction of relative binding affinities of struc-
turally similar inhibitors, real-life drug-design problems involve the calculation of rela-
tive binding affinities for inhibitors with a greater degree of structural dissimilarity.
Hence, faster methods that can accommodate structural diversity are being developed.
In some cases. predictions of inhibitor binding has been based soley on a visual analysis
of structures without any calculations of binding energies. These methods [11] relied on
graphical analysis of features such as steric, hydrophobic and electronic complementar-
ity of the docked inhibitor to the target protein, the extent of buried hydrophobic surface 
and the number of rotatable bonds in the inhibitor. Quantitative descriptors, based on
molecular shape [12] and grid-based energetics [13], have also proved to be useful.
More advanced methods have used empirical scoring functions [14], derived from
crystal structure data rind experimental binding affinities. Though molecular mechanics
methods would he expected to enhance the accuracy of these studies, results from a
variety of studies have shown only modest success [15], which has been attributed to
the large approximations involved i n the analysis (e.g. solvent model used, lack of
entropic terms, etc.).

Recently, some improvements have been realized through inclusion of an analysis of
the binding conformations of new analogs by Monte Carlo (MC)/energy minimization
(EM) methodology, and qualitative prediction of relative binding affinities using molec-
ular mechanics calculations to evaluate interaction energies and ligand strain. For
example, purine nucleoside phosphorylase (PNP) inhibitors [16–18] were designed and 
evaluated prior to synthesis using MC/EM techniques to derive the binding con-
formations and interaction energies that were used in predictions of relative binding
affinities. The energy differences between inhibitors were thought to reflect relative
binding affinities, since the structures were not highly dissimilar and contained few
rotatable bonds, both of which suggested that differences in solvation and entropy
would contribute minimally to binding affinity. Although the binding conformations
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were accurately predicted in this study, interaction energies for some inhibitors proved 
to be less informative (data unpublished), presumably because of unaccounted factors 
such as desolvation and entropy. Another example using these techniques [19] was 
reported for the design of HIV-1 protease inhibitors. In this case, the binding modes of 
the putative/proposed inhibitors were obtained by carefully aligning them with the 
known crystal structures of inhibitors in the active site of the enzyme. These inhibitors, 
which are shown in Fig. 2, were then evaluated by performing minimization cal- 
culations both in solvent and in complex using the AMBER [20] force field. ∆E scores
are shown in Table 1 and were computed from two sets of minimizations. ∆Eintra the
difference in intramolecular interaction energies for the energy-minimized inhibitor in 
the bound and solution conformations. ∆Einter is the corresponding difference in inter-
molecular interaction energies. Since these energies are associated with significant 
uncertainties, the results were not expected to match the quality of results from TCP 
simulations, hence only a qualitative agreement in the overall trends with experimental 
results was expected using this method. Nevertheless. analysis of the energy differences 
offered a rationale for the preferential binding of JG365 and AG1007 to the HIV-1 pro-
tease relative to their respective analogs. The interaction energies of JG365 and
AG1007 in the protein complex are greater than the corresponding interaction energies
in the solvent state. and is presumably the reason these inhibitors have high affinity 
despite their larger desolvation energies (relative to their analogs, JG365A and 
AG1006). However, as shown in Table 1, these energy differences do not agree 
quantitatively with experimental binding free energies. 

Table1 Differences in the calc ulated interaction energies of HIV- 1 protease inhibitors (in kcal/mol) in the
complex and solvated states. ∆Eintra is the difference in intramolecular interaction energy between the 
complexed and solvated states of an inhibitor; and ∆Einter is the corresponding difference in intermoecular 
interaction energy The sum of the two numbers (∆Eτοτ) represents the total interaction energy of an inhibitor 
in the complex state relative to the solvated state. Score for the hydrophobic interaction (P) is also shown for 
each ligand complex (calculated using equation 10)

System ∆Eintra inter ∆Etot P

JG36S 7.6 -74.5 -70.9 -2.63
JG365A 8.2 -59.9 -51.7 -2.41

AG1007 series
I (AG 1006) 2.7 -63.0 -60.3 –1 .40
II (AG1007) 2.4 –65.0 -62.6 -1.53
III 4.9 –62.6 -57.7 -1.50
IV 3.9 –67.3 –63.4 -1.78
V 4.4 –65.7 -61.3 -1.86
VI 7.4 -67.0 –59.6 -1.43
VII 4.8 -66.6 -61.8 -1.38
VIII 5.9 -62.9 -57.0 -1.78
IX 7.2 -66.9 -59.7 -1.95
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4. Regression Methods

4.1. Introduction

The methods discussed above either provide an accurate prediction of relative binding
affinities (TCP), but with some significant constraints, or provide only qualitative trends
for relative binding affinities across a more structurally diverse set of compounds.
Ideally, methods that combine both of those features would greatly enhance the utility
of computational methods to drug-design. Increased structural diversity, however, re-
quires accurate calculation of additional factors that significantly impact the coin-
pounds’ binding affinity. For example, the larger the difference in structure, the greater
the chance that solvation, hydrophobic effects, conformational flexibility. etc. will
influence relative binding affinities. Understanding the magnitude of each contribution
is key to an accurate prediction. Since an equation that accurately incorporates each
factor has not been derived, we cannot expect to calculate absolute binding free ener-
gies. One strategy for increasing the accuracy of traditional 3D QSAR approaches
[2-26] would be to include crystal structure information from protein complexes 
[27,28]. For example, i n the study by Marshall and co-workers [26], the use of crystal
structure data in the determination of alignment rules and field-fit minimization is
shown to enhance CoMFA [21] predictions. However, even these methods do not take
full advantage of the crystallographic information available, since they do not include
scoring functions that incorporate interaction variables.

Recently, the results of molecular mechanics calculations on protein complexes have
been used in regression-based approaches for prediction of relative binding affinities in
conjunction with other molecular properties. Unlike the 3D QSAR extensions mentioned
earlier, where crystallographic information is used mainly for obtaining alignments for a
molecular similarity analysis, these approaches use the information to aid in energetic cal-
culations. Holloway and co-workers [29] predicted the binding affinities of a number of
HIV- 1 protease inhibitors using the Merck force field [30] for calculations of intermolecu-
lar interaction energies. This study, however, did not include other relevant molecular
properties (such as desolvation and entropy contributions) that are likely to be important
to binding affinity. Head et al. [31] developed a regression-based method (VALIDATE)
for the receptor-based prediction of binding affinities of novel ligands. In this method,
energy variables calculated by molecular mechanics using the generalized Born/ surface
area (GB/SA) implicit water model are used as enthalpy of binding and properties such as
complementary hydrophobic surface area are used to estimate the entropy of binding
through heuristics. In this study, 51 diverse crystalline complex structures were used to as-
semble the training set and the predictive models employed both conventional regression
and artificial neural networks. This study shows that a regression-based approach can
qualitatively assess a diverse set of compounds and targets in a single model.

4.2.

In an effort to develop a regression-based method for semi-quantitative prediction of
relative binding affinities, we have examined a set of HIV-1 protease inhibitors (Fig. 2)
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[19]. In our approach [19], the energy variables (intra and inter) calculated by perform-
ing molecular mechanics calculations both in complex and solvated states using an
explicit water model, the strength of hydrophobic interaction and number of buried
rotatable bonds of inhibitor are used to derive a regrescion equation for predicting
relative binding free energy differences.

In the method, the protein, inhibitors (Fig. 2) and solvent waters were modelled using
the AMBER [20] all-atom force field. The computational model of the JG365A
(Fig. 2a) complex with HIV-1 protease was derived from the X-ray structure of the
JG365 complex. Similarly, crystal structures of HIV-1protease complexes of AG 1006
and AG I007 (Fig. 2b) were used to obtain the computational models of HIV- 1 protease
complexes with other inhibitors in the series. The hydrogens of the crystallographic 
water, the inhibitor and the protein dimer were added using the EDIT module of
AMBER. Hydroxyl hydrogens were oriented to obtain the best possible geometry for
hydrogen bonding. Electrostatic charges and parameters for the standard residues of the
inhibitor model were taken from the AMBER database. For non-standard residues of all
the inhibitors. electrostatic charges were fitted with CHELP [32] from ab initio [33]
(single-point) HF/6-3 1G* wave functions, using structures optimized at HF/3-2 1G*
level. One of the aspartic acids in the catalytic dyad (Asp 124) was protonated in all cal-
culations. All equilibrium bond lengths. bond angles and dihedral angles for non-
standard residues were calculated from ab initio (HF/3-2 IG *) optimized structures.
Missing force-field parameters were estimated from similar chemical species in the
AMBER database. For the protein complex calculations, the solute was immersed in a
large spherical water bath (of radius 25 Å) constructed from repeated cubes of extended
simple-point charge (SPC/E) [34] water molecules which represented a snapshot from
an MD simulation of liquid water [35]. The SPC/E rigid geometry model potential was
used to model explicitly the solvent water. For the solvent calculations, the solute was
solvated with SPC/E water i n a rectangular box whose dimensions allowed a 10.0 Å
layer of water to surround the solute atoms. Water molecules located less than 2.5 Å
from the solute atom were removed.

Molecular mechanics calculations (energy minimizations) on all the structures were 
performed using the BORN module of the AMBER program. A four-stage protocol was
set up for energy minimizations of the protein-inhibitor complexes, as well as solvated
inhibitors. All the technical details are described in our earlier paper [19].

The minimized structures, both in the complexed and in the solvated states, were used
for calculating the internal strain on the ligand upon binding (∆Ebind(intra)) and relative
interaction energy of the ligand in the complex versus solvent (∆Ebind(inter)), as given by

(1)

where Ecom(intra) refers to the intramolecular interaction energy of the ligand in the
bound state, and Esol(intra) refers to the intramolecular interaction energy of the ligand
in aqueous medium. 

Similarly, ∆Ebind(inter) is calculated. using 

( 2 )
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where Ecom(inter) refers to the intermolecular interaction energy of the ligand in the
bound state. and Esol(inter) refers to the intermolecular interaction energy of the ligand
in the aqueous medium. Electrostatic and van der Waals interactions may be weighted
differently by separating ∆Ebind (inter) into electrostatic and van der Waals components.
Scores for intra- and intermolecular components of relative differences in interaction
energies for a pair of ligands L1 and L2 are given by

(3)

(4)

∆∆Ebind (tot: L1 L2) from Eq. 5 is used to score the total relative difference in the
binding energies of Ll and L2 to the protein

This energy difference is used to calculate the relative binding free energy difference 
(∆∆Gbind) between inhibitors L1 and L2. Earlier TCP calculations [6,10] on these coin-
pounds offered explanations for the relative binding affinities of several pairs of inhibitors, 
as shown in Table 2. Scores for relative intra- and intermolecular interaction energy differ- 
ences (Eqs. 3–5) are listed in Table 2, along with corresponding TCP-calculated results. In 
order to understand the effect of different N-terminal groups on the final minimization 
results, energy calculations were performed using both asparaginequinoline and Ala-Ala 
as N-terminal groups for the compounds 2, 4, 5. 7 and 9. No significant energy differ- 
ences were found between these two sets of calculations. Therefore, results presented in
Tables 1 and 2 are consistent with our earlier published work [ 19]. These scores were used 
in developing the regression equations and calculating correlations. 

Table 2
(expt.)) and by TCP simulations (∆∆Gbind (TCP)). are compared with the scores of relative enthalpic differ- 
ences ∆∆Ebind (calc. ), and changes in hydrophobic interactions strength (∆Pbind (calc.)) for pairs analogous 
inhibitors of the HIV-1 protease 

Relative differences in the free energy of binding (kcal/mol) as observed experimentally (∆∆Gbind

‘Mutation’ ∆∆Gbind (expt.) ∆∆Gbind (TCP) ∆∆Ebind (calc.) ∆Pbind (calc.)

JG365 JG36SA 3.80 3.3 19.2 0.22

AG1007 series 
II I 1.30 1.9 2.3 0.13
II III 1.95 1 .3 4.9 0.03
II* IV* –0.16 0.2 –0.8 –0.25
II* V* –0.06 0.4 1.3 –0.33
II VI – 1.1 3.0 0. 10
II VII – 0.8 0.8 0.15
II* VIII* 2.03 – 5.6 –0.25
II* IX* 0.86 – 2.9 -0.42

*Experimental values for these molecules are based on a different N-terminal group. an asparagine–quinoline 
moiety replacing Ala–Ala in the compounds II, IV, V. VIII and IX.
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4.3. Results and discussion

In order to identify the variables that are important for the semi-quantitative prediction
of HIV-1 protease inhibitors’ binding affinity, a variety of regression equations were
evaluated. Initially, intermolecular interaction energy of the inhibitor to the protein was 
used as the only regression variable. For a ‘mutation’ L1 to L2, this variable may be 
defined as

(6)

A meaningful regression model, however, could not be obtained. presumably because
the model lacked solvent contributions. By taking the role of solvent (desolvation) into
account (Eq. 4), a good regression model was obtained

(7)

Inclusion of ligand strain (Eq. 5; (tot))further improved the regression model

(8)

By treating the scores for intermolecular (Eq. 4) and intramolecular (Eq. 3) interaction
energies as independent variables in a multiple linear regression (MLR) model, slightly
better statistics were obtained

(9)

It is clear that the present dataset is too small to develop MLR models with more than
two independent variables, since MLR models need to be cross-validated. For larger
datasets, further enhancement of the MLR model may be possible by separating the in-
teraction energy score into electrostatic and van der Waals terms. and by inclusion of
other related variables to represent the hydrophobic interactions. For example,
hydrophobic interactions for a given ligand ‘L’ binding to a protein, as applied to the
present set of HIV-1 protease inhibitors [19],can be represented by

(10)

where. P(int) is the score for hydrophobicity interaction. constants and represent
atomic hydrophobicity constants assigned to atoms i and j in the ligand and protein,
respectively, and is the distance between them. An exponential function is used to
account for distance dependence of hydrophobic interactions. Earlier studies have
demonstrated the usefulness of the exponential functional form in scoring ligand-
protein hydrophobic interactions [18]. The difference in hydrophobic interaction energy
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for a given modification of a ligand, L1 L2, was calculated in these studies using the
following expression

(11)

where P(int: L2) and P(int: L1) are the scores for hydrophobic interaction (Eq. 10) for
ligands L2 and L1, respectively. Using this variable (Eq. 11) alone, the tollowing
regression equation was obtained

(12)

The best two-variable model ( in terms of correlation coefficient) is obtained when
(tot) (Eq. 5 ) and (Eq. 11) are used as independent variables

(13)

For this model, a leave-one-out cross-validation gave r = 0.84 and RMS= 0.81, indicat-
ing a reasonable predictive power for this model. When three independent variables

(inter) (Eq. 4), (intra) (Eq. 3) and (Eq. 11)) are used, an almost
perfect correlation ( r = 0.99; RMS = 0.38) is obtained, though with 7 data points the
dataset is too small for a three-variable model. However, it is worth noting that a leave-
one-out cross-validation of the three-variable model gave better predictive statistics
( r=0.93; RMS= 0.56).

The above results show that interaction energy scores based on present molecular
mechanics calculations are quite useful in developing regression equations lor predict-
ing the relative binding affinity, semi-quantitatively. of inhibitors to the HTV- 1 protease
enzyme. The predicted results correlated well with experimental measurements when
solvation effects were included. Adding hydrophobicity variable, produced slight
improvement in r ( r = 0.92 for the one-variable model versus 0.94 for the two-variable
model) for this dataset. These results suggest that regression models offer a rapid way
of semi-quantitatively predicting relative binding affinities of inhibitors within a con-
generic series and, therefore, a viable alternative to the TCP method. Recently, a similar
procedure was used to develop a multi-variable regression equation ( r = 0.92 and leave-
one-out cross-validation gave r = 0.8 1 ) for 25 inhibitors of Fructose- 1,6-bisphosphatase, 
and applied successfully for designing and optimizing new inhibitors prior to synthesis
[36].

5. Conclusion

The TCP method remains the most accurate method for calculating relative binding af-
finity of inhibitors to an enzyme. However, due to its relative complexity and computation-
intensive nature, practical applications are restricted to analysis of structurally related
inhibitors. Accordingly, there is a need for methods that enable rapid assessment of a
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large number of structurally unrelated molecules in a reasonably accurate manner.
Regression models, using energy variables based on molecular mechanics calculations
in both explicit solvent and complex states, the strength of hydrophobic interactions
and the number of rotatable bonds of the inhibitor, were shown to be valuable in the
rapid estimation of the relative binding free energy differences semi-quantitatively
between two inhibitors. As shown with HIV-1 protease [19] and later with Fructose-
1,6–bisphosphatase inhibitors [36], multivariate models that account for these properties
are useful as a rapid computational alternative to TCP calculations. These regression-
based models will continue to evolve and become more accurate as: (1) force-field para-
meters become more refined. (2) other variables important for binding are included.
(3) methods for estimating relative binding entropy changes improve. (4) docking and 
scoring procedures improve and (5) average molecular dynamics simulations are used 
to obtain energy variables.
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1. Introduction

The association of two molecules to form a stable complex involves a delicate interplay
of electrostatic interactions, such as hydrogen bonds and ionic contacts, the matching of
hydrophobic surfaces and entropic effects [1]. A schematic representation of the factors
that play a role in molecular association is given in Fig. 1. These factors determine the
change in free energy (∆G) upon complexation which is the resultant of a change in
enthalpy (∆ H) and entropy (∆S). The logarithm of the dissociation or inhibition con-
stant (pKi) of the formed complex is linearly related to the change in binding free
energy:

(1)

in which T denotes the absolute temperature and R the gas constant. The linear relation-
ship between ∆G and pKi poses the challenge to correlate energetic terms, which can be 
calculated from physical principles, with experimentally determined binding constants
[2,3] .Especially in cases where the actual synthesis and evaluation of large numbers of
compounds is too time-consuming or expensive, theoretical approaches capable of
accurately predicting binding constants would be extremely useful [4]. Even if this is
not the case, such methodology may he used to prioritize the order of screening and 
synthesis. However, the derivation of such a ‘scoring function’ has proven to be a rather
challenging task. In fact, the lack of reliable methods for predicting binding affinities
still presents one of the major bottlenecks in structure-based drug design [2,3,5].

In this chapter, recent research will be reviewed aimed at predicting binding con-
stants and energies of molecular complexes for which the three-dimensional (3D) struc-
ture is known. Applications using comparative molecular field analysis (CoMFA) [6,7]
usually do not utilize experimental structural information regarding the receptor and 
thus fall outside of the scope of this review. It has been demonstrated, however, that in
some cases the use of experimentally determined conformations of bound ligands for
superpositioning can yield CoMFA models with improved predictive properties (see
e.g. reference [8]). Although the methodology discussed here can be applied generally,
we focus in this review on complexes between biopolymers, such as proteins and DNA.
on the one hand, and small organic molecules or polypeptides, on the other hand. Such
systems are particularly relevant for the discovery of enzyme inhibitors and receptor 
(ant)agonists with therapeutical applications. In the search for novel drug molecules, the
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Fig. 1. Schematic representation of the events and thermodynamic factors involved in ligand–receptor com-
plexation. Upon binding to its receptor, the tran slational and rotational entrapy of the entire ligand is
reduced and part of its solvent accessible surface becomes buried Interactions with the solvent are lost and
replaced by hydrogen-bond and van der Waals interactions at the newly formed protein–ligand interface This
results in the (partial) freezing of the internal rotational degrees of freedom of the ligand Similarily, part of 
the receptor surface is desolvated and interactions with the ligand are established possibly resulting in
(local) conformational changes in the rcceptor. Finally, entropy is gained by the release of ordered solvent 
molecules from the interacting Iigand and receptor surfaces

accurate prediction of the binding properties of lead compounds by computational 
techniques can potentially reduce and guide experimental work. General applicability, 
computational speed and. of course. the ability to deliver accurate predictions of the 
binding free energy are the desired characteristics of such a scoring function. 

The most commonly used technique for the simulation of intermolecular coin- 
plexation at the atomic level utilizes molecular mechanics force-fields, since quantum 
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mechanical calculations (although they have been reported [9]) are mostly unpractical
for larger systems. Force-field based approaches have a solid foundation in physical
chemistry and the potential energy equations and parameters used to estimate inter-
action enthalpies have been optimized to model quantum chemical and experimental
results on the energetics and dynamics of various systems. Similarly, numerical solu-
tions to the Poisson-Boltzmann equation [10] can provide estimates of binding free
energies of systems involving charged molecules. Recently, a number of more empirical
approaches have been developed. In some cases, such approaches cannot easily be inter-
preted on a physical level; they are solely aimed at providing the best possible fit
between experimental and calculated binding energies. In the following sections we will
discuss the methodology, results, advantages and shortcomings of such strategies.

2. Force-Field Based Methods

Free energy perturbation (FEP) calculations are potentially the most accurate theoretical
approach to the calculation of binding constants and free energies from structures of
receptor-ligand complexes [11]. Unfortunately, the calculation of a single binding constant
requires several molecular dynamics simulations with long computation times. Moreover,
since FEP calculations can be fairly sensitive to the starting geometry and parameters of the
complex at hand as well as the precise protocol parameters, their practical use requires
careful preparation of input data and analysis of the results. Although good results have
been obtained for the design of HIV protease inhibitors [12], FEP simulations are, in
general, still too time-consuming to be practically applicable in the prediction of binding
constants of more than only a handful of chemically related ligands. Research in this field
continues. however. and approximate methods have been reported allowing the estimation 
of relative binding free energies from only one or two molecular dynamics simulations 
[13,14]. Although these protocols provide a significant reduction of the time required to
calculate binding free energies, they remain too slow for the evaluation of thousands of
coinpounds and. in addition, only structurally minor changes can be evaluated. 

Since the direct calculation of binding free energies is still cumbersome, approxi-
mations are needed to allow fast scoring of ligand-binding modes using molecular
mechanics force-fields. Of the terms constituting the free energy, the entropy is still the

surface properties of the molecules under study [1,15]. The omitting of entropic factors
eliminates the need to generate trajectories of conforinations with molecular dynamics
and yields a much more tractable scoring function. Even though this reduces the 
problem to energy minimization and evaluation of a single ligand-receptor complex,
various parameters can still be varied in order- to improve the correlation with measured
binding data. Recently, a number of studies have been reported that systematically
investigated the correlation between the interaction energy of small molecule inhibitors 
with proteins and their experimentally determined binding constants, These will be
discussed i n more detail in the following paragraphs.

An early application of force-field energies in the ranking of receptor-bound small
molecules was the incorporation of a grid-based representation of the AMBER force-
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field [16] in the molecular docking program DOCK [17]. Originally, only a simple
function was used to account for van der Waals bumps between ligand and receptor
[17], which was improved later to reflect shape Complementarity [18] and eventually
chemical complementarity by means of force-field scoring [19]. In order to optimize
and evaluate docked molecules, a rigid body minimization of the ligand is performed
and ranking is based on the minimum interaction energy. Rather surprisingly, even ap-
proaches with relatively crude approximations. such as evaluating rigid ligands and a
rigid receptor using a grid representation of the force-field. can still reproduce correct
binding orientations. A typical example is the application of DOCK to a homology
model structure of cercarial elastase [20]. Here force-field scoring ranked the best
two inhibitors identified in the fine chemicals directory of 55.313 compounds as 85th
(Ki = 3 µΜ) and 627th (Ki = 6 µM), while three other inhibitors with Ki’s < 100 µM
were ranked 122nd, 918th and 561st. This indicates that considerable manual filtering
is still required to select compounds for testing from DOCK output. Although the cor-
relation between force-field score and binding constant appears to be low, the successful
identification of diverse micromolar inhibitors given the inaccuracies of a homology
model for the enzyme and rigid structures for the ligands remains an impressive result.

In order to rationalize the selection of parameters for force-field based scoring of
enzyme inhibitors. Grootenhuis and van Galen [21] applied several different energy
minimization and evaluation protocols to a set of 35 non-covalently bound thrombin in-
hibitors. Using starting coordinates from crystal structure determinations or hand-built
models, each complex was energy minimized using the CHARMm force-field [22] and
its non-bonded interaction energy was evaluated. The influence of protein flexibility and
the balance between van der Waals and electrostatic contributions on the correlation
between calculated and experimentally determined binding constants was tested for
both the minimization and interaction energy evaluation steps. Protein flexibility was
varied between a completely flexible enzyme and a completely rigid protein via proto-
cols where harmonic constraints of increasing strength were applied to the active site, 
while the rest of the protein remained fixed. In all cases, the ligand remained flexible.
The balance of the electrostatic and van der Waals contributions to the total force-field
score was modified by using different effective dielectric functions D (= 4εr) in the
CHARMm non-bonded potential energy function:

(2)

where A and B denote the Lennard-Jones parameters, q1 and q2 partial atomic charges 
and r the interatomic distance. The electrostatic interactions were either switched off or
stepwise increased to vacuum conditions (ε = 1 ) via two distance-dependent dielectric
functions for the energy minimization and interaction energy evaluation: ε = 4r and

 = r , respectively. It was found that a protocol in which the entire enzyme was held
fixed during minimization without electrostatics, followed by evaluation using a
dielectric function ε = r, gave the best fitted regression coefficient (r²) of 0.66 with a
standard deviation ( S D ) of 0.97 pKi units between energies and pKi’s Interestingly,
receptor flexibility and electrostatic interactions appear to be of minor importance
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during the minimization phase in which an optimal fit between protein and ligand needs
to be found. Scaled-down electrostatics were found to be essential, however, in the eval-
uation phase. 

A similar analysis was reported by Kurinov and Harrison [23], who used molecular 
dynamics to search the conformational space of phenylethylamine analogs. Scoring was
done in vacuum using the UFF force-field [24] and Fourier-Green functions to acceler-
ate the computations. For the 15 compounds examined, a r² of 0.58 with the experi-
mentally determined was found, which improved to 0.74 when one outlier was
removed. It was found that especially the use of an all-atom representation and the
evaluation of all electrostatic interactions without the use of a distance cutoff were
critical to obtaining a good correlation. 

Several groups have attempted to expand the molecular mechanics force-fields that 
are ordinarily used to include terms for desolvation and hydrophobic interactions. Luty
and co-workers [25] added a desolvation term to a grid representation of the AMBER
[16]force-field of the form:

(3)

where the summation is performed over all ligand and receptor atom pairs. In Eq. 3,

which are multiplied by a Gaussian envelope function of width σ describing the volume
of displaced water. Although results were shown for the trypsin-benzamidine complex
only, the modified force-field was able correctly to dock benzamidine into the partially 
flexible active site. Results comparing the calculated and measured binding properties
of protease inhibitors have not yet been reported. Yet another approach was described
by Viswanadhan et al. [26], who added an additional function describing hydrophobic
interactions to the AMBER [16]force-field:

(4)

where P is a scoring function which ranks hydrophobic contacts between receptor and
ligand atoms described by the constants ai and bj respectively, at a mutual distance rij.
Its contribution to the overall score is scaled by a factor k. By comparing the energies of
solvated and complexed states of 11 HIV-protease inhibitors relative binding energies
were obtained which were compared with experimental results. Interestingly, energies
obtained using only the standard force-field energies already yielded a r² of 0.85
(SD = OS7 kcal/mol), which only slightly increased to 0.88 (SD= 0.58 kcal/mol) when
the hydrophobicity term was included. However, the hydrophobicity score can be useful
in predicting the outcome of modifications of lead compounds which reduce or increase
the hydrophobic character of the molecule.

An interesting extension of the use of molecular mechanics energies in the prediction 
of binding properties was reported by Ortiz et al. [27] and termed comparative binding
energy (COMBINE) analysis (see also the chapter by R.C. Wade in this volume,
p. 19 ff)). In this approach, inhibitors of human synovial fluid phospholipase A2 (HSF-

were divided in small sections of which the bonded and non-bonded interaction
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with individual residues in the binding site was evaluated. Also the intramolecular interac-
tions among inhibitor fragments and active site residues were calculated and all energies
were stored i n a matrix. A column containing the experimentally determined activities (in
percentages) was added to the matrix which was subsequently reduced using partial least
squares and D-optimal design techniques [28] .This procedure allows for the selection of
only those energy terms that contribute significantly to differences i n binding free energy.
The final model contained 50 energy terms (only 2% of the original matrix) which yielded
a r² of 0.92 (SD= 6.23% activity Direct correlation of binding energies with activities
yielded only a correlation coefficient of 0.21 which is partially due to errors in modelling
the inhibitor conformations. an inaccurate description of the highly charged inhibitors and 
active site by the force-field and the fact that the percentage activity might not be linearly
related to the binding free energy. By selecting only the relevant energy terms, this method
provides useful insights into important protein-ligand interaction. An additional advantage
is that intramolecular contributions to binding energies can also be accounted for. Current
problems involve the relatively arbitrary breakdown of the inhibitors into fragments and the 
selection of relevant variables from sets which are often highly collinear. 

The use of force-field derived energies in the prediction of binding characteristics has 
proven to be useful in several cases. For instance. the development of Merck’s HIV-1
protease inhibitor Crixivan was guided by manually docking novel inhibitors to the

al structure of the enzyme and evaluating the resulting complexes using energy
minimization [29]. The observed correlations ( r² = 0.580.78) between binding energy
and IC50s for known ligands allowed for the successful prediction of novel ligands
prior to actual synthesis and testing. Similarly, the interaction energies obtained after
energy minimization of inhibitors docked to purine nucleoside phosphorylase (PNP)
had enough predictive power to allow for the successful selection of inhibitors with
improved binding properties [30]. Force-field interaction energies also qualitatively
described the observed trend in binding energies of peptide-derived transition state
analog inhibitors of thrombin [31].

Generally speaking, it seems that the force-field based methods do surprisingly well,
even though entropic effects and (de)solvation are usually neglected. Apparently. when
the change in entropy upon receptor binding is similar for a set of molecules, the
binding energy itself can have predictive power. Most of the studies mentioned above,
however, report one or more outliers which notably decrease the correlation between 
calculated and measured binding energies and examples are known where the overall 
correlation appears to be quite low [27]. This casts some doubt on the general applica-
bility, especially in cases where the ligands do not belong to a congeneric series, or
when the selectivity of a compound with respect to two different proteins is an issue.
Finally. most force-field based methods require in the order of minutes to minimize and
evaluate ligand-receptor complexes, which can be detrimental when very large (> 104)
numbers of compounds need to be screened.

3.

Several schemes have been proposed that utilize the linearized Poisson-Boltzmann
equation for estimating binding free energies [10]. Usually the electrostatic con-
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tributions are separated into a Coulombic term equal to that used in molecular mechan-
ics force-fields (Eq. 2) and a polarization term due to interactions between polar atoms
of the solvent and of the ligand and receptor. The energy due to polarization is a sum
over all charges in the system               where qi is the partial charge of an atom and
the electrostatic potential, which is obtained by solving:

(5)

where p ( r ) and are the electrostatic potential, the charge density and the
dielectric function, respectively. This equation can be linearized and solved numerically
using finite difference methods and a grid representation of the respective fields. The
finite difference Poisson-Boltzmann (FDPB) method [10] is aimed at estimating the
polar (electrostatic) contribution to the hydration free energy. The apolar contribution 
to the free energy is usually estimated based on the solvent accessible surface that is
buried upon complexation, often using a single solvation parameter (~ 20-25 cal/
mol/Å²) for all atom types, although values of 5–40 cal/mol/Å² have been reported too.

The FDPB method has been applied successfully to a number of systems. For
instance, a r² of 0.85 (with errors < 1 kcal/mol) was found for binding free energy dif-
ferences calculated with the FDPB method for two receptor systems. arabinose (ABP)
and sulphate-binding protein (SBP) [32]. In the case of ABP, five different ligands and
for SBP three point mutations were studied and calculated free energies deviated with
less than 1 kcal/mol from the experimental values. Similar results (x ² goodness of fit
0.32, average deviation from experiment within 0.5 kcal/mol) were reported by Zhang
and Koshland [33],who examined 63 pairs of nine mutant proteins with seven R-malate
substrate derivatives. The accuracy of their predictions appeared not to be highly sens- 
itive to small changes in the charges used for the protein. A similar result was obtained
for the ligands charges. which were derived from the CHARMm [22] force-field para-
meters for amino acids with similar functional groups as the substrate analogs.
Nevertheless, again one outlier remained unexplained. The nonpolar contribution to the
free energy was clearly required to achieve the best correlation with experiment.
Qualitative agreement with experimental data can, in some cases, be achieved when the
nonpolar term is entirely omitted, as was demonstrated by the results of Jedrzejas et al. 
[34] on inhibitors of neuramidase. In addition, work has been reported on the intro-
duction of molecular flexibility in FDPB calculations by means of Monte Carlo con-
formational searches [35]. Recent work in our department [Engels et al., preparation]
complemented the FDPB method with two fitted terms for the nonpolar contribution
and the loss of translational and rotational entropy for the ligand, respectively. This
adaptation yielded a r² of 0.74 and an error of 1 unit for calculated and measured
binding free energies of 36 serine protease-inhibitor complexes.

The FDPB method appears to be quite suitable for systems which are highly charged
but has a number of potential difficulties which make routine application non-trivial; 
unfortunately, no definite protocol exists for the choice of dielectric constants for the 
protein and Iigand, the treatment of dielectric boundaries in the system and the deriva-
tion of partial charges. A more detailed discussion of the sources and magnitude of
errors in FDPB calculations is given by Shen and Wendoloski [32] .In addition, the
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nonpolar contribution is rather crudely estimated based on the accessible surface, which
makes the method less reliable for systems where a large hydrophobic component is
part of the binding free energy.

4. Empirical Scoring Functions

4.1. Models derived by fitting procedures

Since scoring schemes based upon physical principles such as molecular mechanics
force-fields and methods based on solving the Poisson-Boltzmann equation are limited
in their predictive power, alternative scoring schemes have been devised that no longer
attempt to derive the interaction energies from first principles. Such methods attempt to
find appriopriate mathematical functions that can be fitted to experimental binding data.
Although in most cases the scoring function is still interpretable from a physical point
of view, often some of the atomic detail is lost and transferred to surface properties and
additional terms aimed at modelling entropic effects such as ligand flexibility, desolva-
tion and hydrophobicity.

Probably the most widely used empirical scoring scheme is the one proposed by
Böhm [36] which is aimed at rapid calculation of binding energies for use in molecular
docking and de novo design. The binding free energy function consists of five different
terms which are listed below:

(6)

where denotes a penalty function which accounts for deviations from ideal
hydrogen-bond geometries characterized by the deviations of the ideal donor acceptor
distance and angle denotes a constant that can be interpreted as the loss
of translational and rotational entropy of the ligand upon binding. and
represent the contributions of unperturbed hydrogen bonds and ionic interactions,
respectively. is the contribution of lipophilic interactions assumed to be pro-
portional to the lipophilic contact surface which is estimated using a coarse grid
method. Finally, accounts for the loss of entropy due to bond rotations within the
ligand which become fixed upon complex formation and is multiplied by NROT, the
number of rotatable bonds.

This relatively simple function was fitted to 45 protein-ligand complexes taken from

known. The best fit was obtained when all five parameters were adjustable during

tainty of 1.4 orders of magnitude in Interestingly, with a minimum correlation
coefficient of 0.821 among five different versions, the scoring function does not appear
to be very sensitive to changes in its composition such as making equal to
setting to a fixed value or removing the hydrogen-bond perturbation penalty func-
tion. On the basis of complexes for which the binding constant could not be accurately
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fitting and yielded a r² of 0.762 with a standard deviation of 8.7 kJ/mol — i.e. an uncer-
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predicted, several possible sources of error were suggested. For instance, the scoring
function is not sensitive to differences in the strengths of hydrogen bonds and does not
account for more exotic interactions such as those between quaternary ammonium
groups and aromatic rings [37]. Secondly, any conformational strain induced in either
the protein or the ligand is not taken into account. Also interactions involving solvent
molecules are not implemented in the scoring function.

The VALIDATE approach [38] presents a hybrid approach by combining force-field
derived energies with terms for the octanol-water partition coefficients, steric fit, rotat-
able bonds, ligand strain energy and four terms describing polar/nonpolar (non)comple-
mentarity. In particular, the terms penalizing for surface noncomplementarity are of
interest since this aspect of scoring is rarely accounted for. Using a training set of 51
complexes fitted by neural network and partial least-squares methods, a r² of 0.85 was
found with an error of 1.01 log units. The model was subsequently tested on three sets
of protein-ligand complexes and yielded good results for crystal structures but less
good results for modelled HIV-protease inhibitors and thermolysin inhibitors, in par-
ticular. Interestingly, the electrostatic energy contributed only 3% to the model, which
could account for the disappointing results for the thermolysin data (where a zinc ion
and phosphates are involved in binding). Also other terms like steric fit and nonpolar
(non)complementarity contributed only marginally to the scoring function, independent
on the method of fitting. The sensitivity of the method to starting geometries remains a
serious problem.

In order to overcome possible dependence on the starting geometries of the ligand,
scoring functions have been designed aimed at simplifying the energy landscape of a
ligand that is to be placed in the binding pocket of its receptor. To increase the speed
and reproducibility of placing and optimizing the conformation of a bound ligand, the
energy function has to be smooth and contain unique minima corresponding to the
native binding mode. A simple piecewise linear potential energy function was used in a
genetic algorithm docking approach by workers at Agouron Pharmaceuticals [39] for
flexible docking of HIV-1 protease and FKBP-12 complexes. It was shown that using a
scoring function that in its simplicity resembles a square-well potential comparable to
that used in macromolcular docking [40], flexible ligands could be docked to conforma-
tions close to those observed in crystal structures. The selection of meaningful parame-
ters for the repulsive part of the energy function turned out to be critical, since small
values enhance the possibilities of the search method to overcome energy barriers,
while higher values reproduce steric effects much more realistically. Although this
simplified scoring function clearly aids in finding correct binding orientations for
complex flexible ligands, it does not allow for an accurate comparison of binding
energies of different ligands or the prediction of binding energies.

An attempt at solving both these problems — i.e. improve search performance while
correlating the resulting scores with binding affinities — was published recently [41].
Here a continuous diffferentiable scoring function was obtained by combining nonlinear
Gaussian-like and sigmoidal functions to describe hydrophobic and polar interactions.
Directionality and charge effects are taken into account for hydrogen-bonding inter-
actions. Additional terms include solvation effects (estimated using the difference in the
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total number of potential hydrogen bonds and the actual number of hydrogen bonds in
both ligand and receptor) and entropic factors (estimated using the number of rotatable
bonds and logarithm of the molecular weight of the ligand). A calibration data set of 34
complexes was used to determine the 17 adjustable parameters of the model. Best
results were obtained when the ligands were energy-minimized in vacuo to remove con-
formational strain and their pose in the binding site was optimized during fitting of the
parameters. The final scoring function achieved a r² of 0.90 and a mean error of 0.72 log
units. Decomposition of the scores showed that 44% and 26% can be attributed to
hydrophobic and polar interactions, respectively, 25% to entropic effects and only 5%
to the solvation term. The decomposition of this scoring function is very similar to that
of Böhm’s function [36], although the contribution of the loss of translational and rota-
tional entropy is estimated to be higher. Estimates for this term based on experimental
results vary wildly, however, and the interpretation of differences in this parameter is
not straightforward. The strong dependence on basic hydrophobic and electrostatic
terms agrees with the observation that force-field based scoring methods can also still
account for a large body of binding data and suggests that they could be improved by
accounting for the entropic effects.

4.2. Solvent accessible surface-based methods

A different approach to predicting binding affinities from structural data acknowledges
that all the important thermodynamical quantities involved are highly correlated with
the size and composition of the surface that is buried upon complexation [42]. Thus, a
correlation was established by Bohacek and McMartin [43], who noted a quantitative
relationship between the complementarity of polar and nonpolar solvent accessible sur-
faces and inhibitor potency in thermolysin-inhibitor complexes. Extending the pioneer-
ing work of Eisenberg and McLachlan [44], Horton and Lewis [45] demonstrated that
the free energy of binding can be correlated to the solvent accessible surfaces of polar
and nonpolar atoms by fitting the equation:

(7)

where and are the free energies of solvation for apolar and polar atoms,
respectively, as derived from the difference in solvent accessible surface area between
the bound and unbound species summed over each atom i and multiplied by an
atomic solvation parameter [44]:

(8)

The term is a parameter which represents the free energy change due to loss of
rotational and translational freedom of the ligand, which, like and ß, is adjusted
during the fitting procedure. Fitting of Eq. 7 to the experimental binding free energies of
15 rigid enzyme-inhibitor complexes yielded a r² of 0.92. Even though the test set used
is not very diverse and it is not clear how sensitive the method is to small changes in
inhibitor and receptor, the results encouraged further study of the role of buried surface
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area in molecular association for a large number of systems [46,47]. A more detailed
analysis of protein-ligand interfaces was provided by Wallqvist et al. [48], who exam-
ined 38 protein-protein and protein-ligand complexes taken from the PDB and ex-
tracted atom-atom preference scores using the buried interfacial area. For every
atom-atom combination (using 21 extended atom types), its preference of occurrence at
an interface is calculated as the ratio of the fraction of the total interfacial area Atot
contributed by each atom pair normalized by the product of the contributions of
each atom separately:

(9)

Atom-atom pairs with a high value occur with high frequency at adjacent surfaces in
the complexes studied and such combinations are therefore assumed to be thermo-
dynamically favorable. Using these atomic preference parameters, an estimate for the
free energy of binding can be obtained by fitting:

(10)

with

(11)

to the experimental determined free energy changes by varying the parameters ß, δ and
A fit with an rms deviation of 1.5 kcal/mol and a r² of 0.55 was obtained and used to

interpret the binding properties of several HIV- 1 protease inhibitors. The derived
scoring function has also been successfully applied in molecular docking [49]. An
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attractive characteristic of this approach is that the contribution to the free energy of
binding by interfacial atoms can be displayed on the solvent accessible surface. Even 
though the fit between measured and predicted free energies is not perfect, i t allows
regions i n the ligand to be identified which do not yet have an optimal interaction with
the protein and are thus suitable for modification, as well as residues in the protein
which are crucial to ligand binding. A comparable method allowing the visualization of
binding properties by analyzing the spatial distribution of different atom types around
3-atom fragments for 83 high resolution crystal structures was recently published [50],
although no direct correlation with binding affinities was made. 

Also the work of Verkhivker [51] is based on the analysis of protein-ligand interatom 
distances and allows for the detailed decomposition of the free energy of binding. In
this case, the scoring function consists of knowledge-based ligand-protein interaction
potentials. similar to those used i n protein-folding simulations. This function is com-
plemented by terms for the desolvation of different types of surfaces based on Eq. 8 and
terms accounting for the loss of rotational and translational entropy. Distance-based
potentials were derived from seven HIV- 1 protease/inhibitor crystal structures by count-
ing the frequencies with which certain contacts occurred and for this set of inhibitors
binding free energies were calculated. A good correlation with experimental data was
found and a detailed analysis of the different contributions to total binding affinity was
given. The analysis is, however, limited to HIV- I protease inhibitors, which were also
used for the derivation of the ligand-protein pairwise potentials.

A similar approach was described by DeWitte and Shakhnovich [52], who derived
knowledge-based potentials for a de novo design approach (SMoG). A total of 125
protein-ligand complexes were used for counting atom-atom contacts within 5 Å of
each other, while using the average probability of all possible contacts as the reference
state. Correlation coefficients obtained by comparing calculated binding constants with
experimental binding data were in the range 0.77–0.81 for 3 protein-ligand systems,
which is an encouraging result given the fact that no fitting was applied. Although the
use of techniques from protein-folding simulations is very interesting, application to a
broader range of ligand-protein complexes is required for a proper evaluation of this
method. An overview of the methodology discussed in sections 2 and 4 is given i n
Table 1.

5. Conclusion

Progress has been made in the development of methodologies capable of predicting
binding affinities of protein-ligand complexes over the last few years. Simple force-
field minimization and energy evaluation perform reasonably well for series of similar
compounds. Finite difference Poisson-Boltzmann methods are preferred for highly
charged systems. The development of empirical scoring functions, capable of account-
ing for different entropic contributions and often with improved search profiles, is a
field of intense activity and holds considerable promise for the future. Although a uni-
versal and highly accurate scoring function may still be out of reach, current approaches
are often capable of yielding reasonable correlations for sets of similar ligands. Areas of
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possible improvement include the correct treatment of electrostatics and bound solvent
molecules. ligand and receptor flexibility and (de)solvation. A clear bottleneck for
scoring function development is the rather limited number of high-resolution crystal
structures for which accurate thermodynamic binding data are available.

We feel that in the practice of structure-based drug design the error in predicting the
binding of a ligand to a receptor is often significantly larger than the errors typically re-
ported in the literature. It seems that a good statistical performance of a scoring function
provides no guarantee for a high predictive or extrapolative power. In order to assess re-
alistically the predictive power of a scoring function and to monitor the progress being
made with the development of scoring functions, we would advocate to extend the
CASP (Critical Assessment of Techniques for Protein Structure Prediction) -trials
[53,54] with test cases relevant to receptor-ligand scoring. Such a test case could com-
prise a set of high-resolution structures of diverse protein-ligand complexes for which
preferably accurate microcalorimetric data should be available. The (in)capacity to
predict correctly the binding affinity of truly novel inhibitors would provide a clear
criterion to judge the qualities of different scoring methods. In addition, the availability
of microcalorimetric data would allow for a more detailed comparison between the
experimentally determined changes in enthalpy and entropy and those suggested by 
decomposition of predicted binding free energies and could be used to improve the
existing scoring schemes.
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1. Introduction

In order to understand the structures and energetics of protein- ligand complexes, we
have chosen to run relatively short, but accurate, molecular mechanics calculations on
several related complexes. In contrast, the estimation of free energy differences by the
free energy perturbation or thermodynamic integration methods requires extensive and
time-consuming molecular dynamics simulations for each protein- ligand state (for
review see [1]). Recently, we and other groups have found that simple molecular
mechanics energy minimization can give intermolecular interaction energies that cor-
relate well with trends in measured binding energies [2- 5]. The aim of the molecular
mechanics calculations is to reproduce the physics and chemistry of interactions i n
protein- ligand complexes without empirical corrections or restraints. Therefore, we
have carefully evaluated the factors influencing the accuracy of the calculations. The
fundamental improvement in accuracy of the new molecular mechanics and dynamics
program, AMMP [6] is due to the inclusion of all long-range non-bonded energies and
all hydrogen atoms. Tests of these improvements are described in references [7–9].
These improvements and other factors influencing the accuracy of the calculations are 
discussed. Molecular mechanics calculations with AMMP have been shown to agree
with a variety of independent experimental data. The agreement verifies the accuracy of
the potentials and optimization procedures. Spectral data were used to improve the

sitions that are within the experimental error in the crystal structures of proteins [9].
Finally, the protein- ligand interaction energies were shown to correlate with free energy
differences derived from kinetic data [2,3,7].

Molecular mechanics is a classical approximation to the inherently quantum problem
of molecular chemistry. Therefore, the making and breaking of chemical bonds cannot
be treated correctly in the standard formulation. However, molecular mechanics is valid
for the treatment of equilibrium systems or ‘states’.The choice of states will depend on
the specific protein- ligand system. The choice is particularly critical for calculations on
enzyme-substrate complexes where the enzyme catalyzed reaction involves a change in
a chemical bond. It follows that the key problem in the application of molecular
mechanics to understanding enzyme catalyzed reactions is the choice of physically valid
states with intact bonds.

Two types of protein- ligand complexes have been studied. Firstly, a protein- ligand
complex that is formed without large conformational changes in protein or ligand and
without a change in chemical bonds. In this case, only two states need to be considered
— the protein- ligand complex is compared to the free protein and ligand with the

Volume 2. 115-127.
© 1998 Kluwer Academic Publishers. Printed in Great Britain.

potential set [2] . Minimization of protein structures was shown to result in atomic po-
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displacement of the bound waters. Calculations were used to predict novel inhibitors of
trypsin [7]. Secondly, enyzme-substrate complexes have been analyzed, where the
enzyme catalyzed reaction involves a change in a chemical bond. The calculations have
been successfully applied to calculation of the HIV proteaseesubstrate interaction ener-
gies [ 2 ] , and modelling the structure and energetics of glucokinase with different sugar
substrates [3]. The calculated protein- ligand interaction energies were shown to cor-
relate with the free energy differences calculated from kinetic measurements, despite
the absence of bulk water in the calculation.

2.

In order to be useful, the molecular mechanics energy must be accurately calculated.
Molecular mechanics potentials typically consist of two sets of terms: one set repro-
duces the bond and angle geometry of the molecules, and the other set reproduces the
long-range terms such as electrostatics and van der Waals forces. Ideally, the bond and
angle terms are defined in a self-consistent manner, so that they have a energy minimum
at an unstrained structure. Strain is introduced by the non-bonded terms; the predicted 
energy and structure are the result of the interplay between the two types of potentials.

Since the molecular shape is determined by the geometric arrangement of the atoms,
the bond and angle terms are important for accuracy. The ability of the structures of
both the protein and ligand to deform upon complex formation depends on these terms.
The parameterization is especially important when protein- ligand complex formation
requires changes in structure or strong interactions such as hydrogen bonds. There are
many different potential sets including AMBER [10], MM3 [11], OPTIMOL [4], and
UFF [12].We started with the UFF potential set and partial charges from AMBER. The
UFF potential set was chosen because its mathematical form reflects the Feynmann-
Hellman theorem resulting in highly efficient parameterization, and because it is readily
adaptable to a wide range of chemistry. Other choices, such as AMBER, would require
that we relate a novel compound to a known amino acid or nucleotide, which is not
always possible. However, we found that it was advantageous to perform minor re-
parameterization. Improving the fit to molecular geometry and spectral data improved 
the agreement when calculating binding energy [2]. I t was especially useful to use
isotope effects in infra-red spectral data to check that the force terms were well para-
meterized. Since there are often fewer absorption and Raman bands than adjustable
parameters. the ability to reproduce shifts in spectra upon deuteration confirms the
potential more than does the ability to reproduce a single data set. These improvements
resulted in better agreement between minimized and experimental protein structures.
The improvements in AMMP also make it possible to perform stable molecular dyna-
mics simulations on nucleic acids in the absence of special hydrogen-bonding restraints.

The ability of a ligand to fit into a binding site on a protein depends on the molecular
shape and the non-bonded forces. The molecular shape is inadequately parameterized 
by a united atom potential where the apolar hydrogens are joined into larger united
atoms. An ‘all-atom’ potential should be used, as shown in references [7,8]. However,
the binding energy depends on the electrostatic energy, as well as the similarity in

Accuracy in Molecular Mechanics Calculations
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shape. Since electrostatics are observable on the macroscopic scale, it is critically in-
portant that they be accurately calculated on the microscopic scale by including all
long-range terms [6,13]. Since the number of terms in the electrostatic energy scales
with the square of the number of atoms in the structure. simple implementations of this
calculation are prohibitively expensive for calculations on proteins with several thou-
sand atoms. Therefore, most calculations have introduced a distance cutoff to make the
calculations faster. This cutoff is often physically inappropriate. Modern approaches
increase the speed of the calculation by changing the algorithm rather than using a
cutoff radius. AMMP uses a dual multipole algorithm for the efficient calculation of
long-range forces [8]. This algorithm is comparable in speed to the standard treatment
with a 8-10 Å cutoff radius. A local multipole expansion is used for the long-range
interactions around each atom. interactions from atoms more distant than 6 Å are
approximated with a quadratic expansion. The energy or force from distal atoms is cal-
culated from the local expansion, and the energy from the local atoms is calculated ex-
plicitly. The local expansion is updated when the atoms have moved far enough. This
algorithm is more efficient because the local expansion is not calculated every time the
energy or force is calculated. This expansion is a solution to LaPlace’s equation and has
a convergence radius of about 1 Å. Higher-order expansions were not found to be 
helpful, because the limit in convergence is clue to changes in the positions of atoms at a
distance rather than failure of the expansion [8].For large structures, it is more efficient
to use the Fast Multipole Method to calculate the potential and the local expansion
[14,9].

The model should be optimized with the potential before calculating the interaction
energy. There are many optimization strategies. Often, a high-quality structural model
with experimentally determined water structure is available as a starting model for the

quasi-Newton methods are usually sufficient. AMMP uses conjugate gradients with the
Polak-Ribiere beta and an inexact line search [8].Convergence is monitored by the
Chebeshev or l∞ norm on the force, rather than the quadratic or l2 norm. The false ap-
pearance of convergence can occur with the quadratic norm when only a small number
of atoms are in bad positions. A randomization step is used to insure that the current
position is not at a stationary point, but is indeed an energy minimum [9]. The ran-
domization is done with a short run of molecular dynamics followed by further op-
timization. When a good starting model is not available, other strategies should be used.
These strategies include exhaustive searching with the Fourier Green’s function [7,15]
or 4-d embedding and closely related homotopy methods [2,9,16]. Failure to produce a
model that closely approximates the correct complex will result in no agreement
between the calculated and observed binding energies.

3.

Minimization of protein crystal structures without restrictions on atomic positions has
been optimized, so that the minimized structures are essentially identical to the starting 
crystal structures. The minimization of the protein introduces differences, probably due

Agreement with Atomic Positions in Protein Crystal Structures
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to limitations in the potentials and the search procedures. AMMP minimization of the
crystal structures of proteins resulted in root mean square [RMS] differences for
minimized coinpared to crystal structure of 0.40 0.51Å for main chain atoms and 
0.52-0.74 Å for side chain atoms [9]. These values are well within the range of 
0.1 6-0.79 Å for RMS differences observed between main chain atoms in different
crystal forms of the same protein [1 7,18] and less than the range 1.32-1.68 Å for the
positions of side chain atoms in three different crystal forms of bovine pancreatic
trypsin inhibitor [17].These differences due to minimization with AMMP are within the
range of experimental differences in protein crystal structures, and verify the accuracy
of the potentials and minimization procedure.

4. Prediction of Differences in Free Energy of Binding for Protein-Ligand
Complexes

The differences in free energy for formation of various protein-ligand complexes
are estimated from molecular mechanics calculations and correlated with the differences
in free energy derived from kinetic measurements.

The thermodynamic free energy = -

The calculated interaction energy is estimated from the total electrostatic and non-
bonded energy between atoms in the ligand and the protein. As long as the structures of
the protein and the ligand are not highly strained in the complex, differences in the
internal energies of the protein and the ligand can be ignored. The calculated
protein-ligand interaction energy is proportionate to and gives good correlation 
with when entropy changes (AS) for formation of the different protein-ligand
complexes are small (or similar for the compared ligands or proteins).

5. Enzyme-Inhibitor Complexes

The treatment of enzyme-inhibitor complexes is the same as for any protein-ligand
complex that does not involve chemical changes in the protein or ligand. The choice of
states is relatively simple. The ‘reaction’ is the formation of the enzyme-inhibitor
complex from free inhibitor and enzyme with the displacement of the bound waters 
from the enzyme and inhibitor. When the inhibitors are similar in size and solubility, 
differences in the energy of the enzyme-inhibitor complex dominate differences in the 

which is an apparent equilibrium constant. Thus, the expected free energy of binding is

An example is the application of molecular mechanics to estimate the energetics of
inhibitor binding to trypsin [7]. The energy of binding of 15 different small molecules 
to trypsin was estimated by molecular mechanics calculations using the Fourier Green’s
function method [15]. The predicted binding energies agreed with measured inhibition
constants (Fig. 1 ). The correlation coefficient between the predicted binding energy and
the free energy derived from values was 0.75 for 15 inhibitors. (The correlation

-RT
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coefficient R = is used throughout this
chapter; literature values for R² have been converted to R values.)

6. Enzyme-Substrate Complexes 

The choice of states for calculations on enzyme substrates is more complicated An
enzymatic reaction proceeds through several steps. The enzyme binds substrate(s), the
substrate(s) chemically react proceeding through reaction intermediates and, finally. the 
product(s) dissociate. Any one of these steps could be the slow step in the reaction and 
dominate the kinetics. The intermediates are not necessarily transition states of the
reaction (energy maxima along the reaction coordinate). It is, therefore, necessary to
understand the reaction mechanism, and to model the key intermediate states. However,
only quasi-stable states can be modelled by the molecular mechanics approximation. 
Comparison of the calculated binding energy with the observed kinetics in a regression 
analysis will extract which reaction intermediates are related t o rate-limiting steps.
Predictive calculations can be made once the key intermediate states have been
determined.

Differences in free energy can be related to enzyme kinetics by the equation =

-RT from transition state theory [19]. The velocity of the reaction can be
written as and the ratio of the velocities for different substrates at constant
[E][S] reflects the difference in the activation energies. The use of -RT for a

Fig. 1. Calculations for tyspsin with 15 different inhibitors [7].
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multi-step reaction can be justified by an extension of the Michaelis-Menten scheme, as de-
scribed in Fersht [19,p. 102]. If the reaction has three steps with rate constants and

where E is enzyme, S is substrate, I is an intermediate and P is product.
The Michaelis-Menten equation is:

By definition. = 1 + and = 1 + Therefore, is and
= -RT + – The expression is linear i n the three relevant rate

constants, which means that these terms can be estimated independently. When the final
step is slow and rate limiting, changes in will reflect changes in

We have studied substrate complexes with two different enzymes. human gluco- 
kinase [3] and HIV protease [2]. Human glucokinase catalyzes the phosphorylation of
sugar substrates. The glucokinase structure was modelled from the crystal structure of
yeast hexokinase on the basis of 30% identity in amino acid sequence. Only the first
reaction intermediate was modelled: the open conformation of glucokinase with bound
sugar. The interaction energy calculated for the glucokinase-sugar complexes gave an
impressive correlation coefficient of 0.99 with the kinetic data for 4 sugar substrates [3],
as shown in Fig. 2. It was found to be important to include the experimentally deter-

Fig. 2. Calculations for a homology model of human glucokinase showed agreement with kinetic measure-
ments for four sugar substrates [3] .
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mined water structure from yeast hexokinase in this calculation because there were
water-mediated hydrogen bonds to the substrate. This result illustrated the utility of the
calculations even for structures that are predicted by homology with known protein 
structures.

The calculations on HIV protease-substrate complexes will be described in more
detail to illustrate the complications involved in choosing physically valid states. HIV
protease is a dimeric aspartic protease that catalyzes the hydrolysis of peptide bonds in
proteins or peptides of at least 7 residues in length [20]. The peptide hydrolysis pro-
ceeds through a minimum of three steps: the binding of substrate, formation and decom-
position of a tetrahedral intermediate and release of products [21,22]. The reaction
intermediates were modelled from crystal structures of HIV protease with peptide-like 
inhibitors [2]. The protease-peptide complex and the protease complex with the tetra-
hedral reaction intermediate were modelled for an octapeptide (Fig. 3). These models
represent two steps in the reaction. The two catalytic aspartate residues were modelled
as sharing a proton, which is an average over several discrete configurations where

HIV Protease Reaction Intermediates
Fig. 3. Two reaction intermediates were modeled for HIV- 1 protease: the protease-peptide complex, and the 
protease complex with tetrahedral intermediate. The two catalytic aspartic residues were modeled us sharing
a proton, which is an average over several deicrete configurations where different atoms of the two as-
partates are protonated. This model with a central proton was demonstrated to be stable during molecular
dynamics simulations [8].
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different atoms are protonated. Since it is important to model a quasi-stable equilib-
rium state, the stability of this proton was demonstrated by molecular dynamics simula-
tions with peptide substrate [8]. However, similar molecular mechanics calculations by
others on HIV protease inhibitors used a model in which only one of the four possible

atoms was protonated [4]. Crystallographic water structure was included and there
were no restraints on protein atoms, in contrast to related calculations by other groups
[4,5]. The tetrahedral intermediate was modelled as a gem-diol amine where the water
molecule which is seen between the flaps and the inhibitor in most crystal structures of
HIV protease was incorporated into the diol. Partial charges were assigned to the gem-
diol amine using the electronegativity equalization scheme in AMMP, and the total
charge for the gem-diol amine was set to +1.0. The total number of atoms and total
charge were conserved in this model. The calculated interaction energies were com-
pared with kinetic measurements for peptide substrates with single amino acid substitu-
tions at positions P4 to P3´, where the scissile peptide bond is between P1 and P1´ (Fig.
4). The interaction energy for the HIV protease-peptide complexes had n o significant
correlation with the free energy derived from kinetic data. However, the interaction
energy for the complexes with the tetrahedral intermediate gave significant correlation
with kinetic data. The correlation coefficient was 0.93 for 8 substrates with changes in
residues P1 and P1' next to the scissile bond, 0.86 for 14 substrates with changes in
residues P2-P2´ and 0.64 for all 21 substrates with changes in P4-P3´ positions. These
correlations are significant at the 0.995-0.9995 confidence level by Student’s T test,
despite the absence of corrections for conformational entropy or for the effects of
solvent. The higher agreement for substitutions of substrate positions P2-P2´ is proba-
bly because they lie within the protease and their conformations are more restricted. The
lower correlation for more distal residues probably arises from their greater conforma-
tional variation and exposure to solvent on the protein surface.

