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Preface 

In May 21 - 24, 1997 the Second International Symposium on Algorithms for 
Macromolecular Modelling was held in the new building of the Konrad Zuse 
Zentrum on the attractive Science Campus of the Free University of Berlin. 
Organizers of the symposium were the editors of this book, plus Bernie Brooks 
and Wilfred van Gunsteren. The event brought together computational sci- 
entists in fields like biochemistry, biophysics, physical chemistry, or statistical 
physics and numerical analysts as well as computer scientists working on the 
advancement of algorithms, for a total of over 120 participants from 19 coun- 
tries. In the course of the symposium, it was agreed not to  write traditional 
proceedings, but rather to  produce a representative volume that  combines 
survey articles and original papers (all refereed) that  would give an account 
of the current state of the art  of Molecular Dynamics (MD). 

At present, the main challenge of computational molecular dynamics 
stems from the huge discrepancy of timescales: phenomena of interest, such 
as protein folding or active site docking, occur on a micro- or millisecond time 
scale while we are routinely able to  do computations on a scale of only one or 
a few nanoseconds. In order to  bridge this gap, a drastic speedup of our algo- 
rithms and software appears necessary - besides any speedup originating from 
advances in computer technology. However, this will not be enough to  achieve 
our goal. In addition, there is the need to  explore further the potential for 
improved physical modelling and to  develop both new theoretical concepts 
and new algorithmic ideas. That  is why this volume deliberately allocates 
considerable space to  new concepts and ideas from physics and mathematics. 

With the main challenge and the general intentions of the editors in mind, 
the volume begins with an Introductory Survey by a longtime leader in the 
field, HERMAN BERENDSEN, drawing on his long experience and deep insight 
into the current status of molecular simulations and their future as an in- 
creasingly important method in structural biology and chemistry. With his 
unique personal insight, this article will be the beginning of many discussions 
as  the book as a whole will serve as a forum for alternative views and further 
perspectives. 

The remaining 28 articles have been grouped in five chapters that  reflect 
the main topics of the Berlin meeting. As in any interdisciplinary volume, 
there is a degree of arbitrariness in the allocation of some of the articles. 

The first chapter, on Conformational Dynamics, includes discussion of 
several rather recent computational approaches to  treat the dominant slow 
modes of molecular dynamical systems. In the first paper, SCHULTEN and 
his group review the new field of "steered molecular dynamics" (SMD), in 
which "large" external forces are applied in order to  be able to  study un- 
binding of ligands a.nd conformation changes on time scales accessible to  MD 
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simulations. The second paper, by HELMS & MCCAMMON, surveys a wide 
range of different computational techniques for the exploration of conforma- 
tional transitions of proteins, including the use of stochastic dynamics with 
the Poisson-Boltzmann approximation as a simple solvent model. The ar- 
ticle by EICHINGER ET AL. combines several speedup techniques: multiple 
time stepping algorithms adapted to fit fast multipole methods (see also the 
last chapter of this book), the previously mentioned SMD technique, and 
GRUBMULLER'S method of "computational flooding", which .uses local po- 
tential modifications in order to  successively drive the system to  different 
low-energy basins. The novel approach taken by DEUFLHARD ET AL. em- 
ploys ideas from the mathematics of dynamical systems to construct certain 
almost invariant sets in phase space, which can be interpreted as chemical 
conformations; their algorithm also supplies patterns and rates of conforma- 
tional changes. In the last paper of this chapter, TOLSTUROKOV & VIRNIK 
describe another use of dynamical systems tools and propose a simplified set 
of differential equations for the description of an observed hysteresis behavior 
in water adsorption-desorption of nucleic acids. 

The second chapter, on Thermodynamic Modelling, is devoted largely to 
methods for computing free energies and potentials of mean force. The paper 
by HERMANS ET AL. reviews experimental and theoretical techniques for 
studying the stability of protein-ligand complexes, including a new method 
for computing absolute free energies of binding with MD simulations, and 
summarizes recent applications from their laboratory. MARK ET AL. describe 
a new method to estimate relative binding free energies of a series of related 
ligands on the basis of a single simulated trajectory of a reference state in 
which a specially constructed, artificial ligand is modelled with a special 
"soft" potential function. KUCZERA describes a multiple-dimension approach 
by which conformation space is explored, while the potential of mean force is 
simultaneously computed. The joint paper from the groups of LESYNG and of 
McC AMMON reviews an algorithm for the prediction of ionization constants 
in proteins; calculations of the relevant protein-solvent system are based on 
the already mentioned Poisson-Boltzmann equation. The paper by STRAUB & 
ANDRICIOAEI employs the Tsallis statistics to speed up phase space sampling. 
In the final article of this chapter, NEUMAIER ET AL. construct empirical 
potentials for possible use in off-lattice protein studies. 

The third chapter, on Enhanced Time-Stepping Algorithms, opens with a 
personal account on long-timestep integration by SCHLICK. She assesses both 
the successes and the limitations of various algorithmic approaches including 
implicit discretization, harmonic/anharmonic separation of modes, and force 
splitting techniques combined with Langevin dynamics. The second paper, 
by ELBER ET AL., describes a large step-size approximation of stochastic 
path integrals arising from Langevin dynamics - requiring, however, knowl- 
edge about both initial and final states. On the basis of a detailed case study 
ASCHER & REICH argue that implicit discretizations should not be used 
with timesteps significantly larger than typical periods of the fast oscilla- 
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tions. In the paper by BERNE, the r-RESPA multiple timestepping (MTS) 
method is described and applied in the context of Hybrid Monte Carlo meth- 
ods for sampling techniques such as J-Walking and S-Walking with the aim 
of a more rapid exploration of rugged energy landscapes. In the next pa- 
per, SKEEL & IZAGUIRRE advocate the use of MTS in a mollified impulse 
method to overcome resonance instabilities that are inherent in the standard 
impulse method. Yet another MTS-like approach can be found in the paper by 
J A N E ~ I ~  & MERZEL, who suggest to split off a harmonic high frequency part 
of the motion and integrate that analytically. Finally, LEIMKUHLER demon- 
strates the stability of the recently proposed explicit symplectic integrators 
(with fixed timestep) in the numerical integration of rigid body motion over 
long time spans. 

The fourth chapter, on Quantum-Classical Simulations, deals with the 
integration of molecular systems, parts of which are modelled in terms of 
quantum mechanics, where a full quantum mechanical treatment would be 
impossible. In the first paper, JUNGWIRTH & GERBER treat clusters of inert 
gases by calculating effective single-mode potentials from classical molecular 
dynamics which are then used in quantum calculations. An extension be- 
yond the separability approximation is also suggested. The quality of the 
quantum-classical molecular dynamics (QCMD) model compared with full 
quantum mechanics (QM) and the Born-Oppenheimer approximation (BO) 
is considered by SCHUTTE & BORNEMANN in terms of approximation theory. 
They also suggest an extended QCMD model that may open new perspectives 
in the case of energy level crossings, where BO is known to break down. Re- 
cently developed structure-preserving numerical integrators for this QCMD 
model are given by NETTESHEIM & SCHUTTE. Symplectic multiple timestep- 
ping variants of these integrators are derived in the paper by NETTESHEIM & 
REICH. An alternative scheme is presented by HOCHBRUCK & LUBICH, who 
suggest that a type of mollified exponential integrators are especially well- 
suited for highly oscillatory systems such as QCMD and the Car-Parrinello 
approximation. The latter approximation is also used in the paper by MEIER 
ET AL. on ab-initio MD simulations of catalysis in a polymerization process. 
In the last paper of this chapter, IZVEKOV describes an algorithm for the 
calculation of absorption spectra based on exciton-phonon interactions. 

The fifth and final chapter, on Parallel Force Field Evaluation, takes 
account of the fact that the bulk of CPU time spent in MD simulations 
is required for evaluation of the force field. In the first paper, BOARD 
and his coworkers present a comparison of the performance of various 
parallel implementations of Ewald and multipole summations together with 
recommendations for their application. The second paper, by PHILLIPS ET 

AL., addresses the special problems associated with the design of parallel 
MD programs. Conflicting issues that shape the design of such codes are 
identified and the use of features such as multiple threads and message-driven 
execution is described. The final paper, by OKUNBOR & MURTY, compares 
three force decomposition techniques (the checkerboard partitioning method, 
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the force-row interleaving method, and the force-stripped row method) in 
the context of a benchmark test problem. 

August 31, 1998 

Peter DeufEhard 
Jan Herrnans 

Benedict Leimkuhler 
Alan E. Mark 

Sebastian Reich 
Robert D. Skeel 
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Molecular Dynamics Simulations: 
The Limits and Beyond* 

Herman J.C. Berendsen 

BIOSON Research Institute and Dept of Biophysical Chemistry, University of 
Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands 

Abstract. This article reviews the present state of Molecular Dynamics (MD) 
simulations and tries to give an outlook into future developments. First an overview 
is given of methods, algorithms and force fields. After considering the limitations of 
the standard present-day techniques, developments that reach beyond the present 
limitations are considered. These concern three major directions: (a) inclusion of 
quantum dynamics, (b) reduction of complexity by reducing the number of degrees 
of freedom and averaging over interactions with less important degrees of freedom, 
(c) reduction to mesoscopic dynamics by considering particle densities rather than 
positions. It is concluded that MD is a mature technique for classical simulations of 
all-atom systems in the nanosecond time range, but is still in its infancy in reaching 
reliably into longer time scales. 

1 Introduction and a Bit of History 

This conference on Algorithms for Molecular Simulation is a good occasion to  
pause for a moment and consider where we are now and where we go in this 
field. The book by Allen and Tildesley [2] describes most of the techniques 
that  are still in use today. 

Molecular Dynamics (MD) simulations were first carried out in 1957 by 
Alder and Wainwright on a hard-sphere fluid [2]; the first fluid with soft 
interactions was simulated by Rahman in 1964 [3] and the first complex 
fluid (water) was simulated by Rahman and Stillinger in 1971 [4]. The first 
MD simulation of a protein was carried out in 1976 by Andrew McCammon 
[2], then postdoc in Martin Karplus' group, during a CECAM workshop in 
Orsay, France. That  workshop [6], which brought about 20 physicists (one 
was the 'father' of MD, Anees Rahman) and protein specialists (one was 
Jan  Hermans) together for two months, has been a seminal event in the 
development of simulation of biological macromolecules. Since then methods 
and force fields have improved and computers have become a thousandfold 
more powerful. Routine simulations now comprise fully hydrated systems 
with tens of thousands of atoms and extend over nanoseconds. Simulated 
systems include DNA, liquid crystals, polymers and lipid membranes. 

* A contribution from the Groningen Biomolecular Sciences and Biotechnology 
Institute. 
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But the methods have not really changed. The Verlet algorithm to solve 
Newton's equations, introduced by Verlet in 1967 [7], and it's variants are still 
the most popular algorithms today, possibly because they are time-reversible 
and symplectic, but surely because they are simple. The force field descrip- 
tion was then, and still is, a combination of Lennard-Jones and Coulombic 
terms, with (mostly) harmonic bonds and periodic dihedrals. Modern exten- 
sions have added many more parameters but only modestly more reliability. 
The now almost universal use of constraints for bonds (and sometimes bond 
angles) was already introduced in 1977 [8]. That polarisability would be nec- 
essary was realized then [9], but it is still not routinely implemented today. 
Long-range interactions are still troublesome, but the methods that now be- 
come popular date back to Ewald in 1921 [lo] and Hockney and Eastwood 
in 1981 1111. 

What has been developed within the last 20 years is the computation of 
thermodynamic properties including free energy and entropy [12, 13, 141. But 
the ground work for free energy perturbation was done by Valleau and Torrie 
in 1977 [15], for particle insertion by Widom in 1963 and 1982 [16, 171 and 
for umbrella sampling by Torrie and Valleau in 1974 and 1977 [18, 191. These 
methods were primarily developed for use with Monte Carlo simulations; 
continuous thermodynamic integration in MD was first described in 1986 

Pol . 
Another topic that received increasing attention is the incorporation of 

quantum methods into dynamic simulations. True quantum dynamics for 
hundreds of particles is beyond any foreseeable computational capability, and 
only approximations are viable. We should distinguish: 

(i) The application of quantum corrections to classical MD. An early exam- 
ple is the application of quantum corrections to water based on classical 
frequency distributions by Behrens et al. [21]. 

(ii) The use of quantum methods to derive potentials for the heavy particles 
in the Born-Oppenheimer approximation during the MD simulation. This 
is now a very active field, with important applications for the study of 
chemical reactions in the condensed phase. Pioneering work using semi- 
empirical QM was done by Warshel 1221, and in the groups of Jorgensen 
[23], Kollman [24], and Karplus 125, 261: A methodological breakthrough 
was the introduction in 1985 of DFT (quantum density functional theory) 
to solve instantaneous forces on the heavy particles in a method that 
is now called ab initio molecular dynamics, by Car and Parrinello [27]. 
This method solves the dynamical evolution of the ground-state electronic 
wave function described as a linear combination of plane waves. Selloni et 
al. [28] solved the dynamical evolution of the ground state wave function 
of a solvated electron on a 3-D grid. These methods are adiabatic in the 
sense that they do not incorporate excitations of the quantum particles. 

(iii) The use of quantum methods to obtain correct statistical static (but 
not dynamic) averages for 'heavy' quantum particles. In this category 
path-integral methods were developed on the basis of Feynman's path 
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integral formulation 1291 mostly by Chandler and Wolynes 130). For a 
lucid description see [31]. 

(iv) The incorporation of quantum-dynamical evolution for selected particles 
or degrees of freedom in a classical environment. With the inclusion of 
non-adiabatic transfers to excited states this is a rather new field, with im- 
portant applications to proton transfer processes in the condensed phase. 
We shall return to these methods in section 3.2. 

The important enquiry into long time scales has also been a subject of 
interest over many years, but the progress has been slow. Computer capabili- 
ties have increased so rapidly that it has often been worthwhile to wait a few 
years to obtain the required increase in speed with standard methods rather 
than invent marginal improvements by faster algorithms or by using reduced 
systems. Many attempts to replace the time-consuming solvent molecules by 
potentials of mean force (see for example [32]) or to construct an appropriate 
outer boundary without severe boundary effects [43, 341 have been made, 
but none of these are fully satisfactory. Really slow events cannot be mod- 
eled by such simplifications: a drastic reduction in the number of degrees of 
freedom is needed. When events are slow because an identifiable barrier must 
be crossed, good results can be obtained by calculating the free energy at 
the barrier in one or a few degrees of freedom. However, when events are 
slow because a very large multidimensional configurational space must be 
explored (as in protein folding or macromolecular aggregation), the appro- 
priate methods are still lacking. We shall return to this important topic in 
Section 3.3. 

2 Where Are We Now? 

With the danger of severe oversimplification, which unavoidably leads to 
improper under evaluation of important recent developments, I shall try to 
indicate where traditional, classical MD has brought us today, or will bring us 
tomorrow. This concerns the techniques rather than the applications, which 
cannot be reviewed in the present context. The main aspects to consider 
concern algorithms and force fields. 

2.1 Algorithms 

As remarked in the introduction, the reversible Verlet algorithm or any 
of its disguised forms as velocity-Verlet or leap-frog, has remained strong 
and sturdy. Non-reversible higher-order algorithms of the predictor-corrector 
type, such as Gear's algorithms, may be useful if very high accuracy is re- 
quired, but offer little advantage in cases where the evaluation of forces is 
accompanied by noisy errors [35]. 

An elegant derivation of the Verlet-type algorithms has been given by 
Tuckerman et al. [36] and is useful in multiple timestep implementations, 
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called RESPA (REference System Propagator Algorithms) [37, 201. Because 
of their elegance I cannot resist to quote the principle of these algorithms. 
They are based on the Trotter-Suzuki expansion of exponential operators [39] 
which is much used in quantum simulations: 

where A and B are non-commuting operators. This expansion is obviously 
time reversible and gives an error of third order in t. If applied to the classical 
Liouville operator acting on phase space, and separating the components act- 
ing on coordinates and on momenta, equations for momenta and coordinate 
updates per time step are obtained. Let us make it simple: In cartesian coor- 
dinates a point in phase space is represented by a vector of positions x and 
velocities v. Evolving the vector (x, v ) ~  over a time(step) t means applying 
both a force propagator 

and a velocity propagator 

Each of these operators is unitary: U(-t) = U-'(t). Updating a time step 
with the propagator Uf($At)U,(At)Uf(+At) yields the velocity-Verlet algo- 
rithm. Concatenating the force operator for successive steps yields the leap- 
frog algorithm: 

x(t + At) = x(t) + v(t 

A double-timestep algorithm with short- 
by applying the propagator [36] : 

and long-range forces is obtained 

where Us and UL are the propagators for the short-range, resp. the long-range 
force, and At = n6t. These algorithms are not only time reversible, but they 
are sympletic and conserve volume in phase space [40]. 

In practice modifications are made to incorporate thermostats or 
barostats that may destroy the time-reversible and symplectic properties. 
While extended-system algorithms such as Nos6 dynamics [41] can be de- 
signed on the principles of the reversible operators, methods that use pro- 
portional velocity or coordinate scaling [42] cannot. Such r rx4h-h arc v e r ~  



MD: The Limits and Beyond 7 

convenient and practical, but - unless the time constant used for coupling 
with an external bath are long with respect to the intrinsic time constant 
for kinetic energy dispersal - they give undefined ensembles with unreliable 
fluctuations and may produce spurious transfer of kinetic energy to uncou- 
pled degrees of freedom, such as the overall translation and rotation of the 
system. Standard programs correct for such effects. 

The incorporation of holonomic constraints for covalent bond lengths (and 
sometimes bond angles) saves roughly a factor of 4 in the allowed time step for 
molecular systems and has been common practice for many years. Conserving 
constraints involves the solution of a set of nonlinear equations, which can 
be solved iteratively, either by solving a matrix equation after linearization, 
or by iteratively solving successive equations for each constraint. The latter 
method is employed in the widely used SHAKE program [8]. Recently a linear 
constraint solver LINCS has been introduced [43] which is much faster and 
more stable than SHAKE and is better suited for implementation in programs 
for parallel computers. It is built in our MD package GROMACS' [44]. 

The question whether constraints for covalent bonds give better physics 
than harmonic oscillators is not really resolved. A mathematical argument 
can be given that specific motions which occur in a frequency range clearly 
separated from all other motions can be considered uncoupled and can then 
be treated as constraints without affecting the overall motion. For molecular 
systems such a separation is valid for bond length constraints, but not gener- 
ally for bond angle constraints; the latter should therefore not be constrained 
in large molecules [3]. One should in principle take care of corrections due to 
the Jacobian of the transformation when using constraints, related to the con- 
figuration dependence of the extent of phase space on a curved constrained 
surface [46, 471, but this effect is negligible if only bond lengths are con- 
strained. A physical argument for using bond constraints is that real covalent 
bonds correspond to quantum-mechanical harmonic oscillators with frequen- 
cies well above kBT/h. They are thus permanently in the stationary ground 
state and do not take up any additional kinetic or potential energy. Treat- 
ing them as classical oscillators would provoke unphysical energy exchange 
and requires the application of quantum corrections to the energy. While this 
is true, the treatment of bonds as constraints denies the generation of low- 
frequency modes from coupled vibrations, and also prevents the oscillators 
to relax under the influence of an external force. The latter effect, if adiabat- 
ically imposed, absorbs an energy of ;F2/k (where F is the external force 
and k is the harmonic force constant) from the environment, both for classi- 
cal and quantum oscillators. For an OH stretch in water, with external forces 
around lo-' N/m [48] this energy is about 0.5 kJ/mol. Finally, both clas- 
sical vibrations and constraints neglect the configuration dependence of the 
zero-point energy of quantum oscillators; this effect amounts in water (with 
it 300 cm-' shift in vibrational frequency) to  1.8 kJ/mol per OH oscillator. 

' See h t t p  : //rugmdO . chem. rug.  n l /  gromacs/ 
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These numbers are not negligible. At present such effects are on the average 
compensated by other force field terms through empirical parametrization. 

We may conclude that the matter of optimal algorithms for integrating 
Newton's equations of motion is now nearly settled; however, their optimal 
and prudent use [28] has not been fully exploited yet by most programs and 
may still give us an improvement by a factor 3 to  5. 

2.2 Force Fields 

While simulations reach into larger time spans, the inaccuracies of force fields 
become more apparent: on the one hand properties based on free energies, 
which were never used for parametrization, are computed more accurately 
and discrepancies show up; on the other hand longer simulations, particularly 
of proteins, show more subtle discrepancies that only appear after nanosec- 
onds. Thus force fields are under constant revision as far as their parameters 
are concerned, and this process will continue. Unfortunately the form of the 
potentials is hardly considered and the refinement leads to an increasing num- 
ber of distinct atom types with a proliferating number of parameters and a 
severe detoriation of transferability. The increased use of quantum mechanics 
to  derive potentials will not really improve this situation: ab initio quantum 
mechanics is not reliable enough on the level of k T ,  and on-the-fly use of 
quantum methods to  derive forces, as in the Car-Parrinello method, is not 
likely to be applicable to  very large systems in the foreseeable future. 

This situation, despite the fact that reliability is increasing, is very unde- 
sirable. A considerable effort will be needed to revise the shape of the poten- 
tial functions such that transferability is greatly enhanced and the number 
of atom types can be reduced. After all, there is only one type of carbon; 
it has mass 12 and charge 6 and that is all that matters. What is obviously 
most needed is to  incorporate essential many-body interactions in a proper 
way. In all present non-polarisable force fields many-body interactions are 
incorporated in an average way into pair-additive terms. In general, errors 
in one term are compensated by parameter adjustments in other terms, and 
the resulting force field is only valid for a limited range of environments. 

A useful force field should be accurate and simple. Therefore it is desirable 
that polarisability be incorporated by changing charges (positions or magni- 
tudes) rather than by incorporating induced dipole moments, which involve 
dipole field gradient tensors to be computed. The best candidate is the shell 
model, which represents electron clouds by charges on a spring; a detailed 
study of nitrogen in all its phases by Jordan [50] could serve as a guide. 
The task of generating a new general force field with proper many-body in- 
teractions comprises a complete overhaul of the present force fields and a 
completely new parametrization involving not only static data but also free 
energy evaluations. This non-rewarding task is not likely to be accomplished 
without an internationally organized concerted effort. 
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2.3 Long-Range Interact ions 

The proper treatment of long-range interactions has not yet been settled in a 
quite satisfactory way. The use of a cut-off range for dispersion interactions 
with r-6 radial dependence does not present a severe problem, although 
continuum corrections for the range beyond the cut-off are often necessary, 
particularly for pressure calculations. But a simple cutoff for Coulombic terms 
can give disastreus effects, specially when ionic species are present or when 
dielectric properties are required. It has been observed (see e.g. [51]) that in 
electrolyte solutions the radial distribution of like ions strongly peaks around 
the cutoff radius, while also the short-range structure is severely distorted. 
In dipolar systems without explicit charges a cut-off is tolerable to compute 
structural and energetic properties, as long as dipoles are not broken in the 
cut-off treatment, but dielectric properties cannot be evaluated with any 
precision [52]. Another effect of (sharp) cut-offs, among other artefacts, is the 
introduction of additional noise into the system. Sufficiently smooth cut-offs, 
on the other hand, severely deviate from the correct Coulomb interaction. 
Several structural and dynamic artefacts have been described, see e.g. [45, 
54, 55, 56, 57, 58, 59, 60, 61, 621. Therefore it is recommended that a t  least 
some method to  incorporate the long-range part of electrostatic interactions 
be included. 

If the simulated system uses periodic boundary conditions, the logical 
long-range interaction includes a lattice sum over all particles with all their 
images. Apart from some obvious and resolvable corrections for self-energy 
and for image interaction between excluded pairs, the question has been 
raised if one really wishes to enhance the effect of the artificial boundary 
conditions by including lattice sums. The effect of the periodic conditions 
should a t  least be evaluated by simulation with different box sizes or by 
continuum corrections, if applicable (see below). 

A survey of available methods has, among others, been given by Smith and 
Van Gunsteren [51]; see also Gilson [63]. Here a short overview of methods, 
with some comment on their quality and properties, will be given. 

Cut-off Methods The use of an abrupt potential cut-oflradius r, for the 
evaluation of the (electrostatic) potential, while feasible for Monte Carlo 
simulations, implies a delta-function in the force a t  r,. If a delta function 
is really implemented, it gives an unphysical force when particle distances 
hit the cutoff radius, and a dynamic behaviour that is very dependent 
on the cut-off range [64]. The use of an abrupt force cut-o$ is compu- 
tationally more acceptable, although it introduces additional noise. For 
systems containing dipolar groups that are represented by charges it is 
mandatory that the cut-off is based on charge groups rather than on in- 
dividual charges [65]. One should realize, however, that a force cut-off 
implies a shift in the potential, since the latter is continuous a t  r, and 
zero beyond r,. Therefore Monte Carlo and MD simulations with cut-offs 
are not expected to give the same equilibrium results. A useful extension 
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is the use of a twin-range cut-08, where the forces from a second shell are 
evaluated every 10 to 20 steps simultaneously with the construction of 
a neighbour list for the first shell. Smooth cut-offs can be accomplished 
by switching functions applied to the potential. They generally cause a 
better behaviour of the integration algorithm, but also disguise the errors 
that are nevertheless made. Ding et al. [66] have shown that traditional 
switching functions cause large errors in structure and fluctuations when 
applied to a dendrimeric polypeptide; they suggest a large smoothing 
range between 0.4289rc and r,. Fun Lau et al. [61] found structural and 
dynamical influences of switching functions on water, and Perera et al. 
[62] found severe influences on the dynamic properties of ions in aque- 
ous solution. All cut-off methods suffer from severe distortions in systems 
containing full charges and deny the evaluation of dielectric properties. 
The latter is due to  the fact that fluctuations of the total dipole moment 
in a sphere are much reduced when the sphere is surrounded by vacuum 

[52l. 
Reaction Field Methods In order to alleviate the quenching of dipole mo- 

ment fluctuations, a reaction field due to a polarizable environment be- 
yond the cut-off can be incorporated in conjunction with cut-off meth- 
ods. The reaction field [52, 5 11 is proportional to the total dipole moment 
within the cut-off sphere and depends on the dielectric constant and 
ionic strength of the environment. On the same level, a reaction poten- 
tial (Born potential) should be applied, proportional to  the total charge 
in the cut-off sphere. This is only applicable for homogeneous fluids, and 
therefore not generally useful. However, in the case the dielectric const ant 
or ionic strength of the environment is taken to be infinite, conducting or 
tin-foil boundary conditions arise with simple expressions for the forces. 
Such reaction fields and potentials are of course in general also incorrect, 
but they produce well-behaved forces and allow better subsequent correc- 
tions based on continuum theory (see next item), especially in systems 
like macromolecules in aqueous solution. The expression for the electric 
field a t  particle ri is 

which amounts to a well-behaved shifted 
electrical interaction energy becomes: 

force. By integration the total 

This is close, but not equal to  the tin-foil Born-corrected energy 
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The discrepancy is not large and the last term is zero for a system with- 
out net charge. Thus we see that the use of a shifted Coulomb force is 
equivalent to  a tin-foil reaction field and almost equivalent to  a tin-foil 
Born condition. 

Continuum Corrections If the geometry of the simulated system is not 
too complex, it is possible to make corrections for the 'incorrect' long- 
range treatment, based on continuum considerations. This has been con- 
vincingly shown by Wood [67] in a paper that has not received the at- 
tention it should. The idea is that 'the computational world' has its own 
physics (like cut-offs and periodic boundary conditions), and that the 
differences with the 'real world' are fairly smooth and therefore can be 
treated by continuum methods. Such corrections were made on earlier 
simulations by Straatsma 1681 on the free energy of ionic hydration, using 
various cut-offs for the ion-water and the water-water interactions. While 
in the original paper the usual Born correction was made, a discrepancy 
remained due to the neglect of water-water interactions between pairs of 
molecules that are both correlated with the ion. Wood showed that all 
results fitted beautifully after correct ion based on the spatial distribution 
of solvent polarization. Such corrections could also be made had a tin-foil 
reaction field been used. 
The same idea was actually exploited by Neumann in several papers on 
dielectric properties [52, 69, 701. Using a tin-foil reaction field the relation 
between the (frequency-dependent) relative dielectric constant ~ ( w )  and 
the autocorrelation function of the total dipole moment M ( t )  becomes 
particularly simple: 

Hierarchical Methods Methods that group more particles together for in- 
creasing distances [32, 72, 731 scale roughly proportional to the number 
of particles N or to N log N, rather than to N~ (as for straightforward 
summation over pairs). For large system sizes such linear hierarchical 
methods should win out over other methods. Hierarchical methods, rou- 
tinely applied in the simulation of star clusters and galaxies, have also 
been adopted for proteins [74] and implemented in simulation programs 
for large molecular clusters [75]. These methods have been extensively 
compared to each other and to  Ewald summation [76], with the result 
that they only surpass Ewald summation for particle numbers in the 
hundred thousands. Since it has been known for a long time that Ewald 
summation is considerably more expensive than a Poisson solver on a 
grid [ll, 771 (see next item), I conclude that there is not much point in 
pursuing these methods for molecular simulation. 

Separation of Short- and Long-Range; Ewald and PPPM Methods 
If we split the total Coulomb interaction in a short- and a long-range 
contribution, chosen to he smooth functions of the distance, the two 
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contributions can be more efficiently handled by different techniques 
[65] .  The short-range contribution is evaluated for each pair on the basis 
of a pair list. The long-range part can be recast in terms of a Poisson 
problem and then solved by an appropriate Poisson solver. The choice 
of Poisson solver depends on whether the system is periodic or not, on 
the preconditioning (i.e., is an approximate solution available from the 
previous step?) and on the wish to implement the algorithm on a parallel 
computer. I t  is possible to update the long-range part less frequently in a 
multiple time-step algorithm. The popular Ewald summation [lo, 78, 791 
and its variants [80], the efficient Ewald-mesh technique [40], and the 
par ticle-particle particle-mesh (PPPM) method [l 11 are all special cases 
of this class of techniques. 
consider2 a short-range interaction defined by the electric field a t  position 
ri: 

The function f (r) is a force-switching function that goes smoothly from 
1 ar r = 0 to  0 a t  r = r,. The long-range part of the field, i.e., what 
remains from the complete Coulomb field: 

can be considered to be generated by a charge density p(r): 

with 

Thus the long-range field (and potential) is generated by a charge density 
which is the convolution of the charges in the system with a radial charge 
spread function g(r)  dictated by the short-range force-switching function 
f (r). The task is to  solve for the long-range potential $'(r) (the negative 
gradient of which is the long-range field) from the Poisson equation 

If a gaussian function is chosen for the charge spread function, and the 
Poisson equation is solved by Fourier transformation (valid for periodic 

The force function f ( r )  differs from that in ref. [65] by a factor r2, yielding simpler 
expressions. Some errors in that reference have been corrected. 
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boundary conditions), the Ewald summation method is recovered. If the 
Fourier solution is obtained on a grid, allowing the use of FFT, the Ewald- 
mesh method is obtained. However, the charge spread function need not 
be gaussian and can be chosen such that the short-range field and its 
derivative go exactly to zero a t  the cut-off radius. The shifted force ob- 
tained with the tin-foil reaction field (see above) corresponds to a charge 
spread function that spreads each charge homogeneously over a sphere 
with radius r,, which is not an optimal choice to  avoid truncation errors. 
Iterative Poisson solvers on a regular grid using Gauss-Seidel iteration 
with successive overrelaxation (SOR) [82] are less efficient than FFT  
methods, but are also applicable to  non-periodic systems and are more 
easily parallellized. In an MD run, the previous step provides a near- 
solution and only a few iterations are needed per step [83]. 

Summarizing, the most efficient way to handle electrostatic interactions cor- 
rectly seems to be the appropriate splitting into smooth short-range and 
long-range parts, and handling the latter by an efficient Poisson solver, using 
the knowledge available from the history of the trajectory, and exploiting the 
fact that the long-range part fluctuates on a longer time scale. 

3 The Limits and Beyond 

3.1 Limits to Traditional MD 

Despite all the shortcomings listed above, full particle classical MD can be 
considered mature [84]. Even when all shortcomings will be overcome, we can 
now clearly delineate the limits for application. These are mainly in the size 
of the system and the length of the possible simulation. With the rapidly 
growing cheap computer memory shear size by itself is hardly a limitation: 
several tens of thousands of particles can be handled routinely (for example, 
we report a simulation of a porin trimer protein embedded in a phospholipid 
membrane in aqueous environment with almost 70,000 particles [85]; see also 
the contribution of K. Schulten in this symposium) and a million particles 
could be handled should that be desired. 

The main limitation is in simulated time, which at  present is in the order 
of nanoseconds for large systems. We may expect computational capabilities 
to increase by a t  least an order of magnitude every five years, but even a t  
that rate it will take 15 years before we reach routinely into the microseconds. 
While adequate for many problems, such time scales are totally inadequate 
for many more other problems, particularly in molecular processes involving 
biological macromolecules. The obvious example of this is protein folding, 
which in favourable cases occurs in the real world on a time scale of seconds, 
to be reached in computero by the year 2040 if force fields are improved ac- 
cordingly. The latter condition will not automatically be fulfilled: an error 
in the total energy difference between native and unfolded state of only 8 
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kJ/mol (on a total energy difference of some 250 kJ/mol, and with system 
energies measured in hundreds of MJ/mol) would shift a predicted 'melting' 
temperature by 10 OC. I t  is instructive t o  realize that the Born correction in 
water for a univalent ion for a cut-off radius of 1 nm amounts to 70 kJ/mol, 
which clearly shows that  force field improvements must be accompanied by 
very careful evaluation of long-range interactions. The incorporation of po- 
larisability is imperative if we realize that the polarization energy of a single 
carbon atom a t  a distance of 0.4 nm from a unit charge amounts t o  about 5 
kJ/mol. 

The nanoseconds limit also indicates a limit in the configurational sam- 
pling that can be achieved by MD. Sufficient sampling of the configurational 
space accessible in an  equilibrium condition is essential for the computation 
of thermodynamic properties that involve entropy, as the latter is a measure 
for the extent of accessible configurational space. Use of other equilibrium 
sampling techniques, like Monte Carlo simulation, does not really improve 
on the statistics. However, substantial improvements are obtained and still 
to  be expected from multiconfigurational sampling, umbrella sampling, and 
other methods that bias sampling to include infrequently visited regions3, 
and from methods that circumvent barriers in configurational space such as 
the modification ('softening') of potential functions and the introduction of 
a fourth spatial dimension [86, 141. 

3.2 Inclusion of Quantum Dynamics 

A limitation of classical force field-based MD is the restriction to covalent 
complexes, with exclusion of chemical reactions. The very important appli- 
cations to reactions in the condensed phase, including enzyme reactions and 
catalysis in general, need extension with dynamic behaviour of non-covalent 
intermediates. The latter must be described by quantum-mechanical meth- 
ods. Usually, except for fast electron transfer reactions, the Born-Oppenhei- 
mer approximation is valid for the electronic motion. Classical dynamics is 
generally sufficiently accurate for atoms heavier than hydrogen, but for pro- 
ton transfer reactions explicit quantum-dynamical treatment of the proton is 
required which fully includes tunneling as well as non-adiabatic involvement 
of excited states. We shall separately consider the two aspects: (i) computing 
the reactive Born-Oppenheimer surface in large condensed systems, and (ii) 
predicting reaction dynamics, including the quantum behaviour of protons. 

As ab initio MD for all valence electrons [27] is not feasible for very large 
systems, QM calculations of an embedded quantum subsystem are required. 
Since reviews of the various approaches that rely on the Born-Oppenheimer 
approximation and that are now in use or in development, are available (see 
Field [87], Merz [88], Aqvist and Warshel [89], and Bakowies and Thiel [go] 
and references therein), only some summarizing opinions will be given here. 

see for example the contribution by Grubmiiller in this symposium. 
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The first point to  remark is that methods that are to be incorporated in 
MD, and thus require frequent updates, must be both accurate and efficient. 
I t  is likely that only semi-empirical and density functional (DFT) methods 
are suitable for embedding. Semi-empirical methods include MO (molecular 
orbital) [go] and valence-bond methods [89], both being dependent on suit- 
able parametrizations that can be validated by high-level ab initio QM. The 
quality of DFT has improved recently by refinements of the exchange den- 
sity functional to such an extent that its accuracy rivals that of the best ab 
initio calculations [91]. DFT is quite suitable for embedding into a classical 
environment [92]. Therefore DFT is expected to have the best potential for 
future incorporation in embedded QM/MD. 

The second aspect, predicting reaction dynamics, including the quantum 
behaviour of protons, still has some way to  go! There are really two sepa- 
rate problems: the simulation of a slow activated event, and the quantum- 
tlynamical aspects of a reactive transition. Only fast reactions, occurring on 
the pico- to  nanosecond time scale, can be probed by direct simulation; an in- 
teresting example is the simulation by ab initio MD of metallocene-catalysed 
cthylene polymerisation by Meier et al. [93]. 

Most reactions are too slow on a time scale of direct simulation, and the 
evaluation of reaction rates then requires the identification of a transition 
state (saddle point) in a reduced space of a few degrees of freedom (reaction 
coordinates), together with the assumption of equilibration among all other 
degrees of freedom. What is needed is the evaluation of the potential of mean 
force in this reduced space, using any of the available techniques to com- 
pute free energies. This defines the probability that the system resides in the 
transition-state region. Then the reactive flux in the direction of the unstable 
mode a t  the saddle point must be calculated. If friction for the motion over 
t'he barrier is neglected, a rate according to Eyrings transition-state theory is 
obtained. In general, the rate is smaller due to  unsuccessful barrier crossing, 
as was first described by Kramers [94]. The classical transition rate can be 
properly treated by the reactive flux method [95], see also the extensive re- 
view by Hanggi [96]. The reactive flux can be obtained from MD simulations 
tlhat start from the saddle point. An illustrative and careful application of the 
computational approach to classical barrier crossing, including a discussion of 
the effects due to the Jacobian of the transformation to reaction coordinates, 
has recently been described by den Otter and Briels [47]. 

While the classical approach to simulation of slow activated events, as 
described above, has received extensive attention in the literature and the 
methods are in general well established, the methods for quantum-dynamical 
simulation of reactive processes in complex systems in the condensed phase 
are still under development. We briefly consider electron and proton quantum 
tlynamics. 

The proper quantumdynamical treatment of fast electronic transfer re- 
i~ctions and reactions involving electronically excited states is very complex, 
not only because the Born-Oppenheimer approximation brakes down but 
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also because a reliable description of potential surfaces for excited states 
in complex molecules is very difficult, even within the Born-0 ppenheimer 
approximation. With electron transfer processes in proteins one resorts to 
simplified descriptions, e.g. for electron transfer paths [97, 981 or for the 
protein environment [99]. In some cases, such as solvated electrons, the time- 
dependent electron wave function can be computed in a mixed QM/MD sim- 
ulation, given a suitably parametrized interaction function between electron 
and solvent atoms [28, 1001. The electron wave function is then usually defined 
on a grid, and its time evolution solved by a split-operator technique using 
fast Fourier transforms. In these adiabatic simulations the electron remains 
in its Born-Oppenheimer ground state, although it is possible to compute 
excited states (and thus spectra) as well. Non-adiabatic transitions between 
different states, driven by solvent fluctuations, are generally not important 
for such systems in equilibrium a t  normal temperatures. 

For the case of intramolecular energy transfer from excited vibrational 
states, a mixed quantum-classical treatment was given by Gerber et al. al- 
ready in 1982 [loll .  These authors used a time-dependent self-consistent field 
(TDSCF) approximation. In the classical limit of TDSCF averages over wave 
functions are replaced by averages over bundles of trajectories, each obtained 
by SCF methods. 

Proton transfer over hydrogen bonds, which is a rate-determining step 
in many enzyme reactions, is a case where both the quantum character of 
the particle (implying proton tunneling) and the non-adiabatic transitions 
between pure states are important [102]. A quantum-dynamical treatment of 
the proton(s) requires embedding of one or more quantum degrees of freedom 
(d.0.f.) in a classical dynamic environment (yielding QD/MD) and there are 
two main points of discussion concerning the embedding procedure. 

One of the discussion points is how the quantum system reacts back on the 
classical d.o.f., i.e., how the forces on the classical system should be derived 
from the quantum system. One can use the gradient of the efSective energy, 
i.e., of the expectation value of the total energy 

where R, are the coordinates of the i-th classical particle and b is the wave 
function which is parametrically dependent on R. These forces are considered 
to be the 'exact' forces [lO3]. Alternatively, the Hellmann-Feynman force, i.e., 
the expectation value of the gradient of the energy 

can be used. These expressions are only equivalent if Qi is a pure eigenstate. 
In other cases, extended Hellmann-Feynman forces [I041 have been derived 
from the R-dependence of O. However, if b represents a m i x d  q?~mrrtrrrrr. s tate 
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as correct solution to  the time-dependent Schrodinger equation (see below), 
the correct force is [105, 1061 

and not the gradient of the effective potential. This is imperative to produce 
conservation of momentum over the whole system as can be seen immediately 
from the Ehrenfest relation [107], which states that the rate of change of the 
expectation value of the momentum of a quantum particle is 

where r is the quantum coordinate. Since for a potential energy term between 
two particles of the form V(lr - RI) the gradients with respect to  r and R 
are equal and opposite, the total momentum change will be zero. A proof 
that both energy and momentum are conserved has been given in (1061. The 
correctness of this force has also been shown by Bornemann et al. [I081 who 
derived the equations of motion when one particle of two interacting quantum 
particles is systematically taken to the classical limit. 

The reason that non-adiabatic transitions must be included for protons is 
t,liat fluctuations in the potential for the quantum degrees of freedom due to 
the environment (e.g. solvent) contain frequencies comparable to the transi- 
tion frequencies between protonic quantum states. In such cases pure quan- 
tum states do not persist. 

The second discussion point is how the actual quantum system is to 
be described: should one follow the time evolution of the time-dependent 
Schrodinger equation (TDSE) that allows mixed states to  evolve, or should 
one insist on selecting a pure state, taking care of (sudden) transitions be- 
tween states by some additional action in order to  satisfy the time evolution of 
probabilities of states as dictated by the TDSE? The former approach was fol- 
lowed, among others, by Bala et al. in wave packet dynamics applied to proton 
t.ra,nsfer in phospholipase A2 [log, 1101 and by us in the Density Matrix Evolu- 
t,ion (DME) method which describes the mixed time-dependent wave function 
on a simple, appropriately chosen, basis set. [105, 111, 112, 113, 114, 106, 1151. 
DME is obviously not capable of giving a correct response of the classical en- 
vironment to  quantum transitions, but is perfectly able to describe initial 
mtc processes or quantum systems that only weakly influence their environ- 
mcnt. In fact, DME is the common method used in the evolution of nuclear 
spin magnetization (1161. The latter approach has led to the surface hop- 
p i y q  method pioneered by Pechukas [117], with a modern formulation by 
nllly [118]. The basic idea is that the dynamics of a pure quantum state is 
hllowed, simultaneous with the classical dynamics of the environment. At ev- 
clry step the probability of a transition to another quantum state is calculated 
arid such transitions are realized on a stochastic basis. When a transition is 
r r m l ( ? ,  velocities are scalcd to conserve total energy. The method has been 
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applied to single and multiple proton transfer reactions by Hammes-Schiffer 
and collaborators [119, 120, 121, 122, 1031. 

It seems that surface hopping (also called Molecular Dynamics with 
Quantum Transitions, MDQT) is a rather heavy tool to  simulate proton 
dynamics. A recent and promising development is path integral centroid 
dynamics [123] that provides approximate dynamics of the centroid of the 
wavefunctions. Several improvements and applications have been published 
[123, 124, 125, 126, 127, 1281. 

We have applied the DME method to several proton transfer processes 
in aqueous solution (hydrogen malonate [I1 1, 1141, HIV protease [129, 1301, 
and a slow neutral ester hydrolysis [131]. The latter case is a slow reaction 
with a rate constant of about once per minute, where the rate-limiting step 
is the transfer of a proton from a water molecule (which is in close proximity 
to the ester carbon, see Fig. l a )  to  another water molecule, concerted with 
electron redistribution that leads to the tetrahedral intermediate (Fig. lb) .  
We used a combination of semi-empirical QM (to obtain the energy of the 
reactant state as a function of the distance between ester carbon and water 
oxygen and to obtain partial charges to be used in MD for intermediate 
states), thermodynamic integration (to obtain the free energy difference in 
solution between the equilibrium reactant state and the activated state from 
which proton transfer is probable), and DME (to obtain the initial rate of 
proton transfer). For the latter the proton potential along the transfer path 
was calculated during a biased MD simulation. 

This proton potential, which is rapidly and heavily fluctuating (Fig. 2), 
drives the evolution of the proton wave function. The rate of transfer was 
then deduced from the coarse-grained average increase of proton population 
a t  the reactant side. Only the initial rate can be determined this way; this has 
the advantage that the protonic motion does not yet 'backreact' on the envi- 
ronment, but it has the disadvantage that no information is obtained about 
recrossing events. A good agreement with experimental rates was found, and 
a deuterium isotope effect of 3.9 was simulated, compared to the experimental 
value of 3.2. The picture is that proton transfer is driven by fluctuations due 
to solvent motion which transiently provide good tunneling conditions; the 
probability of transfer is however almost always negligibly low except when 
the carbon-water distance happens to be favourable for the reaction. The free 
energy of activation to reach this favourable state is one of the main reasons 
why the reaction is so slow. While the method is still crude, it can provide 
us with good estimates for reactions rates, including enzyme catalysis, when 
proton transfer is the rate-limiting step. 

3.3 Reduction of Complexity: Averaging over Degrees of 
Freedom 

Substantial headway towards longer time scales and larger systems can only 
be expected from reduction of system complexity. It is here wl1~r.c hitlire 
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(a) Reactant state 

(b) Product state 

Fig. 1. The rate-determining step in the neutral hydrolysis of paramethoxy-phenyl 
dichloroacetate. In the reactant state (a) a water molecule is in proximity of the 
carbonyl carbon; after concerted proton transfer to a second water molecule and 
rlcctron redistribution, a tetrahedral intermediate (b) is formed. 
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Fig. 2. The fluctuating difference between the proton potential a t  the product side 
relative to that a t  the reactant side (the difference between the two wells in a 
double-well proton potential). Whenever this difference is close to zero, tunneling 
conditions are favourable. 

innovations are expected to  be most fruitful. All such reductions concern 
in one way or another the omission of the explicit description of a (large) 
fraction of the degrees of freedom in the system. 

The first requirement is the definition of a low-dimensional space of 're- 
action coordinates' that still captures the essential dynamics of the processes 
we consider. Motions in the perpendicular 'null space' should have irrele- 
vant detail and equilibrate fast, preferably on a time scale that is separated 
from the time scale of the 'essential' motions. Motions in the two spaces are 
separated much like is done in the Born-Oppenheimer approximation. The 
average influence of the fast motions on the 'essential' degrees of freedom 
must be taken into account: this concerns (2) correlations with positions ex- 
pressed in a potential of mean force, (ii) correlations with velocities expressed 
in frictional terms, and (iii) an uncorrelated remainder that can be modeled 
by stochastic terms. Of course, this scheme is the general idea behind the 
well-known Langevin and Brownian dynamics. 

In special cases (as in colloidal solutions) some particles can be consid- 
ered as 'essential' and other particles as 'irrelevant', but in most cases the 
essential space will itself consist of collective degrees of freedom. A reaction 
coordinate for a chemical reaction is an example where not a particle, but 
some function of the distance between atoms is considered. In a simulation 
of the permeability of a lipid bilayer membrane for water 11321 the 'reaction 
coordinate' was taken as the distance, in the direction perpendicular to  the 
bilayer, between the center of mass of a water molecule and the center of 
mass of the rest of the system. In proteins (see below) a few collective de- 
grees of freedom involving all atoms of the molecule, describe almost all the 
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macromolecular motion. One can also consider local densities of molecular 
species or molecular groups as essential degrees of freedom; in that case local 
flux densities are considered that respond to gradients of the thermodynamic 
potential (see below). 

Fig. 3. The potential of mean force for a water molecule (open symbols) and an NH3 
molecule (filled symbols) penetrating into a lipid bilayer membrane. The aqueous 
phases are on both sides (regions l), the headgroups are predominantly in regions 
2, regions 3 contain the most ordered part of the hydrocarbon phase, and region 
4 represents the middle of the hydrocarbon phase containing the end groups. The 
large circles with error bars were determined by integrating average constraint 
forces; the smaller points in regions 1 and 2 were determined directly from the 
observed water density and the smaller points in the middle were obtained by 
particle insertion (Marrink et al., J. Phys. Chem. 98 (1994) 4155 and ibid. 100 
(1996) 16729). 

Potentials of Mean Force In principle the potential of mean force in which 
the 'essential' coordinates move can be determined from detailed simulations 
including all degrees of freedom, in which the essential degrees of freedom 
are either treated as constraints or are restrained with an umbrella potential. 
In simple, low-dimensional cases this actually works: for example, in the 
sirnulation of the transport of water and other small molecules through a 
lipid bilayer [132, 1331 the potential of mean force for a small molecule as 
fimction of the depth z in the membrane could be derived from integration 
of the mean force acting on a molecule constrained at a given z ,  using several 
constrained MD runs (see Fig. 3). The results could be checked in this case 
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by particle insertion in the middle of the bilayer. From analysis of the force 
fluctuations in the same simulations it was possible to derive the diffusion 
coefficient in the x-direction as a function of x, thus yielding a complete one- 
dimensional picture of the transfer path and allowing the computation of 
the permeation coefficient. A similar procedure was applied to a single file of 
hydrogen-bonded water molecules [134]. 

However, in many applications the essential space cannot be reduced to 
only one degree of freedom, and the statistics of the force fluctuation or of 
the spatial distribution may appear to be too poor to allow for an accurate 
determination of a multidimensional potential of mean force. An example 
is the potential of mean force between two ions in aqueous solution: the 
momentaneous forces are two orders of magnitude larger than their average 
which means that an error of 1% in the average requires a simulation length 
of lo8 times the correlation time of the fluctuating force. This is in practice 
prohibitive. The errors do not result from incorrect force fields, but they are 
of a statistical nature; even an exact force field would not suffice. 

Thus one must rely on macroscopic theories and empirical adjustments 
for the determination of potentials of mean force. Such empirical adjustments 
use free energy data as solubilities, partition coefficients, virial coefficients, 
phase diagrams, etc., while the frictional terms are derived from diffusion 
coefficients and macroscopic theories for hydrodynamic interactions. In this 
whole field of enquiry progress is slow and much work (and thought!) will be 
needed in the future. 

Essential Dynamics and Rigid Bodies in Proteins Proteins happen to 
be a very special kind of polymer, constructed such that they fold into specific 
structures, necessary for specific functions. But they are also flexible in a 
functional way, because functions as substrate binding, catalysis, allosteric 
effects and regulation require specific dynamical properties. It is therefore 
not too surprising that proteins are found to exhibit a collective motions 
with large amplitude in a low-dimensional subspace, described by 10 to 20 
collective degrees of freedom, while the other 10,000 degrees of freedom seem 
to perform insignificant, low-amplitude and gaussian-distributed fluctuations 
[135, 1371. 

The 'essential degrees of freedom' are found by a principal component 
analysis of the position correlation matrix Cu of the cartesian coordinate 
displacements xi with respect to their averages (xi), as gathered during a 
long MD run: 

cij = ((xi - (xi))(xj - (xj)))- 

Each eigenvalue of this matrix indicates the contribution to the total 
fluctuation of the collective degree of freedom given by the corresponding 
eigenvector. If eigenvectors are ordered in descending order, it is genera.lly 
observed [135, 136, 1381 that the first 20 eigenvalues contrihte some 80% of 
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eigenvector index 

m 
(a) Eigenvector magnitudes in descending order (left scale) and cumulative 

contribution to total fluctuation (right scale) 

eigenvalue 20 (nm) 

m 
(h) Fluctuation in the plane of the 2oth and soth eigenvector, showing virtually 

complete sampling of independent gaussian distributions. 

Fig. 4. (a) Eigenvalues and distributions for the a-carbon atoms in the 56-residue 
B 1-(lomain of streptococcal protein G, from a 1 ns MD simulation in water (courtesy 
o f  Bcrt de Groot, Groningen). 
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the total fluctuation. After the, say, loth eigenvector the distribution of the 
fluctuation is rather gaussian and uninteresting; such motions could be con- 
sidered as 'near-constraints' and good candidates for reduction of complexity 
(see fig. 4). 

With the very nonlinear force field expressed in all coordinates, it seems 
intractable to reformulate the potential energy surface as a function of the 
essential degrees of freedom, while treating the other d.0.f. as full constraints. 
What is possible is to drive the dynamics in a space of a few (2 or 3) degrees 
of freedom [139, 1401 so as to expand the sampled volume. This is done by 
preventing a MD step to decrease the distance in that space with respect to 
a given reference point. In this way the borders of the accessible region are 
probed and a much more effective sampling is obtained than with normal 
MD; in the case of a cyclic polypeptide in solution the full conformational 
space could be sampled with this method [140]. The method is useful to 
characterize different type of motions, e.g. to distinguish between functional 
motions and motions that relate to instability and early unfolding processes 
[l4l].  

If proteins are so full of internal 'near-constraints', we may take the anal- 
ysis even a step further and investigate whether the protein is built from 
building blocks that can be approximated as rigid bodies. If there are n rigid 
building blocks, there are at most 6(n- I )  internal degrees of freedom, most of 
which are likely to be additionally constrained. Recently Hayward [142, 1431 
has devised an automatic procedure that detects rigid bodies and character- 
izes the mutual motion of each pair, given at least two different conformations 
of the protein. These conformations can either be obtained from X-ray data, 
or from an essential dynamics analysis of a MD simulation. 

The analysis (in the case of two structures) starts by a translational- 
rotational fit of the two structures and constructing the displacement vectors 
of all backbone atoms. Considering these as samples of a vector field, the 
curl of that vector field is computed, as sampled by each aminoacid. Thus a 
collection of rotation vectors is obtained. If a rigid body exists, the rotation 
vectors of all aminoacids in that body are equal, and different from rotation 
vectors in other rigid bodies. A standard cluster analysis on the rotation 
vectors, using the ratio of external to internal motion as a discrimination 
criterion, is then carried out. This yields a subdivision of the protein in semi- 
rigid bodies (if they exist) and identifies the links between them. The type 
of motion of one rigid body with respect to another is then analysed in 
terms of a unique axis, and such (hinge bending) motions can be objectively 
characterized as closing or twisting motions (Fig. 5 ) .  

Interestingly, there are many proteins with two domains that show a very 
clear hinge-bending motion with an obvious functional significance. Such do- 
mains have often been reported in the literature, but were never detected on 
an automated basis. 
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Fig. 5. Rigid-body analysis of citrate synthase, using two X-ray structures (after 
IIayward and Berendsen, Proteins 30 (1998) 144). The decomposition of the protein 
into two domains (dark gray and white) and two interconnecting regions (light gray) 
is shown, together with the hinge axis for the closing/opening motion between them. 

Mesoscopic Dynamics After suitable collective degrees of freedom have 
I ) c m  defined, their equations of motion can be systematically derived by 
;LV~-aging over equilibrium dynamics of the other degrees of freedom. There 
is a hierarchy of methods of the generalised Langevin dynamics type, with 
details that depend on the kind of averaging. Coarse-graining in time leads 
first to neglect of the time-dependent details of the stochastic contribution 
m d  then to the neglegt of inertial terms, resulting in Brownian dynamics. 
Mothods of this type are still under development. 

When a system contains gradients that are small over atomic distances, a 
big leap in time and space can be taken by describing the collective behaviour 
of fipecies s (as a molecule or a collection of atoms in a molecule) that interact 
wkl l  neighbours through a simple hamiltonian (e.g. representing a gaussian 
chain) and feel the environment through a mean field defined by the local 
chornical potential ~ , ~ ( r ) .  The variables are the space- and time-dependent 
densities of the spccics p,. What in fact is done, is averaging locally over 
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nearby space and temporally over short times. The resulting method rests on 
the classical density functional formalism of Ginzburg and Landau [144]; its 
dynamical form [145, 1491 is called mesoscopic dynamics. 

Fig. 6. Snapshot from a dynamic density functional simulation of the self- 
organisation of the block copolymer PL64 (containing 30 propylene oxide and 26 
ethylene oxide units: (EO) l3 (PO)30 (EO) 13) in 70% aqueous solution. The simula- 
tion was carried out during 6250 time steps on a 64 x 64 x 64 grid (courtesy of 
B.A.C. van Vlimmeren and J.G.E.M. Fraaije, Groningen). 

If there are no reactions, the conservation of the total quantity of each 
species dictates that the time dependence of ps is given by minus the diver- 
gence of the flux ps (us), where (us) is the drift velocity of the species s. The 
latter is proportional to the average force acting locally on species s, which 
is the thermodynamic force, equal to minus the gradient of the thermody- 
namic potential. In the local coupling approximation the mobility appears as 
a proportionality constant M. For spontaneous processes near equilibrium it 
is important that a noise term q(t) is retained [146]. Thus dynamic equations 
of the form 

are obtained (see [145, 147, 1491 for details). The chemical potentials are 
derived from the functional derivative of the total free energy F ,  which itself 
is a functional of the density distribution: 
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The method has severe limitations for systems where gradients on near- 
atomic scale are important (as in the protein folding process or in bilayer 
membranes that contain only two molecules in a separated phase), but is 
extremely powerful for (co)polymer mixtures and solutions [147, 148, 1491. 
As an example Fig. 6 gives a snapshot in the process of self-organisation of a 
polypropylene oxide-ethylene oxide copolymer PL64 in aqueous solution on 
it,s way from a completely homogeneous initial distribution to a hexagonal 
structure. 

4 Conclusions 

In this contribution I have tried to give a, necessarily subjective, review of 
the history, state-of-the-art, and future development of molecular dynamics 
simulations. The method is mature, but has not yet realized the full potential 
of' the best algorithms, long-range interactions, and transferable, polarisable 
force fields. The near future will undoubtedly see the proper and efficient 
incorporation of quantum methods where needed, and an explosion in the 
simulation of reactive events, including enzyme reactions, is expected. 

For the simulation of long-time and large-scale events a systematic hier- 
archy of models is in principle available, ranging from atomic detail to fluid 
dynamics, but there are many gaps to be filled and some of this territory is 
still unknown. On a mesoscopic scale promising methods have been devel- 
oped, and I am optimistic that the gap between the atomic and mesoscopic 
scale will be filled in. But my optimism ends with the question whether one 
will ever be able to fold a protein reliably by ab initio simulation, starting 
from an aminoacid sequence alone and using only physical principles without 
resorting to database knowledge. For the most difficult questions one must be 
practical and exploit all available information, whether derived from theory 
or from experimental data in the broadest sense. 
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Abstract. Steered molecular dynamics (SMD) induces unbinding of ligands and 
conformational changes in biomolecules on time scales accessible to molecular dy- 
namics simulations. Time-dependent external forces are applied to a system, and 
the responses of the system are analyzed. SMD has already provided important 
qualitative insights into biologically relevant problems, as demonstrated here for 
applications ranging from identification of ligand binding pathways to explanation 
of elastic properties of proteins. First attempts to deduce potentials of mean force 
t)y discounting irreversible work performed on the system are summarized. The 
11011-equilibrium statistical mechanics underlying analysis of SMD data is outlined. 

1 Introduction 

Molecular recognition and specific ligand-receptor interactions are central to  
many biochemical processes. The regulation of cellular signal-transduction 
pathways and gene expression, activity of enzymes, cell motility, molecular 
irnmunology and the action of hormones involve the triggering of functional 
responses by noncovalent associations of ligands with receptors. The predic- 
tion and design of ligands (inhibitors or substrates) for a given receptor is 
the main goal in rational drug design, and considerable effort is spent on the 
development of corresponding computational methods (Cohen et al., 1990; 
Colman, 1994; Marrone et al., 1997). New pharmaceuticals, e.g., the HIV pro- 
tease inhibitors (Thaisrivongs et al., 1996; Lebon et al., 1996; Hanessian and 
Devasthale, 1996), derived in part from such methods, have made a major 
irnpact on clinical medicine, and computational modeling will be of increasing 
importance in the future. 

Despite an  abundance of modeling methods for ligand-receptor interac- 
tions and protein-protein docking (Strynadka et  al., 1996) little is known 
about processes governed by adhesive interactions such as those occuring in 
the binding and unbinding of ligands. Presently, the prevailing point of view 
concerning computer simulations describing ligand binding and determining 
1)inding affinities is to  strive for the ideal of reversibility, as in umbrella sam- 
pling and free energy perturbation (McCammon and Harvey, 1987; Ajay and 
Murcko, 1995; Gilson et al., 1997), with the hope that artifacts induced by the 
fiuite rate of conformational changes can be neglected. Reaching this ideal, 
however, requires extremely slow manipulation and, therefore, prohibitively 
expensive simulations. This chapter advocates a new computational met hod, 
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steered molecular dynamics (SMD), which accepts irreversibility, ceding for 
the present time accurate evaluation of binding affinities and potentials of 
mean force, but gaining access to  biologically relevant information related to 
non-covalent bonding. We will demonstrate the wealth of such information 
using a broad range of examples. The concern that thermodynamic potentials 
cannot, even in principle, be obtained from irreversible processes has been 
proven unfounded by the remarkable identity derived by Jarzynski (1997a,b), 
(exp[ - W/lcBT 1) = exp[ - AF/kBT ] . This identity connects the ensemble 
average of an exponential of the total work W performed on the system dur- 
ing a non-equilibrium transition from one state to another to the free energy 
difference AF between the two states. 

Experimental techniques based on the application of mechanical forces to 
single molecules in small assemblies have been applied t o  study the binding 
properties of biomolecules and their response to external mechanical ma- 
nipulations. Among such techniques are atomic force microscopy (AFM), 
optical tweezers, biomembrane force probe, and surface force apparatus ex- 
periments (Binning et al., 1986; Block and Svoboda, 1994; Evans et al., 1995; 
Israelachvili, 1992). These techniques have inspired us and others (see also 
the chapters by Eichinger et al. and by Hermans et al. in this volume) to 
adopt a similar approach for the study of biomolecules by means of computer 
simulations. 

Fig. 1. 
Extraction of a ligand from the binding pocket of a protein. The force (represented 
by an arrow) applied to the ligand (shown in van der Waals spheres) leads to its 
dissociation from the binding pocket of the protein (a slice of the protein represented 
as a molecular surface is shown). 
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In SMD simulations time-dependent external forces are applied, for ex- 
ample, to a ligand to facilitate its unbinding from a protein, as shown in 
Fig. 1. The analysis of the interactions of the dissociating ligand with the 
binding pocket, as well as the recording (as a function of time) of applied 
forces and ligand position, yields important structural information about the 
structure-function relationships of the ligand-receptor complex, binding path- 
ways, and mechanisms underlying the selectivity of enzymes. SMD can also 
be applied to investigate the molecular mechanisms that determine elastic 
properties exhibited by proteins subjected to deformations in AFM and opti- 
cal tweezer experiments, such as stretching of titin leading to unfolding of its 
immunoglobulin domains (Rief et al., 1997), or stretching of tenascin which 
results in unfolding of its fibronectin-I11 domains (Oberhauser et al., 1998). 

Besides yielding qualitative information, these biologically and pharma- 
ceutically motivated applications of SMD can also yield quantitative infor- 
mation about the binding potential of the ligand-receptor complex. A first 
advance in the reconstruct ion of the thermodynamic potential from SMD 
data by discounting irreversible work was made by Balsera et al. (1997) as 
outlined in Sect. LLReconstruction of the potential of mean force" below. 

In the following we describe the methodology of SMD, illustrate applica- 
tions of SMD through key examples, present the non-equilibrium statistical 
mechanical theory of SMD, and describe a method of reconstruction of a 
potential of mean force from SMD data. The applications include studies of 
the dissociation of biotin from avidin and streptavidin (Izrailev et al., 1997; 
Grubmuller et al., 1996) (see also the chapter by Eichinger et al. in .this 
volume), the unbinding of retinal from bacteriorhodopsin (Isralewitz et al., 
1 997), the release of phosphate from actin (Wriggers and Schulten, 1998), the 
possible binding pathways of thyroid hormone to its receptor, the extraction 
of lipids from membranes (Stepaniants et al., 1997; Marrink et al., 1998), the 
unbinding of arachidonic acid from the prostaglandin H2 synthase-1, and the 
force-induced unfolding of tit in immunoglobulin domains (Lu et al., l998). 
Tn the chapter by Hermans et al. in this volume another application of SMD, 
the extraction of bound xenon from mutant T4-lysozyme, is discussed. 

2 Methods 

One way to apply external forces to a protein-ligand complex is to restrain the 
ligand to a point in space (restraint point) by an external, e.g., harmonic, po- 
tential. The restraint point is then shifted in a chosen direction (Grubmuller 
et al., 1996; Isralewitz et al., 1997; Stepaniants et al., 1997; Marrink et al., 
1998; Lu et al., 1998), forcing the ligand to move from its initial position in 
the protein and allowing the ligand to explore new contacts along its unbind- 
irlg path. Assuming a single reaction coordinate x, and an external potential 
U = K(x - X O ) ~  /2, where K is the stiffness of the restraint, and xo is the 
initial position of the rwtraint point moving with a constant velocity v,  the 
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external force exerted on the system can be expressed as 

This force corresponds to the ligand being pulled by a harmonic spring of 
stiffness K with its end moving with velocity v. Alternatively, a fixed restraint 
point a t  a distance much larger than the length of the unbinding pathway 
may be chosen. In this case, the end of the spring does not move and its 
stiffness is linearly increased with time (Izrailev et al., 1997), i.e., K = cut, 
and the force is 

Other external forces or potentials can also be used, e.g., constant forces, 
or torques applied to  parts of a protein to induce rotational motion of its 
domains (Wriggers and Schulten, l997a). 

SMD simulations require selection of a path, i.e., a series of directions 
of the applied force. In some cases a straight line path is sufficient, e.g., for 
avidin-biotin (Fig. 2), actin (Fig. 4), lipids in membranes (Fig. 6), or the un- 
folding of titin immunoglobulin domains (Fig. 8). Other biomolecular systems 
involve a ligand positioned a t  the bottom of a convoluted binding cleft, e.g., 
bacteriorhodopsin (Fig. 3), prostaglandin Hz synthase (Fig. 7), and nuclear 
hormone receptors (Fig. 5). In the latter cases the forced unbinding of the 
ligand requires the direction of the force to be changed during the simulation 
to avoid distortion of the surrounding protein. The direction of the force can 
be chosen randomly (Liidemann et al., 1997) or by guessing a direction on the 
basis of structural information. A force is then applied to the ligand in the 
chosen direction, and this direction is accepted or rejected based on factors 
such as conservation of secondary structure of the protein, deformation of the 
protein, the magnitude of the force applied, the average velocity of the ligand 
along the unbinding pathway, etc. (Isralewitz et al., 1997; Liidemann et al., 
1997). One possible protocol for selecting force directions in SMD defines a 
conical region of space around a preferred direction and selects new directions 
randomly within this region. A small cone angle strongly biases the chosen 
directions to  the initial guess, whereas a large cone angle leads to exploration 
of more directions. 

An initial and desired final configuration of a system can be used by 
the targeted molecular dynamics (TMD) method (Schlitter et al., 1993) to 
establish a suitable pathway between the given configurations. The resulting 
pathway. can then be employed during further SMD simulations for choosing 
the direction of the applied force. TMD imposes time-dependent holonomic 
constraints which drive the system from one known state to another. This 
method is also discussed in the chapter by Helms and McCammon in this 
volume. 

Other methods for identifying multi-dimensional reaction paths arc bnscd 
on stochastic dynamics. For example, a reaction path can he folmd opti- 
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mization of the Onsager-Machlup action between the two end points of a tra- 
.jectory (Olender and Elber, 1996) (see the chapter by Elber et al. in this vol- 
ume). Alternatively, using the conformational flooding method (Grubmiiller, 
1995), one may sample the distribution of ligand conformations through prin- 
ciple component analysis and use forces derived from this analysis to  drive 
the ligand away from the current distribution, as discussed in the chapter by 
Eichinger et al. in this volume. 

3 Applications of SMD 

The ultimate criterion for the value of a method such as SMD is how much 
can be learned from using it. In this section we provide examples of SMD 
applications yielding important insights into biological processes. First, we 
review the study of the biotin-avidin complex which served as a test bed 
for the method, then discuss three examples in which SMD identified binding 
pathways of ligands. Next, we demonstrate how SMD elucidated two key steps 
in fatty acid metabolism, namely, the extraction of lipids from membranes 
by phospholipase A2 and the binding of arachidonic acid by prostaglandin 
H2 synthase. Finally, we show how SMD revealed the mechanism behind the 
stretching of titin immunoglobulin domains. 

3.1 Avidin-Biotin Complex as a Test Bed for SMD 

The avidin- biotin complex, known for its extremely high affinity (Green, 
1975), has been studied experimentally more extensively than most other 
protein-ligand systems. The adhesion forces between avidin and biotin have 
been measured directly by AFM experiments (Florin et al., 1994; Moy et al., 
199413; Moy et al., 1994a). SMD simulations were performed on the entire 
t,etramer of avidin with four biotins bound to investigate the microscopic 
detail of unbinding of biotin from avidin (Izrailev et al., 1997). 

In the simulations the rupture of biotin from avidin was induced by means 
of a soft harmonic restraint, as described by Eq. (2) with K = cut ranging 
from 0 to 120 p ~ / A .  The spatial range of thermal fluctuations of biotin 
associated with the restraint was bz -- 3 A, i.e., on the order of the size of 
the binding pocket (about 10 A). The fluctuations of the applied force, on the 
other hand, were small compared to  its absolute value, and the force profiles 
exhibited nearly linear growth with time, similar to  that reported in AFM 
experiments (see Fig. 2). The values of the rupture forces, i.e., the maximum 
masured force (450-800 pN), exceeded those measured in AFM experiments 
(160 pN). These SMD simulations did not exhibit any particular scaling of the 
rupture force with the pulling rate, which covered a span of almost two orders 
of magnitude. In SMD simulations of a similar st  reptavidin- biotin complex 
reported by Grubmiiller et nl. (1996) (see the chapter by Eichinger et al. in 
this vohme), the ~ ~ h e n l c  of Eq. (1) with a stiff spring (K = 280 p ~ / A )  was 
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Fig. 2. 
(a) Hydrophobic residues in the binding pocket of the avidin-biotin tetrameric com- 
plex (only one monomer shown): Phe79, Trp70, and Trp97, as well as TrpllO from 
the adjacent monomer, surround biotin tightly on all sides making the binding 
pocket impenetrable to water. (b) Biotin displacement and applied forces during 
the dissociation of the avidin- biotin complex with water molecules placed with the 
program DOWSER, and without water in the vicinity of the binding pocket. 

employed, and the rupture force was found t o  scale linearly with the velocity 
v (cf. Sect. "Stochastic Modeling of SMD" ). 

The simulations also revealed that  flapping motions of one of the loops of 
the avidin monomer play a crucial role in the mechanism of the unbinding of 
biotin. The fluctuation time for this loop as well as the relaxation time for 
many of the processes in proteins can be on the order of microseconds and 
longer (Eaton et  al., 1997). The loop has enough time to fluctuate into an 
open state on experimental time scales (1 ms), but the fluctuation time is 
t o o  long for this event to  take place on the nanosecond time scale of simula- 
tions. To facilitate the exit of biotin from its binding pocket, the conformation 
of this loop was altered (Izrailev et al., 1997) using the interactive molecu- 
lar dynamics features of MDScope (Nelson et  al., 1995; Nelson et al., 1996; 
Humphrey et  al., 1996). 

During unbinding, biotin was found to move in discrete steps (see Fig. 2). 
Each step can be identified with the formation and rupture of a network of 
hydrogen bonds which stabilize biotin in the binding pocket of avidin. The  
strongest bonds were formed between biotin and polar residues T ~ 3 3 ,  Scrl6 
and Thr35, consistent with experimental observations. Contacts of biotin with 
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~lonpolar residues (see Fig. 2), especially with TrpllO of an adjacent avidin 
monomer (in the complete tetramer), are crucial for the unbinding process 
(Izrailev et al., 1997). These residues prevent water molecules from entering 
the binding pocket. To determine the effect of water molecules on the un- 
binding mechanism, 50 water molecules were placed in the avidin tetramer 
with the program DOWSER (Zhang and Hermans, 1996) (the algorithm for 
placing water in proteins is discussed in the chapter by Hermans et al. in 
t,his volume). The presence of four water molecules in the outer region of the 
binding pocket, i.e., close to biotin's valeryl side-chain carboxylate group, did 
not affect the stepwise motion of biotin, but reduced the rupture (maximum) 
force from 600 pN to 400 pN as shown in Fig. 2. The reduction of the rup- 
t,ure force resulted from the participation of water molecules in breaking the 
hydrogen bond networks between biotin and residues located near the exit of 
the binding pocket. Water did not penetrate the binding pocket on the time 
scale of the simulations. 

3.2 Binding of Retinal to Bacterio-opsin 

Bitcteriorhodopsin (bR) (Oesterhelt et al., 1992; Schulten et al., 1995) is a 
light-driven vectorial proton pump found in the membrane of Halobacterium 
salinarurn. The protein binds a retinal molecule through a Schiff base linkage 
t,o its Lys216 side group. Formation of bR from the apoprotein and retinal has 
been studied experimentally (Oesterhelt and Schumann, 1974; Chang et al., 
1988; Booth et al., l996), but the pathway of initial retinal entry during bR 
format ion was not clearly understood. Despite its extremely poor solubility in 
water and a considerable affinity for lipid environment, retinal was generally 
l~elieved to enter the protein through the solvent-exposed loops of the protein. 
However, a window on the lipid-exposed surface of bR located between helices 
E and F (see Fig. 3) which uncovers part of retinal (its p-ionone ring) can 
be an entry point for retinal. Inspection of the bR structure revealed that 
this window, in fact, is the only opening large enough to allow retinal entry 
and provide access to the Lys216 binding site of retinal. SMD simulations 
were performed to test this hypothesis by extracting retinal from bR with 
an external force along a path towards and out of the putative entry window 
(Isralewitz et al., 1997). If such an extraction could be carried out without 
significantly perturbing the protein on the time scale of MD simulations, then 
the extraction path could also constitute the binding path of retinal to the 
apoprotein on the much longer time scale of bR formation. 

Due to the convoluted shape of the retinal binding site, retinal cannot 
be extracted from bR by application of a force along a single straight line. 
Therefore, the unbinding path was segmented, with the direction of the force 
determined anew for each of the ten segments (cf. Sect. "Methods"). For 
each segment the applied forces were described by Eq. (1) with K = 10 
k o ~ / A 2  rr 414 p ~ / A  and o = 0.125 Alps a t  T = 300 K. 
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Fig. 3. 
(a) Extraction of retinal from bacteriorhodopsin (bR). The backbone of bR is shown 
in tube and ribbon representation; the seven trans-membrane helices of bR are la- 
beled A-G. The structure presents a snapshot of the SMD simulation with retinal 
(dark spheres) partially extracted from the protein bR through an opening between 
helices E and F into the hydrophobic phase of the surrounding membrane. (b) Mag- 
nification of boxed area in (a),  a t  completion of retinal's exit from bR, representing 
the putative exit/entry window of retinal. The amino acids shown, Ala144, Met 145, 
and Ser183, form a hydrogen bond network with retinal's carbonyl group attracting 
and guiding retinal into the protein. 

It was found that extraction of retinal from bR along a path through the 
window between helices E and F (see Fig. 3) could be accomplished during a 
0.2 ns simulation without disrupting the protein structure (Isralewitz et al., 
1997). The maximum force applied was about 1000 pN and accounted for 
breaking of a strong hydrogen bond between retinal and Lys216. 

Upon exit from the interior of bR, retinal formed a stable network of 
hydrogen bonds with residues Ala144, Met145 and Ser183 which line the 
putative exitlentry window (see Fig. 3). This suggests that retinal approaches 
the apoprotein from the hydrophobic phase of the membrane, binds to the 
stated residues, subsequently moves into bR forming a hydrogen bond with 
Lys216 and, finally, forms the Schiff base bond. 

3.3 Actin's Back Door 

Actin filaments are dynamic polymers whose assembly and disassembly in the 
cell cytoplasm drives shape changes (Small, 1989), cell locomotion (Theriot 
et al., 1992), and chemotactic migration (Theriot et al., 1992)Devreotes and 
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Zigmond, 1988). The ATP-hydrolysis that accompanies actin polymerization, 
ATP -t ADP + Pi, and the subsequent release of the cleaved phosphate (Pi) 
are believed to act as a clock (Pollard et al., 1992; Allen et al., 1996), altering 
in a time-dependent manner the mechanical properties of the filament and 
its propensity to depolymerize. Molecular dynamics simulations suggested a 
so-called back door mechanism for the hydrolysis reaction ATP + ADP + Pi 
in which ATP enters the actin from one side, ADP leaves from the same side, 
but Pi leaves from the opposite side, the "back door" (Wriggers and Schulten, 
199713). This hypothesis can explain the effect of the toxin phalloidin which 
blocks the exit of the putative back door pathway and, thereby, delays Pi 
release as observed experimentally (Dancker and Hess, 1990). 

5 10 15 20 
time ( p s )  

Fig. 4. 
Phosphate release from actin. (a) Monomeric actin with ADP and Pi bound. The 
protein backbone (tube), ADP (grey spheres), and Ca2+-pi (black spheres) are 
shown. The orientation of the spring indicates the pulling direction during Pi un- 
binding. (b) Force exerted on the deprotonated (solid line) and protonated (dashed 
line) phosphate during the SMD simulations. 

To reveal the microscopic processes underlying the unbinding of Pi, SMD 
simulations were carried out in which Pi was pulled along the back door 
pathway and the adhesion forces were measured (Wriggers and Schulten, 
1998). The simulations revealed that the dissociation of Pi is likely to  be 
controlled by its protonation. Pi, which is singly protonated (HPO:-) after 
clcavage from ADP, needs to overcome a strong Coulomb energy barrier due 
to the presence of a ca2+ ion associated with ADP. The resulting forces 
warhed 3,000pN as shown in Fig. 4; in case of protonated Pi (H2PO;) the 
~liaxirnal forces measured 2,400 pN. This suggests that protonation of Pi 
is required for unbinding from actin, consistent with kinetic measurements 
(Allen et al., 19%). 
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The Pi-coordinating amino acid residues and solvent molecules in the 
dissociation pathway exhibited a remarkable functional diversity (Wriggers 
and Schulten, 1998). A methylated histidine, highly conserved among actin 
species and believed to be functionally relevant, stabilized bound Pi through 
a rotation of its side chain relative to the crystal structure. The long side chain 
of an arginine remained attached to Pi for the most part of the unbinding, 
guiding the ligand to the protein surface. Other Pi-coordinating side chains 
were replaced by water molecules in the solvated back door channel. This 
hydration of Pi  gave rise to a velocity-dependent unbinding force that reflects 
the mobility of the water molecules relative to the displaced Pi. A hydration 
step during unbinding has also been observed in other SMD simulations, e.g., 
in case of the extraction of retinal from bR (Isralewitz et al., 1997). 

3.4 Binding of Hormones to Nuclear Hormone Receptors 

Hormone binding to the thyroid hormone receptor initiates a series of molec- 
ular events culminating in the activation or repression of transcription of 
target genes. The transition between the bound and unbound form of the 
thyroid receptor is accompanied by a conformational change that enables the 
hormone-receptor complex to bind to specific sequences of DNA and other 
transcriptional coactivators or repressors (Brent et al., 1989; Damm et al., 
1989; Andersson et al., 1992). SMD can determine likely pathways of hor- 
mone binding and unbinding, reveal components of the receptor involved in 
the unbinding, and thus contribute to the design of new ligands for hormone 
therapy. 

An examination of the crystal structure of the rat a1 thyroid hormone 
receptor (TR) ligand binding domain bound with a thyroid hormone ago- 
nist (Wagner et al., 1995) suggests three entry/exit points for the hormone 
as shown in Fig. 5a. By applying an external force to the ligand to facil- 
itate its unbinding from the protein, the three possible pathways were ex- 
plored. In the simulations, the protein-ligand system was surrounded by a 
water bath. One atom of the hormone was harmonically restrained (K = 
10 kcal/mola2 -- 695 p ~ ~ A )  to a point moving with a constant velocity 
v = 0.08 Alps in a chosen direction. The investigation is still ongoing and 
presently only preliminary conclusions can be drawn from the SMD data. 

During the unbinding process the force exerted on the hormone varied ac- 
cording to  the interaction of the hormone with surrounding protein residues. 
The hormone was found to leave the binding pocket along all three path- 
ways, but exerted the least effect on the protein conformation when pulled 
along path 1. The carboxylate group of the hormone formed direct hydrogen 
bonds with the guanidium of Arg228 and the amino nitrogen of Ser277. The 
external force exerted on the hormone increased until the Arg228 residue was 
dislodged and the associated hydrogen bond was broken. These evcnts cor- 
responded to the maximum values of the force shown in Fig. 5b. Tt should 
also be mentioned that path 1 was lined with flexible amino a d  sick groups, 
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Fig. 5. 
(a) Possible unbinding pathways for the dimit hormone from the thyroid hormone 
receptor: (1) the hormone leaves through the only discernible opening in the molec- 
i~lar surface; (2) the hormone moves underneath the last two helices of the protein 
(hclices 11 and 12); (3) the hormone moves between helices 11 and 12. (b) Force 
profiles for the three unbinding pathways shown in (a) (top to bottom: path 1, path 
2, path 3) 

the flexibility of which was reflected by high experimentally observed tem- 
perature factors. Along paths 2 and 3, the hormone encountered Phe residues 
that needed to be moved out of the way. In both cases the force increased 
(sce Fig. 5b) until the Phe residues changed their positions. 

3.5 Extraction of Lipids from Membranes 

SMD simulations were performed to investigate the extraction of a lipid from 
the dilauroyl-phosphatidyl-ethanolamin (DLPE) monolayer into the aque- 
011s phase (see Fig. 6a) (Stepaniants et al., 1997). External forces described 

by Eq. (1) with K = 10 kcal/molA2 E 695 p ~ A  and v = 0.014 Alps 
wore applied to the head group of the lipid, pulling it out from the mem- 
brane. The forces required to extract the lipid measured about 200 pN and 
~~(tmained constant within the range of fluctuations as shown in Fig. 6c. Anal- 
o g o ~ s  simulations were carried out by Marrink et al. (1998), extracting lipids 
from a dipalmitoyl-phosphatidyl-choline (DPPC) bilayer with pulling veloc- 
ities of v = 0.01-0.5 Kjps and resulting forces of 200-800 pN. In agreement 
with the results of SMD simulations of unbinding of biotin from streptavidin 
(Grnbmiiller et al., Z ! f M )  and avidin (Grubmuller et al., 1996)Izrailev et al., 
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1997), performed with a range of pulling rates, the rupture force was found 
to  decrease with decreasing v. The applied force as a function of distance 
increased up to the point of rupture, and then gradually decreased as the 
lipid proceeded into the solvent. 

Although extraction of lipids from membranes can be induced in atomic 
force apparatus (Leckband et al., 1994) and biomembrane force probe (Evans 
et al., 1991) experiments, spontaneous dissociation of a lipid from a mem- 
brane occurs very rarely because it involves an energy barrier of about 20 
kcal/mol (Cevc and Marsh, 1987). However, lipids are known to be extracted 
from membranes by various enzymes. One such enzyme is phospholipase A2 
(PLA2), which complexes with membrane surfaces, destabilizes a phospho- 
lipid, extracts it from the membrane, and catalyzes the hydrolysis reaction of 
the sn-2-acyl chain of the lipid, producing lysophospholipids and fatty acids 
(Slotboom et al., 1982; Dennis, 1983; Jain et al., 1995). SMD simulations 
were employed to investigate the extraction of a lipid molecule from a DLPE 
monolayer by human synovial PLA2 (see Fig. 6b), and to compare this pro- 
cess to the extraction of a lipid from a lipid monolayer into the aqueous phase 
(Stepaniants et al., 1997). 

Due to the selection of a stiff restraint, the head group of the lipid was 
not allowed to fluctuate substantially and its motion essentially followed that 
of the restraint point. The forces measured during the extraction of the lipid 
exhibited large fluctuations on the order of 300 pN, as expected when a stiff 
restraint is employed (Izrailev et al., 1997; Balsera et al., 1997). The forces 
required to  displace the lipid from the membrane into the binding pocket of 
PLA2, shown in Fig. 6d, were larger than those required to displace the lipid 
from the membrane into the aqueous phase. This difference in the measured 
forces was due in part to the fact that the steric hindrance experienced by 
the lipid on its way out of the membrane into the active site of PLA2 was 
larger than that for its movement into the aqueous phase; repositioning of 
PLA2 could have reduced this hindrance. The results do not agree with the 
hypothesis of destabilization of the lipids by PLA2 facilitating lipid extraction 
by the enzyme. The disagreement may have resulted from the steric effects 
mentioned above, an imperfect choice of the pulling direction for the lipid 
extraction into the enzyme, or insufficient sampling due to the short (500 ps) 
simulation time. 

3.6 Binding of Arachidonic Acid to Prostaglandin H2 Synthase-1 

The enzyme prostaglandin Hz synthase- 1 (PGHS- 1) catalyzes the transfor- 
mation of the essential fatty acid, arachidonic acid (AA), to prostaglandin 
HZ (Smith and DeWitt, 1996). This is the first committed step in the biosyn- 
thesis of prostanoids which modulate physiological processes such as platelet 
aggregation and inflammation. Aspirin, flurbiprofen, and other non-steroidal 
anti-inflammatory drugs directly target PGHS-1 by preventing the :t(:(:css of 
AA to  its cyclooxygenase active site. This site involves a hyrln)~lll()l)i(- rh;tn- 
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Fig. 6 .  
(a) Extraction of a lipid (black spheres) from the DLPE monolayer (lines) into the 
;qiieous phase. (b) Extraction of a lipid (black spheres) from the DLPE monolayer 
(lines) into protein phospholipase A2 (tube) solvated in water. (c) Force applied to 
t,hc head of the lipid along the pulling direction during the extraction of the lipid 
into the aqueous phase. (d) Force applied to the head of the lipid along the pulling 
tlirection during the extraction of the lipid into the binding pocket of PLA2. 

nrl, approximately 25 A deep and 8 A wide, which bends the fatty acid into 
;L U-shape (Fig. 7). This shape is required for the catalyzed cyclooxygenation 
rc;~ction. 

Based on the crystal structure of PGHS-1, with flurbiprofen bound at the 
active site, a model for AA embedded in the enzyme was suggested, in which 
AA replaces the inhibitor (Picot et al., 1994). The aim of the investigation 
was to identify how AA folds itself into the required U-shape in the narrow 
linding channel, rather than entering the channel in a straight conformation. 
'rhc simulations also sought to identify key residues guiding AA binding. 

One monomer of the PGHS-1 homo-dimer (Picot et al., 1994), shown in 
Fig. 7 with AA bound in its putative cyclooxygenation site was used as a 
~t~ar t ing point for simulations enforcing the unbinding of AA. Pulling on the 
~llothyl end-group of the fatty acid with a harmonic spring as described by 
Eq. (1) and a range of force constants (K = 200-400 p ~ / A )  and pulling 
velocities (v = 10-0.1 A/ps) led to the exit of the ligand from its narrow hy- 
(lrophobic binding channel. During the forced unbinding a series of concerted 
torsional motions wits ol~served (Fig. 7). AA contains four rigid cis double 
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Fig. 7. 
Binding site of arachidonic acid (AA) in prostaglandin H2 synthase-1. An interme- 
diate configuration observed during the unbinding event is depicted. AA contains 
four rigid cis double bonds connected to each other by a pair of conformationally 
flexible single bonds. The counter-rotation of atoms cb and Ce around an axis de- 
fined by the Cc =cd bond was monitored through the change in dihedral angles 
defined by the C-atoms abcd and cdef. This rotation proceeded in a way which left 
the "backbone" of the ligand made of the conformationally rigid cis double bonds 
relatively unaffected (dihedral angle between C-atoms acdf) . 

bonds connected to each other by a pair of conformationally flexible single 
bonds. The unbinding mechanism can be described as a series of rotations 
around these single bonds which leave the "rigid backbone" of the fatty acid, 
formed by the conformationally inflexible cis double bonds, relatively unaf- 
fected (Fig. 7). This type of concerted motion was shown to be specific for 
the chemical structure of AA. If the all-cis-isomer was altered to an isomer 
with a trans double bond, the concerted motion became hindered and the 
unbinding of the molecule rendered energetically unfavorable. 

Another set of simulations was carried out with the targeted molecular 
dynamics (TMD) method (Schlitter et al., 1993). The initial and final struc- 
tures of an SMD simulation were used as input for the TMD simulations 
as discussed in "Methods". TMD trajectories were calculated in "both di- 
rections'' between the input structures, simulating both the hindirrg a,rld the 
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unbinding events. A comparison of the SMD and TMD simulations revealed 
t,liat the pathways generated by both methods show very similar modes of 
concerted rotations around single bonds during the unbinding of AA. 

Both methods suggest that the chemical structure of AA (cis double bonds 
connected by two single bonds) allows the fatty acid to access the cyclooxy- 
genase active site of PGHS-1 through a narrow hydrophobic channel and to 
bind in a shape favorable for the cyclooxygenation reaction. 

3.7 Force-Induced Unfolding of Titin 

The giant muscle protein titin, also known as connectin, is a roughly 30,000 
amino acid long filament which plays a number of important roles in muscle 
contraction and elasticity (Labeit et al., 1997; Maruyama, 1997; Wang et al., 
1993). The I-band region of titin, largely composed of immunoglobulin-like 
(Ig) domains, is believed to be responsible for the molecule's extensibility and 
passive elasticity. Recent AFM (Rief et al., 1997) and optical tweezer (Rief 
ct al., 1997)Kellermayer et al., 1997; Tskhovrebova et al., 1997) experiments 
directly measured the force-extension profile of single titin molecules. In the 
AFM experiment, cloned sections of titin composed of adjacent I-band Ig do- 
mains were stretched at constant speed. The force-extension profile showed 
a pattern of sawtooth-shaped peaks, spaced 250-280 A apart, with each force 
peak corresponding to the unfolding of a single Ig domain. The Ig domains 
were thus observed to unfold one by one under the influence of an applied ex- 
ternal force. To examine in atomic detail the dynamics and structure-function 
relationships of this behavior, SMD simulations of force-induced titin Ig do- 
main unfolding were performed (Lu et al., 1998). 

The SMD simulations were based on an NMR structure of the Ig domain 
I27 of the cardiac titin I-band (Improta et al., 1996). The Ig domains consist 
of two P-sheets packed against each other, with each sheet containing four 
strands, as shown in Fig. 8b. After I27 was solvated and equilibrated, SMD 
sirnulations were carried out by fixing one terminus of the domain and ap- 
plying a force to the other in the direction from the fixed terminus to the 
other terminus. Simulations were performed as described by Eq. (1) with 
r )  = 0.5 Alps and K = 10 i c a ~ / A 2  E 414 p ~ / A .  The force-extension profile 
from the SMD trajectory showed a single force peak as presented in Fig. 8a. 
This feature agrees well with the sawtooth-shaped force profile exhibited in 
AFM experiments. 

The simulation trajectory shown in Fig. 8b provides an explanation of 
how the force profile in Fig. 8a arises. During extension from 0 to 10 A the 
tJwo P-sheets slid away from each other, each maintaining a stable structure 
m d  its intra-sheet backbone hydrogen bonds. As the extension of the domain 
reached 14 A, the structure within each sheet began to break: in one sheet, 
strands A' and G slid past each other, while in the other sheet, strands A and 
I3 slid past each other. The A'-G and A-B backbone hydrogen bonds broke 
nearly simultaneously, prothicing the large initial force peak seen in Fig. 8a. 
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Fig. 8. 
(a) Force extension profile from SMD simulations of titin I27 domain with a pulling 
velocity v = 0.5 Alps. The extension domain is divided into four sections: I. pre- 
burst, 11. major burst, 111. post-burst, IV. pulling of fully extended chain. (b) In- 
termediate stages of the force-induced unfolding. All I27 domains are drawn in 
the cartoon representation of the folded domain; solvating water molecules are not 
shown. The four figures at extensions 10 A, 17 A,  150 A, and 285 A correspond, 
respectively, to regions I to IV defined in (a). 

These events marked the beginning of the Ig domain unfolding, after which 
the strands unraveled one at a time, accompanied by a large reduction in 
the recorded force. After an extension of 260 A, the domain was completely 
unfolded; further stretching of the already extended polypeptide chain caused 
the force to increase dramatically. 

The simulation (Lu et al., 1998) suggested how Ig domains achieve their 
chief design requirement of bursting one by one when subjected to external 
forces. At small extensions, the hydrogen bonds between strands A m d  B 
and between strands A' and G prevent significant extension of ( i ~ l ~ l i l i ~ l ,  i.e., 
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the domain maintains its P-sandwich structure. After these bonds break, re- 
sistance to unfolding becomes much smaller, and the domain unfolds rapidly. 
Only when a domain is fully extended does the force increase enough to begin 
the unfolding process in another domain. 

4 Stochastic Modeling of SMD 

I n  AFM experiments as well as in SMD simulations, the ligand extracted 
from the binding pocket is subjected to a time-dependent external force. The 
rate of change and the functional form of the applied force critically affect the 
hehavior of the ligand and the information one can obtain from experiment 
and simulation (Evans and Ritchie, 1997; Izrailev et al., 1997; Balsera et al., 
1997). To better understand the results of SMD simulations and how they 
compare to experimental measurements, it is helpful to consider an idealized 
om-dimensional stochastic model that captures the essence of unbinding phe- 
nomena and reveals the limit of the information that can be gained from SMD 
simulations about the binding potentials. The model assumes that the motion 
of the ligand proceeds in the strong friction limit along a reaction coordinate 
.I:, and is governed by a one-dimensional Langevin equation 

where y is the time-independent coefficient of friction of the ligand in the 
binding pocket of the protein, U(x) and F(x,  t )  are respectively the potential 
surface governing dissociation and the external force applied to the ligand, 
itn~l aN( t )  is a stochastic force of amplitude 0 and zero mean. 

We assume that the unbinding reaction takes place on a time scale long 
compared to the relaxation times of all other degrees of freedom of the sys- 
t1crn, so that the friction coefficient can be considered independent of time. 
'rhis condition is difficult to satisfy on the time scales achievable in MD 
sirrmlations. It is, however, the most favorable case for the reconstruction of 
onergy landscapes without the assumption of thermodynamic reversibility, 
which is central in the majority of established methods for calculating free 
(mergies from simulations (McCammon and Harvey, 1987; Elber, 1996) (for 
applications and discussion of free energy calculation methods see also the 
chapters by Helms and McCammon, Hermans et al., and Mark et al. in this 
volume). 

In this section we describe the behavior of a ligand subjected to three 
types of external forces: a constant force, forces exerted by a moving stiff 
harmonic spring, and forces exerted by a soft harmonic spring. We then 
prcmnt a method of reconstruction of the potential of mean force from SMD 
force measurements employing a stiff spring (Izrailev et al., 1997; Balsera 
ot al., 1997). 
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4.1 Unbinding Induced by a Constant Force 

Unbinding processes can be viewed as taking place in several qualitatively 
different regimes (Izrailev et al., 1997; Marrink et al., 1998). These regimes 
can be illustrated by considering the simplest binding potential 

{:: b-a 

for x < a ,  
U(x) = d U E f o r a < x <  b ,  (4) 

for x > b. 