The results for models of HIV protease with reaction intermediates can be compared
to the results of other calculations on HIV protease-inhibitor complexes. Correlation
coefficients of 0.66 to 0.71 were obtained in a recent study of three-dimensional quan-
titative structure-activity relationship (3D QSAR) of HIV protease inhibitors [23]. In
these and other QSAR calculations, a 3D pharmacophore map is defined using molecu-
lar properties and activities for a series of ligands. The weights for each individual mol-
ecular property are empirically adjusted to maximize the correlation of predicted and
observed binding constants. Head et al. [5] have developed a hybrid method using mol-
ecular mechanics minimization with the AMBER all-atom force field [10]to calculate
the enthalpy of binding and heuristics to estimate the entropy of binding. Only the
inhibitor atoms and the HIV protease atoms within 8 Å of the inhibitor were minimized
in these calculations, which resulted in a predictive correlation coefficient of 0.755 for
13 inhibitors. Holloway et al. [4] have observed high correlation coefficients of
0.76-0.885 between the interaction energy calculated for different inhibitors of HIV
protease using the OPTIMOL potential and the measured enzyme inhibition. In their
calculations, the protease atoms were static and the inhibitor was minimized. while only
one aspartate atom was protonated. Our molecular mechanics calculations gave
similar agreement with the observed energy from kinetic parameters without applying
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HIV Protease-Peptide Substrate

Interaction Energy (kcal/mol) 
Fig. 4. Calculationsfor HIV protease with 21 peptide substrates [2]. (a)protease-peptide models: there was
no significant correlation The 14 peptide model with cha 
sile peptide bond are indicated by solid circles; the seven 

nges in substrate positions P2-P1 ćloseto t
models with changes in substrate positions

plotted for the 14 subtrates with changes in positions P2-P2´ which give a correlation coefficient of 0.86; the
n models with changes in positions P4, P3 and P3´are indicated by open circles.
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and                    P3´ are indicated by open circles. (b) Protease-tetrahedral intermediate models: the regression line is



any empirical corrections to the potential set or restrictions on atomic positions (see
Figs. 1,2 and 4]. Therefore, significant correlation has been obtained between cal-
culated and measured binding energies using a variety of potentials and different mini-
mization procedures. These results show the success of applying molecular mechanics 
calculations on a single configuration to estimate relative binding energies for a series 
of protein-ligand complexes.

7.

The interaction energies calculated from molecular mechanics are usually much larger
in magnitude than the observed free energy differences. This is the result of using a
single point estimate for a thermodynamic average. Molecular mechanics and dynamics
calculations are a simplistic classical approximation to an otherwise unsolvable
quantum problem, and even a long 1000 ps) molecular dynamics simulation is an(>

over seconds to hours of time. Molecular mechanics calculations provide a point esti-
mate of the internal energy for a specific molecular conformation. The free energy is
determined by the partition function which is an ensemble average of these point 
estimates.

The molecular mechanics approximation of using a conformation near an energy
minimum will be most accurate when one conformation dominates the partition func-
tion. Then the effect of using one point in the ensemble can be treated analytically [2] .
The consequence is that molecular mechanics calculations have an apparent ideal gas
constant which is different from R . It follows that the slope for the line of best cor-
relation between and the calculated interaction energy is not equal to RT,as
seen in Figs. 2 and 4. The measured differences in free energy will be lower than the
differences in calculated interaction energy. Moreover, the slope gives an estimate of
the average entropy of binding and is expected to vary for different protein-ligand
systems.

In practical terms, the differences in the thermodynamic internal energy are cal-
culated from the expected differences in the Hamiltonian or molecular internal energy
(AH) at the energy minimum, or the average of differences over a molecular dynamics
run. The calculated differences are correlated with observed differences. The correlation
should be highest when the estimate for the internal energy is most accurate. Since 
the Helmoltz free energy d rence = – the correlation between and

will be best when there are only small variations in the entropy difference AS. In
other words, when the correlation is high, the thermodynamic internal energy terms
dominate the free energy and the predictive power will be high. In contrast, when the
correlation is low, the entropic terms dominate the free energy and the predictive ability
will be low. Calculations on HIV protease substrates resulted in correlation coefficients
that varied from 0.93 for substitutions adjacent to the scissile bond to 0.64 for distal
substitutions of P4, P3 or P3´ [2]. This variation is consistent with distal substrate
residues occurring in several conformations in the protease complex since they are
partly exposed to solvent. Therefore, the effects of conformational entropy will be
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insufficient statistical sample with respect to the behavior of 1012 or more molecules
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relatively large, resulting in lower correlation. The entropic contribution is reflected in
the degree of correlation of the calculated interaction energies and the observed
differences in free energy for protein–ligand binding or enzyme–substrate catalysis. 

8. Future Directions

Fundamental improvements in the computer algorithms and the integration of thermo-
dynamic potentials with molecular potentials are required for uniformly reliable pre-
dictions. There are two basic problems with the current methodology. Firstly, while
molecular mechanics potentials are good at predicting local molecular geometry, their
application in a single molecular configuration results in a systematic mis-estimation of
thermodynamic energies. This thermodynamic ‘sampling error’ can have insidious
effects when thermodynamic observations like free energies of binding are used to para-
meterize molecular potentials. When the single configuration is representative of a uni-
modal distribution, the estimates can be rigorously proven to be overestimates of free
energy differences [2]. These overestimates can be corrected by a simple scaling when
they are not too large. Molecular dynamics methods like free energy integration [24]
can be used to estimate the distribution of configurations and thus improve the es-
timation of the free energy. However, these methods are coinputationally expensive and
ultimately suffer from the same flaw of sampling errors because the accessible phase 
space volume is limited. 

Secondly, the solvent is often neglected or poorly treated in the calculations. Errors in
the treatment of solvent lead to poor predictions for hydrophilic groups because the
competition between the 55 molar water and the millimolar (or less) ligand is neglected.
The conceptually simplest approach to solvent corrections is to use a discrete water
model. It is important to include crystallographically determined waters in the cal-
culations, especially since these water molecules may be critical for binding ligand or
for stabilizing the protein structure. However, the crystal structure will not include bulk
water. The problem for bulk water is that there are many configurations of water which
enter into the estimate. Another common approach is to use a continuum model like a
constant dielectric. The continuum model is physically incorrect near a protein surface,
because near the surface the molecular nature of water dominates. An alternative is to
use a screening potential. Screening potentials are a hybrid between a discrete model, in
that they use a molecular representation, and continuum models, in that they reproduce
the asymptotic behavior of the continuum solution. 

The classic analytic screening potential i s due to Debye (for a description of its role
in thermodynamic models see [25]). The presence of mobile counterions and dipoles is
treated by introducing a screening factor to the electrostatic terms. A factor of the form

radius. The correlation radius is a function of the ionic strength. but it can also be
treated as an adjustable parameter. Debye screening has been implemented in AMMP
with a constant correlation radius. In preliminary tests, this approximation improved the
correlations in energy and structure over the use of no screening [26]. However, a single
correlation radius is physically unsatisfactory. Different parts of the protein will have
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different exposures to solvent and therefore require different correlation radii. There-
fore, multiple correlation radii are probably needed for a physically correct treatment of
solvent.
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1. Introduction

Semiempirical molecular orbital (MO) methods were originally developed as tools for
bench organic chemists to investigate typical physical organic problems on molecules of 
about 50 atoms or less. There has, however, been such a rapid development in the
efficiency and accuracy of semiempirical methods in recent years that semiempirical MO
calculations are now beginning to intrude into what used to be the realm of pure fore-
field techniques. The present review is intended to cover the new techniques that are
emerging for very large molecules and to describe some significant recent applications.

What are the advantages of approximate MO techniques over force fields, which
usually reproduce experimental geometrics and energies considerably more accurately?
The ability of quantum mechanical techniques to describe bond making and breaking
processes may be critical for mechanistic studies, but generally the detailed and accurate
anistropic electron density distribution around atoms provide the major advantage of
using MO techniques. The performance of the semiempirical methods is naturally criti-
cal, MNDO, for instance, was unable to describe hydrogen bonds. making it completely
unsuitable for biological applications, AM1 and PM3 are better in this respect. but still
have critical problems describing the geometry and the rotation barrier about peptide
C-N bonds.

Another major advantage of semiempirical MO techniques is their speed and versatil-
ity. They have been used as platforms for solvent simulations, quantum mechanical/
molecular mechanical (QM/MM) mixed methods and a variety of other applications.
There is still a tendency to neglect the power of such methods for biological applica-
tions, and so we present an overview of some of the new literature and novel applications
of these techniques. 

This chapter is organized as follows: in section 2, we deal with the pure semiempiri-
cal methods, In section 3, we describe the QM/MM methods, the differences between
the most commonly used methods and their abilities. In section 4, we give a short intro-
duction into quantum-based electrostatics, and in sections 5 describe some possible
applications of the QM/MM approach.

2. Pure Semiempirical Methods 

As mentioned above, the major task of all methods presented here is to reduce the
number of necessary operations during the SCF calculation in order to allow calcula-
tions on large molecular systems. In the following section, we describe several
approaches developed during the last few years that allow the calculation of large mole-
cular systems within the semiempirical approximation.

2. 131–159.
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2.1 . Strictly localized MOs

One of the first methods was published by Rivail and co-workers in 1992 [1]. As a first
approximation, the electronic wave function is built up from strictly localized molecular
orbitals (SLMO) [2]. These are contributions of atomic hybrid orbitals (HYO). The
most common SLMO involves two atomic centers and describes the bond between
these atoms. One-center SLMOs are used to describe lone pairs and multi-centre
SLMOs for extended -systems. In order to improve the quality of the description for 
the region of interest, subsystems are defined. The subsystems are then optimized in the
field of the environment. which is represented by the SLMOs.

This simple approach has some major disadvantages. The computational effort for
retting up the SLMOs of the environment i s still very high. The SLMOs are unable to
deal with charge transfer and, therefore, the quality of the results depends crucially on
the definition and the size of the subsystems.

2.2. MOZYME

An improved method, implemented in the MOZYME program, was developed by
Stewart [ 3 ] in 1994 and is also based on localized molecular orbitals (LMOs). The
LMO theory is an alternative way to generate MOs that correspond to the electronic
structures in Lewis molecular structures. Therefore. calculations involving LMOs can
be limited to that region of space in which the LMO exists. To obtain a self-consistent
field (SCF), however, the LMOs are allowed to expand, Even so, for large systems such
as proteins, the size of an LMO will be small compared with the size of the entire
system.

For small systems, every LMO involves all the atoms of the system. In large mole-
cules, however, calculations involving LMOs are much more efficient. All occupied-
virtual interactions involving LMOs separated by large distances will automatically be
zero. Obviously the larger the system, the more important this becomes.

The calculation of the density matrix can be limited to those matrix elements that are
represented by an LMO. Therefore, the computational effort for this step only depends
on the number of LMOs — i.e. it increases linearly with the size of the system. For
the calculation of the energies of LMOs and occupied–virtual interactions, the com-
putational effort is independent of the size of the entire system, since the size of an
LMO depends only on the local electronic structure.

On the other hand, the long-range electrostatic effect is a noli-local phenomenon for 
which the computational effort rises with N².However, the calculation of this effect i s

by far the simplest and. therefore. the computational costs for the SCF calculation using
LMOs rises nearly linearly with the size of the system (N~1) in contrast to N³ for the
conventional MO-SCF procedure. The starting set of LMOs must satisfy several re-
quirements: they should form an orthonormal set. There must be one LMO for every
occupied and every unoccupied MO in the system. Ideally, they should involve one or
at the most two atoms. 

Conventional Lewis diagrams of molecules provide a good starting point for con-
structing the initial set of LMOs. For each atom with a basis set of one s and three p
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atomic orbitals, a set of four hybrid orbitals is constructed (one for each atom to which
the atom is bonded or for its lone pairs and p-orbitals for π-bonds).

Stewart also uses a distance cutoff for interactions, in order to reduce memory re-
quirements and because many of the integrals are not necessary within the LMO ap-
proach. Therefore, only those one-electron integrals were calculated which represent
interactions at less than a given distance (normally 6– 8 Å).At distances greater than
about 7 Å the calculation of the two-center two-electron integrals is modified. Out of
the 100 integrals needed for small distances, only seven remain, mainly because the
quadrupolar and higher multipolar terms are ignored. At distances larger than 30 Å,
simple Coulomb repulsion is used.

The method was tested for various polypeptides, up to 264 residues, and it could be
shown that for larger systems, single SCF calculations using the LMO approach are up
to 160 times faster than conventional SCF for the largest system. For systems with less
than 50 atoms, the conventional methods are still more efficient.

The range of the molecules that can be studied using the LMO method is limited to
those systems that can be represented as non-radical Lewis structures. These structures
are essential in order to be able to build up the initial LMOs. The test calculations have
shown that the time dependency is still nearer N1.5 than N¹ . Optimization of large
systems is still impractical because of the heavy memory demand. Even so, MOZYME
is a great step forward in the quantum chemical treatment of large molecular systems.
However, more tests and some additional modifications seem to be necessary for the
LMO method to become a useful tool.

2.3. Divide and conquer

An alternative and also very promising approach is the so-called density matrix divide
and conquer (D&C) method developed by W. Yang and co-workers [4,5] for density
functional theory and recently implemented into MOPAC [6]. Dixon and Merz [7] have
recently published another linear scaling semiempirical method based on the same
principles.

The basic concept of the D&C approach is to divide a large molecular system into a
set of relatively small subsystems. An approximate total electron density matrix is then
built up from the contributions of the subsystems. The linear scaling of the method is a
result of the fact that matrix diagonalization is not required on the global Fock matrix,
but rather for a set of smaller subsystems. Semiempirical methods benefit from the
D&C approach unless the system becomes very large, then the quadratic expense of cal-
culation of the two-center integrals will begin to dominate. True linear scaling for large 
molecular systems can be achieved by the use o f finite cutoffs for diatomic interactions
or perhaps by employing the continuous fast multipole method [8–11].

As shown in Fig. 1, so-called buffer regions were defined at each end of the subsys-
tems in order to reduce truncation effects. There is also an overlap between adjacent
subsystems to facilitate the propagation of electronic effects throughout the molecule.
The Roothaan-Hall equations for the subsystems were solved including the atoms in the
buffer region, and the density matrix then constructed for a given subsystem excluding
the buffer atoms.
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Fig. 1. Divide and conquer subsetting scheme 

The D&C–SCF method can be summarized as follows. Starting from an initial guess 
of the global density matrix, the subsystem Fock matrices are assembled. The 
Roothaan-Hall equations for each subsystem are solved and their density matrices con- 
structed. Finally, all subsy-stem density matrices are combined in an appropriate fashion 
to arrive at a new global density matrix. The results obtained from test calculations on 
molecules up to about 10 000 atoms [6] clearly show the linear scaling of the D&C 
method for the cncrgy calculation. For the gradient calculation, a quadratic dependency 
(N²) was observed. Starting at about 250 atoms, the D&C approach is faster than the 
normal SCF scheme. Yang and co-workers also include solvation into their method by 
using the COSMO model (conductor-like dielectric continuum) [12–16]. On the other 
hand, it is still not possible to optimize a macromolecule fully in a reasonable time. 
There are problems using the cutoff [7] and the results are strongly dependent on the 
size of the subsystems used. 

The LMO and D&C approaches are both steps forward that allow the calculations of 
large molecular systems like enzymes or proteins up to about 10 000 atoms within the 
semiempirical approximation. Despite the fact that it is still impracticable to perform 
full geometry optimization on these systems. it is possible to calculate Mulliken 
charges, molecular dipole moments and some other molecular properties. More research 
in this area is necessary to solve some of the problems mentioned above and to allow 
these methods to become more applicable in common use. 

In contrast to the pure semiempirical methods. developed in the last few years. 
QMiMM approaches have been developed over the last two decades by combining dif- 
ferent levels of QM methods with force fields. A survey of semiempirical QM/MM will
be given in the next section. 

3. QM/MM Methods 

As mentioned before, QM/MM methods have been developed continuously over the last 
two decades. In 1976, Warshel and Lcvitt [17] prcscnted the first QM/MM approach.
Since then. several hybrid QMiMM models have been developed, combining semi- 
empirical [18–24] density Functional [25], valence bond [26,27] or ab initio Hartree-
Fock [28] methology with frequently used force fields like MM3 [29] AMBER [30] or 
CHARMm [31]. In the meantime. these methods have become well established; for 
example, for the investigation of solvation phenomena [32–46] or for biochemical 
problems [47–51]. 
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Fig. 2. Partitioning of a molecular system into QM and MM part.

The basic idea of all QM/MM methods is to treat that part of the molecule which
undergoes the most important electronic changes quantum-mechanically, whereas the
rest of the molecule is treated by molecular mechanics.

The methods described in the following differ in the way they include the interaction
between the QM and MM parts, by the usage of link atoms or the use of an additional
‘boundary region’ around the molecular system to count for environmental effects,
Therefore, the following section is divided into two parts. The first deals with those
QM/MM methods that use so-called ‘link atoms’, and the second describes those which
do not use them.

3.1. Methods with link atoms

Many research groups have published hybrid quantum mechanical/molecular mechan-
ical approaches in which they link atoms to connect the QM with the MM parts of the
molecule. See. for example, Singh and Kollman [28] or Merz and co-workers [25].An
approach very often used is that of Field. Bash and Karplus, published in 1990 [18],
which will be described in more detail. The authors’ aim was to implement a generally
applicable method, with which a large molecular system can be studied with geometry
optimization, molecular dynamics and Monte Carlo methods. Therefore, they combined
the MM program CHARMm [31]with the AM1 and MNDO semiempirical molecular
orbital procedures. The molecular tem to be studied is divided into two parts. as
shown in Fig. 2. As mentioned above, an additional boundary region was included to
account for the surroundings that are neglected. The Hamiltonian for the entire system
is given by

and the energy by

The QM and MM terms are treated as usual. A more detailed description is given for
the QM/MM and the boundary terms.

135



Bernd Beck andTimothy Clark

The QM/MM Hamiltonian ^HQM/MM consists of the interactions of the QM and MM
parts represented by atomic charges and van der Waals parameters. The interaction is
given by the electrostatic and van der Waals interactions and the polarization of the QM
part by the atomic charges of the environment.

For the boundary term. two methods are possible: the periodic boundary [52] and the
stochastic boundary approaches [ 53,54]. The only complication within the periodic
boundary approach is that the images of the central box contain a copy of the QM atoms
and that their charge distribution changes during the calculation. This problem can be
avoided by choosing the periodic cells such that the QM images are far enough apart to
be unimportant for the interaction energy. Another important aspect are the so-called
‘link atoms’, mentioned earlier. This type of atom is necessary if, for example. in an
enzyme reaction sonic residues have to be treated quantum-mechanically, while the rest
of the protein does not. In this case, there are bonds between the QM and MM parts.
The ‘link atoms’ are used to terminate the QM electron density along these bonds. 
Different schemes have been proposed [55,56]. The authors treated them exactly as QM 
hydrogens and they are invisible to the MM atoms, because no interactions are calcu-
lated. The procedure employed in the version described is:

1.
2. Define the ‘link atoms’.
3.

4.

5 .
6 .
7 .

The test calculations performed clearly show that the partitioning can have significant

break π-bonds or bonds in which conjugation effects will be important. It is also impor-
tant to note that the inclusion of the ‘link atoms energy’ means that it is only possible to
compare the energies between systems with the same number and types of ‘link atoms’.
The authors recommend that it is necessary that a number of different partitioning ap-
proaches should be tested for each system in order to determine the effects on the
results. This method also neglects the polarization of the MM part by the QM part.

Recently, Morokuma and Mascras published a new integrated QM/MM optimization
scheme for equilibrium structures and transition states [57]. In order to describe the so-
called IMOMM method. we will use an example from the original paper. The ‘real’
system is metal complex M(P(CH3)3)2, and the ‘model’ system in the QM calculation is
M(PH3)3. Within IMOMM the atoms of the molecule are divided into four different

and the ’real’ MM part are present. The second subset includes those atoms which are
only present in the QM calculation, but substituted in the MM calculations by real (dif-
ferent) atoms. In other methods, this set is referred to as ‘junction dummy atoms’ [28]

Partition a molecule into QM and MM parts.

Delete connectivities among the QM atoms. All MM internal coordinate energy
terms that involve QM atoms are deleted.
Create the non-bond list. The MM non-bond list is generated as usual; there are
two QM/MM lists: one for the vdW, and one for the electrostatic interactions.
Calculate the MM energies and forces.
Calculate the QM/MM vdW interactions using the vdW list.
Calculate the QM and QM/MM electrostatic interactions and forces.
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effects on the results obtained. For the definition of the ‘link atoms’, one should not

sets, as shown in Fig.3. In set 1,the atoms which appear in both the ‘model’ QM part
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or the ‘link atoms’ [18]. Set 3 atoms are only present in the MM calculation, but each of
them corresponds to an atom in set 2 (generally hydrogens) in the QM calculation.
Finally, set 4 contains those atoms which are only present in the MM calculation.

For each pair of atoms in sets 2 and 3, the same definition of internal coordinates was
chosen. During the optimization, the coordinates of the atoms in set 3 are a function of
those in sets 1 and 2. This scheme differs sharply from the approach described above,
where the coordinates in set 2 (‘link atoms’) optimize independently from those in the
MM part.

The equations for energies and gradients for the combined QM/MM description are a
function of those of the independent QM and MM descriptions. In order to avoid double
counting of contributions already treated in the QM part, these terms were selectively
deleted in the MM calculation.

The computational algorithm starts with the input of the 4 sets of atoms. The QM cal-
culations are then done, followed by the MM calculations, or vice versa. In the next
step, the energy and gradients are calculated, followed by a check for convergence. If
convergence has not been achieved, new coordinate values for sets 1 and 2 atoms are 
generated and the calculation starts again. 

This method has been designed to perform a QM geometry optimization within an
MM environment. Therefore, it is possible to use ab initio, DFT or semiempirical MO
methods with several different force fields. Until now, results have only been published
for test calculations on small systems. The major limitation of this method is the fact
that the QM/MM interactions are not treated explicitly.

The last method using link atoms that we will describe is that of Thiel and
Bakowies [23], published i n 1996. The authors present a hierarchy of QM/MM
approaches. The so-called model A only represents a mechanical embedding of the
quantum mechanical region. Model B includes several interactions between the differ-
ent parts and also the polarization of the QM part by the MM environment. The most
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refined model C also includes the polarization of the MM part by the QM part. In con-
trast to earlier methods, models B and C include an explicit MM correction for interac-
tions involving link atoms. The formal disadvantage of this is the fact that this method
cannot be used in the MD simulations.

Model B includes almost the same treatment for the QM/MM interaction, as de-
scribed by Field, Bash and Karplus [18]. As a refinement of earlier QM/MM methods,
the authors have adopted parameterized models to calculate QM electrostatic potentials
and MM partial charges. These have been calibrated against RHF/6-3lG* reference
data [58]. In the majority of cases, this model successfully reproduces experimental
data. Problems may arise if strongly charged MM atoms arc close to the QM/MM
boundary. In this case, the electrostatic interaction tends to be overestimated.

Model C includes the polarization of the MM fragment in order to remove the asym-
metry for the description of non-bonded QM/MM interactions (‘normal’ QM/MM only
includes polarization of the QM part). It adopts the treatment of Thole [50] to describe
induced dipole interactions. This model only needs one parameter per element, the
isotropic atomic polarizability. This method currently provides one of the most ad-
vanced treatments of polarization within semiempirical QM/MM approaches. The con-
sideration of MM polarization seems to be crucial in applications involving charged
QM parts, which generate large electrostatic fields.

The MNDO/MM computer program uses either the MNDO or the AM1 wave func-
tions and the MM3 force field. The method was tested for various smaller organic mole- 
cules up to about 40 atoms in order to be able to compare the results with pure QM
methods. For most test calculations, models B and C provide sufficiently reliable
results.

3.2. The SLMO technique

One method which allow bonds to be shared by the QM and MM part and does not use 
‘link atoms’ is the local self-consistent field method of Rivail and co-workers [20]. This
method is a further development of the strictly localized molecular orbital (SLMO) ap-
proach [1],already described in section 2 on pure semiempirical methods. However, the
environment is now treated by mechanics instead of SLMOs.

For an atom pair at the boundary between the two parts, the atom belonging to the
QM part is called the frontier atom (X). The atomic orbitals of X are transformed such
that hybrid orbitals are obtained which are colinear with the bonds of this atom. The 
hybrid orbitals belonging to bonds between the QM and MM part are excluded from the
orbital basis (Fig. 4). The associated electron densities are treated as external point
charges on the cationic QM fragment. Again, this approach includes electrostatic and
vdW interactions, as well as the perturbation of the Fock matrix (polarization of the QM
part). MM polarization is not implemented.

This method suffers from the fact that the electron density of the excluded orbital is
not known unless a QM calculation has been performed for the entire system.
Additional problems may occur in the calculation of the electrostatic QM/MM interac-
tions, because the total charge of a neutral QM subsystem is not forced to be zero.
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field based on the method described above for modelling very large molecules [60].

3.3. Intermolecular approaches

The following two methods assume that there arc no bonds between the QM and the
MM atoms. Therefore, they do not need ‘link atoms' or related approaches. The first
method discussed was the so-called PCM (Point Charge Model) method developed in
our research group, which was originally designed to calculate heats of adsorption and 
reaction pathways in zeolites [24]. In PCM, the environment is fixed and the atoms are
treated as point charges with assigned van der Waals radii. The interactions between the
environment and the QM part were considered to consist mainly of three contributions.
The first of these is the Coulomb interaction between the point charges and the QM
atoms including the electronic and core contributions. Secondly, the van der Waals in-
teraction was calculated using a Lennard-Jones [6,12] potential, whereas the potential
parameters were taken from the Universal Force Field (UFF) developed by Rappé and
co-workers [61].Finally, the perturbation of the Fock matrix (polarization of the mole-
cule within the environment) was also considered. In order to show how important it is
to include the polarization into the QM/MM interactions, Fig. 5 (see p. 145) shows an
example of an inhibitor optimized within the binding site of an enzyme. The result of a
gas phase calculation was used as reference.

The induced dipole moment is 5.48 Debye. Test calculations have shown that the
VAMP-PCM approach can be used successfully for biochemical problems. (Examples
will be discussed later.) There are two problems to be solved: the flexibility of the envi-
ron ment, and the fact that the PCM approach neglects the MM polarization, in contrast
to the QM/MMpol method published by Thompson and co-workers in 1995 [22] .

The QM/MMpol approach couples the QM region (for both ground and excited 
states) with a polarizable MM description, according to the approach described in the
earlier work of Luzhkov and Warshel [62,03]. The first step was to define a system con-
sisting of the QM and MM components. The QM part includes the electrons (ψ) and the
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Fig. 4. Description of system partitioning in this hybrid method.

Recently, Rivail and co-workers have published a hybrid classical quantum force
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nuclei (Za) or effective cores, whereas the MM compounds consist of charged atomic
centres (qm) with atom centered polarizable point dipoles (µm) [64–66]. Figure 6 shows
the interactions between each of the compounds. 

Interaction in the QM part are included into the operator. The operators 
and consists of interactions 4 and interaction 5 and 6, respectively.

(interactions 7 and 8) and (interactions 9 and 10) are the import- 
ant terms. In addition to these operators, there are also those describing the van der
Waals interaction containing bond terms for the MM 
part. The Hamiltonian for the entire system is obtained by 

During the QM system SCF, the MM region is included as a static external potential 
consisting of fixed point charges arid fixed atom-centered polarizable dipoles. The MM 
part SCF is done by a fixed QM state. A single iteration of the entire system consists of 
a full iteration of both the QM-SCF and MM–SCF. 

The method was implemented into the semiempirical INDO/S approximation but it is 
also applicable to other semiempirical and ab initio Hamiltonians. As a test case, 
QM/MMpol was applied to the analysis of the ground and excited states of the bac- 
teriochlorophyll S dimer (P) of the photosynthetic reaction center (RC) of Rhodo-
pseudomonas viridis. During the calculations. the system consisted of 325 QM atoms
embedded in 20 158 polarizable MM atoms. The results obtained arc in reason- 
able agreement with experiment. The explicit values could be found in the original 
publication [22]. Recently. the method has been extended in order to use it for MD 
simulations [67]. 

Basic components needed for the evaluation of electrostatic interaction energies in 
combined quantum-mechanical and molecular-mechanical approaches are the electro- 
static potential and the partial charges. In section 4, we will give a short summary of 
published approaches which deal with the calculation of these properties. 

Fig. 6. Schematic view on the into-actions in the QM/MMpol method.
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4. Quantum-based Electrostatics

There are several possibilities to describe the charge distribution within a molecule.
Atom-centered charges are commonly used (the one-center approach) for this purpose.
Only a few methods using multi-center approaches have been published.

4.1. One-center approaches

the fact that partial charges are not observable quantities. Thus, any possible definition
is arbitrary. The simplest method to derive atomic charges is to use the electronegativity
of the atoms [68,69].This technique is often used for MM methods. However, conjuga-
tion and polarizability effects suggest that quantum-mechanical charges are more reli-
able in more complex systems. The simplest approximations are the so-called Coulson
[70] and Mulliken charges [71]. They are derived directly from the density matrix. A
more useful approach to describing the electronic distribution in molecules may be to
choose an atom-centered charge distribution that reproduces molecular properties at and
outside of a surface (usually the van der Waals surface) appropriate to the range of dis-
tances at which molecules interact [72]. One such useful property is the electrostatic po-
tential, which describes the forces exerted on a positive probe of unitary charge at the
desired surface. In the following, we will describe some methods for the calculation of
partial charges within the semiempirical approximation.

In 1995, Truhlar and co-workers published two new charge models, called AM1-
CM1A and PM3-CM1P, based on experimental dipole moments [73] .The partial
charge methods are parameterized such that the dipole moments calculated from them
are as accurate as possible in comparison to the experimental ones. These charge
models yield rms errors of 0.30 D for AM1 and 0.26 D for PM3 in the dipole moments
of a set of 195 neutral molecules. The test set covers a variation of organic functional
groups such as halides, C-S-0 and C-N-0 linkages. Another remarkable point is that
the atomic charges computed with the CM1 model are in good agreement with high-
level ab initio calculations for both neutral compound and ions, whereas CM1 is far less
expensive with respect to the computational effort.

Bakowies and Thiel developed another efficient semiempirical approach for the com-
putation of partial atomic charges [58]. The charges are derived from a semiempirical
charge equilibration model, which is based on the principle of electronegativity equal-
ization [68,69]. The approach is a further development of the QEq model of Rappé and
Goddard [74]. During the parameterization, Bakowies and Thiel used ab initio potential
derived atomic charges (RHF/6-31G*) as references. Final parameters have been pub-
lished for hydrogen, carbon, nitrogen and oxygen atoms. The results were compared to
ab initio Mulliken and PD atomic charges and reproduced with an accuracy of approx.
0.005e and 0.1e, respectively. The authors claim that the larger deviation for PD
charges can be traced back to statistically ill-defined PD charges of buried atoms that
constitute the molecular skeleton.
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The proper definition of atomic charges is very difficult. The main problem arises from
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The so-called potential derived (PD) or electrostatic potential (ESP) derived atomic
charges used by Bakowies and Thiel are very important in QSAR or QM/MM methods.
There are various methods of deriving potential-based charges using ab initio and semi- 
empirical techniques. Most differ in the way they generate the grid points for fitting pro-
cedure. Chirlian and Francl (CHELP) [75] used spherical shells, and Brenenam and
Wiberg (CHELPG) [76] defined a cube of points spaced 0.3-0.8 Å apart containing the
molecule and including 2.8 Å of headspace on all sides. Besler, Merz and Kollman
(MK) [77] used the Connolly molecular surface algorithm to define points on several

Spackman uses a geodesic point selection scheme [78]. Most of the semiempirical
methods use modified ab initio algorithms [79,80]. Representatively for all these

using semiempirical MO methods [81,82].
The charge-fitting process begins with the calculation of the electrostatic potential in

a grid around the molecule. The points were generated using a modified Marsili algo-
rithm [83,84] with variable step size (edge length), which enables the user to control the
number of the grid points. All points within 1.4 times the van der Waals radius of the
molecule were eliminated, the maximum distance of the grid points is one-third of the
vdW radius. Figure 7 (see p. 145) shows such a grid produced by VESPA using a step
size of 0.3 Å.

The charge-fitting process begins with the calculation of the electrostatic potential for
each point. The electrostatic potential at these points is then calculated using the NAO-
PC model [85,86], described later. This enables us to construct a very fast algorithm for
the calculation of ESP-derived atomic charges, in which the most time-consuming step
is the final linear least-squares fit procedure suggested by Chirlian and Francl [75]. The
only constraint during this fit is that the sum of the ESP charges have to reproduce the
molecular charge, but i t is also possible to use, for example, the molecular dipole
moment for this purpose.

In many cases, this procedure gives charges of 6-31G* quality, especially for AM1
and PM3. For example, for a test set of 27 organic compounds, AM1-VESPA charges
correlate with the HF/6-31G*(MK) ESP charges with R = 0.934 and a standard devi-
ation of 0.108. If the phosphorus compounds are omitted, the correlation coefficient in-
creases to 0.954 (standard deviation of 0.104). Without the P- and S-compounds, the
correlation coefficient reaches 0.960 (0.098). Using the CHELPG method [76] instead
of MK to obtain the 6-31G* values has no influence on the correlation obtained.

Kollman and co-workers [87] have described the RESP method, designed to improve
the quality of the ESP charges. They use a restraint in the form of a hyperbolic penalty
function in the charge-fitting procedure. This requires an iterative solution to self-
consistency in (the point charge at atom j ) . A similar approach for the VESPA algo-
rithm was tested, but no real improvement was achieved. In some cases, we experienced
major convergence problems.

It was also shown that the VESPA approach to determining electrostatic potential-
derived atomic charges using semiempirical techniques essentially is orientationally in-
variant. Conformational variation gives smooth and reasonable changes in both the
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concentric shells (1.4, 1.6, 1.8  and 2.0 times the vdW radius) surrounding the molecule.

methods, we will discuss our VESPA method for deriving high-quality ESP charges
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molecular electrostatic potential and the charges derived from it. On the other hand,
Francl et al. [88] have shown that the least-squares matrix for this fitting problem may
be rank deficient, and that statistically valid charges cannot always be assigned to all
atoms in a molecule. This problem increases with increasing size of the molecule. We
were able to show that an increasing number of grid points can improve the quality of
the point charges obtained, especially for buried atoms, but does not always lead to
well-defined atomic charges [82].

Since this method is so effective at generating monopoles that reproduce the
electrostatic potential of a molecule. it is possible to use VESPA for large bio-organic
systems [82]. In this case, however, there is a critical relationship between the structure
of the molecule and the quality of the results. Atoms far away from the nearest grid 
points have very poorly defined charges (e.g. those inside the helix of α-helical Ala 28).
This is a general disadvantage of all methods that use grid points at defined distances
around a molecule.

4.2. Multi-center approaches

Two methods are mentioned here. The first one is the distributed multiple analysis de-
veloped by Stone in 1981 [89]. Stone’s aim was to achieve a reliable description of the
charge distribution in a molecule that is suited to the calculation of the electrostatic po-
tential outside the charge distribution itself. The method was defined as an extension of
the Mulliken population analysis. It uses a multipole expansion instead of point charges
to describe the charge distribution. A detailed description is given in the original publi-
cation. The second is the NAO-PC model, mentioned above. The natural atomic
orbital-point charge model (NAO-PC) has been developed to calculate accurate molecu-
lar electrostatic potentials within the semiempirical approximation [85,86].

This model uses nine point charges (including the core charge) to represent heavy
atoms, because it is impossible to fit the quantum chemical potential properly by a
simple atom-centered point charge model [90]. Figure 8 illustrates the arrangement of
the NAO-PCs for forinaldehyde. The positions and magnitudes of the eight charges that
represent the atomic electron cloud are calculated from the natural atomic orbitals
(NAOs) and their occupations. Each hybrid NAO is represented by two point charges
situated at the centroid of each lobe. The positions of the centroids and the magnitudes 
of the charges are obtained by numerical integration of the Slater-type hybrids and the
results used to set up polynomials and look-up tables that replace the integration step in
the actual MEP calculation.

Not only MEPs, which will be described later, but also atomic and molecular multi-
pole moments up to the octupole moment [89,91,92], are well represented by the NAO-
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Fig. 8. Schematic representation of the NAO-PCs  for the C and O  atom in formaldehyde.
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PC method. Molecular dipoles are calculated directly from the NAO-PCs and the results
are compared to those obtained using the standard calculational method [93]. The stan-
dard deviation between NAO-PC and directly calculated dipole moments for a test set

2
and SCl2 (0.51 D), suggesting that NAO-PC performs less well for sulfur than for the
other elements tested.

The calculation of the quadrupole moments uses the definition of Buckingham [94].
Calculations were performed for 20 test molecules. the standard deviations between cal-
culated and experimental values are l .2 and 0.7 Debye. Ångstrøm for Qxx and Qyy , re-
spectively. The correlation is even better if the experimental margins of error are
included.

The surprisingly good results for molecular multipole moments indicate that NAO-
PC can describe an NDDO wave function nearly completely without significant loss of
accuracy. It, therefore, provides a possibility to reduce a molecular wave function to a
discrete number of point charges.

The calculation of atomic multipoles is also possible within this model. Atomic
dipoles especially give detailed information about electronic and structural properties.
As atomic multipoles are not measurable quantities within molecules, however, the dis-
cussion was limited to molecular moments.

4.3. Electrostatic potential

Electrostatic interactions are known to play a key role in determining the structure
and activity of biomolecules [95,96,97]. Therefore, the electrostatic potential is also
important within hybrid QM/MM models. A lot of work has been directed toward
calculating reliable molecular electrostatic potentials from semiempirical methods
[58,85,86,98-103]. Some of these methods will be described in the following.

The MEP, in general, is given by

where V (r) is the electrostatic potential at any point Z α is the charge of atom α r;
located at Ra; and p(r´) is the electronic density function of the molecule.

Within the monopole approximation, which is often used, this equation simplifies to

where n is the number of atoms; qj is the atomic point charge; and rij is the distance

Using the NAO-PC model, it becomes
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of  90  organic molecules is 0.171 Debye. The two largest deviations are forH S (0.78 D)

between atom j and grid point i.
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Fig. 5. Polarization of the inhibitor L-benzylsuccinate (bzs) within the active site of carboxypeptidase A. The 
arrow shows the induced change in the dipole moment. 

Fig. 7. The tetramethylammonium ion surrounded by a grid of points generated with VESPA. Several point 
layers have been removed in order to show the cavity,
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where qia is the charge of the NAO-PCs located at riα; qα is the charge from the hydro-
gen atoms located at rα; and norb is the number of NAOs.

The double sum gives the contribution of the heavy atoms to the electrostatic poten-
tial, and the second term treats the hydrogen atoms. For a test set consisting of 12 mole-
cules. the MEPs calculated using the NAO-PC approximation were compared to ab
initio RHF/6-31 G* results obtained with Gaussian 92 [104]. As shown in the original
publication [86]. the errors are between 10% and 14%. The correlation coefficients vary
between 0.91 and 0.99, with the exception of sulfanilamide (0.889) and tosyl chloride
(0.855). We conclude that the NAO-PC model is a reliable and very fast method for the 
calculation of MEPs. 

Bakowies and Thiel [58] developed a parameterized method to compute the electro-
static potential using the AM1 and MNDO wave functions. The procedure is based on a
previously suggested one [105]. A large set of ab initio RHF/6-31G* reference data
have been used to calibrate the method. 

Applying the final parameters (H. C. N. O), the ab initio electrostatic potentials are 
reproduced with an average accuracy of 20% (AM1 ) and 25% (MNDO). respectively. 
Kikuchi et al. published a method for the fast evaluation of molecular electrostatic maps 
for amino acids, peptides and proteins by empirical functions [106]. The MEPs due to 
valence electrons are calculated by a set of simple empirical functions at various 
origins. Those due to the core electrons and nuclei are considered by a point charge ap-
proximation. The results are compared to ab initio STO-5G values. For amino acids, for 
example, correlation coefficients between 0.93 and 0.97 were obtained. In the final 
section, we describe some possible applications of semiempirical binding site models in 
3D QSAR. 

5. Applications 

As mentioned above, the pure semiempirical methods for the calculation of large mole- 
cular systems are still under development. Therefore. no applications of these tech- 
niques have yet been published in the area of 3D QSAR. In contrast, QM/MM methods 
have been used within this research area. There are two main possibilities. The first is to 
use QM/MM methods to study reaction pathways of enzyme reactions [107,108] or for 
docking studies [109] or even for MD simulations [51], in order to find new lead com-
pounds or active conformations that can be used in further QSAR studies. On the other 
hand, these methods can be used lor the prediction of biochemically relevant properties 
such as absolute binding free energies [110] or the inhibition strength [111]. In the fol-
lowing, some of the applications mentioned above will be described in more detail. 

5. 1. Reaction mechanisms 

Richards et al. [107], for example. have examined chorismate mutase catalysis. This 
enzyme catalyses the skeletal rearrangement of chorismate to prephenate by selecting 
a destabilized conformer of chorismate. It was found that the minimum energy enzyme–
substrate complex has chorismate in a distorted geometry compared to the gas-phase 
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ground-state structure. It could also be shown that the two residues Arg90 and Glu78 
are the most important residues during the reaction. This investigation used the
CHARMm QM/MM method [18]. Mulholland and Karplus [108] used the same method
for investigations on triose phosphate isomerase (TIM). citrate synthase (CS) and the
FK506-binding protein (FKBP).

Properly applied QM/MM methods can give accurate reaction paths, they are able to
quantify the interactions involved and determine the contributions of individual
residues. These data are very useful in the design of new lead compounds. Another ap- 
proach are docking studies, which give action conformations of ligands and binding 
points within the active site directly. 

5.2. QM/MM docking 

Molecular docking is one way to formulate the problem of molecular recognition com- 
putationally. Docking is siinply the collision of the substrate with the binding site in the 
correct conformation and orientation. In order to apply docking methods successfully, 
the active site geometry should be known, either from X-ray crystallography or by 
homology modelling for proteins with known sequence but unknown structure. 

A combination of a genetic algorithm [112] with our VAMP-PCM method [24,113].
mentioned above, was used to approach the docking problem. While the genetic algo- 
rithm covers the conformational and orientational flexibility of the ligand, the QM/MM
method relines the interactions between the substrate and the environment. We have 
used this approach for the prediction of the docking positions or several cyclic nu- 
cleotides within experimentally known (3GAP, 1GKY) and a modelled binding domain
(1APK). The 3D structure of the RIA regulatory subunit was inodelled by Weber et al. 
in 1987 [114] and is available from the Brookhaven Database. 

In order to compare the theoretical predictions with the X-ray structures and to decide 
which of them should be applied to the modelled binding domain, the different ap-
proaches for the docking problem were first tested on known substrate-enzyme
complexes.

5.2.1. 3GAP–cAMP
The cAMP binding domain of the bacterial catabolite gene activator protein CAP served
as the reference protein during the homology modelling of the cAMP binding domain of
RIA [114]. CAP senses the level of cAMP and regulates transcription from several
operons in E. coli. cAMP (Fig. 9) serves as a hunger signal, both in bacteria and
mammals. The crystal structure of the CAP dimer with two bound molecules of cAMP 
was published by McKay and Steitz in 1981 [115], and refined by Weber and Steitz in
1987 to a resolution of 2.5 Å (entry 3GAP in the Brookhaven Database) [116].

It is remarkable that VAMP–PCM. starting with the best 20 solutions of the GA, opti-
mizes all of them to be inside the pocket (6 GA solutions were originally outside). This
shows that the point charge model is able to describe the interactions between the sub- 
stratc molecule and the protein adequately. The best solution obtained from the different 
methods within the binding site of the enzyme are shown in Fig. 10. 
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Fig. 9. Schematic structures of cyclic adenosine-monophosphate (CAMP), 5'-guanosine-monophosphate
(5'-GMP) and cyclic guanosine-monophosphate (cGMP).

Fig. 10.  Binding site of CAP complexed with cAMP. Solutions of the different methods are as follows: X-ray 
(blue), GA (green); VAMP-PCM (red); and GA/VAMP-PCM (yellow). 
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The RMS deviations compared to the X-ray structure are 0.80 Å, 0.78 Å and 0.76 Å
for the GA, VAMP-PCM and GA/VAMP-PCM solutions, respectively. The results are 
very similar and all deviations are within the experimental resolution. Especially for the 
cyclo-phosphate and ribose parts of CAMP, which are located in a tight binding pocket 
(main residues are Arg82, Ser83, Gly71 and Glu72), the predictions are nearly identical 
with the X-ray structure. 

For the aromatic part of cAMP, the deviations are larger because, in the case of the 
CAP monomer, no residue binds directly to the adenosine part of the ligand, as is also 
true for the CAP dimer. 

5.2.2. 1GKY–5'-GMP 
As a second test case, we chose guanylate kinase (entry 1GKY in the Brookhaven 
Database) complexed with guanosine-5'-monophosphate (5'-GMP). The enzyme was 
isolated from baker’s yeast and crystallized as a complex with its substrate GMP by 

Fig. 11. 1CKY complexed with 5'-GMP. Solutions of the different methods are as follows: X-ray (blue); GA
(green); VAMP-PCM started from displaced X-ray geometry (red); and VAMP-PCM started from best GA 
solution (yellow). 
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Stehle and Schulz [117]. Its X-ray structure has been refined at a resolution of 2.0 Å 
[118]. The enzyme catalyzes the reaction ATP + GMP ADP + GDP. The ligand
guanosine-5'-monophosphate, 5'-GMP is shown in Fig. 9. Again, the X-ray structure of 
1GKY/5'-GMP was used as starting point for this investigation. The results of the dif-
ferent docking algorithms within the active site of 1GKY are shown in Fig. 11. The ex-
perimentally determined position of the ligand seems to be only one of several possible 
positions in the binding site of the enzyme. Although the binding site is very large, and 
therefore allows more conformational flexibility, the best predicted positions of 5'-GMP
using the GA and the combined method (VAMP-PCM started with the GA solutions) 
are in the good agreement with the X-ray structure. 

5.2.3. Prediction of the docking position of cAMP in the RIA binding domain 
As mentioned above, the binding domain of RIA regulatory subunit was modelled by 
homology using the cAMP binding domain of CAP as reference [114,116]. For a better 

Fig. 12. Predicted docking position of cAMP in the RIA binding site (yellow). The original position of cAMP 
(red) is shown as reference. 
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orientation, the best solution of our docking approach and the original docking position 
(APK) within the modelled binding domain are shown in Fig. 12. 

The RMS deviation between the original and our predicted positions of cAMP is 
1.1 2 Å. Considering the theoretical refinement of 2.5 Å for the modelled structure
(1apk), this is a small value. Remarkable in this modelled binding site is that, in addition

Fig. 13. Schematic view of L-benzylsuccinate (bzs), L-phenyllactate (lof), (L-(-)-2-carboxy-3-phenylpropyl)
methylsulfodümine  (cpm). glycyI-L-tyrosine, (gy). O-[[(1R)-[[N-(phenylmethoxycarbonyl)-L-alanyl] amino] 
ethyl] hydroxyphosphinyl]-L-3-phenyllactate (ZAAp(O)F, zaf), O-[[(1R)-[[N-(phenylmethoxycarbonyl)-L- 
phenylalanyl] amino] isobutyl] hydroxyphosphinyl]-L-3phenylacetate (ZFVp(O)F, fvf) O-[[(1R)-[[N- 
(phenylmethoxycarbonyl)-L-alanyl] amino] methyl] hydroxyphosphinyl]-L-3-phenyllactate (ZAGp(O)F, agf).
and their experimental Ki values.
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to Arg209, Arg226 also contributes to the binding of cAMP. This is the main reason for
the deviation obtained. Because of the strong electrostatic interaction between the 
cyclo-phosphate part of cAMP and the two arginines, the whole ligand moves toward 
these residues during the optimization in VAMP-PCM. 

Using different dielectric constants ε = 1, 2, 4) in the QM/MM calculations did not
give significant changes in the results discussed above. The results obtained suggest that 
the combination of a genetic algorithm with a quantum mechanical/molecular mechan- 
ical approach provides a powerful tool for treating the docking problem. The average 
CPU time for this optimization on a R8000 (90 MHz) Power Challenge is around 700 s. 

5.3. Binding energies 

QM/MM methods can also be used for the prediction of absolute binding free energies 
[110] or for the prediction of binding affinities [111]. In the following, we describe a

Fig. 14. X-ray (red) and optimized structure of ZFVp(O)F within the binding site of CPA. The Delta value,
which will be correlated to the inhibition strength, is then obtained by Delta = ∆Hf(PCM) – ∆Hf(Ligand/Bulk)
+ ∆Hf(Bulk).
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case study for the performance of the method for docking flexible molecules into a
protein-binding site. We have used the VAMP-PCM method to rank a set of seven car-
boxypeptidase A (CPA) inhibitors according to their inhibition strength. The binding
geometries of these ligands are known crystallographically, and also the experimental
Ki values for six of them [119-121].To account for the effects of solvation, we decided
to use a supermolecule approach with 28 water molecules surrounding the ligand. The
schematic structures of the inhibitors are shown in Fig. 13. A representative example of

their X-ray structures in Fig. 14.
In Fig. 15, delta is plotted against IogKi for live out of the seven inhibitors to visual-

ize the correlation between these values. The zwitterionic gy ligand is not shown in the
plot, because of a highly positive delta (191.91).This indicates that our approach in the
present form may have some problems with zwitterionic structures. Nevertheless. the
ligand is ranked correctly. For the lof inhibitor, no experimental inhibition strength is
known; we rank this compound as the second worst inhibitor in our test set. The results
above suggest that lof is a much worse inhibitor than the structurally similar bzs ligand.

Thus, using a combined QM/MM approach for the simulation of the protein environ-
ment and a supermolecule approach for solvation effects allows us to reproduce the
inhibition strength ranking of the chosen set of CPA ligands correctly. In order to verify
this result and to strengthen this approach. further investigations arc in progress.
To improve the calculation of the solvent effects, one can also use QM/MM models
[32-46].

6. Conclusion and Outlook

The above examples demonstrate the emerging power of semiempirical MO theory in
biological applications. There is still much development (not least in the quantum

Fig. 15. Plot delta versus logKi.
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Pan optimized phosphonate inhibitor (ZFV  (O)F) in CPA is shown in comparison with 



mechanics of the methods themselves) to be done. but modern hardware and software
have opened new possibilities for applying MO theory to systems that would have been
treated with force fields only a few years ago. Much of the battle will be to overcome
the negative image that early semiempirical methods gained within the organic com-
munity. This will only be possible by clear and detailed demostrations of the advantages
of using quantum mechanics i n real biological applications.
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1. Introductionto the Methods

Density-functional theory (DFT) is an exact theory of the ground state of a many-parti-
cle system [1,2]. The mathematical formulation was given by Hohenberg and Kohn
(HK) in the mid-1960s [3,4], namely the demonstration of (i) the uniqueness of the
ground-state density associated with a given external potential, and of (ii) the varia-
tional character of the density energy functional. As a consequence, (iii) the existence of
a universal density functional (HK functional) — i.e. independent of the external poten-
tial and of the specific system — was established, the exact form of which, however, is
unknown. The variational character of the functional makes the ground-state density
and energy accessible, in principle, via minimization procedures. A precise prescription
to convert this complex problem into a practical scheme for a many-electron system
was given by Kohn and Sham [5], in which one-electron orbitals were introduced to de-
scribe the electron density. In this way, the solution of the energy minimum problem
became formally similar to that of the Hartree and Hartree-Fock approaches, namely it
was reduced to a set of equations to be solved iteratively. The underlying physics was
more complete, however, being electron–electron correlation included in the HK func-
tional. Also, the meaning of the single-particle orbitals and energies thus obtained was
different [1].

There are several reasons why the power of such a method had to wait decades before
becoming clear to the community of physicists, and especially to that of chemists. The
first step toward a practical application was to introduce a valid approximation for the
exchange-correlation energy functional. For a long time. the only practical implementa-
tion was the local density approximation (LDA), also suggested by Kohn and Sham [5],
which is correct in the limit of the homogeneous electron gas and was expected to be a
valid approximation for systems with slowly varying density. LDA was appreciated as
physically sound and appropriate for a number of real systems by solid-state physicists
who first used it for simple metals and semiconductors, and rapidly realized its validity
beyond the realm for which it had originally been designed [6 ,1]. On the contrary. the
formal analogy with jellium being more appropriate for extended systems and the
picture so far away from the traditional thinking of chemists, LDA had difficulty in
being accepted in the study of molecular systems. Moreover, the relatively poor perfor-
mance of LDA for isolated atoms and the incorrect description of the tail of the ex- 
change-correlation potential often yielded significant errors for cohesive energies and
electron affinities. The scenario changed when gradient corrections to the LDA were in-
troduced in the exchange and correlation functionals (GGA), which improved the agree-
ment between these calculated values and experiment in a significant way. From a
fundamental point of view, it must be said that LDA defines a specific reference model
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system whose physical meaning is clear because the LDA functional is well defined.
GGA suffers instead from the multiplicity of proposed prescriptions and the general
lack of a fundamental justification lor them. This is even more true for ‘hybrid’ schemes
that have recently become popular in applications to chemistry.

Nowadays, DFT is the method of choice for many problems in physics and chem-
istry, ranging from molecular to condensed-matter systems. The advance in con-
putational algorithms (and the progress in computer hardware) have also made tests
possible on a variety of systems. It is clear by now that DFT can be applied (and suc-
cessfully) to many real problems for which the size system makes traditional quantum-
chemistry calculations impractical.

Further support for the use of DFT has come during the past decade from the so-
called Car-Parrinello (CP) method [7,8], which combines it with molecular dynamics
(MD). As such. it allows one (i) to use dynamical procedures (such as simulated anneal-
ing) to minimize the energy functional with the possibility for simultaneous optimiza-
tion of both electronic and ionic variables, and (i i ) to determine the time evolution of
the system, kept on the Born-Oppenheimer surface. at finite temperature. On the practi-
cal side, it can be applied to new classes of problems, especially those for which MD
with classical potentials fails to give an appropriate description. For instance. this is the 
case for covalently bonded systems whenever bonds rearrange as in structural changes
and for any quantum-mechanical event such as bond breaking and (re)forming. Also,
within the same scheme, one can treat systems in both molecular and condensed phases
such that, for instance, six evolution patterns can be properly studies, without having to 
sacrifice the accuracy of the calculations on passing. for example, from the dimer to the
solid state. Starting from the CP proposal of other procedures for local minimizations, a
number of new procedures have been suggested for efficient optimization, either
simultaneous or sequential, of geometries and electronic structure.

DFT and DFT-MD methods are currently flourishing i n chemistry and materials
science in general. On the other hand, their application to biochemistry and biology is
only at its beginning. In the following section, I shall briefly mention some attempts
made so far in this field, and mainly discuss where and why it appears worthwhile to
pursue this effort. I shall also try to clarify some technical and more fundamental
reasons that limit the range of applications at the moment.

2.

The reason for introducing DFT in biochemistry are: (i) the need for an ab initio de-
scription of the interatomic interactions, in many cases. in which force fields become 
‘fragile’, and (ii) its computational efficiency compared to that of post-Hartree-Fock
methods. The experience gained so far with the available prescriptions for the ex- 
change-correlation energy functionals in DFT shows a general ability to describe well
systems and situations i n which metallic, covalent or ionic bonds are dominant. This is
the case for a number of ground-state properties and lor the energetics. Biological
matter, however, is much more complex than that of traditional inorganic and/or organic
materials. A reliable description requires the ability to account correctly for other types

DFT and DFT-MD in Biochemistry
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of interactions as well. These are hydrogen bonds, as well as van der Waals and hydro- 
phobic interactions, whose role in biology is known to be crucial for both stability and
functionality.

Static calculations on key model systems (such as DNA base pairs) ‘in vacuo’ have
been performed for some time. The main purpose is generally that of examining the per-
formance of DFT-GGA methods versus post-Hartree-Fock methods [9], in accounting
for structure, dipole moments and energetics. A more systematic and critical work
would certainly be useful. Regrettably, calculations of this kind often suffer from the
limited accuracy of the computational scheme (e.g. small basis sets for the electronic
wave functions) and are thus unable to provide reliable reference data for useful com-
parisons. DFT-based results on simple systems have sometimes been used for the con-
struction of classical potentials to be applied in molecular mechanics calculations of
realistic models of biological systems. Although interesting in principle, parametr-
izations derived in this way have no guarantee of being transferable.

More recently, it has become possible to extend DFT-GGA static calculations to
complexes of a few hundred atoms — i.e. the size of biological models investigated in
laboratory experiments [10-12].The starting point is the X-ray refinement of the system
(which typically exists in the crystal phase), and the outcome is the locally optimized
geometry within DFT-GGA. Therefore, the results for the structure are primarily a test
of the computational scheme. although they can also include some features. such as the 
hydrogen pattern, that are complementary to experimental observations. However, the
new information they provide concerns the electronic structure. For instance, in the
example reported in reference [11], where a platinum-modified nucleobase pair was
studied in the crystal phase, one could capture the effects of metalation on the chemical
bonding and show its effects on the electronic structure of the nucleobase pair in the
complex.

Static calculations are far from being exhaustive. Still, merely from the point of view
of testing of the computational scheme, local energy minimization starting from an edu-
cated guess is not sufficient and does not guarantee the absence of spurious minima
and/or unrealistic conformations. More important. the study of the dynamics is vital for
the understanding of the physical and chemical behavior of biomolecules [13] and is
certainly essential for the correct description of the influence of water on their con-
formations and interactions. This is why the combination of DFT and MD, as achieved
with the CP method, has strong potential in this field as well. Moreover, it has recently
been shown with CP simulations that liquid water can be treated at a reasonably accu-
rate level within at least one of the DFT-GGA schemes [14]. It is probably worth em-
phasizing that ab initio liquid water constitutes an important step forward in view of the
well-known severe difficulties that classical force fields encounter to represent properly
its intrinsic properties and specific interactions (see e.g. [15]). CP simulations of water
and of some chemical reactions in aqueous solutions [16] indicate that hydrogen bonds
can be correctly described with current exchange-correlation functionals in DFT. Still,
more experience must be gained to reinforce and generalize such statements. 

The ability to represent liquid water with a reasonable degree of accuracy opens up
also the possibility of determining ‘structures in solution’ fully ab initio. This has
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recently been achieved for the monostrand major cisplatin-DNA adduct [17] starting
from the structure of the model system in the crystal phase.

Finally, the correct treatment of hydrogen-bonded systems may require an explicit
account of the quantum nature of the nuclei. An extension of DFT-MD in this direction 
that combines it with the path-integral method has recently been introduced [18,19].

Dispersion forces are a bottleneck for current implementations of DFT. The inability
of the latter to describe dispersion forces is an obviouy consequence of the nature of the
approximations made for the exchange-correlation density functionals. Because these
approximated functionals are local or at most contain the density gradient (semilocal),
they cannot represent the exchange-correlation energy of distant atomic systems with
non-overlapping charge distributions [20]. Thus, they generally fail to predict both po-
sition and depth of the van der Waals minima, as well as the long-range behavior of the 
interaction potential. Although there are current attempts to make improvements and/or
ad hoc corrections within the available schemes (see e.g. [21]), new strategies have
recently been proposed within DFT as inore reliable and fully ab initio approaches
[22,23].

Increasing the size and time scales of the system under investigation is an urgent
technical problem. In fact, a typical computer model in CP simulations does not contain
inore than 300 atoms. and does not run for more than 10 ps. Solutions to the ‘size
problem‘ are indeed available for ab initio electronic structure calculations (see e.g.
[24–26]) where the sire scaling of the algorithm is linear. These will eventually merge
into the combined DFT-MD method [24].

The ‘time problem’ can, in some cases, be reduced by making use of algorithms that
are standard in classical MD [27,28]. In the study of activated processes, or inore gener- 
ally of events that are ‘rare’ i n the time scale of the computer simulation, one can make
use of ‘constrained MD’ [29], namely of MD where specific reaction coordinates are
imposed and constrained during the runs. In this way, one can also calculate relative
free energies and, in particular, free energy barriers. The implementation in DFT-MD
has opened an important new avenue for the study of chemical reactions [30]. In par-
ticular, this method has recently been applied to simulate the reaction that is considered to
be the first step in the binding of eisplatin to DNA. namely the substitution of one chlorine
with a water molecule in the aqueous solution [17]. Clear insights into the reaction path of
the reaction, the accompanying electronic mechanisms and the effect of the solvent have
been thus obtained. and also a quantitative estimate of the free energy barrier.

sical approaches have long been proposed for simulations in
biochemistry, mainly to either include quantum corrections into molecular mechanics
calculations (see e.g. [31,321)or introduce solvation effects into semiempirical quantum
models (see e.g. [33]). An extension of the DFT-CP method in this direction would be
of great help to overcome the technical limitations mentioned above (see e.g. [34]).

3. Conclusion

The application of DFT-based MD to cases of relevance in biochemistry and biology is
in its ‘embryonic stage’. Indeed, i t has still to acquire a number of features before
establishing itself as an accurate and convenient investigation tool in this field.
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So far, applications have mainly concerned the geometry and electronic structure of
fragments or crystal models of biological systems and, to a lesser extent, the chemistry
and dynamics of models of biochemically relevant process (see section 2 above, as well
as references [35] and [36]). In particular, owing to its strength and localized nature, the 
study of metal ion binding to enzymes and nucleic acids suffers from the current limita-
tions of the method to only a minor extent. Also, the role of water is often crucial in
determining the mechanism and energy scale of the binding itself. Therefore, this is the
area where progress can already be made [12,37,17], both the ab initio description and
the dynamical approach being of crucial importance.

As discussed above, some technical difficulties must be overcome, and the accuracy
of the exchange-correlation energy functionals for the description of all relevant interac-
tions must also be fully established. It should be evident why such an effort is worth-
while. In fact. trying and validating a certain approximation for the universal HK
functional will result in a global reliable description of the fundamental interactions,
independent of the specific interacting atoms or molecules or aggregation state. inde-
pendent of the size of the system under investigation and of its physical conditions (e.g.
temperature, pressure). This is drastically different from trying and validating an empir-
ical or a semiempirical approach, such as a classical potential or a quantum-mechanical
model. In such cases, one has to (est a specific parametrization that can be suitable
only for a subset of problems and systems, and often has little chance of being
predictive.

In conclusion, DFT-based MD, assisted by intelligent modelling, has all the pre-
requisites to render computer simulations useful not only for the investigation of
biochemical systems, but also for the design of new biologically relevant materials.

Acknowledgements

I wish to thank Paolo Carloni and Alessandro Curioni for useful discussions.

References

1.
2 .

3.
4.

Dreizler, R.M. and Gross, E.K.U., Density-functional theory, Springer-Verlag, Berlin. 1990
Parr, R.G. and Yang, W., Density-functional theory of atoms and molecules, Oxford Science 
Publications., New York, 1989.
Hohenberg, P. and Kohn, W., Inhomogeneous electron gas, Phys. Rev., 136 (1964)B864–1887.
See also Lieb, E.H., Density functionals for Coulomb systems, In Dreizler, R.M. and Providencia. J.
(Eds.) Density functional methods in physics. Plenum. New York, 1985, pp. 31-80: Levy, M. and 
Perdew, J.P., The constrianed search formulation of density functional theory, ibid., pp. 1 1-30.
Kohn, W. and Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys.
Rev., 140 (1965) A1133-A1138.
Gunnarsson, O., Jonson, M. and Lundqvist, B.I., Description of exchange and correlation effects in

Car. R. and Parrinello, M., Unified density-functional theory and molecular dynamics, Phys. Rev. Lett.,
55 (1985) 2471–2474.
Car, R.. Molecular dynamics from first principles, In Binder. K. and Ciccotti G. (Eds.) Monte Carlo and 
molecular dynamics of condensed matter systems. Italian Physical Society Publications. Bologna, Italy,
1995.pp. 601–634.

5.

6.

7.

8.

inhomogeneous electron systems, Phys. Rev. B, 20 (1979) 3136–3164.

165



WandaAndreoni

9. See e.g. Sponer, J., Leszezynski, J. and Hobza, P., Structures and energies of hydrogen-bonded DNA 
base pairs: A nonempirical study with inclusion of electron correlation, J. Phys. Chem., 100 (1996)
1965–1974.
Hutter, J., Carloni, P. and Parrinello, M., Non-empirical calculations of a hydrated RNA duplex, J. Am.
Chem. Soc., 118 (1996) 8710–8712.
Carloni, P. and Andreoni, W., Platinum-modified nucleobase pairs in the solid state: theoretical study,
J. Phys. Chem., 100 (1996) 17797–17800.
Carloni, P. and Alber, F., Density-functional theory investigations of enzyme-substrate interactions, this
volume and references therein.
Karplus, M. and Petsko, G.A., Molecular dynamics simulations in biology, Nature. 347 (1990) 631–639. 
Sprik, M., Hutter, J. and Parrinello, M., Ab initio molecular dynamics simulation of liquid water: 
comparison of three gradient-corrected density functional, J Chem. Php., 105 (1996) 1142–1152. 
Beveridge. D.L., Swaminathan, S., Ravishanker, G., Withka, J.M., Srinivasan, J.. Prevost, C., Louise- 
May. S., Langley, D.R., DiCapua, F.M. and Bolton, P.H., Molecular dynamics simulations on the hydra-
tion, structure and motions of DNA oligomers, In Westhof, E. (Ed.) Water and biological macro-
molecules. Macmillan, London, U.K., 1993, pp. 165–225.
See e.g. Mejer, E.J and Sprik, M., A density-functional study of the addition of water to  SO3 in the gas
phase and in aqueous solution, J. Phys. Chem. (in press).
Carloni, P., Sprik, M. and Andreoni, W., Cisplatin-DNA binding mechanism: Key steps from ab initio 
molecular dynamics (in preparation).
Marx, D. and Parrinello, M., Ab-initio path integral molecular dynamics Basic ideas, J. Chem. Phys.,
104 (1996) 4077-4082.
Tuckerman, M.E., Marx, D., Klein. M.L. and Parrinello, M., On the quantum nature of the shared
proton in hydrogen bonds. Science. 275 (1997) 817–819, and references therein.
Kristyán, S. and Pulay, P., Can (semi) local density functional theory account for the London dispersion
forces? Chem. Phys. Lett.. 229 (1994) 175–180.
Osinga, V.P., van Gisbergen, S.J.A. and Baerends, E.J., Density functional results for isotropic and
anisotropic multipole polarizabilities and C6, C7 and C8 van der Waals dispersion coefficients for
molecules, J. Chem. Phys. 106 (1997) 5091.
Kohn, W. and Meir, Y., Van der Waals energies in density functional theory, Phys. Rev. Lett. 
(submitted)
Cross, E.K.U., Dobson. J F. and Petersilka, M., Density functional theory time-dependent phenomena, In
Nalewajski, R.F. (Ed.) Density functional theory. Topics in Current Chemistry. Vol. 181. Springer,
Heidelberg. 1996, pp. 81–172.

24.  Mauri, F. and Galli, G., Electronic structure calculations and molecular dynamics simulations with 
linear system-size scaling, Phys. Rev. B, 50 (1994) 4316–4326.
Carlsson A.E., Order-N density-matrix electronic-structure method for general potentials,  Phys. Rev. B,
51 (1995) 13935–13941.
Kohn, W., Density functional and density matrix methods scaling linearly with the number of atoms,
Phys. Rev. Lett., 76 (1996) 3168–3171.
van Gunsteren, W.F., Molecular dynamics and stochastic dynamics simulations: A primer, In van
Gunateren, W.F., Weiner, P.K., Wilkinson, A.J. (Eds.) Computer simulation of biomolecular systems,
Vol. 2, ESCOM, Leiden, The Netherlands. 1993, pp. 3–36. 
Tuckerman. M.E. and Parrinello, M., Integrating the Cur-Parrinello equations II: Multiple time scale
techniques, J. Chem. Phy., 101 (1994) 1316–1329.
Carter. E.A., Ciccotti. G. and Hynes, J.T., Constrianed reaction coordinate dynamics for the simulation
of rare events, Chem. Phys. Lett.. 156 (1989) 472-477; Ciccotti. G , Ferrario, M. and Hynes, J.T.,
Constrianed molecular dynamics and the mean potential for an ion pair in a polar solvent, Chem. Phys.
129 (1989) 241–251.
Curioni, A., Sprik, M., Andreoni, W., Schiffer, H., Hutier, J. and Parrinello, M., Density-functional-
theory based molecular dynamics simulation of acid catalyzed reactions in liquid trioxane, J. Am.
Chem. Soc. 119 (1997) 7218.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

25.

26.

27.

28.

29.

30.

166



Density-Functional Theory and Molecular Dynamics

Perákylá, M. and Kollman, PA., A simulation of the catalytic mechanism of aspartyl-glucosaminidase
using ab-initio quantum mechanics and molecular dynamics, J. Am. Chem. Soc., 119 (1997) 
1189-1196.
Stanton, R.V., Hartsough. D.S. and Merz, K.M., Jr., An examination of a density functional/molecular
mechanical coupled potential, J. Comput. Chem., 16 (1995) 113–128.
See e.g. Cramer, C.J. and Truhlar, D.G., Molecular obital theory calculations of aqueous solvation
effects in chemical equilibria, J. Am. Chem. Soc., 113 (1991) 8552–8554; Giesen, D.J., Gu. M Z., and

31.

32.

33.

Truhlar, D.G., A universal organic solvation model, J. Org. Chem., 61 (1996) 8720–8721.
34. Wei, D. and Salahub, D.R., A combined density functional and molecular dynamics simulation of a

quantum water molecular in aqueous solution, Chem. Phys. Lett., 224 (1991) 291–296.
Buda, F., dcGroot, H. and Bifone. A., Charge localization and dynamics in rhodopsin., Phys. Rev. Lett.,
71 (1996) 4474–4477.
Rovira, C., Ballone, P. and Parrinello, M., A density functional study of iron–porphyrin complexes, 
Chem. Phys. Lett., 271 (1997) 247–250.
Sagnella, D.E., Laasonen, K. and Klein, M.L., Ab initio molecular dynamics study of proton transfer in
a polyglycine analog of the ion channel gramicidin A, Biophys. J., 71 (1996) 1172–1178.

35.

36.

37.

167



This Page Intentionally Left Blank



Density-Functional Theory Investigations of Enzyme-substrate
Interactions

Paolo Carloniª and Frank Alberb

a IBM Research Division, Zurich Research Laboratory, Säumerstrasse 4, CH-8803 Rüschlikon,
Switzerland and Department of Chemistry, University of Florence, Via G. Capponi 7, 1-50121 

Firenze Italy
b Department of Pharmarcy Swiss Federal Institute of Technology (ETH), Winterthurerstrasse 

190, CH-8057 Zurich, Switzerland.

1. Introduction

Density-functional theory (DFT) [1,2], originally developed in solid-state physics, is a
valuable, versatile and efficient quantum-mechanical method for electronic structure 
calculations of chemical systems [3]. Recently, application of the DFT methods has also 
been extended to biological molecules [3,4].

Here, we present some results from recent investigations on two important enzymes.
superoxide dismutase and thymidine kinase. Our goal is to understand the factors that
play a crucial role in the enzyme-substrate interactions. We also briefly discuss the
importance of solvation effects on the quantum-mechanical calculations [5].

2. Superoxide dismutase

Copper–zinc superoxide dismutase (SOD) is a dimeric enzyme containing a copper ion
and a zinc ion in the active site of each subunit. The active site of the enzyme consists
of the copper ion (which is essential to the SOD activity) coordinated by four histidines
in a distorted square planar geometry. One of these residues, His61, acts as a bridge 
between the Cu and Zn ions. An Asp and two other His residues complete that co-

Fig. 1. Schematic view of Cu, Zn SOD active site and active site channel. (From Getzoff, E.D, Halwell, R.A.
and Trainer J.A., In Inouye. M. (Ed.) Protein Engineering: Applications in Science Industry and Medicine, 
Academic Press, New York, 1986, pp . 41–69,)

H. Kubinyi et al. (eds.), 3D QSAR in Drug Design Volume2. 169–179.
© 1998 Kluwer Academic Publishers. Printed in Great Britian.
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ordination of Zn. The X-ray structure of the oxidized [6] and reduced [7] bovine SOD
reveals that the copper-histidine complex is located at the bottom of a shallow cavity
present in the protein (Fig. 1) .

The physiological role of SOD is the removal of the harmful superoxide anion
radical, O2,– produced during the oxygen metabolic cycle [8–13]. SOD dismutates O2

– to 

references [9,14]):

(1)
Two mechanisms have been proposed. In the most widely accepted mechanism [8],

the copper ion is repeatedly reduced and oxidized in a two-step process:

(2)

(3)

Within this scheme, the Cu-His61 bond breaks down i n the first step [15]; sub-
sequently, His61 accepts a proton from the solvent [11,16]. In the second step, this 
proton is transferred to a second superoxide molecule forming HO-

2, and the Cu-His61
bond is reformed.

A second mechanism. which involves the formation of a stable copper-superoxide
intermediate has been suggested on the basis of ab initio quantum-mechanical
calculations [17–19]:

(4)

(5)
The (CuO2) intermediate would then oxidize a second superoxide molecule:

(6)
Depending on whether an electron transfer (ET) occurs between copper(II) and super-
oxide (reactions 2 and 4), the two different mechanisms can be operative [20].

With the aim of understanding some of the important factors governing the super-
oxide-copper ET, we have undertaken DFT calculations on several models of SOD
active site and its adduct with superoxide [21].

2.1 Computational procedure 

A copper tetraimidazole complex, whose geometry has been taken from the X-ray struc-
ture of oxidized SOD [6], is our model for the active site of SOD (Fig. 2). Arg141, the
only invariant residue of SOD [22], has been included in the model by modelling it as an

single-point DFT calculations on various complexes, within the local spin density ap-
proximation of DFT [ I ,2]. We use the LDA parameterization by Perdew and Zunger
[23], which is based on Monte Carlo simulations of the free electron gas investigated by
Ceperley and Alder [24]. Some calculations were done using spin-polarized techniques.
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molecular oxygen and hydrogen peroxide at a very high rate (2–3 x 109 s–1 M–1;

ammoniumion. The mode of binding of Q-
2 to SOD is also shown. We have performed 

2O-
2 + 2H+ → H2O2 + O2

Cu2+ + 2H+ →  H2O2 + O2

Cu+ + O-
2 + 2H+ →  Cu2+ + H2O2
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Fig. 2. Model of the SOD active site-superoxide adduct. (Reprinted with permission from Reference [2I],
© I995 The American Chemical Society.) 

Our basis set consists of plane waves (for a detailed description the reader is referred to
reference [21]). The electronic structure of the complexes are presented in terms of
density of states (DOS).

2.2. Results and discussion

Figure 3a shows the DOS of the oxidized SOD active site — i.e. of the copper(II)-
imidazole complex. The main contributions come from the imidazole ligands. The con-
tributions of the other molecules present in the complexes are also shown. The four imi-
dazole nitrogen atoms bound to copper produce a square planar distorted ligand field:
the copper dxy , dxz and dyz levels form a large peak. Two small shoulders on the main
peak are due to the copper dz2 orbital. At higher and lower energies lie the antibonding
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Energy (eV)
Fig. 3. DOS of the SOD active site (a) and its adduct with superoxide (b). At the top left, the Cu d-orbital
splittings are also shown. (Reprinted in part, with permission from reference [21], © 1995 The American 
Chemical Society.)
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(σ*) and bonding (σ) molecular orbitals formed by the copper dx2 – y2 with the ligands.
The bonding-antibonding splitting of the dx2 – y2 derived states is 5.3 eV [25].

When the superoxide is brought into close proximity of the copper ion (Fig. 3b), a 
new peak of the DOS at the Fermi level is present: this peak is due to a molecular
orbital formed by the dx2 – y2 and the two π∗ orbitals of superoxide. A stable Cu(II)–O2

–

complex is formed, and an electron is partially transferred from the superoxide to the
copper(II) ion. Consistently with the stability of the Cu(II)–O2

– complex, the binding 
energy against dissociation into a neutral oxygen molecule and the reduced SOD active 
site is found to be 99 kJ/mol [25]. The reason why the dx2 – y2 orbital is substantially
higher in energy here than in the oxidized SOD active site is the large electron Coulomb
repulsion of the copper ion. 

We now discuss the effect of an important residue in the active site of the enzyme, 
Arg141, which has been included in the calculations. Because of its mobility [26], 
Arg141 could H-bond strongly to the terminal oxygen of the substrate and hence stabi-
lize the Cu–O2

– intermediate, favoring the mechanisms 4 and 5. By positioning the
guanidinum group of Arg141 closer to the substrate — i.e. by reducing the guanid-
inum-superoxide H-bond from the 2.5 A in the previous complex to 1.5 A — we find 
that the electronic structure essentially does not change. The binding energy is also size-
ably increased by 15 kJ/mol. 

In conclusion, our calculations show that partial electron transfer process between 
SOD and its substrate occurs through the copper dx2 – y2 and the π∗ orbitals of the super-
oxide. The electronic structure of the enzyme substrate complex is mainly influenced by 
Coulomb repulsion and, to a lesser extent, by spin-polarization effects of the paramag-
netic Cu(II) ion and of superoxide π∗ orbitals [25]. The covalent hybridization between
the Cu-d and the superoxide π∗ orbitals is, in comparison, negligible.

The electronic structure at the Fermi level changes only slightly upon reducing the 
Arg141–superoxide distance. Other levels are shifted in energy by the long-range
Coulomb interaction with the Arg guanidinum, whose position has been modified.

Our calculations essentially agree with earlier quantum-mechanical calculations [17], in 
that the ET between superoxide and copper does not take place in vacuo. However, unlike 
the conclusion drawn in [17], we believe that our and previous quantum-mechanical cal-
culations do not necessarily imply a mechanism described by reactions 4–6; the presence 
of the electrostatic field of the protein/water environment might alter this picture, and the 
Cu–O2

– complex, which in vacuo is stable, could easily dissociate if the effect of the
protein is taken into account, consistently with the two-step mechanisms 2–3. 

3. Herpes Simplex Type 1 Thymidine Kinase 

Viral herpes simplex type 1 thymidine kinase (HSV1 TK) is a key enzyme in the metab- 
olism of the herpes simplex virus. Its physiological role is to salvage thymidine into the
DNA metabolism by converting it to thymidine monophosphate: the phosphorylation is 
achieved by transfer of the γ -phosphate group from ATP to the 5'-OH group of thymidine:

ATP + d(T) ADP + d(Tp) 
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Understanding the biochemistry of this enzyme is important for application in the treat-
ment of virus infections and for cancer chemotherapy [27–34].

We present here our recent DFT study that has focused on the HSV 1 TK nucleoside 
interactions [35]. Our goal is to gain a better understanding of the nature of HSV1 TK
binding interactions and of its mechanism of action.

3.1. Computationalprocedure

HSV1 TK is a dimeric enzyme with 376 residues per subunit. The two subunits are
related by C2 symmetry (Fig. 4). The active site is formed by an ATP and a nucleoside
binding region [36]. Our modelling of HSV1 TK active site (Fig. 5) includes the residues 

delled again by an ammonium ion, is also included because of its important electrostatic
role. Several HSV1 TK-thymine complexes have been considered by protonating the
residues and the substrate differently. Calculations were carried out in the DFT frame- 
work, using the Becke-Lee-Yang-Parr approximation for the exchange-correlation func-
tionals [37,38]. The interaction between valence electrons and ionic cores is described
by pseudopotentials of the Martins-Troullier type [39]. The Kohn-Sham orbitals are ex-
panded in plane waves up to an energy cutoff of 70 Ry. The complex geometries were

on the ammonium nitrogen.

3.2. Results and discussion

The difference density = ρcomplex ρ fragments – ρsubstrate describes how the electron 
density ρ changes during the formation of the complex. Inspection of for all com-
plexes reveals that no charge transfer from or to the substrate is present. The O and N
atoms of thymine as well as the Arg 163–Tyr172 H-bond are sizeably polarized.
Interestingly, there is no evidence of polarization of the Met128 sulfur atom [40]. This
indicates that sulfur plays only a minor role i n binding. That the role of Met128 sulfur in
the binding process is purely hydrophobic and steric has been confirmed by very recent 
site-directed mutagenesis experiments, which have shown that the activity is preserved
when the Met residue is replaced by another hydrophobic residue such as Ile [41].

The complexes in which Tyr172 is deprotonated and thymine protonated are more
stable by at least 130 kJ/mol, in terms of the binding energy, than those bearing a
neutral substrate and/or neutral tyrosine. The stabilization is due to the favorable and
strong Coulomb interaction between the ionic pair. By including the electrostatic envir-
onment using a standard force field [42], the energetics obtained using the quantum-
mechanical calculations turn out not to be significantly affected.

We conclude that the enzyme–substrate binding is dominated by Coulombic inter-
actions, with no sizeable charge transfer to or from the substrate. The calculations
suggest the existence of a ‘proton transfer complex’ between Tyr 172 and the substrate.
Such a complex could be important for the efficiency of the enzyme by enhancing the 
rigidity of the active site.
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Fig. 4. Structure of one subunit of HSVI TK. 

4. Conclusion 

The two examples shown here illustrate that the DFT approach can be used to investi- 
gate enzyme-substrate interactions. The DFT method appears to be well suited to treat a 
variety of systems and chemical bonding, from a metal-based enzyme to a protein con- 
taining a ‘p-complex’ between two aromatic rings. These examples also indicate that, in 
general, the effects of the protein/water environment should be considered to obtain a 
more realistic description of the interactions at the active site [5]. The development of 
coupled ab initio classical molecular dynamics simulations methods [43] will further 
improve the theoretical investigations of the mechanism of action of enzymes, by allow- 
ing the study of the reactive processes in the presence of the dynamical effects of the 
environment.
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Fig. 5. Model of the HSVl TK active site-tymine adduct 
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Molecular Dynamics Simulations: A Tool for Drug Design 

Didier Rognan
Department of Pharmacy Swiss Federal Institute of Technology CH-8057Zürich, Switzerland

1. Introduction

The recent growth of recombinant DNA technology (cDNA cloning, southern blotting,
PCR) [1]  has boosted, i n the last decade, the identification of biological macromolecules
and their expression in purity and quantity adequate for structure determination. About
5000 coordinate entries arc today available in the Brookhaven Protein Data Bank [2,3]
and more than 10 000 are expected at the turn of the century. Experimentally deter-
mined protein structures represent by far the most promising starting point for rational
drug design. There is, therefore, a need for filling the gap between 3D structures of
biological targets and potential substrate/inhibitors of those macromolecules. Com-
putational chemistry tries to rationalize this gap.

In parallel with the development of modern molecular biology, computational chem-
istry methods have also dramatically evolved [4-61. The early static pictures of pharma-
cophores [7] or, in the best cases, of protein-ligand complexes [8] have now been
supplemented by dynamic representations of drug-receptor interactions [9]. A major
breakthrough came in the late 1970s from the application of molecular dynamics (MD)
[10], initially developed for fluids [11], to biological macromolecules [12]. Basically,
MD can be described by the numerical solution of Newton’s second law of motion
(Eq. 1):

(1)

For a molecular system of N particles having a mass mi, atomic positions ri at a time t ,
are derived from the gradient of the potential energy V,which is classically obtained by
molecular mechanics. As ri is calculated within short time steps ∆t of 1–2 fs (Eq. 2), the
time history or trajectory of all atoms may be easily monitored and thus give access
to dynamic properties that may be of interest for studying protein structure, folding,
catalytic mechanisms and binding processes:

(2)

Early simulations were limited to simplified molecular representations (in vacuo) and
very short time scales (a few ps) [13–14]. However. the combined development of su-
percomputer technology, algorithm parallelization [15–16], force fields [17–20] and
time-saving techniques [21] permits nowadays the simulation of complex biological
systems for longer time scales (up to a few ns) [22–23], and with higher accuracy 
[18,24].

It is not our aim in this chapter to review methodological advances [25] or potential
applications of MD to biology [26]. As both the methodology and input 3D structures

H. Kubinyi et al.eds.), 3D QSAR in Drug Design, Volume 2. 181–209.
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are becoming accessible to the great majority of the scientific community, we will rather 
emphasize new aspects in the use of MD simulations: (i) as a tool for the rationalization
of structure-activity relationships, and (i i ) as a promising method for protein structure- 
based drug design.

2.

The most popular application of MD simulations is conformational sampling, especially
if experimental constraints (distance, dihedral angles) are explicitly taken into account.
Therefore, MD is nowadays an integral part of protein structure refinement using
either NMR or X-ray diffraction constraints [27,28]. Several techniques aimed at 
enhancing the conformational hyperspace that can be scanned are described in the
literature [29–33].

In a drug-design protocol, these methods may be very powerful to propose reliable
conformations of small molecules in their free state and even to avoid conformational
artefacts given by X-ray diffraction. One simple and useful application is the con-
formational analysis of tetra-O-methyl-(+)-catechin (Fig. 1). In the crystalline state, the
two observed conformations of the benzopyran ring places the dimethoxyphenyl moiety
at C2 in an equatorial position [34]. This is in disagreement with proton NMR coupling
constants which suggest an interconversion of axial and equatorial conformations [35].
A 4.5 ns MD simulation in vacuo starting from the two crystal structures not only 
showed the interconversion, but was also able to reproduce the NMR-derived ratio
between the two populations of axial and equatorial conformations [34].

An efficient conformational sampling of free ligands may also reveal significant dif-
ferences, related to their specificity profile for closely related receptors. The con-
formational hyperspace accessible to deltorphin C and dynorphin A analogs could, for
example, explain their selectivity for δ, µ [36] and κ opioid receptors [ 37].

3.

3D QSAR models are highly dependent on the alignment of bioactive Conformations 
[38]. Although the complexity of conformational searching techniques does not necess-

Dynamics of Free Ligands: Efficient Sampling of Conformational Space

Synergistic Use of MD and 3D QSAR

Fig. 1. Chamical structure of tetra-O-methyl-(+)-catechin. 
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arily correspond to their usefulness in determining bioactive conformations, another po-
tential application of MD resides in the conformational analysis of semi-flexible mole-
cules prior to pharmacophore mapping. Relevant conformational populations or
molecular properties derived from MD may thus be readily identified and imported into
a QSAR table [39–40].

Alternatively, simulations of protein-ligand complexes may explain some dis-
crepancies in 3D QSAR analyses, due to a non-uniform binding mode of tabulated
molecules and thus identify outliers. One example in our lab concerned the CoMFA
study of class I MHC-binding nonapeptides [41]. Whatever the parameters used, no
model was able to explain the poor activity of two compounds (Asn and Tyr analogs;
see Fig. 2). Since the free ligands only were taken into account, a single binding mode
had to be postulated for the 10 nonapeptides. In fact, this assumption did not depict the
probable situation. When all compounds were directly modelled and simulated in the
MHC binding groove, the above-described discrepancy could be easily explained by the
progressive expulsion of the C-terminal Asn/Tyr side chains from a rather hydrophobic
local subsite, whereas other side chains remained in the binding groove [42]. Very short
MD trajectories (30 ps) were sufficient indeed for clearly distinguishing the two out-
liers. After their removal from the analysis, the model was found to be much more pre-
dictive (r 2

cv raised from 0.52 to 0.75) [38]. A clear identification of outliers is one of the
quality controls that are recommended for evaluating 3D QSAR models [43]. MD simu-
lations could be particularly well adapted for this task, notably when several binding
modes or conformational heterogeneity of the tabulated ligands is suspected.

4.

Protein crystal structures represent one of the most attractive starting points for a ra-
tional drug-design procedure. However, X-ray structures may not be accurate enough
for drug design because: (i) only few informations on the dynamics of the macro-
molecule can be derived [44], and (ii) electron density cannot be interpreted due to a too
low resolution [45]. Here are two examples where both reasons were verified, and for
which the complementary use of MD provided a reliable help.

The first case concerns the enzyme acetylcholinesterase (AChE) whose function i s to
hydrolyze acetylcholine in cholinergic nerves. The X-ray structure of AChE from
Torpedo california has been obtained at a resolution of 2.8 Å [46]. Remarkably, the
active site is located far from the enzyme surface (about 20 Å) at the bottom of a deep,
narrow gorge. This gorge may function as a cation pump by the combined action of a
dipole gradient (aligned within the gorge axis) and aromatic side chains delimiting the
walls of the gorge [47]. However, its mechanism of action and notably the high catalytic
rate of the enzyme could not be fully explained from the crystal structure alone.
Notably, three residual electron density peaks present in the gorge have to be attributed
to either water molecules or small cationic species that may drive the substrate entry
and fix its bound conformation [48]. MD simulation of AChE in presence of either three
water molecules or three ammonium cations filling the extra electron density provided a 
plausible explanation. Simulations performed in presence of water molecules yielded to

MD as a Complementary Tool to X-Ray Structure Determination
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altered conformations of active site residues (rms deviations of 1.5 Å), whereas MD
with explicit definition of three small cations led to structures in remarkable agreement
with X-ray diffraction data (rmsd < 0.5 Å) [48]. The combined use of X-ray crystallo-
graphy and molecular dynamics simulations clarifies here the dynamical behavior of
AChE. It reveals the transient formation of a short channel through the active site, large
enough for a water molecule [9]. A so-called ‘back-door’ hypothesis was formulated to
explain substrate/product entry/elimination. Although it was supported by the electro- 
static potential of the enzyme [9], it still has not been fully evidenced by recent site-
directed mutagenesis studies [49].

A second possible use of MD to complement experimentally derived structures
applies to protein crystal structures for which the electron density map of the ligand is
too sparse to ensure an unambiguous definition of its bound conformation. This hap-
pened to the X-ray structure determination of class I major histocompatibility encoded
(MHC) proteins. purified from natural sources (infected cells, for example). MHC-I pro-
teins regulate the immune surveillance of intracellular pathogens by presenting anti-
genic peptides to cytotoxic T cells at the surface of infected cells [50]. As free proteins
are unstable and need the presence of a bound peptide to properly fold [51], purification
of MHC molecules is always accompanied by a co-purification of a peptide pool (con-
taining up to several hundred peptides) whose electron density cannot be solved [45,52].
To propose a bound conformation of natural peptidic ligands as well as MHC-peptide
interactions, we filled the residual electron density map of the HLA-A2.1 protein by a 
viral antigen, known to be naturally presented by this allele. After 100 ps MD simula-
tion in water, a 3D picture of a MHC-peptide complex could be proposed [53]. It was
nicely validated one year later by X-ray crystallography of the HLA-A2.1 protein in
complex with the same peptide [54]. The bound conformation of the peptide was in
remarkable agreement with our MD model (Fig. 4), with rms deviations of 1.2 Å on
backbone atoms. Notably, the correct anchoring side chains (at position 2. 3 and 9) were
found in their bioactive conformations (Fig. 3). More discrepancies were observed in
the middle part of the peptide sequence (from positions 4 to 7) which is loosely bound
to the protein and bulges out of the binding cleft. However, the MD model was, to the
best of our knowledge, the very first realistic three-dimensional picture of a
MHC-peptide complex for which the full atomic coordinates of the bound peptide were
described.

5.

The rate of protein cloning/sequencing being by far higher than that of 3D structure
determination, the majority of macromolecular targets of potential interest for the
pharmaceutical community have unknown 3D structures. However, if their primary 
sequence is close enough to that of a protein for which a NMR or X-ray structure exists,
the target protein may be modelled by homology to the existing 3D structure [55]. As a 
precise function is generally associated with a well-defined fold, a reliable picture of the
active site may be constructed by this technique. However, if dynamical insights into
the protein function are needed, one is getting into trouble. The main problem resides in

Simulating Truncated Active Sites in a Virtual Fluid
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Fig. 4. Schematic display of a truncated active site, surrounded by a pseudo-particle fluid. The particles 
lacated in the outer shell (rl < r <r2) are harmonically constrained, whereas the particles of the inner shell
(r < rI) and the truncated active site are able to freely move. 

building the outer part of the active site, for which less homology to the crystal tern-
plate(s) is usually observed. A work-around is to construct a pseudo-receptor model

may reproduce as closely as possible the real interaction capacities of the full protein.
However, the flexibility of ligand-receptor interactions is not really taken into account
by pseudoreceptor models.

To enhance this representation, we have developed an MD method within the
GROMOS program [57], able to simulate free amino acids of an active site surrounded
by a pseudo-particle fluid reproducing the behavior of the outer amino acids and the
solvent (Fig. 4) [58]. The properties of the particle (radius, charge, dipole moment) 
may be chosen in order to reproduce either a hydrophobic or hydrophilic protein
environment [51] (Eqs. 3–4):

(3)

(4)
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The potential energy V between two particles depend on their nature. Simple Lennard-
Jones particles interact only through van der Waals dispersion forces (VLJ ; Eq. 3) as a
function of the interacting distance r, their diameter (about 6 Å) and the potential well
value ε at the optimal interaction distance. They reproduce pure hydrophobic environ- 
ments. More sophisticated dipole particles were created to simulate polar outer parts.
They consist of two pseudoatoms i, j of opposite charge q connected by a very short 
bond. Their dipole moment (1.44 D) was slightly larger than that of an N-H bond.

Several protein structures (adenylate kinase, retinol binding protein, HIV-1 protease,
HLA-B27 human leukocyte antigen) for which a crystal structure exists could be pretty
well reproduced by simulating the truncated active site-ligand complexes in a virtual
fluid. Positional rms deviations, atomic fluctuations, radius of gyration and hydrogen-
bonding patterns were close to that of the parent crystal structure, and nearly as accurate
as the corresponding values obtained after standard MD simulation of the fully solvated
complex [58]. The method was able not only to reproduce experimentally determined
protein-ligand complexes, but could furthermore well explain the effect of protein
mutation at the active site, or rationalize the different binding affinities of related
ligands to the same macromolecule [59]. The main advantage of the method are: (i) it
combines the rapidity of in vacuo simulations with the accuracy of computations in a
full water environment, and (ii) it takes into account the only part of the protein (active
site) that can be reliably derived by homology modelling.

6.

One of the most exiting applications of MD to biology is the computation of free energy
differences that may be related to the experiment [60]. Any biological process can be

As the free energy G is
a state function (∆G of a closed cycle is zero), and the free energy change ∆G describ-
ing a system in equilibrium is path-independent. experimentally determined free energy
changes (horizontal processes corresponding to biological equilibria; Fig. 5) can be di-
rectly compared to computed free energy changes (vertical processes corresponding to
theoretical equilibria: Fig. 5). In practice, the starting state ‘0’ is progressively con-
verted into the final one ‘1’,by modifying a state-dependent parameter λ from 0 to 1 at
discrete intervals in λ. Free energy differences ∆G are generally calculated from the po-
tential energy function V λ(i) by the free energy perturbation technique (Eqs. 5 and 6) or
the thermodynamic integration method (Eq. 7):

Quantitative Analysis of Ligand Binding

(5)

(6)

(7)

The major drawbacks of free energy calculations arc: (i) an experimentally deter-
mined protein structure of high accuracy is recommended as a starting point: (ii) it is a
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Fig. 5. Thermodynamic cycle for the formation of a protein (P)-ligand (L) complex. Horizontal equilibrium 
values are measured experimentally (free energy or binding of ligands L1, L2 to the protein P; ∆G1bind,
∆G2bind), whereas vertical equilibria can only he computed (free energy change upon ligand mutation in
water or in the protein-bound state; ∆Gsol, ∆Gprot), Experimentally determined free energy differences
(∆G1bind – ∆G2bind) are equal to computed ones (∆Gsol– ∆Gprot ). lf L2 is a dummy molecular the free energy
difference relates to the absolute free energy of association of ligand L1 to protein P.

time-consuming method as free energy changes need to be calculated for the free and 
bound states, in forward and backward directions: ( i i i ) i t necessitates an exhaustive con-
formational sampling within each perturbation window for all intermediate states
between the starting and final one; and (iv) it better applies to amino acid mutations for
which force-field parameters are generally best derived. This means that mutating a
small molecular weight inhibitor into an analog needs, first of all, an accurate para-
meterization of the two organic molecules.

In the literature, numerous examples are provided for computing free energy changes
upon protein and/or ligand mutation (for a recent review see [61]). The advantage of the
method is that i t allows a clear distinction of entropy and enthalpy contribution upon
ligand binding [62,63] that may be used in a lead  optimization program, for example.
Many applications are focused on solvation free energies of small molecules [6,17], or
host-guest interaction complexes [64,65]. Quantifying protein-ligand interactions is
much more complex. Generally, free energy changes upon protein mutation is con-
sidered to study the protein function and mechanism of action [66,67]. However, some 
reports denotes that it may be applied with reasonable success to the quantitative
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analysis of ligand binding [68–71], notably for determining its stereospecificity [72,73]
or optimizing its solubility and bioavailability [74,75].

One challenging problem is the computation of absolute free energies, like the
free energy of association of a ligand to a protein [61,76], and for that task, ‘double
annihilation techniques’ [77] have to be used. That means that the ligand is progres-
sively mutated to ‘nothing’ (dummy atoms), both in solution and in the protein-bound 
state. The major difficulty that is encountered is to relate the drastic chemical
modification of the ligand to a rather large absolute free energy (about 10-15 kcal/
mol). For two different protein-ligand complexes (boitin/streptavidin, N-acetyltrypto-
phanamide/ α-chymoptrypsin), absolute ∆∆G binding values were overestimated by
3-4 kcal/mol but remained in qualitative good agreement with experimental values
[76], even if the free energy of association is very high (18 kcal/mol for the biotin-
streptavidin complex). Whether ∆∆G changes may be decomposed into van der Waals
and electrostatic contributions (a very important parameter for lead optimization) is still
a matter of debate [78–79] as free energy decomposition is path-dependent [78] and
individual components converge very slowly [62].

Another interesting aspect of free energy calculations is the prediction of cavity
hydrations at the protein-ligand interfaces. At least two water-mediated H-bonds were
shown to be energetically necessary for hydrating a protein-ligand interfacial cavity
[80]. A recent survey of 19 high-resolution protein X-ray structures provided even more
drastic requirements as 80% of water molecules bridging protein-ligand interactions
were involved in three or more H-bonds [81 ]. Taking into account accurate positions of
protein-bound water molecules clearly accelerates and fastens ligand design, as recently
exemplified by the protein-based design of thymidilate synthase [82] and HIV- 1 pro-
tease inhibitors [83].

7.

MD models are not aimed at replacing experimentally determined three-dimensional
structures. In the very best cases, using time-consuming protocols. rms deviations of
about 1 Å from the starting crystal structure have to be expected [18,24].However, such
accurate representations are not very realistic in a drug-design protocol. A drug-design
cycle such as that proposed by Blundell [84] can only be successful if it relies on an
interactive multidisciplinary approach that provides quick answers and feeback .
Obviously. ns simulations of a series of protein-ligand complexes are not compatible
with this rule, and would delay the prioritization of ligand synthesis and testing.

However, this does not mean that MD simulations of a macromolecular target with a
set of related ligands cannot be very useful if one is interested in qualitative aspects of
ligand design. MD models present the advantage to propose instantaneous or time-
averaged molecular properties that can clearly discriminate high-affinity from low-
affinity ligands [85] and thus may either explain [85,86] or predict binding properties 
[87,88]. The major difficulty of this approach is to find the best compromise between an

the field we
were interested in (antigen recognition by class I major histocompatibility proteins), and

Qualitative Analysis of Ligand Binding
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which will be developed in that section, 200 ps simulation of fully solvated protein-
ligand complexes were sufficient to depict predictive models. The most informative
molecular properties of the hundred MHC–ligands complexes we have simulated to
date will be briefly reviewed.

7.1.

Starting from a basic assumption — the more bound, the less flexible — we tried to
relate the binding affinity of a set of six bacterial peptides to a single class I MHC
protein (Table 1).

Atomic fluctuations of the bound peptides, averaged per residue, were thus computed
from energy-minimized structures that had previously been averaged over 500 con-
formations, for each complex (Fig. 6a) . It is important to recall that all complexes were
simulated using identical conditions, starting from the same protein X-ray structure and
the same peptide conformation (with preservation of the χ1 , χ2 angles for side chains)
[85]. Interestingly, the C-terminal amino acid (position 9) of the two low-affinity pep- 
tides 4, 5 (Table 1 ) was highly flexible i n the protein-bound state. As this position was
known to be a dominant anchor to the MHC protein [90],we could reasonably relate the
weak affinity of the corresponding two ligands to a probable dissociation of the
C-terminal residue from the binding groove, illustrated here by its higher atomic flex-
ibility. In about 90% of all MHC-peptide complexes simulated in our group, this mole-
cular property was always in qualitative agreement with the observed binding affinity of
the corresponding ligand. The atomic mobility of each peptide amino acid could be well
related to its binding role. Strong anchoring positions (P1, P2, P3 and P9; and Pn
meaning position n of the peptide) were generally much less flexible that weak anchor-
ing positions (P4 to P8, see Fig. 6a). Furthermore, amino acid flexibility was used as a
guide to enhance the free enthalpy of binding of designed non-natural peptides to the

Atomic positional fluctuations of the bound ligand

Table 1

Peptide no. Sequence Binding affinitya

1 RRIKAITLKb n.d.c
2 QRLKEAAEK +

3 RRKAMFEDI ++

4 ERLAKLSGG –
5 LRDAYTDML –
6 RRKAMFED +

ª The affinity for HLA-B*2705 w a s indirectly measured by an epilope stabilization assay which titrates 

Binding of bacterial peptides to HLA-B*2705 (reference [85])

the ability of the ligand to induce the native fold of the HLA protein, that can be recognized by a
conformation-specific monoclonal antibody (reference [91]) (++;binding affinity lower than 1 µM ;
+; binding affinity between 1 and 20 µM; a n d –:n o delectable binding). The six peptides correspond to
sequences of the 57 kD hcat shock protein (GroEL) of Chlamydia trachomatis.

determination of HLA-B27 (reference [52]).
b Peptide model fitted in the extra electron density map produced by self-nonapeptiecs, in the crystal structure

c Not determined.
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Fig. 6. Root mean square atomic fluctuations of a protein-bound ligand as an indicator of the protein–ligand
complex stability. A, atomic flexibility of six HLA-B*2705-bond peptides 1–6 (Table 1), showing variable
binding affinities for the HLA protein. Fluctuations were calculated from energy-minimized conformations
(1000 steps of steepest descent followed by 1000 steps of conjugate gradient energy minimization), time-aver- 
aged over the last 500 conformations [85]. B, atomic flexibility of a series of HLA-B*2705 bound nonapep-
tides 7–11 for which a secondary anchor position (P3) has been varied (Table 2).
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Table 2  design of nonnatural HLA-B27 ligands from a bacterial epitope (reference [87])

Peptide no. Peptide sequence
P1- P2- P3- P4-P5- P6- P7- P8- P9
Lys-Arg-Xaa-Ilc-Asp-Lys-Ala-Ala-Lys

Binding affinity

7 Glyª +
8 Leu +
9 Hpab ++

10 Anac ++
11 Bnad ++

ª Peptide 7 is a natural squence (117– 125) of the Chlamydia trachomotis GroEL protein (reference [91]).

b Hpa, homophenylalanine. 
c Ana. α-naphthylalanine.
d Bna,  β-naphthtylalanine.

Binding affinities were measured as described in Table 1.

same MHC protein, HLA-B*2705 [87,88]. We substituted bulky hydrophobic residues 
and β-naphthylalanine, homophenylalanine; see Table 2) for the amino acid of a

natural peptidic ligand at a secondary anchor position (P3). As additional interactions to 
the protein were desired, a better binding of the designed analogs should result in a de-
creased mobility of the mutated peptide position. After simulating the natural as well as 
the nonnatural peptides in complex with the host HLA protein, the lowered flexibility
of the non-natural amino acid at P3 (Fig. 6b) led us to predict an increased binding of 
ligands 9–11 when compared to the two natural peptides 7, 8. Binding assays [87], as
well as thermodynamic analysis of the complex denaturation by CD spectroscopy 
(Fig. 7), were in perfect agreement with the above predictions, as non-natural ligands
9–11 were about 50-fold more potent binders than natural peptides 7–8 [87].

A very similar strategy was used for designing an optimal linker for trivalent throm- 
bin inhibitors [ 93]. The atomic fluctuations of the linker part. derived from 150 ps MD 
simulations of several solvated thrombin–inhibitor complexes were also in good agree- 
ment with its contribution to -thrombin binding. In both cases, looking at atomic
positional fluctuations of bound ligands provides a crude but predictive estimate of the 
stability of protein-ligand complexes. 

7.2.

These molecular properties are generally correlated to the atomic flexibility of the 
bound ligand (the more flexible the less buried). In the two examples cited above,
buried surface areas could also be well related to binding affinities [85,87]. Notably. for 
the set of non-natural analogs 9–11, designed to increase the free enthalpy of binding to 
the protein (Table 2), the amount or buried surface area for the mutated position was in
perfect agreement with the size of the corresponding side chain (indicating that almost 
the entire part of the side chain was buried upon binding to the complementary 
hydrophobic pocket) and, consequently, with the binding affinity (Fig. 8a). 

Accessible versus buried surface areas
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Fig. 8. Accessible/buried surface areas as indicators of the stability of protein-ligand complexes [87]. A,
Buried surface areas of five HLA-B27 bound peptides (ligands 7–11, Table 2), calculated on relaxed time-
averaged conformations (for the last 500 conformers, between 100 and 150 ps of simulation). Surface areas
were calculated for each peptide position, using the MSprogram [94] with a 1.4 Å radius probe.
B, Substitution of organic spacers for a pentapeptide core sequence (ligands 12–16, table 3) of a bacterial
peptide. Buried and accessible surface areas were measured as in (A) for the whole ligand.
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Table 3 Introduction of organic spacers in the sequence of a class I MHC ligand 
( Gln-Arg-Leu-Spacer-Lys ) (reference [87]) 

Peptide no. Spacer Binding affinity

12 Ly-Glu-Ala-Ala-Gluª +
13 Aba-Aba-Abab +
14 Aha-Ahac +
15 Auad +
16 Adae +

ª Escherichia coli dnaK (220-228) epitope [91]. 
b Aba, 4-amino-butyric acid.
c Aha, 6-amino-hexanoic acid.
d Aua, 11-amino-undecanoic acid.
e Ada, 12-amino-dodecanoic acid.

Binding affinities were measured as described in Table 1. 

The predictability of that molecular property was verified in another design attempt
aimed at simplifying the nonapeptide structure of natural HLA ligands [87]. Starting
from a bacterial peptide known to bind to HLA-B27, we have substituted various
organic spacers for a pentapeptide core sequence (from positions 4 to 8; see Table 3),
suspected to interact with a T cell receptor (TcR) and not the HLA protein [52].
Basically, we wished to simplify as much as possible the peptidie structure of the ligand
without impairing its affinity for the host MHC protein; and at the same time, try to alter
TcR recognition. In terms of desired molecular properties, this means that the total
buried surface area of the designed ligands should remain equal to that of the parent
peptide (implying a conserved binding to the HLA protein), but the total accessible
surface area should be considerably decreased (implying a reduced binding to the TcR).
After simulating the natural as well as the designed ligands in complex with HLA-B27,
we computed accessible and buried surface areas for ligands 12–16 in the bound state
(Table 3). It clearly appeared that our design goal was perfectly reached, as all
MHC-peptide pairs were predicted to be equally stable from the analysis of atomic tra- 
jectories. The surface area accessible to water (or a putative TcR) had been significantly 
reduced by 50% for all ligands bearing the designed organic spaccrs (Fig. 8b). 
However, this should not preclude for a tight binding to the HLA-B27 molecule because 
the total surface area buried upon MHC binding. for each non-natural analog. was 
similar to that of the natural peptidie ligand (about 600 Å²). All ligands were synthe-
sized and tested in an in vitro binding assay. As predicted, the introduction of organic 
spacers did not alter the binding affinity for the HLA-B27 protein, as very similar
binding affinities could be observed [ 87,95]. The ‘spacer effect’ was independent on the 
parent peptide sequence as similar modifications on three different T cell epitopes led to
the same computational and experimental results [D. Rognan and J.A. López de Castro, 
unpublished results]. These molecules are the very first class I MHC ligands for which 
half of the canonical peptide structure (P4–P8) have been successfully replaced by
organic spacers, and represent the first rational step towards nonpeptide TcR partial
agonists or antagonists. 
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7.3. Protein-ligand non-bonded distances

Monitoring the time course of critical topological features (non-bonded distances,
angles) is often used to analyze trajectories of protein-ligand complexes [96–100]. The
regio- and(or) stereoselectivity of hydroxylation of nicotine and several camphor deriv-
atives by cytochrome P450cam could have been predicted with a good accuracy by
simply looking at the non-bonded distances between substrate carbon atoms and the
ferryl oxygen intermediate of the heme moiety [73,96,97]. Examination of some key
distances was also used to study the deacylation enantioselectivity of acylenzymes [97].
Such analyses are best suited for studying enzyme–substrate interactions for which a
well-defined topology of a few atoms in the active site is often associated with a precise
biochemical event.

For enzyme–inhibitor complexes or when the macromolecule–ligand interaction
surface is very broad (e.g. MHC-peptide complexes), one cannot restrict the trajectory
analysis to a few atom-centered non-bonded distances. For examining the fine
specificity of antigen binding to two class I HLA alleles differing by only one amino
acid (Table 4), we have used a slightly different approach [86], in which key distances
were not measured between atoms, but center of masses (cmass). The distance between
protein and peptide cmass remained constant for the most stable pairs 17a,b–18a,b,
whereas it was still increasing after 200 ps MD for the less stable complexes 19a,b (see
Fig. 9 and Table 4). Computing inter-cmass distances between individual MHC-binding
amino acids and their complementary pocket allowed the identification of the peptide
part (position 9) that was progressively expelled from the binding groove. The analysis
was greatly facilitated by the fact that the peptide sequence could be well separated into
a protein-binding substructure (P1–P2–P3 and P9) and a non-interacting part 
(P4-P5-P6-P7-P8). Furthermore, each MHC-binding amino acid develops allele-
specific interactions with complementary pockets of the MHC proteins. Therefore, this
approach is particularly well suited to examine protein-peptide interactions and monitor
the binding contribution of each peptide amino acid.

7.4. Protein-ligand hydrogen-bonds

The distribution of protein-ligand H-bonds is also a good indicator of the complex
stability. Very often, a pure quantitative H-bond analysis based on distance-angle
criteria [102,103] is performed on time-averaged structures [85,93,99,100]. For rational-
izing subtle structure-activity relationships for the set of peptides 17–19 (Table 4), we
combined a quantitative and qualitative analysis of intermolecular H-bonding by com-
puting the frequency of all protein-ligand H-bonds [86] (Fig. 10).The distribution of
strong and medium H-bonds correlates well with the binding potency of the peptide. A
similar number of strong H-bonds were found for complexes 17a, 17b, 18a and 18b,
consistent with the similar binding efficiencies of peptides 17 and 18 to both MHC
alleles. At the opposite, a reduced number of medium and(or) strong H-bonds (peptide
19 in complex with the two alleles) correlates with the decreased binding of this
peptide. The weakest binding potency (peptide 19 to B*2703) could be qualitatively and
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Table 4 Distance in Å, between proteins (HLA-B*2703, HLA-B*2705) and peptide center of masses (refer-
ence [86]) 

ª Human histone H3 peptide: a self peptide, naturally hound to HLA-B*2705 [90] and B*2703

b Binding data arc expressed as the micromolar excess of peptide analog relative to the wild-type peptide 17,
(reference [101]). 

at which HLA-B27 fluorescence (measured by FMC analysis with an anti-B27 monoclonal antibody) on
RMA-S cells was half the maximum obtained with the wild-type peptide.

c d1, protein/peptide; d2, protein/MHC-anchors (P1-P3, P9); d3, protein/TcR-anchors (P4–P8); d4, pocket
A/P1; d5, pocket B/P2; d6, pocket D/P3; d7, pocket F/P9.

quantitatively explained by the low number of strong hydrogen-bonds. Interestingly, not 
only the number but also the quality of the MHC–ligand interactions (strong versus 
medium H-bond) correlates well with the binding potency. 

7.5. Protein–ligand non-bonded contacts 

Reporting the number of non-bonded contacts between the host protein and a series, a 
related ligand affords a more general survey of intermolecular contacts. In our design 
attempt to simplify and enhance the binding of natural T cell epitopes to the HLA-
B*2705 protein, we substituted two organic polymers for the pentapeptide sequence 
(from position 4 to 8) of the bacterial nonapeptide 12 (Table 5) . After parameterization
of the organic polymer for the AMBER force field [104] and MD simulation of the cor-
responding three complexes, we predicted an increased binding of the tetramer analog 
20 and a decreased binding affinity of the trimeric spacer 21 with respect to the natural
nonapeptide [89], by simply comparing the number of protein-ligand non-bonded con- 
tacts closer than 4 Å (Fig. 11). Interestingly, the 200 ps trajectories were long enough to
predict an enhanced binding role of the tetrameric polymer to the central part of the 
HLA binding groove (increased number of non-bonded contacts with the spacer), 
whereas the reduced binding of the trimeric compound was attributed to its short length 
and the perturbation of the interaction of the N-terminal part (less contacts to the very 
important P1–P3 peptide sequence, in spite of a high number of interactions in the 
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Table 5 Incorporation of two organic polymers in the sequence of a class I MHC 
ligand (Gln-Arg-Leu-Spacer-Lys) (reference [89])

Peptide no. Spacer 

12 Lys Glu-Ala-Ala-Gluª

20 (R)4
b

21 (R)3

ª Escherichia coli dnaK (220–228) epitope (reference [91] ).
b The structure of the organic moiety R will he published elsewhere. 

spacing part). The number of non-bonded contacts was in good agreement with the a
posteriori observed binding results for the three compounds. When compared to the
natural peptide ligand 12, the tetrameric and trimeric compounds exhibit a 5-fold 
increase and a 4-fold decrease in HLA-B*2705 binding, respectively [J.A. López de 
Castro. personal communication.

8. Ligand Design and Docking 

In the past five years, tremendous research efforts have been devoted to computer 
algorithms able to optimize the de novo design of ligands from the knowledge of protein 
three-dimensional structures [4,105]. One of the major drawbacks of fragment build-up
procedures (one of the main techniques used in de novo drug design, with 3D database
searching) is the ‘irreversible’ nature of the ligand-design procedure. Once a fragment
(substructure) complementary to one part of the active site has been designed. its struc- 
ture cannot generally be perturbed (e.g. ring closure or opening) during the ongoing 
ligand design, in order to optimize non-bonded interactions of the final hit with the 
receptor active site. This problem was addressed by coupling ligand building to MD in 
two closely related algorithms [106,107] in which the protein active site is filled with 
either particles or fragments that can be covalently linked or separated in a stochastic 
and dynamically reversible manner. While the particle-based approach is only adequate 
for building apolar ligands, the fragment-based procedure takes into account electro-
static contributions to the protein–ligand binding energy. Both procedures, tested on the 
same set of two high-resolution crystal structures (HIV1-protease, FKBP-12), suggested
inhibitors closely related to existing ligands. Unfortunately, this procedure is not
optimally suited for pharmaceutical purposes, because of the complexity of the struc-
tures that are generated (none of the hits proposed in the original papers had been 
synthesized to test the validity of the method), and the computing effort that is asked
for.

Flexible docking of small molecules to known three-dimensional protein structures 
will be the last application of MD to drug-design techniques that will be reviewed here. 
Although recently described algorithms can relatively well handle the ligand flexibility 
problem [108–110], the potential flexibility of the active site still remains an open ques- 
tion. Generally, this problem can be addressed only by saving different conformations
or rotameric states of the protein active site and use these coordinates as starting points 
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for parallel docking attempts. The only described methodology that can intrinsically
provide a reliable solution is a molecular dynamics docking technique [111], in which
the motion of the cmass of the ligand is separated from its internal/rotational motion and
from that of the receptor by three different coupling to thermal baths. When applied to
the flexible docking of phosphocholine to the frozen McPC603 antibody structure, the
cmass of the ligand was shown to explore a very wide conformational space (about
0.8 mn²) and to land after 20 ps simulation in a crystal-like situation (rmsd of 0.5 Å for
substrate skeleton atoms ) [111]. No attempt to dock a flexible ligand into an un-
constrained protein was reported, but the method appears to be very promising to depict
local geometry modifications of the active site upon docking of a flexible ligand.

9. Concluding Remarks

Up to very recently, molecular dynamics simulations of protein(DNA)-ligand complexes
had not been very popular in lead finding and optimization for two major reasons. The
first one was the high computing effort that was required, which precluded for the com-
parison of a set of related compounds in their bound states. The second one was the low 
number of 3D structures for macromolecular targets of interest. The situation has dramati-
cally evolved in the last two or three years, as MD simulations are nowadays feasible for
even larger and larger molecular systems, at relatively low cpu time costs, on affordable
computer platforms [112]. The variety of all MD applications reviewed in this chapter is 
particularly well adapted to everyday drug-design problems and makes from that com-
puting method a very powerful tool for the comparative and qualitative analysis of
protein-ligand structures that may go beyond available experimental data.

However, it should be recalled that: (i) MD models will neither substitute for experi-
mentally determined structures, (ii) MD is not the only potent conformational sampling
technique [113] and (iii) the successful application of molecular dynamics simulations
in a drug-discovery program absolutely needs a strong and permanent feedback to the
experiment.
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1. Introduction

Assessing quantitatively the similarity (or dissimilarity) between one molecule and
another is central to both QSAR and molecular diversity analysis. When either endeavor
is involved in pharmaceutical or agrochemical lead discovery and development, the
only similarity that ‘really’ matters is similarity in biochemical (and/or physiological)
properties. Yet, by delinition, biochemical similarity cannot itself be measured before
compounds are actually in hand, so some other way must be found to identify function-
alities which generally ‘look’ similar to receptor and enzymatic ligand binding sites,
even though they do not share substructural motifs — i.e. which are bioisosteric [1].