We assume in the following that the ligand is bound in a binding pocket of 
depth b-a = 7 A involving a potential barrier d U  = 25 kcal/mol, similar to 
that of streptavidin (Chilcotti et al., 1995). We also assume that the diffusion 
coefficient of the ligand is similar to the diffusion coefficient of the heme group 
in myoglobin (D = 1 A2/ns) as determined from MGBbauer spectra (Nadler 
and Schulten, 1984). 

To unbind from a protein the ligand has to move from a, the minimum of 
the potential U(x), to b, the maximum of U(x). The mean first passage time 
T(F) of such motion is (Izrailev et al., 1997) 

where r d  = (b  - a)2/2D and 

Activated Regime For a small applied force F corresponding to positive 6 
and ed(F) >> max(l,6),  the mean time of unbinding is 

Tact = 27d [b(F)]  -2 ,W) 

This result reflects the Kramers' relation (Gardiner, 1985). A millisecond time 
of unbinding, i.e., raCt z 1 ms, corresponds in this case to a rupture force of 
155 pN. For such a force the potential barrier d U  is not abolished completely; 
in fact, a residual barrier of 9 kcal/mol is left for the ligand to overcome. The 
AFM experiments with an unbinding time of 1 ms are apparently functioning 
in the thermally activated regime. 

Diffusive Regime In the case of a stronger force, such that F = dU/(b-a) 
and 6(F)  = 0, one obtains from (5) 

In this regime the applied force completely overwhelms the binding potential 
and the ligand is subject to free diffusion. The mean free passnac tim: in this 
regime is equal to r d  and is on the order of 25 ns. 
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Drift Regime For still stronger forces corresponding to 6(F) < 0 and 
c q F )  << 1 << 16(F)I , using ( 5 ) ,  one obtains 

'rliis regime involves forces which are so strong that the ligand undergoes a 
drift motion governed by (3) in the limit that the fluctuating force aN( t )  is 
negligible compared to the applied force. In this case a force of about 800 pN 
would lead to rupture within 500 ps. 

These examples illustrate that SMD simulations operate in a different 
regime than existing micromanipulation experiments. Considerably larger 
forces (800 pN vs. 155 pN) are required to induce rupture, and the scal- 
i r g  behavior of the drift regime, characterized by (9), differs qualitatively 
from the activated regime as characterized by (7). Hence, SMD simulations 
o f  rupture processes can not be scaled towards the experimental force and 
t h e  scales. 

4.2 Unbinding Induced by Harmonic Springs 

Assume now that the ligand is pulled by a harmonic spring, that is, sub- 
jocted to an external force F(x,  t )  of the form given by (I). The position 
of the ligand in the binding pocket fluctuates; according to the Boltzmann 
tlistribution of a harmonically bound particle, the position fluctuations as- 
sociated with the spring are characterized by a variance 62 - ( I ~ ~ T / K ) ' / ~ ,  
ii11<1 the corresponding variance in the applied force is related to K through 
h'F ( K ~ ~ T ) ' / ~ .  A stiff spring confines the ligand to fluctuate in a small 
region of the binding pocket, so that only local properties of the binding po- 
t,ontial are sampled, while the fluctuations of the force are large. For a soft 
spring, on the other hand, the ligand is able to fluctuate in a large region of 
t'lic binding pocket, and the fluctuations of the force are small. 

Stiff Spring For a stiff spring, satisfying K >> j d 2 ~ / d x 2  1 ,  under the over- 
(lnrnped condition assumed in (3) the average force measured by the spring 
(.an be expressed as 

where F = K(vt  - T), and where F and T denote a running time average 
of F and x, respectively (Balsera et al., 1997). Equation (10) implies that 
for x stiff restraint the average applied force measures the local slope of the 
I )inding potential plus a frictional contribution that depends linearly on the 
pulling velocity. This dependence was observed in the MD simulations of the 
Iliotin-streptavidin compl(x (Qruhmiiller et al., 1996). 
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Soft Spring For a soft spring, no linear scaling of the rupture force with the 
pulling velocity should result (Izrailev et al., 1997). For millisecond unbinding 
times and soft springs employed in AFM experiments (K = 6 p ~ / A )  (Florin 
et al., 1994), thermal fluctuations facilitate the exit of the ligand from the 
binding pocket of the protein. This means that the unbinding is thermally 
activated and the unbinding time rR(F), according to Bell's relation, depends 
exponentially on the height of the energy barrier Out reduced by the applied 
force F (Bell, 1978). The rupture force FAFM, in this case, satisfies (Izrailev 
et al., 1997) 

The rupture force measured in AFM experiments is given, therefore, by the 
average slope of the energy profile minus a correction related to the effects 
of thermal fluctuations. Equation (1 1) demonstrates that the rupture force 
measured in AFM experiments grows linearly with the activation energy of 
the system (Chilcotti et al., 1995). A comparison of (10) and (11) shows that 
the unbinding induced by stiff springs in SMD simulations, and that induced 
by AFM differ drastically, and that the forces measured by both techniques 
cannot be readily related. 

4.3 Reconstruction of the Potential of Mean Force 

Measurement of the unbinding force should not be the only goal of SMD 
simulations. Even if the value of that force corresponded to experimental 
observations it would still not yield sufficient information to understand the 
dynamics of association/dissociation. Knowledge of the free energy profile of 
the system along the unbinding coordinate is required. Balsera et al. (1997) 
showed that it is possible, under the idealized conditions of (3), to recon- 
struct a one-dimensional potential of mean force from SMD simulation data. 
For a stiff spring the frictional contribution to the applied force can be ex- 
plicitly discounted. One can simply integrate (10) to obtain an estimate of 
the potential U(x), 

Dissipation, however, imposes limits on how precisely the potential can be 
reconstructed. With the introduction of the work performed by the frictional 
force Wf,, the uncertainty 02, in the reconstructed potential U(x) can be 
presented as (Balsera et al., 1997) 

Thus, the uncertainty in the potential U is determined by the irreversible 
work done on the system. This irreversible work is proportional to the pulling 
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velocity v and can be reduced with an increase in simulation time. In the 
widin-biotin system, for example, the size of the avidin binding pocket is 
:r N 10 A. Assuming again a diffusion coefficient D = 1 A2/ns, simulation 
priods of 1 ns and 10 ns, corresponding to pulling velocities of the order 
of loA2 and Alps, yield ou 8 and 3 kcal/mol, respectively. By 
contrast, an attempt to reconstruct the potential of mean force using a soft 
spring clearly fails. 

5 Discussion 

SMD is a novel approach to the study of the dynamics of bindinglunbinding 
events in biomolecular systems and of their elastic properties. The simulations 
reveal the details of molecular interactions in the course of unbinding, thereby 
providing important information about binding mechanisms. The advantage 
o f  SMD over conventional molecular dynamics is the possibility of induc- 
ilig relatively large conformational changes in molecules on nanosecond time 
scales. Other methods, such as umbrella sampling, free energy perturbation 
(McCammon and Harvey, 1987), and weighted histogram analysis (Kumar 
c>t al., 1992), aiming at the determination of the energy landscapes, typically 
irivolve small conformational changes and require extensive computations to 
a chieve accuracy. 

In cases where irreversible work done during unbinding can be attributed 
to a non-dispersive frictional force yv, a quantitative description of the ther- 
rriodynamic potentials governing the binding and unbinding processes can be 
achieved by discounting the irreversible work from the calculated potential 
o f  mean force. However, the error in the reconstructed potentials is related 
t,o irreversible work done on the system and, therefore, may be unacceptably 
11-trge. The estimate of the friction also presents a challenge, since it can be 
highly dispersive and may exhibit memory effects (Balsera et al., 1997). 

Irreversibility of the unbinding process can also be accounted for by aver- 
aging over an ensemble of SMD trajectories according to the non-equilibrium 
(>quality for free energy differences (Jarzynski, 1997a; Jarzynski, 1997b) as de- 
scribed in the Introduction. This approach, however, requires averaging over 
multiple trajectories, and may be extremely sensitive to insufficient sampling 
of reaction pathways. 

Irreversible work might also be discounted by forcing a conformational 
diange in the system followed by the reverse conformational change, i.e., 
iliducing hysteresis. Such an approach may yield a "model free" estimate of 
t.ho irreversible work component from the hysteresis (Baljon and Robbins, 
1996; Xu et al., 1996). Finally, lengthening the simulation time decreases the 
;~niount of irreversible work and the simulated process could, ideally, reach 
quasi-equilibrium in the limit of very long simulation times. 

The simulations of the avidin-biotin complex (Izrailev et al., 1997) showed 
t.liat. a major difficulty irivolvrd in studies of the binding and flexibility of 
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macromolecules is the long time scale of motions such as the fluctuations of 
the avidin loop discussed above. These fluctuation times, ranging from several 
nanoseconds to seconds, are beyond the reach of SMD simulations that can 
presently be realized in a feasible amount of time (Balsera et al., 1996). 

Solvation is likely to influence protein-ligand binding and, hence, the 
forces measured in SMD simulations. During the extraction of retinal from 
bacteriorhodopsin (see Fig. 3) water facilitated the breaking of a hydrogen 
bond between retinal and Lys216 (Isralewitz et al., 1997). In the simula- 
tions of the avidin-biotin complex, placement of several water molecules near 
the exit from the binding pocket reduced the measured binding force (see 
Fig. 2). In the simulations of the streptavidin-biotin complex (Grubmiiller 
et al., 1996) the binding pocket was exposed to solvent due to exclusion of 
the ajacent streptavidin monomer. This allowed water molecules to enter the 
binding pocket and participate in breaking hydrogen bond networks between 
the ligand and the protein during the unbinding. The issue of how water 
molecules participate in the process of protein-ligand dissociation remains 
unclear and should be further investigated. For example, one may add water 
molecules to the binding pocket in the course of SMD simulations, as the 
retracting ligand frees up space in the binding pocket (Resat et al., 1996). 

Binding and unbinding of non-covalently attached biomolecules are at 
the heart of many important processes and are the target of experimental 
investigations. SMD may serve to interpret measurements and suggest new 
experiments. The rapidly growing computer power available for simulations 
and increasing time resolution of experimental techniques will provide the 
basis for further advances in the method and will help bridge the gap in time 
scales between computer simulation and experiment. 
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Abstract. The function of many important proteins comes from their dynamic 
properties, and their ability to undergo conformational transitions. These may be 
small loop movements that allow access to the protein's active site, or large move- 
ments such as those of motor proteins that are implicated with muscular extension. 
Yet, in spite of the increasing number of three-dimensional crystal structures of 
proteins in different conformations, not much is known about the driving forces 
of these transitions. As an initial step towards exploring the conformational and 
energetic landscape of protein kinases by computational methods, intramolecular 
energies and hydration free energies were calculated for different conformations of 
the catalytic domain of CAMP-dependent protein kinase (cAPK) with a continuum 
(Poisson) model for the electrostatics. In this paper, we will put the previous results 
into context and discuss possible extensions into the dynamic regime. 

1 Introduction 

Proteins are biopolymers formed by one or more continuous chains of co- 
valently linked amino acids. Hydrogen bonds between non-adjacent amino 
acids stabilize the so-called elements of secondary structure, a-helices and 
@-sheets. A number of secondary structure elements then assemble to  form 
a compact unit with a specific fold, a so-called domain. Experience has shown 
that  a number of folds seem t o  be preferred, maybe because they are espe- 
cially suited t o  perform biological protein function. A complete protein may 
consist of one or more domains. 

Protein dynamics occurs on very different time scales 
([McCammon and Harvey 1987, Jardetzky 19961). Here, we are most 
interested in long time scale motions such as relative motion between 
secondary structure elements, and inter-domain motion. 

Our present view of proteins is governed to  a great deal by the informa- 
tion from X-ray crystallographic analysis of protein crystals. Here, a specific 
protein is described at atomic resolution as a static picture in an  average con- 
formation. Knowledge of this average conformation is sometimes sufficient to  
understand properties of proteins such as docking of protein modules to  form 
larger protein complexes. Yet, the function of many proteins involves confor- 
mational transitions such as those in motor proteins that  allow for muscular 
extension, or in enzymes where a surface loop may swing open to  allow the 
entrance of a substrate to  a buried active site. Insight into the strllctural 
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mechanisms of these transitions has been gained from the growing number of 
examples where multiple crystal structures have been determined of a protein 
ill different conformations ([Gerstein et al. 19941). Inter-domain motions can 
often be characterized as hinge-bending or shear movements. 

Experimental information about protein conformational transitions has 
also been gained from a variety of other techniques such as gel-filtration, 
circular dichroism, intrinsic fluorescence spectroscopy, time-resolved fluores- 
cence energy transfer, electron spin resonance with spin labels, neutron and 
small-angle X-ray scattering. Yet, the dynamic information from these tech- 
niques alone may be hard to link with specific structural transitions. The only 
techniques that allow for a simultaneous detection of protein structure and 
dynamics are time-resolved X-ray crystallography, and NMR spectroscopy 
([Jardetzky 19961). Time-resolved X-ray crystallography is undergoing a dra- 
matic development, and it has been possible to  collect structural data of 
protein mobility down to ns time scales. By combining these new develop- 
ments with existing methods, our knowledge about the mechanisms and time 
scales of structural transitions in proteins will certainly expand enormously 
in the near future. 

Theoretical investigations will certainly be essential in identifying the 
driving forces of these transitions and thus characterizing the underlying 
free energy landscape of folded proteins. Transitions between different con- 
formational states of a folded protein have been studied with a wide variety 
of theoretical methods, but we limit ourselves to discussing a few important 
techniques in the following. 

2 Calculations Based on Static Protein Structures 

The first technique is very intuitive. Out of the few proteins that could be 
crystallized in a number of different conformations, adenylate kinase is proba- 
bly the best-st udied example. By combining nine observed crystal structures 
and interpolating between them, a movie was constructed that visualized a 
hypothetical path of its hinge-bending transition ([Vonrhein et al. 19951). 

We now turn towards theoretical techniques that involve the computation 
of macromolecular energies. 

2.1 Accurate Energy Calculations of a Protein in Different 
Conformat ions 

The interaction with the solvent is of similar importance as the intramolecular 
eriergy contributions and a correct representation of the solvent is therefore 
essential. If an explicit solvent description is chosen, averaging over many 
different solvent configlirations is necessary in order to obtain converged sta- 
tist ical averages. Advmtagcous in t his respect is describing t he solvent as 
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a dielectric continuum. Especially accurate results for the electrostatic por- 
tion of the interaction with solvent and ions can be obtained by solving the 
Poisson-Bolt zmann equation. 

We have previously calculated conformational free energy differences for 
a well-suited model system, the catalytic subunit of CAMP-dependent pro- 
tein kinase (cAPK), which is the best characterized member of the protein 
kinase family. It has been crystallized in three different conformations and 
our main focus was on how ligand binding shifts the equilibrium among these 
([Helms and McCammon 19971). As an example using state-of-the-art com- 
putational techniques, we summarize the main conclusions of this study and 
discuss a variety of methods that may be used to extend this study into the 
dynamic regime of protein domain motion. 

Calculation of Conformational Free Energies for a Model of a 
Bilobal Enzyme Protein kinases catalyze the transfer of phosphate from 
adenosine triphosphate (ATP) to protein substrates and are regulatory ele- 
ments of most known pathways of signal transduction. 

The catalytic subunit of cAPK contains two domains connected by a pep- 
tide linker. ATP binds in a deep cleft between the two domains. Presently, 
crystal structures showed cAPK in three different conformations, (1) in a 
closed conformation in the ternary complex with ATP or other tight-binding 
ligands and a peptide inhibitor PKI(5-24), (2) in an intermediate conforma- 
tion in the binary complex with adenosine, and (3) in an open conformation 
in the binary complex of mammalian cAPK with PKI(5-24). Fig.1 shows a 
superposition of the three protein kinase configurations to visualize the type 
of conformational movement. 

While the angle formed by the two domains opens by ca. 15 deg between 
the crystal structures of the closed and open forms, data from low-angle X- 
ray scattering experiments of cAPK alone in solution indicated an opening 
of as much as 39 deg. The transition apparently not only involves the hinge 
movement of the two domains relative to  each other but also a number of 
more subtle structural changes when analyzed in detail. Still, both domains 
superimpose quite well, and to a first approximation, the domain movement 
can be regarded as a relative displacement of rigid bodies. 

Structures Used in this Study Instead of performing energy calculations 
for different crystal structure conformations, a strategy was chosen that in- 
volved mapping the domains of one highly-resolved structure onto the inter- 
mediate and open frameworks. By comparing these chimeric structures with 
the native closed structure, the calculated energy differences are solely due 
to  the opening and closing mechanism. 

As a template for an 'intermediate' conformation of protein kinase, the 
crystal structure of the binary complex of cAPK with adenosine (1 h k x - ~ d b  
in the Protein Data Bank) was used. As templates for 'open' confbrmations 
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Fig. 1. Superposition of three cryst a1 structures of CAMP-dependent protein kinase 
that show the protein in a closed conformation (straight line), in an intermedi- 
ate conformation (dashed line), and in an open conformation (broken line). The 
stnictures were superimposed on the large lobe. In three locations, arrows identify 
corresponding amino acid positions in the small lobe. 
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of cAPK, we used two structures of binary complexes of mammalian cAPK 
with PKI(5-24) (1ctp.pdb and 1cmk.pdb). Three different crystal structures 
that contain cAPK in a closed conformation were modelled into putative 'in- 
termediate' and 'open' conformations by superimposing the two domains on 
those of the intermediate or open template structures and then constructing 
appropriate pept ide linkages. 

Free Energy Function The conformational free energy was estimated by 
the following energy expression: 

Here, AEbond 7 AEangle , dEprop.dih and AEimprop.dih are equal to the 0- 

valent intramolecular energies for bond stretching, angle bending, and for 
the out-of plane bending of proper and improper dihedral angles. AEvdw 
and AEcoul are the noncovalent intrasolute van der Waals and coulombic 
energies. These intramolecular energy terms were all evaluated by the molec- 
ular mechanics force field CHARMm22 after a short energy minimization 
to remove local strain. AGpB is the electrostatic free energy of hydration 
evaluated by the UHBD program ([Madura et al. 19951)as a finite- difference 
solution of the Poisson equation. The apolar solvation free energy AGsurf is 
calculated as the solvent-accessible surface area of the protein times a con- 
stant. 

The continuum description of the solvent yields a free energy including 
entropic solvent effects. However, intra-molecular entropy differences between 
different conformational states of the protein are not accounted for, nor is the 
entropic contribution for possible displacement of solvent molecules bound 
to the protein during conformational transitions. Energy calculations were 
performed for the unbound protein, for binary complexes with ATP and 
with PKI(5-24)' and for a ternary complex with ATP and with PKI(5-24). 
By comparing relative differences of conformational energies, it is assumed 
that many of the neglected contributions to the free energy will cancel out. 

The results of the calculations for the three systems were averaged and 
are displayed in Fig. 2. For unbound cAPK as well for cAPK complexed with 
ATP or PKI, the total conformational free energies increase monotonically 
in the sequence closed - 'intermediate' - 'open'. Binding is an interplay of 
opposing effects of unfavourable Poisson free energy of hydration that favors 
the solvation of buried protein groups, and the favourable van der Waals 
energy and coulombic energy that favour association of both domains. 

The ranking of conformational free energies indicated that the closed state 
of cAPK is favored even in the absence of ligands, which is in contrast to ex- 
perimental data that showed a preferred population of the open conformation. 
One reason for this discrepancy could be that the modelled 'intermcdinte' 
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,F 

intermediate open 

Fig. 2. Conformational free energy of closed, intermediate and open protein kinase 
conformations. 'cAPK1 indicates the unbound form of CAMP-dependent protein 
kinase, 'cAPK:ATP1 the binary complex of cAPK with ATP, 'cAPK:PKI1 the binary 
complex of cAPK with the peptide inhibitor PKI(5-24), and 'cAPK:PKI:ATP1 the 
ternary complex of cAPK with ATP and PKI(5-24). Shown are averaged values for 
the three crystal structures lATP.pdb, lCDKA.pdb, and 1CDKB.pdb. All values 
have been normalized with respect to the free energy of the closed conformations. 

and 'open' states do not correspond to real states. Another more likely rea- 
son might be the omission of important contributions to the conformational 
free energy in our calculations as mentioned above. 

It was therefore advisable to focus on the analysis of relative effects such 
as how the energy ranking of states is affected by the binding of the peptide 
inhibitor and ATP. The calculated conformational free energies indicate that 
both ATP and PKI(5-24) disfavour the open state with regard to  intermediate 
ilnd closed state. Binding of PKI(5-24) seems to drive the complete closing of 
the binding cleft from the intermediate to the closed state. This is in accord 
with data from small-angle neutron scattering that showed that the binding 
of inhibitor peptide, but not ATP alone, was sufficient to cause the reduction 
in the protein radius of gyration. 

The following two techniques were developed to expand such static cal- 
culations into a pseudo-dynamic regime by calculating higher derivatives of 
thc potential energy and by introducing an additional degree of freedom. 



72 Helms, McCammon 

2.2 Normal Mode Analysis (NMA) 

The basic idea of NMA is to  expand the potential energy function U(x) in a 
Taylor series expansion around a point xo where the gradient of the poten- 
tial vanishes ([Case 19961). If third and higher-order derivatives are ignored, 
the dynamics of the system can be described in terms of the normal mode 
directions and frequencies qi and wi which satisfy: 

The matrix &f contains atomic masses on its diagonal, and the Hessian 
matrix F contains the second derivatives of the potential energy evaluated 
at  xo. 

The influence of solvent can be incorporated in an implicit fashion to 
yield so-called langevin modes. Although NMA has been applied to allosteric 
proteins previously, the predictive power of normal mode analysis is intrinsi- 
cally limited to the regime of fast structural fluctuations. Slow conformational 
transitions are dominantly found in the regime of anharmonic protein motion. 

2.3 Langevin Dynamics on an Adiabatic Surface 

In an early study of lysozyme ([McCammon et al. 1976]), the two domains of 
this protein were assumed to be rigid, and the hinge-bending motion in the 
presence of solvent was described by the Langevin equation for a damped har- 
monic oscillator. The angular displacement O from the equilibrium position 
is thus governed by 

The effective moment of inertia I and the friction coefficient f could 
easily be estimated. The force constant k associated with the relative motion 
of the lobes was determined from an empirical energy function. To do so, the 
molecule was opened in a step-wise fashion by manipulating the hinge region 
and each resulting structure was energy minimized. Then, the interaction 
energy between the two domains was measured, and plotted versus O. 

3 Simulations of Protein Dynamics 

Simulations of the dynamic motion of proteins aim at  sampling relevant por- 
tions of the conformational space accessible to the proteins under the influ- 
ence of environmental variables such as temperature, pressure, m d  pH. We 
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will limit ourselves here to applications of atomistic molecular dynamics simu- 
lations. Techniques that employ a reduced number of simulation particles e.g. 
m e  bead per amino acid side chain ([Head-Gordon and Brooks 19911) have 
large potential applicability, but their success in the description of protein 
dynamics has been limited. Apparently, atomistic detail is very important to 
provide the necessary flexibility and small-scale interactions on the length- 
scale of hydrogen bonds. 

3.1 Molecular Dynamics Simulations 

Molecular dynamics simulations ([McCammon and Harvey 19871) propagate 
a,n atomistic system by iteratively solving Newton's equation of motion for 
c~tch atomic particle. Due to computational constraints, simulations can only 
bc extended to a typical time scale of 1 ns currently, and conformational 
ti-ansitions such as protein domains movements are unlikely to be observed. 

To facilitate conformational transitions in the before-mentioned adenylate 
ki~iase, Elamrani and co-workers scaled all atomic masses by a large factor 
t,lilis allowing the use of a high effective simulation temperature of 2000K 
([Elamrani et al. 19961). To prevent protein unfolding, elements of secondary 
stmcture had to be constrained. 

The important underlying components of protein motion during a simula- 
t,ion can be extracted by a Principal Component Analysis (PCA). It stands for 
a diagonalization of the variance-covariance matrix R of the mass-weighted 
internal displacements during a molecular dynamics simulation. 

X is a matrix whose elements xit give the mass-weighted internal dis- - 
placements of each atomic coordinate i from its average position at  a given 
t h e  step t .  N is the total number of integration steps. 

The essential slow modes of a protein during a simulation accounting for 
most of its conformational variability can often be described by only a few 
lxincipal components. Comparison of PCA with NMA for a 200 ps simulation 
of bovine pancreatic trypsic inhibitor showed that the variation in the first 
~~rincipal components was twice as high as expected from normal mode analy- 
sis ([Hayward et al. 19941). The so-called essential dynamics analysis method 
([Amadei et al. 19931) is a related method and will not be discussed here. 

An interesting approach has recently been chosen in the MBO(N)D pro- 
gram ([Mold~n 19971). Structural elements of different size varying from in- 
dividual peptide planes up to protein domains can be defined to  be rigid. 
During an atomistic molecular dynamics simulation, all fast motion orthog- 
onal to the lowest normal modes is removed. This allows use of ca. 20 times 
lorigcr time steps than in standard simulations. 
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3.2 Conformational Flooding 

Grubmiiller described a method to induce conformational transitions in pro- 
teins and derived rate constants for these ([Grubmiiller 19941). The met hod 
employs subsequent modifications of the original potential function based on 
a principal component analysis of a short MD simulation. It is discussed in 
more detail in the chapter of Eichinger et al. in this volume. 

3.3 Targeted Dynamics 

If both starting structure and target structure are known, the method of tar- 
geted molecular dynamics simulation can be used to enforce a conformational 
transition towards the given final structure during a given simulation time ts 
([Schlitter et al. 19941). 

Starting at  an initial conformation xi with a distance po from the final 
structure xf ,  the allowed distance p is decreased at  each integration step bt 
by 

In order to fulfil the following condition at  each instant, 

an additional constraint force is applied to the system by a Lagrangian 
multiplier while taking a time step. 

3.4 Approximate Simulation Between Two Structures with 
Large Time Steps 

Related to  the previous method, a simulation scheme was recently derived 
from the Onsager-Machlup action that combines atomistic simulations with 
a reaction path approach ([Oleander and Elber 19961). Here, time steps up to 
100 times larger than in standard molecular dynamics simulations were used 
to produce approximate trajectories by the following equations of motion: 

The trajectories with the highest probability are those for which the 
Onsager-Machlup action 
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is minimal. The boundary conditions employed were of fixed end points 
i~11d of zero Q at  the edges of the path connecting starting and end points. 
It was shown that stable molecular dynamics simulations could be computed 
by optimization of S. 

3.5 Non-Equilibrium MD Simulations 

By applying a pulling force at  a portion of the solute molecule in a spe- 
cific direction (see chapters of Eichinger et al. and Schulten in this volume), 
conformational transitions can be induced in specific directions. In order to  
rcconstruct information about the underlying potential function governing 
protein motion, the irreversible work performed on the system by these forces 
must be discounted ([Balsera et al. 19971). 

3.6 Poisson-Boltzmann Stochastic Dynamics (PBSD) 

This method was introduced recently as an efficient technique to accurately 
model solvent and salt effects in an implicit fashion ([Gilson et al. 19931). 
The forces are calculated as a sum of three terms: 

1 1 2 2  
F = pE - - E ~  - -en 4 VX. 

2 2 
The first term represents the forces due to the electrostatic field, the sec- 

ond describes forces that occur at  the boundary between solute and solvent 
regime due to the change of dielectric constant, and the third term describes 
ionic forces due to the tendency of the ions in solution to move into regions of 
lower dielectric. Applications of the so-called PBSD method on small model 
systems and for the interaction of a stretch of DNA with a protein model 
have been discussed recently ([Elcock et al. 19971). This simulation technique 
guarantees equilibrated solvent at  each state of the simulation and may there- 
fore avoid some of the problems mentioned in the previous section. Due to 
the smaller number of particles, the method may also speed up simulations 
potentially. Still, to be able to simulate long time scale protein motion, the 
method might ideally be combined with non-equilibrium techniques to en- 
force conformat ional transitions. 

A number of issues need to be addressed before this method will become 
routine tool applicable to problems as the conformational equilibrium of 

protein kinase. E.g. the accuracy of the force field, especially the combination 
of Poisson-Boltzmann forces and molecular mechanics force field, remains to 
be assessed. The energy surface for the opening of the two kinase domains in 
Fig. 2 indicates that intramolecular noncovalent energies are overestimated 
compared to  the interaction with solvent. 



76 Helms, McCammon 

4 Conclusions 

The study of slow protein dynamics is a fascinating field with still many 
unknowns. We have presented a number of computational techniques that 
are currently being used to tackle those questions. Most promising for our 
case seems the development of methods that combine an implicit solvent 
description with techniques to induce conformational transitions. 
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Abstract. Molecular dynamics (MD) simulations of proteins provide descriptions 
of atomic motions, which allow to relate observable properties of proteins to micro- 
scopic processes. Unfortunately, such MD simulations require an enormous amount 
of computer time and, therefore, are limited to time scales of nanoseconds. We 
describe first a fast multiple time step structure adapted multipole method (FA- 
MUSAMM) to speed up the evaluation of the computationally most demanding 
Coulomb interactions in solvated protein models, secondly an application of this 
method aiming at a microscopic understanding of single molecule atomic force mi- 
croscopy experiments, and, thirdly, a new method to predict slow conformational 
motions at microsecond time scales. 

1 Introduction 

In many cases the detailed knowledge of dynamic processes a t  the atomic level 
is essential to understand protein function, e.g., ligand binding or enzymatic 
reactions. Through a microscopic description of interatomic forces [I] and 
atomic motions, molecular dynamics (MD) simulations [2, 31 can serve as 
a tool to interpret experimental data and to make predictions, which can 
guide future experiments. In such simulations, the motions are computed by 
numerically solving Newton's equations. Here, the forces are derived from an 
empirical energy function accounting for chemical binding forces as well as 
van der Waals and electrostatic interactions between partially charged atoms. 

For the study of protein dynamics quite large simulation systems - typ- 
ically comprising several 10,000 atoms - are required. The system must be 
that large because the native protein environment (water or lipids) strongly 
affects the dynamics of the protein [4, 5, 6, 7, 81 and, therefore, has to be in- 
cluded into the simulation system. The large number of atoms provides a first 
reason why MD simulations of proteins pose a computational challenge. A 
second reason is that femtosecond integration time steps are necessary to en- 
able sufficiently smooth descriptions of the fastest degrees of freedom. Thus, 
MD simulations of such systems are currently limited to  nanoseconds (i.e., a 
few million integration steps) even if the most powerful supercomputers and 
efficient algorithms are used. Although there are a number of biorhr:~liicnll~ 
important processes which occur at  such very fast time scales imd have I w ~ n  
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successfully studied by MD simulations [9, 101, most biochemical processes 
occur at  much slower scales and, therefore, are currently inaccessible to con- 
ventional MD methods. This technical limitation motivates substantial efforts 
taken by many groups to determine suitable approximations which ideally 
should allow more efficient simulations without seriously affecting relevant 
features of the system, which may be grouped into specialized integration 
schemes and multiple time stepping [ll, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 311 (see also the chapter by Schlick and 
Berne within this book), multipole methods [32, 33, 34, 35, 36, 37, 381, as 
well as grid and Ewald methods [39, 40, 41, 421. Most of the efforts focus on 
the efficient computation of the electrostatic interactions within the protein 
mtl between protein and solvent, since, typically, this is the computationally 
most demanding task. 

As an example for an efficient yet quite accurate approximation, in the 
first part of our contribution we describe a combination of a structure adapted 
multipole method with a multiple time step scheme (FAMUSAMM - fast 
tnultistep structure adapted multipole method) and evaluate its performance. 
In the second part we present, as a recent application of this method, an 
MD study of a ligand-receptor unbinding process enforced by single molecule 
atomic force microscopy. Through comparison of computed unbinding forces 
with experimental data we evaluate the quality of the simulations. The third 
part sketches, as a perspective, one way to  drastically extend accessible time 
scales if one restricts oneself to the study of conformational transitions, which 
are ubiquitous in proteins and are the elementary steps of many functional 
conformational motions. 

2 Efficient MD-Simulation Met hods 

In order to  solve the classical equations of motion numerically, and, thus, to 
obtain the motion of all atoms the forces acting on every atom have to be 
computed at  each integration step. The forces are derived from an energy 
firriction which defines the molecular model [I, 2, 31. Besides other important 
contributions (which we shall not discuss here) this function contains the 
Coulomb sum 

ovcr all pairs of atoms (i, j) with partial charges qi at  positions ri. The 
evaluation of this sum dominates the computational effort in MD simulations 
as  it scales quadratically with the number N of charged particles. 

A very simple - and in fact quite widely used - approximation com- 
pletely neglects long range electrostatic interactions beyond a certain cut-off 
distance [43] of typically 8 - 15 A. For systems which are significantly larger 
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than this cut-off distance the computation of the remaining Coulomb inter- 
actions then scales with N instead of N2.  However, such truncation leads to 
serious artifacts concerning the description of the structure and dynamics of 
proteins [44, 24,451, and more accurate methods which include the long range 
interactions should be preferred. Multipole methods and multiple-time-step 
methods are well established and widely used for this purpose. We briefly 
sketch both methods and subsequently show how their combination allows 
highly efficient simulations. 

2.1 Efficient Multipole Met hods 

Multipole methods approximate the long-range forces originating from a 
group of point charges by truncated multipole expansions of their electrostatic 
potential. Using a hierarchy of grids for subdivision of space, nested at  multi- 
ple scales, and a corresponding hierarchical organization of charge groups and 
multipole expansions [33] a computational complexity of 0 (Nlog N )  can be 
achieved. By additionally using a hierarchy of local Taylor expansions for the 
evaluation of the electrostatic potential in the vicinity of a group of particles 
Greengard and Rokhlin have constructed the so-called fast multipole method 
(FMM) that even scales with O(N) for large systems [34, 351. 

For MD simulations of biomolecules the FMM-type grouping of charges, 
defined by a fixed and regular subdivision of space, requires multipole ex- 
pansions of rather high order (more than 6 terms of the expansion) as to 
achieve sufficient numerical accuracy [34]. If, instead, as shown in Figure 1, 
the charge grouping is adapted to specific structural and dynamical proper- 
ties of the simulated biomolecules, the multipole expansions can be truncated 
a t  quite low orders, e.g., after the second order, while maintaining sufficient 
accuracy [36, 37, 381. 

In the FAMUSAMM framework, e.g., we have grouped locally stable 
groups of typically three to ten covalently bound atoms into so-called struc- 
tural units (level 1 in Fig. 1). By construction, these structural units either 
carry integer elementary charges or are uncharged, but dipolar. Test sim- 
ulations show that for distances > 10 A already the lowest non-vanishing 
multipole moments of these structural units provide a sufficiently accurate 
description of the electrostatic forces within biomolecules with an error below 
2%. The objects of the next hierarchy level (level 2 in the figure) are formed by 
grouping structural units into clusters. For interaction distances > 15 A the 
electrostatic potential of those objects, again, can be approximated by their 
lowest multipole moment. Extending this scheme to higher hierarchy levels, 
such a structure adapted multipole method (SAMM) provides a substantial 
speed-up for MD simulations as compared to the conventional, grid-based 
methods [38, 461. 

The performance of this first version of SAMM [36] can hr  filxtllcr en- 
hanced by additionally utilizing FMM-strategies [34, 381. Her[., ill thr vicinity 
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Fig. 1. Structure adapted hierarchical description of Coulomb interactions in bi- 
ological macromolecules. Filled circles (level 0) represent atoms, structural units 
(I(ve1 1) are surrounded by a single-line border, and clusters (level 2) are surrounded 
I)y a double-line border. 

of n given object (e.g., a structural unit or a cluster) the electrostatic poten- 
tial originating from distant charge distributions is approximated by a local 
'Ehylor expansion. Specifically, the basic tasks involved in the FMM aspect of 
SAMM are: 

'Lsk 1: Calculate the first non-vanishing multipole moment of the electro- 
static potential of composed objects (i.e., structural units and clus- 
ters). 

Task 2: Add up electrostatic potential contributions t o  local Taylor expan- 
sions of all objects on each hierarchy level. (Contributions t o  the local 
Taylor expansion of a selected object arise from all other objects on 
the same hierarchy which fulfill the distance criterion given in Fig. I.) 

%~sk  3: Transform ("inherit") local Taylor expansions from a upper hierarchy 
level to  the next lower hierarchy level. 

'r:wk 4: Explicitly calculate the Coulomb interactions between atoms which 
are closer than about 10 81. 

Tn the next section we will illustrate how t o  further speed up the SAMM 
rilot,hod by introdwi~lg ~nultiplc-time-stepping. 
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2.2 SAMM with Multiple-Time-Stepping 

In general, multiple-time-step methods increase computational efficiency in 
a way complementary t o  multipole methods: The latter make use of regu- 
larities in space, whereas multiple-time-stepping exploits regularities in time. 
Figure 2 illustrates the general idea: 

As sketched in the right part of the figure, forces between distant atoms 
generally exhibit slower fluctuations than forces between close atoms. There- 
fore, without significant loss of accuracy, the more slowly fluctuating forces 
may be computed using larger integration step sizes. As shown in the left part 
of the figure, the required classification of forces can be implemented, e.g., by 
grouping atom pairs into distance classes. The slowly fluctuating forces aris- 
ing from outer distance classes may then be evaluated less frequently (filled 
squares) than the fast ones and, instead, are extrapolated (open squares) 
from previously computed forces at the time steps in between. 

j=2 

I I I I I I I I I  

I I I I I I I I I  

I I I I I I I I I  

Integration time step T 

Fig. 2. Distance classes j = 0,1,2, . . . (left) are defined for an atom (central dot) 
by a set of radii Rj+l ; the right curves sketch the temporal evolution of the total 
force ~ ( j )  acting on the selected atom originating from all atoms in distance class 
j ;  shown are the exact forces (solid line), their exact values to be computed within 
the multiple time step scheme (filled squares), linear force extrapolations (dotted 
lines), and resulting force estimates (open squares). 

This hierarchical extrapolation procedure can save a significant amount of 
computer time as it avoids a large fraction of the most time conslurling step, 
namely the exact evaluation of long range interactions. Here, conl111lt;~tional 
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speed is gained a t  the cost of an increased demand for memory, e.g., for each 
at,om and each distance class two previously computed forces have to  be kept 
in memory. 

In the framework of the fast structure adapted multipole method the 
lriemory demand could be drastically reduced. This was achieved by applying 
t,lie multiple-time-step scheme (we used the so-called DC-ld scheme [24]) to  
t,lir' interactions between charge groups (structural units and clusters) rather 
t,lian to  the forces acting on individual atoms. In the following we give a short 
clcscription of this tight and efficient combination. We termed the result- 
iiig algorithm FAMUSAMM (multiple-time-step structure-adapted multipole 
method) [46, 471. 

A detailed analysis of fast SAMM has shown [47] that  the most time 
consuming tasks are task 2 and task 4 described above. In task 2 for each 
liiorarchy level (except for level 0) a local Taylor expansion is calculated for 
o ; ~ h  object. Note that here we refer t o  expansions which comprise only con- 
tributions from objects of the same hierarchy level which, in addition, fulfill 
tlin distance criterion given in Fig. 1. From each of these local expansions, 
qqwoximated electrostatic forces ~ ( j )  acting on the atoms contained in the 
i~ssociated object could be computed and, in analogy t o  the exact forces 
~ ( j )  used in the multiple time step scheme described above (see Fig. 2), the 
mdtipole-derived forces 6(j) could be extrapolated by multiple time step- 
pirig. We further improved that obvious scheme, however, in that  we applied 
rriultiple time step extrapolations to  the coeficients of the local Taylor expan- 
sions instead. That  strategy reduces memory requirements by a significant 
fi~ct~or without loss of accuracy, since the number of local Taylor coefficients 
that have t o  be kept for the extrapolation is smaller than the number of 
times acting on all atoms of the respective object. 

Additionally, to  optimize task 4, we applied a conventional, atom pair 
i~itcraction based mult iple-time-step scheme t o  the force computation within 
t.lic innermost distance class. Here, for atom pairs closer than 5 A, the 
Coulomb sum is calculated every step, and for all other atom pairs the 
Coillomb sum is extrapolated every second step from previously explicitly 
(%;~lculated forces. 

This completes the outline of FAMUSAMM. The algorithm has been im- 
~)k:rnented in the MD simulation program EGO-VIII [48] in a sequential and 

parallelized version; the latter has been implemented and tested on a num- 
1~ of distributed memory parallel computers, e.g., IBM SP2, Cray T3E, 
Parsytec CC and ethernet-linked workstation clusters running PVM or MPI. 

2.3 Computational Performance 

Hore we want to  document that FAMUSAMM actually provides an enhanced 
c:orriputational efficiency both as compared to  SAMM as well as to  the refer- 
(.rice method which is characterized by exact evaluation of the Coulomb sum. 
To t,hat aim we haw cm-ied out a series of test simulations for systems of 
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varying size ranging from 500 t o  40,000 atoms. We used the sequential ver- 
sion of EGO-VIII. All simulations were executed on a DEC-ALPHA 3300L 
(175 MHz) workstation equipped with 96 MB RAM. Figure 3 shows that  the 
average computation time required for one MD integration step scales linearly 
with system size for systems comprising more than about 1,000 atoms. 

0 5000 10000 15000 20000 25000 30000 35000 40000 

Number of atoms 

Fig. 3. Average computation time for one step using EGO-VIII on a DEC-Alpha 
3300L workstation (175 MHz) for simulation systems of varying size. The insets 
show some of the protein-water systems used for the benchmark simulations. 

For large systems comprising 36,000 atoms FAMUSAMM performs four 
times faster than SAMM and as fast as a cut-off scheme with a 10 A cut-off 
distance while completely avoiding truncation artifacts. Here, the speed-up 
with respect t o  SAMM is essentially achieved by the multiple-time-step ex- 
trapolation of local Taylor expansions in the outer distance classes. For this 
system FAMUSAMM executes by a factor of 60 faster than explicit evalu- 
ation of the Coulomb sum. The subsequent Section describes, as a sample 
application of FAMUSAMM, the study of a ligand-receptor unbinding pro- 
cess. 

3 Microscopic Interpretation of Atomic Force 
Microscope Rupture Experiments 

That  simulation study [49] aimed at a microscopic interpretation of single 
molecule atomic force microscope (AFM) experiments [50], in which unbind- 
ing forces between individual protein-ligand complexes have h m  nlrwwred 
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(Fig. 4, top). In particular we asked, what interatomic interactions cause the 
experimentally observed unbinding forces. 

Fig. 4. Typical AFM rupture experiment (top): Receptor molecules are fixed via 
linker molecules to a surface (left); in the same way, ligand molecules are connected 
to the AFM cantilever (right). When pulling the cantilever towards the right, the 
~mlling force applied to the ligand can be measured. At the point of rupture of 
the ligand-receptor complex the measured force abruptly drops to zero so that the 
n~pture  force can be measured. 
Computer rupture simulation (bottom): In the course of an MD simulation of the 
ligand-receptor complex at atomic detail the ligand is pulled towards the right 
with a 'computer spring', while the receptor (drawn as a ribbon model) is kept in 
rhce.  From the elongation of the 'spring' the pulling force during the unbinding 
process is computed, and, thereby, a 'force profile' is obtained. The rupture force 
is interpreted as the maximum of this force. 

Both the AFM rupture experiments as well as our simulation studies 
focussed on the streptavidin-biotin complex as a model system for specific 
ligand binding. Streptavidin is a particularly well-studied protein and hinds 
its ligand biotin with high affinity and specificity [51]. Whereas previous 
cxperiments (sen references in Ref. [49]) and simulation studies [52] referred 
only to bound/unholmd states and the associated kinetics, the recent AFM 
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rupture experiments have provided a new and complementary perspective on 
ligand binding by focussing a t  atomic details of binding/unbinding pathways: 
The former were described in terms of binding free energies as thermodynamic 
quantities, which are independent of the particular reaction pathway; the 
latter relate to  forces, which actually depend on details of the unbinding 
reaction path and, therefore, can provide new insights into these details. 

To enable an atomic interpretation of the AFM experiments, we have de- 
veloped a molecular dynamics technique to  simulate these experiments [49]. 
F'rom such 'force simulations' rupture models a t  atomic resolution were de- 
rived and checked by comparisons of the computed rupture forces with the 
experimental ones. In order to  facilitate such checks, the simulations have 
been set up t o  resemble the AFM experiment in as many details as possible 
(Fig. 4, bottom): the protein-ligand complex was simulated in atomic detail 
starting from the crystal structure, water solvent was included within the 
simulation system to  account for solvation effects, the protein was held in 
place by keeping its center of mass fixed (so that internal motions were not 
hindered), the cantilever was simulated by use of a harmonic 'spring poten- 
tial' and, finally, the simulated cantilever was connected t o  the particular 
atom of the ligand, to  which in the AFM experiment the linker molecule was 
connected. 

0 AFM -1 

Fig. 5. Theory vs. experiment: rupture forces computed from rupture simulations at 
various time scales (various pulling velocities vCant) ranging from one nanosecond 
(vcant = 0.015 A/ps) to 40 picoseconds (vcant = 0.375 Ajps) (black circles) com- 
pare well with the experiment a1 value (open diamond) when extrapolated linearly 
(dashed line) to the experimental time scale of milliseconds. 

However, one significant difference between the AFM experiment and its 
simulations cannot be avoided a t  present: Whereas the AFM (~xp(~r-i~nent 
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t,;rkes place a t  a millisecond time scale, our simulations had to  be completed 
within the nanosecond time scale. So, in fact, in the simulation the pulling 
velocity had to  be chosen about six orders of magnitude larger than in the 
AFM experiment! 

In a first attempt to bridge these six orders of magnitude, we performed a 
scries of rupture force simulations using pulling velocities ranging from 0.375 
t,o 0.015 A/ps. As can be seen in Fig. 5, we observed a linear dependency of the 
computed rupture forces in the velocity range between 0.15 and 0.015 Alps. 
This suggests that simple friction dominates the non-equilibrium effects in 
t,his regime described by a friction coefficient of 20 pN s/m. A simple linear 
c)xt,rapolation of the computed rupture forces to the experimental time scale 
shows agreement between theory and experiment. Clearly, this first step has 
riot yet solved the question how to bridge the six orders of magnitude gap 
between theory and experiment (cf. also [53]). To answer that question, a 
bctter understanding of the physics of rupture experiments using simplified 
models on the one hand (cf., e.g., Ref. [54]) and, on the other hand, a careful 
i~nalysis of the atomic processes which cause the velocity dependent rupture 
forces is necessary. 

One of the results of an MD rupture simulation is the pulling force as a 
fiiriction of time or cantilever position xCant(t), called the force profile. Figure 6 
shows an example, derived from an extended 1 ns-simulation, where a pulling 
wlocity of 0.015A/ps was used. The apparent multitude of force maxima 
rliir.rors the complexity of the energy landscape traversed by the biotin on 
it,s way out of the binding pocket. The peaks of this force profile can be 
a.t,tributed to the rupture and formation of individual hydrogen bonds and 
water bridges shown in the snapshots of Fig. 7, which characterize the main 
st,eps of the rupture process. The rupture forces in Fig. 5 are the maxima of 
thc corresponding force profiles. 

We will not discuss here in detail our atomic model of the unbinding 
lmcess derived from our simulations and sketched in Fig. 7, but restrict our- 
selves to two unexpected features. One is that the rupture of the initially very 
stmng hydrogen bonds between the ligand and the residues of the binding 
wcket (Fig. 7 A) does not entail immediate unbinding. Rather, the com- 
~ l c x  is stabilized by a transient network of water bridges and other transient 
llydrogen bonds, which form during the unbinding process (Fig. 7 B and 
) Only after subsequent rupture of these hydrogen bonds the maximum 
firre  - the rupture force - is reached and the biotin rapidly moves out of 
t'hv entry of the binding pocket (Fig. 7 D). As another feature we observed, 
t'owards the end of the unbinding process, a second force maximum, which 
w(: attribute to a strong transient hydrogen bond and several water bridges 
htween biotin and the entry of the binding pocket (Fig. 7 E). Crossing of 
h t  second barrier, which cannot yet be resolved in the AFM experiment, 
(:orripletes the unbinding process. 

In summary, our simulations provided detailed insight into the complex 
rrlcchanisms of strr~)t;~vidin- biotin rupture. They attribute the binding force 
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Fig. 6. Force profile obtained from a one nanosecond simulation of streptavidin- 
biotin rupture showing a series of subsequent force peaks; most of these can be 
related to the rupture of individual microscopic interactions such as hydrogen bonds 
(bold dashed lines indicate their time of rupture) or water bridges (thin dashed 
lines). 

to  a network of hydrogen bonds between the ligand and the binding pocket 
and show that water bridges substantially enhance the stability of the com- 
plex. Good agreement with experimental results was obtained. Further 'force 
simulations' of various systems, e.g., an antigen-antibody complex, are in 
progress. 

4 Conformational Flooding 

The previous application - in accord with most MD studies - illustrates the 
urgent need to  further push the limits of MD simulations set by todays com- 
puter technology in order to  bridge time scale gaps between theory and either 
experiments or biochemical processes. The latter often involve conformational 
motions of proteins, which typically occur a t  the microsecond to  rnillisrrond 
range. Prominent examples for functionally relevant conform:~tliollal n~otions 
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Fig. 7. 'Snapshots' of rupture taken (A) at the start of the simulation (z,,,t = 0)) 
(13) at ZCant = 2.8 A, (C) at zcant = 4.1 A, (D) at zcan t  = 7.1 A, and (E) at ZC.,~ = 
10.5 A. The biotin molecule is drawn as a ball-and-stick model within the binding 
pocket (lines). The bold dashed lines show hydrogen bonds, the dotted lines show 
wlected water bridges. 

m? the opening and closing of ion channels or, as proposed by Griffith (551 
m l  Prusiner [56], pathogenic conformational transitions in prion proteins, 
t h r t  putative agents of mad cow and Creutzfeldt-Jacob diseases. Conforma- 
tJional motions often involve a complex and concerted rearrangement of many 
:ltoms in a protein from its initial state into a new conformation. These rear- 
1'aIlgements, called conformational transit ions, exhibit a multi-rate behaviour, 
which is is captured by the concept of "hierarchical conformational substates" 
int,roduced by Hans Frauenfelder [57]. According to  that concept the free en- 
c ~ g y  landscape of a protein exhibits a large number of nearly isoenergetic 
rniriima, corresponding to the conformational substates, which are separated 
1)y Ilarriers of differmlt, height [58]. 



90 Eichinger, Heymann, Heller, Grubmiiller, Tavan 

Fig. 8. 'Conformational flooding' lowers free energy barriers of conformational tran- 
sitions and thus accelerates such transitions. The figure shows a one dimensional cut 
through the high dimensional free energy landscape F (bold line) along a particular 
conformational coordinate c; .  During an MD simulation the protein remains in the 
initial configuration (local minimum in the free energy), since the high barrier to 
the right cannot be overcome on an MD time scale. However, the MD simulation 
can serve to approximate the free energy harmonically in the vicinity of the initial 
configuration (dotted line) in order to derive an artificial 'flooding potential7 Vfl 
(dashed line). Inclusion of this potential (thin line) in subsequent MD simulations 
reduces the barrier height by an amount of A F  and thereby destabilizes the initial 
configuration. 

Figure 8 shows a one-dimensional sketch of a small fraction of that energy 
landscape (bold line) including one conformational substate (minimum) as 
well as, to  the right, one out of the typically huge number of barriers sep- 
arating this local minimum from other ones. Keeping this picture in mind 
the conformational dynamics of a protein can be characterized as "jumps" 
between these local minima. At the MD time scale below nanoseconds only 
very low barriers can be overcome, so that the studied protein remains in 
or close to its initial conformational substate and no predictions of slower 
conformat ional transitions can be made. 

In order t o  make such predictions possible, we have developed the con- 
formational flooding (CF) method, which accelerates conformational transi- 
tions [59] and thereby brings them into the scope of MD simulations ("flood- 
ing simulations"). The method is a generalization of the "local elevation 
method" [60] in that it rests on a quasi harmonic model for the free energy 
landscape in the vicinity of the minimum representing the initial (known) 
conformational state. This model is derived from an ensemble of structures 
generated by a conventional MD simulation as will be described below and 
is shown in Fig. 9. From that model a "flooding ~otent ial"  Vfl is collstructed 
(dashed line in Fig. 8), which, when subsequently included int'o the poten- 
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Fig. 9. Two-dimensional sketch of the 3N-dimensional configuration space of a pro- 
t,cin. Shown are two Cartesian coordinates, x l  and 2 2 ,  as well as two conformational 
coordinates (cl and c2), which have been derived by principle component analysis 
of an ensemble ("cloud" of dots) generated by a conventional MD simulation, which 
qqxoximates the configurational space density p in this region of configurational 
space. The width of the two Gaussians describe the size of the fluctuations along 
the configurational coordinates and are given by the eigenvalues A;. 

t,ial energy function of the system, raises the minimum under consideration 
(t,hin line in Fig. 8) and thereby lowers the surrounding free energy barriers 
by an amount AF without severely modifying the barriers themselves. As a 
rvsult, transitions over these barriers are accelerated by approximately the 
Boltzmann factor e x p ( g ) .  In detail, the following steps are necessary to 
perform a CF simulation: 

Step 1: A short conventional MD simulation (typically extending over a few 
100 ps) is performed to generate an ensemble of protein structures {x E R ~ ~ }  
( C R C ~  described by N atomic positions), which characterizes the initial confor- 
rriational substate. The 2-dimensional sketch in Fig. 9 shows such an ensemble 
H.S a cloud of dots, each dot x representing one "snapshot" of the protein. 

Step 2: This ensemble is subjected to a "principal component analysis" 
(PCA) [61] by diagonalizing the covariance matrix C E { R ~ ~  x R ~ ~ } ,  

C := ( ( x - x ) ( x - x ) ~ )  with X =  (x) 

wit,h orthonormal Q and A = (bijXi) E { R ~ ~  x R ~ ~ } ,  where (. . .) denotes 
R r i  average over the ensemble 1x1. 
S tep  3: The eigenvrctors of C define 3N - 6 collective coordinates (quasi 
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particles) q := Q(x - x), where we have eliminated the six rotational and 
translational degrees of freedom. F'rom these 3 N  - 6 degrees of freedom we 
select a number rn < 3 N  - 6 conformational coordinates c = (c l ,  . . . , c,)* 
associated to the largest eigenvalues. Thus, the conformational coordinates 
cover most of the atomic fluctuations occurring at the 100 ps time scale. These 
rn degrees of freedom are expected to dominate (not necessarily exclusively) 
conformational motion also at slower time scales [62, 63, 641. 

Step 4: This PCA defines a multivariate Gaussian model PC, 

PC (c) cx exp [-cT A,c/2] 

of the conformational space density p(c), from which the quasi harmonic 
approximation of the energy landscape, 

is derived (see Ref. [59]). 

Step 5: F'rom that model of the current substate we construct the flooding 
potential Vfl of strength Efl, 

Vfl = Efl exp 

which is included in a subsequent MD simulation within the energy function 
used in the conventional MD simulation before (see Fig. 8), thereby causing 
the desired acceleration of transitions. 

As a sample application we describe simulations suggesting possible con- 
formational transitions of the protein BPTI (Bovine Pancreatic Trypsin In- 
hibitor) a t  a time scale of several 100 nanoseconds (see Fig. 10). First we 
carried out a conventional MD simulation of 500 ps duration (no explicit 
solvent included), during which the protein remained in its initial conforma- 
tional substate CS l. The upper left part of the figure shows several snapshots 
of the backbone taken from that simulation; the lower left shows a projection 
of the 500 ps trajectory onto the two conformational coordinates with largest 
eigenvalues (corresponding to Fig. 9). From that ensemble we constructed a 
flooding potential as described above (dashed contour lines, superimposed to 
the CS 1-trajectory, bottom right). The flooding potential was subsequently 
switched on and rapidly induced a conformational transition (to the right in 
the figure) into another energy minimum, CS 2. After switching off the flood- 
ing potential the new conformational state of the protein remained stable, 
indicating that, indeed, the new minimum is separated from CS 1 by a large 
energy barrier. Using multi-dimensional transition state theory [59] we could 
estimate that in an conventional (i.e., unperturbed) MD simulation that con- 
formational transition would have been observed only after st3vera,l hndred  
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Fig. 10. 'Conformational flooding' accelerates conformational transitions and 
makes them accessible for MD simulations. Top left: snapshots of the protein back- 
lmne of BPTI during a 500 ps-MD simulation. Bottom left: a projection of the 
con formational coordinates contributing most to the atomic motions shows that, 
on that MD time scale, the system remains in its initial configuration (CS 1). Top 
right: 'Conformational flooding' forces the system into new conformations after 
crossing high energy barriers (CS 2, CS 3, . . . ). Bottom right: The projection visu- 
alizes the new conformations; they remain stable, even when the applied flooding 
potentials (dashed contour lines) is switched off. 

~ianoseconds. As shown in Fig. 10, the CF method can be applied iteratively 
to systematically search for further conformational substates, CS 3, CS 4 etc. 
The upper right part of the figure shows the backbone configuration of BPTI 
corresponding to the new substates. 

MD simulations are valuable tools if one wants to gain detailed insight into 
fast dynamical processes of proteins and other biological macromolecules at 
tttornic resolution. But since conventional MD simulations are confined to the 
study of very fast processes, conformational flooding represents a complemen- 
tary and powerful tool to predict and understand also slow conformational 
~mtions. Another obvious application is an enhanced refinement of Xray- or 
NMR-structures. 
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Abstract. The paper presents basic concepts of a new type of algorithm for the 
numerical computation of what the authors call the essential dynamics of molecu- 
lar systems. Mathematically speaking, such systems are described by Hamiltonian 
differential equations. In the bulk of applications, individual trajectories are of no 
specific interest. Rather, time averages of physical observables or relaxation times of 
conformational changes need to be actually computed. In the language of dynami- 
cal systems, such information is contained in the natural invariant measure (infinite 
relaxation time) or in almost invariant sets ("large" finite relaxation times). The 
paper suggests the direct computation of these objects via eigenmodes of the asso- 
ciated F'robenius-Perron operator by means of a multilevel subdivision algorithm. 
The advocated approach is different from both Monte-Carlo techniques on the one 
hand and long term trajectory simulation on the other hand: in our setup long term 
trajectories are replaced by short term sub-trajectories, Monte-Carlo techniques are 
connected via the underlying F'robenius-Perron structure. Numerical experiments 
with the suggested algorithm are included to illustrate certain distinguishing prop- 
ert ies. 

1 Introduction 

The classical microscopic description of molecular processes leads to a math- 
ematical model in terms of Hamiltonian differential equations. In principle, 
the discretization of such systems permits a simulation of the dynamics. How- 
ever, as will be worked out below in Section 2, both forward and backward 
numerical analysis restrict such simulations to only short time spans and 
to comparatively small discretization steps. Fortunately, most questions of 
chemical relevance just require the computation of averages of physical ob- 
servable~, of stable conformations or of confomnational changes. The com- 
putation of averages is usually performed on a statistical physics basis. In 
the subsequent Section 3 we advocate a new computational arvroach on the 
basis of the mathematical theory of dynarnicab  system,^: dirwt1l y solve a 
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discretized eigenvalue problem for the Frobenius-Perron operator without 
ilrly physical a-priori assumptions. In this framework, the computation of av- 
c\rages corresponds to the approximation of invariant measures and invariant 
sets associated with eigenvalue X = 1 - a fact, which is well-known for quite 
;L while. In a similar way, conformations of molecular systems correspond to 
c~,lrnost invariant sets related to eigenmodes of the F'robenius-Perron operator 
for X o 1 - a fact, which has just recently been discovered [6]. On the basis of 
t,his insight, a multilevel box discretization (or subdivision technique) is ap- 
plied to the F'robenius-Perron eigenvalue problem, which only requires short 
tcrm subtrajectory computations. Finally, an illustrative numerical example 
is included in Section 4. This paper is a shortened and improved version of 
the more elaborate Technical Report [8]. 

2 Trajectory Simulation 

111 classical MD (cf. textbook [I]) a molecule is modelled by a Hamiltonian 
function 

where q and p are the corresponding positions and momenta of the atoms, M 
the diagonal mass matrix, and V a differentiable potential. The Hamiltonian 
H is defined on the phase space r c 1 ~ ~ ~ .  The corresponding canonical 
cqiations of mot ion 

describe the dynamics of the molecule. The formal solution of (1) with initial 
state xo = (q(O), p(0)) is given by x(t) = (q(t), p(t)) = P x o ,  where C denotes 
the flow. In the process of one-step numerical integration of (1) we replace 
tJhe flow by a discrete flow PT, so that 

with stepsize T (assumed to be constant, for the time being). An important 
feature of molecular processes is that long term predictions over periods much 
longer than the applied time steps are required. 

Forward Analysis In this type of analysis, we are interested in the propa- 
gation of initial perturbations 6x0 along the flow Gt of (I), i.e., in the growth 
of the perturbations bx(t; xo) = bt (xo + 6x0) - btxo. The condition number 
~ ( t )  may be defined as the worst case error propagation factor (cf. textbook 
[4]), SO that, in first order perturbation analysis and with a suitable norm 1 .  I: 
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Note that this number n(t) is independent of any discretization. From this 
point of view, numerical integration is reasonable only over time intervals 
[0, TI with n(T) sufficiently small compared to expected input errors. Inte- 
grable systems (such as the popular Kepler problem) are characterized by 
n(T) N T [lo], which allows for quite long term simulations. In real life MD 
problems, however, n is exponentially increasing. This fact is illustrated in 
Fig. 1, where test simulations for the Butane molecule are presented. Note 
that here we are discussing a property of the continuous Hamiltonian system. 
Therefore, in order to avoid any discretization error effects unusually small 
time steps (T = 0.005 fs) have been chosen within the Verlet scheme. As 
can be seen, global propagation of physically negligible initial perturbations 
totally spoils any information after a time span, which is significantly shorter 
than time spans of physical interest. 

Fig. 1. Comparison of two different dynamical simulations for the Butane molecule: 
Verlet discretization with stepsize T = 0.005fs. Initial spatial deviation: I O - ~ A .  Left: 
Evolutions of the total length (=distance between the first and the last carbon 
atom) of the molecule (in A). Right: Spatial deviation (in A) of the two trajectories 
versus time. 

Backward Analysis In this type of analysis, the discrete solution is re- 
garded as an exact solution of a perturbed problem. In particular, backward 
analysis of symplectic discretizations of Hamiltonian systems (such as the 
popular Verlet scheme) has recently achieved a considerable amount of at- 
tention (see [17, 8, 31). Such discretizations give rise to the following feature: 
the discrete solution of a Hamiltonian system is "exponentially close" to the 
exact solution of a perturbed Hamiltonian system, in which, for consistency 
order p and stepsize r, the perturbed Hamiltonian has the form [ll, 31 
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This means that the discrete solution nearly conserves the Hamiltonian H 
and, thus, conserves H up to O(rP). If H is analytic, then the truncation index 
N in (2) is arbitrary. In general, however, the above formal series diverges as 
N -t oo. The term "exponentially close" may be specified by the following 
theorem. 

Theorem 1 ([S]). Let H be analytic. There exists some r, > 0, so that for 
all T < T* the numerical solution xk = and the exact solution 55 of 
the perturbed system H (the sum being truncated after N = 0(1/~) terms) 
with Z(0) = xo remain exponentially close in the sense that 

with some problem-dependent constant c > 0 over a time interval T = 

O(l / r ) ,  i.e., for all k r  < T. 

over a 
For T 

applications, one is often interested in approximating time averages 
. time interval [0, TI via associated mean values of xk ,  k = 1 . .  . T/T. 
(or T) small enough, the above backward analysis may lead to much 

better error estimates than the worst case estimates of forward analysis. 
In fact, numerical observations show that the average of the total energy 

is nearly constant over rather long time spans for large stepsizes, say T = 1 fs. 
However, this desirable property does not carry over to other averages, where 
stepsizes much smaller than desirable (T << 1 fs) may be required. This phe- 
nomenon is illustrated in Fig. 2. Here the time average of the molecular length 
of Butane over T = 200 ps requires a discretization with T. = 10-~fs  in com- 
parison with physically interesting stepsizes T e 1 . . . lOfs. This illustrates, 
that --even though the discrete system is an only slightly perturbed Hamil- 
tonian system- a successful control of energy is not sufficient for the reliable 
computation of other observables. 

Summarizing, from a mathematical point of view, both forward and back- 
ward analysis lead to the insight that long term trajectory simulation should 
be avoided even with symplectic discretizations. Rather, in the spirit of mul- 
tiple as opposed to single shooting (cf. BULIRSCH 14, 18]), only short t e r n  
trajectories should be used to obtain reliable information. 

Remark. The authors are well aware of the commonly shared belief within 
the physics MD community that the apparent chaos does not destroy all 
long term information, but only irrelevant information; in particular, average 
qmntities are supposed to be not sensitive to numerical perturbations. We 
do not aim at deciding about this fundamental question here. 

Essential Dynamics In most applications details of individual MD trajec- 
tories are of only minor interest. An illustrative example due to GRUBMULLER 
[10] is documented in Figure 3. It describes the dynamics of a polymer chain 
of 100 CH2 groups. Possible stepsizes for numerical integration are confined 



102 Deuflhard, Dellnitz, Junge, Schiitte 

1 

Fig. 2. Left: Time average (over T = 200ps) of the molecular length of Butane 
versus discretization stepsize T for the Verlet discretization. Right: Zoom of the 
asymptotic domain (T < fs) and quadratic fit. 

by the fast oscillations (T < 10fs). Time scales of physical interest range be- 
tween lo3 and lo5 ps, which is a factor lo5 - lo7 larger. The figure presents 
six different zoom levels, each of which scales up in time by a factor of 10. On 
the small time scales (upper levels) the dynamical behavior is characterized 
by nonlinear oscillations around certain vague "equilibrium positions". On 
larger and larger time scales these oscillations become less and less important. 
On the largest time scale (lowest level) we observe an "essential" dynamical 
behavior as a kind of flip-flop between two "conformations". 

As a consequence of this observation, the essential dynamics of the molec- 
ular process could as well be modelled by probabilities describing mean du- 
rations of stay within different conformations of the system. This idea is not 
new, cf. [lo]. Even the phrase "essential dynamics" has already been coined in 
[2]: it has been chosen for the reformulation of molecular motion in terms of 
its "almost invariant" degrees of freedom. But unlike the former approaches, 
which aim in the same direction, we herein advocate a different line of method: 
we suggest to directly attack the computation of the conformations and their 
stability time spans, which means some global approach clearly differing from 
any kind of statistical analysis based on long term trajectories. 

3 Dynamical Systems Approach 

We restrict our attention to symplectic one-step discretizations of (I), which 
leads to discrete dynamical systems of the form 

where m denotes the number of time steps between two updates of the cliscrete 
mapping f = (97)m : I' -+ r. 
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50000 
time [ps] 

Fig. 3. MD simulation of a polymer chain of 100 CH2 groups due to [lo]. The 
dynamics of the distance between two CH2-groups (# 12 and # 36). The series of 
plots illustrates the oscillations of the distance a t  time scales increasing by a zoom 
factor of 10 at each level. 

The long term behavior of any system (3) is described by so-called in- 
variant measures: a probability measure p is invariant, iff p( f - ' (B))  = p(B) 
for all measurable subsets B  c r. The associated invariant sets are defined 
by the property that B  = f - '(B).  Throughout the paper we will restrict 
our attention to so-called SBR-measures (cf. [16]), which are robust with 
respect to stochastic perturbations. Such measures are the only ones of phys- 
ical interest. In view of the above considerations about modelling in terms of 
probabilities, the following interpretation will be crucial: given an invariant 
measure p and a measurable set B  c r, the value p(B) may be understood 
as the probability of finding the system within B. 

3.1 Frobenius-Perron Eigenvalue Problem 

A key observation for our purposes here is that the numerical computation 
of invariant measures is equivalent to the solution of an eigenvalue problem 
for the so-called Elobenius-Perron operator P  : M -+ M defined on the set 
M of probability measures on r by virtue of 

( P )  ( B )  = ( ( B ) )  for all measurable B  C r and arbitrary p E M .  

Invariant measures correspond to fixed points of P  which means that Pp = p 
iff p, E M is invariant. In what follows, we will advocate to discretize the op- 
erator P in such a W ~ Y  thatJ its (matrix) approximation Pd has an eigenvector 
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vd satisfying Pdvd = vd, which means that vd is an approximation of an in- 
variant measure. For an invariant measure, any numerical discretization may 
be interpreted as a stochastic perturbation of the original problem. 

Chemical Conformations From a chemical point of view, biomolecular 
systems are characterized by different "conformations" - a term, which si- 
multaneously describes both distinguishable geometric configurations and the 
associated chemical "functionality". In a conformation, the large scale geo- 
metric structure of the molecule is understood to be conserved, whereas on 
smaller scales the system may well rotate, oscillate or fluctuate. For a con- 
formation to be an object of chemical interest, the duration of stay within 
that comformation should be long enough (stable conformation) or, equiva- 
lently, it should make a significant contribution to any (statistical) averages. 
Conformational changes are therefore rare events, which will show up only 
in long-term simulations. 

F'rom a mathematical point of view, conformations are special subsets of 
phase space: a) invariant sets of MD systems, which correspond to infinite 
durations of stay (or relaxation times) and contain all subsets associated 
with different conformations, b) almost invariant sets, which correspond to 
finite relaxation times and consist of conformational subsets. In order to 
characterize the dynamics of a system, these subsets are the interesting ob- 
jects. As already mentioned above, invariant measures are fixed points of 
the F'robenius-Perron operator or, equivalently, eigenmodes of the F'robenius- 
Perron operator associated with eigenvalue exactly 1. In view of this property, 
almost invariant sets will be understood to be connected with eigenmodes as- 
sociated with (real) eigenvalues close (but not equal) to 1 - an idea recently 
developed in [6]. 

Almost Invariant Sets Due to F'robenius-Perron theory, the eigenmode 
for A = 1 has only positive components, which permits a direct interpreta- 
tion as an eigenmeasure - in this case the invariant measure. The situation 
is different for eigenmodes associated with X # 1, which cannot directly be 
interpreted as measures. In order to clarify the connection between eigen- 
modes to eigenvalues X = 1 but IX1 < 1 with almost invariant sets, we now 
perform some 'LGedankenexperiment": the basic idea is that almost invari- 
ant sets should allow for an interpretation as being continuous perturbations 
of invariant sets. This interpretation will lead us to an appropriate criterion 
for the identification of almost invariant sets exploiting the eigenmodes to 
eigenvalues X = 1. Suppose, that the system under investigation depends on 
a suitable parameter y (e.g. the total energy or a parameter in the potential, 
cf. example (15) in Section 4). Let B = BI U B2 with B1, B2 subsets to be 
defined. 

In the unperturbed case, say y = yo, let the system have two d?:.sjoint 
invariant sets B1 and B2 associated with two eigenmodes and invariant inea- 



Essential Molecular Dynamics 105 

swes pl and pa, respectively. In this situation, we have 

For B = B1 U B2, both measures are eigenmeasures of P associated with the 
c.igenvalue X = 1. Hence, there is no unique invariant measure p. In fact, any 
linear combination 

will be an invariant measure. In order to span the thus arising two- 
dimensional eigenspace by orthogonal eigenmodes, say p, v, we are directly 
Icd to define 

From (4) we then find 

i t ~ i t l  thus 

v(B) = 2a  - 1, lvl (B) = p(B) = 1. (6) 

In the perturbed case, assume now a small change in y, which induces a 
small intersection of B1 and B2. Let B = B1 U B2 remain to be invariant. 
Then, we have a unique eigenmeasure ji with eigenvalue A 1  = 1 and another 
cigenvector fi associated with Xz # 1. Under some continuity assumption X2 
should be close to 1 and thus we have D(B) = 0. In view of (6), continuity 
for y = yo then requires a = 112. Therefore ( 5 )  implies that 

while 1fi1 approximates a probability measure. From this insight, we may in- 
fix- a construction princzple for almost invariant sets: decompose B into two 
almost invariant sets B1, B2 such that conditions (7) and (6) hold simultane- 
orisly. Given a (spatial) discretization (cf. Section 3.2) this means to collect 
d l  positive components within the one and all negative components within 
the other subset (cf. Section 4) - thus defining a unique identification of 
i~l~llost invariant sets. Note, that the number 1/2 does not arise from any 
symmetry argument. This simplified treatment only covers the identification 
of two almost invariant sets. For a generalization along these lines of thought 
scc [9, 61. 

After these preliminaries we are now ready for a mathematically precise 
definition of an almost invariant set. Let p E M be any probability measure. 
W(: say that the set B is 6-almost invariant with respect to p if 
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In words: S is the probability that points in B are mapped into B under 
f .  In particular, if B is an invariant set, that is f - ' (B) = B, then b = 1 
independent of the choice of p. Once S = SB has been computed for a given set 
B c r using the stepsize T in the discrete dynamical system with f = (97)m, 
the system's probability of staying within B for time T can be estimated to 
be 

This is just the kind of information required from the chemical point of view. 
As it turns out, there exists a relationship between those probabilities, by 

which sets are almost invariant, and associated eigenvalues X (cf. [6]). 

Proposition 2. Let v be an eigenmode to P with respect to a real eigenvalue 
IAI < 1. Furthermore, let B c r be a set with v(B) = 4. If B is 61-almost 
invariant and r - B is S2-almost invariant with respect to Ivl, then 

For more than two almost invariant sets one has to consider all eigenmea- 
sures corresponding to eigenmodes for eigenvalues close to one. In this case, 
the following lemma will be helpful. 

Lemma 3. Let p E M be a probability measure and let X and Y be disjoint 
sets which are S x -  resp. Sy-almost invariant with respect to p. Moreover 
suppose that f -' ( x )  n Y = 0 and f -' ( Y )  n X = 0. Then X U Y is S x u y -  
almost invariant with respect to p where 

In ( lo) ,  both S1 and 62 appear as independent constants. If, in addition, 
the dynamical system possesses some symmetry, then these numbers may 
satisfy a further relation. To illustrate this fact, let us consider the simplest 
case where we have a symmetry transformation n in the problem with n2 = id. 
Then one can show (see again [ 6 ] ) :  

Corollary 4. I n  addition to  the assumptions in Proposition 2 suppose that 

(z;) the set B satisfies nB = r - B,  and 
(22) the measure lvl is n-symmetric, that i s  n*lvl = Ivl. 

Then r - B is S-almost invariant with respect to Ivl if and only i f  B is 
6-almost invariant. In  particular 
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These relations will be exploited in our subsequent Section 4. 
The literature on ergodic theory contains an interesting theorem concern- 

ing the spectrum of the F'robenius-Perron operator P. In order to state this 
result, we have to reformulate P as an operator on the Hilbert space ~ ~ ( r )  of 
all square integrable functions on the phase space I'. Since QT and, therefore, 
f are volume preserving, this operator P : L 2 ( r )  -+ L 2 ( r )  is unitary (cf. [20], 
Thm. 1.25). As a consequence, its spectrum lies on the unit circle. 

However, we consider the F'robenius-Perron operator acting on measures 
rather than on L 2 ( r ) .  The reason is that we are working on energy cells 
approximating energy surfaces (see Section 3.2) and not in the entire space 
r - and on an energy surface it may be the case that there is no invariant 
measure with an L2-density. For instance, consider the situation that (part 
o f )  the energy surface is given by a homoclinic trajectory connecting an 
equilibrium p with itself. Then it is easy to see that the only invariant measure 
supported on this homoclinic orbit is the Dirac measure 6, supported in the 
equilibrium p. In particular, there is no invariant measure possessing an L ~ -  
density. Hence the space of measures is certainly more appropriate than L2 (r) 
in our context. 

On the other hand, also measure spaces have significant disadvantages. 
Roughly speaking, the reason is that a measure cannot take into account the 
dynamical behavior in the neighborhood of its support. Hence there is some 
need for a new functional analytic setting for the Frobenius-Perron operator 
which allows to represent correctly the dynamical behavior. Indeed, this is 
currently under investigation [15]. We would also like to emphasize that our 
numerical approach seems to reproduce precisely the correct results from the 
dynamical point of view. In fact, we obtain the correct almost invariant sets 
together with reasonable corresponding eigenvalues. 

However, by constructing a nested sequence of successively larger discrete 
spaces and approximations therein we hope to end up with some approxi- 
mation of a unique invariant measure, which is then implicitly defined via 
the constructed sequence of subspaces. An expression of this mathematical 
consideration is the multilevel structure of the suggested algorithm - details 
see below (Section 3.2). In physical terms, we hope that the perturbations 
introduced by discretization induce a unique and smooth invariant measure 
but are so weak that they do not destroy the essential physical structure of 
the problem. 

3.2 Subdivision Techniques 

This section deals with the question of how to approximate the essential 
features of the flow QT for given energy E. Recall that the flow q5r conserves 
energy, i.e., it maps the energy surface To(E) = {x E r : H(x)  = E) 
onto itself. In the language of statistical physics, we want to approximate 
tho microcanonicall ensemble. However, even for a symplectic discretization, 
the discrete Row f = (OT)" does not conserve energy exactly, but only on 
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average. Therefore, rather than discretizing the energy surface, we will have 
to discretize an energy cell defined by 

in terms of some perturbation parameter SE. On the basis of the above 
considerations, b E  must be small enough to approximate ro(E), but also 
large enough to allow for energy perturbations due to the discretization. In 
the following we use the notation SE(7) for a suitable choice. In view of 
subdivision techniques applied to hyperbolic dynamical systems (cf. [s]), the 
main algorithmic steps for Hamiltonian systems are as follows: 

1. Construction of an approximate covering of the energy cell. 
2. Setting up the F'robenius-Perron operator with respect to this subset. 

We now describe each of these steps in more detail. 

Covering of Energy Cells Assume that the energy cells under consider- 
ation are compact sets and the stepsize T is fixed. We want to construct a 
collection B of boxes in phase space such that the union Q of these subsets 
is a covering of r6E(r)(E), the energy cell we focus on. To this end, consider 
a sequence of energy cells raEk (E) that shrink to raE(,) (E), i.e., consider 
6Ek 2 6Ek+i 2 . > SE(r).  The collection is constructed via a sequence 
of collections Bk by the following recursive subdivision algorithm: Bk results 
from Bk-1 by subdivision and gives Bk by the following selection step 

Thus, this multi-level process produces a finer and finer covering of raE(,)(E). 
Up to now, the parameters 6Ek are adapted to the size of the boxes according 
to some heuristics. Recall that an approximation of the energy surface ro(E) 
would only be possible in the limit r -+ 0 which implies bE(r)  -+ 0. 

Discretization of the F'robenius-Perron Operator The previous step 
led to a collection B = {B1, . . . , B d )  covering some energy cell raE (E).  Con- 
sidering now the dynamics inside this energy cell, we are only interested in 
the subsets Gi = Bi n raE(E) of the boxes Bi E B. We may now use this cov- 
ering for a discretization of the F'robenius-Perron operator. The discretization 
is realized via a Galerkin type ansatz as described in [6]. Consider the case 
of locally constant basis functions 

Then, the discretized F'robenius-Perron operator v = Pdu can be written 
componentwise as 
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m ( f  ( G i ) f l  Gj) 

Fig. 4. Computation of the stochastic matrix Pd via mapping of discretization 
boxes. 

where m denotes the Lebesgue measure (i.e., m(Gj) is the volume of the box 
Gj  ). For approximating the "volume" 

we use a Monte-Carlo approximation of the integral. That is, we approximate 
the transition probabilities pij via a Monte-Carlo discretization, 

where the xn are chosen randomly and uniformly distributed in Gj (cf. Fig. 4). 
Since the algorithmic control guarantees that each point is mapped to exactly 
one box Gj, the matrix Pd is certainly singly stochastic (w.r.t. columns). The 
map f is symplectic and hence volume preserving. Therefore, if the union 
Q = UiGi of all subsets were invariant under f ,  i.e., f (Q) = Q, the matrix 
P(j would also be stochastic with respect to its rows. However, such an effect 
would be unwanted, since then, we would always end up with an approximate 
invariant measure being equidistributed on Q (which is not always correct). 
Fortunately, f (Q) in general deviates from Q, which reflects the fact that Q 
approximates the energy surfaces of the original problem instead of that of 
the symplectic discretization 9. But f (Q) < Q implies that there are some 
points x E Q with f (x) 6 Q. Let x E Gj be one of these points. We then 
assign f (x) to the nearest box Gi, i.e., the transition x --t f (x) is counted for 
the transition probability pij . The same is done in the case when the covering 
Q of the energy cell TsE (E) is eventually incomplete. These perturbations of 
f are artificial but necessary in order to assure that the matrix approximation 
Pd is stochastic (w.r. t. columns) thus inheriting the most important property 
of the operator P. 

After the assembling of the stochastic matrix Pd we have to solve the asso- 
ciated non-se(fadjoint eigenvalue problem. Our present numerical results have 
becn computed Using. the code speig by RADKE AND S ~ R E N S E N  in MATLAB, 
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which allow for a simultaneous subspace iteration to compute eigenmodes as- 
sociated with the eigenvalue cluster around X = 1. 

The basic scheme of this algorithm is similar to "cell-to-cell mapping" 
techniques [14] but differs substantially in one important aspect: If applied 
to larger problems, a direct cell-to-cell approach quickly leads to tremendous 
computational effort. Only a proper exploitation of the multi-level structure 
of the subdivision algorithm (also for the eigenvalue problem) may allow for 
application to molecules of real chemical interest. But even this more sophis- 
ticated approach suffers from combinatorial explosion already for moderate 
size molecules. In a next stage of development [19] this restriction will be 
circumvented using certain hybrid Monte-Carlo methods. 

4 Illustrative Numerical Example 

Let us introduce a suitably simple example in order to illustrate the notion of 
almost invariant sets and the performance of our algorithm for Hamiltonian 
systems. For p = (pl,p2), q = (ql, q2) E R2 consider the potential 

3 4 
v4(q) = ( 5 ~ 1  + - 3q: - zq l  + 3) (2q; - 4q; + ?) with = 3. (15) 

As illustrated in Fig. 5, this potential comprises four local minima at the 
points (f 1, *l) (named A, B, C, D) ,  which are separated by four saddle- 
points. The energy barrier between A and B is significantly higher than the 
other three ones. The dynamical behavior of the system consists of oscillations 
around the local minima and, if the total energy is large enough for the system 
to cross the barriers, of motions from one minimum to the other. If the energy 
is not too large, there will be two kinds of "long term" dynamical behavior: 

(a) oscillations in the neighborhood of the four different minima, 
(b) back and forth oscillations between two different minima: A - D, B ++ 

C, and C ++ D.  

This is observed in simulations of the dynamics. Fig. 5 presents a solution 
which starts with an oscillation between A and D,  followed by an oscillation 
around C ,  a long period of oscillations between A and D and so on. The 
similarity of the trajectories shown in Fig. 5 (right) and Fig. 3 illustrates that 
we are actually looking at the same kind of phenomena. Thus, for the case 
presented in Fig. 5, the neighborhoods of the different minima should turn out 
to be "almost invariant sets" as well as neighborhoods of the pairs of minima 
(A, D), (C, D)  and (B, C) together with regions around the corresponding 
saddle-points "between" them. 

Inefficiency of Direct Simulation Suppose we want to compute the corre- 
sponding invariant measure p by direct simulation. Direct long term simula- 
tion by symplectic discretization of (1) yields the discrete solution (sk.) I ... , N .  
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Fig. 5. The left hand side figure shows a contour plot of the potential energy land- 
scape due to V4 with equipotential lines of the energies E = 1.5,2,3 (solid lines) and 
,3 = 7,8,12 (dashed lines). There are minima at the four points (f 1, f 1) (named 
A to D), a local maximum at  (0, O), and saddle-points in between the minima. The 
right hand figure illustrates a solution of the corresponding Hamiltonian system 
with total energy E = 4.5 (positions ql and qz versus time t ) .  

For N large enough and a box B c r one takes the relative frequency of 
x,j E B as an approximation of the invariant density in B. If the system 
were ergodic, the convergence of this algorithm would be guaranteed. Even 
ill this case the convergence could be arbitrarily slow, when the iteration gets 
h p p e d  within an almost invariant set of the system. 

Our global subdivision approach is not sensitive to such a situation. Over 
sufficiently long run times of direct simulation both methods eventually yield 
roughly the same results, see Fig. 6. 

Fig. 6. The density of the invariant measure of the potential V4 for total energy 
f3 = 4.5. Results of the subdivision approach (left) and a direct simulation with 
ahout 4.5 million steps for stepsize T = 1/30 (right). 



112 Deuflhard, Dellnitz, Junge, Schiitte 

Almost Invariant Sets Recall that the relevant almost invariant sets cor- 
respond to eigenvalues X = 1 with IXI < 1 of the associated Frobenius-Perron 
operator. 

Based on observations concerning the dynamical behavior we already con- 
jectured that there exist seven almost invariant sets - a conjecture that we 
now want to check numerically. We employ the subdivision algorithm for sub- 
trajectories of length rnT = 0.1. The final box-collection corresponding to the 
total energy E = 4.5 after 18 subdivision steps consists of 18963 boxes. 

A simultaneous computation of the four largest eigenvalues X I ,  . . . , X4 
leads to the following table: 

Number 

4 

Eigenvalue 
1 .oooo 
0.9963 
0.989 1 
0.9782 7 

The invariant measure vl corresponding to X1 = 1 has already been shown 
in Fig. 6. Next, we discuss the information provided by the eigenmeasure v2 
corresponding to X2. The box coverings in the two parts of Fig. 7 approximate 
two sets B1 and B2, where the discrete density of v;! is positive resp. negative. 
We observe, that for y > 4.5 in (15) the energy E = 4.5 of the system would 
not be sufficient to move from B1 to B2 or vice versa. That is, in this case 
B1 and B2 would be invariant sets. Thus, we are exactly in the situation 
illustrated in our Gedankenexperiment in Section 3.1. 

Fig. 7. Eigenmeasure v2 of the Frobenius-Perron operator to the second largest 
eigenvalue A 2  = 0.9963 for the test system (15) with y = 3. v2 was computed via 
our new subdivision algorithm (cf. Section 4). 

Moreover, our Hamiltonian system possesses an additional symmetry - 
it is equivariant under the transformation (42, p2) + - (42 , p2). In other words 
each of these sets is a candidate for a set B mentioned in the assumptions of 
Corollary 4. Thus, by this result, both of these sets are almost inv:~rimt with 
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probability 6 = (Az + 1)/2 = (0.9963 + 1)/2 = 0.9981. Observe that these 
;tlrnost invariant sets confirm the observation made above that dynamically 
t,here exist "long term" oscillations between the minima A o D and B * C. 

The third eigenmeasure v3 corresponding to X3 provides information 
&out three additional almost invariant sets: on the left hand side in Fig. 
X we have the set corresponding to the oscillation C * D, whereas on the 
right hand side the two almost invariant sets around the equilibria A and B 
are identified. Again the boxes shown in the two parts of Fig. 8 approximate 
t,wo sets where the discrete density of v3 is positive resp. negative. In this 
case we can use Proposition 2 and the fact that A and B are symmetrically 
related to conclude that for all these almost invariant sets 6 2 X3 = 0.9891. 

Fig. 8. Illustration of three almost invariant sets with respect to the probability 
rncltsure 1 ~ ~ 1 .  The coloring is done according to the magnitude of the discrete den- 
sity. 

Finally, the information on the remaining almost invariant sets in the 
rlcighborhood of the equilibria C and D can be extracted using the eigenvalue 
X4 with the eigenmeasure v4 (see Fig. 9). In the two parts of Fig. 9 we show 
again the boxes, which approximate two sets, where the discrete density of v4 
is positive resp. negative. Let us denote by Y the union of the boxes around 
equilibrium B in the first part of the figure and by X the boxes around D. 
(We ignore the isolated box in the left lower corner, which we regard as a 
~lumerical artifact.) We now use Lemma 3 to derive a lower bound for dx. 
Numerically we obtain the values iv4(X)I = 0.3492 and iv4(Y)J = 0.1508. 
Note that Jv4(X LJ Y)I = 0.5 and X4 + 1 = adXUY (using again the symmetry 
md Corollary 4) which leads to the estimate 

Tn all calculations done so far a fixed stepsize T = 0.1 has been used. 
Hcnre a,n application of formula (9) leads to the following table concerning 
flip- flop probabilitiw lwtwcxm different conformations. 
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Fig. 9. Illustration of four almost invariant sets with respect to the probability 
measure (u4( .  The coloring is done according to the magnitude of the discrete den- 
sity. 

These numbers indicate that it is very unlikely for the system to stay in C 
and D for more than 100 seconds, whereas for an oscillation A - D or B - C 
this may well be the case. In particular, these results are in nice agreement 
with Fig. 5 (right): there we observe an oscillation A - D for about 200 
seconds, whereas the longest stay in the neighborhood of the minimum C 
only lasts about 60 seconds. 

conformat ion 

5 Conclusion 

probability to stay within for 
0.1 sec.1 1 sec. I10 sec.1 100 sec. 

The paper suggests a novel concept for computing essential features of Hamil- 
tonian systems arising in molecular dynamics. The concept involves the de- 
termination of invariant and almost invariant sets via eigenmodes of the as- 
sociated F'robenius-Perron operator. The numerical findings in an illustrative 
example are intriguing, but a sound theoretical basis of the approach is still 
missing. Moreover, the algorithm as it stands now is suitable only for small 
systems. However, extensions to avoid the "curse of dimension" are already 
under development. The value of the suggested concept and its range of ap- 
plicability to MD will prove or disprove in the years to come. 
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Abstract. A model of the conformational transitions of the nucleic acid molecule 
during the water adsorption-desorption cycle is proposed. The nucleic acid-water 
system is considered as an open system. The model describes the transitions be- 
tween three main conformations of wet nucleic acid samples: A-, B- and unordered 
forms. The analysis of kinetic equations shows the non-trivial bifurcation behaviour 
of the system which leads to the multistability. This fact allows one to explain the 
hysteresis phenomena observed experimentally in the nucleic acid-water system. 
The problem of self-organization in the nucleic acid-water system is of great im- 
portance for revealing physical mechanisms of the functioning of nucleic acids and 
for many specific practical fields. 

1 Introduction 

At present it is clear that the conformational dynamics of the nucleic acids 
(NA) is of importance for the functioning of the living cell [I]. There is 
a number of the conformations, spatial configurations with definite struc- 
tural parameters, which NAs adopt under the wide range of the experimen- 
tal conditions. These are the families of the canonical B-conformation, A- 
conformation, 2-conformation (ordered forms) and unordered or P-form (ob- 
served in the samples with low water content) with no base stacking and no 
melting when heated (for reviews see [2], 131, 141, 151). Their appearance is de- 
pendent on the primary structure of the NA and the experimental conditions. 
The NA conformations are stable, but not static. The transitions between NA 
conformations are possible on changing of the properties of the NA surround- 
ings such as the temperature, the ionic strength of the NA solution, the water 
content of the sample, etc. 

For modelling conformational transitions and nonlinear dynamics of NA a 
phenomenological approach is often used. This allows one not just to describe 
a phenomenon but also to understand the relationships between the basic 
physical properties of the system. There is a general algorithm for modelling 
in the frame of the phenomenological approach: determine the  dorninant mo- 
tions of the system in the time interval of the process treate(.l ~ l d  thrw write 
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down and solve the equations describing these motions [6]. There is a great 
rlurnber of works dealing with the modelling of NA conformational dynamics 
[['i'] , 181, 191, [lo] and references therein]. 

As the conformation of NAs is dependent on the properties of their en- 
vironment the next step to understanding the physical basis of the confor- 
mational dynamics of the NAs could be the direct consideration of the in- 
t,craction of macromolecule with its nearest surrounding ion-hydrate. In the 
present study we restrict our consideration to the hydration shell of the NA, 
;tssuming that the countreion content is constant. A convenient sample to 
investigate the interaction of NA with water is wet NA fibers and films. The 
Ilydration shell stabilizes the ordered forms of NA by means of forming reg- 
~ d a r  structures due to H-bonds between adsorbed water molecules, "water 
1)ackboneV, and is one of the main factors influencing the NA conformational 
st>ate. Such "water bridges" considerably contribute to the stabilization of 
t,hc helical structure up to 70 % of the melting enthalpy of B-DNA in wet 
filrrls and gels 151. The regular hydration shells of the distinct nucleic acid 
conformations are known to be considerably different and distinct groups of 
the adsorbed water molecules play different roles in the stabilization of the 
distinct NA conformations 121, [l 11, 131. The dry NA is known to be unordered 

[5l 
The hydration shell is formed with the increasing of the water content 

of the sample and the NA transforms from the unordered to A- and then 
t,o B-form, in the case of DNA and DNA-like polynucleotides and salt con- 
centrations similar to in vivo conditions. The reverse process, dehydration 
of' NA, results in the reverse conformational transitions but they take place 
at  the values of relative humidity (r.h.) less than the forward direction [12]. 
Tlius, there is a conformat ional hysteresis over the hydrat ion-dehydrat ion 
loop. The adsorption isotherms of the NAs, i.e. the plots of the number of 
t tic: adsorbed water molecules versus the r .h. of the sample at constant tem- 
perature, also demonstrate the hysteresis phenomena 1131. The hysteresis is 
mproducible and its value does not decrease for at least a week. 

A possible explanat ion of the hysteresis could be the non-equilibrium 
of the DNA hydration. In that case the value of hysteresis has to depend 
on the size of the experimental sample. However, such a dependence is not 
observed in the wide range of DNA film thicknesses (0.05-0.2 pm) 1141, 1121. 
Thus, hysteresis cannot be a macroscopic phenomenon and does reflect the 
molecular interaction of water and the biopolymer. 

Taking into account the hydration shell of the NA and the possibility of 
the water content changing we are forced to consider the water + nucleic 
acid as an open system. In the present study a phenomenological model tak- 
ing into account the interdependence of hydration and the NA conformation 
transition processes is offered. In accordance with the algorithm described 
above we consider two types of the basic processes in the system and thus 
two time intervals: the water adsorption and the conformational transitions 
o f  the NA, times of the conformational transitions being much more greater 
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than the time of the water adsorption. The relaxation time of the adsorbed 
water molecules is about 10-'~-10-~ s [15], [16], while the time of the con- 
formational equilibrium in the case of the wet NA samples is of the order of 
hours and even days [17]. 

2 The Model 

2.1 Conformat ional Transitions 

We consider a finite space, which contains the NA sample and is in contact 
with a bath of water or water vapor. That allows one to maintain the r.h. in 
the experimental space at a constant level and change it when necessary. Such 
a scheme corresponds to the real experiments with wet NA samples. A NA 
molecule is simulated by a sequence of units of the same type. Thus, in the 
present study, we consider the case of a homogeneous NA or the case where 
averaging over the unit type is possible. Every unit can be found in the one of 
three conformational states: unordered, A- or B- conformat ions. The units 
can reversibly change their conformational state. A unit corresponds to a 
nucleotide of a real NA. We assume that the NA strands do not diverge during 
conformational transitions in the wet NA samples [18]. The conformational 
transitions are considered as cooperative processes that are caused by the 
unfavorable appearance of an interface between the distinct conformations. 