A cartographic metaphor [2] for the discovery and development of biologically active
small molecules is useful in thinking about the relationship between QSAR and diver-
sity analysis. As so ably described in chapters elsewhere in this volume, QSAR involves
using compounds of known biochemical activity to find a combination of descriptors
which can be used reliably to predict the activity of related compounds which have not
yet been synthesized and to help better understand the underlying biochemistry. Hence,
QSAR is fundamentally interpolative, a matter of surveying islands once their location
is known to identify the highest peak on the island.

Molecular diversity analysis, in contrast, entails surveying an ocean to find out where
the islands of activity are — and where they probably are not. Descriptor values for
properties which might be useful as charting reference points generally range far more
widely than would be appropriate for a QSAR study, making diversity analysis an es-
sentially extrapolative exercise which is always looking to the horizon. The key is
finding a descriptor ‘lens’ through which the different kinds of islands are well-
separated, clearly defined and easy to distinguish.

Computational chemists have quite naturally looked to QSAR as a source of ‘good’
descriptors for quantitatively evaluating bioisoteric similarity. The classical whole-
molecule (logP, MR, etc.) and fragment (π, σp, F, etc.) QSAR parameters developed by
Hansch and Fujita [ 3 ] ,among others, have been employed for this purpose [4,5], but
have a limited range of values and tend to be highly correlated with one another. which
makes it difficult to capture satisfactorily the diversity of large structural datasets.

Steric, electrostatic and hydrophobic molecular fields have also been very success- 
fully employed in QSAR via Comparative Molecular Field Analysis [6–8].Extension
of CoMFA to diversity analysis is particularly appealing because the information in
molecular fields is localized and of high dimensionality .Binding sites in enzymes and 
receptors tend to present quite variegated interaction surfaces to their ligand. Therefore, 
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it is reasonable to expect that descriptors like CoMFA fields, which can differentiate
between molecules in many different ways simultaneously, stand a better chance of
‘capturing’ biochemically meaningful distinctions. This is one explanation for the cor-
relation between the dimensionality of descriptors and their suitability as diversity
descriptors [9].

An added appeal of CoMFA is its ability to generalize across substitution patterns
and atom types. This occurs because differences between fields are quantitative but sens-
itive to the structural context, whereas differences between atoms are qualitative.
Hence, the field for a methylamino group is ‘between, those of an ethyl group and a
methoxy group, and the field near a ketone resembles that around a difluoromethylene.
Since an enzyme or receptor binding site interacts with each ligand’s molecular orbitals,
not with its atomic nuclei, i t is reasonable to expect that the molecular fields involved
should correlate well with biological activity. The success of CoMFA as a tool for
deriving quantitative structure-activity relationships [7]] is a testament to the validity of
this hypothesis.

2. Theoretical Considerations

2.1. Information density

In general, the databases with which diversity analysis deals nearly always originate
from molecular connectivity specifications alone (e.g. SMILES or SLN strings [10])
which are essentially two dimensional. Several excellent computer programs exist
which will convert such connectivity data into 3D molecular graphs which can, in turn,
be submitted to minimization routines to identify low-energy conformations. None of
these operations actually adds any information to that contained in the original con-
nectivity, and recent work indicates that this absence of added information is very real
in many situations [11]. How, indeed, can any ‘derived’ 3D descriptors such as mole-
cular fields add anything to diversity analysis over that which can be obtained from 2D
fingerprints?

One way is by efficiently utilizing information about chirality which is embedded in
the line notation, either explicitly or implicitly. Explicitly specified chirality encodes
higher-order (‘2.5D’) information which is not captured in 2D fingerprints, but which is
captured in 3D structures and, thence, in molecular fields. Certain implicit ‘chiral’ infor-
mation can also be captured directly. such as the sensible disposition of equatorial and
axial substituents on symmetrical, achiral molecules.

Pharmacophore multiplet fingerprints [12] attempt to do this by including the dis-
tance between analogous groups. but even quite restricted pharmacophoric classes
require hundreds of thousands of bits to encode a small part of the information con-
tained in a molecular field built from a few thousand lattice points. Moreover, in our
hands, the most important information in such fingerprints is best appreciated by visual
inspection: compounds with similar biochemical properties tend to form similar patterns 
in the pharmacophore multiplet space, a relationship which often fails to show up in
quantitative bitwise comparisons.
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Incorporating pharmacophore definitions into 2D fingerprints can capture some of
this information effectively, but cannot capture subtle biochemical effects (distinctions
between amide and carbamate nitrogens or similarities between pyrimidine analogs, for
example) except as special cases. Molecular fields, on the other hand, can generalize
efficiently across a range of structurally diverse but biologically equivalent functional
groups — i .e. bioisosteres.

2.2. Encoding conformational information

CoMFA is an attractive way to compare molecules, but each conformer of any given mol-
ecule has a different molecular field. Most small molecules of interest as potential drugs
arc flexible and, hence, have a fairly large number of distinct conformations lying within a
reasonable energy range of the ground state. Indeed. solvent effects and necessary
approximations in making energetics calculations can make identification of ‘the’ ground
state conformation problematic at best, and a purely theoretical exercise at worst.

One way to approach this dilemma is to average the molecular field across a large 
number of energetically reasonable conformations. For compounds which have only a
few related but distinctive low-energy conformations, this approach will certainly
enhance the information content of the molecular field as a descriptor. Unfortunately,
such molecules are the exception, not the rule, and averaging across conformers
is likely to blur meaningful distinctions between molecules at least as often as it
illuminates significant similarities.

Alternatively, one can finesse the issue by identifying that conformation for one mole-
cule which produces a molecular field most similar to that of another to which it is being
compared [13]. Such field fitting can become computationally intractable, however.
unless one molecule is fixed in a reference conformation. Given a reference molecule and
conformation, this approach becomes a variation on the theme of fitting probe molecules 
to some enzyme or receptor binding site model. Though docking methods are indeed
powerful tools for cases where a known, relatively rigid binding site structure is known,
it is not very useful in designing libraries for general lead discovery —i.e. when targeted 
against a ‘universal receptor,. Related work using a panel of binding-sites, whether
virtual [14]or realized [15], may prove more generally useful, however.

2.3. Characteristic confomations

A third alternative, which is the one we have found most fruitful, is to ‘project’ the four-
dimensional conformational space into three dimensions by using robust, rule-based al-
gorithms to generate characteristic conformations. Doing so brings the fields for similar
and homologous substructures into register, which enhances the ability to detect similar-
ity and, at the same time, enhances field differences between functionally distinct 
substructures.

Moreover, suitably formulated rules make it possible to encode the very potential
for flexibility into molecular fields. Consider two compounds, one cyclic and one
open chain, but otherwise of similar structure. Even if the nominal ground-state
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conformations of the two are identical, their potentials as ligands are likely to be very
different when compared across a range of receptors. A 3D building rule which sets
bond torsions to all trans wherever reasonable makes the corresponding molecular fields
become readily distinguishable.

Characteristic conformations also serve to emphasize similarities between molecules 
which may be attenuated or lost altogether when averaged across conformers. Biaryl 
ethers are a case in point. The aryl planes in these compounds are characteristically 
tilted somewhat from the perpendicular with respect to one another, so that each low- 
energy conformer is asymmetrical about the central oxygen. Yet energy differences
between the various torsions about the ether bridge and rotations about each ether bond
are negligible. If ‘true’ energy minima were used for CoMFA, differences between mol-
ecules would be scattered across the entire field. Choosing an arbitrary but consistent
starting orientation focuses differences onto specific substructures, so that a consistent
QSAR can be obtained [e.g. 16]. Characteristic conformations, such as those obtained
from CONCORD [17], bring an analogous benefit as a starting point for diversity 

3. Topomeric CoMFA

Even where knowledge of the ‘true’ conformational ground state is available, there are
an infinite number of energetically equivalent rotations and translations that could be
applied to one molecular field with respect to another when making a comparison
between the two. In cases where a series of compounds include a common core, this
‘alignment problem’ can be dealt with by superimposing that common core.

The core atom bearing the substituent (core atom) defines the origin of the field. and
the bond between the core and the fragment establishes the positive pole of the x-axis.
The positive-positive quadrant of the xy plane is defined by the core atom, the fragment
atom it is bonded to (the valence atom) and the first atom of the biggest substituent on
the valence atom [18]. A characteristic conformation is then generated by working out
from the common core, applying a series of rules to establish characteristic torsional
and chirality states as one goes.

Such rules become more ambiguous as one moves away from the core, so field con-
tributions from each atom in a substituent are attenuated by a factor of 0.85n, where n is 
the number of rotatable bonds separating that atom from the core.

Topomeric alignments for several trichoroethyl derivatives are shown in the top row
of structures in Fig. 1 . Note that dimethylamino and isopropyl groups are isosteric in
this context, whereas 2-propenyl is more similar to the thiomethyl congener. In the
series of trichloroacyl derivatives shown at the bottom of Fig. 1, on the other hand, di-
methylamino is isosteric with 2-propenyl, which reflects conjugation with the acyl
double bond. This dependence on context is a particularly useful result or using the
rule-based CONCORD for initial 3D model building. In some cases, this requires a
trade-off between useful distinctions between molecules and arguably artificial ones —
compare the alignments of the isopentane (top) and the isopropyl ketone (bottom) in
Fig. 1, for example. As discussed below with respect to validation. however, this is not
a great problem for diversity analysis.
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A somewhat related method for optimizing the diversity of a set of side chains has
been described by Chapman [19], Here. similarity is summed across pairwise distances
between each atom in the ‘query’ and all atoms in the target molecule. A ‘soft thresh-
old’ weighting function is used, and each of a set of ‘diverse’ conformers is considered.

3.1. Applications

Topomeric CoMFA is used to cluster each class of reactant (e.g. nucleophile. elec-
trophilic reagent, dienophile, etc.) whenever a new class of reaction is considered for in-
clusion in the Optiverse screening library [2,20] .Selection of a reagent from each
cluster gives a representative diverse set of reagents which carry on through subsequent
stages of the design. Candidate products are then screened for diversity on the basis of
their 2D fingerprints. This use of both metries together exploits their complementarity
and enhances the isobiosteric diversity of the database [2].

Similarity searches can now be run in the ChemSpace virtual library [20] based on
topomeric fields. This capability is proving itself very useful in identifying novel iso- 
steric substituents for ongoing development programs. In addition, topomeric CoMFA
has been used to evaluate disparate structures as potential diverse cores or scaffolds for
combinatorial libraries, with quite satisfying results (R.D. Cramer, unpublished).

4. Inertial Field Orientation(IFO-CoMFA)

In many series of interest, compounds lack an identifiable common core. In some com-
binatorial libraries, a nominal common core exists. but serves only as a linker between
functional moieties. In either case, an alternative t o topomeric alignments is required if
molecular fields are to be of use as diversity metrics. To this end, inertial field orienta-
tion (IFO-CoMFA) was introduced into Selector [20] for SYBYL 6.3 [21].

Alignments based on molecular moments of inertia have been successfully used to
predict HPLC retention times of polynuclear aromatic hydrocarbons (PAHs) [22]. In
this approach, the field coordinate origin is set to the molecular center of mass, and that
molecular axis about which the moment of inertia is smallest defines the x axis for the
field. They axis is defined by that molecular axis perpendicular to the first which has
the smallest moment of inertia.

That implementation of the technique is not directly applicable to diversity analysis,
however. For one thing, there is no good way to differentiate one end of the x axis from
the other, or one end of the y axis from the other. As a result, each molecule has four
equivalent inertial alignments. This did not interfere with the analyses by Welsh et al.
because they were working with flat, symmetrical molecules and highly isotropic types
of interactions distributed across the entire molecular surface [22,23].

A second problem is that inertial field orientations which incorporate atomic masses
are overly sensitive to replacement of hydrogen by fluorine. chlorine or bromine.
Halogenation, or exchange of one halogen for another, has a tremendous effect on
molecular moments of inertia. Hence. such homologous substitutions will intro-
duce unreasonably large CoMFA dissimilarities if weighted moments arc used for
orientation.
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To avoid these problems, we have turned to ‘inertial’ orientation of the steric field, as
opposed to inertial orientation of the molecule itself. This can be most simply accom-
plished by using the principal axes of the unweighted molecular graph [21] as defining
coordinate axes for the molecular fields. That the principal axes of the (unweighted)
molecular graph are valid indicators of the principal axes of the steric field is not imme-
diately obvious, but may be appreciated from the schematic in Fig. 2. If the steric field
is thought of as a series of shells built up from summed spherically symmetrical func-
tions about each atom, each shell will have the same principal axes. Hence, the principal
axes of the 0-diameter shell —i.e. the unweighted graph —coincide with the principal
axes of the steric field as a whole.

The principal axes define four (generally distinct) possible orientations for the field.
We opt to use the one for which the components of the dipole moment along the x and y
axes ate most positive. Logically, this can be thought of as aligning each molecule un-
ambiguously with itself, and is akin to the rationale behind characteristic conformations
outlined above. Incorporating the dipole moments along each principal axis allows the
overall electrostatics of the molecule to contribute to the orientation of the field, so that
nonlinear molecules with distinct distributions of polar functionalities can be more
readily distinguished.

Other, related approaches are also in the literature. One can, for example, align ran-
domly sampled isosteric surfaces by their principal axes, then pick from among the four
degenerate solutions for each of 20-30 conformers the one which maximizes the inter-
section volume [24]. In this case, similarity is measured in terms of a Tanimoto
coefficient calculated from the intersection and union volumes between the (fixed)
query and the target molecules.

4.1. Example

Evolutionary forces can be expected to favor substrates and ligands which are geometri- 
cally and electrostatically asymmetrical. To the extent that this is so. two sterically
similar molecules which ‘look’ electrostatically similar with respect to the principal
axes of each are expected to be qualitatively similar in biological activity. This is illus-
trated in Fig. 3: steric and electrostatic IFO-CoMFA fields are shown for the anti-ulcer,
histamine H2 receptor antagonists ranitidine (Zantac®) and cimetidine (Tagamet®). The
characteristic conformations used were generated using CONCORD [17]and oriented
using the inertial field orientation option in Selector [21].

Steric similarity between molecules can be expressed as a volumetric Tanimoto
coefficient [24], in terms of the correlation coefficient between steric fields [25], or as
simple energy differences [8]. The steric fields in Fig. 3 differ in energy by
186 kcal/mol when summed across a 2 Å lattice, which is somewhat above the
characteristic neighborhood radius of 165 kcal/mol for IFO-CoMFA (R.D. Clark,
unpublished). The difference in the electrostatic fields, however, is considerably larger,
on the order of 230 kcal/mol. In our hands, electrostatic fields are sometimes too dependent
on conformation to discriminate reliably between molecules. I t is still the case that mole-
cules with similar enough fields will, indeed, have similar biological activities, but the
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‘neighborhoods’ defined by that radius may be too sparsely populated to be generally
useful. H-bond fields have proven more useful in CoMFA diversity applications [9].

5. Validation

As noted above, QSAR is an essentially interpolative endeavor. But assessing the dif-
ferences among thousands to millions of disparate compounds, as is routinely con-
templated today, is an heroically extrapolative endeavor. The essential complementarity
of the two disciplines means that some good QSAR descriptors will, indeed, be good
diversity metrics and vice versa, but utility in the one arena is no guarantee of useful-
ness in the other.

The usefulness of a descriptor in a particular QSAR application is assessed by how
much it enhances the ability to interpolatively predict the biochemical activity of com-
pounds whose activity is known but which was not included in the model. The vast
majority of compounds in virtual combinatorial libraries will never be made. let alone
assayed for biological activity. How, then. is the validity of a new diversity metric to be
evaluated? The ultimate judgment will be based upon the track record of each metric
and how it has been applied, but taking a ‘wait and see’ approach can be costly i n terms
of wasted resources or missed opportunities, or both.

A more pragmatic approach is to use the descriptor in question to cluster a range of
compounds into subgroups: ‘good’ descriptors will tend to put sets of similar com-
pounds into the same group. The assessment of biochemical similarity in such ‘cate-
gorical validation’ studies may rely on activity or inactivity in some single assay [26],
or on the pharmacological class of each compound [25]. Given a set of (usually well-
separated) activity islands, categorical validation tests the ability of a metric to assign

IFO-CoMFA has been validated i n the latter context [27], whereas the categorical
validation of toporneric CoMFA was by examination of clusters in light of medicinal
chemical experience [18]. Such direct assessment of bioisosterism is ‘abstract’ to some
degree, but is altogether appropriate — the development process has relied upon it his-

‘real’ cornpounds to be extended to artificial datasets which lack the clumpiness
imparted to commercial databases by directed-walk development strategies and patent 
considerations, and allows meaningful generalizations across receptors and active sites 
[18].

A complementary approach is to show that proximity in the descriptor space is a
sufficient condition for proximity in bioactivity space — i.e. that the descriptor of inter-
est exhibits good ’neighborhood behavior [9]’. This entails plotting differences in bioac-
tivity against dissimilarity in the descriptor space. If the upper-left triangle in such a
plot is sparsely populated. similar compounds rarely show large differences in bio-
activity. Hence, one can rely on each cornpound to reliably ‘report’ on the bioactivity of
its neighbors as defined by that descriptor [9]. Such neighborhood plots also provide
estimates of the neighborhood ’radius’ for a descriptor — i.e. of degree of separation in
the descriptor space which corresponds to a difference of 100-fold or less i n biological
activity [9].
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In terms of our island-charting metaphor: islands will be exclusive and locally dense in
a good descriptor space, so that if one compound in the neighborhood is active, most of 
those similar to it will also be active. Each activity may well be spread across several
islands, however. Hence, exaggeration of what might well be incidental differences, such
as that between the isopentane and the isopropyl ketone in Fig. 1, do not directly com-
promise the reliability of a metric for diversity analysis. Such fragmentation of ‘islands’
is, however. undesirable, in so far as it reduces the efficiency of sampling by increasing
the number of compounds required to ‘cover’ a particular range of structural variation.

Neighborhood behavior has been demonstrated for topomeric CoMFA [9] and for 
whole-molecule CoMFA using a rule-based alignment of ACE inhibitors [25].
IFO-CoMFA also exhibits neighborhood behavior with a similarity radius of
150–200 kcal/mol when summed across a 2 Å field lattice (R.D. Clark, unpublished).

6. Conclusion

Molecular fields are important tools for assessing molecular diversity, particularly when
one wishes to go beyond 2D substructural similarity and include bioisosteric similarity.
Hence, when common cores or scaffolds exist, topomeric CoMFA is a powerful com-
plement to analyses based on similarity of 2D fingerprints. In the absence of common
cores, topomeric CoMFA can be used to evaluate the 'diversity potential’ of different
core scaffolds. Alternatively, IFO-CoMFA is available to provide useful insight into
molecular similarities.
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Similarity and Dissimilarity: A Medicinal Chemist's View

Hugo Kubinyi
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Several 3D approaches discussed in this volume describe methods for the analysis and
quantitative description of chemical similarity. The underlying concept is that chemical
similarity is reflected by similar biological activities — i.e. chemically closely related
analogs should be related in their mode of action, as well as in their relative potencies.
This fundamental assumption has, indeed, been used in medicinal chemistry research,
and has led to many valuable drugs.

However, chemical similarity may have different facets if a computer chemist or a
medicinal chemist look at the compounds. There is no argument that for maximal
affinity a ligand of a biological macromolecule has to fit the binding pocket geometric-
ally and that hydrophobic surfaces of the ligand and the binding site have to be com-
plementary. The functional groups of the ligand need a separate consideration. For
lipophilicity, there is no significant difference between, e.g. -O- and -NH- in an
organic molecule; for ionization. there is a big difference whether the nitrogen atom is
part of a basic group (an amine) or a neutral group (e.g. in an amide); and for binding,
potency differences of several orders of magnitude may result from the exchange of the
hydrogen bond acceptor -O-against a donor function -NH-.

1. Similarity as a Design Principle in Lead Optimization

Nearly all drugs result from the optimization of a lead structure. Sources of such leads
are natural products from plants or microorganisms, synthetic chemicals or their inter-
mediates. hits from (high-throughput) screening of in-house and combinatorial libraries,
rational concepts from a biochemical pathway or the unexpected observation of a thera- 
peutically useful side-effect of a drug. Most often, the biological activity of a lead struc-
ture is neither optimal, with respect to its efficacy, nor with respect to specificity,
bioavailability, pharmacokinetics, toxic and other side-effects. Chemists perform more
or less systematic variations of lead structures, using the experience of about 100 years
of medicinal chemistry and the results of (quantitative) structure-activity relationships.

The principle of bioisoteric replacement of functional groups serves as a successful
optimization strategy [1–3]. Its systematic application has resulted in a broad variety of
therapeutically used drugs, many of them finally having the desired combination of
favorable properties. A few examples of typical but different consequences of isosteric
replacement of atoms or groups are illustrated by compounds 1–3 (Fig. 1), some others
with unexpected effects on biological activities are discussed in later sections of this
chapter.

In their attempts to optimize lead structures, medicinal chemists intuitively follow the 
principles of evolution. In genetic and evolutionary algorithms, randomly generated
starting models (the lead structures) are reproduced involving random mutations and
crossover (the chemical variation of the structures). Better models (compounds) are kept
for further modification; worse ones are discarded. The biological activity, in later

H. Kubinyi et al. (eds. ), 3D QSAR in Drug Design, Volume2. 225–252.
© 1998 Kluwer Academic Publishers. Printed in Great Britain.
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Fig. 1. Different effects of isosteric replacement. (a) The substitution of all three iodine atoms of thyroxine 1a
leads to an analog 1b which still acts as a thyromimetic agent. (b) Replacement of an ester function, –O–CO–, 
by an amide function –NH–CO–, most often produces analogs with higher metabolic stability: if this replace-
ments is done in acetylsalicylic acid 2, an inactive anolog results because the amide is nu longer able to
transfer an acetyl group to a certain serine residue of cyclooxygenase, (c) p-Aminibenzoic acid 3a is an es- 
sential metabolite of microorganism: if the acid group, –COOH, is replaced by a sulfonamide group
–SO2NH2, the antimetabolite sulfanilamide 3b res ults (active metabolite of the antibacterial sulfonamide
sulfamidochrysoidine

stages a selectivity index or some other biological property, serves as the ‘fitness func-
tion’ for the ‘survival’ of certain structural entities. That genetic and evolutionary algor-
ithms, indeed, reduce the effort in searching the most active analogs has recently been
confirmed by dedicated investigations (e.g. [4,5]).

2 .

Other common structural modifications in the optimization of a lead structure are the
dissection of rings or the rigidifcation of flexible molecules. Molecules with several
rotatable bonds may adopt many different geometries — some of them being favorable
because of low internal energies, others being less favorable because of van der Waals
or electrostatic repulsions between non-bonded atoms or groups. If different conforma-
tions of such molecules are ‘frozen’ by closing rings between certain atoms, either one
of two very different consequences results. If the frozen conformation differs from the

The Biological Activity of a Ligand Depends on its Flexibility
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bioactive conformation of the flexible lead or if the added atoms interfer with the
binding, biological activity will be more or less destroyed. If the ring closure stabilizes
the bioactive conformation, usually a significant increase in biological activity results.
This comes from the fact that the binding of a flexible analog is entropically unfavor-
able, due to a loss of rotational degrees of freedom, whereas the rigid analog has already
lost its flexibility prior to binding. Two examples of highly similar, flexible and rigid
analogs are the pairs 4 and 5 [6] and 6 and 7 [7], respectively, where the rigid analogs
are significantly more active than their flexible counterparts (Fig. 2).

The computer program CAVEAT was developed for the design of rigid analogs
which bear a pharmacophore in a certain geometry [8]. CAVEAT starts from a struc-

Fig. 2. Rigidification of a bioactive conformation significantly increases biological activities ( a ) If an addi-
tional ring is introduced into the thermolysin inhibitor 4 to produce antilog 5, a 20-fold increase in affinity is
observed (b) Introduction of a methyl group into the H+/K+-ATPASE inhibitor 6a reduces biological activity 
by a factor of 8, most probably due to a destablization of the bioactive conformation; if the substituent R in
6b is extended to a new ring (compound 7). which fixes the bioa conformation, the biological activity of
6b i s enhanced by a factor of150.
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tural hypothesis or from the known 3D structure of a ligand, e.g. a polypeptide. and ex-
tracts vectors of residues that participate in binding. In a peptide, these vectors are e.g.
the Cα  –Cβ bonds of the amino acid side chains. Then the program identifies ring 
systems that are suited to accommodate these residues in exactly the same relative
geometries.

A lead structure, where a significant increase in binding affinity is achieved by steric
constraints, not by ring closure, has been described by Kaplan and Bartlett [9]. In
the  flexible  phosphonate  tripeptide Cbz–Phe–Ala[PO2

-]–O–CH(CH3)COOH
(= Z–Phe–Alap –(O)–Ala; p indicates a PO2

- residue instead of a C=O group). inhibitory 
activities against the zinc protease carboxypeptidase A increase significantly with the
stepwise introduction of bulky residues. In the series Z–Phe–Alap–(O)–Ala,
Z–Phe–Alap–(O)–Phe and Z–Phe–valp–(O)Phe, affinities increase from 56 nM to

0.001 nM and 0.000010-0.000027 nMol (i.e. 10-27 fMol). The more active analogs
have a higher lipophilicity, due to the additional phenyl group in phenylalanine, as com-
pared to alanine, and due to the isopropyl group instead of the methyl group of the
C-terminal lactic acid residue. But in this case. the affinity difference of about six orders
of rnagnitude cannot be attributed only to the increase in lipophilicity which changes
by less than three orders of magnitude. It must also result from the conformational
constraint imposed on both phenylalanines by the central valine and which, by fortune,
stabilizes the bioactive conformation. In terms of ‘chemical similarity’, all three
analogs are closely related: with respect to their internal flexibility and their preferred
conformations, they are not.

3.

For compounds with comparable flexibility, most often similar analogs have also
similar biological potencies. That this need not always be the case can be seen by a
comparison of three thermolysin inhibitors 8a–c (Fig. 3) [10,11]. All analogs 8a and c,
with X = -NH-and –CH2–, are about 1000 times more potent than the X = –O–analogs
8b (R = OH or different amino acids). The explanation for this effect can be easily
derived from the 3D structure of the complex of thermolysin with the inhibitor 8a
(R =-Leu-OH). If X is an -NH- group (series 8a), a hydrogen bond is formed between
this group and the oxygen atom of an alanine carbonyl group. In the –O– analog 8b, this
hydrogen bond cannot be formed; in addition. an electrostatic repulsion between the
two oxygen atoms results. The biological activity of the –CH2– analog 8c has been
predicted [12] to be comparable to the -NH- analogs and much higher than for the
-O-analogs. This was later confirmed by the synthesis of the inhibitors 8c [11] .

A similar but less pronounced effect is observed for the thrombin inhibitors 9a–c
(Fig. 4) [13]; in this case, the non-bonded contact between the –X– group of the ligand 
and the carbonyl group of Gly 216 in the binding site of thrombin is responsible for the
structure-activity relationship. I f , on the other hand, the carbonyl group of 10a, which
forms a hydrogen bond with the -NH- group of Gly 216, is replaced by –CH2– (10b),
the affinity is reduced by more than three orders of magnitude (Fig. 4) [13].

Neutral endopeptidase 24.11 (NEP 24.11 ; enkephalinase) is a zinc protease with
some homology to thermolysin. The NEP inhibitors 11a–d (Fig. 5) show a different
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Fig. 3. The X = –NU– group of the thermolysin inhibitors 8a forms a hydrogen-bond with the carbonyl 
oxygen atom of Ala 113: this affinity-enhancing effect is only moderated by desolvation of the ligand in going 
from the free to the bound state. All oxygen anal 8b are much less active, because they cannot form such a 
hydrogen-bond; in addition, there is the unfavorable desolvation effect and an electrostatic repulsion between
the oxygen atoms of the ligand and the binding site.Like the –O– analogs 8b, the –C –H2 analogs 8c cannot 
form the hydrogen-bond to Ala 113, but this disadvantage is countbalanced by the effect that no desolvation 
of the CH2 group of the ligand and no electrostatic repulsion take place. The differences between X = –NH–, 
–0– and –CH2– are identically observed whether R = –OH, –GIy–OH or –Leu–OH. 

structure-activity relationship, as compared to the preceeding examples. Here the 
lipophilic –CH2– and -S- analogs are much less active than the -NH- and -0- analogs,
which both have comparable biological activities [14]. As long as the 3D structure of
NEP 24.11 remains unknown, no explanation can be given for this effect.

An unexpected structure-activity relationship has been observed for the macrocyclic
renin inhibitors 12a and b (Fig. 5) [15]. Modelling of the complex of 12a with the
aspartyl protease renin indicated that X =  –NH- should form a hydrogen bond with one
of the Asp 226 oxygen atoms. Thus, the replacement of -NH- by -0- should reduce
the affinity The opposite was observed; the affinity of analog 12b is increased by more
than two orders of magnitude. The authors discuss several possible explanations for this
observation but finally conclude: ‘we have attempted to find a plausible basis for this
surprising reversal in potency, but without much success . .. the comparison [of both
analogs] is therefore intrinsically more difficult, and will constitute a more demanding
test for thermodynamic simulation techniques [as compared to the thermolysin
inhibitors. Fig. 3]’.
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Similairity and Dissimilarity A Medicinal Chemist’s View 

There are many examples in literature where the introduction of an -OH group into a
ligand either causes an increase or a decrease of biological affinities. From a theoretical
point of view, this is not surprising. If the new -OH group forms hydrogen bonds with
polar groups at the binding site (either as a hydrogen bond donor or as an acceptor), the
net free energy depends on the balance between the desolvation energies of the water
shells at the surfaces of the ligand and the binding site, as compared to the energy of the
formed hydrogen bond/s and the entropy gain by the release of some water molecules.
Certain tightly bound water molecules i n the binding cavity of a protein (usually seen in
the X-ray structures), e.g. those which form more than two hydrogen bonds to the
protein, are not easily removed. The attempt to introduce an -OH group into the ligand,
to replace such a water molecule, must necessarily fail.

An example where this is not the case, and where significantly enhanced binding
affinities result after the introduction of such a hydroxy group, are the cytidine and
adenosine deaminase inhibitors 13-16 (Fig. 6) [16,17].In this special case, the resulting
affinity differences are 7 to 8 orders of magnitude!

4.

Functionally corresponding proteins from different species have identical or very
similar 3D structures, but they normally differ in their amino acid composition.
Although they always show, dependent on the evolutionary relationship between the
two apecies, a certain degree of homology, structure-activity relationships may
significantly differ, even after the replacement of just one single amino acid by another
one. This has been shown, for example, by a comparison of rat and human 5-HT recep-
tors [18]. Although both have about 90% identity and more than 95% homology in their
amino acid sequences, the binding affinities of a series of 5-HT receptor ligands and
ß-adrenergic blocking agents are not related (n = 10; r = 0.27). If one (!) amino acid of 
the human receptor, i.e. threonine 355, is replaced by the corresponding amino acid of
the rat receptor, i.e. asparagine, the binding affinities of the ligands change significantly.
Now the human mutant 5-HT receptor behaves like a rat receptor; all affinities to both
receptors are more or less identical (r = 0.98) [18].

In the past, new compounds have always been tested in animals before they could be
applied to humans. Human proteins were not available, except in rare cases. Only for
those proteins that could be extracted from human material, e.g. hemoglobin or throm-
bin from blood, could one predict the human biological activity of a new drug from
in vitro studies, prior to animal studies. With the progress in gene technology, it is now
possible to produce human proteins in sufficient quantities to establish test models.
Thus, their biological activity in humans can be forecasted from investigations at the 
molecular level. How important this is, can be illustrated, e.g. by the activities of the
renin inhibitor remikiren 17 against the renins of different species (Fig. 7) [19].

Different QSAR models for dihydrofolate reductase (DHFR) inhibitors, chemically
related to the antibacterial drug trimethoprim 18 (Fig. 8), describe the inhibitory activi-
ties versus E. coli and L. casei DHFR [20].Whereas in the case of E. coli DHFR, the
3-,4- and 5-substituents at the benzyl group contribute to biological activities, only the 

Biological Potencies versus Similar Biological Targets
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Similarity and Dissimilarity AMedicinal Chemist’s View

Fig. 8. Trimethoprim 18 is proposed to interact with dihydrofolate reductase in its protonated form, where
N1 changes its character from a hydrogen-bond acceptor to a hydrogen-bond donor. Due io the positive 
charge of the ligand, the exchanged of negatively charged amino acids of the protein to neutral amino acids
and of neutral to positively charged amino acids reduce the affinity of the ligand.

3- and 4-substituents are relevant for the activities against L. casei DHFR. Several years
later, the X-ray analyses of both enzymes explained these differences: in L. casei
DHFR, there is a much narrower pocket, due to a bulky leucine in the binding site, as
compared to a flexible methionine side chain in E. coli DHFR [20].

Whereas many differences in the binding affinities to related biological targets can be
attributed to different non-covalent interactions with the amino acids of the binding
sites, such effects may also result from more distant changes in a protein. Trimethoprim
18 is thought to bind to DHFR in its positively charged form. An E. coli mutant, where
the negatively charged glutamate residue 1 18 is replaced by a neutral glutamine. has a
4.5-fold lower affinity for trimethoprim, despite the fact that the modified group is about
15 Å apart from the charged N1 of trimethoprim. An even more pronounced effect is
observed in a double mutant (Glu 118 Gln, Leu 28 Arg): the affinity of trimethoprim is
reduced by a factor of 190, although the positive charge of the arginine residue is about
8 A apart from the positive charge of the ligand [21]. This reduction of binding affinities
has been used to explain the selectivity of 5 to 6 orders of magnitude of trimethoprim
against bacterial DHFRs, as compared to avian and mammalian DHFRs. In chicken
DHFR, seven amino acids in the environment of the binding site (not in the binding site
itself) have changed charge from negative to neutral or from neutral to positive, as com-
pared to E. coli DHFR. If one compares the effects observed in the E. coli double
mutant with these figures, the changes seem to be sufficient to explain the observed
effect [21].

Thiorphan 19 and its retro-inverso peptide, retro-thiorphan 20 (Fig. 9), are inhibitors
of the structurally related zinc proteases thermolysin and NEP 24.11. Although the
affinities of the ligand pair differ, from enzyme to enzyme, by three orders of mag-
nitude, there are no significant differences between them [22]. Thus, they may be con-
sidered to be ‘similar’, which was also confirmed by the X-ray structure analyses of
their complexes with thermolysin; both compounds bind in an analogous manner and
have corresponding interactions with the protein [23]. On the other hand, their activities
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Similarity and Dissimilarity: A Medicinal Chemist’s View 

against yet another related zinc protease, angiotensin converting enzyme (ACE), are 
significantly different [22]; with respect to this enzyme, the analogs are ‘dissimilar’. 
Whether the differences result from different binding modes or from an unfavorable 
binding geometry of retro-thiorphan in ACE will only be known if the ACE 3D struc-
ture becomes available. Corresponding differences in the structure-activity relation-
ships are observed in some other dual zinc protease inhibitors 21a–c (Fig. 9) [24]. 
Again, the degree of similarity and dissimilarity of the ligands depends on the biological 
target.

Corresponding problems are also observed in toxicity predictions for humans, as il-
lustrated by the toxicities of lysergic acid diethylamide (LSD) and 2,3,7,8-tetrachloro-
dioxin (‘dioxin’) in different species. LSD is only weakly toxic to mice (LD50 =
50–60 mg/kg) and rats (LD50 = 16.5 mg/kg) but significantly more toxic to rabbits 
(LD50 = 0.3 mg/kg). An elephant, which was (cautiously?) treated with an LSD dose of 
0.3 g (corresponding to about 0.06 mg/kg), died within several minutes [25]! Humans 
seem to tolerate LSD quite well. Cases of death have been observed as the result of 
drug-induced suicides, but not by any toxicity of the drug itself. 

2,3,7,8-Tetrachlorodioxin is highly toxic to several species — e.g. guinea-pigs
(LD50 = 0.6–2.5 µ g/kg) and mink (LD50 = 4 µg/kg). It is much less toxic for mice
(LD50 = 114–280 µg/kg), rats (LD50 = 22–320 µg/kg), hamsters (LD50 = 1150–5000
µ g/kg), rabbits (LD50 = 115–275 µ g/kg), dogs (LD50 > 100 and < 3000 µ g/kg) and
monkeys (LD50 < 70 µ g/kg) [26]. If one extrapolates from the monkey, dioxin should
be relatively ‘harmless’ for humans, at least if only acute toxicity is considered. 
However, the significantly different toxicity versus the closely related species guinea 
pig and hamster puts a caveat on too simple and straightforward extrapolations. Of
course, for humans the LD50 is not the relevant endpoint, but rather the no-effect LD0

level!

5.

Comparable biological activities of chemically similar structures do not necessarily 
result from analogous binding modes of all analogs. Since at least in 3D QSAR, if not in 
all QSARs, the correct superposition of all analogs within a series is a precondition for 
reliable results, a better knowledge of the binding modes is most important. Unexpected 
differences in the binding modes of some analogs certainly produce problems in 3D 
QSAR studies that are based on such a mutal alignment of the structures. But it is to be 
expected that also 3D QSAR modifications, which do not require a structural alignment, 
should have problems in such cases. 

Differences in binding modes have been extensively reviewed [1,27–29]. Thus, only 
some examples will be summarized here, without detailed discussion. Purine nucleoside 
phosphorylase (PNP) inhibitors 22 and 23 show surprising structure-activity relation-
ships, which can be explained only by inspecting the X-ray structures of the inhibitor 
complexes (Fig. 10). The exchange of an acceptor nitrogen to a donor nitrogen atom 
changes not only the interactions with the directly involved asparagine side chain, but 
also of an 8-amino group with the threonine hydroxyl and methyl groups [30,31]. 

Similar Structures and Activities, but Different Binding Modes 
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Similarity and Dissimilarity A Medicinal Chemist’s View

Carbobenzoxy-phenylalanine (Cbz-Phe) 24a and β-phenylpropionyl-phenylalanine
(β-PPP) 24b (Fig. 11) differ only by their X group. Nevertheless, they bind to ther-
molysin in an opposite direction, as uncovered by the determination of the 3D structures
of the complexes [32]. Reverse binding modes are also observed for some structurally
related viral coat protein ligands – e.g. compounds 25 and 26 (Fig. 11) [33,34].

Dihydrofolate 27, the substrate of dihydrofolate reductase (DHFR), and the DHFR
inhibitor methotrexate 28 seemingly differ only in minor chemical details (Fig. 12).
However, this small difference has significant consequences on the hydrogen-bond donor
and acceptor patterns of the compounds. Accordingly, dihydrofolate and methotrexate
accommodate the binding site of DHFR in different modes [35], an effect which has been
predicted from the X-ray structure of the dihydrofolate/DHFR complex [36].

The isomeric 1- , 2- and 4-phenylimidazoles are inhibitors of the oxidation of
camphor by cytochrome P450cam. Nevertheless, only 1- and 4-phenylimidazole bind as
expected, with one nitrogen atom of the imidazole ring coordinated to the iron atom of
the porphyrin system; 2-phenylimidazole cannot be accommodated in such a position
and binds in a completely different manner [37]. Structurally related dipeptide inhibitors
of the serine protease elastase bind with their corresponding residues in different
pockets of the enzyme [1,27,38]. The trypsin inhibitor p-guanidiniumbenzoate seems to
be one of the rare cases where X-ray crystallography provides clear evidence that one
and the same ligand binds in distinctly different orientations [39]. Many other examples
of different binding modes of closely related analogs have been described in the litera-
ture [l ,27–29]. From the observation of such differences, Dagmar Ringe proposed to
use this information to design ‘hydra-headed’ inhibitors, which fill all possible pockets
of a binding site.

6.

Several well-known examples of different modes of action of closely related analogs
can be found in medicinal chemistry and pharmacology textbooks. Norepinephrine 29a,
epinephrine 29b and isoproterenol 29c (Fig. 13) are adrenergic agonists. However, in
going from R = H to R = CH 3 and R = isopropyl, the mechanism of action gradually
changes from a more or less specific a-adrenergic agonism to a pure ß-adrenergic
agonism. If the two hydroxyl groups of isoproterenol are changed into chloro sub-
stituents, the ß-adrenergic antagonist dichloroisoproterenol (DCI) 30 results; in fact, 30
was the first ß-blocker.

An unexpected effect resulted after the introduction of an isobutyl group into the 
AT1-specific angiotensin II receptor antagonist 31a (Fig. 13).The original AT1 selectiv-
ity is completely destroyed; in addition, the new analog 31b is no longer an antagonist,
it is a strong agonist at the AT1 and AT2 subtypes of this receptor [40]. A related effect
has been observed for some structurally diverse cholecystokinin (CCK) receptor
ligands; the introduction of an isopropyl group at a certain nitrogen atom leads from
peripheral CCK antagonists to agonists [41,42].

The integrin family of receptors are structurally and functionally related membrane- 
imbedded glycoproteins that ‘integrate’ the extracellular matrix with the cytoskeleton.

Different Mechanisms of Action of Similar Molecules
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Important members are the GPIIb/IIIa receptor (GP for glycoprotein, IIb/IIIa for the
αIIbβ3 integrin) and the vitronectin (αvβ3) receptor [43,44]. Whereas the GPIIb/IIIa 
receptor binds, inter alia, fibrinogen and mediates blood platelet aggregation, the αvβ3
receptor binds vitronectin and is responsible for angiogenesis, vascular smooth muscle
migration and adhesion of osteoclasts to the bone matrix. Thus, both receptors are im- 
portant for drug design, the GP IIb/IIIa receptor for the development of antithrombotic 
agents and the vitronectin receptor for the development of drugs for the treatment of
cancer, as well as against restenosis and osteoporosis. However, both fibrinogen and
vitronectin interact with their receptors using an identical structural domain, the so-
called RGD motif (RGD = Arg-Gly-Asp), but obviously in different conformations.
This was first confirmed by the investigation of different cyclic pentapeptides. con-
taining D-amino acids in different positions [44,45].How far structure-based design (in
this case, based only on the structures of ligands) can be advanced is illustrated by
compounds 32a and 32b, which are highly selective GPIIb/IIIa and vitronectin receptor
antagonists. respectively (Fig. 14) [46]. The selectivity of these analogs against the two
receptors differs by nearly eight orders of magnitude, despite their close chemical
similarity! The only major difference is the distance between the carboxylic group,
which mimics the Asp, and the basic nitrogen atom. which mimics the Arg of the RGD
motif.

A well-known example of different modes of action of closely related analogs are the
anti-allergic agent promethazine 33, the neuroleptic chlorpromazine 34, and the anti-
depressants imipramine 35a and desipramine 35b (Fig. 15). Despite their very similar
structures, 33 acts mainly as a histamine H1 antagonist, 34 is a dopamine antagonist,
35a is an unspecific norepinephrine- and serotonin-uptake inhibitor and 35b is a
norepinephrine-specific uptake inhibitor. Steroid hormones – e.g. 36–39 (Fig. 16) –
give another example of strikingly different biological effects of chemically closely
related analogs.

Several therapeutically used drugs bind to more than one receptor and are corre-
spondingly termed ‘promiscuous’ ligands. However, whether a certain (balanced)
unspecificity of their mode of action is advantageous for therapy or not still remains
uncertain.

7. Chirality and Biological Activities

Due to the chiral nature of amino acids (except glycine), drug binding sites of proteins
are asymmetric. In the past, the different actions of enantiomers of chiral molecules on

economic reasons, racemates of
synthetic drugs were used in therapy. Today, researchers and drug companies are more

activities, as well as in their pharmacokinetics. Enantiomers can even be differentiated
by their odor — e.g. the monoterpenes (R )- and (S)-limonene 40 and (R)- and (S)-
carvone 41 (Fig. 17) [48]. Butaclamol 42 is mentioned as just one example of
significantly different eudismic ratios (i.e. ratios of affinities of the different enan-
tiomers) versus different receptors (Fig. 17) [47].
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enzymes and receptors were often neglected [47]. For

aware of the different effects of enantiomers and diastereomers [1,2]in their biological
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Similarity and Dissimilarity A Medicinal Chemist’s View 

Fig. 17. Enantiomers are different: the olfactory receptors of our nose can even distinguish such minor struc- 
tural differences as between 40a and b, as well as between 41a and b (the typical odors of the compounds are 
indicated below the structures). Activity differences between enemtiomers are difined by their eudismic

 indices, the ratios of biologic al activities of the individual enantiomers. They significantly depend on the bio-
logical target. Whereas both enantiomers of butaclamol 42 look very ‘similar’ to the muscarinic acetylcholine
receptor, they differ by more than three orders of magnitude in their affinities to the D2 receptor.

Enantiomers may even have opposite biological effects. Certain chiral barbiturates
show sedative activities in the oneenantiomer and convulsive activities in the other one.
The nifedipine analog Bay K 8644, 43 (Fig. 18) was originally synthesized as a race-
mate. In vitro tests with isolated smooth muscle strips showed it to be more or less inac-
tive. However, several years later its high affinity to calcium channels was discovered:
this demanded a separation of the racemate into the two enantiomers. One is a calcium
channel agonist, the other a weak antagonist. Höltje explained these differences by the
asymmetry of the molecular electrostatic potentials of the enantiomers, if the molecules 
are superimposed by their ring systems [49]. 
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Fig. 18. The enantiomers of Bay K 8644 have opposite biological effects. Whereas 43a stabilizes the calcium
channel in its open form, 43b stabilizes its closed form 

8.

Quantitative descriptions of the specific binding of ligands to a protein surface are based 
on the additivity principle of activity group contributions to the overall affinities. This 
has been extensively proven by dedicated investigations performed by Andrews, 
Goodford and Bohacek [50], but also by Böhm’s scoring function of the de novo design
program LUDl [51]. Some other approaches are reviewed in this book. However, 
despite the differences between enantiomers, discussed above, classical QSAR has no 
good tools to distinguish different conformers or enantiomers. 3D QSAR methods are
much more efficient in this respect. 

The very first approach to describe structure-activityrelationships by N X N similar-
ity matrices (N = number of compounds) was presented by Rum and Herndon in I991 
[52]. More systematic investigations, using 3D similarity indices, were performed by 
Richards et al. in 1993 [53,54]. N X N Distance matrices are even appropriate for the
quantitative description of nonlinear structure-activity relationships [50,55,56 ]. 

A very promising method, based on similarity fields, is the Comparative Molecular 
Similarity Indices Analysis (CoMSIA) approach [57,58]. As in CoMFA, all molecules 
are aligned according to a common pharmacophore: similarity indices of certain probes 
to the different molecules are then calculated in the positions of a regular grid. These
fields, not just pairwise similarity indices of the molecules, are correlated with the bio-
logical activities. Due to the ‘soft’ character of the Gaussian potentials that are used to 
derive the similarity fields, smoother and more contiguous contour maps result from 
CoMSIA analyses [57]. 

As compared to the CoMFA and CoMSIA methods, the use of N X N 3D similarity
matrices in QSAR has several advantages. Instead of a mutual alignment of all active 
and inactive molecules to a common reference frame, only pairwise alignments need to 
be performed [56,58]. This leads to a matrix with individual ‘similarity vectors’ for 
each analog. Inactive analogs do no longer distort the alignment of the active analogs. If 
SEAL similarity indices [59,60] are used in the generation of the N X N matrix, not
even a grid is needed. Thus, the frequently observed disturbance of the CoMFA results, 
after translation or rotation of the box around the molecules (e.g. [61]), are not ob-

The Similarity Principle in QSAR and 3D QSAR 
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served. A disadvantage of the calculation of pairwise similarity coefficients is the fact
that no contour maps can be generated from the resulting QSAR model.

9. Conclusion

There are many lessons to be learned for 3D QSAR applications. Firstly, a correct align-
ment is the most important basis of each structure-activity analysis. Errors that are
produced there can never lead to correct models.

An overreliance in target-independent similarity indices has to be questioned, be-
cause of the dependence of ‘similarity’ on the biological macromolecule to which the
analogs bind. Sophisticated investigations on the ‘dissimilarity‘ of chemical databases 
are most often futile. Similar compounds may have very different actions and different 
molecules can be very similar in their biological activities. Considering the examples
presented in this chapter and the many more cases in the literature, one has to admit that
we are far from a deeper understanding of the details which underline the observed 
structure-activity relationships. Applying the results from one series of analogs to
another one may lead to completely wrong conclusions.

In the past, the use of molecular connectivity parameters in QSAR studies has led to
highly controversial discussions. The same may happen to the BCUT, WHIM and EVA
parameters, all described in other chapters in this volume. But one fact can be taken for
sure: all these methods describe the similarity between molecules to a different extent.
Thus, one should not be surprised that these approaches work, in some cases, even as
well as other, more ‘rational’ methods.

Besides a correct alignment, the selection of the training and test sets is critically
important to the results of a 3D QSAR study [58].Only if both sets cover approximately
the same range of structural space, can one be sure that the analysis and the results are
meaningful. Cross-validation methods do not help in this respect. If the data set is highly
redundant, even cross-validation in groups will produce ‘good’ results, whereas in clearly
non-redundant datasets even a simple leave-one-out cross-validation must fail. One has to
come back to the original goal of QSAR studies: to derive a working hypothesis and to
design new analogs, based on one or several alternative working hypotheses. In this sense,
QSAR is a theoretical tool which cannot solve all our problems but which definitely 
should accompany the experiments of the medicinal chemists and biologists.
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Pharmacophore Modelling: Methods, Experimental Verification
and Applications

Arup K. Ghose and John J. Wendoloski
Amgen Inc., 1840 DeHavilland Dr., Thousand Oaks, CA 91320, U.S.A.

1.

The essential functionalities of a molecule necessary for its pharmacological activity are
called pharmacophores. Although the idea of pharmacophores existed for a long time,
Ehrlich [1] first introduced this terminology following the term chromophore which was 
used to describe the groups responsible for the color of a compound. The interest in the
idea of pharmacophores has grown tremendously in the last few decades due to the
availability of computer graphics [2], a number of computational methods to determine
the pharmacophoric geometry [3–7] and various software for 3D database mining using 
the concept of a pharmacophore pattern match [8]. However, the validity of a pharma-
cophore hypothesis came more from direct medicinal chemistry structure-activity rela-
tionships (SAR) studies rather than from any theoretical calculations. Such calculations
may be possible in the near future with the availability of an ever increasing number of
ligand-protein complex structures, better molecular mechanics force fields and better
understanding of solvation factors. In such an approach, we have to show that the phar-
macophoric groups provide the major contribution in binding affinity to the protein

computational methods for pharmacophore identification and its geometry determina-
tion, a number of ways to validate the pharmacophore models and their applications in
medicinal chemistry to identify novel active compounds. There are several excellent
reviews and papers on pharmacophore modelling [3–7].

2.

The Concept of the Pharmacophore and its Validity

compared to the rest of the molecule. The main objective here is to discuss the various

The Medicinal Chemistry Approach for Pharmacophore Determination and
its use in Computational Chemistry 

Pharmacophoric groups have been traditionally identified from the SAR data. When a
compound with a novel biological activity is identified, medicinal chemists try slowly to
modify this structure to optimize its potency, as well as to identify the important struc-
tural moieties responsible for the biological activity. The usual pharmacophoric groups
include: (i) hydrogen (bond) donors, (ii) hydrogen acceptors, (iii) hydrophobic groups,
(iv) electron acceptors, (v) electron donors and (vi) polar bonds, etc, This process of
pharmacophore identification is illustrated with an example based on the hydroxamate
inhibitors of the matrix metalloproteinases (MMPs) [5] collagenase and stromelysin.
Collagenase cleaves collagen, the major constituent of cartilage, so blocking the activa-
tion of these MMPs is considered to be a potential strategy to prevent a tissue damage.
The general structure of the peptidomimetic hydroxamate inhibitors of the MMPs are
shown in Fig. 1. The pharmacophoric group determination and pharmacophoric atom
selection are interrelated but may not be exactly the same. The atom selection varies

H. Kubinyi et al. (eds.), 3D QSAR in Drug Design, Volume 2. 253–271 . 
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Fig. 1. The general structure and pharmacophoric groups of the peptidomimetic hydroxamate inhibitors.
Pharmacophoric groups are indicated wiht an *.

with our objective: when we are interested in the determination of the geometry of the
pharmacophore atoms. we should select a minimum number of atoms from the pharma-
cophoric group. However, when we are interested in database searching for a pharma-
cophore, we should use a sufficient number of atoms which will match compounds from
the correct chemical class. If the N-H bond of an amide is found to be a pharma-
cophoric group, one may select the N and H atoms as the pharmacophoric atoms for
geometry determination. However, one should use the whole -CONH- group for data-
base searching to avoid hits from amines. Keeping these differences in mind, we will
analyze the SAR work done around this molecule and pharmacophoric atom selection
of the hydroxamates described below.

2.1.

Replacement of the scissile peptide bond by groups able to act as a Zn ligand is the
basic approach that has been used in the design of collagenase inhibitors. The hydroxa-
mate functionality is a very effective scissile bond surrogate in collagenase inhibitors
[9,10] . Other Zn ligands like thiol. carboxylate and phosphonates also serve this func-
tion reasonably effectively. Removal of the Zn liganding group leads to a dramatic de-
crease in binding affinity. suggesting that it is a pharmacophore. When we are interested
in the geometrical aspects of the pharmacophoric groups. it may be difficult to define
the pharmacophore if we have different Zn liganding groups because the various ligands
will have different coordination geometries around Zn. In the case where three fairly
rigid Zn coordinating groups come from the protein, however, the complete coordina-
tion sphere is usually either a distorted square pyramid or a trigonal bipyramid. In this
type of modelling, a dummy atom for Zn satisfying the geometry of the Zn-ligand coor-
dination sphere [II] may be the best way to represent this pharmacophoric group. In
this representation. the criterion of a valid superposition of different types of liganding
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groups is that the Zn-ligand bond(s) will approach approximately from the same
direction.

2.2.

It was known that the complete removal of the iso-butyl group led to a strong decrease
in binding affintiy Decreasing the size to n-propyl led to a very small reduction in
affinity [10].This SAR indicated the importance of one of the terminal methyl groups
for the activity. Since the two methyl groups are stereochemically different and there
was no experimental evidence for selecting the correct methyl group, the second carbon
was selected as one of the pharmacophoric atoms.

2.3.

Replacement of the P1´–P2´ amide linkage (-CONH-) by an ester (-COO-) or a
retroamide (-NHCO-) led to inactive compounds, suggesting that -CO- may not be
directly involved in the binding process with the MMPs. Methylation of’the peptide N
decreased the binding potency. These observations led to the selection of the N-H bond
as a pharmacophoric group.

2.4.

Replacement of the P2´–P3´ amide (-CONH-), as in ( 2 . 3 ) , led to a considerable
decrease in binding affinity. Two pharmacophoric atoms were used to represent each of
these hydrogen donors to maintain the directionality of hydrogen-bond donation.

2.5.

This increased the binding affinity considerably. Ala at P2´, for example, showed con-
siderably less potency [10] than Phe or Trp. This structure activity data led us to select
the seven atoms as critical phamacophoric atoms (Fig. 1) .

3.

The computational methods for pharmacophore modelling may have two steps: (i) deter-
mination of equivalent pharmacophoric atoms in a diverse set of active compounds; and
(ii) pharmacophore geometry determination from a defined set of equivalent atoms in a
diverse set of compounds.

3.I

A hydrophobic group on the PI´ aminoacid

A hydrogen-bond donor at the P1́ –P2´

A hydrogen bond donor at the P2´–P3´

A hydrophobic alky or aralkyl group at the P2´ side chain

Computational Methods for Pharmacophore Modelling 

Determination of the equivalent pharmacophoric groups in a diverse set of active
compounds

When the pharmacophore hypothesis originates from the SAR study of a single lead
compound, definition or identification of the equivalent pharmacophoric groups may not
be difficult. However, if we have several active compounds for the same biochemical or
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biological system with a diverse set of structures. identification of the equivalent phar- 
macophoric groups may not be as straightforward. Any automation along this line
should have the strategies: (i) to identify similar atoms or groups in terms of their chem-
ical or physico-chemical properties: (ii) to estimate the relative position of the possible
pharmacophoric groups in the allowed low-energy conformations of the molecules for
3D structural comparison; and (iii) to weigh similar pharmacophoric groups when there
arc multiple choices. Although. from time to time, some success along this line has been
claimed, [12–16], none of these methods have been well tested for diverse types of 
problem. In one of the earliest attempts, Crippen [12] abstracted the ligands by a set of
representative points of specific types. The conformational flexibility of the molecules
was taken into account by a distance range matrix of upper and lower limits of the dis-
tances between these points in the energetically allowed conformations of the mole-
cules. He then combinatorially determined the maximum number of matching points of
the same type. The geometrical requirement for the matching of the points is that any
two matching points should have either overlapped distance ranges or the distance
ranges should be within a specified distance limit. Once an acceptable match has been
found, the common distance range of the matched atoms can be used in the distance 
geometry embedding technique [17] to find the active conformation of the individual
molecules. Ghose et al. [13,14] used a set of important atoms from each molecule for a
combinatorial exploration of a plausible superposition. The conformational flexibility
was accounted for by taking a set of low-energy conformations separately.
Superpositions of all other atoms were determined from the initial superposition of the
important atoms. Each superposition was rated by a fit function utilizing the three most 
important physico-chemical properties of the atoms, namely charge. refractivity and hy-
drophobicity. Atomic charge density is related to the electrostatic interaction. Atomic 
refractivity is related to the van der Waals interaction. and atomic logP is related to hy-
drophobic interactions. These are the three most important forces in the binding of the
ligands with the biological molecules. Martin et al. [15], in their DISCO program, auto- 
mated and improved most of Crippen’s approach using a selected number of low-energy
conformations. Jones et al. [16] used a very similar approach, except that their fit func-
tion was optimized using the genetic algorithm (GA) where the gene was represented by
atom match, as well as the conformational information. The general utility of these
methods may be determined in the future when independent workers will apply these
methods to a diverse set of problems

3.2

Most of the generally explored methods for pharmacophore modelling belong to this cat-
egory, since quite often the phamacophore hypothesis can be formulated from tradi-
tional SAR studies. The objective of these methods is straightforward: to find all
possible low-energy conformations of the molecules where the pharmacophoric groups
can be superimposed within a predefined distance limit. If a method tries to find any one
acceptable solution, its success may be limited, since it may not be the real solution. On
the other hand, the method which tries to get all possible solutions may sometimes be

Pharmacophore geometry determination witha defined superposition hypothesis
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coinputationally intractable. Some of the methods reported to solve this problem are
shown below.

3.2.1. Ensemble distance geometry
Sheridan et al. [18] formulated an elegant way of using Crippen’s distance geometry 
program for superimposing molecules. In this approach, they created an ensemble dis-
tance matrix of all atoms of all the molecules that are to be superimposed. The intramol-
ecular atomic distance ranges are given the usual distance ranges for that molecule.
Many of these distances are simply the bond distances, bond angle distances and fixed
torsion distances. The intermolecular atomic distance ranges are zero to a small toler-
ance distance for the atoms to be superimposed. The rest of the distance ranges are
evaluated by the embedding program using the triangular inequality rule. The method
has some advantages over Crippen’s original approach where the common distance
range of the superimposed a t o m were used to evaluate their geometry. The constraints
of the non-superimposed atoms further decreased the acceptable solution space.

However, it is not completely free from all the disadvantages of regular distance 
geometry, namely when there are multiple solutions of conformations, it does not give
any information about the other acceptable solutions, nor does it guarantee low-energy 
conformations. This method is computationally very inefficient too. One has to dia-
gonalize an (n*m) X (n*m) matrix, where n is the number of molecules and m is the
number of atoms in each molecule. One can get a comparable result by diagonalizing
the m X m atomic distance matrix of each molecular separately with the common dis-
tance range for the overlapping atoms. However, the simplicity of the data preparation
justifies the extra computation for this method.

3.2.2.
Earlier, Crippen introduced [19] the method of using a distance range matrix of the
atoms for a fast evaluation of the superimposability of the molecules. Distance range
was determined from the minimum and maximum distances between these atoms in the
acceptable low-energy conformations. In this method, the criterion for superimposition
is that the superposed atom should have an overlapping distance range. This criterion is
a negative test, rather than a positive test; in other words, if this test fails, the molecules
cannot be superimposed. However, qualifying this test does not guarantee a super-
position. The conclusions drawn from the distance range matrix are valid only in an n – 1
dimensional space, where n is the number of atoms superimposed [20]. Our physical
space has only three-dimensions. One can get a structure in a three dimensional space
which can best represent the distance range using distance geometry ernbedding.
However. distance geometry embedding is not cornputationally fast enough to be
applied in a large number of test cases.

Another problem of embedding is that the structures obtained from simple embed-
ding may not be energetically low. To overcome these problems, Ghose and Crippen
[21] proposed the construction of a distance map in torsional space. In this approach, an 
ensemble of distance matrices. each one representing an energetically allowed grid of
torsional space, is created (Fig. 2). The grid is determined by the rotational increment of

Distance mapping in torsional space
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Torsion Angle

ble pharmacophoric distances, finding overlapping energetically allowed distance grids
in all other molecules will suggest superimposable low-energy conformations and,
therefore, the corresponding arrangement of the pharmacophoric atoms may be consid-
ered as a possible geometry. If one does not have any prior knowledge or hypothesis of
the pharmacophoric distances, then all distance matrices should be compared. There are
many advantages in this approach: (i) the selected conformations will always fall within
the defined energy limit; (ii) the accuracy of the superposition will go down when the
step size for rotating the torsional bond is increased, but it will not miss the allowed su-
perposition: and (iii) i t will detect all possible conformations that are superimposable.
There are at least a few disadvantages: (i) the generation of the distance range matrices
corresponding to the energetically allowed grids is somewhat inefficient; (ii) if there are
torsion angles which do not affect the location of the pharmacophoric atoms, multiple
identical distance matrices along those torsional bonds will be generated; and (iii) very
small torsional increments may miss superimposable conformations unless the distance
matching tolerence is increased.
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the torsion angles. If one has a hypothesis to select a few of these matrices as the possi-

Fig. 2.. A two dimensional representation of            the distance map in the torsional space  (ω1 and ω2).
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3.2.3.
Marshall et al. used an alternative approach where they mapped the torsion angles in
distance space [22] .The generation of a torsion angle map is computationally more
efficient since once a grid size has been defined. one can very easily assign a grid to
each of the energetically allowed conformations during the conformational search ac-
cording to its distance property. A schematic representation of torsional (orientation)
mapping in the distance space is represented in Fig. 3 . The simplest approach to test the
feasibility of superimposition of a set of equivalent atoms in two molecules is to
compare their orientation map. If a grid is occupied by both the molecules, those 
conformations are superimposable if their chirality is the same [2]

The weakness of this approach is that the outcome is dependent on the distance grid
size. If one arbitrarily uses a very large grid size, most conformations will be placed i n a
few grids and will suggest many poorly superimposable conformations as super-
imposable [21] Too small a grid size will create many unoccupied grids and may
suggest many fairly superimposable conformations as non-superimposable simply
because they occupied a close neighboring grid. The ideal grid size that can avoid

Orientation map in distance space

Distance     d2

Fig. 3. A schematic tw o dimensional representation of an orientation map in the distance space. The circles
and the squares represent the conformations of tow different molecules satisfying the distance range of the
occupied grids, and d1 and d2 are the two pharmacophoric atom distances.
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Fig. 4. Description of the various internal coordinates affecting the AD distance, as used in equations I and 
2.

during a torsional angle increment in the conformational search process. The distance
between atoms A and D during the rotation around bond B-C (Fig. 4) is given by:

(1)

where d’s, θ ’s and ω  are the various bond distances. bond angle (Fig. 4).

The differentiation of r² with respect to ω gives:

= (2)

Equation 2 shows that the rate of change in distance between A and D depends on d1

and d3. The higher the values, the greater is the rate of change. In addition, the change is
maximal when the bond angles as well as the torsion angle arc 90°.Unfortunately. the
pharmacophoric atoms A and D are often not directly bonded to B and C and, therefore,
all of these variables may have a wide range. In other words, the appropriate grid
spacing is a function of several variables and will differ from one atom pair to another
and even from one conformation to another.

Creating a distance map from torsional space [21] was in a better position from these
difficulties, because the distance range tends to change according to the increment step
size of the torsion angles and the other variables, as shown in Eq. 1. The precision of the
superimposed structure was determined by the coarseness of the torsional increment
during the conformational analysis.

3.2.4. Disco program
In Disco, Martin et al. [15] automated the identification of possible pharmacophoric
groups in a molecule and applied Kuhl et al.’s [23] clique finding algorithm to deter-
mine their superimposability. They, however, used a set of distance matrices represent-
ing a few low-energy conformations of the molecules as used by Marshall et al. [3] and
Ghose et al. [13,14] instead of a distance range matrix. Since it used a distance tolerance
for accepting a distance match in a discrete distance representation of a flexible mole-
cule, it often had to redo the matching with increased tolerance when no matching was
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found with at least three pharmacophoric groups. The method was successful in identi-
fying the traditionally accepted pharmacophores of the benzodiazepines, as well as in
fitting some newer 2-aminothiazoles in the traditional pharmacophores. Disco is an 
attractive tool for generating alternate possible pharmacophore hypotheses. It is now
commercially available [24] and it is expected to be extensively explored by the
researchers of this field in the near future.

3.2.5.
Payne et al. probably was the first to apply [25] GA for pharmacophoric geometry de-
termination. Genetic algorithm mimics the process of evoluation where new generations
are born by crossover and mutations of genes and the fittest members survive over the 
time. Any optimization process can be used by the GA programs by encoding the inde-
pendent variables in a string of bits called chromosomes. The fitness of each chromo-
some can be measured by a function. An initial population is randomly created and the
fitness of its members are evaluated. A set of reproduction operators (crossover, muta-
tion, etc.) is used to create the children. The fitness of the children is evaluated. The
children replace the least-lit members of the population. The process continues as long
as it finds better-fitted children. Here the conformational variables were encoded in a bit
string and a fitness function was represented by the distance of the superimposed atoms.
It is definitely more efficient than a Monte Carlo-type search. However, when there are
multiple superposable conformations, it may fail to detect all of them. There is no guar-
antee that the method will find the global minimum. Sometimes convergence may be a
problem also. 

3.2.6. DHYDM method 
The DHYDM (Distance Hyperspace Distance Measurement) [S] method was developed
by Ghose et al. to avoid the grid size problem of the orientation-mapping approach
developed by Marshall et al. [22].This method involves the following steps.

(i) Do a conformational search and generate an orientation map (Fig. 3) for each mole-
cule independently. The conformational analysis and orientation map generation
can be accomplished by Sybyl software [24].

(ii) Determine the distance of the centroid of the occupied grids of molecule 1 from
those of the i’th (initially 2nd) molecule in the distance space and store the
minimum distance for each grid using the following expression:

Genetic algorithm (GA) based approach

where dij represents the diatomic between the i’th occupied grid of the molecule 1 and
the j’ th occupied grid of molecule n in distance hyperspace, and dci,k represents the
distance of the center of the i’th grid along the k’th dimension. It is simply the mean of
the minimum and maximum distances of the grid along the k’th dimension.

(iii) Repeat step (ii) for the rest of the molecules. If the minimum distance is greater
than the stored value, replace it by the current minimum.
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(iv) Rank-order the minimum distance values and accept those grids which found occu-
pied grids within an acceptable limit.

(v) Accept the conformation in the grid if' a rigid fit gives a good rms deviation of the
pharmacophoric atoms from a conformation of the reference molecule in that
grid. Since distances do not contain the chirality information (enantiomeric con-
formations have the same distance properties), this step may be very important.

Unlike most other methods, the advantages of this method are:

1. The outcome of this experiment can be monitored to set an upper limit on the mol-
ecular mechanics energy of an acceptable superimposable conformation. This may
be important if the best solution for a low-energy cutoff is not geometrically 
acceptable.
When the molecules are not sufficiently diverse in their conformational behavior
and, therefore, are superimposable in many different low-energy conformations,
the method will detect such a situation and will inform the investigator about multi-
ple possibilities. In the absence of other criteria for the acceptance of these possible
conformations, one can prioritize on the basis of conformational energy.
This method also accounts for the complete low-energy conformational space and
not just the grid points explored in the search process. The computational burden of
this method, however. precludes its use for a fast but approximate 3D database
search [8].

2 .

3 .

The main disadvantage of this method is the computational speed. It needs a thorough
conformational search for all molecules. When there arc many torsion angles, the
method may still be used by increasing the angle increment and setting the unimportant
torsion angles to a local minimum.

4. Experimental Verification of a Pharmacophore Geometry

One obvious major- problem with computer modelling is that it is not an experimental
result, even though the input data was supplied from experimental findings! To improve
confidence in the result, appropriate steps should be taken to validate the pharma-
cophore model. Several approaches can be used to validate the pharmacophore model.

4.I .

Analysis of the binding affinities of the compounds which can/cannot attain the pharma-
cophore geometry in the various allowed low-energy conformations may give an indirect
support to the pharmacophore model. In general, if there is a low-energy conformation of
the molecule satisfying the pharmacophore geometry, it should be active, otherwise not.
However, this experiment may not be very conclusive since a molecule having a perfect
match for the pharmacophore may suffer from steric repulsive with the binding protein
from the other parts of the molecule. Some pharmacophores may interact less strongly
with the protein and give detectable binding without proper alignment or even in its
absence. Some molecules may bind in a totally different binding mode.

Analyzing binding affinities of comparable coinpounds 
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4.2. Analyzing constrained compounds

Making constrained compounds to validate a pharmacophore theory is one approach
often used by medicinal chemists. The constrained compounds with appropriate phar-
macophoric groups, in theory, should have a higher binding affinity due to smaller
entropy loss upon binding with the protein. In reality, it may not happen the expected
way because the accepted or computed pharmacophore geometry may not be the ideal
geometry or for the reasons already discussed. In an alternate view, if the constrained
compound is not totally free from torsional rotation, positive binding may not always
confirm the pharmacophore geometry.

4.3.

Is it possible to determine the binding conformation of the ligand without the tedious
process of crystallizing and solving the ligand-protein complex structure? High-
resolution NMR spectroscopy [5] may often be a good complementary tool for this
purpose. This method needs appropriate isotopically labeled inhibitors for generating
NOEs. The NOE constraints are determined in presence and absence of the binding
protein. Wang et al. [5], for example. used an 15N-edited and decoupled NOESY spec-
trum of compound Phe analog of I (Fig. 5 ) in the presence and absence of human
fibroblast collagenase (HFC). Analysis of NOE peaks derived from the labeled NH of
the bound inhibitor. they inferred that there was a methyl group within a short distance
from the labeled NH, possibly less than 3 Å. Since there is only one label in this com-
pound, it was not possible to distinguish intermolecular and intramolecular NOEs. The
NOESY showed that the two prochiral ß protons have strong and comparable NOE
intensities. On the other hand. the cross-peak with the phenylalanine ortho protons is
very weak. These results suggest that the two ß protons are at similar distances from the
NH and the phenyl ring is probably in the trans position to it. This observation was
consistent with the suggested active conformation of I.

4.4.

The most realistic test of the pharmacophore hypothesis involves the solution of the
protein-ligand crystal structure either by X-ray crystallography or NMR [5], although
we do not very often get the chance to perform such an elaborate experiment. This
approach needs a sufficient quantity of purified protein. The NMR study needs iso-
topically labeled proteins. The X-ray method needs good-quality crystals of the
ligand-protein complex. In the current industrial drug-research setting, we often start
with a target protein without a known 3D structure, and a long Iead time before the
structure is solved. In absence of the protein structure, pharmacophore identification is a
common approach in drug research. As a consequence, in the future we will get more
examples where ligand-receptor complex structures will support or refute pharma-
cophore hypothesis. For the collagenase (HFC) inhibitors, Ghose et al. used their
DHYDM method and a set of partially constrained and unconstrained inhibitors (Fig. 5 )

Biophysical determination of the binding conformation

Biophysical determination of the ligand-receptor complex structure 
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Fig. 5. The structures of the various constrained and unconstrained collagenase inhibitors used for the 
pharmacophore geometry determination.

to propose a pharmacophore geometry and, finally, solved a collagenase-ligand com-
plex structure using X-ray crystallography. Ten of the eleven torsion angles of the
bound conformation of the ligand were within an acceptable error limit (Table 1). A
stereoview of the computed pharmacophore model and the X-ray structure of a related
bound ligand are shown in Fig. 7.
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Fig. 6. Description of the torsion angles as used in Table 1.

ªSee Fig. 6 for the description of the torsion angles.
bThe angle range is given from the first experiment; the values within parenthesis are the average value in
different inhibitors.
CThe value suggested from the alternate conformation of trans nine membered lactam in the Cambridge
Structural Database.
dThedifference from the mid-point of pharmaacophore model range.
eThevalue from the unconstrained acyclic compound I only.

Fig. 7. A stereoview of the computed pharmacophore model superimposed on the X-ray structure of a related
bound ligand.
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4.5.

In the recent literature, there were a considerable number of papers which studied the
conformations of a set of bioactive compounds either by X-ray [26–30] or by NMR
[31–35] to propose a pharmacophore model. Whether such methods are justified
is arguable, since it is the protein or biological molecules which dictate the binding
conformation, sometimes with minor adaptation on its own. A ligand will bind to the
biomolecule provided it can take a complementary conformation with a low expense of
energy. In other words, the binding conformation may not be the most populated con-
formation in the free state. Nicklaus et al. [36] recently studied the various ligands
available in the protein databank. Many of these compounds were also available in the 
Cambridge structural database in their unbound state. None of these structures resem-
bled the bound conformations. Only a careful analysis of the structures of multiple com-
pounds in their unbound conformation may shed light on their binding conformation.

5. Applications of Pharmacophore Modelling

Pharmacophore modelling is an excellent research tool in drug research. It is useful at
the very early stage when no lead has been generated, but we know a natural substrate 
as well in the later stage when a ligand-receptor complex structure has been solved.
Being a qualitative approach, one does not need to have very good-quality binding data.
As the organic synthetic approaches become more automated, pharmacophore modelling
is likely to be used more extensively. We will discuss here the most common applica-
tions of pharmacophore modelling.

5.1.

The most common and useful application of pharmacophore modelling is in database
mining. In recent years, a large number of very useful databases have been supplied by
the chemical software companies, such as ACD (Available Chemical Directory),
MDDR (Molecular Drug Directory Report) and CMC (Comprehensive Medicinal
Chemistry) [37]. The development of the reliable methods of conversion of 2D to 3D
structures enabled the creation of these and proprietary 3D databases. These 3D data-
bases can not only be searched for traditional substructures, but also for a three-
dimensional pharmacophoric geometry. One can do such searches under various 
conditions. When several lead compounds are available, one can try to develop a
uniquely defined 3D pharmacophore hypothesis using one of the approaches discussed 
above, and subsequently, use that information for searching novel leads. When only one
lead structure is available, the possible pharmacophoric groups may be searched for a
few of its low-energy conformations. When such a lead is unavailable, natural sub-
strates may be used. However, a 3D database search may be complicated by the fact that
most organic molecules are flexible. The choice of strategy used to cover the flexibility
may change with the problem. For high-throughput screening, one may simply use a 
distance range matrix for this purpose. A comparison of the distance range matrix

Biophysical determination of the conformation of the free ligand 

Pharmacophore model and database searching 
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(being a negative test, see section 3.2.2) will pick a certain number of compounds that
will not be able to satisfy the pharmacophore geometry. But absorbing those false hits
may not be difficult in a high-throughput screening.

More difficult screening may need more careful selection of the compounds. One
such approach was used in the Galaxy 3D database [38]. The 3D database here was
created after a rapid conformational search capable of identifying a very low-energy
conformation, if not the global minimum energy conformation. The advantages of
keeping a very low-energy conformation are two-fold. If a rigid matching is done, the
hit will be valid since the conformation used is an accessible conformation. When a
flexible search is desired, the conformation can be computed directly from the distance
geometry embedding program by setting the required pharmacophoric distances along
with the bond distance and bond angle distances. Comparison of the energy of the com-
puted conformation (if available) with the energy of the conformation in the database
will immediately prompt its energetic acceptance.

5.2. Pharmacophore model and 3D QSAR

Most 3D QSAR techniques [13,39–41] need to superimpose the 3D structures of the
inhibitors as the first step. The pharmacophore modelling may be used as the basis for
such superposition. In general, there are two types of 3D QSAR approaches. The
physico-chemical property-based approaches like REMOTEDISC [13,40] where the
local properties are clustered spatially from the superimposed 3D structures of the
ligands and the clustered properties are correlated with the biological activity. Such
methods give a physical interpretation of the nature of the hypothetical binding pocket of
the protein. The field-based approaches like COMFA [41] calculate the interaction of the
ligand molecules with atoms representative of the protein atoms at an arbitrarily defined
set of grid points. The interaction energies are correlated with the binding affinity to
develop a comparable interpretation of the nature of the protein-binding pocket. What
comes out of these approaches depends on the conformation used, as well as the mode of
superimposition of the ligands. Although COMFA does not supply any definite algor-
ithm for the superimposition of the ligands, it is definitely a good idea to use the pharma-
cophore modelling to initiate the COMFA. Hopfinger’s molecular shape analysis [42]
and APEX-3D [43] often used pharmacophore hypothesis to a 3D QSAR analysis.

5.3.

Pharmacophore models can be used for a de novo design of novel compounds. The
structural moieties to connect the pharmacophore may be selected by using the attach-
ment bond vectors of the pharmacophore and searching a 3D database of molecular
structures [44] or using some standard spacers (molecular fragments) from a library
[45]. These approaches definitely help medicinal chemists to get ideas about novel 
structural class of compounds. However, since most often such compounds have to be
synthesized, the utility of these programs will be less compared to database searching
programs where one can get ‘ready-made’ compounds.

Pharmacophore model and de novo design
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5.4.

The most useful combinatorial library design programs can analyze the reactants in
terms of its diversity. It may be debated whether the diversity will be in terms of key
physico-chemical properties like hydrophobicity, polarizability, volume, etc. or in terms
of the nature of the pharmacophoric groups or both. Diversification, in terms of the
nature of the pharmacophoric groups alone, is also an excellent way to probe the
binding site [46]. In general, while designing a ‘universal library’, one should diversify
the nature of the possible pharmacophoric groups of the whole molecule. The focused
libraries should be diversified for each and every combinatorial substituents.

Pharmacophore modelling and combinatorial library design

6. Critical Aspects and Comments

One should be critical while using a pharmacophore hypothesis, Constraining the con-
formation often leads to a loss of binding affinity. although entropy gains arising from
the reduced conformational distribution should facilitate binding. Problems in such mol-
ecules may be due to: (i) constraining the conformation at an angle somewhat distant
from the ideal angle; and (ii) bad interactions of the constraining structural moiety with
the enzyme binding site. It is not certain how much drop in activity of a molecule
should be acceptable while developing or validating the model.

The idea of pharmacophoric modelling does not hold if the inhibitors show a 
considerable activity, even when one or more pharmacophoric groups do not reach the
same region of the active site. Forcing the molecules to attain a conformation where
equivalent groups occupy the same location in such a situation may give a distorted
pharmacophoric model. However, success in the drug-design process is so rare that the 
researchers in this area are often eager to take these risks. The only suggestion to be
offered here may be to analyze the suggested (computed) conformation with the
existing knowledge of conformation of similar molecules.

The pharmacophore modelling is based on the idea that similar inhibitors bind in the
same way at the active site. The X-ray crystallographic data of most ligand-protein
complexes usually confirm this hypothesis. However, there are several exceptions to
this basic idea [47–49]. Multiple-binding mode may often result in a binding pocket
where non-directional forces, like van der Waals or hydrophobic, are dominant. The
application of pharmacophore modelling in such a system may be risky.

Staying close to a lead compound maximizes the chance of finding an active com-
pound. Unless it is necessary to get a very different compound (maybe for patent-
ability), one should try to make the smallest change from the lead compound while
searching a database.

In general. pharmacophore modelling is more useful than QSAR approaches at the
initial phase of drug discovery. Also it is more often applied since i t does not need a
very good-quality biological activity or binding data. Unfortunately, such a relaxed
condition may easily lead to a misuse of various methods in this area.
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1. Introduction

The development of a new drug is an extremely laborious and time-consuming process.
Thus, quite early on, computer methods have been used to further an understanding of
the interactions of a drug with its receptor. Molecular modelling and rational drug design
have become indispensable tools for the development of a new drug [1]. Recently, com-
binatorial chemistry and high-throughput screening have been introduced in order to
speed up the drug development process. These methods produce massive amounts of
data that have to be analyzed in an efficient manner in order to make best use of these
novel methods. We will show here that self-organizing neural networks, such as the one
introduced by Kohonen [2].can be used both in rational drug design and in combinator-
ial chemistry.

The application of neural networks in chemistry has increased dramatically in recent
years [3–5] .In a Kohonen neural network (KNN), the artificial neurons self-organize in
an unsupervised learning process and, thus, can be used to generate topological feature
maps. It will be shown here that this potential can be utilized to analyze the shape and
surface properties of those three-dimensional objects responsible for biological activity,
molecules.

In these applications, there is a one-to-one mapping of a single molecule into a single
Kohonen network. However, a Kohonen network can also be used for the analysis of
datasets of molecules, where several molecules are simultaneously mapped into one 
Kohonen network. In order to make full use of the potential of self-organizing net-
works, novel representations of molecular structures have been developed. These
methods can be put into a clear hierarchy, starting from molecular topology going all
the way to molecular surfaces. They do not only encode structural information, hut also
information on the properties of atoms or of molecular surfaces.

2. Self-organizing Neural Networks

A Kohonen network can be used to study data of high-dimensional spaces by projection
into a two-dimensional plane. The projection will be such that points that are adjacent in

H. Kubinyi et al. (eds. ). 3D QSAR in Drug Design, Volume 2. 273–299. 
© 1998 Kluwer Academic Publishers. Printed in Great Britian.
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Fig. 1. Architecture of a Kohonen neural network The input object X = (x
1
, x2, ..., xm) is mapped into an

n X n arrangement of neurons, j, each having a weight vector Wj = (wj1, Wj2, ..., wjm).

the high-dimensional space will also be adjacent in the Kohonen map: this explains the 
full name of the method. self-organizing topological feature maps. 

Figure 1 shows the architecture of a Kohonen network: each column in this two- 
dimensional arrangement represents a neuron, each box in such a column represents a 
weight of a neuron [5]. Each neuron has as many (m) weights, wji, as there are input
data, xi, for the object that is being mapped into the network.

An object, a sample, s, will be mapped into that neuron, sc, that has weights most
similar to the input data (Eq. 1 ): 

(1)

The weights of this winning neuron, sc, will be adjusted such as to make them even
more similar to the input data. In fact, the weights of each neuron will be adjusted but to 
a degree that decreases with increasing distance to the winning neuron. There are 
various ways for utilizing the two-dimensional maps obtained by a Kohonen network: 

1.

2.

3.

Representation: the two-dimensional map can be taken as a representation, an 
encoding, of the higher-dimensional information. 
Similarity perception: objects that are mapped into the same or closely adjacent 
neurons can be considered as similar. 
Cluster analysis: points that form a group in such a map, clearly distinguished from 
other points, can be taken as a class or category of objects having certain features 
in common. 
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3. Computational Details

The 3D structures of all molecules studied in the investigations reported here were gen-
erated by the 3D structure generator CORINA [6–9] and used without further optimiza- 
tion. Partial atomic charges are calculated by the PEOE (Partial Equalization of Orbital
Electronegativity) method [10] and its extension to conjugated systems [11]. Residual
electronegativity values were also obtained by the above two procedures [ IO,11] by
considering the charge dependence of electronegativities [12].The method for the cal-
culation of atom polarizabilities has been published in reference [13]. These methods
are collected in the program package PETRA (Parameter Estimation for the Treatment
of Reactivity Applications) [14].

The molecular electrostatic potential was obtained in a classical manner by moving a
point charge on the molecular surface and calculating the potential according to
Coulomb,s law from the partial atomic charges [15]. Any molecular surface can be
taken into account; in most cases, we used the van der Waals surface.

The Kohonen neural networks were generated and analyzed by the Kohonen map
simulator KMAP [16]. The study of the benzodiazepine and dopamine dataset was per-
formed with an implementation of a Kohonen network on a massively parallel com- 
puter, MasPar [17,18]. In many studies reported here; the same dataset was used: 31
steroids binding to the corticosteroid binding globulin (CBG) receptor [19,20]and for
which affinity data were available in the literature [21-23]. This dataset was chosen
because it had been studied with other methods [20,24,25]. Quite intentionally the same
dataset of CBG steroids is used again and again. in order to render the various methods
comparable and show which features they emphasize.

4.

4.I .

4.1.1. Methods and results
A Kohonen network can be used to map a molecular surface into a two-dimensional
plane. For this mapping of a molecular surface, points on this surface are chosen at
random and their three Cartesian coordinates are taken as input into a KNN, with each
neuron having three weights [26,27]. As the molecular surface is without beginning and
without end, is was decided also to choose for projection a two-dimensional plane 
without beginning and without end, h e surface of a torus. For visualization, the torus is
cut along two perpendicular lines and the surface spread into a plane.

With a toroidal network, the maps can be shifted, mirrored and rotated against each
other to achieve a similar position of their patterns. The surface of a molecule and the
surface of a torus have a different topology and, therefore, this mapping process must
lead to topological distortions that result in empty neurons. This feature of the mapping
process in a Kohonen network has been analyzed and explained in detail [28].

Once the network has been trained, the entire dataset is sent again through the
network and each neuron is colored with a property on the molecular surface that exists

One Molecule into One Network

Maps of molecular surfaces
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at that point(s) that is (are) mapped into the neuron considered [27]. In this coloring
process, any molecular surface property can be chosen such as molecular electrostatic 
potential, hydrogen-bonding potential, or just a color identifying the surfaces of differ-
ent types of atoms.

In order to give an idea of the correspondence between a 3D space and its 2D map,
we show in Fig. 2 (see p. 279) as an example the projected Kohonen maps of the van
der Waals surface of corticosterone. The values of the electrostatic potential on the
molecular surface (MEP) determine the colors of the map.

Corticosterone has two sites with a large negative value of the MEP, the carbonyl
group at positions 3 (4) and the side chain COCH2OH at position 17 (1) (Fig. 2).
Consistent with this, the Kohonen map (Fig. 2) shows two spaces with a red-yellow
color of these sites. The spatial distance of these groups is reflected by two different
shapes of the projection of the MEP into the Kohonen network. The third site with a
negative value of the MEP stems from the hydroxyl group at position 11 (3). A space
with a yellow color is reserved in this map for this group. Furthermore, the large posi- 
tive MEP area of corticosterone is below the D-ring and the side chain at position 17 (2).
The projection of the MEP into the Kohonen map indicates the location of this space
(violet color) close to the space of the negative MEP area of COCH2OH at position 17.

4.1.2.
The comparison of Kohonen maps of molecular surface properties offers a technique for
the perception of similarities in ligands binding to the same receptor. Kohonen maps of
the molecular electrostatic potential have been generated for four ligands that bind to
the muscarinic receptors and four ligands that bind to the nicotinic receptors and are
shown in Fig. 3.

Visual inspection of these maps clearly shows characteristics that are common to the
four molecules binding to the muscarinic receptors and are not contained in the maps of
the four ligands binding to the nicotinic receptors [20] .The nicotinic compounds, for
their side, show common features different from those of the muscarinic ligands. Thus,
inspection of these eight maps allowed a clear separation of molecules that either bind
to the muscarinic or the nicotinic receptors.

4.1.3. Averaged maps
In the previous example, a visual comparison of the Kohonen maps of the molecular
electrostatic potential was made, thus allowing one to differentiate ligands that bind to
two different types of receptors. The question is now whether such a comparison can be
put onto a more objective basis. This will be explored with 31 steroids for which the
CBG affinities are known [21–23]. The distribution of the compounds into high-, inter-
mediate- and low-affinity classes are defined in reference [24].

For each of the 31 steroids, a Kohonen network was trained, using the three Cartesian 
coordinates of points on the molecular surface as input into the network. The values of the
MEP determine the colors of the map. For a more objective analysis, the averaged maps
for the sets of high-, medium- and low-active compounds were generated (Fig. 4). For this
purpose, each neuron n of the Kohonen maps of the single compounds was assigned a

Visualcomparison of Kohonen maps
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color index in a range of ten values representing the MEP of the potential the neuron
obtained during the training process. Then the colors of the neurons in the averaged maps
were obtained by averaging the color indices of the neurons in the single maps. 

The MEP pattern of the most polar area in the averaged map of the highly active com-
pounds is the most pronounced one. In the three averaged maps, the pronunciation of the
polar spaces decreases according to decreasing activity of the compounds. Therefore, a
comparison of the maps of steroids with the averaged map allows one to establish
whether a molecule belongs to the active or inactive CBG compounds. The averaged
map of the highly active compounds can be used to build a pharmacophore model.

4.1.4.
The investigation of the previous section can be taken one step further. If, indeed, the
maps of the molecular electrostatic potential allow one to distinguish high-active com-

molecules? In other words, we first train a, say, 20 X 20, Kohonen network with the
three Cartesian coordinates of points of a molecular surface. Then, the entire dataset is
sent again through the network and an extra layer of the network used for labeling the
network is colored with the electrostatic potential of the points that are mapped into
each neuron. (This is the procedure as outlined in section 4.I.I.) The values of the MEP
(or the color) of the 20 rows of this label layer, each consisting of 20 values, are then
concatenated to give a 400-dimensional vector. This vector is a two-dimensional repre-
sentation of a molecule as it has been obtained by projecting a molecular surface into
two dimensions and is used to train a second Kohonen network of size 5 X 5 . The result
is shown in Fig. 5 .

It can be seen that the steroids quite nicely separate into groups of compounds of
high. medium and low activity. Only one compound of medium activity shows a colli-
sion with highly active compounds by being mapped into the same neuron.

Maps as a two-dimensional representation of molecules 

4.I.5. Bioisosteric design
The bioisostere database by lstvan Ujvary (BIOISOSTER version 1.3), a database of
analog design, including 1515 bioisosteric groups was analyzed. The question was if
some coherency between the physico-chemical properties and the bioisosteric effect can
be deduced by looking at the calculated Kohonen maps of these groups. Figure 6 shows
an example of such a structure-pair in this database. The squares show those parts of the
structures which are defined as bioisosteric groups.

Several hundred pairs from this database were selected. The selection of these com-
pounds was based on diverse structural fragment pairs as far as possible. From the se-
lected database the bioisosteric groups are then cut out. The 3D structures of the
selected fragments are calculated using the program CORINA [6-9]. The MEP were
calculated on the van der Waals surface. Then, the Kohonen maps were calculated for
each bioisosteric groups with a unique color plate. Figure 7 shows some examples of
the calculated fragments. As shown here, the fragment pairs are structurally quite differ-
ent, but their maps show a high similarity in the electrostatic potential patterns.
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This is an interesting result because it offers the possibility for selecting fragment 
pairs of this database, which can have a general validity, true bioisosteric groups.
Therefore, we constructed a 3D database of several hundred fragments and functional
groups including their corresponding Kohonen maps. The comparison of the electro-
static potential patterns of the maps of such a library can be used to cluster bioisosteric
groups and, consequently, improve the efficiency of the 3D design of bioactive
molecules.

4.2. Comparative maps

4.2.1. The template approach
A Kohonen network stores the information on an object that is used for training. This
fact inspired the use of a Kohonen network trained with the molecular data of a given
molecule as a reference molecule, a template, for the comparison with other molecules 
[30,31]. The general idea of such a comparative mapping is shown in Fig. 8. The
Cartesian coordinates of the points taken from the molecular surface of a butane mole-
cule (a) are used to train a Kohonen network (c). In the example shown in Fig. 8,
neurons of the map (d) are colored by giving the surface belonging to carbon atoms 1 to
4 of butane, and the hydrogen atoms bonded to these carbon atoms different shades of
gray. The network (c) can now be used for the comparison of the surface of molecules
other than butane. In our example, it was used for the simulation of a map of the
propane molecule (b). Such a map (e) can be seen as a superposition of the compared
molecule onto the template molecule, propane and butane in our case. A point from the
coinpared molecule will find a neuron in the template network having weights quite 
similar to coordinates of the point from the surface of the compared molecule 
(cf. Eq. 1). However, neurons corresponding to those parts of the surface of the template
molecule that have no counterpart on the surface of the compared molecule will not
become exited and, thus, stay empty. In the comparative map that is obtained by
filtering the compared molecule through the reference network of the template mole-
cule, the empty neurons show up as white areas indicating where the surface of the
reference molecule differs from the surface of the compared molecule.

Different settings of the parameters for training and testing of the Kohonen network
program allow one to emphasize certain aspects of the molecular surface to a different 
extent. In particular, the value for the threshold that determines whether the input data
of an object match with the weights of a neuron (cf. Eq. 1) can render the number of
non-matching (empty) neurons and. thus. the white area in the comparative map larger
or smaller. This is indicated in Fig. 8 where one setting (top map, Fig. 8e) somehow
indicates the entire methyl group of butane to be lost in propane. whereas the second
setting (bottom map, Fig. 8c) shows the major difference to reside in the three hydrogen
atoms of the methyl group of butane being lost in propane.

The basis of the template approach is an analysis of the shapes of molecules and the
quantification of a shape similarity or dissimilarity within a series of compounds using a
reference molecule. This is of particular merit for the comparison of a series of bio-
logically active compounds. The larger the difference in shape between the reference
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Fig. 5. Mapping of a dataset of 31 steriods binding to the corticosteriod binding globulin (CBG) receptor
into a toroidal 5 X 5 Kohonen network. Each steriod is labeled by its activity range: H = high, M = medium
and L = low activity.

Table 1

Name of molecule No. of Name of molecule No. of

Number of empty neurons for the maps of CBG compounds (total number of neurons = 2500) 

empty neurons empty neurons

Corticosterone 0 16α, 17-dihydoxyprogesterone 69
Cortisol 15 19-nortestosterone 357
11-deoxycortisol 52 Dihydrotestosterone 324
17α-hydroxyprogesterone 61 2α -methy1-9α-fluorocortisol 28
2α -methylcortisol 6 4-androstenedione 350
I I -deoxycorticosterone 50 Androsterone 417
Cortisolacetat 13 Eticholanolone 710
Prednisolone 140 Pregnenolone 108
Progesterone 58 17α-hydroxypregnenolone 130
Epicorticosterone 46 Estriol 636
17α -methylprogesterone 113 Estrone 700

19-norprogesterone 152 Dehydroepiandrosterone 378
4-pregnene-3,11,20-trione
Testosterone 296 5-andostenediol 332
Aldosterone 225

Cortisone 75 Estradiol 644
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Fig. 7. Some examples of the bioisosteric groups and their calculated Kohonen maps. 

4.2.3.
The identification of the pharmacophore in an assembly of structurally diverse ligands is 
quite a difficult task, especially when the structure of the target molecule, the receptor, 
is not known. It will be demonstrated how Kohonen networks can be utilized for this 

Backprojection of maps onto molecular shapes 
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f) d) e) f) 
Fig. 8. The idea of comparative Kohonen mapping of two molecules A template butane molecule (a) trains 
(black arrow) a Kokonen network (c) allowing for 2D visualization of the surface of two methyl (CH3) and
two methylene (CH2) groups (d). Difference settings of the parameters (two examples) during training result in
only slightly different template patterns (d). The same network (c), if used for processing the molecular data
coming from propane (b), gives a comparative pattern of the propane molecule (e). Different settings of the 
training parameters allow for showing such aspects of similarity that comply with the simple analys is coming
from a chemist (f) — i.e. propane lacks the entire terminal methyl group of butane that is taken in the square 
within upper formulas; if, however, the carbon atom of this methyl group is superposed on one of hydrogen 
atoms of the propane molecule the difference will consist in three hydrogen atoms as indicated with squares
in the bottom formulas. 

problem by elucidating the pharmacophore of allosteric modulators of muscarinic 
receptors, a group of drugs under development. which can enhance the activity of an 
antagonist in a very specific manner [32]. In a previous publication [33], it was shown 
how the pharmacophore can be mapped out with a small number of allosteric modulators. 
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Here, we limit the discussion even further by only exploring alcuronium as the most
potent compound, characterized by an almost rigid structure, and the flexible W84 as a
representative of a wider range of hexamethonium and bispyridinium compounds [32–35].

Two different conformations of W84 were explored, the extended form 4e, obtained
from CORINA, and a slightly distorted sandwich form, 4d, found by molecular 
dynamic calculations and subsequent optimization by the semiempirical AM1 method. 
For alignment, the rigid alcuroniirm was chosen as a template. Both conformations of 
W84 were superimposed onto alcuronium first using the positively charged nitrogens, 
because they were assumed to be the most important feature for the first step of ligand 
receptor recognition. In addition, both aromatic rings were matched onto each other. 
The superposition of the extended, linear conformation of W84 (4e) and alcuronium (1)
with the fix points of two positively charges nitrogens resulted in protruding phthalimido 
rings at both ends of alcuronium (Fig. (9a). The alignment of alcuronium, 1, and the dis-
torted sandwich conformation of W84 (4d), revealed a much better fit (Fig. 9b). 

In order to find out the similarities in the inolccular surfaces and, thus, properties of 
these molecules, the surfaces were sent into Kohonen neural networks and colored by
labeling the neurons according to the kind of atom the corresponding points belonged to
(atomic surface assignment, ASA). The ASA maps showed that, firstly, the maps of
alcuronium and that of the distorted sandwich conforination of W84 are similar,
whereas the one with the extended form of W84 is quite different.

For a more quantitative comparison of the 3D shape of the molecules, a template 
approach was made sending both conformations of W84 through the Kohonen network 
of alcuronium as reference compound. The maps obtained for the surface of the mole- 
cules show a rather  large number of empty neurons reflecting that the shape of the
molecules is fairly different from the shape of the large reference molecule alcuronium.

There is an even more illustrative method for showing the correspondence of two 
molecular surfaces. The map of the second molecule obtained by sending it through the 
Kohonen network of the first, the reference molecule, can be projected back onto the 
three-dimensional surface of the reference structure alcuronium. Fig. 10 shows the 3D 
models of the surface of alcuronium 1 with a backprojection of the Kohonen map of the 
extended conformation and that of the distorted sandwich-like conformation of W84, 4e
and 4d, respectively. Those places that have empty neurons in the template maps are 
indicated by a black open mesh on the surface of the alcuronium. 

This way of representation impressively exhibits the similarities between alcuronium 
and the distorted sandwich conformation of W84 (4d). The extended conformation of 
W84 tills only the center of the alcuronium surface. In contrast. the distorted sandwich- 
like conformation of W84 covers much more area of the surface of alcuronium. 
Moreover, the essential features, both aromatic skeletons and both positive charges, color 
the surface exactly at the same places for this sandwich conforination and alcuronium. 

Taken together, the following conclusions can be drawn [30]: firstly, the pharma-
cophore consists of two positively charged nitrogens in a distinct distance from each 
other and two heterocyclic, aromatic rings, both closely located in the hydrophobic 
central chain; secondly, the distorted saiidwich geometry appears to be the conformation 
W84 takes up upon binding to the allosteric binding site; and thirdly, electrostatic inter- 
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Fig. 9. Superposition of the skeleton of the extended form of W84 (4e) and the distorted sandwich form of 
W84 (4d) onto alcuronium (1).

1 4e 4d

Fig. 10. Backprojection of the Kohonen maps shown in Fig. 28a–c onto the molecular surface of 
alcuronium 1. 
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actions have been found to be primarily responsible for the molecular recognition 
between receptor and ligand.

4.2.4. Descriptors from comparative maps
The more the surface of a template (reference) and a compared molecule differ from
each other, the higher is the number of empty neurons. Therefore, this value can be
taken as a measure describing the difference in the geometry of the molecules input. 
This approach can be taken one step further also to describe differences in molecular 
surface properties In principle, any molecular surface property can be taken but we
limit the discussion to the molecular electrostatic potential (MEP). The entire spectrum
of the electrostatic potential is divided into ranges (e.g. 10 ranges) each indicated by a 
specific color. Therefore, the map is coded by a matrix with elements that take discrete
values from 1 to 10, while 0 codes empty neurons. Clearly, also the real values of the
electrostatic potential could be used, but we wish to keep the discussion here simple.

Figure 11b shows an example of the comparative MEP maps of two similar mole-
cules shown in Fig. 1la. Figure 11c compares the histogram of the occurrence of the
neurons colored with the respective colours 0-10 . We can define descriptors for the dif-
ferences in color profiles of the maps. By comparing the occurrence of neurons having
the same color (range of MEP):

(2)

with ki = 1 for neurons colored with the respective color coded by i and ki = 0 for all
other colors, while the matrix coding a feature map is of size n X n.

The difference between the map of the template and the compared molecule is given by:

(3)

with the index, T, denoting the template, and M the molecule being compared. We can
also include the range of the electrostatic potential coded by a certain color and obtain a
modified Eq. 4:

(4)

where ci is a value (1-10) defining the range of the electrostatic potential coded by the
respective color i and (ci)jk denotes the components of the matrix. of size n X n, coding
this respective color within the feature map.

These descriptors can be calculated for a single color or for a group of different
ranges of colors — e.g. EP1–3 will give a sum of the EP1 + EP2 + EP3.

A related global EP descriptor was used by Barlow [36]. In contrast, the EP para-
meter calculated for a narrow range of EP will bear only the information on the polar
character neglecting the shape of the molecules.
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Fig. 11. comparative patterns (b) of two molecules (a) and a histogram comparing the frequency of the
occurrence of different colors within the maps (c).

4.3. Quantitative structure –activity studies

One of the basic approaches toward modelling SAR and QSAR relationships involves
the comparison of a series of bioactive molecules. Table 2 gives an overview of a series
of analogs analyzed in previous publications by quantitative structure–activity studies 
using descriptors developed above (section 4.2.4).
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For more details, the reader is referred to the original publications. The major con- 
clusion to be drawn is that the template approach provides a basis for the quantification 
of the shape and electrostatic effects of molecular surfaces, allowing the calculation
of descriptors that are useful for the development of quantitative structure-activity
relationships.

5.

Previously, each Kohonen network was trained with information from only one mole-
cule, in most cases, one molecular surface. The maps thus generated were replications
of one molecular surface, the objects mapped into the individual neuron were points
from the molecular surface. Now, work will be reported where entire datasets of mole-
cules are sent into a single Kohonen network. Each object mapped into a neuron will
consist of an entire molecule. Various representations of molecules have been em-
ployed, as detailed in the following sections.

5.1. Representation of molecules 

The analysis of a dataset of objects by learning methods, be it by statistical or pattern
recognition methods or neural networks, asks for the objects to be represented by the
same number of variables. If the objects are molecules, one has to come up with the
same number of descriptors irrespective of the size of the molecule and the number of
atoms in the molecule. In the following, the transformation of a molecular structure by
autocorrelation is used to obtain a representation by a fixed number of variables. It will
be shown that autocorrelation allows molecules to be considered with different degrees
of sophistication, starting with the constitution (the topology) of a molecule, through the
3D structure all the way to representations of molecular surfaces. In addition, a variety
of physico-chemical properties of the atoms or of the molecular surfaces can be consid-
ered. Such a hierarchy of representations is mainly dictated by the size of the datasets to
be studied: large datasets of molecules ask for rapid encoding schemes, while smaller
ones allow a more detailed consideration of molecules.

Several Molecules into One Network

5.2.

The idea of using autocorrelation for the transformation of the constitution of a molecule
into a fixed length representation was introduced by Moreau and Broto [41]. A certain
property, p

k, of an atom i is correlated with the same property of atom j and these pro-
ducts are summed over all atom pairs having a certain topological distance d . This gives
one element of a topological autocorrelation function A (pk, d) of this property pk:

Topological autocorrelation and the location of biologically active compounds
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The following properties were calculated by previously publ ished empirical methods
for all atoms of a molecule: sigma charge, qσ [I0], total charge, qtot, sigma electro-
negativity, χσ [12], pi-electronegativity, χπ [11], lone-pair electronegativity, χLP , and
atom polarizability, α, [13]. In addition to those six electronic variables, the identity
function — i.e. each atom being represented by the number 1 — was used in Eq. 5 to
just account for the connectivity of the atoms in the molecule.

The autocorrelation of these seven variables was calculated for seven topological dis-
tances (number of intervening bonds) from two to eight. The basic assumption, thus,
was that interactions of atoms beyond eight bonds can be neglected. With seven vari-
ables and seven distances, an autocorrelation vector of dimension 49 was obtained for
each molecule, irrespective of its size or number of atoms. The hydrogen atoms were
not considered in the calculation of the autocorrelation vector.

In order to investigate the potential of topological autocorrelation functions for the
distinction of biological activity, a dataset of 112 dopamine agonists (DPA) and 60 ben-
zodiazepine agonists (BDA) was studied [18]. A Kohonen network of size 10 X 7 was
used to project these 172 compounds from the 49 dimensional space spanned by these
autocorrelation vectors into two dimensions.

The two types of compounds, DPA, and BDA, were nearly completely separated in
the Kohonen map, underscoring the potential of this molecular representation to model
biological activity. To put this capability to a more severe test, this dataset of 112 DPA
and 60 BDA compounds was mixed with the entire catalog of a chemical supplier
(Janssen Chimica catalog, version 1989)consisting of 8323 commercially available com-
pounds comprising a wide range of structures from alkanes to triphenylmethane dyestuffs.

The map of Fig. 12 shows that both DPA and BDA occupy only Limited areas in the
overall map. Furthermore, the areas of DPA and BDA are quite well separated from
each other, only one neuron with BDA intrudes into the domain of DPA and only two
neurons with conflicts, obtaining both DPA and BDA, occur. With the results obtained
here, the search for new active compounds or new lead structures can be restricted to a
smaller area of the entire chemical space. This opens the way for searching for com-
pounds with a desired biological activity and for discovering new lead structures in
large databases of compounds. Closer analysis of the mapping shows interesting
insights that are further discussed in the original publication [18].

5.3.

Ligands and proteins interact through molecular surfaces and, therefore, clearly, repre-
sentations of molecular surfaces have to be sought in the endeavor to understand bio-
logical activity. Again, we are under the restriction of having to represent molecular
surfaces of different size; and again, nutocomelation was employed to achieve this goal
[20] . Firstly, a set of randomly distributed points on the molecular surface has to be
generated. Then, all distances between the surface points are calculated and sorted into
preset intervals

Autocorrelation of molecular surfaces properties 

(6)
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Fig. 12. Kohonen map of 40 X 30 neurons obtained by training with I12 dopamine (DPA), 60 benzo-
diazepine agonis sts (BDA) and 8323 commercially available compounds Only the types of compounds mapped
into the individual neurons are indicated Black identifies DPA, light gray BDA and dark gray the compounds
of unknown activity Empty neurons are .stored in white; the two neurons marked by a black frame indicate
conflicts where both DPA and BDA are mapped into the same neuron.

where p ( i ) and p(j) are property values at points i and j , respectively; dij is the distance
and L is the total number of distances in the interval [d1, du]

represented by d. For a series of distance intervals with different upper and lower
bounds, d1 and du, a vector of autocorrelation coefficients is obtained. It is a condensed
representation of the distribution of property p on the molecular surface.

5.4.

The affinity of 31 steroids binding to the corticosteroid binding globulin (CBG) receptor
was modelled based on spatial autocorrelation coefficients of the molecular electrostatic
potential as descriptor [20] .A vector of twelve autocorrelation coefficients corresponding
to twelve distance intervals of 1 Å width between 1 and 13 Å was determined for each 
steroid using Eq. 5. Then, this set of descriptors was investigated using two different
methods: firstly, the 12-dimensional descriptor space was projected into a plane using a
Kohonen neural network in order to visualize the high-dimensional descriptor space.
Then, these descriptors were used to quantitatively model CBG activity.

Modelling CBG affinity by a combination of two different neural networks
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5.5.    Modelling of chemical libraries 

The methods introduced in previous sections have the advantage that they allow for a
rapid visualization of high-dimensional descriptor spaces. The importance of this
feature has increased with the advent of the large compound collections that can be gen-
erated by combinatorial chemistry and related techniques: small datasets comprising
tens or hundreds of compounds can be analyzed using almost any method without
reaching the limits of currently available computer hardware, whereas special tech-
niques are needed for the handling of datasets of hundreds of thousands of compounds.
To demonstrate the merits of Kohonen networks and spatial autocorrelation descriptors
in handling large datasets, we analyzed three combinatorial libraries that together
comprise more then 87 000 compounds [42].

Rebek et al. published the synthesis of two combinatorial libraries of semi-rigid com-
pounds that were prepared by condensing a rigid central molecule functionalized by
four acid chloride groups with a set of 19 different L-amino acids [43]. This process is
summarized in Fig. 14. In addition to the two published libraries we included a third,
hypothetical library with adamantane as central molecule into our study.

5.5.1. Comparison of the xanthene, the cubane and the adamantane libraries 
A Kohonen network with 50 X 50 neurons was trained with the combined descriptors of
the xanthene and the cubane libraries, each molecule represented by 12 autocorrelation
values calculated from the electrostatic potential on the molecular surface. The resulting

central molecule that is mapped into them. All 2500 neurons of the map are occupied.

Fig. 14. Preparation of the xanthene and the cubane libraries. 
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The compounds of the cubane library form a cluster in the center of the map that is
separated from the compounds of the xanthene library. The neural network can clearly
separate the two libraries quite well — they both cover different parts of Kohonen
maps and, thus, it can be concluded that they are from different parts of the chemical
space. Consequently, they are remarkably different and, thus, both worthwhile to be
considered in a screening program.

In a second experiment, we trained the same network with the combined data set of
all three libraries. This resulted in the Kohonen map shown in Fig. 15b. Again, a dis-
tinct cluster that is clearly separated from the xanthene derivatives can be seen in the
center of the map. The cubane and adamantane derivatives, on the other hand, cannot be
distinguished by the neural network. They are tightly mixed in the central cluster, even
more than can be concluded from Fig. 15b, as 92% of the cubane and adamantane com-
pounds are mapped into common neurons. The cubane and adamantane libraries, thus,
cover the same part of the chemical space — they are so similar to each other that con-
sidering both of them in a screening program is both a waste of resources and time. The
xanthene library is evidently different from the other two libraries. Therefore, the
xanthene and either one of the cubane or adamantane libraries should be used for
screening.

Fig. 15. Kohonen map of (a) the combined xanthene and cubane libraries and (b) the combined xanthene, 
cubane and adamantane libraries.
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Rebek et al. used their libraries to screen for novel trypsin inhibitors. Only the xanthene
library showed significant trypsin inhibition, so that they concentrated further efforts on
this library. In the next round of screening. they divided the xanthene library into six
sublibraries by using subsets of only 15 amino acids for the generation of the libraries.
These subsets were generated by omitting three amino acids in turn from a set of 18
amino acids. This process resulted in sublibraries of 25 425 coinpounds that were tested
for their trypsin inhibition. To study the diversity of the six sublibraries, we first trained
a network with the complete xanthene dataset resulting in a map with all neurons occu-
pied. In this map, we then sent the compounds of the different sublibraries, obtaining al-
together six different maps, one each for each sublibrary (Fig. 16).

The six maps show remarkable differences: some of them are nearly completely filled.
some of them exhibit large white areas representing neurons that no compound was

the chemical space of the original xanthene library. The omission of the basic or acidic
amino acids, for example, has led to a decreased diversity as shown by the large number
of empty neurons. On the other hand, the omission of the larger alkyl amino acids or the
-OH and -S- substituted amino acids from the xanthene library does not lead to a remark-
able decrease in diversity as there are only small white areas in the corresponding maps.

Fig. 16. Kohonen maps of a network trained with the entire xanthene library. Neurons occupied by the
different sublibraries are shown in black, unoccupied neurons in white.
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mapped into. The larger these white areas are , the less the corresponding sublibrary covers
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6. Conclusion and outlook

The human brain generates maps of the environment from sensory information, This
capability of the human brain is modelled by self-organizing neural networks such as the
one developed by Kohonen. Kohonen networks can be used for the mapping of mole-
cular surface properties. It is shown that maps of the molecular electrostatic potential
provide valuable information for understanding biological activity and searching for
new lead structures. Kohonen networks can also be used for the mapping of datasets of
molecules. Autocorrelation vectors derived from the topology of molecules or from
molecular surface properties provide an encoding of molecular structures that can be
used as input to Kohonen networks and, thus, allow a clustering of molecules that
reflects biological activity. Such a mapping can be used for the assessment of the
similarity and diversity of chemical libraries.

The algorithms presented here, both those for the calculation of physico-chemical
effects such as the molecular electrostatic potential and that for the Kohonen network,
work quite rapidly. In addition, by their very nature, neural networks are of a parallel
manner allowing their implementation on parallel machines. This all taken together
makes it possible to study large molecules and very large datasets.
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1. Introduction

Database searching plays an increasingly important role in drug-discovery programs

database that contain a user-defined query substructure, have been available in chemical
information systems for many years [2]. The last few years have seen the introduction
of complementary facilities for similarity searching [3], This involves matching a target
molecule of interest, such as a weak lead from a high-throughput screening program,
against all of the molecules in a database to find the nearest neighbors — i.e. those
molecules that are most similar to the target using some quantitative measure of inter-
molecular similarity.

Early database searching systems were designed for the storage and retrieval of two-
dimensional (2D) chemical structures but the development of structure generation pro-
grams [4] has focused interest on techniques for the processing of three-dimensional
(3D) structural information [5], and there have already been several reports of systems
for 3D similarity searching that are sufficiently fast in operation to allow them to be
used with databases of non-trivial size [6–12]. However, few of these approaches take
explicit account of the electrostatic, steric and hydrophobic fields that form the basis of
modern approaches to 3D QSAR (as illustrated by the many other papers in this
volume), and an ongoing project at the University of Sheffield is hence developing
methods for field-based similarity searching. Like many previous workers [13-21], our
experiments have focused on the Molecular Electrostatic Potential (MEP), but the tech-
niques that we have developed are applicable, in principle at least, to any field-like
attribute that can be represented by real values in a 3D grid surrounding a molecule.

The electrostatic potential, Pr , at a point r for a molecule of n atoms is calculated
from the point charges qi on each atom i in the molecule, so that

where Ri denotes the position of the i-th atom. A molecule is positioned at the center of
a 3D grid and the potential is calculated at each point in the grid. The similarity between
a pair of molecules is estimated by aligning them such that similar features are super-
imposed, taking the product of the two molecular potentials at each point and then
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summing over the entire grid, with a suitable normalizing factor being used to bring the
similarities into the range –1.0 to +1 .0. This numerical approach necessarily involves
the matching of very large numbers of grid points and is, thus, extremely demanding of
computational resources; however, Good et al. [16] have reported an alternative ap-
proach in which the potential distribution is approximated by a series of Gaussian func-
tions that can be processed analytically, with a substantial increase in the speed of the
similarity calculation and with only a minimal effect on its accuracy. This elegant idea
removes one of the main limitations of field-based approaches to 3D similarity search-
ing, but still requires the alignment of the two molecules that are being compared prior
to the calculation of the similarity, which is why field-based similarity methods have,
thus far, only been applied in the context of small datasets.

The principal objective of the work reported here has been to develop methods for the
generation of alignments that are sufficiently rapid in execution to permit the use of
MEP-based similarity measures for database searching. This chapter presents the two
methods we have developed for this purpose: one method is based on the application of
a maximal common subgraph (MCS) isomorphism algorithm to a structure representa-
tion that we shall refer to subsequently as a field-graph; and the other method is based
on a genetic algorithm, hereafter a GA. Full details of the work reported here are
presented by Thorner et al. and by Wild and Willett [22-24].

2. Calculation of Similarities Using Field-Graphs

2.1. Generation of field-graphs

Chemical database systems use methods of representation and search that are based on
graph theory. The methods were first developed for 2D substructure searching, where
the atoms and bonds of a chemical compound are denoted by the nodes and edges of a
labelled graph and where searching is effected by the application of a subgraph iso-

for 3D pharmacophore searching, where the nodes of a graph again denote the atoms of
a chemical compound but where the edges denote the interatomic distances (or distance
ranges) in a rigid (or flexible) 3D molecule [25]. Graph-based similarity searching
methods have also been described, in which an MCS algorithm is used to find mole-
cules that are similar to a target molecule [3,26,27].

It is simple to develop analogous graph methods for the processing of grid-based rep-
resentations of molecular fields, since a grid can be represented by a graph in which
the nodes correspond to each of the grid points and in which the edges correspond to the
inter-point distances. The overlap between two sets of molecular fields, and hence
the similarity of the two corresponding molecules, will then be given by the overlap
between the two graphs, this being estimated most obviously by their MCS. Un-
fortunately, existing MCS algorithms are capable of handling graphs containing only a
few tens of nodes at most, whereas even a coarse molecular grid will involve many hun-
dreds or thousands of grid-points, and hence graph nodes. Accordingly, the use of an
MCS algorithm for the generation of molecular alignments requires a substantial
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reduction in the sizes of the grid-based graphs that are to be matched, while ensuring
that the resulting field-graphs still encompass the main features of the underlying fields,
so that the alignments are chemically (and hence biologically) meaningful. Once the
MCS procedure has been used to generate an alignment, the similarity between the
aligned molecules can be calculated using the fast Gaussian similarity procedure de-
scribed previously. The similarity measure used is the so-called Carbo index [28],
which is actually a form of the long-established cosine coefficient [3] and which is
defined to be

where PA and PB are the properties (such as the MEPs) of the two molecules that are
being compared.

A field-graph is generated from a set of grid points by identifying a subset of them
that have potential values meeting some criterion (to be discussed below) and then
grouping points that meet the chosen criterion and that are close to each other (in some
sense). There are many ways in which a field-graph can be generated from a set of po-
tential values, depending on the criterion that is used and the definition of ‘close’ that is
used to determine whether two grid-points are to be considered as belonging to the same
group. There are no obvious guidelines, a priori, as to how field-graphs should be
created, and we have accordingly evaluated a range of different procedures for creating
nodes. In fact, we have simplified the problem by considering only a single measure of
closeness, which is that two grid-points, P and Q, are considered as being contained
within the same graph node if P and Q are vertically, horizontally or diagonally ad-
jacent to each other. This may be illustrated by considering the set of grid-points in
Fig. 1 (which is in just two dimensions for simplicity). If the criterion was that a grid-
point value was to be at least 10 kcal/mol, then the four boxed elements would be
selected as forming a node in the field-graph.

The basic approach involves thresholding the grid-point values using a user-defined
threshold potential: the application of this threshold identifies all of the positive (nega-
tive) grid-points with values greater (less) than or equal to the threshold value. The

Fig. 1. Application of a threshold of +10 to a set of grid-point values to generate a field-graph. In this simple, 
planar grid, the four values surrounded by bold lines are taken as forming a single field-graph node since 
they all meet the threshold criterion and each is adjacent to at least one other grid-point that meets the 
threshold criterion. The resulting four-point node is shown shaded. 
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selected subset of the original points is then considered for inclusion in one of the nodes
in the field-graph, using the adjacency-based grouping criterion described above.
Thorner et al. describe several different methods for the selection of the most appro-
priate threshold potential: the most cost-effective of these methods was found to be one
that seeks to maximize the number or nodes i n the field-graph that contain at least some
minimal number of grid-points [24].