The processes 
with the scheme: 

of the conformational transitions of NA can be illustrated 

where U represents unordered state; A represents the A-form and B - repre- 
sents the B-form; k i  , k i  , k i  , k ,  , k: , k; - the probabilities of the occurrence 
of the corresponding conformational transit ion per time unit. 

Let us introduce the variables which are the probabilities of finding an 
arbitrary unit in a certain conformational state: U for unordered state, A for 
A- and B for B-form of the NA. There is the natural relationship between 
the variables: 

The temporal evolution of the variables can be described with the set of 
differential equations, which corresponds to the scheme (1): 
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The NAs such as DNA usually used in the experiments consist of lo4- 
10hucleotides. Thus, they should be considered as macrosystems. Moreover, 
ill  experiments with wet NA samples macroscopic quantities are measured, 
30 averaging should also be performed over all nucleic acid molecules in the 
sample. These facts justify the usage of the macroscopic equations like (3) in 
ollr case and require the probabilities of finding macromolecular units in the 
(sort ain conformat ional state as variables of the model. 

In accordance with the principle of detailed balance the set (3) with regard 
t,o (2) after some mathematics can be rewritten as: 

dA (t) - = k: [I - (1 + exp(AF;, + 2 0 ( 1 -  2A - B) + AFGA)) A - B] 
dt 

W )  
(4) 

- = k i  [A - B exp(AF,P, + 2 0  (A - B) + AF,W,)] 
dt 

1Ter.e the following relationships have been used: 

k -  
A = exp (dF;, + 20 (1 - 2A) - 2aB + dFGA) 
k: 

- 'B = exp (AF ' ,  + 20 (A - B) + AFzB) 
kB+ 

where AF'A and AF,PB are the free energy changes (per NA units' mole) in 
tJlic NA transition from the unordered form to the A-form and from A- to 
(,tie B- form respectively; a is the free energy cost of creating an interface 
hctween the distinct conformational "phases", it is clear that the parameter 
rr has different values in the cases of interfaces between the unordered state 
: t i d  the A-form, the A-form and the B-form, etc., but we made all values 
cyrial to simplify the model; AFGA, AFTB are the changes of the free energy 
of the hydration shell of the NA (per NA units' mole) in the U+A and A-tB 
c:o~iformational transitions. All parameters are expressed in units of RT. 

The expressions appearing in the exponents are the free energy change of 
t,lic NA-water system per unit mole in the U+A and A+B conformational 
tJramitions. The terms AFGA, AFTWB are introduced to take into account the 
dfect of the hydration shell on the NA conformational state. It is clear that 
t . 1 ~  terms dFGA, AFTB are functions of the degree of completeness of the 
NA hydration shell and, as it is formed with the increasing of the r.h. of the 
s;trriple, are the functions of the r.h. The form of these functions obviously 
(lcpcnds on the details of the NA hydration. As it has been shown in Sect. 1 
tllere is a lot of data on this matter. However, in the present qualitative study, 
at t,his stage of our research, it is more important to describe only the main 
features of the NA hydration. Moreover, as water adsorption time is much 
more less than times of the NA conformational transitions we can use equa- 
tions describing the equilibrium values of the amount of water adsorbed by 
NA instead of the differential equations describing the water adsorption pro- 
c-ctss itself. Thus, we have to  find an equation describing the water adsorption 
isotlierms of the NA. 
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2.2 Water Adsorption 

The problem of the theoretical description of biopolymer water adsorption 
isotherms has drawn the attention of researchers for a long time. In the works 
[19]., [20] a rigorous statistical basis for equations describing the isotherms for 
the case of homogeneous adsorption surfaces and noninteracting adsorption 
sites of N different types has been suggested. The general equation is: 

where X(Xe) is the total adsorption, i.e. the number of adsorbed water 
molecules on the NA nucleotide, at the r.h. of the sample Xe; v? are the 
primary site capacities of the N different types of the sites whose respec- 
tive partition functions are f j  (Xe). From this equation we can obtain the 
well known B.E.T. equation (introduced by Brunauer, Emmett and Teller 
as early as 1938) and its modifications [19] most conventionally used for the 
modelling of adsorption isotherms and as it is shown in [20] the isotherm 
suggested by D'Arcy and Watt which is the sum of the Langmuir's, Henry's 
and multilayer terms [21]. Such a separation of the total adsorption is of im- 
portance in the case of NAs since distinct groups of water molecules in the 
NA hydration shell play different roles in the stabilization of distinct confor- 
mation of NAs. However, the isotherm of d'Arcy and Watt can be derived 
rigorously (5) only if it is assumed that there are ( N  - 1) types of primary 
sites and the sets of the secondary and other sites, i.e. that monolayer and 
multilayer adsorptions are independent. Obviously, as it has been noted in 
the work [20], these assumptions are not valid. 

In the present study we try to obtain the isotherm equation in the form 
of a sum of the three terms: Langmuir's, Henry's and multilayer adsorption, 
because it is the most convenient and is easily physically interpreted but, 
using more a realistic assumption. Namely, we take the partition functions 
as in the case of the isotherm of d'Arcy and Watt 1201, but assume that the 
value of vm for the multilayer adsorption appearing in the (5) is equal to 
the sum of the number of adsorbed water molecules on the Langmuir's and 
Henry's sites: 

fj(Xe) = 1 + ajXe; for j = 1,2, ..., ( N  - 1) 

Substituting (6) to (5) and assuming there are M < N - 1 types of 
primary sites for which a j v y  << 1 (sites without saturation, Hc~lry's sites) 
and neglecting the heterogeneity of the Langmuir's and Hcnl-y's sit(:s wc can 
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write the total adsorption in the following form: 

The adsorption isotherm in the form (7) should be considered as a rea- 
sonable approximation, the more so, as our aim here is not to obtain faithful 
v;dues of the adsorption parameters but to describe as completely as possible 
t , lx  qualitative behaviour of the NA-water system. It is worth to note here 
t,liat the use of a polynomial of the form: 

t,o make an exact fit to  the experimental data using a Chebyshev orthogonal 
clirve fitting technique resulted in physically unrealizable activity coefficients 
( Y ,  P,  7, 

However, the B.E.T. and modificated B.E.T as well as isotherm of d'Arcy 
arid Watt fit the experimental data only in some range of the relative hu- 
midities up to about 80-85%. At the same time the adsorption in the inter- 
vid 90-100% is of great interest for in this interval the A+B conformational 
t,rarisition, which is of biological importance, takes place [17], [18]. This dis- 
agreement can be the result of the fact that the adsorbed water molecules 
( ' iLI1  form a regular lattice, structure of which depends on the conformation 
of  the NA. To take into account this fact we assume that the water binding 
(.onstants depend on the conformational variables of the model, i.e: 

A A where X , g , pA, XB,  gB, pB are the differences between the free energies 
(per unit mole) of the hydration shells of the Langmuir's, Henry's centers 
i~.~ltl multilayer in the A- or B-forms of the nucleic acid (indicated with su- 
perscripts) and unordered state; a:, a:, b0 are the adsorption constants if a 
hopolymer unit is in the unordered form. 

The expressions for the changes in the free energy of the hydration shell 
of the NA (per NA units' mole) in the U - + A  and A - + B  conformational tran- 
sitions should be written in the form: 

Equations (4) and (9) along with (8) and (7) form the a set of the 
differential-algebmk equations dependent on Xe which describes the be- 
haviour of the NA w1.tc.r system, namely the conformational transitions in 
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the system and the adsorption process. It should be stressed that in (9) the 
stationary values of the adsorption variables appear, while the values of the 
conformational variables in (8) are the instantaneous ones that correspond 
to the different time scales of the adsorption and conformational transitions. 

3 Results and Discussion 

The typical dependence of the stable stationary solutions to (4) on the con- 
trol parameter of the model X ,  is presented in Fig. 1. These results have 

and 9 equal to been obtained as numerical solutions of (4) with d, 
zero. The stability of these solutions has been determined by using the linear 
analysis [22]. The multistability of the model in a certain interval of a values 
of the control parameter allows one to explain the conformational and ad- 
sorption hysteresis phenomena observed in the real system over a r.h. loop. 
The theoretical curves are in the good agreement with the experimental ones, 
obtained for the natrium salt of thymus calf DNA using gravimetry (circles 
in Fig. l a ) .  

In the Figs. 2, 3 the calculations and experimental (circles in Figs. 2a, 
3a) results obtained for the limited r.h. ranges 0-60%, 0-90% respectively 
are presented. At each value of r.h. we have found the stationary stable 
solution of (4) which is closest to the one obtained at the previous calculation 
step. Such a procedure allows us to simulate the real experiment when the 
hydration and dehydration of the NA sample is performed sequentially. In 
the range 0-60% r.h. no conformational transition of the NA molecule occurs 
(Figs. 2b, c) and, therefore, neither conformational nor adsorpt ion-desorption 
hysteresis phenomena are observed (Figs. 2a, b, c). In the range 0-90% r.h. 
only U - + A  conformational transition occurs (Fig. 3b), therefore the hysteresis 
loop shortens (Figs. 3a, b). 

These results allows us to connect the observed hysteresis to the confor- 
mational changes in the NA molecule and consider it not as a macroscopic 
phenomenon like capillary hysteresis, but as natural property of the NA- 
water system. Our experimental and numerical results are in agreement with 
the data of other authors [13], [12], [14]. 

The adsorption-desorption hysteresis does not disappear or decrease dur- 
ing at  least a week of exposure of the NA sample to a r.h. of 56%, this value 
being chosen because the adsorption hysteresis is the greatest at this r.h. The 
hysteresis lifetime is great enough to consider the hysteresis as a permanent 
phenomenon for the processes of the cellular regulation. 

The probability of finding a nucleic acid unit in the certain conformation 
according to our results is never equal to  the unit. It agrees with the idea that 
NAs are not static but fluctuating, "breathing", objects [23]. For example, in 
RNA molecule with lo6 base pairs at the room temperature about 510 base 
pairs do not take part in the stacking and are not connected with H--bonds 
PI. 
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experiment 
- calculations 

0.0 0,2 0.4 0.6 0.8 1 ,O 

a xc 

Fig. 1. The dependence of the stable stationary values of the adsorption and con- 
fixmational variables on the control parameter, X ,  . a-total adsorption per the 
~riole of the nucleotides, b-the probability of finding of an arbitrary NA unit in the 
A form, c-the probability of finding of an arbitrary NA unit in the B-form. Param- 
ot,crs' values used to obtain numerical results: umL = 3, aL = 15.4, a; = 3.24, b0 = 
0.72, AF;, = 1.15, A F i B  = 0 .7075 ,~  = 1 . 5 7 5 , ~ ~  = 0.165, vA = 0.325, pA = 

0.065, X~ = 0.1, ~ 7 ~ 0 . 3 ,  pB = 0.177 

The conformational transitions in the presented model take place accord- 
ing to  the all-or-nothing law, i.e. they occur at the certain r.h. value. The 
same behaviour has been observed, for example, for the helix-coil transition 
of the model double-stranded structure A(pA) l7-U(pU) 17 [24]. It is worth 
lloting that this structure is homogeneous, the same is supposed in our model. 

The model suggested allows one to investigate the possible autowave pro- 
cesses in the system. The autowave processes such as the trigger waves (prop- 
agating fronts) of a new conformation propagating along the NA molecule in 
the conformational transitions have been described in the frame of a more 
simple trigger model where only two conformational states of the NA have 
h e n  distinguished and only Langmuir7s adsorption has been taken into ac- 
count [25]. Such propagating fronts agree with the well known " Zipper7' model 
of' the NA helix-coil transition [26]. Also, stochastic analysis based on the set 
of nonlinear master equations has been performed for the simple model. It 
has been shown that  the multistability can be connected to  the metastable 
st.atns of the NA w:l.tcr system [25]. It seems highly plausible that the dy- 
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Fig. 2. The dependence of the stable stationary values of the adsorption and confor- 
mational variables on the control parameter, for 0 < X ,  < 0.9. a-total adsorption 
per the mole of the nucleotides, b-the probability of finding of an arbitrary NA unit 
in the A-form, c-the probability of finding of an arbitrary NA unit in the B-form. 

namical behaviour of the simple model will be an intrinsic feature of more 
complete model of the three states suggested in the present study. 

The model suggested can be easily extended to the case of inhomogeneous 
NAs by means of introducing the dependence of the model parameters on 
the number of the NA unit in the chain and solving (4) and (7) for every 
NA unit. This seems important as natural NAs such as DNA and RNA are 
inhomogeneous. The extension of the model on the case of more than three 
conformations also can be done easily. 
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Abstract. Protein-ligand interactions control a majority of cellular processes and 
arc the basis of many drug therapies. First, this paper summarizes experimen- 
tal approaches used to  characterize the interactions between proteins and small 
rr~olecules: equilibrium measurement of binding constant and standard free energy 
of binding and the dynamic approach of ligand extraction via atomic force mi- 
croscopy. Next, the paper reviews ideas about the origin of different component 
terms that contribute to the the stability of protein-ligand complexes. Then, the- 
oretical approaches to studying protein-small molecule interactions are addressed, 
irlcluding forced extraction of ligand and perturbation methods for calculating po- 
tcritials of mean force and free energies for molecular transformation. Last, these 
approaches are illustrated with several recent studies from our laboratory: (1) bind- 
ing of water in cavities inside proteins, (2) calculation of binding free energy from 
"first principles" by a new application of molecular transformation, and (3) extrac- 
tion of a small ligand (xenon) from a hydrophobic cavity in mutant T4-lysozyme 
LwA.  

1 Introduction 

Protein-ligand interactions control a majority of cellular processes, as, enzyme 
catalysis, assembly of organelles, energy transduct ion, signaling, diverse con- 
trol functions, and replication, expression and storage of the genetic material. 
Furthermore, protein-small molecules interactions provide the mechanism of 
Inany drug therapies, and are, therefore, a focus of interest in the pharmaceu- 
tical industry. Simulation studies have been used to address both fundament a1 
arid practical issues of protein-ligand interactions. If the goal is to  reach a 
fill1 understanding of structure, dynamics and structural stability, highly ac- 
(:urate simulations are preferable and computational cost can be high, as a 
single simulation may provide new insight. In the practical setting of a drug 
(liscovery process, many compounds must be screened in a short time, and 

* This work has been supported by the U.S. National Science Foundation (grant 
MCB-9314854) and the U.S. National Institutes of Healt h7s National Center for 
Research Resourcw (grant R1R08102 to the UNC/Duke Computational Structural 
Biology Resource). 
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approximate models that can be evaluated more rapidly are preferred. In this 
paper, we discuss first some background and current ideas and then summa- 
rize results of some recent studies of protein-ligand interactions done in our 
laboratory. 

2 Measures of the Stability of Protein-Ligand 
Complexes 

Equilibria in Solution The stability of a protein-ligand complex in solution 
is measured in terms of the equilibrium constant and the standard free energy 
of association based on it. For association of species P and L in solution to 
form a complex P L ,  i.e., for 

the equilibrium constant (for association) is related to the concentrations of 
the three species under equilibrium conditions 

and the difference in free energy for converting one mole of P plus one mole 
of L into one mole of P L  under standard conditions is given by 

Equilibrium constants for protein-small molecule association usually are eas- 
ily measured with good accuracy; it is normal for standard free energies to 
be known to within 1t0.5 kcal/mol. Standard conditions define temperature, 
pressure and unit concentration of each of the three reacting species. It is to 
be expected that the standard free energy difference depends on temperature, 
pressure and solvent composition; AAoa also depends on an arbitraq choice 
of standard unit concentrations. 

Ligand Extraction by Atomic Force Microscopy The recently devel- 
oped atomic force microscope (AFM) allows measurement of the force re- 
quired to extract a ligand molecule from a single protein-ligand complex, 
and provides an entirely new kind of information about the binding process. 
In a typical experiment, protein molecules are attached to a substrate, and 
ligand molecules are attached to the tip of the AFM probe. First, the probe 
is brought in contact with the substrate; then it is again moved away, while 
position and force are recorded. If in the contact phase a ligand molecule 
on the probe has managed to bind to a protein molecule on the substrate, a 
force will be required in the second phase in order to extract the ligand from 
the binding site. Experimental results on unbinding of biotin from its com- 
plex with streptavidin are among the first such results to have been obtained 
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3 Components of the Affinity 

A decomposition of the binding free energy into component terms is useful 
2s a means of gaining insight into the factors that contribute to the stability 
of the complex, or lack thereof [3]. Two important terms, the protein-ligand 
cwergy and the solvation free energy can be calculated rather easily: the for- 
ruer can be computed with the molecular mechanics force field, and averaged 
over a molecular dynamics simulation, and the latter can be estimated in 
terms of solvent polarization computed on the basis of a continuum dielectric 
model and an empirical hydrophobic free energy which is proportional to the 
molecular surface. However, some other component terms are very difficult 
to estimate. Consequently, this approach is most useful when the latter terms 
c : m  be assumed to be constant, as for a series of related ligands, for which 
differences in binding free energy can then be estimated from the remaining 
components, and lends itself to high-volume tasks, such as screening a library 
of small molecules to find likely inhibitors of an enzyme when the structure 
of the binding site is known, e.g. [20]. 

Furthermore, an actual or conceptual decomposition is useful because it 
car1 lead to a better appreciation of factors underlying the binding energetics. 
We consider here the following four components. 

1. Direct ligand-protein interactions. Van der Waals and Coulomb energy 
of interaction of atoms of ligand with atoms on protein. 

2. Solvation. Difference in solvation of protein and ligand molecules in the 
complex and in isolation. 

3. Confinement. The ligand molecule is confined to a small volume and a 
rimrow range of orientations, that correspond to the freedom of the ligand in 
the bound state. 

4. Conformational adjustments. The conformations of the protein and the 
ligand are adjusted to meet the requirements of the complex. 

One should realize that this decomposition is, for more than one reason, 
hndamentally flawed: it focuses on single conformations, not taking into ac- 
count proper averaging over an equilibrium distribution; it tends to ignore 
cross terms, such as a dependence of the first two terms on conformational ad- 
j ~ t m e n t s ;  quite generally, a valid decomposition should be specified, at  least 
conceptually, in terms of a sequence of steps in the reaction scheme (such as, 
transfer from solution to vacuum, confinement, conformational adjustment 
and placement of the ligand in the binding site). In fact, the following discus- 
sion shows that some of the terms can be computed, but that for others no 
(:orr~putation has yet been developed. Thus, this decomposition may be useful 
3s an aid to understanding, but does not provide a useful route to calculation 
of binding free energies [Z]. 

Ligand-Protein Interactions The energy of formation of ligand-protein 
contacts can be computed as a sum of non-bonded (Lennard-Jones and elec- 
trostatic) terms similar to those used in a molecular dynamics simulation. 
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The direct ligand-protein interactions and the net solvation-desolvation term 
together should give an energy contribution that strongly favors formation of 
the complex (large and negative), since the other two components favor its 
dissociation. 

solvat ion-Desolvat ion In the formation of the complex, the individual 
components are desolvated, and the complex is solvated; the net result is a de- 
crease of the solvent-exposed surface. The corresponding free energy changes 
are often large; each can be treated as the sum of two components, one for 
the creation of a solute-solvent interface, and the other for the polarization 
of the solvent. It has become common practice to estimate the first of these 
as the product of a constant factor and the molecular surface area, and to 
compute the second with a model in which a continuum of high dielectric 
constant surrounds a molecular volume of low dielectric constant, contain- 
ing explicit atomic charges. The energetics of this model are computed by 
a numerical solution of the Poisson-Boltzmann equation [32, 331; the charge 
distribution is the same as that used in a molecular dynamics simulation, 
and the molecular surface is defined with the aid of a set of standard atomic 
radii [4]. This calculation gives an estimate of the free energy, i.e. contains 
both enthalpic and entropic contributions. These estimates of solvation free 
energy are reasonably accurate, and require a modest computational effort. 
A drawback is that the solvation free energy is calculated for a single confor- 
mation of protein and ligand. Optimization of the complex with inclusion of 
the gradient of the solvation free energy is possible, but time consuming. It 
is much faster to equilibrate the complex in a molecular dynamics simulation 
with explicit solvation, which can also produce a sample of representative 
solvated conformations [36]. 

Confinement of the Ligand A large free energy contribution results from 
the effective confinement of the ligand in the narrow space of the binding 
site. In the free state, the center of mass of the ligand molecule has available 
a volume of 1 L/mol = 1660 A3, while in a tightly bound state the center of 
mass may be restricted to  within f 0.5 A, so that the available volume is only 
1 A3. Such a de-facto compression by a factor of 1660 corresponds to a change 
in free energy of k B T h  1660 = 4.4 kcal/mol. Similarly, the free ligand has 
completely free orientation with respect to three degrees of freedom, while 
the orientation of a tightly bound ligand is limited to within a few degrees. 
If the range is reduced to within f 10" = f 0.18 rad for each of the three 
degrees of freedom, then this would give a further change of free energy by 
ksTln(8~2/0.363) = 4.5 kcal/mol. One can determine the positional and 
orientational freedom of the ligand with a simulation of the dynamics of the 
ligand in a rigid binding site, and from that compute an estimate of the 
confinement free energy term. However, this is not possible if the i~rotein is 
flexible, because then changes in position and orientation of the lkarld may 
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correspond either to displacement of the ligand in the binding site, or to 
displacement of the binding site as an intrinsic part of the dynamics of the 
protein without displacement of the ligand relative to the binding site, and 
it is not clear how to  separate these two effects. 

The confinement term is unique because it alone causes a dependence of 
the binding free energy on the choice of unit concentration in the standard 
state: the volume available per ligand molecule in the free state, and hence 
the compression factor, depend on the unit concentration. 

The importance of the confinement term was recognized early by Jencks, 
who attempted to obtain at  least a qualitative estimate [28]. However, Jencks 
estimated this "cratic" contribution with an expression in terms of mole 
fractions, which has turned out to be unsuited [31]. Jencks realized correctly 
that the interaction energy of a protein with even a weakly bound ligand 
must be considerable, because the cratic free energy term must be overcome. 
This led him to the following important principle that is useful in rational 
design of enzyme inhibitors: if two weak ligands are combined into a single 
rrdecule with the correct geometry for each part to interact favorably with a 
different partner in the binding site, then this new molecule has unexpectedly 
high affinity for the protein, because the two favorable energetic contributions 
together more than outweigh the single confinement term [29]. 

Conformational Adjustments The conformations of protein and ligand 
in the free state may differ from those in the complex. The conformation in 
the complex may be different from the most stable conformation in solution, 
and/or a broader range of conformations may be sampled in solution than in 
the complex. In the former case, the required adjustment raises the energy, in 
the latter it lowers the entropy; in either case this effect favors the dissociated 
state (although exceptional instances in which the flexibility increases as a 
result of complex formation seem possible). With current models based on 
t,wo-body potentials (but not with force fields based on polarizable atoms, 
currently under development), separate intra-molecular energies of protein 
and ligand in the complex are, in fact, definable. However, it is impossible to 
assign separate entropies to the two parts of the complex. 

4 Simulations of Protein-Ligand Interaction 

Free Dynamics In simulations one usually represents a single protein 
rriolecule and one or a few ligand molecules. In principle, one might then ob- 
tain an estimate of the binding constant by monitoring the state of the protein 
during a long simulation in which ligand were observed to bind and unbind 
many times, and determining the fraction of time, x p ~  during which a lig- 
and molecule was hound, and then, by equating time-average with ensemble- 
average properties, write K, = xpL/(xpcL), with x p  = 1 - x p ~ .  However, 
the association and tlissociation rates will nearly always be too slow to make 
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this an option; especially if the complex is tight, it might, once formed, not 
ever dissociate during a simulation. Instead, alternative strategies have been 
developed to assess the stability of protein-ligand complexes with theoretical 
models. In these methods, the binding free energy is obtained from simula- 
tions in which the force field is perturbed with terms that force dissociation 
or formation of the complex; the free energy change can be found from the 
work done by the external force required to maintain the perturbation. 

Potentials of Mean Force The conceptually simplest way to force the 
formation of a complex is to constrain the distance between the ligand and 
the binding site, while gradually reducing this distance. Then, in order for 
the ligand to approach the binding site along a path, s ,  an external force, Fs 
must be applied that balances the net internal force on the ligand. The work, 
Ws performed by the external force includes the free energy change and a 
contribution, WF required to  overcome friction 

In the limit of very slow change (quasi-static process) the frictional compo- 
nent is zero and then the work done by the external force equals the free 
energy change, i.e., 

Calculations at  increasingly longer simulation times, t, are done to verify 
convergence [13]. In the slow change method, the integral is approximated in 
a simulation in which s is changed by a small amount, 6s after each integration 
step, 

Alternatively, the free energy can be found as the integral of the mean 
force 

Such a free energy is called a potential of mean force. Average values of 
F, can be computed in dynamics simulations (which sample a Boltzmann 
distribution), and the integral can be estimated from a series of calculations 
a t  several values of s. A third method computes the free energy for perturbing 
the system by a finite step in s, for example, from sl to s 2 ,  with 

the averaging being done for the configurations sampled in a simulation which 
is run for s = sl, and AUlY2 the energy for perturbing the system from its 
current configuration. Typically, the value of AA, is found as the sum of 
many contributions A Al ,z ,  for successive small increments of 9. 



Simulation Studies of Protein-Ligand Interactions 135 

Forced Extract ion of Ligand Potential of mean force calculations approxi- 
mately mimic ligand extraction processes that can be studied with AFM. One 
may subject the ligand to a constant force and observe its displacement out 
of the binding site versus time, subject the ligand to a steady displacement 
i~11d monitor the required force, or apply the force via a spring, of which one 
end is attached to the ligand, and the other end is moved a t  a steady rate. 
(The third option most closely approximates the mechanics of the AFM ex- 
periment.) Two groups have published the results of simulations of the forced 
extraction of biotin from its complex with streptavidin [7, 191. (See also sepa- 
rate contributions in this volume by Helmut Grubmiiller and by Stepaniants, 
Ixrailev, Wriggers and Schulten. ) 

Molecular Transformation In a second method to compute the changes 
in free energy that result from binding, the perturbation is applied to  the 
rliolecular mechanics force field. The reasoning behind this approach is that 
if the forces between ligand and protein and solvent are reduced to zero, 
the protein interacts only with the solvent and hence is represented in the 
state without ligand bound, while the ligand molecule is then in a vacuum. 
In other words, in the process of reducing the forces between protein and 
ligand, the ligand is transferred from the bound state to  an ideal gas state. 
The free energy change can be found by the same methods as used to compute 
a, potential. of mean force, if an effective force driving the transformation is 
defined with 

where X is a parameter that controls the value of the forces between protein 
and ligand: for X = 0 these are zero, and for X = 1 they are applied a t  
full strength. The free energy can be found as the limiting value for long 
simulation time, t ,  , with 

and can be evaluated with any of the three methods (6-8). The transformation 
process corresponds to the following binding reaction, 

where the superscript (v) indicates the ideal gas state. (The standard free 
energy for this equilibrium differs from that for the equilibrium in water by 
an amount equal to  the free energy to transfer the ligand from water to 
vacuum.) 

Molecular transformation calculations can be used for computing difler- 
rnces in bindin.9 f ree enwgy for two ligands by a well-established scheme 
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based on a reaction cycle. Let K and L be two different ligands binding in 
the same site, then we can write the following cycle of four reactions, in clock- 
wise order, binding of L to P, transformation of P L  to  PK, dissociation of 
PK and transformation of K to L 

Since the net free energy change for the cycle is zero, the difference between 
the computable free energies for transforming L to K, when bound to protein 
and when dissolved in water, is equal to  the difference between the measurable 
standard free energies of binding L and K to protein, i.e., the difference in 
affinity 

This principle has been applied in a contribution by Mark, Schafer, Liu and 
van Gunsteren to this volume, and in section 6 of this article. For a review 
of free energy perturbation methods see [8]. 

5 Binding of Water in Cavities Inside Protein 
Molecules 

This section summarizes the results of a study of internal hydration of protein 
molecules, based on a very simple approach, in which only the intermolecular 
energy of protein and ligand was considered, and also describes the Dowser 
tool that was developed as a result of that study [37]. Water molecules inside 
cavities in proteins constitute integral parts of the structure. In most of the 
filled cavities, the internal water molecules are held with two or more hydro- 
gen bonds, while cavities without hydrogen bonding groups on the surface 
are empty. Due to experimental error and interpretative uncertainty of elec- 
tron density maps, internal water positions cannot always be unequivoca1ly 
assigned; the problem is worse for structures determined a t  lower resolution. 
We have sought a quantitative measure of the hydrophilicity of the cavities 
by calculating the energy of introducing a water molecule into a cavity, US- 

ing the known structure of the protein and standard molecular mechanics 
energies. In a survey of a number of proteins, it was found that a threshold 
value of the water-protein interaction energy a t  -12 kcal/mol distinguished 
hydrated from empty cavities. In one instance of two independent crystallo- 
graphic determinations of the same structure [2, 241, we were able to conclude 
on the basis of these energies and additional crystallographic information (OC- 

cupancy and B-factor) that in one structure many more buried water sites 
had been assigned than were, in fact, physically present. 

Clearly, the value of -12 kcal/mol for the threshold energy is not acriden- 
tal. Buried water molecules are in equilibrium with water ruol(~c:liles in the 
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Imlk solvent. Therefore, the protein must provide to  a buried water molecule 
tzri attractive environment a t  least as good as the environment of liquid wa- 
t,er or ice, with two hydrogen bonds per water molecule. The intermolecular 
mergy of ice is -12 kcal/mol and for water it is -10 kcal/mol. (Even a t  room 
temperature the free energy of water is very close to  that of ice.) To have 
similar or lower free energy, an internal water molecule can have an energy 
bdow -12 kcal/mol and then it may have as low an entropy as in ice. To 
h? bound with energy above -12 kcal/mol, it would have to have greater 
freedom. In most cases, the energy is provided by formation of two or more 
hydrogen bonds to groups on the protein, and the bound water molecule 
has little freedom to move. Only in rare instances a water molecule may be 
lield internally with higher entropy and energy and stabilized by other than 
hydrogen-bonding interactions, as proposed for interleukin-lp [5]. 

Dowser Program On the basis of these results, we have developed a method 
fix locating likely binding sites for water molecules in the interior of protein 
molecules of known structure. Internal cavities (and optionally crevices) are 
located with Connolly's molecular surface program [4]; in each cavity, the 
placement of a water molecule that gives lowest interaction energy is deter- 
mined. If the energy is above a limit, the site is taken to be empty. By iteration 
it is also possible to locate more than one water molecule in a cavity [16]. 
The Dowser tool has been used to locate water molecules in cytochrome-c 
oxidase.   his protein is a redox-driven pump which couples the reduction of 
oxygen to water to  the translocation of protons across a lipid bilayer mem- 
hrane. Dowser was able to locate water channels that constitute the route 
of entrance and exit of the pumped proton; on the basis of this structure, a 
t~iodel for the protein's function could be proposed [17]. 

6 Simulation of Small Ligands Bound in TClysozyme 
L99A 

6.1 Absolute Binding Constants from "First Principles" 

The problems that occur when one tries to  estimate affinity in terms of com- 
ponent terms do not arise when perturbation methods are used with sim- 
~ilations in order to compute potentials of mean force or free energies for 
rriolecular transformations; simulations use a simple physical force field and 
thereby implicitly include all component terms discussed earlier. We have 
 sod the molecular transformation approach to  compute binding affinities 
from these "first principles" [14]. The basic approach had been introduced in 
carly work, in which we studied the affinity of xenon for myoglobin [ll]. The 
procedure was to gradually decrease the interactions between xenon atom 
arid protein, and compute the free energy change by standard perturbation 
methods, cf. (10)- All (:swnbial component is to  impose a restraint on the 



138 Hermans, Mann, Wang, Zhang 

position of the xenon, which changes concurrently with the interactions be- 
tween xenon and protein; the restraint is in full effect when the interactions 
are absent, and zero when the interactions are a t  full strength. The restraint 
is essential for two reasons: by keeping the non-interacting ligand molecule 
in the binding site, it makes the process reversible, and, by confining the 
isolated ligand molecule to  a small volume, it defines a standard state whose 
free energy (chemical potential) can be related to that of a more common 
standard state by a simple formula. 

Our recent work on the affinity of benzene for a cavity inside the struc- 
ture of T4 lysozyme mutant L99A [6] has extended this method to  poly- 
atomic molecules; this is achieved by coupling the transformation to a "body 
restraint" potential which restrains not only the position but also the orien- 
tation of the ligand molecule in the absence of interactions with the protein; 
i.e. all six external degrees of freedom of the ligand (with simple extension to 
internal degrees of freedom, if needed) are restrained, rather than the three 
external degrees of freedom needed for a xenon atom [14] (See also discussion 
by Gilson et al. [lo]). In our work, the following restraint potential has been 
used 

The term U.,, restrains a point in the ligand, XTIZ to a reference position, X,,, 
defined in terms of the protein coordinates, the term UTle restrains the angle, 
8 between a vector in the ligand and a reference vector in the protein, and 
the term U,,, restrains the angle, x between a plane formed by three points 
in the ligand and a reference plane formed by three points in the protein. A 
"point" can be an atomic position or the center of mass of several atoms (of 
ligand or protein); instead of a point on the protein, one may also use a fixed 
reference position. As a result of multiplication by (1 - A),  the restraint is 
applied when the ligand-protein energy is "off", and not applied when it is 
"on" , cf. (9) and (1 0). 

Clearly, a free energy of binding computed with (9), (10) and (13) refers 
to a highly restricted state of the dissociated ligand. In order to convert such 
a free energy to a free energy relative to a normal standard state with volume 
per molecule V, and no restriction on the molecular orientation, the following 
term must be added 

AAT = -keT [ ln (zx/V,) + ln (ze/4a) + In (zx/2a)] 

where 

and similar expressions for ze and 2,. (A correction term is required for 
symmetrical molecules). 
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The computed free energy of binding depends on the choice of standard 
state for the ligand as a result of the explicit dependence of AA, on V,. In our 
original paper [14] we have cited a number of articles in the recent literature 
ir i  which the binding free energy had been estimated incorrectly with omission 
of this term. The agreement between theoretical and experimental values of 
tlic free energy was very good in both of our studies with this method [ll, 141, 
which is generally applicable to  produce estimates of the binding affinity of 
pruymes for typical substrates and inhibitors. 

6.2 Estimates of Component Term for Conformat ion Adjustment 
and "Cratic" Contribution for Binding Benzene 

Good agreement between experimental and theoretical values is strictly nec- 
cssary as a validation of the methodology, however, relatively little insight is 
gairled from the ability, per se, to compute the binding free energy. However, 
we were able to gain considerable insight into the factors determining the 
affinity, by a series of simulations of binding in which the protein's confor- 
mation was held fixed. The contribution of protein flexibility was in evidence 
from the differences in affinity for a series of different conformations of the 
protein (Table 1). The affinity is very low if the energy of the protein has 
been minimized in the absence of the ligand, intermediate in the structure 
that has been fit to the ligand by energy minimization and is highest for 
conformations that have adapted to the presence of the ligand in a dynamic 
situation, i.e., either the experimental structure or a series of snapshots of a 
rriolecular dynamics simulation of the complex. Comparison of the latter val- 
lies of around -8.5 kcal/mol with the net value of -5.5 kcal/mol for binding to 
a dynamic protein shows that the protein's conformation is altered to adapt 
itlsclf to the presence of the ligand, at  a cost of 3 kcal/mol. We believe this 
to be the first such estimate. 

Table 1. Computed free energies of binding of benzene to different rigid models of 
the protein. 

Protein conformation AAOa, 1 M gas 

(kcal/mol) 
Experimental (crystal) coordinates -8.5 
Energy minimum without benzene -3.5 
Energy minimum with benzene -6.3 

Dynamics snapshot at time to -6.8 
Dynamics snapshot a t  time to + 2 ps -8.2 
Dynamics snapshot a t  time to + 4 ps -8.9 
Dynamics snapshot at time to + 6 ps -8.3 
Dynmiics srmpshot at time to + 8 ps -7.5 
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Also by using the results of dynamics simulations with a rigid protein 
molecule, we were able to quantitate the "cratic" component, as approxi- 
mately 8 kcal/mol, and attribute this roughly to a contribution of 5 kcal/mol 
for positional confinement and 3 kcal/mol for loss of rotational freedom (rel- 
ative to  a molecule in 1 M gas). This was found to correspond to remaining 
freedom of f 0.2 A in the three translations and f 6" in the three rotations 
(taking into account also a free energy contribution in favor of binding of 
-kBT ln 12 for the high molecular symmetry of benzene). These numbers 
were found to agree closely with the deviations of position and orientation 
from the mean accessed by the benzene molecule in a dynamics simulation. 
Here, these deviations were estimated from the cratic free energy; conversely, 
the cratic free energy can be estimated accurately from observed deviations. 
(However, note that this analysis was possible thanks to use of a rigid protein 
model in these simulations.) 

The method described here becomes less suitable as the size of the ligand 
molecule increases. The problem of computing the " cratic" term for formation 
of complexes of two protein molecules have been discussed by others [34] [35]. 

6.3 Comparison of Affinities of Several Ligands 

We have applied simulations to the binding of several other molecules as 
ligands in the cavity in T4 lysozyme mutant L99A (Table 2). No binding 
data were available a t  the time for these molecules (except benzene); we 
were, however, aware that binding of the noble gases had been observed, and 
that structure determination by x-ray crystallography was in progress. The 
computed binding free energies agree well with observations that binding 
is observed at  1 atm pressure of xenon (concentration 0.0044 M), but that 
higher pressures are needed to observe binding of krypton and argon [30]. 
The crystallographic structures showed that two atoms of each noble gas were 
bound in the cavity, something the simulations had not taken into account. 
Cyclohexane is not expected to bind inside the cavity, and its binding also has 
not been reported; the high protein-ligand energy in the equilibrated complex 
indicates that the puckered cyclohexane ring is too bulky for the cavity. The 
water-protein energy in a complex with a water molecule in the cavity is 
well above the threshold that was established in our study of buried water 
molecules, and observation of a water molecule bound inside this apolar cavity 
is not to be expected. In fact, after a 1 ps simulation, the water molecule 
escaped from the cavity into the solution. 

As an approximation, one may equate the ligand-protein energy with the 
binding energy; by subtracting this from the free energy of binding, one then 
obtains a remainder which is dominated by the cratic free energy component. 
(There is no contribution from solvation in this case.) One sees in table 2 
that this is much smaller for the noble gases; the difference corresponds to 
the fact that of benzene orientation and position are restricted in tho binding 
site, while of xenon, krypton and argon only the ~osi t ion is rf>st,ric.t,cd. An 
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Table 2. Table Ligand-protein interaction energies and free energies (kcal/mol). 

Ligand < Eint ra  > AAoa An0,- < E~~~~~ > A A O ~  
(simulation) (experiment) 

benzene -13.2 -5.5 7.7 -5.2 
xenon -4.7 -2.5 2.2 < -1.9 
argon -2.3 -0.5 1.8 > -1.9 
krypton -2.4 -0.1 2.3 > -1.9 
cyclohexane +4.9 "too fat" 
water - 3. "too polar" 

entropic term of about 2 kcal/mol corresponds to  a rather considerable free 
volume of circa 60 W3 available to a noble gas atom bound in the cavity, 
which is not unreasonable, since the volume of the cavity has been estimated 
at circa 150 W3. It is also understandable that there is room for a second noble 
ga.s atom to bind; binding of the second xenon atom (in a smaller space) will 
be stabilized by a favorable interaction with the first. 

7 Extraction of Bound Xenon from Mutant 
TCLysozyme 

A problem with comparing the results of ligand extraction simulations and 
experiments is the large difference in rate of extraction: in the computer sim- 
illations the extraction is performed in hundreds of ps, but in an experimental 
setting the time is much longer, of the order of ms. As a result, the contribu- 
tion of irreversible effects (i.e., friction) to the extraction forces will be much 
larger in the simulations, and it is not clear if the simulation results can be 
oxtrapolated to the much longer time scale of the experiments. Two papers 
reporting simulations of extraction of biotin from streptavidin differ in in- 
terpretation: in the first an extrapolation of the simulation results to longer 
times gave apparent agreement with the experimental results [7], while the 
sccond paper concluded that such a long extrapolation was not feasible [19]. 

We have chosen to study the extraction of the xenon atom from its binding 
site inside the hydrophobic cavity in mutant T4 lysozyme as a simple system 
in which to model the ligand extraction process. The internal binding site 
in this mutant is hydrophobic and excludes water; as a result, an important 
source of friction in the extraction of a ligand (the simultaneous entry of 
water molecules) is absent. On the other hand, this system shares with the 
avidin-biotin system the requirement for a distortion of the geometry at the 
exit point in order to permit the ligand to escape. With long, but feasible, 
simulations it may therefore be possible to approach conditions of very slow 
extraction and hence small friction, in which the extraction force is dominated 
t)y the change in free energy (Cf. eq. 4). We describe first the interactive 
simulations in which we located an exit path for the xenon atom, and then 
the results of a series of extractions performed at different rates. 
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7.1 Steered Dynamics Tool (SMD) 

SMD refers to a system for interactively steering molecular dynamics calcu- 
lations by adding user-specified external forces into the computation on the 
fly [21]. (We call these forces "tugs" .) SMD consists of two software compo- 
nents. The computational component is a version of the SigmaX molecular 
dynamics program and is responsible for computing the dynamics of the sys- 
tem under study, including its response to user-defined external forces [Is]. 
The display component is VMD, a molecular graphics code written as part 
of the MDScope project [27] at the University of Illinois [I$]. (The MDScope 
developers have also created a steered dynamics interface to their NAMD 
dynamics code using VMD; cf. an article by Stepaniants, Izrailev, Wriggers 
and Schulten in this volume.) 

The purpose of introducing external forces is to help the molecular system 
overcome energy barriers between states. One application of this is to steer 
the system to a proposed new geometric conformation, which can be fur- 
ther studied. In other cases, the forces model physical experiments in which 
molecular complexes are pulled apart via atomic-force microscopy. The exper- 
iments in turn provide some validation of the computed model. The difficulty 
of changing the conformations in the computational model gives insight into 
physically realizable pathways. SMD provides a new tool for biochemists to 
use in exploring the structure of proposed designs, as well as in more general 
applications such as exploring the molecular dynamics model itself. Its pri- 
mary use is in modeling single large biomolecules in a bath of water acting 
as the solvent. 

In our implementation of SMD, modified versions of VMD and Sigma 
communicate with each other using a customized, lightweight protocol. Sigma 
sends atomic positions resulting from each molecular dynamics time step to 
VMD for display. When the user specifies restraints on parts of the displayed 
model, VMD sends them to  Sigma, where they are converted into potential- 
well restraints added to the force field [21]. 

A likely exit path for the xenon was identified as follows. Different mem- 
bers of our research group placed the exit path in the same location and were 
able to control extraction of the xenon atom with the "tug" feature of the 
steered dynamics system without causing exaggerated perturbations of the 
structure. The exit path is located between the side chains of leucines 84 and 
118 and of valine 87; the flexible side chain of lysine 83 lies just outside the 
exit and part of the time is an obstacle to a linear extraction (Fig. 1). 

7.2 Extract ions at Different Rates 

The interactive studies were followed by a series of batch calculations in which 
the xenon atom was dragged at  a constant rate from the cavity to n location 
well into the solvent (total distance of approximately 1.8 nm, d e ~ m d i n g  on 
the starting location of the xenon atom) in fixed time intcxwls I)c:t,wcwn 1 
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Fig. 1. Exit route of xenon in simulations of the extraction process. The xenon 
i ~ t o r n  is solid black. The atoms of the residues surrounding the exit path are shown 
;IS spheres, and the protein backbone is shown as a thin curve. On the left, the 
xenon is viewed "through" the exit between residues; on the right, the view is from 
t 1 1 ~  side and the direction of the "tug" is marked with a line. 

iuid 500 ps [22]. (Such a simulation approximates an AFM experiment with 
;I very stiff lever.) For each extraction time, calculations were done starting 
l'rorn different instants in a prior 2-ns long simulation of the complex. These 
si~nulations were done with a force field that included explicit solvation with 
SPC water molecules, periodic boundary conditions and Ewald summation. 

The work required in order to move the xenon atom was computed by 
!,lit! slow-change method, according to (6). Results for 100 ps extractions are 
sliown in Fig. 2. Near the starting point, i.e. in the bound state, the xenon 
is moved relatively easily, considerable work is required to move it through 
Llic layer of hydrophobic side chains, and there is evidence for a small energy 
Ixtrrier before the xenon leaves the protein at approximately 0.8 nm; the work 
rwformed beyond that point averages to that required according to Stokes' 
law to drag a sphere of radius 0.22 nm through a continuum with the viscosity 
of' water. 

The dependence of the mean work performed in the extraction for different 
wtraction times is shown in Fig. 3.' One sees that in very rapid extractions 
a vcry large amount of work is required to overcome the friction, which de- 
mases  as the extraction is done more slowly; ultimately, only a small amount 
of work remains to be done to compensate the free energy change for transfer- 
l'irlg the hydrophobic ligand into the solvent. In a simple system, the friction 

I R.csults are reported in energy units that correspond to those in experimental 
papers: molar units for binding equilibria (kcal/mol) and molecular units for 
ligand extraction expcrinlents (zJ = pNnm). 1 kcal/mol = 6.9 zJ, and at 300 K, 
krlT = 4.2 zJ. 
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Fig. 2. Work performed to extract xenon from T4 lysozyme L99A in 27 independent 
simulations of 100 ps each. 

is expected to be proportional to the rate of displacement; in this system, the 
dependence is apparently more complex. 

A linear dependence approximately describes the results in a range of 
extraction times between 1 ps and 50 ps, and this extrapolates to a value 
of W, not far from that observed for the 100 ps extractions. However, for 
the simulations with extraction times, ts  > 50 ps, the work decreases more 
rapidly with lit,, which indicates that the 100 ps extractions still have a 
significant frictional contribution. As additional evidence for this, we cite the 
statistical error in the set of extractions from different starting points (Fig. 
2). As was shown by one of us in the context of free energy calculations[l2], 
and more recently again by others specifically for the extraction process [I], 
the statistical error in the work and the frictional component of the work, 
WF are related. For a simple system obeying the Fokker-Planck equation, 
both friction and mean square deviation are proportional to the rate, and 

A lack of simplicity of the present system follows directly from our results, 
according to which (< ( 6 ~ ) ~  and not < ( 6 ~ ) ~  >, varies approxi- 
mately as the extraction rate (results not shown). Hence, i t  is rlot possible to  
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l/simulation time (ps) 

Fig. 3. Work required to extract xenon from T4 lysozyme L99A. Each value is a 
rrlcan over several independent simulations. 

wlculate the frictional component of the work from the mean square devia- 
Lion with (16); however, it is still obvious that the mean square deviation of 
2000 (25)' observed over 27 extraction experiments each of 100 ps duration 
wrresponds to a significant frictional component. [A rough estimate of the 
l i . ~  energy for extracting the xenon atom is the sum of (minus) the protein- 
swon energy observed in simulations (-5 kcal/mol) and the (experimental) 
hoc~ energy to transfer xenon from vacuum to water (1.5 kcal/mol), i.e. 6.5 
kral/mol = 45 zJ.] 

Thus, we have found unexpected complexities and even in this simple 
system have not yet been unable to accurately extrapolate the results of 
sirrnilations done over periods varying from 1 to several hundred ps, to the 
low-friction conditions of extraction experiments performed in times on the 
oldc:r of ms. The present results indicate that one should not expect agree- 
llierlt between extraction experiments and simulations in more complex situ- 
;~tions typically found in experiments, involving also a reverse flow of water 
~riolocules to fill the site being evacuated by the ligand, unless the simulation 
tliriics are prolonged well beyond the scope of current computational resources, 
mcl thereby strengthen t'he conclusion reached in the second theoretical study 
of  cxt,raction of biotin fro111 its complex with avidin [19]. 
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Abstract. To estimate free energy differences from a single simulation of the initial 
st,i~te one may either, use a series expansion of the free energy around the initial 
st,ate, make an assumption in regard to the functional form of the free energy or 
I,rw~t the mutation as a single step perturbation. Of these the perturbation approach 
holds the greatest promise. The perturbation approach is fast, easy to implement 
;mcl does not depend on empirically derived parameters or assumptions. Given 
a l l  appropriate reference state the perturbation approach can be used to rapidly 
c~stirnate solvation or binding free energies of a wide range of related compounds 
fir use in force field development or structure based drug design. 

1 Introduction 

All equilibrium properties of a system directly or indirectly depend on the 
tlifference in free energy between alternate states. As a result, there is great 
i~~terest  in efficient algorithms to estimate relative free energies from atomic 
sirr~~ilations. This is especially true for applications such as the estimation of 
rtllative binding free energies in structure based drug design where the time 
i1.11d cost required to screen hundreds or even thousands of related compounds 
is a critical factor. The essential difficulty is that the free energy is a global 
~ m p e r t y  of a system. The total free energy of a system, F, expressed in terms 
of the canonical partition function, Z, is given by [I,  21 

Z =  [h 3N N . ]  I 1 1 exp [ H  (P' ''1 dpdq 
~ B T  

where k B  is Boltzmann's constant, T is the absolute temperature and h is 
Planck's constant. H(p, q) is the Hamiltonian of the system expressed in terms 
of the positions, p, and the conjugate momenta, q of the N particles. The 
total free energy is dependent on an integral over all phase space. As it is not 
possible to completely sample all phase space, it is never possible to determine 
the absolute free energy of any real system. It is possible, nevertheless, to 
dt3tcrmine the relative fke energy between closely related states of a single 
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system either from the work required to go from an initial to a final state via 
a reversible path or from the relative probability of finding the system in one 
state as opposed to  another. 

Normally, we are concerned with free energy differences between chemi- 
cally distinct states. That is, states for which the Hamiltonians differ. In such 
cases the so-called coupling parameter approach is used. The Hamiltoniari 
of the system is made dependent upon an arbitrary coupling parameter A, 
'H (p ,  q, A ) ,  such that when A = AA the Hamiltonian of the system corresponds 
to state A, and when A = AB the Hamiltonian of the system corresponds to 
state B. If the Hamiltonian of the system is a function of A the free energy 
of the system is also a function of X and using basic statistical mechanics 
it may be easily shown that the difference in the configurational free energy 
between the two states is given by [I, 21, 

where V is the potential energy of the system. This, the so-called Thermo- 
dynamic Integration formula, expresses the free energy as an integral of the 
work along a specific path. Alternatively the so-called Thermodynamic Per- 
turbation formula may be used [I, 21, 

in which the difference in free energy is expressed in terms of the probability 
of finding configurations representative (low energy) of state B in an ensem- 
ble generated using the Hamiltonian of state A. Formally, the perturbation 
approach encompasses any mutation of the system. The ensemble average 
in (3), however, only converges if there is a strong overlap between the low 
energy configurations of the two states, that is, the effect of the mutation on 
the configurations sampled is small. For this reason the perturbation formula 
is generally expressed as a sum over a series of small steps in A [I, 21, 

For many applications, however, these standard approaches are inappro- 
priate. Although potentially highly accurate, Thermodynamic Integration 
and Thermodynamic Perturbation are both computationally very intensive. 
This makes them too slow and expensive for the rapid screening of com- 
pounds such as is required for structure based drug design [3]. In addition, 
as the free energy is calculated along a specific path, determined by the de- 
pendence of the Hamiltonian on A ,  separate calculations must, he performed 
for each compound. 
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An alternative to Thermodynamic Integration or Thermodynamic Per- 
t,,lrbation calculations in which simulations at a series of intermediate states 
;\rc performed, is to estimate the difference in free energy between two states 
]lased only on a simulation of the initial state. In principle, the free energy 
difference between a reference state and any other state of a system can be 
(1t:termined if the fluctuations of the reference state are completely known. 
'I'llc: free energy difference can in effect be extrapolated from the behaviour of 
t ,hv  system in the reference state. For structure based drug design, estimating 
f'rce energy differences relative to a single reference state has many advan- 
t,ir.ges. Most importantly, the behaviour of the system in the initial state is 
i~ I(  lependent of the mutation considered. Thus, the same simulation can be 
~isod to estimate the difference in free energy to multiple alternate states 
I )otentially making such met hods highly efficient. 

2 Free Energy Extrapolation 

'I'hrcc basic approaches can be used to estimate the difference in free energy 
1)otween two states of a system based on an initial state ensemble. They are: 

(i)  a series expansion of the free energy around the initial state, 
( i i )  an assumption in regard to the functional form of the free energy or, 

( i i i )  the mutation may be treated as a single step perturbation. 

Stirzes expansion: Smith and van Gunsteren [4] investigated the first approach 
clxpmding the free energy as a function of the coupling parameter X into a 
'Ihylor series around a given reference state, X = 0, 

i111tl computed the values of the higher-order derivatives, F" , F I  11 , . . . as av- 
orages over the reference state ensemble. Using a 1 ns simulation of a dipo- 
lar diatomic molecule in water they predicted, with reasonable precision, 
t~lre change in free energy associated with substantial charge rearrangement 
(*0.25e) truncating the series beyond the 2nd or 3rd order [4]. Higher-order 
(lcrivatives, however, converged slowly. The approach was later generalised 
1)y Hummer and Szabo [5] to include simulations of both the initial and fi- 
rial states. This has the advantage that larger mutations can be considered 
h t  requires separate simulations for each compound. Other variations on 
tJhis general theme have been proposed. Gerber et al. [6] calculated the first 
(lcrivative of the free energy with respect to X for individual terms of the 
force field independently and used a linear combination of these derivatives 
t,o predict differences in the binding affinity of trimethoprin derivatives to 
clihydrofolate reductase. This first order approximation, however, proved in- 
sufficient. A similar a ~ ) p ~ o d l  has been investigated by Radmer and Kollman 
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[7]. A potential advantage of methods based on a series expansion of the free 
energy is that the convergence of the series is determined by the X dependence 
of the potential energy function meaning that the efficiency of the approach 
could be enhanced by a judicious choice of coupling scheme. 

Fixed functional dependence: An alternative to a series expansion is to as- 
sume a particular functional dependence of the free energy on A.  Jayaram 
and Beveridge [8], for example, derived an expression for the free energy of 
the system assuming the fluctuations of the potential energy obeyed a Gaus- 
sian distribution. This approach performed well when used to  estimate the 
excess free energy of water but performed less well for hydration free energies 
of simple compounds. Similar expressions have been recently proposed by 
Amadei et al. [9]. A special case of this class of method is Linear Responsc 
theory. The basic premise in Linear Response theory is that the response of 
the environment to any given perturbation is linear, the classic example being 
the response of a system of constant dielectric to the introduction of a charge. 
The Linear Response assumption is equivalent to assuming that the fluctu- 
ations in the energy of interaction between a molecule and its surroundings 
are Gaussian distributed. If true, the difference in free energy is determined 
by the 1st and 2nd derivatives of the free energy with respect to the change. 
The approach is, therefore, the same as a Taylor expansion truncated after 
the second term assuming linear coupling between the initial and final states 
[lo, 4, 111. In the Linear Response limit the difference in free energy between 
two states may also be expressed as 

where < ... >A and < ... >B refer to ensemble averages over the initial 
and final states. Equation (6) expresses Linear Response in its pure form. 
Aqvist and others have, however, demonstrated considerable success predict- 
ing relative binding free energies and relative hydration free energies using a 
semi-empirical approach in which the change in free energy is approximated 
as 111, 121, 

1 vdw vdw AFAB - ((vele), - (vele),) + a ((V ) B  - (V ) A )  
2 (7 )  

where Vele and vVdW respectively refer to the electrostatic and van der Waals 
interaction energies between the solute and its environment, and a is an em- 
pirically derived scaling factor. In effect a Linear Response is assumed for 
the electrostatic contributions, but the van der Waals contributions are em- 
pirically parameterised based on a set of related compounds. Cadson and 
Jorgensen [13] took this approach a step further by introdl~ring empirical 
scaling parameters for both the electrostatic and van der Wilikl~ intcri~ct ions 
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;m(l adding an additional term for the free energy of cavity formation. Al- 
t,hough they refer to this as an Extended Linear Response method the ap- 
proach is in effect an empirical model in which the interaction energies in the 
iliitial and final states enter as variables. This is not to say that the approach 
t loes not perform well for some systems [13, 141. Separate simulations are, 
Ilowever, again required for each compound of interest. The basic difficulty 
is that while the response of a dielectric medium to  a change in charge is es- 
sontially linear the response of a dense medium to  the creation or deletion of 
;m atom or atoms is not. The same problem is encountered when attempting 
t,o use a series expansion for mutations involving the creation or deletion of 
itttoms [I 51. 

Single step perturbation: If the series converges, equation (5) is formally 
equivalent to the direct application of the perturbation formula. This was 
11oted by Liu et al. [15] who showed, for the rearrangement of charge on a 
tlintomic molecule, that results comparable to those of Smith and van Gun- 
st,cren [4] could be obtained more simply using a perturbation approach. 
Flirther studies by Lui and others showed that given an appropriately cho- 
scw reference state the creation or deletion of atoms or even groups of atoms 
roldd be also treated as a single step perturbation [15, 16, 171. 

The three approaches are closely related. They are in fact equivalent in the 
limit that the fluctuations in the energy of interaction between a molecule 
i l l l ( l  its surrounding obey a Gaussian distribution. All perform well for cases 
i~lvolving small changes in partial charge [4, 5, 10, 151. Where they differ 
is in the manner by which higher order terms are treated. In practice, it 
is always necessary to truncate a series expansion. This effectively sets all 
liigher order derivatives of the free energy to zero. In methods that assume a 
1);trticular functional dependence for the free energy higher order terms are 
i\g;~in fixed. In contrast, all terms are implicitly included in the perturbation 
approach. Thus, the perturbation approach remains formally exact while the 
other approaches must be considered approximations. Higher order terms, 
]lowever, converge slowly and using (3) the free energy may be determined 
1 )v rarely sampled configurations. 

3 Extrapolation Based on a Biased Ensemble 

'ro estimate the difference in free energy between two states of a system using 
t h n  perturbation approach the reference ensemble must contain representative 
low energy configurations for the alternate state of interest. Using Molecu- 
lilt. Dynamics (MD) or Monte Carlo (MC) simulation techniques to generate 
1 . 1 1 ~  reference ensemble only low energy configurations of the reference state 
will be sampled. It is well known that low energy regions of the reference 
state do not correspoml to low energy regions of the end state in cases where 
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atoms are created or deleted. For this reason, when using the Thermody- 
namic Perturbation formula, mutations are standardly broken into a series 
of small steps as in (4). The essential difficulty is that of sampling. This is 
illustrated diagrammatically in Fig. 1 for the mutation of pmethylphenol to 
pmethoxyphenol, one of the cases considered by Liu et al. [15]. The muta- 
t ion fails as a single step perturbation because no configurations containing 
a cavity large enough to accommodate the methoxy group will be sampled 
in a simulation of pmethylphenol. The reference state ensemble need not, 
however, correspond to a physically meaningful state. By applying an appro- 
priate biasing function, the range of configurations sampled may be spread to 
include configurations with and without appropriate cavities as is illustrated 
in Fig. 2. 

Initial State Final State 

no cavity 

Fig. 1. A single step perturbation fails for the mutation of pmethylphenol to  p 
methoxyphenol because no configuration with a cavity large enough to accommo- 
date the methoxy group is sampled in a simulation of p-methylphenol in water. 

3.1 Choice of Biasing Function 

The biasing function is applied to spread the range of configurations sam- 
pled such that the trajectory contains configurations appropriate to both the 
initial and final states. For the creation or deletion of atoms a softcore in- 
teraction function may be used. The standard Lennard- Jones (L J) function 
used to model van der Waals interactions between atoms is strongly repulsive 
at short distances and contains a singularity at r = 0. This precludes two 
atoms from occupying the same position. A so-called softcore potential in 
contrast approaches a finite value at short distances. This removes the sin- 
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Modified Initial State 
Soft interaction sites 

0 
\ 

H 

no cavity 

................. 4 .... . . . . 
. . . I t . . 

.., .I - ...?... \'.. ... :..so " .  ....:a, .... .: L ->  vp. ; .: I 

0 
\ 

H 

cavity 

Fig. 2. By replacing the methyl group in p-methlyphenol with a series of softcore 
illtoraction sites it is possible to spread the range of configurations sampled to  
illdude configurations with and without a cavity in the para position. 

g~ilarity in the potential and allows atoms to pass through each other. The 
softcore function used by Liu et al. [15] was of the form 

where oi,j and E ~ , J  are the Lennard Jones interaction parameters for atoms i 
;m1 j and CY determines the height of the barrier at r = 0. Curves calculated 
lising (8) for a series of cu values are displayed in Fig. 3. As seen in Fig. 3 
this form has the advantage that for r > o the normal LJ potential energy 
f'l ir  ict ion is recovered. Soft core potentials are increasingly used in free energy 
(Aculations to avoid sampling problems associated with the singularity in the 
T,.J interaction as atoms are created or destroyed [18]. As a biasing function 
this form is effective, but not necessarily optimal. Figure 4 shows radial dis- 
txilnition functions (rdf's) between the centre of such a soft interaction site 
m c l  the oxygen cl,tom of t,hc surrounding water. The interaction between the 
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cavity and the water was described by the potential energy curves displayed 
in Fig. 3. These correspond to barrier heights of approximately 2, 3, 4 and 5 
kB T respectively. The rdf's show considerable structure. In particular there 
is a maximum at approximately 0.4 nm. In order to generate the broadest 
possible sampling such structure is undesirable and suggests that alternative 
biasing functions may perform better. From Fig. 4 it evident that the optimal 
barrier height for this system is between 3 and 4 ~ B T  as this results in the 
greatest spread of configurations. Using a barrier of 2 kBT the cavity is filled 
by solvent. Using a barrier of 5 kBT the cavity is devoid of solvent. Both 
extremes are undesirable. 

14 

12 

10 

= 
E 8 
\ 
7 
w 6 
)r 

E? 
a = a 4 

2 

0 

-2 

Fig. 3. Curves calculated using (8) for a series of increasing a values. The curves 
were calculated using a = 0.6 nm and E = 0.4 kJ/mol. Note that for a = 0.0 the 
normal 6-12 Lennard Jones potential energy function is recovered. 

3.2 Implement at ion and Efficiency 

To generate a trajectory of configurations using using Molecular Dynamics or 
Monte Carlo simulations techniques all interactions defined by the Hamilto- 
ninn must be considered. In addition, to integrate the equations of motion in 
Molecular Dynamics, or obtain an appropriate acceptance ratio using Monte 
Carlo, the step size must be small. The configurations sampled arc. thus highly 
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Fig. 4. Radial distribution functions between the centre of a test cavity and the 
oxygen atom of the surrounding water. The curves correspond to the different bar- 
rier heights for the softcore interaction illustrated in Fig. 3 

correlated. To estimate the difference in free energy using (3), however, only 
t,hose interactions that change between the initial and final states need be 
considered and, in addition, the configurations over which the average is 
hken should be uncorrelated. The average in (3) is over an unperturbed en- 
semble. It is thus independent of the mutation considered. This means that 
the reference ensemble need only be generated once and a stored trajectory 
may then used to  estimate free energy differences for specific compounds. 
This approach is highly efficient. As illustrated in Fig. 5 only a small number 
of' pair interaction need to be considered for most mutations. If a cutoff is 
used, all solvent molecules which lie outside this cutoff with respect to any 
site of interest may be removed. As the configurations used should be uncor- 
related the trajectory may be sampled sparsely. For these reasons estimating 
changes in free energy using a pre-existing trajectory is lo2 to lo3 faster than 
standard free energy methods. 

3.3 Creation and Placements of Atoms and Molecules 

Atoms not explicitly included in the trajectory must be generated. The posi- 
tion at which an atom may be placed is in some sense arbitrary, the approach 
being analogous to the insertion of a test particle. Chemically meaningful end 
states may be generated by placing atoms based on internal coordinates. It is 
rwyuired, however, that an atom be sampled in the same relative location in 
cvery configuration. An isolated molecule can, for example, be inserted into 
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simulation sampling the trajectory 

Fig. 5. To generate an ensemble using Molecular Dynamics or Monte-Carlo simu- 
lation techniques the interaction between all pairs of atoms within a given cutoff 
radius must be considered. In contrast, to estimate changes in free energy using a 
stored trajectory only those interactions which are perturbed need be determined 
making the approach highly efficient. 

a given cavity in any number of orientations to improve statistics, but the 
orientation may not be systematically optimised for each configuration. 

3.4 Internal Degrees of Freedom 

When atoms not explicitly included in the trajectory are created based on in- 
ternal coordinates the generated molecule or part thereof is effectively rigid. 
Contributions to the free energy from internal degrees of freedom are ig- 
nored. To estimate contributions from internal degrees of freedom the free 
energy must be averaged over a correctly weighted series of conformations 
which cover the range of potential motion. There will be a net contribution 
to the free energy only if the probability of sampling a given configuration is 
different in the initial and final states. Thus, only those degrees of freedom 
affected by the environment need be considered. To weight the configura- 
tions appropriately we must separate the difference in the potential energy 
between the reference and alternate state, AV (AV = VB - VA) into a sum 
of inter- and intramolecular terms, AV = AKnter + A&,,,, . Note, if the 
molecule is rigid the intramolecular term is a constant and can be ignored. 
If not, configurations must be assigned Boltzmann weights based exclusively 
on the intramolecular term as this has not been included in the Hamiltonian 
of the initial state. Configurations could, for example, be generated using 
a Monte Carlo procedure considering only AKnt,,. In the extt'apolation it- 
self, double counting must be avoided by considering only t h  irlt,errrlolccdar 
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contribution, AK,,,, . A simple alternative is to systematically generate con- 
figurations covering a range of motion and normalise the ensemble average 
I>y Av zntra 

I r i  essence this is equivalent to treating -AKntr, as an additional umbrella 
fiiriction. 

3.5 Combining Biased Trajectories 

No biasing function will be appropriate for all mutations. The greater the 
spread of configurations generated, the broader the range of mutations the 
OX trapolation can encompass. The greater the spread of configurations gen- 
crated, however, the more difficult it is to obtain sufficient sampling for any 
given mutation. In general, it will be most efficient to choose a biasing func- 
tion appropriate for a specific class of mutation. For ligand design, trajectories 
gonerated with several different biasing functions will probably be required to 
ttst a range of derivatives of a lead compound. If appropriate configurations 
are sampled in each, the calculated difference in free energy will be inde- 
pendent of the trajectory used. If no appropriate (low energy) configurations 
are sampled in a given trajectory the difference in free energy using (3) is 
in general overestimated. In this case the lowest estimate for the free energy 
difference will be closest to  the desired result, barring statistical fluctuations. 
Alternatively, trajectories generated using different biasing functions may be 
conlbined by weighting the configurations in each trajectory by a weight fac- 
tor, W, 

where AFbiased is the difference in free energy between a common reference 
state and the particular biased state considered. 

3.6 Range of Application 

The critical factor for any method involving an approximation or an ex- 
trapolation is its range of application. Liu et al. [I51 demonstrated that the 
approach performed well for mutations involving the creation or deletion of 
single atoms. The method has also been successfully applied to  the prediction 
o f  the relative binding affinities of benzene, toluene and o-, p-, and m-xylene 
to a mutant of T4-lysozyme [16]. In both cases, however, the perturbation to 
t,he systom was s r d l .  To investigate range over which the extrapolation may 
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be applicable we have applied the approach to the determination of hydration 
free energies for a series of polar and non-polar solutes of varying size. The 
reference state was a 1.6 ns trajectory of a non-polar softcore cavity in water. 
The radius and barrier height of the cavity were approximately 0.3 nm and 
7.0 kJ/mol respectively and correspond to the short-dashed curve in Figs. 3 
and 4. The non-polar solutes were methane, ethane, propane, butane, isobu- 
tane, pentane and cyclopentane, and the polar solutes were chloroform, water, 
methanol and ethanol. The free energy of hydration was estimated from the 
difference between perturbing to  a dummy cavity which has no interactions 
with the surrounding solvent and perturbing to each of the compounds of 
interest. The extrapolation using a non-polar reference state performs well 
for ail the non-polar solutes with the exception of pentane which does not fit 
within the cavity. The results from the extrapolations are plotted in Fig. 6 
against values obtained using Thermodynamic Integration. The solid line in 
Fig. 6 indicates the ideal one-to-one correlation, the dashed line corresponds 
to a line of best fit. There is essentially a one-to-one correspondance between 
the results obtained using a single step perturbation and Thermodynamic 
Integration for mutations ranging from the complete removal of the cavity 
to the insertion of cyclopentane. The largest deviation of 3 kJ/mol occurs 
for butane. No allowance for internal degrees of freedom has, however, been 
made. The extrapolation performed less well for the polar solutes. Although, 
there is a linear correlation between the extrapolated and Thermodynamic 
Integration results, the extrapolation systematically overestimates the free 
energy. This indicates that solvent configurations appropriate to  the polar 
solutes are not being sampled using a non-polar reference state and an alter- 
native to the non-polar reference state needs to be considered. Nevertheless, 
the results demonstrate that results comparable to that obtained using Ther- 
modynamics Integration is possible for mutations involving the creation or 
removal from 1 to 5 atoms. 

4 Conclusions 

Estimating free energy differences from an initial state ensemble has the ad- 
vantage that a large number of potential modifications of a given compound 
can be investigated in a single calculation. Because extrapolation is based on 
an unperturbed ensemble the nature of the perturbation does not have to  be 
predefined. The change in free energy associated with a particular mutation 
can be obtained quickly and efficiently by reanalysis of stored trajectories. 
Extrapolation based on the application of the perturbation formula to an 
appropriately biased ensemble holds considerable promise for use as a rapid, 
non-empirical means of estimating relative binding affinities for a wide range 
of possible chemical modifications of a lead compound. As such the approach 
could be used to guide experimental planning in drug design a ta,sk not prac- 
tical using normal free energy calculations. 
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Fig. 6. Free energies of hydration calculated, for a series of polar and non-polar 
solute molecules by extrapolating using (3) from a 1.6 ns trajectory of a softcore 
(.iwity in water plotted against values obtained using Thermodynamic Integration. 
The solid line indicates an ideal one-to-one correspondence. The broken line is a 
line of best fit through the calculated points. 
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Abstract. The Conformational Free Energy Thermodynamic Integration (CFTI) 
rriothod, a new multidimensional approach for conformational free energy simula- 
tions, is presented. The method is applied to two problems of biochemical interest: 
exploration of the free energy surfaces of helical alanine (Ala) and a-methylalanine 
(Aib) homopeptides in vacuum and the cost of pre-organization of the opioid pep- 
tide Tyr-D-Pen-Gly-Phe-D-Pen (DPDPE) peptide for disulfide bond formation. In 
tho CFTI approach a single molecular dynamics simulation with all # and + di- 
hedrals kept fixed yields the complete conformational free energy gradient for the 
studied peptides. For regular structures of model peptides (Ala), and (Aib), where 
11=6,8,lO and Aib is a-methylalanine in vacuum, free energy maps in the helical 
rcgion of # - + space are calculated, and used to roughly locate stable states. The 
locations of the free energy minima are further refined by the novel procedure of free 
onergy optimization by steepest descent down the gradient, leading to structures in 
excellent agreement with experimental data. The stability of the minima with re- 
spect to deformations is studied by analysis of second derivatives of the free energy 
surface. Analysis of free energy components and molecular structures uncovers the 
irdecular mechanism for the propensity of Aib peptides for the 310-helix structure 
in  the interplay between the quality and quantity of hydrogen bonds. For the lin- 
ear form of the DPDPE peptide in solution, free energy differences are calculated 
between four conformers: Cyc, representing the structure adopted by the linear 
peptide prior to disulfide bond formation, pc and PE, two slightly different 0-turns 
previously identified as representative, stable structures of the peptide, and Ext, 
an extended structure. The simulations indicate that PE is the most stable of the 
studied conformers of linear DPDPE in aqueous solution, with PC, Cyc and Ext 
having free energies higher by 2.3, 6.3, and 28.2 kcal/mol, respectively. The free 
energy differences of 4.0 kcal/mol between Dc and Cyc, and 6.3 kcal/mol between 
l j ~ :  and Cyc, reflect the cost of pre-organizing the linear peptide into a confor- 
mation conducive for disulfide bond formation. Such a conformational change is a 
pre-requisite for the chemical reaction of S-S bond formation to proceed. 

1 Introduction 

Conformational free energy simulations are being widely used in modeling 
of complex molecular systems [I]. Recent examples of applications include 
study of torsions in n-butane [2] and peptide sidechains [3, 41, as well as ag- 
gregation of methane [5] and a helix bundle protein in water [6]. Calculating 
free energy differences between molecular states is valuable because they are 
observable therfllo(l~rl;tr.rlic quantities, related t o  equilibrium constants and 
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rate constants of processes. Most current simulation methods follow a simi- 
lar procedure, in which constraints or restraints are used to force the system 
along a reaction coordinate, enabling the determination of the associated free 
energy profile, or potential of mean force [I,  71. This leads to two common 
drawbacks. First, although behavior of the full system is simulated, the free 
energy profile is determined only in one direction - along the reaction path. 
Second, although significant barriers along the reaction path may be over- 
come, sampling of conformations in the orthogonal directions is limited and 
incomplete leading to problems with convergence of results. 

This paper presents the theoretical background and some practical appli- 
cations of a new conformational free energy simulation approach, aimed at 
correcting the above shortcomings. The new method, called Conformational 
Free energy Thermodynamic Integration (CFTI), is based on the observation 
that it is possible to calculate the conformational free energy gradient with 
respect to an arbitrary number of conformational coordinates from a single 
simulation with all coordinates in the set kept fixed [2, 81. The availability 
of the conformational gradient makes possible novel techniques of multidi- 
mensional conformational free energy surface exploration, including locating 
free energy minima by free energy optimization and analysis of structural 
stability based on second derivatives of the free energy. Additionally, by per- 
forming simulations with all "soft" degrees of freedom of the system kept 
fixed, free energy averages converge very quickly, effectively overcoming the 
conformational sampling problem. 

The subject of this work is the application of the CFTI technique to 
study of the conformational free energy surfaces of several peptides. The first 
part involves simulations of helical structures of model peptides - (Ala), and 
(Aib), , where n=6,8,10 and Aib is a-methylalanine. These simple peptides 
serve as models for studying structure and dynamics of more general pep- 
tide and protein systems. Extensive studies of (Ala), and (Aib), in vacuum 
demonstrate the feasibility of multidimensional CFTI calculations, including 
locating free energy minima and determination of intrinsic and relative stabil- 
ity of different regular helical structures - the 310-helix , a-helix and T-helix . 
The simulation results reproduce the experimentally observed stabilization 
of the 310-helix relative to the a-helix in the a-methylated peptides, and 
provide a microscopic model for this interesting effect [8]. 

The second application of the CFTI approach described here involves cal- 
culations of the free energy differences between conformers of the linear form 
of the opioid pentapeptide DPDPE in aqueous solution [9, 101. DPDPE (Tyr- 
D-Pen-Gly-Phe-D-Pen, where D-Pen is the D isomer of P,P-dimethylcysteine) 
and other opioids are an interesting class of biologically active peptides which 
exhibit a strong correlation between conformation and affinity and selectivity 
for different receptors. The cyclic form of DPDPE contains a disulfide bond 
constraint, and is a highly specific 6 opioid [Ill. Our simulations provide 
information on the cost of pre-organizing the linear ~ e p t i d e  from its stable 
solution structure to a cyclic-like precursor for disulfide bond formation. Slxh 
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21, conformational change is a pre-requisite for the chemical reaction of S-S 
bond formation to proceed. Use of the CFTI approach with all 14 conforma- 
tionally important dihedrals constrained leads to quickly converging averages, 
;dlowing efficient evaluation of the free energy differences between different 
DPDPE structures [9, lo]. 

2 The CFTI Method 

The free energy profile or potential of mean force along a conformational 
coordinate ( may be defined as 

where p = l /kT,  k is the Boltzmann constant, T the absolute temperature, 
and 

is the contribution to the classical configurational integral Z of the "slice" 
of configuration space with fixed [ = ( I ,  and [(q) expresses the generalized 
coordinate ( in terms of Cartesian coordinates. This leads to the basic formula 
of the thermodynamic integration (TI) conformational free energy method 
[2, 121: 

where ( . . . )E '  denotes an average over conformations with fixed ( = (' and J is 
the Jacobian of the coordinate transformation between the Cartesian coordi- 
nates q and the generalized coordinate set containing (. The term involving 
,J has been found to be negligibly small in previous practical applications 
P, 8, 121. 

The CFTI method extends the standard TI  to an arbitrary number of 
dimensions [2, 81. Analogously to Eqs. (1) and (2) the free energy surface is 
defined as 

where Z((;, 6, . . . , (h) is the configurational integral corresponding to fixed 
values tk = [; for all coordinates in the set tk, k=l,. . . ,m. The free energy 
gradient is then [2] : 

where (...)[/ denotes an average over conformations with fixed values 6 = a 
fix i = 1, ..., m. 111 CFTI approach, the gradient of the conformational 
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free energy with respect to an arbitrary set of conformational coordinates is 
obtained from a simulation with all coordinates of the set kept fixed. For- 
mulae for multidimensional conformational entropy gradients and for second 
derivatives of the free energy have been developed [8, 91. 

The CFTI method is highly efficient, has improved convergence properties 
and enables new ways of exploring energy landscapes of flexible molecules. 
The efficiency is due to the fact that calculation of the free energy gradient 
with respect to an arbitrary number of coordinates may be performed at es- 
sentially the same cost as a standard one-dimensional TI simulation under 
the same conditions [2]. This is because the most expensive terms to evalu- 
ate, dU/dJk, may be expressed in terms of simple algebraic transformations 
of the Cartesian gradient dU/dqj, which is known at each step of a simulation 
[2, 81. A single simulation yields derivatives of free energy with respect to all 
conformational degrees of interest, yielding a complete local characterization 
of conformational space, not just the derivative along a one-dimensional reac- 
tion path 12, 81. This enables the determination of stability of structures with 
respect to perturbations, location of minima on the free energy surface, and 
finding minimum free energy paths connecting different states. The acceler- 
ated convergence may be achieved by selecting all "soft" degrees of freedom 
as the fixed coordinates. In the case of peptides these would be the back- 
bone +, $, and some of the sidechain dihedrals [8, 9, 101. The sampling of 
the restricted conformational space of remaining hard degrees of freedom and 
solvent is very fast - simulations of 20-50 ps were sufficient to obtain precise 
gradient values in the studied cases. Simulations of similar length are some- 
times used in the standard approach to free energy profiles, where only the 
reaction coordinate is constrained. However in these met hods, because of the 
size of the available con formational space, the convergence of thermodynamic 
averages is often assumed rather than actually achieved. 

Additionally, as in all TI-based approaches, the free energy differences are 
linear functions of the potential. Thus non-rigorous decompositions may be 
made into contributions from the different potential energy terms, parts of 
system and individual coordinates, providing valuable insight into the molec- 
ular mechanisms of studied processes 18, 9, 101. 

3 Model Peptides: (Ala), and (Aib), in Vacuum 

The (Ala), and (Aib), peptides, n=10,8,6 were simulated in vacuum, with 
all 2(n-1) 4 and $ dihedrals fixed at constant values: 

where i is the residue number. This corresponds to regular structures with 
identical conformations of each residue, identified by the pair of values (+,$). 
At each point the system coordinates were generated from model geometric 
parameters, energy minimized and equilibrated for 20 ps. A 40 ps tri~~joctory 
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; ~ t  300 K was then generated. At all stages all the q5 and $ dihedrals were kept 
fixed at the required values. The components with respect to the individual q5 
and $ dihedrals were added up to yield a reduced two-dimensional gradient 
(aA/%4aA/a$) 181- 

Fig. 1. Free energy gradient map of (Ala),, in vacuum 
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Fig. 2. Free energy gradient map of (Aib),, in vacuum 
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The free energy gradient maps for (Ala)lo and (Aib)lo are shown in Figs. 
1 and 2. It is clear that (Ala)lo has two minima in the studied region, cor- 
responding to and a-helix and a T-helix . Aiblo has three minima - a 310- 
helix , an a-helix and a T-helix . The stable states occupy diagonal valleys, 
as is expected for helices where anticorrelated changes of 4 and $J on succes- 
sive residues leave the hydrogen bonding pattern relatively unchanged [13]. 
A more detailed discussion, including free energy surfaces obtained by inte- 
grating the gradient maps is presented in [8]. 

The locations of some of the free energy minima were refined by free en- 
ergy optimization, performed as a sequence of steps of down the free energy 
gradient. For (Ala)lo the a-helix minimum at (-66O,-41°) is in good agree- 
ment with crystallographic data. In the case of (Aib) lo peptides, the a-helical 
minimum was a t  (-57O,-52O), while the 310-helix was at (-53O,-30°), again in 
accord with crystallographic data. The T-helix positions were not refined, 
they lie in the (-75O,-56O) and (-6g0,-65O) areas for (Ala)lo and (Aib)lo, re- 
spect ively. 

From the free energy gradient maps, the free energy second derivative 
matrix H, = d2A/d[& was evaluated numerically on the two-dimensional 
(2D) (4, $J) surface. It is simplest to describe this matrix by its two eigen- 
values. In all cases the eigenvalues were positive at the studied minima, with 
the higher eigenvalue corresponding to correlated changes in 4 and $J, and 
the lower one to anti-correlated changes. The helices are thus easier to de- 
form along the "helical troughs", with motions corresponding to cylindrical 
breathing, which leaves the helix rise and turn unchanged. The "hard modes" 
of deformation involve changes of both helical rise and turn, and correspond 
approximately to reaction coordinates for concerted transitions between dif- 
ferent helix types [8]. 

Free energy differences between a-helix and 310-helix states for the 
(Ala), and (Aib), systems were also calculated (Table 1). For (Ala), the 
a-helix was the more stable helical state for n=10,8,6, with the free energy 
difference decreasing with peptide length. For (Aib), the a-helix was more 
stable for n=10, and the 310-helix was more stable for n=6; for n=8 the 
two helical forms had comparable stability. The main conclusion is that the 
simulation results agree with the experimentally observed trends - that a- 
methylation stabilizes the 310-helix relative to the a-helix , and that this 
effect becomes more pronounced in shorter peptides. Additionally, a micro- 
scopic mechanism for this phenomenon may be determined by comparing 
structural data in Table 2 with the free energies in Table 1. There is interplay 
of two effects - internal strain and nonbonded interactions tend to favor the 
a-helix , while electrostatic interactions tend to favor the 310-helix . Destabi- 
lization by internal strain and nonbonded repulsion is systematically greater 
in the more crowded (Aib), systems. The behavior of the electrostatic contri- 
bution is more complicated, reflecting changes in both quantity and quality 
of hydrogen bonds. The 310-helix contains one more hydrogen bond than the 
a-helix . However, Table 2 shows while the a-helix has betItlcr hyclrogerl bond- 
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Table 1. Energetics of the concerted a-helix -t 310-helix transition in (Aib),. For 
(Ala), profiles connect a-helix minima to (4, $) = (-60°,-29"). For (Aib), profiles 
wnnect a-helix minima to 310-helix minima. Statistical errors of the total free 
vnergy and the potential energy components were below 0.1 kcal/mol in all cases. 

I System Potential energy componentsa 
Total Int Elec vdW 

Energy-ent ropy components 
AU -T AS 

" Tnt: internal strain component; Elec: electrostatic interaction component; vdW: 
vau der Waals interaction component. 

ing geometry than the Slo-helix in (Ala)lo, the reverse is true for (Aib)lo. 
The synergistic effect of greater number of hydrogen bonds and improved in- 
tvractions within each bond strongly stabilizes the (Aib), 310-helix , making 
it the favored structure for short peptides. 

Qualitatively similar results were obtained in preliminary calculations of 
several (Ala) lo and (Aib) lo helical structures in water. 

4 DPDPE Pre-Organization for Disulfide Bond 
Format ion 

For the linear form of DPDPE (Tyr-D-Pen-Gly-Phe-D-Pen, where D-Pen 
is the D isomer of P,P-dimethylcysteine) free energy differences were calcu- 
hted between four structures, denoted as Cyc, Ext, ,& and , 8 ~  [9, 101. The 
Cyc or cyclic-like conformer corresponds to an experimental structure of the 
cyclic form with the disulfide bond removed, Ext - to an extended structure. 
The two type IV 4 turns, and PE, have been identified as the stable, 
representative structure of linear DPDPE in solution based on previous un- 
constrained simulations [14]. Three conformational free energy simulations 
were performed: Cyc --+ PC, Ext --+ ,OE, and ,& --+ PE. Each simulation in- 
volved generation of a series of intermed.iate states lying along a straight line 
(mnnecting the initial and final state in dihedral angle space (29 for Cyc + 

/jc;, 13 for Ext  -+ /In, m d  16 for PC --+ P E ) .  At each state 20 ps equilibration 
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Table 2. Geometric description of MD average helical structures 

System 

(Ala) 10 

a- helix 
310-helix 

(Aib) lo  
a- helix 

310-helix 

Helix structure I H- bond geometry 

and 40 ps trajectory generation was performed for the peptide in a trun- 
cated cubic box with 875 water molecules with periodic boundary conditions 
at 300 K. The overall simulation times were thus 1.74, 0.78 and 0.90 ns for 
the three free energy simulations. In this initial work we focused on proving 
the feasibility of the approach, and did not try to minimize the simulation 
time by choosing some minimal number of points and their spacing. In the 
thermodynamic integration approach it is possible, in principle, to have the 
simulation windows quite widely separated from each other. All 14 dihedrals 
necessary to determine the conformation of DPDPE were kept fixed (these 
included all backbone 4 and $ dihedrals and most sidechain dihedrals, only 
dihedral angles corresponding to rotations of the peptide bonds, bonds involv- 
ing hydrogen atoms and termini were left unconstrained). A more detailed 
description of the methodology may be found in [9, 101. 

Rise Turn Radius 
A O A 

The calculated overall free energy changes AA were -4.0 f 0.8 kcal/mol 
for the Cyc --+ PC "unfolding" transition, -28.2 f 0.9 kcal/mol for the Ext -+ 

PE transition and -2.3 f 0.8 kcal/mol for the PC --+ PE transition (Table 3). 
The most stable of the examined conformers is thus PE, with PC, Cyc and 
Ext having free energies 2.3, 6.3 and 28.2 kcal/mol higher, respectively. The 
predicted conformer population ratios are thus 42,000:860:1 for PE:Pc:Cyc; 
the population of the extended conformer should be negligible. 

Ro.. . H  RO.. . N  ((N-H-0) ((H-0-C) 
A A 0 0 

The two @-turn structures, PC and PE are the most stable among those 
considered. This is in accord with the unconstrained nanosecond simulations 
of linear DPDPE, which converged to these conformers [14]. Because the 
cyclic form is relatively rigid, it is assumed that the conformation it adopts 
in solution is the biologically active one, responsible for its high affinity and 
specificity towards the 6 opioid receptor. The relatively low poplllation of the 
cyclic-like structure for the linear peptide thus agrees qnnlit;ttIiv~:ly with the 
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Table 3. Conformational free energy simulation of linear DPDPE. Changes in free 
cnergy and its components. Units: kcal/mol 

Component 

Free energy AA 

Entropy -TAS 
Potential energy AU 

Internal strain of solute 
Solute-solute interaction 
Solute-solvent interact ion 

Free energy components 

observed lower potency and different receptor specificity of this form of the 
DPDPE peptide as compared to the cyclic form. 

The Cyc conformer represents the structure adopted by the linear peptide 
prior to disulfide bond formation, while the two P-turns are representative 
stable structures of linear DPDPE. The free energy differences of 4.0 kcal/mol 
between PC and Cyc, and 6.3 kcal/mol between PE and Cyc, reflect the 
cost of pre-organizing the linear peptide into a conformation conducive for 
disulfide bond formation. Such a conformational change is a pre-requisite for 
the chemical reaction of S-S bond formation to proceed. 

In the Cyc -4 PC simulation the contributions are: 3.5 kcal/mol from 
internal deformations, -46.8 kcal/mol from solute-solute and 39.3 kcal/mol 
from solute-solvent interactions. Thus our results indicate that the prefer- 
ence of the linear peptide for the P-turn is due to significantly more favorable 
solute-solute interactions in that conformer. The sum of the solute-solute and 
internal strain terms, -43.3 kcal/mol, represents the conformational strain en- 
ergy released after the peptide is allowed to relax from the cyclic-like to the 
I(jC structure. This provides a quantitative measure for the intuitive concept 
of release of strain energy after removal of the S-S conformational constraint. 
Interactions with the solvent water provide a compensating effect, preferen- 
tially stabilizing the cyclic-like structure. Strong solute-solvent interactions 
have been seen previously in standard MD simulations of cyclic DPDPE 
[14], which exhibits parallel orientation of carbonyl groups, aggregation of 
krydrophobic groups and an exceptionally high dipole moment. The two large 
effects of internal strain and solvation have have opposite signs and mainly 
cancel, leading to a moderate conformational free energy difference between 
t,he cyclic-like and Oc structures. This appears to be a general property of 
solution thermodynamics of biological systems, where large contributions hid- 
den in overall f r ~ x  t.llr:rgy change are revealed by theoretical analysis [Is]. 
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The energy-entropy decomposition results are presented in Table 3. Due 
to significantly higher statistical errors, these results are much less reliable 
than the overall AA. It appears that the CFTI approach, while leading to 
quickly converging free energy values, does not provide improved energy- 
entropy results compared to other methods [15, 161. In the Ext --+ ,BE and 
PC --+ PE simulations the energetic and entropic contributions are lower in 
magnitude or comparable to their respective errors, and no reliable conclu- 
sions can be drawn from these results. In the Cyc --+ simulation entropic 
and energetic terms were -TAS = -66 f 31 kcal/mol and AU = 62 & 31 
kcal/mol, respectively, suggesting that the conformer is entropically fa- 
vored over Cyc, i.e. that the pre-organization for disulfide bond formation 
carries an entropic penalty. 

The free energy differences obtained from our constrained simulations re- 
fer to strictly specified states, defined by single points in the 14-dimensional 
dihedral space. Standard concepts of a molecular conformation include some 
region, or volume in that space, explored by thermal fluctuations around 
a transient equilibrium structure. To obtain the free energy differences be- 
tween conformers of the unconstrained peptide, a correction for the ther- 
modynamic state is needed. The volume of explored conformational space 
may be estimated from the covariance matrix of the coordinates of interest, 
Cg = ((ti - (C)) (6 - (tj))) [13, lo]. For each of the four selected conform- 
ers, three 20 ps simulations were performed with the dihedrals, which were 
kept fixed in the free energy simulation, constrained to their initial value with 
a harmonic restraint potential 'k(q5 - q50)2, with decreasing force constants 

22 k = 3, 2, and 1 kcal /(mol . rad ). The determinants (CI 1 of the covariance 
matrices were calculated (as products of eigenvalues) and extrapolated to 
k=O for each conformer I. The correction to  the free energy difference be- 
tween conformers I and J was then calculated as (- 1/2) kT ln(l CJ I /ICI I )  a t  
k = 0 [9, 101. The corrections obtained were -0.2 kcal/mol for Cyc + , 
0.8 kcal/mol for Ext --+ PE , and 0.2 kcal/mol for --+ ,OE , respectively. 
These correction are comparable to the errors of the calculated free energy 
differences and do not affect the conclusions [9, 101. Thus it appears that the 
multidimensional free energy gradient obtained by fixing all flexible dihedrals 
in a pentapeptide may be integrated to obtain free energy differences between 
conformers without introducing significant bias. 

Using the CFTI protocol, we have calculated directly both the derivative 
of the free energy with respect to the reaction path dA/aX and the 14 indi- 
vidual derivatives dA/d&, k = 1, ..., 14 with respect to all fixed coordinates 
along the path: 

Using this information, the overall free energy change may t h ~ s  he decom- 
posed into contributions from individual dihedrals. As with all froo energy 
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decomposition schemes, this is not thermodynamically rigorous, but may lead 
to useful insights into peptide structure and function. Details of the decom- 
position results are discussed elsewhere [9, lo]. 

5 Conclusions 

Initial results of the CFTI method, a new conformational free energy simula- 
t,ion approach, are presented. The main idea of the method is the generaliza- 
tion of standard thermodynamic integration from one to many dimensions. 
By performing a single simulation with a set of conformational coordinates 
held fixed, free energy derivatives with respect to all coordinates in the set 
may be obtained. The availability of the conformational free energy gradi- 
ent opens the door to new ways of exploring free energy surfaces of flexible 
nlolecules. 

The feasibility of the new method is first demonstrated for the model 
(Ala), and (Aib), peptides in vacuum. F'ree energy gradient maps are calcu- 
lated, providing a powerful new way of visualizing the variation of free energy 
with conformation. A completely new procedure, free energy optimization by 
steepest descent, is performed for these systems to locate free energy minima. 
Second derivatives of the free energy are obtained to describe the stability of 
free energy minima with respect to small deformations. The experimentally 
observed trend of enhanced 310-helix stability relative to the a-helix in short 
Aib-containing peptides is reproduced. Structural analysis and free energy 
decompositions provide insight into the microscopic mechanism of this ef- 
fect, revealing an underlying interplay between the quality and quantity of 
hydrogen bonds. 

The second application of the CFTI protocol is the evaluation of the 
free energy differences between four states of the linear form of the opioid 
peptide DPDPE in solution. Our primary result is the determination of the 
free energy differences between the representative stable structures ,Be and 
PE and the cyclic-like conformer Cyc of linear DPDPE in aqueous solution. 
These free energy differences, 4.0 kcal/mol between ,Bc and Cyc, and 6.3 
kcal/mol between ,BE and Cyc, reflect the cost of pre-organizing the linear 
peptide into a conformation conducive for disulfide bond formation. Such 
a conformational change is a pre-requisite for the chemical reaction of S- 
S bond formation to proceed. The predicted low population of the cyclic- 
like structure, which is presumably the biologically active conformer, agrees 
qualitatively with observed lower potency and different receptor specificity 
of the linear form relative to the cyclic peptide. 

The DPDPE simulations are the first example of use of CFTI to accelerate 
convergence of thermodynamic averages. This approach has two important 
advantages. First, because all " soft" degrees of freedom of the solute are 
fixed, the simulations do not suffer from conformational sampling problems 
common in othm f r w  erlergy simulation protocols, and all averages converge 
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very quickly. Second, the method yields not only the derivative of the free 
energy along the chosen reaction path between the initial and final state, 
but also the free energy gradients with respect to  all the fixed coordinates 
at each path point. This provides more information about the free energy 
surface of the studied system at  no increase in computational cost over 
standard thermodynamic integration approaches. The CFTI thermodynamic 
averages converged quite quickly, over tens of picoseconds. This is contrast 
to standard one-dimensional reaction path simulations - e.g. using the 
peptide end-to-end distance as the reaction coordinate, which generally 
require much longer sampling at each window. By averaging over the hard 
degrees of freedom of the solute and over the solvent distribution around the 
constrained solute, well defined thermodynamic states are generated at the 
ends and a t  the intermediate steps of the path, and the internal strain energy 
term is included in the free energy evaluation. Our results indicate that the 
CFTI method is a powerful, useful tool for simulating flexible molecules in 
solution. In our future work we plan to use the multidimensional free energy 
gradient to perform free energy optimization of stable states and reaction 
paths for such systems. 
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Abstract. This article provides an overview of an algorithm used for the predic- 
tion of ionization constants of titratable residues in proteins. The algorithm is based 
on an assumption that the difference in protonation behavior of a given group in 
an isolated state in solution, for which the ionization constant is assumed to be 
known, and the protonation behavior in the protein environment is purely electre 
static in origin. Calculations of the relevant electrostatic free energies are based on 
the Poisson-Boltzmann (PB) model of the protein-solvent system and the finite- 
difference solution to the corresponding PB equation. The resultant multiple site 
titration problem is treated by one of two methods. The first is a hybrid approach, 
based on collecting ionizable groups into clusters. The second method is a Monte 
Carlo approach based on the Metropolis algorithm for extracting a sufficient num- 
ber of low-energy ionization states out of all possible states, to obtain a correct 
estimation of thermodynamic properties of the system. 