Each node in a field-graph has an associated label defining the threshold level (either

of grid-points that it represents. The location of a node is defined by the geometric co-
ordinates of the center of the corresponding cluster of points, so that the distance 
between two nodes (which represents the graph-edge that connects those two nodes) is
the distance between the two centers. Thus. a field-graph containing N nodes (i.e. one
that contains N clusters of grid-points after the application of the procedures described
above) will contain N(N – 1)/2 distinct distances (since the inter-node distance matrix is
completely symmetric), and a database of 3D structures can be represented for search
by the corresponding set of field-graphs.

Pairs of these graphs, one representing a target structure and one representing a data-
base structure. are matched using a n MCS procedure based on the Bron-Kerbosch
clique-detection algorithm [29,30]. Two nodes are regarded as being equivalent if their
labels have the same potential sign (either positive or negative); it is possible to adopt a
more rigorous matching criterion that takes account of the magnitude of the local poten-
tial, as well as its sign or of the size of the node (i.e. the number of constituent grid-
points). or of some combination of the two. but all our experiments have employed just
the simple. sign-based matching criterion. The Bron-Kerbosch algorithm identifies the
MCS based on such node-to-node matches, and the constituent pairs of matching nodes
are input to a least-squares fitting routine. This routine aligns the database structure with
the target structure so as to minimize the squared distances between the centroids of the
field-graph nodes from the database structure with the centroids or the field-graph nodes
from the target structure to which they have been mapped. The resulting alignment is
then used for the final grid-based similarity calculation.

The Bron-Kerbosch algorithm is designed. and normally used, to identify the largest
subgraph common to a pair of graphs. In the present context, however, we have used it 
to generate all of the subgraphs common to a pair of field-graphs, and not just the
largest such subgraph(s). This has been done to increase the number of possible align-
ments that are considered in the precise similarity calculation, and thus to ensure that
the minimum possible number or close neighbors to the target structure are overlooked
because of the approximations involved in the generation of the field-graphs. The simi-
larity between an individual database structure and the target structure is taken to be the
largest of the calculated similarities over all of the possible alignments resulting from
the first-level, clique-detection search.

2.2 An operational implementation

The field-graph generation procedure described above was applied to the structures in
the Zeneca Agrochemicals corporate database. The 3D structures of these molecules
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were generated using CONCORD [31] and then the atomic point charges calculated
using the MNDO routines in MOPAC Version 5.00 [32]. A grid was constructed around
each molecule, extending for 5.0 A beyond the maximum and minimum extents of the
molecule in each plane, as determined by the centers of the atoms on the molecular
surface. The grid had a user-defined step-size (0.5 Å i n all of the experiments reported
here), with grid-points being ignored if they fell within the van der Waals radius of any
of the atoms i n the molecule. The grids were then converted to field-graphs: the mean
number of nodes in the field-graphs for the 173 I97 molecules in the database was 7.13
(standard deviation of 3.22), with the single largest graph containing 41 nodes. The gen-
eration of the field-graphs took about 20 CPU days on an R4000 Silicon Graphics 
workstation (excluding the very extensive computation associated with the calculation 
of the atomic partial charges).

Preliminary testing showed that the search times for a scan of the entire file were
likely to be excessive unless a fair amount of program optimization was to be carried
out.

The relative computational requirements of the MCS-detection and Gaussian-
calculation stages for the matching of the target structure with a database structure
depend upon the number of possible alignments resulting from the application of the
MCS algorithm. Specifically, if only a few possible alignments are identified. then the
MCS stage takes more time, while the Gaussian calculation takes more time if there are
many alignments (since each one of them needs the similarity calculation to be carried 
out). Most of the time requirement for the Gaussian calculation is occasioned by the
need to calculate square roots and exponentials, and the routine was hence modi fed to
minimize the number of square roots and to calculate most of the exponentials by means
of a precalculated look-up table. This optimization was also usce in all of the GA
experiments described later in this chapter.

The time requirement for the MCS algorithm rises rapidly with an increase in the
number of nodes in the target structure, given a fixed set o f database structures, and this
requirement will hence be minimized if the target structure contains just a few nodes. A
field-graph with only a few nodes will also generate only a small number of alignments,
and hence reduce the time requirement of the final similarity calculations. A series of
searches was hence carried out in which a threshold was applied to the sizes of the
nodes in the field-graph representing the target structure, and a cutoff applied, so that
only those nodes containing more than n grid-points, where n is defined by the user,
were considered in the matching of a target structure with a database structure. This pro-
cedure will certainly increase the speed of searching, but may also mean that molecules
that are, in fact, strongly similar to the target structure i n the final similarity calculation
will be overlooked since the appropriate alignments are not forthcoming from the MCS
stage of the search. Following a detailed series of experiments [24], the final imple-
mentation was such that the alignment stage considered only those target field-graph
nodes for which n ≥ 3. The chosen value for n could, of course, be changed by a user if 
this was felt to be desirable in the context of a particular search.

With the incorporation of these and other modifications, a search of a typical target
structure against the entire database can be accomplished in about 16 hours of elapsed
time on an R4000 Silicon Graphics workstation (i.e. in a single overnight run), although
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large target structures can mean that a search will take a day or even more. It should be
noted that some of the molecules in the database can lead to very large numbers of
alignments, each of which must then be checked in the subsequent Gaussian cal-
culation: searches with several target structures demonstated that the search time could
be reduced by approx. 40% simply by ignoring the top-ranked 5% of the database when
the structures were ranked in decreasing order of the number of alignments that needed
to be processed.

Searches with the system at Zeneca Agrochemicals demonstrate clearly that i t often
leads to the retrieval of structures with a high degree of novelty that would not be
retrieved by conventional similarity searching techniques that are based on patterns of
atoms (in either 2D or 3D) [3]. The system hence provides an effective way of suggest-
ing novel bioisosteres for known active compounds. That said, the focus on just a single
type of field means that while the top-ranked structures generally provide a reasonable
level of MEP similarity, many of them are of little interest since their steric and/or
lipophilic characteristics render them inappropriate for the biological system under
investigation. The principal value of the system is hence as an ideas-generator that can
suggest previously unexplored chemical classes to the chemist requesting the search.
albeit at the cost of (in some cases) a low level of search precision.

There are two other obvious limitations to the current system. The first is that the
graph-creation routines have an inherent failure rate of around 6% since the threshold
criteria that are used to create a field-graph can result in the identification of less nodes
than are necessary for the generation of a unique alignment [24]. Secondly, inspection
shows that suboptimal alignments are generated in some cases, with the result that mol-
ecules that are similar to the target structure can be ranked less highly than they should
be. This is almost inevitable, given the simplicity of the representation that is used.

3.

3.1. The algorithm

Genetic algorithms are computational problem-solving methods that mimic some of the
principal characteristics of biological evolution and genetic reproduction [33,34]. A GA
creates a randomly chosen set, known as a population, of individuals, each of which
contains a representation of a possible problem solution. This solution is encoded in a 
linear string. called a chromosome. The effectiveness of the solution encoded by each of

nipulates the chromosomes so as to maximize the value of the fitness function. This it
does by the creation of subsequent populations that include features from the fitter
strings in the previous population, in an iterative procedure that can be thought of as an
algorithmic representation of biological reproduction. Parents are selected from the popu-
lation, and information is taken from their chromosomes to produce one or more child
individuals that are inserted into the population. Chromosomes are manipulated by mu-
tation (where the chromosomal material may be altered slightly in a random fashion)
and crossover (where new child chromosomes are created by taking some chromosomal

Calculation of Similarities Using a Genetic Algorithm 
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material from one parent, and some from the other) operators. A GA may be considered
to have succeeded when convergence occurs — i.e. when the members of the popu-
lation all lie in the same region of search space.

There have been several reports of the application of GAs to problems in chemical
structure handling, demonstrating that they provide both an effective and an efficient
mechanism for the investigation of a range of complex matching problems [35,36].
Following earlier work by Payne and Glen [37], the GA we have developed here seeks
to identify a combination of translations and rotations that will align one MEP with
another, fixed, MEP so as to give the highest possible similarity. Each chromosome
contains six components, three to encode rotations and three to encode translations, with
each component being allocated one byte. The chromosomes are initially set to random
values. and then decoded by applying the indicated rotations and translations to the 3D
coordinates of the atoms in one of the two molecules that are being aligned. The result-
ing coordinates are passed to the fitness function for the evaluation of the alignment
defined by that particular set of rotations and translations: this function is the Gaussian
similarity.

While GAS are simple in concept, there are generally many different ways in which
they can be parameterized. Wild and Willett [22] describe the very extensive com-
parative experiments that were carried out to ensure an appropriate combination of
effectiveness — i.e. the ability to identify good MEP alignments — and efficiency — i.e.
the CPU time required (since the GA must be sufficiently fast in operation to search
databases of non-trivial size). The final GA that was used for the experiments reported
in the next section had a population size of ten, steady-state-without-duplicates repro-
duction, binary encoding, a static uniform crossover rate of 20%. linear normalization
and a diversely initialized population.

3.2. Comparison of alignment methods

Having described two different ways of generating alignments, the question arises as to
which is the more effective — this, in turn, requiring some quantitative means of evalu-
ating the effectiveness of the similarity measures that are being tested. Previous work in
our laboratory on the comparison of different similarity or clustering methods [38] has

purpose. Here, simulated property-prediction experiments are carried out using datasets
for which both structural and property data are available, so as to ascertain which
methods (e.g. which similarity coefficients) result in measures of structural similarity
that are most closely correlated with measures of property similarity. We have adopted
a rather different approach in the work reported here. The extensive studies of Richards
and co-workers [13,16.19,20] have shown clearly that there is a strong correlation 
between biological activity and the similarities that result from grid-based MEP cal-
culations (and further evidence of such a correlation is presented later in this chapter).
Accordingly, we can compare the effectiveness of the field-graph and GA methods
for matching MEPs by the magnitudes of the Gaussian similarities since a high similar-
ity will be achieved if, and only if, an appropriate alignment has been achieved. A
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comparable approach had been taken previously in identifying the best way of generat-
ing field-graphs [24].

Our experiments used a test database of 1000 molecules taken from the Fine
Chemicals Database (FCD), from which 100 molecules were chosen at random to act as
the target molecules for which the nearest-neighbor molecules were required. The
dataset was processed using CONCORD and the MNDO routines in MOPAC, as de-
scribed previously, and then searches were carried out using the field-graph and GA
methods for generating alignments, with the methods parameterized such that they took
about the same amount of time (1-2 CPU seconds on a medium-level Unix workstation)
to match a pair of MEPs.

Let Si be the Gaussian similarity for the i-th most similar molecule to the m-th target
molecule; then we define the performance measure Emn by

where typical values for n are 5, 10 or 20 — i.e. Emn is the mean MEP similarity for the
n nearest-neighbor structures of the m-th target structure. The overall effectiveness of
the set of searches for the n nearest neighbors of each target structure, Emn, is then ob-
tained by taking the mean of the 100 individual Emn values. When this was done, there
was found to be no obvious difference between the En values obtained using the field-
graph and GA methods for generating the alignments; for example, both gave E20 values
of 0.70 when averaged over the 100 searches of the FCD dataset, and a Wilcoxon
signed-rank test [40] showed that the two sets of searches were not significantly differ-
ent in performance at the 0.05 level of statistical significance. Wild and Willett report
additional experiments in which the alignments resulting from the GA were also shown
to be at least as good as those resulting from a bit climber and from a simplex optimizer
[22].

4. Inclusion of Conformation Flexibility 

The experiments that have been described thus far have assumed that the molecules that
are being processed are completely rigid in nature. However, most organic molecules
contain one or more rotatable bonds, and it is to be expected that improved inter-
molecular similarity relationships will be identified in a database search if the MEP-
alignment procedure is able to take account of flexibility in a target structure and/or in a
database structure.

The MEP at any point in 3D space is a function of the partial atomic charges and the
distances of each atom from that point, and a full treatment of the effect of conforma-
tional flexibility on MEP-based similarity searching should thus take account of the
changes in both the atom-to-point distances and the partial atomic charges that can
occur as a molecule flexes [41]. However, the calculation of the partial atomic charges 
required for the generation of an MEP is very time-consuming. Our work on flexible
field-based searching hence involves making the assumptions that the partial charges do
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not vary with the conformation adopted by a flexible molecule, and that the MEP is
affected only by the changes in the atom-to-point distances resulting from torsional
rotation.

In seeking to find an appropriate alignment procedure, we have been guided by the
extensive studies that have been carried out into techniques for flexible 3D substructure
searching, where two main approaches have been described [1,5,25]. In the first ap-
proach, a flexible molecule is characterized by a small number of conformations that are
checked to ascertain whether any of them contain a query pharmacophore [42–44].The
alternative approach involves a torsional optimization approach that permits an explo-
ration of the full conformational space of a flexible molecule at search time, seeking to
determine whether it can adopt a conformation that contains the pharmacophore
[45–47]. These two approaches are considered further below.

4. 1. Searching flexible molecules using field-graphs 

Our initial experiments involved the application of field-graphs to the multi-conformation
method of flexible searching [23]. Specifically, we sought to determine the numbers of
field-graphs that are required to delineate fully the variations in MEP that result from
variations in conformation, since the field-graph approach will only be applicable to 
searching databases of non-trivial size if these numbers are not large.

The experiments involved a dataset of eleven compounds, taken from the Cambridge
Structural Database (CSD) [48], that had been used previously by Ghose et al. to evalu-
ate conformational searching methods [49]. The SYBYL SEARCH module was used to
generate a number of conformations (between 48 and 1589) for each of the eleven
molecules by systematic increments of their rotatable bonds, and a field-graph was then
generated from each of the resulting conformations. The set of field-graphs for the set of
conformations for each molecule was next converted into a searchable database, with
the target structure in each case being the field-graph that was generated from that
molecule's CSD crystal structure.

Fig. 2. Similarity values for the molecule AGLUAM10 after sorting into descending order. Each value is the

for details).
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MEP similarity for the matching of the CSD structure of this molecule against one of its conformers (see text
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The results of the searches were summarized as shown in Fig. 2. which is a sorted list
of the similarities calculated for the 301 conformations that were generated for one of
the eleven molecules, AGLUAM 10.

AGLUAM10

It will be seen that there are a few conformations with similarities in excess of 0.80
but that the great majority of the conformations haw much smaller similarities: for this
dataset, the mean similarity is 0.60 1 with a standard deviation of 0.096. Similar results
were obtained with all of the other molecules that were considered, with the mean (stan-
dard deviation) similarity varying from 0.308 (0.071) to 0.887 (0.058). If all of the con-
formations for a particular molecule gave comparable MEPs, and hence comparable
field-graphs, then most of the similarities with the target structure would be near to 1.0;
in fact, most of them are very much smaller than this (with one of the conformations for
one of the molecules yielding a similarity as low as 0.202).

It is, thus, clear that torsional rotations can bring about substantial changes in the MEP
similarity with, in extreme cases, just a small change in a single torsion angle resulting in
changes of up to 40% in the similarity between the target structure and a conformation
[23]. There are two reasons for such drastic changes in the similarity. The first, and most
obvious, is a change in the MEP itself arising from the rotation of a bond near to the
center of a molecule. This can result in large-scale changes in the overall geometry of
the molecule, and hence in the atom-to-point distances that are used in the calculation of
the potential at each point in the 3D grid surrounding a molecule. A second problem is
the lack of robustness in the routine that is used to generate a field-graph from the set of
grid-point potentials. once they have been calculated. We have found that the form of the
field-graph produced by this routine can be overly sensitive to the precise values of these
potentials, with only small changes in the values sometimes leading to changes in the
number or nodes in the resulting Geld-graph: these changes can affect the alignments
generated by the MCS procedure and, hence, the final intermolecular similarities.

Substructure searches make use of extensive screening strategies to minimize the 
number of molecules for which a detailed search needs to be carried out. One strategy
that has been found to be particularly effective in the context of flexible 3D substructure
searching is to associate a distance range with each pair of atoms in a flexible molecule
[45]. Here, the lower and upper bounds of the range correspond to the minimum and
maximum separations of the two atoms as the molecule flexes, so that the set of distance
ranges for a molecule contains all of the geometrically feasible conformations which 
that molecule can adopt. This representation allows the use of graph-based screening
procedures, which ensure that only those molecules that match the query at the graph
level proceed to the final, detailed conformational search [46,47].

Some preliminary experiments were thus carried out to investigate the extent to
which it might be possible to associate an analogous potential range with each point in
the 3D MEP grid surrounding a molecule. Specifically, each point in a grid was charac-
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terized by not one but two values, MAX and MIN, which are the maximum and the
minimum values of the potential that are observed at that point as the molecule flexes.
However, it was found that the potential ranges, MAX-MIN, were generally large and, 
thus, unable to provide any useful screening capability [23].

We have already noted some inherent limitations of the field-graph approach when
discussing its application to the searching of rigid 3D molecules. The results obtained
here suggest that it will he difficult for a field-graph representation derived from a single
conformation to provide an adequate description of the variations in MEP that can occur
as a result of torsional rotations: instead, many conformations, and thus field-graphs,
will be required for such a description. Since the matching of the field-graphs represent-
ing a single conformation of a target structure and a single conformation of a database
structure requires 1-2 CPU seconds, it is clear that the use of multiple field-graphs for
flexible field-based searching will be extremely time-consuming. In addition, the para-
meter-driven nature of a GA makes it easier to bias a search towards efficiency (i.e. a
search that runs quickly but that may miss some good hits) or towards effectiveness (i.e.
a search using a larger population size and/or a greater number of generations).
Accordingly, the remainder of this chapter focuses upon the use of the GA method for
flexible similarity searching.

4.2.

The GA that we have developed can be used i n two ways. I n the first, which is de-
scribed below and which formed the basis for most of the initial experiments, a rigid
target structure is assumed but each of the database structures is allowed to be flexible;
alternatively, the target structure can also be allowed to be flexible. We shall refer to
these two types o f search as ‘Flex’ and ‘FlexFlex’, respectively; searches when both
molecules are rigid will be referred to as ‘Fixed’.

The Flex GA is a straightforward extension of that described previously. The chro-
mosome again encodes the translations and rigid-body rotations, but augments these by 
an extra component for each rotatable bond in the database structure (and in the target
structure in the more general, FlexFlex case) such that not only the position, but also the 
conformation, of a molecule is encoded, and a further component to encode corner
flipping in each flexible ring. The fitness function is augmented by a simple van der
Waals radius bumpcheck procedure, which ensures that the torsion angles encoded in a
chromosome do not represent a high-energy conformation. If the bumpcheck is success-
ful, then the alignment defined by the chromosome acts as the input to the Gaussian
similarity calculation, with the resulting similarity being the raw fitness value for that
chromosome. The chromosomes are ranked in decreasing order of raw fitness from the 
size of the population clown to one (which is the least-lit chromosome in the current
population), with their position in the ranked list being taken as the fitness. A starting
value was also added to each chromosome to provide a fitness window. This last ap-
proach was found to give a value of 1 . 1 (for Flex and 1.5 for FlexFlex) for the selection
pressure, that is, the ratio of the fitness of the fittest chromosome to the mean fitness of
the population. 

Searching flexible molecules using a genetic algorithm
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Fig. 3. Distribution of observed MEP similarities for matching a rigid target structure against 491 rigid 
(‘Fixed’) or flexible ( ‘Flex’) database structures. Each column denotes the mean number of similarities in the
indicated range. when averaged over the 39 target molecules and the 10 runs for each target molecule that
were used in these experiments

As with the previous GA, a large number of parameterization experiments were
carried out to maximize the performance of the algorithm. These experiments, which
are detailed by Thorner et al. [23] ,led to the use of two-point crossover and a bit-flip
mutation operator, with other parameters having the following values (with the range of
values that were tested included in brackets): a population of 150 chromosomes (varied
in the range 5-500): a selection pressure of 1.5 (varied in the range 1.05-1.90); 1250
generations (varied in the range 50-5000); a crossover rate of 35% (varied in the range
2-90%); and a mutation rate of 7% (varied in the range 0.1-90%). The effectiveness of
the alignments produced by the GA, and hence the values of the final similarity
coefficient, increases in line with the number of generations; the 1250 value used here
was felt to provide the best trade-off between effectiveness and efficiency, with run
times being about 3.5 CPU seconds for calculating the similarity between a rigid target
structure and a flexible database structure, using an implementation of the algorithm in
the C programming language on a Silicon Graphics R4000 workstation.

The GA was tested using a set of 49 1 structures from the Fine Chemicals Database, 39
of which were used in turn as the rigid target structure for two types of search. In the first
set of Flex searches, the database structures were allowed to be completely flexible, with
the search being effected using the GA parameter values given previously. In the second
set of Fixed searches, the database structures were kept entirely rigid so as to determine
the increase in performance, if any, resulting from the inclusion of torsional flexibility in
the matching process. The GAS that were used in these two sets of runs were parameter-
ized so as to take about the same amount of CPU time, and both sets of searches were re-
peated ten times to encompass the variations in performance that result from the
non-deterministic nature of GAS. The mean similarity of each target structure to each
database structure. when averaged over all 39 target structures, all 491 database struc-
tures in each case and all ten sets of runs was 0.465 for the Fixed searches and 0.556 for
the Flex searches. The distribution of the calculated similarities is shown in Fig. 3, which
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illustrates the marked shift to higher similarities that results from the inclusion of data-
base-structure flexibility in the matching algorithm.

Thus far, we have considered only the flexibility or the database structures, while
keeping the target structure rigid. It is, however, simple to extend the algorithm to
include any inherent flexibility in the target structure. All that is required is to extend
the chromosome by a further byte for each rotatable bond in the target structure, and to
treat these bytes in just the same way as is currently done for the corresponding bytes in
a description of a database structure. It might be expected that allowing both the target
structure and the database structures to flex would further increase the similarities that
were obtained, when compared with the Flex searches. This was, however, not found to
be the case, since while the FlexFlex searches gave mean similarities that were again
greater than those of the Fixed searches, the largest mean similarities resulted from the
Flex searches. Specifically, the Fixed, Flex and FlexFlex searches gave mean similar-
ities of 0.398, 0.522 and 0.515, respectively, when averaged over these sets of searches
and when parameterized to take similar amounts of CPU time. We believe that this
seemingly counter-intuitive result arises from the Frequent non-convergence of the
FlexFlex searches during the limited time available for the execution of the GA,
especially when the target structure had a large number of rotatable bonds.

We, thus, concluded that while the inclusion of conformational flexibility in a field- 
based similarity search enables the identification of better MEP overlaps than if only
rigid molecules are considered, the cost-effectiveness of allowing both the molecules in
a comparison to flex required further study, as detailed below.

5. Prediction of Biological Activity 

Searching a chemical database to find molecules that are similar to a bioactive target
structure, and that might thus also be expected to exhibit the activity of interest, is one
of the principal applications of similarity searching [ 1 ,3]. The work reported thus far in
this chapter has not considered the effectiveness of our matching algorithms for this
purpose and we, hence, now report some initial experiments to ascertain the extent to
which field-based similarity searching might be of use in lead discovery programs. In
these sets of experiments, the 3D CONCORD structures were minimized using SYBYL
MAXMIN, and the atomic charges calculated using the PM3 routines in MOPAC.

The first tests used six small datasets that we have employed previously in a study of
methods for distance-based 3D similarity searching [50]. Each of these datasets contains
molecules for which qualitative (active/inactive) data are available, as follows:

active [52];

4. 141 aromatic amines of which 98 were carcinogenic [54];

6. 145 nitrosamines of which 112 were carcinogenic [56].
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5.      113 steroids of which 69 showed potent anti-inflammatory activity [55];

1.  209 9-anilinoacridines of which 150 showed anti-tumor activity [51];

3. 112 nitrobenzenes of which 53 were musk odorants [53]:

2.   147 barbiturates of which 37 had sufficient durations of activity to be classed as
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For each dataset, an active compound was selected and used as the target structure lor
Fixed, Flex and FlexFlex searches of that dataset. This was repeated for a total of ten
different target structures, and the mean similarities that were obtained are listed i n
Table 1.  It will be seen that, on average, the Flex searches again give the largest similar-
ities and hence, one might assume, the best alignments. Different results are obtained,
however, when the number of active nearest neighbors that were retrieved is considered,
as illustrated in Table 2. The columns in the main body of the table list the mean
number of actives that were retrieved when the 20 nearest neighbors were considered
for each of the ten active target structures mentioned previously. The columns headed
Fixed, Flex and FlexFlex have their normal meanings, while those headed AM and
MCS represent the results that were obtained using the Atom Mapping (AM) and
Maximal Common Substructure (MCS) similarity measures discussed by Pepperrell
and Willett in their review of distance-based measures for 3D similarity searching [50].
The results suggest that FlexFlex is the best of the three MEP-based similarity measures
and that it is at least as effective as the two distance-based similarity measures.

The QSAR datasets are limited both in size and in structural heterogeneity, and also
have a large proportion of actives; the second set of experiments hence used a file
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of 3500 structures drawn from the World Drugs Index (WDI), which contains 2D
structures and broad-class activity indicants for some tens of thousands of drugs.

The target structures we adopted were those used recently by Kearsley et al. in a study
of properly-based similarity searching [57]. These molecules are listed in Table 3,
together with their associated WDI activity classes and the number of molecules

tagonist, rather than its true nature as an inhibitor of angiotensin-converting enzyme, and
we have thus used this description in the searches reported here.) For the purposes of these
experiments, drugs that lie within the same activity class or classes as the target structure 
are considered to be actives. For each of the target structures, all of the actives were added
to the WDI subset mentioned previously, and then Fixed, Flex and FlexFlex similarity
searches carried out to retrieve the nearest neighbors for the target structure in each case. 

The results that were obtained are summarized in Table 4, which contains mean
values averaged over the ten target structures that were used. Here, the first row in the
main body of the table gives the mean similarity between the target structure and the
database structures, while the following four rows list the mean numbers of actives re-
trieved when the top 10, top 20, top 50 and top 100 nearest neighbors were retrieved. It
will be seen that the relative performance of the three types of search depends on the
number of nearest neighbors that are retrieved. with the Fixed searches giving the best
results for a precision-oriented search in which just a few, highly similar, structures are
required, and with the FlexFlex searches giving a relatively better level of performance
as more recall-oriented searches are required. As with the earlier experiments. the Flex
searches yield the highest mean similarities, and we would thus hypothesize that the
FlexFlex would perform even better at retrieving active molecules if it were allowed to
run for long enough to give similarities that were comparable with those obtained in the
Flex searches.

It must be emphasized that the results presented here are only preliminary, but they 
do suggest that the inclusion of flexibility information can increase the effectiveness of
field-based searching at little computational cost, when compared with the correspond-
ing non-flexible searches. 

6. Conclusion

Several previous workers have described methods for calculating the similarities
between pairs of molecules characterized by their MEPs. In this chapter, we have pre-
sented algorithms and data structures that enable such similarities to be calculated
sufficiently rapidly to enable MEPs to be used for field-based similarity searching in
chemical databases.

Our first approach involves the use of an MCS algorithm to align the field-graphs
representing the target structure and each database structure. The alignment(s) resulting
from this algorithm are then used for the calculation of the final MEP-based similarity
measure. The second approach involves a GA that encodes the translations and rotations
needed to maximize the overlap of the MEPs of a target structure and a database
structure. This is found to be comparable in effectiveness with the field-graph approach
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Table 4 Results of searching the World Drug Index; the Similarity row gives the mean similarity when
averaged over the 10 target structures while each of the remaining rows lists the total number of actives 
retrieved for a given number of nearest neighbors (NNs) 

Effectiveness Measure Fixed Flex FlexFlex

Similarity 0.48 1 0.592 0.556 

Actives (NN = 10) 5.4 4.8 4.0 

Actives (NN = 20) 8.8 7.8 7.9 

Actives (NN = 50) 12.5 10.9 13.9 

Actives (NN = 100) 18.8 17.8 19.1

when rigid structures are considered, but is noticeably more efficient if flexible
similarity searching is to be carried out.

The studies reported here are now being extended in two ways. Firstly, we are carrying 
out further searches on the World Drugs Index dataset using not just the MEP similarity
measure, but also measures based on 2D fingerprints and on 3D interatomic distances 
(specifically the atom-mapping measure [6]). The aim of this work is to investigate the 
extent to which the various similarity measures retrieve different sets of bioactive mole- 
cules as the output from a similarity search. Our initial experiinents suggest that the
search outputs do. indeed, differ. with those resulting from the MEP measure being
noticeably more heterogeneous than those resulting from the 2D and 3D measures, thus
supporting the hypothesis that field-based searching provides a way of identifying novel
bioisosteres that would not be retrieved by more conventional, atom-based searching pro-
cedures. Secondly, we have already noted, when discussing the system at Zeneca 
Agrochemicals, that the focus on just a single type of field means that while the top-
ranked structures in a search generally provide a reasonable level of MEP similarity,
many of them are of little interest since their steric and/or lipophilic characteristics render
them inappropriate for the biological system under investigation. We are, accordingly,
extending tlie GA to enable all three types of field information to be taken into account
when deciding which molecules should be retrieved in a database search, with the ex-
pectation that this will further improve tlie retrieval of bioactive molecules from database 
searches. Full details of both of these sets of experiments will be reported shortly.
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1. Introduction

The measurement of (dis)similarity between molecules in 3D is central to many aspects 
of Computer-Aided Molecular Design (CAMD). From evaluating possible molecular
superpositions to applying descriptors to QSAR model construction, it is the degree of
molecular similarity between molecules which is being evaluated. In general, 3D
modelling techniques such as CoMFA [1]and DISCO [2] apply an implicit measure-
ment of the similarity between structures during molecular comparison. There is a
branch of CAMD, however, which attempts the explicit calculation of molecular simi-
larity in order to elucidate SAR data. In this chapter, we summarize a number of such
techniques, detailing their application, merits and pitfalls.

2.

A multitude of indices have been suggested for the calculation of explicit molecular 
similarity, using a variety of 3D molecular descriptors. These indices can be separated
into two basic classes. The first is best described as the set of ‘cumulative’ similarity
indices. For these formulae, molecular similarity is evaluated via the accumulation of
overlap or difference values over all descriptor space. The second can be characterized
as  ‘discrete’ in nature. Such indices evaluate similarity at discrete points in descriptor
space, with overall molecular similarity determined from the average of these point
values.

2. 1.    Cumulative formulae 

Hopfinger [3,4] proposed a number of indices including equations for measuring the
common volume of steric overlap between molecular pairs. One example is shown here:

A Brief History of 3D Molecular Similarity Coefficients

(1)

Each atom is described by a sphere of van der Waals (vdW) radius. The atomic overlap
volume for all intermolecular atom-pair combinations is calculated. Summation of these
molecular overlap data provides a measure of shape similarity. Hermann and Herron [5]
and Masek [6] et al. have both proposed variants of this approach. 

Perhaps the most widely applied ‘cumulative’ molecular similarity index used in 3D
SAR studies was pioneered by Carbo et al. [7]:

H. Kubinyi et al. eds.), 3D QSAR in Drug Design, Volume 2 321–338.
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(2)

Molecular similarity CAB is determined from the 3D descriptor properties PA and PB of
molecules A and B being compared over all space. As i n Eq. 1, the numerator term meas-
ures property overlap, while the denominator normalizes the similarity result. Its struc-
ture is identical in construction to the cosine coefficient which is also utilized in 2D
database similarity searching [8,9]. The formula known as the Carbo index measures the
deviation of two molecular properties from proportionality and is, thus, sensitive to the
shape of property distribution rather than to its magnitude. This is highlighted by the
fact that when the measured properties of two molecules correlate (PA = nPB), the simi-
larity index tends towards unity. Variants of this index have been proposed by Hodgkin
and Richards, and also by Petke, in an attempt to increase the sensitivity of the formula
to property magnitude [10–12].

The indices of Carbo and Hodgkin have been used extensively in molecular similarity
investigations. As originally applied, the Carbo index was utilized to measure the simi-
larity of quantum-mechanically derived electron density between molecules [7,13–15].
Other quantum-mechanically derived measures of electron distribution have also been
used in conjunction with variants of the index [16–18]. Electron density has the quality
of being an analytical property firmly grounded in quantum chemistry. Its calculation is,
in general, CPU intensive, however, and it is not a particularly discriminating property.
For 3D QSAR calculations, the Molecular Electrostatic Potential (MEP) and molecular
shape derived measures tend to be preferred, due to their ease of calculation and im-
proved discrimination. To this end, similarity evaluations using the variants of the
Carbo index have been extended to include the comparison of such MEP [10,19–23]
and shape [24–29] descriptors.

A close relative of the Carbo index, the Tanimoto coefficient, which is widely used in
2D similarity calculations [8], has also been applied in modified form (Eq. 3) to the
measurement of shape similarity [29]:

(3)

PAPB equals the volume overlap between structure A and shape query B (B is the shape
derived from a single molecule, group or molecules or active site), PA –PB is the struc-
ture volume not in the query, PB–PA the query volume not i n the structure and w1 and w2

are user-defined weights. A more distant relative of the Carbo index, the Spearman
rank-correlation coefficient, has also been used to calculate 3D molecular similarity:

(4)

This index has been used for molecular similarity calculation in a number of studies
involving MEP and accessible surface [30–35]. Rather than applying the actual numeri-
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cal values of the properties being evaluated, the formula calculates the Pearson cor-
relation coefficient of the relative ranks of the data. The numerator term di is the dif-
ference in the property ranking at point i of two structures, and n is the total number of
points over which the property is measured.

Another widely used family of indices analyas molecular dissimilarity through the
measurement of the Euclidean distance between molecular properties. An example of
this is shown in Eq. 5, which calculates the root mean squared difference between 
properties:

(5)

Perry and van Geerestein [36] used Eq. 5 for optimizing molecular surface shape simi-
larity. Other variants of this group of indices include the measurement of sum squared
errors and mean squared difference [ 32,37–39].

2.2. Discrete formulae

More recently, indices which measure similarity at discrete points in space have been
employed to allow greater control over molecular similarity calculations [12,22,40–42].
The application of such formulae permits both graphical and statistical analysis to be
executed on the resultant similarity grid. For such discrete indices, overall molecular
complementarity is obtained by summing the similarities over all points in space and
then dividing the result by the total number of points present. The resulting value is the
average similarity over measured property space. Reynolds et al. [40] proposed the first
discrete similarity formula for 3D calculations, in the form of the ‘linear’ similarity
index:

(6)

max (|PA|,|PB|) equals the larger molecular property magnitude between PA and PB at
the grid-point where the similarity is being calculated. An exponential variant of this
index was also proposed by Good [22], while Petke [12] created two further discrete
indices, including one based on the Hodgkin index. These discrete indices have been
applied to the measurement of MEP and Molecular Electrostatic Field (MEF) similarity

Recently, Klebe et al. [41] proposed a discrete formula for the evaluation of mole-
cular similarity in 3D QSAR calculations. This methodology is interesting, in that rather
than calculating a pair-wise molecular similarity between molecules, similarity is deter-
mined between a given molecule and a probe atom:

(7)
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where the similarity A for physico-chemical property k at grid-point q is calculated
through Summation across all n atoms of molecule j, wik is the physico-chemical pro-
perty value of atom i, wprobe,k the probe atom property (+1 atomic charge, 1 Å radius and
+1 hydrophobicity), σ the attenuation factor and riq the mutual distance between probe
atom at grid-point q and atom i of molecule j. The resulting molecular similarity grids 
have been applied successfully to 3D QSAR calculations [43].

2.3. Comparing coefficients

Choosing the equation which best suits one’s need for 3D molecular similarity cal-
culations is no simple task. While many studies have been undertaken to compare the
relative merits of similarity indices in 2D database searches (detailed elsewhere, see
reference [8]), equivalent comparisons involving 3D descriptors are less common. Petke
[12]and Good [22] explored issues of sensitivity in some detail, comparing similarity
index values for MEPs and MEFs across a number or datasets. Both these studies
suggest that discrete indices tend to be more sensitive than their cumulative counter-
parts. The test systems used (e.g. the comparison of index behavior at a single discrete
point i n space) were, however. rather artificial in nature. Calculations involving actual
ligand series yielded more complicated relationships [22] . Indeed, extensive QSAR
studies by Good et al. [43], involving multiple datasets and indices, suggest that despite
its perceived lack of sensitivity, the Carbo index produces results comparable to many
of its more complex contemporaries.

These results highlight the problems in attempting to define which is the best index.
Each coefficient has its own strengths and weaknesses. The Spearman rank-correlation
coefficient (Eq. 3) has been shown to perform poorly in QSAR studies [43]. Its structure
is such that it is scale invariant, however, making it potentially useful with systems con-
taining a net charge, as it prevents highly charged regions dominating all other system
features. Discrete indices, such as Eq. 6, allow improved control and graphical/

while formulae such as the Carbo
index allow rapid analytical evaluation using Gaussian functions [23,27] . Many of the
indices have been applied with success to a variety of problems. The choice of index
and its method of evaluation should, therefore, be made with careful consideration to
the molecular design problem at hand. The information provided in section 3 should
make the nature of such considerations clearer. More extensive comparisons of similar-
ity coefficients in general. and those applied to 3D problems in particular, are detailed
elsewhere [44–46].

3. 3D Descriptors and their Application in Explicit Molecular Similarity 
Calculations

In many cases, i t is not so much the similarity index, but the methodology applied to
property calculation, that determines the success of a molecular similarity evaluation. A
host of 3D descriptors have been used in conjunction with the molecular similarity
coefficients described above. Many of the measures have been selected or tailored to
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meet particular applications, from ab initio quantum mechanical calculations for 
thorough molecular comparison to specially devised atomic triplet shape descriptors for
rapid database searches. A number of these approaches are detailed here, together with
their associated applications.

3.1.

A variety of techniques have been exploited in comparing the molecular fields between
molecules, including numerical evaluation on rectilinear grids, analytical comparisons
employing Gaussian function approximations, gnomonic projection and molecular 
volume measurement. These and other approaches are detailed below.

3.1.1.
In CAMD, continuous molecular properties are often approximated through the applica-
tion of rectilinear grids, and this is no less the case in molecular similarity calculations.
When originally applied to the problem of measuring molecular similarity, many
indices were (and still are) used to measure molecular similarity based on quantum-me-
chanically derived properties [7, 13–18,47–48]. CPU hungry calculations and lack of
results discrimination led Hodgkin and Richards [10,11] to apply similarity indices in
numerical evaluations of MEP and MEF (Fig. 1). The increased speed of MEP and
MEF similarity calculations allows systems of greater biological significance to be
chosen for study. Burt et al. [19] further developed the methodology by undertaking
MEP and MEF similarity calculations for a series of nitromethylene insecticides. 
Multiple grid increments, extents and charge schemes were employed in order to deter-
mine the optimum compromise between speed and accuracy of calculation. Burt and
Richards [20] then added the ability to include flexible fitting during similarity opti-
mization. They found that by allowing torsional flexibility, molecular superpositions
with significantly higher similarity could be realized. In order to lower the chance of

Calculations based on explicit molecular shape and MEP evaluation

Descriptor calculations in grid space

Fig. 1. Numerical approximation for the Carbo index using molecular properties defined on a rectilinear
grid. adapted from reference [43].
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obtaining energetically unfavorable conformations during such calculations, the similar-
ity index calculation was weighted using a Boltzmann factor to penalize significant
increases in internal energy:

(8)

where c is the weighting factor, ∆E the energy of rotated conformation minus energy of
initial conformation. R the gas constant and T the temperature. All the software functions
described above have been integrated into a single software package known as ASP [49].
Similar procedures have also been applied to measurement of hydrophobic similarity,
essentially replacing point charges with atom-based hydrophobic potentials [50].

Comparable functionality to that described above has also been developed by Manaut
et al. [34-35] in the form of the MEPCOMP and MEPSIM software. These program
employ the Spearman rank-correlation coefficient (Eq. 4) to determine and optimize
MEP similarity from ab initio derived MEP grids, as well as those calculated from point
charges. They also use a novel method for determining the grid-points to be included in
the optimization, setting inner and outer exclusion volumes proportional to the vdW
radii of the constituent atoms. The internal shell is usually set to a small value, so that
the high MEP values can attempt to simulate steric interactions.

One of the problems of a rectilinear grid with uniform point density is that the system
gives equal importance to points close to and far from the molecules being compared.
Richard [21] proposed an alternative in the form of a molecular atom-centered radial 
(MACRA) grid. As its name suggests, a MACRA grid produces grid-points emanating
from the atom centers of a molecule. A template sphere employing a fixed or vdW radius
with approximately uniformly distributed surface points is centered on each atom. This
forms the first layer of the grid. The second layer is created by scaling the sphere radius
through the addition of the average distance between grid-points on the lower layer. Points
clashing with lower shells of other atoms are removed. The primary advantage of such an
approach is that, as the layers arc constructed, the resulting radial grid requires around 2%
of the points of a 1.0 Å increment rectilinear grid to encompass a ligand of drug-like pro-
portions. The technique contains certain drawbacks however, not the least of which is the
inability of such a grid to deal adequately with concave molecular surfaces.

The calculation of molecular shape similarity has also been undertaken employing
rectilinear grids. Meyer and Richards [24] utilized a point counting function version of
the Carbo index through modifications of the ASP program. Every grid-point is tested to
see whether it falls inside the vdW surface of each molecule. The results are then
applied to the following index:

(9)

B is the number of grid-points falling inside both molecules, while TA and TB are the
total number of grid-points falling inside each individual molecule. The use of
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extremely fine grids (0.2 Å separation) in conjunction with this technique make for pro-
longed calculation times, restricting its utility to SAR calculations rather than molecular
alignment. More recently, Hahn [29] has developed a more rapid grid-based method for
shape evaluation. The technique uses rapid volume and principal axes indices to pre-
screen for molecules similar in shape to a given query. Molecules passing this screen
are aligned by their principal axes (and symmetrically equivalent superpositions) and
their shape similarity evaluated through volumetric comparison. Additional optimiza-
tion, flexible fitting and electrostatic similarity comparison functions arc also included. 
The use of such rapid pre-screens and coarser grids allows this approach to be used for
full-scale 3D database searching.

3.1.2. Gaussian function evaluations
While grid-based similarity evaluation techniques are common, their numerical founda-
tions impart inherent drawbacks. The largest of these problems is that. to gain com-
putation speed, the grids employed are normally coarse, with the consequence that
resulting evaluations of spatial properties are somewhat rough. In particular, the similar-
ity optimization through the modification of relative molecular position is coarse and
crude. It is, for example, very difficult for a grid-based similarity optimization to super-
impose a molecule on top of itself, since the program tends to converge prematurely at
some discrete point.

The mathematical structures of certain similarity coefficients are such that analytical
Gaussian functions may be exploited in their evaluation — for example, MEP cal-
culations employing the standard point charge approach, where the charges (qi) assigned 
to each atom (i) create an electrostatic potential at a point r for a molecule of n atoms
according to the following equation:

(10)

where Ri is the nuclear coordinate position of atom i.

function approximation by Good et al. [23] (Fig. 2):
The inverse distance dependence term of Eq. 10 was substituted with a Gaussian

(11)

When this potential function is substituted into the Carbo index (Eq. 2). the resulting in-
tegral terms expand into a series of two-center Gaussian overlap integrals. A two-center
Gaussian overlap integral has a simple solution based on the exponent values and dis-
tances between atom centers shown in Eq. 12 [51]:

(12)
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Fig. 2. Two and three Gaussian function approximations to the l/r distance dependence curve. Adapted from 
reference [22]: I/r; ..... 2 Gaussians; —. —. 3 Gaussians.

The similarity calculation can thus be broken down into a succession of readily calcula- 
ble exponent terms. As a result of this, it is possible to evaluate MEP similarity rapidly 
and analytically, and as no singularity exists when the potential approaches an atomic 
nucleus (Fig. 2). the calculation need not be restricted to regions outside the atomic 
vdW radii. 

These Gaussian functions were incorporated into the ASP program by Good et al. 
[23], and MEP similarity optimization calculations were undertaken on identical 
molecules in different spatial orientations. The results confirmed that the analytical 
Gaussian functions produced similarity values comparable with grid-based calculations. 
with a two orders of magnitude increase in evaluation speed. They were also found to 
be capable of superimposing two identical molecules back on top of each other during 
similarity optimizations, calculations for which equivalent numerical evaluations 
always converged prematurely. Further speed increases have been obtained by exploit-
ing the analytical nature of the Gaussian functions to replace simplex optimization rou-
tines with gradient-based methods [52]. In this way. the time required for similarity 
optimization can be reduced by up to an order of magnitude. Willett and co-workers 
[53–54] have exploited the speed of Gau n-based evaluations. coupled with efficient 
methods for undertaking molecular alignment (genetic algorithms, MEP field graphs 
and bit climbers). to allow the rapid comparison of MEPs between molecular pairs 
(< 1 CPU second on a good workstation). Using such an approach, it has been possihle 
to compare whole databases of molecules against given lead structures, searching for 
similar MEP distributions. This is of particular interest as the molecules found to be 
similar often show little structural resemblance to each other, unlike those located using 
traditional substructure search techniques. 
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The use of Gaussian functions need not be limited to MEP calculations. In principle,
any property which can be approximated to a set of Gaussians could be compared in

ecular fragments. The technique was found to work well for the small fragments
investigated, but was not pursued because of the difficulty of breaking a larger drug
molecule down into a suitable set of fragments. More recently, Good and Richards [27]
proposed a more elementary approach, with electron density simply approximated to the
square of the STO-3G atomic orbital wave functions [55].The results produced using
this technique were found more than two orders of magnitude faster than equivalent cal-
culations using the numerical shape analysis of Meyer and Richards [24].with little loss
in calculation accuracy. Grant and Pickup [56–57] applied Gaussian approximations to
the hard sphere model of molecular shape, further improving on the approach by ex-
ploiting the fact that the product of multiple Gaussians is a single Gaussian centered at a
coalescence point. This allows molecular shapes based on Gaussians to be collapsed
into increasingly simple elliptical representations. further increasing calculation speed.
Gaussian functions have also been applied by Chapman [58] in the field of com-
binatorial library profiling, using the approach to quantify steric dissimilarity between
potential reagents.

It is clear from the above studies that calculations employing Gaussian functions
offer a versatile technique for molecular similarity evaluation. Their analytical nature
and ease of calculation make for robust and rapid similarity optimizations, while
their empirical nature appears to have little consequence on their effectiveness. (Good 
et al . [43] showed that when used as parameters in QSAR calculations, analytic-
ally derived MEP similarity matrices were more predictive than their numerical
counterparts.)

3.1.3. Gnomonic projection
The technique of gnomonic projection extends the molecular properties of a structure
onto the surface of a sphere. The sphere is approximated by a tessellated icosahedron, or
an icosahedron and dodecahedron oriented such that the vertices of the dodecahedron
lie on the vectors from the center of the sphere through the mid-points of the icoso-
hedral faces [26,36,59]. Gnomonic projection displays many useful properties, includ-
ing the dramatic simplification of how to map two irregular surfaces to each other.
Calculation times arc rapid, especially when symmetry elements inherent to the system
are exploited to reorient the projections. As a result of these features, gnomonic pro-
jection techniques have been widely applied to quantitative similarity measurement.
Applications include exhaustive similarity comparisons of MEP and surface shape 
between molecular pairs [31], full-scale shape similarity database searching [26,36] and
interactive graphical and numerical similarity analysis [38-39,60]. The primary draw-
back of gnomonic projections is that the technique is essentially restricted to com-
parisons in rotational space, rendering the final results of any similarity calculation
dependent on the chosen centers of projection for each molecule.
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3.1.4. Volume measurements
The measurement of molecular shape through the use of volume overlap calculations
was one of the first ways in which 3D quantitative similarity measures were made.
Hopfinger [3] first employed such measures as QSAR parameters through the overlap
calculation between all pairs of atoms in the molecules being compared (Eq. 1) ,using
the hard sphere approximation for each atom. Hermann and Herron [5] developed the
OVID program, which optimizes molecular alignment by maximizing the overlap
volume of a prespecified subset of ligand atoms. OVID is fast but requires the user input
to define the atoms considered important in the binding mode, essentially measuring fit
quality to a postulated pharmacophore. Masek et al. [6] employ the more accurate ana-
lytical volume calculations presented by Connolly [6l ] to determine optimum molecular
shape comparisons. It is also possible to weight for overlap between atoms with match-
ing chemistry. These searches arc more exhaustive and, consequently, have a higher
CPU requirement.

3.1.5. Dot Surface evaluation
As well as the OVID program, Hermann and Herron [5] developed an alternative, 
SUPER, for measuring surface shape complementarity. This software is used to under-
take more exhaustive molecular alignment calculations. The program basically works
by comparing molecular dot surfaces of overlaid molecules with surface points con-
sidered as matching when they lie within a predefined distance of one another. MEP
data can also be used to weight for matches with matching electrostatics. Badel et al.
[37]use what they term bi-dimensional surface profiles to measure surface com-
plementarity . A 2D slice is made through the molecule Connolly surface [62], with the
angular profile of the resulting surface contour determined by moving along the cross-
section, calculating the angles formed by three successive surface points. Sections of
this resulting profile are then compared in order to measure shape complementarity. The
technique attempts to provide a condensed 2D measure of shape, but the results are 
ultimately dependent on the orientation of the molecule relative to the cross-sections
taken. Masek et al. [63] have developed a method for molecular surface similarity
evaluation based on the overlap of regions between the vdW and solvent accessible
surface. The technique was pioneered because it is not possible to use volume overlap
comparisons to measure the similarity of ligands with vastly different size (e.g. com-
parison of small molecule with exposed loop of protein ligand). Overlap is calculated
using the analytical volume overlap calculations of Connolly [62]. Such evaluations are
extremely CPU intensive, however, so to speed up the calculations, Perkins et al. [63]
developed an alternative where molecular surface representations are precomputed and
stored on grids for comparison. Such evaluations are thus rapid, but this does lead to the
problem that molecular flexibility cannot be dealt with explicitly, as a new grid would
need to be calculated in response to any change in conformation.

3.1.6. QSAR methodology exploiting field-based similarity data 
A number of different approaches have been taken in the application of molecular
similarity calculations to the creation of 3D QSAR models. The easiest way to correlate
molecular similarity results with biological data is via simple regression analysis. Many 
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examples of such studies can be found in the literature. Seri-Levy and Richards [65–66]
exploited molecular similarity data to construct QSARs for ligand enantiomer eudismic
ratios. Each enantiomeric pair was superimposed through a least-squares fit to maximize
the overlap of their stereogenic centers, and the ASP program was used to measure
shape and MEP dissimilarity (defined as 1-similarity). The eudismic ratios were then
correlated against these dissimilarities. Similar calculations have also been undertaken
to quantify the complementarity of the peptide bond to a series of isosteres [67]. Burt
et al. [19] correlated activity for a set of nitromethylene insecticides with their MEP
similarity to the most active molecule in the series. A similar approach has also been
employed by Montanari et al. [68]. Hopfinger et al. [3,69-73] have successfully applied 
their molecular shape calculations in the derivation of 3D QSAR models across a wide
variety of systems. Correlations were determined through the calculation of molecular
similarity, using each dataset molecule in turn, or even the shape of an ensemble of
aligned active molecules. as the template for regression analyses.

It is clear from the above studies that molecular similarity-based regression equations
can produce good QSARs. Nevertheless, it is unlikely that a single molecule will
contain all or most of the structural information inherent to a given ligand dataset. In an
effort to capture this information, full N X N (similarity of each ligand in dataset cal-
culated against all other ligands) molecular similarity results matrices originally
employed by Rum and Hernden in QSAR calculations [74] were extended to incor-
porate 3D property data [43,75]. This would make all the SAR data embedded within
the molecular similarity values available for model generation. The information con-
tained within such matrices is similar to that present within a CoMFA data matrix. the
primary difference being that. while CoMFA will describe a region around a group of
molecules using a large number of grid-points, the similarity matrix will attempt to de- 
scribe the same region using just a few numbers. Such matrices thus provide an efficient
3D QSAR descriptor set, and the predictivity of resulting 3D QSARs has been found to
compare well with CoMFA calculations undertaken on identical datasets [43,76]. The
primary problem of this methodology is that, while CoMFA is able to display the
coefficients of its QSAR equations as maps of favorable and unfavorable structural
interactions. no such method exists for extracting chemical meaning from similarity
matrix equations. To address this, Klebe et al. [41] have proposed an approach to 3D
QSAR which applies a discrete rather than cumulative 3D molecular similarity index
(Eq. 7). Similarities are evaluated between molecules in the QSAR dataset and a probe
atom. The resulting molecular similarity grids are then analyzed in a CoMFA-like
manner using PLS. While, as in CoMFA, this leads to much larger data matrices than
the N X N cumulative similarity matrix approach, the resulting QSAR models can be
analyzed graphically. These graphical QSAR model depictions were shown t o be of
superior quality when compared to CoMFA graphical representations of the same
datasets [41],while the QSAR models showed similar predictivity.

3.2. Molecular similarity evaluations based on atom distribution

While a number of the techniques described above have utilized clever techniques
to speed up MEP and shape similarity comparisons, it is generally the case that such
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calculations are somewhat time-consuming. As a consequence. they do not lend them-
selves particularly well to database searching and library profiling protocols. To lower
the CPU requirement of 3D molecular similarity evaluation, a variety of alternative
methods has been devised which attempts to determine similarity using simplified struc- 
tural descriptors based on 3D atom distributions. Such techniques, while less accurate,
can be calculated rapidly and are, therefore. well suited to the large dataset comparisons
required in database searching and library profiling. Many of these techniques are 
described below.

3.2.1. Shape measures
A host of approaches have been developed to allow shape similarity measurements
based on matching atom distributions. Nilakantan et al. [28]have developed a 3D data-
base search system. based on the distribution of all atom triplet distance combinations
found within a molecule. Simplified binary signatures of template and database mole-
cule triplets are coinpared during the first stage of a database search. with the triplets of
those molecules deemed similar enough regenerated on the fly for final comparison. The
number of triplet matches found is used as the molecular shape property to quantify
similarity. Good et al. [77] extended the use of simple ligand triplet descriptors to en-
compass molecular surface comparisons. and altered the descriptors to allow storage on
hard disk, thus facilitating faster searches. Bemis and Kuntz [78] applied a simplified
version of triplet matching to permit rapid 3D database clustering. The perimeter of
each triplet in a molecule is measured, and the resultant distance is used to augment the 
appropriate bin of a molecular shape histogram. These histograms are then compared to
quantify shape similarity. A variety of different triangle geometric properties has also
been exploited by Fisanick et al. [79] to aid similarity searching of molecules found in
the Chemical Abstracts Service Database. Another interesting method introduced by
Norel et al. [80] employs, again, triangle descriptors to calculate molecular shape. For
each molecule in a database, every pair of atoms within a defined distance range of each
other are extracted, and triangles are constructed by adding a third vertex in the form of
a molecular surface point. Triangle data for all the atom pair-surface triangle de-
scriptions of a molecular database are stored in a hash table. This table is then used
rapidly to screen for potentially complementary ligand-receptor interactions, through 
complementarity calculations with equivalent receptor triangle data.

3.2.2.     Measures incorporating pharmacophoric information
It is possible to extend the descriptors described in section 3.2.1. through the incorpora-
tion or chemical information with the atom distribution data. Moon and Howe [25] have
developed a 3D database search system where queries are built up from single or multi-
ple overlapped active ligands. Database molecules are fitted to the query in multiple
orientations using the clique detection algorithms of Kuntz et al. [81]. Atoms match
when their centers are found within a predetermined distance of each other. The score
applied then depends on the degree of chemical complementarity between matched
atoms. Query atoms are defined as required or optional: database molecules must have
an atom match with required atoms in order to be retrieved as a hit, while optional 
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Fig. 3. Pharmacophore centre abstraction and triplet description creation paradigm for pharmacophore
based similarity measures (references [79,81-83 1). Key to pharmacophore center types: A= hydrogen-bond 
acceptor; D = hydrogen-bond donor; Ar = aromatic ring centroid; Lip = lipophilic centroid (center of group
of atoms with –0 charge); + = charged positive. Adapted from reference [82]. 

atoms matches are used only to augment the similarity score after matching has
occurred.

All of the techniques described so far i n section 3.2 are based on descriptors derived
from explicit molecular conformations. Thus, while fast, they do not account for the
inherent flexibility which might be present in a given system. The primary problem with
attempting to incorporate molecular flexibility in conjunction with triplet similarity
measures is the n3 dependence (n = number o f centers per molecule) of the descriptor
keying times. To overcome this problem, Good and Kuntz [82] developed a triplet-
based measure grounded on a simplified description of each molecule. Rather than
using all the heavy atoms in a structure, triplet calculation is restricted to phar- 
macophoric centers (e.g. donor, acceptor, lipophilic; see Fig. 3). In this way, the
CPU requirement for descriptor calculation is dramatically reduced, allowing the
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incorporation of data from multiple conformations. Pickett et al. [83] extended this idea
using their PDQ (pharmacophore derived query) approach, where triplet descriptors are
derived from multiple 3D database searches against a battery of predetermined theoretical
pharmacophores. Such a technique has the advantage of building up a full profile of the
number and type of pharmacophores present in a given dataset. This can be useful in
library profiling where dataset diversity measures are extremely important. Quality of fit to
any given pharmacophore can also be determined easily. The major drawback with the
PDQ approach is its keying time which is orders of magnitude slower than internal phar-
macophore measurement on the fly [82,84] .This type of methodology has been further ad-
vanced by the program Chem-Diverse [84-85], which exploits pharmacophore triplet
infomiation in combinatorial library profiling. The Chem-Diverse protocol for molecular
similarity calculation is based on trying to obtain the maximum coverage of pharma-
cophore space by potential combinatorial chemistry products. The overlap of pharma-
cophore triplets between entire datasets is compared, allowing the assessment of their
similarity and hence diversity. Such methodology is currently an area of much interest [86].

4. Conclusion

This chapter has summarized many of the techniques available for quantifying explicit
3D molecular similarity. A multitude of molecular properties, indices and protocols
have been presented, from the detailed comparison of MEP and shape for QSAR con-
struction. through to the rapid analysis of pharmacophore triplet descriptors for diversity
analysis. The sheer variety of such approaches permits their application in many key
areas of molecular design. Such flexibility makes quantitative molecular similarity eval-
uation an important tool in the hands of the computational chemist. With the ever 
increasing demand for the quantification of diversity in combinatorial library profiling,
this importance is likely to grow.
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1. Introduction: Diversity-related Tasks

Although the concept of chemical diversity has been intuitively considered by chemists
for many years, the advent of combinatorial chemistry and high-throughput screening 
have focused attention on the need for efficient software tools to address a variety of
diversity-related tasks. Perhaps the most fundamental task related to chemical diversity
is that of selecting a diverse subset of compounds from a much larger population of
compounds. The obvious objective of that task is to identify a subset which best repre-
sents the full range of chemical diversity present in the larger population, either to avoid
the time and expense of synthesizing ‘redundant’ compounds or to avoid the time and 
expense of screening ‘redundant’ compounds. However, in addition to simple subset
selection, recent practical experience has revealed other equally (possibly more) import-
ant diversity-related tasks which must al so be addressed in the pharmaceutical and
agrochemical industry.

High-throughput screening (HTS) can be an effective approach to lead discovery but
is obviously limited by the structural diversity of compounds being screened. What if
that population does not include representatives of one or more chemical classes or 
pharmacophores? Identifying diversity-voids or missing diversity is an important task
and, obviously, filling in diversity voids with compounds from other sources is equally 
important. It is also important to be able to recognize and choose among the many com-
pounds which might fill a particular diversity-void. These tasks become increasingly
important as the number of combinatorially synthesizable compounds increases with
advances in combinatorial chemical methods. and as the number of commercially avail-
able compounds increases. Similarly, comparing diversities of alternative compound
libraries is another important diversity-related task.

In addition to simple diverse subset selection, it is often desirable to select a subset
chosen not only to provide structural diversity, but also to satisfy one or more non- 
structural criteria or ‘biases’. For example, compound availability and/or physical prop-
erties may be important when selecting a subset for HTS purposes. Reagent cost and/or
reagent usage frequency may be important when deciding which compounds actually to
synthesize ou t of a very large range of compounds synthetically accessible through
combinatorial chemical methods. Clearly, non-structurally biased subset selection will
yield subsets with somewhat less structural diversity than a subset chosen simply to
maximize structural diversity, but practical considerations often make biased subset
selection a very important diversity-related task.

*To whom correspondence should be addressed.
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The following section will discuss how chemical structures can be described for
chemical diversity purposes. We shall refer to such descriptors as ‘metrics’ of a ‘chemistry-
space’. An extremely important but often overlooked diversity-related task is that of
choosing the chemistry-space metrices which best represent the structural diversity of a
given population of compounds . For example, combinatorially generated populations, or
populations chosen to be similar to a particular active (‘lead’) coinpound, are inherently
less diverse than other more randomly assembled populations. Thus, it is quite reason-
able to expect that metrics specifically tailored to focus on the limited diversity of such
’focused populations’ will provide some advantages over metrics which were developed
to best represent the broad range of diversity found i n ‘non-focused populations’. Last
but not least, the notion of considering alternative chemistry-space metrics reminds
us of the need for a rational approach for validating chemistry-space metrics — an
important and often misunderstood diversity-related task.

2.

Before discussing software tools for addressing the aforementioned diversity-related
tasks, i t is useful to review a few fundamental concepts. The notions of chemical simi-
larity, dissimilarity and, consequently, ‘diversity’ are all related to the distance between
chemical compounds positioned in some multi-dimensional ‘chemistry-space’, the axes
of which are the structure-related ‘chemistry-space metrics’ mentioned above. In order
to be a well-defined vector-space, our chemistry-space axes must be orthonormal (mu-
tually orthogonal, uncorrelated and normalized). We must also define a method for
computing a true distance (one which satisfies the triangle inequality) within that space.
The ‘diversity’ of compounds positioned in chemistry-space is intuitively related to the
inter-compound distance as measured in that space.

Whereas the dimensionality of our physical world is predefined as 3, the dimension-
ality of a chemistry-space (as well as the definition of axes) can be chosen to best repre-
sent the diversity of a given population of compounds. Most software for addressing
chemical diversity uses some form of ‘molecular fingerprint’ to describe each com-
pound in a population. Fingerprints are bit-strings (sequences of 1 s and 0s) representing
the answers to yes/no questions about the presence or absence of various substructural 
features within the molecular structure of a given compound. Although not often dis-
cussed in such terms, each bit represents an axis in a multi-dimensional chemistry-
space. Each axis could have either of two values: 0 or 1. Fingerprints represent very
high-dimensional chemistry-spaces: typically between 150 and 200 bits for MDL appli-
cations [1], a few thousand for Tripos [2] and Daylight [3] applications or millions for
the pharmacophore fingerprints introduced by Chemical Design Ltd. [4]. With the ex-
ception of the latter, fingerprints were developed to enable similarity and substructure
searching.

Comparing fingerprints using the well-known Tanimoto similarity index, T, has
proven useful for finding similar coinpounds within very large databases of chemical
structures. Thus, it is typically assumed that the ‘Tanimoto dissimilarity’, (1-T), repre-
sents a useful measure of distance within such high-dimensional spaces. Distance-based

Chemistry-space Concepts and Diversity-related Algorithms 
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diversity algorithms consider only the distances between compounds in chemistry-space
and are used to select diverse subsets by choosing compounds guaranteed to be distant
from other coinpounds in the selected subset. Practical experience and various valida-
tion studies (e.g. Brown and Martin [5]) indicate that such high-dimensional, distance-
based diversity-related algorithms are, indeed, useful for simple diverse subset
selection. However, the following criticisms should be considered:

1. The ‘questions’ corresponding to the bits of fingerprints were specifically devel-
oped to identify compounds similar to one another. They were not developed to
focus on differences which would constitute a structurally diverse subset.
Although some software permits users to redefine the ‘questions’ corresponding to
the bits of a fingerprint, this is rarely (if ever) done in actual practice. Thus, we use
fingerprints developed to find similar compounds in diverse populations to select
dissimilar (diverse) compounds not only from diverse populations, but also from
focused populations. 
The Tanimoto similarity index was developed to gauge similarity, not dissimilarity. 
That is, if T(A,B) and T(A,C) (the Tanimoto similarities between compounds A, B
and C) are 0.9 and 0.8, compounds A and B are probably more structurally similar
than compounds A and C. However, it is not at all certain that if (1 – T(X,Y)) and
(1 – T(X,Z )) are 0.9 and 0.8, that compounds X and Y are more dissimilar (diverse) 
than compounds X and Z.
Although the Tanimoto similarity index appears useful for the similarity purposes
for which it was designed, (I – T) is not a valid measure of distance since it does
not obey the triangle inequality. Thus, it appears that distance-based diversity (and,
possibly, similarity) algorithms might be improved by using either the Euclidean
distance or the Hamming distance as suggested by Pearlman [6,7].

2.

3.

4.

Despite these criticisms, distance-based diversity algorithms appear to work satis-
factorily for simple diverse subset selection, the most fundamental of the diverse-related
tasks. However, a s the term implies, distance-based algorithms consider only inter-
compound distances, not the absolute positions of compounds in chemistry-space. As a
result, distance-based algorithms are inherently limited and are ill-suited for many of
the other diversity-related tasks. For example, locating diversity voids in chemistry-
space is essentially impossible since distance-based algorithms do not reference
1ocation.

In contrast, by dividing each axis of a multi-dimensional space into ‘bins’, cell-based
diversity algorithms partition chemistry-space into a lattice of multi-dimensional hyper-
cubes and, thereby, consider not only inter-compound distance, but also absolute po-
sition of compounds in chemistry-space. As will be illustrated below, this additional
information makes cell-based diversity algorithms much more powerful and easily
applicable to all of the diversity-related tasks mentioned in the preceding sec-
tion. However, whereas distance-based algorithms can be applied in either a high-
dimensional or low-dimensional representation of chemistry-space. cell-based algor- 
ithms can only be applied in low-dimensional chemistry-spaces. (For example, a
1000-bit fingerprint corresponds to a 1000-dimensional chemistry-space which would
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be partitioned into 21000 cells — an astronomically large number of cells almost all of
which would contain no compounds.)

In order to take advantage of the power and utility of cell-based diversity algorithms,
we must identify low-dimensional matrices from which to construct a less than 
10-dimensional chemistry-space satisfactory for diversity purposes. There have been
numerous attempts to use ’traditional’ molecular descriptors (e.g. molecular weight, 
shape-factors, estimated logP, surface area, dipole moment, HOMO-LUMO gap. etc.)
as the axes of a low-dimensional chemistry-space. There are three basic reasons for
which these efforts have not proven particularly useful:

1 .

2.

Many of the ‘traditional’ descriptors are highly correlated; the axes of a vector-
space should be orthogonal (uncorrelated).
Some traditional descriptors (e.g. logP and pKa) are strongly related to drug trans-
port or pharmacokinetics but are only weakly related to receptor affinity or activity
as measured in most screening-based drug discovery efforts.
The traditional descriptors are whole-molecule descriptors which convey very little
information about the details of molecular substructural differences which are the
basis of structural diversity.

3.

The first problem above could be addressed to a limited extent by using principal com-
ponents of the ‘traditional’ descriptors as the axes, but the second and third more funda-
mental problems would remain. The advantages of cell-based methods cannot be
realized unless some non-traditional chemistry-metrics can be found which enable the 
definition of a meaningful low-dimensional chemistry-space.

3.

In 1989, Burden [8] suggested that a ‘molecular ID number’ could be defined in terms
of the two lowest eigenvalues of a matrix representing the hydrogen-suppressed con-
nection table of the molecule. More specifically, Burden suggested putting the atomic
numbers on the diagonal of the matrix. Off-diagonal matrix elements were assigned
values of 0.1 times the nominal bond-type if the two atoms are bonded and 0.001 if the
two atoms are not bonded. He also added 0.01 to the off-diagonal elements representing
‘leaf edges’ in the molecular graph (i.e. terminal bonds to the last atom in a chain).
In suggesting that structurally similar compounds would be near each other in an
ID-ordered list, Burden was actually proposing a one-dimensional chemistry-space.
Since fingerprint-based similarity searching method? were just becoming available
for modestly sized databases (under 0.5 million compounds), Burden’s seemingly
far-fetched suggestion was generally ignored.

In 1993, eager to find some sort of ‘similarity searching method’ applicable to the
Chemical Abstracts Service (CAS) Registry File of approximately 12 million structures,
Rusinko and Lipkus [9] applied Burden’s suggestion to a test database of 60 000 c o n -
pounds. The results were relatively poor compared to fingerprint-based similarity
searching methods, but much better than expected. They also experimented with the
notion of assigning a constant value to all diagonal matrix elements or a constant value

BCUT Values: Novel Low-dimensional Chemistry-space Metrics
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for all bonded off-diagonal elements but, in each case, were using the lowest eigenvalue
of a single matrix to define a one-dimensional chemistry-space.

Based on Burden’s (B) original suggestion and CAS’s (C) ‘validation’ of that
suggestion, Pearlman at the University of Texas (UT) added the following significant
extensions which resulted in what we now refer to as the BCUT approach [ 6,7,10]:

1. Given that a one-dimensional chemistry-space showed some signs of promise, a
similarly defined multi-dimensional chemistry-space should be even more pro-
mising. This is easily accomplished by using more than one matrix to represent
each compound.
Mathematical analysis reveals that all eigenvalues of such matrices contain infor-
mation related to molecular structure. The lowest and highest eigenvalues reflect
the most different information (are least correlated). Considering both the lowest
and highest eigenvalues provides another mechanism to extend Burden’s original
suggestion to a multi-dimensional space.
Pharmaceutical and agrochemical researchers are interested i n structural diversity
with respect to the way in which compounds might interact with a bioreceptor.
Since atomic number has almost no bearing on the strength of intermolecular inter-
actions, much more relevant metrics can be defined by putting more relevant
atomic properties on the diagonals of four ‘classes‘ of BCUT matrices: atomic
charges, polarizabilities. H-bond donor- and acceptor-abilities corresponding to the
electrostatic. dispersion and H-bonding modes of bimolecular interaction.
Burden’s suggestion of using nominal bond-type information for the off-diagonal
elements of the matrices was very good and should be retained. However. using
CONCORD [11] to generate 3D structures opens the possibility of putting various
functions of interatomic distance on the off-diagonals and, thereby, defining
metrics which encode information about the 3D structure.
Another approach to incorporating aspects of 3D structure is to use atomic surface
areas to weight the atomic properties placed on the diagonals.
Noting that the matrices contain atomic properties on the diagonals and connect-
ivity information on the off-diagonals, there is clearly a need for a scaling-factor to
provide the proper balance of the two types of information.

2 .

3.

4.

5 .

6.

Given the large number of possible combinations of diagonal, off-diagonal and
scaling-factor choices, it is clear that some method must be developed for rationally
deciding which combination of BCUT values (eigenvalues) would form the chemistry- 
space which best represents the structural diversity of a given population of compounds.
Many combinations can be quickly eliminated by requiring that the axes of the chermistry-
space be mutually orthogonal. For example, different charge-related values (e.g.
Gasteiger-Marsili charges, AM1 charges, AM1 densities, etc.) all convey the same fun-
damental information and, therefore, will be intercoil-elated. On the other hand, wiht the
exception of the H-bond-ability matrices 1, both the highest and lowest eigenvalues 
should be relevant and turn out to be relatively uncorrelated. (The lowest eigenvalues of
these matrices contain ‘information’ about atoms in the molecule whch are neither
H-bond donors or acceptors. Since all non-H-bonding atoms have the same zero value
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Fig. 1. (a) Cartoon representation of non-optimal two-dimensional chemistry space showing poorly dis-
tributed compounds. (b) Representation of a better two-dimensional chemistry-space showing more evenly
dis tributed compounds.

of H-bond-ability, the lowest eigenvalues of these matrices are information-poor.)
Sometimes, a 6-dimensional chemistry-space (two charge-BCUTs, two polarizability
BCUTs and two H-bond-BCUTS) yields the best chemistry-space for a given popu-
lation. Often, the H-bond-acceptor- and charge-BCUTs are correlated, yielding a
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5-dimensional chemistry-space. Pearlman and Smith [6,7,10] developed a powerful
‘auto-choose’ algorithm which automatically determines both the best dimensionality of
the chemistry-space and best choice of exactly which metrics best represent the
structural diversity of a given population of compounds.

The rationale for the auto-choose algorithm can most easily be explained by reference
to Figs la and 1b which depicts two ‘cartoon’ representations of the same population of
compounds distributed in two different two-dimensional chemistry spaces. Recall that
the most fundamental of diversity-related tasks is that of rational, structure-based
diverse subset selection. Suppose that one were asked to select a subset of 25 diverse
compounds. The chemistry-space defined by axes i and j in Fig. 1 a does a poor job of
distinguishing one compound from another and positions most of the compounds in the
central ‘cell’, thereby forcing us to choose several compounds from that cell at random.
Clearly, this would be a very poor choice of chemistry-space axes for this population of
compounds since it would provide little or no advantage over a random choice made
without reference to any chemistry-space considerations. In contrast, the chemistry-
space defined by axes k and l in Fig. 1b does a much better job of distinguishing com-
pounds based on structural diversity and enables the selection of a subset of 24 diverse
compounds (satisfactorily close to the desired size of 25) by simply choosing one com-
pound from each of the 24 occupied cells. Note that by choosing compounds as close to
the center of each occupied cell as possible, we have described a very natural cell-based 
subset selection algorithm which yields a set of compounds and ’covers’ the range of di-
versity represented by the population and includes compounds which are mutually 
distant from one another. Clearly, the chemistry-space yielding the most uniform dis-
tribution of compounds would best suit our purposes. However, real-world populations
will not be distributed in a perfectly uniform fashion. Valence and steric considerations
limit the continuity of structures which can be achieved and, more obviously, the 
history of discovery efforts at a given company with result in corporate databases
reflecting those focused efforts. However, the χ-squared statistic provides a measure of
how well one distribution matches another. Thus, minimizing the χ-squared statistic can
reveal which combination of metrics yields a distribution of compounds closest to the
hypothetical uniform distribution. Simultaneously, by considering a range of dimen-
sionalities, this χ-squared approach also reveals the dimensionality of the chemistry-
space which best represents the diversity of the given population of compounds.
Clearly, in order to include as much structure-distinguishing information as possible,
the algorithm will choose the highest-possible dimensionality which does not result in
correlated (non-orthogonal) axes. (Correlated axes would result in some highly popu-
lated cells along a diagonal of the chemistry-space and corresponding empty cells
surrounding that diagonal. This would yield a high χ-squared and the chemistry-space
would be rejected).

Note that the χ-squared approach yields the combination of metrics which best repre-
sents the diversity of a given population of compounds. For ‘truly diverse’ populations
of compounds, we are not surprized to find the same (or similar) ‘universal chemistry-
space’ definition being reported by different users. In contrast, populations result-
ing from generating different combinatorial libraries should be expected to occupy dif-
ferent and individually less diverse regions of ‘universal chemistry-space’. Clearly, the
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χ-squared approach enables us to tailor a chemistry-space to best represent a focused
population — an important diversity-related task listed in the Introduction section of
this chapter. 

It should also be noted that this auto-choose, χ-squared approach can be applied not
only to combinations of BCUT values, but to combinations involving any other low-
dimensional chemistry-space metrics. Although experience to date strongly supports the 
use of BCUT values as metrics, software developed by Pearlman and Smith [12]
encourages the user to consider his own metrics in addition to BCUT values. However,
this must be done with extreme caution for the following somewhat ironic reason.
Imagine assigning random numbers to each of compounds of a large populations and
then considering those numbers as a potential axis of a chemistry-space. Since the
random numbers would be uniformly distributed over the population of compounds, the
χ-squared approach would perceive this ‘metric’ (and other similarly random ‘metrics’)
as good choices as axes of a chemistry-space. This brings us. rather dramatically, to the
need to validate the choice of metrics used to define a chemistry-space.

4. Validation of Chemistry-space Metrics

Obviously, chemistry-space ‘metrics’ which are merely random numbers with no
relation to structure would be of no use for diversity-related tasks or any other purpose.
How can we demonstrate that a given set of metrics is actually reflecting differences in
molecular structure and, thereby, validate those metrics for use in addressing chemical
diversity-related tasks? 

Perhaps the most intuitive approach to metric validation is to use the metrics as
QSAR descriptors; i.e. establish a linear regression equation relating the metrics to the
experimentally measured ‘activities‘ of a set of compounds. Let us imagine that we can
put aside the differences between receptor-affinity and actual activity (due to transport
issues or secondary processes in the cascade of events between initial receptor binding
and eventual pharmacological effect). Since it would be impossible to establish a statis-
tically significant regression based on meaningless, random numbers, demonstrating 
such a regression would be proof that the metrics are not random numbers, but true indi- 
cators of chemical structure. After auto-choosing a six-dimensional BCUT chemistry-
space to best represent the diversity of their entire corporate database, Weintraub and
Demeter [13] used those six BCUT values to regress the logIC50 values measured for
800 ligands at the benzodiazepine site of the GABAA receptor and obtained a PLS
model essentially as good as one they obtained previously based upon 70 classical
QSAR descriptors.

While the results of Weintraub and Demeter certainly confirmed the validity of
BCUT values as chemistry-space metrics, those results are. unfortunately but not un-
expectedly, quite rare! As will be illustrated below. chemistry-space metrics are not
QSAR descriptors and rarely yield regressions as good as that reported by Weintraub
and Demeter, Chemistry-space metrics are intended to position compounds in a struc-
ture-based chemistry-space. QSAR descriptors are intended to provide quantitative esti- 
mates of bioactivity. Chemistry-space metrics are intended to reflect (in a necessarily
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crude manner) all features of molecular structure. In contrast, QSAR descriptors are
specifically chosen to reflect (as accurately as possible) only those features of molecular
structure which have been found relevant for a particular bioactivity. It is well known
that QSARs will give unreliable estimates of activity when applied to compounds con-
taining structural features not present in the training set used to identify the ‘relevant‘
features characterized by the QSAR descriptors. We certainly should not expect QSARs
based on chemistry-space metrics to do any better since (i) the metrics were not
intended for this purpose and (ii), as will be explained below, position in chemistry-
space is not quantitatively related to activity.

How, then, should chemistry-space metrics be validated? Pearlman and Smith [10]
have presented a simple yet novel approach to metric validation which they refer to as
activity-seeded, structure-based clustering. Unlike typical clustering algorithms (based 
on structure alone) which can be used for a variety of tasks, this algorithm requires
activity data (preferably, quantitative data) for a set of compounds and is intended only
for the diversity-related task of validating chemistry-space metrics. Given a set of active
compounds which all bind to a given receptor in the same way, it is certainly reasonable
to expect that those active compounds should be positioned near each other in a small
region of chemistry-space if the chemistry-space metrics are valid. The activity-seeded, 
structure-based clustering algorithm provides a method for directly testing that expecta-
tion in the typical case in which the chemistry-space dimensionality is greater than 3
and, thus, simple visual inspection of the distribution of active compounds is difficult or
impossible. The algorithm consists of the following procedure:

1 .

2.
3.
4.

5 .

6.

Choose a unit-cluster radius: a small distance in the chemistry-space to be 
validated.
Center a sphere of that radius on the most active coinpound in the validation set.
Assign other active compounds located within that sphere to that ‘unit-cluster’.
Center another sphere on the next most active compound not already assigned to
some unit-cluster.
Repeat steps 3 and 4 until all active compounds have been assigned to some
unit-cluster.
‘Coalesce’ adjoining (overlapping) unit-clusters and record the number of unit-
cluster spheres per coalesced-cluster.

The algorithm can be implemented as an O(N) process and, thus, is extremely fast.
More significantly, the algorithm can be used to validate all types of chemistry-space
definitions including other (non-BCUT) low-dimensional chemistry-spaces and those
based on high-dimensional fingerprints as well. When used in a cell-based context, the
unit-cluster radius is typically chosen to yield a tiny hypersphere of volume equal to that
of a single hypercubic cell reflecting the ‘resolution’ corresponding to a user-specified
number of bins/axis (see below). In any case, the total number of unit-cluster spheres
contained in all coalesced-clusters provides an upper bound on the volume of chemistry-
space required to contain all the active compounds.

Using the activity-seeded, structure-based clustering algorithm. Pearlman and Deanda
[14] have performed a number of validation studies. For example, after auto-choosing
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the BCUT chemistiy-space which best represents the diversity of compounds in MDL’s
MDDR database [15], they computed the positions of 197 relatively diverse ACE
inhibitors in that chemistry-space. The 197 inhibitors were culled from the primary
literature [16–23]. Measured activities (–logIC50) were reported for all compounds and 
spanned the range 5.24 to 9.64. The 78 most active compounds (top 40%) had activities in
the range 7.85 to 9.64 and were identilied as ‘highly active’ compounds. If the BCUT
values used as chemistry-space metrics were random numbers or quantities unrelated to
structure and intermolecular interaction, the active compounds would be randomly distrib-
uted throughout chemistry-space. However, using the activity-seeded, structure-based clus-
tering algorithm, they found that the 78 ‘highly active’ compounds are all contained by just
3 coalesced clusters occupying less than 0.02% of the entire chemistry-space and less than
0.19% of occupied chemistryspace. Significantly, the 3 clusters were close to each other;
the largest inter-cluster distance being just 3.2R where R is the unit-cluster radius.

It is instructive to consider the analogous results obtained using all 197 compounds
(including the 119 ‘poorly active’ compounds). Once again, the active compounds were
all clustered relatively near each other but they occupied a much larger volume of
chemistry-space than that occupied by just the 78 ‘highly active’ compounds. This
result is entirely consistent with expectations. There can be many different structures 
which exhibit poor to modest activities. In contrast, there are relatively fewer structures
which exhibit high activities. This fact may be easier to appreciate by considering the
notion of making structural modifications of a very highly active compound. There may
be a few modifications which preserve high activity but there are far more modifications 
which reduce or even completely destroy activity. 

The fact that poorly to modestly active compounds are spread over larger regions of
chemistry-space than highly active compounds illustrates one reason for which 
chemistry-space metrics cannot (and should not) be used as QSAR descriptors.
Compounds with significantly different structures would be positioned at widely distant 
points in chemistry-space but could exhibit low or moderate bioactivities (or affinities) 
of exactly equal magnitudes. The converse illustrates a second reason for which chem-
istry-space metrics cannot (and should not) be used as QSAR descriptors. For example,
adding just a single methylene unit to the middle of the –CH2CH2OH side chain of some
highly active compound could completely destroy the activity if the propyl-hydroxy de- 
rivative no longer fits into the receptor. Thus. two highly similar compounds (which any
valid metrics would place very near each other in chemistry-space) could have entirely
dissimilar activities. Clearly, neither QSAR nor any other approach based o n the as-

sumption of a quantitative relationship between activity and precise position in chem-
istry-space will be a valid approach to metric validation. On the other hand, the
activity-seeded, structure-based clustering approach clearly indicates whether a given
set of metrics places compounds active against the same receptor in the same small
region of chemistry-space and, thus, provides a rational basis for metric validation.

5.

Once one has determined which metrics define the chemistry-space which best repre-
sents the diversity within a given population of compounds, one is then able to use
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various cell-based algorithms to address all of the other diversity-related tasks men-
tioned in the introductory section of this chapter. Recall that such algorithms can exploit
not only the knowledge of inter-compound distances, but also the knowledge of
absolute positions of compounds in chemistry-space. Structurally similar compounds 
are positioned near each other in chemistry-space and, thus, are found ‘clustered’ in the
same or neighboring cells. 

A chemistry-space, like any other vector-space. must be comprised of normalized axes
(so that a distance of, say, 4 units in one direction is equivalent to a distance of 4 units in
any other direction). Thus, the ‘cells’ are hypercubes resulting from dividing each of the
normalized axes of a chemistry-space into equal numbers of evenly spaced ’bins’. The
number of bins/axis is directly related to the ‘resolution’ with which one examines the dis-
tribution of compounds across chemistry-space and is inversely related to the apparent
‘occupancy’ of that chemistryspace. For example, if 250 000 compounds are distributed
in some 6-dimensional chemistry-space and each axis is ‘divided’ into just one single bin,
all 250 000 compounds would be contained in just one single cell. The occupancy
(number of occupied cells divided by total number of cells) would be 100% but the
resolution would, obviously, be uselessly low. If each axis were divided into 20 bins, there
would be 206 = 64 000 000 tiny cells. In this case, the occupancy would be extremely low
and the resolution would be uselessly high: most cells would be empty and even very
similar compounds could be in different, noli-neighboring cells. Cell-based algorithms for
some tasks automatically choose the number of bins/axis most appropriate for that task 
and population. Other tasks require that the user decide on the resolution (see below). 
Recalling that typical populations of compounds are not uniformly distributed, experience 
has shown that choosing the number of bins/axis which yields roughly 12% to 16%
occupancy provides an appropriate level of resolution for most purposes.

6.

Our explanation of the χ-squared approach to auto-choosing the metrics of a chemistry-
space also illustrated the essence of the natural, cell-based approach to diverse subset
selection. As implied in that illustration, we recommend selecting one compound from
each occupied cell, although our software also allows one to sample each cell in pro-
portion to its occupancy or by selecting up to some fixed number of compounds per cell.
Once the user has specified the sampling protocol (number per cell) and the size of
the desired subset, the software automatically finds the number of bins/axis which 
yields the number of occupied cells required to provide a subset closest in size to
that requested. Cell-based algorithms are extremely fast and especially well-suited to
handling very large populations of compounds. Even if the software must make three
of four guesses before finding the best number of bins/axis, selecting a subset of
50 000 structurally diverse compounds from a population of 0.5 million would take
approximately 20 cpu seconds on a modest workstation.

By selecting cornpounds nearest the center of each cell, we can avoid choosing com-
pounds near each other but just barely on opposite sides of a plane separating two cells.
In other words, by selecting compounds nearest the center of each cell, we are selecting
a subset of maximal structural diversity, namely simple diverse subset selection.

Simple and Biased Diverse Subset Selection 
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Biased subset selection can easily be accomplished by allowing the user to construct
a modified selection rule. In other words. rather than choosing the compound nearest the
center of a given cell, one can arrange to choose the compound which provides the best
(user-specified) compromise between distance from center and some non-structural
property. For example, given a choice between two compounds from the same small
region (cell) of chemistry-space, availability (price, quantity on hand, etc.) might cer-
tainly be important considerations for assembling a subset for general screening pur-
poses. Recalling that logP in a poor chemistry-space metric but, nevertheless, quite
important for bioactivity, choosing compounds from each cel l closest to some particular
‘ideal’ logP could be advantageous.

Biased subset selection can also be used to improve the efficiency and economy of
combinatorial library synthesis. Imagine that 1000 A-type and 1000 B-type reactants
could be used to make 100
desired for screening purposes. Selecting 100 diverse A’s and B’s offers obvious prac-
tical advantages but. clearly, does not yield as diverse a set of 10 000 as could have 
been selected from the complete set of 1 000 000 products. Simple diverse subset selec-
tion from all the products would undoubtedly result i n the need to use many more than
100 of each type of reactant. By keeping track of the frequency with which each
reactant is used i n the products being selected, and by specifying the format of the
plates used for the syntheses (e.g. typical 8 X 12 = 96-well plate), DiverseSolutions 
[12 ] used in conjunction with CombinDBMaker (for combinatorial database generation
[24]) enables the user to specify a selection rule which chooses compounds providing
the best (user-specified) compromise between distance from center of cell and economy.

7.

In order to address the possibility of finding leads to bioactive compounds in regions of
chemistry-space not covered by their current collection of compounds, pharmaceutical
and agrochemical companies allocate a certain fraction o f their resources to compound 
acquisition programs: purchasing. trading for or synthesizing additional compounds for
screening. Practical considerations (cost, screening capacity, etc.) limit the number of
compounds companies choose to acquire.

Identifying and filling in diversity voids is trivially simple using cell-based alpor-
ithms. Obviously, ‘empty’ cells represent regions of missing diversity. ‘Empty’ can be
defined to mean either that the cell contains no compounds or that it contains less than 
some user-specified number. When identifying the diversity voids in a given population
of compounds, the number of empty cells will depend not only on how those com-
pounds are distributed, but also upon the ‘resolution’ at which the ‘search’ for empty
cells is performed. Whereas the number of bins/axis can be chosen by the software 
during subset selection, the user must choose the number of bins/axis which will yield a
number of diversity voids consistent with those practical considerations which limit the
number of compounds his company chooses to acquire (see below).

Since cell-based algorithms (unlike distance-based algorithms) reference absolute
compound coordinates in chemistry-space. tilling in diversity-voids is also trivially

Identifying and Filling in Diversity Voids
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simple using cell-based methods: compounds (from some secondary population) are
acquired if they would occupy a previously ‘empty’ cell in the chemistry-space con-
taining the primary population. Of course, this entails precomputing the coordinates
(metrics) of the secondary population i n the same chemistry-space as that used to
contain the primary population. Since we know exactly which cell would be filled by
each candidate compound, we can easily bias our choice of fill-in compounds using the
same sort of lion-structural criteria as discussed for biased subset selection. The user can
also specify how many compounds lie wants to add to ‘empty’ cells. DiverseSolutions
then presents the list of compounds to acquire in various formats to facilitate purchase
decisions (e.g. compounds which would ensure at least 1 compound i n each ‘empty’
cell, compounds which would ensure at least 2 compounds in each ‘empty‘ cell, etc.).

Finding the diversity voids in a population of 0.5 million compounds typically takes
less than 5 cpu seconds on a modest workstation. Filling i n those voids (to the extent
possible) from a library of 50 000 compounds typically takes less than 4 cpu seconds.
Thus, the user can easily experiment with several values of bind/axis and several
filling-in protocols.

It is worth noting that the filling-in process does not require any information about
the compounds contained in the primary population. All that is required is the definition
of the chemistry-space (i.e. name and range of the metric corresponding to each axis),
the number of bins/axis, and the cell-numbers of the ‘empty’ cells. Thus, without
revealing the compounds in its proprietary database, company X can. in essence, enable 
company Y to identify compounds which would fill in company X’s missing diversity.

8.

Occasionally, it may be useful to compare the diversities of two (or more) populations
of compounds — perhaps alternative third-party libraries one could purchase or alter-
native combinatorial libraries one could synthesize to augment the diversity of a cor-
porate database. Distance-based approaches merely allow the comparison of statistics
related to nearest-neighbor distances within the two populations. Such statistics provide
no information regarding the redundancy of compounds contained in both populations.
or even the extent to which the regions covered by the populations overlap in chemistry-
space.

In contrast, a cell-based approach provides an extremely rapid answer to the funda-
mental, pragmatic questions at the heart of the population comparison issue: if popu-
lation A and population B are alternative libraries and population X is a corporate 
database,

1.
2.
3.
4.

Questions 1 and 2 are easily answered by identifying the voids in population X and
hypothetically using both populations A and B to fill those voids. Similarly, questions 3

Comparing the Diversities of’ Two or More Populations 

how many population-A compounds fill voids in population X?
how many population-B compounds fill voids in population X?
how many population-A cornpounds fill voids in population B? 
how many population-B compounds fill voids in population A?
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and 4 can be answered simultaneously by a ‘compare diversities’ algorithm which, es-
sentially, performs two find-voids and fill-in tasks at the same time. In addressing ques-
tions 1 and 2, it is natural to use the chemistry-space which best represents the diversity
of population X. In addressing questions 3 and 4, one might use a chemistry-space pre-
viously defined for some related population or use a chemistry-space defined to best
represent the union of the A and B populations.

9. Summary

If properly constructed, high-dimensional (fingerprint) and low-dimensional metrics can
provide equally valid representations of chemistry-space for chemical diversity pur-
poses. High-dimensional metrics offer the advantage of providing substantial detail
regarding the topological aspects of molecular substructure but suffer the disadvantage
that they can be used only for distance-based algorithms for addressing the various
diversity-related tasks encountered in pharmaceutical and agrochemical industry. Low-
dimensional metrics offer the advantage of enabling the use of either distance-based or
cell-based algorithms but traditional molecular descriptors are often cross-correlated,
provide little or no substructural information and, thus, are poor choices for chemistry-
space metrics, BCUT values constitute a novel class of molecular descriptors which not
only encode substructural topological (or topographical) information, but also encode
atom-based inforination relevant to the strength of ligand-receptor interaction.

We have presented an algorithm for choosing those low-dimensional metrics which
best represent the diversity of a given population of compounds, an algorithm for
validating the chosen metrics and cell-based algorithms using those metrics to address
all of the diversity-related tasks. Work is currently in progress to develop additional
metrics and a more efficient implementation of the algorithm for choosing the best 
chemistry-space.
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New 3D Molecular Descriptors: The WHIM theory and QSAR
Applications
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1. Introduction

Molecular descriptors represent the way chemical information, contained in the molecu-
lar structure, is transformed and coded to deal with chemical, pharmacological and toxi-
cological problems in quantitative structure-activity (QSAR) and structure-property
(QSPR) studies. Molecular descriptors take into account different aspects of the chemi-
cal information. The approach to obtaining this information can (a) be through experi-
ments, theoretical calculations or simple counting operations, (b) consider the whole
molecule, fragments of it or functional groups, (c) require the knowledge of the 3D
structure of the molecule or its molecular graph, or simply its formula, or (d) call for
information defined by scalar values, vectors or scalar fields. In recent years. several
approaches have been explored and many kinds of molecular descriptors have been
proposed [1-10].

Among the theoretical descriptors. the best known are molecular weight and struc-
tural descriptors (1D descriptors. i.e. counting of bonds, atoms of different kinds, pres-
ence or counting of functional groups and fragments, etc.), obtained from a simple
knowledge of the formula, and topological descriptors (2D descriptors). obtained from
the knowledge of the molecular topology [5-8].

The complexity of the chemical information contained in 3D molecular structure
calls for descriptors able to also take into account properties related to a more sound and
three-dimensional representation of the molecules, WHIM (Weighted Holistic Invariant
Molecular) descriptors are 3D molecular indices that represent different sources of
chemical information [9–13]. WHIM descriptors contain information about the whole
3D molecular structure in terms of size, shape, symmetry and atom distribution. These
indices are calculated from x,y,z-coordinates of a 3D structure of the molecule, usually
from a spatial conformation of minimum energy, within different weighting schemes in
a straightforward manner and represent a very general approach to describe molecules
in a unitary conceptual framework. These indices have already been successfully used
to search for QSAR and QSPR relationships for several classes of compounds and
different responses [9–16].

The WHIM descriptor approach has also been extended to treat interaction scalar
fields [17]: G-WHIM (Grid-W eighted Holistic Invariant Molecular) descriptors are
defined and calculated from the coordinates of the grid-points where an interaction 
energy field between the molecule and a probe has been evaluated. In both WHIM ap-
proaches, the chemical information contained i n the molecular structure or in the whole
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grid of interaction energy values is synthesized in a few parameters that are completely 
invariant to rotation and translation and that represent interpretable properties of the
molecules. Moreover, in the G-WHIM approach. the difficulties commonly related to
chemical information spread out over a great number of grid-points and to the problem 
of the dependence of the results upon molecule alignment are avoided.

The interpretability of the results is quite evident and defined by the same math-
ematical properties of the algorithm used for their calculation. In this review, the theories
of both WHIM approaches are presented and some applications in the QSAR field are
discussed. A simple didactical example is also used to explain properties, characteristics 
and chemical meaning of the WHIM descriptors. Due to the continuous development of
the theory itself, there is some discrepancy in the WHIM symbols used in previous
publications and those used here, the final choice is in this review.

2.       Theory of WHIM Descriptors

WHIM descriptors are built in such a way that they capture relevant molecular 3D in-
formation regarding molecular size, shape, symmetry and atom distribution with respect
to invariant reference frames. The algorithm consists in performing a Principal Com-
ponents Analysis (PCA) on the centered molecular coordinates by using a weighted co-
variance matrix S obtained from different weighting schemes for the atoms. The
elements of the covariance matrix are:

(1)

where n is the number of atoms. wi the weight of the i-th atom. qij represents the j-th co-

2.1. The weighting schemes

Six different weighting schemes have been proposed: (1) the unweighted case U (wi = 1
i = 1, n, where n is the number of atoms for each compound), (2) atomic masses
M (wi = mi), (3) the van der Waals volumes V (wi = vdwi), (4) the Mulliken atomic

electrotopological indices of Kier and Hall S (wi = Si) [5].
All the weights (1)-(5) are also scaled with respect to the carbon atom and their

values (original and scaled values) are shown in Table 1 . As all the weights must be
positive, the electrotopological indices me scaled as follows:

(2)

In this caw, only the non-hydrogen atoms are considered and the atomic charge of each
atom is dependent on its atom neighbor, following the Kier and Hall approach.
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ordinate (j = 1,2,3) of the i-th atom and qj̄ is the average of the j-th coordinates.

electronegativities E (wi = elni), (5) the atomic polarizabilities P (wi = poli) and (6) the

i =S' Si + 7         Si' > 0 
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Table 1 

ID Atomic mass vdW volume Electronegativity Polarizability

Atomic weights and relative atomic weights used for calculation of the WHIM descriptors 

M M/M(C) v W/V(C) E W/E(C) P W/P(C)

H 1.01 0.084 6.709 0.299 2.592 0.944 0.667 0.379
B 10.81 0.900 17.875 0.796 2.275 0.828 3.030 1.722
C 12.01 1.000 22.449 1.000 2.746 1.000 1.760 1.000
N 14.01 1.166 15.599 0.695 3.194 1.163 1.100 0.625 

F 19.00 1.582 9.203 0.410 4.000 1.457 0.557 0.316
A1 26.98 2.246 36.511 1.626 1.714 0.624 6.800 3.864
Si 28.09 2.339 31.976 1.424 2.138 0.779 5.380 3.057 

S 32.07 2.670 14.429 1.088 2.957 1.077 2.000 1.648
CI 35.45 2.952 23.228 1.035 3.175 1.265 2.180 1.239
Fe 55.85 4.650 41.052 1.829 2.000 0.728 8.400 4.773 
co 58.93 4.907 35.011 1.561 2.000 0.728 7.500 4.261
Ni 58.69 4.887 17.157 0.764 2.000 0.728 6.800 3.864 
C u 63.55 5.291 11.494 0.512 2.033 0.740 6.100 3.466
Zn 65.39 5.445 38.351 1.708 2.223 0.8 10 7.100 4.034
Br 79.90 6.653 3 1.059 1.384 3.319 1.172 3.050 1.733 
s n 118.71 9.884 45.830 2.042 2.298 0.837 7.700 4.375 
I 126.90 10.566 38.792 1.728 2.778 1.012 5.350 3.040

O 16.00 1.332 11.404 0.512 3.654 1.331 0.802 0.456

P 30.97 2.579 26.522 1.181 2.515 0.916 3.630 2.063 

Depending on the kind of weighting scheme. different covariance matrices and differ- 
ent principal axes are obtained. For example, using atomic mass es as the weighting 
scheme. the directions of the three principal axes from PCA are the directions of the 
moments of inertia axes. Thus, the WHIM approach can be viewed as a generalization 
searching for the principal axes with respect to a defned atomic property (the weighting 
scheme). For each weighting scheme, a set of statistical indices is calculated on the 
atoms projected onto each principal component tm (m = 1,2,3), as described below. The 
whole procedure is shown in Fig. 1. 

The invariance to translation of the calculated parameters is guaranteed from the cen- 
tering of the atomic coordinates and the invariance to rotation from the uniqueness of 
the PCA solution. It must be noted that, in the first version of the WHIM descriptors 
[9–12], the molecules have been centered on their baricenter (i.e. using the atom 
weights for the calculation of the center) and not in the center of the coordinates (i.e. 
firstly, centering the atomic coordinates and then calculating the weighted covariance 
matrix).

2.2. Directional WHIM descriptors

Directional WHIM descriptors are univariate statistical indices calculated from the
scores of each individual principal component (1, 2. 3). The first group of descriptors 
are the eigenvalues λ  1, λ 2 and λ 3 that are related to molecular size, the second group is 
constituted by the eigenvalue proportions ϑ1, ϑ2 and ϑ3 that are related to molecular
shape:

357



Roberto Todeschini and Paola Gramatica

Fig. 1. Flow chart of the procedure for the calculation of the WHIM descripiors.
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(3)

Because of the closure condition (ϑ1 + ϑ2 + ϑ3 = 1), only two are independent. 
The third group of descriptors is constituted by the symmetries γ1, γ2 and γ 3 calcu-

lated from an inforination content index on the symmetry along each principal compo-
nent with respect to the center of the scores:

(4)

where ns, na, and n arc, respectively, the number of central symmetric atoms (along the
m-th component), the number of non-symmetric atoms and the total number of atoms of
the molecule.

Finally, the fourth group of descriptors is constituted by the inverse of the kurtosis κ1,
κ2  and κ3, calculated from the fourth-order moments of the scores tm, that arc related to
the atom distribution and density around the origin and along the principal axes:

(5)

To avoid the problems related to the infinite (or very high) kurtosis values, obtained
when along a principal axis all the atoms are projected in the center (or near the center,
i.e. leptokurtic distribution), the inverse of the kurtosis is used. 

Low values of the kurtosis are obtained when the data points (i.e. the atom projec-
tions) assume opposite values (–t and t) with respect to center of the scores. When an 
increasing number of data values are within the extreme values ± t along a principal
axis, the kurtosis value increases (i.e., κ = 1.8 for a uniform distribution of points,
κ = 3.0 for a normal distribution). When the kurtosis value tends to infinity, the cor-
responding value tends to zero.

Thus, the group of descriptors ηm can be related to the density of the atoms distribu-
tion — i.e. to the quantity of unfilled space per projected atom — and has also been
called emptiness: the greater the ηm values, the greater the projected unfilled space. The
ηm descriptors are used in place of the kurtosis descriptors κm (previously proposed, see
reference [11]).

2.3. Non-directional WHIM descriptors

The non-directional WHIM descriptors are directly derived from the directional WHIM
descriptors. Thus, for non-directional WHIM descriptors, any information related to the
principal axes disappears and the description is related only to a global — holistic —
view of the molecule.

In many cases, size descriptors can, in modelling. play a significant role independ-
ently of the measured directions, allowing more simple models. Thus, in view of the
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importance of this quantity, a group of descriptors of the total molecular size is con-
sidered in three different ways:

(6)

T and A are, respectively, related to linear and quadratic contributions to the total mole-

Thus the molecular size is taken into account by all three size descriptors in different
ways.

For each function, six total dimensions are obtained. one for each weighting scheme.
The molecular shape is represented by the following expression:

(7)

The term 4/3 is the maximum value of the numerator term and is used to scale K
between 0 and 1 . This expression also has a more general meaning and has been
proposed to evaluate the global con-elation in multivariate data [18].

For example. for an ideal straight molecule, both λ2 and λ3 are equal to zero and
K = 1; for an ideal spherical molecule, all three eigenvalues are equal t o 1/3 and K = 0.
For all planar molecules. the third eigenvalue λ3 is 0. there being no variance from the
molecular plane. and K ranges between 0.5 and 1, depending on the linearity.

The K shape term definitely substitutes for the acentric factor. the former being more
general than the previously proposed acentric factor ω [9–12]and defined as =ϑ1 – ϑ3.

The total molecular symmetry is defined as the following:

(8)

where G is the harmonic mean of the directional symmetries. It equals 1 when the mole-
cule shows a central symmetry along each axis and tends to 0 when there is a loss of
symmetry along at least one axis. Different symmetry values are obtained only when
unitary, mass and electrotopological weights are used: for this reason, only three kinds
of symmetry parameters are retained; Gu, Gm and Gs.

The total molecular density is represented by the following expression:

(9)

The molecular descriptors defined above, due to their invariance to rotation and transla-
tion, are generalized molecular properties within each weighting scheme. Thus, for each
weighting scheme, a total of 11 molecular directional descriptors (ϑ 3 was eliminated),
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Weighted Holistic Invariant Molecular (WHIM) descriptors, can be obtained from each
moleculdr geometry

The total number of directional WHIM descriptors is 66.

scheme:
For planar compounds. the modelling requires only 8 descriptors for each weighting 

As the molecular weight MW is the sum of the atomic weights of the molecule, similar 
additive quantities can be analogously defined from the other weights used for the cal-
culation of the WHIM descriptors. Thus. the sum of the van der Waals volumes (Sv ),

of the electrotopological charges (Ss),together with the molecular weight. can be added
to the 33 non-directional WHIM. The sum of the unweighted atoms (Su) corresponds to
the total number of a t o m (NAT), but is not here considered among the WHIM descrip-
tors. All these descriptors are independent of conformational (and configurational)
geometries, but it is interesting to observe that Sv and Sp represent spatial additive
properties, while MW represents an inertial additive property. As a whole, the non-
directional WHIM are 5 for each weighting scheme (6): T, A, V, K, D, plus Gu, Gm, Gs.
Sv, Se, Sp and Ss, giving a total number of 37 descriptors. 

2.4.

To understand and explain the chemical meaning of WHIM descriptors, a dataset of 40
simple but heterogeneous molecules is used. The list of the 40 molecules is shown in
Table 2 and the WHIM values can be obtained on request. Once calculated, the WHIM
descriptors can be plotted, forming simple scatterplots that give a deeper insight into the
descriptor chemical meaning.

In Fig. 2, the scatterplot of the 40 compounds is obtained from the variables Vm
(size) and Km (shape) — i.e. descriptors calculated using the atomic masses as atom
weights. The arrow A represents the increase i n size and linearity (Km 0.7-0.9) of the
five linear alkanes (1-5). Ethane (1) is more linear (higher km value than propane due
to the absence of any central Csp3 carbon atom contribution along the second compo-
nent. The same increase in size and linearity can be observed for cycloalkanes (11–15,
arrow B), but. as expected, at a lower level of linearity (Km 0.3-0.4). The arrows C
and D represent the increase i n size and linearity of the halo-substituted benzencs
(27-30, arrow C) and of the condensed benzenes (21, 39, 40, arrow D), respectively.
The remaining mono-substituted benzenes are at intermediate positions. Arrow E high-
lights the large change in shape from neopentane (7 , spherical shape) to
2-butyne (10, near-linear shape); note also the difference in shape between the two
2-butene isomers (8, cis and 9, trans) in this same direction. The alcohols (16–20) are

The meaningof the WHIM descriptors
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Table 2 List of the 40 c ompounds used in the example

ID Compound ID Compound 

1 Ethane 21 Benzene 
2 Propane 22 Toluene 
3 n-butane 23 Phenol
4 n-pentane 24 Benzoic acid
5 n-hexane 25 Aniline 
6 Isobutane 26 Nitrobenzene 
7 Neopentane 27 F-benzene 
8 cis-2-butene 28 CI-benzene
9 trans-2-butene 29 Rr-benzene

10 2-butyne 30 I-benzene
11 Cyelopropane 31 2-propanone
12 Cyclobutane 32 2-propanol 

13 Cyclopentane 33 2-propylamine

15 Cyclohexanone 35 2-iodopropane 
16 Methanol 36 2-propanethiol 
17 Ethanol 37 Methylamine 
18 Trifluoroethmol 38 Dimethylamine 
19 2-aminoethanol 39 Naphthalene 
20 Propano 40 Anthracene 

14 Cyclohexane 34 2-fluoropropane

approximately aligned like the n-alkanes, the exception being the trifluoroethanol (18) 
because the masses of the three fluorine atoms substituting the hydrogen atoms give a 
tridimensional isotropic contribution. resulting in an increase in size and a significant 
decrease in linearity. Due to the iodine mass. increased linearity is observed for the 
2-iodopropane (35), compared to the other 2-substituted propane isomers (31–36), 

As shown in Figs. 3 and 4 of reference [13]. other interesting information about the 
molecular structure can be obtained by plotting, for example, shape (K) versus sym-
metry (G) descriptors, or densities descriptors weighted from masses and electro-
topological charges (Dm versus Ds). As shown in Figs. 6–9 of reference [13]. a principal
component analysis of the 33 non-directional WHIM descriptors shows as the different 
sources of WHIM information are separated. The first six components explain the major 
part or the total variance (97%). where the first four represent individually molecular
size. shape, symmetry anti density. while the last two components arc mainly related to 
single density descriptors. Dm and Ds. respectively.

3. Theory of G-WHIM descriptors 

The algorithm proposed for the WHIM approach can be applied to any discretized 
image: in particular. this algorithm can be extended to deal with 3D grid-points. In such 
a case. the grid-points substitute for the atomic coordinates of a molecule and defined 
electronic or steric properties are used as weights. The descriptors derived from this ap- 
proach are called Grid- eighted Holistic Invariant Molecular descriptors (G-WHIM).
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The theory of the G-WHIM descriptors has been presented in reference [17]. In this
review, a summary of its main elements is newly presented, updating symbols and de-
scriptors on the base of the state-of-art of the WHIM theory presented i n this chapter.

In principle, if a molecule is placed into an infinite, isotropic and evenly very dense
grid, the scalar field F3 calculated at the grid-points must contain the same information,
independent of the molecule's orientation and only depending on the potential energy of
the selected probe and the mathematical functions representing the interaction. Thus F3

contains the whole information about the interaction properties of the molecule. In prac-
tice. this ideal situation cannot be obtained. but i t can be simulated by plunging the mol-
ecule into a finite grid N3: the aim is to represent the theoretical F3 scalar field by a finite
sampling of this field.

Molecule position, grid dimensions and spacing between grid-points are crucial
aspects to be defined in order to ensure that the obtained field is representative of the
ideal one. In the simplest approach. the molecule must be placed in an isotropic grid —
i.e. the obtained scalar field N 3 is constituted of a finite number of points evenly distrib-
uted along the three dimensions. When a class of similar compounds is considered. the
isotropic grid requirement can be relaxed and a grid of n1 X n2 X n3 points can be used
if all the molecules are also oriented using a selected criterion. However, when the con-
pared molecules are different in shape and size. this last approach to the grid definition
cannot be considered because the scalar fields would then he evaluated with different
sampling sizes in the three directions: thus, the sesulting description is no longer unique
and the invariance to rotation is not preserved. In any case. in order to avoid field dis-
tortions due to the truncation of the non-zero interaction values at the neighborhoods of
the finite grid. the molecule must be centered i n the grid.

Grid dimensions depend on the field selected as each field shows a different analy- 
tical dependence from the molecule-probe distance (r). For example. when the non-
bonding and electrostatic energy expressions are analyzed. the interaction energies
decay with minus six and minus one power of r, respectively. In the first case. a grid
very close to the van der Waals surface of the molecule is sufficient to contain the most
informative points. In the second case, where the electrostatic energy decays very
slowly with r,very large grids are required. To overcome this problem, an energy cutoff
criterion can be proposed. for which only electrostatic energy values relevant for the
considered interaction (e.g. long-range or chemical interaction) are taken into account.
In this way, points far from the molecule and not contributing to the interaction are not
included in the calculations. 

In spite of the centering of the molecule. the selection of an isotropic grid and the
energy cutoff definition, the invariance to rotation is, again, not preserved if the
grid-points are not dense enough. This is a very important problem since a too sparse 
distribution of grid-points represents an inadequate sampling of the ideal scalar field and
is not able to guarantee that the calculated scalar field is representative of the ideal 
scalar field in such a way as to preserve rotational invariance. Preliminary calculations 
of the grid step can be used to select the optimal step. 

Once the optimal choices for the grid arc selected. the G-WHIM descriptors are used
to condense the whole information contained in the scalar field into a few global para- 
meters, whose values are independent of the molecular orientation within the grid.
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For each molecule, the G-WHIM descriptors are calculated by the following steps:

1.
2.
3.

The molecule is freely and separately imbedded i n the center of the grid.
The scalar field is calculated by using the selected probe.
The scalar field values are used as weights for the grid-point cooredinated: this is 
the main difference between G-WHIM and WHIM descriptors. In fact, in the latter
case. the coordinates are the spatial atomic coordinates, each weighted by one of
the six different kinds of weights defined above: unitary weights U, atomic masses
M, van der Waals volumes V, atomic electronegativities E, polarizabilities P, and
electrotopological charges S .
Finally, the G-WHIM descriptors are calculated in the same way as lor the WHIM
descriptors — that is, by the calculation of a weighted covariance matrix, principal
component analysis and the calculation of statistical parameters on the projected
points along each principal component (i.e. on the score values).

4.

Point 3, above, deserves some further consideration. Firstly, it should be noted that only
points with non-zero interaction energy are effective i n the computation of the descrip- 
tors. Secondly, when the calculated interactions give both positive and negative values.
the scalar field values cannot be used directly i n this form as statistical weights, which
must be always semi-positively defined. In this case. the scalar field values are divided
in two blocks: a grid-negative (positive) block containing the grid coordinates associ-
ated with negative (positive) interaction values. getting their absolute values and setting
the positive (negative) values to zero.

By this assumption, two sets of G-WHIM descriptors are obtained: the first describ- 
ing the positive part of the molecular field, and the latter describing the negative one.
Thus, for each weighting block (positive (+) and negative (-)), the G-WHIM descriptors
consist of 8 directional plus 5 non-directional molecular descriptors (26 for a complete
description of each interaction field), calculated from each molecule (point d):

The directional y and the noli-directional G parameters, defined for WHIM descriptors
and containing information about the molecular symmetry, are not considered in the
frame of the G-WHIM approach because their meaning becomes doubtful, depending
heavily upon the point sampling. However, the information regarding the molecular
symmetry can be obtained by directly using the WHIM symmetry parameter.

The meaning of the G-WHIM descriptors is that previously defined lor the WHIM
descriptors, but now the descriptors are referred to the interaction field instead of the
molecule. For example, the eigenvalues λ1, λ 2 and λ3 will be related to the interaction
field size; the eigenvalue proportions ϑ 1, ϑ2 and ϑ 3 will be related to the interaction
field shape; the group of descriptors constituted by the inverse function of the kurtosis
(k), i.e., ηm =  1/κm will be related to the interaction field density along each axis. 
Moreover, global information about the interaction field is obtained from the non-direc-
tional WHIM (T, A. V, K, D), with the meaning previously defined.

In the first chapter [17], the acentric factor has been used as shape descriptor —
defined as w = ϑ 1 – ϑ3, ranging between zero (spherical interaction field) and one
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(linear interaction field): moreover, among the non-directional WHIM, only the eigen- 
value sum T has been previously used.

3.1. Grid and points setting

The optimal grid size and point density must be evaluated by preliminary calculations
on the largest molecule (or better, on the molecule with the broadest molecular field of
the selected molecule set. The behavior of the G-WHIM descriptors with variation in
the grid size and the point sharpness has been tested on a simple molecule such as the
chlorobenzene. using the electrostatic potential to represent a very broad interaction.

To do this, a number of assumptions were made. The first assumption is to evaluate
the chemical information due to the interaction outside the van der Waals surface: the 
field values in the inner part of the molecule have not been considered. The second as-
sumption is to define different energy cutoffs: three values corresponding to -2, -5 and
-10 kcal/mol have been selected for this case. The higher the cutoff value, the smaller
the considered region around the molecule (i.e. the total number of non-zero weighted
grid-points).

After preliminary calculations, the grid size was fixed as a 20 A edged cube in order 
to ensure the inclusion of the smallest cutoff surface. The steps defining the field points

(3 cutoffs X 5 steps), the G-WHIM descriptors were calculated: the values obtained are
reported in table 1 of reference [17].

Figure 3 shows the trend of T (the eigenvalue sum) as a function of the step for each
cutoff value; all the other descriptors show similar behavior. As can be seen, the T para-
meter for each cutoff value tends to become constant as the step decreases, converging
towards the most reliable value, corresponding to the smallest step (0. 1 i n this case).
A single calculation at step 0.05 and cutoff -5 kcal/mol confirms the obtained con-
vergence.

The step for which the parameter values show only small differences represents the
optimal step for which N 3 F3; this also means that using smaller steps docs not
change the G-WHIM parameter values. For cutoff values very close to the minimum
energy value ( in this case. lower than –10 kcal/mol), the sampling of the interaction
field can be unreliable because too few points are considered to represent the great
energy variability of the field. The parameters obtained for each cutoff value are differ-
ent. representing three different chemical situations, as can be easily observed from the
T values: a relatively long-range interaction (-2 kcal/mol) shows a higher T value
(greater total field dimension). while a relatively short-range interaction (-10 kcal/mol)
shows a lower T value (smaller total field dimension).

3.2. Invariance to rotation

The invariance to rotation is a point of utmost importance in order to avoid problems
typical of other QSAR strategies. such as molecular alignment. To check the invariance
to rotation, the electrostatic potential of chlorobenzene was used, as above. The follow- 
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ing calculations were performed: the G-WHIM parameters were calculated for the same
cubic isotropic grid for 5 different steps (0.1, 0.25, 0.5, 0.75 and 1.0 Å, respectively)
and for 21 different orientations of a centered molecule.

Figure 4 shows the values of the eigenvalue sum (T) for the 21 molecule rotations, for
different step sizes. For this case, note the stabilization due to reduction of step size, the
value of the considered descriptor clearly shows good invariance with respect to rota-
tions at step = 0.5: for all the descriptors, the standard deviations are less than 0.075.

The values of the standard deviations of each descriptor, calculated from the descrip-
tor values obtained for the 21 molecule rotations, decrease as the step size decreases,
confirming the expected trend observed above. The 3 eigenvalues (λ) and their sum (T ) ,
represented by numbers not limited to between 0 and 1 (as for other descriptors), show
standard deviations higher, on average, than those of the other descriptors.

Thus, as expected from the theory, for a representative sampling of the interaction
field — i.e. when the step size is small enough — G-WHIM parameters independent of
the molecular orientation within the grid space can be obtained. Similar behavior (or
even better) is shown by all the other G-WHIM descriptors. Moreover, the results ob-
tained in the case of chlorobenzene have also been confirmed in the case where phenol 
was used as the test molecule and 4 different cutoff values (0.5, 1.0, 1.5 and 2.0 Å) were
used.

3.3.

From the theoretical point of view, the G-WHIM approach to QSAR problems appears
very promising, integrating the information contained in the WHIM descriptors and
overcoming any problems due to the alignment of the different molecules and the ex- 
plosion of variables arising from traditional grid approaches. In particular, the G-WHIM
approach can take into account both all the points within the cutoff values, excluding
only the positive interactions within the inner part of the molecule and the surface
points at a cutoff value — i.e. the points on the iso-interaction-energy surfaces.

The ability to define different molecular interaction regions. taking into account the
individual parameters provided from different cutoff values, is undoubtedly a fas-
cinating possibility which may lead to a deeper chemical insight into molecular
interactions and properties.

4. Descriptors

The WHIM descriptors defined above can be used separately in modelling: the set of 37
non-directional WHIM and the set of 66 directional WHIM. For the sake of comparison, 
other sets of theoretical descriptors are sometimes used, either as a single set or jointly
with WHIM descriptors. In particular, the software produced by our research group
(WHIM-3D/QSAR, see below) calculates two other sets of descriptors: the first is con-
stituted by the so-called structural descriptors (30) — i.e. the number of different kinds
of atoms (e.g. nH, nC, nF and nX are the number of hydrogens, carbons, fluorines, halo-
gens, respectively), the number of bonds (nBO), the number of some functional groups

Perspectives of the G- WHIM  approach 
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(e.g. nOH, nCO and nNH2 are the number of OH, CO and NH2 groups, respectively)
and the number of rings of different size (nR03, .. ., nR I O are the number of' 3-membered
to 10-membered rings). Moreover, the number of atom acceptors and donors of H-bonds
(nHA and nHD) are also considered. The second set is constituted by the more fre-
quently used 34 topological descriptors (information and connectivity indices), as 
defined in reference [19].