As examples of applications, we present the overall accuracy of predicted ion- 
ization constants for about 50 groups in 4 proteins, changes in the average charge of 
bovine pancreatic trypsin inhibitor at pH 7 along a molecular dynamics trajectory, 
and finally, we discuss some preliminary results obtained for protein kinases and 
protein p hosp hatases. 

1 Introduction 

Studies of electrical interactions in proteins, polypeptides, and amino acids 
started over 60 years ago [I]. To a large extent, electrostatic properties of 
proteins are determined by the ability of certain amino acids to exchange 
protons with their environment and the dependence of these processes on 
pH. The proton occupies a special position as a promotter im(I ~rlt:cIia,tor in 
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(.hemica1 reactions occuring in solution. Many reactions in organic chemistry 
are catalyzed by acids or bases; likewise, most enzymes contain active groups 
which promote acid-base catalysis 121. The activity of such enzymes requires 
t,hat catalytic residues exist in the appropriate protonation state. Moreover, 
protonation states of ionizable residues surrounding the active site are also 
important since their electrostatic field can stabilize transition states along 
the reaction path. Finally, the enzyme's overall charge distribution, with the 
rriain contribution resulting from ionizable amino acids, can play a significant 
role in steering its substrates toward the active site. 

The PB model for macromolecular electrostatics treats the solute as a 
low-dielectric region bounded by the molecular surface and containing atomic 
charges. The atomic charges are typically drawn from a molecular mechanics 
force field. The charges are located at atomic positions determined by X-ray 
crystallographic methods or high-resolution NMR spectroscopy. The solute is 
surrounded by high-dielectric aqueous solvent which may contain a dissolved 
c\loctrolyte. The mobile charge distribution in the solvent is described by a 
Boltzmann distribution. Long-range electrostatic interactions are explicitly 
;~.cc:ounted for, while the electronic polarizability is implicitly included in the 
assumed dielectric constants of the media. 

In this article, we present the basic principles underlying our algorithm for 
predicting ionization constants of residues in proteins based on the PB model. 
As examples of applications, we present the overall accuracy of computed 
ionization constants for about 50 groups in 4 proteins, changes in the average 
rict charge of bovine pancreatic trypsin inhibitor (BPTI) a t  pH 7 along a 
rrwlecular dynamics trajectory, and finally, we discuss some results obtained 
for protein kinases and protein phosphatases, proteins controlling a variety 
of fundamental cellular processes. 

2 Theory 

2.1 Protonation Equilibria in Simple Systems 

Consider first a proton dissociation reaction for a group AH being a part of 
a small molecule 

The dissociation constant, Ka, and standard free energy change, AGO, for 
this reaction are related by the equation, 

where [XI refers to the concentration of species X; R is the gas constant; and 
T is the absolute temperature. AGO is the standard free energy for the state 
with the dissociaJt(\(l moleclile and proton in solution relative to the state with 
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the proton bound to the molecule. Introducing the well known definitions of 
pH and pKa 

we can convert (2) to the form 

Assuming that the concentrations are proportional to the probabilities of 
being in a given state, and using the following distribution, 

and choosing the neutral state of the group as the reference state, we finally 
obtain 

where y is +1 for bases, and -1 for acids. AG can be considered as the free 
energy of the ionized state relative to the neutral one [3]. For a protein with M 
ionizable groups, the free energy can be expressed as a sum of terms shown 
by (6). One should distinguish between the group as a part of an isolated 
amino acid and the group as a subunit of a macromolecule. Referring to the 
first as the model compound environment, and to the second as the protein 
environment, one can define for each group i the two following pKa values: 
the first pKi,rnodel and the second pKi,,,o,ein. The model compound used for 
each amino acid is generated by excising the residue from the protein without 
completing the N- and C-termini (e. g. HNCa(R)CO, where R corresponds 
to the side chain starting at CP). This partial backbone is neutral, as it is in 
the polypeptide chain in the protein. The experimental pKa for each model 
compound was derived from molecules that most closely resemble the entire 
model compound. In most cases, this means that the model compound pKa 
was derived from a small organic molecule (e.g. MeSH for Cys). However, 
in some cases the model compound pKas were adjusted to better represent 
experimentally determined pKas for the blocked and native amino acids. 
Thus, the free energy of the ionization state (xl , .. . , xM) of the whole protein 
is: 

where xi is 1 when the group i is ionized, and 0 when it is neutral. Using (2) 
one can write 
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- Therefore, we can define a standard free energy difference AAG~l,,p - 

dG:,p-otein - AGcmodel and rewrite (7) in the form: 

Thus, one can calculate the free energy of the macromolecule in a given 
ionization state, provided that pKi,model, and AAG[,,, are known. 

2.2 Protonat ion Equilibria for Interacting Sites 

The basic assumption underlying the method described here for predicting 
ionization equilibria in proteins is that each AAG~l,,p is electrostatic in 
origin. Within the framework of the PB model for the solute-solvent system, 
bAG:l,,p can be computed from the 4 electrostatic free energies based on 
the following sets of point charges representing the residue in its isolated state 
mid as a titratable group in the protein: a) a set of charges representing the 
neutral form of the residue; and b) a set of charges representing the charged 
form of the residue. The energy necessary to assemble the whole set of n point 
charges in an arbitrary dielectric body of ci immersed in an infinite medium 
with another dielectric 
the permittivity of the 

constant es (provided there is no field dependence of 
dielectric) is [4]: 

where +i is the electrostatic potential at the location of charge qi, and is con- 
sidered to be the sum of the Coulombic potentials due to all other charges 
cxcept the charge on i, plus the total reaction field at the location of the 
charge i. In principle, each AGi,,,, depends on the actual ionization states 
of all other titratable residues. However, assuming additivity of the elec- 
lJrostatic potentials created by fixed charges representing the atoms of the 
protein, one can write (7) in the form: 
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where pKiyintrinSic is the intrinsic pKa of group i [ 5 ] ;  and Pij is the absolute 
value of the interaction energy of groups i and j .  The intrinsic pKa of group 
i is given by: 

where 

electrostatic - 
AAGi AGi,protein 

electrostatic 
AGi,model 7 (I4) 

is the difference between the free energy change of ionization for group i in 
the otherwise unionized protein, and in a model compound of P K ~ , ~ ~ ~ ~ ~ ,  

electrostatic - (ionized) (neutral) 
AGi,model - Wi,rnodel - Wi,rnodel 7 (I5) 

and 

electrostatic - (ionized) 
AGi,protein - Wi,protein (16) 

The intrinsic pKa thus represents the pKa of the group in the protein with 
all other titratable amino acids in their neutral state. Finally, the interaction 
energy, between the sites i and j, is 

electrostatic - AAGi,j = AG. . electrostatic + n~e lec t ros t a t i c )  = y. q.. 
z,j,protein (AGi,protein j ,protein - 2 7 . 7  2.7, 

(17) 

electrostatic where A G $ ~ ~ ~ ~ ~ ~ ~ ~  has a similar meaning as AGi ,protein , but there are 
two sites, i and j, ionized. 

2.3 The Poisson-Boltzmann Equation 

The Poisson equation relates spatial variation of the potential q5 at position 
r to the density of the charge distribution, p, in a medium with a dielectric 
constant 6 

Equation (18) is valid when the polarizability of the dielectric is proportional 
to the electrostatic field strength [4]. The operator V in the Cartesian coor- 
dinate system has the form V - (a/ax,  spy, a/&). 

When this equation is applied to a system composed of a macromolecule 
immersed in an aqueous medium containing a dissolved electrolyte, the fixed 
partial charges of each atom of the macromolecule result in a charge density 
described by pf, and the mobile charges of the dissolved electrolyte are de- 
scribed by pm, which i derived from a Boltzmann distribution of the ions and 
coions. 
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where ni is the bulk number density of ions of type i and X is 1 in mobile ion- 
;l.ccessible regions and 0 everywhere else. Linearizing the exponential terms 

the mobile charge distribution into the form 

;md introducing a modified Debye-Hiickel parameter K (modified to be di- 
c.lcctric independent) 

one obtains the linearized P B  equation 

V . (~ ( r )V+( r ) )  = -4npf (r) + X(r)k2+(r) . (22) 

Rill derivation of this equation was presented by Garrett and Poladian [6], 
see also [7, 8, 91. 

3 Models 

3.1 Structures  

The method described here can be applied to proteins whose structures have 
been solved crystallographically or by high-resolution multidimensional NMR 
spectroscopy [lo]. The present calculations require that coordinates be estab- 
lished for hydrogen atoms. Polar and aromatic hydrogens are added with the 
HBUILD command [Ill of CHARMM [12]. The CHARMM forcefields allow two pos- 
sible models for participation of hydrogen atoms in the molecular model: the 
first includes only polar hydrogens and the second one all hydrogens. For 
the purpose of the PB approach to the problem of ionization equilibria in 
proteins, an intermediate hydrogen model was introduced; this includes all 
polar and all aromatic ring hydrogens. This allows for inclusion of poten- 
tially important interactions of ionizable groups with a charge distribution 
on aromatic rings of such amino acids like phenylalanine and tyrosine, al- 
though at present the high polarizability of the charge distribution of such 
rings is not included in the model. Hydrogens are added in such a way that 
resulting structures are fully protonated, i.e. they correspond to  low pH con- 
ditions. The positions of the hydrogens are further optimized by 500 steps of 
steepest descent energy minimization. By default, the protonation site for all 
carboxylic acids is the second oxygen atom in the structure file. No default 
exists for histidines and so the user is required to specify which nitrogen, 
ND1 or NE2, is the  one that deprotonates to generate the neutral form. In 
all calculations reported here, NE2 was taken to be deprotonatable. 
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3.2 Modeling Ionization Processes 

Ionization refers to  the process of losing or accepting a proton. This influences 
the total charge and the distribution of charges. Both effects are reflected in 
our model. An example of this is shown below for aspartic acid (Asp). When 
the residue is considered neutral, the atomic charges and radii have values 
corresponding to a neutral parameter set, when it is considered ionized, the 
atomic charges and radii have values taken from a charged parameter set. In 
the charged form of the Asp residue both the charge and the radius of the 
HD atom are set to zero. The UHBD program [13, 141 used for the electrostatic 
calculations, does not include atoms with zero radii in construction of the 
dielectric map for the system. Therefore, not only changes in the charge 
distribution accompanying the ionization process are taken into account but 
also the changes in the dielectric boundary between the solvent and the solute 
are included. 

neutral charged 

ASP 
ASP 
ASP 
ASP 
ASP 
ASP 
ASP 
ASP 
ASP 
ASP 

r 
1.630 ASP 
0.713 ASP 
2.018 ASP 
1.991 ASP 
1.666 ASP 
1.354 ASP 
1.381 ASP 
0 .713 ASP 
1.666 ASP 
1.381 ASP 

Because changes in the point charges of some atoms of the titratable 
amino acids upon protonation or deprotonation, are taken into account, to- 
gether with the changes in the dielectric boundary accompanying the process, 
we call this method a "full-group" titration model. In this respect it is similar 
to the method described by Yang et al. [15], and possibly also to that of Bash- 
ford and Gerwert [l6]. However, the present method is particularly efficient: 
four PB calculations per ionizable group provide all of the necessary energy 
terms. In addition, the procedure takes advantage of the scripting features of 
UHBD, and is therefore highly automated. 

3.3 Parameters 

The solvent dielectric constant, ionic strength and temperature are chosen to 
fit the conditions of the experimental studies. The protein dielectric constant 
is assigned some small value, e.g. 4. The PB calculations are currently carried 
out with the atomic charges and radii of the PARSE parameter set, developed 
by Honig and coworkers [17] or that for CHARMM [12]. The PARSE parameter set 
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is attractive because, when used with a solvation model based upon the PB 
(.quation, it yields accurate solvation energies for a variety of small molecules. 
The CHARMM parameter set has the advantage of including parameters for 
more molecules and is also more easily accessible. Values for pKa,,d,l,i are 
tabulated in [18]. The protein dielectric boundary is taken to be the Richards 
probe-accessible (i.e. molecular) surface [19], computed with a probe of radius 
of 1.4 A, and an initial dot-density of 500 per atom [20]. 

4 Methods 

4.1 T h e  Finite-Difference M e t  hod 

Fig. 1. Explanation of the principles of the finite-difference method for solution of 
the Poisson-Bolt zmann equation 

The UHBD program used in our calculations [13, 141, generates the electro- 
static potentials for investigated systems by solving the PB equation using 
the finite-difference method. The principle of this method is as follows. Con- 
sider a small cube of side length h centered at a certain point, say r, (see 
Fig. 1). Integrating (22) over the volume occupied by the cube and applying 
Gauss' theorem (.fv V A)du = $E A .  ndo), approximating continuous func- 
tions by distinct vallles at indicated points inside and outside the cube, and 
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finally approximating derivatives by the ratio of the differences, we get the 
following equation relating the potentials, charges and dielectric constants at 
the grid points 

Equation (23) represents the essence of the finite-difference method [21, 22, 
23, 241. 

In the finite-difference method, the macromolecule(s) and a region of the 
surrounding solvent are mapped onto a cubic lattice; each lattice point rep- 
resents a small region of either the molecule(s) or the solvent. At each point, 
values for the charge density, dielectric constant, and the ionic strength pa- 
rameters are assigned. The whole procedure can be represented by the fol- 
lowing steps: 

Map all fixed charges onto a regular cubic grid of mesh size h: if a, b, and 
c are the fractional distances along the grid axes that the actual location 
of the charge q, is from the grid point, then the fractional charge assigned 
to that grid point is q = q,(l - a ) ( l  - b ) ( l  - c) [22, 131. 
Determine the dielectric constants for each of the faces between the grid 
points. 
a. Each grid point is assigned the solvent dielectric constant, E,, unless 

it is within the selected radius of any atom, where it is then assigned 
the interior value, Ei. 

b. intermediate points between the given pair of two grid points is as- 
signed a dielectric constant according to a smoothing function, 

where d is the fraction of the grid line that is in the solvent [25]. 
3. Assign X value of 1 or 0 to each grid point to identify points that are or 

are not accessible to  mobile ions, respectively. 
4. Solve the set of linear equations 

with an appropriate boundary condition for the electrostntir: potential a t  
the grid edges, using one of the available iteration methods [21, 22, 23, 241. 
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The model presented above requires a minimum of four UHBD calculations 
for each titratable group: two for the protein environment and two for the 
rnodel compound environment. Each calculation is carried out with charges 
on the titratable group in question appropriate to either the neutral or ion- 
ized state, and with all other charges set to zero. Although the form of the 
equation for the interaction energy suggests that this interaction has to be 
separately calculated for each pair of the sites, the following equation explains 
the approximation used in order to avoid this apparent necessity, 

where charges q are the charges of the group j and the potentials q5 are the 
potentials at the location of the charges of the group j, arising from the 
presence of all charges of the group i; the primed symbols refer to the ionized 
state and the unprimed symbols refer to the neutral state of the group i or 
j .  

Because of the use of the "focusing" method [18], more than four calcula- 
tions are actually carried out for each group. However, the focusing method 
saves computer time by permitting the use of less extensive finite-difference 
grids. 

This set of calculations results in an output file containing all of the 
energies required to solve for the pH-dependent properties of interest. The 
form and content of the file are as follows: 

The first line contains the number of ionizable sites, M. Subsequent lines are 
organized in blocks whose first line contains information about the group 
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itself, and followed by information about its interactions with other groups. 
The first line of each block contains the model compound pKa of the group 
(pKi,rnodel), the type of the group (yi), the electrostatic free energy difference 
for ionization of the group in the protein with all other sites in the neutral 
state, relative to the same change in the model compound (AAGi), and 
the index of the group. The remaining M - i lines of each block contain the 
absolute values of the effective interaction potentials (Pij) with the remaining 
M - i sites ( j  = i + 1, ..., M). 

The data in this file may be used in the computation of the electrostatic 
free energy of a given protein in any of its 2M ionization states. Evaluation of 
average pH-dependent properties of a protein would require computation of 
the energies of all ionization states and subsequent evaluation of the average 
property, based on a Boltzmann's distribution. However, the total number of 
ionization states is prohibitively large for many systems of interest. Therefore, 
instead of enumerating all possible states, some other methods must be used 
in order to predict pH-dependent properties of proteins. In the subsequent 
section two possible approaches are described. The first is implemented in 
the Hybrid program [26] for rapid evaluation of mean charges, pKas and 
electrostatic free energies for proteins, and the second is based on a Monte 
Carlo procedure as implemented in the DOPS (Distribution Of Protonation 
States) program [27]. The latter method is much slower, but provides results 
not only for mean charges and pKas but also for fluctuations of the charges. 
It also provides a list of a predefined number of the lowest energy protein 
protonation states found during the Monte Carlo search, which can help 
to identify (nearly) degenerate states. Both programs use the above energy 
matrix as input. 

4.2 Treatment of Multiple Ionizations by a Hybrid Approach 

In an elegant paper, Gilson [26] presented a treatment of multiple ioniza- 
tion equilibria based on separation of ionizable groups into clusters. Each 
cluster is distinguished by strong interactions between its members and as a 
consequence possible strong correlations between ionization states of individ- 
ual residues. Interactions between groups belonging to different clusters are 
much smaller, and therefore intercluster correlations are small. A full parti- 
tion function (&e- G i I R T )  is evaluated for each cluster which is then used to 
determine fractional ionizations of titratable groups belonging to each cluster. 
Contribution of cluster-clus ter interactions to energies of titratable groups of 
a given cluster are treated by a mean field approach [28].  In the mean field 
approximation, the ionization equilibrium of group i is influenced by group 
j according to BjGij, where Bj is fractional ionization of group j. 

The method is implemented by initially selecting a state in which each 
group is fully ionized. The partition function of the first cluster is evalu- 
ated using the initial-guess charges for groups in other clusters with higher 
indices, and fractional ionizations of its groups are obtained. The partition 
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flmction and fractional ionizations for the second cluster are calculated, us- 
ing the previously evaluated fractional ionizations for the first cluster and the 
initial-guess charges for groups in other clusters with higher indices, and so 
on. All clusters are thus subsequently updated, and the process is iterated to 
self-consistency, where the criterion for convergence is that changes in frac- 
tional charges fall below some small value. This procedure is the same as 
that of Tanford and Roxby [29] except that the iterative loop is over clusters 
of groups, instead of individual groups. The iterations proceed reasonably 
quickly for clusters up to about 10 groups, which is the maximal allowed 
size of any cluster. The method of dividing ionizable groups into clusters and 
other details of the procedure have been fully described previously [26]. 

4.3 Treatment of Multiple Ionizations by a Monte Carlo Method 

The DOPS program [27, 301 extracts the most probable ionization states of 
the protein from 2M total states, using a Metropolis Monte Carlo (MC) 
algorithm [31]. The initial state is the protein with all sites protonated. Given 
a starting state, the Gibbs free energy, GI ,  is computed by use of (6). A 
random number in the range {0 - 1) is then picked for each ionizable group 
in the protein, and the ionization state is switched for each group whose 
random number is greater than some cutoff value s. Thus, an average of 
(1.0 - s) * 100% of the ionizable groups are toggled at each step. If s is 
0.99, then ca. 1% of the ionizable residues will be changed a t  each MC step. 
The second ionization state is then accepted or rejected depending upon 
its free energy, G2, again calculated by use of (6): when G25G1, the new 
state is accepted; when G2>G1, the new state is accepted with a probability 
of e-(G2-G1)/RT. For this another random number in the range {0 - 1) is 
picked - if it is smaller than e -(G2-G1)/RT the new state is accepted. Since the 
starting state is always far from equilibrium (all residues ionized), the initial 
equilibration steps are discarded, and only the subsequent production steps 
are used in computing thermodynamic averages. The number of equilibration 
and production steps should be chosen depending on the size of the system. 
The value of s is adjusted so that approximately 50% of new states are 
accepted. 

The Monte Carlo approach, although much slower than the Hybrid 
method, makes it possible to  address very large systems quite efficiently. 
It should be noted that the Monte Carlo approach gives a correct estimation 
of thermodynamic properties even though the number of production steps is 
a tiny fraction of the total number of possible ionization states. 

5 Algorithm 

In order to summarize the procedures used for computing ionization constants 
of titratable residues in proteins, the steps used in our algorithm will be 
enumerated below: 
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1. Preparation of a Brookhaven Protein Data Bank (PDB)-formatted [lo] 
file containing the coordinates and appropriate names of all atoms, in- 
cluding all polar and aromatic hydrogens. 

2. Use of the finite-difference PB (FDPB) method to calculate the self- and 
interaction-energies of the ionizable groups in the protein and solvent. 

3. Use of a Monte Carlo or a "cluster" (Hybrid) algorithm to calculate 
ionization constants of the titratable groups, net average charges, and 
electrostatic free energies as functions of pH. 

The procedure is computat ionally efficient. For example, for the catalytic 
subunit of the mammalian CAMP-dependent protein kinase and its inhibitor, 
with 370 residues and 131 titratable groups, an entire calculation requires 10 
hours on an SGI 0 2  workstation with a 175 MHz MIPS RlOOOO processor. 
The bulk of the computer time is spent on the FDPB calculations. The speed 
of the procedure is important, because it makes it possible to collect results 
on many systems and with many different sets of parameters in a reasonable 
amount of time. Thus, improvements to the method can be made based on 
a broad sampling of systems. 

6 Sample Applications 

6.1 Overall Efficiency of the Algorithm 

The presented algorithm was applied to 4 proteins (lysozyme, ribonuclease A, 
ovomucid and bovine pancreatic trypsin inhibitor) containing 51 titratable 
residues with experimentally known pKas 132, 331. Fig. 2 shows the correla- 
tion between the experimental and calculated pKas. The linear correlation 
coefficient is r = 0.952; the slope of the line is A = 1.028; and the intercept is 
B = -0.104. This shows that the overall agreement between the experimental 
and predicted pKas is good. 

However, some significant deviations between the experimental and pre- 
dicted pKa values are visible and some improvements and modifications of 
the procedure are possible. 

6.2 Total Charge of BPTI Along MD Trajectory 

In molecular mechanics and molecular dynamics studies of proteins, assig- 
ment of standard, non-dynamical ionization states of protein titratable groups 
is a common practice. This assumption seems to be well justified because pro- 
ton exchange times between protein and solution usually far exceed the time 
range of the MD simulations. We investigated to what extent the assumed 
protonation state of a protein influences its molecular dynamics trajectory, 
and how often our titration algorithm predicted ionization states identical 
to those imposed on the groups, when applied to a set of structures derived 
from a molecular dynamics trajectory [34]. As a model we took the bovine 
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Fig. 2. Correlation between predicted and experimental pKas in 4 globular proteins 

pancreatic trypsin inhibitor, a 58-residue protein which is used as the proto- 
typical small protein (BPTI) and is the subject of many experimental and 
theoretical studies. 

Fig. 3 shows the evolution of the charge distribution calculated with the 
PB equation of a set BPTI structures generated from the 200 ps MD simula- 
tion in solution. In this simulation the total charge of the protein was set to 5 
el  by neutralization of the protein N-terminal group and the use of standard 
protonation states for all other protonat ion sites. However, the starting x-ray 
structure (PDB entry code [12] 4pti) is consistent with fractional ionization of 
the N-terminal group of 0.6 which indicates that for this structure the prob- 
ability for this group of being neutral is slightly smaller than that of being 
charged. It is seen that at the initial stage of simulation (0-100 ps) the maxi- 
mum net charge was about 5.8 el in agreement with the fact that the starting 
structure taken for the simulation favored a larger charge than 5 e. The total 
charge becomes, however, very rapidly centered at the value of 5 e, so the 
distribution at 100-200 ps is nearly unimodal around that value, indicating 
an excellent agreement with the imposed charge during the MD simulation. 
The result presented in Fig. 3 shows that even a single charge mutation 
can substantially change the protein conformations explored during the MD 
simulation. This result not only emphasizes the need for the careful protein 
charge assigment, but also points out the direction of future development of 
the MD simulation techniques which would allow for modifying the titration 
state of a proteirl dllring the simulations. 
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Fig. 3. Charge distributions of the BPTI structures sampled from the indicated 
subranges of the MD trajectory for the BPTI X-ray structure; from ref. [34] 

6.3 Protein Kinases and Phosphat ases 

The last part of this account will be devoted to protein kinases and protein 
phosphatases and some recent results we have obtained for them. Protein 
kinases and phosphatases are signaling biomolecules that control the level 
of phosphorylation and dephosphorylation of tyrosine, serine or threonine 
residues in other proteins, and by this means regulate a variety of fundamen- 
tal cellular processes including cell growth and proliferation, cell cycle and 
cytoskeletal integrity. 

Left side of Fig. 4 shows a ribbon model of the catalytic (C-) subunit of 
the mammalian CAMP-dependent protein kinase. This was the first protein 
kinase whose structure was determined [35]. Figure 4 includes also a ribbon 
model of the peptide substrate, and ATP (stick representation) with two 
manganese ions (CPK representation). All kinetic evidence is consistent with 
a preferred ordered mechanism of catalysis with ATP binding preceeding 
substrate binding. 

The catalytic subunit then catalyzes the direct transfer of the y-phosphate 
of ATP (visible as small beads at the end of ATP) to its peptide substrate. 
Catalysis takes place in the cleft between the two domains. Mutual orien- 
tation and position of these two lobes can be classified as either closed or 
open, for a review of the structures and function see e.g. [36]. The presented 
structure shows a closed conformation. Both the apoenzyme and the binary 
complex of the porcine C-subunit with di-iodinated inhibitor peptide rep- 
resent the crystal structure in an open conformation [37] resulting from an 
overall rotation of the small lobe relative to the large lobe. 
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The explicitly shown residues in the ribbon models of the catalytic sub- 
lmit and the substrate are the phosphorylated threonine residue at position 
197 (P-Thr197) (CPK representation) and the serine residue at position 17 
of the substrate (Serl7) (stick representation). Phosphorylation of Thr197 is 
essential for activity of the kinase [38]. Our simulations (for mammalian pro- 
tein kinase) suggest that at pH 7 the preferred form of the phosphate group of 
P-Thr197 in the closed form is doubly ionized, whereas in the open form the 
single ionization state is strongly preferred. Another interesting feature ob- 
served was that Serl7 of the model of substrate bound to the closed and open 
forms of protein kinases is very hard to ionize since, for no case considered, 
was the pKa of the residue found to be below 20. However, as is shown in Ta- 
ble 1, effects of neutralization of important acidic residues (Asp166, Asp184 
and Glu91) is significant - decreasing of the pKa of Serl7 by 6 pH units is 
observed for neutralization of Asp166. On the other hand, forcing the ionized 
state of Serl7 of the substrate increases pKa of Asp166 to 7.9 in the closed 
form and to 10.9 in the open form. This indicates strong correlations between 
the protonation equilibria of Asp166 and Serl7 in accordance with the ex- 
pected enzymatic mechanism. Finally, it should be mentioned that Glu170, 
Glu203 and Glu230 play a significant role in binding of the peptide substrate, 
mainly via their interactions with Arg residues of the substrate. According 
to our estimate, the total electrostatic interaction with Arg residues of the 
substrate in the closed form is about 20 kcal/mol stronger than in the open 
one. 

The right side of Fig. 4 shows a ribbon model of the protein tyrosine phos- 
phatase (PTPase) from Yersinia with atoms of the catalytic Cys403 residue 
shown using a CPK representation. This enzyme catalyzes a reversible de- 
phosphorylation of tyrosine residues in proteins, but the mechanism is not 
well understood. One way of approaching this problem is to investigate the 
role of the conserved residues which are present in the PTPase signature 
motif. Site directed mut agenesis studies, besides selecting the biologically 
relevant reaction pathway, have also focused on determining the pKa of the 
active site Cys403 in the wild-type enzyme and selected mutants. Knowl- 
edge of the protonation states of the residues located in the neighborhood 
of Cys403 is essential for proposing a relevant mechanism. The pKa of the 
active site thiol group was experimentally determined to  be 4.67 [39]. This is 
an unusually low value because the pKa of a Cys residue is usually 8.5 [39]. It 
suggests that strong electrostatic interactions are responsible for stabilizing 
this anion [39]. 

Table 2 shows the results of our preliminary calculations of the pKa of 
the Cys403 residue, for several different models of the enzyme, based on two 
structures available from the PDB. In the case of the YPT structure, a crystal 
water molecule is close to Cys403 and was included in some of the calculations 
as part of the protein (i.e. it was treated with the same internal dielectric 
as that of the protein). Simulations denoted as +HzO in Table 2, include 
a crystallographic~,ll~ resolved, buried water molecule, situated 3.21A from 
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Fig. 4. Ribbon model of protein kinase with peptide substrate and Mn2ATP (left) 
and protein phosphatase (right) 

Table 1. Effects of neutralization of some acidic residues on the pKa of Serl7 
residue of the substrate 

shifts in pKa of serine in the substrate 
mutation the present algorithm in ref. [40] 

Glu-91 -+Gin - 1.9 
Asp- 166--+Asn -5.5 
Asp- 184--+Asn -2.7 
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the sulphur atom of Cys403. In the third row of Table 2, +minl, means that 
~ninimization of the structure was performed by the CHARMM program [12] for 

spherical region of radius 5 A around the SG atom of Cys403, and +min2 
means that the minimization was performed for a 12 A radius spherical region. 
During the minimization Glu290, Asp356 and His402, i.e. residues important 
for the catalysis or protonation state of Cys403, were kept protonated. Finally, 
+27 a.a. means that 27 N-terminal amino acids lacking from the PDB file 
were added to the structure using the Biopolymers module of the Insight11 
software [41]. In the case of the YTS structure, it should be mentioned that 
an ion is present and its S atom is 3.45A away from the sulphur atom 
of Cys403. 

Table 2. Predicted intrinsic and apparent pKa values for the Cys403 residue in 
Yersinia phosphatase for different models of the structure; the data refer to a tem- 
perature of 293 K and an ionic strength corresponding to 150 mM of monovalent 
salt. See the text for the detailed description of the conditions under which each 
pK estimation was made. The experimentally determined value is 4.67 [39] 

structure pKa,int pKa,app 
open structure - YPT 

wild-type 7.3 4.1 
+H20 10.1 5.4 
+minl 8.6 3.4 
+mi112 8.5 3.3 
+27 a.a. 9.3 4.7 

closed structure - YTS 
wild-type 10.5 1.6 
+so42 30.1 28.6 

It can be seen from Table 2 that the intrinsic values of the pK,s are 
close to the model compound value that we use for Cys(8.3), and that in- 
teractions with surrounding titratable residues are responsible for the final 
apparent values of the ionization constants. It can also be seen that the best 
agreement with the experimental value is obtained for the YPT structure 
suplemented with the 27 N-terminal amino acids, although both the origi- 
nal YPT structure and the one with the crystal water molecule give values 
dose to the experimentally determined one. Minimization, however, makes 
the agreement worse, probably because it was done without the presence of 
any solvent molecules, which are important for the residues on the surface 
of the protein. For the YTS structure, which refers to the protein crystal- 
lized with an s ~ ; ~  ion, the results with and without the ion included in the 
calculations, arc far from the experimental value. This may indicate that con- 
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formational change corresponding to the transition from the YPT structure 
to the YTS structure is accompanied by a stronger tendency of Cys403 to 
be ionized. However, the presence of a negative ion, possibly that of the sub- 
strate, in the vicinity of Cys403 leads to a significant increase of its predicted 
pK,. These aspects are currently under investigation. 
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Abstract. Two incarnations of the canonical ensemble probability distribution 
based on the generalization of statistical mechanics of Tsallis are described. A 
generalization of the law of mass action is used to derive equilibrium constants. 
Reaction rate constants for barrier crossing are derived using the transition state 
theory approximation. Monte Carlo and Molecular Dynamics algorithms which can 
be used to sample Tsallis statistical distributions are defined. The results are used 
to demonstrate that MC and MD algorithms which sample the Tsallis statisti- 
cal distributions can be expected to enhance the rate of phase space sampling in 
simulations of many body systems. 

1 An Introduction to Tsallis Statistics 

Nearly ten years ago, Tsallis proposed a possible generalization of Gibbs- 
Boltzmann statistical mechanics. [1] He built his intriguing theory on a re- 
expression of the Gibbs-Shannon entropy S = -k J p ( r )  l n p ( r ) d r  written 

S = lim Sq = lim 
(?-+I q-+lq-l  JPq(r ) (1  - b q ( r ) l q - ~ ) d r  

where d r  = drNdpN is a phase space increment. On the right, the "replica 
trick" identity In x = limn,o (xn - l ) /n  has been used; q is a real number. [1, 21 

Tsallis studied the properties of Sq which he referred to as a "generalized 
entropy." He noted that much of the standard mathematical structure of 
Gibbs-Boltzmann statistical mechanics remained intact before the limit is 
taken; that is, for Sqfl. This prompted the use of a generalized formalism 
based on the non-additive entropy Sq to. rederive, for non-extensive systems, 
a variety of results of the standard statistical mechanics (see [3] and references 
therein). For example, it is possible to define the probability of finding the 
system at a given point in phase space r = (rN, pN) by extremizing Sq 
subject to the constraints 

where H ( r )  is the system Hamiltonian for N distinguishable particles in d 
dimensions. The result is 
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where 

plays the role of the canonical ensemble partition function. Using the identity 
limn,o(l + an) 'In = exp(a), in the limit that q = 1, the standard probability 
of classical Gibbs-Boltzmann statistical mechanics 

is recovered. 

1.1 Surely You're Joking, Mr. Tsallis 

Before the limit is taken, the properties of the probability distribution appear 
to be strange in at least five ways. 

(1) In the q # 1 regime, for certain points in phase space the probability 
p q ( r )  may be negative or even imaginary. We then say that the probability 
of the system accessing that point in phase space is zero. This may be the 
case even when the energy is finite. 

(2) Equally foreign is the property that when q # 1 the relative probability 
of two points in phase space depends on the choice of the zero of energy. [l] 
By defining 

the probability of being at a point r in phase space can be written in the 
familiar form 

However, for a constant potential shift e the relative probability 

depends on c. This ratio can be rewritten as 

where potential shift has been absorbed in an effective "temperature" 
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In  the q = 1 limit, the effective temperature equals the standard temperature. 
Otherwise, adding a constant shift to the potential energy is equivalent to 
rescaling the temperature a t  which the canonical probability distribution is 
computed. 

(3) Equilibrium average properties are calculated using a statistical 
weighting of the probability p q ( r )  of Eq. (3) raised to the power of q as re- 
quired by the generalized statistical mechanics. The so-called q-expectation 
value is written 

In general, (I), # 1 for q # 1. Clearly, this is an odd "average!" It is also 
inconvenient as it requires evaluation of 2,. 

(4) Is the "temperature" 1/P related to the variance of the momentum 
distribution as in the classical equipartition theorem? It happens that there is 
no simple generalization of the equipartition theorem of classical statistical 
mechanics. For the 2N dimensional phase space r = (xl . . . X N ,  p1, . . . pN) 
the ensemble average for a harmonic system is 

where we assume unit mass. For the case of q = 1 we find the standard result 
that ( p E )  = 1/P In general we find that the average is proportional to 110 
but not equal to it. The situation is equally strange for the unnormalized 
"multifractal" average where 

1 
= stuff x p+(l-q)NP 

but the "stuff" is a q-dependent constant that may be negative or imaginary! 
The distribution of momenta cannot be written as a product of single 

particle distributions and we find that 

There is no simple linear scaling of the variance of the momentum with the 
number of degrees of freedom. 

(5) When q = 1 the extensivity of the entropy can be used to derive 
the Boltzmann entropy equation S = k In W in the microcanonical ensemble. 
When q # 1, it is the odd property that the generalization of the entropy Sq 
is not extensive that leads to the peculiar form of the probability distribution. 
The non-extensivity of Sq has led to speculation that Tsallis statistics may be 
applicable to  gravitational systems where interaction length scales compara- 
ble to the system size violate the assumptions underlying Gibbs-Boltzmann 
statistics. [4] 
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1.2 Ideal. Systems 

Let's focus on the q > 1 regime for systems with a Hamiltonian of the form 

in d-dimensional space, the part ition function can be written as 

where A = is the thermal de Broglie wavelength of the kth 
oscillator. For an ideal gas of N particles where U = 0 we find 

where L is the length of a side of a cubic box containing the ideal gas. In the 
limit that q -+ 1 we can use the asymptotic approximation r (x+a) / r (x+b)  = 

good for large x, to show that the standard partition function for an 
ideal gas is recovered 

Now consider a system of N one-dimensional harmonic oscillators with 
the Hamiltonian 

The canonical ensemble partition function is the phase space integral 

1 zq = I / dx" / dpN [ I -  (1 - q ) p H ( r ) ] F  . 
hN (20) 

The configuration integral can be evaluated and the partition function is 

Note that there is not a unique separation of the partition function as Zq = 
Z:rans Zvib 9 . However, using the result for the ideal gas translational partition 
function 
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In the limit that q --+ 1 we see that 

and the canonical ensemble partition function for N harmonic oscillators in 
classical Gibbs-Boltmann statistics is recovered. 

1.3 Ensemble Averages and the "q-Expectation Value" 
J 

For certain values of q and a harmonic potential, the distribution p, ( T )  can 
have infinite variance and higher moments. This fact has motivated the use 
of the q-expectation value to compute the average of an observable A 

Since the averaging operator is not normalized and in general (I), # 1 for 
q f 1, it is necessary to compute Z, to determine the average. To avoid 
this difficulty, we employ a different generalization of the canonical ensemble 
aver age 

which is obviously normalized. 
Consider a system of N particles in d dimensions. Using the standard 

procedure of integrating over the momenta in Cartesian coordinates, we can 
write the average of a mechanical property A(rN) as 

This definition is based on and proportional to the q-expectation value. How- 
ever, it is more useful since it is not necessary to evaluate the partition 
function to compute an average. 

1.4 Monte Carlo Methods for Pure Tsallis Statistics 

A configurational Monte Carlo algorithm based on uniform random trial 
moves and the acceptance probability 
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1 

where p, ( r )  oc [I - ( 1  - q)pU ( r ) ]  G, will sample the configurational distri- 
bution dictated by Eq. (26) .  Such a Monte Carlo algorithm may be used to 
compute equilibrium averages in the Tsallis statistical distribution. 

In the thermodynamic limit of large N for q # 1 we find that the ac- 
ceptance probability is unity for even the largest positive change in poten- 
tial energy AU. Effectively, the Monte Carlo sampling reduces to a random 
walk on the potential energy landscape. This feature can be used to devise 
a sampling scheme to overcome broken ergodicity. Only part of the time the 
acceptance would be that in Eq. (27) )  while the rest of the time will be spent 
sampling according to the standard Metropolis criterion. 

Alternatively, one may use a phase space Monte Carlo method with uni- 
form random trial moves and an acceptance probability 

to sample the phase space distribution [p, (r)]'. In the thermodynamic limit, 
this form of the acceptance probability does not suffer from the perculiar 
behavior exhibited by the form above. Moreover, an algorithm of this sort 
can be used to calculate standard, Gibbs-Boltzmann ( q  = 1 )  equilibrium 
thermodynamic averages 

Using this expression, the standard q = 1 equilibrium average properties 
may be calculated over a trajectory which samples the generalized statistical 
distribution for q # 1 with the advantage of enhanced sampling for q > 1. 

1.5 Chemical  Equil ibr ium 

Consider the chemical equilibrium 

The general form of the equilbrium constant is 

where X ,  and X ,  are mole fractions of reactants and products, and the 
Heaviside functions B,(T) and O,(T) are unity for phase space points in well 
a and y,  respectively, and zero otherwise. We will restrict our evaluation to 
one dimension; extension to many dimensions is straightforward. 

In the limit that the barrier height is large compared with the thermal 
energy, it is standard practice to expand the potential near t,lw r.o;tctant well 
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minimum to quadratic order and approximate the integral by the contribution 
near the well minimum. This approximation is well justified when the thermal 
distribution is Gaussian and relatively short-ranged. However, for q > 1 the 
approximation is not so easily justified. For q = 2 the equilibrium distribution 
for a harmonic well is a Cauchy-Lorentz distribution so that it is likely that 
significant contributions from anharmonicity far from the well minimum will 
contribute to the integral. Aware of this limitation, we carry out the integral 
using a harmonic approximation to the a and y potential wells. For the a 
state well 

We follow this with a low temperature approximation to the integral over the 
well's phase space population. The resulting equilibrium constant is 

In the limit that q + 1, the equilibrium distributions are more delocalized 
and the low temperature approximation may not be well justified. 

1.6 Transition State Theory for Rates of Barrier Crossing 

The transition state theory estimate of the rate constant for barrier crossing 
provides an upper bound on the rate of transition between well-defined reac- 
tant and product states. An assumption of the theory is that once a reactant 
acquires enough energy to  cross the barrier, it will cross the transition state 
and be deactivated as product. Dynamical recrossings of the transition state, 
associated with weak or strong damping, or nonadiabatic transitions, lead 
to reductions in the rate of barrier crossing from the transition state theory 
estimate. In this section, we examine the transition state theory rate constant 
for Tsallis statistics. This discussion is restricted to one-dimension, but the 
generalization to many dimensions is straightforward. 

There is still some debate regarding the form of a dynamical equation for 
the time evolution of the density distribution in the q # 1 regime. Fortunately, 
to evaluate the rate constant in the transition state theory approximation, 
we need only know the form of the equilibrium distribution. It is only when 
we wish to obtain a more accurate estimate of the rate constant, including an 
estimate of the transmission coefficient, that we need to define the system's 
dynamics. 

For a one-dimensional bistable potential with the transition state posi- 
tioned along the reaction coordinate x at x = xt , the TST rate for forward 
reaction is defined as 
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where pq (r) = pq (x, v) is the generalized statistical distribution 

I 1 
pq(x, V)  = - [I - (1 - q)PH(x, v)] 

2 9  h 

where 

is the generalized partition function and H(x, v) = rnv2/2 + U(x) is the 
Hamiltonian. 

For q < I there can be difficulties which arise from distributions which 
have zero probability in the barrier region and zero rate constant. In our 
analysis we assume that for any q the zero of energy is chosen such that the 
probability p q ( r )  is positive and real for all r .  The transition state theory 
rate constant as a function of the temperature and q is 

where 

We can approximate this fraction of states in the reactant well, by expanding 
the potential in a harmonic approximation and assuming that the tempera- 
ture is low compared with the barrier height. This leads to an estimate for 
the rate constant 

As we expect, in the limit that q + 1 the standard transition state theory 
result 

is recovered. 
Returning to the more general expression, in the low temperature limit 

we find that the rate 

independent of the temperature (even when T=O)! For the special case of 
q = 2 we find 
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7 Tempera ture  Scaling i n  Simulated Annealing 

IJsing these results, we can derive a scaling relation for the optimal cooling 
schedule in a simulated annealing optimization protocol. We suppose that 
the relavent energy scales of U(rN) are bounded by AU, the difference in 
energy between the ground and first excited state minima, and Ut, the highest 
barrier on the potential surface accessed from the global energy minimum. 
The final temperature (maximum P) reached in a simulated annealing run 
must be small enough so that at equilibrium the mole fraction in the global 
energy minimum basin is significant. In other words, based on Eq. (33) we 
demand that K,"," = Keq(PmaX; q). 

The time that the trajectory must spend at Dm, to ensure that the 
equilibrium distribution is sampled is at least Tmin, the time required to 
surmount the largest barrier separating the global energy minimum from 
other thermodynamically important states. Using Eq. (39) we find 

where 

Kk,aX is the maximum allowable equilibrium constant for the ground and 
first excited state populations at the final and lowest temperature reached in 
the annealing run, Pmm. For most cases of interest, we expect that 7 << 1. 

In the limit q --+ 1 of Gibbs-Boltzmann statistics, using the fact that 
limx,o[l - a ( l  - bx)] = ba, we find that 

The time for classical simulated annealing increases exponentially as a func- 
tion of the ratio of the energy scales UtjAU. However, for q > 1 the situation 
is qualitatively different. As a result of the weak temperature dependence in 
the barrier crossing times, the time for simulated annealing increases only 
weakly as a power law. 

2 Maxwell-Tsallis Stat istics 

We have developed Monte Carlo algorithms based on sampling Tsallisian 
distributions. Using a uniform random trial move and the acceptance proba- 
bility 
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the detailed balance condition 

[pq(x)]qW(x --t x') = [pq(xr)]qW(xr --t x) (47) 

is satisfied where W(x, x') is an element of the transition matrix. The walk 
generated by Eq. (28) will sample the distribution 

This probability distribution can be found by extremizing the generalization 
of the entropy Eq. (I) subject to the constraints 

/ &(rN)drN = 1 and / [p,(rN)]9u(rN)drN = Uq (49) 

We might then assume a Maxwell distribution of momenta so that the overall 
phase space distribution is that of a Maxwell-Tsallis statistics. 

2.1 Hybrid  Monte  Car lo  Algori thm 

We have implemented the generalized Monte Carlo algorithm using a hybrid 
MD/MC method composed of the following steps. 

1. Velocities are randomly chosen from a Maxwell distribution at a given 
temperature. 

2. The positions and velocities are updated for a time step At according to 
Newton's equation of motion using the force deriving from O. 

3. The point (phase space point or configuration) is accepted or rejected 
according to the criterion 

p = min [I, exp[-P(AK + AQ]] (50) 

where AK is the change in standard classical kinetic energy and AU is 
the change in the effective potential energy 

4. Return to 1. 

When the integrator used is reversible and symplectic (preserves the phase 
space volume) the acceptance probability will exactly satisfy detailed balance 
and the walk will sample the equilibrium distribution [p, (rN )]a. 

A similar algorithm has been used to sample the equilibrium distribution 
[pq (rN )]q in the conformational optimization of a tetrapeptide[5] and atomic 
clusters at low temperature.[6] It was found that when q > 1 the search of 
conformational space was greatly enhanced over standard Metropolis Monte 
Carlo methods. In this form, the velocity distribution can be thollght to be 
Maxwellian. 
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2.2 Molecular Dynamics wi th  a n  Effective Potential  

For a given potential energy function u(rN), the corresponding generalized 
statistical probability distribution which is generated by the Monte Carlo 
;tlgorithm is proportional to 

Consider the generalized distribution P, (rN ) to be generated in the Gibbs- 
Boltzmann canonical ensemble (q = 1) by an effective potential wq(rN; P )  
which is defined 

such that when q = 1, w(rN;p) = u(rN). For q # 1, the effective potential 
will depend on temperature as well as the coordinates. 

Given this effective potential, it is possible to define a constant temper- 
ature molecular dynamics algorithm such that the trajectory samples the 
distribution pq(rN).  The equation of motion then takes on a simple and 
suggestive form 

for a particle of mass mk and position r k  and u defined by Eq. (51). It 
is known that in the canonical ensemble a constant-temperature molecular 
dynamics algorithm generates samples from the configuration space according 
to the Boltzmann probability. As a result, the molecular dynamics with the 
effective potential W, (rN ; 4) will sample from the P, (rN) distribution. 

The effective force derived from the effective potential w(rN) has a 
ririrnber of interesting properties. It is of the form ~ , ( r ~ ;  ,f3) = -vrkU = 
F, (rN)aq (rN ; ,f3) where FI (rN) is the "exact" force for standard molecular 
dynamics (q = 1) and cuq(rN; ,f3) is a scaling function which is unity when 
q = 1 but can otherwise have a strong effect on the dynamics. 

Assume that the potential is defined to be a positive function. In the 
regime q > 1, the scaling function a, (rN, P) is largest near low lying minima 
of the potential. In barrier regions, where the potential energy is large, the 
scaling function cuq(rN, 4) is small. It may surprise you that for the function 
to be well defined, PU must be greater than zero. 

Use of the effective potential has the effect of reducing the magnitude 
of the force in the barrier regions. Therefore, a particle attempting to pass 
over a potential energy barrier will meet with less resistance when q > 1 
than when q = 1. At equilibrium, this leads to more delocalized probability 
distributions with an increased probability of sampling barrier regions. This 
argument demonstrates that when q > 1 the generalized molecular dynamics 
or Monte Carlo trajectories will cross barriers more frequently and explore 
phase space more efficiently (for a review of recent methods for enhanced 
phase-space sarriphg see [7]). 



208 Straub, Andricioaei 

2.3 Rate and Equilibrium Constants 

We once again carry out the integral in the low temperature approximation 
and find 

Within the same approximation, we estimate that the equilibrium constant 
is 

As in the case of pure Tsallis statistics and Eq. (33), in the limit that q + 1 
the standard transition state theory result 

W a  
~ T S T  (P; q = 1) = z;; ~xP[-P(u(x') - U(xa))I 

is recovered. 
Returning to  the more general expression, in the low temperature limit 

we find that the transition state theory estimate of the rate is 

which scales as 1/JP at low temperatures for all q. 
For the special case of q = 2 we find 

For q = I, the normal transition state theory rate constant is independent 
of temperature at high temperatures and varies exponentially with temper- 
ature in the limit of low temperatures (kT small compared with the barrier 
height u') as 

For q # 1, at high temperature the rate is independent of temperature 
~ T S T  = w,/x which is a factor of two larger than the result for q = 1. 
At low temperature 

independent of q! As q approaches unity the exponential Arrhenius tempera- 
ture dependence is recovered. However, for larger values of q the temperature 
scaling of the rate is a weak inverse power law. At all temperatures, the 
transition state theory rate constant is significantly larger for q > 1 than for 
q = 1. 
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Fig. 1 The two-dimensional potential considered in the text has two deep holes, 

seen in the front and left sides of the plot, and a less deeper hole to the right. 

2.4 Master Equations and Relaxation to Equilibrium 

The relaxation of a system to equilibrium 
equation 

d Pi 
d t  - = C [Lij Pj ( t )  - 

can be modeled 

Lji Pi ( t ) 1 . 

using a master 

(62)  

The elements of the transition matrix from state j to state i can be estimated 
in the transition state theory approximation 

w, 1 +  ( q -  ~ ) P U ( X ~ )  
L i  = - [ 

271 I + (q  - l p U ( x j )  1". 
where the total phase space probability of the j th  state is proportional to 
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Fig. 2 The dependence on q of  the non-zero eigenvalues of  the two-dimesional, 

three-hole model described in the text shows the rapid onset of  escape from wells 

as soon as q exceeds unity and the saturation at higher values of q. Also shown is 

the logarithm of the ratio of the two non-zero eigenvalues. 

The symmetric transmission coefficients are defined Bi = Li Mi. The general 
solutions are of the form 

in terms of the eigenfunctions $in) and eigenvalues An of the transmission 
matrix L. 

We have calculated the eigenvalues for a two-dimensional model system 
described by a potential function consisting of three holes, two deeper holes of 
equal depth, and a more shallow hole. The barrier between the deeper holes 
is higher than the other two barriers, which have equal height. [B] One of the 
three eigenvalues is zero, for any q, for reasons of conservation of probability. 
In the figure, we plot the other two as a function of q, together with their 
ratio. There is to be observed, for a thermal energy of a tenth of the well 
depth, the quick increase in the magnitude of the eigenvalues for q > 1. This 
implies fast relaxation to equilibrium even at low temperatures, due to the 
delocalized character of the Tsallisian distributions. 
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Do we expect this model to be accurate for a dynamics dictated by Tsallis 
statistics? A jump diffusion process that randomly samples the equilibrium 
mnonical Tsallis distribution has been shown to lead to anomalous diffusion 
and L6vy flights in the 5/3 < q < 3 regime.[3] Due to the delocalized nature 
of the equilibrium distributions, we might find that the microstates of our 
master equation are not well defined. Even a t  low temperatures, it may be 
difficult to identify distinct microstates of the system. The same delocaliza- 
tion can lead to large transition probabilities for states that are not adjacent 
in configuration space. This would be a violation of the assumptions of the 
transition state theory - that once the system crosses the transition state 
from the reactant microstate it will be deactivated and equilibrated in the 
product state. Concerted transitions between spatially far-separated states 
may be common. This would lead to a highly connected master equation 
where each state is connected to a significant fraction of all other microstates 
of the system.[9, 101 
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Abstract. A smooth empirical potential is constructed for use in off-lattice protein 
folding studies. Our potential is a function of the amino acid labels and of the 
distances between the C, atoms of a protein. The potential is a sum of smooth 
surface potential terms that model solvent interactions and of pair potentials that 
are functions of a distance, with a smooth cutoff at 12 Angstrom. Techniques include 
the use of a fully automatic and reliable estimator for smooth densities, of cluster 
analysis to group together amino acid pairs with similar distance distributions, and 
of quadratic programming to find appropriate weights with which the various terms 
enter the total potential. For nine small test proteins, the new potential has local 
minima within 1.3-4.7A of the PDB geometry, with one exception that has an error 
of 8.58L. 

Keywords. protein folding, tertiary structure, potential energy surface, global op- 
timization, empirical potential, residue potential, surface potential, parameter es- 
timation, density estimation, cluster analysis, quadratic programming 
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1 Overview 

The protein folding problem is the task of understanding and predicting how 
the information coded in the amino acid sequence of proteins at the time of 
their formation translates into the 3-dimensional structure of the biologically 
active protein. A thorough recent survey of the problems involved from a 
mathematical point of view is given by NEUMAIER [22]. 

The forces in a protein molecule are modeled by the gradient of the PO- 

tential energy V(s, X) in dependence on a vector s encoding the amino acid 
sequence of the molecule and a vector x containing the Cartesian coordinates 
of all essential atoms of a molecule. In an equilibrium state x, the forces 
VV(s, x) vanish, so x is stationary; and for stability reasons we must have a 
local minimizer. The most stable equilibrium state of a molecule is usually the 

* The authors gratefully acknowledge support of this research by the Austrian Fond 
zur Forderung der wissenschaftlichen Forschung (FWF) under grant P11516- 
MAT. 
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11;ttive (tertiary) state. Thus, finding the native state of a protein molecule 
with sequence s is considered to be more or less equivalent to finding the 
global minimizer li. of V(s, x) . 

Therefore, modeling a protein molecule amounts to  deciding on the atoms 
<:onsidered to be essential and to specifying the contribution of the various 
interactions to the potential. Since the work to find the global minimizer 
increases drastically (and possibly exponentially) with the dimension of x, it 
is customary to  use for larger proteins a reduced description that treats only 
very few atoms in each amino acid as essential. 

LEV~TT & WARSHEL [17, 181 were the first to show that reduced repre- 
sentations may work; they used C, atoms and virtual atoms at  side chain 
centroids. OOBATAKE & CRIPPEN [24] simplified further by only considering 
the C, atoms. This is sufficient since there are reasonably reliable methods 
(HOLM & SANDER [ll, 121) that compute a full atom geometry from the 
geometry of the C, atoms. (All atom representations are used as well, but 
limited to the prediction of tiny systems such as enkephalin.) 

Our potential is a sum of smooth surface potentials that model amino 
acid-solvent interactions and of smooth pair potentials that model amino 
xid-amino acid interactions. As in [24], we take as essential only the C, 
at oms. 

Traditionally, pair potentials are determined by assuming that a set of 
known structures, generally taken from the Brookhaven Protein Data Bank 
(PDB) [3, 35, 301, is an equilibrium ensemble of structures, so that, up to 
x constant factor determined by the temperature, the energy can be calcu- 
lated from Boltzmann's law and statistics on the known structures. In order 
to obtain useful statistics, the protein structures used must be carefully se- 
Iccted; see, e.g., HOBOHM et al. [9]. A more detailed overview can be found in 
SIPPL [28]. Other empirical potential construction techniques are discussed 
in BAUER & BEYER [I] and ULRICH et al. [34]. The fact that the potential is 
directly derived from geometric data implies that it automatically takes ac- 
cbolint of solvation and entropy corrections; on the other hand, one only gets a 
mean potential of low resolution. Reconstructions using mean potentials are 
reported by SUN [31] for apamin (18 residues) and mellitin (26 residues) using 
genetic algorithms, by SUN [32] for mellitin, APPI (36 residues) and crambin 
(46 residues) using simulated annealing, by GUNN et a1. [6] for myoglobin 
(153 residues) using a combination of simulated annealing and genetic algo- 
rithms, and by SIPPL et 91. [29] for myoglobin and lysozyme (129 residues) by 
a11 assembly process using a fragment database. In all these papers, results 
arc only 'native-like' when compared with the experimental structures. 

TO find appropriate empirical pair potentials from the known protein 
str.uctures in the Brookhaven Protein Data Bank, it is necessary to calcu- 
late densities for the distance distribution of C,-atoms a t  given bond dis- 
tJance d and given residue assignments a l ,  aa. Up to a constant factor that 
is immaterial for subsequent structure determination by global optimization, 
the potentials then (:r~lcrgt? as the negative logarithm of the densities. Since 
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a huge number of pair potentials is required, fully automatic and reliable 
density estimators are necessary. 

The only density estimators discussed in the protein literature are his- 
togram estimates. However, these are nonsmooth and thus not suitable for 
global optimization techniques that combine local and global search. More- 
over, histogram estimates have, even for an optimally chosen bin size, the 
extremely poor accuracy of ~ ( n - ' / l o )  only, for a sample of size n. The theo- 
retically attainable accuracy of the densities is much better, namely ~ ( n - ' / ~ ) .  
(See HALL & MARRON [7] and the survey by JONES et al. [I41 .) 

We therefore use smooth density estimation techniques that are more 
reliable than the histogram estimates. To improve the reliability for rare 
amino acid pairs, we use clustering techniques that identify 'similar' pairs 
that can be modeled by the same density. 

Since the precise form of the potential and the estimation procedure are 
still in flux, we only discuss the main features but not all the details. 

2 Empirical Residue Potentials 

We assume that proteins are coded by a sequence 

of n amino acids labelled by si E {I, . . . ,201 in one-to-one correspondence 
with the names of the 20 natural amino acids, and that 

is a vector listing the Cartesian coordinates xi E IR3 of the C, atoms in the 
native geometry of a protein molecule with sequence s. 

An ideal empirical potential function on the residue level is a function V 
that assigns to each sequence-coordinates pair (s, x) an energy V(s, x) such 
that 

x, E argmin, V(s, x) , (1) 

i.e., x, is a solution of the global optimization problem associated with the 
sequence s. 

In practice, we have a finite database of known pairs with limited accuracy, 
and we want to satisfy (I),  at least approximately, for the pairs in the data 
base. To make best use of current optimization technology, it is desirable 
to have a smooth (i.e., twice continuously differentiable with respect to X) 

potential. This allows for robust local optimization (e-g., [ 5 ,  25]), and can 
be combined with global search techniques such as simulated annealing (e.g., 
[15, 32]), genetic algorithms (e.g., [lo, 31]), smoothing methods (e-g., [21, 161) 
or branch and bound techniques (e.g., [20]) to approach the &hal minimizer 
for sequences s with unknown native geometry. 



Residue Potentials for Protein Folding 215 

Unfortunately, the approach of determining empirical potentials from 
wpilibrium data is intrinsically limited, even if we assume complete knowl- 
edge of all equilibrium geometries and their energies. It is obvious that sta- 
tistical potentials cannot define an energy scale, since multiplication of a 
potential by a positive, constant factor does not alter its global minimizers. 
But for the purpose of tertiary structure prediction by global optimization, 
this does not not matter. 

A more serious limitation comes from a nonuniqueness theorem (stated 
i~nd  proved in NEUMAIER [23]) that shows that the set of local and global 
minimizers and stationary points of any family of potentials V(s, x) can be 
reproduced by an infinite family of other potentials. Thus, no set of equilib- 
rium geometries can determine the true effective potential energy function. 
This complements the findings of THOMAS & DILL [33] (through a simula- 
tion study) and BRYNGELSON [4] (by theoretical arguments) that statistical 
potentials do not quantitatively reflect the true energies. In particular, empir- 
ical potentials solely derived from databases of equilibrium data will probably 
never be useful for dynamical studies. Moreover, the "energies" computed by 
;in empirical potential may have little to do with real energies, as has been 
recently pointed out by BEN-NAIM [2]. 

While this is disappointing, the nonuniqueness theorem also shows that 
if some empirical potential is able to predict correct protein folds then many 
other empirical potentials will do so, too. Thus, the construction of empir- 
ical potentials for fold prediction is much less constrained than one might 
think initially, and one is justified in using additional qualitative theoretical 
assumptions in the derivation of an appropriate empirical potential function. 

Our potential, 

is a weighted sum of smooth surface potentials Va (s, x) that model the total 
contribution of the interaction of all amino acids with label a with the solvent, 
and of smooth pair potentials V, (s, x) that model the total contribution of the 
iuteractions between all pairs of amino acids classified to be of the same class 
y. The constants za and 2, are positive weights scaling these contributions 
in a manner adapted to the available data. 

(While smooth pair potentials are the rule in the literature, surface terms 
have traditionally been discontinuous; the only potential using smooth surface 
terms seems to appear in LUND et al. [19], where the surface term is a function 
of a smooth approximation to the number of neighbors of a C, atom.) 

The class of a pair of amino acids in positions i, k of a sequence s depends 
on the labels si and sk of the amino acids and the residue distance i - k,  and 
is specified through a suitably constructed class table, and 
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where r i k  = 11 xi - xk 11 is the Euclidean distance between the positions xi and 
xk of two Ca atoms, and the pair potentials U, (r) are smooth functions of 
the distance. Instead of the more customary Lennard-Jones like potentials 
we use pair potentials that are constant for r 2 rmax, with a cutoff at rmax at 
12 Angstrom, since amino acids a t  most three residues apart are a t  distance 
< 12A in known proteins. All pair potentials are normalized such that their 
global minimum has the value 0. 

To make the pair potentials flexible but fast to evaluate we chose the 
U-, (rik) = W, (qik) as low degree polynomials in 

- with vanishing constant coefficient, where c,, = r:, and 

is the half squared distance between two C, atoms. qik is bounded in [0,0.125] 
and smooth, has compact support [0, r,,], and can be evaluated cheaply 
from inner products, without taking square roots. The coefficients of the 
polynomials W, (q) are found adaptively to  fit empirical potentials derived 
from the data; see below. 

For similar reasons we chose the surface potentials to be 

with low degree polynomials Wa(qi) in some expression qi that is larger on 
the surface than in the interior. Since qik is large only when the ith and the 
lcth residue are close, and since there are fewer residues close to a residue at 
the surface, the expression 

was used, which has this property. The constants were chosen such that qi has 
approximately mean 1 and is reasonably independent of the protein size n. 
qi (and hence each surface potential) is a smooth function of the coordinates, 
except when some position xk (k # i) coincides with xi; then qi is infinite. 
Thus, by enforcing Wa (q) + oo as q + oo, the surface potentials also serve 
the task to keep the amino acids apart. 

Given the pair and surface potentials, the weights are then constructed 
by solving the convex bound constrained quadratic program 

proteins s 

s.t. allz, 2 1, allz, 21. 
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cumulative distribution functions for d=1:20 

0 10 20 30 40 50 60 70 
half squared distance 

Fig. 1. Cumulative distribution function of half squared distances of amino acid 
pairs a t  residue distance d (d = 1, . . . ,20), truncated at c,,, = 72 (12Acutoff) 

The objective function is a nonnegative, convex quadratic in z .  It should 
vanish exactly for an ideal potential; hence minimizing the objective can be 
mpected to  give a good approximation to the best potential. The constraints 
;Ire inspired by the independence assumption of SIPPL [28], which amounts 
to the particular choice 

our constraint relaxes this assumption in a natural way. It turned out that in 
the solution, z,  > 1 for 9 of the 20 amino acids, and z,  > 1 for 15 of the 305 

classes y used. (For quadratic programming in general, see, e.g., [ 5 ] . )  

Density Estimation 

polynomials W a ( q )  ( q  = qik) and W , ( q )  ( q  = qi )  needed to specify the 
and surface potentials are constructed from the set of such q  realized in 

t t  data base of 266 proteins with a total of 46100 residues by means of density 
estimation techniques. 

Boltzmann's classical formula 

( f  ( q ) )  = ; / e - ~ " ( " f  (q)dq 

for the expectation of functions of a random variable q  can be used to justify 
the use of some multiple W ( q )  of the negative logarithm of the density p(q) = 
Z-' e-bw(q) of q as a useful definition of a potential contribution involving 
any interesting function q of the coordinates. (For the case when q  is an 
atomic distance, the pros and cons of this recipe are discussed in more detail 
by SIPPI, [28].) 
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n samples from uniform distribution; 20 empirical cdf's each 

Fig. 2. Empirical cdf's for many samples of increasing size from a uniform distri- 
bution 

For the robust estimation of the pair potentials, some obstacles had to 
be overcome. There are a huge number of different triples (si, sk, i - k) ,  and 
to find densities, we needed a way to group them in a natural way together 
into suitable classes. A look at the cumulative distribution functions (cdf's) 
of the half squared distances cik a t  residue distance d = i - k (w.1.o.g. > Q) ,  
displayed in Figure 1, shows that the residue distances 8 and higher behave 
very similarly; so in a first step we truncated all residue distances larger than 
8 to 8. 

This left 20 x 20 x 8 = 3200 classes, with some classes being very sparsely 
populated. For such classes, the error term ~ ( n - ' / ~ )  is unacceptably large, 
and density estimators are intrinsically unstable under variations of small 
samples. A Monte Carlo test with samples from a uniform distribution dis- 
played in Figure 2 shows that a sample size of a t  least about 100 is needed 
to reproduce a cdf and hence a density with a reasonable accuracy. 

Therefore it was essential to have an additional mechanism that groups to- 
gether data for 'similar' amino acid pairs. We performed this task by means 
of a weighted mean square cluster analysis. Our clustering procedure used 
linearly interpolated empirical cdf's of the initial classes together with a sta- 
tist ical estimate of t heir accuracy. We t hen repeatedly joined t he smallest 
remaining class to the class with the most compatible cdf and recomputed 
the cdf of the merged class until all classes contained at least 100 sample 
points. Additional correction phases allowed outliers in some class to migrate 
to a more suitable class. Applied to the 3200 initial classes, this produced 
a list of 305 classes with significantly different distributions. (Different clus- 
tering procedures are used in some recent residue potential constructions: 
ULRICH et al. [34] use clustering to group the 210 unordcml i~illino acid 
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Fig. 3. Some representative pair potentials U, ( r ) ,  scaled to move their interesting 
range to [0,5]. The numbers above each potential denote the class label y and the 
iilirnber of data points available for the fit. (For example, class 63 gives distance 3 
potentials for the amino acid pairs Lys-Asp, Arg-Lys and Glu-Tyr.) The spectrum 
1)clow each potential consists of 50 lines picked uniformly from the data. 

pairs of residue distance 3 into 36 classes based on some energy measure, and 
R ~ J B E R  & TORDA [13] apply clustering to estimated parameters.) 

To compute densities for such a large number of distributions, reliable and 
fully automatic density estimators are necessary. The only density estimators 
tliscussed in the protein literature are histogram estimates. However, these 
;tro nonsmoot h and thus not suitable for global optimization techniques that 
combine local and global search. Moreover, for a sample of size n and an 
optimally chosen bin size, histogram estimates have an accuracy of O(n- 1/10). 
This is an extremely poor accuracy, far away from the theoretically attainable 
accnracy ~ ( n - ' I 2 )  of other dmsity estimators. (To reach n-'1'' = 0.1 one 
t w d s  n = 10l0, whik r -  ' /' = 0.1 holds already for n = 100.) 



220 Neumaier, Dallwig, Huyer, Schichl 

ALA ARG ASN ASP CYS 

GLN GLU GLY HIS I LE 

LEU LYS MET PHE PRO 

SER THR TRP TYR VAL 

Fig. 4. Surface potentials W(q)  

One therefore needs a smooth density estimation techniques that is more 
reliable than the histogram estimates. The automatic estimation poses addi- 
tional problems in that the traditional statistical techniques for estimating 
densities usually require the interactive selection of some smoothing param- 
eter (such as the bin size). Some publicly available density estimators are 
available1, but these tended to oversmooth the densities. So we tried a num- 
ber of ideas based on numerical differentiation of the empirical cdf to devise 
a better density estimator. 

The best recipe we found so far is based on the statistical model 

where ql is the lth sample point in increasing order. W ( q )  is estimated from 
this relation by polynomial regression, and the Bayes criterion of SCHWARZ 
[26] is used to select the correct polynomial degree. 

see, e.g., http: //solon. cma. univie . ac . at / -  neum/stat . html#density 
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We tested our recipe on many trial densities by Monte Carlo simulation, 
~ g . ,  on the normal mixture target densities of JONES et al. [14]. Examples 
of pair potentials U,(r) = W,(q(r)) reconstructed in this way are given in 
Figure 3. 

We believe that this recipe gives a reasonably reliable density estimator. 
But is not yet perfect in that it suffers occasionally from picking an unsuitable 
polynomial order for the potential, and it tends to give small spurious oscil- 
lations a t  small densities when the original density is not of the form e-W(q) 

for some low degree polynomial W (q). Unfortunately, these translate into sig- 
nificant oscillations for large values of the corresponding potentials; see Fig. 
3 for classes 216, 237, 238, 256. (We are working on replacing polynomials by 
splines that should suppress these oscillations.) 

For the surface potentials, sufficiently many data were available, and no 
further problems appeared. The resulting potentials are shown in Figure 4. 
The hydrophobic amino acids are easily recognized as those for which the 
potential well is at  small values of q. 

4 Results and Future Work 

We tested our new potential by applying a local optimization procedure to 
the potential of some proteins, starting with the native structure as given in 
the Brookhaven Protein Data Bank, and observing how far the coordinates 
moved through local optimization. For a good potential, one expects the 
optimizer to  be close to the native structure. As in ULRICH et al. [34], we 
rrieasure the distance between optimizer B and native structure A by the 
distance matrix error 

it is usually a little larger than the root mean square (RMS) error that is 
based on optimal superposition. 

The results of the optimization for 9 small test proteins, both for the 
potential with constant weights 1 and with the optimized weights, are given in 
Table 1. The optimized weights lead to  smaller errors; the resulting potentials 
have minima within 1.3-4.781 of the PDB geometry, with one exception that 
has an error of 8.58L. 

At present, the data base used for the fit was not specially selected to avoid 
liomologous proteins. Thus, a further improvement can be expected from 
using data for one of the specially prepared lists of PDB files (cf. HOBOHM et 
al. [9]). We also expect further improvements from replacing the polynomial 
fits in the potential estimation procedure by piecewise cubic fits; though at the 
moment it is not clear how to select the number of nodes needed to get a good 
hit not overfitting ; i p ~ m h n a t i o n  to  the density. Finally, we are considering 
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Table 1. Distance matrix errors DME (in A) between optimizers and native struc- 
tures 

PDB code z = 1 optimized z 

i c t i  
igcn 
imhu 
imrb 
imrt 
2et i 
2mhu 
2mr t 
3znf 

adding chirality terms to further enhance the quality of our potential. More 
extensive testing, e.g., using the threading test of HENDLICH et al. [8] will be 
done after all these enhancements have been made. 
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Abstract. A personal account of work on long-timestep integration of biomolec- 
iilar dynamics is presented, emphasizing the limitations, as well as success, of var- 
ioiis approaches. These approaches include implicit discretization, separation into 
Iiarmonic and anharmonic motion, and force splitting; some of these techniques 
are combined with stochastic dynamics. A Langevinlforce-splitting approach for 
biornolecular simulations termed LN (for its origin in a Langevinlnormal-modes 
scheme) is also described, suitable for general thermodynamic and sampling ques- 
tions. LN combines force linearization, stochastic dynamics, and force splitting via 
extrapolation so that the timestep for updating the slow forces can be increased 
hyond half the period of the fast motions (i.e., 5 fs). This combination of strate- 
gies alleviates the severe stability restriction due to resonance artifacts that apply 
to symplectic force-splitting methods and can yield significant speedup (with re- 
spect to small-timestep reference Langevin trajectories). Extensions to sampling 
problems are natural by this approach. 

1 Introduction 

Looking ahead into the future bimolecular simulations, it is difficult to  pin- 
point the hurdles that will remain in 30 to 50 years. Will the quality of the 
~riolecular mechanics force fields still limit the accuracy of answers that can be 
i~ttained regarding macromolecular structure and kinetics? Will algorithms 
aimed a t  capturing all thermally-accessible states remain a hurdle? Certainly, 
the enormous range of spatial and temporal scales associated with biologi- 
a l l y  interesting motions of macromolecules is daunting to computationalists 
today. However, the effects of the technical improvements in computer archi- 
tecture, speed, processor communication, and parallel programming on the 
sampling problem cannot be predicted. 

The second international symposium on Algorithms for Macromolecu- 
lar Modeling (Konrad Zuse-Zentrum, Berlin, May 21-24, 1997) brought to- 
gether many theoreticians to ponder at these questions. Covering the most 
exciting developments in structure determination, timestepping algorithms in 
rliolecular dynamics (MD), free energy methods, quantum/classical dynam- 
ics, and other pra.ctical simulation topics, the presenters triggered many lively 

though not always (wlgenial-- discussions. Many of these advances are 
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presented in this volume. In this contribution, we offer a historical perspec- 
tive of our group's work on molecular dynamics schemes, experiences of which 
provide useful insights into the limitations of long-timestep integration meth- 
ods. These methods lead to the competitive force-linearization/force-splitting 
Langevin algorithm LN. This is possible by combining a stochastic formula- 
tion with force splitting by extrapolation (rather than impulses) to  alleviate 
stability problems at large outer timesteps. The Langevin trajectories differ 
from Newtonian trajectories, but are suitable for certain thermodynamic and 
conformational problems relating to macromolecules. The stochastic coupling 
parameter can also be made small (i.e., just sufficient for numerical stability) 
to make trajectories closer to  Newtonian. 

2 Long-Timestep Approaches 

The difficulty in simulating long-time processes of biomolecular systems mod- 
eled atomistically using standard force fields is well recognized: the timescales 
associated with molecular motion span an enormous range. Thus, while the 
fastest, high-frequency modes dictate a timestep of 1 fs or less in standard 
explicit schemes for acceptable resolution, this value is short by more than 
ten orders of magnitude than the slow and large-amplitude processes of ma- 
jor biological interest. Given the high cost of each iteration - which requires 
a force evaluation for a large system, a calculation dominated by long-range 
nonbonded interactions - this timestep restriction severely limits the total 
time that can be simulated for a large polymer. In addition, the continu- 
ous range of the biomolecular vibrational spectrum and the strong coupling 
among modes rule out general methods that work well on separable prob- 
lems. See [I], for example, for an introduction into this timescale dilemma, 
and [2, 3, 4, 51 for reviews of the associated numerical problem. 

The chaotic nature of individual MD trajectories has been well appreci- 
ated. A small change in initial conditions (e.g., a fraction of an Angstrom 
difference in Cartesian coordinates) can lead to exponentially-diverging tra- 
jectories in a relatively short time. The larger the initial difference and/or the 
timestep, the more rapid this Lyapunov instability. Fig. 1 reports observed 
behavior for the dynamics of a butane molecule. The governing Newtonian 
model is the following set of two first-order differential equations: 

where X and V are the collective position and velocity vectors, respectively; 
M is the diagonal mass matrix, VE(X( t ) )  is the gradient vector of the po- 
tential energy E, and the dot superscripts denote differentiation with respect 
to time, t .  

The top part of Fig. 1 shows the time evolution of the central dihe- 
dral angle of butane, r (defined by the four carbon atoms), for trajectories 
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Fig. 1. The time evolution (top) and average cumulative difference (bottom) associ- 
ated with the central dihedral angle of butane T (defined by the four carbon atoms), 
for trajectories differing initially in and lo-' Angstoms of the Carte- 
sian coordinates from a reference trajectory. The leap-frog/Verlet scheme at the 
timestep At = 1 fs is used in all cases, with an all-atom model comprised of bond- 
st retch, bond-angle, dihedral-angle, van der Waals, and electrostatic components, 
as specified by the AMBER force field within the INSIGHT/Discover program. 

differing initially in a fraction (low3, 10-l) of an Angstom (in the 
Cartesian coordinates) for A t  = 1 fs. The plotted average cumulative error xt 1r(t) - rl(t) 1 / t  for these trajectories (bottom) shows divergence of these 
trajectories from the reference trajectory and from one another. However, the 
divergence seen here is not exponential but rather linear in appearance, most 
likely because of the compactness (boundedness) of biomolecular systems. 

For many reasons, including the approximate nature of the governing force 
fields, MD simulations are not intended t o  animate the life of a biomolecule 
faithfully, as if by an unbiased video camera; rather, our experimental-by- 
rlature computer 'snapshots' aim at predicting meaningful statistical proper- 
ties of a complex system in the ultimate goal of relating structure to  func- 
t ion. Both conformational sampling algorithms (such as Monte Carlo) and 
dynamic simulations can he used to  generate such molecular ensembles for 
analysis. While sa.rrlpling rncthods are much cheaper computationally, only 
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the dynamic approach offers continuous pathway information within the lim- 
itations described above. Unlike applications in astrophysics, where precise 
trajectory pathways are sought (e.g., planetary orbits), biomolecular trajec- 
tories are generated more in the spirit of 'numerical statistical mechanics', 
where ensemble molecular averages are replaced by temporal averages of a 
single system. 

To increase the reliability of such simulations of inherently-chaotic sys- 
tems, special care is needed to formulate efficient numerical procedures for 
generating dynamic trajectories. This reliability, or accuracy in a loose sense, 
must be measured with respect to  the precise simulation questions posed. 
Mathematically, there are classes of methods for conservative Hamiltonian 
systems termed symplectic that possess favorable numerical properties in 
theory and practice [6]. Essentially, these schemes preserve volumes in phase 
space (as measured rigorously by the Jacobian of the transformation from 
one set of coordinates and momenta to the next). This preservation in turn 
implies certain physical invariants for the system. Another view of symplectic 
integration is that the computed trajectory remains close in time to  the so- 
lution of a nearby Hamiltonian (i.e., one which is order O(At )p  away from 
the initial value of the true Hamiltonian H - 4 ( v O ) ~ M ( V O )  + E(XO) ,  where 
p is the order of the integrator). This property translates to good long-time 
behavior in practice: small fluctuations about the initial (conserved in the- 
ory) value of H, and no systematic drift in energy, as might be realized by a 
nonsymplectic method. Fig. 2 illustrates this behavior for a simple nonlinear 
system, a cluster of four water molecules, integrated by Verlet and by the 
classical fourth-order Runge-Kutta method. A clear damping trend is seen 
by the latter, nonsymplectic integrator, especially a t  the larger timestep. 

Besides compatibility of resolution for the chosen combination algorithm 
and timestep with the answers sought, we also seek to minimize the re- 
quired computational time. Thus, practical considerat ions demand that the 
frequency of calculations associated with the most expensive part of the 
Newtonian forces be as small as possible. We associate this frequency with 
the 'outermost timestep' of the method. This desire to lengthen the outer- 
most timestep has led to  a variety of protocols for saving computer time: 
from constraining the fastest degrees of freedom via algebraic constraints 
[7, 3, 16, 101, to updating the nonbonded pair list infrequently, and formu- 
lating multiple-timestepping (MTS) schemes [ll] that have become very sue- 
cessful in biomolecular dynamics [12, 13, 14, 15, 16, 171. 

Accuracy, however, in biomolecular trajectories, must be defined some- 
what subjectively. In the absence of exact reference data (from experiment 
or from an analytical solution), the convention has been to measure 'accu- 
racy' with respect to  reference trajectories by a Verlet-like integrator [18, 191 
at a timestep of 1 or 0.5 fs (about one tenth or one twentieth the period, 
respectively, of the fastest period: an 0-H or N-H stretch). As pointed out 
by Deuflhard et al. [20], these values are still larger than tllost: rroeded to 
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Fig. 2. The time evolution of the total energy of four water molecules (potential- 
energy details are given in [48]) as propagated by the symplectic Verlet method 
(solid) and the nonsymplect ic fourth-order Runge-Kutta method (dashed pattern) 
fbr Newtonian dynamics at two timestep values. 

resolve well the motion of the fastest degrees of freedom and lead to reliable 
values of slowly-converging quantities. 

Shown in Fig. 3 is the time evolution of the end-to-end-distance of the 
butane molecule for different choices of timesteps (0.02, 0.2, 1.0 and 2.0 fs). 
Clearly, different paths are realized. Indeed, the obtained average end-to-end 
distance as a function of the simulation timestep in Fig. 4, inspired by [20], 
shows convergence only for small timesteps, less than 0.2 fs. In fact, our 
experiments with standard ordinary-differential-equation packages for MD 
integration reveal rejection of the 1 fs timestep on the basis of error cri- 
teria. The data shown in Fig. 4 are taken from single-timestep, as well as 
multiple-timestep (MTS), Verlet simulations. In the latter, three timesteps 
are used: AT, 247,  and 447 ,  with the outermost timestep considered At for 
the figure. Thus the triple-timestep data point shown for At = 2 fs has an 
imer timestep of 0.5 fs and a medium timestep of 1 fs. Bond-length and angle 
terms are updated every AT; dihedral-angle terms are updated every 247;  
arid nonbonded interactions are recalculated every 447.  As seen in the figure, 
accuracy is deterrlli~lcci the innermost timestep. This is the computational 
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Fig. 3. The time evolution of the end-to-end distance of butane for different 
timesteps (see Fig. 1 caption). 

advantage exploited in MTS schemes 116, 171 since the work for a large sys- 
tem is dominated by the outer timestep. For the small butane system, the 
cost of the MTS simulation with outer timestep At is about double that of 
the single-timest ep simulation at At. 

This discussion suggests that even the 'reference trajectories' used by 
symplectic integrators such as Verlet may not be sufficiently accurate in this 
more rigorous sense. They are quite reasonable, however, if one requires, 
for example, that trajectories capture the spectral densities associated with 
the fastest motions in accord to the governing model [13, 151. Furthermore, 
other approaches, including nonsymplectic integrators and trajectories based 
on stochastic differential equations, can also be suitable in this case when 
carefully formulated. 

3 Stochastic Dynamics 

An alternative framework to Newtonian dynamics, namely Langevin dynam- 
ics, can be used to mask mild instabilities of certain long-timestep ~pproaches. 
The Langevin model is phenomenological [21] - adding friction and random 
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Fig. 4. The average end-to-end-distance of butane as a function of timestep (note 
logarithmic scale) for both single-timestep and triple-timestep Verlet schemes. The 
tiniestep used to define the data point for the latter is the outermost timestep At 
(the interval of updating the nonbonded forces), with the two smaller values used 
as At/2 and At/4 (for updating the dihedral-angle terms and the bond-length and 
angle terms, respectively). 

forces to the systematic forces - but with the physical motivation to repre- 
sent a simple heat bath for the macromolecule by accounting for molecular 
collisions. The continuous form of the simplest Langevin is given by: 

where y is the collision parameter (in reciprocal units of time), or damping 
constant. The random-force vector R is a stationary Gaussian process with 
statistical properties given by: 



234 Schlick 

where kg is the Boltzmann constant, 7' is the target temperature, and 6 is 
the usual Dirac symbol. Fig. 5 illustrates the effects of increasing y on the 
trajectories and phase diagrams of a harmonic oscillator. 

The Langevin model has been employed extensively in the literature for 
various numerical and physical reasons. For example, the Langevin frame- 
work has been used to eliminate explicit representation of water molecules 
[22], treat droplet surface effects [23, 241, represent hydration shell models 
in large systems [25, 26, 271, or enhance sampling [28, 29, 301. See Pastor's 
comprehensive review [22]. 

Enhanced sampling, in particular, is possible in some cases because it 
can be shown on the basis of classical Kramers transition-rate theory that 
a critical y value can lead to faster convergence of equilibrium distributions 
(e.g., for key geometric and energetic properties). See 1311 and 1321 for recent 
applications of this idea to the slow macromolecular processes of DNA su- 
percoiling and protein folding, respectively. To illustrate, the fluctuations of 
the writhing number of supercoiled DNA, a geometric characteristic of global 
shape, is shown in Fig. 6 as a function of y over a large range. This fluctuation 
envelope exhibits a maximum at a certain range of y which can be considered 
'optimal' for sampling purposes. Equilibrium writhe distributions (as shown 
in Fig. 7) should in theory be the same for all y. 

In the large y limit, we enter the Brownian, or diffusive regime. This 
physical range can also be used (with suitable algorithms, other than those 
described here) to explore configuration spaces of floppy systems efficiently. 
See [33,34], for instance, for applications to the large-scale opening/closing lid 
motion of the enzyme triosephosphate isomerase (TIM), and to juxtaposition 
of linearly-distant segments in long DNA systems, respectively. 

Since the stochastic Langevin force mimics collisions among solvent 
molecules and the biomolecule (the solute), the characteristic vibrational 
frequencies of a molecule in vacuum are dampened. In particular, the low- 
frequency vibrational modes are overdamped, and various correlation func- 
tions are smoothed (see Case [35] for a review and further references). The 
magnitude of such disturbances with respect to  Newtonian behavior depends 
on y,  as can be seen from Fig. 8 showing computed spectral densities of the 
protein BPTI for three y values. Overall, this effect can certainly alter the dy- 
namics of a system, and it remains to study these consequences in connection 
with biomolecular dynamics. 

A physical value for y for each particle can be chosen according to Stokes 
law* (with stick boundary conditions): 

* An appropriate value of y for a system modeled by the simple Langevin equation 
can also be determined so as to reproduce observed experimental translation dif- 
fusion constants, Dt ; in the diflusive limit, Dt is related to y by Dt = k 1 3 T / z  my.  
See [22, 361, for example. 
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Fig. 5. Langevin trajectories for a harmonic oscillator of angular frequency w = 
and, unit mass simulated by a Verlet-like method (extended to Langevin dynamics) 
at a timestep of 0.1 (about 1/60 the ~ e r i o d )  for various y. Shown for each y are 
plots for position versus time and phase-space diagrams. 

where m is the  particle's mass and 7 is the  solvent viscosity. For example, 
y = 50 ps-l is n tJypiciil collision frequency for protein atoms exposed t o  
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Fig. 6. The envelope of the writhing number of closed circular DNA subject to 
torsional stress as a function of y, as computed from Langevin trajectories. Data 
are from [31]. 

Fig. 7. Writhe distributions for closed circular DNA as obtained by LI (see Section 
4.1) versus explicit integration of the Langevin equations. Data are from [36]. 
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BPTI spectral densities: Cosine Fourier transforms of the velocity autocorrelation function 
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Fig. 8. Spectral densities for BPTI as computed by cosine Fourier transforms of the 
vclocity autocorrelation function by Verlet (y = 0) and LN (y = 5 and 20 ps-I). 
Data are from [88]. 

solvent having a viscosity of 1 cp at room temperature [37]; it is also in the 
range of the estimated value for water (y= 54.9 PS-'). A much smaller value, 
however, than such a physically-appropriate value, will lead to less physical 
damping and hence closer normal modes corresponding to the Newtonian 
system. This is our goal in setting y for the LN method. The spectral densities 
of BPTI shown in Fig. 8 for nonzero y were computed by the LN algorithm. 

For future reference, the Verlet algorithm 1181 can be generalized to 
include the friction and stochastic terms above, and is typically used in the 
following form described by Brooks, Briinger and Karplus, known as BBK 
[23, 371: 
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Generalized Verlet Algorithm for Langevin Dynamics 

The third equation above is implicit for Vn+', but the linear dependency 
allows solution for Vn+' in closed form. Here, the superscripts refer to the 
difference-equation approximation to the solution a t  time nAt. The super- 
script used for R is not important, as it is chosen independent at each step; 
when the Dirac delta function of eq. (3) is discretized, 6(t - t') is replaced by 
&,/At. 

The popular Verlet method is recovered by setting y and Rn to zero in 
the above propagation formulas. 

4 Implicit Integrators and Resonance Artifacts 

A reasonable approach for achieving long timesteps is to use implicit schemes 
[38]. These methods are designed specifically for problems with disparate 
timescales where explicit methods do not usually perform well, such as chem- 
ical reactions [39]. The integration formulas of implicit methods are designed 
to increase the range of stability for the difference equation. The experience 
with implicit methods in the context of biomolecular dynamics has not been 
extensive and rather disappointing (e.g., [40, dl]), for reasons discussed be- 
low. 

4.1 Implicit Euler (IE) 

The impdieit-Euler (IE) scheme, for example, discretizes system (1) as: 

The IE scheme is nonconservative, with the damping both frequency and 
timestep dependent 142, 431. However, IE is unconditionally stable or A- 
stable, i.e., the stability domain of the model problem y' (t) = q y(t), where q 
is a complex number (exact solution y(t) = exp(qt)), is the set of all {qAt} 
satisfying Re (q At) 5 0, or the left-half of the complex plane. The discussion 
of IE here is only for future reference, since the application of the scheme is 
faulty for biomolecules. 

Because of the inherent damping, the application of IE to biomolecular 
dynamics only makes sense in the context of a model with a' r.c:storing force. 
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Discretizing the Langevin equation (2,3) by IE produces the following system 
which implicitly, rather than explicitly, defines Xn+' in terms of quantities 
known from previous timesteps: 

where R is specified at each step by eq. (3). 
We have shown that instead of solving a nonlinear system, the solution of 

xn+' from system (7) can be obtained by minimizing the "dynamics func- 
tion", @(X),  where 

1 n+1 x," = X n  + [At / ( l  + At)] (Vn + AtM- R ). (8) 

Thus, each step of dynamics by the Langevin/Implicit-Euler scheme ("LI") 
consists of solving for Xn+' by minimizing @(X) and then computing Vnfl 
from the second equation of system (7). The starting candidate for mini- 
mization of @ can be X n ,  X n  + AtVn, or X,", and efficient minimization 
cam be accomplished using our truncated Newton package 144, 45, 46, 471, 
recently made available in the comprehensive molecular mechanics and dy- 
riarnics package CHARMM. Note that the LI method behaves like a potential 
cbnc?rgy minimizer at each iteration when the timestep is large. This explains 
intuitively the stability of the method at large timesteps. 

There are three issues of concern regarding the application of LI to 
t)iomolecular dynamics: (1) the governing Langevin model, (2) the impli- 
rations of numerical damping, and (3) the CPU performance, given that 
lionlinear minimization is required at each, albeit longer, timestep. 

The Langevin model and the differences between Newtonian and Langevin 
systems are general problems and were briefly mentioned in the previous sec- 
t ion in both physical and numerical terms. Essentially, t he Langevin frame- 
work is adequate for some conformational and sampling questions. The issues 
of numerical damping and CPU performance have turned to be disappointing 
for LI except for special cases. We noted that the random force is insufficient 
to counter the strong and frequency-dependent damping of the IE scheme. 
Since the high-frequency bond-stretch modes are coupled to lower-frequency 
~llotions (angle bending, dihedral rotation, etc.) , which in turn trigger other 
(leformations, damping these high frequencies alters molecular motion sub- 
shntially. We have shown that LI tends to preserve 'local' structure (as mea- 
s~uod  by ice-like features of liquid water [48] and much slower decay of au- 
tloc:orrelation functions [49, 291) and exhibit an effective lower temperature 
for the system. In addition to this damping problem, there is no net compu- 
tla,tlional advantage the scheme. Though the timestep can be set to much 
1il.rgyr values t h m  1 1 ~ 1  1)y explicit schemes (e.g., At = 40 fs [29] or more), 
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we gain little overall from this timestep increase due to  the high cost of the 
minimization. 

Though LI failed for general biomolecular applications [50], it has been 
found to be a useful ingredient in two other contexts: macroscopic separable 
models, and enhanced sampling. 

In macroscopic DNA applications, long double-stranded DNA can be 
modeled by B-spline 151, 52, 531 or Fourier 154, 551 curve-fitting techniques 
and subjected to elastic-based energy functions [56]. Since the biologically- 
relevant high-frequency modes are conveniently absent in these systems, com- 
putational gain (e.g., factor of 3) without significant difference in the results 
can be achieved with LI over explicit integrators (see Fig. 7) [36]; in this 
context, explicit formulations are limited for stability by a restraint term for 
the total contour length of the curve, a computational device. 

The minimization-like behavior of LI in the long-timestep regime, com- 
bined with the kinetic-like first term of @, can be exploited for enhanced 
sampling purposes, a challenge at least as great as long-timescale MD simu- 
lations. Formulation of an efficient sampling method can be accomplished by 
adding appropriate perturbations to the minimum of the dynamics functiori. 
Such sampling methods based on LI have been developed independently by 
Scheraga and co-workers, to suggest unfolding protein pathways 1301, and 
by Derreumaux, to generate insight into the folding/unfolding dynamics of 
model peptides and and proteins [29, 571. 

The algorithm of Hao et al. 1301 essentially minimizes @(X), eq. (8), at 
each step to obtain Xn+' and then adds to it a rescaled velocity term to 
maintain uniform spatial perturbations to the protein at each step. This pro- 
cedure succeeds in unfolding and refolding the enzyme BPTI (bovine pancre- 
atic trypsin inhibitor) and capturing a unique and reproducible pathway for 
a specific protein intermediate lacking one of the native-structure disulfide 
bonds. Interestingly, the researchers find that many expanded conformations 
can be refolded closely to the native structure and therefore suggest that these 
partially-folded forms would be favorable folding intermediates of BPTI. 

In the "dynamics driver approach" (DA) 1291, a vector XDa = X n  + P is 
generated at each step n as the initial guess for minimization of the dynamics 
function @. The perturbation vector P is chosen to have magnitude X (e.g., 
X = 0.35 A) and three components set as: 

P = [A sin a cos p, X sin a sin p, X cos a] , (9) 

where the angles a and p are randomly chosen in the interval [-qs]. In ad- 
dition to specification of a perturbation vector P, each step of DA involves 
rescaling of the velocity vector Vn by a factor related to X and application of 
two acceptance criteria in the spirit of Metropolis/Monte Carlo. These crite- 
ria involve both the energetic components associated with the high frequency 
modes and the total kinetic energy [57]. The DA method does not yield con- 
tinuous dynamic trajectories but enhances sampling considerably, spending 
more time in energetically-favorable regions, as shown in [29]. Our recent 
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ilpplication of DA to the large-scale conformational change of the active site 
i l l  TIM produced several pathways between the open and closed form of this 
~ w y m e  for analysis [57]. On the basis of these energetic-pathway analyses, we 
t w c  suggested that the timescale for transition in TIM is much slower than 
I~rcviously assumed, namely microsecond rather than nanosecond range. 

4.2 Implicit Midpoint (IM) 

'I'he implicit-midpoint (IM) scheme differs from IE above in that it is sym- 
~l~t%ric and symplectic. It is also special in the sense that the transforma- 
tion matrix for the model linear problem is unitary, partitioning kinetic and 
potential-energy components identically. Like IE, IM is also A-stable. IM is 
t llcrcfore a more reasonable candidate for integration of conservative systems, 
; i ~ i d  several researchers have explored such applications [58, 59, 60, 611. 

The IM discretization applied to system (2) is: 

'I'his nonlinear system can be solved, following 1421, by obtaining Xn+' as a 

I-Ierlce for IM applied to Newtonian dynamics y = 1 and the Rn term in 
X$ is absent. Following minimization of the IM dynamics function to obtain 
Xr*', Vn+' is obtained from the second equation of system (10). 

An examination of the application of IM to MD shows very good numerical 
rmperties (e-g., energy conservation and st ability) for moderate timesteps, 
larger than Verlet [62, 41). However integrator-induced resonance artifacts 
1 imit the application of this approach to larger integration stepsizes. Essen- 
tially, resonance occurs at special timesteps that are related in a complex 
way (via the stepwise propagation transformation) to the various timescales 
of the motion [63, 64, 6, 651. At those timesteps, a concerted effect stemming 
hum one component of the motion (e.g., heating of a bond-stretch vibrational 
~llode) leads to very large energetic fluctuations or instability (e.g., bond rup- 
tme). Thus, resonance problems lead in general to erratic, rather than sys- 
t,mlatic, error patterns as a function of timestep. They are also method and 
system dependent [63, 66, 671, occur for both implicit and explicit schemes 
(c.g., Verlet and IM 163, 62]), and depend strongly on the fastest frequency in 
t,llc: system and possibly on the coupling strength to other vibrational modes. 

R,esonant timestleps can hc estimated on the basis of one-dimensional 
i~,rlnlysis [65, 621 fi.m tJh3 propngat,ing rotation matrices in phase-space for 
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symplectic methods. Namely, it can be shown that the eflective rotation angle 
Oeff in phase space is a function of the timestep and the integrator [65, 661. 
The eflective angular frequency  we^ = Oeff/At, can be expressed in terms of 
the natural frequency w of the model oscillator (as a function of At and the 
method). For example, we can estimate these resonant timesteps for our a- 
parameterized family of symplectic methods (a > 0) which uses the following 
discrete approximation to the force vector F at time nAt: 

Note that the method is implicit unless a = 0; symplecticness is proven in 
[66, 671. For these schemes, we obtain 

wee At = Oetf = 2 arcsin (w At &/2) , (13) 

where 

The values a = 0,1/12,1/4 and 1/2 correspond, respectively [66], to the Ver- 
let, Stormer-Cowell/Numerov, implicit-midpoint , and "LIM2" methods, the 
latter introduced in [41]. All integrators are second-order, except for Stormer- 
Cowell/Numerov, which is fourth-order accurate. 

The resonant timesteps of order n : m (where n and m are integers), 
correspond to a sampling of n phase-space points in m revolutions. This 
condition implies that 

By substituting the method and At-dependent formula for weff in this expres- 
sion, we can estimate the resonant timesteps on the basis of linear analysis 
[62] : 

The smaller the value of n (the resonance order), the larger the timestep 
of disturbance. For example, the linear stability for Verlet is wAt < 2 for 
second-order resonance, while IM has no finite limit for stability of this or- 
der. Third-order resonance is limited by & (- 1.72) for Verlet compared 
to about double, or 2& (- 3.46), for IM. See Table 1 for limiting values of 
wAt corresponding to interesting combinations of a and n. This table also 
lists timestep restrictions relevant to biomolecular dynamics, assuming the 
fastest motion has period of around 10 fs (appropriate for an 0-H stretch, 
for example). 

These estimates concur with simulation observations for a more complex 
nonlinear system, a blocked alanine model [67]. Specificdly, V ~ l ( . t  iwcomes 
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Table 1. Stability Limits and Resonant Timesteps for the Ver- 
let and Implicit Midpoint Schemes 

" based on w = 0.63 fs-l, which corresponds to the period 
P = 27rw = 10 fs, appropriate for an 0 - H  stretch 

n, resonance order Limit on wAt At,:1 for MD" 
Verlet IM Verlet IM 

~mstable for a timestep around 2.8 fs, roughly half the value yielding instabil- 
i t,y for IM, though IM exhibits large energy fluctuations when the timestep 
vsceeds 5 fs (see Fig. 9). This resonance problem, combined with the CPU 
requirements for minimization, dampen the likelihood of using implicit meth- 
ods effectively for biomolecular dynamics. 
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Fig. 9. Mean total energy vs. At for the Verlet (a = 0), IM (a = 114) and LIM2 
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4.3 Other Implicit Methods 

The IE and IM methods described above turn out to be quite special in that 
IE's damping is extreme and IM's resonance patterns are quite severe rela- 
tive to related symplectic methods. However, success was not much greater 
with a symplectic implicit Runge-Kutta integrator examined by JaneZiE and 
coworkers [40]. 

The symplectic method LIM2 [41] was further explored in 1671 with the 
thought that it might alleviate resonance in comparison to IM. It turns out 
that the parameter a affects the relationship between the numerical frequency 
and the actual frequency of the system. Specifically, the maximum possible 
phase angle change per timestep decreases as the parameter a increases. 
Hence, the angle change can be limited by selecting a suitable a. The choice 
a > restricts the phase angle change to less than one quarter of a period 
and thus is expected to eliminate notable disturbances due to fourth-order 
resonance. The requirement that a 2 f guarantees that the phase angle 
change per timestep is less than one third of a period and therefore should 
also avoid third-order resonance for the model problem. This was found to 
hold in our application to a representative nonlinear system, a blocked alanine 
residue [67]. Namely, the energy averages increase with At but exhibit no 
erratic resonance patterns for LIM2 as did IM (Fig. 9). Unfortunately, these 
energetic increases are not acceptable (e.g., approximately 30% and 100% of 
the small-timestep value, respectively, for At = 5 and 9 fs for this system). 
Part of this behavior is also due to an error constant for LIM2 that is greater 
that of leap-frog/Verlet . 

4.4 CPU Time 

The CPU time required for implementation of implicit schemes is clearly a 
practical concern. Simply put, it is difficult to beat an explicit method which 
only requires one force evaluation per timestep, even on the most advanced 
computer architectures [68]. CPU costs have not been detailed in general 
for the implicit schemes attempted for MD, since the systems examined for 
feasibility were often simple and not representative of macromolecules. So- 
lution performance of the nonlinear system, or equivalently the nonlinear 
optimization, subproblem also depends on the method used for this task, the 
timestep value of the integrator, and other factors. However, we have esti- 
mated based on our experience for CPU considerations alone (i.e., ignoring 
the quality of results obtained at large timesteps) that the timestep in implicit 
schemes must be at least 20 times greater that used in Verlet just for break- 
ing even in total CPU time. It is difficult to expect reasonable resolution in 
this regime given the stability limit and resonance problems outlined above. 
Perhaps semi-implicit [2] or cheaper implementations of implicit schemes [69] 
will better handle this problem: it might be possible to treat the local terms 
implicitly and the nonlocal terms explicitly. Exploitation of parallel machine 
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;trchitecture has potential for further speedup but, if experience to date on 
I,~allelization of linear algebra codes can be considered representative, par- 
;tllel computers tend to favor explicit methods. . 

5 Force ~inearizat ion/~ormal Modes 

A separation into harmonic and anharmonic motion is a reasonable strategy 
for attacking the timescale disparity in biomolecules. This is because the high- 
frequency motion is largely harmonic; thus if this component is filtered out in 
some way, a large timestep may be used for the residual motion. This concept 
was first explored by Tuckerman et al. [70] but abandoned early because of 
the large cost of the reference solution for realistic systems; originally this 
;tpproach was advocated because of greater claimed accuracy than multiple- 
tirnestep methods. We too found our LIN approach based on normal modes 
[71, 721 to be very expensive, but LIN led eventually to the competitive 
LN approach. This experience suggests that in general methods that might 
initially appear computat ionally demanding or even intractable are still worth 
considering, since competitive variations or further developments, in both 
software and hardware, cannot be anticipated. 

The LIN method (described below) was constructed on the premise of 
filtering out the high-frequency motion by NM analysis and using a large- 
timestep implicit method to resolve the remaining motion components. This 
kchnique turned out to work when properly irnplemented for up to moderate 
timesteps (e.g., 15 fs) [73] (each timestep interval is associated with a new 
linearization model). However, the CPU gain for biomolecules is modest even 
when substantial work is expanded on sparse matrix techniques, adaptive 
timestep selection, and fast minimization [73]. Still, LIN can be considered a 
true long-timestep method. 

Following a brief discussion of normal mode (NM) techniques, we will 
describe the LIN method and summarize the results obtained. 

5.1 Normal Modes (NM) 

The normal mode approach describes the motion of a system from its collec- 
tion of harmonic vibrations. The frequencies are determined by the shape of 
the potential energy surface only near energy minima, and once these modes 
are determined at a given configuration, equilibrium and dynamic properties 
can be approximated. To date, NM has been used mainly an analysis tool 
for studying dynamic properties of biological systems. Quasi-harmonic ex- 
tensions can partially treat larger-amplitude motions [74, 75, 351, but they 
cannot explicitly account for multiple minima in configuration space. The 
required eigenvalue calculations for full determination of the normal-mode 
displacements and frequencies are prohibitively expensive for biomolecules 
(as they scale with the third power of the number of independent variables), 
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but approximate procedures for large systems have been developed for se- 
lected (typically low-frequency) modes (e.g., [74, 76, 77, 78, 79, 801). 

The merging of NM analysis and MD is attractive because of the comple- 
mentarity of the two techniques. The former provides an accurate descrip- 
tion for an equilibrium reference system, while the latter can yield in the- 
ory a complete description of nonequilibrium events. Such a union has been 
mainly pursued in the context of 'essential dynamics' (81, 821 in which major 
features of macromolecules are approximately described by following a small 
set of low-frequency vibrational modes. The problem in this description arises 
from the need to identify this low-frequency subset from dynamic simulations 
(via correlation matrices): a dominant set of low-frequency modes cannot, in 
general, be reliably estimated from the short simulations feasible today [83], 
given the long relaxation times of proteins in solution. Therefore, techniques 
based on projecting the low-frequency motion on the Newton equations of mo- 
tion [81, 821, or splitting harmonic and anharmonic motion [84] with limited 
harmonic-model updating, cannot work for general biomolecular applications. 
Deviations from the harmonic approximation can emerge within 15 fs [73]. 
For the same reasons, a realistic description of a protein's long-time dynamics 
based on a low-frequency vibrational subset might only be possible through 
substantial incorporation of information from enhanced sampling techniques 

P2l. 
A rather different approach based in part on normal modes is the substruc- 

turing of Turner et al. [85]. This technique, originating in aerospace dynamics, 
partitions a multibody system into a collection of rigid and flexible particles. 
The motion of the atoms within these bodies is then propagated via selected 
low-frequency normal-mode components; the dynamic interactions between 
bodies are modeled rigorously. Large overall computational gains might be 
possible, but significant work is needed to devise system-dependent substruc- 
turing protocols. Although it is difficult to show general agreement with small 
timestep dynamic simulations by this approach, slow-scale motions might be 
more easily captured than with traditional methods. 

5.2 The LIN Method 

The LIN method ("Langevin/Implicit/Normal-Modes") combines frequent 
solutions of the linearized equations of motions with anharmonic corrections 
implemented by implicit integration at a large timestep. Namely, we express 
the collective position vector of the system as X(t)  = Xh (t) + Z(t). (In LN, 
Z(t) is zero). The first part of LIN solves the linearized Langevin equation for 
the 'harmonic' reference component of the motion, Xh(t). The second part 
computes the residual component, Z(t), with a large timestep. 
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Linearized Reference System We first formulate the following linearized 
Langevin system at some reference point Xr (e.g., Xn, Xn + $vn): 

The matrix H is a sparse approximation to the Hessian of E at Xr [73], such 
as the Hessian resulting from short (e.g., 4.5 A) cutoffs [73] or the second 
derivatives coming from the bond-length, bond-angle, dihedral-angle, and the 
1-4 electrostatic components. The goal is to formulate cheaply a reasonable 
description for the harmonic motion. Our experience has shown that the 
second H choice (local energy components) is much easier to implement (to 
cxploit sparsity), though the cutoff matrix might be preferred if cost were 
riot an issue since the interval over which the linearization is retained can be 
lengthened [73]. 

The solution Xh(t) of the linearized equations of motion can be solved by 
standard NM techniques or, alternatively, by explicit integration. We have 
experimented with both and found the second approach to be far more effi- 
cient and to work equally well. Its handling of the random force discretization 
is also more straightforward (see below). For completeness, we describe both 
approaches here. 

Analytic Solution 
The standard analytic procedure involves calculating the orthogonal 

transformation matrix T  that diagonalizes the mass weighted Hessian ap- 
1 

proximation H' = M-? HM- 5, namely 

Eigenvalues of the diagonal matrix D will be denoted as X i .  With the trans- 
formations 

112 x Q = TM ( - X )  and F = T M - ' ~ ~  R, (19) 

applied to the NM-displacement coordinates Q and random force F, sys- 
tem (17) is reduced to the set of decoupled, scalar differential equations for 
{ vqi vq, ) : 

Here, the force F is a linear combination of the components of R; it also has 
a Gaussian distribution and autocorrelation matrix that satisfies the same 
properties of R(t) as shown in eq. (3)) with I (the n x n unit matrix) replacing 
M [71]: 

( ~ ( t ) ~ ( t ' ) ~ )  = 2ykBTIb(t - t') . 
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The initial conditions of system (20) coincide with those for the original equa- 
tions: Xh(0) = Xn and Vh(0) = Vn. Appropriate treatments, as discussed in 
[72], are essential for the random force at large timesteps to maintain ther- 
mal equilibrium since the discretization S(t - t') + &,,/At is poor for large 
At. This problem is alleviated by the numerical approach below because the 
relevant discretization of the Dirac function is the inner timestep AT rather 
than a large At. 

The decoupled set of equations in system (20) can be solved for all the 
Qi and associated velocities Vqi by closed-form formulas that depend on the 
eigenvalues [71]. The harmonic position and velocity vectors at time nAt can 
then obtained from the expressions: 

Numeric Solution 
The alternative numerical procedure involves solving system (17) by in- 

tegration with a small 'inner timestep', AT, as required for traditional MD 
(0.5 or 1 fs). In theory, the procedure can become unstable for negative eigen- 
values X since the associated solutions, exp (-ifit)  (here only i is the com- 
plex number -), will grow in magnitude. However, for reasonable small 
timesteps these instabilities appear mild and require no special treatment in 
our context. The cost of this solution is also minimal, with each iteration 
dominated by sparse-Hessian/vector products and no new force evaluations, 
as in each MD step. For this integration, we use the second-order partitioned 
Runge-Kutta method (Lobatto IIIa,b) 1861, which reduces to the velocity 
Verlet method when y = 0. We take X, as the 'midpoint' Xn + +vn and 
define the inner iteration process as: 

V,+l = l4 - ATM-I [vE(x,) + H(x,) (xi+ - XT) + yMK+i - R], (23) 

This loop is iterated kl times to cover the interval At (klAr = At) to 
produce x;". Note the Hessian/vector products in the second equation of 
system (23). The random force is updated according to eq. (3) at every AT 
substep, so there is no problem of thermal equilibrium as for larger timesteps 
~721. 

Residual (Anharmonic) Correction Once the next Xh(t), X;", is ob- 
tained as a solution to system (17) by either the analytic or numeric proce- 
dures as above, the residual motion component, Z(t),  can be tletcrrnined by 
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solving the new set of equations which Z satisfies. These are determined by 
~lsing Z = X - Xh and the origin of X and Xh as solutions of systems (2) 
;111ti (17) respectively. This leads to the system [71]: 

where W is the time derivative of Z. The initial conditions for system (24) 
;ire: Z(0) = 0 and W(0) = 0. 

To solve this system, we apply the implicit midpoint scheme (see sys- 
t,ern (10)) to system (24) and follow the same algebraic manipulation outlined 
in [71, 721 to produce a nonlinear system VQj(Y) = 0, where Y = (X +Xn)/2. 
This system can be solved by reformulating this solution as a minimization 
t,mk for the dynamics function Qj: 

where 

x;+' + X n  At2 
Yo" = 

2 
+ YM-' [vE(x~) + H ((x,"" + Xn)/2 - x,)] (26) 

47 

Thus, each correction step of LIN requires nonlinear minimization of Qj. The 
init,ial approximate minimizer of Qj can be x;+' or (x:" + Xn)/2 (we use 
the latter). The new coordinate and velocity vectors for timestep n + 1 are 
then obtained from the relations 

LIN Results Computational performance of LIN was enhanced by using 
sparse Hessian/vector products in the first part and using more lenient con- 
vorgence criteria than the default values in the minimization subproblem. 
With 0.5-fs inner timestep values used for solution of the linearized equa- 
tions of motion, we found the work required for the linearized problem over- 
all very small (< 20 %). Comparison of LIN results to explicit simulations 
(BBK algorithm, system 5) at that timestep showed excellent agreement of 
tllzermodynamic properties for a blocked alanine model for which the LIN 
outer timestep, At, was 15-30 fs [73]. For BPTI, LIN results with At = 15 fs 
gave very good agreement with the corresponding explicit simulations with 
respect to energetic and structural properties. 

The LIN outer timestep is limited by the range of validity of the harmonic 
:kpproximation. The value 15 fs appears to be the largest for achieving essen- 
tially the same global behavior for LIN and the reference explicit trajectories. 
This can be seen from Fig. 10 showing for the blocked alanine model the dif- 
ferences in potential energy components (bond length, bond angle, dihedral 
angle, van der Wads, and electrostatic) before and after the residual correc- 
tions correspontlirlg t~ LIN trajectories at timesteps of 2 (yellow), 5 (red), 
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I"., --- 

0 0.5 I 1.5 2 2.5 3 3.5 4 4.5 5 

Fig. 10. Differences in potential energy components for the blocked alanine model 
(for bond length, bond angle, dihedral angle, van der Waals, and electrostatic terms, 
shown top to bottom) before and after the residual corrections in LIN trajectories 
at timesteps of 2 fs (yellow), 5 fs (red), and 10 fs (blue). 

and 10 (blue) fs. Thus, the 2-fs curves (yellow) are essentially flat; the red 
curves (5 fs) show some differences for the bond lengths and angles, and the 
blue patterns (10 fs) indicate larger differences in these two components. 

With the improvements outlined here, LIN becomes a true long timestep 
method in the definition of ~ a r c i a - ~ r c h i l l a  et al. [87]. Unfortunately, despite 
substantial optimization work, speedup is only modest on a single processor 
- a factor of 1.4 for BPTI - since minimization still consumes more than 
80% of the total CPU time, The speedup factor should increase with system 
size, and further routes for optimization might be identified, but we did not 
pursue this line of research. Instead, our examination of the magnitude of 
the anharmonic correction vector (or, similarly, the range of validity of the 
harmonic approximation) led to development of LN, which includes LIN's 
linearization, but not the expensive, correction step [73]. Even though the 
frequency of harmonic updating in LN can only reach 5 fs for good agree- 
ment with small-timestep simulations, the speedup by this approad1 is much 
better than LIN and similar to the factor obtained by MTS methods (e.g., 5, 
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with respect to simulations using a constant inner timestep). With the addi- 
tional incorporation of force splitting into LN, the relevant outer timestep can 
be increased much further than this harmonic-updating value, with greater 
overall speedup. 

6 Force Linearization + Force Splitting: The LN 
Method 

The idea of LN is to eliminate LIN's expensive implicit integration component 
and, concomitantly, reduce the interval length over which the harmonic model 
is followed. This view is reasonable given that the anharmonic corrections 
are small when At < 5 fs (Fig. 10). Our first implementation of LN was 
without force splitting [73]. The method was verified in this form for model 
proteins and shown to yield a speedup factor of around 5 with respect to 
reference (BBK) explicit trajectories (AT = 0.5 fs). This is possible because 
the linearization component is relatively cheap. As found by many others 
who introduced MTS schemes, the expensive component is the work required 
for the gradient evaluation of large systems (e.g., more than 80% of the total 
CPU for systems of 2000 atoms and more). In the context of the LN method, 
we found that an extrapolative force-splitting approach, together with the 
Langevin formulation, can alleviate severe resonances (88, 891. 

6.1 LN Without Force Splitting 

The skeletal LN procedure is a dual timestep scheme, {AT, At,), of two 
practical tasks: (a) constructing the Hessian H in system (17) every At, 
interval, and (b)  solving system (17), where R is given by eq. (3), at the 
timestep AT by procedure (23) outlined for LIN above. When a force-splitting 
procedure is also applied to LN, a value At > At, is used to update the 
slow forces less often than the linearized model. A suitable frequency for the 
linearization is 1-3 fs (the smaller value is used for water systems), and the 
appropriate inner timestep is 0.5 fs, as in LIN. This inner timestep parallels 
the update frequency of the fast motions in force splitting approaches, and 
the linearization frequency (At,) is analogous to the medium timestep used 
in such three-class schemes (see below). 

Computational speed can be achieved since the subintegration process 
does not require new force evaluations, as in every step of standard MD 
integration, and the linearization phase is extremely cheap when sparse- 
Hessian/vector multiplication routines are employed. Our experience has 
shown that a sparse H resulting from 4.5 A cutoffs evaluated every 5 fs 
gives very similar results in comparison to explicit trajectories at 0.5 fs [73]. 
A sparser H including only bonded interactions (i.e., bond-length, bond- 
angle and dihedral-angle) can be used together with a smaller value, 1-3 fs 
[5], for similar comprltational gains [73]. As the sparsity of the bonded 
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is less than 5% for systems with more than 6000 atoms, one calculation of 
requires about one fourth the CPU of the gradient calculation. This fact, 

combined with the cheapness of evaluating sparse-Hessian/vector products, 
explains the method's efficiency. 

6.2 LN With Force Splitting 

The small CPU percentages for the sparse Hessian evaluation and the lin- 
earization in LN as described above also imply that the majority of the work 
comes from gradient computations. Indeed, the percentage of CPU spent on 
gradient computations is about 80% for lysozyme and 99% for a large wa- 
ter droplet with more than 12,000 atoms (91% for this water system when 
nonbonded cutoffs at 12 A are enforced) [88]. This suggests that additional 
force splitting, as introduced by Street and coworkers in the 1970s (111 and 
developed further by Berne and colleagues [70, 13, 16, 171, can yield further 
speedups. Modern symplectic versions of these MTS methods were pioneered 
by Schulten and co-workers who developed the first parallel machine for MD 
computations [14] and independently by Berne, Tuckerman, Martyna [go] and 
later co-workers. Typically, the force splitting is extended into three classes: 
fast bonded interactions, local nonbonded interactions, and nonlocal interac- 
tions. The splitting of the nonbonded interaction into short and long-range 
parts can be defined by a spherical range and accomplished using a smooth 
switching function [12, 881. 

In LN, the bonded interactions are treated by the approximate lineariza- 
tion, and the local nonbonded interactions, as well as the nonlocal interac- 
tions, are treated by constant extrapolation over longer intervals (At, and 
At, respectively). We define the integers k l ,  k2 > 1 by their relation to the 
different timesteps as At, = kl AT and At = k2 At,. This extrapolation as 
used in LN contrasts the modern 'impulse' MTS methods which only add the 
contribution of the slow forces at the time of their evaluation. The impulse 
treatment makes the methods symplectic, but limits the outermost timestep 
due to resonance (see figures comparing LN to impulse-MTS behavior as the 
outer timestep is increased in [88]). In fact, the early versions of MTS meth- 
ods for MD relied on extrapolation and were abandoned because of a notable 
energy drift. This drift is avoided by the phenomenological, stochastic terms 
in LN. 

Formally, we describe the LN method with the above force splitting below 
for the triplet protocol {AT, Atm, At). The fast, medium, and slow force 
components are distinguished by subscripts; we take the medium forces as 
those nonbonded interactions within a 6 A region. 
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LN Algorithm (with Force Splitting via Extrapolation) 

x,=x+*v 
Fs = -VEs~av(Xr) 
For j = 1 to k2 

x ~ = x + * v  

evaluate the aussian force R a 
X=X+;;-v 

AT 
end  X = X + - v  

2 
end 

6.3 LN Results 

A detailed examination of LN behavior is available (881 for the blocked alanine 
model, the proteins BPTI and lysozyme, and a large water system, compared 
to reference Langevin trajectories, in terms of energetic, geometric, and dy- 
namic behavior. The middle timestep in LN can be considered an adjustable 
quantity (when force splitting is used), whose value does not significantly 
affect performance but does affect accuracy with respect to the reference tra- 
jectories. For example, we have used At, = 3 fs for the proteins in vacuum, 
but 1 fs for the water system, where librational motions are rapid. 

In Tables 2 and 3 we show the error percentages of the LN energy compo- 
nents (and kinetic temperature) with respect to the explicit Langevin trajec- 
tories at AT = 0.5 fs for BPTI and lysozyme simulations. The "Reference" 
column shows energy means and variances for the explicit trajectory (pro- 
duced by the BBK scheme), and the LN columns (each corresponding to a 
different k2 value, as indicated in the heading) show the percentage error of 
each entry (mean energy component and associated variance) with respect to  
the reference values. Here, At, = 3 fs, so the LN variants shown (k2 = 1, 3, 
6, 12, 24, 48, and 96) correspond to outer timesteps At of 3, 9, 18, 36, 72, 
144, and 288 fs, respectively. 

We first note errors in total energy means that are not greater than 0.5% 
for all LN versions tested. Individual energy components show errors that are 
generally less than 1%, with the exception of the van der Waals energy that 
can reach 4% for large k2. Of course, this discussion of relative errors reflects 
practical rather than mathematical considerations, since constants can be 
added to individual terms without affecting the dynamics. The relative errors 
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Table 2. Percentage error for LN compared to reference Langevin trajectories (at 
0.5 fs) for energy means and associated variances for BPTI over 60 ps at y = 20 
ps-l (AT = 0.5 fs, At, = 3 fs, and At = kzAt,, where k2 ranges from 1 for LN 1 
to 96 for LN 96. 

LN 1 

(At  = 3 fs) 

0.41 1.54 

0.43 0.9 

0.42 1.3 

0.09 0 

0.33 0 

0.54 0.11 

1.43 1.55 

0.02 9.38 

0.43 0.60 

4.0 

Eb 

Ek 

5 
bond 

Eangle 

Eta 

Evdw 

&IS 

T 

Speedupc 

L N  3 

(At  = 9 fs) 

0.36 0.45 

0.32 1.3 

0.39 0.62 

0.42 0.22 

1.51 1.55 

0.02 9.38 

0.37 0.60 

7.4 

Reference0 

(At  = 0.5 fs) 

1620.2 32.4 2% 

809.0 22.3 3% 

811.1 23.0 3% 

322.4 14.6 ,g, 

456.2 16.0 4% 

353.6 8.93 3% 

-119.0 12.9 119 

-1958.4 16.0 1% 

300.2 8.28 3% 

(1.0) 

L N  6 L N  12 

(At  = 18 fs) (At  = 36 fs) 

OThe variance percentage of tl 

L N  24 

(At  = 72 fs) 

0.3 3.09 

0.43 8.52 

0.18 5.22 

0.06 0.68 

0.24 0.62 

0.4 1.34 

3.28 2.33 

0.16 23.75 

0.43 0.72 

11.7 

L N  48 

(At  = 144 fs) 

0.37 4.32 

0.44 0.45 

0.32 8.26 

0.03 0.68 

0.28 0.62 

0.31 0.34 

3.78 3.10 

0.16 28.75 

0.47 0.48 

12.6 

L N  96 

(At = 288 fu) 

mean energy is shown as a subscript to the variance value recorded for the BBK scheme. 

'~nergy [in Kcal/mol] is given for the total, kinetic, potential (with respect to the initial values -1664.96 corresponding to a local 

minimum near the initial configuration), bond length, bond angb, torsion angle, van der Waals, and electrostatic components. 

'The speedup is relative to the reference trajectory, which takes 14 hours. 

seen for different terms thus correspond to magnitudes assigned in practice 
in the current force field. 

The errors in the variance values (reflecting the fluctuations about the 
means) are larger: for the total energy, variance errors can be as large as 
7% for large k2 (the potential energy is the source rather than the kinetic 
energy); most other entries for energy components are less than 3%, except 
for two van der Waals values (LN 96 for BPTI and LN 3 for lysozyme) and 
all electrostatic entries. Note, however, that for the electrostatic energy the 
variance of the reference trajectory is a very small percentage of the mean 
value, namely 1% for BPTI. Thus, for example, the LN 96 variance (worst 
case for BPTI) for the electrostatic energy is still 1% of the reference energy 
mean although the value in the table is 33% (indicating an absolute energy 
variance of 16x 1.33 kcal/mol.). Thus, the values shown in Tables 2 and 3 still 
reflect a satisfactory agreement between LN trajectories and small-timestep 
analogs of the same Langevin equation. See [88] for many other examples of 
thermodynamic and geometric agreement. 

It was also interesting to compare LN behavior as kz increases to trajecto- 
ries that use nonbonded cutoffs: for very large ka, behavior of the LN trajec- 
tory begins to  resemble the cutoff trajectory [88]. This observation suggests 
that the model itself, rather than the numerical scheme per se, is responsible 
for the deviations. 
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Table 3. Percentage error for LN compared to reference Langevin trajectories (at 
0.5 fs) for energy means and associated variances for lysozyme over 60 ps at y = 20 
p-' (AT = 0.5 fs, Atm = 3 fs, and At = kzAtm, where k2 ranges from 1 for LN 1 
to 96 for LN 96. 

LN 3 

(At = 9  fa) 

0.33 3.23 

0.40 0.61 

0.26 3.27 

0.07 0 

0.42 0 

0.58 2.36 

1.24 6.44 

0.05 6.99 

0.40 0 

9.3 

zb 

13k 

E, 

Ebond 

lLngle 

&or 

Svdw 

&IS 

'I' 

Speedupe 

LN 6 

(At = 18 fi~) 

0.45 2.80 

0.46 0.61 

0.44 3.27 

0.04 0 

0.36 0 

0.67 1.57 

1.10 1.49 

0.01 4.78 

0.47 0 

12.7 

LN 12 

(At = 36 fs) 

0.43 3.88 

0.49 0.61 

0.37 5.36 

0.10 0.47 

0.49 0.42 

0.72 1.57 

1.78 1.49 

0.06 5.88 

0.50 1.85 

Referencen 

(At = 0.5 fs) 

3605.2 46.4 

1814.9 32.8 2% 

1790.3 33.6 2% 

714.6 21.5 3% 

1010.3 23.8 

719.4 12.7 2% 

-426.7 20.2 5% 

-5080.2 27.2 ,s, 

299.9 5.4 2% 

(1.0) I- 
'The variance perwntage of the mean energy is shown as a subscript to the variance v; 

LN 1 

(At = 3 fe) 

0.42 1.94 

0.42 0.61 

0.42 1.79 

0.08 0 

0.32 0 

0.60 1.57 

0.80 1.98 

0.03 2.21 

0.43 1.85 

4.9 

LN 24 

(At = 72 fs) 

0.49 4.96 

0.51 0.61 

0.47 7.44 

0.07 0.47 

0.37 0.42 

0.61 2.36 

0.94 1.98 

0.03 9.93 

0.50 0 

17.2 

LN 48 

(At = 144 L) 

0.50 0.61 

0.51 9.52 

0.06 0.47 

0.36 0.42 

0.68 2.36 

1.10 2.48 

0.02 13.97 

0.50 1.85 

18.6 

LN 96 

(At = 288 fa) 

le recorded for the BBK acheme. 

b~nergy  [in Kcal/mol] is given for the total, kinetic, potential (with respect to the initial values -4637.85 corresponding to a local 

minimum near the initial configuration), bond length, bond angle, torsion angle, van der Waals, and electrostatic components. 

CThe speedup is relative to the reference trajectory, which takes 72 hours. 

Another view of this theme was our analysis of spectral densities. A com- 
parison of LN spectral densities, as computed for BPTI and lysozyme from 
cosine Fourier transforms of the velocity autocorrelation functions, revealed 
excellent agreement between LN and the explicit Langevin trajectories (see 
Fig. 5 in [88]). Here we only compare the spectral densities for different y: 
Fig. 8 shows that the Langevin patterns become closer to the Verlet densities 
(7 = 0) as y in the Langevin integrator (be it BBK or LN) is decreased. 

Finally, we show in Fig. 11 the speedup of LN at  increasing outer timesteps 
for BPTI, lysozyme, and the large water droplet (with all nonbonded inter- 
actions included). We can see speedups exceeding an order of magnitude, 
reaching an asymptotic value at fairly small k2. This suggests that the best 
compromise between efficiency and accuracy in LN is a moderate value of k2. 
The asymptotic limit (analyzed in [SS]) can be explained by the increasing 
cost of the medium forces. Note that in LN 3 for lysozyme, evaluation of the 
medium forces consumes 32% of the total CPU time (53% for slow forces). 
In LN 48, this value doubles, though the slow-force work is reduced to only 
6% of the total time. 

Very recently, we have developed and incorporated into the CHARMM 
molecular mechanics program a version of LN that uses direct-force evalua- 
tion, rather than linearization, for the fast-force components [91]. The scheme 
can be used in combination with SHAKE (e.g., for freezing bond lengths) and 
with periodic boundary conditions. Results for solvated protein and nucleic- 
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Fig. 11. The Speedup of LN at increasing outer timesteps for BPTI (2712 vari- 
ables), lysozyme (6090 variables), and a large water system (without nonbonded 
cutoffs; 37179 variables). For lysozyme, the CPU distribution among the fast, 
medium, and slow forces is shown for LN 3, 24, and 48. 

acid systems [work of A. Sandu and D. Strahs] are very similar to those 
reported in [88]. A more extensive analysis of resonance artifacts of impulse 
versus extrapolative Verlet-based force-splitting schemes is described in [91]; 
the work also offers further insights into LN's good performance. 

7 Conclusions 

The many approaches to the challenging timestep problem in biomolecular 
dynamics have achieved success with similar final schemes. However, the in- 
dividual routes taken to produce these methods - via implicit integration, 
harmonic approximation, other separating frameworks, and/or force splitting 
into frequency classes - have been quite different. Each path has encountered 
different problems along the way which only increased our understanding of 
the numerical, computational, and accuracy issues involved. This contribu- 
tion reported on our experiences in this quest. LN has its roots in LIN, which 
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originally combined normal modes with implicit integration. LIN in turn was 
developed to remedy nonconservative implicit schemes (like implicit-Euler) 
or symplectic implicit schemes (like implicit-midpoint) which suffer severely 
from resonance artifacts. 

The heightened appreciation of resonance problems, in particular, has 
been quite recent [63, 621, and contrasts the more systematic error associated 
with numerical stability that grows systematically with the discretization 
size. Ironically, resonance artifacts are worse in the modern impulse multiple- 
timestep met hods, formulated to  be symplectic and reversible; the earlier 
extrapolative variants were abandoned due to energy drifts. 

Ultimately, the compromise between the realized speedup and the accu- 
racy obtained for the governing dynamic model should depend on the ap- 
plications for which the dynamic simulations are used for. For very detailed 
dynamic pathways, only the Newtonian approach is probably adequate. For 
general conformational sampling questions, many other simulation method- 
ologies can work well. In particular, if a weak coupling to a phenomenological 
heat bath, as in the LN method, is tolerated, the general efficiency of force 
splitting methods can be combined with the long-timestep stability of meth- 
ods that resolve harmonic and anharmonic motions separately (such as LIN) 
to alleviate severe resonances and yield speedup. The speedup achieved in 
LN might be exploited in general thermodynamic studies of macromolecules, 
with possible extensions into enhanced sampling methods envisioned. 
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Abstract. A stochastic path integral is used to obtain approximate long time tra, 
jectories with an almost arbitrary time step. A detailed description of the formalism 
is provided and an extension that enables the calculations of transition rates is dis- 
cussed. 

1 Introduction 

In numerous cases an atomically detailed picture is required to understand 
function of biological molecules. The wealth of atomic information that is 
provided by the Molecular Dynamics (MD) method is the prime reason for 
its popularity and numerous successes. The MD method offers: (a) qualitative 
understanding of atomic processes by detailed analysis of individual trajecto- 
ries, and (b) comparison of computations to experimental data by averaging 
over a representative set of sampled trajectories. 

Nevertheless, the technique suffers from a severe time scale problem - 
the trajectories are computed for (at most) a few nanoseconds. This is far 
too short compared to times required for many processes in biophysics. For 
example, the R to T conformational transition in hemoglobin lasts tens of 
microseconds [I], and the typical time for ion migration through the grami- 
cidin channel is hundreds of nanoseconds. This limits (of course) our ability 
to make a meaningful comparison to experiments, using MD. 

Extending time scales of Molecular Dynamics simulations is therefore one 
of the prime challenges of computational biophysics and attracted consider- 
able attention ['&ti]. Most efforts focus on improving algorithms for solving 
the initial value differential equations, which are in many cases, the Newton's 
equations of motion. 

Here we suggest an alternative route to the problem in which the equa- 
tions of motion are formulated as a boundary value problem. This limits the 

* This research was supported by grants from the Israel Science Foundation, Israel 
Science Ministry and the National Institutes of Health to RE. 
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present approach to systems in which we know the start and the end points. 
Knowing the end points leads to problems that are different and complemen- 
tary to the cases in which only the initial values are available. For example, 
conformational transitions between two known states of the protein are best 
approached by the proposed methodology. Conformational searches for low 
energy structures are best investigated by the methods based on initial values. 

To perform the boundary value computations it is necessary to provide 
the length (in time) of the trajectory. The energy of the trajectory is not 
specified. It  is therefore possible to compute a trajectory, which is very short 
in time but with high energy. Such high-energy'trajectories are easy to detect 
and can be employed as starting paths for a refinement in which a longer 
trajectory (with hopefully lower energy) is calculated. 

We further discuss how quantities typically measured in the experiment 
(such as a rate constant) can be computed with the new formalism. The com- 
putations are based on stochastic path integral formulation [6]. Two different 
sources for stochasticity are considered. The first (A) is randomness that is 
part of the mathematical modeling and is built into the differential equations 
of motion (e.g. the Langevin equation, or Brownian dynamics). The second 
(B) is the uncertainty in the approximate numerical solution of the exact 
equations of motion. 

The two sources of stochasticity are conceptually and computationally 
quite distinct. In (A) we- do not know the exact equations of motion and 
we solve instead phenomenological equations. There is no systematic way in 
which we can approach the exact equations of motion. For example, rarely 
in the Langevin approach the friction and the random force are extracted 
from a microscopic model. This makes it necessary to use a rather arbitrary 
selection of parameters, such as the amplitude of the random force or the 
friction coefficient. On the other hand, the equations in (B) are based on 
atomic information and it is the solution that is approximate. For example, 
to compute a trajectory we make the ad-hoc assumption of a Gaussian distri- 
bution of numerical errors. In the present article we also argue that because 
of practical reasons it is not possible to ignore the numerical errors, even in 
approach (A). 

The difference between the two "philosophies" will become clearer as we 
continue (so we hope!). Nevertheless, it is useful to point out that a similar 
mat hemat ical model is suggested for both conceptual approaches. 

To exemplify both aspects of the formalism and for illustration purposes, 
we divide the present manuscript into two major parts. We start with cal- 
culations of trajectories using approximate solution of atomically detailed 
equations (approach B). We then proceed to derive the equations for the 
conditional probability from which a rate constant can be extracted. We end 
with a simple numerical example of trajectory optimization. More complex 
problems are (and will be) discussed elsewhere [7]. 

A lengthy and detailed description of the present methodology as applied 
to the solution of the Newton's equations of motion was published [TI. A 
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related discussion on Brownian trajectories can also be found [8]. Readers 
interested in further information are encouraged to use these references. 

We recently received a preprint from Dellago et al. [9] that proposed an 
algorithm for path sampling, which is based on the Langevin equation (and 
is therefore in the spirit of approach (A) [8]). They further derive formulas to 
compute rate constants that are based on correlation functions. Their method 
of computing rate constants is an alternative approach to the formula for the 
state conditional probability derived in the present manuscript. 

2 Method 

2.1 General Considerations 

We consider the computation of a trajectory -X(t), where X(t)  is a vector 
of variables that evolve in time -t. The vector includes all the coordinates 
of the particles in the system and may include the velocities as well. Unless 
specifically indicated otherwise X(t) includes coordinates only. The usual way 
in which such vectors are propagated numerically in time is via a sequence of 
short time solutions to a differential equation. One of the differential equa- 
tions of prime concern is the Newton's equation of motion: 

where m is the mass (matrix), U is the potential energy and the derivative 
dU - dU with respect to a vector denotes a gradient (m - dx lx=x(t)). An alter- 

native equation (which we shall also consider) is of Brownian dynamics 

where y is the friction coefficient and R(t) is a random force which is typically 
sampled from a Gaussian distribution so that the averages - (. . . ) - are [lo- 

121 

(R(t)) = 0 and (R(t)R(t')) = 2ykBTb(t - t') = a26(t - t') 

The Boltzmann constant is kB and T the absolute temperature. b(t - t') is the 
Dirac delta function. Below we assume for convenience (equation (5)) that 
the delta function is narrow, but not infinitely narrow. The random force 
has a zero mean and no correlation in time. For simplicity we further set the 
friction to be a scalar which is independent of time or coordinates. 

We further note that the Langevin equation (which will not be discussed 
in detail here) is an intermediate between the Newton's equations and the 
Brownian dynamics. It includes in addition to an inertial part also a friction 
and a random force term: 

rr?, 
d2 x (t ) - dU - -- d X  (t) 

dt2 d X ( t )  -?  d t  + R(t) 
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It is useful to point out at present the important differences between equation 
(1) and equation (2). Equation (1) is using only microscopic information while 
in equation (2) a phenomenological variable is employed - the friction. Care 
must be used in the application of the phenomenological equation if the goah 
is the computations of the microscopic rate. The microscopic friction [13,14] 
is difficult (at the least) to compute exactly. Moreover, even the potential 
used in the Langevin equation may be phenomenological. The potential must 
be an effective energy averaged over (for example) the solvent coordinates. 
The averaging is replaced in many cases by a phenomenological expression. 
Therefore, determination of the microscopic rate from equations that employ 
friction may be problematic. 

Another difference is related to the mathematical formulation. Equation 
(1) is deterministic and does not include explicit stochasticity. In contrast, 
the equations of motion for a Brownian particle include noise. Nevertheless, 
similar algorithms are adopted to solve the two differential equations as out- 
lined below. The most common approach is to numerically integrate the above 
differential equations using small time steps and preset initial values. 

There is a number of algorithms to solve equations (I) and (2) that differ 
appreciably in their properties which are beyond the scope of the present 
article. In the discussion below we use the velocity Verlet algorithm. However, 
better approaches can be employed [2-51. We define "a rule" - F(X(t) ,  At) 
that modifies X(t) to X(t  + At) and repeat the application of this rule as 
desired. For example the velocity Verlet algorithm ("rule") is: 

At2 dU 
X( t  + At) = X(t)  + V(t)Gt - -M-'- 

2 dX(t) 

At 
V(t + At) = V(t) - -M-' 

2 

The coordinate vector is X and V is 
be small. 

(" 
dX(t) + dX(t + At) 

the velocity part. At is expected to 

3 The Onsager-Machlup Action for a Brownian 
Trajectory 

A related algorithm can be written also for the Brownian trajectory [lo]. 
However, the essential difference between an algorithm for a Brownian tra- 
jectory and equation (4) is that the Brownian algorithm is not deterministic. 
Due to the existence of the random force, we cannot be satisfied with a single 
trajectory, even with pre-specified coordinates (and velocities, if relevant). It 
is necessary to generate an ensemble of trajectories (sampled with different 
values of the random force) to obtain a complete picture. Instead of work- 
ing with an ensemble of trajectories we prefer to work with the conditional 
probability. I.e., we ask "what is the probability that a trajectory being at 
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X(t) a t  time t will be a t  X( t  + At) at time t + At. We denote the condi- 
tional probability by P(X(t))lX(t + At); At. For a Brownian trajectory the 
displacement is: 

At 

The second integral defines a new random variable q(At) = J R(t1)dt' 
0 

with a mean of zero. The probability distribution for q(t) is a Gaussian and 
its variance is computed as 

The "." denotes a scalar product. q(t) is also equal to X( t  + At) 
t+At 

1 - J &dtl (equation (5)). J - the Jacobian of transformation 
t 

( 6 )  

- X(t)  + 
from q(t) 

back to X( t )  is an issue of a possible concern (we thank Professor David 
Chandler for initiating the discussion on the Jacobian) . The calculations of 
the Jacobian depend on the stochastic process that we would like to model 
and are performed on the discrete time representation (see next paragraph). 
It is possible to use two different kinds of stochastic calculus (the Ito or 
the Stratonovich calculus [ll-12,151) and to obtain a Jacobian, which is a 
constant, or not. 

The stochastic differential equation and the second moment of the random 
force are insufficient to determine which calculus is to be preferred. The two 
calculus correspond to different physical models [11,12]. It is beyond the 
scope of the present article to describe the difference in details. We only 
note that the Ito calculus consider q(t) to be a function of the edge of the 
interval while the Stratonovich calculus takes an average value. Hence, in 
the Ito calculus using a discrete representation q(t) becomes q(tn) = qn = 
y(Xn - Xn-l) + e d t .  Developing the determinant of the Jacobian - 

Jnm r & from the time origin (for example, the element & is y) we 
find it to be independent of X [15]. The constant Jacobian cancels when the 
normalized probability is considered. We therefore ignore the Jacobian in the 
rest of the article. 

The conditional probability is 
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The definition of the above conditional probability for the case of Brownian 
trajectories can be found in textbooks [12]. However, the definition of the 
conditional probability for the Newton's equations of motion is subtler than 
that. 

4 The Onsager Machlup Action for "Newtonian" 
Mechanics 

Consider a numerical solution of the Newton's differential equation with a 
finite time step - At. In principle, since the Newton's equations of motion 
are deterministic the conditional probability should be a delta function 

P(X(t)  (X( t  + At); At) = 6[X(t + At) - F (X(t), At)] (8) 

We have in mind trajectory calculations in which the time step At is large 
and therefore the computed trajectory is unlikely to be the exact solution. 
Let Xnum(t) be the numerical solution as opposed to the "true" solution 
XeZact(t). A plausible estimate of the errors in Xnum(t) can be obtained by 
plugging it back into the differential equation. 

The vector of errors at time t is ~ ( t ) .  The essential assumption which we 
made is that ~ ( t )  is a Gaussian random number, and that the errors are not 
correlated in time. 

( ~ ( t ) )  = 0 and (~ ( t ' )  ~ ( t ) )  = 026(t - t') = 6t,tl/At (10) 

The last "approximation" is for finite At. When the equations of motions 
are solved exactly, the model provides the correct answer (02 = 0). When 
the time step is sufficiently large we argue below that equation (10) is still 
reasonable. The essential assumption is for the intermediate range of time 
steps for which the errors may maintain correlation. We do not consider 
instabilities of the numerical solution which are easy to detect, and in which 
the errors are clearly correlated even for large separation in time. Calculation 
of the correlation of the errors (as defined in equation (9)) can further test 
the assumption of no correlation of (Q(t)Q(tl)). 

We (of course) have no proof that the errors satisfy the above suggestions 
for arbitrary At. Nevertheless, qualitative arguments in favor of our assump- 
tion can be provided for relatively large time steps. Suppose that a solution 
Xnum (t) is obtained using time steps At/(Nl . N2), where Nl and N2 are inte- 
gers. If the time difference At/Nl is large we may expect that the errors ~ ( t )  
and ~ ( t  + At/N1) are not correlated. The central limit theorem suggests that 
the errors separated by At (which are the sums of all the intermediate uncor- 
related "random" numbers): ~ ( t +  A) = ~(t)+~(t+At/Nl)+~(t+2At/Nl)+. . . 
are sampled from a Gaussian distribution. 
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It remains to be seen, if the approximation using large time steps is rea- 
sonable. We shall show later the effect of the approximation on the power 
spectrum of the trajectory. More specifically, we shall demonstrate that large 
time steps filter out high frequency motions. 

The probability of sampling ~ ( t )  is 

- 

P ( 4 t ) )  OC &(t)'/2(o2) OC e 

Hence, we use the trajectory that was obtained by numerical means to 
estimate the accuracy of the solution. Of course, the smaller the time step 
is, the smaller is the variance, and the probability distribution of errors be- 
comes narrower and concentrates around zero. Note also that the Jacobian 
of transformation from E to X must be such that log[J] is independent of X 
at the limit of E + 0. Similarly to the discussion on the Brownian particle 
we consider the Ito Calculus [lo-121 by a specific choice of the discrete time 

du . This choice is simple since the [Is] - E n  = 3 [Xn + Xn-2 - 2Xn-I] + 
Jacobian is a constant. Since our knowledge on the properties of the errors 
is limited, our guess better be simple. 

We assume that the sequential errors are not correlated in time, we can 
write the probability of sampling a sequence of errors as the product of the 
individual probabilities. We further use the finite time approximation for the 
delta function and have: 

In the continuum limit we define the probability of a path - Xnum(7). 

The probability is a functional of the path. 

S is the Onsager-Machlup action [6] that was derived originally from a 
different perspective of phenomenological and irreversible thermodynamics. 
Note also that this functional was used by Gauss to solve the equations of 
motion [16] (we thank Prof. David Shalloway for bringing the work of Gauss 
to our attention). We deliberately wrote the discrete form of the integral, 
which will be used in the optimization. We further comment that S is never 
negative, which makes it a convenient function for Monte-Carlo sampling 
or optimization. With pre- specified initial and final coordinates, it is now 
possible to ask, "What is the most probable trajectory that will connect the 
reactant and the product?" The most probable trajectory will be the one 
that minimizes S. 

Clearly, a single trajectory does not necessarily provide a good repre- 
sentation of the system configurations and properties. Trajectory sampling 
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is therefore a more appropriate approach. Nevertheless, the most probable 
trajectory may be a useful tool in qualitative analysis of "typical" trajecto- 
ries and in providing a sampling bias for domains that correspond to more 
probable paths. 

In the language of conditional probabilities that was used in equation (6) 
we can use (12) to compute (unnormalized) conditional probability of going 
from X(0) to X( t )  that is, P(X(O)IX(t); t )  

D[X(T)] is used to denote a path integral. Hence, equation (14) corre- 
sponds to a summation of all paths leading from X(0) to X(t). The same 
expression is used for the Brownian trajectories and for Newtonian's trajec- 
tories with errors. The action is of course different in both cases. 

A saddle point approximation to the above integral provides the definition 
for optimal trajectories. The computations of most probable trajectories were 
discussed at length [I]. We consider the optimization of a discrete version of 
the action. 

A finite difference formula is used to estimate the second derivatives of 
the coordinate vector with respect to time and S is now a function of all. the 
intermediate coordinate sets. An optimal value of S can be found by a direct 
minimization, by multi-grid techniques, or by an annealing protocol [7]. We 
employed in the optimization analytical derivatives of S with respect to all 
the Xj-s. 

Since S is a function of all the intermediate coordinates, a large scale 
optimization problem is to be expected. For illustration purposes consider a 
molecular system of 100 degrees of freedom. To account for 1000 time points 
we need to optimize S as a function of 100,000 independent variables (!). AS 
a result, the use of a large time step is not only a computational benefit but 
is also a necessity for the proposed approach. The use of a small time step to 
obtain a trajectory with accuracy comparable to that of Molecular Dynamics 
is not practical for systems with more than a few degrees of freedom. For 
small time steps, ordinary solution of classical trajectories is the method of 
choice. 

5 Filtering High Frequency Motions 

It is also interesting to examine the behavior of the optimized solution as a 
function of the step size. As discussed below, the ~roposed algorithm is very 
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stable with respect to the step size. Numerical algorithms that propagate 
initial values of coordinates and velocities loose stability quite quickly as 
At increases. The present optimization protocol maintains its stability for 
almost an arbitrary choice of the time step. Nevertheless, the optimized set 
of coordinates provides only an approximation to the true trajectory. Can we 
suggest how the approximate solution is related to the true solution? 

Consider a three-point approximation to the path: 

S is a non-linear function of the vector XI. (Xo and X2 are held fixed 
during the variation). Clearly the three vectors are insufficient to describe 
the path accurately if the time step is large. Nevertheless, the solution with 
a large At has interesting characteristics discussed below. We expand the 
difference between the exact solution and the three-point approximation in a 
Fourier series. The solution to the t hree-point approximation is represented 
as a parabola in time, and a Fourier series represents the remainder of the 
path. We now have for X( t )  

We use the sine series since the end points are set to satisfy exactly the 
three-point expansion [7]. The Fourier series with the pre-specified boundary 
conditions is complete. Therefore, the above expansion provides a trajectory 
that can be made exact. In addition to the parameters a,  b and c (which are 
determined by Xo, XI and X2) we also need to calculate an infinite number 
of Fourier coefficients - I d k } .  In principle, the way to proceed is to  plug the 
expression for X( t )  (equation (17)) into the expression for the action S as 
defined in equation (13), to compute the integral, and optimize the Onsager- 
Machlup action with respect to all of the path parameters. 

The problem is (of course) the computation of these integrals. The inte- 
gral over the time derivatives can be performed analytically. However, this 
is not the case for integrals that include the force, which is a general and 
complex function of the coordinates. We therefore use the same type of ap- 
proximation that we employ in the discrete optimization of the path. That is, 
we assume a constant value of the force during the time interval At. Within 
the constant force approximation, the integral can be evaluated analytically 
and then optimized. It is evident however, that our analysis is not a "true" 
estimate of the errors, since we employ an approximation. The approximation 
is used also in the computations. Therefore, rather than providing a true es- 
timate of the accuracy of the solution, it tells us something on the properties 
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of the approximate trajectory. 

At 
d2X ( t )  .=I[- d t2  

0 
At At 

d 2 X ( t )  d 2 X ( t )  d2X ( t )  

0 0 

The square brackets denote a vector, and [ ] a transposed vector. The exact 
expression for the Onsager-Machlup action is now approximated by 

In the derivation we used the exact expansion for X ( t ) ,  but an approx- 
imate expression for the last two integrals, in which we approximate the 
potential derivative by a constant a t  Xo. The optimization of the action S 
with respect to  all the Fourier coefficients, shows that the action is optimal 
when all the dk are zero. These coefficients correspond to frequencies larger 
than = r/At. Therefore, the optimal solution does not contain contributions 
from these modes. Elimination of the fast modes from a trajectory, which are 
thought to be less relevant to the long time scale behavior of a dynamical 
system, has been the goal of numerous previous studies. 

For example, the SHAKE algorithm [17] freezes out particular mot ions, 
such as bond stretching, using holonomic constraints. One of the differences 
between SHAKE and the present approach is that in SHAKE we have to know 
in advance the identity of the fast modes. No such restriction is imposed in 
the present investigation. Another related algorithm is the Backward Euler 
approach [18], in which a Langevin equation is solved and the slow modes 
are const ant ly cooled down. However, the Backward Euler scheme employs 
an initial value solver of the differential equation and therefore the increase 
in step size is limited. 

One may argue that the high frequency motions are "filtered" since the 
time step is too large and the discrete trajectory could not possibly follow 
the fast modes; hence, that the "filtering" is trivial. Of course we cannot 
follow fast motions if the time step we use is larger than their typical pe- 
riod. Nevertheless, these fast motions are the prime problem in attempts 
to increase the time step. We cannot just ignore them in the initial value 
approach since their presence introduces instabilities to the solution. The op- 
timization of the Onsager-Machlup action is considerably more stable. We 
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I,rovide in Fig. 1 a simple demonstration of the filtering effect, examining 
r.csl~lts for the harmonic oscillator. The filtering makes it possible for us to 
~lse almost arbitrary time steps, while keeping in mind that elimination of 
Iligh frequency motions, (which is intuitively appealing), does not necessarily 
rmdt  in the same trajectory for the slow modes. 

Fig. 1. Optimization of the Onsager-Machlup action for the two dimensional har- 
111onic oscillator. The potential energy is U ( x ,  y)  = 4 (x2 + 2sy2), the mass is 1 
arid 3.5 slow oscillations are considered. The boundary conditions are X ( 0 )  = 
-X(tend) = -10, and y(0) = -y(tend) = -5, where tend is the end time of the tra- 
joctory. Two trajectories are shown. The first consists of 500 intermediate points 
(dotted lines) which provide an essentially exact solution. The second trajectory 
unployed only 20 intermediate points (solid lines). Note that for the solution with 
20 points the fast oscillations are frozen while the slow oscillations are reasonably 
well reproduced. 

To improve the accuracy of the solution, the size of the time step may be 
decreased. The smaller is the time step, the smaller are the assumed errors in 
the trajectory. Hence, in contrast (for example) to the Langevin equation that 
includes the friction as a phenomenological parameter, we have here a system- 
atic way of approaching a microscopic solution. Nevertheless, some problems 
remain. For a very large time step, it is not clear how relevant is the optimal 
trajectory to the r.c.ality, since the path variance also becomes large. Further- 
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more, the trajectories computed for biological systems are usually chaotic, 
and the results are sensitive to the initial conditions. It is therefore necessary 
to generate an ensemble of trajectories with different initial conditions, tak- 
ing into account the width of a "pipe" that includes plausible paths. Only 
an ensemble of trajectories will enable the computations of experimentally 
observed phenomena. 

6 Weights of Individual Trajectories 

We shift the discussion from computations of optimal trajectories to sampling 
of trajectories with a given weight. Hence rather than seeking a single trajec- 
tory with a maximal e- s/2u2, we consider in addition other trajectories with 
potentially lower weights but non-negligible contributions to the conditional 
probability. For that purpose we need to provide an estimate to 202. This is 
the goal of the present section. 

As discussed above the errors in the trajectory are correlated with the 
missing rapid motions. In contrast to the friction approach of estimating the 
variance, which may affect long time phenomena, we identify our errors as 
the missing ("filtered") high frequency modes. We therefore attempt to ac- 
count approximately for the fast motions by choosing t he trajectory variance 
accordingly. 

The errors in the present stochastic path formalism reflect short time 
information rather than long time information. Short time data are easier 
to extract from atomically detailed simulations. We set the second moment 
of the errors in the trajectory - 02 - to a constant (i.e. the same value for 
all degrees of freedom). This is an approximation similar in spirit to the 
application of a constant scalar friction in the Langevin dynamics. 

We proposed [7] two possible approaches to estimate these errors. Here we 
discuss them only briefly. Trajectories that are not "too far" from the optimal 
trajectory will have a significant weight. We denote by Xopt(t) the optimized 
trajectory, and by Xexact(t) the exact trajectory. The optimal trajectory is 
not the same as the exact trajectory, since it was computed with a large time 
step. S/202 is expanded up to a second order near the optimal trajectory 

1 S2S 
sopt  [xezact  (t)] % [Xexact (t) - Xopt (t)] 

w p t  (t) 
[Xexact ( t )  - Xopt (t)] (20) 

We then require that the exact trajectory will have a weight of at least 
which will make its sampling possible in a search biased by the weight. e 7 

P I x ~ ~ t  MI $ C [Xexact  (ti)-xOpt (ti)]' d2S  [Xexact (ti)-Xopt (ti)]At 1 = e ept (tz ~5 - 
p[X,xact  (t)] e 

1 S2S 
202 C [Xexact (ti) - x o p t  (ti)] bX2 ( t )  [xexact (ti) - x o p t  (ti)] ~t 

opt 
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To compute the above expression, short molecular dynamics runs (with 
a small time step) are calculated and serve as exact trajectories. Using the 
exact trajectory as an initial guess for path optimization (with a large time 
step) we optimize a discrete Onsager-Machlup path. The variation of the 
action with respect t o  the optimal trajectory is computed and used in the 
above formula. 

It is also possible to use normal mode analysis [7] to estimate the dif- 
ference between the exact and the optimal trajectories. Yet another for- 
mula is based on the difference between the optimal and the exact actions: 
2 0  = [S[X.,,,t(t)] - S[XOpt(t)]]. The action is computed (of course), employ- 
ing a large time step and the exact solution as a starting point. 

In spite of the three methods of estimating a2 that were briefly described 
above, it is clear that the computation of the variance of the path is still an 
open question that needs to  be investigated further in the future. The above 
expressions are order of magnitude estimates and not exact formulas. 

7 Computation of the State Conditional Probability 

Once numerical estimates of the weight of a trajectory and its variance (20') 
are known we are able to  use sampled trajectories to compute observables 
of interest. One such quantity on which this section is focused is the rate 
of transitions between two states in the system. We examine the transition 
between a domain A and a domain B,  where the A domain is characterized 
by an inverse temperature - p. The weight of an individual trajectory which 
is initiated at the A domain and of a total time length - NAt is therefore 

The initial energy - E(XoA (t), VOA ( t ) )  - is a function of the coordinates 
and the velocities. In principle, the use of momenta (instead of velocities) is 
more precise, however, we are using only Cartesian coordinates, making the 
two interchangeable. We need to sample many paths to compute ensemble 
averages. Perhaps the most direct observable that can be computed (and 
measured experimentally) is the state conditional probability - P ( A J  B, t) 
defined below: 

This is the conditional probability that the system which was in state A 
at  time zero will be in state B at time t. Note that we use the normalized 
conditional probability since the trajectory must end either at A or at B. 
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This function can be used to compute many quantities besides the rate, and 
is formally "cleaner" than the rate constant discussed below. 

The difficulties in performing a numerical calculation of a "rate constant" 
are two fold: First, similarly to other sampling procedures by Monte-Carlo 
or Molecular Dynamics approaches, we do not know the normalization of the 
weight defined in equation (22). Second, we do not have a rigorous formula 
for the rate. This is similar to previous microscopic expressions for the rate 
constant, which were derived assuming the existence of a phenomenological 
rate law [El]. The existence of the exponential decay (the first order rate law) 
cannot be proven in general, since it is system dependent. We provide below 
a short description of the phenomenology that we employ in order to ex- 
tract expressions that are related to the rate. We derive exact expressions for 
some quantities of interest, and the results can be related to a rate constant. 
However, it is not necessary to do so. 

We consider a two state system, state A and state B.  A state is defined as 
a domain in phase space that is (at least) in local equilibrium since thermo- 
dynamic variables are assigned to it. We assume that A or B are described 
by a local canonical ensemble. There are no dark or hidden states and the 
probability of the system to be in either A or in B is one. A phenomenological 
rate equation that describes the transitions between A and B is 

P (A)  is the probability of observing the system in state A, and P(B) is 
the probability of observing state B. In this model, the space is divided ex- 
actly into A and B. The dividing hyper-surface between the two is employed 
in Transition State Theory for rate calculations [19]. The identification of the 
dividing surface, which is usually assumed to depend on coordinates only, is 
a non-trivial task. Moreover, in principle, the dividing surface is a function 
of the whole phase space - coordinates and velocities, and therefore the ex- 
act calculation of it can be even more complex. Nevertheless, it is a crucial 
ingredient of the Transition State Theory and variants of it. 

The dividing surface is not a major concern of the methodology below 
which makes it different and perhaps complementary to the usual picture for 
barrier crossing (the dividing surface is required in order to identify the A and 
the B states). For example, the present approach is not limited to  a single 
barrier crossing, and multiple crossings are treated by the same protocol. 
Moreover, even a very rough energy surface with a multitude of minima and 
barriers is accessible to the present methodology. A possible disadvantage of 
the present approach is that fast time scales with a period smaller than At 
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itre filtered out. If anything interesting happens quickly, we may miss it and 
will observe only the start and the end points. 

In physical systems, in the absence of external forces, A and B approach 
tqnilibrium: 

The initial conditions are P(A, t = 0) = A. and P(B, t = 0) = 0 
In the "conditional probability" language we write for the above phe- 

rlomenological equation: 

The above phenomenological equations are assumed to hold in our sys- 
tem as well (after appropriate averaging). Below we derive formulas for 
P(Aol B, t), which start from a microscopic model and therefore makes it pos- 
sible to compare the same quantity with the above phenomenological equa- 
tion. We also note that the formulas below are, in principle, exact. Therefore 
tcsts of the existence of a "rate constant" and the validity of the above model 
can be made. We rewrite the state conditional probability with the help of a 
step function - HB(X).  HB(X) is zero when X is in A and is one when X is 
in  B. 

We set the initial distribution to be canonical, however, other distributions 
may be used as well. We further define the average with respect to the path: 

The average of the step function, using the action for "a Boltzmann 
weight" can be pursued by standard statistical mechanics. It may require 
more elaborate sampling techniques such as the Umbrella sampling [20]. 

The state conditional probability is therefore written in terms of the com- 
putable, average step function: 
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The additional integration in the final equation is similar to  integration 
of potential of mean force. Equation (29) is more difficult to compute since 
Xo is a multidimensional vector. 

A single calculation of the discrete path integral with a fixed length of 
time t can be employed to compute the state conditional probability at 
many other times. It is possible to use segments of the path of time length 
At,2At, .  . . , NAt  sampled in trajectories of total length of NAt  and to 
compute the corresponding state conditional probabilities. The result of the 
calculations will make it possible to explore the exponential relaxation of 
P(Ao 1 B, t)  for times between 0 and t. 

8 A Numerical Example 

We describe a simple computational example to demonstrate two key features 
of the new protocol: Stability with respect to a large time step and filtering 
of high frequency modes. In the present manuscript we do not discuss ex- 
amples of rate calculations. These calculations will be described in future 
publicat ions. 

The model consists of a two dimensional harmonic oscillator with mass 
1 and force constants of 1 and 25. In Fig. 1 we show trajectories of the two 
oscillators computed with two time steps. When the time step is sufficiently 
small compared to the period of the fast oscillator an essentially exact result is 
obtained. If the time step is large then only the slow vibration persists, and is 
quite accurate. The filtering effect is consistent (of course) with our analytical 
analysis. Similar effects were demonstrated for more complex systems [7]. 

The optimization of the action was pursued in the above cases using 
straightforward conjugate gradient minimization. The initial guess of the path 
was a straight line, interpolating the two end points. For systems with a linear 
force (as the harmonic oscillators), there is no need for more sophisticated 
approaches, since the functional is parabolic in the intermediate coordinate 
sets. It is important to stress however that for a more general path that 
includes non-linear forces the optimization- is a non-trivial computation. We 
have tried and employed different tools (discussed below) in cases that require 
more global optimization. However, it is very likely that the existing set of 
tools can be expanded and enhanced further. 

For more demanding surfaces of actions we also used multi-grid techniques 
[21] and global optimization methods such as simulated annealing [22]. The 
multi-grid approach made a profound improvement in the speed and  accu- 
racy of the optimization of the path and we therefore describe below the 
protocol that we used. We employed a V cycle for the multi-grid refinement. 
First an initial guess for a path with the highest density of points was briefly 
minimized. In the next step some intermediate points were removed and the 
path spatial resolution was decreased. An optimization of the lower resolu- 
tion path followed, and the result was used for further path r(?finc~nents. The 
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minimizations focus at first on a sequence of paths with reduced spatial res- 
olution and then on a sequence of paths with an increased density of grid 
points ( "V" cycle). Empirically this procedure was shown to provide signif- 
icantly better results compared to one time optimization with a single and 
fixed spatial resolution. 

9 Summary 

We outlined the principles of a novel approach of computing approximate 
trajectories with a very large time step. Perhaps, the most interesting fea- 
ture of the suggested protocol is its stability with respect to variations of the 
step size. In contrast to initial value problems, we do not integrate differen- 
tial. equations but employ an optimization procedure of the whole trajectory. 
Since the whole trajectory is studied simultaneously, the present protocol is 
considerably more demanding on computer memory. The significantly larger 
system (as compared to a single coordinate set or a few coordinate sets re- 
quired by common integrators) is another significant computational burden 
that needs to be addressed. Nevertheless, the possibility of obtaining approx- 
irriate trajectories with profoundly larger time steps than was possible before 
is intriguing and encouraging, and is therefore worth further investigation. 

The new formalism is especially useful for parallel and distributed com- 
puters, since the communication intensity is exceptionally low and excellent 
load balancing is easy to achieve. In fact, we have used cluster of workstations 
(Silicon Graphics) and parallel computers - Terra 2000 and IBM SP/2 - to 
study dynamics of proteins. 

We further comment that reactive trajectories that successfully pass over 
large barriers are straightforward to compute with the present approach, 
which is based on boundary conditions. The task is considerably more difficult 
with initial value formulation. 

The essential assumption of this manuscript is the existence of a constant 
variance of Gaussian errors along the trajectory. While we attempted to cor- 
relate the variance with the high frequency motions, many uncertainties and 
questions remain. These are topics for future research. 

If the above assumption is reasonable, then the modeling of most probable 
lmjectories and of ensembles of trajectories is possible. We further discussed 
the calculations of the state conditional probability and the connection of the 
wnditional probability to rate constants and phenomenological models. 
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Abstract. The numerical integration of highly oscillatory Hamiltonian systems, 
such as those arising in molecular dynamics or Hamiltonian partial differential 
equations, is a challenging task. Various methods have been suggested to overcome 
the step-size restrictions of explicit methods such as the Verlet method. Among 
these are multiple-time-stepping, constrained dynamics, and implicit methods. In 
this paper, we investigate the suitability of time-reversible, semi-implicit methods. 
Here semi-implicit means that only the highly oscillatory part is integrated by an 
irnplicit method such as the midpoint method or an energy-conserving variant of 
it. The hope is that such methods will allow one to use a step-size k which is much 
larger than the period E of the fast oscillations. 

However, our results are not encouraging. Even in the absence of resonance- 
type instabilities, we show that in general one must require that k2/€ be small 
onough. Otherwise the method might become unstable and/or it might lead to a 
wrong approximation of the slowly varying solution components. The latter situ- 
ation might, in some cases, even require that k / ~  be small in order to avoid this 
t laanger. While certain (semi-implicit) energy conserving met hods prove to be robust 
for some model problems, they may also yield deceptively-looking, wrong solutions 
for other simple model problems, in circumstances where the corresponding con- 
strained dynamics formulation may not be easily derived and used. 

1 Introduction 

In this paper, we discuss semi-implicit/implicit integration methods for highly 
oscillatory Hamiltonian systems. Such systems arise, for example, in molec- 
ldar dynamics [I] and in the finite dimensional truncation of Hamiltonian 
partial differential equations, Classical discretization methods, such as the 
Vcrlet method 1191, require step-sizes k smaller than the period E of the 
h ~ t  oscillations. Then these methods find pointwise accurate approximate 
solutions. But the time-step restriction implies an enormous computational 
h r d e n .  Furthermore, in many cases the high-frequency responses are of little 
or no interest. Consequently, various researchers have considered the use of 
scmi-implicit/implicit methods, e.g. [6, 11, 9, 16, 18, 12, 13, 8, 17, 31. 

* The work of this mthor  was partially supported under NSERC Canada Grant 
OGP0004.306. 
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A popular implicit discretization is the (implicit) midpoint method [7] 
which, applied to a system of the type 

yields the discretization 

- with Pn+l/2 - 
when applied to 

[p,,, + pn]/2, etc. The behavior of the midpoint method 
highly-oscillatory systems 

W,  g potential functions, K. >> 1, has been discussed in various papers (see, 
for example, [6, 11, 9, 16, 31). I t  has been pointed out that, for step-sizes 
k >> E := I/&, the midpoint method can become unstable due to resonances 
[9, 161, i.e., for specific values of k. However, generic instabilities arise if the 
step-size k is chosen such that k2/& is not small [3, 6, 181. For systems with 
a rotational symmetry this has been shown rigorously in [6]. This effect is 
generic for highly oscillatory Hamiltonian systems, as argued for in [3] in 
terms of decoupling transformations and proved for a linear time varying 
system without symmetry. 

Even further complications are to  be expected for general systems of the 
type (3). These are related to the approximation of the slowly varying so- 
lution components and other related quantities of (3) for K. -+ m by the 
corresponding solution of the constrained system DAE 

In general, the solution components of the DAE (4) are the correct limits (as 
K. -+ m) of the corresponding slowly varying solution components of the free 
dynamics only if an additional (conservative) force term is introduced in the 
constrained system [14, 51. It  turns out [3] that the midpoint method may 
falsely approximate this correcting force term to  zero unless k = O(E), which 
leads to a step-size restriction of the same order of magnitude as explicit 
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rriethods such as the Verlet method! In cases where the additional force term 
is zero this further complication does not apply, of course. The specific form of 
the additional force term depends on the initial conditions and the potential 
filnction g in (3a)-(3b). 

Since fully implicit methods are very expensive when long-range forces are 
present, we consider semi-implicit methods that are based on the splitting of 
the force field into weak forces and strong forces, the latter causing the high- 
frequency oscillations [12]. The limitations of the methods considered here 
a,re not related to this splitting, i.e., corresponding fully implicit methods 
would not remove these limitations. 

The purpose of this paper is twofold: (i) We summarize possible diffi- 
culties with the midpoint method (other than resonance instability, which 
has been treated extensively elsewhere) by looking at a simple (molecular) 
model problem. (ii) We investigate the suitability of some energy conserving 
methods. 

Regarding the second objective (ii), it has been argued [6] that energy 
conserving methods might be better suited for the numerical integration of 
highly oscillatory problems such as (3). We show that such a statement must 
I x  made with extreme caution. The main concern is that energy conserv- 
irig methods might wrongly approximate slowly varying solution quantities. 
Even worse, unlike the midpoint method where a blatant non-conservation of 
energy indicates potential trouble, energy conserving methods, by definition, 
do not provide such a warning flag. Thus, energy conserving methods are 
potentially more misleading on one hand, and they do not seem to provide 
x significant gain on the other hand. Consequently, we generally discourage 
their use for highly oscillatory Hamiltonian systems, unless special circurn- 
stances warrant it. 

2 Some Energy Conserving Methods 

Given a general autonomous, separable Hamiltonian system (I), the Hamil- 
t,onian 

remains constant, of course, along exact solution trajectories. Here we wish 
an approximate, numerical solution t o  preserve this invariant as well, i.e., 

Moreover, we want the resulting numerical method to remain time-reversible, 
which precludes the most obvious project ion schemes from further consider- 
ation. 

Time-reversible energy conserving methods can be obtained by appropri- 
ate modifications to the (time-reversible) midpoint method. Two such mod- 
ifications are: (i)  s ( : a l i l ~  of the force field by a scalar such that total energy 
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is conserved [6, 121, and (ii) using a symmetric projection technique onto the 
hypersurface of constant energy. Here are the details. 

2.1 The Simo-Gonzales Method 

The method considered in 16) can be derived as follows. Let us assume that 
U(q) = V(r),  where r = Ilqll. Then ( lb )  reads 

Consider for the nth time step the linear harmonic oscillator 

where a = an is constant. Discretizing the equations of motion using the 
midpoint method 

yields ~ ( q , + l , p , + l )  = H(qn ,pn) ,  because H is quadratic [2]. Comparing 
this to (5) we see that (5) is satisfied if we choose 

where rn = Ilqnll. The method (6) is then energy conserving. It also conserves 
linear and angular momentum. 

The energy conserving method (6) is a close variation of the method 

(because V(rn+~>-V(rn )  
rn+l - r ~  can be viewed as a difference approximation of 

V f  (~,+1/2) ) where 

Note that this latter method differs from the midpoint method, where one 
would use r(qn+i12) = 11  (qn+l + qn)/211 instead of (7c) for rn+l/2 in (7b). 
For highly oscillatory systems with k >> E ,  this can be a significant difference, 
because r is discretized directly in (7). An example in 54 below shows that 
the midpoint method can become unstable while (7) and (6) remain stable. 
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For a general Hamiltonian system (I), a straightforward generalization of 
(6) reads 

where 

For refined variants of this method in the context of many-particle systems, 
see [15, 121. 

2.2 A Projection Method 

Here a symmetric projection step is used to enforce conservation of energy. 
Let a (q ,  p) and b(q, p) be two vector-valued functions such that (pTa(q, p) + 
~ ~ ( q ) ~ b ( q , ~ ) )  is bounded away from zero. Then we propose the following 
modified midpoint met hod, 

The parameter X is determined by the requirement that the total energy 
H = pTp/2 + U(q) is conserved. 

The particular choice a (q ,  p) = VU(q) and b(q, p) = 0 leads to the 
met hod (8). This is further discussed in [12]. 

Another option is a ( q , p )  = p and b(q,p) = VU(q).  This guarantees 
that we are discretizing a pure index-:! DAE for which X is well-defined. 
But for this choice we observed severe difficulties with Newton's method, 
where a step-size smaller even than what is required by explicit methods is 
needed to obtain convergence. In fact, it can be shown that when the linear 
harmonic oscillator is cast into such a projected DAE, the linearized problem 
can easily become unstable for k > E .  Another way is to  check the conditions 
of the Newton-Kantorovich Theorem, which guarantees convergence of the 
Newton method. These conditions are also found to be satisfied only for a 
very small step size k, if E is small. 

This latter modified midpoint method does work well, however, for the 
long time integration of Hamiltonian systems which are not highly oscillatory. 
Note that conservation of any other first integral can be enforced in a similar 
manner. To our knowledge, this method has not been considered in the liter- 
ature before in the context of Hamiltonian systems, although it is standard 
among methods for incompressible Navier-Stokes (where its time-reversibility 
is not an issue, however). 
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For highly oscillatory Hamiltonian systems, the best energy conserving 
midpoint variant that we are aware of is (6). In the sequel we therefore 
examine only its performance. 

3 A Simple Model Problem 

As our first model problem, we take the motion of a diatomic molecule under 
an external force field. For simplicity, it is assumed that (i) the motion is pla- 
nar, (ii) the two atoms have equal mass m = 1, and (iii) the chemical bond 
is modeled by a stiff harmonic spring with equilibrium length ro = 1. Denot- 
ing the positions of the two atoms by qi E R 2 ,  i = 1,2, the corresponding 
Hamiltonian function is of type 

Here K >> 1 is the force constant of the harmonic spring, 1 1  . I  I denotes the 
Euclidian norm of a vector in R2, the functions V, : R 3 R, i = 1,2 ,  are 
assumed to be smooth but arbitrary otherwise, and g:, i = 1,2, are two fixed 
reference vectors. 

Let us introduce the following abbreviations: 

Then the equations of motion are 

The qualitative solution behavior becomes more apparent when going to 
local coordinates, i.e., we rewrite the equations of motion in terms of the 
center of mass 

the internal bond stretching r = rl2, and the angle of rotation q5 determined 
by 

cos 4 Qi - 9 2  +(')=(sins)= rl2 
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This coordinate transformation gives rise to a corresponding transformation 
of the momenta via the canonical lift transformation [lo]. Thus the corre- 
sponding conjugate momenta are pc E R2, defined by 

and Pr , Pd E R, defined by1 

where 

To transform the Hamiltonian H into these new coordinates, we use the 
identities 

and 

Thus we obtain 
rn 

The corresponding equations of motion are 

for the center of mass, 

1 Explicit expressions for p,. and p4 are obtained by premultiplying (10) by (9 ,  - 
7' 

Q ~ ) ~ ,  ( Q ,  - q 2 )  J respectively. 
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internal bond vibrations, and 

for the rotation of the molecule. Here we have used 
4 

In the context of our semi-implicit methods, we 
special case Vl = V2 = 0 which leads to the simplified 

d 1 
-Qc = - P C  dt 2 

- 9 9 ,  2 = 1 , 2 .  

typically consider the 
equations of motion 

(134  

(13b) 

( 134  

(134  

(134 

(13f) 

4 Numerical Approximation 

The standard discretization for the equations (9) in molecular dynamics is 
the (explicit) Verlet method. Stability considerations imply that the Verlet 
method must be applied with a step-size restriction k < E := @. Various 
methods have been suggested to avoid this step-size barrier. The most popular 
is to  replace the 
model problem, 

- - 

stiff spring by a holonomic constraint, as in (4). For our first 
this leads to the equations 

d 
~ 9 1  = Ply 

d 
; i i 9 2  = P2 , 
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111 local coordinates, the constraint is r - 1, so equations (12) simplify directly 
illto 

The constrained equations of motion in cartesian coordinates can be solved by 
the SHAKE or (the essentially equivalent) RATTLE method (see [8]) which 
requires the solution of a non-linear system of equations in the Lagrange 
multiplier function A. The equivalent formulation in local coordinates can 
still be integrated by using the explicit Verlet method. 

The main disadvantage of this approach arises when the limit constrained 
system is different from (4), as mentioned in the introduction and demon- 
strated in $5 for our second model problem. 

Another way to overcome the step-size restriction k < E is to use multiple- 
time-stepping methods [4] or implicit methods [17, 18, 12,3]. In this paper, we 
examine the latter possibility. But for large molecular systems, fully implicit 
methods are very expensive. For that reason, we focus on the general class of 
scmi-implicit methods depicted in Fig. 1 [12]. In this scheme, Step 3 of the 
nth time step can be combined with Step 1 of the (n + 1)st time step. This 
then is a staggered two-step splitting method. We refer to  [12] for further 
jlistification. 

Note that, in local coordinates, Step 2 is equivalent to  integrating the 
equations (13). Thus, Step 2 can either be performed in local or in cartesian 
coordinates. We consider two different implicit methods for this purpose, 
namely, the midpoint method and the energy conserving method (6) which, 
in this example, coincides with the method (7) (because the V term appearing 
in  (6) and (7) for q = ql - q 2  is quadratic here). These methods are applied 
to the formulation in cartesian and in local coordinates and the properties of 
the resulting propagation rrlaps are discussed next. 
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SEMI-IMPLICIT INTEGRATOR 

Step 1. 

Step 2. 

Apply one step of size k to approximately integrate the fast system 

using an implicit method with initial conditions (q ,  , ,  , q2, ,  , P1 , ,  , p z t n ) .  - 
Denote the result by ( q l , n + l ,  q2,,+17 P l , n + l  7 f i 2 ,n+ l ) .  

Step 3. 

Fig. 1. A semi-implicit integrator: the implicit scheme is applied only to the 
system. 

fast 

4.1 Local Coordinates 

The midpoint discretization of (13) yields 

As remarked earlier, we are interested in the behavior of this approximation 
for step-sizes k much larger than the period of the fast bond vibrations, 
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which is of order E. But then, the Hamiltonian (11) is almost quadratic. The 
rriidpoint approximation almost reproduces this Hamiltonian [3, 21, which 
provides an energy norm estimate for the approximate solution. A simple 
perturbation argument yields from this that the midpoint method applied to 
the local coordinates formulation of the fast system (13) is unconditionally 
stable and that, in the limit K + 00, it conserves energy exactly. Note that, 
in local coordinates, the midpoint method and its energy conserving variants 
are basically equivalent. 

4.2 Cartesian Coordinates 

The interesting question is now what happens if the midpoint method is 
applied to the cartesian formulation (9) with Vl = V2 = 0. The equations are 

.- where i n + ~ / ~  .- IIql,n+1/2 - P z , ~ + I / z  1 1 .  This discretization becomes unstable 
if the step-size k becomes too large 161. As discussed in [3] by means of a 
simple linear time-varying problem, stability requires that 

be sufficiently small. Since the midpoint discretization of the equations of 
motion in local coordinates (14) is stable for any step size k, the present 
instability might come as a surprise. The explanation can be given as follows 
16, 31 : In cartesian coordinates the fast vibrations and the slow translational 
and rotational degrees of freedom are not decoupled as they are in the local 
coordinate formulation. For large step sizes as compared to E ,  this coupling 
leads to the destabilization of the midpoint method. 

To obtain the unconditional stability of the midpoint method in local 
coordinates, one would have to consider the decoupling transformation from 
Cartesian to local coordinates for the discrete variables qlln etc. But this 
transformation, which for the continuous variables is not constant, necessarily 
is in error which depends on k, not E .  The stability properties of the discrete 
clynamical systems obtained by the midpoint discretization in the different 
sets of coordinates I ~ W Y  therefore be significantly different when k >> E [3]. 
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This instability is avoided when applying the method (6), as proved in 
[6]. The latter method yields here 

where 

The gain in stability can now be interpreted as resulting from the direct 
midpoint discretization of the rapidly vibrating, local variable r, thus 
avoiding the potentially damaging discrete decoupling transformation. 

Table 1. Maximum error in the energy using the semi-implicit method with the 
energy conserving method (6) for the strong forces. 

Numerical Experiment We now present numerical results for non-zero Vl 
and V2. In particular, we take 

As initial conditions we chose q,  = [0.6,0IT, q2 = [-0.4,0IT, p1 = [I ,  1IT, 
T a n d p 2  = [-1,-11 . 

We apply the semi-implicit algorithm to handle the weak potentials K ,  
and the energy conserving method (16) for the stiff forces. The maximal error 
in the total energy, i.e. 

A H =  max IH(t)-H(O)I,  
t E  [0,500] 
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can be found in Table 1 for various values of k, K, and a. Even for large K 

and a, the value of AH depends quadratically on the step size k. 
A difficulty with the energy conserving method (6), in general, is the 

solution of the corresponding nonlinear equations [6]. Here, however, using 
the initial iterate (qn + kp,, p,) for (qn+l, p,+l), even for large values of a 
we did not observe any difficulties with the convergence of Newton's method. 

On the other hand, our computations using (15) indicate that the mid- 
point method becomes unstable for a > 1. 

Next, we replace the stiff spring potential n ( r  - 1 ) ~ / 2  by the Morse po- 
tent ial 

,$(I - e-(r-l)/2)2 7 

where r = llql - q2 1 1  as before. The methods (6) and (7) are no longer the 
same, and (7) does not conserve the energy exactly, even in the absence of 
the slow potentials. However, these two methods remain close. Repeating the 
experiments of Table I produces qualitatively similar results for the Morse 
potential. The computations with either (6) or (7) are stable. The energy 
error, as well as the error in fast energy AEf defined in the next section, 
appear to converge quadratically in k and be independent of K, when k >> &. 
Similar numerical experiments with the midpoint method run into difficulties. 

5 Modified Model Problem 

For molecules with more than two atoms the frequencies of the bond stretch- 
ing modes and/or bond angle bending modes are, in general, no longer con- 
stant along the slowly varying solution components. This implies additional 
complications not present for our simple diatomic model problem. In par- 
ticular, in the limit K + 00, replacing the stiff spring terms by holonomic 
constraints as in (4) leads to a qualitatively wrong dynamics which has to 
be corrected by introducing an additional force term [14, 51. The size of this 
additional force term depends on the limiting initial conditions. 

Unfortunately, discretization methods with large step sizes applied to 
such problems tend to miss this additional force term [3]. Furthermore, 
even if the implicit midpoint method is applied to a formulation in local 
coordinates, similar problems occur [3]. Since the midpoint scheme and 
its variants (6) and (7) are basically identical in local coordinates, the 
same problem can be expected for the energy conserving method (6). To 
(lemonstrate this, let us consider the following modified model problem [13]: 

In the model problem described earlier, replace the stiff spring potential = 
"'(r - 1 ) ~ / 2  by 
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with 

This implies that the two "atoms" oscillate about a mutual distance d = r(+) 
that depends on the angle + and is given by an ellipse. Let 

The equations of motion are an obvious modification of (9) where q, - q, 
is replaced by A2(ql - q2) and rl2 is replaced by d. The total energy H of 
the system decomposes into the vibrational energy E f  of the stiff "spring" 
and the energy in the slowly varying degrees of freedom. The time-evolution 
of Ef  ( t )  is crucial for the limiting behavior of (3a)-(3b) as K + m. Let us 
derive an explicit expression for the energy E f .  The conjugate momentum 
corresponding to  d is 

The vibrational energy E f  is now given by 

with 

Note that E f  corresponds to a high-frequency harmonic oscillator with a. 
slowly varying frequency w .  This implies that the vibrational energy E f  is 
not constant along solution curves. Instead, we have the adiabatic invariant 
Jf  := E f  /W which is preserved up to terms of order E = @ over a time- 
interval of order at  least one. In the limit K, + m, the slow motion is no longer 
given by simply enforcing d - 1 = 0 as a holonomic constraint. Instead, a force 
term corresponding to the additional potential energy 

has to be added in (4). 

Numerical Experiment We consider the case Vl = V2 = 0 and apply the 
energy conserving method (6). (Note that the methods (6) and (7) are still 
equivalent, with the corresponding notation r t d, V(d) t 5 (d - I ) ~ ,  and 
q +- A2(ql - q2).) AS initial values we took q, = [0,0.5IT, q2 = [O, -0.5IT, 
p, = [I ,  1IT, and p2 = [- 1, -1IT. The maximal variation in the vibrational 
energy, i.e. 

AEf = max I E f  ( t )  - E f  (0) 1 , 
tE[O,10] 



Integrating Highly Oscillatory Systems 295 

Table 2. Maximum variation in the vibrational energy Ef and the adiabatic in- 
variant Jf using the energy conserving method (6). 

and in the adiabatic invariant, i.e. 

AJf = max IJf ( t )  - J f  ( ( ) ) I ,  
t E [o, 103 

can be found in Table 2. Note that, for k f i  >> 1, the method enforces AEf = 
0 (and thus Vc = 0) instead of (approximately) conserving the adiabatic 
invariant J f .  This implies that the energy conserving method introduces an 
crror of order one in the slow solution quantities, unless k f i  is bounded 
by a constant of magnitude order 1 .2 This is a step-size restriction which 
is comparable to the explicit Verlet method stability restriction, up to a 
moderate factor. In fact, the energy conserving method leads to the same 
wrong solution behavior as a naive enforcement of the holonomic constraint 
d = 1 by a method such as SHAKE. Note that, due to the energy conserving 
nature of the method, no indication of this wrong solution behavior will be 
given unless the adiabatic invariant is explicitly computed. Again we did 
not observe any difficulties in solving the nonlinear equations by Newton's 
method, so no alarm bells of any kind rang while computing a wrong solution. 
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Abstract. Systems with multiple time scales, and with forces which can be sub- 
divided into long and short range components are frequently encountered in com- 
putational chemistry. In recent years, new, powerful and efficient methods have 
Iwen developed to reduce the computational overhead in treating these problems in 
lrlolecular dynamics simulations. Numerical reversible integrators for dealing with 
these problems called r-RESPA (Reversible Reference System Propagator Algo- 
rithms) are reviewed in this article. r-RESPA leads to considerable speedups in 
generating molecular dynamics trajectories with no loss of accuracy. When com- 
bined with the Hybrid Monte Carlo (HMC) method and used in the Jump-Walking 
and the Smart-Walking algorithms, r-RESPA is very useful for the enhanced sam- 
pling of rough energy landscapes in biomolecules. 

1 Introduction 

Molecular Dynamics (MD) is one of the major tools in the arsenal of computa- 
tional chemistry and physics. It grew out of attempts to understand the static 
and dynamical properties of hard sphere fluids and its first appearance[l, 21 
was in a form applicable to impulsive forces (1957). Several years later (1964), 
R,ahman extended MD to monoatomic liquids in which the atoms interact 
pairwise through the Lennard-Jones pair potential. [3] This major develop- 
ment was followed soon after (1968) by the first application of MD to fluids 
containing diatomic molecules[4, 51 interacting through continuous potentials 
and then to triatomic molecules[6] (1971). It was these applications of MD to 
rrlolecules interacting through continuous force fields that set the stage for all 
subsequent applications of MD in computational chemistry. Several excellent 
monographs exist which treat the methodology in detail.17, 8, 9, 101 

One of the problems encountered in applying molecular dynamics to the 
simulation of complex systems is the presence of both fast and slow degrees 
of freedom. One must choose a small time step to achieve stable integration 
of the equations of motion for the fast motion and must then generate a 
very large number of time steps to achieve sufficient sampling of the slow 
degrees of freedom. Another major bottleneck is the calculation of the long 
range electrostatic forces. These are called "intrinsic" multiple time scale 
problems. 
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Even with fast methods for generating molecular dynamics (MD) or 
Monte Car lo (MC) trajectories, the problems of sampling conformational 
states separated by large energy barriers remains an obstacle to  progress. 
This problem raises another and more serious kind of multiple time scale 
problem - one due to  the presence of a rugged energy landscape with the 
attendant separation of time scales arising from activated barrier crossing. 
This latter problem will be refered to as the "extrinsic" multiple time scale 
problem. 

In recent years a variety of powerful new molecular dynamics and Monte 
Carlo methods have been developed to address the "intrinsic" and "extrinsic" 
multiple time scale respectively. Accurate numerical integrators are required 
for questions involving real dynamical problems such as transport and en- 
ergy relaxation. Thus in Sec. 2 we discuss accurate numerical integrators for 
"intrinsic" multiple time scale problem. On the other hand, in the simulation 
of biomolecular systems, one is often interested in computing equilibrium 
averages and thermodynamic quantities. For this purpose, the exact time de- 
pendence is not required, since all that is needed is the correct and efficient 
sampling of the thermally accessible configurations of the system, a prob- 
lem made difficult by the "extrinsic" multiple time scales connected with 
the omnipresent energy barriers in systems with rough energy landscapes. 
A variety of techniques, such as stochastic dynamics, Monte Carlo, Hybrid 
Monte Carlo, J-Walking etc can be used, some of which are discussed in 
Sec. 3. First new met hods for generating accurate dynamical trajectories are 
described and then methods based on inaccurate dynamics for sampling state 
space in systems with rough energy landscapes are treated. 

2 Methods for Dealing with the Intrinsic Multiple 
Time Scale Problem in Molecular Dynamics 

In complex systems the set of fast degrees of freedom arises both from vibra- 
tions of stiff bonds or particles with small mass. An example of the latter is 
the fast vibrational motions of the C-H and 0-H bonds in biomolecules and 
the 0-H bonds of water. In systems with multiple time scales it is necessary to 
choose a time step much smaller than the periods of the fastest motions and 
to recalculate the forces after each small time step. It then requires very long 
runs to sample the conformational space of the slower degrees of freedom. 
To bypass this problem some fast degrees of freedom can be eliminated by 
constraining the length of the stiff bonds.[ll] Constrained molecular dynam- 
ics suffers from several problems: (a) bond constraints introduce additional 
angular correlations is torsion angle distribution functions that are not found 
in the flexible systems in nature; (b) constraints cannot be used to eliminate 
problems like the fast librational motion of water; (c) the integrators often 
used in constrained MD are neither reversible nor symplectic. This latter 
problem means that constrained dynamics cannot be wed to Monte Carlo 
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methods like Hybrid Monte Carlo[l2] which require reversible integrators to 
insure detailed balance. 

In conventional MD the forces are recomputed after each time step. The 
force calculations account for as much as 95% of the CPU time in an MD sim- 
~xlation. In systems with long range forces, the force computation becomes the 
major bottleneck to the computation. When using the direct pairwise evalu- 
ation, the computational effort required to compute the long-range Coulomb 
forces on N interacting particles is of order N ~ .  A variety of strategies, such 
:is the fast multipole method and the particle-particle-mesh Ewald method, 
have been introduced to reduce the computational effort in calculating the 
forces. Building on earlier reference system propagator algorithm (RESPA) 
based integrators,[l3, 14, 15, 161 a class of new reversible and symplectic 
integrators have been invented that greatly reduces the "intrinsic" multiple 
time scale problem. By using a reversible Trotter factorization of the classical 
propagatorjl71 one can generate simple, accurate, reversible and symplectic 
integrators that allow one to  integrate the fast motions using small time steps 
and the slow degrees of freedom using large time steps.[l7] This approach al- 
lows one to split the propagator up into a fast part, due to the high frequency 
vibrations, and slow parts, due to short range, intermediate range, and long 
range forces, in a variety of ways. These new integrators, called reversible ref- 
erence system algorithms (r-RESPA), require for the treatment of all-atom 
force fields no more CPU time than constrained dynamics and often lead 
to even larger improvements in speed. Although r-RESPA is quite simple 
to implement, there are many ways to factorize the propagator. A recent 
paper shows how to avoid bad strategies.[l8] Applications of these methods 
to Car-Parrinello ab initio molecular dynamics has resulted in speedups by a 
factor of approximately five in semiconductor materials. [lg, 20, 211 There has 
been significant progress in recent years to apply these methods to systems 
of biological relevance.[22, 23, 24, 25, 261 

2.1 Background 

As is well known, Molecular Dynamics is used to simulate the motions in 
many-body systems. In a typical MD simulation one first starts with an initial 
state of an N particle system r = (x l , .  . . , x f ,  p l ,  . . . , p f )  where f = 3 N  is 
the number of degrees of freedom in the system. After sampling the initial 
state one numerically solves Hamilton's equations of motion: 

subject to the initial conditions. Although there are many possible finite 
difference approxi~r~atiork or integrators[i] to solve the equations of motion, 
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we will focus on the Verlet integrator.1271 Over the years this integrator has 
undergone various extensions and modifications. For example, Andersen et 
al. have introduced the velocity Verlet integrator.[28] In this integrator, the 
positions xi(At) and velocities xi(At) after one time step At are related to 
the positions ~ ~ ( 0 )  and velocities ~ ~ ( 0 )  = ~ ~ ( 0 )  = pi(O)/m at  the beginning 
of the time step by: 

At 
xi (At) = xi (0) + - [F,  ({xi (0))) + Fi ({xi (At)})] 

2m 

for i = 1 , .  . . , 3 N ,  where Fi = -aU({xi})/axi is the force on the coordinate 
X i .  The forces at  any time can be computed from the potential function 
U({xi}) and are functions of all of the position coordinates at that time. 

One property of the exact trajectory for a conservative system is that, 
the total energy is a constant of the motion. 1121 Finite difference integrators 
provide approximate solutions to the equations of motion and for trajectories 
,generated numerically the total energy is not strictly conserved. The exact 
trajectory will move on a constant energy surface in the 6N dimensional 
phase space of the system defined by, 

The numerical trajectory will wander off this energy surface. If the trajectory 
is stable it will wander on an energy shell 

The smaller the time step At used in the integrator, the more accurate will 
be the trajectory and the smaller will be the thickness of the energy shell 
on which the trajectory wanders. If the time step is too large the integrator 
will generate an unstable trajectory and the energy will diverge after a small 
number of time steps. This will happen if during a time step the errors in the 
new positions give rise to very large changes in the forces between particles. 
Then on the next time step the particles will speed up giving rise to still 
larger errors in the next positions and to even larger changes in the forces. 
This situation eventually results in disaster. In general, one must choose time 
steps sufficiently small that the forces do not change significantly. This means 
that the time step must be small enough for the fastest motions in the system- 

One of the advantages of the Verlet integrator is that it is time reversible 
and symplectic[30, 31, 321. Reversibility means that in the absence of numer- 
ical round off error, if the trajectory is run for many time steps, say nAt, 
and the velocities are then reversed, the trajectory will retrace its path and 
after nAt more time steps it will land back where it started. An integrator 
can be viewed as a mapping from one point in phase spacr: to another. If this 
mapping is applied to a measurable point set of states a.t one tirnc, it will 
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map these states to  another measurable point set. If the mapping is syrnplec- 
tic, the measure of the initial point set will be equal to the measure of the 
final point set. The mapping then satisfies Liouville's Theorem[l2] and con- 
serves the measure in phase space. Thus, like the exact solution of Hamilton's 
equations of motion, symplectic integrators, such as the Verlet integrator (see 
];;(I. 2) , are reversible and measure conserving. In recent years it has been 
~l~lderstood that symplectic integrators are more stable than non-symplectic 
intcgrators. [31, 321 It can be shown that dynamics generated by a symplectic 
integrator will conserve not the true Hamiltonian, but rather a modified, time 
stcp dependent Hamiltonian, H ( A ~ )  in one dimension and is postulated to 
rlo so in many dimension [33]. This theorem guarantees that Eq. 4 will hold 
for all time, t and that the integrator will be stable. 

2.2 Integrators Generated from Factorizing the Classical 
Propagator 

Ikfore discussing the method for handling the problem of multiple time step 
~rmlecular dynamics, it is useful to show how simple operator algebra can be 
wed to generate reversible integrators.[l7] The starting point for this is the 
tlcfinition of the classical Liouvillian, a Hermitian operator on functions of 
t hc state variables. The Liouvillian is defined in terms of the Poisson Bracket, 
{ ,  H ) ,  of whatever it operates on with the Hamiltonian H of the system. In 
Cartesian coordinates it has the form, 

where F is the force (F = -dV/dx), V(x) is the potential function, x = p X / m  
is the velocity and p is the momentum. For simplicity of notation we treat 
only a one dimensional system (one position coordinate and one conjugate 
I tiomentum); nevertheless it should be recognized that for general systems 
the Liouvillian involves a sum over all degrees of freedom. 

The operator, 

is the propagator of the classical motion. Thus the state of the system after 
one time step At is found by applying the propagator to the initial state so 
that 

Now assuming any decomposition of the Liouvillian into two parts, 
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one can use the reversible Trotter factorization of the propagator to approx- 
imate the true propagator, 

Applying this to an initial state of the system represented by the column 
vector, 

gives the state after one time step At,  

If we subdivide the Liouvillian into the two parts by separating the force and 
velocity terms, 

d 
iL1 = F- and iL2 = 

~ P X  

and apply this factorization to the propagator, we 

d 
x-, 
dx 

obtain: 

Each of the factorized operators are displacement operators and can thus be 
applied seriatim to  the initial state vector to give the final solution, 

This procedure is then repeated after each time step. Comparison with Eq. (2) 
shows that the result is the velocity Verlet integrator and we have thus derived 
it from a split-operator technique; which is not the way that it was originally 
derived. A simple interchange of the L1 and L2 operators yields an entirely 
equivalent integrator, 

which by symmetry we call the position Verlet integrator, an integrator of 
the same accuracy as the velocity Verlet integrator. 

An interesting property of these integrators is that the Jacobian of the 
transformation from the state at  time 0 to the time At is 
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Thus these integrators are measure preserving and give trajectories that sat- 
isfy the Liouville theorem.[l2] This is an important property of symplectic 
integrators, and, as mentioned before, it is this property that makes these 
integrators more st able than non-sy mplectic integrators. [30, 331 

By now it should be clear that this kind of operator algebra can be a 
useful method for generating integrators. We show, in the following, how it 
can be applied to generate a wide variety of methods for treating the multiple 
time scale problem. 

2.3 Reference System Propagator Algorithms 

The aforementioned factorizations of the classical propagator can be used 
to generate efficient reversible and symplectic integrators for systems with 
lorig and short range forces and for systems in which the degrees of freedom 
can be subdivided into fast and slow subsets. All of the methods described 
M o w  are called Reference System Propagator Algorithms (RESPA); a name 
that we gave to  our initial attempts to use an underlying reference system 
1)ropagator for the fast motion. This early effort resulted in non-reversible 
iritegrators.[l3, 14, 15, 161 If the Liouville operator of the system is decom- 
posed into a "reference system" part, iLref,  and a "correction part", ibL, 
i ts  

Trotter factorization of the propagator then leads to 

e i L A t  i b L A t / 2  i L r e f A t e i G L A t / 2  - e e (18) 

I n  this context the velocity Verlet integrator is equivalent to  taking the ref- 
crence system to be the dynamical system with all of the forces turned off; 
t h t  is, the ideal gas system. In some cases the reference system can be solved 
arialytically, and we refer to these methods as the Numerical Analytical Prop- 
agator Algorithm (NAPA). The development of symplectic, reversible RESPA 
(r-RESPA) integration methods grew out of our earlier attempts to devise 
rriiiltiple time scale integrators based on the generation of the dynamics of a 
reference system and, in principle, exact correction to it.[13, 14, 15, 161 The 
latter, being non-reversible, guided us in the direction of analyzing the struc- 
t.m-e of the classical propagator and the use of the symmetric Trotter factor- 
ization. In fact in the development of r-RESPA and r-NAPA we have adopted 
many of many of the strategies used in our earlier non-reversible RESPA (nr- 
R.ESPA).[17] All of these r-RESPA integrators are also symplectic. First we 
tmat the problem where there are fast and slow degrees of freedom (or light 
mid heavy particles). Then we treat the case where the forces can be subdi- 
vided into short and long range components. Finally, we show how the long 
a r d  short range force factorizations can be combined with the fast and slow 
factorization yielding a speedup which is approximately the product of the 
spoedups achieved whm thme factorizations are used separately. There are 
rriany variations o11 the thorric introduced here. 
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2.4 Fast and Slow Processes 

In many cases the dynamical system consists of fast degrees of freedom, 
labeled x, and slow degrees of freedom, labeled y. An example is that of a fluid 
containing polyatomic molecules. The internal vibrations of the molecules arc 
oft en very fast compared to their translational and orientational motions. 
Although this and other systems, like proteins, have already been treated 
using RESPA,[17, 34, 22, 23, 24, 25, 261 another example, and the one wn 
focus on here, is that of a system of very light particles (of mass m) dissolved 
in a bath of very heavy particles (mass M).[14] The positions of the heavy 
particles are denoted y and the positions of the light particles are denoted by 
x. In this case the total Liouvillian of the system is: 

where 

With this break up the reversible Trotter factorization of the propagator is 

For the slow (y) motion the time step At may be chosen large whereas for the 
fast motion this time will be too large. Thus this propagator can be expressed 
as; 

where 

and At = ndt, where n is a whole number. The r-RESPA integrator involves 
the following: the heavy particles are integrated for one half of one large time 
step At/2, the light particles are then integrated for nl small time steps 6t, 
such that At = ndt, and the heavy particles arc int:cw-stod for onc half of one 
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large time step. A simple example of fortran pseudocode for this is: 

wliere we designate the fast motion by subscript I (standing for light particles) 
i~11d the slow motion by subscript h (standing for heavy particles). 

This procedure is very cost efficient when the fast (or light) particles are 
t,he dilute component because then one only has to update the forces on the 
J L C ~ L V Y  particles (the expensive part of the computation) every large time step 
instead of every small time step as would be the case in the straightforward 
application of the Verlet integrator. For example when applied to a system 
writaining 64 particles of mass 1 dissolved in 800 solvent atoms of mass 
100, the CPU time for the full simulation took only slightly longer than it 
woilld if the complete system was made up of heavy particles.[14] In contrast, 
iqqdication of the usual Verlet integrator using the small time step required 
for the light particles but evaluating all the forces after each one of these 
snmll time steps required approximately ten times the CPU time used in the 
R.ESPA integrator. The same accuracy was achieved in these two different 
tmatments. 

Another important application of this strategy was to the vibrational re- 
laxation of a stiff diatomic molecule dissolved in a Lennard-Jones solvent. As 
is typical of such problems, the frequency of the oscillator can be an order of 
lmgnitude or more larger than the typical frequencies found in the spectral 
clerisity of the solvent. Thus very small time steps are required to to integrate 
tlhe equations of motion, but because there are very few accepting solvent 
rrlodes at the frequency of the oscillator, its vibrational relaxation time will 
h: very long, largely occurring by a multiphonon mechanism. In the past 
it was not practicable to simulate these processes directly. Using a form of 
1-RESPA modified for the specific case of an oscillator dissolved in a slow 
solvent, we have been able to reduce the CPU time required for these calcu- 
littions by factors of ten in many cases making possible the direct simulation 
o f  such energy tramfer 1)rohlrms.[34] When this strategy has been applied to 
tlio calculation of t811(. and R.aman spectrum of crystalline buckminster- 
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fullerene, speedups of as much as a factor of forty have been obtained.[%] 
It is important to note that the strategy outlined here is a direct generaliza- 
tion of the strategy we introduced in our original RESPA papers,[l3] and is 
distinct from other attempts to deal with multiple time scales. 

2.5 Long and Short Range Forces 

Another immediate application of r-RESPA is to the case when the force 
can be subdivided into a short range part and a long range part. One way 
for effectuating this break up is to introduce a switching function, s(x) that 
is unity at  short inter-particle separations and 0 at  large inter-particle sep- 
arations. We introduced this strategy in our earlier non-reversible RESPA 
paper[l5] where we expressed the total force as, 

F (x )  = s(x) F (x) + (1 - s(x)) F (x) = Fs (x) + 6 (x). (25) 

The switching function s(x) was taken to be a sigmoidal function (usually a 
cubic spline) whose inflection point (switching point) and skin-depth can be 
optimized. The short range force Fs(x) = s(x)F(x) defines the time step to 
be used in a molecular dynamics calculation. In the velocity Verlet integrator 
one must compute the full force after each time step. If only the short range 
force were present, the CPU cost would be small because each particle would 
only interact with its nearest neighbors. It is the long range force 6 ( x )  = 
(1 - s(x)) F (x )  which is costly to calculate. We introduced this strategy into 
the r-RESPA propagator factorization,[l7] and as with the non-reversible 
RESPA, we showed that this can significantly reduce the CPU cost of the 
simulation. 

Introducing the above force breakup into the Liouvillian gives, 

The system defined by the Liouvillian Ls is called the reference system. NOW 
applying the Trotter factorization to  the propagator exp(iLs + F I $ - ) A ~  
arising from this subdivision gives the new propagator,[l7] 

where with At = n6t 
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Thus the propagator in Eq. (27) produces the following dynamics algorithm: 

Note that while the velocities will be updated on two different time- 
scales, the positions will be updated using only the smallest time-step. This 
procedure[l7] allows one to update the expensive long range force much less 
frequently than updating the cheap short range forces and thus saves CPU 
time without sacrificing accuracy. Even for simple systems like a liquid con- 
sisting of atoms interacting through a Lennard-Jones potential this procedure 
I ~ d s  to  a speedup of as much as 400%. It is important to note that if one 
hkes the switching function to be a Heaviside function, an approximation 
~ w t  recommended, the factorization of the propagator introduced reduces to 
the so called Verlet I integrator introduced by Grubmuller et aE..[36] How- 
cwr, factorizations like the one in Sections 2.4 and 2.6 are distinct from the 
Vcrlet I integrator and are not treated in ref. [36]. This should dispell some 
cmlfusion with respect to these issues. 

It is worth calling to attention one difference between the force subdi- 
vision used in r-RESPA[17] and the one used in the original non-reversible 
RESPA.[15] In the non-reversible RESPA paper we included the value of the 
long range force at  the beginning of the time interval into the reference sys- 
tkrn equation of motion which was then integrated for n small time steps. We 
t h n  solved the correction equation involving the difference between the true 
for-ce and the reference system force for one large time step. This was shown 
t,o lead to a more stable integration scheme with much smaller long time drift 
t,llan when the long range force was not introduced into the reference set of 
equations. Unfortunately, in the r-RESPA factorization there is no way to 
introduce the long range force at the beginning of the interval into the refer- 
( m e  system propagator because that would remove reversibility. Strategies 
m: being developed to implement such effects in new reversible integrators 
[37] . 

2.6 Combining Force Subdivision and Dynamic Subdivision 

'Phe preceding breakup for light and heavy particles can be combined with 
lmaking the forces up into short and long range forces in r-RESPA[17] in a 
similar manner to what was done in non-reversible RESPA. [16] We can then 
fiirther factorize thr thme propagators appearing in Eq. (22) by using the 
fa,c~t,orii..ation usrd to g(:lw;~to t,hr velocity Verlet integrator with the forces 



308 Berne 

divided into short and long range parts. This yields the propagator for one 
large time step: 1171 

where 

A t ~ y ~ ( ~ , ~ ) &  F ( x )  iL , .AteT 
G!:/ ( d t )  = e P~ e 

and the middle propagator for x is integrated as: 

Likewise, the middle propagator for y is integrated 7x2 times with a time step 
of At, = n16t 

Thus At = n2Atl = nln26t. It is simple matter to write down the Fortran 
pseudocode for this breakup. 

2.7 The Applications of RESPA to Proteins and Chemical 
Systems 

In order to apply the techniques discussed above to the MD simulation oC 
biomolecules, one takes the Liouville operator for a macromolecule in uacuo 
containing N atoms to be 

where 

Fstret , Fbend,  Ftors, F ~ b o n d ,  Fvdw, and FeleC represent the forces for stretch, 
bending, torsion (including improper torsion), hydrogen- bonding, van der 
Waals, and electrostatic interactions, respectively. Their functional forms can 
be found elsewhere [38, 391. The databases of parameters for these functional 
forms are generally called force fields. There are several force fields avail- 
able for biomolecular simulations, such as AMBER 1391 , OPLS (401 and 
CHARMM [41], etc, 
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In an atomic level simulation, the bond stretch vibrations are usually the 
fastest motions in the molecular dynamics of biomolecules, so the evolution of 
t,he stretch vibration is taken as the "reference" propagator with the smallest 
time step. The nonbonded interactions, including van der Waals and electro- 
static forces, are the slowest varying interactions, and a much larger time-step 
may be used. The bending, torsion and hydrogen-bonding forces are treated 
as intermediate time-scale interactions. 

In addition, the non-bonded forces can be divided into several regions 
xcording to  pair distances. The near region is normally more important than 
t;he distant region because the non-bonded forces decay with distance. Since 
rriost of the CPU time in a MD simulation is spent in the calculation of these 
11on-bonded interactions, the separation in pair distance results in valuable 
speedups. Using a 3-fold distance split, the non-bonded forces are separated in 
:3 regions: near, medium, and far distance zones. Thus, the Liouville operator 
can be express as a sum of five terms 

where 

To separate the non-bonded forces into near, medium, and far zones, pair 
distance separations are used for the van der Waals forces, and box separa- 
tions are used for the electrostatic forces in the Fast Multipole Method,[24] 
since the box separation is a more convenient breakup in the Fast Multipole 
Method (FMM). Using these subdivisions of the force, the propagator can be 
factorized according to  the different intrinsic time scales of the various com- 
ponents of the force. This approach can be used for other complex systems 
involving long range forces. 

2.8 Efficient Integrators for Systems with Coulomb Potentials 

One of the most expensive parts of a MD or MC simulations is the com- 
putation of long range interactions. Since the CPU time required for the 
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calculation of these forces scales as 0 ( N 2 ) ,  where N is the number of force 
centers in the system, direct calculation of these forces in large systems makes 
molecular dynamics (or Monte Carlo) infeasible for large protein-water sys- 
tems. The standard approach has been to truncate the long range forces 
so that their calculation scales as O(N)  for large enough systems. Unfor- 
tunately, truncation introduces significant non physical effects. To eliminate 
surface effects and to avoid the errors caused by truncation it is now be- 
coming common to use periodic boundary conditions and to  invoke Ewald 
summation. Optimal application of Ewald summation also scales as 0 (N3/2)  
and thus becomes prohibitively expensive for large systems. Procacci and 
Marchi have combined Ewald with RESPA for protein solutions by including 
the total Fourier sum in the intermediate time loop.[42] A better strategy for 
applying r-RESPA to Ewald boundary conditions involves subdividing the 
Fourier space sum in such a way that the short time contribution is placed 
in the inner short time loop of RESPA and the "true" long range and slow 
part of the sum is put in the outer loop.[l8] 

There are three different algorithms for the calculation of the electro- 
static forces in systems with periodic boundary conditions: (a) the (opti- 
mized) Ewald method, which scales like o ( N ~ / ~ ) ;  (b) the Particle Mesh 
Ewald (PME) method, which scales like O ( N  log N) ;  and (c) the periodic 
Fast Multipole Method (PFMM), which scales like O(N).  For very large sys- 

tems (N 2 lo5) it is expected that the PFMM will be the best choice, given 
its linear algorithmic complexity. It is of interest to determine the break- 
even point for these two methods. Because PME scales as O(N l n N )  and 
periodic-FMM scales as O(N),  PFMM will be faster than PME for N greater 
than some No. The break-even point for these two methods combined with 
r-RESPA will be different because the implementation of r-RESPA will be 
different in these two cases. This break-even point has not yet been deter- 
mined systematically. Figueirido et al. estimated that the break-even point 
for protein-water systems is No = 20,000. Despite the significant progress in 
this field the optimal strategy has yet to be found. 

Fast Mult ipole  Methods To manage the calculation of all of the elec- 
trostatic interactions, several groups have experimented with approximate 
schemes, of which the most widely used is the Fast Multipole Method (FMM) 
of Greengard and Rokhlin[43, 441 and its variants.[&, 46, 47, 48, 491 This al- 
gorithm decreases the computational burden to O(N)  by cleverly exploiting 
a hierarchy of clusters and using multipolar expansions to approximate the 
potential produced by these clusters. The basic principle of FMM is rather 
elegant. It interpolates the potential and force on a particular charge due to 
distant charges not by direct calculation, but by using the local expansion 
of fields produced by the multipoles generated from those distant charges. 
It first organizes multipole representations of charge distributions in hierar- 
chically structured boxes, then transforms these multipoles into local field 
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~;xpansions. Each particle then interacts with the local field of distant mul- 
t,ipoles. Meanwhile, the near range interactions are calculated directly by 
pairwise evaluation. Thus, the potential (and force) consists of two parts: 

near 
= @direct (x) + @k:ltipole(x) (44) 

near where GdireCt contains the near range inter-particle interactions, and @!&ltipole 

contains the contribution from distant particles. A top-down FMM recursive 
niethod was proposed for multipole generation by Zhou and Berne[24]. Their 
method is based on White and Head-Gordon's simplified derivation [45]. Zhou 
and Berne have incorporated r-RESPA in this topdown FMM algorithm and 
applied it to isolated all-atom proteins.[24] They were able to achieve speed- 
ups on the order of fifteen-fold for the photo-synthetic reaction center over 
the direct UN-truncated calculation of the forces using the standard velocity 
verlet integrator. Fig 1 shows a comparison between the cpu times required 
by ordinary velocity verlet and r-RESPA for different size proteins. The figure 
also shows improvements that can be achieved by combining efficient algo- 
rithms such as the fast-multipole method (FMM) with r-RESPA. 

The fast multipole method was first extended to periodic systems by 
Schmidt and Lee.[50] Figueirido et al. also designed a periodic FMM with 
a full derivation of the local field expansion which scales as O(N).[26] These 
authors combined PFMM with r-RESPA producing in a very powerful algo- 
rithm (r-RESPA/PFMM) that is expected to be the optimum strategy for 
dealing with very large systems (see below). 

Particle Mesh Ewald Methods Recently the particle mesh Ewald method 
(PME), and a smooth variant of it (SPME), developed by Darden et al.. , have 
been described in the literature [51, 52, 53,461. These algorithms are based on 
Hockney and Eastwood's [54] idea of assigning charges to a mesh according to 
their real space positions; the CPU time savings come from applying the Fast 
Fourier Transform (FFT) to the particle mesh to accelerate the reciprocal- 
space calculations of the Ewald sum and to use a small cutoff in real space. 
The algorithms are found to be of order O ( N  log N).  This method has been 
combined with r-RESPA by Procacci, Darden and Marchi.[55] 

3 New Sampling Methods for the Extrinsic Multiple 
Time Scale Problem 

Biomolecular systems often have rough energy landscapes. The sampling of 
rugged energy landscape poses special problems for molecular dynamics and 
Monte Carlo. As the system moves from one potential energy basin to an- 
other it must cross barriers that are large compared to IcT. The crossing of 
such barriers are rare events and thus very long runs are required to sample 
the configuration space. In such systems the barriers are due to at least two 
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Fig. 1. CPU times (in hours) for 1 ps MD runs for various proteins using three 
different methods, direct velocity Verlet with a time-step 0.5 fs, r-RESPA with 
direct evaluation of electrostatic forces and an overall time-step of 4.0 fs, and r- 
RESPA/TFMM with an overall time-step 4.0 fs (combination of (2,2,2,2) in force 
breakup) .The energy conservation parameter log AE for the three met hods are 
comparable. The CPU time (hours) is for RISC6000 /MODEL 590 computer. 

classes of interactions. First there are the local barriers that separate stable 
states of the torsion angles. Then there are barriers arising from close en- 
counters of atoms on side chains as well as on the primary chain which result 
from very repulsive (r-12) non-bonded interactions. There is a long history 
of using fictitious dynamics to sample the configuration space of complex sys- 
tems. These schemes fall into three classes: Brownian or Langevin dynamics; 
BGK (Bhatnanger, Gross, Krook) dynamics; and Monte Carlo methods. One 
can accelerate all of these methods by a clever break-up of the forces, as we 
have done for molecular dynamics with RESPA and r-RESPA, but this will 
not solve the problem of sampling the rare barrier crossing events frequently 
enough to determine long time averages needed for detenrkining the thermo- 
dynamic averages or for gaining insights into reaction ~a t~k l s  hetween initial 
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and final conformational states of large molecules. New methods are required 
to deal with rugged energy surfaces. 

New Monte Carlo methods have been devised to deal with the intrinsic 
multiple time scale problem.[56, 101 The Hybrid Monte Carlo (HMC) method, 
combined with r-RESPA, as outlined in Sec. 2, can be used to speedup the 
intrinsic multiple time scale problem in MC sampling. In addition, new meth- 
ods for speeding up barrier crossings in systems with rough energy landscapes 
like the Jump-Walking (J-Walking) method[57] and the Smart-Walking (S- 
Walking) method[58] can be combined with HMC and thereby r-RESPA. 
These methods are particularly useful for sampling the conformation space 
of many-body systems, such as proteins.[24, 26]Lastly, it is worth mentioning 
methods that allow the Lennard-Jones diameters a to fluctuate or that allow 
the barriers in the torsion angle potential to fluctuate. These methods very 
rapidly explore the configuration space. [59] 

Hybrid Monte Carlo In standard MC only single particle moves are tried 
;tnd accepted or rejected. Attempts to make many particle moves of the sys- 
tcrn before applying the Metropolis acceptance criterion leads to such small 
acceptance probabilities that this method is not efficient. Moreover it requires 
the recalculation of the whole potential after each attempted move, a costly 
cornputation especially when the move is likely to be rejected. One efficient 
ruethod for generating collective moves is the Hybrid Monte Carlo method 
invented by Duane and Kennedy.[l2] In this method one starts with a config- 
uration of the system and samples momenta of the particles from a Maxwell 
distribution. Molecular dynamics is used to move the whole system for a time 
At and, because this time may be sufficiently large as to cause a reasonable 
energy change due the lack of strict energy conservation, one then accepts or 
rcjects the move using the Metropolis criterion based on exp(-pH) where 
H is the hamiltonian of the system. This step is repeated over and over. In 
I-IMC, bad MD is used to generate efficient MC. It is important that the 
integrator used for generating the solution to the equations of motion be 
reversible because only then will this method satisfy detailed balance and 
only then will the method generate the canonical distribution and the Boltz- 
rnann distribution. A number of authors have further elaborated the HMC 
~ncthod.[GO, 61, 62, 631 

Since many systems of interest in chemistry have intrinsic multiple time 
scales it is important to use integrators that deal efficiently with the multiple 
time scale problem. Since our multiple time step algorithm, the so-called 
rcvcrsible Reference System Propagator Algorithm (r-RESPA) (17, 24, 18, 261 
is time reversible and symplectic, they are very useful in combination with 
HMC for constant temperature simulations of large protein systems. 

In HMC the momenta are constantly being refreshed with the consequence 
that the accompanying dynamics will generate a spatial diffusion process su- 
perposed on the inertial dynamics, as in BGK or Smoluchowski dynamics. 
I t  is well known from the tlheory of barrier crossing that this added spatial 
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diffusion can lead to smaller rates for barrier crossing. Thus the HMC or 
BGK methods may suppress barrier crossing. Parenthetically, it is impor- 
tant to note that stochastic methods such as Langevin dynamics or BGK 
dynamics will behave similarly. We have found[64] that in some systems the 
Nose' thermostat[65] may have a more beneficial sampling of different basins. 
Reversible integration schemes for these methods have been developed. [66] 
One way to improve these methods is to couple them to new methods for ac- 
celerating the dynamics on rugged energy landscapes such as the J-Walking 
method[57, 67, 681 or the S-Walking method.[58] 

Jump Walking In the J-walking method, the MC or HMC sampling at 
the desired low temperature is infrequently punctuated by sampling from a 
higher temperature distribution for the same system. Since a higher temper- 
ature MC simulation can involve larger attempted moves and more frequent 
barrier crossings, this allows the system to access more conformational states 
according to the high temperature Boltzmann distribution. Then, the lower 
temperature walker attempts occasional jumps to the conformation states of 
the high temperature walker, thus enhancing the barrier crossing. The trial 
sampling distribution for these occasional jumps is the Boltzmann distribu- 
tion at the higher temperature. The method is so constructed that one gen- 
erates the correct low temperature Boltzmann distribution. Since t he energy 
landscape of biomolecules contains very high barriers, it is often necessary to 
use many high temperature walks spaced at intervals of approximately 50 K 
and the CPU time required by this method will scale as the number of high 
temperature walks. 

Smart Walking Jumping directly into a high temperature structure is not 
the only way to use the conformational space information from the J-Walker. 
Instead, the structure can be first relaxed before being jumped into.[58] Ap- 
proximate minimization with a steepest descent method (or conjugate gra- 
dient method) will generate structures close to the local minimum. These 
relaxed configurations will significantly decrease the potential energy, and 
thus increase the jump success ratio dramatically. Each minimized structure 
is then regarded as one of the possible trial moves at low temperature and 
are accepted or rejected with acceptance probability function, that gener- 
ates a Boltzmann distribution at the low temperature. Unlike the J-Walking 
acceptance probability, this scheme, which is called Smart Walking[58] (or 
S-Walking), will dramatically increase the jump success ratio from one basin 
to another. It also enables the system to explore more phase space and un- 
dergo more efficient barrier-crossings. This S-walking method avoids the ]in- 
ear increase of CPU time and memory usage required by the multiple-stage 
J-Walking method, because it is not necessary to use multiple stages for 
most systems, even though it would be very easy to implement a multi-stage 
S- Walking procedure. S- Walking preserves detailed balance approximat el y 
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provided the time between S-jumps is much longer than the time required 
by the low temperature walker to explore its local basin effectively (more 
discussion follows in the section on results). This new S-Walking algorithm 
only requires a simple modification of the J-Walking algorithm. 

4 Summary 

Integrators based on r-RESPA, when combined with enhanced methods 
for calculating long-range electrostatic forces, such as the FMM or SPME 
schemes have led to a considerable speed-up in the CPU time for large scale 
simulations of biomacromolecular solutions. Since r-RESPA is symplectic 
such integrators are very stable. Moreover since r-RESPA is time reversible 
it can be used in Hybrid Monte Carlo and satisfies the condition of detailed 
balance. This HMC method can be used in enhanced sampling methods such 
as J-Walking and S-Walking methods which lead to a more rapid exploration 
of rugged energy landscapes and thus to enhanced conformational searches. 
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The Five Femtosecond Time Step Barrier* 
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Abstract. Simulation of the dynamics of biomolecules requires the use of a time 
step in the range 0.5-1 fs to obtain acceptable accuracy. Nevertheless, the bulk of 
the CPU time is spent computing interactions, such as those due to long-range 
electrostatics, which vary hardly at all from one time step to the next. This unnec- 
essary computation is dramatically reduced with the use of multiple time stepping 
methods, such as the Verlet-I/r-RESPA method, which is based on approximating 
"slow" forces as widely separated impulses. Indeed, numerical experiments show 
that time steps of 4 fs are possible for these slow forces but unfortunately also show 
that a long time step of 5 fs results in a dramatic energy drift. Moreover, this is less 
pronounced if one uses a yet larger long time step! The cause of the problem can 
be explained by exact analysis of a simple two degree-of-freedom linear problem, 
which predicts numerical instability if the time step is just less than half the pe- 
riod of the fastest normal mode. To overcome this, a modification of the impulsive 
Verlet-I/r-RESPA method is proposed, called the mollified impulse method. The 
idea is that one modifies the slow part of the potential energy so that it is evalu- 
ated at "time averaged" values of the positions, and one uses the gradient of this 
modified potential for the slow part of the force. Various versions of the algorithm 
are implemented for water and numerical results are presented. 

1 Introduction 

Answers to questions in structural biology are often sought by means of 
long time biomolecular simulations using empirical classical mechanical force 
fields. Nevertheless, the shortest time scales present in the simulation have 
limited the integration step to 0.5-1 fs, which is many orders of magnitude 
smaller than the desired simulation time interval. Fairly recently the intro- 
duction of the Verlet-I [B, 9]/r-RESPA [23] "impulse" multiple time step 
(MTS) method has permitted an increase to 4 fs in the length of the longest 
time step. This article describes this development as well as empirical [4] 
and analytical [7] evidence indicating that timesteps of 5 fs or greater are not 
possible with the impulse MTS method (for unconstrained molecular dynam- 
ics). Nevertheless, a modification to this method - the "mollified" impulse 
method [7] - yields stable dynamics for longest timesteps as great as 7fs. 

MTS methods exploit the existence of different time scales arising from the 
many interactions present in the force field. For expository purposes assume 

* This work was supported in part by NIH Grant P41RR05969 and NSF Grants 
BIR-9318159 and DMS-9600088. 



The Five Femtosecond Time Step Barrier 319 

that the potential energy function is expressed as the sum of just two parts 
ufmt (x) + u~~~~ (x), where x denotes the collection of all atomic positions. 
The equations of motion for unconstrained constant NVE dynamics are 

where M is a diagonal matrix of atomic masses, x = X(t )  are the atomic 
trajectories, Ffast = - u : ~ ~ ,  and FSlow = -U$O~.  The partitioning is chosen 
so that an appropriate time step At for the slow part is significantly larger 
than an appropriate time step St for the fast part. To be specific about the 
length of an appropriate time step, there is a recipe in [17], which suggests 
that At2 be chosen to be proportional to the reciprocal of the largest eigen- 
value of the mass weighted Hessian M - ' / ~ U ~ ~ ~ ~ ( X ) M - ' / ~ ,  2 2 and analogously 
for St2. 

Although unconstrained dynamics is being considered here, the ideas ex- 
tend to the case where bond lengths (and bond angles) are constrained. Also, 
the ideas are applicable to other than constant NVE simulations. 

This article is organized as follows: Sect. 2 explains why it seems impor- 
tant to use symplectic integrators, Sect. 3 describes the Verlet-I/r-RESPA 
impulse MTS method, Sect. 4 presents the 5 femtosecond time step barrier, 
Sect. 5 introduce a possible solution termed the "mollified" impulse method 
(MOLLY), and Sect. 6 gives the results of preliminary numerical tests with 
MOLLY. 

2 Importance of Symplectic Integration 

It is appropriate to consider first the question of what kind of accuracy is 
expected from a simulation. In molecular dynamics (MD) very small pertur- 
bations to initial conditions grow exponentially in time until they completely 
overwhelm the trajectory itself. Hence, it is inappropriate to expect that ac- 
curate trajectories be computed for more than a short time interval. Rather 
it is expected only that the trajectories have the correct statistical properties, 
which is sensible if, for example, the initial velocities are randomly generated 
from a Maxwell distribution. 

The use of a numerical integrator to approximate the exact propagator of 
a system of ordinary differential equations (ODEs) yields a numerical solution 
which can be interpreted as the exact solution of a slightly different system 
of ODES.' If the given system is a Hamiltonian system (as it is for constant- 
energy MD), then the slightly different system is Hamiltonian if and only 
if the integrator is symplectic [21]. In particular, this implies that any given 
energy surface in phase space is changed only slightly by the use of symplectic 

1 This statement is not exactly true - the slightly different system of ODEs is 
defined by an asynlptotic expansion in powers of At which is generally divergent. 
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numerical integration, and it suggests that statistical properties of long-time 
dynamics are retained. 

A transformation in phase space from positions x and momenta p 

is said to be symplectic if its Jacobian matrix (of partial derivatives) satisfies 

The exact propagator for a Hamiltonian system for any given time increment 
At is symplectic. As a consequence it possesses the Liouville property of 
preserving volume in phase space. 

Additional evidence favoring the use of symplectic integrators is an ob- 
servation [18] concerning hybrid Monte Carlo methods: to get the property 
of detailed balance needed for valid sampling, it is enough to use a numerical 
integrator which is volume preserving and reversible. As was just mentioned, 
symplectic integrators preserve volume in phase space. 

On the basis of these considerations it is suggested that the design of 
numerical integration techniques might employ the following two hypotheses: 

I. desired computables are insensitive to small changes in the Hamiltonian 
i p T ~ - ' p  + U(x), and 

2. symplectic numerical integration produces small changes to the Hamilto- 
nian. 

3 The Verlet-I/r-RESPA Impulse Method 

For MD the reduced system 

d2 
M-X = F'~'~(x) 

d t  

is cheap to integrate compared to the cost of integrating the full system. For 
example, for the MD program NAMD [19] on an ATM-connected cluster of 
eight HP 9000-7351125 workstations applied to a system of 36,000 atoms, 
the CPU time required to compute the "fast" short-range forces is 7 seconds 
whereas that required for the "slow" long-range forces is 29 seconds. Short- 
range forces consisted of all forces except electrostatic forces beyond 8 A. The 
latter were calculated using a parallel enhanced fast multipole method [15]. 
An efficient numerical integrator would evaluate FSloW sparingly and incor- 
porate its values into an integration of the reduced system in the most ad- 
vantageous way. The question is how to do this. 

A good place to start the discussion is the "impulse method" 



The Five Femtosecond Time Step Barrier 321 

proposed by [24], in which the slow force is approximated by a sequence of 
appropriately weighted impulses. If the reduced system is analytically solv- 
able, then the above approximation to the full system is solvable by inserting 
jumps into the analytical integration of (d/dt)X(t) at  integer multiples of 
the time step At. Let P = M(d/dt)X, and suppose values Xn-', Pn-' , and 
~ s l o w , n - l  = are given. Then one step of the impulse method 
can be expressed as follows: 

half a kick 

a vibration Propagate xn-', Pn-'+' by integrating 

for an interval At to get Xn, Pn-'. 
half a kick 

The symbols pn-'+€ and Pn-' represent momenta just after the (n - 1)st 
kick, and just before the nth kick, respectively. 

The application in [24] is to celestial mechanics, in which the reduced 
problem for ufmt consists of the Keplerian motion of planets around the 
sun and in which the uslow impulses account for interplanetary interactions. 
Application to MD is explored in [14]. It is not easy to find a reduced prob- 
lem that can be integrated analytically however. The choice ufaSt = 0 is al- 
ways possible and this yields the simple but effective leapfrog/Stormer/Verlet 
method, whose use according to 1221 dates back to at least 1793 151. This con- 
nection should allay fears concerning the quality of an approximation using 
Dirac delta functions. 

The need to integrate the fast forces analytically can be avoided by ap- 
proximating it by a sequence of suitably weighted impulses but more closely 
spaced in time than the slow force impulses: 

The idea is illustrated by Fig. 1. These equations constitute a readily under- 
standable and concise representation of the widely used Verlet-I/r-RESPA 
impulse MTS method. The method was described first in [B, 91 but tested 
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Fig. 1. Schematic for the impulse multiple time stepping method. 

first in [23]. This latter reference describes the method in terms of an op- 
erator splitting and proposes the splitting of nonbonded interactions using 
switching functions. The symplecticness of this method is first noted in 131. 
Of course, the idea generalizes to more than two different time steps. Also, 
it is most practical to  choose time steps with ratios that are integers. 

4 Time Step Barriers 

Based on accuracy considerations alone, it seems that time steps of the order 
At = 16 fs should be possible for the slowest forces for MD [6]. Contrast this 
with the 0.5-1 fs value needed for the fastest forces. 

Nevertheless, it was recognized already in the first paper on the impulse 
method [9] that resonance might be expected if the timestep At is approxi- 
mately equal to the period of the fastest normal mode, which is 9 or 10 fs for 
biomolecules with flexible bonds to hydrogen. (Flexible bonds to hydrogen 
give modes with the highest frequency because bond stretching interactions 
have the largest force constants and hydrogen atoms have the smallest mass.) 
This resonance can be most readily explained if one assumes 6t is infinitesi- 
mal and neglects the dependence of the slow force on X. Then, the impulse 
MTS method simplifies to 

which is a system of ODES with a periodic forcing function. If the frequency 
of the forcing function coincides with a natural frequency of the unforced 
system, then resonance produces an oscillation in the trajectory whose am- 
plitude increases with time. This artifact of the implilse MTS rnethod was first 
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demonstrated, for simple problems, in [3]. A more recent analytical study [7] 
shows that the trajectory error in the impulse method is proportional to At 
rather than At2 if F~~~~ is fast enough to produce resonance. 

More surprisingly, there is also a problem for time steps At just smaller 
than half the period of the fastest normal mode, which is approximately 
5 fs. There is in [4] a revealing experiment for the Verlet-I/r-RESPA impulse 
MTS method. In a 1000-fs simulation on a 36000-atom water-protein-DNA 
system it was found that At = 4fs produces very little energy drift, that 
At = 5 fs yields dramatic energy growth, and that At = 6 fs gives only half 
as much energy growth as At = 5 fs. In all cases the small time step St was 
1 fs. This experiment suggests a stability problem associated with timesteps 
At approximately equal to half the period of the fastest normal mode. As a 
check a power spectrum was computed for 20 ps of a 180K simulation of a 
20 A sphere of the flexible TIP3P water used in that simulation. This is shown 
by Fig. 2. Peaks are discernible at frequencies corresponding to periods of 9.3 
and 12.1 fs, evidently the periods of the two normal modes for the stretching 
of the 0-H bonds. 

0.06 
Frequency 

Fig. 2. Power spectrum of water dynamics with frequency in units of fs-l. 

An upper limit of 4 fs on the longest time step is also the experience of 
other researchers. For example, Fig. 2 in [lo] shows that energy conservation 
is good for long t i m  steps in the range 0.5 to 4 fs but dramatically worsens 
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4 -  I 

Gamma 

Fig. 3. Stability boundary for impulse method applied to  the 2-spring problem. 
Gamma is w l A t  and Delta t is At. 

for a 5 fs time step. See also [12, 131 for evidence of a time step barrier at 
half the period of the fastest normal mode. 

An instability of the impulse MTS method for At slightly less than half 
the period of a normal mode is confirmed by an analytical study of a linear 
model problem (71. For another analysis, see [2]. A special case of this model 
problem, which gives a more transparent description of the phenomenon, 
is as follows: Consider a two-degree-of-freedom system with Hamiltonian 

1 2  1 2 2  + 5p2 + 5w1x1 + a(x2 - x1)2 This models a system of two springs con- 
necting two balls of unit mass where one spring of stiffness wf connects an 
immovable object to the first ball and a second spring of stiffness $ connects 
the balls together. The XI,  x2 are displacements from equilibrium. The insta- 
bility for the impulse MTS method is studied by choosing a timestep At for 
the second spring (the term a(x2 - in the Hamiltonian) and an infinites- 
imal timestep for the first spring (which in effect is method (5)). Analysis 
shows that the dynamics depends on only the two parameters y = wlAt and 
At. Instability occurs for certain combinations of y and At. This is shown by 
Fig. 3, where the region above the curve constitutes the region of instability. 
In this diagram, a change in At with wl held fixed corresponds to a move in 
the radial direction. Details concerning the construction of this diagram are 
given in Appendix A. 
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It is to be expected that this barrier on the long time step would be 
shifted upward if the highest frequencies were eliminated. These frequencies 
can be removed with only modest loss of accuracy by constraining selected 
bond lengths and bond angles. The resulting constrained system of ODES 
can be numerically integrated by the popular SHAKE [20] extension of the 
leapfrog/Verlet method. Although SHAKE is not symplectic, there is a cos- 
metic modification to it known as RATTLE [I] which is symplectic [16]. 

The method presented in the next section is an attempt to overcome the 
barrier due to the highest frequencies whatever their origin. Although it has 
been implemented and tested for unconstrained dynamics only, there is no 
fundamental reason why it cannot be applied to overcome the less restrictive 
time step barrier arising in constrained dynamics. 

5 The Mollified Impulse Method 

In an effort to counteract the accuracy reduction of the impulse method in a 
resonance situation, a modification to the impulse method is proposed in [7]. 
There, the term U " O ~  ( x )  is replaced by uslow ( A ( x ) ) ,  where A ( x )  represents 
a time averaging of positions x  due to motion producible by the fast forces 
F~~~~ in the neighborhood of x. The purpose of this change to the potential 
is to change the slow forces from F ' ~ O ~ ( X )  to A , ( x ) ~  F~~~~ ( A ( x ) )  . Modifying 
the potential instead of the force ensures that the force is conservative and 
that the integrator is symplectic. Therefore, this generalization of the impulse 
method preserves symplecticness and at the same time improves the impulse 
method's accuracy and stability, as explained below. 

The original motivation [7] for using Ax ( x ) ~  F " O ~  ( A ( x ) )  was to compen- 
sate for the inaccuracies arising from evaluating F ' ' ~ ~ ( x )  at point values of 
x = X ( t )  sampled at large time increments At. Changing the point of eval- 
uation of F"~" from x  to A ( x )  brings about some accuracy gains, because 
P l o w  ( A ( x ) )  is a better description of the quickly varying Fslow ( X  ( t ) )  than 
values of FSloW at step points. A more important benefit, however, is gained 
by multiplying the force FSloW ( A ( x ) )  by the matrix Ax ( x ) ~ .  The latter also 
tremendously benefits the stability of the integrator by filtering out those 
components of the slow force that would excite components of the fast force 
susceptible to resonance. The F " O ~  impulse is mollified. 

An example of a time averaging function A ( x )  is the formula termed 
LongAverage in [7]: 

"his is not inconsistent with the problem being solved, because in the limit as 
At + 0, one would have A(x) = s. 
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where ~ ( t )  solves an auxiliary problem 

The derivation of the mollified impulse method in [7] suggests that the same 
integrator be used for the auxiliary problem as that used for integrating 
the reduced primary problem M(d2/dt2)X = Ffwt (X) between impulses. Of 
course, A , ( x ) ~  is also needed. For the partitionings ufaSt + uslow typically 
used in MD, this would lead unfortunately to a matrix A , ( x ) ~  with a great 
many nonzeros. However, it is probably important to take into account only 
the fastest components of ufaSt [7]. Hence, it would seem sufficient to use 
only the fastest forces Ffwtest (x) in the time averaging calculation. 

Suppose values Xn-', Pn-l,  and F S ~ O W , ~ - ~  = FSloW (Xn-I) are given. 
One step of the efficient version of MOLLY just described can be expressed 
as follows: 

half a mollified kick 

a vibration Propagate Xn-', pn-'+' by integrating 

for an interval At to get X n ,  Pn-'. 
a time averaging Calculate a temporary vector of time-averaged positions 

xn = A(Xn) and a Jacobian matrix Jn = A , ( x ~ ) ~ .  The time averaging 
function A(x) uses only pfastest (x) . 

half a mollified kick 

p n  = pn-e  At slow, n + -F 
2 (17) 

The symbols Pn-'+& and Pn-L represent momenta just after the (n - 1)st 
kick, and just before the nth kick, respectively. Note that X n  is used only for 
the purpose of evaluating F s l o W ;  it does not replace the value of Xn. 

The calculation of A(x) and A,(x) can be done in a systematic manner. 
First the calculation of A(x) is coded, and then this is differentiated with 
respect to each of the components of x to yield code for A,(x). An example 
of this procedure for the leapfrog method is given in Appendix B. 

Different time averagings are, of course, possible. Various time averagings 
can be defined by 

where 4 ( s )  is a weight function. Some interesting choices are 
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Long Average 

LongLinearAverage 

LongQuadrat icAverage 

If the fastest forces F~~~~~~ consist only of bond stretching and angle bend- 
ing, then it is possible to  define a time averaging A as a projection onto the 
equilibrium value of the bond lengths and bond angles. This technique ap- 
pears to have better stabilizing properties. Further details are to be provided 
elsewhere [ll]. Here this time averaging is called Equilibrium. 

6 Numerical Tests for MOLLY 

The mollified impulse method was implemented in NAMD and tested on a 
20 A diameter sphere of flexible TIP3P water at  370 K. The switching func- 
tion in [lo] was used with a transition distance of 4 A  to 6.5A to separate 
the slow long-range electrostatic interactions from the remaining forces. The 
cutoff was chosen to be short to ensure that slow forces are of significant mag- 
nitude. Experiments such at those in [4] suggest that flexible water models 
are particularly sensitive to destabilizing artifacts in numerical integrators. 

Shown in Fig. 4 are plots of total pseudoenergy vs. simulation time for 
two time averaging methods mentioned in this article, plus the Equilibrium 
and impulse method. The pseudoenergy is the true total energy with U " O ~  (x) 
replaced by uslow (A(x)). This is the quantity which the integrator is trying to 
conserve, so it is a more sensitive indicator than the true energy of instability. 
In all cases the long time step At is 8 fs and the short time step 6t is 1 fs. Only 
the Equilzbrium version of MOLLY does not lead to energy increase in this 
experiment. The LongQl~adratzcAverage version gives a slight energy increase 
while the LongAurraw gives a large energy increase. Ranking of the two time 
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"Impulse" - 
"LongAverage" -------  

"Equilibrium" . . . . . . . . 

"LongQuadratic" . .  . . . 

Fig. 4. Total pseudoenergy (in kcal/mol) vs. simulation time (in fs) for time aver- 
aging, Equilibrium, and impulse methods. (At for all methods equals 8 fs.) 

averagings is in direct relation to the extensiveness of their time averaging 
and is consistent with the stability analysis of [7]. Notice the dramatic rise 
in energy for the impulse method. 

The Equilibrium version was tested also on a 40 A diameter sphere of 
water with a switching function transition distance of 8 A to 13 A. There 
was in this case a slight rise in energy when At was 8 fs. 

Fig. 5 shows that all three time averaging methods succeed for a long 
timestep At of 5 fs. 
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Appendix A Stability Conditions for the Impulse 
Met hod 

Here are given details indicating how Fig. 3 was obtained from the  analyti- 
cal study in [7]. The problem considered there is a system with Hamiltonian 

1 2  1 2 2  1 2 2  $P: + 5 ~ 2  + ijwlzl + a(x2 - x1)2 + 5w2x2, which models a system of three 
springs connecting two balls of unit mass where the  third spring is of stiff- 
ness W: and connects the  second ball to a n  immovable object. Instability is 
studied by choosing a timestep At for the second spring and a n  infinitesimal 
timestep for the  other two springs. Presented here is the  special case w2 = 0, 
which, of course, simplifies the  stability conditions given in [7]. These sim- 
plified stability conditions depend on  the  two parameters y = wlAt and At. 
Instability occurs when 
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and 

which is shown in Fig. 3 with the region above the curve constituting the 
region of instability. 

Appendix B Calculation of the Jacobian Matrix of an 
Averaging Function 

As an example suppose that the leapfrog method with time step S t  is coded 
for the calculation of A(x) .  This is then differentiated to obtain Ax (x) .  The 
result is the following code for calculating A ( x )  and Jl, (x ) :  Initialization is 
given by 

and step by step integration by 

The value ( l / A t ) B  is used for A(x )  and ( l / A t ) B x  for &(I) .  
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Abstract. The design and analysis of an explicit Split Integration Symplectic 
Method (SISM) for molecular dynamics (MD) simulations is described. SISM uses 
an analytical treatment of high frequency motions within a second order generalized 
leapfrog scheme. SISM is up to  an order of magnitude faster than the commonly 
used leapfrog-Verlet (LFV) algorithm which is of the same order and complexity 
as SISM. The main restriction on time step in the general MD simulations, which 
stems from the high-frequency motion is, to a large extent, overcome in this ap- 
proach. The simulation results for selected examples show that SISM posses long 
term stability and the ability to use long time steps. This should significantly ex- 
tend the scope of the presently used algorithms and thus contribute to the general 
applicability of MD algorithms. 

1 Introduction 

Computer simulations in general, and MD in particular, represent a new 
scientific methodology. Theoretical breakthroughs involve both new concepts 
and the mat hemat ical tools of development. 

Among the main theoretical met hods of investigation of the dynamic 
properties of macromolecules are molecular dynamics (MD) simulations and 
harmonic analysis. MD simulation is a technique in which the classical equa- 
tion of motion for all atoms of a molecule is integrated over a finite period 
of time. Harmonic analysis is a direct way of analyzing vibrational motions. 
Harmonicity of the potential function is a basic assumption in the normal 
mode approximation used in harmonic analysis. This is known to  be inad- 
equate in the case of biological macromolecules, such as proteins, because 
anharmonic effects, which MD has shown to be important in protein motion, 
are neglected [I, 2, 31. 

The problem which arises in performing MD simulations of complex sys- 
tems is that only short simulations can be performed due to the high fre- 
quency bond stretching and angle bending motion which requires the use of 
small time step in MD simulations. Therefore the efficiency and the scope of 
the MD method will be increased by algorithms allowing for a long time step 
without loss of stability [4]. Enlargement of the scope of the existing methods 

* This work was supported by the Ministry of Science and Technology of Slovenia 
under grant No. 51-7346-10497. 
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of molecular dynamics (MD) of complex molecular systems may be achieved 
by the introduction of the symplectic integration schemes for Hamiltonian 
systems [5, 5, 15, 161 and their parallel implementations 19, 10, 111. 

We recently introduced an efficient symplectic algorithm for MD simu- 
lations of a class of isolated linear molecules for which it can be assumed 
that bond stretching satisfactorily describes all vibrational motions [6]. The 
method allowed the use of a time step at least a factor of ten larger than the 
standard leapfrog-Verlet method [7]. We also proposed the extension of the 
method devised in ref. [6] to a system of linear molecules by introducing the 
Split Integration Symplectic Method (SISM) for MD simulations [8]. This 
approach uses the idea of composition methods, which are particularly useful 
for numerical integration of differential equations when the equations have 
some special structure that is advantageous to preserve (91. Ideally one would 
like to know the fastest method for a given problem with a given accuracy. 

The derivation of SISM was inspired by the work of Wisdom and Holman 
[IG], who used symplectic mapping method based on a separation of the 
Hamiltonian, for the N body problem, to compute the time evolution of 
the planet Pluto over a billion-year period. They split the total Hamiltonian 
into a Kepler part representing the low-frequency terms of the Hamiltonian 
and into an interaction part representing the high-frequency terms. Then 
they applied a second order symplectic integrator, a generalized leap-frog 
integration scheme. Introducing the averaging principle [17] to the interaction 
part enabled them to use a step size an order of magnitude larger than can be 
used by traditional numerical methods. The SISM is, owing to the analytical 
treatment of the high frequency motions, quite distinct from other approaches 
using fractional step methods. These approaches which separate motion into 
different time scales and use multiple time-steps 118, 19, 101 proved to be 
stable and to accelerate the integration of the equations of motion. The idea 
for treating the reference system (harmonic oscillator) analytically and the 
rest of the propagator numerically was also introduced in ref. [21]. 

In this article we describe an extension of SISM to a system of molecules 
for which it can be assumed that both bond stretching and angle bending 
describe satisfactorily all vibrational motions of the molecule. The SISM pre- 
sented here allows the use of an integration time step up to an order of 
magnitude larger than possible with other methods of the same order and 
complexity. 

2 Molecular Dynamics 

For a given potential energy function, one may take a variety of approaches 
to study the dynamics of macromolecules. The most exact and detailed in- 
formation is provided by MD simulations in which one solves the equations 
of motion for the atoms constituting the macromolecule and any surrounding 
environment. With currently available techniques and methods it is possible 
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to simulate the dynamics of macromolecules for up to a few nanoseconds. To 
study slower and more complex processes in macromolecules, it is generally 
necessary to use methods other than straightforward MD simulations or, al- 
ternatively, possible improvements on efficiency of MD simulation techniques 
should be considered. 

A good MD algorithm permits a large time step to be used while pre- 
serving acceptable energy conservation. Major methodological progress has 
been made in the directions of longer time scales and larger systems size 
[ll, 12, 131. 

3 Harmonic Analysis 

Harmonic analysis is an alternative approach to  MD. The basic assumption is 
that the potential energy can be approximated by a sum of quadratic terms 
in displacements. 

To determine the vibrational motions of the system, the eigenvalues and 
eigenvectors of a mass-weighted matrix of the second derivatives of potential 
function has to  be calculated. Using the standard normal mode procedure, 
the secular equation 

is solved, where F = V ~ E  is the Hessian and M = diag (mi) is a diagonal 
mass matrix. In the root-masss-weighted cartesian displacement coordinate 
system, which provides a symmetric secular equation, this becomes 

For a nonlinear molecule composed of N atoms, 3N-6  eigenvalues provide the 
normal or fundamental vibrational frequencies of the vibration and and the 
associated eigenvectors, called normal modes give the directions and relative 
amplitudes of the atomic displacements in each mode. 

Harmonic analysis (normal modes) a t  given temperature and curvature 
gives complete time behavior of the system in the harmonic limit 11, 2, 31. 
Although the harmonic model may be incomplete because of the contribution 
of anharmonic terms to the potential energy, it is nevertheless of considerable 
importance because it serves as a first approximation for which the theory 
is highly developed. This model is also useful in SISM which uses harmonic 
analysis. 

4 Hamilton Equations of Motion 

Symplecticness is a characterization of Hamiltonian systems in terms of their 
solution. The solution operator GH (t, to) defined by 
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is the value at time t of the solution of Hamiltonian system that at t = to has 
the initial condition (pO, qO) where t ,  to are fixed parameters and qO) is 
a variable [ 5 ] .  

For autonomous Hamiltonians = 0 the solution in phase space depends 
only on t - to where the t-flow +t,H is defined as 

where (p, q) is the solution and takes at t = 0 the value (po, qo). 
A mapping is said to be symplectic or canonical if it preserves the dif- 

ferential form dp  A dq which defines the symplectic structure in the phase 
space. Differential forms provide a geometric interpretation of symplectic- 
riess in terms of conservation of areas which follows from Liouville's theorem 
[14]. In one-degree-of-freedom example symplecticness is the preservation of 
oriented area. An example is the harmonic oscillator where the t-flow is just 
a rigid rotation and the area is preserved. The area-preserving character of 
the solution operator holds only for Hamiltonian systems. In more then one- 
degree-of-freedom examples the preservation of area is symplecticness rather 
than preservation of volume [5 ] .  

Symplectic integration methods replace the t-flow +t,H by the symplec- 
tic transformation $t, H, which retains "Hamiltonian" features of +t, H. They 
poses a backward error interpretation property which means that the com- 
puted solutions are solving exactly or, at  worst, approximately a nearby 
Hamiltonian problem which means that the points computed by means of 
symplect ic integration, lay either exactly or at worst, approximately on the 
true trajectories [ 5 ] .  

To perform MD simulation of a system with a finite number of degrees of 
freedom the Hamilton equations of motion 

where H is the Hamiltonian, qi and pi are the coordinate and momentum, 
respectively, and d is the number of degrees of freedom are to  be solved. 

5 Leapfrog-Verlet Algorithm 

The simplest of the numerical techniques for the integration of equations of 
motion is leapfrog-Verlet algorithm (LFV), which is known to be symplectic 
and of second order. The name leapfrog steams from the fact that coordinates 
and velocities are calculated at different times. 

The typical MD Hamiltonian H of the system is the sum of kinetic and 
potential energy 
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where mi is the mass of the i-atom, bo, 90 and 6 are reference values for 
bond lengths, angles and dihedral angles, respectively, and kb, k ,  and 4 
are corresponding force constants; i and j run over all atoms, ei denotes the 
charge on the i-atom and rij is the distance between atoms i and j, EG and 
aij are the corresponding constants of Lennard-Jones potential. 

The LFV integration method propagates coordinates and momenta on 
the basis of the equation of motion (5) by the following relations 

where qi is the coordinate, pi is the momentum, dim(pi, qi) = d, d is the 
number of degrees of freedom, AT is the time step, and m is the mass of the 
corresponding atom. 

6 Split Integration Symplectic Met hod 

The explicit symplectic integrator can be derived in terms of free Lie algebra 
in which Hamilton equations (5) are written in the form 

where {x, H )  denotes the Poisson bracket, zH is the Poisson bracket opera- 
tor, and x = (q, p) is a vector in the phase space composed of the coordinates 
and momenta of all particles. The formula 

provides a way for integrating the Hamiltonian system in terms of Lie ope- 
rators [17]. It is the formal solution of Hamilton equations or the exact time 
evolution of trajectories in phase space from TO to TO + AT, a,nd AT is a time 
step. The trouble with it lays in the impossibility of cvalllitting C?xp(drzH). 
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The Lie formalism used is the key in the development of symplectic A integra- 
tion. Symplectic integration consists in replacing exp(ATLH) by a product 
of symplectic maps which approximate exp(drZH) to a given order [18]. 

The construction of an efficient algorithm rests on the ability to separate 
the Hamiltonian into parts which are themselves integrable and also efficiently 
computable. Suppose that the MD Hamiltonian H defined by (6) is split into 
two parts as 

H = Ho + H,. (14) 

where 

and H~~~~ denotes the part of the Hamiltonian which can be treated analyt- 
ically. Then the following approximation for (13) can be used 

which prescribes how to propagate from one point in phase space to another. 
First, the system is propagated a half step evolution with Ho, then a whole 
step with H,., and finally another half step with Ho. This scheme is called 
tlhe generalized leapfrog [I91 and was widely used as a basis for development 
of multiple time-step MD integration algorithms [18, 191. This integration 
scheme was also used in the development of SISM, a second order symplectic 
integration algorithm for MD integration. 

We choose the Hamiltonian Ho as describing the internal vibrational mo- 
tion of the molecules and also the translation and rotation of molecules. It 
represents the dynamically leading contribution whose potential depends only 
on constant parameters of the simulation. This separation of the potential 
fiinction allows the calculation of normal modes only once, a t  the beginning 
of the calculation. This term includes, in general, all bonding, angle bend- 
ing and torsional angle interactions within the harmonic approximation. The 
dynamics driven by the vibrational part of Ho is resolved analytically, by 
means of internal normal coordinates that rotate in phase space with the 
corresponding vibrational frequencies which are obtained by solving the sec- 
ular equation at the outset of the calculation [I, 2, 31. SISM was derived 
step-by-step with regard to which terms, describing the internal motions of 
the system studied, were included into the model Hamiltonian. 

6.1 SISM Treatment of Bond Stretching and Angle Bending 
Terms 

For the model Harrliltoriian used in this study it was assumed that the bond 
stretching and itllde t)mding satisfactorily describe all vibrational motions 
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for a system of planar molecules 

e ie j  + C 4&i, H ~ = C -  [(z) l2 - (z) '1 + corrections to lie (19) 
i> j  T" i> j  

where h.p. denotes the harmonic part; m i  is the mass of the i-atom, bo and 
80 are reference values for bond lengths and angles respectively, and kb and 
ke are corresponding force constants, and Htr,,l,,t corresponds to the trans- 
lational and rotational part of kinetic energy; i and j run over all atoms, ei 

denotes the charge on the i-atom and ru is the distance between atoms i and 
j, Eij and g i j  are the corresponding constants of Lennard-Jones potential. 
By corrections to Ho we mean the anharmonic and coupling terms to Ho. 
Figure 1 displays the SISM solution procedure for MD integration. 

Normal Modes Step 0 

 AT/^ Step 1. Step 2 

- - - - - - - - - -  I I Translation j 
\ 

\ Merge / 

A712 I~ibration ! I I 
1 Translation Step 4. Step 5 

\ Merge / Step 6 

Physical Properties 

Fig. 1. The Split Integration Symplectic Met hod (SISM) solution procedure. 

Following the procedure defined by (17) SISM can be written explicitly 
as follows 
Step 0: Perform the normal modes of the harmonic part of Ho to get the 
vibrational frequencies v and normal mode vectors which compose the trans- 
formational matrix V. 

Split: p, q + l r ,  e, r*, v* ,w*,e* 
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The procedure Split  selects the internal displacement coordinates, e, and 
momenta, ?r, (describing vibrations), the coordinates, r* , and velocities, v* , 
of the centers of molecular masses, angular velocities, w*, and directional unit 
vectors, e*, of the molecules from the initial Cartesian coordinates, q, and 
from momenta, p. Thus, the staring values for algorithm loop are prepared. 
Step 1: Vibrat ion 

Propagate by harmonic part of Ho for the time  AT/^. This corresponds 
to the rotation of internal normal coordinates, P,' and Q:, in the phase space 
by the corresponding vibrational frequency vi 

Step 2: Rotat ion/Translat ion 
Translation of the center of mass 

r* is the center of mass, AT is the time step. 
Rotation of the internal coordinate system e* for an angle w *b about 

the vector w*/w* 

It is assumed that w* and v* remain unchanged at 9 time step since there 
is no external forces. 
S t e p  3: 

Merge : m', Q', r", v*,  w*,  el* + p, q 

The procedure Merge transforms the internal displacement coordinates and 
momenta, the coordinates and velocities of centers of masses, and directional 
unit vectors of the molecules back to the Cartesian coordinates and momenta. 
Evolve with H, = H, (q) means only a shift of all momenta for a correspond- 
ing impulse of force (SISM requires only one force evaluation per integration 
step). 
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Split: p', q9 + T ,  e, r*, v*,w* ,e* 

S t e p  4: Rotat ion/Translat ion 
Translation of the center of mass and rotation of the internal coordinate 

system as in Step2 

S t e p  5: Vibrat ion 
Again propagate by harmonic part of Ho for the time  AT/^ in the phase 

space. 

This concludes one whole integration step. At this point, 

Merge : lrl, el, r",v*,w*,el* + p,q 

has to be performed (to get new momenta and coordinates p, q) whether 
the physical properties of the system, e.g., energy and displacements, are to 
be derived. 
S t e p  6: Return to S tep  1 until the desired number of calculation steps is 
completed . 

The analytical treatment of high frequency terms in the Hamiltonian pro- 
posed here allows to  use SISM significantly longer integration time step than 
can be used by other methods of the same order and complexity. 

Although the whole scheme of SISM seems to be computationally more 
demanding then LFV owing to several transformations used (e.g., from Carte- 
sian to internal coordinates, from internal to normal coordinates etc.), it is 
not so, especially for the systems of small molecules. The computational cost 
of transformations in SISM scales as N.n2 while the calculation of long-range 
forces and the energy of the system (common for both SISM and LFV) re- 

2 2 quires approximately N .n operations, where N is the number of molecules 
in the system, and n is the number of atoms in the molecule. Therefore, 
all extra work in SISM used in coordinate transformations is prevailed by a 
long-range force and energy calculations [20]. 
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6.2 SISM Treatment of only Bond Stretching Term 

For the model Hamiltonian used in this study it was assumed that bond 
st retching satisfactorily describes all internal vibrational motions for a system 
of linear molecules and the split parts of the Hamiltonian were of the form 

i ~ ~ l d  i.p. refer to the internal part of kinetic energy which corresponds to 
molecular vibrations. The difference in the potential function compared to 
that used in the previous section is that here is no angle bending term in 
t,he Hamiltonian. Again, the analytical treatment of high frequency terms in 
Hamiltonian permits the SISM to use a much longer integration time step 
than the standard methods of the same order and complexity [8]. 

SISM for an Isolated Linear Molecule An efficient symplectic algorithm 
o f  second order for an isolated molecule was studied in details in ref. [6]. 
Assuming that bond stretching satisfactorily describes all vibrational motions 
for linear molecule, the partitioned parts of the Hamiltonian are 

Again, the algorithm allows at least ten times larger time step to be used 
tlhan LFV for the same accuracy. 

The fourth order approximation for (13) 

where a = 1 - fi gives the fourth order SISM. 
Following the procedure defined by (23) the fourth order SISM for MD 

sirriulations written explicitly can be found in ref. [22]. In the fourth order 
SISM additional steps in the algorithm occur due to additional force evalua- 
t ions. 

The fourth order SISM allows the same enlargement of the time step as 
the second order algorithm. However, it is computationally more demanding 
sirice three force evaluations per time step occur. In case of MD integration 
the greater order gives no advantage in calculation except greater accuracy 
which is known not to he very important in MD simulations. 
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7 Numerical Experiments 

We shall illustrate the SISM described with two examples. The model systerrl 
of a box of water molecules and the system of a box of linear molecules whicll 
are depicted in Figure 2. 

Fig. 2. (a) The model system of box of 50 H 2 0  (water) molecules for T = 300 K, 
and L = 15 A(dark are 0 atoms, white are H atoms). (b) The model system of 
128 H-(-C=C-)2-H (butadiyne) molecules for p = 0.1 g/cm3, T = 300 K, and L = 
47 A(dark are C atoms, white are H atoms). 

In order to compare the efficiency of the SISM with the standard LFV 
method, we compared computational performance for the same level of accu- 
racy. To study the error accumulation and numerical stability we monitored 
the error in total energy, AE, defined as 

where Ei is the total energy a t  step i, Eo is the initial energy, and M is the 
total number of time steps. 

7.1 System of a Box of Water Molecules 

The algorithm was applied to the MD simulations of a box of water molecules. 
The three-center water model was used [23]. The initial positions were a t  the 
equilibrium therefore all displacements were zero. The illitid velocities were 
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defined by the equipartit ion theorem. The periodic boundary conditions were 
imposed. In this way it is possible to model the system that is effectively 
1)ounded but is nevertheless spatially homogeneous as far as boundaries are 
c:oncerned. 

The primary metric used to quantify the accuracy of the results of a 
simulation is the conservation of total energy. The long term stability is 
cvident by the results shown in Figure 3, which depicts the time evolution of 
t,he total energy for the system of a box of water molecules for two different 
methods (LFV and SISM) for time step equal to 1 fs and trajectories of length 
of 0.5 ps. In comparison with LFV the total energy is even better conserved 
wing SISM. 

0 0.1 0.2 0.3 0.4 0.5 
Simulation Time [ps] 

Fig. 3. Conservation of total energy for LFV and SISM for a system of 50 H 2 0  
rriolecules, box L = 15 A, and time step for both methods is lfs 

Figure 4 shows the error in total energy for a different time steps for a 
system of water molecules. The solid line represents LFV and the dashed 
line represents SISM. It can be observed that the integration time step using 
SISM can be enlarged many fold in comparison with LFV. The largest time 
stcp used is 5 fs since using longer time steps excise growth in the total energy 
occurs and the results no longer represent physical reality. This result agree 
well with those obtained by other authors when similar methods are used 
[24, 251. 

In Table 1 the CPU time required by the two methods (LFV and SISM) 
for. 1000 MD integration steps computed on an HP 735 workstation are com- 
pared for the same model system, a box of 50 water molecules, respectively. 
Tlie computation cost pc:r integration step is approximately the same for both 
rricthods so that t h  s ~ t d  up of the SISM over the LFV algorithm is deter- 
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le-06 I I , 
0 1 2 3 4 5 

Step Size [fs] 

Fig. 4. Error in total energy for LFV and SISM for water. 

mined mainly by the difference in step size which is significant. Qualitatively 
the same results were obtained in our previous works [6, 81. 

Table 1. CPU Time for 1000 MD steps of 50 H20 molecules in a box with L 
= 15 Ausing the LFV and the SISM for equal time step of 1 fs computed on an 
HP 735 workstation 

MD Method CPU Time (s) 

LFV 50.80 
SISM 53.80 

7.2 System of Linear Molecules 

Figure 2 (b) displays the model system of 128 H- (-CEC-)~-H (butadiyne) 
molecules; p = 0.1 g/cm3, L = 47A, and T = 300 K. The initial conditions 
for coordinates and velocities of the system and the system parameters were 
the same as in the previous study [8]. 

The results of the error in total energy for test molecules, a system of 
linear butadiyne molecules, (p = 0.1 g/cm3, corresponding to the box size 
L = 47 A) using two different methods (LFV and SISM) are presented on 
Figure 5. It can be seen that for the same level of accuracy, the time step 
in SISM can be up to an order of magnitude larger than in LFV. Also, LFV 
is stable for only very short time steps, up to 4 fs, while SISM is stable 
for much longer time steps, even for time step Larger t h l  25 fs. It should 
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r rho = 0.1 glcrn3, L= 47A 

0.0001 ' I I 

1 5 10 15 20 25 
Step Size [fs] 

Fig. 5. Error in total energy for the LFV algorithm and the SISM of a system 
of' 128 H- (-C=C-)2-H (butadiyne) molecules. Results are plotted for two different 
algorithms (LFV and SISM) and for density p = 0.1 g/cm3, corresponding to the 
box size L = 47 A. 

h 3  noted that such large time steps no longer represent physical reality and 
are identified with linear molecules possessing no angle bending or torsional 
interactions. There are large variations in total energy which might be due 
t,o the so called "step size resonances" [26, 271. This phenomenon is due to 
t>lie symplectic methods which seem to introduce artificial coupling among 
the motions associated with various frequencies leading to instability [28]. 

Isolated Linear Molecule Figure 6 shows the error in total energy for 
ari isolated linear molecule H-(-CGC-)~-H. It is obvious that for the same 
level of accuracy, the time step in the SISM can be ten times or more larger 
its in the LFV. Furthermore, the LFV method is stable for only very short 
time steps, up to 5 fs, while the SISM is stable even for a time step up to 
200 fs. However, such large time steps no longer represent physical reality and 
arc? a particular property identified with linear molecules without bending or 
torsional intramolecular interactions. 

Note that there are also variations in total energy which might be due to 
the so called "step size resonance" [26, 271. Shown are also results for fourth 
order algorithm which gives qualitatively the same results as the second order 
SISM. This show that the "step size resonances" are not due to the low order 
integration method but rather to the symplectic methods [28]. 

Notes and Comments. Further improvements in efficiency were achieved 
by implementing the method on computers with highly parallel architecture. 
SlSM performs in par;dlrl as LFV which means the speed up is gained due 
to longer time s t c ~  wllich cilrl be iised by SISM [20]. 
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Step Size [fs] 

Fig. 6. Error in total energy for LFV, and the second and the fourth order SISM 
for H-(-CrC-)5-H. Results are plotted for two different algorithms (-I-, LFV, -x-, 
the second order SISM, and -*-, the fourth order SISM). 

Much work remains to be done in the development of this approach to 
explore the advantages and limitations of the method. The method will be 
extended to force fields that include torsional terms; large systems such as 
biological macromolecules will also be treated. 
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Abstract. Geometric integrators are numerical timestepping schemes which pre- 
serve invariant structures associated to physical dynamical systems. For example, 
a symplectic integrator is one which preserves a strong differential invariant of the 
flows of Hamiltonian systems (the 2-form dq A d p  associated to canonical variables 
q , p ) .  For constrained systems such as the rigid body, preservation of geometric 
phase-flow structure is complicated by the choice of coordinates and the need for 
efficiency. Nowhere are these issues more critical than in the simulation of rigid 
body systems. In recent work, several alternative geometric approaches to rigid 
body systems integrators have been proposed and applied in molecular simulation. 
111 this article, these methods are introduced and compared with a simple model 
problem. 

1 Introduction 

Rigid body dynamics play a fundamental role in molecular simulation. The 
replacement of small bonded atomic groups by rigid units can eliminate 
the most stringent timestep (stability) restrictions due to interatom bond 
stretches. Moreover, the use of rigid bodies can be helpful in formulating 
reduced variable 'macroscopic' models for large polymers. For these reasons 
it is important to develop accurate, stable and reliable integration methods 
for systems of interacting rigid bodies. This article discusses recent work 
on constructing geometrically sensitive integrators for rigid body systems 
which typically exhibit improved qualitative properties compared to tradi- 
t ional methods. 

Until lately, it was widely believed that the most important criteria for 
the design of a discretization method were the order of accuracy (the degree 
of the leading term in an error expansion in powers of the stepsize), error 
constants (the magnitude of the coefficient of the leading monomial in the 
error expansion), and the stability interval (which defines the largest stable 
htegration stepsize for a given linear oscillator frequency). 

In the context of molecular simulation, particularly biomolecular mod- 
elling, a critical aspect for numerical simulation is the presence of long-range 
Coulombic forces which render the force computations much more costly 

* The author wa.s sl l~portocl  by NSF Grant No. DMS-9627330. 



350 Leimkuhler 

than the other parts of the computation. For this reason, usually only meth- 
ods which are explicit in the forces can usually be considered for molecular 
applications. 

Recent mathematical work suggests that-especially for nonlinear 
phenomena-certain geometric properties can be as important as accuracy 
and (linear) stability. It has long been known that the flows of Hamilto- 
nian systems posess invariants and symmetries which describe the behavior 
of groups of nearby trajectories. Consider, for example, a two-dimensional 
Hamiltonian system such as the planar pendulum (H = ip2 - cos(q)) or the 

polar Kepler problem (H = !jp2 - l /q  + &). Such a Hamiltonian system 
defines a one-parameter family of maps {bt : t E R) of R~ which take points 
(p, q) to their evolution through t units of time. If such a map is applied 
point-wise to a region R of the pq-plane, the area is found to remain in- 
variant. This is the simplest manifestation of the hierarchy of symplectic (or 
Poincare? invariants which exist for Hamiltonian flow maps. The fact that 
many physical Hamiltonians are invariant under the substitution p -+ -p 
implies that the corresponding flow maps are time-reversible: starting from 
an initial point (p, q), integrating forward in time r units, then changing the 
sign of the momentum, is the same as first changing the sign of the mo- 
mentum, then integrating backward in time. Since flow maps of Hamiltonian 
systems are always symplectic, and often time-reversible, it is natural to im- 
pose similar restrictions on the numerical integration method used for their 
approximation. Symplectic integration algorithms (and, to a lesser extent, 
reversible met hods) have been shown to possess excellent long-term energy 
stability, often far superior to 'traditional' (nonsymplectic) methods (even 
those with higher-order local error). For a recent example showing the im- 
proved long-term stability of integration methods incorporating geometric 
structure, see [15]. In particular, one typically observes drift in the energy 
error over long time intervals when a nonsymplectic method is used, whereas 
no such systematic drift is seen for symplectic integrations. An explanation 
for the promising behavior of symplectic methods is that, up to a very small 
error of magnitude O(exp(-Kldt)), such a method can be viewed as the flow 
map of a nearby Hamiltonian systems, constructed through an asymptotic 
expansion in powers of the stepsize H = H + d t H ( l )  + d t 2  H ( ~ )  + . . . . For 
more detailed discussions of these theoretical issues, the reader is referred to 
the recent literature [7, 18, 281. 

Methods for simulating rigid bodies typically rely on introduction of 
some set of generalized coordinates describing the position and orientation 
of each body. There are several popular parameterizations in use, including 
(1) quaternions, (2) cartesian (particle) models, and (3) orientation matrix 
description. Once a set of variables is chosen, the equations of motion are 
recast in those variables, and the resulting differential eqliations are then 
discretized in time using some numerical timestepping method. 



Geometric Integrators for Rigid Body Simulation 351 

The choice of parameterization and the design of a discretization method 
are not independent: Some choices of parameters will facilitate symplec- 
tic/reversible discretization while others may make this task very difficult 
or render the resulting scheme practically useless because of the computa- 
tional expense involved. 

Parameterization by the use of Hamilton's quaternions has been popular 
for rigid body molecular computations for many years (see [12, 21). Unfortu- 
nately, the use of these coordinates impedes symplectic/reversible discretiza- 
tion since it 'mixes' the position and momentum variables in a Hamiltonian 
description. For practical calculations on large systems, one is essentially 
forced to  use nonsymplectic methods such as Gear predictor-corrector meth- 
ods, Runge-Kutta schemes or extrapolation. These nonsymplectic methods 
can introduce artificial asymptotically stable (i.e. dissipative) equilibria in 
what is supposed to be a conservative system (see [ll] and the experiments 
of this article). Moreover, this effect can be viewed as a direct consequence 
of the nonsymplectic character of the map, since it is well known that iter- 
ated symplectic maps do not possess such behaviors. Although one can easily 
develop "projected" energy-conserving variants of the quaternionic scheme, 
their long term behavior is little better than the unprojected variant (an 
cxample is included in this article). 

Particle models offer a simple means for easily and efficiently incorpo- 
rating the symplectic structure. In some sense, the particle description is 
exceedingly natural: the standard definition of a rigid body is a relatively 
rigid collection of massive point particles (see e.g. [I]). The particles need not 
have direct physical significance: given any rigid body whose inertial tensor, 
center of mass, and total mass are provided, one can develop an equivalent 
representation in terms of point masses subject to  rigid rod constraints. An 
important benefit of this choice of integration variables is that the equations 
of holonomically constrained particle motion are easily solved by use of the 
SHAKE (or RATTLE) discretization [30, 31, a generalization of Verlet which 
has been shown to be symplectic [22]. This approach was used by Ciccotti 
et a1 [9] to treat small rigid polyatoms, albeit without recognition of the 
symplectic character of the algorithm. More recently [5], the technique was 
generalized and applied to treat chains of rigid bodies, with the assistance of 
special SHAKE-SOR and sparse Newton methods for treating the nonlinear 
equations arising a t  each step of integration. 

There are two applications where the particle approach is a t  a disadvan- 
tage. First, if the interactions between bodies are naturally expressed not as 
"site-to-site" potentials but, for example, in terms of the dipolar alignment 
of the rigid bodies, then the translation of these interaction forces to forces 
acting on the individual particles can be computationally expensive. Second, 
whenever the rigid bodies are not linked by constraints but interact only 
through "soft" forces such as Lennard-Jones or Coulombic potentials, then 
it turns out that an explicit symplectic integration method, not requiring the 
solution of any no~dinem- algebraic system, is available. 
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The key to these more efficient treatments is a natural canonical for- 
mulation of the rigid body dynamics in terms of "rotation matrices." The 
orientational term of the Lagrangian in these variables can be written simply 
as 

where Q is the 3 x 3 rotation matrix (subject to  an orthogonality constraint 
QTQ = E, E the 3 x 3 identity), and J is a constant 3 x 3 related to 
the inertial tensor.' In these variables, the orientational interactions of two 
bodies are trivial to write down, and the work involved in computing the 
interaction potential and torque is minimal. Moreover, for a free rigid body 
expressed in the rotation matrix formulation, Reich [27] and, independently, 
MacLachlan [24] have given a simple reduction procedure that leads to  an 
explicit second order symplectic and reversible discretization; this approach 
is easily adapted to free rigid bodies interacting in soft forces. The Reich- 
MacLachlan scheme does not apply to systems linked by constraints; for 
these problems we have two reasonable options: (1) a particle model or (2) a 
method which uses rotational matrices but which enforces the orthogonality 
of the rotation matrix as a set of holonomic constraints, using SHAKE to 
discretize the resulting system [25]. A discussion of these two alternatives to 
rigid body dynamics may be found in [26]. 

These various techniques were recently applied to molecular simulations 
[ll, 201. Both of these articles used the rotation matrix formulation, together 
with either the explicit reduction-based integrator or the SHAKE method 
to preserve orthogonality directly. In numerical experiments with realistic 
model problems, both of these symplectic schemes were shown to exhibit 
vastly superior long term stability and accuracy (measured in terms of energy 
error) compared to quaternionic schemes. 

In this article, we briefly describe these symplectic methods, citing recent 
articles for most of the details of derivation and implementation. We compare 
the various algorithms in terms of theoretical and implementation aspects, 
as well as in simple numerical experiments. 

2 Background: Symplectic and Reversible 
Discretization 

An example of a symplectic/time-reversible method is the Verlet (leap-frog) 
scheme. This method is applicable to separate# Hamiltonian systems of the 
1 If I = diag(Il,I2, 13) is the inertial tensor, then J is also a diagonal matrix with 
Ji = Ik + 11, for (2 ,  k,  1) a cyclic permutation of (1,2,3). 
We will use the term "separated" for this class of Hamiltonians. Usually the 
term "separable" is used in numerical analysis to describe this class, but this 
usage conflicts with an established meaning of the same term in the literature of 
quantum mechanics. 
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form 

We will assume in this article that the system is time-reversible, so T(p) = 
T(-p). Dichotomic Hamiltonians arise from elementary particle models, the 
simplest nontrivial class of conservative systems. Moreover, even seemingly 
more complex systems can usually be written in the dichotomic form through 
c:liange of variables or introduction of additional degrees of freedom. 

A timestep of size At with the Verlet method ("velocity Verlet") takes 
(qo,po) to (ql ,p l )  and can be divided into three steps: (1) a 'kick' 

(2) 'drift' 

a.nd (3) another 'kick': 

The symmetry T(p) = T(-p) implies that reversing the order of these three 
stcps and changing the sign of r and p results in exactly the same method. In 
other words, Verlet is time-reversible. (In practice, the equations are usually 
reduced to equations for the positions a t  time-steps and the momenta a t  half- 
steps, only, but for consideration of time-reversibility or symplecticness, the 
method should be formulated as a mapping of phase space.) 

We will introduce the following notation to  describe the flow map of a 
Hamiltonian system with Hamiltonian H: 

where LH is the operator 

and we define the exponential by its formal series (exp(a) = E +a+a2/2+ ...). 
With these definitions, we can view the Verlet method as an approximation 
to exp(AtLH) generated by concatenating the flows of T and V, in other 
words 

This approximat.ion is a special rase of the Baker-Campbell-Hausdorff lemma; 
for additional (1 i s ~ l  lssim and extensions to more general classes of met hods, 
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the reader is referred to the literature (see, e.g., [32]). Because the Verlet 
method is a concatenation of Hamiltonian flow maps, each of which is a sym- 
plectic map, we see that the overall map is also symplectic. Such a splitting 
framework was used effectively by Berne, Martyna and Tuckerman in their 
work on "multiple timestepping" [8]. 

The concept of a symplectic method is easily extended to systems sub- 
ject to  holonomic constraints [22]. For example the RATTLE discretization is 
found to be a symplectic discretization. Since SHAKE is algebraically equiva- 
lent to RATTLE, it, too, has the long-term stability of a symplectic method. 

A key feature required of a Hamiltonian system that leads to an efficient 
method based on splitting is the ability to separate the Hamiltonian into 
p-dependent and q-dependent terms. 

3 Rigid Body Formulation and Discretization 

We now consider the formulation of the equations of motion for a rigid body 
pinned a t  its center of mass and acted on by a (possibly nonlinear) potential 
field. The Lagrangian in this case is 

where Vext is a function of position (i.e. the orientation matrix Q) of the 
body. 

We consider each of three different choices of formulation and the subse- 
quent effect that these have on discretization of the problem. 

3.1 Quaternions 

Introduce parameters o = (ol, 02,03, 04) subject to the constraint a: + 022 + 
032 + 042 = 1. The rotation matrix is defined in terms of these four parameters 
by 

We will assume that the reference (initial) axis of the top is po. Then p(t)  := 
Q(t)po gives the orientation of the top at time t .  

The quaternions obey coupled differential equations involving the angulw 
velocities wl, w2, w3 expressed in the body frame (i.e. wl represents the angu- 
lar velocity about the first axis of inertia, etc.). These differential equations 
take the form 
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where I = diag(Il, I z ,  13) is the (diagonalized) inertial tensor, 

and T is the applied torque due to the potential field. 
A "Hamiltonian" version of the quaternionic description is also possible 

by viewing the quaternions as a set of generalized coordinates, introducing 
those variables into the rigid body Lagrangian (I),  and finally determining 
the canonical momenta through the formula 

subject to  appropriate constraints (loI2 = 1, o . b = 0). The Hamiltonian, 
when expressed in terms of these generalized positions and momenta, would 
have a nonseparated character (i.e. it would not be expressible as T (p) +V(q) ) . 

The form of the Hamiltonian impedes efficient symplectic discretization. 
While symplectic discretization of the general constrained Hamiltonian sys- 
tem is possible using, e.g., the methods of Jay [19], these methods will require 
the solution of a nontrivial nonlinear system of equations a t  each step which 
can be quite costly. An alternative approach is described in [lo] ("impetus- 
striction" ) which essentially converts the Lagrange multiplier for the con- 
straint to  a differential equation before solving the entire system with implicit 
midpoint; this method also appears to be quite costly on a per-step basis. 

Thus we find that the choice of quaternion variables introduces barriers 
to efficient symplectic-reversible discretization, typically forcing us to use 
some off-the-shelf explicit numerical integrator for general systems such as a 
Runge-Kutta or predictor-corrector method. 

3.2 Part ides 

A particle description of the rigid body can be obtained by introducing four 
point masses at positions qi, i = 1,. . .4 ,  with corresponding masses mi. One 
then determines the positions and masses so that the point masses deter- 
mine the prescribed inertial tensor, total mass, and center of mass, with 
rod constraints introduced as needed to rigidify the body (see [5] for dis- 
cussion). The resulting equations of motion, those of a system of particles 
subject to quadratic constraints, may be treated using either SHAKE or 
R.ATTLE discretization, which has been shown to be symplectic [22]. The 
particle approach requires the integration of twelve position variables and 
twelve momenta in the general case, plus six algebraic constraints (for planar 
rigid bodies, this can bc reduced slightly). SHAKE or RATTLE discretiza- 
tion reduces to solvirlg the six nonlinear equations for the multipliers, and 
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requires one external force/torque evaluation per timestep. An inefficiency 
arises if the forces/torques are not given in terms of the point masses, since 
those forces must then be translated at  each step into the new variables. 

3.3 Rotation Matrices 

Rotation matrices may be viewed as an alternative to particles. This approach 
is based directly on the orientational Lagrangian (1). Viewing the elements 
of the rotation matrix as the coordinates of the body, we directly enforce 
the constraint QTQ = E. Introducing the canonical momenta P in the usual 
manner, there results a constrained Hamiltonian formulation which is again 
treatable by SHAKE/RATTLE [25, 27, 201. For a single rigid body we arrive 
a t  equations for the orientation of the form[25, 271 

where i = - -&v(Q) is a matricial representation of the torque acting on the 
body due to a potential function V. After SHAKE discretization, we have[25] 

These equations reduce to a 3 x 3 matrix Ricatti equation in this case. In 
the appendix of [20], the efficient iterative solution of this nonlinear system 
is considered, as is the specialization of the method for linear and planar 
molecules. In the special case of linear molecules, the SHAKE-based met hod 
reduces to a scheme previously suggested by Fincham[l4]. 

It has been observed by [27,24] that the equations of motion of a free rigid 
body are subject to  reduction. (For a detailed discussion of this interesting 
topic, see [23].) This leads to  an unconstrained Lie-Poisson system which is 
directly solvable by splitting, i.e. the Euler equations in the angular momenta: 

Setting H = 4r . I-lr = 4(rf /Il + r;/I2 + r;/I3), and introducing the 
symplectic structure matrix J = skew(li), we observe that the system is of 

1 2  the form Sli = JVH.  Then writing H = H1 + H2 + H3, with Hi = %xi ,  
we can obtain a second order "symplectic" (symplectic in the sense of the 
J symplectic structure) explicit algorithm by solving in sequence, each for a 
timestep of size At, 
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Each of the Hamiltonians Hi is easily integrated in terms of rotations about 
one or the other of the Eulerian axes. 

This approach has recently been applied to treat N rigid body molec- 
ular systems[ll]. At each step of the integration, the orientational degrees 
of freedom for each rigid body are solved by implementing this reduction, 
realized as operations directly on the rotation matrix, Q, together with an 
associated update of the canonical momentum variable P; this is combined 
with a leapfrog integration of the translational degrees of freedom. Notes are 
also provided in [ll] indicating how these methods are implemented in con- 
junction with site-site or dipole-type potentials, and some special tricks for 
handling symmetric molecules more efficiently are discussed. 

Observe that, in principle, it is possible to introduce quaternions in the 
solution of the free rotational part of a Hamiltonian splitting, although there 
is no compelling reason to do so, since the rotation matrix is usually a more 
natural coordinatization in which to describe interbody force laws. 

3.4 Other Methods 

One can write down any number of alternative schemes for treating con- 
st rained rigid body dynamics. One frequently suggested idea is to  differenti- 
ate the constraints several times to eliminate the Lagrange multipliers, then 
solve the resulting ordinary differential equations for the positions and veloc- 
ities using a generalized leapfrog or other integration method. This approach 
introduces additional computational complexity, as well as a drift from the 
orthogonality constraint if the constraint is not enforced directly by some 
sort of projection. Moreover, this method is not symplectic. A symplectic 
approach similar to  this can be developed, as in [21], by employing Dirac's 
concept of weak invariants, but the resulting method is again inefficient com- 
pared to the above-mentioned schemes. Various other met hods have been 
suggested [I, 131, but none appear to be serious competitors to  the symplec- 
tic approaches for long term integrations. 

One may attempt to correct an integrator by an energy projection, i.e., 
in the general case of integrating some Hamiltonian H(q,p),  after a specified 
number 1 of steps, we would solve the equation 

for a scale factor a; the momenta are then adjusted accordingly. This is a 
common technique and results in a method which better conserves energy. 
Such a method will sometimes show slight improvement in its dynamical 
behavior, but experience indicates that the potential improvement diminishes 
with the complexity of the system and the system dimension. Even in our 
relatively simple (ix~(~rimerlf .  ( s w  below) little improvement is obtained. 
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Fig. 1. Motion of a material point on the body over time (left, short time interval; 
right, long interval). The rigid body swings repeatedly toward the plane where it 
is repelled by the strong short-range force. 

4 Comparisons 

Some comparisons among the various types of methods for molecular sys- 
tems may be found in (111 (rotational SHAKE vs. quaternions/Gear mul- 
tistep methods) and [20] (reduction/splitting vs. quaternions/extrapolation 
methods). Qualitatively speaking, the stories are similar. In a single step, 
the higher-order quaternionic schemes are seen to have much smaller local 
truncation error, however, the quaternionic schemes are found to exhibit a 
clear drift in energy, whereas the symplectic schemes show no such problems. 
In long term simulations, the symplectic methods clearly win out over the 
nonsymplectic schemes, and are, from this point of view, much more efficient 
as well. 

As an illustration, we consider a simple example of a top with a fixed 
point at the center of mass moving in an applied field not dissimilar from 
those encountered in molecular simulations. Specifically, we used 
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Fig. 2. Top left: short time interval results for the SPL method with stepsize At = 
0.05 (100 steps); top right: corresponding energy variation. Center and Bottom: 
equivalent diagrams for RK4a (At  = 0.1) and RK4b (At  = 0.1). 

This represents an attractive (Coulombic) potential coupled with a repulsive 
"soft" wall, relative to a plane situated just below the rigid body. The rigid 
body is repeated drawn toward the plane, then repelled sharply from the 
wall. 

We integrated the system with four different methods: (I) the method 
based on a Hamiltonian splitting followed by reducing the free rigid body 
to the Euler equations which we will label "SPL", (11) rotational SHAKE 
("ROT"), (111) quaternions/Runge-Kutta-4 ("RK4a7'), and (IV) The same 
R.K-4 method except that the angular velocities were scaled every 20 
timesteps so that the energy was preserved ("RK4b"). We used an asym- 
metric rigid body with inertial axes Il = 2, I2 = 3, I3 = 4.5, started from 
a'n initially horizontal configuration with initial angular momenta (2,2,2). A 
3D plot of the motion of a material point on the body is shown in Fig. 1. It 
turns out to he advantageous to visualize the motion in terms of the locus of 
momenta SZ = {m.(t)lt E R). 

In experiments, the two symplectic methods ROT and SPL performed 
very similarly ill t l c r m  of error propagation and long term stability. The ex- 
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Fig. 3. Top left: long time interval results for the SPL method with stepsize At = 
0.05 (to T=250); top right: corresponding energy variation. Center and Bottom: 
equivalent diagrams for RK4a (At = 0.1) and RK4b (At = 0.1). 

planation is that these two methods can be viewed as based on an identical 
splitting into kinetic and potential energy terms and differ essentially in the 
means of propagating the free rigid body. In general, in cases such as this 
one where either symplectic method can be used, it seems that the reduction 
method is to  be preferred on the basis of robustness and also computational 
efficiency. In other applications, for example for chains of rigid bodies con- 
nected by constraints, the reduction method is not available, so the SHAKE 
approach (either with particles or rotation matrices) is the natural choice. 

The implementations were tested by ensuring that they agreed in a short 
integration with a very small stepsize and that they exhibited the correct 
order of accuracy (two for the symplectic methods, and four for the methods 
based on RK-4). The locus of momenta from a short interval calculation (100 
timesteps) with splitting method and a stepsize At = 0.05 is shown in Fig. 
2(top). The Runge-Kutta method uses four times as many evaluations of 
the applied torque per timestep as the splitting or shake schemes; however, it 
proved impossible to obtain reasonable results using a fourfold larger timestep 
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in the RK schemes. Therefore, we compare those methods using At = 0.1. 
On the short interval, the results obtained with both the unprojected (Fig. 
2(center) and projected RK (Fig. 2(bottom)) methods appear to  be quite 
similar to  those of the symplectic method. 

Note the curious "return" property exhibited by the energy in the sym- 
plectic method; this is a manifestation of the "nearby Hamiltonian" men- 
tioned in the introduction (see [7, 18, 281). 

Looking on a longer time scale reveals quite a different story. Comparative 
results are shown in Fig. 3 for the same three methods. The splitting method 
(top) obtains a regular, symmetric momentum portrait that  is not qualita- 
tively different from the true dynamics; energy oscillates but does not drift 
substantially. The Runge-Kutta method (center), on the other hand, rapidly 
obtains a wholly nonphysical dissipative equilibrium. This loss of structure is 
associated to  a breakdown in energy conservation, but projecting the method 
so that energy is conserved (bottom) does not help. 

Although smaller timesteps would eventually allow the RK-4 method to 
produce more accurate results, the method must pay a large price in terms 
of function evaluations. Qualitatively similar results can be expected from 
other popular nonsymplectic schemes. 

These experiments confirm observations in the recent articles [20] and 
[I 11: symplectic methods easily outperform more traditional quaternionic in- 
tegration methods in long term rigid body simulations. 
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Abstract. We present new met hods for time-dependent quant um mechanical sim- 
ulations of large polyatomic systems and their applications to photochemical pro- 
cesses in clusters. Two related approaches are discussed: The Classical Separable 
Potential (CSP) approach, and its extension towards Configuration Interaction (CI- 
CSP). The former scheme assumes separability of the vibrational modes of the sys- 
tem, and describes each mode as moving in a mean field due to the other modes. The 
basic idea, which allows for quantum simulations of hitherto unaccesibly large sys- 
tems, is that the effective single-mode potentials are obtained from a classical MD 
simulation that precedes the quantum calculation. The second approach represents 
an improvement that corrects for correlations between different modes, resulting in 
a scheme of good accuracy. Applications of the methods are presented for dynam- 
ics following photodet achment in a small I- (Ar)2 cluster (where comparison with 
~iumerically exact calculation is possible) and for photoexcitation dynamics and 
spectroscopy of atomic and molecular impurities in large clusters, such as 12(Ar)l7 
and 1 ~ ( A r ) * ~ .  Future directions of method development are suggested in the light 
of the algorithmic aspects and the applications. 

1 Introduction 

The preferable theoretical tools for the description of dynamical processes in 
systems of a few atoms are certainly quantum mechanical calculations. There 
is a large arsenal of powerful, well established methods for quantum mechan- 
ical computations of processes such as photoexcitation, photodissociation, 
inelastic scattering and reactive collisions for systems having, in the present 
state-of-the-art, up to three or four atoms, typically.1-9 Both time-dependent 
and time-independent "numerically exact" algorithms are available for many 
of the processes, so in cases where potential surfaces of good accuracy are 
available, excellent quantitative agreement with experiment is generally ob- 
tained. In addition to the full quantum-mechanical methods, sophisticated 
semiclassical approximations have been developed that for many cases are 
essentially of near-quantitative accuracy and certainly at a level sufficient for 
the interpretation of most e x p e r i r n e n t ~ . ' ~ - ~ ~  These methods also are com- 
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putat ionally applicable in the present st ate-of- t he-art , to systems of several 
atoms only. 

As far as methodology is concerned, the situation for large polyatomic 
systems and for condensed phases is very different. Quantum mechanical 
simulation methods of quantitative accuracy have not been available for dy- 
namical processes in systems of many coupled degrees of freedom. Classical 
Molecular Dynamics (MD) simulations have been the prime theoretical tool 
for interpretation, analysis and comparison with experiment. They are com- 
putationally feasible in the present state-of-the-art for systems having up to 
tens of thousands of atoms, and have been extensively applied to processes 
in biomolecules, large molecular aggregates and condensed phases. However, 
many physical properties cannot be treated classically, at  least not quantita- 
tively. Resonance Raman spectroscopic intensities in condensed phases, and 
state-to-state transitions in atom scattering from large molecules are only two 
examples in a virtually endless list of observable properties for which classical 
calculations are not adequate.14 To this one must add the need to describe 
quantum effects such as zero-point motions, nonadiabatic transit ions and tun- 
neling events in the dynamics of many large systems. The need for a quan- 
titative quant um-mechanical description of large polyatomic systems is thus 
well recognized, but hitherto suitable methods for this purpose have not been 
at hand. The situation in this respect for some time-independent properties 
is much better: For instance, methods such as the Diffusion Quantum Monte 
Carlo (DQMC) and related techniques have been used very effectively to com- 
pute ground-state energies and structural properties of large quantum clusters 
and solids. 15-18 Likewise, Feynman Path Integral methods were very success- 
fully applied to the calculation of thermodynamic and structural properties of 
such systems at thermal equilibrium. 1g-21 Another example are the ground 
and the low-lying vibrational eigenfunctions of large polyatomic molecules, 
that were recently calculated for several such systems by the Vibrational 
Self-consistent Field (VSCF) method and its extensions. 22-24 Thus, calcula- 
tions of the ground and of the fundamental excited vib-rotational states were 
reported for the protein B P T I . ~ ~  

Within the time-dependent framework, the Time-Dependent Self- 
Consistent Field (TDSCF) approximation is known, in the context of elec- 
tronic structure theory, from the early years of quantum theory,2g but its ap- 
plications to problems of molecular dynamics are much more recent. 30-42,23 

Methods of much improved accuracy were developed on the basis of the 
TDSCF approximation.34-42 Also, some technical hurdles in applying the 
method for larger systems were overcome in the last few years at least for some 
types of interaction potentials, so recently calculations have been reported for 
problems of significantly increased number of degrees of f r e e d ~ m . ' ~ . ~ ~  Differ- 
ent methods for time-dependent quantum simulations of large systems were 
pursued vigorously by several research groups, and much progress was made. 
Some of the novel methods proposed are still confined to models or special 
systems, while for a few of the others realistic app1ir:t~tions ikrr already at 
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hand. Examples of such recent methods are the Path Integral approach de- 
veloped by Makri and  coworker^^^^^^ and the semiclassical centroid density 
approximation of Voth et al. 27,28 

The paper discusses two related recent methods for time-dependent quan- 
tum simulations of many-atom systems in which the present authors have 
been involved, the Classical Separable Potential (CSP) method and its Con- 
figuration Interaction extension (CI-CSP). While by no means developed to 
completion or general in applicability yet, these methods provide already 
practical working algorithms for a wide range of applications. Indeed, in the 
very short time since the introduction of the CSP method, many applications 
t,o large realistic systems were already made, showing that the method is al- 
ready a "production tool7' for extensive simulations of systems with tens to 
hundreds of degrees of freedom. 

The CSP method involves approximations that separate the different 
modes, and treats each mode as moving in the average field of all the other 
modes. The effective single-mode potentials are determined from independent 
classical Molecular Dynamics simulations carried out at the outset, and then 
used in the quantum calculation. The CI-CSP extension goes beyond the sep- 
arability approximation by expanding the multidimensional time-dependent 
wavepacket into a sum of separable terms with variationally determined co- 
efficients. The choice of the CI terms is guided by the individual classical 
trajectories. In this way, the number of CI terms is grossly reduced and due 
t,o a favorable (non-exponential) scaling with the number o degrees of free- 
dom the method is applicable to large polyatomic systems. The applications 
t,hat will be mentioned in the present paper are all for cluster systems. This 
seems to us a natural choice: In trying to develop simulation methods ulti- 
mately applicable to condensed phase problems, large clusters offer physical 
properties similar to these phases, while still retaining the simplicity of finite 
systems. 

Sec. 2 presents the CSP method, while an improved approach built on it 
(CI-CSP) is described in Sec. 3. Sec. 4 gives some examples of applications 
of the CSP and CI-CSP methods to the photochemical ultrafast dynamics 
in clusters. Directions for future progress and improvements are discussed in 
Sec. 5. 

2 The Classical Separable Potential (CSP) Method 

The principal idea behind the CSP approach is to use input from Classical 
Molecular Dynamics simulations, carried out for the process of interest as a 
first preliminary step, in order to simplify a quantum mechanical calculation, 
implemented in a subsequent, second step. This takes advantage of the fact 
that classical dynamics offers a reasonable description of many properties 
of molecular systems, in particular of average quantities. More specifically, 
the method l l s ~  classical MD simulations in order to determine effective 
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potentials such that by the use of the latter a subsequent quantum calculation 
becomes far ~ i m ~ l e r ( ~ ~ ) - ( ~ ~ ) .  

Here, we give here a brief outline of the methods as introduced in Refs. 
43, 44, and 47. Suppose that the initial state of the system is Qo (ql , . . . , q ~ ) .  
F'rom Qo, the Wigner phase-space distribution D(ql , ... , q ~ ;  pl , . .. , pN) is com- 

puted. This distribution is used to sample initial positions and momenta qja) 
(a) (a) , . . . , qN ; pl , . . . , p$), for a classical trajectory simulation of the process of 

interest. The set of trajectories qia)(t), ..., q g ) ( t ) ,  for a = 1, ..., n ~ ,  can be 
used to generate in the classical framework any quantity of interest at  each 
time point t. F'rom the trajectories, we compute the average potential acting 
on each mode j: 

where V(ql , . . . , qN) is the full potential function of the system, and the sum- 
mation in (24) extends over all MD trajectories. w, is the weight of the rw 
trajectory in the initial state distribution (as determined from the Wigner 
distribution). Note that in (24), all the coordinates ql are evaluated at trajec- 
tory points, except the q j  for which the mean potential % (qj , t) is evaluated. 
The j-th coordinate is kept as in the full potential function. V(t) in (24) is a 
coordinate-independent function of time given by: 

The inclusion of the second term on the right-hand-side of (24) is convenient, 
because in this way the average (over the trajectories) of the sum of the single- 
mode potentials, CE1 (qj, t ) ,  equals to the average of the full potential 

function V(q1, . . . , qN). Using the single-mode effective potentials (q, , t) , 
one can solve a time-dependent Schrodinger equation for each mode: 

where Tj is the kinetic energy operator for mode j. A separable approximation 
for the total wavepacket of the system is given by 

With the above definitions, there is no additional overall phase factor to 
be included in (27). Eqs. (24)-(27) are the CSP a p p r o ~ i m a t i o n . ~ ~ - ~ ~  Like 
TDSCF, CSP is a separable approximation, using a time-dependent mean 
potential for each degree of freedom. However, the effcctivc potcmtials in CSP 
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are obtained from classical MD, and their evaluation is computationally very 
casy, not involving multidimensional integrals as in the case of TDSCF. This 
gives CSP a computational advantage that for large systems is enormous, 
especially for systems where the potential function cannot be simplified to 
reduce the dimensionality of the TDSCF integrals. 

The accuracy of the CSP approximation is, as test calculations for model 
systems show, typically very similar to that of the T D S C F . ~ ~  The reason for 
this is that for atomic scale masses, the classical mean potentials are very 
similar to the quantum mechanical ones. CSP may deviate significantly from 
TDSCF in cases where, e.g., the dynamics is strongly influenced by classically 
forbidden regions of phase space. However, for simple tunneling cases it seems 
riot hard to "fix" CSP, by running the classical trajectories slightly above the 
barrier. In any case, for typical systems the classical estimate for the mean 
potential functions works extremely well. 

It should be noted that due to the use of classical trajectories to evaluate 
the time-dependent single-mode potentials, the quantum CSP energy is not 
strictly conserved (TDSCF conserves energy, since the single-mode potentials 
are obtained self-consistently with the single-mode wavefunctions). The ex- 
tent of the non-conservation is, however, small and it does not seem to create 
significant difficulties. The smaller the difference between the TDSCF and the 
CSP single-mode potentials, the smaller is the CSP energy non-conservation. 
The more near-classical a system is, the smaller is the non-conservation ef- 
fect. In general, CSP is expected to be less accurate than TDSCF, although 
only slightly so, because the quantum effects are not included in the eval- 
llrttion of the single-mode potentials. In special cases, however, CSP may 
give slightly better results than TDSCF, because the CSP mean-potentials 
are calculated from an approach that includes correlation effects between the 
rriodes (classical MD). In summary: TDSCF and CSP give very similar results 
in most cases, but for systems with appreciable quantum effects, TDSCF is 
more accurate than CSP, while the latter may prove somewhat accurate when 
correlation effects are quite important. 

It is obvious that CSP depends, as does TDSCF, on the choice of coor- 
dinates. As pointed out in Sec. 2.2, numerical convenience often limits the 
choice of the coordinates. CSP may, however, offer practical prospects for the 
choice of physically optimal modes. The deviation of the true potential from 
CSP separability is given by: 

dVcorr can be evaluated readily from the classical MD simulation for any 
choice of coordinate system, and it may be possible to determine the modes 
that give the smallest AV,,,. These should be optimal CSP modes. Work 
along these liws is in  imgress in our group. So far, however, the coordi- 
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nate choices in the CSP applications were all straightforward and based on 
qualitative physical consideration. 

3 Configuration Interaction Extension of the CSP 
method 

The main extension hitherto introduced for the CSP approximation is re- 
ferred to as the Configuration Interaction CSP (CI-CSP) method.48 This 
approach represents the full non-separable wavepacket as a linear combina- 
tion, with time-dependent coefficients, of terms that are each separable. The 
applications of this method are very encouraging. The method can provide 
major improvements over CSP, and can probably be pursued at a level of high 
accuracy, while still being computationally feasible for large systems.48 The 
method is flexible, and allows for the use of physical considerations to opti- 
mize it. The most important advantage is that within CI-CSP, the classical 
MD simulations greatly simplify the determination of the terms or config- 
urations, that play the most important role in the total wavefunction. The 
approach is based on the following: The CSP wavepacket is obtained from 
mean single-mode potentials, computed as an average over all the trajecto- 
ries. To include correlation effects, it is necessary to include also wavefunction 
terms computed from potentials that represent " fluctuations'' from the av- 
erage. Such potentials can be computed along a limited set of trajectories, 
even individual trajectories (rather than as an average over all trajectories). 
In the version of CI-CSP discussed here, we start with propagating separable 
wavepackets using effective potentials obtained from individual trajectories: 

The coordinate-independent quantities P(&) (t) are given by: 

P(") ( t )  = ~ ( ~ j ' l ) ,  . . . , q;a) (t), . . . , qy (t)) (7 )  

In addition to wavepackets propagated along effective potentials correspond- 
ing to individual trajectories, we also propagate in CI-CSP the CSP wavefunc- 
tions, governed by the average potentials (qj, t )  of Eq. (24). The CI-CSP 
ansatz for the total wavepacket of the system is then as follows:48 
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Here $j(qj ,  t)  are the CSP functions, $$a)(qj, t)  denotes the qj-mode wave- 
function propagated on the effective potential generated from the a trajec- 
tory. These wavefunctions are orthogonalized and included in the CI expan- 
sion when the overlap between $j and drops below a certain threshold 
(typically 99%). In this way, the CI space grows in the course of the dynami- 
cal evolution, corresponding to the increase of correlation between the modes. 
In the above expansion, M j  is the number of trajectories actually included in 
the CI expansion (with respect to functions of the mode j), c,(t) is the CSP 
coefficient, sy(t) are single mode excitation coefficients, while djaj/4(t) are 
coefficients corresponding to two-mode excitations. The language of excita- 
tion is borrowed from time-independent CI in electronic structure theory,'' 
with which the present formulation has strong analogies. Within this analogy, 
the ansatz (31) corresponds to configuration interaction with single and dou- 
ble excitations (neglecting higher-order excitations). From a physical point of 
view one should rather talk about mode-mode correlations instead of double 
excitations and mode 'polarization' terms instead of single excitations but 
we stay with the usual notation. To obtain equations of motion for the coeffi- 
cients c, (t), sy (t),  djr?j,8 (t) of the wavefunction expression (3l), we substitute 
the ansatx into the time-dependent Schrodinger equation of the system, Eq. 
( I ) ,  with the fully coupled potential. To get practical working equations we 
make several approximations: 

(i) Consider for simplicity the case when the initial state is separable (ex- 
tension to a non-separable initial state is straightforward, though technically 
more complicated). Then at t = O,co = 1 and all the other CI coefficients 
are zero. In a short-time approximation we then take into account only cou- 
pling between the CSP state, and doubly excited states (it can be shown 
that coupling between CSP and singly excited states is always zero - this is 
a time-dependent analogue of the Brillouin theorem, familiar from electronic 
structure theorys0). In this way we neglect very small (at least initially) 
single-single, single-double, and double-double excitation couplings. 

(ii) Consider an integral ( @ I v I ~ )  where @ and 6 differ in two modes j 
and j /  only. We approximate this integral by ($j $j/lyyBP2 1 $j$j/), where 

where n~ is the total number of trajectories. 
Substitution of the ansatz (31) into the Schrodinger equation (1) for the 

full system, together with the above approximations, yields the following 
c:quations for the coefficients c,(t), djaj/a(t) of the CI expansion (31): 



372 Jungwirth, Gerber 

For separable initial states the "single excitation" terms can be set to zero 
at all times at this level of approximation. Eqs. (32) ,(33),(34) together with 
the CSP equations and with the ansatz (31) for the total wavefunction are the 
working equations for the approach. This form, without further extension, is 
valid only for short time-domains (typically, a few picoseconds at most). For 
large times, higher correlations, i.e. interactions between different singly and 
doubly excited states must be included. 

An important computational advantage of CSP and CI-CSP for large sys- 
tems is that the methods can be applied to any potential function without any 
need to simplify the latter by expansion, assumption of pairwise interactions, 
etc., as is the case for TDSCF. Applications of CSP for systems having up to 
N lo3 degrees of freedom, and of CI-CSP for systems of up to N 100 modes 
are not computationally extremely demanding, and were indeed carried out 
on quite modest scalar workstations, of the type of SGI Indigo, HP Appollo, 
etc. Finally, implementation of CSP on a parallel computer is straightfor- 
ward and almost ideal in efficiency. Recently, there has been extensive work 
on application of the CSP method on parallel computer systems with very 
encourageing results. 46,47,83 

4 Applications of CSP and of CI-CSP 

Almost from the introduction of the CSP and CI-CSP methods, appli- 
cations to large systems with realistic potential functions became possi- 
ble. A general CSP code was written and is available.47 The applications 
of CSP so far include a study of electron photodetachment dynamics for 
I - (Ar)n ,  n = 2, ..., 12, 44,83 a study of the dynamics following electronic ex- 
citation of Ba(Ar), for n = 10, n = 2 0 , ~ ~  and a study of electronic exci- 
tation, cage effects and vibrational dephasing and relaxation dynamis for I2 

in I 2  (Rg), , for Rg = Ar, Xe and n = 17,47 (corresponding respectively to 
complete first and complete first two solvation layers around the iodine).47 
The dynamics of Ba(Ar), following the excitation of the Ba in this clus- 
ter involves nonadiabatic transitions, since there are three quasidegenerate 
p-states of the Ba atom, and the system is then governed by three poten- 
tial energy surfaces corresponding to these state, with possible non-adiabatic 
transitions between them. The simulations of Ref. 45 thus went beyond sim- 
ple CSP, and were in fact a three-configuration CI-CSP, with a separable 
term in the CI wavefunction for each adiabatic electronic state. This ap- 
proach, while not a converged quantum treatment, is expected already to be 
more reliable than semiclassical "surface hopping" methods that treat nuclear 
motions classically.81 Comparison of the CI-CSP with senliclassical "surface 
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hopping" simulations for B U ( A ~ ) ~ ~  and B U ( A ~ ) ~ ~ ,  suggests that the "surface 
hopping" results for properties such as population ratios of the electronic 
states at, say, t w 1 ps after excitation, can differ from quantum results by a 
significant factor, of the order of -- 2 in this case.45 

The small I-(Ar)2 complex serves as a benchmark system since numer- 
ically exact calculation is still possible here. By numerically exact calcula- 
tion we mean here a 3-dimensional wavepacket propagation using the time- 
dependent vibrational Schrodinger equation with the fully coupled interaction 
potential. The experimentally observed vibrationally resolved photoelectron 
spectrum can be modeled as a Fourier transform of the calculated autocor- 
relation function, i. e. the overlap of the initial total wavepacket with the 
wavepacket at time t .  At the same time the complex autocorrelation function 
is a very sensitive quantity for testing the quality of approximate approaches 
since it depends not only on the amplitude but also on the phase of the 
wavepacket. Fig. 1 depicts the short time CSP and CI-CSP autocorrelation 
functions, compared to exact and TDSCF results. First, we note that there is 
qualitative agreement among all four approaches indicating that mean-field 
methods represent a reasonable approximation even though there is no sig- 
nificant separation in mode frequencies in this system. The excellent agree- 
tnent between CSP and TDSCF demonstrates that only minor errors are 
introduced by replacing the quantum mean-field integrals by averages over 
classical trajectories. Finally, inclusion of two-mode correlations significantly 
improves the autocorrelation funcion and brings it closer to the exact one. 

For 12(Ar)17, an extensive CI-CSP simulation was carried and the 
results were compared with those of the simple CSP approximation.46 Both 
calculations are for the ultrafast dynamics following excitation of the I2 into 
the B state. We found that the CI-CSP calculation, including "doubly excited 
configurations", is close to converged for times up to t -- 500 fs, when 1500 
configurations are included. Fig. 2 shows ic,(t)12, the coefficient of the CSP 
term and the doubly excited terms idjaj,a12 in the full CI-CSP wavefunction, 
versus time. 

It turns out that the CSP approximation dominates the full wavefunc- 
tion, and is therefore almost exact till t w 80 0s. This tirnescale is already 
very useful: The first = 20 fs are sufficient to determine the photoadsorption 
lineshape and, as turns out, the first = 80 fs are sufficient to determine the 
Resonance Raman spectrum of the system. Simple CSP is almost exact for 
these properties. As Fig. 3 shows, for later times the accuracy of the CSP 
decays quickly: for t = 500 fs in this system, the contribution of the CSP ap- 
proximation to the full CI wavefunction is almost negligible. In addition, this 
wavefunction is dominated not by a few specific terms of the CI expansion, 
hut by a whole host of configurations. The "decay" of the CSP approximation 
was found to be due to "hard collisions" between the iodine atoms and the 
"surrounding wall" of argons. Already the first hard collision brings a ma- 
jor deterioration of the CSP approximation, but also the role of the second 
collision can be clearly identified. As was mentioned, for t < 80 fs, the CSP 
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- exact 
+-+ TDSCF - CSP - CI-CSP 

Fig. 1. Comparison between the CID-CSP, CSP, TDSCF, and the numerically exact 
autocorrelat ion functions. 

is essentially of quantitative accuracy. Fig. 3 shows the Resonance Raman 
spectrum for I2 (AT)  7 .  4 6 

The intensities are plotted vs. v, the final vibrational quantum num- 
ber of the transition. The CSP results (which for this property are almost 
identical with CI-CSP) are compared with experimental results for I2 in a 
low-temperature Ar matrix.82 The agreement is excellent. Also shown is the 
comparison with gas-phase, isolated 12 .  The "solvent effect" on the Raman 
intensities is clearly very large and qualitative. These show that CSP calcu- 
lations for short timescales can be extremely useful, although for later times 
the method breaks down, and CI-CSP should be used. 

5 Concluding Remarks 

Two met hods for t ime-dependent quantum simulations of many-atom sys- 
tems are examined in this article: the CSP-based and the CI-CSP-based 
algorithms. The CSP method begins with a sepaxable a.pproximation for 
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first collision c F i  
second collision 
with argons 

Fig. 2. The contribution c, of the CSP approximation to the CI wavefunction and 
the correlation coefficients d jaJ,fi versus time. 

tjhe wavefunction, and describes each mode as governed by a mean time- 
dependent potential due to the other modes, the effective potentials being 
determined from classical MD simulations. Correlations are included within 
the CI-CSP approach by expanding the total wavepacket into a sum of sep- 
arable terms. Classical MD calculation assist in the selection of important 
terms and in the evaluation of CI: coupling terms. Both methods can and 
have already been applied to systems of substantial sizes, and are thus al- 
ready practical simulation tools. Applications of CSP and CI-CSP to systems 
having of the order of 100 degrees of freedom are already at hand, and CSP 
calculations for biomolecules of lo4 degrees of freedom are in advanced stages 
of progress. Clearly, the introduction of correlation effects between modes is 
(:omputationally the most demanding aspect of the approach. In our belief, 
a search for simplified methods for correlation corrections should be one of 
tlhe most useful directions to be followed in the future. An efficient treatment 
of important correlation effects will benefit in particular processes involving, 
o.g., chemical (slll)stitliit,ion) reactions and nonadiabatic processes, in which 
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- I, (Ar) ., (calculation) 

r-3 I, in Ar matrix (experiment) 

gas phase I , (experiment) 

L I -- - 1 1 - . 1 - . . A .  .. _ I  

1 2 3 4 5 6 7 8 9 1 0  
V (vibrational quantum number) 

Fig. 3. Resonance Raman Intensities for I2 (Ar)47 

the role of dynamical correlations is both extremely important and hard to 
handle computationally. 

The computational efficiency is a major advantage of CSP and CI-CSP, 
and we expect that in the forthcoming few years CSP-based methods will 
be extensively used as practical tools for the study of an increased range of 
dynamical processes in large systems. 
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Abstract. In molecular dynamics applications there is a growing interest in in- 
cluding quantum effects for simulations of larger molecules. This paper is concerned 
with mixed quantum-classical models which are currently discussed: the so-called 
QCMD model with variants and the time-dependent Born-Oppenheimer approxi- 
mation. All these models are known to  approximate the full quantum dynamical 
evolut ion-under different assumptions, however. We review the meaning of these 
assumptions and the scope of the approximation. In particular, we characterize 
those typical problematic situations where a mixed model might largely deviate 
from the full quantum evolution. One such situation of specific interest, a non- 
adiabatic excitation a t  certain energy level crossings, can promisingly be dealt with 
by a modification of the QCMD model that we suggest. 

1 Introduction 

In molecular dynamics applications there is a growing interest in mixed 
quantum-classical models various kinds of which have been proposed in the 
current literature. We will concentrate on two of these models: the adiabatic 
or time-dependent Born-Oppenheimer (BO) model, [8, 131, and the so-called 
QCMD model.' Both models describe most atoms of the molecular system 
by the means of classical mechanics but an important, small portion of the 
system by the means of a wavefunction. In the BO model this wavefunction 
is adiabatically coupled to the classical motion while the QCMD model con- 
sists of a singularly perturbed Schrodinger equation nonlinearly coupled to 
classical Newtonian equations, 52.2. 

This paper is meant as a contribution to systematize the quantum-classical 
modeling of molecular dynamics. Hence, we are interested in an extended the- 
oretical understanding of the models rather than to further contribute to the 
bunch of numerical experiments which have been performed on certain mod- 
els by applying them to particular molecular systems. Thus, we will carefully 
review the assumptions under which our models are known to approximate 
the full quantum dynamical (QD) evolution of the system. This knowledge 

The number of articles applying this model is so large that we only mention four 
articles, [2] [3] [9] [l7], as the starting points t o  different lines of c1isc:nssion. 
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allows for a characterization of the typical problematic situations where the 
mixed models might largely deviate from the QD evolution. 

The present paper is organized as follows: In a first step, the derivation of 
QCMD and related models is reviewed in the framework of the semiclassical 
approach, $2. This approach, however, does not reveal the close connection 
between the QCMD and BO models. For establishing this connection, the 
BO model is shown to be the adiabatic limit of both, QD and QCMD, $3. 
Since the BO model is well-known to fail at  energy level crossings, we have 
to discuss the influence of such crossings on QCMD-like models, too. This 
is done by the means of a relatively simple test system for a specific type 
of such a crossing where non-adiabatic excitations take place, $4. Here, all 
models so far discussed fail. Finally, we suggest a modification of the QCMD 
system to overcome this failure. 

To simplify we restrict our study to the case of a system with just two 
"particles" of significantly different masses, m and M, having coordinates x E 
IRm and q E Rd. Thus, the time-dependent Schrodinger equation becomes 

Here, the kinetic operators are typically given by the corresponding Lapla- 
cians I, = A, and 7, = A, or similar selfadjoint differential operators. The 
corresponding solution @ = S(x,  q, t) describes what we call the full QD 
evolution of the system. 

By assumption, the mass ratio c2 = m / M  is a small parameter. Thus, 
rescaling the Schrodinger equation properly in time and potential transforms2 
it into the singularly perturbed equation 

i€&@ = 

In many applications, x and q will not necessarily be coordinates of "particles" 
tmt other degrees of freedom of the system under consideration. Typically 
however, a proper choice of the coordinate system allows the initial quantum 
state to be approximated by a product state (cf. [11], $IIb): 

q x ,  q, t = 0) = +*((I) . $*(+ 

We will throughout assume this initial condition to be given. 

2 Semiclassical Approach to QCMD 

The semiclassical approach to QCMD, as introduced in [lo], derives the 
QCMD equations within two steps. First, a separation step makes a tensor 
msatz for the full wavefunction separating the coordinates x and q: 

' Time is scaled :~cc:or(ling to ~i,t/&% + t ,  implying a new potential ( rn /h2)v .  
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Second, a semiclassical, or WKB, ansatz approximates the "classical" wave- 
function 4 by 

We will study the equations of motion that result from inserting all this in 
the full Schrodinger equation, Eq. (1). However, we would like to remind the 
reader that not the derivation of these equations of motion is the main topic 
here but the question of the quality of the underlying approximations. 

2.1 Separation and TDSCF 

Inserting the separation ansatz, i.e., P8, results in two nonlinearly cou- 
pled single particle Schrodinger equations, the so-called time dependent self- 
consistent field (TDSCF) equations:3 

Here, ($, V$) = U4 denotes the $-averaged potential as seen by 4, still 
depending on the coordinate q. Likewise, U+ = (4, V4) includes integration 
with respect to q and depends on x. In the following, (., .) will similarly denote 
integration with respect to x, q, or x and q, yielding expressions that depend 
on the other coordinate. 

Approximat ion Property We assume that the "classical" wavefunction 
4 is an approximate &function, i.e., for all times t E [0, TI the probability 
density (@(t) l 2  = (4(q, t) l 2  is concentrated near a location q(t) with "width," 
i.e., posit ion uncertainty, 6(t). Then, the quality of the TDSCF approximation 
can be characterized as follows: 

Theorem 1 (Thm. 4.1. in [6]). For all t E [O,T], let 4 have compact sup- 
port4 of width b(t) < b . Then, the TDSCF wavefunction P8 approximates 
the full QD solution P of Eq. (1) up to an error of order 6, i.e., 

Thus, TDSCF is the better an approximation of full QD the sharper located 
the probability density 1412 remains in the course of the evolution. 

More precisely, Eq. (5) is only valid up to additional phase terms, cf. [6], SIVa, 
or [I 11, SIIIa, for details. 
In this case, let 6  be the diameter of the support: 6 ( t )  = diam supplq5(t)12. 
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2.2 Semiclassical Ansatz and QCMD 

Inserting !PQc into Eq. ( I ) ,  or equivalently the WKB-ansatz for q3 into the 
TDSCF system Eq. ( 5 ) ,  results in equations of motion for a and S (for details 
cf. [6, 101) and an one-particle Schrodinger equation, 

Notice that the solution $ens is not identical to $ but an approximation of 
it. The evolution of a and S in time may conveniently be described via the 
following classical Newtonian equations of motion: Given the initial values 

we denote by q(t) = q(t;  qo, qo) and q(t) = q(t; qo, qo) the solutions of the 
initial value problem 

The probability density a2 at a point q = q(t)  = q(t; qo, qO) is obtained by 
transport of the initial probability, i.e., 

with J denoting the Jacobian of q = q(t; qo, qO) with respect to qo. In addition, 
the action or phase S at  q = q(t) is given by integrating the corresponding 
Lagrangian along this trajectory, [I] : 

Since Eq. (6) depends on the probability density lq3(q, t)I2 = a2(q, t )  only, we 
may put the solution for S aside. Thus, we get a system that couples the 
classical equation Eq. (8) for computing a2 to the one-particle Schrodinger 
equation, Eq. (6). A numerical simulation of the evolution as described by 
Eqs. (6), (8), and (9) has to compute a bundle of classical trajectories that 
sample the probability distribution a2 and are nonlinearly coupled via Eq. (6). 

We assume now, that the initial probability distribution 14121 = a: t=O 
is an approximate &function at qo. In this case, Eq. (9) makes it obvious, 
2 remains to be an approximate &function as long as the approximation is 
valid. Thus, the single trajectory q(t) = q(t;  qo, 4.0) is an appropriate sampling 
of the probability density and a2(q, t )  = 6(q - q(t)) simplifies the integral in 
Eq. (6) so that the final QCMD equations of motion read 
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Caustics The above formulae can only be valid as long as Eq. (9) describes a 
unique map in position space. Indeed, the underlying Hamilton-Jacobi theory 
is only valid for the time interval [O,T] if at  all instances t E [0, TI the map 
(qO, qo) -+ q(t; qo, qo) is one-to-one, [6, 19, 11, i.e., as long as trajectories with 
different initial data do not cross each other in position space (cf. Fig. 1). 
Consequently, the detection of any caustics in a numerical simulation is only 
possible if we propagate a trajectory bundle with different initial values. Thus, 
in pure QCMD, Eq. (ll), caustics cannot be detected. 

Fig. 1. Illustration of a caustic. Different trajectories sample the probability dis- 
tribution. If they cross each other in position space, the transport or probability 
density is not longer unique and the approximation might break down. 

Approximation Property Excluding caustics we can exploit the results 
of semiclassical approximation theory [19]. This leads to the following state- 
ment: 

Theorem 2 (Thm. 4.2. in [6]). Let 4 initially5 have width b(0) < 6 and 
let E be small enough. Moreover, assume that caustics do not appear in  time 
interval [0, TI. Then, the semiclassical wavefunctions and qQc appro&- 
mate the TDSCF wavefunction $ up to an error of order 62 + €, i.e., 

A,, = Q + 0 ( b 2  + €) and $Qc = $ + 0 ( b 2  + 6 )  i n  [0, TI. 

The QCMD solution q approximates expectation value of the classical posi- 
tion, (q),, = (gQD, ~ P Q D ) ,  of the full QD solution gQD as: 

Referring to Thm. 1 we can conclude that-excluding caustics-QCMD (and 
QCMD bundles) approximates full QD up to an error of order O(b+e). These 

Because of Eq, (9), the condition from Thm. 1 concerning the small width can 
herein be restricted to the initial condition. 
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approximation result extends to cases in which certain types of caustics (focal 
points) are present by including phase shifts; cf. [19]. However, this cannot 
fully explain the bunch of numerical observations in which the presence of 
caustics does not influence the quality of the approximation at all. Thus, we 
might be interested in a justification of QCMD which avoids the problem of 
caustics. We will achieve this via studying the adiabatic limit of QCMD in 
53. 

2.3 Density Formulation of Semiclassical QCMD Bundles 

A particularly convenient notation for trajectory bundle system can be intro- 
duced by using the classical Liouville equation which describes an ensemble of 
Hamiltonian trajectories by a phase space density f = f (q, q, t )  . In textbooks 
of classical mechanics, e.g. [12], it is shown that Liouville's equation 

describes the transport of an initial probability density f (q, q, 0) = f, along 
the trajectories of the classical equation of motion q = -grad,V in the sense 
that 

Here, we denote by (q(t), q(t)) the trajectory starting a t  (qo, qo). Thus, the 
transport of the semiclassical probability density a2 according to Eq. (9) 
is just given by the Liouville equation with the potential ($en, , V$,,,) and 
a2(q, t )  = S f (q,  Q, t)dQ: 

We will refer to this model as to the semiclassical QCMD bundle. Eqs. (7) 
and (8) would suggest certain initial conditions for f,. However, those would 
not include any momentum uncertainty, resulting in a wrong disintegration 
of the probability distribution in q as compared to the full QD. For including 
an initial momentum uncertainty, a Gaussian distribution in position space 
is used 

with a normalizing constant a and an initial momentum expectation q,. 

3 Adiabatic Limit Approach to QCMD 

If the parameter F is very small, we are in the case of M being much larger 
than m. Thus, t l ~ '  lilnitJ c --+ 0 is the limit of infinite mass M, i.e., the adiabatic 
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limit of fast quantum motion of small particles around (infinitely) slowly 
changing positions of increasingly heavy "nuclei." We will study the limit 
equations governing the QCMD solutions for this adiabatic limit. Therefore, 
we rewrite the QCMD system, Eq. (1 I), by explicitly denoting the dependence 
of its solution (q,, a, $,) on the parameter c6 

where H = H (q) is the q-parametrized one-particle Hamiltonian 

We restrict ourselves to finite-dimensional Hilbert spaces17 making H a Her- 
mitian matrix. We denote the eigenvalues of H(q) by Ek(q) and consider the 
spectral decomposition 

where Pk is the orthogonal projection onto the eigenspace associated with 
E k .  With respect to a quantum state $, the number 81, = ($, P k $ )  is the 
population of the energy level Ek.8 The surfaces Ek = Ek(q) are called energy 
levels. Those positions q, at  which energy level crossings occur, i.e., 

E k  (q,) = 4 (q,) for some k # 1, 

will be the points of special interest in this section. 

3.1 Adiabatic Limit of QCMD 

The limit equation governing q, can be motivated by referring to the 
quantum adiabatic theorem which originates from work of BORN and FOCK [4, 
201: The classical position q influences the Hamiltonian very slowly compared 
to the time scale of oscillations of $,, in fact, 'Ynfinitely slowly'' in the limit 
c + 0. Thus, in analogy to the quantum adiabatic theorem, one would expect 
that the population of the energy levels remain invariant during the evolution: 

The constant 8: is the initial population of level Ek and thus computable 
from the initial data, Eq. (16). All this turns out to be true if the following 
assumption on the eigenspaces and eigenenergies of H(q) is fulfilled: 

We will often add an index c in order to refer to a family of solutions. 
The reader may think of a finite dimensional subspace of the original state space. 
This subspace may, e.g., be associated with a suitable discretization in space. For 
a generalization of Thm. 3 to the infinitely dimensional case, see [5 ] .  
If the eigenspace to Ek is one-dimensional and cPk is a corresponding normalized 
eigenvector, then we have Pk = Qiz: 8 Qik and the population is Ha. = + ) I 2 .  
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(A) The spectral decomposition Eq. (18) of H depends smoothly on q. 

This assumption allows to prove that the limit solution qBo = lirnEdo q, is 
given by: 

We refer to this equation as to the time-dependent Born-Oppenheimer (BO) 
model of adiabatic motion. Notice that Assumption (A) does not exclude 
energy level crossings along the limit solution qBo. Using a density matrix 
formulation of QCMD and the technique of weak convergence one can prove 
the following theorem about the connection between the QCMD and the BO 
model: 

Theorem 3 (Thm. 111.1 in [5 ] ,  Thm. 2.1 in [7]). Let qBo = qBo (t) be 
the solution of the B O  equation, Eq. (20)) and assumption (A) be given. 
Any energy level crossing at qBo(t,) with t ,  E [0, TI fuljills the transversality 
condition 

Then, the adiabatic invariance Eq. (19) holds and the limit of the sequence 
qe of QCMD solutions is qBo . 

3.2 Adiabatic Limit of QD 

Thus, the time-dependent BO model describes the adiabatic limit of QCMD. 
If QCMD is a valid approximation of full QD for sufficiently small E ,  the 
BO model has to be the adiabatic limit of QD itself. Exactly this question 
has been addressed in different mathematical approaches, [8], [13], and [18]. 
We will follow HAGEDORN [13] whose results are based on the product state 
assumption Eq. (2) for the initial state with a special choice concerning the 
dependence of 4, on 6 :  

with the initial momentum expectation q, and a normalization constant A,. 
This scaling guarantees that the wavefunction 4 behaves uniformly classi- 
rally.g Using this initial condition and the BO solution qBo a wavefunction 
PBo is constructed which approximates the full QD solution !I?, up to an error 
0(&), [l3]. lo For simplicity, let us discuss the position expectation 

9 Let be V = 0. Then, 4 describes a free particle. With Eq. (21), the disintegration 
of the wavepaket makes its width increase l i k e & d m  in the limit e + 0. 
Thus, the velocity of its disintegration is classical and independent from e. 

l 0  ly, is the family of solutions of Eq. (1) with initial states due to Eq. (2) and 
Eq. (21). The initial quantum state +, is assumed to be independent from E with 
only finitely ~ : L I V  cr1t:rg.y levels Ek, k = 1, . . . , n being initially excited. 
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instead of the wavefunctions. Here, the statement of HAGEDORN is: 

Theorem 4 (Thm. 2.1 in [13]). Assume qBo = qBo ( t )  to  be the solution 
of the BO equation, Eq. (ZO), in a finite t ime interval [0, TI. Moreover, let 
there be no  energy level crossings along qBo. Then, for e small enough, we 
have 

(q)? = ~ B O  + o(& in [0, TI. 

no crossings / QCMD 

Fig. 2. The BO model is the adiabatic limit of full QD if energy level crossings 
do not appear. QCMD is connected to QD by the semiclassical approach if no 
caustics are present. Its adiabatic limit is again the BO solution, this time if the 
Hamiltonian H is smoothly diagonalizable. Thus, QCMD may be justified indirectly 
by the adiabatic limit excluding energy level crossings and other discontinuities of 
the spectral decomposition. 

Altogether, the three different models discussed so far are interconnected as 
sketched in Fig. 2. Now, we can by-pass the problems connected to caus- 
tics: For e being small enough QCMD is justified as an approximation of 
QD if we exclude energy level crossings and discontinuities of the spectral 
decomposition. 

However, there remains one major question: 

Can QCMD describe non-adiabatic processes; is there any situation in 
which BO fails but QCMD or its bundle variants are still useful? 

By what we have seen before such a situation can only occur if there is an 
energy level crossing where Assumption (A) of Thm. 3 is hurt. In the next 
section, we will present a test example of this situation. 

3.3 Energy Level Crossings with Non-Adiabatic Excitations 

In his book [16], HAGEDORN classifies a11 energy level crossings that can occur 
generically with an electronic Hamiltonian according to the associated sym- 
metries. Each symmetry yields a finite number of typical, generic energy level 
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crossings. These generic situations are mathematically described by a normal 
form which reduces the general problem Eq. (1) to a simple low dimensional 
test problem. For time-reversible Hamiltonians there is just one normal form 
of an energy level crossing which moreover hurts the Assumption (A). 

This normal form reduces the Schodinger equation, Eq. (I), to a specific 
form where q E R2 remains a particle's position but x becomes a spin-like 
coordinate: 

Herein, H = H(q) and I, denote 2 x 2 Hermitian matrices, the entries of H 
being potential operators and I, being diagonal 

Thus, P E L~ (R2) x L ~ ( I R ~ )  consists of two components P = (PI, P2)T, each 
of which a function in the usual Hilbert space. The Hamiltonian is specified 
by the particular matrix 

The eigenvalues of H are El (q) = - Iql and E2(q) = Iql. Excluding the 
crossing at  the origin q = 0 and using polar coordinates q1 = r cosp  and 
q2 = r sin p,  yields the corresponding eigenvectors in the form 

The occurrence of the argument p/2 shows that these eigenvectors are defined 
up to a sign only. For a unique representation we have to cut the plane along a 
half-axis. By this, Q1 and Qi2 become smooth vector fields uniquely defined on 
the cut plane. They cannot, however, be continued over the cut, but change 
their roles there instead. Thus, we have the situation of a crossing at  which 
the eigenvector field is discontinuous and Assumption (A) of Thm. 3 is hurt. 

In the pure BO model, this discontinuity will be ignored. Let the initial 
values be given by 

with q,' > 0 and Q,' < 0 so that the initial motion is towards the crossing. In 
this case, the pure BO equations read q1 = - 1 and q2 = 0, i.e., the solution 
is 

1 %dt) = - 3t2 + 4,' t + q,', q;, (t)  = 0, 
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moving through the crossing 
As long as we have not passed the crossing, 

+ q;. 
i.e., for t < t,, Thm. 4 

describes the limit e --+ 0. Thus, the populations will be constant in [0, t,) in 
the limit e -+ 0: O1 = 1, O2 = 0. The crossing itself induces a true excitation 
of the second energy level, [14, 161:" 

O ; ( t )  = 0; + o(l) ,  for t = t ,  + 6, with 0: = [l + 
4go(tc) (26)  

Thus, passing the crossing induces a deeply non-adiabatic process. Directly 
behind the crossing Thm. 4 applies again, so that the information concerning 
the redistribution of population at the crossing is sufficient to denote the limit 
solution qHa for e -+ 0: While the second component remains zero ( - 0) 
we now have 

With initial conditions Eq. (25), the QCMD solution can be determined ex- 
plicitly. Surprisingly, there is for all e: 

Thus, neither BO nor QCMD can describe the non-adiabatic excitation at 
the crossing. However, as studied in [7], there is yet another feature of the 
QCMD model that could turn out to be useful here and might help to include 
the non-adiabatic process. After the crossing the adiabatic limit of QCMD 
is, in a sense, not uniquely determined: 

Theorem 5 ($4 in [7]). Let q,,, be the QCMD solution to the initial con- 
ditions 

with p > 0. Then, the limit process E ,  p -+ 0 is not unique, specifically 

Actually all points ij between the two curves qAo and iji, can be obtained as 
a limit solutions belonging to a particular pair of sequences e, p -+ 0. 

In a way, the limit set is thus the entire funnel between the two extreme 
1 cases qBo and iji,, Fig. 5. This effect is called Takens-chaos, [21, 5, 71. As 

a consequence of this theorem each momentum uncertainty effects a kind of 
L( disintegration" process at  the crossing. Thus, one can reasonably expect to 
reproduce the true excitation process by using QCMD trajectory bundles for 
"sampling the funnel." To realize this idea, we have to study the full quantum 
solution and compare it to suitable QCMD trajectory bundles. 

" For the connection of this result to the well-known Landau-Zener formula [23] 
see [Is]. 
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4 Energy Level Crossings and QCMD Bundles 

To illustrate the effect of the crossing on a QD solution !PC, Fig. 3 shows the 
projection of the probability density l!Pe j 2  onto the ql-plane for E = 1/100. 
We observe that the density disintegrates after passing the crossing. Its two 
main arms propagate along the curves qBO and q",, described above, i.e., the 
funnel of Thm. 5 reappears in the QD solution, however, this time, with 
an internal statistical structure. Fig. 4 shows the corresponding picture for 
a suitable QCMD trajectory bundle computation that clearly reflects the 
properties of the full QD solution. The following paragraphs explain how this 
QCMD bundle has been constructed. 

Fig. 3. Quantum solution PC of the test system of 53.3 for 6 = 1/100. PC computed 
numerically using Fourier pseudospectral methods in space and a symplectic dis- 
cretization in time. Reduced ql-density 1 I!#c (ql, q2, t)I2dq2 versus t and ql.  Initial 

1 1 data due to  (21) and (25) with q, = 0.2 and q, = -0.8. 

4.1 Different Trajectory Bundles 

Unfortunately, the semiclassical QCMD bundles, Eq. (14) in 52.3, are only 
of limited use here. To understand this, let us consider the q-expectation [q] 
of its solution f ). Recall that the expectation of a classical observable 
A = A(q, q )  with respect to the phase-space density f is given by 

[ A ] @ )  = J A h ,  4 f (q1 Q, t )  dq 4. 
Integration of Eq. (14) directly yields 

& [YI = - [{$ens gradqV(q)$enS)] 
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Because the Hamiltonian H = V depends linearly on q, the last expectation 
value is actually independent of f :  

Thus, [q] and $ens obey the following single trajectory QCMD system 

Hence, we just have proven the following proposition: 

Proposition 6. Let ($ens, f )  be the solution of the bundle equation, Eq. ( I d ) ,  
and [q] be the corresponding q-expectation. If the potential V depends linearly 
on q, [q] is identical with the solution q of the single trajectorg QCMD model 
with initial values q(0) = (q](O), q(0) = [q](O), and $(0) = $ens (0). 

Since QCMD reproduces the BO solution, we again have [q] = q,, ignoring 
the non-adiabatic excitation process at the crossing. Consequently, we have 
to modify the very concept of QCMD bundles. 

Remark: The statement of Prop. 6 is also valid for the q-expectation 
(q) = (P@, qP@) of the TDSCF solution. Consequently, TDSCF fails near 
the crossing, a fact, which emphasizes that the reason for this failure is con- 
nected to the separation step. 
Actually, Fig. 4 has been obtained using the following modification of the 
QCMD bundle: one propagates an ensemble of independent, single QCMD 
trajectories (qk, qk, $k),  k = 1,. . . , N :  

Initially, all the $k are identical: $k(t = 0) = $, and the classical states 
(qk, Qk)  sample the density ld,(t = 0)12 according Eq. (15),12 i.e., there is 
a weight factor wk for each trajectory k .  Consequently, for each time t the 
probability distribution p(ql) in q' can be approximated on any sufficiently 
large interval [ql, q1 + dql] by adding the weights of all trajectories passing 
this interval at time t: 

A comparison of Fig. 4 and Fig. 3 shows that this uncoupled QCMD bundle 
reproduces the disintegration of the full QD solution. However, there are 
minor quantitative differences of the statistical distribution. Fig. 5 depicts 

l2 For Hagedorn's initial condition Eq. (21), we have to choose /? = 2 / ~ :  in Eq. (15). 
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Fig. 4. ql-density p, Eq. (30), of a simulation for 6 = 1/100 using the uncoupled 
QCMD bundle. Same situation as in Fig. 3. 

the corresponding ql-expectation values together with HAGEDORN'S limit 
1 q -expectation q,, of QD for E + 0. We observe that for E = 1/100 and 

e = 11500 the ql-expectation of the uncoupled QCMD bundle approximates 
the ql-expectation of the corresponding QD solution which lie close to q,.. 
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Abstract. It was revealed that the QCMD model is of canonical Hamiltonian form 
with symplectic structure, which implies the conservation of energy. An efficient 
and reliable integrator for transfering these properties to the discrete solution is 
the symplectic and explicit PICKABACK algorithm. The only drawback of this kind 
of integrator is the small stepsize in time induced by the splitting techniques used to 
discretize the quantum evolution operator. Recent investigations concerning Krylov 
iteration techniques result in alternative approaches which overcome this difficulty 
for a wide range of problems. By using iterative methods in the evaluation of the 
quantum time propagator, these techniques allow for the stepsize to adapt to the 
classical motion and the coupling between the classical and the quantum mechanical 
subsystem. This yields a drastic reduction of the numerical effort. The pros and cons 
of both approaches as well as the suitable applications are discussed in the last part. 

1 Introduction 

Various kinds of mixed quantum-classical models have been introduced in the 
literature. We will concentrate on the so-called quantum-classical molecular 
dynamics (QCMD) model, which consists of a Schrodinger equation coupled 
to classical Newtonian equations (cf. Sec. 2). 

In this paper, we focus on numerical techniques for integrating the QCMD 
equations of motion. The aim of the paper is to systematize the discussion 
concerning numerical integrators for QCMD by: 

- giving a derivation of the different techniques based on a common con- 
struction principle, 

- classifying the application problems in order to link together the proper- 
ties of the integrators and the structure of the problem under considera- 
tion. 

For this purpose, a short overview will be given concerning some theoretical 
properties of the QCMD model (Sec. 2). This will allow for a suitable classi- 
fication of the application problems. In the course of the following discussion, 
we will introduce two different classes of integration techniques: 

In Sec. 3, some recent developments of "structure conserving" integrators 
will be reviewed. Such symplectic or symmetric integrators are build to pre- 
serve certain geometric properties of the exact QCMD sohition like energy 
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conservation or reversibility. They are preferable for applications to long-term 
simulations, but turn out to have some crucial disadvantages when short-term 
simulations up to a given precision are wanted. 

Hence, as the second class of techniques, we discuss adaptive methods 
for accurate short-term integration (Sec. 4). For this class, it is the major 
requirement that the discretization allows for the stepsize to adapt to the 
classical motion and the coupling between the classical and the quantum 
mechanical subsystem. This means, that we are interested in discretization 
schemes which avoid stepsize restrictions due to the fast oscillations in the 
quantum part. We can meet this requirement by applying techniques recently 
developed for evaluating matrix exponentials iteratively [12]. This approach 
yields an adaptive Verlet- based exponential integrator for QCMD. 

Finally, in Sec. 5, the theoretical results are illustrated by applying two 
adaptive schemes to the collinear photo dissociation of ArHCl. 

2 The QCMD Model 

There are various approaches to the problem of coupling quantum degrees of 
freedom to classical degrees of freedom. The QCMD model is given by the 
following equations of motion: 

The quantum degrees of freedom are described by a wave function q!I = 
$(x, t ) .  It obeys Schrodinger's equation with a parameterized coupling poten- 
tial V which depends on the location q = q(t) of the classical particles. This 
location q(t) is the solution of a classical Hamiltonian equation of motion in 
which the time-dependent potential arises from the expectation value of V 
with regard to q!I. For simplicity of notation, we herein restrict the discussion 
to the case of only two interacting particles. Nevertheless, all the following 
considerations can be extended to arbitrary many particles or degrees of free- 
dom. 

2.1 Conservation Properties of the QCMD Model 

In a first discretization step, we apply a suitable spatial discretization to 
Schrodinger 's equation, e.g., based on pseudospectral collocation [15] or fi- 
nite element schemes. From now on, we consider @, T, V and H as denoting 
the corresponrliw vector and matrix represent at ions, respectively. The total 
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energy expectation value of the system 

1 
7-l = +*H(q)lj, + 2 M l ~ 1 2 ,  

7, to which we will simply refer as energy", is a constant of motion [2]. An- 
other conserved quantity is the norm of the wave function, due to the uni- 
tary propagator in the quantum part. We are interested in constructing nu- 
merical integrators which reproduce these conservation properties. To this 
end, it is enormously helpful to observe that the QCMD equations are of 
canonical Hamiltonian form with respect to 7-t. In order to illustrate this 
fact, we decompose the wave function into a scaled real and imaginary part 
q5 = (q+ + ip+) / f i  and introduce generalized positions Q = (q+, q)T and 
momenta P = (p+, P ) ~ .  This allows for denoting the whole system (1) in 
canonical Hamiltonian form: 

with the usual symplectic structure (cf. [16]). 

2.2 Adiabatic Limit of QCMD 

QCMD describes a coupling of the "fast" motions of a quantum particle 
to the "slow" motions of a classical particle. In order to classify the types of 
coupled motion we eventually have to deal with, we first analyze the case of an 
extremely heavy classical particle, i-e., the limit M  + oo or, better, m / M  4 

0. In this "adiabatic limit", the classical motion is so slow in comparison 
with the quanta1 motion that it cannot induce an excitation of the quantum 
system. That means, that the populations Bk (t) = I (lj,(t), Qk (q(t))) 1 of the 
eigenstates Qk (q) of the Hamiltonian H (q) remain constant along the classical 
path q = q,,. Hence, the limit populations Bk(t) = Ok(0) may be computed 
from the initial conditions. The classical limit path is given by the time- 
dependent Born-Oppenheimer model: 

where the Ek (q) are the eigenenergies of H (q) (for details concerning the 
adiabatic limit see [21] in this collection, or (3, 11). The associated asymptotic 
expression for the wave function 

t 

$(t) = @ k ( ~ )  exp (-i 1 ~k (qBo(S))dS) Qk(q.0 (t)) 4- o ( J ~ )  
k - 

nonadiabaticity 
(4) 

deserves our attention because it uncovers some essential features of QCMD 
motion: 
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1. The quantal motion is highly oscillatory with frequencies given by the 
eigenvalues of the Hamiltonian H. 

2. For m/M small enough, the populations of the eigenstates GI, are nearly 
constant and the quantal motion is given in terms of the evolution of the 
eigenstates and eigenenergies Ek along q,,. 

3. For larger values of m/M, we have to expect nonadiabatic redistribution 
of the populations induced by the classical motion. 

2.3 Classification of Application Problems 

It is the aim of this paper to take into account a wide range of systems to 
which QCMD is applied. For a precise understanding of the situation, it is 
necessary to recognize the differences between these applications, because 
these differences demand for specific features of the numerical integrator. 
In the following, we will describe a suitable classification of the application 
problems. 

1. For long term simulations, it turns out that the reproduction of the con- 
servation properties is most important in order to ensure reliable results. 

2. For short term simulations, accuracy requirements on the discrete solu- 
tion make sense and we advocate error controlling adaptive integrators. 
Moreover, we have to further subdivide our classification due to the ob- 
servations in Sec. 2.2: 
(a) Problems with (nearly) adiabatic motion. 
(b) Problems with essentially nonadiabatic motion. 

In most real life applications, the evaluation of the forces acting on the classi- 
cal particles (i.e., the evaluation of the gradient of the interaction potential) 
is by far the most expensive operation due to the large number of classical 
degrees of freedom. Therefore we will concentrate on numerical techniques 
which try to minimize the number of force evaluations. 

3 Structure Conserving Integration Schemes 

Since we have discovered the underlying Hamiltonian structure of the QCMD 
model we are able to  apply methods commonly used to construct suitable 
rlumerical integrators for Hamiltonian systems. Therefore we transform the 
QCMD equations (1) into the Liouville formalism. To this end, we introduce 
a new state 2 in the phase space, t = (QN, P N ) ~ ,  and define the nonlinear 
Liouville operator LR ti = {ti, %}, using the common Poisson brackets 
{ , }. This permits us to denote the QCMD equations (1) in the form 5 = 
L 3 - I ~ .  The formal solution can now be written as 
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At this point we may apply well-known approximation techniques. For ea& 
decomposition of 7-t, i.e., 7-t = 7i1 S7-t~ +. . . , the corresponding Lie-generator 
decomposes accordingly 

Using splitting schemes of the exponential function allows for a generation of 
numerical integrators. For example [24, 221 : 

which can easily be extended to higher orders [25]. It should be pointed out 
that the given approximation orders, here and in the following, essentially 
depend on the smoothness of the solution, i.e., the error term may be affected 
by the highest quantum frequency excited. 

Note, that the choice of the 7 i k  crucially influences the properties of the 
resulting integrator. 

3.1 Symplectic Integrators 

A well-known property of symplectic integrators is the conservation of the 
total energy within a very accurate deviation range even for long term simu- 
lations. It can be shown that symplectic integrators in application to Hamil- 
tonian systems solve a system corresponding to a modified Hamiltonian with 
a small stepsize-dependent perturbation [S]. This leads to a "quasi conser- 
vation" of some first integrals, so that, for example, the total energy of the 
discrete solution oscillates around its initial value with a small amplitude 
that decreases with the stepsize used (cf. Fig. 1). This "structural stability" 
makes symplectic integrators superior for long term simulations. 

A convenient and constructive approach to attain symplectic maps is given 
by the composition of symplectic maps, which yields again a symplectic map. 
For appropriate 7-tk, the splittings (6) and (7) are exactly of this form: If the 
7ik are Hamiltonians with respect to the whole system, then the exp(rLB,) 
define the phase flow generated by these 7ik .  Thus, the exp(rLRk) are sym- 
plectic maps on the whole phase space and the compositions in (6) and (7) 
are symplectic maps, too. Moreover, in order to allow for a direct numeri- 
cal realization, we have to find some 7-tk for which either exp(rLhk) has an 
analytic solution or a given symplectic integrator. 

Pickaback We decompose 7-t into a kinetic and a potential term: 

P" 7- i  = 7-t1+ 7-t2 with Rl = - + $*T $ and R2 = $*V(q) $. 
2 M  

As shown in [16], the two corresponding flow maps, exp(rLRl) and 
exp(rLX,), can be represented analytically. Using the second order Strang 
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Fig. 1. Total energy (in kJ/mol) versus time (in fs) for different integrators for a 
collinear collision of a classical particle with a harmonic quantum oscillator (for 
details see [2]). Dashed line: Nonsymplectic scheme. Dotted: Symplectic integrator 
of first order. Solid: PICKABACK (symplectic, second order). 

splitting (7), we derive an integration scheme which is explicit, symplectic 
and symmetric. This scheme was denoted PICKABACK emphasizing the in- 
tcrwoven structure of the partial steps. 

A main advantage of PICKABACK is its reliability. But the reader might 
notice, that the splitting of the quantum propagator exp(-i$ H) restricts 
the stepsize to the order of the inverse of the largest eigenvalue of H. Thus, 
the overall time steps are connected to the shortest significant period of phase 
oscillation in the quantum subsystem - demanding more evaluations of the 
pure classical forces than required by the classical motion itself. In order to  
circumvent the problem we switch to symmetric but no longer symplectic 
met hods. 

3.2 Symmetric Integration Schemes 

Beneath the conservation properties of QCMD its equations of motion possess 
mother import;.l,1lt1 gc:c)1nc3tric structure by being time reversible. As shown in 
[lo], the appli(:iltJioll of sym~rwtrir integrators to reversible problems yields 
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the solution of a perturbed but again reversible problem. Hence, all the char- 
acteristics which are connected to reversibility are structurally inherited if 
the discretization scheme is symmetric. 

The splitting technique, introduced above for the construction of symplec- 
tic schemes, is also adequate for symmetric ones. Now, the only condition is 
that we have to split elL" symmetrically. To this end, let us consider the 
Liouville generator for the Hamiltonian 3.1 from above: 

decomposing as LX = L$ + Lam, with L$ acting on the classical coordinates 
and Lkm acting on the quantum subsystem only. This permits to  produce 
symmetric schemes via, for example, the second order Strang splitting: 

Using the symmetric Verlet algorithm for integrating exp(.rL$) yields: 

The question remains how to evaluate e x p ( - i ~ H ( q ~ ) / ( 2 h ) ) $ ~  while retaining 
the symmetric structure. In Sec. 4.2 we will introduce some iterative tech- 
niques for evaluating the matrix exponential but the approximative character 
of these techniques will in principle destroy the symmetry. 

Symmetric multiple time stepping An intriguingly simple idea for realizing a 
symmetric approximation of the matrix exponential is presented in 1201 (and 
is extended to symplectic splittings in [17]). I t  copes with the different time 
scales of classical and quantum degrees of freedom by splitting the quantum 
propagation in some small "substeps". The resulting scheme is a variant of 
(9) with its quantum steps replaced by 

The splitting of the quantum propagator negatively effects the efficiency of 
the scheme especially if m / M  is small, i.e., if the quantum oscillation are much 
faster than the classical motion and the number n of substeps is becoming 
inefficiently large. 
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4 Adaptive Methods 

4.1 Adaptive Stepsize Control 

We have to pay a price for the advantages of symplectic and symmetric meth- 
ods: The stepsize T has to  be constant during the simulation, because, up to  
now, there is no appropriate strategy for efficiently controlling the stepsize 
without destroying the "structural stability". This means, that the overall 
stepsize has to be reduced until it fulfills the accuracy requirements during 
the whole integration period. In many real life applications of QCMD, the 
dynamical behavior of the solution can change dramatically during the course 
of the simulation (collisions, excitation processes). In principle, one would like 
to make large time steps where "nothing important happens" and small ones 
where it is necessary to resolve important processes, i.e., the stepsize should 
be adapted to  the accuracy wanted. In Numerical Analysis, such stepsize con- 
trol strategies have extensively been discussed. In the following, we will give 
a brief overview on the usual strategy (for details cf. [4, 91). The conceptual 
framework requires the control of the approximation error in each time step 
via choosing the stepsize with respect to  a given accuracy requirement. That 
is, the stepsize is controlled in a way which bounds the local approximation 
crror by a given tolerance TOL. 

The local error in the step from time t to t + r, i.e., the error, which 
is produced by calculating a discrete solution in this step instead of exactly 
solving the QCMD equations, is given as follows: 

where exp(rLw) t (t) denotes the exact solution of the QCMD model and @; 
the discrete evolution of order p and with stepsize r, for example the map 
given by (9). 

Unfortunately, this local error 6 ,  cannot be calculated, since we do not 
know the exact solution to the QCMD equations. The clue to this problem is 
given by the introduction of an approximation to 6 , .  Let us consider another 
discrete evolution @: with an order q > p and define an error estimation 2, 
via Z, (t + r) = @; t (t) - @: z (t) . 

The control scheme tries to choose the stepsize r so that II2,II = TOL in 
some adequate norm. In case of a tolerance exceeding error, i.e., for IIt, 1 1  > 
TOL, one reduces the stepsize according to 

with an additional safety factor p < 1. The same formula is used in order 
to predict a proper stepsize for the next step. Problems can arise, when the 
error approaches zero. We cope with them by restricting the allowed increase 
of the stepsize. 

For realizing ( lo) ,  we need an adequate norm for measuring the error. It 
obviously m a k s  no s(:rls(> to use an Euclidian norm of z indiscriminately of 
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quantum and classical parts. We advocate the use of a scaled norm in the 
classical subsystem and the usual 2-Norm for the quantum part: 

where $, q and p denote the results of 8; and $ ,4  and f i  that of @,i. A 
threshold value s,in > 0 avoids an exploding error for locations or momenta 
close to zero. 

The error estimate approximates the error of the propagation with the 
less accurate method @;. Nonetheless, the next step is started with the more 
precise result of @;. 

We are now concerned with the selection of two integration methods of 
different order. A first idea - which we are not advocating - is to  use the 
PICKABACK integrator (8) as @; together with a first order scheme based 
on the Trotter formula (6) replacing @;. Recalling that the stepsize of these 
methods are dominated by the splitting of exp(-irH/h),  we actually foresee 
the effect of such an adaptive method. The scheme correctly resolves the 
dynamical behavior but forces the stepsize to  remain restricted to the order 
of the inverse of the largest eigenvalue of the Hamiltonian. An illustrative 
example of these drawbacks is given in Sec. 5. 

4.2 A Verlet-Based Adaptive Integrator 

A more convincing approach leads to  an adaptive method based on the sym- 
metric second order scheme (9). As a first step, we have to introduce a first 
order scheme substituting @; of the previous section. In what follows, we use 
the following pair of schemes: 

For comparison: ( 1 = ~ X P  (-ig H ( q o ) )  $0 

1st order 
Euler scheme 
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When considering the construction of exactly symmetric schemes, we are 
obstructed by the requirement to find exactly symmetric approximations to 
exp(-irHl(2fi)). But it is known [lo], that the usual stepsize control mecha- 
nism destroys the reversibility of the discrete solution. Since we are applying 
this mechanism, we now may use approximations to exp(-irH/ (2fi)) which 
are not precisely symmetric, i.e., we are free to take advantage of the superior 
efficiency of iterative methods for evaluating the matrix exponential. In the 
following, we will compare three different approaches. 

Chebyshev Approximation The well known expansion of exp(-irH/fi) 
into Chebyshev polynomials Tk [23] is one of the most frequently used inte- 
gration technique in numerical quantum dynamics: 

with appropriately chosen coefficients a k  and an estimate p for the spectral 
radius of the Hamiltonian H. This technique allows for large stepsizes if the 
truncation index N is chosen large enough. The N necessary for achieving 
a specific accuary depends linearly on the stepsize T and the spectral radius 
of H. We use an adaptive stopping criterion for the iteration based on the 
decay of the coefficients a k  [14]. 

Krylov Approximation of the Matrix Exponential The iterative ap- 
proximation of the matrix exponential based on Krylov subspaces (via the 
Lanczos method) has been studied in different contexts [12, 19, 71. After the 
iterative construction of the Krylov basis {ul , .  . . , u,), the matrix exponen- 
tial is approximated by using the representation A of H(q) in this basis: 

The evaluation of exp(-i.rA/fi) is cheap since A is tridiagonal. 
In [13], an efficient residual error estimation scheme has been introduced 

for controlling the quality of the approximation. This gives us a stopping 
criterion for the iteration guaranteeing that the quality of the approximation 
fits to  the accuracy requirements of the stepsize control. 

In most cases, this Lanczos-based technique proves to be superior to  the 
Chebyshev method introduced above. It is the method of choice for the appli- 
cation problems of class 2b of Sec. 2. The Chebyshev method is superior only 
in the case that nearly all eigenstates of the Hamiltonian are substantially 
occupied. 

However, using the Lanczos iteration for evaluating the matrix exponen- 
tial produces two eventual drawbacks. Firstly, the iteration does not use any 
of the information gathered in the last step. But if the eigenvectors undergo 
only minor changes from step to step, some approximate eigenvectors of the 
last  step may be used as good initial choices for the next iteration. This 
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idea can be realized by using Block-Lanczos iteration instead of the pure 
Lanczos scheme. The second drawback is important if the motion under 
consideration is nearly adiabatic and only a few, let us say m, eigenstates 
are occupied. By approximating these eigenstates in a Krylov basis with 
typically d > m basis vectors, the Lanczos scheme necessarily introduces 
(small) artificial populations of other than the m states occupied. From time 
step to time step, this will lead to an artificial and unwanted blow-up of the 
dimension of the occupied subspace. 

Subspace-Cont rolling Iteration Met hods Out of this observation we 
also studied some subspace-controlling algorithms. In these approaches, we 
do not try to construct an (eventually large) basis set for transforming the 
Hamiltonian into a form appropriate for an efficient evaluation of the matrix 
exponential. Instead of this, we directly approximate a (small) basis set for 
the relevant (small) subspace. Only then, the matrix exponential is computed 
using this basis. In the course of the iteration, appropriate error estimates 
control whether the subspace dimension has to be increased or may be re- 
duced. Mainly two techniques were tested in order to  evaluate the basis set: 
a simultaneous minimization of the Rayleigh quotient in the subspace via 
an appropriately preconditioned conjugate gradient iteration [6] and a multi 
grid approach to the eigenvalue problem as introduced in 151. Both techniques 
prove to be superior to  the Lanczos approach for nearly adiabatic problems 
with very few eigenstates occupied (class 2a). But they quickly get inefficient 
if a nonadiabatic excitation of previously unimportant states is essential. 

5 An Illustrative Example 

In this section, the theoretical results are checked and illustrated by numerical 
simulations. Therefore we consider a well-known test problem which is of 
class 2b in our classification from page 399: a photo dissociation process of a 
collinear ArHCl molecule (see Fig. 2). The photo dissociation is modeled via 
a transition of the bounding Hydrogen-Chlorine ground state into a repulsive 
excited state. The Hydrogen starts oscillating between Argon and Chlorine 
transferring more and more kinetic energy to the Argon atom. 

Using Jacobi coordinates and reduced masses, the Hydrogen-Chlorine in- 
teraction is modeled quantum mechanically whereas the Ar-HC1 interaction 
classically. The potentials used, initial data and additional computational 
parameters are listed in detail in 1161. 

Obviously, one test example is not enough to illuminate all the effects 
pointed out previously. Thus, we have to concentrate herein on some main 
ideas. An extensively example-based comparison is in preparation [18]. 

The stepsize controlling adaptive QCMD integrators presented in the 
previous section differ only with respect to  the approximaption of the quan- 
tum propagation. We herein compare three of these integrators, a11 of them 
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Fig. 2. Collinear ArHC1-system with the Jacobi-coordinates used. 

equipped with the stepsize control mechanism (10): two integrators based 
on the pair of discretization schemes from page 404, with on one hand a 
Chebyshev approximation and on the other hand a Krylov approximat ion 
of the matrix exponential, and - just to  show the stepsize restriction due to 
the splitting of the quantum propagator - a stepsize controlled Pickaback 
scheme. 

To begin with, we compare the stepsizes used in the simulations (Fig. 3). 
As pointed out before, it seems to be unreasonable to equip the Pickaback 
scheme with a stepsize control, because, as we indeed observe in Fig. 3, the 
stepsize never increases above a given level. This level depends solely on the 
eigenvalues of the quantum Hamiltonian. When analyzing the other inte- 
grators, we observe that the stepsize control just adapts to  the dynamical 
behavior of the classical subsystem. The internal (quantal) dynamics of the 
Hydrogen-C hlorine subsystem does not lead to stepsize reductions. 

Large stepsizes result in a strong reduction of the number of force field 
evaluations per unit time (see left hand side of Fig. 4). This represents the 
major advantage of the adaptive schemes in comparison to  structure conserv- 
ing methods. On the right hand side of Fig. 4 we see the number of FFTs 
(i.e., matrix-vector multiplication) per unit time. As expected, we observe 
that the Chebyshev iteration requires about double as much FFTs than the 
Krylov techniques. This is due to the fact that only about half of the eigen- 
states of the Hamiltonian are essentially occupied during the process. This 
effect occurs even more drastically in cases with less states occupied. 

Everything seems to be in favor of the stepsize controlling schemes, but the 
reader might notice, that there are -up to now- some drawbacks. When 
computing the autocorrelation function, e.g., the complex valued function 
d!(O)*$~(t), used for instance in the calculation of absorption spectra, we find 
a substantial phase shift in the discrete solution. This results from the fact 
that the error control mechanism is not adapted to detect phase errors be- 
cause both schemes from page 404 depend on pointwise updates of the Hamil- 
tonian only. It should be possible to overcome this problem by applying al- 
ternative Verlet-based schemes using averaged updates and forces. Promising 
candidates for these schemes were recently introduced by HOCHBRUCK and 
LURICH (see [I I ]  i l l  tJllis ~ollect~ion). Extensive numerical experiments using 
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Ar-H H-Cl Ar-H 
Collision Collision Collision 

Fig. 3. Stepsize T used in the simulation of the collinear photo dissociation of 
ArHC1: the adaptive Verlet-based exponential integrator using the Lanczos iter- 
ation (dash-dotted line) for the quantum propagation, and a stepsize controlling 
scheme based on PICKABACK (solid line). For a better understanding we have added 
horizontal lines marking the collisions (same tolerance TOL). We observe that the 
quanta1 H-Cl collision does not lead to any significant stepsize restrictions. 

Fig. 4. Photo dissociation of ArHC1. Left hand side: the number of force field 
evaluations per unit time. Right hand side: the number of Fast-Fourier-transforms 
per unit time. Dotted line: adaptive Verlet with the Chebyshev approximation 
for the quantum propagation. Dash-dotted line: with the Lanczos iteration. Solid 
line: stepsize controlling scheme based on PICKABACK. If the FFTs are the most 
expensive operations, PICKABACK-like schemes are competitive, and the Lanczos 
iteration is significantly cheaper than the Chebyshev approximation. 
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such schemes in the adaptive context introduced herein will be presented in 
n forthcoming paper [18]. 

6 Conclusions 

We discussed numerical integration techniques for different classes of appli- 
cations of QCMD. We mainly distinguished between long and short term 
simulations. Short term simulations are characterized by the fact that spe- 
cific (global) accuracy requirements for the numerical solution make sense. 
For long term simulations one is more interested in certain stability and con- 
servation properties of the solution, despite the fact that its global accuracy 
might be spoiled by the amplification of numerical error. Consequently, the 
advocated numerical techniques should be divided into two categories: 

Long term simulations require "structurally stable" integrators. Symplec- 
tic and symmetric methods nearly perfectly reproduce structural properties 
of the QCMD equations, as, for example, the conservation of the total en- 
ergy. We introduced an explicit symplectic method for the QCMD model - 
the PICKABACK scheme- and a symmetric method based on multiple time 
stepping. 

For short-term simulations we advocate the use of stepsize controlling 
integrators which gain efficiency by adapting the stepsize to  the dynamics 
of the system. We presented an adaptive Verlet-based exponential integrator 
for QCMD with iterative evaluation of the quantum propagation. It permits 
11s to use stepsizes which are not restricted by the fast phase oscillations in 
the quantum part. For the iterative realization of the quantum propagation 
steps, we analyzed three different approaches: the Chebyshev approximation, 
the Lanczos iteration and a subspace controlling method. For the application 
problems with a (nearly) adiabatic behavior (class 2a from page 399), the 
subspace controlling method appeared to be best suited, because it does not 
artificially blow up the excited subspace. For all other cases of short-term 
simulation (class 2b), we advocate the Lanczos iteration scheme owing to  its 
efficient adaption of the basis set to the dynamical behavior. 

Acknowledgement. It is a pleasure to thank M. Hochbruck and Ch. Lubich 
for their helpful comments on the topics of this paper. 
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Abstract. The overall Hamiltonian structure of the Quant um-Classical Molecular 
Dynamics model makes - analogously to classical molecular dynamics - symplectic 
integration schemes the methods of choice for long-term simulations. This has al- 
ready been demonstrated by the symplectic PICKABACK method [19]. However, 
this method requires a relatively small step-size due to the high-frequency quan- 
tum modes. Therefore, following related ideas from classical molecular dynamics, 
we investigate symplectic multiple-time-stepping methods and indicate various pos- 
sibilities to overcome the step-size limitation of PICKABACK. 

1 Introduction 

In this paper, we consider the symplectic integration of the so-called 
Quantum-Classical Molecular Dynamics (QCMD) model. In the QCMD 
model (see [ll, 9, 2, 3, 61 and references therein), most atoms are described by 
classical mechanics, but an important small portion of the system by quan- 
tum mechanics. This leads to a coupled system of Newtonian and Schrodinger 
equations. 

We focus on so-called symplectic methods [18] for the following reason: 
It has been shown that the preservation of the symplectic structure of phase 
space under a numerical integration scheme implies a number of very desirable 
properties. Namely, 

- symplectic methods preserve the total energy over very (exponentially) 
long periods of time up to small fluctuations [2, 11, 141 and 

- symplectic methods also conserve the adiabatic invariants of the problem 
under consideration [15]. 

Note that the same results have not been shown for symmetric (time- 
reversible) integration methods, although symmetric methods seem to per- 
form quite well in practice. For a discussion of symmetric methods in the 
context of the QCMD model see [16, 17, 131. 

For ease of presentation, we consider the case of just one quantum degree 
of freedom with spatial coordinate x and mass m and N classical particles 
with coordinates q E R3N and diagonal mass matrix M E R 3 N x 3 N  u . pon 
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denoting the interaction potential by V(x, q )  , we obtain the following equa- 
tions of motion for the QCMD model: 

with Ucl a purely classical potential energy function and with H (q) the quan- 
tum Hamiltonian operator given by 

In the sequel, we assume that the quantum subsystem has been truncated 
to a finite-dimensional system by an appropriate spatial discretization and 
a corresponding representation of the wave function $ by a complex-valued 
vector + E Cd. The discretized quantum operators T, V and H are denoted 
by T E Cdxd ,  V (q) E Cdx and H ( q )  E Cd x d ,  respectively. In the following 
construction of the time-propagators, we will exploit special matrix structures 
of some spatial discretizations: 

a) V(q) is diagonal, 
b) H (q) is real-valued, and 
c) all other cases. 

2 Conservation Properties of the QCMD Model 

For long-term simulations, it generally proves advantageous to consider nu- 
merical integrators which pass t he structural properties of t he model onto t he 
calculated solutions. Hence, a careful analysis of the conservation properties 
of QCMD model is required. A particularly relevant constant of motion of 
the QCMD model is the total energy of the system 

Here +* denotes the conjugate transpose of +. Another conserved quantity is 
the norm of the vector +, i.e., +* + = const. due to the unitary propagation 
of the quantum part. 

In the context of this paper, the most important conservation property 
of QCMD is related to its canonical Hamiltonian structure which implies 
the symplecticncss of thr  soh.ition operator [I]. There are different ways to 
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consider the QCMD model as a canonical Hamiltonian system with Hamil- 
tonian (1). Here we follow the presentation given in [3, 161: We decompose 
the complex-valued vector @ into its real and imaginary part, i.e., 

Then, after introducing generalized positions Q = (q;, qT)T E Rd+3N and 
generalized momenta P = (p$,pT)T E R ~ + ~ ~ ,  the equations of motion can 
be written as 

These equations of motion are also time-reversible [13]. 
Finally, we like to mention that the QCMD model reduces to the Born- 

Oppenheimer approximation in case the ratio of the mass m of the quantum 
particles to the masses of the classical particles vanishes [6]. This implies 
that the populations IBi(t) 1 2 ,  i = 1, . . . , k ,  corresponding to the eigenvalues 
Ei (q(t))) of the operator H (q) become adiabatic invariants. 

Note that the conservation of total energy and the conservation of the 
adiabatic invariants associated to the Born-Oppenheimer limit of the QCMD 
model provide a simple test for the behavior of a numerical integrator. 

3 Construction of Symplectic Integrators 

Our aim is the construction of numerical integrators which reproduce the 
conserved quantities in long-term simulations. To this end, we focus on sym- 
plectic methods, i.e., methods that conserve the canonical structure of phase 
space [18]. A convenient way to derive symplectic methods for general Hamil- 
tonian systems is based on an appropriate splitting of the Hamiltonian 'F1 into 
a sum of sub-Hamiltonians, e.g., the two-term decomposition XI + R2, each 
of which corresponds either to an explicitly solvable system or has a given 
symplectic integrator [18]. This procedure can be illustrated using a phase 
space representation of the Hamiltonian flow. The t ime-evolution over At 
units of time is then given by exp(AtLn) where LE is the Liouville opera- 
tor of the whole system (18, 191. The Liouville operator exp(AtLn) can be 
approximated via the second order Strang splitting [18] : 

The resulting numerical method is obviously symplectic since exp(?l.n,) 
and exp(&LZ,) are symplectic maps and the composition of s~mplectic maps 
yields a symplectic map. 
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The symplectic PICKABACK method [lg], for instance, uses the following 
select ion: 

The corresponding differential equations can be solved explicitly provided the 
operator V(q)  is diagonal. 

PICKABACK conserves tot a1 energy up to small fluctuations and the 
norm of the vector + exactly. Its main drawback is the step-size restriction 
which is of the order of the inverse of the largest eigenvalue of the quantum 
operator H ( q )  . Thus, if the evaluation of the operator V(q) and the gradients 
V, V(q)  and V, Ucl (Q) are expensive due to long-range interactions, then 
the PICKABACK scheme can become inefficient, i.e., the permitted step- 
size might be much smaller than required by the pure classical dynamics. 
To overcome this problem, symmetric integration schemes are considered in 
[l6, 171 and [13]. 

4 Symplectic Mult iple-Time-Stepping Met hods 

Here we suggest a different approach that propagates the system using mul- 
tiple step-sizes, i.e., few steps with step-size At are taken in the "slow" 
classical part whereas many smaller steps with step-size 6t are taken in the 
highly oscillatory quantum subsystem (see, for example, (19, 41 for symplectic 
multiple-time-stepping methods in the context of classical molecular dynam- 
ics). Therefore, we consider a splitting of the Hamiltonian 7-1 = 'FI1 + 'F12 in 
the following way: 

Let us write down the corresponding differential equations. First for 7-1': 

next for ;Ft2 : 
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The solution to IFtl is just a translation of classical particles with constant 
momentum p. 

The intriguing point about the second set of equations is that q is now 
kept constant. Thus the vector + evolves according to a time-dependent 
Schrodinger equation with time-independent Hamilton operator H (q) and 
the update of the classical momentum p is obtained by integrating the 
Hellmann-Feynman forces [3] acting on the classical particles along the com- 
puted +(t) (plus a constant update due to  the purely classical force field). 

Upon computing the eigenvalues of the operator H (q) , the equations 
(3)-(5) can be solved exactly. However, this is, in general, an expensive un- 
dert aken. Therefore we proceed with the following mult iple-time-stepping 
approach: The first step is to  consider the identity 

Y 

j t i m e s  

where 6t = A t l j ,  j >> 1, and 

The second step is to use this identity in (2) which yields 

At 
exp (AtL%) = exp(- L%, ) exp(btL%,) . . . exp(g tL~, )  . 

2 \ 
Y 

/ 

j t i m e s  

The last step is to find a symplectic, second order approximation @& to 
exp(6tLG2). In principle, we can use any symplectic integrator suitable for 
time-dependent Schrodinger equations (see, for example, [9]). Here we focus 
on the following three different possibilities corresponding to special proper- 
ties of the spatially truncated operators H ( q )  and V(q). 

a) Provided that V(q) is diagonal, an efficient method @st is obtained by 
exploiting the natural splitting of the quantum operator H ( q )  = T + 
v ( q )  in a procedure similar to the one used in PICKABACK. This yields 
two exactly solvable subsystems [19] 

= +*T+ and %,2 = +*V(q)+. 

Again, we use (2) to construct a symplectic, second order approximation 
Cat to exp(6t L%J. The resulting integrator for QCMD is of second order, 
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explicit, symplectic, and conserves the norm of the wave-function: 

- 

j times the 
( 4 k I j  - 

application of Gat; 

k =  l . . . j  
exp (-i 4 T )  exp (+t v ( q l I 2 ) )  G k I j  

b) If the spatially discretized quantum Hamiltonian operator H ( q )  is real- 
valued, i.e., 

then the Hamiltonian ";I can be written as 

1 1 
f i 2  = - q $ ~ ( q ) q +  2h + z ~ $ ~ ( d ~ +  - - 

3 i 2 , 1  f lZ.2 

and the equations of motion corresponding to each of the two terms in 
the Hamiltonian ";I, namely 

and 
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can be solved analytically. Thus we define 

(Pht = exp (:L%~,~) exp(6tLG 2,2  ) exp 

For stability reasons, the micro-step-size bt has to be chosen smaller than 
the inverse of the largest eigenvalue of the (scaled) truncated quantum 
operator h - ' ~ ( ~ ) .  This can imply a very small value of bt compared to 
the macro-st ep-size At. 

c) The most straightforward but also an expensive Qst is obtained by dis- 
cretizing the equations of motion corresponding to f i 2  by the (symplectic) 
implicit midpoint rule which results in 

k = 1,. . . , j ,  with qb(k-1/2)/j = (Qktklj 4- @(k-l)/j)/2. Note that each 
integration step requires the solution of a d-dimensional linear system of 
equations in the unknown Qk/ 

Our multiple-time-stepping met hods are close to met hods suggested in 
116, 171. The method considered in [16] is time-reversible but not symplectic. 
More importantly, the method updates the momenta p of all classical parti- 
cles only once per macro-time-step At. As indicated in [lo,  131, this might 
lead to a substantial phase drift in the discrete solution. In [lo], an averag- 
ing procedure of the quantum-classical Hellmann-Feynman force field along 
Q(t) is suggested to overcome this problem. Note that, for the multiple-time- 
stepping schemes suggested here, this averaging is carried out automatically 
and is a direct consequence of proposed splitting of the Hamiltonian equa- 
tions of motion. We finally like to mention that symplectic methods are also 
discussed in 1171. In particular, the suggested methods are symplectic in the 
quantum part and the classical part if considered separately, However, this 
does not imply that the overall method is symplectic. 

5 Conclusions 

We have derived time-reversible, symplectic, and second-order multiple- 
time-stepping met hods for the finite-dimensional QCMD model. Theoretical 
results for general symplectic methods imply that the methods conserve 
energy over exponentially long periods of time up to small fluctuations. 
Furthermore, in the limit m -+ 0, the adiabatic invariants corresponding to 
the underlying Born-Oppenheimer approximation will be preserved as well. 
Finally, the phase shift observed for symmetric methods with a single update 
of the classical momenta p per macro-time-step At should be avoided by 
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the suggested methods. The additional costs for this frequent update per 
micro-time-step bt are relatively low. Note that the update only requires 
taking the inner product t /~*V,v (~ ) t /J  with respect to a constant gradient 
V,V(q) and only with respect to those classical particles that interact with 
the quantum degree of motion. 

Acknowledgement. It is a pleasure to thank Christof Schiitte for discus- 
sions on the subject of this paper. 
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Abstract. We present novel time integration schemes for Newtonian dynamics 
whose fastest oscillations are nearly harmonic, for constrained Newtonian dynam- 
ics including the Car-Parrinello equations of ab initio molecular dynamics, and for 
mixed quantum-classical molecular dynamics. The methods attain favorable prop- 
erties by using matrix-function vector products which are computed via Lanczos' 
method. This permits to take longer time steps than in standard integrators. 

1 Introduction 

In this paper we present a number of time integrators for various problems 
ranging from classical to quantum molecular dynamics. These integrators 
share some common features: they are new, they are second-order accurate 
and time-reversible, they improve substantially over standard schemes in well- 
defined model situations - and none of them has been tested on real appli- 
cations at  the time of this writing. This last feature will hopefully change in 
the near future [20]. 

On a more technical level, a further common feature of all the schemes 
proposed here is that they require the computation of the product of an 
analytic function of a symmetric matrix with a vector. Integration schemes 
employing matrix functions apparently have not hitherto been used in prac- 
tice, except in a few special cases where direct diagonalization is possible. 
However, since the mid-eighties, starting with a paper by Park and Light 
[21] on quantum propagators, Lanczos' method has been put to  good use in 
approximating matrix-function vector products. More recently, the excellent 
convergence properties of this approach have been clarified in [7, 121. This 
motivated the development of the general-purpose ODE integrator exp4 in 
[15]. Employing matrix functions in an integrator enables us to obtain favor- 
able properties, such as exact integration of linear differential systems with 
constant coefficients. This is very advantageous for problems where the fastest 
oscillations are nearly harmonic. Matrix functions add a welcome element to 
the construction of integration schemes. The freedom thus gained can be used 
for designing new integrators tailored to specific applications, as we try to 
demonstrate with the methods in this paper. A theoretical error analysis of 
these schemes is given in [13, 141. We hope that the proposed integrators, or 
closely related orl(>s, will 1)e found useful - in molecular dynamics. 
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2 Newtonian Equations of Motion 

In this section we consider the classical equations of motion of particles in 
cases where the highest-frequency oscillations are nearly harmonic: The posi- 
tions y(t) = {yi(t)} evolve according to the second-order system of differential 
equations 

My = -Ay + f (y). 

Here, M is a constant, symmetric positive defin .ite mass matrix. We assume 
without loss of generality that M is simply the identity matrix I. Otherwise, 
this is achieved by the familiar transformation 

We assume that A is a symmetric and positive semi-definite matrix. The case 
of interest is when the largest eigenvalue of A is significantly larger than the 
norm of the derivative of the nonlinear force f .  A may be a constant matrix, 
or else A = A(y) is assumed to be slowly changing along solution trajecto- 
ries, in which case A will be evaluated at  the current averaged position in 
the numerical schemes below. In the standard Verlet scheme, which yields 
approximations yn to y(nAt) via 

the time step At is then limited by the inverse of the largest eigenvalue 
of A. We are aiming at  methods whose step size is restricted only by the 
nonlinearity f .  To motivate the derivation of such a scheme, we start from 
the linear equation with constant force vector 

y = - A y + f  (A, f constant) 

whose exact solution satisfies 

y(t + At) - 2y(t) + y(t - At) = At2 a ( A t 2 ~ )  ( - A Y ( ~ )  + f )  

with the complex function 

Approximating the nonlinear force f(y) over a time step by a suitable con- 
stant vector leads to a scheme whose origins for scalar equations can be traced 
back to [lo]: 
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with 

Here, the obvious choice would be yn = yn.  However, as was first proposed 
in [8] for a different method described at the end of this section, it turns out 
to be favorable to take an averaged position value 

with a suitably chosen filter function 4(t),  or eventually a translated version 
of (6), with some reference position y*,  

The choice of 4 strongly influences the mixing of frequencies by the nonlin- 
carity. Two possible choices are 

sin Jf 
$(t) = 40b) = fi , 

which is a filter function suggested in [8], or preferably 

Of course, to make the scheme (4) practical, we must be able to compute the 
products of matrix functions o(At2A) and $(At2A) with vectors efficiently. 
This will be discussed in Section 5. 

From the derivation of the method (4) it is obvious that the scheme is 
exact for constant-coefficient linear problems (3). Like the Verlet scheme, it 
is also time-reversible. For the special case A = 0 it reduces to the Verlet 
scheme. It is shown in [13] that the method has an 0 ( A t 2 )  error bound 
over finite time intervals for systems with bounded energy. In contrast to the 
Verlet scheme, this error bound is independent of the size of the eigenvalues 
AI, of A. 

It turns out that the error is essentially determined by a two-dimensional 
scalar function ~ ( z ,  y )  evaluated a t  z = wk At, y  = wl At, where wk = are 
the frequencies of the linear system (3). This error function depends strongly 
on the choice of 4. The most obvious choice 4 r 1 suffers from resonances, 
which express themselves in singularities of E at arguments that are integer 
multiples of r. This leads to a loss of accuracy in resonance situations. The 
same is true for the choice 4 = o, For 4 given by (7) and (8) no such problems 
occur. The choice (8) has the advantage that it drastically reduces the error 
function le(x, ?/)I for small x, y and therefore gives better accuracy. See [13] 
for more d e t d s  on the error analysis. 
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A widely used variant of the Verlet scheme is its velocity version: 

with f n  = f (yn) .  Similarly, also the scheme (4) admits a velocity version, 
which this time works with averaged velocities 

1 At 

vn o p0(At2A) ~ ( n d t )  o - 1 y ( n A t  + r) dr. 
2At -At  

This one-step version of (4) reads (for f n  of (5) with yn of (6)) 

A different "long-time-step method" was previously proposed by Garcia- 
Archilla, Sanz-Serna, and Skeel [8]. Their mollzfied impulse method, which 
is based on the concept of operator splitting and also reduces to  the Verlet 
scheme for A = 0 and admits second-order error estimates independently of 
the frequencies of A ,  reads as follows when applied to  ( I ) :  

where f n  is again given by (5) and (6). Eliminating the (non-averaged) ve- 
locities, this scheme can be shown t o  become 

where b ( t )  = 4 ( t )  $ ~ ( z )  - o(t). A comparison of theoretical properties of 
(10) and (1 1) is given in (131. 

3 Car-Parrinello Equations of A b Initio Molecular 
Dynamics, Constrained Newtonian Dynamics 

In the Car-Parrinello method [6] (and see, e.g., [24, 25, 16, 4]), the adia- 
batic time-dependent Born-Oppenheimer model is approximated by a ficti- 
tious Newtonian dynamics in which the electrons, represented by a set of 
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wave functions {I*)}, follow the motion of the ions, represented by a set 
of positions {Rj}. The model involves a small fictitious-mass parameter p 
which keeps the fictitious kinetic energy of the electrons small compared to 
the kinetic energy of the ions. The dynamics is determined by the Kohn-Sham 
energy functional E ({R J )  , { and by the orthonormality constraint for 
the orbitals. The Euler-Lagrange equations of motion then read, with La- 
grange multipliers Ajk , 

After spatial (spectral) discretization, this becomes a large finite-dimensional 
system in the evolution variables y = [{Rj}, {t,bj}] of the form 

where G = dg/dy. The splitting of the forces might be such that A represents 
the discretized Laplacian contained in the Kohn-Sham Hamiltonian, or, e.g., 
A = A(y)  contains in addition the Jacobian of the local interaction forces. 
The choice of the most effective splitting may depend on physical insight 
into the specific problem a t  hand, and quite probably on extensive numerical 
experiments. 

The standard numerical integrators for the constrained system (12) are 
the SHAKE scheme [23], which extends the Verlet method (2), 

and the RATTLE scheme [I], which extends the velocity Verlet method (9). 
There, one first solves for yn+' in 

yn+l = yn  + A t v  n+1/2 

and subsequently for vn+' in 
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In the same ways, the scheme (4) extends to 

and its averaged-velocity version (10) extends to 

in the first half-step, and 

in the second half-step. Here yn is again defined as in (6). 
Both methods are time-reversible. For A = 0, they reduce to SHAKE 

and RATTLE. In contrast to SHAKE and RATTLE, the time step is not 
restricted by the largest eigenvalue of A. 

4 Quantum-Classical Molecular Dynamics 

In the mixed quantum-classical molecular dynamics (QCMD) model (see 
[ S l ,  9, 2, 3, 51 and references therein), most atoms are described by clas- 
sical mechanics, but an important small portion of the system by quantum 
mechanics. The full quantum system is first separated via a tensor product 
ansatz. The evolution of each part is then modeled either classically or quan- 
tally. This leads to a coupled system of Newtonian and Schrodinger equations. 

For ease of presentation only, we here consider the case of two particles 
having spatial coordinates x and y, and masses m and M, with m << M. 
With the interaction potential V(x, y), the quantum Hamiltonian H is given 
by 

The equations of motion of the QCMD model read 

where H' = V, H = VyV. After spatial discretization in x, we obtain a large 
finite-dimensional system 
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with the matrix H(y)  = T + V(y) ,  where both T and V(y)  are real and 
symmetric, and T is positive semi-definite. T is a constant matrix (the dis- 
cretized Laplacian) of which we assume no bounds. On the other hand, V(y) 
and its first two derivatives are assumed to be moderately bounded. Typi- 
cally, T is transformed to diagonal form by discrete Fourier transforms, and 
V(y)  is a diagonal matrix. 

A quite successful integrator for (16), which is based on the idea of op- 
erator splitting, is the PICKABACK scheme of Nettesheim et al. [19]. With 
the shorthand notation 

their scheme reads 

This scheme requires the exponential only of matrices that are diagonal or 
transformed to diagonal form by fast Fourier transforms. Unfortunately, this 
matrix splitting leads to time step restrictions of the order of the inverse 
of the largest eigenvalue of T/h.  A simple, Verlet-like scheme that uses no 
matrix splitting, is the following: 

qn+1/2 - - e x  ( i  Hn) $ ,  = exp (-i At Hn) qn-1/2(2~)  

with Hn = H(yn). We note that here (and in the schemes to follow) the 
y-recursion could be rewritten in the velocity form (9). The action of the 
exponential is now approximated by the Lanczos method described in Sec- 
tion 5, with a Krylov subspace corresponding to the matrix Hn and the 
vector +n-'/2. Like (17), the scheme (18)-(20) is time-reversible, is unitary 
in the quantum part, evaluates the Hamiltonian and its gradient at the same 
position, and has fwna.1 order of accuracy 2. However, second-order error 
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bounds independently of the highest frequencies can be obtained only under 
unreasonable smoothness assumptions about the solution. 

In the following we devise, following [14], an efficiently implementable 
scheme which leads to favorable error bounds independently of the highest 
frequencies under the mere assumption that the system has bounded energy. 
The scheme will be time-reversible, and robust in the singular limit of the 
mass ratio m / M  tending to 0. 

We first deal with the y-equation. We start from the identity 

Y (t + At) - 2y(t) + y (t - At) = (At - 7) (y  (t + 7) + y (t - 7)) d r  , 

which leads us to replace the pointwise force evaluation of (18) by 

yn+l  - 2yn + yn-l - - $ lAt (At - r) ( fn( r )  + f "(-7)) d r  

f n  (7) = -+"(r)* H' (yn) +"(r) 

dn(r) = exp (-irHn) qn , 

where t,bn can be determined from (19)-(20). Section 5 shows that the scheme 
(21) can still be implemented efficiently using Lanczos' method, at the ex- 
pense of computing a number of inner products in addition to (18). The 
accuracy of this scheme is limited by the recursion for +. 

With H~ = H'(yn)vn and vn  = (ynil - yn-')/(2At), we define the 
Her mitian matrix 

and consider the following symmetric and norm-preserving scheme: 

At +" = exp ( i ~ t ' ~ " )  exp (-i H") +"-'I2 7 

At 
= exp (-i H") exp ( - i ~ t ~ ~ ~ )  dn . 

This formula can be motivated by applying the variation of constants 
formula to ih4 = Hn+ + (H(y) - Hn)@. The method can be implemented 
using Chebyshev approximations to the exponential, see (1.41. 

For the combined scheme (21), (B), second-order error bounds are derived 
in [14]. These bounds hold independently of the size of the eigenvalues of T, 
and without assumptions about the smoothness of the solution, which in 
general is highly oscillatory. 

For the system (16) it is known [5] under non-resonance assumptions 
that in the limit m / M  --+ 0 the motion of the classical particle is governed 
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by the Born-Oppenheimer potential (more precisely, by its approximation 
corresponding to the space discretization (16)), 

Letting m / M  --+ 0 in the numerical method, it can be shown that the solution 
given by (21) tends to a small perturbation of the Verlet method formally 
applied to that equation: 

This is apparently not true for (18) and similar schemes with pointwise force 
evaluation. 

Recently, there has been an effort to correct the tensor-product ansatz 
underlying the QCMD and many other models. In the Configuration Interac- 
tion extension of the Classical Separable Potential approach [17], Jungwirth 
and Gerber use first classical trajectories to guide the selection of impor- 
tant correlation terms and to simplify multidimensional integral evaluations 
for a subsequent quantum propagation. That approach requires the numer- 
ical solution of a large number of 1-dimensional Schrodinger equations with 
time-dependent Hamiltonian, 

These can again be solved by the scheme (23), interpreting now Hn = H(tn)  
and H" = B( tn )  in (23) and (22). 

5 Implementation Using Lanczos' Method 

A common ingredient of all the schemes proposed in this article is the com- 
putation of the product of an entire function of a real symmetric matrix with 
a vector, v(S) b. In the various schemes, this is needed for v(t)  = o(At2z),  
+(At2t) ,  or e and for S = A or S = H. Computing v(S)b is an easy 
task when the eigendecomposition of S is available, e. g., when S is a spec- 
trally discretized Laplacian. However, computing the eigendecomposition of 
a general symmetric matrix of large dimension is prohibitive because of mem- 
ory requirements and computational effort, in particular so when a different 
matrix occurs in every time step. 

We here describe the alternative of approximating v(S)b via Lanc- 
80s' method. The Lanczos process [18, 221 recursively generates an 
orthonormal basis Qm = [ q ,  . . . , ] of t h e  mth Krylov subspace 
span{b, Sb, . . . , Sm-'b) such that 



430 Hochbruck, Lubich 

with the m x m tridiagonal Lanczos matrix 

This construction requires one matrix-vector multiplication with S and two 
inner products in each recursive step. Therefore, it is not necessary to store 
S explicitly as a matrix. The Lanczos process yields the approximation [21, 
7, 121 

where we note that QZb = 11  bll - [l 0 - - . 0IT. A robust and inexpensive 
stopping criterion for the Lanczos iteration based on a generalized residual 
is described in [15]. Convergence properties are studied in [7, 121. S' ince m, 
is typically very small compared to the dimension of S, io(Lm) can easily be 
computed by diagonalization of Lm , 

with an m x m orthogonal matrix Urn and diagonal matrix Dm. This makes 
the algorithms of Sections 2-4 practical. The required number m of Lanczos 
steps is at  worst of the magnitude of 1 1  At2All or 1 1  AtHII, and often consider- 
ably smaller. This may however lead to (relatively mild) time step restrictions. 

Finally we discuss the implementation of (2 1). We approximate (omitting 
the time superscript n) 

T T  with c = UmQm+,  so that we have 

Here, 

requires the computation of m2/2 long inner products for each component 
of y. With this approximation, the integral in (21) is easily computed 
analytically. 
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Applications of Ab-Initio Molecular Dynamics 
Simulations in Chemistry and Polymer Science 

Robert J. Meier 

DSM Research, P.O. Box 18, 6160 MD Geleen, The Netherlands 

Abstract. This paper presents results from quantum molecular dynamics simula 
tions applied to catalytic reactions, focusing on ethylene polymerization by met- 
allocene catalysts. The entire reaction path could be monitored, showing the full 
molecular dynamics of the reaction. Detailed information on, e.g., the importance 
of the so-called agostic interaction could be obtained. Also presented are results of 
static simulations of the Car-Parrinello type, applied to orthorhombic crystalline 
polyethylene. These simulations for the first time led to a first principles value for 
the ultimate Young's modulus of a synthetic polymer with demonstrated basis set 
convergence, taking into account the full three-dimensional structure of the crystal. 

1 Introduction 

The Car-Parrinello quantum molecular dynamics technique, introduced by 
Car and Parrinello in 1985 [I], has been applied to a variety of problems, 
mainly in physics. The apparent efficiency of the technique, and the fact 
that it combines a description at  the quantum mechanical level with explicit 
molecular dynamics, suggests that this technique might be ideally suited 
to study chemical reactions. The bond breaking and formation phenomena 
characteristic of chemical reactions require a quantum mechanical descrip- 
tion, and these phenomena inherently involve molecular dynamics. In 1994 
it was shown for the first time that this technique may indeed be applied 
efficiently to the study of, in that particular application catalytic, chemical 
reactions [2]. We will discuss the results from this and related studies we have 
performed. 

Secondly, the ultimate properties of polymers are of continuous interest. 
Ultimate properties are the properties of ideal, defect free, structures. So 
far, for polymer crystals the ultimate elastic modulus and the ultimate ten- 
sile strength have not been calculated at an appropriate level. In particular, 
convergence as a function of basis set size has not been demonstrated, and 
most calculations have been applied to  a single isolated chain rather than 
a three-dimensional polymer crystal. Using the Car-Parrinello method, we 
have been able to achieve basis set convergence for the elastic modulus of 
a, three-dimensional infinite polyethylene crystal. These results will also be 
discussed. 
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2 Metallocene-Based Olefin Polymerization 

The fact that met allocenes employed as homogeneous catalysts are well- 
defined organometallic species make them ideally suitable for a theoretical 
molecular modelling study. In the past, studies on both classical Ziegler-Natta 
catalysts as well as on metallocenes have generally been performed with semi- 
empirical quantum mechanical methods or low level ab-initio methods. In 
more recent years, several groups have reported high level ab initio calcu- 
lations on metallocene complexes, see, e.g., [3-51. In particular the paper 
by Ahlrichs et al. [4] showed that this high level was necessary to  retrieve 
qualitatively correct energetic data. All these calculations concerned static 
molecular structures, i.e. calculation of structures and energies of reactant 
states, transition states and products. Moreover, only the energetics were 
usually considered and entropic considerations were not taken into account. 
These limitations may be overcome by applying a quantum molecular dynam- 
ics approach. We will summarize results from quantum molecular dynamics 
simulations we have performed on ethylene insertion in various metallocenes 
and related species, which has produced a full record of the chemical reaction 
including dynamics and bond formation as well as bond breaking phenomena. 

The insertion of ethylene into the bridged di(cyclopentadieny1) methylzir- 
conocene ( s ~ H ~  c ~ ~ ) z ~ c H ~ ,  previously studied by Morokuma et al. [3], was 
reinvest igat ed using quant um molecular dynamics simulation. The structure 
of the reactant complex including the inserting ethylene is depicted in Fig. 1. 
Since the Car-Parrinello met hod also allows for energy minimisat ions (re- 
ferring to T = 0 K ) ,  these calculations were carried out first, and dynamics 
simulations were performed starting from energy minimised reactant com- 
plexes. In addition, we studied the corresponding titanocene complex (the 
Zirconium atom is replaced by a Titanium atom). 

The structure of the metallocene cation energy minimised with the Car- 
Parrinello method agrees well with the experimentally obtained crystal struc- 
tures of related complexes. Typical features of the structure as obtained 
from X-ray diffraction on crystals of very similar neutral complexes (e.g., the 
dichlorides), such as small differences in distances between C atoms within a 
cyclopentadienyl (Cp) ring, as well as differences in distances between the C 
atoms of the Cp ring and the Zr atom, were revealed from the simulations. 

The full ab-initio molecular dynamics simulation revealed the insertion 
of ethylene into the Zr-C bond, leading to  propyl formation. The dynamics 
simulations showed that this first step in ethylene polymerisation is extremely 
fast. Figure 2 shows the distance between the carbon atoms in ethylene and 
between an  ethylene carbon and the methyl carbon, from which it follows that 
the insertion time is only about 170 fs. This observation suggests the absence 
of any significant barrier of activation at  this stage of the polymerisation 
process, and for this catalyst. The absence or very small value of a barrier for 
insertion of ethylene into a bis-cyclopentadienyl titanocene or zirconocene has 
also been confirmed by static quantum simulations reportiecl independently 
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Fig. 1. The structure of the ethylene-zirconocene complex ( s ~ H ~ c ~ ~ ) Z ~ C H ~ - C ~ H ~ .  
The corresponding titanocene has basically the same structure, except that the Ti-C 
distances are obviously different from the Zr-C distances. 

by other groups. A similar result was obtained for the titanocene complex, 
cf. Fig. 2. 

The speed of the reaction as indicated by the dynamics simulations, i.e. 
the time span within which the Cethyl-Cmethyl bond shortens from about 3.3 A 
to a single C-C bond length of 1.6 A, is an interesting result, because this im- 
plies that the reaction time is on the same time scale as  the slow motions 
within the molecule. This result places question-marks on results of static 
energy minimisation of the transition state of such a reaction. Furthermore, 
the trajectory file produced by the simulation showed that starting from 
the et hylene/zirconocene r-complex, the ethylene shifts towards the methyl 
group that represents the polymer chain. This results in a four-centre tran- 
sition state, loosely described as  a metallacyclobutane ring-type complex. 
However, given the aforementioned time-scale of the reaction, it might be 
questioned whether it still makes sense to  refer to previously proposed reac- 
tion mechanisms, and talk in terms of a four-centre transition state, one of the 
primary details of the Cossee mechanism [6]. The time-scale of the reaction 
is so short that  it does not seem useful to  adopt terminology related t o  the 
kind of quasi-equilibrium structures involved in some traditionally proposed 
schemes. In  fact, we have not found a true (quasi-stable) transition state, 
and the results of the simulation provide evidence for a n  alternative mech- 
anism due to  Brookhart and Green [7] .  In that  mechanism the formation of 
a so-called a-agostic interaction is assumed to be necessary for the reaction 
to ~ roceed .  T h  term agosttic interaction is used for situations in which a 
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Fig. 2. Time-evolution of the methyllethyl C-C distances for both the zirconocene 
and the corresponding titanocene catalyst. The two curves starting at around 3.2 A 
represent the distance between the methyl carbon atom and the nearest-by ethy- 
lene carbon atom in the zirconocene-ethylene and the titanocene-ethylene complex, 
respectively. The two curves starting at around 1.35 A reflect the ethylene internal 
C-C bond lengths in the two complexes. 

hydrogen atom is covalently bonded simultaneously to both a carbon atom 
and to a transition metal atom. In this mechanism the T-electron cloud of 
the inserting ethylene does not start to  coordinate to the metal ion, as in 
the Cossee mechanism, but the ethylene shifts to  a position in which one of 
its carbon atoms comes in direct contact with the methyl carbon attached 
to the metal centre (see Fig. 1). The formation of the agostic interaction 
(methyl hydrogen with the metal centre) causes the other two methyl hydro- 
gens to  lie practically in a plane with the methyl carbon and the metal ion. 
This geometry facilitates the approach of the ethylene and the formation of 
a carbon-carbon bond between it and the methyl group. This is exactly what 
was observed in the quant um dynamics simulation, for both the t itanocene 
and the zirconocene. The formation of an agostic interaction is illustrated 
by Figure 3. Moreover, whereas the optimised starting structure had no a-H 
agostic interaction, during the molecular dynamics run an a-H agostic in- 
teraction is established in the early stages of the insertion process. The final 
complex seems to be stabilised by a y-H agostic interaction, although severely 
influenced by the dynamics. 

Further simulations have been performed. In contrast to what was ob- 
served for bis-cyclopentadienyl metallocenes, mono-cyclopentadienyl systems 
did reveal a significant barrier to  insertion [lo]. However, for all these sys- 
tems it turned out that insertion only proceeded after the formation of a 
relatively stable agostic interaction, an observation that clearly supports the 
Brookhart-Green mechanism. 
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Fig. 3. Time evolution of the distance between the Zr atom and each of the three 
hydrogen atoms belonging to the methyl group (the original methyl group bonded 
to the Zr) in the zirconocene-ethylene complex. The time-evolution of one of the 
hydrogen atoms depicted by the dotted curve shows the development of an a- 
agostic interaction. Later on in the simulation (after about 450 fs) one of the other 
protons (broken curve) takes over the agostic interaction (which is then a y-agostic 
interact ion). 

Finally, from the dynamics simulations it was found that the Cp rings are 
very flexible, and during the simulation they are not very closely attached 
to the metal centre as often anticipated. For further details regarding the 
metallocene and mono-cyclopentadienyl based olefin polymerisation studied 
by quantum molecular dynamics simulation we refer to  [2] and [8-101. 

3 The Ultimate Young's Modulus for Crystalline 
Polyethylene 

Ultra-high molecular weight polyethylene can be ultra-drawn, thus forming 
ultra-oriented fibres with high elastic modulus and high tensile strength. 
These good mechanical properties are the consequence of the high molec- 
ular weight and the high degree of orientation of the polymer chains [ll]. 
For such high performance materials it is relevant to evaluate the difference 
between the highest experimental values obtained for the mechanical prop- 
erties and the ultimate values calculated by theory. The latter values refer 
to the ideal, defect-free, material. Because the defect-free material can not 
be made experimentally (and if it could, one would not be able to determine 
experimentally that it was indeed defect-free), it is necessary to calculate the 
ultimate properties. It will be obvious that a correctly calculated ultimate 
value must be higher than the highest reported experimental value. 
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A number of papers have reported the calculation of Young's modulus of 
polyethylene 112-161, whereas papers reporting a calculated tensile strength 
are scarce [12,13]. According to Crist and Herefia [14], the calibrated semi- 
empirical values reported by Horn et al. and Meier probably establish the 
most reliable theoretical ultimate value for the Young's modulus. The re- 
ported a b  initio studies 113,141 show a significant dependence of the modulus 
on the basis set, which is not unexpected because the modulus depends on 
the second derivative of the energy with displacement, and is thus as sen- 
sitive to the basis set as a (calculated) harmonic vibrational frequency. For 
the latter, density functional theory usually does a somewhat better job than 
the Hartree-Fock method employed in modulus studies up till now. More 
importantly, the reported ultimate Young's modulus extrapolated from the 
results of the calculations [13] is below the highest reported experimental 
result [17], and this invalidates the calculated value. Obvious possible causes 
for failure of theoretical calculations to calculate the ultimate modulus for 
polyethylene on an  ab  initio basis are, in arbitrary order, (i) the absence 
of demonstrated basis set convergence, (ii) the simulation of a single chain 
rather than a crystal, and (iii) inadequacy of the Hartree-Fock method, even 
at the MP2 level. 

Starting from this situation, we have applied tot a1 energy calculations, 
using the first principles Car-Parrinello method, to a crystal unit cell of or- 
thorhombic polyethylene (see Fig. 4). Because of the application of periodic 
boundary conditions the system may be considered as an infinite, perfect, 
crystal. The Car-Parrinello method employs the density functional formal- 
ism. Basis set convergence may be demonstrated by increasing the plane-wave 
cut-off energy, as we will show below. The fact that the calculation of the 
Young's modulus involves elongation of the unit cell box in one direction, 
one may anticipate problems with the use of a finite plane wave basis at  the 
interfaces between the boxes. Indeed, when not accounting for this problem 
a significant scatter of the energy is found as a function of box length; a 
correction due to Francis and Payne [18] resolves this problem. The resulting 
total energy curve as function of elongation of the box length is shown in 
Fig. 5, and from the curvature at the minimum the Young's modulus can be 
obtained [19,20]. Basis set convergence was tested and the calculated Young's 
moduli for a crystal structure slightly different from that displayed in Fig. 4 
are shown in Fig. 6. It is observed that the value for the modulus initially 
"fluctuates" as a function of basis set size, which might be the reason that 
some Hartree-Fock based values were found to be low compared to the high- 
est experimental value reported. For the correct experimental geometry of 
orthorhombic polyethylene at  T = 4 K we evaluated a value for the Young's 
modulus of 334GPa, whereas optimization of the crystal structure with the 
computational tools led to a value of 366GPa. The difference is acceptable 
and, more import ant ly, the values are above the available experimental values, 
and in the range usually found when attempting to extrapolate experimental 
values to the ideal, perfectly drawn, material. 
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Fig. 4. Structure of orthorhombic polyethylene unit cell projected on the ab plane. 
The right-hand pictures define the setting angle 4. 

Fig. 5. Total energy curve with finite basis correction (due to Francis and Payne 
[18]). (1 hartree = 627 kcal/mol or 2624 kJ/mol). 

Fig. 6. The calculated Young's modulus as a function of cut-off energy (basis set 
size). Convergence is basically reached for a cut-off of 54 Ry. 
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Finally, the modelling of the setting angle (see Fig. 4 for definition) is 
problematic in empirical force field methods (211. As far as we know, no 
adequate data from quantum simulations are available. The shallowness of 
the potential energy as a function of the setting angle q.5 is a likely reason 
why the setting angle is so sensitive on the method of calculation employed. 
Evaluation of the setting angle by structure optimization using simulation 
methods then serves as a critical test of the calculational method, and we 
have therefore calculated the dependence of total energy on setting angle, 
with results displayed in Fig. 7. The angle which gives minimal energy is 
42.4", in very good agreement with the available experimental value of 42" 
[22] measured at  room temperature. 

-27.4069 
35 40 45 50 

cp (degrees) 

Fig. 7. Total energy as a function of setting angle $. The minimal energy value 
corresponds to a setting angle of 42.4'. 

4 Conclusions 

The results presented demonstrate that it has become feasible to  study the 
full dynamics of a (catalytic) reaction from the reactant complex to the prod- 
uct state. This type of theoretical modelling provides previously inaccessible 
insight in the polymerisation reaction. This is a very significant improvement 
in methods for further investigating and elucidating (fast) chemical reaction 
mechanisms. Several groups have now adopted this strategy and papers aris- 
ing from several research groups have recently been published. 

Regarding mechanical properties of polymers, the efficiency of the Car- 
Parrinello approach has enabled us to evaluate the ultimate Young's modulus 
of ort horhombic polyethylene, and demonstrate basis set convergence for that 
property. 
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Abstract. The nonlocal dynamical coherent potential approximation (NDCPA) 
is formulated to calculate a single-electron(excit0n) Green's function of polaron 
due to the interaction of an electron(exciton) with phonons with dispersion. This 
approximation is an extension of the dynamical CPA. The NDCPA provides an 
efficient means calculating of an approximate Green's function for a dynamical 
model of electrons(excitons) strongly coupled to optical or acoustical phonons, in 
the entire ranges of the electron(exciton)-phonon coupling strengths and electron 
(exciton) transfer. The electron(exciton)-phonon coupling in the Hamiltonian may 
involve terms of any order with respect to the phonon operators. A set of recur- 
rent equations is derived in the case of a system at  zero temperatures, from which 
the coherent potential can be obtained as  a function of energy E and momentum 
k. A simple algorithm for the polaron spectra calculations is obtained for a lin- 
ear electron(exciton)-phonon coupling in the antiadiabatic limit. The algorithm is 
applied to calculate absorption spectra of excitons linear and locally coupled to 
phonon without dispersion. 

1 Introduction 

An electron(exciton) with a lattice or molecular phonon cloud round itself 
can be regarded as a new single particle state - a lattice or molecular (exciton) 
polaron. It is impossible in a small space like this to present a comprehen- 
sive review of all the relevant work done in the field of polaron states up 
to now. Being one of the simplest, most important and directly applicable 
examples of quasiparticle description of properties of many-particle systems, 
the polaron problem has often served as a model for both purely theoreti- 
cal speculations and direct explanations of experimental data. The variety 
of aims corresponds to a variety of approaches as well as tools: from the 
field-theoretical expansions in powers of electron(exciton)-phonon coupling 
constant [I], through different kinds of interpolation (variational) approaches 
[2] to the small polaron theories invoking so-called polaron canonical trans- 
formation [3]. Each of the approaches is tailored to a special purpose and is 
good in its own (broader or narrower) region of system parameters [3]. For 
instance, variational interpolation approaches concentrate on the problem of 
the polaron dispersion law, leaving polaron quasipart icle damping over the 
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whole range of parameters mostly aside. In the present work, we attempt to 
partly fill this gap by presenting theory which is in principal able to provide 
such information. 

To determine a single-particle Green's function, which provides informa- 
tion about physical properties (energy spectrum, spectral functions) of po- 
laron states, a self-energy function should be calculated. Approaches based 
on the coherent potential approximation provide effective tools for the calcu- 
lation of a polaron self-energy function for a wide class of models and allow 
consequently (nonperturbatively) to account mult ip honon scatterings. At- 
tempts to construct such an algorithm in the case of linear electron(exciton)- 
-phonon coupling have been made before. In [4] the self-energy function has 
been expanded into an integral chain fraction with the use of diagram tech- 
niques. In [5] the expansion of Green's function into a continuous fraction has 
been performed by Haydock method. It is known, that the coherent potential 
approximation (CPA) is the most sophisticated virtual-crystal approxima- 
tion scheme for disordered electronic systems [6-81. The first attempt to use 
the notion of the coherent potential for periodic solids in which the role 
of disorder is played by other elemental excitations which interact with the 
electron, appeared probably in the s - d model of magnetic semiconductors 
[9,10]. Almost simultaneously with the coherent potential method for mag- 
netic semiconductors, the so-called (local) Dynamical Coherent Potential Ap- 
proximation (DCPA) was suggested by Sumi [11-131. This approximation can 
be applied to a system in which only an Einstein phonon spectrum and site 
diagonal electron(exci t on)-phonon coupling are assumed. For a system with 
non-diagonal electron(exciton)-phonon coupling the DCPA is completely in- 
adequate because of the important role of correlated scatterings among differ- 
ent sites. Another difficulty in using the DCPA is that the resulting condition 
for the coherent potential in [ll-131 requires a numerical solution of a set of 
functional equations. Lately several attempts have been made to improve the 
(local) DCPA [14-181. In [14] the dynamical CPA has been reformulated in 
terms of so-called locators that resulted in simplification of equations that 
define a coherent potential. S. Abe has extended the (local) DCPA to two- 
particle Green's functions [15,16], and reformulated this approximation for a 
model of Frenkel exciton coupled to dispersive phonons [17,18]. The (local) 
DCPA has been employed to calculate energy spectra [ll], absorption and 
emission spectra [12,17], resonance Raman spectra and time-resolved spec- 
tra [16] in exciton-phonon systems. It has been successfully used to explain 
experiments of absorption spectra in molecular crystals [19,20]. 

The present paper is devoted to  the theoretical formulation and numerical 
implementation of the NDCPA. The dynamical CPA is a one-site approxima- 
tion in which variation of a site local environment (due to the presence, for 
example, of phonons with dispersion) is ignored. It is known from the coher- 
ent potential theory for disordered solids [21], that one can account in some 
extension the variation of a site local environment through an introduction 
of a nonlocal c w h m t  potential which depends on the difference between site 
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coordinates. The Fourier transform of the coherent potential is a function of 
a quasimomentum vector. It is clear, that introduction the nonlocal coherent 
potential in this way is a different level of approximation because the system 
is implied to have translational symmetry. For a dynamical disorder which 
is brought about by phonons the use of the nonlocal coherent potential is 
natural and does not require any additional approximation. The proposed 
nonlocal dynamical coherent potential approximation (NDCPA) follows this 
approach to improve the dynamical CPA. In principal, NDCPA can be ap- 
plied to calculate a single-particle Green's function of the Hamiltonian with 
arbitrary electron(exciton)-phonon coupling. This approach maintains also 
technical preferences: a t  zero temperature the algorithm is reduced to re- 
current linear equations from which a coherent potential can be determined 
as a function of polaron momentum and energy. The algorithm is greatly 
simplified if only inelastic scatterings of the electron(exciton) by phonons 
is taken into account. That is possible if the polaron spectrum is shifted 
into the energy region where the processes of elastic scatterings can be ne- 
glected. In particular, this situation may be realized in the case of an optical 
phonon spectrum and a narrow electron(exciton) bandwidth (so-called antia- 
diabatic limit). This problem will be discussed in more details in Sec. 3. In 
the antiadiabatic limit and assuming an Einstein phonon spectrum a Green's 
function can be obtained analytically for the case of a model with linear 
electron(exciton) site diagonal electron(exciton)-phonon interaction. If the 
energy gain of exciton localization is much larger than the electron (exciton) 
bandwidth the algorithm can be easily employed to calculate the lowest (lo- 
calized) electron(exciton) state for the arbitrary ratio of electron(exciton) 
and phonon bandwidths. The ant iadiabatic limit combined with purely local 
electron(exciton)-phonon interaction also allows to construct a simple recur- 
rent algorithm in which the elastic scattering of electron(exciton) by a phonon 
field is accounted for. 

The paper is organized as follows: in the next section the model is in- 
troduced. In the section 3 the nonlocal dynamical CPA at  zero temperature 
is presented. Analytical expressions for the coherent potential are obtained 
in the antiadiabatic limit for two cases. The first case relates to the polaron 
energies where the elastic scatterings can be neglected. In the second one, the 
elastic n-phonon short-range scattering correction is obtained. In the section 
4 the algorithm is used to calculate numerically absorption spectra of a sys- 
tem of excitons strongly coupled to Einstein phonons in a cubic crystal with 
one molecule per unit cell. 

2 Model Hamiltonian 

In order to demonstrate the NDCPA a model of a system of excitons strongly 
coupled to phonons in a crystal with one molecule per unit cell is chosen. 
This model is called here the molecular crystal model. The Hamiltonian of 
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this system is written as 

Here ak (a:) is the annihilation (creation) operator of an exciton with the 
momentum k and energy Ek, operator an (a;) annihilates (creates) an exciton 
a t  the n-th site, bq(bZq) is the annihilation (creation) operator of a phonon 
with the momentum q and energy w (q), ~ ( q )  is the exciton-phonon coupling 
function, N is the total number of crystal molecules. The exciton energy is 
Ek = 6, + tk, where €0 is the change of the energy of a crystal molecule 
with excitation, and tk is the Fourier transform of the energy transfer matrix 
elements. 

This model can be employed to describe an exciton interacting with molec- 
ular or lattice vibrations. The coupling function x is q-independent if the 
exciton-phonon interaction is taken to be site-diagonal and purely local in 
the exciton and phonon coordinates. This case is realized, for example, for 
the exciton interacting with molecular vibrations. The q-dependent coupling 
function represents the interaction of the exciton with lattice phonons that 
arise due to the modulation of van der Waals and Coulomb forces by lattice 
vibrations. Accounting for the resonant interaction results in k-dependent 
terms in the coupling function. Generally, the magnitude of k-dependent 
and k-independent terms in the coupling function varies from one material 
to another. For a material in which the interaction of the exciton with the 
local environment is strong, the exciton-phonon interaction operator can be 
taken as in Eq.(l) with an appropriately chosen coupling function ~ ( q ) .  

Hamiltonians equivalent to (I)  have been used by many authors for the 
consideration of a wide variety of problems which relate to the interaction of 
electrons or excitons with the local environment in solids [22-251. The model 
with a Hamiltonian containing the terms describing the interaction between 
excitons or electrons also allows for the use of NDCPA. For example, the 
Hamiltonian (1) in which the electron-electron interaction terms are taken 
into account becomes equivalent to the Hamiltonians (for instance, of Holstein 
type) of some theories of superconductivity [26-281. 

3 Nonlocal Dynamical CPA 

Let us introduce the coherent potential vk (E) which is thought to be depen- 
dent on energy E and exciton momentum k. The coherent potential is transla- 
tional invariant in the site representation. The Hamiltonian (1) is transformed 
with the coherent potential taken into account as 

H = ~ ~ f f  + H', 
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with 

+ H' = C QLanvn - C vn,,an a,. 

In H' the site representation is used and 

where 

is the annihilation operator of a phonon associated with the m-th lattice site, 
and 

In the further manipulations the site representation will be used for conve- 
nience. The Fourier transform with respect to time of a single-exciton re- 
tarded Green's function G e f f  ( t )  of a system under the Hamiltonian ~ ~ f  f  in 
the site representation for exciton coordinates and Fock's representation for 
phonon coordinates is written as 

Here 

and r denotes the complex energy z = E + iy with an exciton decay rate y 
which is assumed to be independent of energy and momentum. It is assumed 
in the expressions below that the summations are performed over indexes 
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s, si, i = 1,2,  . . . . Expanding the Green's function Gml (z) of the exciton with 
Hamiltonian H in powers of propagator ~::(z) we get 

Here 9 and G(z) are operator matrixes with elements 

and umn (2) , respectively. 
We restrict ourselves to the case of the system at  zero temperature. This 

is not relevant from the point of view of methodology. The case of nonzero 
temperatures may be considered in the completely analogous fashion. At zero 
temperature the coherent potential is chosen so that the Gml ( 2 )  and G::(z) 
averaged over phonon degrees of freedom in phonon vacuum are equal 

For the case of nonzero temperatures the vacuum averages in Eq.(7) should 
be replaced by thermal averages over phonon populations. Using (7) and (5) 
we obtain that the scattering of an exciton in the effective medium by the 
perturbation (@ - 6 (2)) is described by the following self-consistent condition 

Performing summation in (8) we obtain the t-matrix operator T.  Once T is 
found Eq.(8) is written as 

1 is the unity matrix. The Green's function p (z )  of the exciton under the 
Hamiltonian (1) in which the exciton-phonon coupling terms are excluded is 
given by the expression 

With the use of the operator ~ ( z )  Eq.(9) is rewritten as 

This is the operator (or matrix) equation for the coherent potential C(z). 
The formal expression for G(z) can be easily written. The exciton polaron is 
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determined by the Green's function for the exciton in the effective medium 
defined by the coherent potential 

The question how to calculate the phonon vacuum averages in Eq.(l l)  re- 
mains. Let us derive equations which determine them. 

Let in, Tn+ik, and an-ik represent sets of sites (il ,  . . . , in), ( i l ,  . . . , in, ik) ,  
and (i i ,  . . . , ik- 1, ik+1, . . . , in), respectively. The set (0) and (z l )  represent, 
respectively, an empty and an one-site set. In the expressions below we will 
not always indicate the dependence of the operators ~ ( z )  and ir(z) on 
energy z. All the calculations are performed with k(z) ,  G(z) taken at 
same energy. Defining 

the 
the 

and using Eqs.(ll), (6), and (3) the coherent potential uml is expressed as 

(o)] - 1 a ( s l )  
urn1 = [a ,, s, g s l l .  (14) 

Employing the obvious operator identity 

[ j '  - @I-' = + [j ' - @I-'& (15) 

and definition (13) we obtain that the matrix elements a z l  are defined by 
the following set of equations 

Here 

is a n-phonon matrix element of the operator F and nim *c = (hi1 ,ik + , + 
- -  , .- 

d i n k )  Eqs. (16) are a set of recurrent linear equations from which a i l  and 

a z )  can be determined. Inserting then a g /  and a 2 )  in Eq.(14) finally we 
find the coherent potential. With the use of Eqs.(ll), (15) we can easily 
write down equations similar to (16) for exciton-phonon coupling operator $ 
of more complex (for instance, quadratic) phonon operator struct~ire . 



Polarons of Molecular Crystal Model 449 

The set of equations in (16) are greatly simplified if we make some as- 
sumptions - which - allow the exciton and phonon site nondiagonal matrix el- 

Gj jn ements Fml to be neglected. In the case of an Einstein phonon spectrum - - . . 
these matrix elements are exactly zero and Eqs. (16) contain only F ~ l ' z n .  For 
latter reference the matrix elements of fi which are site diagonal in exciton 
coordinates, and both in exciton and phonon coordinates are denoted as 

- - 
respectively. The nondiagonal ~ k ~ ' j ~  can be eliminated if the energies E sat- 
isfy the following condition 

where B and 0 are the exciton and phonon bandwidths, respectively. The 
fact that this condition is unfulfilled means that for a polaron state with 
energy E elastic (with impulse transfer) n-phonon scatterings of the exciton 
are relevant. We have to account F ( ~ )  in Eqs.(l6) only if we assume that 
polaron spectrum is located in the energy region where elastic scatterings 
are irrelevant. Such situation may be realized in the case of a low dispersion 
optical phonon spectrum (0 << w(O)), and a narrow exciton band (B << 
w(0)). As it will be seen, in this case the polaron spectrum is shifted by 
the energy gain of exciton localization. Due to this shifting the energies in 
the polaron bands may obey the condition (20). If the condition (20) is not 
satisfied for polaron band no then the no-phonon elastic scatterings of the - - 
exciton should be taken into account and, therefore, F:: l J n O  should be kept 
in Eqs.(l6). In other words we have to make elastic scattering corrections 
to calculate polaron band for this case. It is obvious that if the phonons are 
acoustical the elastic n- phonon scattering becomes relevant beginning with 
a sufficiently large n for an arbitrary value of the polaron energy E (see (20)). 

Let us first consider a case of the polaron spectrum when condition (20) 
is fulfilled so that the nondiagonal matrix elements of the operator fl can be 
neglected. we denote as vinel the coherent potential in which only the inelastic 
scatterings are accounted. It is easy show by explicit calculations that 
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- 
Therefore, Eqs.(lG) contain only a$. Here Pn = (p, . . . , p). It is easily seen - 
that a k l  = 0 when rn, l # p. Finally we conclude that Eqs.(lG) actually 
form a three-diagonal set for the values a;;. This enables us to express the 
coherent potential in the form of a continuous fraction. In order to show this 
let us introduce t(") as 

Then Eqs.(lG) combined with Eqs. (14) and (21) yield 

t(n) = goo 
- (n + l ) t ( n + l ) g  

F (n) (z) goo 

where goo = gpp and 

From Eqs.(23) we get the coherent potential uinel in the form 

The energy spectrum of the exciton polaron as a function of k is obtained 
by the solution of an equation 

Eq.(25) with u(z) = uinel(t) can be further simplified if we assume an Ein- 
stein phonon spectrum (w(q) = wo) and neglect the energy transfer matrix 
elements in F(") (in this case F(~) - ' (z )  = z - 60 - n u o )  Then with the use 
of the formulae [29] 
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for complex z with a nonvanishing imaginary part Eq.(25) is written as 

where S = G/w& For a limit case t k  = O(B = 0) when the exciton energy 
spectrum converges to €0 which may correspond to a highly localized exciton 
or an exciton trapped on an impurity we obtain from (12), (25), and (26) the 
exciton Green's function in the form 

This result can be easily obtained with the usual methods [30]. Thus we 
see that the present approximation becomes valid for B = 0. On the whole, 
formulae (26) accounts the configuration mixing among polaron states with 
different number of phonons. The polaron spectrum calculated with the use 
of Eq.(26) consists of equally spaced bands which are shifted to lower energies 
by S w o  and have a renormalized dispersion law as compared to a dispersion 
law of a free exciton. To show the latter let us suppose that for energies in 
the no-th polaron band we have only one leading term of the sum in (26) 
which corresponds to no-phonon scatterings. Then the dispersion law in the 
no-th polaron band may be roughly described by the expression 

Such renormalization can be obtained in the framework of the small polaron 
theory [3]. S w o  is the energy gain of exciton localization. Let us note that 
the condition (20) and, therefore, Eq.(26) is correct for S >> B/wo and arbi- 
trary B/wo for the lowest energy of the exciton polaron. So Eq.(26) can be 
used to evaluate the energy of a self-trapped exciton when the energy of the 
vibrational or lattice relaxation is much larger then the exciton bandwidth. 

It is possible to make elastic scattering corrections to the algorithm (24) 
in the case of an Einstein phonon spectrum and purely local exciton-phonon 
coupling. If we calculate the energy of the polaron state at the value E o nwo 
only the matrix o lmcn t s  F,$) should be considered in Eqs.(l6). In this case 
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Eqs.(lG) are rewritten as 

- 
Here f in  + fk = (p, . . . , p, 1,.  . . ,1). It is easily seen that in Eqs.(29) ak;" = 0 -+ 

n k 

and akl = 0 when rn # p. The Eqs.(29) with a ~ ; + ~ * , p  # 1 in left-hand side 
l?n +ik form a three-diagonal set of equations for apl quite similar to Eqs.(23). 

Therefore, solving this system we obtain 

Let us now introduce a matrix with elements 

Using Eqs. (29) and (30) we obtain that the coherent potential vel with elastic 
scattering correction is determined by the following equations 

1 
- nt(n)goo 

F(n- l )  (z) 

F'rom Eqs.(32) for tpl when p # E we can find the Fourier transform t ( k )  of 
tpr through t(") and d n f  only. Then, inserting t ( k )  in Eqs. (02) with tpp  in 
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the left-hand side we get equation which contains t(") and t (n+l) only from 
which d n )  can be expressed through t (n+l) 

Eqs. (32) where t (n)  is calculated by the formulae (33) represent the recurrent 
algorithm for determination of vel. 

Above mathematics shows that the changes in the model Hamiltonian 
(1) that do not involve the exciton-phonon coupling terms, - for instance 
inclusion the exciton-exciton (electron-electron) interaction, lead only to the - - 
respective change of ~ 2 ~ ' ' ~  in Eqs. (16). 

4 Calculations and Discussions 
To verify effectiveness of NDCPA we carried out the calculations of absorp- 
tion spectra for a system of excitons locally and linearly coupled to Einstein 
phonons at zero temperature in cubic crystal with one molecule per unit cell 
(probably the simplest model of exciton-phonon system of organic crystals). 
Absorption spectrum is defined as an imaginary part of one-exciton Green's 
function taken at zero value of exciton momentum vector 

1 1 
Iabs(E) = - - Irn 

7r 2-vo(z) '  

where z = E+iy,  and y is an exciton decay rate which defines the width of ab- 
sorption spectrum lines. To find coherent potential vo(z) Eqs.(l6) were solved 
by iterations. We kept only five first equations (i.e. multiphonon scatterings 
were accounted up to the fifth order). The number of sites in the periodic 
region that is the interval of change of phonon indexes in the matrix elements 
a in Eqs.(l6) was assumed to be equal to seven. Let note that this region 
actually is the area in which we account the exciton-phonon interaction. 

To achieve faster convergence and avoid overflow during iterations, equa- 
(n> - pn tions (16) were rewritten in terms of t,, - a,, /a!; (see(31) and (32)). Diag- 

onal elements t g )  were calculated by expanding into the continuous fraction 
on the each step of iterations. 

In Fig. 1 the absorption spectra for a number of values of excitonic band- 
width B are depicted. The phonon energy wo is chosen as energy unit there. 
The presented pictures correspond to three cases of relation between values 
of phonon and excitonic bandwidths - B < wo, B = wo, B > wo. The first 
picture (B = 0.3) corresponds to the antiadiabatic limit (B << wo), which 
can be handled with the small polaron theories [3]. The last picture(B = 10) 
represents the adiabatic limit (B >> wo), that fitted for the use of variation 
approaches [2]. The intermediate cases B=0.8 and B=l  can't be treated with 
these techniqlles. The overall behavior of spectra seems to be reasonable and 
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is in good agreement with results obtained by other authors with different 
methods [5], [12] ,  [15]. 

I 
. abs 

0.W 7 
I 
abs 

Figure 1: Absorption spectra for system of excitons linear and locally 
coupled with strength S to nondispersive phonons with energy wo 
calculated in NDCPA. B is excitonic bandwidth, and y is excitonic 
decay rate. 

The NDCPA seems to be a very reasonable way to treat the properties 
of both electrons and excitons interacting with phonons with dispersion. In 
principal, the NDCPA can be applied to a system of the Hamiltonian with 
the electron(exciton)-phonon coupling terms of arbitrary structure. The ND- 
CPA results in an algorithm which can be effectively treated numerically (for 
example, iteratively). The application of the NDCPA is not restricted to the 
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case of zero temperature and can be invoked to deal with the systems with dif- 
ferent distributions (thermal or nonequilibrium) of phonon populations. For 
such systems the averages in Eq.(7) should be performed over the respective 
distributions. The algorithm is greatly simplified in the antiadiabatic limit 
and for polaron energies where the elastic exciton-phonon scatterings are ir- 
relevant. In this case if the electron(exciton)-phonon coupling term is linear 
the NDCPA algorithm is reduced to a three-diagonal linear set of equations 
and, therefore, the coherent potential can be obtained analytically. It should 
be noted that for electron(exciton)-phonon terms including the phonon op- 
erator of nth-order the coherent potential is represented by a 2n + 1-diagonal 
linear set of equations and can be easily calculated numerically up to high or- 
ders of electron(exciton)-phonons scatterings. It is also possible to obtain the 
n-phonon short-range scattering correction when the role of this scattering 
is not negligible in the formation of a polaron band. 
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Abstract. Many realistic biomolecular simulations require use of periodic bound- 
ary conditions to create a surface-free environment for the molecule of interest and 
associated solvent molecules to interact. Electrostatic interactions are the principal 
computational cost of such simulations. We have implemented two codes: a parallel 
variant of an Ewald summation method which computes the effect of infinite pe- 
riodic boundary conditions, and a parallel variant of a multipole algorithm which 
explicitly computes the interactions within a large but finite periodic system. Each 
has a regime of applicability, with Ewald favoring smaller systems and fewer pro- 
cessors, and the multipole methods favoring larger systems and more processors. 
Simulations can now include a full treatment of periodic electrostatics to three or 
four significant figures of accuracy for a computational cost equivalent to  that of a 
12A cutoff simulation. 

1 Motivation 

Several groups have previously reported parallel implementations of multi- 
pole based algorithms for evaluating the electrostatic n-body problem and 
the related gravitational n-body problem [I, 21. These methods permit the 
evaluation of the mutual interaction between n particles in serial time propor- 
tional to n logn or even n under certain conditions, with further reductions 
in computation time from parallel processing. 

Our work is targeted to biomolecular simulation applications, where the 
objective is to illuminate the structure and function of biological molecules 
(proteins, enzymes, etc) ranging in size from dozens of atoms to tens of thou- 
sands of atoms today, with the desire to increase this limit to millions of 
atoms in the near future. Such molecular dynamics (MD) simulations simply 
apply Newton's law to each atom in the system, with the force on each atom 
being determined by evaluating the gradient of the potential field at each 
atom's position. The potential includes contributions from bonding forces, 

* Supported by NSF ASC-9318 159, NSF CDA-9422065, NIH Research Resource 
RR08102, and computer time from the North Carolina Supercomputing Center. 
An earlier version of this paper was presented at the Eighth SIAM Conference 
on Parallel Processing for Scientific Computing. 
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Fig. 1. Periodic boundary conditions protect the inner simulation cell from disturb- 
ing effects of having all its particles close to the surface. With PBCs in force, as a 
particle moves out of the box on one side, one of its images will move back into the 
box on the opposite side. 

van der Waals interactions, and other sources, but the computationally dom- 
inant contribution is from electrostatics, as all the other terms are short 
ranged, requiring computation time that grows only linearly in the size of 
the system. 

For simulations of the motions of the atomic constituents of these mole- 
cules to be meaningful, the molecules must be placed in a natural environ- 
ment, such as in a water bath or inside a membrane wall; this increases the 
total number of atoms in the simulation by a significant factor (typically 
between 2 and 10). Even a "large" water bath by these standards is still 
extremely tiny, being only a few water molecules deep. Such simulations are 
adequate in some cases, but many properties of interest are distorted by sur- 
face effects and orientational correlations imposed by the small water bath 
and the finite system boundary. Periodic Boundary Conditions (PBC) have 
long been used to overcome the effects of a tiny simulation region; by repli- 
cating the original simulation region a finite or infinite number of times in 
all directions (Fig. I),  the system's "boundary" is pushed out much further; 
to infinity in the case of infinite PBCs. Particles in the replicated cell simply 
mimic the motions of the particles in the original unit cell; each particle in 
the original cell feels the force induced by all other particles and all periodic 
images of all particles (including itself). 

The simplest form of PBCs simply provides one layer of replicated cells 
about the original simulation region. Infinite PBCs are the other extreme, 
with an infinite number of layers of surrounding cells. We will describe two 
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different methods for evaluating forces in periodic assemblies of particles. 
We will present results from each method in isolation, i.e. simply computing 
the electrostatic interactions among a group of particles, and we will close 
the paper with results from inserting each solver into a complete molecular 
dynamics program. 

2 Macroscopic Multipole Met hod 

Our first method for treating periodic systems is an extension to  fast mul- 
tipole methods for rapidly evaluating the electrostatic interactions within a 
unit cell. The serial version of the macroscopic multipole algorithm is de- 
scribed in detail in 151. Briefly, the multipole algorithms in their several vari- 
ants all subdivide the original simulation cell into a hierarchy of increasingly 
fine regions (typically via an oct-tree); the different algorithms then impose 
some criterion to decide whether two regions are sufficiently distant from each 
other to interact via the multipole approximation rather than directly. The 
macroscopic method extends this hierarchy of interacting regions upward by 
creating new regions consisting of increasingly large numbers of copies of the 
original unit cell, as in Fig. 2. As these aggregates get farther from the initial 
unit cell, they become larger, so that they continue to satisfy the multipole 
acceptance criterion which typically involves the ratio of the size of the dis- 
tant box to the separation between that box and the target cell (in this case, 
the entire simulation cell). The complete description of this method in [5] 
describes two alternative schemes for this replication and provides the rel- 
evant error bounds in each case. A degenerate case of the method provides 
the equivalent of a single layer of surrounding cells, so that particles which 
move out of the simulation box are immediately replaced by their image on 
the opposite side. 

This hierarchical macroscopic replication of the original unit cell is carried 
out k times, where k is an arbitrary parameter. The cells in each new layer 
are 27 times larger than the cells at  the previous layer (in three dimensions); 
eight levels of this replication convert a 100,000 atom unit cell into a region 
of approximately 28 quadrillion particles. Even at this level of replication, 
the cost of evaluating the forces on all the particles in the original unit cell 
is negligibly greater than the cost of simply evaluating the forces due to the 
particles in the unit cell alone, i.e. the standard multipole algorithms. Unlike 
the Ewald methods discussed below, strict charge neutrality in the unit cell 
is not a necessary condition for these methods. 

The speed of the method comes from two sources. First, all of the "macro- 
scopic" cells of the same size have exactly the same internal structure, as 
they are simply formed of tessellated copies of the original cell, thus each has 
exactly the same multipole expansion. We need compute a new multipole 
expansion only once for each level of macroscopic agglomeration. Second, the 
structure of the periodic copies is fixed; we can precompute a single transfer 
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Fig. 2. The Macroscopic multipole algorithm creates exponentially larger aggre- 
gates of the original unit cell (small solid box in center) to rapidly build up a large 
but  finite periodic system. 

function to  describe the effect of all of the copies on the original unit cell. In 
the case of constant pressure simulations where the box size fluctuates, the 
transfer function needs to be scaled. Only in anisotropic constant pressure 
simulations, where the size and shape of the unit cell both fluctuate, does the 
function need to be recalculated periodically. 

Parallelizing this method was not difficult, given that we already had 
parallel versions of several multipole algorithms to start from. The entire 
macroscopic assembly, given its precomputed transfer function, is handled 
by a single processor which has to perform k extra multipole expansions, one 
for each level of the macroscopic tree. Each processor is already typically 
performing many hundreds or thousands of such expansions, so the extra 
work is minimal. 

Our multipole code D-PMTA, the Distributed Parallel Multipole Tree 
Algorithm, is a message passing code which runs both on workstation clusters 
and on tightly coupled machines such as the Cray T3D/T3E [ll]. Figure 3 
shows the parallel performance of D-PMTA on a moderately large simulation 
on the Cray T3E; the scalability is not affected by adding the macroscopic 
option. 

3 Ewald Summation 

Ewald summation was invented in 1921 [7] to permit the efficient computation 
of lattice sums arising in solid state physics. PBCs applied to the unit cell 
of a crystal yield an infinite crystal of the appropriate symrrwtry; performing 
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DPMTA Performance on Cray-T3E 

Low Accuracy - 
Low Accuracy w/PBC ------- 

Mod. Accuracy - - - - - -  - 

Mod. Accuracy w/PBC 

0 5 10 15 20 25 30 35 
Number of Processors 

DPMTA Scaling on Cray-T3E 

Low Accurac - 
Low Accuracy w/PB 6. ,------- 

0 5 10 15 20 25 30 35 
Number of Processors 

Fig. 3. Performance (top) and scaling behavior (bottom) of D-PMTA on the Cray 
T3E when simulating 70,000 particles. 
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sums over this infinite crystal lattice allows calculation of many properties of 
the material. The potential on particle i due to all other particles j and all 
periodic images of all particles can be written as 

where n is an integer triple identifying a particular image cell: n = (0,0,0) 
indicates the "real" simulation cell, and all other cells are identified by their 
displacement from the central cell, i.e., n = (1,0,O) identifies the image cell 
immediately adjacent on the x axis, and n = (i,  j ,  k) identifies the image 
displaced i unit cells in x, j in y, and k in 2. , then, is the distance 
between particle i in the original cell and particle j in the n th  image cell. 
Ewald recognized that this slowly and indeed conditionally convergent sum 
can be recast as two rapidly converging sums, one in real space and one in 
reciprocal space. One physical explanation of Ewald's observation is that an 
auxiliary Gaussian charge distribution can be both added to and subtracted 
from the original charge distribution. The real space sum is now in terms 
of the rapidly converging complementary error function erfc(r) rat her than 
the slowly converging ! thanks to the Gaussian screening of the charges. The 
other sum over the Gaussian counter-charges can be Fourier transformed into 
a rapidly converging form in reciprocal space. 

Ewald's formalism reduces the infinite lattice sum to a serial complexity 
of n2  in the number of particles n ,  which has been reduced to n logn in more 
recent formulations. A review of variants on Ewald summation methods which 
includes a more complete derivation of the basic method is in [3]. 

For biomolecular applications, as with the macroscopic met hod above, the 
"unit cell" is the entire original simulation volume; it is replicated throughout 
space resulting in an infinite simulation region. Convergence of the Ewald sum 
does require charge neutrality in the simulation volume, which can complicate 
some biomolecular simulations by requiring the introduction of potentially 
unphysical counter charges. 

3.1 Particle-Mesh Ewald 

One of the most efficient algorithms known for evaluating the Ewald sum 
is the Particle-mesh Ewald (PME) method of Darden et al. [8, 91. The use 
of Ewald's "trick" of splitting the Coulomb sum into real space and Fourier 
space parts yields two distinct computational problems. The relative amount 
of work performed in real space vs Fourier space can be adjusted within cer- 
tain limits via a free parameter in the method, but one is still left with two 
distinct calculations. PME performs the real-space calculation in the conven- 
tional manner, evaluating the complementary error function within a cutoff 
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radius. To speed up the Fourier space calculation, PME borrows from the 
Part icle-Particle, Particle-Mesh (P3M) met hod of Hockney and Eastwood 
[lo] to interpolate all the randomly spaced particles onto a regular mesh. 
The Fourier sum is then computed via FFT techniques and the results inter- 
polated back to the actual particle sites. PME originally employed Lagrange 
interpolation [8], but the revised PME which we have implemented uses B- 
spline interpolation functions [9]. The smoothness of B-splines allows the 
force expressions to be evaluated analytically, with high accuracy, by differ- 
entiating the real and reciprocal energy equations rather than using finite 
differencing techniques. 

Our interest has been to parallelize PME; some of our efforts are described 
in [4]. The three dimensional FFT needed by PME is notoriously difficult to 
parallelize, while the real-space contribution is quite easy to parallelize, so 
we first bias the work as much as possible to favor the real-space term. We 
can do this by adjusting the free parameter in the method which controls 
the Gaussian width of the fictitious charge and counter-charge distributions 
added to the system. A larger value of this width allows a coarser grid in 
Fourier space (and thus less work to evaluate the FFT) but a larger real- 
space cut-off radius for the complementary error function (and thus more 
work in the real-space sum). The ability to trade off work between the real 
and reciprocal space sums is further limited by the requirement that the 
real-space cut-off radius cannot exceed half the side length of the original 
simulation cell. 

The real-space sum is particularly easy to parallelize as it simply involves 
a spatial decomposition with appropriate attention to the overlap between 
adjacent regions due to the cut-off radius. Performance for the real-space 
contribution alone is given in Fig. 4. 

The Fourier sum, involving the three dimensional FFT, does not cur- 
rently run efficiently on more than perhaps eight processors in a network-of- 
workstations environment. On a more tightly coupled machine such as the 
Cray T3D/T3E, we obtain reasonable efficiency on 16 processors, as shown 
in Fig. 5 .  Our initial production implementation was targeted for a small 
workstation cluster, so we only parallelized the real-space part, relegating 
the Fourier component to  serial evaluation on the "master" processor. By 
Amdahl's principle, the 16% of the work attributable to  the serially com- 
puted Fourier sum limits our potential speedup on 8 processors to 6.25, a 
number we are able to approach quite closely. 

4 Performance Comparison 

The results in the prior two sections were for the Macroscopic multipole and 
PME solvers in isolation. A complete MD simulation involves much more 
than these routines. In addition to  computing the short range interactions 
from bonding forces, etc., the particle positions and velocities need to be up- 
dated each timestep. Additionally, efficient MD programs recognize that the 
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T3D timings, 60,000 atoms, Real part of PME 
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Fig. 4. Performance (top) and scaling behavior (bottom) of the real space part of 
PME on the Cray T3D. 
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force on a given particle due to  long-range (distant Coulomb) interactions 
varies slowly, so it is not necessary to do a full Coulomb (and thus multipole 
or Ewald) solve each timestep. Instead, major and minor timesteps are es- 
t ablished, with a full Coulomb solve performed each major timestep, which is 
perhaps 4-10 minor timesteps long. The forces due to  long-range interactions 
are interpolated between major timesteps from estimates derived from the 
last few major timesteps. 

Despite all the effort to  reduce both the frequency of Coulomb solves (pe- 
riodic or not) and the computational complexity of each call when required, 
the long-range force evaluation remains the dominant computational cost of 
MD simulations. 

These comparisons are for the serial versions of the algorithms only. 
Figure 6 compares the running time of complete MD simulations (in this 
case, a box containing 23,832 water molecules, or equivalently 71,496 atoms) 
performed with the different periodic solvers, as well as traditional methods 
utilizing cutoff radii. The MD program used is SigmaXplus, a research ver- 
sion of SigmaX from Dr. Jan Hermans at  the University of North Carolina 
at  Chapel Hill, modified to accept both PME and our multipole codes. The 
solvers used are summarized in Table 1. 

Ic-# cutoff radius method - all non-bonded forces between particles I 
within # angstroms of each other are computed explicitly 

P3-UNC rewritten PME code, tightly integrated to S i g m a ,  low accuracy . - -  - - I 

P5-UNC rewritten PME code, tightly integrated to  SigmaX, moderate accuracy 1 
P3-Dk original Duke PME code, loosely coupled to SigmaX, low accuracy 1 
P5-Dk oriiinal Duke PME code, loosely coupled to ~ i i m a ~ ,  moderate accuracy1 
DP-4 Multipole code, 4 levels of macroscopic expansion, 4 terms in the 1 

multipole expansions, low accuracy 
DP-8 Multipole code, 4 levels of macroscopic expansion, 8 terms in the 

multipole expansions, moderate accuracy 
DP-12 Multipole code, 4 levels of macroscopic expansion, 12 terms in the I 

multipole expansions, high accuracy 

Table 1. Parameters for SigmaX test runs. 

The salient comparisons are between the bars marked "P3-Dk," our ini- 
tial parallel PME implementation, and "DP-4," the macroscopic multipole 
method with four levels of macroscopic boxes. Though it is difficult to create 
a completely fair comparison in terms of the relative accuracy of the poten- 
tials and forces as computed by the two methods, the parameters for these 
simulations were tuned to give comparable overall accuracy1. PME is clearly 

Accuracy is defined here as relative to an infinitely periodic reference system. The 
values of the energies and forces in the reference system can be determined to 
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faster, running in only two thirds the time of the multipole methods. The 
DP-8 and DP-12 bars are higher accuracy simulations with more accurate 
multipole expansions. The very fast P3-UNC bar resulted from rewriting our 
PME code to share data structures with SigmaX to avoid the overhead in- 
volved in calling the original PME; this version also used a table lookup for 
erfc, which reduced accuracy somewhat but significantly improved speed. The 
multipole codes would also benefit somewhat from a tight integration with 
SigmaX, but it would be more difficult to implement this for the multipole 
codes than for the relatively simpler PME codes. 

Since no real physical system is in fact infinitely periodic, there has always 
been some concern that calculations with Ewald and related methods may 
not reflect reality. The macroscopic multipole algorithm gives us a mechanism 
to study the effect of finite vs infinite periodicity. Referring back to Section 
2 and Figure 2, if the macroscopic replication process is carried out k times 
(forming k "shells" of increasingly larger numbers of copies of the original unit 
cell around the unit cell), the force and energy values computed converge very 
rapidly to the infinite Ewald value. For k = 3, forces are already within one 
part in of the infinite system value; by k = 5 or 6 we have exceeded single 
precision floating point accuracy in agreement. Details of this comparison can 
be found in [6]. 

5 Conclusions 

So which solver to  use? In regions of low to moderate accuracy, and on 
small numbers of processors, PME is a clear winner. Recall the results above 
from SigmaX were serial results, but both PME and the PMTA derivatives 
work well on small workstation clusters (4-16 processors). On larger ma- 
chines and/or when higher accuracy is required, the multipole codes have 
an advantage. We expect that PME can be made to scale well to  a larger 
number of processors on a tightly coupled machine such as the Cray T3E, 
but the intrinsic communication requirements of the 3D FFT probably limit 
PME's performance on a loosely coupled workstation cluster to current lev- 
els. A more thorough examination of the speed/accuracy/scalability trade-off 
is underway now; this should result in stronger guidelines for our biochemist 
collaborators on which solver to  use when. 
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Coulomb solver (PME or PMTA) was called every 6 minor timesteps. Details of 
the solvers used are in Table 1. 
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Abstract. Parallel molecular dynamics programs employing shared memory or 
replicated data architectures encounter problems scaling to large numbers of pro- 
cessors. Spatial decomposition schemes offer better performance in theory, but of- 
ten suffer from complexity of implementation and difficulty in load balancing. In 
the program NAMD 2, we have addressed these issues with a hybrid decomposi- 
tion scheme in which atoms are distributed among processors in regularly sized 
patches while the work involved in computing interactions between patches is de- 
composed into independently assignable compute objects. When needed, patches 
are represented on remote processors by proxies. The execution of compute objects 
takes place in a prioritized message-driven manner, allowing maximum overlap of 
work and communication without significant programmer effort. In order to avoid 
obfuscation of the simulation algorithm by the parallel framework, the algorithm 
associated with a patch is encapsulated by a single function executing in a separate 
thread. Output and calculations requiring globally reduced quantities are similarly 
isolated in a single thread executing on the master node. This combination of fea- 
tures allows us to make efficient use of large parallel machines and clusters of mul- 
tiprocessor workstations while presenting minimal barriers to method development 
and implementat ion. 

Introduction 

This paper describes the design history of the program NAMD, developed 
by members of the Theoretical Biophysics Group a t  the University of Illinois 
starting in 1994. The intent is to give the reader a better understanding of 
the conflicting forces which shape the design of a parallel molecular dynamics 
code and to demonstrate the need for advanced features such as multiple 
threads and message-driven execution. 

From a software design perspective, a molecular dynamics program carries 
out a very simple algorithm. The gradient of a potential energy function 
is calculated for all atoms in a system, yielding a force; this force is then 
employed by an integration algorithm to update the positions of the atoms 
for the next force evaluation. Aside from issues of reading data, generating 
output, and the actual integration algorithm there is only this basic cycle of 
force evaluation and integration which is carried out every timestep. 
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Molecular dynamics simulations run for millions of timesteps consuming 
months of computer time. It is the length of simulations which has led to the 
use of parallel computing in this field. It is the iterative nature of the molecu- 
lar dynamics algorithm which produces the challenge, for although efficiently 
parallelizing independent force evaluations is trivial, the force evaluations for 
a sequence of timesteps must be individually parallel to realize a speedup. 
Also, even if force evaluation consumes the vast majority of computer time, it 
may be advantageous to perform the integration in parallel as well, increasing 
scalability according to Amdahl's law [I]. 

Parallelism increases programming complexity and with it the need for 
sound software engineering practices. This is especially true for programs 
designed for public use in an academic environment since the primary devel- 
opers of such codes are often graduate students who tend to move on after 
obtaining their degrees. In addition, molecular dynamics is not a static field 
and the users of such software often propose new algorithms and techniques 
to be added to a working code. Thus, a complex program such as a parallel 
molecular dynamics code must be sufficiently well designed and documented 
that it can be maintained and enhanced by future generations of program- 
mers. Those portions of the code which are most likely to be modified, such as 
the integration algorithm, must therefore be especially clear and modularly 
separated from the remaining code with well-documented interfaces. 

The following sections cover the design goals, decisions, and outcomes of 
the first two major versions of NAMD and present directions for future de- 
velopment. It is assumed that the reader has been exposed to the basics of 
molecular dynamics [2, 3, 41 and parallel computing [ 5 ] .  Additional informa- 
tion on NAMD is available electronically [6]. 

NAMD 1 

NAMD [7] was born of frustration with the maintainability of previous locally 
developed parallel molecular dynamics codes. The primary goal of being able 
to hand the program down to the next generation of developers is reflected 
in the acronym NAMD: Not (just) Another Molecular Dynamics code. Spe- 
cific design requirements for NAMD were to run in parallel on the group's 
then recently purchased workstation cluster [8] and to use the fast multi- 
pole algorithm [9] for efficient full electrostatics evaluation as implemented 
in DPMTA [lo]. 

Two implementation decisions could be made immediately. First, DPMTA 
is based on the PVM message-passing library [ll] and therefore it was nec- 
essary to base NAMD on PVM as well. All communication done by NAMD, 
llowever, would use an intermediate interface to allow communications to be 
'asily retargeted to MPT [12] or other standards, and to simplify later im- 
plementation of communication optimizations such (as combining messages 
destined for the s tme  processor. Second, after much debate C++ was selected 
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Spatial decomposition Force-matrix decomposition 

Fig. 1. Nonbonded force evaluation may be distributed among processors according 
to atomic coordinates, as in spatial decomposition (left), or according to the indices 
of the interacting atoms, as in force-matrix decomposition (right). Shades of gray 
indicate processors to which interactions are assigned. 

as the development language. This was based on the desire to  use an object- 
oriented design and on prior good experiences in developing the visualization 
program VMD [13]. There was concern that existing C++ compilers were not 
uniformly mature and hence to ensure portability across platforms exotic fea- 
tures (at the time) such as templates would be avoided in NAMD. In order 
to avoid possible performance problems [14] time-critical sections of code like 
force evaluation were reduced to plain C, many functions were inlined, and 
virtual functions were avoided. 

Parallel molecular dynamics codes are distinguished by their methods of 
dividing the force evaluation workload among the processors (or nodes). The 
force evaluation is naturally divided into bonded terms, approximating the 
effects of covalent bonds and involving up to four nearby atoms, and pairwise 
nonbonded terms, which account for the electrostatic, dispersive, and elec- 
tronic repulsion interactions between atoms that are not covalently bonded. 
The nonbonded forces involve interactions between all pairs of particles in 
the system and hence require time proportional to the square of the number 
of atoms. Even when neglected outside of a cutoff, nonbonded force evalua- 
tions represent the vast majority of work involved in a molecular dynamics 
simulation. 

Methods of decomposing the nonbonded force evaluation fall into two 
classes, spataal decomposition [15] in which atoms and their interactions are 
divided among processors based on their coordinates, and force-matr2x de- 
composition [16] in which the calculation of the interaction between a pair 
of atoms is assigned to a processor without considering the location of ei- 
ther atom (Fig. 1). Spatial decomposition scales better to large numbers of 
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4 > 

cutoff 

Fig. 2. Patches divide the simulation space into a regular grid of cubes, each larger 
than the nonbonded cutoff. Interactions between atoms belonging to neighboring 
patches are calculated by one of the patches which receives a positions message (p) 
and returns a force message (f). Shades of gray indicate processors to which patches 
are assigned. 

processors because it takes locality of communication into account, while 
force-matrix decomposition is easier to implement and load-balance. 

NAMD implemented spatial decomposition and addressed the load bal- 
ancing issue by dividing the simulation space into a large number of cubes 
called patches (Fig. 2).  A patch serves three purposes. First, it is a region of 
space larger than the cutoff distance for nonbonded force evaluation, and can 
therefore function in a cell list or linked-list method [17] to accelerate distance 
checking for nonbonded interactions. Second, a patch is a unit of parallelizable 
work which can be reassigned to balance load among processors-each node 
possessing several patches. Finally, a patch is a message-driven object that 
receives atomic coordinates from some of its neighboring patches, calculates 
interactions, and returns forces while sending coordinates to and receiving 
forces from its other neighbors. 

Message-driven execution [I81 is a parallel processing technique in which 
communication latency is hidden by overlapping computation and communi- 
cation. This is achieved by executing computations specified by the messages 
as they arrive instead of in a fixed serial order. Every coordinate message 
that arrives contains data that allows some subset of the force evaluation to 
be carried out, primarily nonbonded interactions between atoms of the patch 
which sent the message and those of the patch which receives it. Messages are 
prioritized such that those which generate off-node communication (such as 
position messages from off-node patches) are processed before messages be- 
tween patches on the same node. (Actually, the main message loop in NAMD 
attempted to receive each of the several types of messages in order of priority, 
providing only roughly prioritized message execution.) 

NAMD was implemented in an object-oriented fashion (Fig. 3). Patches, 
the encapsulated communication subsystem, the molecular structure, and 
various output methods were objects. Every patch owned specialized objects 
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Fig. 3. NAMD 1 employs a modular, object-oriented design in which patches com- 
municate via an encapsulated communication subsystem. Every patch owns an 
integrator and a complete set of force objects for bonded (BondForce), nonbonded 
(ElectForce) , and full electrostatic (DPMTA) calculations. 

responsible for integration, the several types of force calculations, and the 
interface to the DPMTA full electrostatics package. This made the system 
modular in that new forces or integration methods could be added with min- 
imal modification of existing code. 

Once it entered production mode, the strengths and weaknesses of the 
NAMD design could be determined. C++, message-driven execution, and the 
concept of patches had each proven their utility and the program performed 
well on small numbers of processors. There were also some problems. Load 
balancing was hampered because most of the work was concentrated in a few 
patches near the center of the system (simulations lacked periodic boundary 
conditions). A patch with multiple neighbors on the same node would send 
several identical messages to that node; the workaround for this unnecessarily 
complicated the communication system. Finally, it was found that a patch- 
centric flow of control created a mixing of the essentially serial simulation 
algorithm with the parallel logic for responding to incoming messages, obfus- 
cating both and requiring an understanding of the message structure in order 
to make trivial modifications to the iterative loop. For these reasons, it was 
decided that a major redesign was necessary and work began on NAMD 2. 

NAMD 2 

NAMD 2 added several new design goals. First, parallel performance needed 
to  be increased through more parallelism and better load balancing. Second, 
communication efficiency needed to be improved without adding application- 
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Fig. 4. In NAMD 2 forces are calculated not by force objects owned by individ- 
ual patches, but rather by independent compute objects which depend on one or 
more patches for atomic coordinates. As suggested by shading in this illustration, 
a compute object need not reside on the same node as the patches upon which it 
depends. 

specific code to the communication subsystem. Third, the simulation algo- 
rithm's outer loop should be made explicit and parallel logic in this section 
of code eliminated. Finally, the design needed to be able to take advantage of 
the eventual availability of kernel-level threads on a newly-acquired cluster 
of symmetric multiprocessor shared-memory workstations; a node would be 
able to control several processors in a common memory space. 

NAMD 2 did not use PVM as its parallel communication protocol, switch- 
ing instead to the Charm++/Converse system developed locally by the group 
of L. V. Kal6. While NAMD 1 simulated message-driven execution in PVM, 
Charm++ [19] provides direct support for NAMD's message-driven object 
paradigm and provides tools for analyzing the performance of parallel pro- 
grams. (A Charm++ version of NAMD 1 was also implemented but main- 
taining both versions required too much manpower.) Converse [20] is an un- 
derlying communications layer which is portable to most parallel machines 
and features the ability to let multiple parallel languages coexist in a single 
code. This later feature allowed us to continue using the PVM-based DPTMA 
package [2 11. Converse also incorporates multiple threads into its messaging 
system, the utility of which is described below. NAMD 2 also made aggres- 
sive use of C++ templates in order to provide efficient yet safe and convenient 
container classes and employed a more thoroughly object-oriented design. 

In order to improve parallelism and load balancing, a hybrid force-spatial 
(lecomposition scheme was adopted in NAMD 2. Rather than decomposing 
the nonbonded computation into regions of space or pairwise atomic inter- 
actions, the basic unit of work was chosen to be interactions between atoms 
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Fig. 5. Compute objects requiring off-node patches do not engage in off-node com- 
munication but rather interact with local proxy patches. When force evaluations 
are required the home patch sends positions messages (p) to its proxies and receives 
force messages ( f )  containing the results of off-node calculations. The proxy patch 
in this illustration exists on the same node as the compute object but represents 
the off-node home patch with which it communicates. 

in regions of space. This was represented in the object-oriented design of 
NAMD 2 by moving responsibility for calculating forces from objects owned 
by a patch to more general compute objects that were responsible only for 
nonbonded interactions between atoms in a pair of patches, or within a single 
patch (Fig. 4). 

Moving responsibility for the force computation away from the patches re- 
quired a move away from pure message-driven execution to dependency-driven 
execution in which patches control the data (atomic coordinates) needed for 
compute objects to  execute. A compute object, upon creation, registers this 
dependency with those patches from which it needs data. The patch then 
triggers force calculation by notifying its dependent compute objects when 
the next timestep's data is available. Once a compute object has received 
notification from all of the patches it depends on, it is placed in a prioritized 
queue for eventual execution. 

Load balancing can then be achieved in NAMD 2 by moving compute ob- 
jects and patches between nodes. But what if a compute object and a patch 
it depends on are on different nodes? Compute objects individually commu- 
nicating with off-node patches would generate a huge amount of redundant 
communication. Therefore, patches are represented on other nodes by proxy 
patches, which implement the same interface as home patches for dealing with 
compute objects and handling dependencies but receive coordinates from and 
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Fig. 6. Multiple threads in NAMD 2 allow the integration algorithm to be expressed 
sequentially as a single function. This function, shown illegibly at left, runs in 
sequencer threads associated with home patches. A similar function running in a 
controller thread on the master node communicates with the sequencers to deal 
with output and global calculations. Compute objects execute in the larger stack 
space of each node's main thread. 

send forces to their respective home patches rather than performi: ng integra- 
tion themselves (Fig. 5). Thus data is replicated on those nodes where it is 
needed with a minimum of communication while no off-node communication 
is done by compute objects. 

The logic associated with the patch has been greatly simplified by sepa- 
rating compute objects and limiting communication to patches and proxies, 
but one additional step is needed to  fully separate sequential molecular dy- 
namics algorithm from the complex logic of a message-driven parallel code. 
A sequencer thread is associated with every patch. This thread runs a single 
function which contains an explicit loop over all of the timesteps in the sim- 
ulation (Fig. 6). In this way, the integration algorithm can be inspected in a 
single section of code closely resembling the outer loop of a serial molecular 
dynamics program. All of the parallel logic is hidden inside of a force eval- 
uation function called by the sequencer that simply propagates coordinates 
to proxies and notifies all registered dependent compute objects that coor- 
dinates are available for calculating forces before suspending the sequencer 
thread. The thread is later awakened when all dependent compute objects 
and proxies have deposited their forces. A similar controller thread on the 
master node coordinates energy output and global aspects of the integration 
algorithm such as calculating velocity rescaling factors. Thread suspension is 
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also used to wait for unavailable data such as energies needed for output in 
the case of the controller or forces needed for integration in the case of the 
sequencer. 

Future Plans 

As noted above, one of the goals of NAMD 2 is to take advantage of clusters 
of symmetric multiprocessor workstations and other non-uniform memory 
access platforms. This can be achieved in the current design by allowing mul- 
tiple compute objects to run concurrently on different processors via kernel- 
level threads. Because compute objects interact in a controlled manner with 
patches, access controls need only be applied to a small number of structures 
such as force and energy accumulators. A shared memory environment will 
therefore contribute almost no parallel overhead and generate communication 
equal to that of a single-processor node. 

Although the current multit hreaded implementation of sequencers works 
well and provides a clearly visible algorithm, threads have several drawbacks. 
Extra memory is required for multiple stacks, there is overhead from context- 
switching between threads, and a running sequencer cannot migrate between 
processors along with its patch. These problems will be addressed by using the 
Structured Dagger coordination language 1221, which enables programmers to 
specify partial order between entry methods of an object. Using constructs 
such as overlap, forall, and when-blocks, one can easily express dependencies 
between entry methods of an object while letting the system do the buffering, 
bookkeeping, etc. required for the specified flow of control. 

Finally, the ultimate in algorithmic flexibility can be achieved by the ad- 
dition of a scripting language interface to  NAMD. Such an interface, most 
likely based on Tcl 1231, will allow the end user to modify the simulation 
algorithm without recompiling and to implement multi-stage simulation pro- 
tocols in a single script. By adopting an existing scripting and extension 
language such as Tcl, Per1 or Python [24], the end user will avoid learning a 
special-purpose language and enjoy the benefits of a well-designed and fully 
featured programming environment. The success of the Tcl interface in VMD 
[13], the Theoretical Biophysics Group's biomolecular visualization package, 
makes this line of development almost inevitable. 
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Abstract. Research interests in molecular dynamics (MD) and its applications 
have increased significantly over the past few decades. This is due partly to the 
advances in software and hardware components of computer technology. The main 
computational goal of recent research work in molecular dynamics has been to re- 
duce the computational cost of the force calculations which evidently accounts for 
approximately ninety percent of the total CPU time for most MD simulations. This 
paper describes parallel algorithms for force calculations using the force decompo- 
sition approach. These parallel algorithms have been tested and found to be highly 
portable and scalable. Numerical experiments on IBM SP/2 indicate that these 
algorithms have improved speedups and efficiencies. 

1 Introduction 

Molecular dynamics (MD) studies the time evolution of N interacting parti- 
cles via the solution of classical Newton's equations of motion. 

d2 ri (t) 
mi dt2 = f i ,  2 = 1 , 2  , . . . ,  N, 

where ri = (xi (t), pi ( t ) ,  zi (t))T and vi = (di (t), yi (t), ii (t))T are respectively, 
the position and velocity vectors of the i-th particle at time t and mi is the 
mass. The ultimate goal being to evaluate the dynamical structure of particles 
in order to reveal the chaotic characteristics of the system as in solar systems 
or the conformational analyses of the system as in biomolecules. During the 
time of the simulation, different measures are employed and these measures 
are quantitative in nature and apparently, it is the desire of computational sci- 
entists that these quantities be reasonably accurate so that inferences drawn 
on them are close to being realistic as much as possible. 

Although, the notion of molecular dynamics was known in the early turn 
of the century, the first conscious effort in the use of computer for molecular 
dynamics simulation was made by Alder and Wainright, who in their paper [I] 
reported the application of molecular dynamics to realistic particle systems. 
Using hard spheres potential and fastest computers at the time, they were 
able to simulate systems of 32 to 108 atoms in 10 to 30 hours. Since the work 
of Alder and Wairl~.ight, interests in MD have increased tremendously, see 
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[2]-[37]. This rapid increase in research interests is due largely to the growth 
in computer technology, particularly, in software and hardware advances in 
multiprocessor technology. 

Molecular dynamics conceptually involves two phases, namely, the force 
calculations and the numerical integration of the equations of motion. In the 
first phase, force interactions among particles based on the negative gradient 
of the potential energy function U, 

of the particles are computed. The numerical integrator to update particle 
positions and momenta, that is commonly used because of its simplicity, 
second-order of accuracy, reasonable stability and symplectic property (see 
[26, 271 for details) is the Stormer-Verlet method 

where Ti,, r i(tn),  vi,, = vi(tn) and fi ln fi(tn) are the approximate 
position, velocity and force vectors, respectively, of the 2-th particle at time 
t, = nAt and At is the time step. In biomolecular modeling, the potential 
energy function is composed of the bonded and non-bonded interaction terms, 

For a detailed discussion of the force components, see [23]. The bonded in- 
teractions act only with nearest neighbor particles and therefore have linear 
time complexity. The nonbonded interactions comprise of the short-range in- 
teractions as in van der Waals potential and long-range interactions as in 
electrostatic (or Columbic) potential. While it is possible to obtain linear 
time complexity for the short-range interactions using the distance cut-off 
strategy, the long-range interaction have quadratic time complexity. This is 
the bottleneck present in nearly all realistic MD simulations, particularly, 
when large number of particles are involved. 

Computational issues that are pertinent in MD simulations are time com- 
plexity of the force calculations and the accuracy of the particle trajectories 
including other necessary quantitative measures. These two issues overwhelm 
computational scientists in several ways. MD simulations are done for long 
time periods and since numerical integration techniques involve discretization 
errors and stability restrictions which when not put in check, may corrupt 
the numerical solutions in such a way that they do not have any meaning 
and therefore, no useful inferences can be drawn from them. Different strate- 
gies such as globally stable numerical integrators and multiple time steps 
implementations have been used in this respect (see [27, 311). 
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The computational complexity of most MD as pointed out in the preced- 
ing paragraphs is dominated by the calculations of 0($)  pairwise interac- 
tions in the force. The rapid development in parallel computer architecture 
and fast parallel algorithms have provided ways to reduce this complexity 
significantly allowing for the simulation of systems of large number of parti- 
cles. The simulation of system with one billion particles have been reported 
in the literature. These simulations are academic in nature, practical sim- 
ulations of more realistic system consisting of one billion particles is still 
underway. Perhaps the impediment one faces in this are the complexity and 
ever changing nature of parallel architecture and the fast parallel algorithms. 
It is evidence from the amount of research in parallel molecular dynamics, 
that distributed memory multiprocessor systems (MIMD) is an accept able 
platform for doing molecular dynamics. This is further harness with the im- 
provement in message-passing programming software, making code portabil- 
ity possible across different platforms. Fast parallel algorithms using different 
techniques to distribute problem tasks to processors have been developed. 
Classifications that are currently being used for parallel molecular dynamics 
simulations are particle/atom, force/interaction and domain/spartial decom- 
position. The particle decomposition algorithm distributes particles to pro- 
cessors irrespective of their physical positions in the computational domain. 
This approach generally uses systolic topology for interprocessor communi- 
cation when replicated data is not possible in each processor. In the force 
decomposition technique, the interaction terms in the skew-symmetric force 
matrix 

f = 

are assigned to processors in fine grain (interaction terms are sent to proces- 
sors one at a time-a processor must complete the assigned interaction term 
before being assigned another interaction term), medium grain (rows/columns 
of the force matrix are are assigned to processors one at a time) or coarse 
p a i n  (blocks of rows/columns or subblocks of the force matrix are sent to 
processors to compute one at a time). The domain decomposition partitions 
the computational domain into subdomains and assigning particles within 
a subdomain to a processor. The approach used in fast multipole algorithm 
(FMA) of Greengard and Rokhlin [I 11, the particle-particle, particle-mesh 
algorithm (PPPM) of Hockney and Eastwood [17] and hierarchical-tree al- 
gorithm of Barnes and Hut [3]. The fast multipole algorithm which supports 
generally the electrostatic force and uses Taylor series expansions to approxi- 
rmte far-field of t l ~ c  force function and which, when systematically combined 
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with hierarchical-tree structure produces an O(N) algorithm with a large 
constant term. 

In this paper, we would describe parallel algorithms for force calculations 
using the force decomposition technique. These parallel algorithms ( which 
are described in Section 2) are the checkerboard partitioning developed 
by Taylor et al. [12] following the concept suggested by Plimpton [28] the 
force-row interleaving and force-stripped row methods developed by 
Murty and Okunbor [22]. All three parallel algorithms have been tested and 
found to be highly portable and scalable. Numerical experiments on IBM 
SP/2 described in Section 4, indicate that these algorithms have improved 
speedups and efficiencies. 

2 Parallel Force Decomposition 

The force decomposition algorithm maps all possible interactions to proces- 
sors and does not require inter-processor communication during the force 
calculation phase of MD simulation. However, to obtain the net force on 
each particle for the update phase would need global communication. In this 
section, we will present parallel algorithms based on force decomposition. 

2.1 Checkerboard Partitioning Method 

This approach is based on the scheme suggested by Taylor et al. [12] and 
Plimpton [28]. The force matrix is divided into @ x 0 blocks, where P is 
number of processors. The processors are conceptually thought of as having 
a two-dimensional mesh topology, that is, 0 x @-mesh. Note that this is 
not the physical architecture of the parallel system. This arrangement is used 
only to describe the algorithm. Since the force matrix has N ( N  - 1) pairs to 

N - 1  be computed, each processor is assigned x - interactions, contained 
within a single ( 2 ,  j)-block of the force matrix. -Let us use Pij to denote 
the processor that is assigned the (i, j)-block, and Pji to denote its transpose 
processor. As indicated in the the preceding sections, the force matrix is skew 
symmetric, therefore, only the upper (or lower) triangular part of the force 
matrix must be used in order to remove unnecessary calculations. In light of 
this, the interactions in a given block of the force matrix are distributed to 
the processor and its transpose processor. Inter-processor communications are 
done only among processors in the same row and transpose processors. Note 
that the processors on the diagonal are responsible for necessary interactions 
in the diagonal blocks, since they do not have transpose processors. 

Let us illustrate this with the mapping of a system of 16 particles on 16 
processors. The diagonal processor Pll computes interactions in the (1, l)-  
block, which are interactions among particles (1,2,3,4),  processor P22 com- 
putes interactions among particles (5,6,7,8) ,  processor P33 computes interac- 
tions among particles (9,10,11,12) and processor Pd4 ~ornputm interactions 
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among particles (13,14,15,16). For the off-diagonal blocks, processors P12 
and Pzl share computations of interactions between particles in (1,2,3,4) 
and (5,6,7,8),  processors P13 and P3i share interactions between particles 
in (1,2,3,4)  and (9,10,11,12), processors P14 and P4i share interactions be- 
tween particles in (1,2,3,4)  and (13,14,15,16), processors P23 and P32 share 
interactions between particles in (5,6,7,8) and (9,10,11,12), and so on. At 
the end of all interact ion calculations, processors communicate with transpose 
processors and processors in the same row. 

3 N For this algorithm, each processor is assigned I atoms, so the force cal- 

culation time is o(%). Using the communication scheme mentioned above, 
each processor communicates with (fl - 1) processors in each row and 
column. Thus the total number of terms being communicated per step is 
(fi - I)(;%). Therefore, O(N) CPU time is required in communicating 
the net force per step. Therefore, 

" 
Communication 

2.2 Force-Row Interleaving Method 

One of the important factors in the design of algorithms for parallel sys- 
tems is the issue of load balance. This can be emphasized by considering the 
following simple case. Since most of the algorithms execute synchronously, 
if one processor finishes 10% earlier than the rest of the group, there will 
be no major effect on the overall efficiency of the parallel application. How- 
ever, if one processor finishes 10% later than the rest of the processors, the 
efficiency of the application will drop drastically. The next two algorithms 
presented in this section achieve load balance by dividing the computational 
load equally among processors. Details of these algorithms are found in the 
paper by Murty and Okunbor [22]. 

The first algorithm is called the force-row interleaving method. The al- 
gorithm consists of a sequence of row assignments. In the first assignment, 
processor k is assigned row k of the force matrix, 0 < k 5 (P - 1). Let PI, 
denote a processor with rank k. This means that in the first assignment pro- 
cessor PI, will compute ( N  - k- 1) interaction between atoms. If all processors 
start their first assignment and work in parallel, then intuitively, processor 
P - 1 is expected to finish computing all interaction assigned to it, since 
it computes one interaction less than processor P(p-2), two interact ions less 
than P(,-,) and so on. Processors that complete their first assignment start 
computing interactions for the next available row - their second assignment. 
The sequence of row assignments continues until all rows of the force matrix 
have been computed. 
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It can be observed from the above discussion that processor Pk, 0 5 k 5 
(P - 1) in general will be responsible for computing interactions for rows k, 
2 P - K - 1 , 2 P + K , 4 P - K - 1 ,  . . .  

The complexity of the force computation function described here is com- 
puted by counting the number of force terms evaluated by each processor. 
The cost of force computation for processor i, which is denoted by Ci is, 

Since every processor computes the same number of computations, the 
above equation gives an the time spent in computing forces - o($). At 
the end of each force step, a global all-to-all reduction operation updates the 
entire force vector. Since the size of the force vector is N, this requires O(N) 
time. Therefore the overall time complexity of this method is, 

iV2 
TP = O ( p )  + O(N) . 

v - Cornmunicat ion 
Computation 

The complexity analysis shows that the load is evenly balanced among pro- 
cessors and therefore we should expect speedup close to P and efficiency close 
to 100%. There are however few extra terms in the expression of the time 
complexity (first order terms in N), that exist because of the need to com- 
pute the next available row in the force matrix. These row allocations can be 
computed ahead of time and this overhead can be minimized. This is done 
in the next algorithm. Note that, the communication complexity is the worst 
case for all interconnection topologies, since simple broadcast and gather on 
distributed memory parallel systems are assumed. 

2.3 Force-Stripped Row Method 

This algorithm is an improvement over the algorithms described in the pre- 
vious subsections. The idea behind this algorithm is fairly simple. To ensure 
load balance, the rows of the force matrix will be allocated in such a way 
that the load on all processor is equal. 

As before, let Ci, denote the cost of force computation on processor i, 
0 <_ i 5 (P - 1). Processor i is assigned li rows of the force matrix and for 
load balance 11, 12,. . . , lp will satisfy l1 5 l2 5 l3 5 . . . < l p .  This algorithm 
computes a priori the row assignment so that the load sent to processors is 
balanced. Some typical values are listed in Table 6. 

The total number of force terms calculated by processor i is given by 
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For complete load balance, 

These quadratic equations are solved for li to give, 

where 

Generally, the computed values of 11,  1 2 , .  . . ,1p are not integers and 
are therefore rounded to nearest integers. In particular, 11,12, . . . ,1p- 1 

are rounded to the nearest integers [111, [Z21,. . . [lp-l] and 1p = ( N  - 
j=P-1 

Cj=1  [ljl) rows are assigned to the last processor (P(P-l)). 
The time complexity of this approach can be calculated easily by substi- 

tuting equation( 7) in equation( 5). The result is, 

Since this approach maps all possible interactions to processors, no commu- 
nication is required during force calculation. Moreover, the row assignments 
are completed before the first step of the simulation. The computation of the 
bounds for each processor require 0(P2) time, which is very negligible com- 
pared to N (for N >> P). The communication required at the end of each 
step to update the position and velocity vectors is done by reducing force 
vectors of length N,  and therefore scales as O(N) per node per time step. 
Thus the overall complexity of this algorithm is, 

N~ 
TP = O(p)  + O(N) 

w - Communicat ion 
Computat ion 

The time complexity of this algorithm shows that the force computation does 
not involve any extra overheads and therefore, the speedup should be equal 
to P and efficiency 100% in theory. 

3 Benchmark System 

We consider a Lennard-Jones fluid consisting of atoms interacting with a 
Lennard-   ones potential given by 
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where e is the depth of the potential well at the minimum in U ( r )  and 0 is 
the collision diameter. For liquid argon, 

0 = 3.405A, e = 120°K x kB and m = 39.95a.m.u. 

where 1 a.m.u = 1.66057 x 1 0 ~ ~ ~ ~  is the atomic mass unit, kB = 1.38064 x 
l ~ - ' ~ e r ~ / m o l e / " K  is the Boltzmann constant and m is mass of an atom. 
We simulate atoms in a cubic box and select the number of atoms N so 
that periodic boundary conditions permit a perfect lattice appropriate for 
the physical system under investigation. Liquid argon crystalizes in a face- 
centered cubic (fcc) structure, that is, an atom is present at each of the eight 
corners and one in each middle of the six sides of the cubic box. It is therefore 
natural to choose N = 4k3, where k is integer. This way, the cubic box can 
be divided into k3 smaller cubic boxes and 4 atoms assigned to each smaller 
cubic box with one atom in each middle of the three visible faces and one in 
the corner. 

4 Results on the IBM SP/2 

This section presents some of the simulation results obtained by simulating 
systems of sizes 4000, 6912, 10976, 16384 and 32000 atoms on the IBM- 
SP/2. The simulations were performed on 4 , 8  and 16 processors, respectively. 
Although, the simulated system size and the number of processors can be 
scaled easily, this section does not show all results. 

Table 1 describes the timing results (in seconds) for a system of 4000 
atoms on 4,8 and 16 nodes. The average CPU seconds for 10 time steps per 
processor is calculated. In the case of the force-stripped row and force-row 
interleaving algorithms the CPU time is reduced by half each time the number 
of processors is doubled. This indicates a perfect speedup and efficiency as 
described in Table 2. Tables 3, refibm:table3 and 5 describe the timing results, 
speedups and efficiencies for larger systems. In particular, Table 4 shows the 
scaling in the CPU time with increase in the system size. These results are 
very close to predicted theoretical results. 

Lastly, Table 6 describes the assignment of rows to processors for some 
typical cases, and the load in each case (indicating the number of force in- 
teractions computed by each processors in the corresponding case). These 
are based on equations in Section 3. Several important points can be noted 
from the results shown in the table. Firstly, it can be observed that in the 
4 processor case, processor P3 computes half the maximum number of rows 
in the force matrix which leads to a load balanced assignment. This would 
not be the case if processors were assigned equal number of rows. Moreover, 
when the number of processors is increased from 4 to 16, the load on each 
processor reduces by a factor of 4, but is still equal on every processor. 
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Table 1. CPU Timings (in seconds) for a 4000 atom system, on 4, 8 and 16 IBM- 
SP/2 

Table  2. Speedup and Efficiency results for a system of 4000 atoms on 4, 8 and 16 
processors 

Table 3. CPU Timings (in seconds) for a 10976 atom system, on 4, 8 and 16 
IBM-SP/2 

Algori thm 
Force-Row Interleaving 
Checkerboard 
Force-Stripped Row 

P  = 16 
Tf orce 

1.908 
1.999 
1.909 

P = 8  

Table 4. CPU Timings (in seconds) for a 16384 and 32000 atom systems 16 IBM- 
SP/2 nodes 

T ~ o m m u n  

0.0182 
0.0763 

0.01723 

T f o r c e  

3.8090 
- 

3.800 

P = 4  

Algorithm 
Force-Row Interleaving 
Checkerboard 
Force-Str i~~ed Row 

P  = 16 

T ~ o m m u n  

0.0125 
- 

0.0105 

Tforce 

7.622 
7.7063 
7.617 

P = 8  

15.494 
15.27 
15.51 

I~orce-stripped Row 
I I I I 

132.005 1 0.0916 1122.22 1 0.1026 1 

T ~ o m m u n  

0.0097 
0.0900 
0.0078 

7.899 
- 

7.949 

96.83 
95.43 
96.88 

P = 4  

Algorithm 
Force-Row Interleaving 
Checkerboard 
Force-Stripped Row 

P  = 16 

- 
Force-Row Interleaving 
Checkerboard 
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a(%)-- 
98.74 

- 
99.30 
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