To all the sets of descriptors, the molecular weight (MW) has also been added. The G-
WHIM descriptors, as defined above, have been used in some cases. The descriptors pro-
vided from theories, like topological or WHIM, are numerous and are usually internally
Correlated. Chemometric strategies that use variable subsets selection procedures (e.g.
genetic algorithms or simulated annealing) and model validation techniques play a key role
in obtaining predictive and stable models in QSAR studies (see section 5 on Methods).

5. Methods

The minimum energy conformations of all the compounds were obtained by the molec-
ular mechanics method of Allinger (MM2). using the package HyperChem [20]; WHIM
descriptors were calculated from the obtained coordinates using our package WHIM-
3D/QSAR for WINDOWS/PC (now available on request [21]). This package has been
extended to calculate also structural and topological indices. A special version has also
been extended to the calculation of the G-WHIM descriptors, reading the grid co-
ordinates and the grid-point property values for each molecule. Principal Component
Analysis (PCA) has been performed by STATISTICA [22]. The HyperChem/Chemplus
package [20] has been also used to calculate some simple physico-chemical properties.

The selection of the best subset variables (variable subset selection, VSS method) for
modelling the selected properties was through the genetic algorithm (GA-VSS)
approach [23] where the response is obtained by ordinary least-squares regression
(OLS), using our package Moby Digs for variable selection for WINDOWS/PC [24].

All calculations were performed by Moby Digs using the leave-one-out procedure of
cross-validation. maximizing the cross-validated R-squared (Q2) In many cases, more
demanding validation procedures were also used and always when models with highly
correlated variables had been selecled by GA-VSS. In these cases, when possible, an
exhaustive leave-more-out procedure - i.e. leaving out g objects in all the possible 
ways — was used; otherwise. a random selection of g objects to be left out was repeated
some thousands of ways. For the obtained models. all variables are highly significant
within the 95% confidence level.

6. QSAR applications

In the gaining of confidence with the WHIM approach to QSAR problems, a number of
datasets have been used and discussed in previous papers [9–12,14], testing the predic- 
tion capabilities for several responses. either physico-chemical properties or biological/
toxicological activity responses. 

Owing to the importance of the surface of a molecule for the determination of various
physical, thermodynamic, toxicological, biological and transport properties, the WHIM
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descriptors were successfully applied [9] to calculate the total surface area (TSA) of 101
heterogeneous compounds. On a small and homogeneous class of contaminants, 12
chlorobenzenes that are widely distributed throughout the environment, properties of
very different kinds have been modelled, such as melting and boiling points, solubility,
hydrophobicity, bioconcentration factor, toxicity on algae and Microtox. In all cases,
high prediction powers resulted: as is already known, size parameters play the main 
modelling role for all these properties but WHIM descriptors of molecular shape, atomic
distribution and entropic contribution from symmetry add useful information [14].
Similar results were obtained in the modelling of chlorophenol toxicity on seven
different biosensors [12].

aromatic hydrocarbons

as melting point, boiling point and hydrophobicity have been successfully modelled
[10], with good prediction powers. A study was made of highly heterogeneous com- 
pounds [11], belonging to the EEC priority list of dangerous chemicals (amines, 
chlorobenzenes, organotin and organophosphorous compounds; 49 compounds) with 
different toxic actions: the toxicity on Daphnia magna and hydrophobicity was
modelled, leading also to general models and predictions for external compounds.
WHIM descriptors used with topological indices were the subject of a recent work [16]
on an extended class of 118 environmental priority chemicals dangerous to the aquatic 
environment, selected by the European Union according to the directive 76/464/EEC
and included in the so-called ‘List 1 ’. In particular, physico-chemical properties
(melting point, boiling point, density, refraction index, solubility and hydrophobicity)
and toxicological properties (algae, bacteria, Daphnia, fish and mammals) were
modelled with mixed approaches (WHIM and other sets of descriptors). In the reported
paper [16], a new hydrophilicity index (Hy), showing good modelling power, was also
defined.

A comparison between WHIM and topological descriptors was recently performed
[15] on a wide class of haloaromatic compounds (73 halobenzenes and 89 halo-
toluenes). In all cases, the WHIM descriptors gave better predictive results in modelling
melting, boiling and flash points and density.

An extensive comparison of the latest developments of the WHIM descriptors with
other different QSAR approaches has been performed on the datasets reported above.
With regard to the G-WHIM descriptors, an application of a raw modification [25] of
the original G-WHIM version [17] has been applied to the classical dataset of 31
steroids studied by Cramer et al. [26]. Despite some G-WHIM descriptors having been
calculated roughly, the results are encouraging compared with the original Cramer
calculations and later CoMFA refinements.

The G-WHIM approach has been improved i n analogy with the WHIM approach and
has been further tested for the toxicity of 14 dioxins.

6.1. Chlorophenols

On a large dataset of environmentally relevant polycycle

In a previous paper [12], an estensive study was made of chlorophenol toxicities,
asessed by different biosensors (Microtox, bacteria, Daphnia, algae, guppy, flounder 
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and SMP), with good results: Q² between 95% and 97% for almost all the responses. In
the same paper, logKow was also modelled with size descriptors such as MW, Tu and Te

= 94.5 and R² = 96.1): however, this model significantly decreases its predictive(Q²
power (Q² = 80.8) when cross-validated with a perturbation of 30%. Instead, a satisfac-
tory and stable two-variable model (Vu and Ve size descriptors) was recalculated from
the complete set of non-directional WHIM descriptors (Q² = 94.1 and R² = 95.9). This
model is perfectly stable when 30% of the objects is left out (Q² = 93.3), in spite of the
great correlation between Vu and Ve.

A local property like pKa, difficulty modelled by global descriptors, is instead better
modelled by directional WHIM descriptors with Q² ranging from 76% and 78% for the
three-, four- and five-variable best models. In these models, the most selected variables
are those related to directional size, atomic density and symmetry, which in some way
represent the relative position or the substituents responsible of the phenol group
acidity. For example, the three-variable model, constituted by λ2v (size). η1m (density) 
and γ 2v (symmetry), is:

(10)

The G-WHIM approach has also been applied to these compounds to verify, for the first
time, the applicability of these new descriptors [17]. In this case, the WHIM and
G-WHIM descriptors were successfully used jointly to improve on the results obtained
using only WHIM descriptors, on logKow, pKa, toxicity on flounder and melting point.

6.2. N,N-dimethyl-2-Br-phenethylamines

To predict the antagonism of 22 N,N-dimethyl-2-Br-phenethylamines to epinephrine in
the rat (log 1/ED50), a comparison between Hansch and Free-Wilson approaches was
performed by Kubinyi [ 27]. A more extended comparison, using also topological and
WHIM descriptors, has been performed and several models have been evaluated by
using the last WHIM descriptor version [14] and comparing the results with those of the
CoMFA approach [28]. A first set of models, based on substituent descriptors, has been
proposed by Unger and Hansch [29]. In particular, a two-variable model (ID = 10) is
constituted by the variables σ+ and π (Hammett electronic and hydrophobic constants,
respectively). A three-variable extension of this model (ID = 7) corresponds to the
regression model: 

(11)

where rp is the van der Waals radius from the para position of the substituent. The
GA-VSS approach applied to the whole set of Hansch descriptors confirms these two
models.

The Free-Wilson approach (ID = 14), based on 10 binary descriptors (2 sites X 5 sub-
stituents), has also been used [30]. In spite of its good fitting performance, a check of
the predictive power of this model gives a prediction power of zero! This result is not
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unusual for the Free-Wilson approach when predictive performances are searched for
and it is not used for sorting group contributions.

Other groups of descriptors have been applied to this dataset: structural, topological
indices, directional and non-directional WHIM. used either separately or jointly. Using
the topological descriptors, as defined in reference [19], the GA-VSS approach Ied to a
three-variable regression model (ID = 9):

(12)

where MW, AAC and ICEN are the molecular weight, the average atomic composition
index and the centric index, respectively.
Using the non-directional WHIM descriptors, a three-variable model, based on size and
shape descriptors, is obtained (ID = 4):

(13)

Using the directional WHIM descriptors, the results concerning the best three- and four-
variable models are (ID = 5 and ID = 3):

(14)

(15)

Finally, structural descriptors (only 11 are not constant for this dataset) have also been
tried: the best model (ID = 13) is a three-variable model with MW, NAT (total number
of atoms) and nC1 (numberof chlorine atoms), giving a Q² = 62.2.

For both topological and WHIM models, the dependence of the response on size
(MW, AAC, Tv, Te or λ1e) and shape (ICEN, Ks or ϑ1s) is confirmed. For the WHIM
models, the presence of descriptors depending on electronegativity (e) and electrotopo-
logical (s) weights highlights the importance of electronic parameters, in accordance
with σ+ of the Hansch model, in which the importance of molecular size is also con-
firmed (π, rp) However, molecular weight alone is unable to give a predictive model
(Q² = 8.0, R² = 25. 1) , as can be expected for structural isomers with different values of
biological activity.

Mixed models have also been tried by using jointly structural, topological and both
sets of WHIM descriptors. In this case. the sequence of the best models was calculated 
from one- to four-variable models (ID = 12. 6. 2.1). Table 3 shows the more interesting
models obtained from the different approaches, sorted on the Q² values.

The descriptors 1K and 2K are the topological shape indices of first- and second-
order as defined by Kier [31,32]; the remaining descriptors are directional and non-
directional WHIM.

As can be observed, a good model (ID = 12) is already obtained with the global di-
mensional variable Tv; a significant improvement is obtained by adding λ3p (ID = 6),
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Table 3 
22 variously substituted N,N-dimethyl-2-Br-phenethylamines

Comparison of the best models obtained by different QSAR approaches on the biological activity of 

ª Number of significant principal components. 

which takes into account out-of-plane substituent contributions. Alternatively, the out-
of-plane information can be represented by shape descriptors (Ks or ϑ1s).

For these compounds. the CoMFA approach was also applied using steric and elec-
tronic fields. The common substructure features of these compounds greatly reduce 
alignment problems: molecular superpositions were performed by minimizing the rms
distance between all the common heavy atoms of the considered compounds. CoMFA 
was carried out using the QSAR option of SYBYL 6.2 [33]. The steric and electrostatic
probe-ligand interaction energies were calculated with Lennard-Jones and Coulomb po-
tential functions within the Tripos force field, using a Csp³ probe atom with a charge of
+1. The dimension of the CoMFA lattice was determined through the provided auto- 
matic procedure in order to extend the lattice walls beyond the dimensions of each
structure by 4.0 Å in all directions. The lattice spacing established was 2.0 Å The steric 
energies were truncated at 30 kcal/mol and the electrostatic ones dropped to within the 
steric cutoff for each molecule. The regression model (ID = 11) was obtained using 
PLS, as implemented in SYBYL 6.2 and validated with the leave-one-out procedure. 
The optimal number of cross-validated PLS components is two and the corresponding 
prediction power is Q² = 80.5, a value comparable with the simplest WHIM model
based only on the size descriptor Tv (Q² = 79.4).

6.3. Dioxins and analogs 

On a dataset of 73 polyhalogenated aryl derivatives [34], WHIM models were searched 
for 71 pRB and 69 pAHH responses. The biological response pRB is pRB = –log 
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Comparison of the best models obtained by different QSAR approaches on the pRB and pAHH Table 4 
biological responses of dioxin analogues 

Response (approach) Size Q² R² Model descriptions 

pRB (WHIM) 3 81.9 83.5 Tm Ts Vu 

pRB (MTD) 1 n.a. 70.9 MTD 

pAHH (WHIM) 4 66.8 71.8 Se Te De Vu 

pAHH (WHIM) 3 64.3 68.0 Tm Vs Du 

pAHH (WHIM) 2 62.7 66.6 Se Te 

pAHH (MTD) 1 n.a. 66.4 MTD 

n.a.; not available. 

EC50(RB), where EC50(RB) values are the in vitro rat hepatic cytosolic Ah receptor
binding affinities. The pAHH response is pAHH = –logEC50(AHH), where EC50(AHH)
values correspond to the in vitro induction of aryl hydrocarbon hydroxylase (AHH).

A close dependence of the responses on molecular size seems strongly suggested
both by the WHIM models [14] and the models obtained with Minimal Topology 
Difference (MTD) approach [34], which is also related to the size of a molecule (Table 4). 
For both responses. models using topological descriptors, as defined in reference [19].
were also tried, but the results obtained were unacceptable. 

These 72 compounds were also used in a preliminary study of the relationships 
between WHIM descriptors and properties calculated using some well-known models 
largely used in commercial packages. For this purpose, the HyperChem/Chemplus
package [20] was used to calculate some simple physico-chemical responses: total 
surface area (TSA. [35]), molar volume (Vm. [35]). molar refraction (MR, [36]). polar-
izability (Pol, [37]) and octanol–water partition coefficient (logKow or ClogP, [36]). The
compounds’ properties were calculated in the Chemplus approaches on the same opti-
mized molecular structures used for the calculation of the WHIM descriptors. Table 5 
collects Q² values (leave-one-out procedure) for some selected models (common to the
five studied properties). 

The results arc quite surprising, showing very high prediction powers for all the con-
sidered properties by one- and two-variable WHIM models. Moreover, all the properties

Table 5 
calculated physico-chemical properties of 73 dioxin analogues

Q² values (leave-one-out procedure) of the selected non-directional WHIM models for five

Size Variables TSA Vm MR Pol ClogP

1 Sp 97.7 99.2 99.2 97.1 84.3

1 Sv 97.0 98.9 98.8 97.5 80.3

2 Sp Ts 98.6 99.5 99.2 97.6 84.9

2 Sv Tu 97.1 99.1 99.4 99.3 95.4 

2 Sv Dv 98.6 99.4 98.8 97.7 88.9 
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(with the exception of ClogP, in part) are ultimately modelled by a small number of
similar-size WHIM descriptors. highlighting a genera1 (and expected) correlation between
these properties and size parameters.

If the quality of the obtained regression models will be confirmed for more heteroge- 
neous compounds. at least the first four properties could be predicted by simple global 
models using the WHIM approach. avoiding problems due to limited parameterizations 
or time-consuming algorithms. 

From this dioxin analogue dataset, tlie subset of 14 PolyChloroDibenzoDioxins
(PCDD), for which the toxicity measured as Ah receptor binding affinity (pRB) is
known, has also been studied separately. Regression models have been calculated using
different QSAR appi-oaches and different sets of descriptors: the Free-Wilson approach 
[30], the topological indices [19], the values of Molecular electrostatic potential (MEP)
at selected points [38] and the WHIM and G-WHIM descriptors recalculated in the
version proposed here. The results can be seen in Table 6.

The three topological indices (BAL, IDM and WIA) are the Balaban index. the infor- 
mation index on the magnitude of distances and the average Wiener index, respectively. 
The model based on MEP was obtained on the basis of a variable selection performed 
on a few MEP values chosen in the 3D distribution of this property and used as 
molecular descriptors. 

For the two WHIM models of Table 6, a more demanding validation procedure
(20% of perturbation, 3 objects left out. exhaustive calculations) gives Q² = 89.8 and
Q² = 84.2, respectively. For these compounds, the G-WHIM approach has also been
used [39]. The niolecular electrostatic potential was calculated in all the grid-points
between tlie van der Waals surface and a predefined iso-potential surface (i.e. a thresh- 
old surface). The selected threshold values are –4 and +10 kcal/mol for the negative and 
positive parts of the potential distribution, respectively. 

26 G-WHIM descriptors were used. 13 for each part of the potential distribution and 
the two best models found by the genetic algorithms are reported in Table 6. The 
prediction powers of these models are exceptionally high; moreover, an exhaustive 
validation (20% of perturbation, i.e. 3 objects left out at each step) was also performed. 
In both cases. the obtained leave-more-out Q² values remain high: Q² = 98.2 and

Table 6 
polychlorinated dibenzodioxins (PCDD) 

Comparison of models obtained by different QSAR opproaches on the toxicity of 14 
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Q² = 95.7, respectively. From the analysis of the MEP distributions of the model
variables and of their standardized regression coefficients. high binding affinity is deter-
mined by a great global extension of the negative distribution (T(-)), with a small
portion of ‘empty space’ between the separated negative distributions (D(-) and η1(–))

extension of the positive distribution out of the molecular plane (λ3(+)).
The G-WHIM descriptors efficiently condense/extract the information contained in

MEP distributions leading to good quantitative models of the relationships between
electrostatic propertics and binding affinity pRB of the PCDD. These 14 PCCDs,
included i n a dataset of 25 polyhalogenated dioxins, have also been studied by Waller
with the CoMFA approach [40]. In this case, the result was:

(16)

7. Conclusion

The complexity of chemical phenomena today calls for new and complementary terms
to explain such phenomena. In fact, one must be aware that, for example, the biological
activity of a molecule, as well as several physico-chemical properties, are, in many
cases, the result of complex interactions between the molecule and its chemical, phys-
ical and biological medium. Because of this involved complexity, high prediction cap-
abilities cannot usually be expected from very simple relationships between the
response and only a few independent descriptors.

WHIM descriptors, obtained from different weighting schemes, can be viewed as an
adaptive descriptor space, containing both global and directional information (spread
along orthogonal axes) that, in many cases, seems able to capture this complexity. In
any case, WHIM descriptors give a holistic representation of the molecule, whereas re- 
ductionistic approaches (chemical interpretation in terms of local properties, functional
groups, additive schemes based on molecular fragments or on atomic types, etc.) are
rather limited. These descriptors are the first 3D molecular descriptors that are invariant 
to rotation and translation, thus avoiding any molecule alignment problem. The algo-
rithms for their calculations are very simple and are not time-demanding. Unlike
topological descriptors. WHIM descriptors are able to distinguish different con-
formations of the same molecule and, obviously, different geometric isomers.

Their interpretability is discussed in this chapter and their meaning in relation to 3D
structural characteristics of molecules is highlighted, although a deeper insight is still
needed to better understand their meaning and correlation with several physico- 
chemical properties. For example, the peculiar role of the symmetry descriptors (Gw) in
modelling the melting point is always confirmed for all the studied cases.

As highlighted in the studied cases, the high modelling power of WHIM descriptors to
face QSAR problems has been confirmed, although the modelling power of directional
WHIM descriptors needs further investigation for cases where they may be of ad-
vantage for the correlation of responses with local properties.

The G-WHIM approach appears to be a powerful tool for the future of QSAR studies
— in particular, in the pharmacological field. In fact, it overcomes problems due to the
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alignment of different molecules and to the explosion of variables arising from
traditional grid approaches, based on interaction energy fields.

Finally, encouraging signs of the wide applicability and the modelling power of the
WHIM approaches are constantly corning from the QSAR studies of our research
group. In fact, studies on the gas-chromatographic relative retention time, physico-
chemical properties such as Henry’s constant, total surface area, melting point, solubil-
ity, aqueous activity coefficients and hydrophobicity of 209 PolyChloroBiphenyls
(PCB) are in progress with good preliminary results [41]. Research on phytotoxicity of

tives (WQO) [42], atmospheric reactivity (with OH*, NO3 and O3 ) of several organic 
chemicals released into the environment [43], environmental behavior of
ChloroFluoroCarbons (CFC) and HydrogenChloroFluoroCarbons (HCFC) [44] and
biodegradability of organic pollutants [45] have given encouraging preliminary pre-
dictive models. Moreover, the WHIM approach has also been applied to the classi-
fication of 152 organic solvents. As a result of this, a new general classification based
on multivariate analysis has been proposed [46].
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1. Introduction

Since the advent of classical QSAR techniques, exemplified by Hansch [1], there has
been considerable progress in the development of molecular descriptors and chemo-
metric techniques for use in such studies. The development of 3D QSAR techniques [2]
that attempt to correlate biological activity with the values of various types of molecular
field, for example, steric, electrostatic or hydrophobic. has been of particular interest
[3,4]. The original and most well-known of the 3D QSAR techniques is Comparative
Molecular Field Analysis [3], (CoMFA) which uses steric and eleclrostatic field values
calculated at the intersections of a three-dimensional grid that surrounds the structures
in the dataset. A major limitation of CoMFA and most other 3D QSAR techniques, is
the dependency upon the relative orientation o f the molecules in the dataset [5,6].
Despite efforts to improve the efficiency of the alignment process [7-9], the selection of
the molecular alignment is regarded as the major variable in the analysis. These prob-
lems are further exacerbated when the conformational flexibility of the molecules in the
dalaset is considered.

There is, therefore, considerable interest in the development of new descriptions of
molecular structure that do not require the alignment of molecules, but retain the 3D
and molecular property information encoded within molecular fields. Alternative de-
scriptions of molecular fields than those used in CoMFA or molecular surface proper-
ties, for example, methods based on autocorrelation vectors [10], molecular moments
[11] or 3D WHIM descriptors [12], may provide effective orientation-independent
descriptions of molecular structure. In this chapter, we review a novel alignment-free
descriptor of molecular structure, known as EVA (EigenVAlue descriptor), that is
dceived from calculated infrared (IR) range vibrational frequencies. As discussed later
in this chapter, EVA has been found to yield statistically robust QSAR models that are
comparable, in statistical terms, to those derived using CoMFA, with the advantage that
EVA does not require structural alignment.

2. The EVA Descriptor

During the late 1980s. workers at Shell Research Ltd. [13]reasoned that a significant
amount of information pertaining to molecular properties, in particular. biological 
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activity, might be contained within the molccular vibrational wave function, of which
the vibrational spectrum is a fingerprint. The EVA descriptor is derived from normal co-
ordinate Eigenvalues (i.e. the vibrational frequencies) that are either calculated theoret-
ically or extracted from experimental I R spectra. Typically, a classical normal
coordinate analysis (NCA) [14] is performed on an energy-minimized structure and the
resulting eigenvalues represent the normal mode frequencies from which the EVA de-
scriptor is derived. The associated normal coordinate eigenvectors (i.e. the vibrational 
motions) are not used within the EVA descriptor. The force constants upon which a
normal coordinate analysis is dependent may be determined using a molecular mechan-
ics, semiempirical or ab initio quantum mechanical method. The accuracy of the cal-
culated vibrational eigenvalues is, therefore, determined entirely by the quality of the
force constants applied or derived.

Using the standard Cartesian coordinate system as a basis for describing the dis-
placement of an atom from its equilibrium position in a vibrating molecule requires 3N
coordinates for a molecule containing N atoms. Three of these coordinates describe
rigid-body translational motion and a further three describe rigid-body rotations. Thus,
in the general case for a molecule of N atoms, there are 3N-6 vibrational degrees of
freedom, or 3N-5 for a linear molecule such as acetylene (only two coordinates are
required to fix the orientation). The number of vibrational degrees of freedom is equi-
valent to the number of fundamental vibrational frequencies (normal modes of vibra-
tion) of the molecule. While each of these fundamental vibrations can be calculated,
they may or may not appear in an experimental IR absorption spectrum due to sym-
metry considerations — i.e. they may have zero (or close to zero) intensity [14].

Thus, in terms of the derivation of the EVAdescriptor, each structure is initially char-
acterized by 3N-6 (or 3N-5) vibrational modes. In all but the special case where the
molecules in the dataset contain the same number of atoms i t is not possible to compare
the vibrational frequencies directly. This so-called dimensionality problem docs not
arise during a CoMFA analysis because the molecular fields arising from each molecule
are calculated across a fixed set of lattice points, but this would be an issue if, for
example, one wanted to compare directly the atomic point charges from which the elec-
trostatic fields are derived. Furthermore, even in cases in which it is desired to compare
molecules that do contain the same number of atoms and hence the same number of
vibrational modes, it is difficult to establish which vibrations are directly comparable
between molecules: this problem arises from inherent and effectively indeterminate
contributions made by individual atoms to a given vibrational mode [15].

In EVA, the dimensionality of the descriptor is unified across the entire dataset by a
three-step procedure that involves transformation of the sets of vibrational frequencies
onto a scale where they are directly comparable (i.e.a scale of fixed dimensionality). In
the initial step of this standardization process, the frequency values are projected onto a
bounded frequency scale (BFS) with individual vibrations represented by points on this
axis (Fig. 1) . The bounds chosen for the BFS of 0 and 4000 cm–1 encompass the fre-
quencies of all fundamental molecular vibrations and Facilitate comparison against ex-
perimentally derived IR spectra. The second step in the standardization process involves

382
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Fig. 1. Bounded frequency
ranitidine (upper spectrum).

scale with superimposed EVA descriptors for cimetidine (lower spectrum and

characterized in terms of ‘peak’height, width and shape. Each of the calculated vibra-
tions is weighted equally during this process. The resulting value associated with each
of the calculated vibrations permits the proportion of overlap of vibrations to be deter-
mined and may be considered analogous to, but in no way representative of, peak
intensity. In principle, it should be possible to use theoretical vibrational intensities 
derived from derivatives of calculated or measured dipole moments, but the resulting
intensities are notoriously inaccurate and this has not been attempted at the time of
writing.

In practice, in the second step a Gaussian function of fixed standard deviation (σ) is
placed over each vibrational frequency value for a given structure. resulting in a series
of 3N-6 (or 3N-5) identical and overlapping Gaussians (Fig. 2 ) . The value of the EVA
descriptor, EVAX, at any chosen sampling point, x, on the bounded frequency scale is

Fig. 2. Profile of the summed overlap Gaussians ( ‘EVA’ curve) for three arbitrary vibrational frequencies
and using a term of 10        The curve ‘EVA ’ is determined by summing the estimated ‘intensites' of the vi- 
brations centered at 28         37        and 51         respectively. The EVA descriptor is exacted by sampling
the frequency scale at fixed intervals of L 
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then determined by summing the contributions from each and every one o f the 3N-6 (or
3N-5) overlaid Gaussians at that point

where ƒi is the i’th frequency for the structure.
It is important at this stage to remind the reader that the purpose of the above EVA

smoothing procedure is not an attempt to simulate the infrared spectrum of the molecule
of interest, since the transition dipole data is ignored, but rather to provide a basis upon
which vibrations occurring at slightly different frequencies may be compared to one
another. The Gaussian function applied to define peak shapes adds a probabalistic
element, in that the peak maxima are centered at each of the calculated frequency values
(fi) and, thus, these points are taken to be the most probable values of the respective fre- 
quencies. An EVA descriptor sampled at a point x ≠  fi is thus considered to be a less
probable value of the i’th frequency and the corresponding contribution of fi to the final
value of EVAx will be less than the maximum possible contribution. To a certain extent. 
this behavior of the EVA descriptor reduces the dependency of the final QSAR model
on the accuracy of the original calculated vibrational frequencies, which arc sensitive to
the molecule geometry optimization criteria and to the theoretical approximations or
empirically based parameters of the NCA procedure. Furthermore and as discussed in
detail below, this behavior has implications regarding the sensitivity of the descriptor to
molecular conformation, in that small changes in vibrational frequencies arising from 
conformational changes may have insignificant effects on the resulting EVA descriptor
values.

In the third and final, step of the data standardization process, the EVA function is 
sampled at fixed increments of L cm–1 along the BFS, which results in the 4000/L values
that comprise the EVA descriptor. Typically, a descriptor set is derived using a Gaussian
standard deviation (σ ) term of 10 cm–1 and a sampling increment (L) of 5 cm–1, resulting 
in 800 descriptor variables. As is the case with the CoMFA technique, the dimensional-
ity of the EVA descriptor is much larger than the number of compounds in a typical
QSAR dataset and, thus, data reduction methods such as partial least squares to latent
structures (PLS) [16]or principal components regression (PCR) are applied to yield
robust correlations with biological data.

3.

One of the first demonstrations in the public domain of the regressive modeljing capabil- 
ity of the EVA descriptor was obtained in a QSPR study [19],using the BCDEF dataset
of Cramer [20]. The dataset consists of measured logP values for a highly heterogeneous 
set of 135 small organic chemicals, ranging from polycyclic aromatics such as the
highly lipophilic phenanthrene (logP = 4.46) to small hydrophilic moieties including 
methanol (logP= 0.64). The EVA descriptors were derived using a Gaussian spread (σ )
term of 10 cm–1 and a sampling increment (L) of 5 cm–1 based on normal coordinate fre-

Applications of the EVA Descriptor in QSAR
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quencies calculated using the AM1 [21] Hamiltonian in the MOPAC [22] semiempirical 
molecular orbital program. These parameters yielded an EVA descriptor consisting of

regression equation based on only five PLS factors, that explained 96% of the variance 
in the logP values, was obtained in this way. Full leave-one-out cross-validation of this
dataset yielded a cross-validated-r² (i.e. q²) of 0.68. This model was then used to predict 
the logP value for a test set of 76 ‘unseen’ chemicals, resulting in a predictive r² of
0.65. This study demonstrates the value of EVA as both an explanatory and a predictive
tool and, in addition, highlights one of the key advantages over 3D QSAR techniques
such as CoMFA, In cases such as this, where no intuitive alignment of the dataset struc-
tures exists, it is very difficult or even impossible to apply CoMFA in a meaningful 
way, but with EVA no such complexity exists. Furthermore, bulk properties such as
logP have no orientation dependence and, thus, any attempt to introduce such a depend-
ency for QSAR purposes is entirely arbitrary. The diversity of structures exemplified
in this dataset also suggests that EVA may be applied to the analysis of diverse sets
of compounds rather than just to congeneric series, which is a limitation for most
alternative descriptors.

In subsequent studies [23,24], the general applicability of the EVA descriptor in
QSAR studies has been investigated i n detail using datasets exhibiting a range of bio-
logical end-points (Table 1 ). Using EVA descriptors derived from AM1 modes, good
PLS models (in terms of q²) can be obtained for nine of the eleven datasets. The ex-
ceptions to this are the oxadiazole [25] and biphenyl [26] datasets for which, at best, 
only poor models can be obtained. It is important to remind the reader that although the
EVA QSAR models presented in Table 1 are satisfactory, they are based solely upon
the default EVA descriptor parameters (σ  = 10 cm–1 and L = 5 cm–1). Additional studies
[23,24] have been performed in which the effect of changes to these parameters on the
quality of the final QSAR models has been investigated and for nearly all of the datasets
listed there exist combinations of σ and L that give rise to superior PLS models. A
range of these parameters should. therefore, be investigated prior to settling on a final
model. A protocol recommended by Turner et al. [23] suggests that a value of 10 cm–1

is a reasonable starting point for a QSAR study and thereafter if satifactory results are
not achieved, to supplement this with analyses based on σ -terms of 5.25 and 50 cm–1.

A useful benchmark in determining the effectiveness of the EVA descriptor for
QSAR studies is to compare the statistical performance and model characteristics based
on the EVA descriptor with the analogous CoMFA model for the same datasets. A key
limitation in all such comparative studies [23,24] is that the datasets have been selected
because a good, published CoMFA model exists. This, therefore, leads to significant
bias in favor of the CoMFA technique, hut none the less. the results do provide
interesting insights into the nature and scope of the EVA descriptor.

Examination of Table 1 shows that. at least in terms of the q² scores, the EVA de- 
scriptors provide roughly equivalent correlations for the cocaine [27], dibenzofuran
[26]. dibenzo-p-dioxin [26], piperidine [25], sulphonamide [25] and steroid datasets [3].
Although not as high as CoMFA, good predictive correlations are also obtained using
EVA for the ß-carboline [28] and nitroenamine [25] datasets. The two cases where
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EVA performs poorly, the oxadiazole [25] and biphenyl [26] datasets, also yield the 
poorest CoMFA results, although statistically signifcant con-elations (q² 0.5) are still
obtained using CoMFA.

The robustness of PLS models derived using EVA has been extensively tested by
Turner [24,31] , in terms of both randomization permutation testing [16] and the ability
of those models to make reliable predictions for test chemicals. Using the standard
steroid dataset from the original CoMFA study [ 3 ] , albeit with structures corrected ac-
cording to Wagener et al. [10], a predictive-r² value of 0.69 is obtained for the ten test 
chemicals; the biological end-point used was the affinity for corticosteroid-binding
globulin (CBG) expressed as 1/[logK].This compares to a much lower value for
CoMFA combined steric and electrostatic fields of 0.35. The apparently poor CoMFA
test set predictive performance is almost entirely due to an extremely poor prediction 
for the only structure in the test set containing a fluorine atom, omission of which raises
the CoMFA predictive-r² to 0.84. In contrast, the EVA predictive performance is raised
by 0.05 when this compound is excluded, a small but none the less significant improve-
ment. Clearly, in terms of the EVA descriptor space this compound cannot be con-
sidered an extreme outlier, but in terms of CoMFA fields it is too different from the
structures in the training set for a reliable prediction to be made.

The main advantage of EVA over CoMFA for QSAR purposes is the fact that orien-
tation and alignment of the structures in the dataset is not required. In CoMFA, the
alignment is the major variable, providing in some instances different modelling statis- 
tics for even quite small changes in the relative positions of the atoms in a pair of struc-
tures. However, given the nature of the field-based descriptors used in CoMFA,
alignment does facilitate a powerful means of visualizing the important features of a
QSAR model in the form of plots of the structural regions that are most highly cor-
related (either positively or negatively) with the biological property of interest. Despite 
the undoubted utility of these CoMFA plots, they do not indicate precisely which atoms
are responsible for the modelled correlations since the electrostatic and steric fields are 
composed of contributions from each and every atom in the molecule, although the
Predicted Activity Contributions (PAC) [17]method has been reported to overcome this
problem. A further point to note is that it is not possible to predict the effects that struc- 
tural changes may have on the resultant CoMFA fields. In contrast to CoMFA, there
exists no obvious means of backtracking from those components of the EVA descriptor
which are highly correlated with changes in biological activity to the corresponding 
molecular structural features; a discussion of the ways of achieving this is presented at 
the end of this chapter.

4.    EVA Descriptor Generation Parameters 

The judicious selection of parameters is a prerequisite to the success of any QSAR
method and EVA is no exception. The most fundamental parameters involved in the
derivation of the EVA descriptor are the Gaussian standard deviation (σ) and the
sampling increment ( L ) .
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4.I .

The effect of varying the σ term of the EVA descriptor is illustrated in Fig. 3 in which.
as is increased, the features of the descriptor profile are progressively smoothed. The
effect of the application of a Gaussian function during the EVA descriptor standard-
ization process is to ‘smear out’ a particular vibrational frequency such that vibrations
occurring at similar frequencies in other structures overlap to a lesser or greater extent. 
It is this overlap that provides the variable variance upon which PLS modelling is
dependent. By definition, each and every Gaussian must overlap, but for the most part
this occurs at small (negligible) values and, consequently, the contribution to variance is
very small. Only where the frequency values are sufficiently close to one another
relative io the value of σ is it likely that interstructural overlap of Gaussians will occur
at values of significant magnitude. The selection of the Gaussian standard deviation,
therefore, determines the number of and extent to which, vibrations of a particular fre-
quency in one structure can be statistically related to those in the other structures in the
dataset.

In addition to interstructural overlap of Gaussians, the σ term also governs the extent
to which vibrations within the same structure may overlap at non-negligible values.
Intrastructural Gaussian overlap of this type, which is also dependent on the ’density’
(i.e. proximity) of vibrations at various regions of the spectrum, causes EVA variables
to consist of significant contributions from more than one vibrational frequency. The
mixing of information contributed by individual normal coordinate frequencies is gen-
erally considered undesirable, but in order to provide sufficient interstructural Gaussian
overlap, it is inevitable that a certain degree of intrastructural overlap occur.

Thus, small values of σ give rise to minimal intrastructural Gaussian overlap, while 
at larger values σ of significant overlap arises. In the former case, there will be a reduc-
tion in interstructural overlap, perhaps to such an extent that there exists no overlap of
the Gaussians at significant values. In this instance, the descriptor takes on the charac-
teristics of a binary indicator, showing only the presence or absence of specific features,
thereby rendering the descriptor useless for regression analysis, but perhaps still of
utility in classification analysis. In cases where larger σ values are used, increased
mixing of the information encoded by one frequency with that encoded by other
frequencies arises.

Gaussian standard deviation (σ)

4.2. Sampling increment (L )

Detailed investigation into the effect of various combinations of the σ and L parameters
on the resulting q² value has been carried out by Turner [24]. Turner’s results indicate
that, for the most part. the final q² value is insensitive to small changes in either of these
parameters —i.e. the information content of the EVA descriptor remains consistent. 
The most significant variations i n q² are seen as σ is reduced (giving a more spiky

lowering the spectral resolution. This result is intuitively reasonable since one would
anticipate that, as L becomes very large relative to σ some of the Gaussian peaks (or

vibrational ‘intensity’) and the sampling increment (L) is increased; this is analogous to 
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information encoded within them) will be omitted from the descriptor. In some cases. 
the information omitted will be predominantly noise resulting in a superior QSAR 
model; but in other cases, signal may be accidentally omitted, resulting in degradation
of the QSAR model. This phenomenon is known as blind variable selection since vari-
ables are selected or excluded from the descriptor on a completely arbitrary basis which
is, of course, undesirable. The value of L at which blind variable selection begins to
occur is related to the σ term; the larger the σ term the higher the permissible value of
L. Thus, to avoid blind variable selection. one might wish to minimize the value of L,
but this must be balanced against the additional computational requirements associated 
with such a practice. Conversely. therefore. the value of L should be maximized in order
to reduce the computational overhead and this leads to the concept of critical L values
(Lcrit) which are σ specific and which, if exceeded. result in a sampling error. Table 2
lists generally applicable Lcrit values for various values that were derived by a system-
atic study of L and σ parameter settings for several EVA datasets [23]. Table 2 confirms
that the intuitively reasonable and default. selection of an L of 5 cm–1 with a term of
10 cm–1 should result in no blind variable selection and that in point of fact, the value of 
L may be increased to 20 cm–1 with no apparent information loss (change in q2).

The existence of these Lcrit values is important not least because one of the problems 
with CoMFA at present is that the coarse grid-point spacing (typically 2 Å) that is gen- 
erally used is such that there is incomplete sampling of the molecular fields. resulting in 
information loss. The consequence of this is that reorientation of an aligned set of mole-
cules as a rigid body within the defining CoMFA 3D region often results in substantial 
changes to the resulting QSAR model [30], as evidenced in the q2 values. EVA, on the
other hand, does not suffer from such sampling errors. provided that the Lcrit values
given in Table 2 are not exceeded. 

5.

Although the EVA descriptor is not intended to simulate the infrared spectrum of a mol- 
ecule, it is useful to visualize the EVA descriptor in the form of a ‘spectrum’. This 
permits the interpretation of the EVA descriptor by examination of the distribution of 
vibrations in a molecule or in a set of molecules. Figure 4 shows plots of the EVA de- 
scriptor for deoxycortisol (one of the most active CBG-binding compounds in the origi- 
nal steroid dataset used by Cramer [3]) and estradiol (one of' the inactive structures)
over the spectral range 1 to 4000 cm–1. Also shown in Fig. 4 is the univariate standard 
deviation of the descriptor over the entire dataset of 21 structures [3]. The density of

Characteristics of the EVA Descriptor 

Table 2

Gaussian standard deviation. σ_1 1 2 3 4 6 8 10 14 21
Threshold increment, Lcrit (cm_1)a 2 4 5 8 10 16 20 25 32

a In order to avoid sampling errors the value of L should be chosen to be lets then Lcrit for a given s; these
values have been chosen such that effects resulting from the choice or sampling frame (determined by S) are
accounted for. 

critical values of L (Lcrit) for selected Gaussian terms
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peaks in the fingerprint region (1 to 1500 cm–1) indicates that there is considerably more 
vibrational information in this region than in the functional group region (1500 to
4000 cm–1) of the spectrum, as is typical in most infrared spectra. The EVA descriptor
values and the standard deviation over the entire dataset are largest at frequencies cen-
tered around 1400 and 3100 cm–1, corresponding to C-H bending and stretching vibra-
tions. Figure 4 also highlights the errors associated with the calculation of normal
coordinate frequencies (in this case, using MOPAC), since a carbonyl stretching fre-
quency is expected (from experiment) to appear at around 1700 cm-1, but is represented
on this plot by peaks in around 2060 cm–1. This feature of the EVA descriptor, once
again, indicates that there is no attempt to simulate an experimental IR spectrum, but
does not detract from the usefulness of the descriptor for QSAR purposes, since con-
sistency rather than accuracy across the dataset is critical. Furthermore, for QSAR pur-
poses, relative rather than absolute differences in vibrational frequency across the 
dataset are important. One might expect that this would become more of an issue should
heterogeneous datasets be used since the consistency with which errors associated with 
the reproduction of equivalent vibrational frequencies may be more erratic. In practice,
however, reasonable QSAR results have been obtained using a variety of heterogeneous
datasets [19,23].

6.

The sensitivity of CoMFA to the molecular orientation and alignment and, therefore, to
the molecular conformation is well established [32,33] ,but while EVA is completely
independent of molecular orientation and alignment, the impact of the molecular con-
formation on EVA QSAR performance has. thus far, not been discussed. Intuitively, it
is obvious that a change in conformation will result in changes in the force constants
between atoms and, therefore, in the normal coordinate frequencies and displacements.
The questions are: ‘to what extent arc these changes evident within the EVA descrip-
tor?’ and ‘how much of this is accounted for by the Gaussian spread term?’. Some 
limited studies of these conformational effects have been performed [31,33]. In one

at the same biological target, encomp ing pyrazoles, thiazoles, piperidines, quinolines

nearest-neighbor algorithm, based on the EVA descriptor. The conformations of each
molecule were repeatedly randomized, new EVA descriptors generated and the cluster-
ing process repeated. The conclusions from this study were that, while the nearest-
neighbor relationships between compounds change. the overall cluster membership is
approximately constant. This result suggests that, in the vast majority of cases, a con-
formational change does not lead to a sufficiently large change in the resulting EVA de-
scriptor to cause a change in the underlying statistical model. 

In a more recent study [31], EVA descriptors for test chemicals were generated for a
conformation which matched that used in the training set and also for a non-matching
conformation. At low σ values, the predictions made based on the non-matching con-
formation are considerably poorer than those made for the matched conformation. This

Conformational Sensitivity of the EVA Descriptor
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difference gradually decreases until convergence is achieved at σ = 12 cm–1, thereafter
the predictions from the two conformations are roughly equivalent. In general, the
conformational sensitivity of the EVA descriptor decreases as is increased. As would be
expected, the predictions made using CoMFA for noli-matching conformations are
much poorer than any of those obtained using EVA, thereby highlighting the relative
conformational sensitivity of the two methods.

7. QSAR Model Interpretation

In CoMFA, 3D isocontour plots are used to visualize those regions of space indicated
by the PLS model to be most highly positively or negatively correlated with biological 
activity. While no such 3D visualization is possible with EVA, a variety of 2D plots
have been suggested [24,31] that indicate the relative importance of regions of the spec-
trum in correlating biological activity. Figure 5 shows two such plots based on a two-
component PLS model for the steroid dataset [3] that, i n some ways, facilitate
interpretation of an EVA QSAR model in analogous fashion to the interpretation of an
experimental IR spectrum. The two measures shown in the figure are the magnitudes of
the regression coefficients (B) and the variable influence on projection (VIP) [34].It is
pertinent to remind the reader that the peak heights depicted i n Fig. 5 represent the
relative importance of the EVA variables in the PLS analysis and are in no way related
to vibrational intensity.

To backtrack to the important structural features indicated by the PLS model, it is
necessary first to identify the variables most highly correlated with activity, decompose
those variables into the contributing vibrational frequencies and then to interpret and
visualize the underlying normal mode vibrations.

Two simple approaches have been proposed for identifying the most important 
variables in the PLS analysis [31]. The first approach suggests that important variables
will have regression coefficients in excess of half of the largest coefficient. The second
method. based upon the VIP score, states that important variables will have a VIP score
greater than 1.0, while unimportant variables will have a VIP score less than 0.8 [34].
Analysis of the EVA descriptor (σ = 4 cm-1) for the steroid dataset by Turner et al. [31]
results in the selection of too many EVA variables at a threshold of VIP 1.0 (183
variables), but a threshold of VIP 3.0 yields a more manageable number (17 vari-
ables). It is reasonable to use such a high VIP threshold since these are the variables 
most heavily weighted by PLS and, thus, may be used to get some feel for the main
structural features used to discriminate between the training set structures. 

The decomposition of the selected (important) EVA variables into their contributory
normal mode frequencies is most straightforward and certainly less ambiguous, if each
EVA variable is composed of one and only one normal coordinate frequency. For this
reason, it is important that the smallest value is used during the analysis as possible,
since, as discussed earlier, σ directly affects the degree of intrastructural Gaussian
overlap. Examination of the underlying frequencies for EVA variables with VIP 3.0
is not straightforward. However, for the steroid dataset, PLS appears to discriminate
between high-, medium- and low-active structures based on the presence or absence of
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specific frequencies that are characteristic of the functionalities considered important for
binding affinity. For example, the variable with the second-highest VIP score at
2056 cm–1 relates to the position-3 carbonyl group stretching mode. This group is one of
the features deduced by Mickelson et al. [35] to be critical for CBG-binding and is
present in all of the high- and medium-activity compounds, as well as the most active of
the low-activity compounds.

The attempts at interpreting QSAR models based upon the EVA descriptor, discussed
herein, are encouraging, in that the classifications between structures can, to some
extent, be rationalized in terms of the features postulated to be necessary for activity.
None the less, EVA QSAR models cannot, to date, be interpreted to the same extent as
CoMFA models in which the correlations may be related to probe interaction energies.

8. Summary

One of the main problems encountered with QSAR techniques that use fields to charac-
terize molecules, such as CoMFA, is the need to align the structures concerned. The
selection of such alignments, in terms of the molecular orientation and conformation, is
essentially arbitrary, but has profound effects on the quality of the derived QSAR
model. For this reason, a number of groups have attempted to develop new 3D QSAR
techniques that extend beyond this limitation, with varying degrees of success. This 
chapter has reviewed the progress made with one such methodology, that based upon
molecular vibrational eigenvalues and known as EVA.

EVA provides an entirely theoretically based descriptor derived from calculated, fun-
damental molecular vibrations. Molecular structure and conformational characteristics
are implicit in the descriptor since the vibrations depend on the masses of the atoms
involved and the forces between them. The signi ficant advantage that EVA offers
relative to CoMFA and related 3D QSAR techniques is that molecular vibrational pro-
perties are orientation independent, thereby eliminating ambiguity associated with the
well-known molecular alignment problem.

The discussion of the QSAR modelling performance of EVA herein illustrates that the
general applicability of the descriptor and the robustness of the resultant QSAR (PLS)
models in terms of cross-validation statistics. In addition. extensive randomization 
testing of the PLS models discussed herein [31] shows that the probability of obtaining
similar correlations by chance to those actually obtained using the EVA descriptor is
essentially zero. Randomization and related statistical tests [16] have played a crucial
role in conclusively demonstrating that EVA can be used to correlate biological activity
or other properties and generate statistically valid QSAR models. In most, but not all,
cases examined EVA compares favorably with CoMFA, in terms of the ability to build
statistically robust QSAR models from training set structures and in terms of the ability
to use those models to predict reliably the activity of ‘unseen’ test chemicals.
Furthermore, EVA has yielded predictively useful QSAR models for quite hetero-
geneous datasets, where the application of CoMFA is difficult or impossible.

The promising results presented herein may lead one to believe that development
of the EVA methodology has been completed, but this is not the case. There is
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considerable interest in exploring several aspects of the descriptor, including the cor-
relation with specific types of effects (e.g. hydrophobic, steric or electrostatic) and the
rational selection of localized σ values as a basis for establishing suitable probability
density functions for particular types of vibration or regions of the infrared spectrum. In
addition, despite the example provided herein of taking significance-of-variable plots
coupled with techniques for selecting these variables as a means to interpreting an EVA
QSAR model, there is need for more sophisticated techniques for the decomposition of
EVA variables into the underlying normal mode vibration(s) and thereby to the groups
of atoms that are characteristic of those vibrations. A further area that requires invest-
igation is the sensitivity of EVA to the molecular conformation used and to what extent
this governs the choice of σ parameter.

As the EVA methodology matures other applications, besides 3D QSAR, will begin
to emerge that take advantage of the strengths of the technique. One such example [36],
centers on the use of EVA for similarity searching in chemical databases, in which the
overall conclusions are that EVA is equally effective for this purpose as the more tradi- 
tional 2D fingerprint method. although depending on the similarity measure applied, the
hits returned by EVA and 2D similarity measures may be structurally quite different. A 
consequence of this finding is that EVA-based similarity searching may provide an
alternative source of inspiration to a chemist browsing a database. The applicability
of EVA in the context o f database similarity searching is i n stark contrast to the
complexities associated with field-based similarity searching [9] in chemical databases. 

Finally, the technique described herein that yields the standardized EVA descriptor
from the calculated vibrational frequencies is not limited to that purpose and may, in
principle, be applied in any circumstance where the property or descriptor is non-
standard. For example, the standardization procedure may be applied to interatomic dis-
tance information, either for a single conformation or as a means of summarizing
conformational flexibility. Furthermore, the same procedure may be applied to other de-
scriptions of molecular structure that are dependent on the number of atoms, such as
electron populations, partial charges or vibrational properties other than normal co-
ordinate eigenvalues (EVA), including transition dipole moments (intensity) or eigen-
vector data (directionality of the vibrations). The EVA standardization methodology,
therefore, provides a novel means of transforming data. Furthermore, it is conceivable
that descriptor strings derived from different sources, such as these, may be concatenated
in a manner similar to that of the Molecular Shape Analysis method of Dunn et al. [37].

References

1.

2.
3.

4.

Hansch, C. and Fujilta, T., ρ- σ- π analysis: A method for the correlation of biological activity and
chemical structure, J. Am. Chem. Soc.,86 (1964) 1616–1626. 
Wiese, M., In Kubinyi, H. (Ed.) 3D QSAR in drug design, ESCOM, Leiden, 1993.
Cramer, R.D., Patterson, D.E. and Bunce, J.D. comparative molecular field analysis (CoMFA): 1. Effect
of shape on binding of steriods to carrier proteins, J. Am. Chem. Soc., 110 (1988) 5959–5967.
Kim, K.H. and Martin. Y.C., Direct prediction of linear free-eneergy substituent effects from 3D struc- 
tures using comparative molecular-field analysis: 1. Electronic effects of substituted benzoic-acids, 
J. Org. Chem., 56 (1991) 2723–2729.

396



EVA: A Novel Theoretical Descriptor for QSAR Studies

Klebe, G., Abraham, U. and Mietzner, T., Molecular similarity indexes in a comparative-analysis
(CoMSIA) of drug molecules to correlate and predict their biological activity, J. Med. Chem., 37 (1994)
4130-4146.
Kellogg, G.E., Semus, S.F. and Abraham, D.J., HINT — A new method of empirical hydrophobic field 
calculation for CoMFA, J. Comput.-Aided Mol. Design, 5 (1991) 545–552.
Good. A.C., The calculation of molecular similarity: Alternative formulas, data manipulation and
graphical display, J. Mol. Graph., 10 (1992) 144–151.
Good. A.C., Hodgkin, E.E. and Richards. W.G., The utilisation of Gaussian functions for the rapid
evaluation of molecular similarity, J. Chem. Inf. Comput. Sci., 32 (1992) 188–191.
Thorner, D.A., Wild, D.J ., Willett, P. and Wright, P.M., Similarity searching in files of three-dimensional 
structures: Flexible field-based searching of MEP, J. Chem. Inf. Comput. Sci., 36 (1996) 900–908. 
Wagener, M., Sadowski, J. and Gasteiger, J., Autocorrelation of molecular surface properties for model-

Soc., 117 (1995) 7769–7775. 
Silverman, B .D. and Platt. DE., Comparative molecular moment analysis (CoMMA): 3D QSAR without
molecular superposition, J. Med. Chem., 39 (1996) 2129–2140. 
Clementi, S., Cruciani, G., Riganelli, D. and Valigi, R., In Dean. P.M., Jolles, G. and Newton, C.G.
(Eds.) New perspectives in drug design. Academic Press, London, 1995. pp. 285–310. 
Ferguson, A.M. and Heritage.T.W., Shell Research Ltd. Internal Report. 1990 (not publicly available).
Herzberg, G., Molecular Spectra and Molecular Structure: II, Infrared and Raman Spectra Polyatomic
Molecules, 8th Ed., D. Van Nostrrand Company Inc., New York, 1945.
Ferguson, A M., and Jonathan. P., Shell Research Ltd. Internal Report, 1990 (not publicly available). 
Lindberg, W ., Persson, J.-A. and Wolds, S., Partial least-squares method for spectroflourimetric
analysis of mixtures of humic acid and ligninsulfonate, Anal. Chem., 55 (1983) 643–648. 
Waszkowyez, B., Clark. D.E., Frenkel, D., Li, J., Murray, C W., Robson, B. and Westhead. D.R., 
PROG-LIGAND — an approach to de Novo molecular design: 2. Design of novel molecules 
from molecular field analysis (MFA) models and pharmacophores, J. Med. Chem., 37 (1994)
3994–4002.
Weiner, S.J., Kollman, P.A , Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, Jr., S. and Weiner, 
P., A novel force field for molecular mechanical simulation of nucleic acids and proteins, J . Am. Chem.
Soc., 106 (1984) 765–784.
Ferguson, A.M., Heritage, T.W., Jonathan. P., Pack, S.E., Phillips. L., Rogan, J. and Snaith, P.J., EVA:
A new theoretically based molecular descriptor for use in QSAR/QSPR analysis,  J. Comput .-Aided Mol. 
Design. 11 (1997) 143–152.
Cramer III, R.D., BC (DEF) Parameters: 1. The intrinsic dimensionality of intermolecular interactions
in the liquid state, J. Am. Chem. Soc., 102 (1980) 1837–1849.
Stewart. J.J.P., Optimisation of Parameters for Semiempirical Methods: 2. Applications, J. Comp.
Chem., 10 (1989) 221–264. 
Stewart. J.J .P., MOPAC: A semiempirical molecular orbital program, J. Comput.-Aided Mol. Design. 
4 (1990) 1–105.
Turner, D.B., Willett, P., Ferguson, A.M. and Heritage. T.W., Evaluation of a novel infra-red range 
vibration-based descriptor (EVA) for QSAR studies: 1. General application, J. Comput .-A ided Mol.
Design, 11 (1997) 409–422.
Turner, D.B., An Evaluation of a novel molecular descriptor (EVA) for QSAR studies and the similarity
searching of chemical structure databases, PhD, thesis, University of Sheffield, 1996.
Jonathan. P., McCarthy, W.V. and Roberts, A.M.I., Discriminant analysis with singular covariance
matrices: A method incorporating crossvalidation and efficient randomized permutation tests, 
J. Chemometrica, 10 (1996) 189–214.
Waller, C.L. and McKinney, J.D., Comparative molecular field analysis of polyhalogenated dibenzo- 
p-dioxins, dibenzofurans and biphenyls, J. Med. Chem., 35 (1992) 2660–3666. 

27.  Carroll, F.I., Gao, Y.G., Rahman, M.A., Abraham, P., Parham, K., Lewin, A.H., Boja, J.W. and Kuhar, 
M.J., Synthesis, ligand-binding, QSAR and CoMFA study of 3-ß-(para-substituted phenyl)tropane- 

5 .

6.

7.

8.

9.

10.
ing corticosteriod binding globulin and cytosolic Ah receptor activity by neural networks, J. Am. Chem.

11.

12.

13.
14.

15.
16.

17.

18.

19.

20.

21.

22.

23 .

24.

25.

26.

2-ß-carboxylic acid methyl-esters, J. Med. Chem., 34 (1991) 2719–2725. 

397



Trevor W. Heritage, Allan M. Ferguson, David B. Turner and Peter Willett

28.  Allen, M.S., Laloggia, A.J., Dorn. L.J., Matin, M.J., Costantin, G., Hagen, T.J., Koehkr, K.F.,
Skolnick, P. and Cook. J M., Predictive binding of ß-carboline inverse agonists and antagonists via the
CoMFA/GOLPE approach, J. Med. Chem., 35 (1992) 4001–4010. 
Greco, G., Novellino, E.. Silipo, C. and Vittoria, A., Comparative molecular-field analysis on aset of
muscarinic agonists, Quant. Struct.-Act. Relat., 10 (1991) 289–299.
Cho, S. and Trophsha, A., Crossvalidated R²-guided region selection for comparative molecular field- 
analysis: A simple method to achieve consistent results, J. Med. Chem., 38 (1995)1060–1066.
Turner. D.B., Willett, P., Ferguson, A.M. and Heritage, T.W., Evaluation of a novel infra-red range 
vibration-based descriptor (EVA) for QSAR studies: 2. Model validation, J. Med. Chem. (submitted).
Kroemer, R.T. and Hecht, P., Replacement of steric 6-12 potential-derived interaction energies by atom-
based indicator variables in CoMFA leads to models of higher consistency, J. Comput.-Aided Mol.
Design, 9 (1995) 205–212.
Heritage, T.W., Shell Research Ltd. Internal Report, 1992 (not publicly available). 
Wold. S., Johansson, E. and Cocchi, M., PLS — partial laest squares to latent structures, In Kubinyi, H. 
(Ed.) 3D QSAR in drug design, ESCOM, Leiden, 1993, pp. 523–550. 
Michelson, K.E., Forsthoefel, J. and Westphal, U., Steroid–protein interactions: Human corticosteroid 
binding globulin: Some physicochemical properties and binding specificity, Biochemistry, 20 (1981)
6211–6218.
Ginn, C.M.R., Turner. D.B., Willett, P., Ferguson, A.M. and Heritage. T.W., Similarity searching in files 
of three-dimensional chemical structures: Evaluation of the EVA descriptor and combination of rank-
ings using data fusion, J. Chem. Inf. Comput. Sci. 37 (1997) 23–37. 
Dunn, W.J., Hopfinger, A.J., Catana, C. and Duraiswami, C., Solution of the conformation and
alignment tensors for the binding of trimethoprim and its analysis to dihydrofolate-reductase —
3D-quantitative structure–activity study using molecular-shape analysis 3-way partial least-squares 
regression, and 3-way factor analysis, J. Med. Chem., 39 (1996) 4825–4832.

29.

30.

31.

32.

33.
34.

35.

36.

37.

398



Author Index

Alber, F. 169 Liljefors, T. 3
Andreoni, W. 161
Anzali, S . 273 Marshall, G.R. 35

131 Oprea, T.I. 35
Ortiz, A.R. 19

Carloni, P. 169
Clark, R.D. 213 Pearlman, R.S. 339
Clark, T. 131 Polanski, J. 273
Cramer, R.D. 213

Reddy, M.R. 85
Erion, M.D. 85 Richards, W.G. 321

Rognan, D. 181
Ferguson, A.M. 213, 381 

Sadowski, J. 273
Gago, F. 19 Smith, K.M. 339
Gasteiger, J. 273
Ghose, A.K. 253 Teckentrup, A. 273
Good, A.C. 321 Thorner, D.A. 301
Gramatica, P. 355 Todeschini, R. 355
Grootenhuis, P.D.J. 99 Turner, D.B. 381

Harrison, R.W. 115 Viswanadhan, V.N. 85
Heritage, T.W. 381
Holloway, M.K. 63 Wade, R.C. 19
Holzgrabe, U. 273 Wagener, M. 273

Knegtel, R.M.A. 99 Wendoloski, J.J. 253
Kubinyi, H. 225 Wild, D.J. 301

Weber, I.T. 115

Willett, P. 301, 381
Wright, P.M. 301

H. Kubinyi et al. (eds.), 3D QSAR in Drug Design, Volume 2. 399.
© 1998 Kluwer Academic Publishers. Printed in Great Britain.

Beck, B.



This Page Intentionally Left Blank


	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled



