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I . INTRODUCTION

The selective binding of molecules to form productive complexes is of
central importance to pharmacology and medicinal chemistry. Although
kinetic factors can influence the yields of different molecular complexes
in cellular and other non-equilibrium environments,1 the primary factors
that one must consider in the analysis of molecular recognition are
thermodynamic. In particular, the equilibrium constant for the binding of
molecules A and B to form the complex AB depends exponentially on
the standard free energy change associated with complexation.

It has long been recognized that if one could compute the standard free
energy change of complexation of biologically active molecules, it would
be possible both to gain a deeper understanding of the origins of
molecular recognition in biology, and to contemplate the "first
principles" design of Pharmaceuticals and other compounds. Such
calculations were attempted, for example, by the Scheraga group as early
as 1972,2 although limitations in computer power did not allow inclusion
of solvation or entropic effects in this work. In 1986, Wong and
McCammon3 combined the statistical mechanical theory of free energy
with atomistic simulations of solvent and solutes to calculate the relative
standard free energy of binding of different small inhibitor molecules to
an enzyme. The necessary statistical mechanical theory had been
available for many years. Two new elements were required to make the
calculation possible. One was the increased power of computers, which
allowed molecular dynamics simulation of the enzyme trypsin in a bath
of explicitly represented water molecules. The other was the concept of
using thermodynamic cycles to relate the desired relative free energy to
that of two nonphysical processes: computational "alchemical"



transformations of one inhibitor into another one, in solution and in the
binding site.4

Subsequent work has shown that free energy calculations that involve
systems as large as proteins or other macromolecules can provide
usefully accurate results in favorable cases. But, in general, there are
difficulties in achieving precise and accurate results with reasonable
amounts of computer time, even using current state-of-the-art machines.
These difficulties arise primarily from the incomplete sampling of the
rough, many-dimensional potential energy surfaces of such systems.
Below, I mention several lines of work that hold promise for making free
energy calculations faster and more accurate for biomolecular systems.
The subsequent chapters in this volume describe some of these lines of
work in more detail. Excellent reviews of this work can also be found
elsewhere.5"9

2. THEORY AND METHODS

For calculations of relative free energies of binding, the theoretical
framework outlined by Tembe and McCammon4 has been used
essentially without change. This framework recognizes that brute force
calculations of standard free energies of binding will encounter
convergence problems related to the dramatic changes in solvation of the
binding partners, conformational changes that require physical times
longer that those that can be explored by simulation, etc. Tembe and
McCammon4 introduced the use of thermodynamic cycle analyses that
allow the desired relative free energies to be computed in terms of
"alchemical" transformations, as described above. The advantage is that
only relatively localized changes occur in the simulated system, at least
in favorable cases.

Calculation of the standard free energy of binding itself can be viewed
as a special case of the above, in which one of the pair of ligands
contains no atoms.10 Some care is required to be sure that such
calculations yield answers that actually correspond to the desired
standard state.11'12 Unfortunately, many calculations of free energies of
binding have not made appropriate contact with a standard state, so that
results in the literature must be interpreted with caution.

It has been mentioned that perhaps the greatest limitation to the
precision of free energy calculations to date has been the often-
inadequate sampling of a representative set of configurations of the
system. Increases in computer power of course increase the "radius of
convergence" of such calculations. Such increases come not only from
the "Moore's Law" improvements in hardware, but also from algorithmic



advances for parallelization and for increasing time steps in molecular
dynamics.13 New methods on the physical/theoretical side have also been
developed to speed convergence. One such method is the use of soft-
core solute models, so that one simulation can generate an adequate
reference ensemble for a family of alchemical changes.14'15 The "lambda
dynamics" method of Kong and Brooks16 increases the efficiency of free
energy calculations by treating the coupling parameter as a dynamic
variable.

More rapid convergence of free energy calculations can also be
obtained by replacing part of the system with a simpler model, such as a
continuum model for the solvent. This has the advantage of obviating the
need for sampling the configurations of this part of the system, and it also
reduces the computation time so that longer simulations are possible for
the rest of the system. Reasonable agreement has sometimes been
obtained with fully atomistic simulations when solvent regions near
binding sites have been replaced by continuum.17' 18 But in view of the
important role that specific hydrogen bonds may play, the combination of
fully atomistic simulations with subsequent continuum analyses is
probably a more reliable procedure.19 The Kollman group has
demonstrated impressive success with this approach to calculations of
free energies of binding.20

Calculations of relative free energies of binding often involve the
alteration of bond lengths in the course of an alchemical simulation.
When the bond lengths are subject to constraints, a correction is needed
for variation of the Jacobian factor in the expression for the free energy.
Although a number of expressions for the correction formula have been
described in the literature, the correct expressions are those presented by
Boresch and Karplus.21

3. OUTSTANDING PROBLEMS

It was noted above that a continuum treatment of the solvent can be
helpful, although representing certain solvent molecules explicitly may
be necessary. The expressions for handling the free energy contributions
in such hybrid models have been derived by Gilson et al.11

Two remaining problems relating to the treatment of solvation include
the slowness of Poisson-Boltzmann calculations, when these are used to
treat electrostatic effects, and the difficulty of keeping buried, explicit
solvent in equilibrium with the external solvent when, e.g., there are
changes in nearby solute groups in an alchemical simulation. Faster
methods for solving the Poisson-Boltzmann equation by means of
parallel finite element techniques are becoming available, however.22"24



For buried solvent molecules, open ensemble methods should be helpful,
although extension of the existing methods to allow for solute flexibility
is needed.18

It is not uncommon for protons to be taken up or released upon
formation of a biomolecular complex. Experimental data on such
processes can be compared to computational results based on, for
example, Poisson-Boltzmann calculations.25 There is a need for methods
that automatically probe for the correct protonation state in free energy
calculations. This problem is complicated by the fact that proteins adapt
to and stabilize whatever protonation state is assigned to them during the
course of a molecular dynamics simulation.19 When the change in
protonation state is known, equations are available to account for the
addition or removal of protons from the solvent in the overall calculation
of the free energy change.11

4. PROSPECTS

Although challenges remain, and provide fruitful grounds for basic
research, it is clear that computational methods for free energy
calculations are becoming increasingly useful. Computations are already
of sufficient reliability for medium sized molecules such as synthetic
host-guest systems, that they are an important tool for interpreting and
even correcting experimental data in this area.7 Recent years have seen
growing interest in these methods for protein-small molecule systems, as
shown in the following chapters.
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1. INTRODUCTION

Nearly two decades have now passed since the first macromolecular free
energy calculations were published.1"3 These calculations drew on a
statistical framework that was first described by Zwanzig years earlier4, but
which until the advent of fast computers, molecular sampling techniques
applicable to complex macromolecular systems, and reliable force fields
could not be put into practice. Groundbreaking work in the late 1970s
demonstrated that a molecular dynamics (MD) approach could be used to
perform configurational sampling for complex systems,5 and by the early
1980s, computers had become fast and cheap enough that such calculations
were within the grasp of most well-funded research groups. Extension of
MD (or Monte Carlo [MC])6 sampling to the calculation of free energy
differences as per Zwanzig was a natural one. By the mid 1980s, a series of
promising and exciting results reported in early free energy studies had
sparked a flurry of research in the area.7'8

It is not hard to understand the interest. Free energy is the property that
dictates almost every physical process. Understand the free energy behavior
for any molecular system, and you can reliably predict how that system will
behave. Solvation, diffusion, binding, folding, and many other properties
that are of critical interest to scientists can all be understood and (more
importantly) predicted if we know the underlying free energy profiles. It is
not an exaggeration to say that an ability to reliably and rapidly predict these
properties in the general case would revolutionize such endeavors as drug
design.



Given the general feelings of euphoria that followed the early, promising
papers in this field, one can ask what happened to the revolution? The
answer, simply, is that free energy prediction turned out to be significantly
more difficult than first thought. While the statistical mechanics foundation
is straightforward, as is integration with MD or MC sampling, issues related
to sufficient sampling and to the adequacy of the force field quickly emerge
when performing these calculations.9"17 With regard to sampling, we know
what we need to do, but, outside of select amenable systems, current
computer systems (which are many times faster than those used in the early
free energy studies) are still orders of magnitude too slow to allow the kind
of full conformational space exploration required to perform enough
sampling to reliably predict free energy in the general case. We thus
confine ourselves to questions that fall within the class of systems for which
we can hope to perform the requisite sampling. While this is sub-optimal,
there are still many questions of interest that can be addressed. Much of the
development in the free energy field over the past couple of decades has
been in areas that attempt to better characterize the convergence
characteristics of these calculations, and how to best carry them out to
optimize the convergence.18"25 Major improvements have also been made in
various procedural areas that make the models and equations used more
correct.9'14'26'31

The tremendously promising results of early calculations in the field
have, with hindsight, turned out to have been largely fortuitous. We now
know that those calculations, often performed with 10-40 ps of sampling,
cannot possibly have yielded the kind of predictability they appeared to
offer.9'17 The good news is that, after two decades of development and
nearly unbelievable increases in available computer resources, we can now—
for judiciously chosen questions—obtain predictions with quality that is truly
as good as suggested by those first publications.

In this chapter, we shall review the various methods and protocols now
available to perform free energy calculations.

2. EXACT FREE ENERGY CALCULATIONS

There now exist several methods for predicting the free energy
associated with a compositional or conformational change.7 These can be
crudely classified into two types: "exact" and "approximate" free energy
calculations. The former type, which we shall discuss in the following
sections, is based directly on rigorous equations from classical statistical
mechanics. The latter type, to be discussed later in this chapter, starts with
statistical mechanics, but then combines these equations with assumptions
and approximations to allow simulations to be carried out more rapidly.



The most commonly reported exact free energy simulations are based on
the following equation, which can be derived in a straightforward fashion
from elementary classical statistical mechanics:

&G = GB-GA = -RT\r\<e-(VB~VA}/RT >A (1)

G8 and GA are the free energies of configurations or molecules B and A,
respectively, VB and VA are the potential energies of configurations or
molecules B and A, respectively, R is the universal gas constant, T is the
temperature and <>A means we evaluate the average of the enclosed quantity
from a thermodynamic ensemble generated for state A. Here and throughout
this article, we use the potential energy V(x) in place of the more general
Hamiltonian H(X, p), making the typical assertion that the momentum
contribution to the free energy difference is zero.

The ensemble is generated using either MD (a numerical integration of
Newton's equation) or else a Monte Carlo walk. Each step of MD, or each
configuration in MC, requires significant computer resources to evaluate, so
the amount of sampling that can reasonably be performed using these
techniques is limited. Presently, normal simulations are limited, at best, to
total simulation times on the nanosecond timescale. Depending on the
nature of systems A and B, the amount of sampling we can carry out may be
insufficient to properly evaluate the requisite ensemble average. The
severity of this problem usually increases as the difference in states A and B
grows larger.

In practice, many physically interesting questions result in states A and
B that are so different, with corresponding orthogonality between their
respective potential surfaces, that it is practically impossible to carry out
enough sampling to properly evaluate the ensemble in Equation 1 (Figure 1).
For that reason, implementation of Equation 1 is usually carried out by
defining a series of non-physical intermediate states that connect the
physical states A and B. As we progress among these intermediates, the
system gradually begins to look more like B and less like A. Since free
energy is a state function, the total free energy can be rigorously calculated
as the sum of the free energies between these similar intermediates (for
which, presumably, the required ensemble will converge more quickly). In
practice, the potential functions VA(x) and VB(x) are replaced by V(X,x). X
is a variable introduced to the potential energy function such that V(X =0,x)
= VA(X) and V(X=l,x) = VB(X).



Figure 1. Schematic view of the fundamental difficulty in running a free energy perturbation
calculation. The initial endpoint is shown on the left, corresponding to a pendant methyl
group attached to the molecular scaffold. On the right is the final endpoint, which
corresponds to a propyl group on this scaffold. If we were to carry out this free energy
simulation in one window starting with the methyl endpoint, we would need to sample water
configurations that are favorable for both groups, but the chances of sampling configurations
where the water has moved out to to provide a favorable cavity for the propyl sidechain are
vanishingly small. As seen on the left, water molecules will typically overlap the positions
that correspond to the second and third carbons (and attached hydrogens) in an ensemble
generated using the potential function corresponding to the methyl. Appropriately low energy
configurations for the propyl group (right) will be very rare in the methyl ensemble. Atoms
with hash lines are carbons and hydrogens. Atoms with no hash lines are "dummy" non-
interacting atoms. Bonds to dummy atoms are represented by dashed lines. Atoms with solid
shading belong to water molecules.

For example, in the simplest case (though not the case usually used in
practice), one could define

V (A, x) = (1-A) VA (X) + X VB(X) (2)

With the introduction of the A, factor, Equation 1 is replaced by the
equations

GKHHA© = -RThK*™ (i)'x)-V(X (i-1)'x)]/RT>,(1,1) (3)

NWINDOW

AG10= E AGA(W)_A(0 (4)



where we have used A(i) to refer to the ith A point in the series of
NWINDOW points that starts with A(0)=0.0 and ends with
X(NWINDOW)=LO. Each free energy calculation between adjacent X states
is termed a "window." A free energy calculation carried out using Equations
3-4 is usually termed a Free Energy Perturbation (FEP) calculation.

Although historically less common, free energy calculations based on a
different equation from classical statistical mechanics have grown in
popularity in recent years. These calculations, termed Thermodynamic
Integration (TI), are based on the integral

(5)

where X has the same meaning as above. In practice, numerical integration
is used to evaluate the integral. This requires that the integrand (ensemble)
be evaluated at a series of A, intermediates. From these values of the
integrand, a method such as the Trapezoidal rule can be used to approximate
the integral32:

(6)

Both FEP and TI are carried out by systematically varying A from the initial
state O to the final state 1. At each A point, equilibration of the system is
performed, followed by data collection to determine the value of the
ensemble for the equilibrated system.

Note that the free energy pathway between physical endpoints A and B is
divided into a series of A states for different reasons with FEP and TL In
FEP, we use the A, intermediates to reduce the difference between adjoining
states when applying Equation 1. This improves the convergence profile for
the required ensemble. In TI, the A intermediates are required to
approximate the continuous integral in Equation 5. The number of
intermediates required when using TI will depend on the shape of the
accumulated free energy versus A, profile. The greater the variation in the
curvature in this profile, the more points that will be required to correctly
approximate the required integral.

Another approach to free energy calculations, Slow Growth, has also
been employed. Slow Growth is simply the limiting case of either FEP or
TI where the number of A states is extremely large. The assertion is that in



such a case, the system will be changing so slowly with each progressive A,
state that the ensemble average can be approximated by its instantaneous
value (a sample over one step) at each window. This reduces both

NWINDOW

Equations 1 and 5 to AG,,,= J[V(A(i),x)- V(A(/-l),x)]. This
/=i

assertion cannot be rigorously proven, and in fact it can be demonstrated
that the configuration will systematically lag changes in the potential energy
function as the simulation progresses.33"35 Thus, the validity of this approach
has been questioned,10' 33' 36 although recent work has suggested that the
method may have use in bounding the error on free energy simulations.37

Other variations on these basic free energy methods have been
published, although for various reasons they have not yet been widely
adopted. These methods include MD/MC methods,38 the acceptance ratio
method,39' ^ the weighted histogram method,41 the particle insertion
method,42' 43 and the energy distribution method.39 The reader is referred to
the original publications for additional discussion of these approaches.

3. FREE ENERGY CALCULATIONS IN PRACTICE

The above equations allow us to calculate the free energy difference
between any two configurations or molecules. In general, free energy
differences between molecules are substantially easier to calculate than
those between configurations: free energy differences between
configurations require one to postulate an interconversion pathway, which is
frequently not a straightforward exercise. Choosing, the wrong
interconversion pathway can lead to very poor convergence and unreliable
results. For this reason, free energy simulations are most frequently carried
in the context of a thermodynamic cycle. For example, to compare the
relative binding energies of two inhibitors to a enzyme, we can use the
following cycle:

E is the enzyme, S is one inhibitor, S1 is the modified inhibitor, E+S
represents the unbound state and E: S represents the bound state. In this



cycle, we calculate the free energies corresponding to the non-physical
"mutation" processes represented by the vertical arrows. From the state
function nature of free energy, it follows from this thermodynamic cycle
that

AAG = AG£2-AG£1 = AG72-AG71 (7)

In other words, the relative free energy difference in binding between the
two inhibitors is equal to the difference in the free energies calculated for
the non-physical mutations.

The equations and methods discussed allow one to determine the free
energy difference between two configurations or systems. One might
wonder why these calculations are not carried out to determine absolute free
energies, which would allow both the differences to be determined and
would also allow direct calculation of derivative parameters such as binding
constants. The answer is that that direct calculation of the absolute free
energy is generally impractical from a convergence standpoint. Refer again
to Equation 1. There it is seen that the quantity we need to sample is the
potential energy difference between the endpoints. This difference will tend
to be relatively modest, even when the absolute potential energies of the
endpoint systems are large. In contrast, if we expand the absolute free
energy in terms of the potential energy, we get

<V >2

G=<V> + ... (8)
2RT

In other words, to calculate G we must be able to determine a converged
value of <V> (and its higher moments), in contrast to AG, which is derived
from <AV>. <V> converges much more slowly than <AV>, which makes
calculation of the absolute free energy impractical in most cases.

That said, for select systems it is possible to attempt to calculate an
absolute free energy. This can be done by running two FEP or TI
simulations and summing the results.44 For example, to calculate the
absolute free energy of binding of a substrate to an enzyme, we perform the
following simulations:

E:S->E AGa (9)

S-> nothing AGb (10)



Summing the reverse of the first simulation with the second we get the
desired net process

E +S-*E:S AG£7 (11)

where

AG£1=-AG f l+AG, (12)

It is not a trivial matter to get a converged value for these simulations, since
in both we are forcing the substrate to vanish from the system a substantial
mutation. But if one has copious computer time available and is careful,
one has the potential for calculating such a value provided the substrate is
not too large and there are not appreciable large-scale changes in the protein
active site upon binding.

The net free energy is, in the end, the thermodynamic quantity that
dictates molecular behavior. However, to understand why the free energy
profile for a system looks as it does, it is valuable to also determine the
potential and entropic components of the net free energy:

AG = AH-TAS (13)

If we can obtain an idea of why the free energy behaves as it does, we can
often better attempt to make compositional changes to the system that will
(hopefully) result in desired changes in binding, solubility, etc.

Unfortunately, it is significantly more difficult to determine the
component potential and entropic components of the total free energy, than
it is to calculate the free energy itself. Equations that allow the entropy
difference (and hence enthalpy difference via Equation 13) to be calculated
at the same time we are determining the free energy have been reported. For
example, for TI, the following expression can be used:9

(14)

Note that in this expression for entropy, one must determine not only
averages that depend on the derivative of the potential energy with respect
to X, but also terms that depend on the total potential energy. The derivative
terms will converge much more rapidly, since they depend only on
interactions of a small number of atoms with the rest of the system. As



noted earlier, terms that depend on the net potential energy of the system
converge very slowly.

The much slower convergence of the entropy relative to the net free
energy can be understood from the following simple model for calculating
entropy. From the same equation of state that leads directly to Equation 13,
it follows that

&S = -dkG/dT (15)

If we assume that the heat capacity ACV= T(dS/dT) is independent of
temperature (a reasonable assumption for small temperature ranges), we can
expand Equation 15 to its differential approximation

(16)

If the error associated with each value of AG (i.e. the error in a standard
free energy simulation) is a, T=300K, and AT is 10 degrees (small enough
that Cv is temperature independent over the range T-AT to T+AT), then the
error associated with AS as calculated by Equation 16 is roughly 42o. That
is, the error in the entropy is 42 times greater than the error in the free
energy. Regardless of how the entropy is calculated, if we are attempting to
calculate the entropy from the same basic statistical mechanical equations, a
similar relative error will apply. Thus, since the error only decreases with
the square root of the amount of sampling we perform, one would need to
perform between two and three orders of magnitude more sampling to
reduce the error in the calculated entropy to the same level as that in the
calculated free energy. For this reason, any entropy (or enthalpy)
calculations performed in this manner should be considered at this time to
be qualitative in nature.

It should be noted that nothing in the derivations of these free energy
methods restricts their application to changes in composition (mutations).
They can also be applied to conformational changes by associating X with
these changes in the conformation of the system. If we carry out a
simulation where A, reflects a conformational constraint (or restraint) on the
system, then the free energies we will calculate define a profile of the free
energy with respect to the conformational variables defined by X. Such a
profile is termed a Potential of Mean Force (PMF). One can carry out a
PMF within the context of a FEP (or TI) simulation in one of two ways. In
the first, the conformational variables are rigidly defined by X through the
use of coordinate constraints. For example, to calculate a PMF



corresponding to the distance between two molecules, one can, in MD, use
holonomic constraints (such as the well-known SHAKE algorithm) to keep
the chosen distance fixed at a value that is defined by X.45'46 (In MC, one can
simply disallow moves that would change the constrained internal
coordinates.)47 The constraint is imposed without otherwise significantly
affecting the conformational ensemble. As X changes, so does the value.
But for MD carried out at any fixed value of X, the distance does not vary.
Methods have been derived that allow the free energy resulting from a A,-
dependent constraint to be determined during a free energy
simulation.9'14'26'48'49 The appeal of these methods is that they are easy to
implement, and very simple to carry out. Once a method has been coded
into the free energy program, the only difference with a standard free energy
calculation is that one defines what internal variables shall be constrained
with X. The remainder of the simulation is performed as usual. The
downside to these methods is that, depending on the pathway defined by the
A, dependent constraints, convergence can be difficult to attain.

The second general method for performing PMF calculations relies on
the use of Umbrella Sampling.50 In its simplest form, Umbrella Sampling
adds a bias restraint (umbrella) term to the standard potential function

v —v 4-v n?^v total y potential v bias \L ' J

where Vbias can take a form such as

V4111 = K(I- /(A))2 (18)

with I the internal variable being restrained. The statistics accumulated
during a simulation run with such a biasing term(s) included must be
corrected. It is simple to show that for FEP, the corrected master equation
is50

(19)

where OAS means we evaluate the averages from ensembles generated
using the biased total potential. The corresponding bias-corrected equation
for TI is26

(20)



Note that for both FEP and TI, the umbrella restraint introduces a term that
depends on e+Vbia^RT, which may (since Vbias is always > O) fluctuate widely,
especially if the biasing function is attempting to restrain the system to a
conformation far from a local minimum. As a result, use of the umbrella
term Equations 19 and 20 is often problematic. This has led to the
development of alternate (but related) approaches to Umbrella
Sampling.41'51f 52 Many of these derive from the following equation, which
relates the work function W to the probability of states, corrected for use of
the biasing potential:

W(I) = -RT lnp*(7) - V(I) - RT In <e
+VhiJRT>b (21)

Here p*(I) is the distribution of conformational states that arises from a
simulation using the biased potential. The tricky point with this method
comes from the fact that we ultimately need to integrate the work function
over a series of windows, and the integration constant for each window is
undefined. In practice, this problem is addressed using clever approaches
that attempt to match up the probability distributions on consecutive
intervals.

Yet another new method for calculating PMFs has recently appeared,
which appears promising in initial tests.53 In this method, an adiabatic
separation between the reaction coordinate and the remaining degrees of
freedom is imposed. This allows improved sampling while alleviating the
need for (often difficult) post processing.

4. CONVERGENCE AND ERRORS

As must be clear by now, the ultimate difficulty in performing free
energy simulations—regardless of which approach is chosen—is achieving
convergence. The equations are either exact (FEP) or accurate enough (TI)
that this is not a major factor in obtaining precise results. But whether we
can obtain precise results will depend on evaluating various ensemble
averages. (Note that whether we can obtain accurate, as opposed to merely
precise results will also depend on the force field; a detailed discussion of
issues related to force field development is beyond the scope of this chapter-
please refer to Chapter 3).

The majority of free energy calculations in the literature have relied on
very crude methods to estimate the error in the free energy results.
Basically, a simulation is repeated several times, sometimes in the "forward"
(0—>1) and "reverse" (1—»0) X directions, sometimes only in one direction or
the other. Each simulation is performed with a different (but equivalent)



starting configuration, e.g. with a different random velocity distribution.
The variance in the free energy results over the redundant simulations is
taken as a measure of the error in the simulation. Unfortunately, there are
several shortcomings to this approach. First, if the simulation is performed
very quickly (not much sampling per window), one can encounter a situation
where the change in the system is happening much more quickly than the
system can relax to reflect it. In this case,54 one can get very repeatable
results over multiple simulations that are completely wrong. Another
problem with these crude error estimates is that-even in the best case-they
are merely a lower bound on the error.29'55 Typically, not enough redundant
simulations are performed to have any chance of truly estimating the
variance (error) in the simulation. Error estimates derived from double wide
sampling (comparing the sums of X+8X and X-5A, windows along a FEP
trajectory)3 are highly correlated and even less reliable.

A tremendous example of the potential folly of estimating error in this
fashion can be ascertained by examining certain of the early publications in
the field of free energy. These papers presented quite good agreement with
experiment for free energy simulations that reflected total MD sampling of
only 10-40 ps. They also, by-and-large, reported very good associated
errors, as estimated from 1-2 redundant simulations. As has subsequently
been shown, 10-40 ps is nowhere near enough MD sampling to precisely
calculate the free energy for most changes. Current state-of-the-art free
energy simulations are generally run for, at minimum, 150-200 ps, and often
for greater than a nanosecond. And, in fact, when some of these early
calculations have subsequently been repeated using more sampling, the
results have differed considerably from both those obtained previously and
from experiment.56

What happened? Probably two things. First, the simulations were run
too quickly for the environment to respond to the change. And second,
because researchers were not using good objective, statistically rigorous
measures of convergence, a natural tendency is to accept results that seem to
mesh with experiment as good (and to find reasons to dismiss results that do
not agree with experiment).

While the general drift toward longer simulation times have ameliorated
the problem to some degree, better still would be statistically-based
measures of the quality of a free energy simulations. In fact, such measures
have been described and implemented within the context of these
simulations.15' 57~59 To determine the error in a calculated free energy, we
need to determine the error in the ensemble average upon which it depends.
The trick here is to recognize that the data contributing to the average are
correlated, and thus to derive a statistical equation which reflects this
correlation. The variance in the mean value of an uncorrelated series of data
is given as



a2(X) =a\X)ln (22)

where n is the number of data points in the series, a2( X ) is the variance in
the mean, and a2(X,) is the variance in the set of data. The error in the mean
value of a series of a correlated series can be given by

a\X)=(y2(X)/[n/(l + 2T)] (23)

Here T is a correlation length, which grows as correlation in the data grows.
The net effect of T is to reduce the effective number of independent data
points. T is calculated from the autocorrelation coefficients for the series of
data:

T = J(I-^n)P4 (24)
k=l

with pk the autocorrelation function for two points separated by k-1 data
points. Once a2 is calculated for the data contributing to the ensemble
average, the error in the derived free energy can be calculated by elementary
statistical propagation. Accurately estimating the correlation length T
requires that we sample at least 15-20 ps at each window.15 This puts a
lower bound on the length of any simulation for which we would like to use
statistically based error estimates. It also eliminates the possibility of using
such estimates with the slow growth method (where only one sampling point
is obtained at each window). It should also be noted that Equation 23
assumes one is deriving statistics for a stationary series, that is, that the
system is in equilibrium. This method will not work properly if the
simulation is run so quickly that the system is not close to equilibrium when
statistics are being accumulated. This equation will also not reflect any
errors that are due to complete failure to sample certain minima.
Nonetheless, it is a better measure of the quality of a simulation than a small
number of simple repetitions of the experiment.

Statistically-based errors can also be obtained using a block averaging
approach. Block averaging essentially places groups of consecutive system
configurations into a single block. For example, if we run 100,000 MD
steps, these might be placed into 100 blocks of 1000 points each. The
average of each block is determined and used as the single observation for
that block. Then, the variance for the series of block values is calculated.
The idea is that if the blocks are large enough, then there will be no
correlation between the average values of the blocks, and we will not have
to make any corrections to the simple uncorrelated series statistics (and can
use Equation 22). The downside of this approach is that one cannot know,



a priori, how large the blocks should actually be. If they are too small, then
the assumption that they are independent will not hold. If they are too large,
then we effectively waste data and risk not having enough independent
blocks to reliably calculate the variance.59

5. ISSUES AND TRICKS

Implementation of free energy calculations, in practice, is not quite as
simple as the streamlined equations presented above would imply. There
are a variety of practical choices that must be made with regard to
implementation when a free energy simulation is run. At their root, most of
these choices regard how to best ensure that convergence is attained, and
that it is attained as efficiently as possible. Here we shall describe some of
the most significant options that can be used to hasten convergence (and
hence reliability) of a free energy simulation.

The master equations for both FEP and TI (Equations 3-5) are defined
in terms of a series of A, intermediates. But nothing in these equations
dictates how the series of X pathways should be chosen. The simplest
choice, and the one made in the majority of studies, is to simply define a
series of fixed width windows (all A(I +1) — A(I) the same). At each A,
point, a pre-chosen fixed amount of equilibration and sampling is carried
out. But this is certainly not the optimal choice for all simulations. In the
case of FEP, optimal spacing of the windows is dictated by the need to
attain reasonable sampling of the quantity <e-

(V(A(^1))-V(A(l)))//?r>;i. If 5X is

too large, then the potential surfaces of V (A(/ +1)) and V(A(i))will be too
dissimilar, and the required ensemble will converge slowly. For TI, the
spacing arises from the need to be able to numerically integrate the AG
versus X curve from a finite set of integrand points. More points will be
required in regions where the curvature of the graph is changing more
quickly. It is clear that fixed 8A, spacing with fixed sampling will not
optimize against the requirements of the methods, except in a few fortuitous
cases.

Several approaches have been reported which attempt to improve upon
the basic fixed 8X, fixed sampling method in an automated fashion. These
can be divided into those that modify the window spacing as the simulation
progresses, those that modify the functional dependence of the potential on
the value of X, and those that modify the amount of sampling that is
performed at each fixed A, point.

An example of the first approach is method of Dynamically Modified
Windows (DMW).18 DMW approximates the slope of the accumulated free



energy curve over the past several windows, then adjusts the width of the
width of the next window to keep the free energy change per window
approximately constant:

AAnext window = AGtarget/M (25)

where AGtarget is the desired free energy change per window and M is the
slope of the AG versus X curve over the past several windows. For FEP, this
approach will work if the rate of convergence is proportional to the free
energy change. Unfortunately, such proportionality only holds for a limited
number of systems. This approach is potentially more useful in the context
of TI, where the need for more (or fewer) integration points is directly
related to the shape (slope) of the free energy curve.

As an alternative to modifying the A, spacing dynamically as the
simulation progresses, we can attempt to define a more elaborate A,
dependence for the force field that takes into account known sampling
issues for the system we are considering. A, dependence can be introduced to
the potential function in many different reasonable ways. The most
common is to linearly scale the parameters that define the potential function
with A,. So, for example, force constants, equilibrium internal coordinates
and non-bonded parameters are defined as60

(26)

(27)

(28)

where KI is the force constant for an internal coordinate (bond, angle,
torsion) term, Ieq is the target value of an internal coordinate, R* is the
mixed van der Waals radius for a non-bonded interaction, and similar
equations are used for charges, non-bonded well depths, and so on. Such a
formulation meets, in the simplest fashion possible, the requirements of the
A, dependence, namely, that V(A = O)=V^, V(A = I)=V^,, and that the

function is continuous and differentiable along the entire interval [0,1].
In some cases, we know before we even start the simulation that certain

ranges of X are going to present a greater convergence challenge than others.
For example, it is well known that if we are removing a highly charged
solvent-accessible group, the simulation will frequently become unstable
near the endpoint where the charge is removed. This arises from a
combination of the fact that in standard water models there are no van der



Waals parameters on the hydrogens, and that near the endpoint, the van der
Waals parameters on the disappearing charged group can become small
enough that the hydrogens of the solvent can, occasionally, get close enough
to a positively charged group to see the infinitely negative potential
singularity at r=0 in the electrostatic term qtqj/er. A simple procedure,

termed electrostatic decoupling, has been used to moderate this problem61.
In essence, the simulation is run in two parts. In the first part, the charge is
removed while keeping the van der Waals parameters fixed. Then, in the
second part, the van der Waals parameters are removed. Since the van der
Waals parameters on the disappearing group never get small when there is
still a charge on the associated atoms, the water molecules can never get
close enough to sample the r=0 singularity. Electrostatic decoupling can be
implemented as a single simulation, where the electrostatic parameters on
the group that is being removed are reduced to O (with van der Waals fixed)
as X varies O —> 0.5 and then the van der Waals parameters are reduced to O
as X varies 0.5 —> 1. (In typical practice, two separate simulation "legs" are
used, but it amounts to the same thing).

A more sophisticated and generalized version of the ideas in electrostatic
decoupling has been described.22"24 Multiple X values, (Xi, X2, X3, ...) are
introduced into the potential function, replacing the single X value that has
been described, and subject to the boundary conditions

V(A1= 0,A2= 0,...x) = V(A = 0,x) (29)

V(A1= 1,A2= l,...x) = V(A = l,x) (30)

Each X parameter can be used to modify a different aspect of the potential
function, and as many X parameters can be added as one requires. The
problem with this approach is that it is often difficult to postulate, a priori, a
generalized multi-X path that will result in greater efficiency. The examples
in the literature attempting to utilize this approach have, thus far, been
relatively simple.23 For example, the convergence of free energy simulations
on butane-like molecules was improved by reducing the rotational barrier
(using one X) then mutating the non-bonded parameters on the attached
atoms (using a second X) then bringing the rotational barrier back to its
normal value (using the first X parameter again). A more elaborate variant
on this approach has been described.25'62 In this method, the lowest energy
pathway between the two endpoints of the free energy simulation is
approximated by determining this pathway for a gas phase simulation. This
pathway is imposed on the change between states A and B using
appropriately chosen X dependence of either the internal coordinates or of
the atomic coordinates.



An alternative to modifying the X profile is offered by approaches that
dynamically modify the amount of sampling performed at each X point.55 A
statistical estimate of convergence (Equation 23) is used to determine
whether the error at a given point is below a user-specified threshold. While
this approach won't work if the X sampling is too sparse, provided a
reasonable number of A, points are used, this method should allow much
better convergence for the same total amount of sampling. In fact, this
method appears to work quite well.55 The primary caveat for using this
approach is that statistical convergence measures are unreliable unless a
reasonable amount of sampling is performed at each A, point. Thus, this
method is best suited for simulations using a modest number of A, point with
significant sampling at each (subject to a minimum of, say, 10-20 ps
sampling to generate reliable statistics regarding convergence).

One generally finds that when running a free energy simulation where
groups are being annihilated or created at one/both endpoints, the greatest
convergence problems occur at the endpoints. This is because the
qualitative change in the system on the first A, step in going from "nothing"
to "something" (creation) or vice-versa (deletion) is largest. Consider this
issue in the context of FEP for the case of creation and refer again to Figure
1. In the first window, we sample the system using the potential function
corresponding to methyl in a particular site, but we also need to sample
states where the solvent has moved out of the way to allow the propyl group
to be inserted at this site. Subsequent changes in A, only require incremental
movements in the solvent (provided 5A, is reasonably small), but on the first
step to a non-zero A,, the change to the system can be huge. (The same
problem is manifest in a non-converging derivative for the first integrand
point of TI).

Several approaches have been developed to try to minimize such
endpoint problems. Probably the most widely used technique is "bond
shrinking".9'63 This procedure takes advantage of the fact that, for groups
that are disappearing from the system, the lengths of bonds to atoms of the
group at the point where it disappears do not need to be physical. (They are
basically irrelevant, since the group is non-interacting). Of course, at the
other end of the simulation, where the group is fully interacting with the
system, physical bond lengths are required. Thus, we can shrink the bonds
of the group to small values (typically 0.2-0.4 A) as the group disappears
from the system. The idea is that by making the group much more compact
at the endpoint where it first becomes visible to the system, we can reduce
endpoint sampling issues. A small group is easier to insert than a larger one,
since the chances that the solvent will open up a hole that would
accommodate the group is larger. In practice, it has been seen that while
this approach is sometimes successful, there are other cases where shrinking



the bond actually slows convergence.55 This will have to be evaluated on a
case-by-case basis.

Another approach that has been used to attempt to reduce the endpoint
problem is to use non-linear A, scaling for the non-bonded interactions. In a
general sense this can be represented as19"21

Vnon-bond(V =A"V non_bonda = l) + d- A)" Vnon_boniiU = O) (31)

The scaling can also be performed on the individual parameters that are used
to evaluate the non-bonded energy. The effect of non-linear scaling is to
reduce the effective physical difference between X states for small values of
X. If the group is disappearing/appearing at X = O, then we will sample more
carefully at this endpoint using non-linear scaling. However, even for a
small initial value of X, this does not really solve the issue of the first step,
where we go from a non-interacting group to one that has a finite interaction
with the system.

A better approach than non-linear scaling is to attempt to reduce and/or
eliminate the singularity in the function that occurs on the step when a non-
interacting group starts to interact. A clever approach has been described
that reduces the problem by modifying the Lennard-Jones van der Waals
term in the potential function.30' 31 For a pair of atoms where one group
vanishes at the X =1 endpoint, the modified Lennard-Jones 6-12 function
takes the form:

(32)

where A and B are the van der Waals coefficients (which may also be A,
dependent), S is a shift coefficient, and R is the interatomic distance. This
function is A/R12-B/R6 at both X endpoints (as it must be). But at values
of X near 1 (where the group/atoms are disappearing), the shift coefficient
ensures that the effective R value does not get too small, and that,
consequently, the van der Waals term does not get too large. This function
has been demonstrated to work very effectively for groups that are
disappearing from a water bath.

6. CHOOSING SIMULATION CONTROL

All the methods described above can be used to try to improve the
convergence profile for a free energy simulation. Statistical methods can be



used to estimate error in the calculated values, and simulation times can be
increased appropriately, depending on the precision required. In an ideal
world, each simulation is run as long as is necessary, and no further
discussion is required. In the real world, however, free energy simulations
are competing both with other (more approximate) approaches to answering
the same questions, and with the speed and cost with which the actual
experiments can be carried out. Thus, one would like to be able to answer,
in at least a general sense, the question "how much sampling is 'enough'?"
With caveats duly noted regarding system-dependent specifics, the
following general observations can be made, based on work that has been
published and personal experience.7'15

One should assume that at least 200 ps of equilibration+sampling will be
required for any reliable simulation in explicit water solvent. Since each
simulation should be run at least twice (or forwards and backwards) to
ensure a reproducible result, this means a floor of 400 ps simulation time
will be required. Note that 200 ps (400 ps) is a lower bound, and that many
simulations will need to be run considerably longer. It is not unusual to run
protein-based simulations for a nanosecond or more to achieve convergence.
For a large (protein based) system, this requires a substantial investment of
computer time on today's computers.

In general, a minimum of 10-20 windows are used. It is usually not a
good idea to use fewer windows than this (the energy surfaces between
adjacent X intermediates will be too dissimilar for windows, too few
integration points will be used for TI). Of course, more windows can be
used, but in terms of efficiency, it is best to keep the number of windows to
around the minimum number required to address the sampling issues. The
reason for this can be seen from the following equation, which gives the
total statistical error O total in the simulation as a function of the number of

windows Nw and the amount of sampling Sw
 14:

^,olal=Aerr/(2NwSj12 (33)

Here, Aerr is the proportionality constant from Equation 23,

Aerr= (<72(X.)(l + 2r))1/2 which depends on variance and correlation in

the data (and which, for simplicity, is assumed in this analysis to be constant
over all windows). Thus, we can reduce the total error by either increasing
the number of windows or increasing the amount of sampling. However,
recall that each time we skip to a new window, we first need to perform
some equilibration before statistics can be accumulated. This equilibration
phase does not contribute to reducing the net error according to Equation 33.
Therefore, with respect to sampling that reduces the error, we "waste" (Nw x



equilibration-steps) simulation steps. The greater Nw is, the greater the
number of "wasted" steps. On the other hand, there is no hidden overhead
with increasing Sw. Therefore, where we have the option, we should
increase the sampling per window rather than increase the number of
windows.

7. APPROXIMATE FREE ENERGY CALCULATIONS

Despite all the progress in free energy methodology and the rapid
increases in available computer resources available, free energy simulations
are still too slow and/or system limited to use for many real-world problems.
For example, in a commercial setting, a team of bench chemists may
synthesize many molecules per day, and combinatorial synthesis can be used
to rapidly generate thousands of screening candidates. While there is
always a need for detailed reliable predictions, even if they are costly and
slow to produce, design teams also need access to modeling approaches that
can keep up with the rapid synthesis and screening methods. Exact free
energy calculations are not acceptably fast for such use.

To address these needs, a variety of methods have been developed allow
approximate free energies to be calculated. These methods are based, in one
way or another, on the precise free energy methods described above. But
they make various assumptions or simplifications that allow them to be
carried out much more quickly. All of these methods have shown promise
on limited data, but as of yet, all are still in the development stage.

The linear interaction energy method allows the approximation of the
free energy of binding using the relationships64

AG44-= a < &Vvdw> +ft < AVCOB,om^ (34)

where the averages are evaluated from a reference state ensemble. This
expression is derived from the master equation of FEP assuming linear
response theory holds in the regime of interest. In the original publications
using this method,64 P was set to 0.5 (based on the quadratic response of
the free energy to changes in the electric field for polar solutions), and a
was set to 0.161, based on empirical best-fit to experimental data for
endothiapepsin inhibitors. Subsequent work has demonstrated that the
equation, with coefficients as originally developed, is not generally
applicable. Better agreement can be obtained by empirically fitting both a
and p.65"67 Further improvement is possible by adding additional terms to
this equation, such as those based on solvent exposed surface area.68'69



Another approach that derives from FEP is the free energy grid.70"72 This
method attempts to generate a free energy scoring grid around a molecule of
interest. A rectilinear grid is defined about a molecule of interest. This
could be a ligand (if one wishes to make changes to the ligand) or the
binding site of a protein. A solvated MD simulation is then run, during
which a one step FEP calculation is performed at each grid point:

AG,,,= -*rin <e-VprobelRT>nothing (35)

<e~Vprobe/RT> nothing indicates that the reference system at each grid point is

"nothing" at that point. The other endpoint is a probe atom with user-
specified non-bonded parameters (usually similar to a united atom methyl
group). In essence, at each point, we are calculating the free energy for
going from nothing at the grid point to having a probe atom at that grid
point. Since the reference state for each grid point is the same—no probe
group at any grid point-we can simultaneously calculate the one-window
FEP energy for all grid points from a single simulation. As has been
discussed, the orthogonality of the potential energy spaces corresponding to
"nothing" and to the probe atom means we will rarely achieve good
convergence of Equation 35 at any grid point. But, if we calculate enough
grid points, we may be able to infer from the resulting approximate free
energy grid how favorable it is to introduce a probe atom at different regions
of space. Initially, this approach was applied to the question of where we
might best modify ligands to improve their binding or solubility.70'71 More
recently, this method has been extended to the creation of a scoring grid
within the binding site of a protein.72 In this latter guise, it shows promise
as a rapid database-friendly free energy-based screening function that
improves upon traditional potential energy based methods.

Another clever approach to determining multiple free energies at reduced
cost involves the use of "soft sites" in the reference ensemble.31 This method
is applicable when one wishes to determine the free energies associated with
a number of modest perturbations to fixed core molecule, e.g. if one wishes
to determine the free energy changes for substitutions about a known ligand.
In this approach, one adds terms of the following form to the potential
energy function:

(36)



where (J fj is a specified van der Waals interaction distance for atom i to the

"soft core" nucleation site, r// is the distance from atom i to the "soft core"
nucleation site, a is an empirical parameter that specifies the softness of the
interaction and £„ is the effective well depth. This function is added for

each of the nucleation (possible substitution) sites about the root molecule.
This function provides a small repulsion force to the potential centered on
the nucleation sites. The result is that occupation of the soft sites by solvent
is less likely (but not so large a force that water is entirely prohibited). By
so doing, we can hope to calculate~at least qualitatively~the free energy for
placing a group in the soft repulsion site in a one window FEP simulation.
Since the reference state is the same for all these simulations, we can carry
out several FEP simulations around the molecule simultaneously. We can
also calculate the free energies of changing to a number of different
substituents at the same nucleation site using only a single FEP simulation.
The net effect is that in one single window FEP calculation, we determine
the free energies for a number of potential changes. All free energy
differences calculated in this fashion will be relative to a non-physical
reference state, but this is not a problem because the non-physical reference
state drops out if we construct thermodynamic cycles to compare the relative
free energies of the substituents to each other. Though this method is not
applicable to high-throughput screening (unlike, say, the free energy grid),
this approach has yielded promising results for amenable systems.73

Finally, surprisingly good initial results have been obtained with a
simple approach that makes use of the Poisson-Boltzmann approach to
estimating solvation free energies. In this method,74"76

G=V^+Gn-TS.., (37)

A solvated MD simulation is performed to determine an ensemble of
conformations for the molecule of interest. This ensemble is then used to
calculate the terms in this equation. V mm is the standard molecular

mechanics energy for each member of the ensemble (calculated after
removing the solvent water). G PB is the solvation free energy calculated by
numerical integration of the Poisson-Boltzmann equation plus a simple
surface energy term to estimate the nonpolar free energy contribution. T is
the absolute temperature. S mm is the entropy, which is estimated using

either quasi-harmonic analysis of the trajectory or else normal-modes
analysis.74 Given the substantial approximations and assumptions inherent
in this approach, the results that have been obtained using it for select
nucleic acid and protein systems are surprisingly good.



8. CONCLUSIONS

Though the basic equations have stayed the same, the field of free energy
calculations have made marked gains in terms of reliability and precision
over the nearly two decades since these calculations first came to
prominence. In fact, it is not without irony that the promise of many of
those early short calculations was-with hindsight-due in part to luck, but
that with progress in methodology and computer speed, we are now at a
point that is, in reality, where we thought we were 20-years ago! Which is
not really a bad thing, given that initial expectations for free energy
simulations were very high. It is expected that free energy calculations will
remain a vital part of the computational toolkit for a long time to come.

Of course, there are many problems that are not amenable to precise
calculations, either because these calculations are (still) too slow, or because
they simply require throughput that is unlikely to ever be practical for exact
simulations. For example, modern drug design in the industrial setting starts
with high-throughput methods that require scoring methods faster than
precise free energy calculations can hope to be. (Precise free energy
calculations are more useful during the later, during bench-based
optimization phase of drug design). To address these cases, approximate
free energy methods are required. A number of such methods have now
appeared in the literature, and it is expected that still more will appear, as
these methods attain ever increasing importance.

Overall, free energy calculations continue to evolve-they have gotten
more reliable, faster, and (with the approximate methods) more universally
applicable. As such, they remain, and will continue to remain, a vital part
tool in the modeler's arsenal.
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1. INTRODUCTION

The use of computational methods for the calculation of molecular
properties has been a perennial goal of chemists. In recent years, the field of
computational chemistry has become a firmly established discipline.
Computational chemists have made impressive contributions to almost every
aspect of chemistry, ranging from structural organic and inorganic chemistry
to the prediction of polymer properties and the design of medicinally
important therapeutic agents. While many computer-based methods are
robust and widely utilized, the continued development and refinement of
software and the underlying theory remains an active area of research.1'2

Energy-based calculations on structures of biological relevance are a
challenge. Typically, structures of pharmaceutical interest are a complex
array of diverse functional groups and heterocycles with specific
stereochemical relationships. From the quest to predict protein folding to the
design and study of drug-receptor interactions, the ability to perform
meaningful calculations on large complex systems has been a somewhat
frustrating problem, even with the ever-increasing power and performance of
a new generation of computers. Computer-assisted drug design (CADD) is
more than traditional computational chemistry (structure- and energy-based
calculations). It includes a host of diverse computer-based pharmacophore
perception methods (database searching, virtual screening, quantitative
structure activity relationships, combinatorial library design, as well as
chemo- and bioinformatics).3 All of these approaches have been
successfully applied in drug discovery. Computational chemistry and the
other methods are applicable to many different areas of chemistry in addition
to pharmaceutically related applications.



Computational chemistry may be defined as any method derived from a
set of existing equations and assumptions which calculates molecular
structure, its corresponding energy, and other molecular properties. The
discipline may be divided into three broad areas: ab intio quantum
mechanics, semi-empirical quantum mechanics, and force field or molecular
mechanics. In the past, considerable debate arose over which method was
superior. These arguments led to needless friction, antagonistic claims, and
misinformation. Today, quantum mechanics (ab initio, semi-empirical, and
density functional theory) and molecular mechanics are accepted widely as
having unique roles to play in structure-energy calculations. This is
particularly true in industrial research settings. Typically, the nature of a
specific problem needing a solution dictates the appropriateness of the
theoretical approach selected.

Ab initio quantum mechanics is based on a rigorous treatment of the
Schrodinger equation (or equivalent matrix methods)4"7 which is
intellectually satisfying. While there are a number of approximations made,
it relies on a set of equations and a few physical constants.8 The use of ab
initio methods on large systems is limited if not impossible, even with the
fastest computers available. Since the size of an ab initio calculation is
defined by the number of basis functions in the system, ab initio calculations
are extremely costly for anything past the second row in the periodic table,
and for all systems with more than 20 or 30 total atoms.

The term "semi-empirical" has been reserved commonly for electronic-
based calculations which also starts with the Schrodinger equation.9"31 Due
to the mathematical complexity, which involve the calculation of many
integrals, certain families of integrals have been eliminated or approximated.
Unlike ab initio methods, the semi-empirical approach adds terms and
parameters to fit experimental data (e.g., heats of formation). The level of
approximations define the different semi-empirical methods. The original
semi-empirical methods can be traced back to the CNDO,12'13 NDDO,14 and
INDO.15 The success of the MINDO,16 MINDO/3,17"21 and MNDO22"27 level
of theory ultimately led to the development of AMI28 and a reparameterized
variant known as PM3.29'30 In 1993, Dewar et al. introduced SAMl.31 Semi-
empirical calculations have provided a wealth of information for practical
applications.

Density functional theory (DFT),32 also a semi-empirical method, is
capable of handling medium-sized systems of biological interest, and it is
not limited to the second row of the periodic table. DFT has been used in
the study of some small protein and peptide surfaces. Nevertheless, it is still
limited by computer speed and memory. DFT offers a quantum
mechanically based approach from a fundamentally different perspective,
using electron density with an accuracy equivalent to post Hartree-Fock
theory. The ideas have been around for many years,33'34 but only in the last
ten years have numerous studies been published. DFT, compared to ab initio



quantum mechanics, is still being evaluated in terms of its overall reliability.
This will be less so in the future as more DFT calculations accumulate.

Molecular mechanics35 is a mathematical approach used for the
prediction of molecular structure, energy, vibrational spectra, dipole
moments, and other physical properties. The ideas have existed prior to
computers.36"38 It is a routinely used calculational technique for the study of
macromolecules and structures not amenable to quantum mechanics. Like
all computer-based approaches, molecular mechanics is only a model, not
necessarily a complete description of physical reality. Any deviation from
accurate experiment data implies that something is wrong with the model.
(It should be pointed out that if there is a disagreement between calculations
and experiments one should not automatically assume the former is wrong.
There are numerous examples where theory gave the correct answer which
was later verified by repeating the experiments. The reverse has also been
true.) Molecular mechanics has proven itself to be a reliable predictive
method when (a) the force field equations are accurate and (b) the constants
or parameters in the equations describing the force field have been
determined properly. Force field calculations are able to handle many
diverse chemical systems (e.g., proteins, large crystal structures, solvated
systems. This method is by far the fastest available for the calculation of
molecular structures and energies. Importantly, however, unlike quantum
mechanics molecular mechanics is limited by the determination of
parameters, most typically the vast number of unique torsion angles present
in structurally diverse molecules.

2. FOUNDATIONS OF MOLECULAR MECHANICS

Molecular mechanics force fields rest on four fundamental principles.
The first principle is derived from the Born-Oppenheimer approximation.
Electrons have much lower mass than nuclei and move at much greater
velocity. The velocity is sufficiently different that the nuclei can be
considered stationary on a relative scale. In effect, the electronic and nuclear
motions are uncoupled, and they can be treated separately. Unlike quantum
mechanics, which is involved in determining the probability of electron
distribution, molecular mechanics focuses instead on the location of the
nuclei. Based on both theory and experiment, a set of equations are used to
account for the electronic-nuclear attraction, nuclear-nuclear repulsion, and
covalent bonding. Electrons are not directly taken into account, but they are
considered indirectly or implicitly through the use of potential energy
equations. This approach creates a mathematical model of molecular
structures which is intuitively clear and readily available for fast
computations. The set of equations and constants is defined as the force



field. The mathematical formalism, compared to ab initio quantum
mechanical calculations, is much less complex which lends itself to
macromolecules (including solvation) simply beyond the scope of electronic
based calculations.

The second principle is founded on the premise that each type of bond
(e.g., Csp3-Csp3 or Csp2=O) have "natural" bond lengths and angles. Any
deviation from these natural bond lengths and angles is penalized by an
increase in the steric energy of the system. The mathematical model of a
molecule will adjust its nuclear positions to yield a new geometry with lower
energy according to the force field. In strained systems, the molecule will
deform in predictable ways. This steric energy of the molecule is the
summation of the individual energy terms (bond length energy, bond angle
energy etc.), and is the subject of the discussion in Section 4.

The third principle relates to the set of equations which describe the
potential energy surface of the molecule. These potential energy equations,
derived primarily from classical physics, contain parameters optimized to
obtain the best match between experimental data and/or theoretical results
for a training set of compounds. Once the parameters are evaluated for a set
of structures (as diverse as possible), they are fixed and then used
unmodified for other similar (and usually larger) compounds. As a first
approximation, these parameters must be transferable from one structure to
another for this method to work and be generally applicable.

The fourth principle requires every atom in the molecular model to be
classified or typed according to the element, electronic characteristics, and
hybridization. This is unlike quantum mechanics where hybridization and
bonding can be inferred at the conclusion of a calculation. In molecular
mechanics, the atom must be given a specific designation related to its
hybridization at the outset of a calculation, and the element will always be in
this state throughout the calculation. If parameters do not exist for all of the
unique interaction terms, the calculation will fail, default to generalized
parameters, or select parameters through some extrapolation algorithm.

3. MOLECULARMECHAMCSFORCEFIELDS

There are many different molecular mechanics force fields available.
Many of them were originally developed in academic laboratories to solve
specific problems. For example, some were designed to handle small
molecules while others were developed to deal with protein structures.
Today, the original demarcation between macromolcules and small
molecules has become blurred, and they now are commercially available.
Initially, many molecular mechanics programs were distributed at nominal
costs, but due to the lack of federal ftmding for most molecular mechanics



methods and software development, researchers were forced to find
alternative ways to fund these efforts. Otherwise, many of the programs in
currently in use would not exist.

It is beyond the scope of this short review to list every available
molecular mechanics program. Only a selected few programs are mentioned
here, without descriptive details of the potential functions, minimization
algorithms, or comparative evaluations. Both the CHARMM39"41 and
AMBER42"47 force fields use harmonic potential functions to calculate
protein structures. They were developed in the laboratories of Karplus and
Kollman, respectively, and work remarkably well. The CFF48"50 and
MMFF51"56 force fields use more complex potential functions. Both force
fields were developed in commercial settings and based extensively or
exclusively on results obtained from quantum mechanics. Unlike the other
molecular mechanics methods, the OPLS56'57 force field was parameterized
by Jorgensen to simulate solution phase phenomena.

A series of small molecule force fields58"66 were developed by Allinger
and coworkers. The popular MM2 program,58 widely used and distributed
along with its source code, was imitated by a number of other groups. The
latest commercial release of its successor is MM3(2000),59"61 which is the
focus of this review. Efforts directed toward another version, MM4,62"67

have been reported. Presently MM4 is not commercially available, and there
are no firm release dates as of this writing. These programs are excellent
hydrocarbon force fields. The major problem, however, with the MM series
of programs, in particular the unreleased MM4, is the lack of diverse
functional groups. Each version of the MM series was developed to improve
the results of previous versions by reducing the known errors and updating
the potential functions in light of new experimental data or high level ab
initio calculations. The complexity of the MM3 force field68 allows for
further predictions, such as vibrational frequencies and the vibrational
energy levels within a given energy minimum for a molecule as well as
thermodynamic information.

The MM3(2000) force field is the basis of this chapter. The program
includes an induced dipole calculation that allows for the treatment of
induction.69 This improvement in the electrostatics yields better predicted
dipole moments than in previous versions of MM3. It should be pointed out
that most other force fields use point charges whereas the MM series of
programs is based on point dipoles.



4. MM3 FORCE FIELD

4*1 Overview

The MM3 total steric energy is the summation of the individual energies
for each type of interaction in the molecular model (Equation I).68 Estretch is
the stretching energy, Ebend is the bending energy, Etorsion is the torsional
energy, Enonbonded is the van der Waals and London dispersion energies, and
Eeiectrostatics is the dipole-dipole, charge-dipole, and charge-charge interaction
energies. Most force fields have theses terms included in their description of
the total energy. ECross-terms describes the energies attributed to more than one
variable: bend-bend, stretch-bend, and torsion-stretch interactions (Equation
2).

total stretch bend nonbonded torsion electrostatics cross- terms ^ '

^'cross- terms ~ ^bend-bend "*" ̂  stretch-bend ' ^'torsion- stretch №'

4.2 Bond Stretching Function

Molecular mechanics treats atoms as point masses connected together by
harmonic forces, analogous to a classical picture of balls connect by
springs.35'67'68 The simplest mathematical description used to describe this
type of system (the ball and spring model) uses harmonic potentials or
Hook's law (see Equation 3). The change in bond length squared, Al2, from
its natural bond length, Ij0, to its distorted value, Ij, gives rise to a steric
energy. As a first approximation quadratic terms are reasonable descriptions
for bond stretching and compression, but they are not accurate for many
complex molecules. Hooke's law is not valid for extreme distortions from
equilibrium value. The true one-dimensional potential energy for molecular
stretching and compression is anharmonic, and this results in a breakdown of
the quadratic term approximation. A Morse potential describes the energy
associated with the stretching and compression of bond lengths, accounting
for anharmonicity.

(3)

Although quadratic expressions are reasonable approximations, as
discussed above, they only works for small deviations from the natural state



of the molecule. Some successful force fields continue to use these terms for
macromolecules in order to decrease computational time. Most errors are
not readily discernable because high quality experimental data are not
available for large systems compared with the data available for small
molecules. The logical step to rectify the problem is introduction of a Morse
function. Such a solution results in excessive computational time, and
introduces other mathematical problems. A more efficient way to describe
bond stretching is through the mathematical stratagem of a power series
expansion. The first nonvanishing term in a Taylor series expansion is the
harmonic or quadratic potential. In MM3, the stretching term is described
by a three-term truncated power series expansion (Equation 4). The third
and fourth power terms introduce anharmonicity into the stretching potential.
If the series was truncated with a cubic term, however, large bond length
distortions would cause the energy to plummet toward negative infinity with
a correspondingly dramatic increase in the bond length. Basically, the bond
dissociates. To avoid this, the series was truncated with an even power term.

(4)

Some additional comments regarding Equation 4 are in order. The factor
143.88 converts the units to kcal/mol. There are two additional constants.
The first is ks, which is the stretching force constant parameter in units of md
A"1. The second constant is cs, which is the cubic term with a unitless value
of 2.55. When a Morse potential is expanded in a power series, the factor
7/12 is obtained.

4.3 Angle Bending Function

As with bond stretching, a simple harmonic term can be used to describe
angle bending deformations (Equation 5). Usually, a quadratic term gives an
accuracy of approximately 10 degrees in angle variations. For similar
reasons outlined above for bond stretching, a power series expansion is a
more accurate way to describe angle compression and angle opening.

(5)

In the MM3 program, the bending motions are divided into two separate
descriptions: in-plane and out-of-plane bending. The in-plane bending is
shown in Equation 6. Depending on the geometry of the central atom in the



bond angle, the angle can have as many as three different equilibrium
bending parameters or values. If the central atom of the bond is either an sp2

or sp3 type carbon atom, there are three bond angle types available
depending on the substitution pattern. The bending constant parameter, kb,
is in units of md A radian"2 molecule"1. The value 0.043828 converts the
units md A radian"2 molecule"1 to kcal deg"2 mol"1. The cc, cq, cp, and cs are
the cubic, quartic, pentic, and sextic angle bending constants, with values of
-1400.00 x 10"5, 5.60 x 10"5, -0.07 x 10"5, 0.0022 x 10"5, respectively.

/££" = 0.043828^(A0)2[l + c (A0)+c,(A0)2 + c,(A0)3 +c (A0)4] (6)

The out-of-plane bending expression is identical to Equation 6. A value
of 0.00 is assigned for the natural bond angles, 00. It was necessary to
introduce out-of-plane bending to reproduce trigonal planar systems. For
example, to keep the Csp2 centers (found in aldehydes, ketones, and alkenes)
from distorting to nonplanar geometries, a force constant was added to the
Csp2 center and an imaginary point in the plane defined by the three attached
atoms. This approach works well. Other alternative approaches have used
improper torsion angles to achieve the same results. These out-of-plane or
improper torsion angles are necessary mathematical formulations for
resonance effects to be incorporated into force field models of trigonal
planar hybridized atoms.

4.4 Non-Bonded Interaction Functions

4.4.1 Overview

The discussion thus far has focused on the forces between an array of
atoms connected together through covalent bonds and their angles.
Important interactions occur between atoms not directly bonded together.
The theoretical explanation for attractive and repulsive forces for nonbonded
atoms i and j is based on electron distributions. The motion of electrons
about a nucleus creates instantaneous dipoles. The instantaneous dipoles on
atom i induce dipoles of opposite polarity on atom j. The interactions
between the instantaneous dipole on atom i with the induced instantaneous
dipole on atom j of the two electron clouds of nonbonded atoms are
responsible for attractive interactions. The attractive interactions are know
as London Dispersion forces,70 which are related to r"6, where r is the
distance between nonbonded atoms i and j. As the two electron clouds of
nonbonded atoms i and j approach one another, they start to overlap. There
is a point where electron-electron and nuclear-nuclear repulsion of like
charges overwhelms the London Dispersion forces.33 The repulsive



interactions are known as van der Waals interactions. The London
Dispersion and van der Waals interactions may be taken into account by
simple potential functions, again introducing quantum mechanical effects.

4.4.2 London Dispersion and van der Waals Interactions

In MM3, the two types of nonbonded interactions which are included in
the program are handled separately. The first includes attractive and
repulsive forces between nonbonded atoms, their origins are described
above, and the second is hydrogen bonding.

Many force fields use a Lennard-Jones 6-12 potential71 to reproduce
nonbonded interactions, see Equation 7. As two atoms approach one
another, the steepness or hardness of the energy curve is proportional to r"12.
The use of an exponential term instead of the r"12 term in force field
equations better reproduces experimental data for organic structures, and it is
more consistent with quantum chemical calculations.

(7)

Potential exponential functions have been known for some time. In fact,
the MM series of programs use a modified Buckingham potential or Hill
equation,72 represented by Equation 8. The e* represents the depth of the
potential energy well, and is defined by (e^)172, where 81 and 8j are the
hardness of each atom. The variable P is defined as the ratio of the sum of
the van der Waals radii of atoms i and j (A) divided by the sum of the
effective interatomic distances between the two atoms. The potential
becomes increasingly attractive and drops to negative infinity when P goes
to zero. A second expression, Equation 9, is needed to introduce a repulsive
potential when this happens. Otherwise the two atoms would fuse together
if they came close enough (in silica cold fusion). Equation 9 is most
important when dealing with a poorly built starting geometry.

(8)

(9)



4.4.3 Hydrogen Bonding Interactions

In MM3, the hydrogen bonding energy primarily arises from
electrostatics, described below in Section 4.6, but an extra contribution for
the hydrogen bond energy is calculated from a modified version of the
modified Buckingham potential used in nonbonded calculations.72' 73 This
hydrogen bonding term takes into account charge transfer in the hydrogen
bond and allows for the directionality of the hydrogen bond to be calculated,
see Equation 10. As described above regarding nuclear superposition of
nonbonded atoms, the second equation (Equation 11) used in hydrogen
bonding prevents the two atoms from fusing. The directionality comes from
the cos9 term, which tends to weaken as the bond deviates from the ideal
bond angle.

(10)

(U)

4.5 Torsion Function

It is not possible to reproduce rotational barrier phenomena with only
stretching, bending, and nonbonded terms.35' 68 The explicit inclusion of a
torsional potential energy function was required. This is another
mathematical stratagem for introducing quantum mechanical effects into
molecular mechanics. Equation 12 is the MM3 torsion potential, which is a
three-term truncated Fourier series. The summation is over every dihedral
angle. Through the appropriate selection of dihedral or torsion parameters,
Vi, V2, and V3, a rotational energy profile about single and double bonds can
be generated. The dihedral or torsion parameters are in kcal/mol, and co is
the actual dihedral angle.

(12)



4.6 Electrostatic Interactions

4.6.1 Overview

Traditionally, the Allinger MM series of molecular mechanics programs
have used dipole-dipole interactions to represent the electrostatic
interactions. Each polar covalent bond is assigned a moment rather than
point charges being assigned to every atom. This was the method of choice
for historic reasons, but limited the calculations to non-ionic species. Most
other force fields use point charges. MM3 has three electrostatic terms:
dipole-dipole, charge-dipole, and charge-charge terms described in
Equations 13, 14, and 15, respectively.

4.6.2 Dipole-dipole term

The dipole-dipole interaction energy is computed between two bond
moments using Jean's equation.35 The use of dipole-dipole interactions in
the MM series of programs is historical. Originally, the goal of earlier
versions of MM3 was to study small organic molecules. The results were
reasonable, but it became necessary to introduce additional terms for
charged species. In Equation 13, the value 14.39418 is a conversion factor
to convert the units from ergs molecule"1 to kcal/mol. The two dipoles, JLI
and |if, are the two bond moments in units of Debyes, and the angle between
them is %. In the denominator, the distance between the midpoints of the
two dipoles is R and the dielectric constant is D. In MM3, the dielectric
constant has a default value of 1.5 which may be varied to mimic other
solvents.

14.39418[u^ (cos;£-3cosacosj3)]
E*= V D ( 1 3 )

4.6.3 Charge-dipole term

The charge-dipole interaction energy is computed between and atom with
a formal charge and a polar bond. It is only computed when a molecule has
a charged segment (ion) along with an inherent dipole moment. In Equation
14, the variable qA is the formal charge on atom A and Ji, defined above, is
the bond moment. The angle a, defined by the two vectors [i, and r
attenuate the interaction energy as a cosine function. The vector r goes from
atom A to the midpoint of the bond moment |i. The dielectric constant is D.



(14)

4.6.4 Charge-charge term

Coulomb's law describes the charge-charge interaction energy (Equation
15). It is used in MM3 for the calculation of two charges interacting with
one another. This term is used to calculate ionic interactions. The variables
qA and qB are the formal charges on atoms A and B, respectively. The
distance between the two atoms is r, and the dielectric constant is D.

E0 = 14.39418(4.80298)2 ̂ 1 (15)
L rD J

4.6.5 Bond Polarizabilities

MM3(2000) has also included a new approach to obtain bond
polarizabilities and induced dipole moments.69 A general formula based on
the original MM3 force constants and bond polarizabilities was derived and
is used to compute bond polarizabilities, and then molecular polarizabilities
by an additive model.

As a demonstration of the power and versatility of the MM3(2000) force
field, a comparative study of dipole moments was computed on forty-four
small organic molecules. A segment of those results are discussed here with
an emphasis on the improvement of the MM3(2000) force field due to the
inclusion of the induced dipole moments.

4.7 Cross-Term Function

4.7.1 Overview

The stretching, bending, and torsional terms need to be coupled to each
other in order to reproduce subtle yet important structural features. For
example, it is a well known molecular effect that when bond angles are
compressed, the bonds stretch to relieve the strain. Also, bond stretching is
known to be a function of the dihereal angle. The maximum bond length is
achieved during an all-eclipsed conformation. Stretching, bending, and
torsional terms along with the nonbonded and electrostatic expressions are
not able in general to take into account coupling interactions. Thus, explicit
incorporation of cross terms are necessary to reproduce experimental data
and high level ab initio calculations.



4.7.2 Stretch-Bend Interaction

As the bond angle 0yk is distorted, the MM3 stretch-bend interaction
describes what happens to the two bond lengths, Iy and ljk. This term
accounts for the lengthening of the bonds as the angle is decreased. As
defined above, the change in the bond angle and the bond lengths are
symbolized by A0 and Al and represent the differences between the altered
and natural values in units of degrees and A, respectively. The force
constant ksb is the stretch bend constant parameter for the angle ijk in md
rad"1 molecule"1. The value 2.51118 is the conversion factor to convert md
rad"1 molecule"1 to kcal deg"1 A"1.

EstrMh-bend = 2.51118*;;-*(A0)[(AL - AZ,,)] (16)

4.7.3 Bend-Bend Interaction

The MM3 bend-bend interaction connects two adjacent angles with the
same common central atom. The bend-bend constant is a geometric mean of
the two individual angles, and it is a pre-determined value which depends
only on the atom type arrangement of the angle. The bend-bend constant
parameter kbb is in units of md A rad"2 molecule"1, which is converted to kcal
degree"2 mol"1 by the conversion factor -0.02191418. The two terms A0ijk

and A0ijm represent the differences in altered and natural bond angles in units
of degrees.

Ebend.bend = -0.02191418^ [A^XA 9ijm )] (17)

4.7.4 Torsion-Stretch Interaction

The bond length is a function of its dihedral angle, which can, in part, be
described by Equation 4. The stretching term alone cannot account for bond
stretching as a function of torsion angle without the introduction of a torsion
stretch term. In the early releases of MM3, the first two constants were set
to zero (Equation 19), but in subsequent releases the expression was
expanded to include the three-term Fourier series used to describe torsion
energy. Two corrections have been included. The first correction is for the
Bohlmann effect, where the C-H bond length has to be adjusted after the
minimization of the torsion angle for proper fitting of the molecular
geometry. The second correction is made for systems with hyperconjugation,
where one torsion stretch term is not sufficient to model the system properly.



(18)

(19)

4.8 Chemical Effects

The mechanical, nonbonded, and electrostatic expressions described
above are not sufficient to describe some structural and spectroscopic
effects. Three specific structural and spectroscopic phenomena have been
incorporated into MM3. They are the electronegativity, anomeric, and
Bohlmann effects, which essentially can be traced to molecular orbital
origins. These chemical effects are a part of the MM3 program.74'75

5. PARAMETERIZATION

MM3 is a better force field for predicting molecular structure and
vibrational frequencies than its predecessor. The parameterization of the
force field was carried out in MM3 in a similar fashion to MM2.68

Experimental data for vibrational frequencies, structures, dipole moments,
and heats of formation are collected from experimental and/or ab initio
studies. The bond length and angle parameters are determined first; they are
usually taken as a first approximation from previous parameterization. The
next stage is spectral fitting, where the force constants are determined and
assigned to the appropriate vibrational frequencies. The moments of inertia,
the rotational energy barriers, the dipole moments, and the heats of
formation are fit last. Each modification to specific parameters requires
review and revision of all parameters until no further adjustments can be
made. The parameterization process is tedious and demands extensive study
until a valid parameter set is determined. Automated parameter
development programs have been devised to aid in the parameterization
process.76

6. DIPOLES

For many years, chemists have been using theory to determine molecular
properties. One property of particular interest is the dipole moment. The
dipole moment is a measure of the overall electronic charge separation



within a molecular geometry. Any neutral molecule is made up of a system
of electric charges distributed in space around the nuclei. In many
molecules, however, the "center of gravity" of the total positive charge and
the total negative charge do not coincide, and the distance (defined as a
vector quantity) between the charges is defined as the dipole moment
(Equation 20).

Dipole (/i) = charge * distance (20)

The next section in this chapter provides a brief comparison of the dipole
moment (magnitude and direction) for a set of simple alcohols.
Experimental gas phase dipole moments45 are compared to ab initio and as
molecular mechanics computed values. It is important to note that the
direction of the vector dipole used by chemists is defined differently in
classical physics. In the former definition, the vector points from the
positive to the negative direction, while the latter has the orientation
reversed.

Since the parameters used in molecular mechanics contain all of the
electronic interaction information to cause a molecule to behave in the way
that it does, proper parameters are important for accurate results.
MM3(2000), with the included calculation for induced dipole interactions,
should model more accurately the polarization of bonds in molecules. Since
the polarization of a molecular bond does not abruptly stop at the end of the
bond, induced polarization models the pull of electrons throughout the
molecule. This changes the calculation of the molecular dipole moment, by
including more polarization within the molecule and allowing the effects of
polarization to take place in multiple bonds. This should increase the
accuracy with which MM3(2000) can reproduce the structures and energies
of large molecules where polarization plays a role in structural
conformation.

7. METHODS

7.1 Overview

In this next section the dipole magnitude and directionality from
MM3(2000) is compared to results obtained by MM3(96), Hartree-Fock and
M011er-Plesset minimized structures (calculated using GAUSSIAN94),77 as
well as experimental dipole moment measurements.78 For the molecular
mechanics geometry optimizations, full matrix energy minimizations were
carried out, and ground state structures were verified by the vibrational



frequencies. The HF/6-31G** basis set was used throughout for all Hartree-
Fock (HF) calculations; the frequency calculations were examined for the
optimized structure to assure that the ground state geometry had indeed been
located. The M011er-Plesset (MP) optimizations used the MP2/6-31G**
basis set with the HF output as a starting geometry (MP2/6-31G**/MP2/6-
31G**//HF/6-31G**/HF/6-31G**).8 Frequency calculations were not
performed with this level of theory due to computer limitations.

Also included in this work is a comparison of the direction of the dipole
moments for each compound using two different measurement techniques.
The first technique involves comparing the vector components against a
standard Cartesian coordinate system, where the center of mass of the
molecular model rests at the origin and the inertial axes of the molecule are
oriented along X, Y, and Z axes, respectively. This represents the dipole in
coordinate space, as shown in Figure 1.

Figure L A representation of the dipole moment of a molecule (specified as a dummy atom,
Du) in regards to the coordinate axis, (X,Y,Z).

The second technique measures the angle of separation between the dipole
of a molecule calculated with two different computational methods. In this
case, the molecules are superimposed upon each other and then the angle is
measured, see Figure 2.

Figure 2. A representation of the dipole moment of a molecule in regards to the direction of
the dipole computed by the other computational methods.



These two measurements give a clear picture of the orientation of the dipole
in 3D space and how the dipole moment of a molecule moves when different
computational methods are used.

7.2 Results and Discussion

Tables 1, 2, and 3 present a set of five alcohols. In Table 1, it should be
noted that while MM3(96) calculates the magnitude of the dipole moment to
be essentially the same for the entire set of molecules, MM3(2000) is
superior in reproducing the experimental dipole moments. This is
demonstrated by comparing the root mean squared deviation of 0.0878
Debye in MM3 to the 0.0524 Debye deviation in MM3(2000). (All of the
experimental values except where notes are stark effect measurements
determined from microwave spectra.)

It is known that ab initio methods are not accurate in reproducing or
predicting molecular dipole moments. For example, a typical basis set
minimization with no additional keywords was carried out, and the results
show that the computed magnitude of the dipole moment is not particularly
accurate when compared with experimental values. For alcohols, MP2 has a
root mean squared deviation of 0.146 Debye, while HF had a deviation of
0.0734 Debye when measured against the experimental values.

The ability to predict the direction of the dipole moment is important
since this value cannot be experimentally measured. Chemists typically use
intuition to determine where the positive and negative parts of the molecule
are located, but a good tool for predicting this is very helpful in large
complex molecules where partial charges may determine important but
subtle chemical effects, such as in a protein binding site. All of the methods
used in this study did a reasonably good job in predicting the direction of the
dipole moment. This is an important finding since consistency within the
computational methods is the only measure of accuracy. Figure 1 is a
pictorial display of one set of results in Table 2. It shows the coordinate axis
system onto which the dipole moment of a molecule is superimposed. A
dummy atom represents the termination of the dipole moment vector. This
is a complete description of where the dipole moment is located in space, but

Table 1. Magnitude of the dipole moment for the alcohol family.

Methanol
Ethanol
Propanol
2-Propanol
t-Butanol

HF
1.836
1.702
1.616
1.678
1.625

MP2
1.921
1.783
1.698
I . Ill
1.734

MM3
1.713
1.712
1.712
1.709
1.701

MM3(2000)
1.798
1.611
1.569
1.618
1.708

EXP6

1.700
1.680
1.550
1.580
1.670*

* liquid phase measurement



it is not a particularly informative presentation of where the dipole moment
is in relation to its molecular environment. It is important to note that due to
the symmetry of some of the molecules, a value of 90 or 180 degrees will be
observed no matter which computational method is used.

Table 3 represents the direction of the dipole moment. Instead of
comparing it to the coordinate axis, the direction is compared with the dipole
moment as it was computed by another computational method. In Figure 2,
the molecules are superimposed upon each other and the dipole moment
represented by a dummy atom at each vector termini is displayed for each
molecule, i. The angle, 9t>, between the two vectors ^t1 and JA/ is then
measured using the center of mass as the vertex of the angle. From Table 3,
using ethanol as an example, the angle between MM3 and MM3(2000) is
one degree, therefore the difference between the angles of HF/MM3 and
HF/MM3(2000) is also one degree, whereas the angle between HF and MM3
is 9 degrees and HF and MM3(2000) is 10 degrees.

Both of these techniques display features of the dipole moment's
direction which are very important. Since there are no experimental data
available to compare with these techniques, rendering a value judgement on
the accuracy of one technique over another is really impossible. Yet, the
comparison itself is of interest.

Table 2. Direction of dipole moment compared with the coordinate axis for the alcohols.

Methanol
Ethanol
Propanol
2-Propanol
t-Butanol

X
119
98
86
47
38

HF
Y
29
8
4
89
90

Z
90
90
90
43
52

X
121
87
39
46
40

MP2
Y
31
3
51
63
90

Z
90
90
90
56
50

X
109
73
83
51
33

MM3
Y
19
17
7
77
90

MM3(2000)
Z
90
90
90
42
57

X
106
72
83
47
38

Y
16
18
7
74
90

Z
90
90
90
47
52

Table 3. Direction of dipole moment compared with other computed moments for alcohols.

Methanol
Ethanol
Propanol
2-Propanol
t-Butanol

HF/MM3

11
9
9
16
12

MP2/MM3

12
11
12
21
15

MM3 (200O)/
MM3

3
1
O
6
4

HF/MM3
(2000)

15
10
9
12
7

MP2/
MM3
(2000)
16
12
12
16
10

HF/
MP2

1
2
3
4
3



8. CONCLUSIONS

Molecular mechanics is a useful and reliable computational method for
structure, energy, and other molecular properties. The mathematical basis for
molecular models in MM3 has been described, along with the limitations of
the method. One of the major difficulties associated with molecular
mechanics, in general, and MM3 in particular is the lack of accurately
parameterized diverse functional groups. This lack of diverse functional
groups has severely limited the use of MM3 in pharmaceutical applications.

The differences between ab initio and molecular mechanics generated
dipole moments were discussed. The MM3(2000) force field is better able
to reproduce experimental dipole moments for a set of forty-four molecules
with a root mean squared deviation (rmsd) of 0.145 Debye compared with
Hartree-Fock (rmsd 0.236 Debye), M011er-Plesset 2 (rmsd 0.263 Debye) or
MM3(96) force field (rmsd 0.164 Debye). The orientation of the dipole
moment shows that all methods give comparable angle measurements with
only small differences for the most part. This consistency within methods is
important information and encouraging since the direction of the dipole
moment cannot be measured experimentally.
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Solvation Thermodynamics and the Treatment of
Equilibrium and Nonequilibrium Solvation Effects
by Models Based on Collective Solvent Coordinates
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MN 55455-0431

1. INTRODUCTION

Computing the free energy of solvation is important in rational drug
design for both pharmacokinetics (drug transport to the site of action) and
pharmacodynamics (drug interactions at the site of activity). In the former
case, it is well recognized that bioavailability depends on the availability of a
particular drug to have a favorable interaction with both water (for transport
in the blood) and lipophilic media (for transport through cell membranes).
The solubility and partitioning of a molecule in and between various media
are thus critical physicochemical parameters that correlate strongly with
biological activity.1 Even though such effects are nonspecific with regard to
receptor structure, they must be taken into account in rational drug design.
Then, at the receptor, desolvation is a major contributor to ligand-protein
binding, and the estimation of this effect plays an important role in structure-
based drug design.2 A third area where solvation effects must be considered
is drug metabolism, since the kinetics and thermodynamics of the enzymatic
biotransformations of drugs may be very dependent on solvation effects.
Both the ability of a drug to survive deactivation and elimination and the
nature of the potentially toxic metabolites of a drug may depend on solvation
effects on kinetics.

For both nonspecific and structure-based approaches, physicochemical
solvation parameters may be used directly, or they may be embedded in
quantitative structure-activity relationships.3 This chapter starts with a
review of the thermodynamic equations that may be used for a quantitative
description of the free energy of solutes in fluid media. Then it provides an



overview of statistical mechanical models for solvation effects that are based
on collective coordinates, both macroscopic coordinates such as the electric
polarization of the solvent and microscopic collective coordinates such as
the surface area of the solute-solvent interface. Such models are sometimes
called implicit models (because the individual atomic coordinates of the
solvent molecules are not treated explicitly) or continuum models (because
the fine grained detail of the solvent is replaced by an averaged description
in which the solvent is treated mathematically as a continuous medium).

2. MOLAR FREE ENERGY

An ideal gas obeys the equation of state

PV=nRT (1)

where P is the pressure, V is the volume, n is the number of moles, R is the
universal gas constant, and T is the absolute temperature. In convenient
units, R takes a value of 0.08206 L atm mol'1 K'1.

The chemical potential JJL of an ideal gas is its molar Gibbs free energy.
In mechanics and thermodynamics, absolute values of energies depend on
how the zero of energy is defined, but physical observables only depend on
energy differences. In order to standardize the tabulation of quantities useful
for the calculation of energy differences, a system of standard states has
been defined. The most common standard state for gases is an ideal gas at
one atmosphere of pressure and the temperature of interest. At 298° K this
corresponds to an ideal gas at a concentration of 0.04089 mol L"1. This is
not always the most convenient standard state for discussing gases in
equilibrium with liquid solutions. Another useful choice of standard state is
the ideal gas at a concentration of 1 mol L"1; at 298° K this corresponds to a
pressure of 24.45 atm = 18583 torr. It is always important to understand
what standard state is being used when one uses tabulated thermodynamic
data.

The chemical potential of an ideal gas at temperature T depends on
pressure according to the following relation:

U = ̂  + RT In(^j (2)

where fi° and P° are the chemical potential and pressure in the standard
state. The significance of this equation is that if /i° is tabulated for a given



temperature for a known value of P°, we can calculate the molar free energy
of an ideal gas at any other pressure at this temperature by using the
tabulated values. If we change the standard state, i.e., if we change P°, then
a different /*° must be tabulated, but the resulting /x calculated from
Equation 2 must be independent of the choice of standard state. Consider
two possible standard states 1 and 2. We must have

H°(l) + /?rin—— = VL°(2) + RTln—— (3)
P°(l) F°(2)

from which it follows that

Al) = ^°(2) + /?rin^-^ (4)
P°(2)

Let standard state 1 be the 1 atm ideal gas, and standard state 2 be the 1 mol
L"1 ideal gas. Then, using the values of P° given above we have, at 298° K,

jLi°(l atm) = /i°(l M)-RTIn 24.45 = ju°(l M) - 1.89 kcal/mol (5)

That is, the magnitude of the chemical potential changes by 1.89 kcal/mol on
going from one standard state to the other.

Equations 1 and 5 apply only to ideal gases. For nonideal gases one
writes43

f t\ii = n0
 + Krid-M (6)

where/ is the fugacity of the gas. The fugacity is defined by Equation 6. In
other words, we keep the simple form of Equation 2 by hiding the
complicated behavior of the real gas (as opposed to an ideal gas) in the
fugacity function.

It is conventional to define fugacity so that in the limit of a dilute gas, it
becomes the pressure. Thus fugacity has units of pressure. When one deals
with condensed phases and with gases in equilibrium with condensed
phases, it becomes convenient to introduce a unitless generalization of
fugacity, which is called activity. The activity is defined by4b

a=///° (7)

and therefore



IJL= U0 +RTIn a (8)

At equilibrium, all components of a mixture have the same molar free
energy, i.e., the same chemical potential, in any phase in which they are
present, and they have the same chemical potential as all other components.
However it is not always convenient to use the same standard state for all
components or even for the same component in all phases. Just as Equation
6 defines fugacity, Equation 7 or 8 defines activity. Furthermore, Equations
6-8 define / and a for all substances, not just gases. However we should
keep in mind that we do not use the same standard state for a substance in all
the phases, mixtures, or pure states in which it may occur or for all
components of a mixture.

To proceed we will first summarize the treatment of ideal mixtures.
Then we will consider nonideal mixtures.

3. IDEAL MIXTURES

An ideal mixture is one for which40

/A = /A*A (9)

for every component A, where/A is the fugacity of A in the mixture, XA is
the mole fraction of A in the mixture, i.e.,

XA=-1^- (10)
nA+"B

and /A is the fugacity of pure A at the same temperature and pressure of the
mixture. Note that one can postulate ideal mixtures of ideal gases, but one
can also postulate ideal mixtures of nonideal components, such as real gases
and liquids.

Consider an ideal mixture of ideal gases, A and B. Equation 9 yields

PA=PAXA (U)

where PA is the pressure of pure A at the same pressure and temperature as
the mixture. The pressure of the mixture is

P = (nA + nE)RT/V (12)



Substituting PA = P along with Equations 10 and 12 into Equation 11 gives

PA = nART/V (13)

which is the expected result.
Now apply Equation 9 to a liquid solution in equilibrium with its vapor.

We assume that both the solute and the solvent are liquids in their pure state
at the temperature and pressure of interest. Substituting Equation 9 into
Equation 6 yields

/ \

I iA=Ul + JWIn^k (14)
I 'A J

When XA is unity, the left-hand side becomes the chemical potential of the
pure substance:

U^ = »i£ + J W I n ^ (15)
UA

Note that the standard state fugacity now carries a subscript, because for A it
is defined by the nonideal behavior of A. Substituting Equation 15 into
Equation 14 yields44 5

A* x = Ai x +JWInX x (16)

This is independent of standard state, but we can also view it as a version of
Equation 14 in which we conveniently choose the standard state as the pure
liquid (we shall abbreviate this as liq.s.s. to denote the (pure) liquid standard
state). Therefore

ft (liq.s.s) = /A (17)

This illustrates the statement made earlier that the most convenient choice of
standard state may depend on the problem. For gas-phase problems
involving A, it is convenient to choose the standard state for A as an ideal
gas at 1 atm pressure. But, where the vapor of A is in equilibrium with a
solution, it is sometimes convenient to choose the standard state as the pure
liquid. Since/A is the same for the pure liquid and the vapor in equilibrium



with the pure liquid, we may equivalently equate /A(liq.s.s.) to either the
fugacity of the pure liquid or the vapor in equilibrium with it. In general this
vapor does not have a pressure of 1 atm nor does it have a concentration of 1
mol L"1. Thus this standard state is not equivalent to either of the two
gaseous standard states mentioned above.

Suppose that the vapor of A in equilibrium with the liquid is an ideal gas.
Then Equation 2 yields

JiA = MV RT'In-^- (18)

where FA is the vapor pressure of A in equilibrium with the liquid, and

^A = UA + RTl" -̂ - (19)

where FA is the vapor pressure of pure A. Substituting Equations 18 and 19
into Equation 16 yields

RTIn^ = RTIn^ +RT lnXA (20)

which simplifies to

PA= PA XA (21)

which is Raoult's law.46 Thus Equation 9 may be considered to be a
generalization of Raoult's law.7 Note that Equations 18-21 are equally
applicable to a solution of one or more solutes B, C, D, etc. in liquid A.
Raoult's law says that the partial pressure of each will be proportional to its
concentration.

4. NONIDEAL SOLUTIONS

In actuality, Raoult's law is only an approximation for real systems.
Although it is a good approximation for many solvents, for which XA » 1 if
the solution is dilute, it is often a very poor approximation for solutes, for
which XA < 0.5. In the limit as XA —> O, though, there is still a linear
relationship



(22)

y •«/'

but kp^ does not equal PA • Equation 22 is called Henry's law,4f and /:A is

called the Henry's law constant. For small XA, the molarity MA and
molality mA are linear functions of XA; thus there is also a linear relation
between FA and molarity or molality:

(23)

(24)

Equations 23 and 24 are alternative forms of Henry's law, and k^ and k™

are alternative forms of the Henry's law constant.
We can equate the chemical potential of the solute to the chemical

potential of the vapor in equilibrium with it. Assume the vapor is an ideal
gas:

(25)

(26)

where quantities referring to the gaseous standard state are labeled g.s.s. In
this case, it may be convenient to use Equation 8 and let

<*A= XA (27)

Comparing Equations 26 and 27 to Equation 8 implies a new standard state
(to be denoted as the Henry's Law standard state or HL s.s.) whose chemical
potential is related to that for the gaseous standard state by

(28)

With the liquid standard state we have



(29)

or

(30)

Both Equations 29 and 30 are valid in the region where the limit of Equation
22 holds, but at higher concentrations of A, Equation 29 fails to hold.
However, Equation 30 is a special case of Equation 8 and as such it defines
the activity \i for any value of XA - Thus,

aA±XA (31)

but

(32)

It is then convenient to define an activity coefficient Y A such that9

aA = XA*A <33>

at all XA. Equation 31 then implies

(34)

The activity coefficient measures the deviation from ideality. Substituting
Equation 33 into Equation 30 yields

(35)

Equation 29 implies that JLI^ is the chemical potential of a hypothetical

solution in which XA = 1, but the vapor pressure over the solution still obeys
Henry's law as extrapolated from infinite dilution. Thus the standard state is
a hypothetical Henry's law solution of unit mole fraction.

The numerical value of the activity clearly depends upon the standard
state, and one often encounters other choices for the standard state for
solutes. For example, just as we obtained Equations 29 and 30 from
Equation 22, we could have obtained similar looking equations from
Equations 23 or Equation 24. However, the derivation requires a mention of



one more thermodynamic convention if we wish to avoid nonsensical
V-

logarithms of quantities with units. Notice that Equation 22 implies that k£

has units of pressure; thus the logarithms in Equations 26 and 28 are well
defined. At first, it might appear that the constants in Equations 23 and 24
have different units. However, the convention that is followed in
thermodynamics is that MA and m\ are the unitless numerical values of
the molarity and molality; thus one can take their logarithms.

If we take the standard state as the hypothetical 1 molar Henry's law
solution (sometimes shortened to "hypothetical ideal 1 molar solution,"
where the ideality referred to is Henry's law ideality in molarity units, that
is, the proportionality of partial pressure and molarity, not Raoult's law
ideality) we get

(36)

(37)

(38)

(39)

where 1 M sol.s.s. denotes the 1 molar hypothetical solute standard state.
Furthermore if we take a hypothetical 1 molal Henry's law solute as the
standard state ( I w sol.s.s.) we get

(40)

(41)
(42)

(43)

One cannot emphasize too often that the numerical values of ^A > °A> and
Y A dePend on the choice of standard state. The usual thermodynamic



convention is to say what standard state is used in words, not in the equation
itself, but in many cases we have indicated it in the equation for clarity.

Before closing this section we note that even in nonideal solutions we
can use the standard state of Equation 16 for the solute. Since Equation 16
only holds for ideal solutions, one generalizes to obtain48

VA = V\ + RT\naA (44)

with

"A = Y A^A A* A (45)

where WA is the molality of the standard state. Now, however, y A does not
tend to unity as XA tends to O. However, comparing Equations 44 and 45 to
Equations 34 and 35 yields

r /r v [^A(HL S-S-HIA l/*rInn YA(liq-s.s.) = * A ^AJ (46)
XA->(>

Thus, Y A of Equation 45 tends to a constant value in dilute solutions. This

constant value is sometimes called the limiting activity coefficient Y A -
Consideration of Equations 21 and 22 allows us to evaluate this limit:

Y A ^ Km YA(liq-s.s.) = *A/pA (47)
XA^O

Alternatively, we may write:

k$ = ̂ AY A (48)

This shows that knowledge of the vapor pressure of A and its limiting
activity coefficient allows us to calculate the Henry's law constant.7

5. ELECTROLYTES

Electrolytes are solutes that carry an electrical charge. As charged
species typically have negligible vapor pressures, it is convenient to
introduce yet another standard state for their description.8'9 In general, the
same conditions of concentration, temperature, and pressure are assumed as



for a non-electrolyte (e.g., the HLss standard state), but the chemical
potential of an anion is defined as

V^A^A/A-/"-80 (49)

where AG0 _ (e.s.s.) denotes the standard-state free energy change for
(A/A )

the reaction

A(sol) + 1/2 H2(g) ~> A-(soi) + H+(sol) (50)

In Equation 50 the chemical potential of non-electrolyte A depends on the
usual choice of standard-state conventions described above, and the
chemical potentials of both H2(g) and HP(soi) are taken to be zero (this defines
e.s.s., the electrolyte standard state). By setting the standard-state free energy
of the solvated proton equal to zero, this standard-state convention

incorporates the absolute potential, AGjsjHE» of the hydrogen electrode
process producing one proton in solution,

l/2H2(g)^e-(g) + H+(sol) (51)

into the magnitude of the chemical potential of the electrolyte. In water as
solvent, the absolute potential of this electrode is 4.44 eV.10

For a cation, the analogous equations defining the standard-state
chemical potential for A+ are

U + = J i A + A G 0 , / A (e.s.s.) (52)A (A /A)

A+(SOl) + 1/2 H2(g) -> A(sol) + H+(sol) (53)

where AG . (e.s.s.) in Equation 52 refers to the standard-state free
(A /A)

energy change for Equation 53.
Note, in using Equations 50 and 53 above, that tabulations of

thermodynamic data for electrolytes tend to employ a 1 molar ess
concentration for all species in solution. For situations defined to have a
standard-state pH value different from O (which corresponds to a 1 molar
concentration of solvated protons), the standard-state chemical potentials for
anions and cations are determined as



U (e.s.s.;pH = £) = n (e.s.s.)-*/?^ (54)
/\ /A

Ji A+ (e.s.s.;pH = *) = Ji A+ (e.s.s.)+ W?r (55)

Note the analogy between Equations 54 and 55 and Equation 4.
An example of the use of these standard states for working with solvation

effects on one-electron oxidation potentials is provided elsewhere.11

6. SOLVATION

We are now in a position to consider the difference in chemical potential
between a solute in its (hypothetical) standard state in a liquid solution and
that same chemical species in its gas-phase standard state. This difference is

the standard-state molar free energy of solvation AGg (also referred to as
the standard state molar free energy of transfer from the vapor phase to a
liquid solution). We define

AGS= HA(solute) ~^A ( vaP°r) (56>

where we have used different standard states for each phase. Thus the

superscript on AG^ unlike all previous standard-state superscript in these
notes refers not to a particular standard state of one substance, but rather to
the fact that the dissolution process being considered is a hypothetical one
involving a transfer from one standard state to another. (This may be
compared to the situation for heat of formation, which is the enthalpy of
forming one mole of a substance in its standard state from the elements, each
in their own standard state. In that case, there are different standard states
for different substances in the initial and final states of the transfer process.)

Now substitute Equations 2 and 35 into Equation 56:

(57)

where the parenthetical notation on the left-hand side indicates that we are
using a Henry's law standard state for the solute. If the vapor is in
equilibrium with the solution, the first two terms on the right-hand side of
Equation 57 cancel, and we have



(58)

Using Equation 34 allows us to write this as

(59)

To evaluate the logarithm, we must measure the vapor pressure PA of A in
equilibrium with a solution where its mole fraction is XA in the limit where
the solution becomes infinitely dilute. That is, in the limit of infinite dilution
where y is 1, the free energy of solvation can be obtained from
measurement of the solute vapor pressure (in the appropriate standard state
units) over a solution of known concentration.

Substituting Equation 22 into Equation 59 yields

(60)

Now substituting Equation 48 yields

(61)

Thus the free energy of solvation may be calculated from the Henry's law
constant or from the vapor pressure of the pure substance and the limiting
activity coefficient. Thus, if the deviation of the solution from Raoult's law
behavior is known, calculation of the standard state free energy of solvation
requires only the vapor pressure of the pure substance (in the standard state

units). For an ideal solution that behaves according to Raoult's law, 7°°

would be 1, leading to the observation that AG§ would depend simply on
the vapor pressure of the pure solute.

In our quantum mechanical solvation modeling,12"27 we take the standard
state of the vapor to be a 1 molar ideal gas at 298° K and the standard state
of the solute to be a hypothetical 1 molar Henry's law solute at the same

temperature and pressure. Free energies of solvation, AG s, for this choice
of standard states, may be derived by employing the theory given above.
First, we combine Equations 28 and 36 to get



(62)

(63)

Equation 63 follows from Equation 62 by combining Equations 22 and 23.
Clearly, the ratio of Henry's law constants is the molarity of the solution in
which the mole fraction of solute A is unity, i.e., the molarity of pure liquid
A. We next note that Equation 56 implies

(64)

and using Equation 63 then yields

(65)

Combining this with Equations 60 and 61 yields

(66)

and

(67)

where, for a 1 M gaseous standard state, F° should be set to 24.45 atm, as
discussed between Equations 1 and 2. Other transformations of standard
states may be accomplished equivalently.

Let's do a numerical example: 1,2-ethanediol. We will use Equation 67
since Y A is known to be O.8.28 The density is29 1.113 g cm"1; therefore

(68)

The vapor pressure is30 0.010 kPa; therefore



(69)

Finally, Equation 67 yields (T= 298° K):

(70)

Notice that if we had used the Henry's law standard state for the solute, we
would have obtained -7.48 kcal/mol (which can be derived by combining
Equations 63, 68, and 70). Note that if YA = 0.9, the free energy of
solvation would be less negative by only 0.07 kcal/mol. Thus, when the

solution is nearly ideal (YA ~ 1). the free energy of solvation is primarily
determined by the vapor pressure.

Note that we previously16 quoted AG^ as -9.6 kcal/mol and as17 -9.3
kcal/mol. These values differ from the present value by 0.4 kcal/mol
(apparently a math error) and 0.1 kcal/mol (apparently a round-off error),
respectively.

A special case of Equation 67 concerns the "free energy of solvation of A
in A." Since a solution of A in A obviously satisfies Raoult's Law, we have
Y A = I- Then Equation 67 can be used to find the solvation energy of A in
A from the vapor pressure of A and its density.31

7. SOLUBILITY

Next consider the relationship between the free energy of solvation and
the solubility of a solute. First, in keeping with all the developments above,
we consider a solute that is a liquid in its pure state. By combining of
Equations 55 and 61, we may write

(71)

Then Equation 22 yields

(72)



(73)

where XA refers to the mole fraction of solute in the infinitely dilute regime
in which Henry's law is obeyed. In the special case of a liquid solute which
is saturated in the solvent at such very dilute concentrations, we must have a
case where the equilibrium chemical potentials of the pure liquid solute, the
solute in solution, and the solute vapor over both of the phases are all equal.
For the vapor over the pure liquid solute, we have

(74)

while for the vapor over the solution we have

(75)

Since these two chemical potentials must be equal (given the equilibrium
between the pure liquid and the saturated solution), it must be the case that

^A ~ ^A»in which case Equation 72 becomes

(76)

This equation has the expected behavior that AG ̂  becomes more positive
with decreasing solubility of the solute. However, free energies of solvation
for different solutes cannot be related to their relative solubilities unless the
vapor pressures of the different solutes are similar or one takes account of
this via Equation 76. Furthermore, if the solubility is high enough that
Henry's law does not hold, then one must consider finite-concentration
activity coefficients, not just the infinite-dilution limit.

The situation is more complicated for saturated solutions of solid solutes,
since there is a free energy of fusion term associated with leaving the pure
solid in order to dissolve into solution (or, in the other direction, we must
take account of the free energy of crystallization). Since this term, like
vapor pressure, will be different for different solutes, it is in general not
appropriate to assign relative solubilities based on relative free energies of
solvation. Furthermore, molecular modeling techniques for estimating



crystallization energies are not as well developed as those for estimating
solvation energies. For a discussion of solubility of solids in terms of
infinite dilution activity coefficients, see Grant and Higuchi.32

A similar multiphase complication that should be kept in mind when
discussing solutions at finite concentrations is possible micelle formation. It
is well known that for many organic solutes in water, when the concentration
exceeds a certain solute-dependent value, called the critical micelle
concentration (cmc), the solute molecules are not distributed in a random
uncorrelated way but rather aggregate into units (micelles) in which their
distances of separation and orientations with respect to each other and to
solvent molecules have strong correlations. Micelle formation, if it occurs,
will clearly have a major effect on the apparent activity coefficient but the
observation of the phenomenon requires more sophisticated analytical
techniques than observation of, say, liquid-liquid phase separation.

8. MODELING: EQUILIBRIUM PROPERTIES

The reason we prefer to use 1 M for the standard state in both the gas
phase and in liquid solution is that using the same concentration in the gas
phase and solution eliminates an entropic term in the statistical mechanical
free energy and allows us to focus on the interaction terms coupling the
solute to the solvent.33"35 In particular, using the standard state of Equation
67, we can write33"35 the free energy of solvation of a rigid, non-rotating
solute as

AG °(x) = -RTln\exp(- B/kT V (77)
S / x 7 X solvent

where x denotes the set of vibrational coordinates of the solute, k is
Boltzmann's constant, B is the potential energy of interaction between the
solute and the solvent, and (• • ')soivent denotes an average over all possible
solvent configurations. In practice we are interested in the free energy of
solvation of a nonrigid, rotating solute, and this is given by

AG8
0 = (AG8

0 (x))x + AGint (78)

where (--)x denotes an average over vibrational coordinates, Gmi is the
internal (i.e., conrovibronic, i.e., conformational-rotational-vibrational-
electronic) free energy of the solute, and



AGint = Gint(sol.)-Gint(g). (79)

In practice we often neglect the distinction between AG^ and AG^(x),
although sometimes it is important to optimize the geometry in solution21 or
to at least include the conformational part.14 (If one did try to include the
rotational part, one would run into the problem that the 3 gas-phase rotations
are converted in liquid solution into low-frequency librations that are
strongly coupled to low-energy solvent motions). In the rest of this section

we focus on AG°(x).
There are two main approaches to calculating Equation 77. In the brute-

force or atomistic approach the solvent molecules are treated explicitly, and
the average is calculated by using Monte Carlo36 or molecular dynamics38'39

methods to sample the solvent configurations. In the so-called continuum
approach, the solvent is modeled by a field, i.e., a collective solvent
coordinate, that does not depend on the instantaneous positions of the
nuclei.12'15'21'22 The advantages of the atomistic approach are that it provides
a detailed picture of the solvent and it can readily be applied to arbitrary
systems provided a potential energy function is available. The advantages of
the collective-solvent-coordinate model are lower cost, and earlier route to
including quantum mechanical effects, and elimination of the need for
potential energy functions for individual solute-solvent interactions. Since
the atomistic approach is treated in a separate chapter of this text, the present
chapter will only consider collective-solvent-coordinate approaches.

In general, collective-coordinate approaches separate AG<? (x) into two

parts: bulk electrostatics (henceforth called just electrostatic or AGeiec) and
the rest. This is an extrathermodynamic distinction, and there is no unique
way to separate the two kinds of effects in either thermodynamics or
statistical mechanics. In the most accurate collective-coordinate approaches,
is modeled by self-consistent reaction field (SCRF) AGeiec theory.12'15'21'22'
39-49 Jj16 reactjon fi^id is the jfjgjj acting on the solute due to the electric
polarization of the solvent induced by the solute. The electric polarization of
the solvent partially cancels the electric field lines emanating from the
charges and partial charges of the solute, thereby reducing the self-energy
and charge-charge interactions within the solute. This favors higher partial
atomic charges in molecular solutes as compared to their gas-phase charge
distributions.

If the solute were simply a collection of point charges surrounded by a
continuous dielectric medium with the bulk dielectric constant £ of the
solvent, the self-energy and the strength of charge-charge interactions in the
solute would be reduced by a factor of £. This is called dielectric screening.
However, the solute itself occupies a finite volume, and solvent is excluded
from this volume. This reduces the dielectric screening and is called



dielectric descreening. In the early days of solvation modeling, the solute
was represented as a sphere or ellipsoid;39"45 such a model provides only a
crude accounting for dielectric descreening. Modern theories represent the
solute as a superposition of atomic spheres centered at the nuclei; this is
much more realistic.

The electric polarization of the solvent has three components: electronic,
"atomic" (i.e., translational and vibrational), and orientational. The
polarization of a nonpolar solvent is almost entirely electronic; this leads to
e ~ 2. Polar solvents can have much larger dielectric constants, e.g. £ is
13.9 for 1-pentanol, 37.7 for methanol, and 78.3 for water.50

The electrostatic contribution to the free energy of solvation is one half
the interaction energy of the solute with the reaction field. The factor of one
half comes from the fact that the free energy cost of polarizing the solvent is
one half of the favorable interaction energy that one gains; the simplicity of
this result is a consequence of assuming linear response of the solvent to the
solute.21'43'45

The chief uncertainties in calculating Geiec are (i) the charge distribution
of the solute and (ii) the location of the boundary at which one switches
between solute screening and descreening. We will consider these in order.
In molecular mechanics modeling, one associates standard partial charges to
the various atoms of common functional groups. This is only satisfactory
for zero-order estimates. Better charges may be obtained from quantum
mechanical electronic structure calculations employing a self-consistent field
(SCF), i.e., in which each orbital is optimized self-consistently in the field of
the others. If the orbitals are optimized not only in the field of the other
occupied orbitals but also self-consistently with the reaction field, one
obtains the SCRF method. In our own most recent work, the charges used in
the SCRF calculations are obtained from the orbitals by what is called a
class FV mapping.51 This mapping contains semiempirical parameters that
makes up for the lack of complete electron correlation and other deficiencies
of the electronic structure method. Our most recent set of mapping
parameters is called Charge Model52'53 (CM2).

In most of our own solvation models,12"17' 19~26 the interaction of the solute
partial atomic charges with electric polarization of the solvent dielectric
medium outside the overlapping spheres representing the solute is calculated
by the generalized Born42' 4"57 (GB) approximation. We have also developed
a semiempirical model27 based on the conductor-like screening model58

(COSMO), which uses the 8 = <*> limit of the Poisson equation and then
scales the results to finite e. (We have also used a pairwise descreening
model18 discussed below.) The COSMO model uses the continuous solute
electron density function p(r) rather than replacing it by a set of partial
atomic charges.18'58'59 In principle this allows a more accurate treatment of



lone pairs and atomic dipoles, but it cannot take advantage of the
improvement in accuracy afforded by the class IV mapping.

A third class of solvation models is based directly on the Poisson
equation for finite 8, based either on p(r)48' 60 or its multipole
expansion.47' 61 The approach based on p(r) is usually called polarized
continuum model (PCM). It is unclear if the extra accuracy of using the
Poisson equation is sufficient to offset its chief disadvantage, which is
sensitivity to the portion of the solute charge that lies outside the set of
overlapping solute spheres. This results in a spurious contribution to the
solvation energy is variously called outlying charge error or escaped charge
error.60 The outlying charge error is usually compensated by a
renormalization procedure,61 but it can still be severe, especially for anions.
The use of a truncated multipole expansion eliminates the outlying charge
error in principle, but suffers from the fact that the multipole expansion is
slowly convergent for large molecules.

An alternative to the GB, COSMO, and Poisson electrostatic calculations
is to model the solution to the Poisson equation in terms of pair potentials
between solute atoms; this procedure is based on the physical picture that the
solvent screens the intra-solute Coulombic interactions of the solute, except
for the critical descreening of one part of the solute from the solvent by
another part of this solute. This descreening can be modeled in an average
way to a certain level of accuracy by pairwise functions of atomic
positions.18' 6^ 65 One can obtain quite accurate solvation energies in this
way, and it has recently been shown that this algorithm provides a
satisfactory alternative to more expensive explicit-solvent simulations even
for the demanding cases of 10-base-pair duplexes of DNA and RNA in
water.66

The electrostatic methods just discussed suitable for nonelectrolytic
solvent. However, both the GB and Poisson approaches may be extended to
salt solutions, the former by introducing a Debye-Hlickel parameter67 and
the latter by generalizing the Poisson equation to the Poisson-Boltzmann
equation.68 The Debye-Hiickel modification of the GB model is valid to
much higher salt concentrations than the original Debye-Hiickel theory
because the model includes the finite size of the solute molecules.

Perhaps the most widely discussed source of uncertainty in electrostatic
calculations is the location of the solute/solvent boundary. The most
common treatment is to place the boundary at the surface of a set of
overlapping spheres centered at the nuclei. But what radius should one use
for those spheres? One common answer is van der Waals radii times I.2.46

In our own quantum mechanical solvation models,12"27 and those of several
others59'69, these radii are empirical parameters. Recently Barone et al.70

have modified the PCM to use charge-dependent united-atom spheres
instead of all-atom spheres, and they optimized the electrostatic radii for a



particular normalization scheme, known as the ICOMP = 4 scheme. The
resulting model is called the united-atom Hartree-Fock (UAHF) model.

The "correct" radii for electrostatic solvation calculations have been
debated for over 50 years. But there can be no correct answer. The model
that the dielectric constant changes from unity to e at a definite point is
wrong. The solute boundary region fluctuates as a consequence of solute
vibrations and solvent motions, and the dielectric constant, to the extent that
it is even defined in a microscopic space, also fluctuates and changes
gradually over this region. The latter aspect of solvent polarization is
sometimes treated as a form of dielectric saturation, i.e., one notes that at
high enough fields (e.g., close to a polar or changed solute), the permittivity
(dielectric constant) of the solvent is not constant, it is reduced and depends
on the field.71'72 Thus we believe that it is futile to hope to find the "best"
radii by considering only electrostatics. Instead we recommend finding
reasonable radii that clearly define a bulk electrostatic contribution, however
arbitrary, and then concentrating on making the non-electrostatic term
(mentioned above) be consistent with this choice. In our work, we do this by
parameterizing the non-electrostatic term against experimental data.

Some of the physical effects that must be included in the non-
electrostatic term are:
1) cavitation, i.e., the free energy cost of making a cavity in the solvent to
allow room for the solute;
2) dispersion, i.e., the change in solvent-solvent dispersion forces and the
introduction of solute-solvent dispersion forces when the solute is placed in
the cavity (the change in solvent-solvent dispersion forces due to having
made the cavity are in principle in the cavitation term, but one can see that
the effects are not neatly separable);
3) exchange repulsion of solute and solvent and the change in intrasolvent
exchange repulsion (Exchange repulsion is ultimately due to the Pauli
exclusion principle which prevents the charge clouds of atoms from
overlapping significantly without a large energy penalty. Those who
appreciate advanced quantum mechanics realize that, due to the Hellmann-
Feynman theorem,73"75 all such quantum effects can still be calculated by
electrostatics, i.e., once you know the wave function, everything is
electrostatics. That is one reason why, when we speak carefully, we say that
the so called non-electrostatic term is actually a measure of the deviation of
the solvation energy from a bulk electrostatic model):
4) the deviation of other solute-solvent interactions from bulk electrostatics,
e.g., the fact that a hydrogen bond is not explainable in terms of bulk
electrostatics;
5) other changes in solvent structure due to the introduction of the solute,
e.g., those changes that are responsible for the hydrophobic76"82 effect.



When the non-electrostatic terms are semiempirical, they also make up in an
average way for systematic deficiencies in the treatment of electrostatics,
e.g., for the truncation of the distributed multipole representation of the
solute charge density at the monopole term on each center.

There are three popular ways to treat the nonelectrostatic effects: (i)
ignore them, (ii) combine specialized models for cavitation, dispersion,
exchange repulsion, and so forth,46"48' 70 (iii) employ atomic surface
tensions.12"27' 83~86 In the third approach, which is the most accurate in an
empirical sense, one writes22"27

(80)

where c%5 is an empirical atomic surface tension, A^(X) is the solvent-
accessible surface area of atom k corresponding to effective solvent radius
rkij, fj(\) is geometrical factor, and S$ is a solvent descriptor. The use of
more than one effective solvent radius allows a more physical treatment of
the various separate effects (e.g., dispersion forces extend only a short
distance into the solvent whereas solvent structural perturbations may
penetrate into the solvent over a longer length scale), the geometrical factor
takes account of chemical functionality (e.g., an H bonded to C is
hydrophobic whereas an H bonded to O is not), and the use of several
solvent descriptors is key to obtaining a universal model that works in any
organic solvent. We believe that the solvent descriptors should include
measures of the solvent's acidity, basicity, macroscopic surface tension,
electronic polarizability (as indicated, e.g., by its index of refraction n),
halogenic character, and aromaticity.22"27 Descriptors representing these
solvent characteristics may be thought of as collective solvent coordinates
that interact with the solute through Equation 73.

Because surface curvature depends on radius and different atoms have
different sizes, and because the atomic surface tension depends on atomic
number, the atomic surface tensions also include surface curvature effects,
which has recently been studied as a separate effect.7 Local surface
curvature may also correlate with nearest-neighbor proximity and thus may
be implicitly included to some extent when semiempirical atomic surface
tensions depend on interatomic distances in the solute.

It is actually possible to create a model based entirely on atomic surface
tensions, and, at least for species with no net charge, it does quite
well.23"25'87'88 Such a model can be quite useful for drug design because of
its speed and simplicity, but it is somewhat unsatisfactory theoretically
because the correct physics is not manifest.

In drug design one often uses an organic solvent as a surrogate for a cell
membrane or for the blood-brain barrier in designing the partitioning



properties that are essential to bioavailability. For example, partitioning into
1-octanol, n-hexadecane, and chloroform have all been used to correlate or
predict bioavailability. Table 1 indicates that these three solvents span a
range of hydrogen bonding acidity, basicity, and polarity (as measured by
Abraham's hydrogen bonding descriptors89 a and (3 and the dielectric
constant e, respectively), but have very similar indices of refraction n and
macroscopic surface tensions y • Also included in Table 1 are estimated
values for solvent descriptors to characterize phosphatidyl choline (PC) if it
were to be a pure liquid (these previously unpublished estimates derive from
analysis of various related molecules, long chain esters, phosphates, etc.)
Note that, if we assume that partitioning into a PC bilayer (which would
represent a reasonable model for a biomembrane) can be well modeled by
the solvent descriptors in Table 1 in the same way that solvent/solvent
partitioning can be, PC does not really look much like octanol, chloroform,
or hexadecane. That is, it is not clear that any one of these solvent/solvent
partitioning models should be expected to be terribly predictive of
bioavailability when that property is tied to membrane crossing of drug
molecules.

A better idea may be to develop specific effective solvent descriptors by
using data on actual membranes.23 Experimental partitioning data are
available for the case of water/phosphatidyl choline bilayer for a variety of
organic solutes.23' ̂  If we assume that the dielectric constant of the
phosphatidyl choline bilayer is 5.0 (an estimate based on the dielectric
constant of 1-octanol) and that the a value is zero (there are no hydrogen
bond donors for this molecule), and regress the experimental partition
coefficients on the remaining three solvent parameters n, y » and (3, the
regression provides values of 1.40, 25, and 1.15 for these parameters when
using the AM1/SM5.4 model19'20 for computing solvation free energies. The
similarity between the estimates given above for these descriptors and the
values obtained from regression speaks to the physicality of the model. The
regression itself has an R value of 0.9 over 19 reasonably diverse solutes,
which is high enough that one might anticipate useful performance for
screening. The virtue of this approach is that it is quite general. Given any
particular membrane model and some initial data for partitioning, one can

Table L Solvent descriptors.8

n a P Y £ b

1-octanol 1.43 0.37 0.48 39 10
chloroform 1.45 0.15 0.02 38 5
n-hexadecane 1.43 O O 39 2
phosphatidyl choline0 1.37 O 0.9 27 5
aOtand j8 are Abraham's 2,OfJ1 and £/3** ,respectively. 1Tn Tables 1-3, dielectric constants are rounded to nearest
integer to highlight major trends, but unrounded values were used for all calculations. 'Estimated.



Table 2. Free energies of solvation (kcal/mol) of three solutes in eight solvents.

Solvent (dielectric constant)

Solute

1-butanol

butylamine

aniline

C16H34

(2)

-3.5a

-3.6b

-3.6

-3.7

-5.4

-5.4

"upper value: experiment; blo\

CCl4

(2)

-4.2

-4.6

-4.3

-4.6

-6.1

-6.4

ver value: S

ethyl
ether

(4)

-5.7
-5.4
-4.4
-4.6
-6.5
-6.7

M5.2R/MND(

HCCl3

(5)

-5.3
-5.1
-5.3
-4.9
-6.9
-6.5

butyl
acetate

(5)

-5.2
-5.3

NAC

-4.3
-7.3
-7.6

tributyl
phosphate

(8)

-6.3
-6.4
-4.3
-4.3
-7.6
-7.3

1 -octanol
(10)

-5.7
-6.3
-5.4
-5.3
-6.7
-6.9

water
(78)

-4.7
-4.8
-43
-4.1
-5.5
-5.1

D; cnot available

design model-specific descriptors to help evaluate the bioavailability aspect
of further drug design efforts.

How well can continuum solvation models distinguish changes in one or
another of these solvent properties? This is illustrated in Table 2, which
compares solvation energies for three representative solutes in eight test
solvents. Three of the test solvents are those shown in Table 1, one is water,
and the other four were selected to provide useful comparisons on the basis
of their solvent descriptors, which are shown in Table 3. Notice that all four
solvents in Table 3 have no acidity, which makes them more suitable, in this
respect, than 1-octanol or chloroform for modeling biomembranes. Table 2
shows that the SM5.2R model, with gas-phase geometries and semiempirical
molecular orbital theory for the wave function, does very well indeed in
reproducing all the trends in the data.

Table 3. Descriptors for more solvents.

n OC P Y e

ethyl ether L35 O O41 24 4
butyl acetate 1.39 O 0.45 36 5
tributyl phosphate 1.42 O 1.21 28 8
carbon tetrachloride 1.45 O O 38 2



9. NONEQUILIBRIUM PROPERTIES

Self-consistent reaction fields (SCRF) methods17' 91 and other methods
that predict the thermodynamic free energy of solvation are based on the
assumption of thermodynamic equilibrium. This is certainly the correct
model for calculating free energies of reaction, molecular partition
coefficients of stable molecules, molecular solubilities, and ionic solubility
products. There are, however, two types of problems where nonequilibrium
effects may manifest themselves, namely spectroscopy and chemical
dynamics. Nonequilibrium effects in these areas are discussed in two recent
reviews.21' 49 and the status of current understanding is summarized in the
rest of this section. Understanding the differences between equilibrium
solvation and solvation effects in spectroscopy is important for designing
structure-property relationships, and understanding solvation effects on
dynamics is important for modeling reactivity in general. For example, the
fate of a drug lead in an aqueous biophase or the factors controlling
transition state stabilization in a catalyzed reaction may depend significantly
on nonequilibrium solvation effects.

In spectroscopy we may distinguish two types of process, adiabatic and
vertical. Adiabatic excitation energies are by definition thermodynamic
ones, and they are usually further defined to refer to at 0° K. In practice, at
least for electronic spectroscopy, one is more likely to observe vertical
processes, because of the Franck-Condon principle. The simplest principle
for understandings solvation effects on vertical electronic transitions is the
two-response-time model in which the solvent is assumed to have a fast
response time associated with electronic polarization and a slow response
time associated with translational, librational, and vibrational motions of the
nuclei.92 One assumes that electronic excitation is slow compared with
electronic response but fast compared with nuclear response. The latter
assumption is quite reasonable, but the former is questionable since the time
scale of electronic excitation is quite comparable to solvent electronic
polarization (consider, e.g., the excitation of a 4.5 eV n —> TT* carbonyl
transition in a solvent whose frequency response is centered at 10 eV; the
corresponding time scales are 10~15 s and 2 x 10~15 s respectively). A theory
that takes account of the similarity of these time scales would be very
difficult, involving explicit electron correlation between the solute and the
macroscopic solvent. One can, however, treat the limit where the solvent
electronic response is fast compared to solute electronic transitions; this is
called the direct reaction field (DRF). 49'93 The accurate answer must lie
somewhere between the SCRF and DRF limits;94 nevertheless one can
obtain very useful results with a two-time-scale version of the more
manageable SCRF limit, as illustrated by a very successful recent treatment



of the vertical excitation of acetone in nine solvents.95 In this treatment,
solvent electronic polarization is treated by SCRF theory, but solvent nuclear
polarization is frozen on the time scale of the electronic transition.

In chemical dynamics, one can distinguish two qualitatively different
types of processes: electron transfer and reactions involving bond
rearrangement; the latter involve heavy-particle (proton or heavier) motion
in the formal reaction coordinate. The zero-order model for the electron
transfer case is pre-organization of the nuclear coordinates (often
predominantly the solvent nuclear coordinates) followed by pure electronic
motion corresponding to a transition between diabatic electronic states.96

The zero-order model for the second type of process is transition state
theory97 (or, preferably, variational transition state theory80) in the lowest
adiabatic electronic state (i.e., on the lowest-energy Born-Oppenheimer
potential energy surface).

Nonequilibrium considerations for electron transfer are similar to those
for vertical photoexcitation discussed above, except that the pre-organization
of the solvent prior to the electron transition makes the effective gap at the
time of the electron transfer smaller, and thus the assumption of rapid
electronic response of the solvent is even better.

It is generally believed that equilibrium solvation is a reasonable
assumption or zero-order point for most reactions involving rearrangement
of bonds. The most difficult case is probably the case of adiabatic reactions
involving rearrangement or transfer of charged species; this includes proton
transfer, S]sj2 and SN! reactions, electrocyclic reactions, etc. In this case the
equilibrium SCRF treatment is very reasonable for electronic response, and
it should often be approximately valid for the nuclear solvent response as
well. The reason for the latter statement is that the solute reaction coordinate
motion is slowed down at the critical dynamical bottleneck region (a particle
crossing a barrier is moving most slowly when it is at the top of the barrier),
whereas the critical solvent motions appear to be very fast, with a time scale
on the order of 10-400 fs.98 In recent years there has been considerable
effort devoted to trying to understand these nonequilibrium effects.49 A
general consensus is that they seldom (if ever) exceed a factor of 10, and
more typically they contribute a factor of at most 2 or 3, and sometimes
considerably less. We should keep in mind that factors of 10, 3, and 2 in the
rate correspond to changes of 1.4, 0.6, and 0.4 kcal/mol, respectively, in the
phenomenological free energy of activation at room temperature so these
effects may become significant when this level of accuracy is required.

There are two major approaches to including nonequilibrium effects in
reaction rate calculations. The first approach treats the inability of the
solvent to maintain its equilibrium solvation as the system moves alone the
reaction coordinate as a frictional drag on the reacting solute system.97' 9' 10°
The second approach adds one or more collective solvent coordinate to the
nuclear coordinates of the solute.101"107 When these solvent coordinates are



at their classical equilibrium position, the solvent is at equilibrium. But
these collective coordinates can couple into the reaction coordinate and take
on nonequilibrium values. It can be shown that the two approaches are
equivalent.108"111 The generalized-solvent-coordinate approach has been used
successfully to explain kinetic isotope effects for H and Mu addition to
benzene in water,104 to predict the aqueous acceleration effect on the reaction
of H with CH3OH in water,106 and to explain the frictional effect on the rate
of contact ion pair dissociation in water.107 The chief uncertainty in
estimating such nonequilibrium effects is predicting the effective solvent
time constant and the relevant "force constants" coupling the solute
coordinates to the collective solvent coordinates. Two general approaches
may be distinguished. One approach centers on the electrostatics of solvent
polarization and therefore makes a strong connection between this process
and the frozen-nuclear-polarization approximation in the theory of vertical
photoexcitation.101"103'105 The other approach attempts to obtain the relevant
parameters from macroscopic solvent descriptors such as macroscopic
viscosity or macroscopic diffusion coefficients.104"106 This latter approach
may be useful for rough and ready estimates of the approximate size of the
nonequilibrium effect but ultimately suffers from uncertainty as to whether
the macroscopic frictional forces involved in diffusion or viscosity are the
same as those that operate on atomic motions over very short time and
distance scales.

Nonequilibrium solvent effects can indeed by significant at the kcal
level-maybe even at a greater level, but so far there is no evidence for that
when the reaction coordinate involves protonic or heavier motions. Our goal
in this section has been to emphasize just how powerful and general the
equilibrium model is. In addition, in both the previous section and the
present section, we have emphasized the use of models based on collective
solvent coordinates for calculating both equilibrium and nonequilibrium
solvation properties.
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1. INTRODUCTION

Solvation free energies for small molecules are important in drug design
and in the understanding of the relationship between solvation and ligand
binding. Given that, AG (binding) = AG (affinity) - AG (desolvation), the
ligand with the best affinity for the binding site may not be the one with the
best overall binding free energy if the cost to desolvate the ligand is large.
For example, if ligand A has an affinity of 14 kcal/mol for a given enzyme
and a desolvation cost of 6 kcal/mol, while ligand B has an affinity of 12
kcal/mol for the same enzyme and a desolvation cost of 3 kcal/mol. Ligand
B will exhibit a 1 kcal/mol better binding free energy. This could lead to a
misinterpretation of the SAR by medicinal chemists as was the case for
collagenase. Collagenase is reported to have water molecule in the binding
pocket and exhibits selectivity for Leu side-chains in the PF site. It was
further shown that replacement of Leu in the collagenase peptide inhibitors
with GIn resulted in a 50% decrease in potency. This result led to the
postulate that the site was relatively hydrophobic. However, if the
desolvation cost difference between Leu and GIn (-11 kcal/mol) was
considered, one realizes that GIn must have a much greater affinity for the
site than Leu to compensate for the much larger desolvation cost of GIn and
therefore that the PF binding site is less hydrophobic than originally
postulated.1

Desolvation free energies are computed using either explicit solvent or an
implicit solvent model. While explicit solvent simulations are usually
considered more accurate or at least more representative of the true
molecular environment, simulations using implicit solvent are often chosen



due to their reduced CPU requirements. Explicit solvent models are required
in a simulation in which a detailed picture of solvent structure is important
for which there is evidence that a particular structure feature of the solvent is
playing a key role, e.g., a specific water-protein hydrogen bond. Relative
solvation free energies of small molecules are calculated with reasonable
accuracy using implicit solvent models such as GB/SA.2 In contrast, accurate
relative binding affinities of inhibitors to an enzyme is best accomplished
using explicit solvent models. Many explicit solvent models have been used
to represent solvent effects in small and macromolecular systems. Some
examples include: MCY,3 ST2,4 TIP2P,5 TIP3P,6 TIP4P,6 TIP5P,7'8 SPC,9

and SPC/E.10 The TIP5P is the best water model for reproducing
experimental water properties. However, it requires more computer time for
calculations as compared to simple water models such as TIP3P and SPC/E.
Thus, the most extensively used models are TIP3P, SPC and SPC/E, which
have shown considerable success in simulations of both small and large
molecules. The TIP3P water model reproduces experimental structural
properties accurately6 and the SPC/E water model reproduces experimental
water properties such as the dielectric constant and diffusion coefficient
accurately.11 No explicit hydrogen bond term is used in the potential
function, because electrostatic forces and the repulsive part of the oxygen -
oxygen force, give good description of forces equivalent of hydrogen
bonding.

2. METHODOLOGY

Since absolute free energies are difficult to calculate accurately, the
thermodynamic cycle perturbation12'14 is often used to compute the relative
changes of free energy for a solvation process by the construction of non-
physical paths connecting the desired initial and terminal states. This
approach enables calculation of the relative change in solvation free energy
difference (AAGsoi) between two related compounds by computationally
simulating the 'mutation' of one to the other. These mutations can be carried
out either using single topology or double topology methods. The single
topology method entails changing the appropriate reactant atoms to product
atoms. These mutations result in geometrical changes as well as changes in
partial charges, and van der Waals parameters. In the double topology or
thread method15'16 a single topology is defined for those atoms which are
identical in both molecules in the sense that force constants and equilibrium
geometries are the same (partial charges can vary). For the portion of the
molecule which must be transformed, both the starting (reactant) and ending
(product) topologies are defined using their associated geometries, with one



Figure L Thermodynamic cycle for computing solvation free energy difference between two
solutes Sl andS2.

AAGsoi = AGaq-AGgas = AG2-AGi (1)

beginning and the other ending the simulation entirely as dummy atoms.
Dummy atoms are identical to real atoms except for their Lennard-Jones
parameters and charges are set to zero. At intermediate points during the
transformation, all atoms in both topologies have fractional Lennard-Jones
parameters and charges. Molecules with both topologies interact with the
environment, but not with each other. The relative solvation free energy
differences for two similar ligands is computed using the thermodynamic
cycle shown in Figure 1, as represented in Equation 1.

The free energy change for converting Sl into S2 is computed by
perturbing the Hamiltonian of reactant (initial) state Sl into that of the
product (final) state S2. This transformation is accomplished through a
parameterization of terms comprising the interaction potentials of the system
with a change of state variable that maps onto reactant and product states
when that variable is O and 1, respectively. The total free energy change for
the mutation from the initial to the final state is computed by summing
'incremental' free energy changes over several windows visited by the state
variable changing from O to 1. Alternatively, Sl can be transformed to S2
using the Slow Growth method. This method makes a small perturbation on
each time step and sums all the difference for the full run. This method is
smoother at the introduction of large changes, but there is a much larger
hysteresis.17'18

This chapter summarizes most of the studies reported in the literature to
date that use the free energy methodology to calculate relative solvation free
energies with explicit solvent. In addition, the results are used to define the
current scope and limitations of the methodology.



3. CALCULATED SOLVATION FREE ENERGIES

3.1 Convergence of Results

While calculations involving macromolecules that use explicit solvent
are more realistic, they are also associated with significantly longer
simulation times in order to achieve convergence. Since the early 1980s,
over 100 papers have been published using MD or MC simulations in
conjunction with the thermodynamic cycle perturbation approach,12 for the
calculation of relative solvation using explicit solvent. In general, the
results from these calculations showed satisfactory agreement with
experimental results. In some respects this is remarkable since most of the
studies used relatively short simulation times making it likely that the
calculations were not fully converged. The likelihood that full convergence
was not achieved in these initial calculations was highlighted by the work of
McCammon19 and Kollman20 who examined the behavior of the calculated
free energy with the length of the simulation and concluded that simulation
times significantly longer than those typically used (200 ps or greater) were
required to yield reliable and accurate results. In addition, others 21~24 have
studied the convergence problems in the simulations, particularly, Chipot24

et al. who investigated the convergence behavior in free energies using
several different methods and concluded that proper convergence of the free
energy calculations requires simulation times much longer than previously
estimated.

Reddy and Erion25 evaluated for seven systems, the dependence of
relative solvation free energy convergence on molecular dynamics
simulation length and starting configuration using two studies. In the first
study, each simulation started from the same well-equilibrated configuration
and the length was varied from 153 ps to 1530 ps. In the second study, the
relative solvation free energy differences were calculated starting from three
different configurations and using 510 ps of molecular dynamics simulation
for each mutation. All the details of calculations and complete relative
solvation free energy results for all the systems are described elsewhere,12

The relative solvation free energies were calculated using simulation lengths
that ranged from 153 ps to 1530 ps from the same well-equibrilated
configurations for acetone to acetaldehyde, acetone to pyruvic acid, acetone
to 1,1,1-trifluoroacetone, acetone to 1,1,1-trichlroacetone, acetone to 2,3-
butanedione, acetone to cyclopropanone and formaldehyde hydrate to
formaldehyde. The calculated free energies indicated (Table 1) that even for
molecules with limited conformational flexibility a simulation length of 510
ps or greater is required to obtain satisfactory convergence. Mutations that
represent a large structural changes such as cyclopropanone to acetone



require much longer simulation lengths to achieve satisfactory convergence.
The other calculations25 demonstrate that performing one long simulation is
better than averaging results from three shorter simulations of the same
length using different starting conformations.

Table 1. Calculated relative solvation free energies (kcal/mol)

SYSTEM Simulation Length AAGCaic

CH3COCH3 - HCOCH3
a 153 ps -0.56 ±0.37

306 ps -0.52 ±0.29
510 ps -0.44 ±0.22
714 ps -0.45 ±0.17
1530ps -0.40 ±0.11

CH3COCH3 - CH3COCOOH 153 ps 10.31 ± 1.04
306 ps 10.09 ±0.82
510ps 10.01 ±0.72
714 ps 9.96 ±0.56

1530 ps 9.84 + 0.48

CH3COCH3-CF3COCH3 153 ps 0.69±0.50

306 ps 0.54 ±0.39

510ps 0.58 ±0.25

714 ps 0.60 ±0.18

1530ps 0.63 ±0.13

CH3COCH3 - CCl3COCH3 153ps 3.95 ± 0.59

306 ps 3.90 ±0.46

510ps 3.79 ±0.33

714 ps 3.75 ±0.26

1530ps 3.67 ±0.19

CH3COCH3 - CH3COCOCH3 153 ps 4.05 ± 0.84

306 ps 4.24 ±0.68

510ps 3.78 ±0.57

714 ps 3.63 ±0.44

1530ps 3.57 ±0.36

CH3COCH3 - Cyclopropanone 153 ps -0.91 ± 0.70

306 ps -0.79 ±0.61

510ps -0.68 ±0.51

714 ps -0.51 ±0.36

1530ps -0.46 ±0.20

HCOH-HC(OH)2H 153 ps 8.10 ±0.97

306 ps 7.81 ±0.82

510ps 7.46 ±0.67

714 ps 7.30 ±0.56

1530 ps 7.20 ±0.40
aAAGExpt = -0.3



3.2 Validation of Methodology

Initial reports on solvation free energy calculations focused on modeling
of a cavity in water.26' 27 Simulations of simple solutes and their impact on
the structure of bulk water followed the basic study. These studies were
fundamental for their contribution to the deconvolution of the systems into
several components. Jorgensen and Ravimohan,28 were among the first to
calculate relative solvation free energies (SFEs). They used the free energy
perturbation (FEP) method and MC simulations to calculate free energies of
hydration for inter-conversion of methanol and ethane using OPLS
parameters and TIP4P water. The inter-conversion was carried out in 6
windows using double wide sampling in the NPT ensemble with a spherical
cutoff of 7.5 A. The equilibration phase consisted of 0.5 x 106

configurations followed by averaging for properties over an additional 1.5 x
106 configurations. The calculated relative solvation free energy for the
mutation of methanol to ethane was 6.75±0.38 kcal/mol, which was in good
agreement with the experimental relative solvation free energy of 6.93
kcal/mol. In addition to this work, the Jorgensen group also demonstrated
that the desolvation free energy of water itself could be accurately calculated
using the TIP4P model. The calculation gave 6.1 kcal/mol while the
experimental value is 6.3 kcal/mol.29 This was an important contribution
because it showed that the water model was capable of reproducing the most
basic system for desolvation studies, namely its own model of water was
self-consistent. These results also proved that the hydrophobic - hydrophilic
difference in small molecules could be accurately computed. These first
studies gave way to an avalanche of solvation free energy studies on
numerous topics as discussed below.

3.3 Solvation Free Energies between Neutral Systems

Kollman and coworkers30 calculated the relative solvation free energies
of several fluorocarbons and demonstrated the necessity of the use of bond-
PMF correction in order to obtain good agreement with experiment (Table
2). Intramolecular interaction energy was not included in the solvation free
energy calculation and a non-bonded cut off of 8 A was used. The relative
solvation free energies were calculated using AMBER and TIP3P water
model in 40 windows where each window consisted of an equilibration of
0.5 ps and data collection of 0.5 ps with a time step of 1 fs. ESP fitted
charges were calculated with 6-3IG* basis set for all the molecules. The
calculated relative solvation free energies for the mutation of CF4 to CH4,
CFH3 to CHF3, CFH3 to CH4, CHF3 to CH2F2 and CHF3 to CF4 without and
with bond-PMF corrections were 0.77±0.06 kcal/mol, -0.8±0.3 kcal/mol
(expt: -1.2 kcal/mol), 0.3±0.3 kcal/mol, 0.7±0.1 kcal/mol (expt: 1.0



Table 2. Calculated and experimental relative solvation free energies

Mutations

Arginine— »Argininew

Alanine— »Arginine
Alanine— >Cysteine
Histidine->Histidinew

Alanine-»Histidine
Alanine— >Leucine
Lysine-»Lysinew

Alanine— >Lysine
Alanine— >Phenylalanine
Alanine— >Serine
Alanine-* Tryptophan
Nothing— ̂ Methane
Methane— >3-Methylindole
Methane— »Isobutane
Benzene— »Phenol
Methane— »Acetamide
Acetamide-^Acetate(")

Methane-* Acetic acid
Methane— »Adenine
Methane ->Thymine
Thymine— »Cytosine
Adenine— >Guanine
Methane-* Acetamide
Methane— >N-
Methylacetamide
Methane-*N,N-
Dimethylacetamide
Methanol— »Ethane
Ammonium— » O xonium
Alanine-*Glycine
Alanine-* Phenylalanine
Acetone-* Acetaldehyde
Acetone-*Pyruvic acid
Acetone— > 1,1,1 -
Trifluoroacetone
Acetone— > 1,1,1 -
Trichloroacetone
Acetone -*2,3-Butanedione
Acetone-*Cyclopropanone
Acetone -*Formaldehyde
hydrate
Methanol-*Ethane

Water— >Ethane
Chloride ion-*Methane
CF4->CH4
CFH3-*CHF3

CFH3-^CH4

CHF3-*CH2F2

CHF3-*CF4

Methane— *Ethane
Methane— *Ethane
(polarization)
Methane — *Neopentane
Methane— *Neopentane
(polarization)
Ammonium ion— »
Tetramethyl Ammonium ion
Ammonium ion— » (polar)
Tetramethyl Ammonium ion

Force Field

AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER

AMBER

AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER

AMBER

AMBER
AMBER
AMBER

BOSS8

BOSS3

BOSS3

AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER

AMBER
AMBER

AMBER

AMBER

NB

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

8

8
8
8
8
11
11
11

11

11
11
11

7.5

8.5
8.5
8
8
8
8
8
8
8

8
8

8

8

Simulation
Length

50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50 ps
50-ps
50-ps
50 ps
50 ps
50 ps
50 ps
50 ps

50 ps

20 ps
20 ps
60 ps
63 ps
1530 ps
1530 ps
1530 ps

1530 ps

1530 ps
1530 ps
1530 ps

b!.5X106

1^XlO6

b2X106

40 ps
40 ps
40ps
40ps
40 ps
102 ps
102 ps

102 ps
102 ps

102 ps

102 ps

AAG Sf

(kcal/mol)
-32.28±0.71
-14.40±1.49
-3.04±0.37
-35.49±0.38
-13.32±0.20
0.65±0.20
-58.85±0.60
-6.75±0.10
-2.87±0.45
-7.04±0.35
-7.29±0.35
2.12±0.90
-6.68±0.93
1.08±0.35
-4.57±0.19
-10.30±0.21
-71.86±0.88
-9.03 ±0.45
-14.73±Q.76
-9.61±1.15
5.24±0.33
6.95±0.54
-10.30±0.21
-10.29±0.76

-9.16±0.10

6.86±0.12
-21.2±0.4
0.98±0.18
-3.01±0.50
-0.40±Q.ll
9.84±0.48
0.63±0.13

3.67±0.19

3.57+0.36
-0.46+0.20
7.20+0.40

6.75±0.38

-8.41
-79.3
-0.8+0.3
0.7+0.1
2.3+0.2
-1.0+0.1
2.19+0.05
-0.42
-0.18

-0.86
0.91

-29.82

-23.56

^ST
(kcal/mol)

-12.86
-3.19

-12.19

-6.33
-2.71
-7.02

1.95
-7.85
0.34
-5.36
-11.66

-8.64

-11.7±0.21
-12.2±0.20

-10.6±0.30

6.9

-2.71
-0.30

6.93

-8.33
-77
-1.2
1.0
2.2

2.4
0.17
0.17

-0.50
-0.50

-31.70

-31.70

Ref.

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

17

18
18
18
18
25
25
25

25

25
25
25

28

29
29
30
30
30
30
30
31
31

31
31

31

31



Mutations

Chloride ion— >Bromide ion
Chloride ion— > Bromide ion
(polarization)
Sodium ion— »Potassium ion
Sodium ion-» Potassium ion
(polarization)
Ethane— >Methane
Propane -^Ethane
Butane— »Ethane
Me4C-^CH4

Et4C -»Me4C
Pr4C^Et4C
Bu4C^Pr4C
MeNH2->NH3

Me2NH-^MeNH2

Me3N-^Me2NH
MeNH3

+-^NH4
+

Me2NH2
+-»MeNH3

+

Me3NH+-^Me2NH2
+

Me4N
+-^NH4

+

Et4N
+-^Me4N

+

Pr4N
+-^Et4N

+

Bu4N
+-^Pr4N

+

C6H5CH3-^C6H6

C6H5OH-^C6H6

C6H5NH2-^C6H6

Cl"->Bf (H2O)
CT->Bf (MeOH)
Cr-»Bf (DMSO)
Na+-»K+ (H2O)
NA+-»K+ (MeOH)
NA+->K+ (DMSO)
Me4N

+-^NH4
+ (H2O)

Me4N
+-^NH4

+ (MeOH)
Me4N

+-^NH4
+ (DMSO)

Et4N
+-^Me4N

+(H2O)
Et4N

+-Me4N
+ (MeOH)

Et4N
+-^Me4N

+ (DMSO)
C2H6-^CH4 (H2O)
C2H6-^CH4 (MeOH)
C2H6-^CH4 (DMSO)
Me4C-^CH4 (H2O)
Me4C-^CH4 (MeOH)
Me4C-^CH4 (DMSO)
Et4C-Me4C(H2O)
Et4C-^Me4C(MeOH)
Et4C-^Me4C(DMSO)
Cl'->Br (hydrazine)
Cl ->Br (CCl4)
Na+->K+ (hydrazine)
Na+-»K+ (CCl4)
Me4N

+-^NH4
+ (hydrazine)

Et4N
+-Me4N

+ (hydrazine)
C2H6^CH4 (hydrazine)
C2H6-^CH4 (CCl4)
Me4C^CH4 (hydrazine)
Me4C-^CH4 (CCl4)
Acetamide-^N-
Methylacetamide
N-Methylacetamide-> N,N-
Dimethylacetamide
NH3-^MeNH2

Force Field

AMBER
AMBER

AMBER
AMBER

AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER
AMBER

AMBER

AMBER

NB

8
8

8
8

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
18
18
8
18
18
8
12
18
8
12
18
8
12
18
8
12
18
8
12
18
14
18
14
18
12
12
14
18
12
18
8

8

8

Simulation
Length

102 ps
102 ps

102 ps
102 ps

62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
41 ps
41 ps
41 ps
41 ps
41 ps
41 ps
41 ps
41 ps
41 ps
41 ps
41 ps
41 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
62 ps
41 ps
41 ps
41ps
41 ps
41 ps
41 ps
62 ps
62 ps
62 ps
62 ps
404 ps

404 ps

404 ps

A A ̂  calc
AAGsol
(kcal/mol)
-3.23
-1.95

-20.09
-24.66

-0.42±0.03
0.03±0.01
0.06±0.01
-0.86±0.08
0.40±0.01
-0.59±0.02
-0.51±0.03
0.07±0.13
-1.93±0.08
-1.17±0.06
-9.08±0.12
-6.35±0.13
-5.87±0.05
-29.82±0.52
-6.74±0.26
-5.59±0.11
-2.75±0.08
-0.42±0.03
3.52±0.01
2.21 ±0.02
3.23±0.05
3.03±0.05
1.26±0.04
20.09±0.07
20.13±0.08
20.17±0.09
-29.82±0.52
-29.64±0.28
-29.74±0.63
-6.74±0.26
-5.22±0.34
-5.03±0.32
-0.42±0.03
0.31±0.01
0.15±0.06
-0.86±0.08
1.90±0.02
1.29±0.04
0.40±0.01
1.71 ±0.04
1.85±0.02
2.65±0.37
0.71 ±0.04
23.32±0.11
1.46±0.03
-25.54±0.35
-4.16±0.28
0.67±0.05
1.08±0.05
3.64±0.07
3.53±0.17
2.09±0.11

1.05±0.02

0.62 + 0.05

AA^oT
(kcaVmol)
-3.33
-3.33

-17.05
-17.05

0.17
-0.12
-0.12
-0.50
0.28

0.27
-0.27
-1.07
-7.30
-6.40
-7.00
-31.70
-7.00

-0.86
2.20
1.68
3.3
3.8
0.2
17.5
17.8
17.6
-31.7
-31.9

-7.0
-5.8
-5.3
0.2
0.9
1.1
-0.5
1.9

0.2
2.5

2.5

17.0

1.2

-0.40

1.53

-0.3

Ref.

31
31

31
31

32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
34
34
34
34
34
34
34
34
34
34
35

35

35



Mutations

MeNH2-^Me2NH
Me2NH-^Me3N
NH3-Me3N
NH3->H20
NH3-^NH2CH3

NH2CH3->NH(CH3)2

NH(CH3)2->N(CH3)
Propane— >Ethane
Propane-»Ethane
Butane— > Propane
Methanol—> Ethane
Ethanol— >Propane
Toluene-^Benzene
Cyanobenzene— > Toluene
p-Xylene— > Toluene
p-Xylene— >Hydroquinone
p-Xylene-»p-
Dicyanobenzene
p-Xylene— >p-Cresol
p-Cresol— >Phenol
Anisole->Phenol
Phenol— > Benzene
Anisole—* Benzene
Trimethoxybenzene-*
Benzene
Methane— »Ethane
Ethane— >Propane
N-Acetylalanine N-
Methylamide — >Valine
dipeptide
Adenine-»Guanine
Uracil-^Thymine
Thymine— >Cytosine
Adenine->Uracil
Guanine->Cytosine
9-Methyladenine— »Methane
9-Methylguanine— >Methane
1-Methylcytosine— >Methane
l-Methyluracil-»Methane
l-Methylthymine-»Methane
9-Methyladenine->9-
Methylguanine
1-Methylcytosine— >1-
Methyluracil
1-Methyluracil-^l-
Methylthymine
l-Methylcytosine->l-
Methylthymine
Methanol— >Ethane
Thr-»Ala (tri-peptide)
Thr— >Ala (penta-peptide)

Force Field

AMBER
AMBER
AMBER
AMBER
BOSS
BOSS
BOSS
CHARMM
OPLS
OPLS
OPLS
OPLS
BOSSa

BOSS"
BOSS"
BOSSa

BOSSa

BOSSa

BOSSa

BOSSa

BOSSa

AMBER
AMBER

AMBER
AMBER
AMBER

AMBER3

AMBER3

AMBER3

AMBER3

AMBER3

AMBER
AMBER
AMBER
AMBER
AMBER
AMBER

AMBER

AMBER

AMBER

BOSS
BOSS
BOSS

NB

8
8
8
8
8
8
8
8.5
8.5
8.5
8.5
8.5
10.5
10.5
10.5
10.5
10.5

10.5
10.5
10.5
10.5
8
8

8
8
8

9
9
9
9
9
8
8
8
8
8
8

8

8

8

8
8
8

Simulation
Length

404 ps
404 ps
606 ps
404 ps
400 ps
400 ps
400 ps
60 ps
60 ps
60 ps
60 ps
60 ps
b4X106

b4X106

b4X106

b4X106

b4X106

b4X106

b4X106

b4X106

b4X106

72 ps
72 ps

300 ps
300 ps
300 ps

189ps
189ps
189ps
210 ps
210 ps
1000 ps
1000 ps
1000 ps
1000 ps
1000 ps
1000 ps

1000 ps

1000 ps

1000 ps

b!.4X106

b!.4X106

b!.4X106

AAG «*

(kcal/mol)
1.62±0.01
2.34+0.02
4.36+0.05
-2.17+0.00
0.3±0.5
2.5+0.6
0.6+0.6
0.87±0.3
0.56±0.1
-1.0±0.2
7.5±0.2
7.2±0.1
0.13±0.1
3.8±0.1
-0.12±0.1
-10.5±0.2
-7.7±0.3

-5.6±0.2
-0.5 ±0.1
-5.1 ±0.2
5.2 ±0.2
0.90
4.31

0.16±0.04
0.20±0.04
1.1±0.1

-10.3
-0.3
-6.9
-1.0
1.4
13.90±0.14
24.34±0.19
20.30±0.24
15.92±0.06
14.34±0.14
-11.41±0.16

3.87±0.07

1.80±0.11

5.73±0.18

8.3
7.05
6.61

*<o7
(kcaVmol)
0.3
1.1
1.07
-2.01
-0.3
0.3
1.1
-0.13
-0.13
-0.13
6.9
7.0
0.10±0.1
2.6±0.5
0.0±0.1
-9.3±0.1

-5.3±0.1
-0.4±0.1
-4.7±0.8
5.8±0.1
1.1-1.6
4.1-4.5

-0.16
041

6.9
6.9
6.9

Ref.

35
35
35
35
36
36
36
38
38
38
38
38
39
39
39
39
39

39
39
39
39
40
40

41
41
41

43
43
43
43
43
44
44
44
44
44
44

44

44

44

45
45
45

3OPLS force field; 1MOnIe Carlo simulation; NB = Non-bonded cutoff distance in A

kcal/mol), 2.4±0.3 kcal/mol, 2.3±0.2 kcal/mol (expt: 2.2 kcal/mol), -0.71±
0.07 kcal/mol, -1.0±0.1 kcal/mol and 1.5±0.1 kcal/mol, 2.19±0.05 kcal/mol
(expt: 2.4 kcal/mol), respectively. The authors concluded that agreement
with the experiment is better when bond-PMF correction is used because it



allows an accurate estimation of the length of bonds involved in perturbation
and the effect of the size of the solute.

Singh and coworkers31 have computed the relative solvation free energies
for small molecules to examine the effect of the polarization energy using
AMBER 3.3. Each solute was solvated in a rectangular box with 216 TDP3P
water molecules. During the equilibration and subsequent perturbations the
periodic boundary conditions were applied only for solute-solvent and
solvent-solvent non-bonded interactions. Also, all solute-solute non-bonded
interactions were included. Each perturbation was achieved in two stages:
charge mutation followed by the mutation of the van der Waals and the
polarizability parameters. The electrostatic run (charge mutation) was
carried out in 21 windows where the system was equilibrated for 1 ps and
data was collected for the next 1 ps in each window. The van der Waals
parameters were mutated by using a 201 windows simulation with 0.4 ps of
equilibration and 0.4 ps of data collection. The calculated solvation free
energies with and without polarization and experimental values for the
mutations of methane to ethane and methane to neopentane were -0.18
kcal/mol, -0.42 kcal/mol, 0.17 kcal/mol, 0.91 kcal/mol, -0.86 kcal/mol, and -
0.50 kcal/mol, respectively. Therefore, polarization energy added a constant
positive value to the free energy change for all the transformations.

Jorgensen and coworkers29 computed free energies of hydration of
methane using BOSS and OPLS force field. Two series of MC simulations
were performed with a single solute plus 216 TIP4P water molecules in a
cubic cell with periodic boundary conditions. In the first series, a single
Lennard-Jones particle corresponding to methane was made to vanish. In
the second series, a TIP4P water molecule was converted to the methane
particle. The intermolecular interactions were truncated smoothly between
8.0 A and 8.5 A. Each simulation included 5 x 105 configurations of
equilibration followed by 1.5 x 106 or 2.0 x 106 configurations for the
averaging. The calculated and experimental free energy difference for the
mutation of water molecule to methane were -8.41 kcal/mol, and -8.33
kcal/mol, respectively. The study showed the utility of statistical
perturbation theory for computing absolute free energies of solution and the
quality of the underlying potential functions.

Rao and Singh32 calculated relative solvation free energies for normal
alkanes, tetra-alkylmethanes, amines and aromatic compounds using
AMBER 3.1. Each system was solvated with 216 TIP3P water molecules.
The atomic charges were uniformly scaled down by a factor of 0.87 to
correct the overestimation of dipole moment by 6-3IG* basis set. During
the perturbation runs, the periodic boundary conditions were applied only for
solute-solvent and solvent-solvent interactions with a non-bonded interaction
cutoff of 8.5 A. All solute-solute non-bonded interactions were included.
Electrostatic decoupling was applied where electrostatic run was completed
in 21 windows. Each window included 1 ps of equilibration and 1 ps of data



collection. The van der Waals parameters were mutated with and without
the coordinate coupling. Simulations without the coordinate coupling were
divided into 101 windows with equilibration of 0.4 ps and data collection of
0.4 ps in each window. With the coordinate coupling, the simulations were
divided into 201 windows with 0.2 ps of equilibration and 0.2 ps of data
collection. The calculated relative solvation free energies are in reasonable
agreement with the experimental values. The values obtained with
coordinate coupling were in better agreement with experimental results as
compared to those obtained without coordinate coupling. The solute-solvent
interaction energy seems to be the major component in hydration.

In another study, Rao and Singh33 calculated differences in free energies
of solvation for alkanes in water, methanol and dimethyl sulfoxide using
AMBER 3.1. The authors created MeOH and DMSO solvent boxes starting
with 216 TIP3P water molecules. During minimization, equilibration and
perturbation runs, periodic boundary conditions were applied only for solute-
solvent and solvent-solvent interactions. For solute-solvent and solvent-
solvent non-bonded interactions, cutoff distances of 10 A and 12 A were
employed for simulations in MeOH and DMSO, respectively. All solute-
solute non-bonded interactions were included. The mutations involving
molecular solutes were calculated using free energy decoupling method.
The partial charges were mutated in 21 windows, each with 1 ps of
equilibration and 1 ps of data collection. The van der Waals parameters
were mutated with coordinate coupling over 201 windows, each with 0.2 ps
of equilibration and 0.2 ps of data collection. A time step of 2 fs was used in
all of the simulations. The AG varies differently in different solutions due to
varying solvation processes. The characteristic feature observed in the
variation patterns of AG for alkanes in water is not observed in MeOH or
DMSO. Rao and Singh calculated relative solvation free energies for normal
alkanes and tetra-alkylmethane molecules in hydrazine and carbon
tetrachloride as well, using AMBER 3.1.34 ESP fitted atomic partial charges
were obtained with 6-3IG* basis set. Periodic boundary conditions were
applied only for solute-solvent and solvent-solvent interactions. A constant
dielectric of 1 was used in all the simulations. Cutoff distances of 12 A and
14 A were used in hydrazine and CCU, respectively. The molecular solutes
were mutated in two stages with the free energy decoupling method. The
partial charges were mutated first by using 21 windows with 1 ps of
equilibration and 1 ps of data collection in each window. The van der Waals
parameters were mutated with coordinate coupling over 201 windows with
0.2 ps of equilibration and 0.2 ps of data collection. A time step of 2 fs was
used during equilibration and data collection. The results were in good
agreement with the available experimental results. The solvation behavior in
hydrazine resembled that in water for many solutes. The results supported



the view that the special phenomenon observed in the hydration of apolar
solutes is a result of the structural peculiarity of liquid water.

Morgantini and Kollman35 calculated relative solvation free energies for
several amides and amines. The solvation free energies were calculated
using restrained ESP fitted charges calculated using the 6-3IG* basis set, the
AMBER 4.0 package, the TIP3P water model, a constant dielectric of 1, 8 A
of non-bonded cutoff, 101 windows with 2 fs time step, 2 ps of
equilibration and 2 ps of data collection in each window. Bond-PMF
correction was employed for all perturbations involving bond length
changes. In addition to relative solvation free energies, absolute solvation
free energies were calculated for H2O, NH3 and MeNH2. The calculated and
experimental solvation free energies for acetamide to N-methylacetamide,
N-methylacetamide to N,N-dimethylacetamide, ammonia to amino methane,
amino methane to dimethyl amine, dimethyl amine to trimethyl amine,
ammonia to trimethyl amine and ammonia to water were 2.09±0.11 kcal/mol
(expt: -0.40 kcal/mol), 1.05±0.02 kcal/mol (expt: 1.53 kcal/mol), 0.62±0.05
kcal/mol (expt: -0.26 kcal/mol), 1.62±0.01 kcal/mol (expt: 0.27 kcal/mol),
2.34±0.02 kcal/mol (expt: 1.06 kcal/mol), 4.36±0.05 kcal/mol (expt: 1.07
kcal/mol) and -2.17±0.00 kcal/mol (expt: -2.01 kcal/mol), respectively.
Unlike experimental data the calculated relative solvation free energies
increase monotonically as a function of methyl addition even though the
calculated values were within 0.5 kcal/mol of the experiment.

Levy and coworkers36 reported a monotonous increase in relative
solvation free energies as a function of methyl addition to amines and
amides as well. ESP fitted charges were calculated for all the amides and
amines using the 6-3IG* basis set. The solvation free energies were
calculated using IMPACT, TIP3P water model, a non-bonded cutoff of 8 A,
time step of 2 fs, 100 and 200 double wide sampling windows were used for
amide and amine mutations, respectively, each window included an
equilibration (1 ps) and data collection (1 ps) and both, forward and
backward perturbations were made. The solvation free energies were
calculated with and without many-body polarizable potential. The
calculated relative solvation free energies using many-body polarization
potential for NH3 to NH2CH3, NH2CH3 to NH(CH3)2 and NH(CH3)2 to
N(CH3)3 mutations gave 0.3±0.5 kcal/mol (expt: -0.3 kcal/mol), 2.5±0.6
kcal/mol (expt: 0.3 kcal/mol) and 0.6±0.6 kcal/mol (expt: 1.1 kcal/mol),
respectively. Those solvation free energies are in better agreement with the
experimental result. Kollman and coworkers37 applied explicit polarizable
water and solute potential energy functions and calculated relative solvation
free energies that agreed well with Kollman's earlier results but did not
reproduce the experimental trend of relative solvation free energies in
amines and amides.



Brooks38 calculated relative solvation free energies for propane, ethane,
butane, methanol and ethanol using CHARMM and OPLS force fields. The
simulations were carried out using TIP3P water and solute at a = Ig/cc and
T = 298°±5 K. The calculations used double-wide sampling with windows
at X = 0.125, 0.5 and 0.875, each with 8 ps of equilibration dynamics and
12-30 ps of production run with a time step of 1 fs. The calculated and
experimental solvation free energies for the mutation of propane to ethane,
butane to propane, methanol to ethane and ethanol to propane were 0.56 ±
0.1 kcal/mol, -0.13 kcal/mol, -1.0 ± 0.2 kcal/mol, -0.13 kcal/mol, 7.5±0.2
kcal/mol, 6.9 kcal/mol, 7.2±0.1 kcal/mol and 7.0 kcal/mol, respectively. The
author concluded that the parameterization of current empirical potential
functions is inadequate in representing apolar to apolar thermodynamics in
aqueous solution. However, polar to apolar transformations are governed by
the loss of large electrostatic components and are adequately represented.

Jorgensen and Nguyen developed intermolecular potential functions and
calculated the relative solvation free energies for substituted benzenes using
BOSS.39 The system consisted of 500 TIP4P water molecules plus the solute
in a cubic cell 25 A on a side with periodic boundary conditions. Each
solute was mutated in a series of 5 to 10 simulations guided by insisting that
the statistical uncertainty for a computed free energy increment not to
exceed 0.1 kcal/mol as obtained from the fluctuations in separate averages
over 1 x 105 or 2 x 105 configurations. Each simulation entailed an
equilibration period of at least 106 configurations followed by averaging
over an additional 2 x 106 to 4 xlO6 configurations. The intermolecular
interactions were truncated at 8.5 A for water-water interactions and at 10.5
A for solute-water interactions. The authors determined that phenol has an
average of 2.5 hydrogen bonds with water molecules, 1.0 as donor and 1.5 as
acceptor, while anisole and benzonitrile accept only 1 hydrogen bond from
water. This simulation was also one of the first to use a cyclic design
strategy to show that the calculations where in agreement. Initially benzene
was mutated into a simple analog, and these simple changes continued until
the circle was completed. The calculated relative solvation free energies for
these systems were in good agreement with the experimental results (Table
2).

Kollman and coworkers40 calculated relative solvation free energies of
benzene, anisole, and 1,2,3-trimethoxybenzene (TMB) (Figure 2) in water
and demonstrated the sensitivity of results to different charge models. The
relative solvation free energies were calculated with AMBER 3.0 and TIP3P
water model using electrostatic decoupling. The electrostatic energies were
evaluated in 21 windows with 1 ps of equilibration and 1 ps of data
collection in each window. The van der Waals energies were evaluated



Benzene Anisole 1,2,3-Trimethoxy benzene

Figure 2. Molecules considered for solvation free energy calculations.

using slow growth in both forward and backward directions in 30 ps. Only
the intermolecular interaction energies were calculated assuming that
intramolecular contributions to the free energy are similar in the gas phase
and solution. ESP fitted charges were calculated with three different basis
sets, namely 6-3IG*, 4-3IG and STO-3G. The calculated solvation free
energies for anisole to benzene and TMB to benzene mutations using ESP
fitted charges with 6-3IG*, 4-3IG and STO-3G basis sets were 0.90
kcal/mol, 3.56 kcal/mol and 1.05 kcal/mol (expt: 1.1-1.6 kcal/mol) and 4.31
kcal/mol, 11.61 kcal/mol and 2.93 kcal/mol (expt: 4.1-4.5 kcal/mol),
respectively. Therefore, 6-3IG* ESP fitted charges gave the best result.
Authors note that van der Waals contribution to the free energy difference
was rather small.

Sun et al.41 implemented bond-PMF correction in calculating relative
solvation free energies for methane, ethane, propane, N-acetylalanine N-
methylamide and valine dipeptide using AMBER 4.0. The simulations were
carried out with explicit solvent (TIP3P water) in a cubic cell at constant
pressure of 1 atm and periodic boundary conditions, a time step of 1.5 fs and
non-bonded cutoff of 8 A. The atomic partial charges, Mulliken and ESP
fitted, were calculated with 6-3IG* basis set. SHAKE constraints42 on the
perturbed bonds were applied and used an explicit potential of mean force
(PMF) like calculation to determine the contribution due to bond length
changes. This treatment led to relative solvation free energies that were
unaffected by the shrinking of the disappearing bond during perturbation.
Therefore, a bond PMF correction is applied in the presented calculations.
The perturbations involving the shrinking or growing of a methyl group,
molecular dynamics simulations were run for 180 ps. For perturbations
where only the electrostatic distribution changes (changes in charges), the
molecular dynamics simulation times were 90 ps. Two 300 ps simulations
were conducted to ensure that appropriate convergence had been obtained.
In both cases, each window consisted of 500 steps of data collection. The
calculated relative solvation free energies for the mutation of methane to
ethane and ethane to propane, were 0.16 kcal/mol (expt: -0.16 ± 0.1
kcal/mol) and 0.20 kcal/mol (expt: 0.21 kcal/mol), respectively. The



calculated free energy results for alkanes were within -0.3 kcal/mol of
experimental results and free energy difference for the two dipeptides
compared to experimental result was 1.1 ±0.1 kcal/mol. The authors show
that the larger difference in peptides is due to indirect contributions from
backbone atoms.

3.4 Solvation Free Energies of Nucleic Acid Bases and
Amino Acid Side-Chains

Elcock and Richards calculated relative solvation free energies for the
five nucleic acid bases (Figure 3) using AMBER 4.O.43 The OPLS force filed
parameter set was used to represent all non-bonded interactions. In each
case, the solute was immersed in a box of 506 TIP3P water molecules and
simulations were conducted in the NPT ensemble at 298° K and 1 atm
pressure. A time step of 2 fs was used and a 9 A cutoff was applied to all the
non-bonded interactions. The perturbations were performed over a minimum
of 21 windows, each consisting of 6 ps equilibration, 9 ps for data collection
for the adenine to guanine, uracil to thymine, and thymine to cytosine,
mutations and 20 ps equilibration 10 ps data collection for the adenine to
uracil and guanine to cytosine mutations. The relative solvation free
energies between nucleic acid bases obtained using different methods are in
good agreement (Table 2).

Adenine Guanine

Cytosine Thymine Uracil

Figure 3. Nucleic acid bases used in solvation free energy calculations.



Miller and Kollman calculated relative solvation free energies of N-
methylated nucleic acid bases using AMBER 4.1.44 All the molecular
dynamics and thermodynamic integration calculations were done with a
constant dielectric of 1 and an 8 A cutoff on non-bonded interactions. All
simulations were carried out in the NPT ensemble with periodic boundary
conditions, a temperature of 300° K, and a pressure of 1 atm. Depending on
the perturbation, 217 and 265 TIP3P water molecules were used for
solvation. The series of simulation times for most mutations was
approximately 200 ps, 400 ps, 800 ps and 1000 ps. The relative solvation
free energies for the mutation of 9-methyladenine to methane, 9-
methylguanine to methane, 1-methylcytosine to methane, 1-methyluracil to
methane, 1-methylthymine to methane, 9-methyladenine to 9-
methylguanine, 1-methylcytosine to 1-methyluracil, 1-methyluracil to 1-
methylthymine and 1-methylcytosine to 1-methylthymine (same as Figure 3
with methyl group) were 13.90 kcal/mol, 24.34 kcal/mol, 20.30 kcal/mol,
15.92 kcal/mol, 14.34 kcal/mol, -11.41 kcal/mol, 3.87 kcal/mol, 1.80
kcal/mol and 5.73 kcal/mol, respectively. This study includes application of
several different methods to compute relative solvation free energies. The
absolute solvation free energies calculated for 9-methyladenine and 1-
methylthymine are in good agreement with the experimental values (Table
2).

Relative free energies of solvation for amino acid side-chains, four
nucleic acid bases and organic molecules were calculated using FEP with
AMBER 3.O.17 The set of compounds studied showed structural
dissimilarity and differed in charges. Simulations used 400 TIP3P water
molecules at constant temperature and pressure in a box with periodic
boundary conditions and an 8.0 A non-bonded cutoff. The calculations were
done in two stages with electrostatic decoupling. The electrostatic changes
were simulated in 20 thermodynamic windows, each with 1 ps of
equilibration and 1 ps of data collection (time step: 2 fs). Changes in van der
Waals parameters were performed with slow growth in 30,000 steps at 0.001
ps time intervals. The results showed good agreement with the experimental
values (Table 2). The authors recommended electrostatic decoupling in order
to avoid overestimation of electrostatic energies.

In order to answer the questions about the effect of the local
environment, Saqi and Goodfellow45 studied the change of a polar group
(OH) to an apolar group (CH3) for a methanol to ethane mutation and a Thr
to VaI mutation in tri (Ala-Thr-Ala) and penta (Ala-Lys-Thr-Lys-Ala)
peptides. Monte Carlo simulations were carried out using BOSS with a
double wide sampling in five windows, TEP4P water model, 0.4 x 106 MC
steps of equilibration and data collection of 1 x 106 MC steps. The free
energy differences were calculated using both NVT and NPT ensembles and
better precision was obtained with NPT ensemble. The calculated free
energy difference for methanol (OH) to ethane (CH3) mutation was 8.3



kcal/mol as compared to experimental value of 6.9 kcal/mol, whereas
relative free energy differences between Thr (OH) to Ala (CH3) in tri and
penta peptides are 7.05 kcal/mol, and 6.61 kcal/mol, respectively. The
solvation free energy differences between methanol (OH) to ethane (CH3)
and Thr (OH) to Ala (CH3) in tri and penta peptides are attributed due to
local environmental effects. Kollman and coworkers18 performed methanol
to ethane, glycine to alanine and alanine to phenylalanine inter-conversions
using FEP and slow growth methods of AMBER 3.0. Calculated relative
solvation free energies for the mutation of methanol to ethane, alanine to
glycine and alanine to phenylalanine were 6.86±0.12 kcal/mol, 0.98±0.18
kcal/mol and -3.01±0.50 kcal/mol, respectively. The results were in
reasonable agreement (Table 2) with the related experimental data and
suggested that the methodology could be used in a wide range of chemical
and biochemical situations.

3.5 Solvation Free Energies between Charged Systems

Kollman and coworkers18 calculated relative solvation free energies
between ammonium(NH4+) to oxonium (OH3

+) using both slow growth and
windowing procedures of AMBER program. The simulations were run at
constant pressure (1 atm) and temperature (300° K), and with 215 TEP3P
water molecules. The accumulated change in free energy for the entire
simulations lie between -20.6 and -21.8 kcal/mol. Experimentally the
enthalphy of solvation has been estimated to be between 75 and 81 kcal/mol
for NH4

+ and approximately 100 kcal/mol for OH3
+. Thus, the AAHs is

roughly 19-25 kcal/mol, and as in the gas-phase studies the AAGs would be
expected to be about 2-3 kcal/mol less than the AAHs. The calculated values
were within the estimated experimental value. These simulations show that
both slow growth and windowing procedures do equally well.

Singh and coworkers31 examined the effect of polarization energy on
computed relative solvation free energies of ions as well. The calculated
solvation free energies with and without polarization and experimental
values for the mutations of ammonium ion to tetramethyl ammonium ion,
chloride ion to bromide ion and sodium ion to potassium ion were -23.56
kcal/mol, -29.82 kcal/mol, -31.70 kcal/mol, -1.95 kcal/mol, -3.23 kcal/mol,
-3.33 kcal/mol, -24.66 kcaymol, -20.09 kcal/mol, and -17.05 kcal/mol,
respectively. Therefore, polarization energy added a constant positive value
to the free energy change for all the transformations except for the mutation
of sodium ion to potassium ion.

Rao and Singh32 calculated relative solvation free energies for alkyl- and
tetra-alkylammonium ions using same conditions as described before for
neutral molecules (except, atomic partial charges were not scaled for ions).
The values obtained with coordinate coupling were in better agreement with



experimental results. Also, using the conditions described before for
alkanes, Rao and Singh33 calculated differences in free energies of solvation
for closed shell ions and tetra-alkylammonium ions in water, methanol and
dimethyl sulfoxide using AMBER 3.1. All the transformations involving
closed shell ions were done in 101 windows with 0.4 ps of equilibration
followed by 0.4 ps of data collection in each window with the solute-solvent
and the solvent-solvent non-bonded interactions cutoff distance of 14 A. The
nature of solvent seems to have almost negligible influence on the variation
of AG with the change in the solute size for positively charged alkali ions
and smaller tetra-alkylammonium ions. The AG of negatively charged
halides are affected by the solute size to different extents in different
solvents. The characteristic feature observed in the variation patterns of AG
for large tetra-alkylammonium ions in water is not observed in MeOH or
DMSO. Rao and Singh34 calculated relative solvation free energies for
closed shell ions and tetra-alkylammonium ions in hydrazine and carbon
tetrachloride using same conditions as described before for alkanes. For the
transformations involving closed shell ions, 101 windows were employed
with 0.4 ps of equilibration followed by 0.4 ps of data collection at each
window. The results were in good agreement with the available experimental
results. The solvation behavior in hydrazine resembled that in water for
many solutes.

3.6 Solvation Free Energies between Neutral and Charged
Systems

Using the aforementioned conditions Jorgensen and coworkers29

computed free energies of hydration between charged and neutral systems.
Two series of MC simulations were performed. A single Lennard-Jones
particle corresponding to methane was made to vanish and a chloride ion
was converted to the methane particle. The calculated and experimental free
energy difference for the mutation of chloride ion to methane were -79.3
kcal/mol and -77 kcal/mol, respectively. The study showed the utility of
statistical perturbation theory for computing absolute free energies of
solution and the quality of the underlying potential functions.

Kollman and coworkers calculated relative free energies of solvation
between neutral and charged amino acids using FEP with AMBER 3.O.17

The same set of conditions were used as those for the mutations of neutral
molecules. The alanine to lysine mutation was calculated using the two
stage approach, i.e. perturbation of alanine to neutral lysine followed by
perturbation of neutral lysine to protonated lysine. The calculated relative
solvation free energies between these molecules were in good agreement
with the experimental results (Table 2).



4. CONCLUSIONS

As we mentioned in the beginning of this chapter, solvation plays a very
crucial role in the binding of inhibitors to an enzyme. As a result several
theoretical methods have been developed and used for calculating relative
solvation free energies with explicit solvent water. These calculations
clearly indicated that convergence in the calculated solvation free energies is
a potential problem. Several papers19' 20' 25 described the length of the
simulation required to achieve satisfactory convergence as well as the effect
of size and conformational flexibility on convergence.
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Chapter 6

Tautomerism and Ionisation Studies Using Free
Energy Methods
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1. INTRODUCTION

Tautomerism refers to the inter-conversion between chemical structures
which differ in the placement of an atom or a group, most commonly a
proton (in which case it is termed prototropy). Many different types of
organic functionality can undergo tautomerism, common examples being
keto-enol, nitroso-oxime and imine-enamine.1 In all cases the equilibrium
is dynamic, with rapid inter-conversion between the various forms. Often
the equilibrium lies strongly in favour of one form or the other, with the
position of equilibrium depending upon a variety of factors including
molecular structure (e.g. stability through enhanced resonance or intra-
molecular hydrogen-bonding) and environmental effects (such as solvent
polarity, hydrogen-bonding capacity, concentration, pH, temperature etc.).

Many naturally occurring biologically active molecules are able to adopt
tautomeric forms, in particular those containing heterocyclic components.2

Most common are those of the nucleic acid bases: all of the five major bases
of DNA/RNA exist predominantly in the amino- and keto-tautomeric forms
at physiological pH. However, if the less prevalent, minor tautomer exists at
the time of replication it is possible for abnormal base-pairings to occur, i.e.
the imino form of cytosine can hydrogen bond to adenine while the hydroxy
form of guanine can hydrogen bond to thymine. Such mispairings may well
be one of the mechanisms by which mutations occur. The tautomeric form of
biologically active molecules also plays a major structural role in the binding
of molecules to receptors and active sites within proteins and enzymes, and
to the reactions that the molecules undergo within the host. It is thus useful
to be able to determine the tautomeric equilibria that potential drug
molecules may undergo.3



Many compounds of biological importance contain ionizable groups and
in particular many drugs tend to be weak acids (e.g. aspirin, pKa = 3.6) or
weak bases (e.g. amphetamine, pKa = 9.9). Within a biological system a
series of reversible equilibria are established amongst the various tissues and
fluids which compose that system. The pH of the environment will be the
predominant factor in determining the relative concentrations of the
compound in its neutral and charged forms and hence the position of the
various equilibria governing the distribution of the compound within the
system.

In terms of drug action, the ability of the functional groups within a
molecule to ionize will affect both its pharmacokinetic and
pharmacodynamic properties.4 Once the drug has been introduced into the
body both the site of absorption into the blood and the rate at which it occurs
will depend upon the ability of the drug to permeate the membranes within
the system, as will the maintenance of equilibrium concentrations within the
blood plasma itself. Crossing the membrane to tissue where action is
required and specific binding within the active-site will also depend on the
nature of the ionizable groups. Eventual elimination from the body (e.g. by
way of urine) will similarly depend on the pKa of the compound, and so the
total dosage of the administered drug can be said to be partly determined by
its acid/base properties.

Besides the affecting the absorption, transport and eventual elimination
of a drug, the pKa may also have therapeutic utility by way of differentiating
between normal and tumour cells. For example, it has been found5 that pH in
both experimental and human tumours is lower than in normal tissues, and
that even within a single tumour there is a marked heterogeneity of pH. The
transmembrane pH gradient in tumour cells would favour the uptake of weak
acids in contrast to the converse preference shown by cells in normal tissue,
and thus an agent with pKa in the required range could be made selective for
tumour regions. Thus some a priori method for the determination of the pKa

of a novel compound would prove useful in the prediction of the activity of a
proposed biologically active compound.

Whilst this Chapter is primarily concerned with the methods of
determining the free energies of tautomeric or ionisation equilibria via
computer simulation of free energy differences, many of the issues raised
relate also to the determination of other molecular properties upon which
behaviour of the molecule within the body may depend, such as the redox
potential or the partition coefficient.6 In the next section, we shall give a brief
explanation of the methods used to calculate these free energy differences -
namely the use of a thermodynamic cycle in conjunction with ab initio and
free energy perturbation (FEP) methods. This enables an explicit
representation of the solvent environment to be used. In depth descriptions
of the various simulation protocols, or the accuracy limiting factors of the
simulations and methods of validation, have not been included. These are



described elsewhere.7' 8 It is worth emphasizing, however, that the use of
computer simulation methods incorporating explicit solvent models has the
advantage over empirical or continuum approaches of giving a more
accurate description of the solvation of molecular solutes. In addition,
provided sufficient time is allowed for the simulation, all-important degrees
of freedom can be sampled. This may be crucial in determining a free energy
where multiple conformers of a molecule are possible.

In Section 3, an overview of studies published in the literature using the
methods described is then given. The first study on tautomeric systems using
the thermodynamic cycle method was made in 1987 by Cieplak et al.9 Since
then a number of systems have been studied. Many of these molecules are
known to be important for their biological activity, others are important for
their chemical natures. Far less work has been done on the free energy of
ionisation. One area that has received interest is the calculation of the acid-
base equilibrium constant, given as pKafor weak organic acids in aqueous
solution. The final section highlights the problems of the methodology using
illustrations from the published studies. In this way a modus operandi is
given for studies on systems of interest.

2. METHODS

2.1 Tautomerism

When determining the tautomeric equilibrium constant for a process
Tl(aq) ^ T2(aq), where Tl and T2 are the two tautomeric forms of the
compound, one requires the free energy change, AG(aq) = -RT In KT,
associated with this reaction. Standard simulation methods could be used to
calculate the free energy difference, using for example the perturbation
approach,

(D

incorporating a suitable windowing protocol, or alternatively a method such
as thermodynamic integration,

(2)

In either case, the Hamiltonian of the system, H(X), is made to depend on a
coupling parameter, A,, which smoothly defines a pathway between the two



tautomers, defined by X1 and X2. Issues relating to the basic simulation
methods and the choice of protocols are discussed in Chapter 2 and also by a
number of other authors.7'10

Using Equations 1 and 2 involves evaluating contributions from all terms
which arise in the force field. In practice intra-molecular terms are not
evaluated, as their parameterization is often not accurate and their values are
often large and similar for both tautomers. This leads to an overall inaccurate
value for AG(aq) as the evaluation may involve taking the difference
between two large numbers. This approximation also facilitates the use of
bond constraints via SHAKE11 for performing the simulation, without the
overhead required for the evaluation of the constraint contribution to the free
energy difference.7

In omitting the intra-molecular free energy change during the simulation
one is making the assumption that the free energy difference can be split into
identifiable contributions. This is generally not a valid assumption,7' 12 i.e.
while the overall free energy is a state function its components are not, and
are path dependent. The assumption is valid where the force-field terms are
evaluated over independent regions of phase space. In the case of
tautomerism this condition is not rigorously met, i.e. changes in intra-
molecular terms will clearly affect solute-solvent interactions (especially
rotation about torsion angles). However, where changes in intra-molecular
structure are relatively small the approximation is deemed valid.

In neglecting intra-molecular terms during the free energy simulation one
is effectively calculating the differences in hydration free energy, AGhyd
between the tautomers. Figure 1 shows how the free energy is partitioned,
with

Figure 1: Cycle for the calculation of KT



(3)

(4)

AAGhyd is evaluated by calculating the free energy difference between the
two tautomers in aqueous solution, omitting the contributions from intra-
molecular terms. This involves changing the Hamiltonian of the system from
Tl to T2 in an explicit solvent box using a suitable simulation protocol.9'13'14

Naturally there are alternative methods for determining the difference in
hydration free energy between two compounds: if the compounds are
distinct chemical species (which is not the case with tautomers) one may be
able to take the experimental value. Alternatively the hydration free energies
may be calculated using a variety of methods of differing complexity and
accuracy, e.g. empirical approaches based upon the composition of the
molecule, or reaction field methods (see Chapter 4). However, traditional
simulation methods using an explicit solvent model (see Chapter 5) are
necessary where solute-solvent bonding, in particular hydrogen-bonding, is
critical in correctly describing the solvation process.

The gas phase free energy difference, AG(g), can be calculated quantum
mechanically. The absolute energy of each molecule can be calculated using
ab initio methods. To obtain sufficient accuracy the inclusion of polarization
and diffuse basis functions is often necessary, while the method should
incorporate electron correlation (which is most commonly performed at the
MP2 level).15 The standard energy reported from an ab initio calculation is
an energy (or enthalpy) at 0° K. To correct this to a free energy at ambient
temperature one needs to determine the partition function of the molecule,
from which one may calculate the necessary correction terms.16

Contributions from rotation and translation have approximately their
classical values at room temperature, and so simply depend on the geometry
of the molecule and are straightforward to calculate. The zero-point energy
also requires calculation, while the vibrational contribution should be
calculated explicitly as it may be non-classical. This involves determining
the frequencies of the normal modes of the molecule through the calculation
of the molecular Hessian, which, depending upon the computational power
available, may be calculated either using semi-empirical or ab initio
quantum mechanics. Methods for performing these calculations are available
in standard packages, e.g. MOPAC17 and Gaussian.18

2.2 Ionisation

Given the task of calculating the pKa of an acid AH one needs to
calculate the free energy change, AG(aq), associated with the reaction



AH (aq) <=> A~ (aq) +H +(aq) (5)

with pKa = AG(aq)/2.303RT (a similar approach can be used to calculate the
basicity of a compound by considering the acidity of its conjugate acid).
This could be determined by simulating the changes AH—»A~ and nothing
-^H+ in aqueous solution, but as explained above this would result in poor
accuracy if intra-molecular terms are included. The required free energy can
be obtained from the cycle shown in Figure 2 where

Figure 2: Cycle for the calculation of absolute pKa values

(6)

As in the case of tautomerism, the difference in gas phase free energy AG(g)
can be calculated relatively accurately using high level ab initio quantum
mechanics, while the required hydration terms could in principle be obtained
from simulation of the changes AH—>A~ and nothing—>H+ in aqueous
solution, where only inter-molecular interactions are evaluated. Both of
these changes, however, would be subject to substantial error as a result of
truncating the long-range Coulombic interactions (a common procedure in
the vast majority of simulations), since there would be a disproportionate
loss in long range interaction between the neutral species and the formally
charged ion. In terms of simple electrostatics, the contribution of a given
sphere of solvent can be calculated using the continuum-based Born
equation.19 Using a typical non-bonded cutoff of 8 A one can calculate that
the hydration free energy would be underestimated by approximately 86
kJ/mol, which would thus be the order of the error involved in performing a
change where a formal charge is created or destroyed (the only way to avoid
this is to use simulation methods such as the Ewald summation, a very large



non-bonded cutoff or various augmented dielectric continuum approaches,20

all of which would significantly add to the time required to perform the
simulation). Free energies of this magnitude cannot be neglected if
reasonable differences in hydration terms are required. The term for the free
energy of hydration for a proton could be taken from the literature,21 but the
error involved in the remaining simulation is sufficient to make the
calculation of absolute pKa's infeasible.

The calculation of relative pKa's is more promising. The difference in
strength between two acids AH and BH is given by

pKn(BH) - pKa(AH) = &G(aq)/2.3Q3RT (7)

where AG(aq) is now defined in Figure 3, with

AG(fl0=AG(g)-AG^^ (8)

- AG(s) + AG(BH -* AH) + AG(A'-»]T) (9)

Once again a gas phase free energy difference is required and this can be
calculated using ab initio quantum mechanics. The required difference in
free energies of hydration can be determined from two simulations in
aqueous solution, one between charged species (A" —> B") and the other
between the neutral forms (BH-^AH). In neither of these simulations is a
formal charge created or destroyed, and thus the errors introduced through
truncation of the non-bonded interactions can be expected to be very similar
at each end of the calculation, and therefore cancel out to a large degree.

Figure 3. Cycle for the calculation of relative pKa values



3. OVERVIEW OF PUBLISHED STUDIES

3.1 Tautomerism in Simple Heterocycles

Histamine is an important hormone, responsible for many different
physiological responses. Its interaction with the H2 receptor is responsible
for acid secretion in the stomach, and blocking this action is central to the
treatment of various stomach disorders. Tautomerism has been implicated in
this interaction, and this was an important factor in the discovery of the
major drug cimetidine (Tagamet). As shown in Figure 4, the main
component is an imidazole ring. Tautomerism occurs by a proton moving
between the two ring nitrogen atoms. These are referred to here as the NlH
and N3H tautomers. The putative mechanism for binding to the H2 receptor
site is that the N3H tautomer is favoured in solution, whereas the NlH
tautomer is favoured in a non-aqueous environment (modeled by gas phase
calculations). This change in tautomer on entering the enzyme activates the
receptor.

Worth et al13 used the thermodynamic cycle method to study the simpler
variant 4-(5-) methylimidazole (Figure 4). Here the side-chain is a methyl
group, and the calculated equilibrium constant for this system is in good
agreement with the known experimental data. It is found that the free energy
difference in both phases is small, slightly favouring the N3H tautomer.

Compared to this system, the histamine flexible side-chain introduces the
complication of multiple conformers. The histamine base and monocation
have been studied by Worth et al,14'22 and by Nagy et al.23 The latter study

R=CH2CH2NH2 histamine
R-CHa 4-(5-)methylimidazoIe

1,2,3-triazole 1,2,4-triazole

3-hydroxypyrazole NlH 3-hydroxypyrazole N2H Nicotinic acid

Figure 4: Heterocycles for which the tautomeric equilibrium in aqueous solution has been
studied using free energy calculations including explicit solvent. Tautomerism occurs by
exchanging a proton between the labeled atoms.



also looked at the H2 receptor agonist (aR, PS) -a, (3-dimethylhistamine. In
the most complete study, Nagy et al used Monte-Carlo (MC)-FEP to
calculate the free energy difference not only for the tautomerism, but also
between the various conformers. In both phases, mixtures of all species
occur. The details of these mixtures however are very different for the base
and monocation. For histamine base in the gas phase, the gauche-NlH
tautomer dominates, due to the intra-molecular hydrogen bond formed
between the side-chain amino group and the NlH proton. In solution this
interaction is outweighed by interaction with the solvent, and the trans-N3H
species accounts for 83% of the population. Only 5% of the population is of
NIH tautomer s.

For the monocation in the gas phase, the gauche-N3H species dominates,
again due to intra-molecular hydrogen bonding between the side-chain
amino group and the ring NI atom. In this case, however, this bonding is
strong enough to be retained in solution, and this species provides 64% of
the mixture in the aqueous phase. The NlH tautomer then provides 34% of
the mixture, all in the trans conformer. The theoretical studies show that the
NlH tautomer is unfavoured under all conditions. This is in contradiction to
the Weinstein model for interaction with the H2 receptor. Nagy et al discuss
possible alternative mechanisms in the light of the calculations.

The tautomeric equilibria of 1,2,3- and 1,2,4-triazoles have also been
studied using the thermodynamic cycle method.24 See Figure 4 for the
numbering used for these molecules. For 1,2,3-triazole in the gas phase only
the N2H tautomer is experimentally found, while in aqueous solution both
tautomers are present, with the ratio of N2H:N1H being around 2:1. For
1,2,4-triazole, the NlH tautomer is overwhelmingly the more stable in both
phases, with less than 1% N4H tautomer being present. Both these results
are obtained in the calculations, although the ratio of tautomers in the 1,2,3-
triazole case is found to be much larger than in experiment, with a value of
10:1. In the case of 3-hydroxypyrazole there is however a qualitative
disagreement between experiment and theory.25 Four tautomeric species are
possible. As shown in Figure 4, these can be thought of as a keto-enol
tautomerisation with NlH, and a keto-imino tautomerism with N2H.

Although the tautomeric ratios of the 4 species have not been measured
directly, it is known that in aqueous solution the keto-N2H form dominates,
while the keto-NlH form is only detectable in non-polar solvents. An
analysis of experimental data concluded that in aqueous solution the stability
(lowest free energy) is in the order keto-N2H > imino-N2H > enol-NlH >
keto-NlH. In the gas phase, calculations predict that the keto-N2H form is
the least stable. While solvation is found to favour this species, which is the
most polar, this stabilisation is not enough to reverse the order of stability. It
is thus clearly predicted that the keto-NlH tautomer is the most stable in



both the gas phase and aqueous solution. The reason for this discrepancy is
still to be resolved.

Tautomerism is also found to play a role in the partitioning equilibria
between aqueous and organic solvents for ampholytes. Nicotinic acid, for
example, can exist in a neutral or a zwitterionic form. The latter is shown in
Figure 4. It is often assumed that only the neutral form is the partitioning
tautomer in such systems, even when the zwitterionic form dominates in
aqueous solution. Nagy and Takacs-Novak26 have used the thermodynamic
cycle method to study this hypothesis, calculating the equilibrium constant
for the neutral and zwitterionic forms of nicotinic acid and isonicotinic acid.
To relate the results to partitioning a range of solvents were used: water,
methanol, THF, and water/methanol and water / THF mixtures. It is found
that in the gas phase the neutral form dominates by around 147 kJ/mol.
Solvation then favours the zwitterionic form in all media. The size of this
stabilization however varies a lot with the polarity of the solvent, and the
zwitterionic form dominates when the medium contains more than 60 %
water. In THF only the neutral form is found. Thus in this case only the
neutral form partitions from water to a pure organic solvent. The results in
general agree with experimental values, but the population of zwitterionic
forms are underestimated in the solvent mixtures.

3.2 Tautomerism in DNA Bases and Related Compounds

As mentioned in the Introduction, tautomerism plays a major role in the
chemistry of DNA and RNA bases. Colominas et al27 have made an
extensive study of the tautomeric equilibria of guanine and cytosine (see
Figure 5). The importance of protonation on the equilibria was also studied.
To begin with all possible tautomers were considered. The least stable
species were then screened out using increasingly accurate quantum
chemical calculations with a SCRF solvent term. FEP calculations were then
used for the most important equilibria. In the neutral cytosine molecule, four
important tautomers are based on the amine form shown in Figure 5 as
cytosine I. Another 2 tautomers are based on the imino form shown in the
Figure 5 as cytosine II. In the gas phase, an admixture of forms is predicted,
with the depicted cytosine I structure the most stable. In solution, all
tautomers are destabilised with respect to this tautomer, which then
dominates by about 20 kJ/mol.

For neutral guanine two stable tautomers are based on the keto form,
labeled guanine I in Figure 5. The remaining three stable structures are based
on the hydroxy form, guanine II. In the gas phase, guanine is found in a
mixture dominated by the keto forms. In solution, the relative stability of the



cytosine I cytosine II 7-aminopyrazolopyrimidine

Figure 5. DNA bases and related molecules for which the tautomeric equilibrium in aqueous
solution has been studied using free energy calculations including explicit solvent.
Tautomerism occurs by exchanging a proton between the numbered atoms.

keto forms increases, with the N9H tautomer dominating. Experiments have
determined that only the keto form is present, in agreement with these
findings. Which of the forms is the more stable has however not been
measured.

The equilibrium between the amino and imino forms of cytosine has also
been studied by Cieplak et al.9 Their results agree with those of Colominas et
al. In this study, the related 2-oxopyridine and 2-oxopyrimidine molecules
were also treated. In both these molecules the amine group of cytosine is not
present, and in oxopyridine only one ring nitrogen is present. This enabled
the keto-imino tautomerism to be studied in isolation. In both cases the
imino form dominates in the gas phase, but the keto form is stabilised by
solvation, and dominates in solution, in agreement with experiment.

The molecule 7-aminopyrazolopyrimidine is related to the DNA base
adenine. It is the base attached to ribose in formycin A, which is believed to
have potential therapeutic value. It is also shown in Figure 5. There is a
paradox in this system. This molecule is deactivated by the enzyme
adenosine deaminase (ADA). In solution the N7H tautomer predominates.
This structure however inhibits ADA, and this tautomer of formycin A
would not be deactivated by the enzyme.

Orozco and Luque28 studied the equilibrium between these tautomers.
Protonated species were also considered. In the gas phase, it was found that
in the neutral molecule the N8H tautomer dominates by around 4 kJ/mol. In
solution, however, the N7H tautomer is more populous. This change in

Guaninc I Guanine II



population with change in environment is thus able to explain the
experimental observations.

3.3 Tautomerism in Other Systems

Reddy et al29 studied the molecule N6,N6-dimethyl-2,6-diaminobenz[cd]-
indole, which is shown in Figure 6. The aim was to assess its suitability as
an inhibitor of thymidylate synthase, an enzyme which is important in DNA
biosynthesis. Three structures were investigated: NlH, which is the amine
form depicted, and N2H, the imine form, in anti- and syn-conformations, i.e.
with the proton on NI away from or towards the N2 proton, respectively. In
the gas phase it was found that the order of stability is NlH > anti-N2H >
syn-N2H, in a ratio of 73.1: 20.3: 6.6. Solvation then further favours the
NlH form, and the ratios in solution are calculated to be 98.5: 0.5: 1.0.
Unfortunately, the syn-N2H form is likely to be the conformation that binds
most strongly to the enzyme, and so the calculations indicate that this
molecule is unlikely to be a suitable inhibitor.

Another polycyclic molecule that has been studied is pterin.30This is the
major component of the folate molecule, and is shown in Figure 6. One of
the reasons for interest in this molecule is that the enzyme dihydrofolate
reductase (DHFR) is a target of several important drugs, including the anti-
cancer drug methotrexate. The NlH and N3H tautomers of pterin are likely
to bind in different orientations, due to differing hydrogen-bonding
capabilities. Calculations show that in the gas phase, the N3H tautomer
predominates. In solution, however, solvation strongly favours the NlH
form, and one molecule in seven could be this tautomer. Engineering this

Pterin

Apigeninidin

N6,NG-dimethyl-
2,6,-diaminobenz[cd]indole

Figure 6. Polycyclic molecules for which the tautomeric equilibrium in aqueous solution has
been studied using free energy calculations including explicit solvent. Tautomerism occurs by
exchanging a proton between the labeled atoms.



ring could thus lead to either tautomer being dominant, with consequences
for its activity in the enzyme.

Apegininidin is one of the most common anthacyanidins, which are
widely found in nature, and are responsible for the colouring in many
flowers. This molecule is also thought to have pharmacological activity. As
shown in Figure 6, it has three acidic oxygen atoms, and can therefore be
found in a range of tautomers. Rastelli et al31 looked at the mono-anion,
which has three tautomers. In the gas phase, the tautomer with the proton on
O7 is found to be the most stable. In solution, however, the tautomer with the
proton on O4- is strongly stabilised, by over 85 kJ/mol solvation free energy
with respect to the other tautomers. As a result this tautomer, which is highly
unstable in the gas phase, is found to dominate the equilibrium in an aqueous
environment.

Finally, Nagaoka et al have made a very interesting study applying MC-
FEP techniques to the vinyl alcohol - acetaldehyde tautomerism.32 Using a
cluster of the solute with three water molecules as a "solute", the free energy
for the tautomerism was calculated along different reaction pathways, which
had been previously found by ab initio calculations including an SCRF
solvation term. They were able to deduce that a two-step mechanism is
favoured over a concerted one for the transfer of the proton.

3.4 Very Weak Acid - Base Ionisation

The concept of acid and base is fundamental to the understanding of
reactivity in organic chemistry. For this reason there is great interest in the
study of extremely weak acids in aqueous solution. Unfortunately it is
impossible to directly measure the acid-base equilibrium constant in water if
pKa > 17. In two papers Jorgensen et al33' 34 applied the theoretical
methodology described above in Section 2.2, using MC-FEP, to the weak
acids CH3SH, CH3OH, CH3CN, CH3NH2, and CH3CH3. In the gas phase, the
order of acidity is as listed: methanethiol is the most acidic, and ethane the
least, all with free energy values of a few hundred kJ/mol. The final pKa

values, calculated using experimental values for CH3SH and CH3OH, agree
well with the experimental values. The order of decreasing acidity in
solution is CH3OH > CH3SH > CH3CN > CH3NH2 > CH3CH3. Of particular
interest is the value of pKa =52 + 2 for ethane. This lies in the middle of the
measured values, which span a range of 42 - 60. The simulations were then
analysed to provide information about the solvent structure around these rare
species.

In a different study on acidity, King et al35 studied the amine series NH3,
CH3NH2, (CH3)2NH, and (CH3)3N. The experimental values order the
amines CH3NH2 > (CH3)2NH > NH3 > (CH3)3N, with trimethylamine known
to be a very weak acid. The accuracy of the calculations is found to be



reasonable between homologues, i.e. calculating the pKa for a molecule
relative to its nearest neighbour in the series. Calculating the values relative

to the NH3 / NH 4 system, while able to produce pKa values to within 2.5
units (14.3 kJ/mol) of the experimental values, failed to reproduce the
correct order. It was concluded that the method is not sensitive enough for
the fine differences in this series.

4. MODUS OPERANDI

4.1 Gas Phase Free Energy

The energy at 0° K is obtained by gas phase ab initio, or semi-empirical
calculations. It is the difference between two large numbers and it is thus
important to check that the basis set used is sufficient. If it is not large
enough, qualitatively wrong values may result. The importance of electron
correlation should also be checked. For example, in the case of 4-(5-)
methylimidazole,13 the AE(g) results vary from +4.22 kJ/mol to -0.92 kJ/mol
on moving from an RHF/STO-3G method to RHF/6-31G**. Electron
correlation is also found to play a significant role: MP2/6-31G** further
changing the value to -1.37 kJ/mol. Thus the small STO-3G basis set is
found to incorrectly predict that the NlH tautomer is more stable than the
N3H tautomer. This pattern is generally found in the tautomeric systems
studied. The delocalised nature of the systems, and the fine balance of
energetics in the systems means that large basis sets are needed, and electron
correlation is often important. In general at least a 6-3IG* basis set is
required.

Unfortunately, semi-empirical methods often produce poor results. While
they may be qualitatively correct, they are often quantitatively inaccurate.
Density functional methods have rarely been used in these calculations.
Colominas et al in their study of DNA base tautomerism concluded,
however, that the "B3LYP-DFT formalism seems less than adequate for the
study of tautomerism in heterocycles."27 The energy difference must then be
corrected to a free energy at 298° K, AG (g, 298° K). Calculating the
partition functions using a harmonic analysis is a convenient way to do this.
As semi-empirical methods are good at calculating frequencies for many
systems, it is generally found that either semi-empirical or full ab initio
calculations produce similar values for the correction. In most cases this is of
the order of 1 kJ/mol. Despite being small, the correction may be important.
This is especially likely when the species under study differ in the number of
bonds, or vary markedly in rigidity. For example, in the histamine system
the intra-molecular interaction in the gauche forms makes these conformers



more rigid than the trans forms. This is reflected in the partition functions,
which add terms to the free energy differences very favourable to the trans
conformers.14 The N6,N6-dimethyl-2,6-diaminobenz[cd]indole system
provide an example of how many small terms must be added together. The
free energy difference between the NlH and anti-N2H forms has the
following components (in kJ/mol)29:

AE(O) HF/6-31G** 6.195
AE(O) MP2 correction -7.196
AEZPE(0) Zero-point energy -1.787
AEvib(0) vibrational enthalpy 0.745
TAS Entropy at 298° K -1.134

Total AG(g, 298° K) -3.177

Note that here the electron correlation is critical. Such a re-ordering of
stabilities on the addition of electron correlation is also found in the studies
on guanine and cytosine by Colominas et al, and in the study on 7-
aminopyrazolopyrimidine.

4.2 Force-Field Parameters

To make an accurate FEP calculation, a good description of the system is
required. This means that the parameters for the chosen force field must
reproduce the dynamic behaviour of both species correctly. A realistic
description of the environment, e.g. size of water box, and the treatment of
the solute-solvent interaction energy is also required. The majority of the
parameters can usually be taken from the standard atom types of a force
field. The electrostatic description of the species at both ends of the
perturbation is, however, the key to a good simulation of many systems. This
is also the part that usually requires tailoring to the system of interest. Most
force fields require atom centered charges obtained by fitting to the
molecular electrostatic potential (MEP), usually over the van der Waals
surface. Most authors in the studies discussed above used RHF/6-31G or
higher methods to obtain the MEP.

For consistency, however, the same method should be used to derive the
charges that was used to obtain the original force field parameters. For
example, the standard charges in many force- fields (e.g. AMBER)36'37 were
obtained using a STO-3G basis set. The use of a larger basis set often leads
to a higher dipole moment, and more polar charges are obtained. These
charges are then not consistent with the other non-bonded parameters.
Studies on quinone molecules38 and GDP / GTP,39 support this fact, and



show that incorrect dynamics can result from using 6-3IG* derived charges.
Simulations on DNA segments using 6-3IG* charges40 are also found to be
questionable, with B-DNA transforming into the less stable A-DNA.41 This
does not happen using the original STO-3G derived charges. To make use of
the better quality description afforded by a large basis set, and yet retain the
relevant magnitude of the charges required by the force fields, use can be
made of linear scaling factors that have been derived.38' 42 For example 6-
3IG* derived charges are on average a factor of 1.15 larger than the
comparable STO-3G derived charges.

To the best of our knowledge the sensitivity of FEP calculations to this
overestimation of electrostatic interaction has received little attention. Cox et
a!24did use scaled 6-3IG* charges in their successful treatment of the 1,2,3-
and 1,2,4-triazole tautomer equilibria, but no comparison was made with
unsealed charges. This factor could however be of crucial importance in
calculation of tautomeric equilibria, where fine differences are important.

4.3 Long-Range Forces

The treatment of non-bonded forces is a standard problem in MD and
MC simulations. A non-bonded cut-off is used, treating all interactions
within a certain distance, and assuming that the ignored contributions are
unimportant both for the energetics and dynamics of the system. The
problems that this introduces are well documented in the literature, and will
not be discussed here. Usually it is assumed that the problems of using a
cutoff are small for FEP simulations. The reason for this is that one is
calculating the difference between two similar molecules. The long forces
should thus cancel, and the ignored contribution is not important. Worth and
Richards14 tested the effect of the long-range forces on the calculated AAGhya
for the histamine monocation. First, the cut-off was systematically changed
from 8 A - 11 A. Over this range the calculated energies varied
insignificantly.

The long-range coulombic forces were then treated with a reaction field
correction, calculating the reaction field using the image point charge model
of Friedman.43 Here, the reaction field at a charge is modeled by an image
charge, the strength and position of which are given by a simple relationship
to the charge in question. This scheme is remarkably simple to implement,
and the long-range interactions are reduced to a few coulombic pair terms.

In the case of histamine, inclusion of this reaction field correction was
found to change the result by almost 4 kJ/mol. Unfortunately, the highly
sensitive nature of the histamine monocation results to protocol and
parameters used meant that no definite conclusion could be drawn about the
importance of long-range forces in these calculations. It does however
appear that they do play a role. The correct treatment of long-range forces is



more crucial in the study of nicotinic acid tautomers, were the equilibrium is
between a neutral molecule and a zwitterion. Nagy and Takacs-Novak26 used
an Onsager reaction field to correct for the solvation term from solvent
outside the cutoff range. This correction was found to be of the order of 1-4
kJ/mol. The results for this system were also found to be very sensitive to
the charges used.

4.4 Correct and Sufficient Sampling

One of the major practical problems in an FEP simulation is to know
whether the sampling is sufficient to represent the relevant ensemble of
solute and solvent. Even if the parameters are reasonable, and the long-range
forces are insignificant, incorrect or insufficient sampling may lead to
spurious results. In all the studies outlined here, the windowing FEP
methodology was used. At the start of each window it is necessary to
equilibrate the system to the relevant system parameters. If this is not done,
the sampling in the window will be dominated by the ensemble for the
system in the previous window. This will be termed the problem of correct
sampling. After equilibration, enough data collection steps must then be
made to sample all the important regions of phase space for the ensemble.
This will be termed the problem of sufficient sampling.

The original tautomeric study of Cieplak et al9 used a protocol in which 1
ps of equilibration followed by 1 ps of data collection at each value of X. It is
now generally accepted that this is not long enough for good results. A
systematic study of the effects of the windowing protocol used is given in
the study on histamine monocation by Worth and Richards.14 They found
that for this system, at least 4 ps of equilibration, and 4 ps of data collection
are required for stable, converged results. The amount of equilibration
required between windows depends on the time required for solvent
relaxation to the new configuration. Thus if the change in perturbation
parameter used between windows, AX, results in a large perturbation to the
system more equilibration is required than if a small change is made.

This study also shows that care has to be taken in treating a
conformationally flexible system with MD. The simulation is best made so
that a transformation takes place between two distinct species (conformer or
tautomer). If a mixture of conformers must be sampled, very long
simulations will be needed for good results. The simulations on histamine
were always started in the trans conformation. For the histamine base this
gave good results as the trans conformers dominate. In the case of histamine
monocation, however, the gauche N3H conformer is the most important and
this species was never sampled during the simulations, resulting in poor
agreement with experiment.



Differences between the calculations on organic amines in aqueous
solution by King et al35 and Rao and Singh44 show the importance for the
sampling of coordinate coupling. In coordinate coupling the internal
coordinates of the evolving atoms are also changed at each window, i.e. they
are coupled to the perturbation parameter, X. This prevents what are known
as "end point catastrophies": the production of spurious energy terms due to
the sudden appearance or disappearance of a charged group from a solvent.
The results of Rao and Singh for the series of interest (see Sec. 3.4) have an
r.m.s deviation from experimental results of about 5 kJ/mol. Those of King
et al, which did not use coordinate coupling, have an r.m.s. deviation of 10
kJ/mol.

4.5 Need for Explicit Solvent

As a final point we shall briefly examine the need for an explicit
representation of the solvent in the calculation of AAGhyd- In cases where the
differences in solvation free energy is dominated by the differences in dipole
moment, a continuum model solvent should be able to give a good estimate
of this value. In cases where the explicit bonding to the environment, or
solvent entropy effects play a role, explicit solvent is required. For example,
the free energy of solvation of N6N6-dimethyl-2,6-diaminobenz[cd]indole29

is found to be dominated by the hydrogen-bonding enthalpy. It is unlikely
that this situation can be treated correctly by a continuum solvent model.

The most common approach to solvation studies using an implicit solvent
is to add a self-consistent reaction field (SCRF) term to an ab initio (or semi-
empirical) calculation. One of the problems with SCRF methods is the
number of different possible approaches. Orozco and Luque28and Colominas
et al27 found that 6-3IG* ab initio calculations with the polarizable
continuum model (PCM) method of Miertius, Scrocco, and Tomasi (referred
to in these papers as the MST method)45 gave results in reasonable
agreement with the MD-FEP results, but the AMl-AMSOL method differed
by a number of kJ/mol, and sometimes gave qualitatively wrong results.

Parchment et al25 also found reasonable agreement between the PCM and
MD-FEP methods. Simpler SCRF approaches however differ widely. For
example spherical cavity ab initio SCRF calculations predict a solvation free
energy of the keto-N2H tautomer of 3-hydroxypyrole (see Sec. 3.1) of -93.5
kJ/mol in comparison to the PCM and FEP values of -9.0 kJ/mol and -12.5
kJ/mol respectively.



5. CONCLUSIONS

For an understanding of many systems involved in biochemistry it is
important to know details of their tautomeric and ionic equilibria. For
example, moving a molecule from aqueous solution to a polar environment
inside a receptor may result in a different tautomer dominating the
equilibrium, with consequences for the activity. In this chapter we have
outlined how theoretical calculations can be used to study these systems,
with the all important solvent environment treated explicitly.

In recent years the FEP method has fallen into disuse. However, as the
studies outlined above show, in many cases the results obtained are in good
agreement with experimental measurements. In these cases new information
may be obtained, which may be difficult or even impossible to measure.
Examples of this are the relative ratios of conformers in the histamine
system, a detailed breakdown of the tautomers present in the guanine or
cystine systems, or the acidity strengths of organic molecules such as ethane
in water. In addition to this thermodynamic data, the simulations then also
provide detailed information on the solvation of the species of interest.

Care must however be taken with the method. The final value is a sum of
many, often small, contributions. Errors in these values can quickly lead to
qualitatively incorrect results. The gas phase energy is furthermore the
difference of two large numbers, and the ab initio calculations must therefore
be of sufficient accuracy. The importance of zero-point energy and other
thermodynamic properties must also be checked.

Sources of errors in the solution phase dynamics include the usual
sources of errors in simulations using empirical force fields. Correct
parametrisation is of course essential, and, as always, the description of the
electrostatic forces is a particular problem. In addition to these standard
problems, FEP requires carefully converged simulations, i.e. correct and
sufficient sampling of the relevant phase space must be made. Present
computational resources are such that these calculations are no longer a
difficult task. It is perhaps time that some of these old problems be
reevaluated, and new systems examined.
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Chapter 7

Free Energy Calculations on Enzyme-Inhibitor
Complexes: Studies of Thermolysin and Rhizopus
Pepsin

B. Govinda Rao
Vertex Pharmaceuticals, Inc., Cambridge, MA 02139

I. INTRODUCTION

Thermolysin and rhizopus pepsin were used as model targets for
designing drugs against hypertension. Thermolysin is a zinc endopeptidase
and rhizopus pepsin is an aspartic proteinase. These two enzymes are not
involved in any human physiological pathway, but are homologous to
angiotensin-converting enzyme (ACE) and renin of the renin-angiotensin
cascade implicated in hypertension, respectively. As crystal structure of
ACE is not available, the extensive structural information on inhibitor
complexes of thermolysin was utilized1 to design ACE inhibitors, many of
which are popular high blood pressure drugs on the market now. The crystal
structure of renin2 was reported in late 1980s, but the coordinates were not
available for some time. Therefore, the crystal structures of three
homologous enzymes, rhizopus pepsin, penicillopepsin and endothiapepsin
or homology models based on these three crystal structures were utilized for
designing many renin inhibitors.3 Because of this importance, these enzymes
were among the first few to be extensively investigated both structurally and
enzymatically during 1980s. The resulting information served as basis for
many successful applications of modern computational methods.4 This
chapter will discuss the first few free energy simulation studies on these two
enzymes.



2. THERMOLYSIN

Several phosphorous containing substrate analogs of thermolysin act as
potent inhibitors. For example, Cbz-GlyP-(NH)-Leu-Leu, a tripeptide analog
that has phosphoramidate (-PO2NH-) group in place of the scissile peptide
bond (-CONH-) between GIy and Leu, binds5 to thermolysin with Ki of 9.1
nM. When the NH group of the phosphoramidate is replaced with O, the Ki
increases5 by about 1000-fold to 900 nM. It is very interesting that such a
small change leads to a very large difference in binding. The crystal
structure of the phosphonamide inhibitor in complex with thermolysin was
available,6 but not the structure of phosphonate ester analog.

2.1 Mutation of Phosphoramidate Inhibitor

Kollman's group7 found it to be a perfect test case for applying free
energy perturbation method to understand the binding difference between
these two thermolysin inhibitors. A thermodynamic cycle approach
(Chapter 2) was used to calculate binding free energy difference between the
two inhibitors which requires perturbation of the first inhibitor to the second
in solution phase and in complex with the enzyme to obtain AGaq and AGCOm,
respectively. The binding free energy difference of the two inhibitors is
calculated as AAGbmd = AGCOm - AGaq. In this study, AMBER program was
utilized to perturb the NH group of the phosphoramidate inhibitor into O to

Figure L Ribbon diagram of thermolysin complexed the inhibitor Cbz-GlyP-NH-Leu-Leu
(stick) and Zn (sphere) in the active site (PDB code:5TMN).



form a phosphonate ester analog using 20 windows with 1 ps of equilibration
and 1 ps of data collection at each window. They calculated AAGbind to be
4.1 kcal/mol from AGcom = 7.64 kcal/mol and AGaq = 3.44 kcal/mol. The
calculated result is in excellent agreement with the experimental binding
difference of 4.2 kcal/mol. Based on the X-ray structure6 and the results of
the calculations, it was concluded that the phosphoramidate exhibited higher
affinity in the complex than the phosphonate ester because the NH of the
phosphoramidate formed a hydrogen bond to the carbonyl of Alall3
whereas the phosphonate ester oxygen produced an unfavorable electrostatic
interaction.

Subsequently, the same group extended these calculations on thermolysin
inhibitors to test the effect of different force field parameters on calculated
results and to predict the binding constant of an untested inhibitor.8 The new
inhibitor, yet to be synthesized, had a CH2 group instead of the NH of the
phosphonamide inhibitor. The NH to O perturbation was re-examined by
using a new set of atomic charges and a larger C-P-X bond angle (92° to
96°) derived from higher level geometry optimizations (4-31G). In addition,
the ionic states of the two active-site residues were modified, namely the
GIu 143 side-chain was treated as neutral and the His231 side-chain had
positively charged imidazolium ion. In this case, the perturbation was
conducted over 10 windows for a total simulation time of 17.6 ps. A short
simulation time was chosen since longer times resulted in more distortion of
the active-site residues. These changes led to a significant increase in
AAGbind (5.9 vs. 4.2 kcal/mol). The difference was attributed to the new
charge sets, which was supported by conducting a thermodynamic cycle in
which the new charges were converted to the old charges. A second
calculation using a modified force field parameter for the torsion
representing the neutral GIu 143 side chain (X-C-O-H) led to a value of 3.3
kcal/mol.

The perturbation converting the NH to a CH2 was calculated in a similar
manner and in advance of inhibitor synthesis. In this case, the AGaq and
AGcom were -2.4 ± 0.28 and -2.72 ± 0.84 kcal/mol, respectively, which
predicted a AAGbmd to be -0.3 kcal/mol. This result is in close agreement
with the experimental result of. -0.1 kcal/mol, determined after the
prediction. Since, like the phosphonate ester, the phosphinate lacks the
hydrogen bond to the carbonyl of Alall3, it should be less potent than the
phosphanamide inhibitor. However, it is more potent than the phosphonate
ester due to more favorable desolvation (AGsoi = -2.4 ± 0.3) and reduced
electrostatic repulsion.

These studies showed, for the first time, the usefulness of free energy
simulation methods to understand enzyme-inhibitor interactions and
demonstrated the predictive power of this method. Furthermore, these



studies showed that the use of less accurate force field parameters and partial
charges could have a significant effect on results.

3. RHIZOPUS PEPSIN

Rhizopus pepsin is an aspartic proteinase, belonging to an important
class of proteolytic enzymes.9 Several of aspartic proteinases are therapeutic
targets for drug design. In particular, human renin, HFV-I proteinase, and
most recently BACE (Beta-site APP-Cleaving Enzyme) are targeted for
developing drugs against hypertension, AIDS, and Alzheimer's disease,
respectively. Structures of these enzymes and their inhibitor complexes
have been determined at high resolution.2' 10~12 A large number of inhibitors
have been designed which bind to these enzymes at very low concentrations
and their mode of inhibition has also been studied. However, at the time of
first free energy perturbation study on aspartic proteinase by Rao and
Singh,13 several questions remained unanswered regarding (1) the nature of
the acidity of the active site Asp dyad of aspartic proteinases and (2) the
nature of the enzyme inhibition by tight binding inhibitors like pepstatin.
Rao and Singh13 investigated rhizopus pepsin - pepstatin system to address
some of these questions.

3.1 Acidity of the Active Site

Aspartic proteinases have two catalytically important aspartic acid
residues (Asp35 and Asp218 in rhizopus pepsin) at the center of the active
site cleft. The pH activity profiles of pepsin catalyzed hydrolysis suggest
pKa values of 1.2 and 4.7 for the two Asp residues. In rhizopus pepsin the
low pKa is usually attributed to Asp35 and the high pKa is assigned to
Asp218 based on the reactions of these groups with DAN (diazo-DL-
norleucine methyl ester) and EPNP (l,2-epoxy-3-(p-nitrophenoxy)propane).
Structural studies10 show that the center of the enzyme's active site is fairly
rigid and that the two-carboxylate groups of the Asp dyad at this center are
held in almost a plane due to intricate hydrogen bonding from the
neighboring residues. In rhizopus pepsin,14' 15 the two-carboxyl oxygens of
Asp35 make hydrogen bonds with HN of Gly37 and OG of Ser38. Similarly,
the two-carboxyl oxygens of Asp218 make hydrogen bonds with HN of
GIy220 and OGl of Thr221. A tightly bound water molecule found close to
the Asp dyad makes hydrogen bonds with all the four-carboxyl oxygens of
the two Asp residues. Further, two additional water molecules are found to
be making hydrogen bonds with the two outer oxygens of the Asp dyad,
respectively. Similar arrangements around the two Asp residues are also
observed in the crystal structures of penicillinopepsin,16 endothiapepsin17



Figure 2. A ribbon diagram of rhizopus pepsin (PDB code: 5APR). The catalytically
important Asp dyad (Asp218 and Asp35) side-chains are shown in stick diagrams. The p-hair
pin flap that covers the active site cleft is located in the bottom of the diagram.

and human renin.2 Even though the lower pKa is assigned to Asp35 based on
chemical studies, the structural data was initially interpreted16 to suggest that
the negative charge is associated with Asp218. On the other hand, Pearl and
Blundell17 pointed out that the environments of the two Asp residues in
endothiapepsin are related by a local two fold axis. Therefore, the hydrogen
is expected to occupy positions closer to the two Asp residues for equal
times like in a dicarboxylic acid. The abnormal pKa values of the Asp dyad
resemble the values reported for dicarboxylic acids. Experimental
determination of actual location of hydrogen atoms, which is possible by
neutron diffraction, has not been reported for any of the aspartic proteinases.
Free energy simulations were used13 to get important insight into the
energetics of the active site, in addition to locating the energetically
favorable hydrogen atom positions.

3.2 Mutation of the Proton Position

For calculating the free energy difference between the two states of the
enzyme with protonation of Asp35 or Asp218, the hydrogen position from
one Asp to the other Asp is perturbed through an intermediate state by the
free energy perturbation method. All calculations were carried out by the
AMBER and QUEST programs. The intermediate state was obtained from



the gas phase calculations on acetic acid - acetate complex. The partial
charges for all atom models of the two Asp residues at different proton
positions were obtained from ab initio calculations on the optimized
structures of acetic acid - acetate complex. The electrostatic potential
method was used for calculation of charges at the level of 6-3IG* basis set.
For mutation of the proton position from one Asp to the intermediate
position between the two Asp residues, 11 or 25 windows were used with
1.0 ps of equilibration followed by 1.0 ps of data collection at each window.
In the next run, the proton was transferred from the intermediate position to
the inner oxygen of the second Asp residue using the same number of
windows. This process was repeated for the reverse direction as well. In a
second set of simulations, an ammonium ion was placed near the Asp dyad
in the active site and the proton position was mutated in the forward and
backward directions. The same process was repeated for a third set of
simulations, wherein a pepstatin molecule was included in the active site
instead of an ammonium ion.

The results of the geometry optimization studies on the model systems in
the gas phase showed that the geometry observed for the carboxylates of the
two active site Asp residues was not the most stable configuration. The two
inner oxygens preferred to be at a distance of about 2.5 to 2.6 A in the
absence of the enzyme environment rather than 2.9 A observed in the crystal
structure. Moreover, the barrier to proton transfer in this model system was
calculated to be about 0.8 kcal/mol with inter oxygen distance at about 2.5 A
and it is about 15 kcal/mol if the inter oxygen distance is fixed at 2.9 A. The
energy of the acetic acid - acetate complex was not only sensitive to the
change in the distance between the inner oxygens but also to changes in the
relative orientations of the two carboxylates. It was also found that the water
molecule near the complex, which makes strong hydrogen bond with the
acetate ion did not affect the relative energies of the complex with different
proton positions. The calculated ab initio energies for the Asp dyad inside
the enzyme are higher than that in the gas phase. However, the contributions
of the surroundings lower the energy substantially in each case. It is also
interesting to note that the total energies of the dyad inside the enzyme
complexed with pepstatin are lower when the distance between the two inner
oxygens is smaller. These results, therefore, suggest that the larger distance
between the two inner oxygens observed in the crystal structure is not
necessarily the lowest energy configuration of the enzyme active site. It may
be of interest here to note that this distance is 2.6 A in HIV-I proteinase.18

The change in the free energy with the mutation of the proton position is
about 7.0 kcal/mol, in the presence of an ammonium ion, suggesting that the
initial state is stable compared to the final state. In the presence of pepstatin
the results suggest a barrier of about 1.0 kcal/mol for the transfer of proton
from one site to the other site. This low energy barrier should allow the
proton to shuttle between the two sites. The same barrier of about 1.0



kcal/mol is observed for the gas phase optimization calculations of the acetic
acid - acetate complex in planar configuration.

From this study, it was concluded that: (1) there is little preference for
one Asp to be ionized over the other inside the active site complexed with a
neutral ligand; (2) water molecule in the active site does not alter the relative
energies of the two states of the dyad in the gas phase; (3) the neighboring
residues affect the energies of the two states of the dyad inside the enzyme;
and (4) the energies of the two states are very sensitive to changes in their
inter oxygen distances. In addition to these important conclusions, the study
showed that the barrier to proton transfer could be higher if the distance
between the two oxygens is close to 2.9 A and is much less (about 1.0
kcal/mol) if the distance is close to 2.5 A. It is possible that the carboxylates
of the two Asp residues in the active site assume the configuration found in
the gas phase to facilitate proton transfer due to the dynamic nature of the
protein. It is also possible that proton shuttles between the two oxygens by
quantum mechanical tunneling,19 which can not be addressed by free energy
simulation studies.

3.3 Pepstatin Binding

Pepstatin (Iva-Val-Val-Sta-Ala-Sta) containing the unusual amino acid,
statine [4(S)-airtino-3(S)-hydroxy-6-methyl heptanoic acid] is a tight-binding
inhibitor of aspartic proteinases.20 The structure of pepstatin is shown in
Figure 3. It binds to the active site of porcine pepsin with unusually low
dissociation constant of 45.7 pM.21 Since pepstatin is a tight binding
inhibitor of most aspartic proteinases and the 3(S)-hydroxyl group on the
central statine is structurally related to a hydroxyl group in the tetrahedral
intermediate formed during amide hydrolysis, it was considered a transition
state analog inhibitor. It has been established from kinetic studies that the
hydroxyl group of the central statine residue is important for the tight
binding of pepstatin.22

Figure 3. Rhizopus pepsin inhibitor pepstatin



The derivatives of pepstatin, containing a modified central statine residue
lacking the hydroxyl group in the S configuration, are weaker inhibitors of
these enzymes. In fact, deletion of this hydroxyl group on the central statine
residue leads to a decrease of about 4000-fold in its binding to pepsin and
when the configuration of the hydroxyl group is changed from S to R, the
resulting inhibitor is about 1000-fold weaker than pepstatin.23 Two different
roles had been attributed to the hydroxyl group of the central statine residue
based on the kinetic and structural studies. The structural data10 on the
complexes of aspartic proteinases with pepstatin and other inhibitors
containing central statine residue show that the hydroxyl oxygen of the
central statine is placed in the middle of the carboxylates of the two active
site Asp residues and the hydroxyl group makes multiple hydrogen bonds to
the carboxylate oxygens. Therefore, it is possible that the binding of
pepstatin is aided by these multiple hydrogen bond interactions in addition to
its role as a transition state analog. The derivatives of pepstatin, lacking the
hydroxyl group in S configuration on central statine are weaker inhibitors
due to the absence of these hydrogen bond interactions with the active site
Asp residues. Alternatively, the tighter binding of pepstatin may result from
the positive entropy change (of about 10-16 eu or 3-5 kcal/mol) associated
with displacement of the active site bound water molecule into the bulk
solvent, as suggested by Rich.23 It has been his contention that pepstatin is a
bisubstrate inhibitor, in addition to being a transition state analog inhibitor.
Though both the roles suggested for the hydroxyl group of statine appear
very reasonable, it is not clear which one of them has major contribution to
the tight binding of pepstatin. In spite of the impressive amount of structural
information and kinetic data, this question is not resolved satisfactorily.

3.4 Binding of Pepstatin Analogs

Free energy perturbation calculations were employed to understand the
importance of the interactions between the hydroxyl group of pepstatin and
the enzyme active site. The central statine residue of pepstatin was mutated
into several of its derivatives. The most important mutation simulated is that
of the central statine to dehydroxystatine, which determines the difference in
the free energies of binding between the two inhibitors. It is assumed in
these calculations that pepstatin analog, containing a dehydroxystatine in the
place of central statine, binds in the active site of the enzyme in the same
way as pepstatin does. These calculations, therefore, do not include the
entropic contribution to binding arising due to the displacement of the active
site bound water molecule. If the later contribution is significant as
postulated by Rich,23 the calculated free energy difference should be smaller
than the experimental value of about 5 kcal/mol. If the calculated value is
closer to the experimental value, then it would suggest that the major



contribution to the free energy of binding is enthalpic and the entropic
contribution caused by the displacement of water is not significant.

The free energy perturbation calculations on mutation of the central
statine residue of pepstatin to its dehydroxy and other derivatives were
carried out using the window method. The crystal structure reported by
Suguna et al.14"15 was used for these calculations. In most simulations, the
mutations were achieved either in 101 or 51 windows with 0.4 ps of
equilibration and 0.4 ps of data collection at each window. The calculation
for each mutation was repeated in water to determine the difference in the
free energies of solvation and to complete the thermodynamic cycle.

The free energy change for the mutation of the central statine to
dehydroxystatine in water, AGaq is equal to 3.01 kcal/mol. For the same
mutation inside the active site of the enzyme, the free energy change, AGcom

was 8.18 kcal/mol. These values lead to AAGbmd of -5.17 kcal/mol, which is
in good agreement with the experimental value of 4.9 kcal/mol. These
results, therefore, suggest that the difference in binding between pepstatin
and dehydroxypepstatin is solely due to the interaction of the hydroxyl group
with the enzyme active site. It appears that the favorable situation for the
strong interaction of statine hydroxyl group with the negatively charged Asp
dyad is provided by the enzyme structure that keeps the two carboxylates of
the Asp residues in a somewhat rigid configuration. These results, therefore,
clearly establish that the major contribution to the difference in binding of
pepstatin and dehydroxypepstatin is due to the strong interaction between the
Sta hydroxyl group and the active site Asp residues. Hence, it is not
necessary to presume that the tighter binding of pepstatin over its analog
lacking the OH group is due to the displacement of the active site water
molecule by pepstatin. The later explanation was advanced based on the
kinetic data that the active site bound water molecule (which is displaced
when pepstatin binds to the enzyme) is not displaced when
dehydroxypepstatin binds to the enzyme. This is not ascertained by direct-
structural studies. No structural results are reported for any aspartic
proteinase complexed with the inhibitors lacking the OH group. On the
contrary, the structure of rhizopus pepsin complexed with a reduced peptide
inhibitor shows that the water molecule bound between the two Asp residues
is displaced by the inhibitor, though no group of the inhibitor occupies the
position of the water molecule.14 The free energy results suggest that
dehydroxypepstatin also displaces the active site water molecule.

The mutation of the hydroxyl group positioned in R-configuration at the
C(3) atom of the central statine (rSta) residue of the inhibitor gives rise to
AAGbind of -0.51 kcal/mol, which is very close to the experimental value of
-0.8 kcal/mol. It may be noted here that the starting configuration of the
inhibitor in the enzyme-inhibitor complex is the same as that of pepstatin.
The crystal structure of rhizopus pepsin or any other aspartic proteinase



complexed with the pepstatin analog containing rSta in place of the central
Sta residue is not yet available. The agreement between the experimental and
calculated values suggests that the modeled configuration of the inhibitor is
correct. In this configuration the hydroxyl group of the central rSta residue
makes only one hydrogen bond interaction with the outer oxygen of Asp35.

Rich and coworkers24 studied the binding of methylated analogs of
pepstatin to pepsin and obtained some very surprising results. They found
that when the hydrogen at the C(3) atom of the central Sta is substituted by
a methyl group, its inhibition goes down by a factor of about 12000. On the
other hand, if the positions of the hydroxyl group and the methyl group are
interchanged, the new inhibitor (with the hydroxyl group in pro-R position)
binds to pepsin almost as strongly as pepstatin. These workers attributed the
strong binding affinity of the second inhibitor to the ability of the methyl
group (in the pro-S position) to displace the active site bound water, but
provided no explanation for the highly reduced potency of the first inhibitor
with the hydroxyl group on the pro-S side. In fact, this inhibitor has the
ability to displace the water molecule as well as interact with the active site
Asp dyad and it should, therefore, bind as strongly as pepstatin.

The present simulation studies show that the inhibitor with the methyl
group in pro-R position binds to rhizopus pepsin better by about 1.5
kcal/mol than pepstatin, which is in disagreement with the experimental
value of -5.6 kcal/mol. The experimental results point to the possibility that
the pro-R methyl group of the inhibitor may interfere with the optimal
binding of the inhibitor due to steric reasons. Such steric interference
between the inhibitor and the active site of rhizopus pepsin is not observed
in the model. Since the structures of the two enzymes in the active site
region are expected to be similar, it is not clear why pro-R methyl-statine
containing inhibitor is such a weaker inhibitor of pepsin. It is possible that
the inhibitor binds in a conformation which is different from the model.
When the methyl group is present in pro-S configuration, it is positioned
between the two carboxylates of the Asp dyad in the model. A mutation of
the methyl group in the hydrophilic site gives rises AAGbmd equal to -1.27
kcal/mol. Though the calculated result appears reasonable, it is in
disagreement with the experimental result. The calculated result suggests
that pepstatin with central rSta is better than the methylated rSta analog,
while the experimental results suggest the opposite. As in the earlier case,
the disagreement causes a suspicion that the actual binding modes of the two
inhibitors are different from the binding modes modeled for this simulation.
These calculations, however, find it hard to explain that the pepstatin analog
with a methyl group in pro-R configuration is so much weaker (by about -5.6
kcal/mol) than pepstatin.



4. CONCLUSIONS

The coplanar configuration of the dyad is found to be crucial for optimal
binding of pepstatin. In the absence of improved force fields to mimic the
configuration of the Asp dyad, the use of constraints on the dyad gave results
that are in good agreement with the experiments. The results pointed out that
the contribution of about 5 kcal/mol to binding from the hydroxyl group of
the central statine residue is mainly due to the strong interaction of this
group with the negatively charged Asp dyad. It implies, therefore, that
entropic contribution to the binding due to the displacement of the active site
bound water molecule may not be significant. These results pointed out the
possibility that water molecule is displaced even when pepstatin analog
lacking the hydroxyl group in S-configuration binds to the enzyme.
Following this study, several calculations on related HIV-I protease
inhibitors (Chapter 16) have been carried out and affirmed the conclusions
of this study regarding the hydroxyethylene based inhibitors. These
calculations have been helpful in designing novel HIV-I protease inhibitors
that are approved drugs or undergoing clinical trials.25
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Chapter 8

Free Energy Calculations on DNA:Ligand
Complexes
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I . INTRODUCTION

Ligands that interact physically with DNA have been extensively studied
both by experimental techniques and by a variety of theoretical approaches.
A diverse set of compounds have been studied, including compounds that
intercalate between DNA sequences or bind in the minor groove.1"7 These
studies have identified various factors that influence the stability of
DNAiligand complexes in solution.6'8'9

Free energy calculations on DNA-drug complexes provided insight into
the interactions of daunomycin, acridine,10 and netropsin11'12 with DNA and
their role in base specificity. Calculations using continuum electrostatics
have been performed to estimate free energies of binding of positively
charged ligands such as DAPI, Hoechst 33258, and netropsin to
d(CGCGAATTCGCG)2, ethidium to a DNA dodecamer,13 and binding of
five anthracycline antibiotics to DNA.14

Some of the best characterized ligands that bind in the minor groove of
DNA are distamycin and netropsin. Both these molecules are long and flat
and are sterically and electrostatically complementary to the characteristics
of the minor groove of DNA. Distamycin and netropsin are known to have
specific affinity towards the minor groove of AT rich regions of B-DNA.

The electrostatic potential calculations have shown that the minor groove
of AT rich B-DNA sequence has the lowest negative potential.15 This led to
the implication that the cationic drugs will exhibit binding specificity to the
minor groove regions of AT rich sequences. The crystal structure of a
DNArdistamycin complex showed that there is only one molecule bound to
the minor groove of an AATT DNA site.2 However, experimental studies



showed that the introduction of a GC base pair in an AT rich stretch widens
the minor groove and leads to the accommodation of two distamycin
molecules.7 According to the experimental studies presented by Dwyer et
al.7 and Geierstanger et al.16 both distamycin and its imidazole variant are
found to bind tightly to the five base pair AAGTT:AACTT site of an 1 lmer
duplex .

Thermodynamic6 and crystallographic data3 have characterized the
binding of netropsin to the minor groove of AT rich sequences of DNA.
Netropsin has a very tight affinity (Ka ~109) for DNA at low salt
concentrations6 and binds in the minor groove, causing minor change in the
DNA structure. Its association constant with DNA is inversely related to the
salt concentration. Thus, there is a significant electrostatic component to
DNA-netropsin association. However, it was not evident how much the
complementary electrostatics contributes to the absolute free energy of
association of netropsin to DNA.

A similar issue was addressed for two protein-ligand interactions.17 The
free energy calculations were able to reproduce the experimental findings for
the biotin-streptavidin complex, which has a free energy of association of
-20 kcal/mol and that of N-acetyl tryptophan amide- cc-chymotrypsin
complex which has a free energy of association of -5-10 kcal/mol. The
decomposition of these free energies into the van der Waals and electrostatic
contributions suggested that the biotin-streptavidin binding is predominantly
van der Waals in nature and the N-acetyl tryptophan amide-a-chymotrypsin
free energy is predominantly electrostatic. These component preferences are
quite contrary to expectation, since biotin has a negative charge and a very
polar ureido group capable of extensive H-bonding with protein groups that
interact with these functionalities. On the other hand, N-acetyl tryptophan is
neutral and oc-chymotrypsin is known to preferentially accommodate non-
polar groups in its Pl pocket.

It is interesting to note that similar observations were made in the
calculation of the electrostatic free energy of binding of ethidium bromide to
DNA.13 It was observed that a relatively small electrostatic free energy of
binding calculated with a non linear Poisson-Boltzmann model for the
association of positively charged ethidium to DNA indicates that nonpolar
interactions are more likely to be responsible for the free energy of binding
of ethidium to DNA.

The focus of this chapter is on the application of free energy perturbation
methodology to evaluate binding strengths of ligands to oligomeric DNA.
We present here three case studies related to minor groove binding ligands.
The first case is on the calculation of the absolute free energy of binding of
netropsin to d(CGGAATTCGCG)2;

18 the second case entails the calculation
of the change in free energy of binding of netropsin to d(IC)6»d(IC)6 relative
to that of d(GC)6»d(GC)6;n the third case is on the change in free energy of



binding of distamycin relative to that of 2-imidazole-distamycin (2-ImD) to
[d(CGC AATTGGO]2.

19

2. FREE ENERGY PERTURBATION CALCULATION

2.1 Theory

The free energy calculations with complexes of oligomeric DNA with
distamycin and netropsin presented in this chapter were carried out using the
AMBER force field25 and the AMBER software.21 The associated potential
energy function is:

(D

The change in free energy of a system between two states (A5B) (AG1) is
calculated after each step of the transformation. Since the free energy is a
state function the total free energy change, AG, is the sum of the
intermediate AG,s. An intermediate state22 of the system is defined as,

(2)

where A is the perturbation parameter, GA is the free energy of the initial
state A, and GB is the free energy of the final state B. The free energy change
is obtained by employing the perturbation method,

(3)

where ( )A!S the ensemble average defined by the parameter A,. X' is a

neighboring state of X. The total free energy is given by:



(4)

where n is the total number of windows in a free energy simulation.

2.2 Methodology

Free energy perturbation calculations were performed using molecular
dynamics simulations. The electrostatic charges for distamycin, inosine,
netropsin, and 2-imidazole-distamycin were calculated by using STO-3G
basis set and fitting the point charges that will reproduce the quantum
mechanical electrostatic potential. These calculations were carried out using
the Singh and Kollman methodology.23 The force field parameters for the
ligands were assigned based on the extrapolations made from AMBER force
field parameters.11' 18' 19 The starting structure for the DNA:netropsin
complex was taken from the X-ray structure3 (Figure 3) and that for the
DNA: 2-ImD: 2-ImD complex was taken from the NMR structure16 (Figure
5). The phosphates on the oligomeric DNA complexes were neutralized with
sodium ions placed at 3.6 A from the phosphate oxygen bisector and then
solvated with TIP3P.H2024 molecules placed up to 10-12 A away from the
solute (complex + ions) atoms to generate solvated boxes in which to carry
out simulations with periodic boundary conditions. The ligands were
solvated with TIP3P.H2O molecules placed up to 12-13 A away from the
solute atoms. In the free energy simulations of d(IC)6»d(IC)6 —>
d(GC)6«d(GC)6 the sodium ions were placed at 3.0 A from the phosphate
oxygen bisector and the resultant neutralized complex was solvated by
placing TIP3P.H2O molecules up to 5.0 A from the solute atoms.

The MD simulations were carried out under standard temperature and
pressure. A 1 fs time step was used with SHAKE25 applied to bonds. A 2 fs
time step with SHAKE was used in the d(IC)6«d(IC)6 -> d(GC)6«d(GC)6

calculations. The non-bonded interactions for DNA complexes were subject
to 10 -12 A spherical cutoff whereas no cutoff was applied to solute-solute
interactions to avoid cutoff artifacts on coulombic interactions between
sodium ions with phosphates. In the case of d(IC)6*d(IC)6-> d(GC)6»d(GC)6

calculations an 8 A spherical cutoff was applied to non-bonded interactions.
A weak harmonic restraint of 5.0 kcal/mol was imposed to avoid the
disruption of terminal base pairs during FEP simulations of netropsin —> O
and 2-imidazole-distamycin —> distamycin calculations.



3. APPLICATIONS

3.1 Absolute Free Energy of Binding of Netropsin to
[d(CGCGAATTGCGC)]2

18

The free energy method to calculate absolute free energy of binding of
two interacting species was first proposed by Jorgensen.26 This methodology
deals with the annihilation of the ligand in complex and in isolation based on
the following cycle:

Figure 1. Thermodynamic cycle for an association process

where A and B are association molecules and D is a dummy molecule with
no interaction with its surroundings. Since AGs = O, free energy of
association is given by AGA = AGc - AGD. For example, this can be
accomplished by mutating molecule B both when bound to the
macromolecule (AGD) and free in solution (AGc) to nothing. In the free
energy perturbation calculations the thermodynamic windows method was
used for the electrostatic part and the slow growth method13 for the van der
Waals part. The free energy perturbation was carried out by mutating
netropsin -> O in the [d(CGCGAATTGCGC)]2:netropsin complex in water
in the forward direction only (X = 1 —> O) and the free netropsin in solution
was mutated to nothing in both forward (X = 1 —> O) and backward (A, = O —>
1) directions by changing the force field parameters for netropsin smoothly
and uniformly. The structure of netropsin is shown in Figure 2.

The free energy calculations were calculated with electrostatic and van
der Waals contributions evaluated separately for both the complex and the
isolated ligand. The total free energy change of -10.3 kcal/mol agreed with
experimental measurements of -11.5 kcal/mol6 for netropsin



Figure 2. Structure of Netropsin

binding to [d(GCGAATTCGC)J2 and -10.2 kcal/mol for netropsin binding to
[d(CGCAATTGGC)]2. The X-ray structure of [d(GCGAATTCGC)J2

complex with netropsin is shown in Figure 3.
The individual free energy components show the relative contributions

from the electrostatic and the van der Waals interactions. The free energy
change for the annihilation of the charges on the ligand in the complex and
in solution is almost identical within the limits of the estimation. However,
the van der Waals free energy component for the complex is more than that
of the isolated ligand (Table 1).

Figure 3. X-ray structure3 of [d(CGCGAATTGCGC)]2:netropsin complex shown in stereo.



Table L Absolute free energy of netropsin binding to [d(CGCGAATTGCGC)]2

Netropsin in Solution
AGC (kcal/mol)

Electrostatic

235.2 ±2.23*

Electrostatic*
-1.5

van der Waals

17.5 ±1.7*

Netropsin in Solvated Complex
AGD (kcal/mol)

Electrostatic

236.7 ±2.0*

AG1 (kcal/mol)

van der Waals *
-8.8

Total
-10.3

van der Waals

26.3 ±0.2*

Experimental
-11.5

# AGi = AGC - AGD ; Total AGi = AGE)e + AGvdw
*Free energy of netropsin binding to [d(GCGAATTCGC)]2

These calculations indicate that the major stabilization force for the
binding of netropsin to DNA is primarily van der Waals in nature which is
contrary to previous postulates suggesting that the electrostatic component
contributes significantly towards the binding of the charged ligands. It is
quite conceivable that the electrostatic forces play a major role in driving the
complexation process by facilitating the rotation and the translation of the
charged ligand, while the major stabilization of the complex appears to come
from the van der Waals forces. Marky and Breslauer6 also suggested that the
electrostatic forces partially contribute to the binding enthalpy of netropsin
to DNA. They hypothesized that the rest of the binding enthalpy most likely
is derived from non-polar interactions. Mishra and Honig13 with the aid of
continuum electrostatics calculations on the netropsin DNA complex
suggested that the electrostatic free energy of binding is almost fully
balanced by loss of solvation upon binding and that non polar interactions
could possibly contribute towards the binding affinity of charged ligands to
DNA.

3.2 Relative Free Energy of Binding of Netropsin to
(IC)6^d(IC)6 vs. d(GC)6*d(GC)6

Gago and Richards11 used free energy perturbation methodology to
calculate the change in the free energy of binding of netropsin to
d(IC)6*d(IC)6 relative to that of d(GC)6»d(GC)6. The free energy perturbation
calculations utilized the thermodynamic windows method in both the
forward and backward directions. The inosine residues were mutated to
guanosine residues in the free and the complexed solvated states. The
calorimetric measurements by Marky and Breslauer6 showed that the free
energy of binding of netropsin to poly[d(GC)*d(GC)] is -7.1 kcal/mol
whereas its binding to poly[d(IC>d(IC)] is -11.1 kcal/mol (Table 2).



Table 2. Free energy difference (kcal/mol) in binding of netropsin to d(GC)6»d(GC)6

versus that to d(IC)6»d(IC)6.

Experimental6

Free Energy
Perturbation

Complex

Poly[d(GC>d(GC)]:netropsin

Poly [d(IOd(IC)] :netropsin

d(GC)6»d(GC)6:netropsin
d(IC)6»d(IC)6: netropsin

Free Energy
of Binding

-7.1

-11.1

Free Energy
Difference

4.0

4.3

These experiments also showed that the electrostatic component of the
binding of netropsin to poly[d(GC)*d(GC)] and poly[d(AT>d(AT)] is very
similar indicating that the difference in free energy of binding of netropsin to
these two polymers is primarily due to the non-polar interactions between
the ligand and the respective polymers. Calculations by Gago and Richards
reproduced the experimental results showing that the free energy difference
for netropsin binding to d(IC)6»d(IC)6 relative to that of d(GC)6»d(GC)6 is
4.3 kcal/mol versus that of 4.0 kcal/mol from calorimetric studies. They
observed that this free energy change is due to the movement of the drug
towards the solvent in the d(GC)6*d(GC)6 complex relative to that in the
d(IC)6»d(IC)6 complex. They also observed that only one out of four
hydrogen bonds are preserved between the ligand and d(GC)6»d(GC)6

relative to that in d(IC)6»d(IC)6. They attribute this to the difference in minor
groove widths which results from the presence of the exocylic amino group
of guanine in d(GC)6*d(GC)6.

3.3 Relative Free Energy of Binding of
[d(CGCAAGTTGGC)]2

19 to 2-Imidazole-distamycin
versus Distamycin

Distamycin has three pyrrole rings whereas its analog 2-imidazole-
distamycin has an imidazole ring substituted for the central pyrrole ring
(Figure 4). The pyrrole and the imidazole variant differ only in that the C-H
is substituted by an N in the central ring. The solution structure of 2:1
complex 2-ImD bound to [d(CGCAAGTTGGC)J2 was used as the starting
structure.7



Figure 4. Structures of distamycin (A) and 2-imidazole-distamycin (B).

The first ligand is bound parallel to the AAGTT stretch and the second
ligand is bound parallel to the AACTT stretch (Figure 5). The location
where the first ligand is bound is labeled site I and the location where the
second ligand is bound is labeled site II

Figure 5. Solution structure16 of 2:1 complex 2-imidazole-distamycin bound to
[d(CGCAAGTTGGC)]2 shown in stereo.



The free energy perturbation calculations were carried out to calculate the
solvation free energy difference between distamycin and 2-imidazole-
distamycin and the relative binding affinities of distamycin and 2-imidazole-
distamycin at sites I and II. The calculation of relative free energies of
binding of distamycin and 2-ImD at the two binding sites involved mutating
2-ImD to distamycin at sites I and II independently and then simultaneously
mutating both the molecules of 2-ImD to distamycin. These processes are
schematically shown in Figure 6. The thermodynamic cycle in Figure 6A
shows the independent equilibrium processes involved in the displacement
of 2-ImD by distamycin at the two binding sites. The thermodynamic cycle
in Figure 6B shows the equilibrium process of the simultaneous
displacement of 2-ImD by distamycin at the two binding sites. The
processes that are indicated by vertical arrows represent the free energy
perturbation calculations and the horizontal arrows represent the
experimentally observed processes.

The mutation of 2-ImD to distamycin at site I led to a free energy
difference of 0.65 kcal/mol (AG4- AG3) (Table 3). This calculation showed
that distamycin has weaker affinity for [d(CGCAAGTTGGC)]2 at site I
relative to that of 2-ImD. The NMR experiments carried out in Wemmer's

Figure 6A. Thermodynamic cycles for the calculation of the free energy difference of the
binding of distamycin relative to 2-imidazole-distamycin at two adjacent sites of
d(CGCAAGTTGGC)2.

Figure 6B. Thermodynamic cycles for the calculation of the free energy difference of the
binding of distamycin relative to 2-imidazole-distamycin at both sites of
d(CGCAAGTTGGC)2.



Table 3. Relative free energy differences between the binding of distamycin and 2-imidazole-
distamycin to [d(CGCAAGTTGGC)]2

Free Energy Differences (kcal/mol)
Free Energy Perturbation Calculated Experimental

2-ImD^Dst 1.82 NA
2-ImD:2-ImD:DNA->Dst:2ImD:DNA 0.65 1.6
2-ImD:2-ImD:DNA -> 2-ImD:Dst:DNA -2.88 NA*
2-ImD:2-ImD:DNA -> Dst:Dst:DNA -1.79 -2.3

NMR experiments failed to detect 2-ImD:Dst:DNA complex in solution.

lab18 showed that the relative populations of Dst:Dst:DNA and Dst:2-
ImD:DNA in solution are 15:1. This leads to the experimental value of 1.6
kcal/mol (AG2 - AGO for the affinity of distamycin relative to that of 2-
imidazole-distamycin at site I (Table 3).

The mutation of 2-ImD to distamycin at site II led to a free energy
difference of -2.88 kcal/mol (AG6- AG3). The NMR experiments could not
detect the2-ImD:Dst:DNA complex in solution therefore the calculated
number for distamycin's affinity for site II (AGs ~~ AG2) cannot be compared
with the experiment.

It is interesting that distamycin has greater affinity than 2-imidazole-
distamycin at site II whereas it has weaker affinity at site I. This can be
understood in terms of the molecular environments present at the two sites
and in the intermolecular interactions between distamycin and
[d(CGCAAGTTGGC)]2 . At site I the exocyclic NH2 group of guanine is
available for the imidazole ring of 2-irnidazole-distamycin to establish a
hydrogen bond whereas at site II there is no hydrogen bonding partner
present hence the weaker affinity for 2-ImD. This was rationalized in terms
of the desolvation free energy for 2-ImD relative to that of distamycin,
which is 1.8 kcal/mol. At site I the hydrogen bond between N2 of guanine
and the imidazole compensates for the desolvation energy of 2-ImD and
stabilizes the complex relative to that of distamycin, whereas at site II the
lack of an equivalent hydrogen bond between 2-ImD and the DNA cannot
compensate for the loss of solvation energy and hence destabilization
relative to that of distamycin.

The simultaneous mutation of 2-irnidazole-distamycin to distamycin at
both the sites I and II led to a free energy change of -1.8 kcal/mol (AG8 - 2
AG3). The NMR experiments showed that the relative populations of
Dst:Dst:DNA and 2-ImD:2-ImD:DNA are 50:1 giving an experimental free
energy difference of -2.3 kcal/mol (AG7 - AG2). This indicates that the
favorable van der Waals interactions between distamycin and DNA at sites I
and II and the stacking interactions between the two distamycin molecules
stabilize the 2:1 Dst:DNA complex over the 2:1 2-ImD:DNA complex. The
major destabilization factor for the 2:1 2-ImD:DNA complex is the lack of



hydrogen bond for the central imidazole ring of 2-ImD at Site IL These
calculations show that the order of stability of DNA, distamycin, and 2-
imidazole-distamycin complexes are as follows: 2-ImD:Dst:DNA >
Dst:Dst:DNA > 2-ImD:2-ImD:DNA > Dst:2-ImD:DNA. This order of
affinity is consistent with the solution NMR data and the calculations that 2-
ImD has greater affinity for [d(CGCAAGTTGGC)J2 than distamycin at site
I and distamycin has greater affinity than 2-ImD at site II.

4. CONCLUSIONS

The chapter summarizes the application of free energy perturbation
methods to the study of DNA-ligand interactions. The cases presented here
provide a means to evaluate relative and absolute thermodynamic stabilities
of DNAiligand complexes. Given the goals in each case were challenging a
careful evaluation of methodologies led to a set of conditions that facilitated
the calculation of absolute and relative binding affinities of DNA-ligand
complexes in reasonable agreement with the experiment.
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1. INTRODUCTION

A major goal for computational chemistry in the drug discovery process
is to be able to predict the strength of non-covalent association between
putative ligands and their target receptors. Significant progress has been
made in the field of computer-aided ligand design during the last decade and
a fairly wide range of computational tools are now being used as
complements to experimental studies. This chapter will deal with the type of
situation usually referred to as structure-based design, i.e. when the 3D
structure of the receptor target site is known. Moreover, we will mainly
focus on the problem of estimating the free energy of binding for a given
'conformation' (albeit, subject to thermal configurational averaging) rather
than on the problem of finding the optimal fit between the ligand and the
receptor through docking. Of course, the two problems of finding the
optimal fit (docking) of a putative complex and of estimating its affinity
(scoring) is intimately related to each other. That is, the binding energy
could be considered as rather ill defined in cases where the complex between
ligand and receptor is non-optimal or unstable. Likewise, any useful docking
procedure must provide some way of scoring different trial conformations in
order to produce a ranking of them. Although many empirical scoring
methods assign a binding free energy to a single conformation of the
receptor-ligand complex, it may be appropriate to recall that the measured
binding constant actually reflects an average over thermally accessible
configurations of both the associated and dissociated states.

Several different types of approaches for predicting ligand-binding
affinities have been developed and a number of useful reviews of the field



have been recently published.1"3 A key factor when deciding on a
computational strategy for trying to predict the potency of a set of ligands is
the required time for calculating the score of a typical ligand. If a high
throughput of ligands is crucial, e.g., in screening large virtual libraries or
when extensive conformational searching is required, such as for docking,
the time it takes to evaluate a single compound must be rather short. On the
other hand, if the 3D structure of a "lead" compound in complex with the
receptor is available and the objective is to explore a limited number of
chemical modifications of this lead, then it may be affordable and desirable
to carry out more time-consuming and accurate calculations.

The computationally fastest and simplest binding affinity prediction
methods are typically so-called empirical or knowledge-based scoring
approaches. The empirical scoring methods are primarily based on very
simplified energy functions, design to represent different contributions to the
binding free energy such as hydrogen bonds, buried hydrophobic surface
area and torsional entropy changes etc.4"6 These types of scoring functions
are usually short-ranged so that only receptor-ligand atom pairs more or less
in contact with each other are considered. In the knowledge-based
approaches the score is simply derived from the frequency of occurrence of
different atom-atom contact pairs in complexes of known structure.7'8 The
speed of these methods is thus due to the simplicity of the scoring function,
that few interactions are calculated and that no conformational sampling is
performed. On the other hand, it is also probably these features, together
with the information content of the database used to calibrate the functions
that limit the accuracy of entirely empirical or statistical approaches.
Another issue is that water molecules are usually not considered at all, which
could be a problem for complexes where they appear as an integral part, e.g.,
by bridging interactions between the ligand and the receptor.

The most time-consuming and rigorous approach for evaluating binding
free energies is the free energy perturbation (FEP) method, which involves
slow gradual transformations between the states of interest.3' 9"n The FEP
method and its variants, such as thermodynamic integration, are typically
used together with molecular dynamics (MD) or Monte Carlo (MC)
simulations for generating conformational ensembles. In order for the FEP
technique to yield convergent results extensive conformational sampling is
required and, in contrast to the empirical methods above, a large number of
(usually) pair-wise interactions must be calculated at each MD or MC step.
These facts, together with the requirement that the transformations must be
"gentle", i.e. small perturbations, often make the method very slow. Thus,
calculation of absolute binding free energies is usually not tractable, and
even relative binding energies can pose major problems if the ligands differ
substantially from each other.



2. THE LINEAR INTERACTION ENERGY (LIE)
METHOD

In order to try to overcome some of the problems with FEP calculations,
we decided to examine whether it would be possible to extract any useful
information on the binding energetics from simulations of only the
physically relevant states (associated and dissociated) of the ligand.12 The
idea was then to consider the absolute binding free energy of a ligand (/) as
the change in 'solvation' free energy when it is transferred from aqueous
solution (free state) to its solvated receptor-binding site (bound state), that is

(D

where the superscripts p and w denote protein (receptor) and water,
respectively. The solvation energy of the ligand in a given environment,
AG^0/ (/) , in turn reflects the process of transferring the molecule from the

gas-phase to this environment. Such a process can at least formally be
considered as consisting of two separate steps: (1) creation of the molecular
van der Waals cavity in the given environment and (2) turning on the
electrostatic interactions between the molecule and its surroundings. If the
ligand is modeled as having intermolecular electrostatic interactions these
can, in principle, be referred to either of the two hypothetical steps above.
While the solvation energies in Equation 1 include the contributions from
internal entropy changes in the ligand, receptor and water solution, it can be
noted that the change in translational entropy caused by confining the ligand
to a (usually) smaller volume than that implied by a IM standard state in
aqueous solution also needs to be taken into account. This problem is far
from trivial since there, e.g., may be a release of bound water molecules
accompanying the binding process with a concomitant entropy increase.
Since we anyway will deal with empirical parameterization of the terms in
Equation 1 here, the translational entropy contribution to binding will not be
explicitly considered.

The first version of the LIE method employed the linear response
approximation to estimate the electrostatic part of the solvation/binding free
energies. The linear response result for this component of the solvation
energies, AG^ (where i=p or w), can then be written as

(2)



where the two averages are sampled with the electrostatic interactions
between the ligand and the surrounding (/-s) turned on and off, respectively.
The electrostatic interactions within the ligand V1^1 could, in principle, also

be included in the averages, but AG^ would then also contain the gas-phase

'charging' free energy and therefore not be as directly related to the
solvation energy. Furthermore, because of the covalent constraints within the

ligand the average (V1^1} , i.e. the intermolecular electrostatic energy that
\ 'off

would have been obtained from the configurations generated with these
interactions turned off, is generally not zero. One of the simplifying features

of the LIE method is, however, that also the term (V7'' } is neglected. In
\ i-s I off °

principle, one would have to carry out one extra simulation for both the
bound and free states of the ligand with its intermolecular electrostatic
interactions turned off, and calculate from these configurations what the
average electrostatic interaction energy would have been if V1^5 had been

turned on. While it has been shown that (V7*' } = O is reasonable
\ i * I off

approximation in water13 it remains unclear how valid the assumption is for
the bound state. One could perhaps argue that since proteins (and often also
ligands) are flexible there would be substantial relaxation and
conformational rearrangements of the complex if such a simulation was

carried for long enough, so that (V7I5 / would eventually tend to zero. But,

on the other hand, if the binding site is rigid and substantially "prearranged"

for accommodating the ligand the (V^5 j term would inevitably seem to

provide a negative contribution to the binding free energy that is neglected.
The original idea with the LIE approach was, of course, to keep it as simple
as possible and avoid simulations of unphysical states, but the above point
should nevertheless be kept in mind.

Non-polar contributions to the binding affinity, e.g., hydrophobic effects
and van der Waals interactions, appear to be less straightforward to quantify.
We decided to try the simple idea of measuring the non-electrostatic part of
the interaction of the ligand with its surrounding environment in the
associated and dissociated states, and then just scale these energies by an
empirically derived coefficient. These energies are typically given by a
Lennard-Jones potential. The basic idea was not that hydrophobic effects
somehow reside in these energy terms, but rather based on the following
observations. Solvation free energies for typical non-polar compounds are
experimentally found to scale linearly with solute size measures such
accessible surface area.14 We also found from MD simulations that the
average van der Waals (Lennard-Jones) interaction energies scaled



approximately linearly with solute size both in polar and non-polar
solvents.12 Combining these two observations would thus suggest that it
might be possible to use average ligand van der Waals energies for
estimating non-polar binding contributions, simply because they are
correlated with the same variables as "hydrophobic free energies'. The
above considerations thus lead us to explore an approximate equation for the
binding free energy of the following general type

AGftmrf=oA(v;:r) + )SAfe) + y (3)

where ( } denotes MD or MC averages of the non-bonded van der Waals
(vdw) and electrostatic (el) interactions between the ligand and its
surrounding environment (/-s), i.e. either the solvated receptor binding site
(bound state) or just solvent (free state). The A in Equation 3 denotes the
difference between such averages in the bound and free states. The
parameters of this equation are the weight coefficients a and /3 for the non-
polar and polar binding energy contributions, respectively, and possibly an
additional constant y. In all calculations discussed herein we have used the
GromosS? force field,15 while other groups have employed different force
fields together with the LIE approach (see below).

In our study of endothiapepsin inhibitors the value /3=l/z predicted by the
linear response assumption (see Ref. 12 for details) was used and the
parameter a was calibrated to an optimal value of 0.16. Furthermore, the
constant term y was set to zero mainly in order not to overparametrize the
model in view of the small initial "training set" (however, inclusion of a y*0
did actually not either significantly improve the fit). It was, however, pointed
out in Ref. 12 that it should be possible to use Equation 3 for solvation
energies, i.e., without the A's, in which case the extra term ^O would be
needed to properly account for the positive free energy of creating cavities in
the solvent. This approach has also been taken by Jorgensen and coworkers
for calculating hydration free energies and partition coefficients between
water and chloroform.16' 17 It can be noted again here that the ability of
Equation 3, without the A's, to describe solvation energies requires the
exclusion of the V1^1 terms from the average.

Our initial parametrization of the LIE equation was subsequently used for
HFV protease and trypsin inhibitors as well as in a study of sugar binding to
a bacterial receptor protein.10' 18"20 While it was at first suspected that a
specific calibration of Equation 3 would have to be carried out for each new
system,12 it turned out that the original endothiapepsin model was reasonably
predictive also for the other systems mentioned above. Regardless of
whether one really can find a "universal" parametrization of the LIE



equation which, as we shall discuss below, might not be the case, there are
some novel qualities of this approach that are quite interesting.

First, and perhaps the most important result, is that the binding free
energy could be estimated solely from the intermolecular interactions of the
ligand in the bound and free states. If we think of the full energetics involved
in the binding process how are, e.g., intramolecular relaxation of the ligand
and the receptor, desolvation of the receptor and entropic contributions taken
into account when only Vi.s terms are considered? Some of these problems
can be better understood by considering a simple system such as the binding
of an ion to a crown ether. The electrostatic linear response term in Equation

3 with P=Vi yields a binding free energy of about -2 kcal/mol for the K -18-
crown-6 complex in agreement with experiment21 and the relationship

^G5Oi = "2 v/-5/ also holds well for ion solvation energies.13 Clearly, there

are large relaxation and entropy effects involved in K binding to 18-crown-
6 as the host wraps itself around the ion from a more or less "unfolded" state
during the binding process. This will lead to a significant conformational
entropy decrease of the host and a concomittant entropy increase in the
solvent upon binding. What the linear response approximation asserts in this
case is that the free energy contributions associated with these effects reflect
a simple linear response to the electrostatic forces exerted by the ion, so that
the necessary information about the binding and solvation energies is

contained in V1^5. As pointed out earlier,13' 21 when extending this argument
to ligands with intramolecular degrees of freedom Equation 3 also assumes
that intramolecular ligand strain/relaxation, just as that of the receptor in the

crown ether case, will exhibit a linear response with respect to V1^5. This
appears as a natural assumption, since there is no a priori reason for why
certain conformational degrees of freedom (those of the ligand) should
behave differently from others (those of the receptor and solvent). Our
definition of what is the ligand and what is the receptor is also in this sense
arbitrary as one could in principle switch the two labels, which illustrates the
above point.

The second somewhat surprising result is that the quantity V1^ appears

very useful for obtaining good estimates of the binding free energy. That the

V1^5 terms are of importance is not surprising in view of their relation to
electrostatic solvation energies within the linear response approximation.
However, as emphasized previously12' 21 the non-polar term of Equation 3
should not be interpreted, in analogy with the electrostatic one, as an
assumption of linear response also towards forces associated with the
Lennard-Jones potential (as done, e.g., in Ref. 22). The idea behind it, again,

is simply that V1^ is correlated with ligand size as are non-polar solvation



free energies in different environments. Furthermore, for a given ligand or

solute V1^ measures the number of Lennard-Jones interaction centers

surrounding it, since V1^ is attractive for all but very short distances and
van der Waals well-depths are very similar in most force fields. Hence,

V1^ provides a measure of the heavy-atom number density in the
surrounding and this is the basic reason for why it always tends to be more
negative when the ligand is (partly) surrounded by protein than when it is
free in water (pwar= 0.033A"3 and pprot~ 0.058 A"3).21 Besides its correlation

with non-polar or hydrophobic binding contributions, V1^ will of course to
some extent also reflect the local packing or steric fit of the ligand in a given
site.

It should be clear from the above discussion that the LIE method is thus
fundamentally different from other typical molecular mechanics based
scoring procedures that are designed to evaluate all separate contributions to
the binding enthalpy or free energy explicitly. That is, such methods, e.g.
Refs. 23-25, express the binding energy as something like

A£fr,nrf = E^0' + A^l + A£,r + AE* + AE£« (4)

plus possibly extra entropy related terms etc. One problem with this type of
expression is that some of the energy terms (e.g., protein intramolecular
energies) converge very slowly during MD or MC sampling and formulas of
the above type are usually applied only to single (minimized) conformations
of the receptor-ligand complex. The question of statistical significance of
such minimized conformations therefore appears to be the weak point of that
type of approach, although the more detailed bookkeeping of energy terms is
potentially quite informative.

2.1 Improving the Original Model

In order to actually examine the validity of the electrostatic linear
response approximation for different types of solutes and solvents, Aqvist
and Hansson13 investigated the relationships between electrostatic solvation

free energies and the \/f*s} terms for a number of relevant model systems

using FEP calculations. It was then found that deviations from linear resonse
do occur, particularly for neutral dipolar solutes and more so for those
containing hydroxyl groups when the solvent is water. This is reflected by
the coefficient /kVi This behavior was found to derive from interactions
with the hydrogen-bonding network of the solvent, and protic solvents thus
displayed larger deviations from linear response than non-protic ones for a



given solute. These results suggest that using an electrostatic scaling
coefficient of /3=l/2 might not always be the optimal choice.

In a first attempt to refine the original LIE model we considered a more
general form of Equation 3 that also relaxes the constraint of equal scaling
factors for the bound and free states.26 This would, e.g., allow possible
differences in electrostatic response properties of protein and solvent to be
better modeled. The additional constant free energy term y was also
explored, which could arise as a non-zero difference jprot _ YWM between
constant terms in corresponding linear expressions for the non-polar
solvation energies.12 Such a constant term in the solvation energy has been
discussed by Ben-Nairn and coworkers.27' 28 Several empirical scoring
functions for estimating binding free energies from structural data also
include a constant term, sometimes proposed to represent translational
entropy contributions to the free energy of binding. Jorgensen and
coworkers16' n have instead used an accessible surface area dependent term

in Equation 1 which is similar to the addition of a constant since \V^/

depends approximately linearly on surface area.12'26

The more general LIE equation examined in Ref. 26 was thus written as

(5)

where the a and /J parameters are van der Waals and electrostatic scaling
factors, respectively, that now could have different values in water and
protein environments, while 7 is a constant term as described above. The
parameters of this equation were optimized using calculated and observed
data for the 18 receptor-ligand complexes studied in Refs. 10, 12, 18-20
under various combinations of the constraints aprot - awah fiprot = flwat and y~0
(such constraints were used in order to keep a reasonable ratio between the
number of parameters and observations).

The results of these optimizations are summarized in Ref. 26 and
definitely show that the original equation with the linear response value /3=V2
needs to be reconsidered in order to achieve more accurate predictions. This
is also in agreement with the results from FEP investigations of the
approximation.13 The main conclusion from the work in Ref. 13 is that
deviations from electrostatic linear response may be particularly important
for uncharged ligands with certain dipolar groups, suggesting that a /3<V2
should then be used. The equation with aprot = awat, fiprot = /}W(lt and y=0
(Equation 3 with a free /3) was accordingly found to give a statistically
significant improvement over the original model (that had an r.m.s. error of



1.57 kcal/mol for the 18 complexes, which was reduced slightly to 1.45
kcal/mol when all of them were included in the calibration set). The
resulting values of a and (3 are 0.186 and 0.320, with an r.m.s. deviation of
0.97 kcal/mol. Since most of the 18 ligands were uncharged, the value of /3
obtained for this model is in accordance with the results of Ref. 13, where
most electroneutral compounds were shown to be associated with /J-factors
of around 0.3-0.4.

The possibility of assigning different a and /3 coefficients for the bound
and free states, as in Equation 5, was also investigated. It was then found
that this did not offer much statistical improvement of the model and that the
coefficients converged to very similar values in the two states. The addition
of a nonzero y in the binding free energy equations was also examined but
the results showed no significant improvement of the model for the 18
complexes, in spite of the addition of another parameter.26 The fact that the
a and /3 parameters converge to approximately the same values in the bound
and free states (this was the case even for free optimization of all five
parameters in Equation 5) is quite remarkable. This finding clearly supports
the use of the basic LIE equation (Equation 3).

The results indicate that the introduction of additional model parameters
yields relatively little improvement, after adjustment of /3 away from Vi. This
suggests that it is important to account for systematic deviations from
electrostatic linear response. The results from Ref. 13 can be directly
incorporated into Equation 3 by assigning specific values of /3 to different
classes of solutes (ligands). This led to a model, where the chemical
composition dependent deviations from linear response are taken into
account. A simple implementation of such a scheme divides compounds into
four classes: charged, dipolar with no hydroxyl groups, dipolar with one
hydroxyl group and dipolar with two or more hydroxyl groups, and assigns a
different /3 parameter value to each class. The values of /3 (0.50, 0.43, 0.37
and 0.33, respectively) were taken directly from simulations of typical
compounds of the different classes (cf. Table 1 of Ref. 13). Examples of
such typical compounds are sodium ion, acetone, ethanol and ethylene
glycol, respectively.13 It should be emphasized here that this model
effectively has only one free parameter, namely a. The same value of /3 is
thus used for the bound and free states but depends in a systematic way on
the nature of the ligand.

The results obtained with the above FEP-derived model26 were found to
yield an excellent agreement with experimental values for the 18 complexes
in the calibration set (Figure 1).
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Figure 1. Calculated vs. observed free energies of binding for the 18 receptor-ligand
complexes used to derived the LIE model in Ref. 26.

We obtain an r.m.s. deviation of 0.84 kcal/mol with an optimal a of
0.181. One can also note the similarity between the a value of this model
and that of the two-parameter model with a free a and /J. This suggests that
the model is robust in the sense that the actual polar and non-polar free
energy contributions are more or less invariant, as long as deviations from
linear response are taken into account in a proper way. The FEP-derived
model could be considered preferable to the two-parameter model since it
contains only one free parameter, viz. (X. The results of adding a constant yto
the new model was also investigated. Remarkably, the optimal value for
such a /was found to be -0.02 kcal/mol, i.e. virtually zero.

To summarize the attempts to refine the original LIE model, we found
that an optimal equation for the binding free energy could be obtained with
only one free parameter (a) and with the electrostatic coefficients (/3)
derived from FEP simulations of some representative compounds in water.
For the 18 compound training set that we used this model yielded a mean
unsigned error of only 0.58 kcal/mol which seemed very promising.

The above model was used to study the binding of methotrexate, and
analogues of it, to wild-type and mutant forms of human dihydrofolate
reductase (DHFR).29 This turned out to be a particularly difficult test
because of the three ionized groups of methotrexate. The overall electrostatic
interactions of this inhibitor amount to around -500 kcal/mol and MD
trajectories of length more than a ns were required in order to get average

&G&
(kcal/mol)



energies with reasonable error bars. Methotrexate is also very flexible and a
wide range of conformations were found to be accessible to the free
molecule in solution. Nevertheless, the calculated binding energetics was in
fair agreement with experiments. The effects on methotrexate binding of
mutations of the active site residue Leu22 to Phe and to Tyr were also
reasonably well reproduced by the simulations.29

The DHFR calculations are summarized in Figure 2 together with a few
other tests on arabinose binding protein, lysine binding protein and fatty acid
binding protein (Ref. 30 and Marelius et al., unpublished). One the basis of
these cases, one would perhaps be tempted to suggest that the revised LIE
model of Ref. 26 now seems to describe the binding energetics very nicely
for a reasonably large range of ligand-receptor systems (Figures 1 and 2).
However, all of the receptor proteins discussed so far (endothiapepsin, HIV
protease, trypsin, DHFR, sugar, lysine and fatty acid binding proteins and
even 18-crown-6) have substantially polar binding sites. It turns out that for
an entirely hydrophobic binding site, such as that of retinol binding protein
(RBP), the affinities of a set of hydrophobic retinoid ligands is completely
wrongly predicted by this LIE model. Figure 2 also shows the results of such
calculations on RBP, where it can be seen that the binding free energies are
offset (underestimated in absolute terms) by about +7 kcal/mol.

A<Z8S
(kcal/mol)
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Figure 2. Calculated vs. observed free energies of binding for DHFR complexes29 (circles),
the arabinose complex with arabinose binding protein50 (triangle), the lysine complex with
lysine binding protein51 (diamond), the complexes of stearate and elaidate with muscular fatty
acid binding protein52 (squares) and the complexes of retinol, retinoic acid, n-ethyl-retinamide
and fenretinide with bovine plasma RBP53 (stars).



In these cases, the electrostatic contribution to binding is essentially zero
and the discrepancy therefore illustrates that the hydrophobic binding effect
is not reproduced for RBP. From the structural viewpoint, it is of interest to
note that both RBP and the muscular fatty acid binding protein belong to a
distinct family of protein structures that share the same overall topology as
well as an internal "barrel" designed to bind fatty molecules.31 However, in
the case of fatty acid binding proteins a few polar groups have been inserted
inside the barrel, in order for it to be able to bind the carboxylate moiety of
the acids. Apparently, this feature is enough to give these proteins very
different properties from those of RBP, despite their structural similarities.

The examples discussed here show that the new LIE parametrization of
Ref. 26, while reliable for a number of systems, could not be the final word
in the development of this type of approximate binding free energy
calculations. As we will see below there may be more examples of ligand-
receptor systems that don't fit the simple picture of Figure 1.

3. OTHER LINEAR RESPONSE AND LIE MODELS

The first attempt to use the electrostatic linear response approach for
binding calculations was reported by Lee et al.,32 who studied the binding of
two antigens to an antibody by several different methods. That work was
interesting in that it pointed out the possibility of using the approximation
for estimating binding free energies, but did not provide evidence that
quantitative results could be obtained. That is, extremely short (5 ps) MD
trajectories were used to collect the relevant average electrostatic energies
together with a rather crude estimate of the non-polar binding contribution
(subject to a several kcal/mol errorbar).32 The resulting binding free energies
were also wrong by 7-9 kcal/mol, which really suggested that the method did
not work. Another interesting application was reported in Ref. 33, which
addressed calculations of intrinsic pKas in lysozyme, but did not either reach
quantitative predictions although the qualitative trends seemed reasonable.

Warshel and coworkers have recently examined the LIE method and
different versions of what they call the LRA (linear response approximation)
method for the binding of a set of cyclic urea compounds to HIV protease.34

The key features of their LRA scheme is that both averages of Equation 2
are evaluated, thus requiring two extra simulations of the 'non-polar' states
(see above), that the ligand intramolecular electrostatic terms are included in
the averages, and that the non-polar contribution is calculated with the
PDLD method. Results of similar quality were reported with the different
methods.34 However, it should be noted that the value Vz of the electrostatic
coefficient was used in Ref. 34, which, as discussed above, has been shown



to not be accurate for the cyclic urea type of compounds. There also appears
to be a misunderstanding regarding the thermodynamic cycle used in the LIE
method which, contrary to what is said in Ref. 34, has not changed12' 26' 29

(note that Figure 1 of Ref. 12 does not depict the binding cycle, but just
illustrates how the linear reponse approximation can be used to estimate the
electrostatic part of the solvation energy in a given environment and it is
equivalent to Equation 1 of Ref. 13).

Several other research groups have also investigated the performance and
scope of simplified free energy calculation methods of the LIE type.
Jorgensen and coworkers started by demonstrating that hydration free
energies and partition coefficients between water and a non-polar solvent
could be accurately reproduced by Equation 3 with the coefficient 7 as a
scaling factor for the accessible surface areas.16' 17 Binding calculations have
also been reported by Jorgensen's group for thrombin35 and FKBP12
inhibitor complexes36 and in both cases were mean errors of similar
magnitude as in Figure 1 obtained, after parametrization of Equation 3.
Using the OPLS force field,37 the thrombin calculations gave an r.m.s. error
for seven compounds of 1.02 kcal/mol with O=O. 131, /3=0.131 and y=0.014
kcal/(mol A2) while the best fits for the twelve FKBPl2 complexes was
obtained with either o=0.348, /3=0.176 and 7=0.008 kcay(mol A2) or
«=0.328, /3=0.180 and a constant y of -4.21 kcal/mol (r.m.s. errors of 0.58
and 0.59 kcal/mol).35'36

Paulsen and Ornstein38 applied the methodology to a series of
cytochrome P450-camphor analogue complexes using the CVFF force
field39 and they obtained excellent agreement with experimental binding data
using 05=1.043, /3=!/2 and y=0. Another example is provided by Gorse and
Gready who used the Amber/OPLS united atom force field in calculations of
the binding affinities of charged N5-deazapterins to DHFR.40 These authors
obtain a good fit to experimental data with C£=-0.32, /3=!/2 and y=0, where the
negative value of a might appear somewhat unexpected (in fact, a negative
a also gave the best fit for thrombin in Ref. 35). In fact, there does not seem
to exist any reasonable physical interpretation of a negative a and, in our
opinion, such a result most likely reflects some type of problem with the
electrostatic interactions (see below). That is, if the polar binding
contribution is systematically too negative then this can be compensated in
the parametrization by a non-polar scaling coefficient with negative sign.

In a recent study of the avidin-biotin system Wang et al.41 have used the
LIE approach as well as a version of it that includes an extra 'entropy term'.
That is, the 'interaction free energy' in the bound and free states was

expressed as AG//If = -RT ln(exp(-E^, / RT)} = (Eint) - TASmt, where

EM denotes the intermodular interaction energy of the ligand in the given
environment (receptor site or aqueous solution). The entropy term was then



evaluated as AS = RIn <Q\p(-AEint I /?T)> which involves the fluctuations of
the interaction energy around its average. These formulae actually
correspond to the regular FEP equation, i.e. a one-step perturbation
calculation. However, in order for the signs to be correct the ensemble
averages would be those measured for the non-interacting system, while the
sampling was carried out for the interacting system in Ref. 41. One can also
note that the calculated entropies associated with the intermolecular
interactions are all positive (Table 2 of Ref. 41) which seems counter-
intuitive. Moreover, the electrostatic energy and entropy terms in Ref. 41
were scaled by the linear response factor Vi, which is inconsistent with the
inclusion of an explicit entropy term, since that factor already encompasses
entropy effects. An unbiased optimization of the a parameter for both the
LIE and the 'interaction free energy' model of Wang et al., utilizing the data
in Ref. 41, shows that addition of the entropy term does actually not offer
any improvement.42 However, regardless of which model is used it seems
clear that a rather high value of a is required to fit the experimental binding
results. Kollman and coworkers have also recently examined what the best
value of the LIE a parameter is for seven different proteins using the
Amber95 force field.43 It was then found that while trypsin and HFV protease
gave values similar to those reported by us, thrombin, avidin and
cytochrome P450cam complexes required higher a's. A method for
estimating (X on the basis of desolvation surface areas was also presented in
Ref. 43 and seems rather promising.

Another interesting type of application of the LEE approach was recently
reported by Xu et al.44 who investigated the catalytic properties of an
antibody, where the binding energies of reactants and transition state were
evaluated. Adalsteinsson and Bruice45 have used the LIE method for
scanning rapamycin analogues that would bind to the immunophilin
FKBP12. Interestingly, that work employed the parametrization of Equation
3 with different P values for the bound and free states, which was found in
Ref. 26 yield results of similar quality to that of the FEP-derived model.

4. RECENT CALCULATIONS ON HUMAN
THROMBIN INHIBITORS

We have examined the performance of the LIE method for the series of
eight thrombin inhibitors shown in Figure 3 (T1-T4 and BZA) using the
GromosS? force field.46 Table 1 shows the average ligand-surrounding
interaction energies from MD simulations of these eight thrombin inhibitors
in complex with the enzyme and free in solution, as well as the small
electrostatic corrections associated with turning off net charges on distant



ionized groups.19 When applying the earlier LDE calibration26 with parameter
values C£=0.181, /3=0.5 (all ligands are charged) and ^=O in Equation 3 one
finds that this model does not correctly predict the observed absolute binding
free energies, although the relative affinities are well reproduced.46 In fact,
the predicted binding energies turn out to be systematically offset by around
+3 kcal/mol. This observation is confirmed by least-squares optimization of
the constant /while leaving a and /3 fixed at their earlier determined values.
Such a calibration yields /=-2.916 kcal/mol and a mean unsigned error of
only 0.68 kcal/mol for the eight complexes. A plot of calculated versus
observed free energies of binding using this optimized model is shown in
Figure 4, where it is clear that the model rather accurately predicts the
experimental data (correlation coefficient^.88). The above thrombin-
specific parameterization of one constant in the LIE model for estimating
binding affinities not only yields a very reasonable mean error but also
appears robust. A free optimization of all three parameters in Equation 3
gives only a negligible improvement (mean unsigned error = 0.64 kcal/mol),
in spite of the addition of two extra parameters. Although such a model is
not statistically sound in view of its low ratio of observations to parameters,
it is significant that the values of a and /3 obtained in this case are very close
to those determined by us earlier.26 Hence, one obtains O=O. 18, /3=0.44 and
y=-3.00 with three free parameters and it is clear that this (statistically
unsound) model does not offer any improvement over the one in Ref. 26,

T1a(R,S)

T3

T1b

T2a

T4

BZA

T2b

Figure 3. Chemical structures of the thrombin inhibitors for which calculations were carried
out in Ref. 46 (BZA is benzamidine).



but rather confirms its predict!vity. Reoptimization of only a, with (3=l/2 and
Y=O, as suggested in Ref. 43 yields a worse model with a^0.28 and a mean
unsigned error of 0.95 kcal/mol.

It is noteworthy that the MD simulations, even without reparametrization
of the LIE equation, gives a good ranking of the rather diverse set of
thrombin inhibitors. The calculations thus reproduce, e.g., the large affinity
difference between the 5-form of TIa, which is a potent inhibitor in the nM

Table 1. Average ligand-surrounding interaction energies, electrostatic corrections and
observed binding free energies (kcal/mol) for the eight thrombin inhibitors (from Ref. 46). ̂  b

Ligand
TIa(R)
TIa (S)
TIb
T2a
T2b
T3
T4
Bza

/\/vdW\
\ V /bound

-63.67
-62.88
-62.31
-70.58
-68.71
-61.96
-65.55
-21.05

<VVdW)free

-32.86
-35.00
-34.87
-38.72
-33.54
-32.92
-34.84
-8.30

Abound

-153.96
-162.24
-133.65
-111.02
-142.68
-229.46
-142.37
-122.63

(Vel)free

-151.27
-154.34
-133.70
-106.18
-143.10
-222.29
-146.20
-116.93

AG6I. corr

0.28
0.28
0.33
0.38
0.35
0.02
0.22
0.04

AGobs

-9.9C

-11.3
-9.3
-10.7
-7.4
-10.8
-7.0
-8.1
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Figure 4. Calculated vs. observed free energies of binding for the eight thrombin complexes
ofRef. 46.

aThe typical convergence errors for the columns are ±0.3, ±0.5, ±0.8 and ±1.0 kcal/mol, respectively, yielding errors in
AGcaic of about ±1.0 kcal/mol (the errors for compound T3 are about twice as large). bAGel corr is the correction for the
ligand's interactions with distant neglected charged residues using Coulomb's law with e=80. cEstimate based on
comparison with TIa(S) in a thrombin clotting time assay.



region, and the least potent compound T4 that binds with only |uM affinity.
The recalibrated LIE equation gives binding free energies of -11.7 and -6.4
kcal/mol for these ligands, respectively, while the corresponding
experimental results are -11.3 and -7.0 kcal/mol. The main reason for this
large affinity difference can be traced to the different P2 and P3 fragments of
the two ligands, while the benzamidine moiety (Pl) unsurprisingly binds in
an essentially identical pose. Figure 5 shows that the azetidine (TIa) and 1,3-
dioxolane (T4) moieties reside in the same hydrophobic cavity (S2) in
thrombin lined by His57, Tyr60A, Trp60D and Leu99 and it is likely that the
larger desolvation effect associated with the more polar dioxolane group is
partly responsible for its lower binding strength.

Furthermore, the CH3 group in the phenylmethoxy fragment of TIa (S) is

perfectly positioned (both in the MD and crystal structures) in another
hydrophobic cavity (S3) created by Leu99, He 174 and Trp215, while T4
lacks the methoxy substituent. However, the methyl group of T4 appears to
play a similar role, but does not quite reach the bottom of the S3 cavity. The
relatively flexible hydroxymethyl group of TIa(S) apparently also
contributes to the affinity by several possible H-bond interactions, both to
the protein and to water molecules

It is also encouraging that the calculations reproduce the stereospecificity
of the two enantiomers of TIa. Here the predicted binding free energy
difference is 2.1 kcal/mol in favor of the S-enantiomer while the
experimental difference is roughly 1.4 kcal/mol. The structures of these

Figure 5. Stereo view of two MD snapshots showing the thrombin complexes with TIa(S)
(light) and T4 (dark). The azetidine and dioxolane groups reside in the cavity to the left of
Tyr60A.46



complexes show that the two chain directions extending from the chiral
center superimpose well while the main difference is found in the position of
the hydroxymethyl moiety. The difference in affinity of the enantiomers
does not appear due to different interactions with the enzyme which are
essentially the same, but rather to increased intramolecular strain in the R-
enantiomer. That is, the interactions of the rest of the inhibitor seem to
dictate a conformation where the hydroxymethyl group is nearly in the same
plane as the adjacent phenyl ring with accompanying strain as a result.

The results for thrombin show that our previous parametrization of the
LIE coefficients holds rather well in this case, provided that a constant term
of -2.9 kcal/mol is added. At present it is not clear to us why thrombin would
require such a constant term while, e.g., trypsin does not, but this issue is
currently under investigation (see also Ref. 47 for a discussion of thrombin
versus trypsin). Furthermore, one should note that with our computational
procedures and the Gromos87 force field the results for thrombin inhibitors
differ from those of Ref. 35 as well as Ref. 43. That is to say, three
independent studies involving thrombin inhibitors have arrived at
significantly different parametrizations of the LIE equation, that in all cases
reproduce the experimental data well. It therefore seems clear that the
differences in the computational procedures have a definite effect on the
parameters of the binding energy approximation.

5. SOME TECHNICAL ASPECTS

One of the most critical technical issues regarding LIE type of
calculations seems to be the treatment of electrostatic interactions, at least
for charged ligands. These problems were discussed in Ref. 19 using the
trypsin-benzamidine complex as an illustration. The starting point was then
that one should expect, or require, that the electrostatic free energies
calculated with the LIE method have some physical meaning, even in

absolute terms. This is basically equivalent to saying that (3( Vel ) for the

bound and free states should be a good approximation to the corresponding
(intermolecular) "charging free energies" that would be obtained if
sufficiently accurate FEP calculations could be carried out. Of course, one
can treat the whole LIE approach as a QSAR-like model and not ascribe any
deeper meaning to the binding contribution from the electrostatic term, and
this might work fine, but it seems worth to try to elicit the actual energetic
relationships involved.

There are several separate problems involved in trying to obtain accurate
electrostatic free energies for charged groups from simulations of the type
discussed herein. The most important of these can tentatively be summarized



as follows, (i) In order for A(V^5) for a charged compound to be a

meaningful quantity, the net charge of the medium surrounding the ligand,
within its interaction range (e.g., a possible cutoff), in the bound and free
states must be equal.10' 19 This is because the contribution to the electrostatic
solvation energy from the medium outside the ligand "interaction sphere"
(Born terms) otherwise will be unequal in the two simulations. So, if the
receptor has a non-zero net charge within this interaction sphere then this
charge must either be neutralized or ions must be added in the free (solvent)
simulation.10' 19 (U) The use of cutoffs for, not only the ligand interactions,
but also those of the surroundings (protein-protein, protein-water and water-
water) can have a significant effect on the energetics. Cutoffs lead to an
artificial overpolarization of the surrounding of a charge19' 48 and the
resulting effects on binding energetics are usually predictable (anti-binding).
(Hi) If a truncated or finite size system is used, which is often the case when
one wants to speed up the calculations, it is dangerous to have charged
groups to close to the boundary of the system. This is simply because there
will not be enough polar medium (water or protein dipoles) around such
groups to screen the electric fields properly, resulting in exaggerated
(vacuum-like) effects from such charges, (iv) For flexible ligands with
several ionized groups the convergence problems associated with the
electrostatic term can be severe, in particular in the free state where the
flexibility really dictates the amount of conformational sampling needed. An
example of this is provided by the DHFR simulations in Ref. 29 where
convergence in the bound state is reasonable due to the restricted space
available, but simulations of methotrexate in solution require very long
trajectories.

It may be appropriate here to point out that the points above are not
specific for LIE type of calculations but apply equally well to FEP
simulations. It is our feeling that the differences between some of the various
parametrizations of the LIE equation reported in the literature may in part
have their origin in varying computational procedures, particularly with
respect to points (i-iii) above.

While we have attempted to ascribe a physical meaning to the
electrostatic /3 coefficient of the LIE method, rather than using it as a free
parameter, some authors have chosen such an alternative.35' 36' 49 From the
QSAR or empirical scoring function perspective, any value of the weight
coefficients in the scoring equation should be allowed and it may well be
that such a model could turn out to be optimal in some cases. To take the
argument a step further one may, of course, question whether just the
electrostatic and van der Waals interaction energies are the 'best' quantities
to extract from MD or MC simulations in order to estimate binding
affinities. In the original formulation of the LIE method the terms in
Equation 3 were arrived at by the (at least seemingly) logical reasoning



outlined in the beginning of this chapter, but there might be other useful
descriptors for binding energetics.

Wall et al. have recently examined the LIE method in the context of
neuraminidase inhibitor binding.49 Of particular interest in that study is that a
statistical analysis of different possible descriptors for predicting the binding
affinity was carried out. These included both inter- and intramolecular
energies as well as changes in accessible surface areas of the ligand and
receptor. It is noteworthy that the results showed that neither intramolecular
energies nor surface areas were significant descriptors for the binding free
energy. Instead the statistical analysis yielded precisely the intermolecular
electrostatic and van der Waals terms as the most predictive components.

6. CONCLUSIONS

In this chapter we have tried to give an overview of ligand-receptor
binding affinity calculations using the linear interaction energy approach.
This method was developed as an alternative to more time-consuming free
energy perturbation calculations, in particular for predicting affinities of sets
of ligands that are too diverse for falling into the "small perturbation"
category required by the FEP method. The LIE approach was originally
based on the linear response assumption for electrostatics together with an
empirical scaling of non-polar interaction energies intended to capture non-
polar or hydrophobic binding contributions. Regardless of whether one
ascribes significance to the non-empirical linear response considerations
behind the electrostatic part of the calculated binding free energy, or whether
one simply regards the parameters of the LIE equation (Equation 3) as freely
optimizable, like in QSAR approaches, the method reveals some rather
unexpected features. That is, it came as somewhat of a surprise that (/)
binding free energies could be so reasonably predicted by just considering
the intermolecular interactions of the ligand and (ii) that absolute affinities,
and not only relative ones, could be reasonably well predicted from MD or
MC simulations, something that is not really within the scope of FEP
calculations.

The fact that only intermolecular energies are needed for the binding
estimate has often been interpreted in such a way that intramolecular
relaxation/strain, entropy, receptor desolvation etc. are neglected. We have
tried to illustrate here that, at least formally, this is not the case. Using ion
binding to crown ethers as an example one can easily see that these effects
are in principle embedded in the linear response approximation. Whether the
approximations involved in the LIE type of equation are accurate enough is
another matter. However, from the various reports on the method published
so far it appears that most systems, irrespective of force fields, simulation



procedures etc., lend themselves to fairly accurate parametrizations by the
LIE equation.

While binding in a variety of different receptor-ligand systems appears to
be well modelled by our LIE parameters given in Ref. 26, there seem to be
exceptions that are not due to different force fields or simulation setups. A
notable case here is the more or less entirely hydrophobic binding of
retinoids to RBP (cf. Figure 2), but also the reported calculations on
P450cam38 and avidin41 seem to point in the same direction. To summarize,
these results basically suggest that binding which is dominated by
hydrophobic interactions requires a different and significant higher value of
the non-polar scaling factor a, or the addition of a constant y. It therefore
seems worthwhile to try to understand whether such a scaling factor, or
constant, behaves in a systematic way and could be predicted without using
simulations on a training set. In this respect, the efforts of Kollman and
coworkers43 seem quite promising.

We have also argued here that in some cases the difference in simulation
procedures used in LIE studies are too drastic to allow any conclusions
regarding transferability of parameters to be drawn. This particularly
pertains to treatments of electrostatic interactions for charged ligands, since
they tend to be very large and sensitive to cutoff procedures and related
issues. On the other hand, if one regards the LIE coefficients just as free
parameters without significance for absolute solvation energies, the need to
get all the electrostatics modeled correctly becomes less crucial. Whether
this type of QSAR-like interpretation of the method or a more systematic
scheme of parameters will turn out to be most useful remains to be seen. At
any rate, it appears that this type methodology can be valuable in the ligand
screening/design process, when dealing with a limited number of
compounds, and give rather detailed information regarding the interactions
involved in binding.
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I. INTRODUCTION

As an integral component in the design of new therapeutics,
computational approaches that rapidly evaluate the ranking, or relative
binding free energy, of ligands play an important role in the search for lead
compounds and the subsequent refinement of these leads. More specifically,
the quantitative prediction of free energy changes of binding for an ensemble
of slightly varying inhibitors is of considerable assistance in guiding
synthetic strategies. For this purpose, methods associated with the prediction
of free energy differences of multiple compounds have been developed in
many laboratories.1"15

In this chapter we focus our review primarily on the free energy-based,
multiple-ligand screening methods, which are known as X-dynamics1"5 or
Chemical Monte Carlo/molecular dynamics (CMC/MD).6'7 In Section 2 we
provide a brief background of the basic formulation of conventional free
energy calculation methods with highlights on problems associated with this
approach and potential solutions. We then provide an overview of the
recently developed computational methods for ligand screening in Section 3.
Practical details for the application of free energy-based, multiple-ligand
screening methods follow in Section 4, including enhancements to these
methods such as the use of umbrella sampling, iterative techniques
employing the weighted histogram analysis method (WHAM), approaches to
restrict the configurations of the unbound ligands, and the incorporation of



continuum solvation models. Finally, applications of free energy-based,
multiple-ligand screening methods are commented on.

2. CONVENTIONAL FREE ENERGY METHODS

2.1 Background

All thermodynamic properties can be obtained from knowledge of the free
energy and its first derivative. Thus, one should focus on the free energy of
the molecular system when aiming to quantitatively predict the interactions
between putative inhibitors and a receptor. In this chapter we frame our
discussion of computational approaches to calculating free energies in the
canonical ensemble. In this ensemble the Helmholtz free energy, which we
denote as A throughout this chapter, is the appropriate thermodynamic
potential and is given by

A = -kBTlnjexp(-pV(X»dX

where V(X) is the potential energy, kB is the Boltzmann constant, T is the
absolute temperature and X represents the conformational space of the
ligand, receptor and "environment", e.g., solvent present in the calculation.
The exponential dependence of the Boltzmann factor on energy makes the
configurational integral notoriously slow to converge. To see this problem
more clearly, we re-write Equation 1 as follows16 equation

A = -kBT\n(exp(-pV))

The angle bracket in this expression symbolizes the configurational integral
of the canonical ensemble. In principle, Equation 2 provides a means of
calculating (excess) free energy from a single conventional simulation.
However, conventional simulations predominately sample the low-energy
regions of conformational space, i.e., in accordance with the Boltzmann
factor given in Equation 1, and never adequately sample higher energy states
that contribute most significantly to the ensemble average of the free energy
(as given by the "inverse-Boltzmann" factor in Equation 2). Therefore, the
calculation of free energy using a conventional simulation leads to poorly
converged, and consequently inaccurate, free energy estimates. Fortunately,
it is the free energy difference that is generally of greatest interest, and this
can be calculated using a coupling-parameter approach when the states are
similar, i.e. the energy difference is small for all important configurations.



2.2 Basic Formulation of Conventional Free Energy
Methods

Conventional free energy calculation methods, 17~19 such as the free energy
perturbation (FEP) and thermodynamic integration (TI) approaches, can be
utilized to evaluate the relative binding free energy between two ligands
according to the following thermodynamic cycle

where L0 and LI represent the free ligands in aqueous solution and L0R and
LiR represent the corresponding ligands complexed with the protein receptor
R. The relative binding free energy of the two ligands, AAA(^nJ)=AA]
- AA0=AA(Ij014nJ) - AA(S0Iv), is the difference between the relative free energy
of the ligands in the complexed state and that of the free ligands. The free
energy difference in each half of the thermodynamic cycle can be calculated
using the potential energy of a hybrid system, written as a linear function of
the two endpoint states and connected through a "chemical coordinate", the
coupling parameter A,

(3)

The free energy difference between a state with the value of X and the
initial state (A=O) is given by the FEP method17

AA = A(A) -A(O) = -kBT ln(exp(-04 V))0.

The angle bracket denotes that the configurational integral is taken over the
initial state. The conformational sampling indicated by Equation 4 is
generated according to the Boltzmann probability associated with the initial
state potential. As discussed in Section 2.1, convergence of conformational

AA(solv) AA(bound)



sampling has been a major issue in free energy calculations, and the
relationship shown in Equation 4 doesn't always lead to converged free
energy estimates. To ensure adequate sampling of the important
conformations, FEP calculations are generally limited to free energy
differences of less than 2 kcal/mol.18"20 However, the free energy differences
for many chemical and biological systems are larger than this. Therefore, a
multi-step approach is generally adopted. By summing over the intermediate
states along the X coordinate, the total free energy change is determined by

(5)

where the interval X=[O9I] has been divided into n small increments of Al.
An alternative approach to free energy calculations is the thermodynamic

integration (TI) method,18' 20 which considers the ensemble average of the
first derivative of the hybrid potential with respect to A at various values of A

(6)

Although these methods have been successfully applied to assess the
relative binding free energy in a number of protein-ligand systems,18' 21~26

they are computationally expensive because of time-consuming sampling of
nonphysical intermediate states. A typical calculation may take days to
weeks to complete. This computational expense has hindered the broad
application of conventional free energy based approaches to the drug design
process.

2.3 Formulation of the Umbrella Sampling Technique

While FEP and TI are, in principle, umbrella sampling methods, the more
conventional format in which we consider umbrella sampling is that used to
obtain the free energy along a "reaction coordinate", £, typically a
configurational coordinate. Here the "reactant" configuration and the
"product" configuration are represented by £ = O and £ = 7, respectively.
The Helmholtz free energy difference for a continuous coordinate, or the
reversible work required to carry the system from the reactant configuration
to the product configuration, is often referred to as the "potential of mean
force", W(£) and is derived from p(£), the probability density of the
system.27



W($=-kBTtop(&. (7)

As discussed earlier, inadequate sampling may occur if W(£) differs by more
than a few kcal/mol over the range of £ To overcome this problem, the
umbrella sampling technique28'29 has frequently been used to enhance the
sampling of conformational space along a reaction coordinate. In this
approach, the original potential V(x) is replaced by the modified potential
V(x)+ U(£). The auxiliary potential, or umbrella potential, U(£) is used to
flatten out the energy barriers along the reaction coordinate £, or to restrict
the sampling of the coordinate to a specific region of conformational space.
In the former case, a more uniformly distributed density function p*(£) can
be generated with a fixed amount of sampling because transitions between
the reactant and product configurations are now more facile. In the latter
case, the statistical sampling of important regions in the configurational
space of the reaction coordinate can be better controlled. In both cases, the
true probability density is recovered from the following equation

(8)

where the notation <...>* emphasizes that the ensemble average is being
taken over conformations biased by the modified potential function.

In many applications, a single biasing potential is not sufficient to cover
the whole range of £ and simultaneously produce good sampling. Thus a set
of restraining potentials, U*(£), are used to shift the local minima in the
desired direction. In this "windowing" approach, the potential of mean force,
W,{£), in each window takes the form

(9)

The difference constant C1 is

In order to achieve a uniformly good estimate of the potential of mean force,
the difference constants from successive simulation windows has to be
perfectly matched so as to make Wt{£) agree in the overlapping
regions.18' 20' 30 Optimal data combining methods such as the weighted
histogram analysis method (WHAM) can be used to optimize links between



simulations and produce the best possible estimation of free
energies.28'29' 31~35 It is clear that umbrella sampling is a powerful technique
and should be of use in sampling "chemical space" as well as configurational
space. We discuss an extension of umbrella sampling to "chemical
coordinates" in Section 4.2.

3. OVERVIEW OF APPROXIMATE APPROACHES
FOR MULTIPLE-LIGAND SCREENING

When relative binding free energies of multiple ligands are to be
evaluated, FEP and TI require considerable amounts of time. This is because
of the multi-step approach necessary to compute incremental free energy
changes and the many pairwise comparisons that must be done.
Alternatively, methods based on favorable interaction energies have been
developed to rapidly approximate the free energy.36"43 Although such
approaches are relatively rapid, they are inherently incomplete since the
entropy contribution to the free energy is (at least partially) ignored. Because
of the potential importance of such entropic effects in chemical and
biological systems, the development of new methodology for free energy
calculations is an area of active research. Recently, statistical mechanical "ab
initio" free energy-based computational methods have been developed to
screen out the better binders from a group of candidate compounds.1"7' 9"15

These methods will be briefly reviewed in Section 4. In the following we
provide an overview of the interaction energy based approaches.

3.1 Linear Interaction Approximation

The linear interaction approximation (LIA) was introduced by Aqvist and
co-workers44"48 to calculate absolute binding free energies via MD
simulations. A version of the LIA equation takes the following form

AA(bind) = /3(AECoulomb) + a(4EL_> y<ASA>.

In this expression, <AE> is the energy difference between average
contributions from ligand-solvent and ligand-protein interactions for the
bound and unbound states. The scaling parameter for electrostatic
interactions, /3, is taken to be 0.5, from theories of ion solvation in which
there is a linear response of the solvent to the electrostatic field of the ion.
The scaling coefficient on the Lennard-Jones terms, a, varies from system to
system. Therefore, a large number of ligands with known binding affinity
have to be used to obtain the proper coefficients. Carlson and Jorgensen49



also added a penalty for cavitation, which is linearly related to the change in
solvent-accessible surface area (SA) upon binding. This term was added to
obtain positive free energies of hydration for molecules such as
hydrocarbons. LIA has been successfully applied to a number of protein-
ligands systems.44"47'49"51 However, the values of /3 and a seem to depend on
both the system and the force field.

3.2 Extrapolation from a Single Reference

An alternative approach, which is rooted in the FEP methodology
described above, involves the extrapolation of free energy differences from a
single reference. The method was introduced by Liu, Mark, and van
Gunsteren for the estimation of free energies of related compounds.14'52 In
implementing this approach, the incorporation of a soft-core potential leads
to an expansion in the sampling of configurations for related ligands and
consequently the range of correctly estimated free energy differences.12

Mordasini and McCammon demonstrated the usefulness of the extrapolation
method for similar sized molecules and the difficulties of obtaining reliable
results for different sized molecules.8

Radmer and Kollman have introduced an approach they call PROFEC
(Pictorial Representation of Free Energy Components),15 as a tool for
optimizing ligand affinity based on extrapolations from a single dynamics
simulation. The PROFEC contour maps can be used to visualize how the
free energy changes when additional particles are added to a residue of the
protein or to the ligand. The contour map is generated by evaluating the
insertion free energy of a test particle at various grid points near the residue
of interest, using coordinates from a molecular dynamics simulation

M(g) = -kBT ln(exp(-0AV(g)))0

where g is the coordinate of a grid point, AA is the free energy cost to insert
the test particle at that point, AV(g) is the interaction energy between the test
particle and the system and the angle bracket indicates an average with
respect to the reference state. PROFEC has been used to modify a ligand to
improve its binding affinity7' 15 and selectivity,53 as well as to increase
protein stability.54 Recently, Pearlman developed a variant of this approach,
the floating independent reference frame (FIRF), which may be applicable to
flexible ligands.11



3.3 LIA with Continuum Solvent

The molecular-mechanics with Poisson-Boltzmann/surface area approach
(MM/PBSA)13 is a semi-empirical method to calculate free energy
differences between protein-ligand complexes,10 protein-protein complexes,9

and different forms of DNA and RNA.13' 55 The basic approach used in
MM/PBSA follows the procedures used to analyze peptide and protein
conformations as outlined by Yang and Honig and Osapay et al.56'57 Shen
and co-workers demonstrated that the use of a single conformation together
with the Poisson-Boltzmann electrostatic and surface-area-dependent terms
in MM/PBSA can lead to successful estimation of the binding free energies
for a number of ligands.58' 59 In the MM/PBSA method, the binding free
energies are estimated from

M - AA -(AAligand + AA receptor \bind) ~ *-*\ bound) \<-*\solv) ^ **\sol\>) ) (\T\

and

M*M> = fa*™) +( A*™)+(AO - T(AS).

The solute configurations are sampled as "snap-shots" from a molecular
dynamics simulation calculated using explicit solvent. For each solute
configuration, the gas-phase energy, Egas, is calculated without any solvent.
Free energies of solvation are then re-introduced by using a Poisson-
Boltzmann calculation for the electrostatic term (APB) and a surface-area-
dependent term (ASA) for non-electrostatic contributions. Solute entropy
contributions are estimated from (quasi-) harmonic analysis. The differences
(AEg059 AAp8, and A45A) are calculated between the bound state and unbound
states as shown in Equation 12. Variants of the MM/PBSA approach such as
"computational alanine scanning"9 or "computational fluorine scanning"10

were also introduced and shown to be useful techniques to explore
sensitivity of a given receptor site (or amino acid site in a protein) to changes
in composition.



4. FREE ENERGY BASED MULTIPLE-LIGAND
SCREENING METHODS: ^-DYNAMICS AND
CMCfMD

4.1 Basic Formulation

The free energy-based, multiple-ligand screening methods are an
extension of the coupling-parameter approach used in thermodynamic
cycles. They differ, however, in the following aspects: (1) In the coupling-
parameter approach a single A. is used to transform one ligand into another,
whereas in the free energy-based, multiple-ligand screening methods,
multiple A,s (each corresponding to a given ligand) are used. Because of this
feature, the binding free energies of multiple ligands are evaluated
simultaneously. (2) In FEP/TI, A, is fixed during the simulation. In the free
energy-based, multiple-ligand screening methods, the Xs evolve according to
"equations of motion" via molecular dynamics or Monte Carlo methods. In
this section, we will briefly elaborate on the main ideas and formulas
associated with these approaches.

For a protein and a total of L ligands, a hybrid potential function is
constructed as follows

(14)

with

In Equation 14, / indicates the /th ligand, X and Jt1- denote the coordinates of
environment atoms and ligand i respectively, Venv is the potential energy
involving the environment atoms only (i.e., those atoms which are common
to all protein-ligand pairs), V1- is the interaction energy involving ligand i in
the protein-ligand complex state and A1- is the coupling parameter associated
with ligand /. The coupling parameter X is replaced by A2 in order to avoid
non-physical negative values in the A-dynamics simulations.3

By properly coupling the system to a heat bath, the configurational
partition function of the hybrid potential is canonical

(15)



FI is a precalculated biasing potential, which may correspond to the relative
free energy of ligand / in the unbound state (relative solvation free energy).
In many cases, F/ may be rapidly evaluated using continuum solvation
models such as the Poisson-Boltzmann or generalized Born methods.59"65

Note that F,- can also serve as a biasing potential to achieve better sampling
of the phase space of interest, and faster convergence of the calculations as
shown later.

The difference in binding free energy (AAAj.^) between arbitrarily chosen
ligands i and j can be obtained from3' 66 P0(A*=1,{ /C,=0}), which
corresponds to the amount of time ligand i occupies A^=I during the
simulation, is an indicator of the binding free energy of that ligand to the
protein receptor. Because the reference free energy appears in the hybrid
potential of the protein-ligand complexed state, the resulting free energy
from Equation 16 directly corresponds to the binding free energy difference.
Therefore, these methods tend to provide better sampling for ligands that
have more favorable binding free energies. Furthermore, such calculations
often result in smaller statistical errors for the most favored compounds.
There exists an analogy between this formalism and competitive binding
experiments carried out in the laboratory. In fact, a competitive binding
experiment usually consists of different ligands and a single receptor in
solution, and the best ligands are determined by the probability that a ligand
is bound to the receptor.

(16)

In the X-dynamics method,1 both X variables (coupling parameters) and
atomic coordinates are propagated using molecular dynamics (MD). The
dynamics of the system is generated from an extended Hamiltonian67'68



(17)

Tx and TX are the kinetic energies of the atomic coordinates and A, variables,
respectively. The Xs are treated as volumeless particles with mass mx. Since
the A, variables are associated with the "chemical reaction coordinates", the
A,-dynamics method can utilize the power of specific biasing potentials in the
umbrella sampling method to overcome sampling problems that require
conventional FEP calculations to be performed in multiple steps.

Instead of using MD, the A variables may also be sampled stochastically.
In the hybrid CMC/MD approach, Metropolis Monte Carlo69 is used to
evolve the A, variables and molecular dynamics is used to evolve the atomic
coordinates. The Metropolis Monte Carlo criteria leads to the generation of a
canonical ensemble of the ligands when the following transition probability
is used

T^minfLexpHfelV^))
(LQ)

where AV^ is defined by (V, - V1-) and 7V>/ is the transition probability of a
move from ligand i to j. Both the A-dynamics method and the hybrid
MC/MD method give the same configurational partition functions (Equation
15). Therefore Equation 16 can be applied to CMC/MD as well. The
MC/MD method was originally presented by Bennett70 and Tidor.66'71 The
straightforward extension of this approach to multiple ligands, which is
called Chemical MC/MD, was carried out by Pitera & Kollman.6

4.2 Enhancements to the Free Energy Based Multiple-
Ligand Screening Methods

4.2.1 Efficient Sampling of the Chemical Coordinates

In the MC/MD method, the stochastic sampling by MC steps permit one
to restrict the sampling of chemical space, i.e., the space of {A,}. For
example, Kollman and co-workers6'7 limit their chemical sampling only to
transitions between the end points in their CMC/MD simulations

(19)



This condition allows sampling of the end states of interest exclusively.
However, inefficient sampling of the chemical states, such as trapping in one
end state, may occur. This is prevalent when there is a large free energy gap
between the ligands. Trapping may, however, be partially avoided by the
addition of a few chosen intermediate states to bridge the end points. In the
A,-dynamics method, the X-variables are treated as continuous variables, so
smooth transitions between the end points are expected, and generally
observed.

As shown in Equation 5, the conventional free energy calculation
methods such as FEP and TI require the introduction of intermediate states
to obtain converged free energy differences between the end points. In the
free energy-based, multiple-ligand screening methods, some ligands can
serve as the intermediate states connecting otherwise dissimilar end points.
Nevertheless, there are potential problems. For example, if the relative free
energy of the intermediate states is lower than that of the end points, most of
the computational time will be spent exploring unphysical intermediate
states. Therefore the relative free energy of the end points will be less well
determined. Conversely, higher energy intermediate states require rare
transitions in the chemical coordinates and therefore result in slowed
convergence.

The umbrella sampling technique28' 29 can be utilized to overcome these
difficulties. An umbrella potential along the A, coordinate can be expressed
as

Vum = V0(X, W, {A})+ ^S1(A,)
/=i (^v)

where the X-dependent potential term, B1(A1J, will serve as an umbrella (or a
biasing) potential to limit the range of {X} and to increase the rate of
transitions among potential wells separated by high-energy barriers. A
harmonic potential is commonly used to flatten the energy surface and
enhance sampling along the chemical coordinate A,

B1(K) ^k1(Z1 -B^ (2i)

where O < B1
0 < 1. The condition (t/ > O) can be used to increase the

transition between the end points, while &, < O tends to increase sampling of
the end points. The unbiased probability of the bound states can be
calculated by using the umbrella sampling formalism (Equation 8)



where the angle bracket denotes the ensemble average over the biased
distribution and 9(x) is a step function, which is unity when its argument is
greater than zero but is otherwise zero. By using the probability of the bound
states, AAA is obtained from

(22)

(23)

AB1 = B1..(% = 1) - £,(A, = O) and Pum is the probability function of the hybrid
potential with the umbrella potential. If (ABj = ABj), the effect of the
umbrella potential will be canceled completely. An iterative procedure is
sometimes required to produce complete sampling of important
configurations along the chemical coordinates. In such cases, WHAM,



discussed in the next section, can be used to process the sampling data in an
efficient and general way.

Another approach for efficient sampling along the chemical coordinates
was suggested by Tidor.66 In his work, simulated annealing was used to
sample the chemical variables on the free energy surface of the system (e.g.,
high temperature for the chemical variables and low temperature for
Cartesian variables). In a demonstration calculation, the method was applied
to simple molecules to select the one with the most favorable solvation
energy. Agreement between the observed and calculated trends was obtained

4.2.2 Iterative Techniques Using WHAM

An iterative procedure using WHAM31"35 was developed to improve
sampling of the chemical space, and therefore to make free energy
calculations converge more rapidly. The use of this method in conjunction
with X-dynamics is described below.3 It's extension to MC/MD is
straightforward.

Since {A,} is treated as a dynamic variable, just as the atomic coordinates,
we use XTot to denote the phase space that encompasses X, {X}, and {x}. Thus
the hybrid potential in Equation 14 can be rewritten as

(24)
where

(25)

When this potential is utilized in a series of X-dynamics, or CMC/MD
simulations, the WHAM equations for multiple reaction coordinates and at
constant temperature can be readily applied to obtain the best estimate of
free energy using all of the data from n previous simulations

(26)

(27)

After the nth iteration, the estimated free energy relative to the reference free
energy (F") is



(28)

and a new biasing potential for the next iteration is estimated as

F1+1 =A** 7V=O1- (29)

The above procedure can be used to extract the free energy, A^ of each
ligand.

Since this approach biases the sampling of different ligands in the
receptor by successively better estimates of their relative binding free
energy, the bound conformations of all the ligands are expected to be
sampled equally well after some number of cycles of simulation. Sometimes
an additional term A1 may also be added to Equation 29 to either enhance or
reduce sampling of a state dominated by ligand i. As in all iterative
procedures, an initial trial value of F/ must be given. If a poor initial free
energy is used, then the states with F/ < A1 will be sampled less frequently
than they would with F/ = A1. Similarly, states with F/ > At will be sampled
more frequently. The approach was also applied with the MC/MD method
by Kollman and co-workers, which they renamed adapted Chemical
MC/MD method.7

In the iterative approach using a constant bias {F}, the free energy barrier
is reduced each successive iteration and therefore produces complete
sampling of important configurations along the coupling parameter (i.e.,
reaction coordinates). Furthermore, more complicated umbrella potentials
(e.g. see Equation 21) may also be applied with the iterative procedure.

4.2.3 Sampling of the Unselected Ligands in the Multiple Topology
Model

When a single-topology representation of the ligand is used, i.e., one in
which changing atoms are all connected to a common framework, the
configuration of the unbound ligands is determined automatically. No
ambiguity exists regarding the choice of the configuration of the unbound
ligands with X equal to zero, making the choice of proper MC steps
straightforward. To see this, consider the detailed balance condition of MC
for moves between ligand / and j using the single topology

(30)



(3D

Oi is the probability of selecting the ligand / and T,.>7 is the transition
probability of a move from ligand / toy. It is straightforward to demonstrate
that the basic Metropolis scheme shown in Equation 18 obeys this
condition.69 However, the assignment of a single topology model for
multiple ligands is a complicated problem, especially when the ligands have
the different shapes. Furthermore, inadequate assignment of the common
features in a single topology leads to small overlap of the important
configurations between the selected ligand and unselected ones. In general,
multiple independent topologies have been used for the multiple-ligand
screening methods to avoid these problems.4"7

In the multiple-topology model, the unbound ligands tend to move
significantly from their preferred binding orientations and explore high-
energy regions of conformation space.4 This results in inefficient sampling
of chemical space. In CMC/MD simulations,7'53 the problem was addressed
by the addition of a harmonic potential between the centers of mass of all
ligands and the imposition of "ghost" forces on the unbound ligands. The
ligand "ghost" forces are those exerted on the unbound ligands by the
environment atoms. However, in the approach of Kollman and co-workers,
the unbound ligands remain invisible to the environment atoms. The effect
of the harmonic potential is cancelled out in the calculation of AAA, and thus
moves with only this added potential satisfy the detailed balance condition.
On the other hand, it is difficult to correct for the effect of the "ghost"
forces, since they do not have a physical origin. To understand the effect of
"ghost" forces on MCfMD steps and statistical averages arising from such
calculations, we consider the special condition in which all environment
atoms are fixed. With this idealization, the "ghost" forces can be recognized
as those coming from a restraining potential, (/?/), arising from the fixed
environment. For this situation, the probability of selecting the ligand i with
the coordinates Jt/ (a/fe)) becomes

(32)

The condition of detailed balance for an MC step between ligand i with
coordinate of Jt,- and ligand j with coordinate of Jt/ can be written as follows



where AR,.>7 = RJ(XJ) - RI(XI), AY^ = YJ(XJ) - YI(XI) and r/.>; is the transition
probability of a move from ligand / with jc,- to ligand j with Xj. One transition
rule that obeys the detailed balance condition and yields the canonical
ensemble in this case is

(33)

(34)

(35)

If, in fact, the environment atoms are allowed to move, the rigorous
estimation of A/_>y is unclear. Kollman and co-workers have assumed that the
effect of the "ghost" forces cancel for comparisons of similar ligands, and
used a transition rule following Equation 18 instead of Equation 35 in their
CMC/MD simulations.7'53 This approximation was demonstrated for some
systems to be at least qualitatively reasonable.6'7

In order to overcome the problems that can occur in sampling
configurations of the unbound ligands when using a multiple topology
model, we consider two types of restraining potentials. For simplicity, both
restraining potentials disappear at the bound states

/?;a*=D = /?"(^=D = 0 (36)

The first type of the restraining potential for ligand i (/?,') is defined as
function of X, jc/, and, A1-.

(37)



With a straightforward application of the umbrella sampling formalism, AAA
is obtained from

(38)

The summation is taken over the bound state (X2=!) of the A,-dynamics
trajectory, including the restraining potential. Unfortunately, with this
biasing potential the effect of the restraint OR1-') becomes too large to yield
reasonable convergence as the number of the unbound ligands increases.

Another type of restraining potential for ligand i (T?,") is defined as a
function of jc,- and A1-. In this case, the restraining potential does not depend
directly on the environment atom coordinates

(39)

Because /? = O when X] = 7, and none of the restraining potentials depend
on the environment atoms, the partition function for the system when A* = 1
can be expressed as follows

Using this relationship, AAA can be written as two terms. The first term
involves the probability that a ligand is in the dominant state (A2= 7) during
the A-dynamics simulation and in the presence of the restraining potential.
The second term corresponds to the partition function of the restraining
potential (the umbrella correction)



(41)

The second term in Equation 41 is constant and may be estimated using free
energy simulation or semi-empirical methods. When the ligands are similar
and the entropy terms associated with the restraining potential are expected
to cancel, the second term can be approximated by an internal energy
difference

(42)

This internal energy can be estimated by using the trajectory of the free
energy-based, multiple-ligand screening simulations

(43)

The restraining potential should be chosen carefully since the important
configurations for {/?/"} should have large overlap with those for [Vi]. The
interaction potential {V,} for the average structure of the environment atoms
is a reasonable choice for {/?,"}. In fact, it is an optimal choice to bias the
ligands that do not have large X-values because it restrains these ligands to
the vicinity of the receptor. To represent fluctuations in this mean-receptor
potential field, soft-core representations of the van der Waals or electrostatic
interactions can be used, or the overall potential field can be scaled. Such an
approach has been implemented and used by Banba and Brooks in A,-
dynamics calculations of binding free energies in a protein-ligand system.4



4.2.4 Incorporation of Continuum Solvent Models Using a
Generalized Born Approach

The use of continuum solvent models will decrease the number of degrees
of freedom in the system, and consequently accelerate the convergence of
thermodynamic properties by eliminating the ensemble average of the
solvent molecules. Moreover, the absence of collisions between the unbound
ligands and mobile solvent enhances the overlap of the important
configurations. However, conventional numerical solutions to the Poisson-
Boltzmann equations are too slow for practical applications and one must
use approximate analytical representations such as the generalized Born
model originally proposed by Still and co-workers.61' 72' 73 Since the
electrostatic solvation energy and its derivative can be calculated
analytically in the generalized Born model, it may be applied to
configurational sampling using molecular dynamics.60'74"80

In the generalized Born model, the solvent polarization energy, Gpoi, is
approximated by the following equation

(44)

2

with D =—-— atoms i and 7, respectively, r/, represents the distance1 4(X1CCj

between atoms / and 7, and at and a/ are "generalized Born" radii of atoms /
and j in a specific molecular environment, a, is computed from the
relationship

OL =-166/G00npol,< (45)

with Gpoi,i taken from a linearized form of Still's original empirical formula74

(46)

The values of A,a and Pi-Ps can be determined by fits to Poisson-Boltzmann
solvation energies for a database of compounds and



The incorporation of the generalized Born model into free energy
calculation methods using FEP/TI and X-dynamics was carried out by Banba
and Brooks.81 They define the electrostatic solvation energy for the hybrid
system as follows

(47)

(48)

where env represents the environment atoms and k denotes the ligand
number. The effective Born radius for the environment atoms can be
calculated from Equations 45 and 49,and the effective Born radii for the
atoms belonging to ligand k are calculated from Equations 45 and 50

(49)

(50)



These definitions are interpreted as follows: environment atoms recognize
the average weighted states of the ligands; each ligand recognizes only the
environment atoms and itself with the full scale for estimation of its
effective Born radius. Alternate definitions of the electrostatic solvation
energy and the effective Born radius at the intermediate states are also
possible.81

Non-electrostatic terms, comprising the solvent-solvent cavity term and
solute-solvent van der Waals term, may be linearly related to solvent-
accessible surface area (SA)

^=K,,,. +K^=SXSA ....
£X,Xi P1/

where SA, is the total solvent-accessible surface area of atom / and <7, is an
empirical atomic solvation parameter for atom i. Although VSA,I and the
electrostatic solvation energy can be calculated at intermediate states, the
calculation of the SA and its first derivative at every MD step is significantly
more time consuming.

4.3 Application of Multiple-Ligand Free Energy
Methods

The basic formalism of the X-dynamics method has taken various forms
in its application to problems of interest. In an early prototype calculation to
assess umbrella sampling in chemical coordinates, the A-dynamics method
was used to evaluate the relative free energy of hydration for a set of small
molecules which included both nonpolar (C2Hs,) and polar (CHsOH,
CH3SH, and CH3CN) solutes.1 By assigning a separate X variable to the
Lennard-Jones and Coulomb interactions, a linear partition of the potential
part of the hybrid Hamiltonian was constructed

VMPA>(1-AXC%)+W°U'M
+ (l-^to+WW+V^) (52)

In the situation where the transformation involved barrier crossing, e.g.,
associated with a nonpolar to polar transformation, the computational time
was substantially reduced using the ^--dynamics formalism, compared with a
standard FEP method. This is because X-dynamics searches for alternative
lower free energy pathways; the coupling parameters (A/ and A2) evolve in
the canonical ensemble independently and find a smoother path then when
constrained to move as A; = A2. Furthermore, a biasing potential in the form



of K(Aj-^)2 was used to reduce the barrier between the two end states, and
therefore enhances sampling and accelerates convergence.

The A,-dynamics method has also been successfully applied to evaluate the
relative binding free energies for a number of biologically and chemically
relevant systems. The calculation of the relative binding free energy of
benzamidine and its derivatives to trypsin represent the first application of A,-
dynamics to a biological system. The particular inhibitors studied were
benzamidine, p-aminobenzamidine, p-methylbenzamidine, and p-
chlorobenzamidine.2' 3 Rapid screening and detailed structure-function
paradigms for utilization of X-dynamics were explored in both qualitative
and quantitative calculations. The method yielded the correct ranking of
binding affinities and required less than lOOps of simulation, even though
the binding affinity between some of the inhibitors differed by only -0.5
kcal/mol. The results were validated by comparison to conventional FEP
calculations. The calculated binding free energy differed from FEP by less
than 0.5 kcal/mol. The iterative technique using the multiple reaction
coordinate WHAM discussed in 4.2.2. was applied to obtain an optimal
estimate of the biasing potentials, which was directly related to the binding
free energy differences. The results were compared with those from standard
FEP calculations. For a similar level of precision, the X-dynamics method
was two times more efficient. The A-dynamics method with the generalized
Born model (see 4.2.4.) was also applied to the same system.81 The implicit
solvent model showed qualitative agreement with explicit water calculations.
In this study, the continuum solvent model using the GB approach also
accelerated the convergence of the free energies calculations since the
average over the solvent degrees of freedom was implicitly incorporated.
Non-electrostatic terms (Equation 51) were estimated from trajectories using
the umbrella sampling.

In a recent application, the relative binding free energy and binding
orientation of the ligands of cytochrome c peroxidase were evaluated.4' 5

Using the revised hybrid potential energy function (Equation 40), relatively
short simulations yielded reasonable estimates of the binding affinity of the
ligands compared with both experiment and FEP calculations. Long-time A,-
dynamics simulations revealed that better ligands tend to have smaller
statistical errors in the estimates of their binding free energy, which is
appropriate for screening out plausible ligands from all candidates.
Furthermore, a X-dynamics simulation starting from random initial
orientations, in which some ligands take significantly different orientations
as compared with those from the X-ray structure, successfully sampled the
X-ray crystallographic orientations in all ligands. Ligands sampled by
conventional MD remained trapped in the local minima from which they
started. Analysis of the X-dynamics trajectory of the ligands revealed that for
some ligands alternative-binding orientations were also observed.



A variant of the X-dynamics method, CMC/MD (Chemical Monte
Carlo/Molecular Dynamics) has been applied to predict the binding of small
molecules to Rebek's "tennis ball" host.6 A total of nine guests binding to
the host were evaluated. CH2F2 was predicted to bind the best, which is
supported by standard free energy calculations. The method was also applied
to rank 13 HIV-RT TffiO derivatives.7 In this study, the iterative procedure
using WHAM played an essential role for efficient sampling of the chemical
space. The calculated ranking agreed well with experiment, with average
errors in the binding free energies of 1 kcal/mol.

5. SUMMARY AND OUTLOOK

In this chapter, we have reviewed newly developed free energy-based,
multiple-ligand screening methods. These methods may be used either to
rapidly identify ligands with the most favorable binding free energy or to
estimate specific changes in free energy within a congeneric series. Since X-
dynamics and the related family of methods work based on the binding free
energy of the ligands instead of the interaction energy, they provide a more
accurate assessment of binding affinity. Species whose binding free energies
differ by more than a few kcal/mol from the most favorable binder can be
rapidly screened out within a few tens of picoseconds of simulation because
they do not compete for interactions with the receptor. Furthermore,
computations utilizing this approach with multiple ligands are not
anticipated to be overly demanding. The total computation time is not
expected to increase with the total number of ligands because only the few
favorable binders are able to compete for the A2 = 7 state. This situation is in
contrast to that of conventional free energy calculation methods, where a
typical calculation of relative binding free energy between two ligands takes
hundreds of picoseconds of simulation time and increases in proportion to
the number of ligands. Although the intrinsic problems of the FEP method,
such as requiring proper overlap of the important configurations, still exists
in the X-dynamics-based methods, they can be minimized by using umbrella
sampling and/or iterative procedures with WHAM. Moreover, iterative
procedures such as WHAM may also be applied to yield quantitative free
energy differences for all ligands.

Free energy-based, multiple-ligand screening methods should fill the gap
between empirical methods, and theoretically rigorous but computationally
intensive methods such as FEP and TI. For example, they can be applied to
design a combinatorial library or funnel down the large number of hits
detected by the empirical methods. The incorporation of continuum solvent
representations such as the generalized Born model into free energy-based,
multiple-ligand screening methods accelerates the computational screening



process and has a promising future for drug lead optimization. Given this
renewal of effort in "computational alchemy" and the encouraging findings
from early studies, we can anticipate that rational free energy-based
computational approaches to drug discovery and optimization will re-emerge
from the tool chest and move to the desktop of the computational medicinal
chemist.
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Chapter 11

Ligand Interaction Scanning Using Free Energy
Calculations

Mark D. Erion and M. Kami Reddy
Metabasis Therapeutics, Inc., San Diego, CA 92121

I. INTRODUCTION

The free energy perturbation (FEP) approach in conjunction with
molecular dynamics represents a theoretically precise method for obtaining
relative binding free energy differences.1'2 The high accuracy of FEP-based
calculations relative to less rigorous approaches has led to its use in
numerous structure-function studies designed to identify the key molecular
factors that influence ligand binding affinity and enzyme catalysis. For
example, Bash et al. showed that solvation plays a large role in the binding
affinity of phosphorus-containing inhibitors of the bacterial protease
thermolysin.3 Erion and Reddy showed that FEP calculations could
accurately predict the extent of heteroaromatic base hydration, which proved
to be a dominating factor in the binding of certain purine analogues to
adenosine deaminase.4 FEP calculations also confirmed that a hydroxyl
group was essential for high binding affinity for certain HFV-I protease
inhibitors5 and a series of adenosine deaminase inhibitors.6 Last, FEP
calculations have been used to confirm the importance of certain active-site
residues. For example, Kollman studied the role of several active-site
residues of the serine protease subtilisin using the FEP approach. The
calculated free energy differences for both the Asnl55Ala mutant7 and the
Thr220Ala mutant8 relative to wild-type enzyme were consistent with
previously reported site-directed mutagenesis studies, which showed that
both Asnl55 and Thr220 were important for substrate binding and enzyme
catalysis.



Despite these successes, the FEP method has not gained widespread use
within the pharmaceutical industry. Probably the greatest factor that limits
its use is that high accuracy is achieved only when calculating binding free
energy differences for structurally-related inhibitors. Accordingly, the
technique has little value in de novo drug design or for comparative analysis
of compounds that differ by more than a few atoms. Another limitation is
the substantial computer power required for FEP calculations, which
prevents analysis of large sets of compounds in a high throughput manner.

To rectify this problem, efforts are underway to develop methods that
predict binding free energies, at least qualitatively, for a medium-sized
compound library (100-200 compounds) over a relatively short time period.
The most promising methods to date include Linear Interaction Energy (LIE)
analysis9, Molecular Mechanics Poisson Boltzmann Surface Area (MM-
PBSA)10, the lambda dynamics approach11 and the chemical Monte
Carlo/Molecular dynamics approach12. Success using these methods will
depend on their ability to accurately discriminate between structurally
diverse compound series and thereby help prioritize the compound series for
the medicinal chemists.

Recently, we reported an alternative strategy for using the FEP method in
drug design and lead optimization.13 The strategy entails using a series of
FEP calculations to scan binding site interactions and obtain a highly
accurate rank-ordering of their strength and overall contribution to ligand
binding affinity. The binding site map generated from these calculations is
expected to help pinpoint specific interactions within the binding site that
contribute the most to ligand binding affinity. This information can help
guide the design of more potent and specific ligands, since it reveals sites on
the ligand that form interactions important for binding affinity and therefore
should be retained in some form in the new analogue as well as sites on the
ligand that interact weakly with the binding site and therefore can be
changed in order to optimize the binding site interactions and improve
overall ligand binding affinity.

1.1 Experimental Methods for Characterizing Binding
Site Interactions

A high resolution X-ray structure of a protein-ligand complex provides a
detailed map of the binding site interactions, but fails to reveal information
regarding their relative contributions to binding affinity. This is especially
true for hydrogen bonds whose strength varies from 0-5 kcal/mol depending
on the bond distance and bond angle, as well as the electronic nature of the
donor and acceptor groups.14 In addition, the local environment is often an
important factor with the strongest hydrogen bonds formed in poorly
solvated regions of the binding site cavity.



Since the contribution of individual hydrogen bonds to ligand binding
affinity is considered valuable information for the design of new ligands,
analogues of the lead inhibitor are frequently prepared wherein the
individual heteroatoms that form hydrogen bonds with the protein are
replaced with non-hydrogen bonding atoms or substituents. For similar
reasons, site-directed mutagenesis is often used to replace binding site
residues containing side-chains that interact with the ligand through a
hydrogen bond with residues whose side-chains are incapable of forming
hydrogen bonds. Data generated from the analogues and site-directed
mutants can be used to determine the role of specific binding site
interactions in enzyme catalysis and ligand binding affinity. While this
information is very valuable for optimizing lead candidates, it also entails an
enormous amount of time and manpower to prepare and characterize the
analogues and site-directed mutants.

The power of this information and the resource commitment required to
obtain it are illustrated by work conducted in the 1980s and early 1990s on
purine nucleoside phosphorylase (PNP). The X-ray structure of the PNP-
formycin B complex suggested that PNP binds its substrates (guanosine and
phosphate) through a complex network of hydrogen bonds involving the
side-chains of 13 active-site residues.15 Analysis of the extensive guanosine
SAR16 helped to characterize the importance of these interactions based on
differences in inhibitory activity between guanosine and analogues of
guanosine wherein a hydroxyl, oxygen or nitrogen was replaced with a non-
hydrogen bonding group. Similarly, site-directed mutagenesis was used to
replace the 13 active-site side-chains with a non-hydrogen bonding side-
chain (e.g. methyl or phenyl).17 The catalytic efficiency of each mutant was
subsequently evaluated relative to wild-type PNP. These studies showed
that many of the hydrogen bonds identified in the X-ray structure had little
importance to catalysis or binding affinity. On the other hand, a hydrogen
bond between 7N and the side-chain amido group of Asn243 proved to be an
important contributor to overall affinity and catalysis18 despite initial guesses
to the contrary based on the electron density associated with the Asn243
side-chain in the X-ray structure of the initial PNP-inhibitor complex and the
distance and angle of the hydrogen bond. The results of both the
pseudosubstrate kinetic studies and the mutagenesis studies enabled
generation of a ligand interaction map wherein the heteroatoms of guanosine
and the PNP active-site residues were classified based on the strength of
their overall contribution (Figure 1). Accordingly, hydrogen bonds formed
to the guanine base by Asn243 and Glu201 were exploited in the design of a
series of potent PNP inhibitors whereas the weak hydrogen bonds formed
between PNP and the ribose moiety were largely ignored leading to the
replacement of the ribose with a hydrophobic arylalkyl group.19



Figure 1. PNP Ligand Interaction Map. Ligand atoms or residues classified by their
importance to ligand binding affinity.

2. INTERACTION SCANNING USING FREE
ENERGY CALCULATIONS

Free energy calculations represent an alternative strategy for scanning
ligand binding sites and identifying interactions important for drug design.
The calculations are fast relative to either the synthesis of analogues or the
preparation and characterization of active-site mutants. In addition,
computational studies have the ability to evaluate certain interactions that are
impossible to test experimentally. For example, interactions involving
backbone amides are impossible to assess by mutagenesis. Moreover,
replacement of ligand heteroatoms with the corresponding carbon atom can
on occasion require an enormous effort due either to synthetic difficulties or
compound instability.

Computational analysis of binding site interactions is achieved by
calculating the relative binding free energy (AAGbmd) for a ligand L with an
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enzyme E relative to either a modified ligand L? with E or a mutated enzyme
E' with L wherein both L' and E' differ from L and E, respectively, by a
simple structural modification that primarily affects the interactions of the
mutated group. Accurate results are obtained using the free energy
perturbation (FEP) methodology,1' 2 which computationally transforms L
into Lf or E into E' in the complex and in solvent in order to calculate AGCOm
and AGaq the difference of which is AAGbmd- Accuracy, however, requires
the calculations to reach satisfactory convergence, which for all practical
purposes is achieved using molecular dynamics simulations with explicit
solvent only when the transformation entails a small structural change or in
some cases a slightly larger change coupled with long simulation times.20

Since hydrogen bonds formed between E and L are usually eliminated by a
simple structural modification in either the protein or ligand, free energy
calculations are well suited for determining the relative intrinsic strength of
each hydrogen bond and the effect of solvation on its overall contribution to
ligand binding affinity.

3. SCANNING THE AMP BINDING SITE OF
FBPASE

The AMP binding site of fructose 1,6-bisphosphatase (FBPase)
represents a good target for evaluating the possible use of free energy
calculations for scanning binding site interactions. First, FBPase is an
important new target for type II diabetes drugs based on its central role
within the gluconeogenesis pathway21 and the association of this pathway
with the excessive production of glucose by the livers of non-insulin
dependent diabetes mellitus patients.22 Second, our efforts to discover
FBPase inhibitors23 focused on an allosteric binding site in which AMP
binds and induces a protein conformational change that results in potent
inhibition of enzymatic activity. Unfortunately, the discovery of AMP
mimetics that bind with high potency and specificity to AMP binding sites is
considered to be extraordinary challenging with only a few success reported
to date. A third reason to choose FBPase for our studies is revealed in the
high resolution X-ray structure of the FBPase-AMP complex, which showed
that AMP formed up to 13 hydrogen bonds with human FBPase (Figure 2).24



Figure 2. Binding site interactions of Human FBPase (C4) with AMP.

3.1 Computational Details

The FEP approach and its use for computing the relative binding free
energy changes is well described.1"4 The initial report describing our
computational studies is also detailed elsewhere.13 In brief, all molecular
dynamics, mechanics and FEP calculations were carried out with the
AMBER program using an all atom force field25 and the SPC/E water
potential26 to describe water interactions. Electrostatic charges and
parameters for the standard residues were taken from the AMBER database.
For non-standard solute atoms, partial charges were obtained by using
CHELPG to fit the ab initio 6-3IG* basis set level wave functions calculated
with Gaussian94.

Solvation free energies were computed by solvating the solute with
SPC/E water and using the AMBER box option. All solvent molecules
> 15.0 A or < 2.5 A from the closest solute atom were removed. Aqueous
phase molecular dynamics simulations were carried out in a rectangular box
using periodic boundary conditions in all directions. Binding free energies
were computed using an FBPase model27 generated from the coordinates of
the FBPase-ZMP complex. The total charge on the FBPase tetramer
complex was 44 e. No counterions or changes in the customary charge of
protein residues were used. The entire system was immersed in a 25.0 A
radius sphere of solvent centered on the mutating group and subjected to a
half-harmonic restraint near the boundary to prevent evaporation. During
the simulation, all atoms of the protein were fixed beyond 25.0 A. All non-
bonded interactions involving the inhibitors and the charged residues of the
protein were computed with infinite cutoff. A 15.0 A non-bonded residue



based cutoff was used for other residues of the system. The algorithm for
the complex simulation was identical to the solvent simulation, except for
the absence of periodic boundary conditions in the former.

Relative solvation (AAGsoi) and relative binding (AAGbjnd) free energies
between AMP and its analogues complexed to FBPase as well as AMP with
FBPase mutants were calculated using the thermodynamic cycle perturbation
approach in conjunction with molecular dynamics (time step = 2 fs)
simulations. In all free energy simulations, the system was initially
equilibrated for 20 ps followed by 2.5 ps of equilibration and 5 ps of data
collection for each window. A total of 51 windows were used for each
mutation. Free energies reported for each mutation represent the average of
four calculations, i.e., forward and reverse mutations starting from AMP
(Ll) and the corresponding AMP analogue (L2). Error bars are estimated
for each window by dividing the window statistics into four groups and
computing the standard deviation. The root-mean-square of these window
errors is reported as a measure of the statistical uncertainty in the results for
each complete mutation.

3.2 Scanning Results vs. Experimental Relative Binding
Affinities

The calculated relative binding free energies for AMP relative to AMP
analogues were compared with relative binding free energies derived from
the IC50 (AMP)TIC50 (AMP analogue) ratio. AMP and AMP analogues
inhibit FBPase by non-competitive kinetics, which is best represented by a
two site Hill model where Kd(l) « Kd(2) and the ratio of the dissociation
constants for site 1 and site 2 for AMP (Kd) and its analogue (Kd') are the
same (Equation 1). Under these conditions, the ratio of the IC50S for AMP
and the AMP analogue is proportional to the ratio of the dissociation
constants, which is proportional to the relative binding free energy (Equation
2).

Kd(l)TKd'(D-Kd(2)TKd'(2) (1)

AAGbind - Kd(I)TKdXl) - IC50TIC50' (2)

Similarly, differences for the binding affinity of AMP for the AMP
binding site of wild-type FBPase vs. mutant FBPase were calculated and
compared with experimental data derived from the ratio of the corresponding
IC50S. The calculated results generated from the scan were compared with
the experimentally-determined relative binding affinities and reported in our
earlier communication.13



4. ANALYSIS OF FBPASE-AMP INTERACTIONS

4.1 Purine Binding Site

The computer model of the FBPase-AMP complex showed 3 potential
hydrogen bonds between the purine base and nearby residues (Figure 2).
The hydrogen bonds between the 6NH2 group and both the carbonyl oxygen
of VaI 17 and the side-chain hydroxyl of Thr31 were well within the ranges
reported for ideal hydrogen bonds and therefore expected to represent
relatively strong interactions. In contrast, the hydrogen bond between the 7N
and the Thr31 hydroxyl appeared to be less ideal with a distance of 3.4 A.
No apparent hydrogen bond interactions were observed between FBPase and
1N, 3N, and 9N. Each of these interactions was scanned and the calculated
results compared with available experimental data (Figure 3).

4.1.1 Scan of Base Heteroatoms

Consistent with the experimental data, mutation of the purine base
nitrogens, i.e. 1N, 3N, 7N and 9N, showed that replacement of 1N, 3N and 9N
with CH had little effect on binding affinity whereas a similar replacement
of 7N led to a loss of 2.8 kcal/mol. The 0.6 kcal/mol gain in affinity for the
1-deaza and 3-deaza AMP analogues was consistent with the hydrophobic
nature of this portion of the binding site cavity and the absence of hydrogen
bond donors in the vicinity of either heteroatom.

Less apparent from the X-ray structure were the calculated results for the
mutations of the 6NH2 group, 7N and 9N. Mutation of the 6NH2 group to
hydrogen led to a loss of only 2.3 kcal/mol, which was in agreement with the
experimental result of 2.8 kcal/mol. The results indicate that despite
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Figure 3. Scanning results for purine base interactions.



achieving near ideal hydrogen bond distances and angles in the complex, the
6NH2 group contributes much less than the upper end of the range for a
single hydrogen bond, i.e. 5 kcal/mol. One likely reason for the less than
expected contribution of the 6NH2 group is suggested by the FEP
calculations, which predicted the relative solvation free energy for the
mutation of the 6NH2 group to hydrogen to be -4.0 kcal/mol and therefore
that desolvation costs associated with the 6NH2 group would compromise its
overall contribution to the binding free energy.

In contrast to the 6NH2 group, the calculated relative binding free energy
for the mutation of 7N to CH was much larger than expected based on the
X-ray structure, which showed the interaction between 7N and the hydroxyl
of Thr31 (Og) to span a distance (3.4 A), i.e. a distance slightly outside the
normal range for an optimal hydrogen bond. The calculated result of 2.8
kcal/mol agreed with the experimental result of 3.3 kcal/mol.28 One possible
explanation for the importance of 7N despite the apparent suboptimal
hydrogen bond distance is that there is an intervening water molecule. This
possibility is supported by a recent X-ray structure by Novo Nordisk of the
FBPase-ZMP complex.29 While possible, our calculations using a model
that was devoid of the intervening water molecule produced a relative
binding affinity that agreed with the experimental result.13 Similarly, as
discussed in the next section, mutation of Thr31 to Ala showed a significant
loss in binding affinity, which is best explained by the absence of
interactions with both the 6NH2 group and 7N. It should be noted that the
loss in relative binding free energy for the 7N to CH mutation may not only
be due to the loss of the 7N-Thr31 interaction but also to the effects of the
mutation on the partial atomic charges of other base heteroatoms, especially
the 6NH2 group. For example, the charge and desolvation costs associated
with the 6NH2 group are likely to change slightly with the mutation and
thereby contribute to the effect of the 7N to CH mutation on AMP binding.

Replacement of 9N with a carbon atom converts 7N from a hydrogen
bond acceptor to a hydrogen bond donor. Thus, while no interactions are
observed in the X-ray structure between FBPase and 9N, the reversal of the
hydrogen bonding role for 7N might be expected to result in a decrease in
relative binding affinity similar to or greater than that found for the 7N to CH
mutation. The calculated result, however, predicted only a slight loss in
binding affinity (0.6 kcal/mol), which agreed with the experimental result
(0.3 kcal/mol). This result suggests that the binding site can tolerate the
dramatic change in hydrogen bonding pattern presumably by restructuring
itself in a manner that allows the hydroxyl of Thr31 to accept a hydrogen
bond from both 7N and the 6NH2 group. Such restructuring is precedented
based on comparative studies with PNP and guanine-based inhibitors, which
clearly indicated that the 9-deazaguanine inhibitor series was accommodated
by the PNP binding site through movement of the amido group of the



Asn243 side-chain in a manner that converted it from a donor of a hydrogen
bond to the 7N of guanine to an acceptor of a hydrogen bond from the
inhibitor 7NH.19 In our studies, 9-deaza AMP (formycin A monophosphate)
showed no significant difference relative to AMP in binding affinity or
protein interactions, which suggested that Thr31 can act as both a hydrogen
bond acceptor and a donor with 7N and that the strength of the interactions
are approximately the same.

4.1.2 Scan of Residues in the Purine Base Binding Region

The Thr31 hydroxyl accepts a hydrogen bond from the 6NH2 group and
donates a hydrogen bond to 7N. Mutation of Thr31 to Ala eliminates both
hydrogen bonds and results in a large decrease in AMP binding affinity.28

The calculated binding free energy for the mutation was 3.1 kcal/mol and
therefore consistent with the experimental result of 2.9 kcal/mol. The
proportion of the lost binding affinity attributed to the Thr31-6NH2 hydrogen
bond relative to the Thr31-7N hydrogen bond was not readily discernable
from the calculations. The larger decrease in AMP binding affinity
associated with the wild-type to Thr31Ala mutation compared to the loss
incurred by the mutation of the 6NH2 group to H, however, suggests that the
hydrogen bond with 7N is a significant contributor to AMP binding affinity.

4.2 Ribose 5-Phosphate Binding Site

The computer model of the FBPase-AMP complex showed a large
hydrogen bonding network between the ribose 5-phosphate of AMP and
FBPase (Figure 2). The phosphate moiety formed a full complement of
hydrogen bonds within a very hydrophilic region of the binding pocket. In
contrast, fewer hydrogen bonds were formed with the ribosyl moiety. The
phenolic hydroxyl of Tyrll3 appeared to donate a hydrogen bond to the 5'-
oxygen and accept a hydrogen bond from the 3'-hydroxyl. No hydrogen
bond was observed to the ribosyl oxygen. Hydrogen bonds to the 2' and 3'
hydroxyls were dependent on the position of the guanidino group of Argl40,
which varied across the subunits. In one subunit (C4), the guanidino group
was within hydrogen bond distance to the 3'-hydroxyl. Moreover, an
intervening water molecule between the guanidino group and the 2'
hydroxyl was observed. In other subunits, however, the side-chain of
Argl40 pointed out of the binding site and therefore was not in contact with
AMP. Analysis of the interaction energy of AMP with each subunit showed
the subunit designated C4 to exhibit the lowest energy possibly reflecting the
Argl40 interaction. Accordingly, each of the interactions with AMP in the
subunit C4 were scanned and the calculated results compared with available
experimental data (Figure 4).



Figure 4. Scanning results for ribose 5-phosphate interactions.

4.2.1 Scan of Ribose 5-Phosphate Heteroatoms

As with the scan of the purine base heteroatoms, relative free energy
calculations also provided insight into the contributions of the ribosyl 5-
phosphate oxygen atoms to AMP binding affinity. Scanning the ribosyl
oxygen and 5'-oxygen as well as a negatively charged phosphate oxygen
yielded results that were expected from the X-ray structure and were
consistent with experimental data. The modest loss in binding affinity for
the mutation of the ribosyl oxygen (4') to methylene was not surprising
given that no hydrogen bonds with the oxygen were formed in the complex.
The modest loss in affinity (1.1. kcal/mol (calculated) and 0.6 kcal/mol
(experimental)) may reflect either electronic effects caused by this change on
the very important 5'-oxygen interactions or possibly it reflects detrimental
effects associated with the placement of a methylene in a relatively
hydrophilic region of the binding site.

In contrast to the mutation of the ribosyl oxygen, the 5O —> CH2

mutation resulted in a large loss in binding affinity (4.6 kcal/mol). While
this result properly reflected the importance of the 5 O interaction, it was less
than the experimental value (> 5.4 kcal/mol) possibly because of an under
estimation of the electrostatic differences between a phosphate and the less
acidic phosphonic acid. Similarly, a large decrease in binding free energy
was calculated for the 6O -> H mutation. It should be noted, however, that
the calculated results were not readily quantifiable, since the reduction in
atomic charge led to large changes in the solvation and complex free
energies and poor overall convergence. Nevertheless, the results were
clearly consistent with the experimental finding. Presumably, the H-
phosphonate exhibits a substantially lower binding affinity relative to AMP
due to the loss of interactions with the negatively charged phosphate oxygen
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as well as the reduced overall strength of the interactions with the remaining
three phosphate oxygens, which as part of an H-phosphonate exhibit less
negative charge.

Scanning the 2'-hydroxyl as well as the 3'-hydroxyl showed that the OH
to H mutation in both cases is associated with a > 5 kcal/mol loss in binding
affinity. The large loss in affinity was not surprising given the apparent
strong hydrogen bonds formed between the Argi40 guanidino group and the
ribosyl hydroxyls (via an intervening water molecule with the 2' hydroxyl).
The calculated results, however, were inconsistent with experimental data.
First, the IC50 for 2'-deoxyAMP was identical to the IC50 for AMP, which
translates to an experimentally-determined relative binding free energy
difference of ~ O kcal/mol. Second, the Argl40Ala mutant showed only a
modest decrease in AMP binding affinity.28 One possible explanation for
these results is that desolvation costs for the positively charged guanidino
group completely offset any gains made in the complex through hydrogen
bond donation to the ribosyl oxygens.

A simpler explanation for the modest effect of Argl40 to Ala mutation is
that the minimized structure of the AMP binding site in the C4 subunit is
incorrect and therefore that the Argl40 contacts with AMP are
misrepresented. Indeed, analysis of the AMP interactions in the three
remaining subunits showed that the amino acid side-chain orientations were
nearly superimposable across the four subunits except for the Argl40 side-
chain, which was pointing away from the ribosyl hydroxyls in all cases
except for the subunit used (C4) for the initial free energy calculations. The
finding of an alternative position for the Argl40 side-chain is plausible
given that that the X-ray data showed the Argl40 side-chain to be very
flexible and to be located at the protein-water interface.

To evaluate the effect of the Argl40 side-chain location on binding free
energy, a second computer model was generated using the X-ray structure of
the second subunit. A scan of this site (C2) gave nearly identical relative
binding free energies for 7N and 6NH2, but resulted in much lower values for
the ribosyl hydroxyls (Table 1).

Table 1. Scanning results for site 2.
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4.2.2 Scan of Residues in the Ribose 5-Phoshate Binding Region

Computational mutation of Tyrl 13 to Phe resulted in a 700-fold decrease
in the binding affinity of AMP relative to wild-type FBPase. The calculated
results were consistent with earlier experimental data.28 Since Tyrl 13
hydrogen bonds to both the 5' oxygen and the 3' hydroxyl, it is unclear how
much each hydrogen bond contributes to AMP binding affinity.

4.3 Classification of the AMP Interactions

The results of the ligand scan show that hydrogen bonds to 7N and the
6NH2 of the purine, the 5'-oxygen of the ribosyl moiety and the phosphate
group are essential for high binding affinity (Figure 5). Interactions
elsewhere on AMP appear to be less important and therefore may represent
sites that could undergo structural modification in order to enhance inhibitor
binding and or selectivity.

* Essential 'important *Non-Essential

Thr31
Va117

Tyr113

Arg 140

Figure 5. Strength of AMP interactions with FBPase (C4).



5. USE IN LIGAND DESIGN

Drug discovery usually entails two steps, namely an initial step that
results in the identification of a lead inhibitor followed by an optimization
step wherein analogues of the lead inhibitor are synthesized and evaluated in
order to discover a development candidate with suitable potency and
pharmacokinetics. The entire process can take from two to greater than
seven years. Advances in X-ray crystallography and computational methods
in the 1980s were expected to significantly shorten both phases by focusing
medicinal chemistry efforts on targets that were "designed" to be potent and
selective inhibitors based on analysis of the structure and binding energetics.
Unfortunately, the promise of computational chemistry has largely gone
unfulfilled with few examples clearly attributing these methods to the
discovery of a novel and unanticipated inhibitor series or to a significantly
shorter lead optimization period. While many factors are likely to account
for this disappointment, the major reason for the declining emphasis of
computational methods in drug discovery programs relates to the accuracy
and reliability of the results.

The FEP method has shown good accuracy when used to determine the
relative binding affinity for two structurally-related ligands. Unfortunately,
the newly designed analogues requested by medicinal chemists frequently
represent large structural changes from the lead compound and therefore are
not well suited for the FEP method.

In the studies described earlier13 and discussed above, we used the FEP
method for determining the contribution of specific binding interactions to
the overall ligand binding affinity. The studies entailed relatively small
structural changes and therefore were associated with high accuracy and
speed. The power of the strategy for drug design is that it provides a semi-
quantitative map of the ligand interactions with the binding site. While the
X-ray structure of the protein-ligand complex is essential for the
identification of these interactions, this method enables analysis of their
actual contribution to overall ligand binding affinity. Knowledge of the
hydrogen bond strength is valuable in drug design, since it helps focus the
design process on molecules that retain hydrogen bond interactions that
contribute most to ligand binding affinity. Moreover, it reveals other areas
of the molecule that contribute considerably less to binding affinity and
therefore can be modified in order to produce more optimal interactions and
a more potent and selective inhibitor.



6. CONCLUSIONS

The results from these studies showed that ligand interaction scanning
accurately characterized the interactions of AMP with the AMP site of
FBPase.13 AMP, like other nucleotides, is bound to the AMP site
predominantly through a large network of hydrogen bonds. Ligand
interaction scanning correctly classified these interactions into strong,
medium and weak. The information gained from these studies is currently
being exploited in our design of AMP mimetics as FBPase inhibitors.27

Moreover, these results are expected to enhance our ongoing and highly
challenging quest to discover AMP mimetics that exhibit high binding
affinity, high enzyme specificity and good cell penetration.30
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1. INTRODUCTION

Structure based ligand design, which involves the finding and
optimization of small ligands that bind tightly and specifically to a
macromolecular target structure, is a significant challenge. Computational
methods that have been applied to this problem include rapid docking and
scoring with heuristic potentials so that entire databases or combinatorial
libraries (105-106 compounds) can be screened.1 At the other end of the
spectrum are free energy approaches using either molecular dynamics (MD)
or Monte Carlo (MC) simulations, which can be used to compare the relative
free energy of binding of two ligands closely related in structure.2 These
latter calculations are the most accurate that can be currently applied to this
problem, but suffer from being very computer intensive and applicable only
to the comparison of chemically related ligands.

It makes sense to consider a divide-and-conquer strategy, using the
simpler methods early in the design process and then the more rigorous later,
when the list of possible ligands has been pruned. However, there is a large
gap between the number of compounds (106 vs. 2) commonly compared with
the two classes of methods mentioned above. Thus there is a great need for
methods that can usefully be applied to 10-100 molecules in a
computationally efficient way. There are four such approaches that have
recently appeared in the literature: Aqvist's Linear Interaction Energy (LIE)
Analysis,3 which has been further elaborated by Jorgensen,4 the lambda-
dynamics (LD) approach developed by Brooks and co-workers,5 the



Chemical Monte Carlo/Molecular Dynamics (CMC/MD) method by Pitera
et al,6 and a methodology developed by Srinivasan et al,7 and our lab,8 which
we call MM-PBSA (Molecular Mechanics-Poisson Boltzmann Surface
Area). LD and CMC/MD are free energy calculation approaches which
allow one to consider up to -10-20 ligands in a single simulation, thus
improving the efficiency of free energy approaches. LEE is a more empirical
approach, which requires a molecular dynamics or Monte Carlo simulation
on a free and bound ligand, which is then analyzed to separately calculate
the average van der Waals and electrostatic interaction energies between
ligand and its surroundings in both trajectories. MM-PBSA is closest in
concept and implementation to LIE, albeit it can be employed by running a
molecular dynamics or Monte Carlo simulation only on the ligand-protein
complex. It currently uses a combination of explicit molecular mechanical
energies, continuum solvation free energies and normal mode analyses to
calculate the absolute binding free energies of different ligands without
employing any empirical parameters. Nonetheless, this approach has
successfully ranked relative binding free energies in a variety of protein-
ligand complexes such as in avidin, a matrix metalloproteinase (MMP),
cathepsin D, and HIV reverse transcriptase (HIVRT), which we describe
below.

2. METHODS

The MM-PBSA approach assumes that the free energy <G> of a
macromolecular system in solution can be adequately approximated by
Equation 1

<G> = <EMM> + <GPBSA> - T<SMM> (1)

where <EMM> is the average molecular mechanical energy, <GPBSA> is the
continuum solvation free energy, T is the absolute temperature, and <SMM>
is the average entropy of the solute. The continuum solvation free energy is
composed of an electrostatic term, usually calculated using a Poisson-
Boltzmann (PB) model and a hydrophobic non-polar term, which is
proportional to the solvent accessible surface area (SA). Whereas <EMM>
and <GPBSA> can be evaluated using "snapshots" from a molecular dynamics
or Monte Carlo trajectory directly, <SMM> is either ignored if one is
comparing similar ligands or estimated from normal mode analyses of a
more limited number of structural snapshots. The trajectory is typically
carried out with full inclusion of water and counterions in order to make the
structural snapshots as representative of the real system as possible. To



calculate the free energy of association of a ligand to the macromolecule
<AG>, we use

<AG> = <G>C - <G>M- <G>L (2)

where the free energies of the complex (C), macromolecule (M), and ligand
(L) are given by Equation 1.

In all the applications to date on protein-ligand complexes, we have
employed Equation 2 using only the complex trajectory, calculating <G>M

and <G>L from the snapshots of the complex and discarding the atoms of the
ligand and macromolecule, respectively. This approach cannot be used if
there are significant conformational changes upon binding such as in RNA-
protein complexes9 and in DNA intercalation.10 In those instances, it is
necessary to run separate trajectories of both uncomplexed reaction partners
to evaluate their free energies. However, we have found the assumption of
using only the complex trajectory reasonably in the avidin, MMP, cathepsin
D, and HIVRT examples studied so far.

In the following, we give a brief description on how to evaluate the
various terms in Equation 1. A more extensive summary of the
computational details typically used in our studies as well as the CPU
requirements of the MM/PBS A approach can be found elsewhere.11 <EMM>
simply evaluates the average potential energy of the system using the same
force field (e.g. Equation 3 of Cornell et al.)12 as used to propagate the
molecular dynamics trajectory.

(3)

When one employs Equation 2 using only the complex trajectory, the
internal energy contributions cancel and only the non-bonded terms (van der
Waals and electrostatic) between ligand and macromolecule contribute to
<AG>. However, if one runs separate trajectories of C, M, and L, all the
terms in Equation 3 will contribute to <AG>.

The second term in Equation 1, <GPBSA>> involves carrying out a
Poisson-Boltzmann calculation and evaluating the exposed surface area of
all atoms for all the snapshots for C, M, and L. Currently, we use Hartree-
Fock (HF)/6-31G* restrained electrostatic potential (RESP)13 charges and
PARSE14 radii for the PB calculation within DELPHI15 and the program



MSMS16 to evaluate the surface area, with a surface area free energy for
non-polar atoms taken from Sitkoff et al.14

It is less obvious how to efficiently evaluate the third term of Equation 3,
-T<SMM>- If one is comparing closely related ligands, one can ignore it,
assuming that <SMM> is the same for them. For structurally different
compounds, the change in solute entropy upon binding can vary
considerably (up to 10 kcal/mol in our studies) and must be included. We
have explored an approach, in which one takes a limited number (-5) of
snapshots from the trajectories, discards the explicit solvent molecules used
in the initial MD or MC simulation, minimizes the energy with a dielectric
constant e = 4R^ (Ry = atom-atom distance) for C, M, and L, and, after
reaching a suitably low gradient, carries out a normal mode and classical
statistical analysis (rigid rotor-harmonic oscillator approximation) to
determine the vibrational, rotational, and translational entropies.

3. RESULTS

We summarize the results from the various MM-PBSA studies
comparing the free energy of binding of different ligands to protein targets.
The full details and results can be found in the original papers and in a
recently published review of the MM-PBSA approach.17

Kuhn and Kollman11 have studied the interactions of avidin to seven
biotin analogs, the aromatic dye 2-(4'-hydroxyazobenzene) benzoic acid
(HABA), and a cyclic hexapeptide, for which the X-ray structures of their
complexes with avidin or streptavidin are known (Figures IA-B). The
calculated absolute binding free energies, <AG>, using Equations 1 and 2 on
the seven biotin analogs were in reasonable agreement with experiment, but
systematically slightly too positive (e.g., for biotin <AG>exp = -20 kcal/mol;
<AG>caic = -18 kcal/mol). Nonetheless, the relative <AG>'s correlated with
experiment (r2 = 0.92) significantly better than found with the same
molecules using LIE (r2 =0.55).18 Even more exciting was the fact that the
<AG> calculated for both HABA and the peptide fell on the same regression
line (r2=0.92), even though these are structurally very different from biotin.

Donini and Kollman19 have studied six MMP inhibitors, two charged and
four neutral ones (Figure 1C). In this case, the presence of a Zn2+ ion as a
common atom in contact with the ligands leads to absolute <AG> values
considerably too positive. Nonetheless, the free energy of binding of the four
neutral and two charged ligands were ranked correctly within each series,
although the binding free energies of the charged ligands were too positive
relative to the neutral ones. We have shown that running a single trajectory
and then mutating the snapshots to each ligand in turn was an effective
strategy to rank the <AG>'s provided each snapshot was subjected to some



minimization with local flexibility of the protein as well as the ligand. This
strategy is analogous to that used by Kuhn and Kollman in another study of
biotin analogs binding to avidin,20 whose goal was to determine whether one
could improve the binding affinity of biotin to avidin by structural
modifications to the ligand. In this study, we considered fluoro substitutions
on the -(CH2)4- side-chain of biotin using limited minimization to find that

Figure L Chemical structures of representative ligands investigated: A) biotin, B) 2-(4'-
hydroxyazobenzene) benzoic acid (HABA), C) charged (X=CH2) and neutral (X=NH2

+)
carboxylate MMP inhibitors, D) TIBO scaffold, E) sustiva, and F) hydroxyethylamine
scaffold. The biotin derivatives,11 MMP inhibitors,19 TIBO analogs,21 and cathepsin D
inhibitors22 derived from structures A), C), D), and F), respectively, have been published
elsewhere.



one particular monofluoro substitution should improve binding affinity, a
result that was supported by "traditional" free energy calculations.

J. Wang and Kollman have studied the binding of 12 TDBO analogs
(Figure ID) binding to HIV reverse transcriptase using MM-PBSA.21 All
the analogs were relatively rigid and could be straightforwardly built into the
binding site using the crystal structure of 8-Cl TDBO complexed to HIVRT.
Encouragingly, we calculated not only the absolute binding free energies
quite close to experiment, but also the relative free energies correlated quite
well (r2 = 0.71) with the experimental reference. Wang also used DOCK and
MM-PBSA to predict the binding geometry of sustiva (Figure IE) starting
with the binding geometry of 8-Cl TIBO. The geometry and the absolute
value of the binding free energy found with MM-PBSA were quite accurate.

Finally, Huo and Kollman22 have found a good correlation (r2 = 0.8) for
the binding free energies of eight cathepsin D inhibitors (Figure IF) to the
protein. In this case, some docking was used to generate the placement of the
inhibitor in the active site, except for the one ligand whose crystal structure
in complex with the protein was known.

4. DISCUSSION AND CONCLUSIONS

Overall, the initial applications of MM-PBSA suggest that the method
can effectively calculate the relative binding free energies in a number of
protein-ligand complexes. However, there are a number of issues involving
limitations or potential improvements in this methodology which we now
discuss.

As noted above, our initial applications used HF/6-31G* RESP charges
and PARSE atomic radii for the calculation of the continuum solvation free
energy, <G PBSA>- The latter were derived by using another set of charges
and adjusting the radii to reproduce the electrostatic free energy of solvation,
based on Poisson-Boltzmann continuum calculations. Such a model had a
limited number of atom types and, for example, had only a single C and N
radius, which did not lead to an accurate free energy of solvation of cyano
compounds when evaluated using HF/6-31G* RESP charges. Thus, J.
Wang21 derived new radii for sp-hybridized C and N atoms to reproduce the
experimental solvation free energy of cyano compounds and this change of
parameters improved the agreement with experiment for the binding of the
TIBO analog with a C=N group. Currently, J. Wang and S. Huo are deriving
a complete new set of radii for the Poisson-Boltzmann calculations, which
should improve its accuracy and applicability to a larger set of molecules.23

Currently, we evaluate the vibrational/rotational/translational entropy of
the solute molecules using normal mode and classical statistical analyses.
Although the use of a quasiharmonic analysis, as suggested by Schlitter24



and applied to peptide folding by van Gunsteren25 is a more accurate way to
calculate entropies, it is slow to converge and, for the purposes of
differences in entropy between C, M, and L, it is likely to be no more
accurate and considerably less efficient than our approach. We should point
out that at this point the <SMM> in Equation 1 only includes the vibrational
entropy due to the local conformation and not the conformational entropy
due to, e.g., the conformations in equilibrium in a floppy ligand free in
solution. The assumption that this term is comparable for all the ligands in a
given series seems quite reasonable for the applications described above.

One finds reasonable convergence in <G> and <AG> for trajectories
lasting a few hundred picoseconds in the cases discussed above. The rate-
limiting step in the MM-PBSA approach is the time required to carry out the
trajectory, although the time for determining the PB energies for the
snapshots is not negligible. We use water, counterions, and in some cases
periodic boundary conditions and Particle Mesh Ewald for the trajectories in
order to make the snapshots as realistic as possible. If one had reliable and
efficient Generalized Born or PB energies with gradients, one could use
these to carry out the trajectories more efficiently.

One further application of MM-PBSA is to use it to ascertain ligand
geometry in the complex structure. This is useful if docking gives a number
of positions and orientations of the ligand that do not interconvert during
molecular dynamics. MM-PBSA free energies can be used to determine
which position is most favorable. Such MM-PBSA calculations have been
applied to the HABA (Figure IB) - avidin complex and have confirmed11

that in HABA bound to avidin, the X-ray structure with its CO2~ group
"inside" the binding site,26 is lower in free energy than the alternate
orientation with the C=O inside, despite the fact that in biotin, the C=O is
"inside" and the CO2" "outside".

Finally, we should put our MM-PBSA calculations in the context of
others that have used electrostatic continuum models alone to calculate the
<AG> of binding various ligands such as the study of Shen and
Wendoloski.27 Our approach for ligand binding has two new features: first,
as shown by Srinivasan for DNA and RNA duplexes,7 averaging over an
MD trajectory using «100 snapshots, despite the very large electrostatic
energies, allows a well converged average, particularly of <EMMdec> +
<GPB> (where <EMMdec> is the electrostatic term in Equation 3 and <GPB> is
the Poisson-Boltzmann solvation free energy). Secondly, and particularly
important for hydrophobic/van der Waals dominated binding, which is an
essential part of most drugs, is the inclusion of the explicit <EMMVdW> (the
van der Waals term in Equation 3). This enables the very large van der
Waals term in most drug-receptor interactions to be robustly and accurately
determined. In our model, the surface area dependent non-polar solvation
energy term is generally small. Even if it were significantly larger, it plus the



electrostatic term alone is not likely to be large enough to explain the
structure-binding relationships of the various series we have considered here.
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I . INTRODUCTION

Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent
reductions of folate and dihydrofolate to tetrahydrofolate (THF).1 THF is a
cofactor used by enzymes catalyzing 1-carbon donor reactions. The
importance of these reactions and therefore DHFR catalysis in the synthesis
of purine and pyrimidine bases has made it a primary drug target for a
variety of chemotherapy agents, including anticancer drugs and
antibiotics.2"5 DHFR is inhibited by folate antagonists such as 2,4-diamino
pteridine and its derivatives aminopterin (AMT) and methotrexate (MTX).
The chemical, biological and medicinal aspects of MTX have been studied
extensively for the past 35 years and MTX still remains as one of the most
important agents for patients undergoing organ transplantation or treatment
for cancer,6"10 rheumatoid arthritis, psoriasis or asthma. Despite the
significant utility of MTX as a therapeutic agent, its toxicity and limited
activity against certain malignancies have provided an impetus for the
development of less toxic drugs with broader oncolytic activity.

The importance of DHFR as a drug target and the availability of X-ray
structures of DHFR from different animal species with and without the co-
factor NADPH11"15 have made DHFR an ideal target for studying various
new structure-based drug design methodologies.16' n Free energy
calculations have been provided substantial insight into DHFR-ligand



interactions. Earlier work from our group established the importance of the
ionic interaction between Asp27 and the pteridine ring in a DHFR-MTX
complex using the Free Energy Perturbation (FEP) technique.18 The same
technique was also used in a subsequent study examining the binding
affinity of MTX to mutants of DHFR.19 More recently, the FEP
methodology was employed to study the binding of the drug Trimethoprim
and its derivatives to the DHFR-NADPH complex.20 Another FEP study21

investigated the difference between the binding of reduced and oxidized
NADP cofactor to E. CoIi DHFR binary and ternary complex in water.

In addition to these studies, the DHFR catalytic mechanism has been
studied using the local density function (LDF) approach.22 A detailed
understanding of the catalytic mechanism is often very useful in the design
of high affinity enzyme inhibitors since it can shed light on the transition
state structure and the key interactions used by the enzyme to stabilize it.

1.1 DHFR Catalytic Mechanism

Experimental evidence from a variety of sources suggests that folate
binds to DHFR in the same site as MTX but that the pteridine ring is rotated
by 180° with respect to the side-chain containing the C6-C9 bond.11'23'24 A
recent crystallographic study on the structure of 5-deaza folate-DHFR
complex has unambiguously verified this rotation.25 It is also generally
accepted that the dihydropterin ring of the substrate must be protonated at
N5 position to facilitate the hydride ion transfer from NADPH to C6. The
proton donor, Asp27 is ~ 6.4 A away from N5 and forms key hydrogen
bonds not with N5 but with N3 and the 2-amino group of the pteridine ring.
It has also been proposed that the principal effect of the enzyme is to
promote hydride ion donation by NADPH, rather than to facilitate hydride
ion acceptance by H2-folate.13 On the other hand, a recent kinetic study has
shown that the rate determining step for the catalytic reaction must occur
after the hydride ion transfer.14 Thus, the precise mechanism by which
DHFR assists in hydride ion transfer is unresolved at present.

The reduction of 7,8-dihydrofolate (H2F) to 5,6,7,8-tetrahydrofolate
(H4F) has been analyzed extensively14' 26~30 and a kinetic scheme for E. CoIi
DHFR was proposed in which the steady-state kinetic parameters as well as
the full time course kinetics under a variety of substrate concentrations and
pHs were determined. From these studies, the pKa of Asp27 is 6.5 in the
ternary complex between the enzyme, the cofactor NADPH and the
substrate dihydrofolate. The second observation is that, contrary to earlier
results,27 the rate determining step involves dissociation of the product from
the enzyme, rather than hydride ion transfer from the cofactor to the
substrate.



To better understand the catalytic mechanism of DHFR and to use this
information for the design of potent DHFR-specific inhibitors, we evaluated
the proton and hydride transfers using an integrated ab initio Quantum
Mechanics/Molecular Mechanics (QM/MM) approach in combination with
FEP technology. The combinatorial application of these methods enabled
us to propose a precise path along which the proton and hydride ion are
transferred and to address the key structural and energetic changes
associated with catalysis.

2. MAPPING THE PROTON AND HYDRIDE
TRANSFER REACTIONS

The pterin moiety of 7,8-dihydrofolate exists in tautomeric
equilibrium between the enolic form and the cyclic amide form as show in
Figure 1. Experimental work has established that the equilibrium favors the
cyclic amide form.28 Site-directed mutagenesis experiments have
established that Asp27 is the crucial amino acid for the substrate
protonation.28 Thus, during the binding of the substrate with the enzyme,
the catalytically important aspartic acid (Asp27 of E. CoIi DHFR) is
protonated, while the pterin ring is either in the cyclic amide form or the
enolic form. In this state, the initial complex formation should involve
hydrogen bond formation between O4 and N3 of the pterin ring and the
carboxylic acid of Asp27 (Figure 2).

Figure L Tautomeric equilibrium of the pteridine ring and the structure of 7,8-dihydrofolate.

Pteridine



Figure 2. Asp27 interaction with the pteridine ring of dihydrofolate (R = PBH-GXO).

Alternatively, if Asp27 is negatively charged, then a hydrogen bond
donor at N3 would be important thereby favoring the cyclic amide form. It
is important to note that, if the substrate is protonated at O4 (enolic form)
and the carboxyl group of Asp27 is unprotonated, then the substrate has
three hydrogen bond donating sites to form two types of complexes as
represented schematically in Figure 3a.

Assuming an initial complex to be of the form given in Figure 3a
(protonated Asp27 and enolic form of the pterin ring), it is important to
characterize the structural and energetic basis for how the proton travels
from the Asp27 to the N5 position of pterin. Based on the X-ray structure,
the proton travels a distance of nearly 5.0 A. To address this question, the
proton trajectory was mapped by a four stage transition as shown
schematically in Figure 3. The four stages include: (i) proton transfer from
Asp27 to the O4 atom of the pterin ring to form a pair of hydrogen bonds
involving O4 and N3 (Figure 3a); (ii) hydrogen bond shift from O4 to N3
(Figure 3b); (iii) hydroxyl group rotation towards N5 (Figure 3c); and (iv)
the transfer of the proton from O4 to N5 of the pterin ring (Figure 3d).

Using this proton transfer pathway as a starting point, we generated four
snap shot geometries for characterizing the pathway. Each structure was
then evaluated using a constraint applied to the HO4...N5 distance.
Quantum mechanics was used for the acetic acid complex and 6-methyl 7,8
dihydropterin. Eighteen structures were generated along the proton transfer
pathways from which 15 structures were selected for detailed analysis. The
quantum mechanical optimizations were carried out using the Hartree-Fock
6-3IG basis set, and the single point calculations were performed using 6-31
G* and 6-3IG** to compute the quantum mechanical components of the
free energies. The structures were subsequently mutated, ad seriatim, from
one to another along the defined pathway using the coordinate coupled FEP
approach to obtain the energetic contribution from the surroundings. The

Asp27



Figure 3. Proton transfer pathway.

equilibrium bond length, bond angle and dihedral parameters were evaluated
based on ab initio quantum mechanical optimization and checked for proper
duplication of the quantum mechanical structure in order to make sure that
the parameters were accurate for each snap shot geometry.

Following the proton transfer, hydride from NADPH is added to C6 of
the positively charged base. The trajectory of the hydride ion is shown
schematically in Figure 4, and is based on the following intermediate stages:
(i) C4 hydrogen of the nicotinamide base is in close proximity to C6 of the
pterin ring in the ternary complex (Figure 4a); (ii) a hydride transfer entails
a transition state in which the hydride ion is part way between C4 of
nicotinamide and C6 of the pterin ring (Figure 4b); and (iii) products formed
after hydride transfer (Figure 4c).

Using this hydride ion transfer pathway, we obtained snap shot
geometries and subjected them to ab initio quantum mechanical
optimization using a constraint for the C4 (H)...C6 distance. The ab initio
quantum mechanical part of the system was composed of the nicotinamide
ring, 6-methyl dihydropterin and acetic acid. A total of 9 quantum
mechanically optimized structures were generated to characterize the
hydride ion transfer using a 6-3IG basis set. The free energy contribution
due to the surroundings are calculated in the same manner as the proton
transfer by successively mutating one snap shot geometry to the next within
the active site, using the FEP approach.

Asp27



Figure 4. NADPH structure (A) and the hydride ion transfer pathway (B-D).

3. INTEGRATION OF QUANTUM AND
MOLECULAR MECHANICAL METHODS

Ab initio quantum mechanical methods are needed to semi quantitatively
study chemical reactions involving bond breaking and bond forming
phenomena. Once a reaction path for a chemical process is defined, it is
possible to obtain the key transition geometries and associated energies of



the reacting species along this path. This combinatorial QM/MM approach
has been successfully used to obtain transition, or snap shot, geometries of
the reactants along the reaction coordinates. Using this approach, the
molecular system is divided into two subsystems, namely the quantum
subsystem and the classical subsystem. The quantum subsystem is
established in a manner which is defined by all the bond reorganizations
pertaining to the reaction pathway. The classical subsystem is constituted
by the remainder of the surrounding system, which can include solvent and
counter ions. This approach enables the optimal pairing of the strengths of
QM and MM within a concurrent simulation of a molecular ensemble.

The total energy of the system is evaluated as,

(D

The functional form of EMM is the same as in Galaxy and AMBER (version
3.331). The form of EMM is described as,

(2)

It should be noted that in the above expression the summation is only
over the atoms from the Molecular Mechanics part of the system. The
expression for E{QM/MM} is the same as above, but with a critical difference in
summation. The summation over bond, angle and dihedral energies is for
terms with at least one atom in both the QM and MM part of the system. To
determine the non-bonded energy, the i summation is over the MM part of
the system and the j summation is over the QM part of the system. The EQM
component of the energy is computed using the ab initio quantum
mechanical SIVA32 module of the program GALAXY using a 6-3IG*
basis33 set.

The free energy profile of the enzymatic reaction is decomposed into two
components as,

(3)



where, AGQM is the free energy contribution from the subsystem treated by
quantum mechanical means, and AGprotejn is the energetic contribution due to
the protein surroundings which are not treated by quantum mechanics as the
chemical reaction occurs inside the active site of the enzyme. This well
defined non-quantum mechanical component provides the energetic
contribution from the protein in the reaction, and, will be a measure of the
catalytic efficiency of the enzyme in the particular reaction. In addition to
this component, the enzyme surroundings can contribute indirectly to the
component AGqM by stabilizing or destabilizing the reactants relative to the
gas or the solution phase structures.

3.1 Free Energy Perturbation Method

The statistical perturbation theory arising from the classical work of
Zwanzig34 and its detailed implementation in a molecular dynamics program
for computation of free energies is described in detail elsewhere.35' 36 We
give a very brief description of the method for the sake of completeness.
The total Hamiltonian of a system may be written as the sum of the
Hamiltonian (H0) of the unperturbed system and the perturbation (Hi):

H=H^H1 (4)

The free energy contribution due to the perturbation is given by,

(5)

where P = 1/kT and the mean of exp (-(3HO is computed over the
unperturbed ensemble of the system. In order to compute AG, the difference
in free energy between the two solute states, the Hamiltonian for states A
and B are linked by the coupling parameter A, such that,

m = AHA+(l-A)HB (6)

and X is between O and 1.

In the above equation, HA is the Hamiltonian for the system at state A,
and HB is that for state B. The above equation implies that, when X= 1, HX,
= HA i.e., the system is purely in state A and when A, = O, HX = H8 at which



point the system is purely in state B. During intermediate values of X, the
solute is a hypothetical mixture of A and B. This type of coupling ensures a
very smooth conversion of two solutes A and B, allowing the system to
readjust its configuration smoothly as a function of the chemical state. If we
divide the range of X into N windows, then at each window A-J, the solute
state is perturbed to X4+1 and X^ states by taking the reference state as H0(Xj).
The free energy difference between the two solute states A and B is a simple
summation over all windows (Gi(Xi)) as given by,

AG = SG1(A1.) (7)
1=1

The evaluation of Gj at Xj+i and X^ is a check for possible hysteresis in
the calculation and is a measure of the statistical error for the free energy
change.

3.2 Coordinate Coupling

In order to calculate the configurational free energy along a reaction
coordinate, we used the coordinate coupling method, which has been used
successfully in earlier calculations.37"39 The structures along a reaction
pathway are perturbed from one to another using stringent means to
maintain the specified conformational properties, which is essential to get
the free energy profile along a reaction coordinate. The coordinates of the
system are coupled as,

X A = A X A + (l-A)Xfi (8)

where Xx represents the coordinates of the system at a given value of X and
XA and XB are the coordinates of the system in state A and B respectively.
The coordinates of the system at Xj+i have been extrapolated from those at Xi
using Equation 8.

3.3 Free Energy Decoupling

Even though the free energy difference is a path independent quantity, it
is observed that certain sampling difficulties arise when a polar solute is
transferred to a non polar solute accompanied by a large change in
molecular volume. Under this circumstance, if one attempts mutation of
both the partial charges and the non bonded parameters simultaneously, the
solute-solvent energy increases enormously as a consequence of very close



approach of some of the solvent molecules. This artificial limitation can be
avoided by decoupling the total free energy as a sum of electrostatic and van
der Waals contributions. Supposing we denote the energy due to bond,
angle and dihedral as Ebad> the electrostatic energy as Eeie and the van der
Waals interaction energy as Evciw, we can write the total energy of the system
as:

E10, = Ebad + Eele + Evdw (9)

The conversion of state A to B is achieved through an intermediate stage
A1 such that

A -> A' -» B

and the corresponding net free energy change is:

AG A B =AG A A .+AG A . B (10)

Here the state A1 has the charge distribution of B, but maintains the
molecular geometry and van der Waals parameters of A. Hence AGAA,
corresponds to the electrostatic contribution to the free energy difference.
The conversion of A to A1 is achieved smoothly since the van der Waals
parameters are the same for these two states. AGA-B is the van der Waals
contribution to the free energy which includes the bond, angle and dihedral
contributions as well as the non bonded interactions.

3.4 Solvation

The complex of protein, crystallographic water and the counter ions are
treated as a fully solvated system. Two key developments were made to
treat the system in a more realistic manner during molecular dynamics: (i)
water molecules were placed as a spherical shell with a radius 34 A from the
center of the protein. The outer boundary of the spherical shell was defined
by means of an artificial wall with a potential of the type W defined as:

(U)

where the constants Awaii and Cwaii are computed as,



This potential was developed to ensure that the molecules inside the sphere
never escape and maintain a fully solvated system during molecular
dynamics. Here, e s , R5 , ew and Rw are the van der Waals constants for the
solvent and the wall and TI is the distance between the molecule i and the
center of the water sphere, RO is the radius of the sphere. The quantities A,
B and Rb are determined by imposing the condition that W and dW/dri
vanish at T1 = R0. The restraining potential W is set to zero for TI < R0. The
van der Waals parameters es, ew, R5 and Rw can also be specifically defined
for different solvents. The constants Awan and Cwaii are computed using a
well depth of es = £w = 0.1 kcal and the radius of R5 = Rw = 1.25A. For the
other set of simulations, especially for the hydride ion transfer, we applied
periodic boundary conditions by using a spherical boundary shell of 10.0 A
of TIP3P40 water to cover the edges of the protein.

3.5 Computational Details

The calculations described in this chapter were performed using the
modified version of AMBER (version 3.3) on a CRAY X-MP computer and
part of the calculations were done using the software GALAXY on IBM
RS-6000 machines. The high resolution crystallographic coordinates of the
binary and ternary complexes of the E. CoIi DHFR were kindly provided by
Dr. J.E. Villafranca. The substrate was locked into the enzyme by flipping
the pterin ring by 180° and the complex was energy minimized to relieve
steric hindrances. The structure was neutralized by the addition of counter
ions, based on the location of charged residues in the enzyme. Counter ions
were not placed near potential sites for salt bridge formations. The total
number of atoms in the system, including the protein, the substrate, the
cofactor, the crystallographic as well as TIP3P water molecules and the
counter ions was 24,886 atoms.

The FEP calculations were performed using the following general
procedure. In the first stage, each structure was minimized by a conjugate
gradient method for 2000 cycles by freezing the protein and substrate, i.e.
allowing movement in only the water and the counter ions. In the second
stage of the minimization, the whole system was minimized for 2000 cycles.
In the last stage, the system was minimized again with the SHAKE41 option
for 100 cycles to constrain the bond lengths to their equilibrium values. The
system was then equilibrated for 15 ps of MD using a time step of 0.001 ps,
at a constant temperature of 300° K and at 1 atm pressure, in the case where
the periodic boundary condition was applied. The mutation was achieved
by using coordinate coupled free energy perturbation technique with the



window method. 51 windows were used with 0.8 ps of equilibration and 0.8
ps of data collection. For the hydride ion transfer, the same protocol as
above was used to obtain the free energy profile. Each structure was
mutated to another over a period of 50 ps.

4. PROTON TRANSFER REACTION PATHWAY

4.1 Free Energy Profile

The ab initio quantum mechanical energies for the 15 snap shot
geometries obtained during the proton transfer are reported in Table 1.
Based on the profile of the relative ab initio energies, it is clear that three
energy barriers are present along the reaction path and that the three
energetic barriers are associated with HO4...N5 distances of 3.2 A, 2.5 A,
and 1.4 A, respectively. It is notable that the free energy contribution from
the protein surroundings steadily decreases from 0.0 kcal/mol to -17.3
kcal/mol as the proton moves from Asp27 to N5. A plot of the quantum
mechanical contribution to the free energy as a function of the HO4...N5
distance is given in Figure 5. As shown in Figure 5, a small energy barrier
is observed for the proton transfer from Asp27 to N5 when the HO4...N5
distance is about 4.1 A after which the energy rises to approximately 6.5
kcal/mol.

Table 1 . Quantum mechanical energies for snap shot geometries
Structure
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Distance in A
HO4...N5
4.50
4.20
4.08
3.87
3.51
3.20
2.99
2.89
2.49
2.13
1.78
1.56
1.44
1.13
1.01

Hartree
Energy*
-845.28
-845.27
-845.27
-845.27
-845.26
-845.24
-845.25
-845.25
-845.25
-845.26
-845.25
-845.23
-845.22
-845.23
-845.24

Relative
Energy*
0.00
6.14
9.13
9.80
18.05
25.74
24.41
23.11
19.72
16.32
22.86
32.50
39.60
36.95
30.14

Free
Energy*
0.00
-1.02
-1.26
-4.06
-4.50
-5.26
-6.10
-6.50
-7.76
-7.51
-7.52
-7.54
-9.51
-14.75
-17.26

'Quantum mechanical energy at the 6-3 IG level
*Energy in kcal/mol



HO4...N5 Distance (A)

Figure 5. A plot of the quantum mechanical contribution to the free energy as a function of
the HO4 N5 distance. ( ) is the energy from 6-3IG basis set and (—) is the energy
from 6-31 G** basis set.

Using the larger basis set, the energy is somewhat higher and is around 9
kcal/mol. The hydrogen bond shifted structure (Figure 3b) is approximately
2 kcal/mol higher in energy than the structure containing the hydrogen bond
involving O4 (Figure 3a). Rotation across the C4-O4 bond brings the
proton within 2 A of N5 (Figure 3c). This rotation has a calculated barrier
of approximately 16 kcal/mol from both basis sets, as shown in Figure 5.
This energetic barrier is due to the double bond character of the phenolic
hydroxyl group and to the presence of the negatively charged Asp27 residue
in the vicinity of the hydroxyl group. In the last stage, the proton jumps
from O4 to N5. This corresponds to a decrease in the HO4...N5 distance
from approximately 2.0 A to 1.0 A. For the transfer of the proton from O4
to N5, the quantum mechanical component of the barrier height is ~ 23
kcal/mol from the larger basis and the smaller basis sets as shown in Figure
5. It is interesting to note that the quantum mechanical energy difference
between the N5 protonated structure and the Asp27 protonated structure is
approximately 33 kcal/mol using the 6-3IG** basis set and about 25
kcal/mol using the lower basis set. This large energy difference is mainly
due to the larger charge separation in the QM part of the system as can be
seen from the variation in the dipole moment. The computed dipole
moment for the ion pair varies significantly from 5.27D for the Asp27
protonated structure to a value of 19.56D in the N5 protonated substrate
system. To generate this large charge separation, a significant amount of
energy is required.

Relative
Energy

(kcal/mol)



As the snap shot geometries are successively mutated within the protein,
the free energy contribution from the protein surroundings measures the
response of the protein to the reaction. Accordingly, we characterized the
role of the protein in stabilizing or destabilizing the proton transfer. The
contribution to the free energy from the protein surroundings as a function
of the HO4...N5 distance is plotted in Figure 6.

The proton motion from Asp27 to O4 comprises a trajectory of
approximately 0.6 A (Figure 6). There is a decrease in the free energy due
to the surroundings, which corresponds to nearly 4.5 kcal/mol of
stabilization by the protein. Further stabilization occurs as the O4-HO4
bond rotates toward the N5 atom, which corresponds to a proton movement
of about 1.4 A (Figure 6b)

The proton jump (from O4 to N5 corresponding in Figure 6 (c)) in the
initial phase, between 2.4 and 1.5 A, is almost flat. This region corresponds
to the transition state for the proton transfer from O4 to N5. Before the
complex reaches its transition state, the net stabilization of the complex by
the protein is approximately 7 kcal/mol. After the transition state is
reached, there is a steep fall in the surrounding free energy as shown in
Figure 6. The net stabilization after the transition state is about 9 kcal/mol.
This simulation accurately characterizes the role of the enzyme in stabilizing
the energetically large transition and charge separation by reconfiguring the
surroundings.

Energy
(kcal/mol)

HO4...N5 Distance (A)

Figure 6. A plot of the free energy contribution arising from the protein surroundings as a
function of HO4...N5 distance during the proton transfer mechanism.



Figure 10. The ternary complex of the enzyme dihydrofolate reductase, the substrate and the
cofactor during the transition state of the hydride ion transfer. The enzyme backbone atoms
are shown alone for clarity and are colored blue. The substrate is shown in yellow and the
cofactor is in red. The bond colored in light blue indicates the hydride ion being shared by
both the cofactor and the substrate before the transfer to the substrate. Water molecules
around the residue pteridine of the substrate and the nicotinamide ring of the cofactor alone
are shown and colored in light blue. The yellow spheres represent the sodium ions and the
pink spheres the chloride ions.



Figure 7. Superposition of the substrate alone before and after N5 protonation. The structure
shown in yellow represents the substrate before N5 protonation and the one in red represents
the substrate after the N5 protonation. The distances marked correspond to the contact N5 ...
HIO before (2.9 A) and after (4.2 A) the proton transfer. The red spheres denote the oxygen
atoms and the blue spheres the nitrogen atoms in the substrate.



As the proton is transferred form O4 to N5, there is a conformational
transition in the substrate due to the rotation about the C9-N10 bond.
Protonation of N5 of the substrate forces the NlO hydrogen to point away
from it, resulting in the transition state. This was observed from the
molecular dynamics data. To fully characterize the validity of this specific
conformational transition, we performed another more complex simulation
in which the substrate was not allowed to rotate about the C9-N10 bond.
This simulation documented the presence of an unfavorable free energy
contribution from the protein surroundings during proton transfer. This
result is shown in Figure 6 as a dashed line. This series of simulations
unambiguously established that a critical change in substrate conformation
is a direct consequence of proton transfer (Figure 7). In this instance, the
unprotonated substrate (yellow) is superimposed on the protonated substrate
(red). The N5...H10 contact distance was 2.9 A prior to N5 protonation and
is 4.2 A after substrate protonation due to the rotation about the C9-N10
bond. This conformational change is due to the steric overcrowding in the
N5 protonated structure and also due to intermolecular electrostatic
repulsion after the protonation. After the proton transfer, the PBH (para
amino benzoyl) group is substantially displaced due to the conformational
transition in the substrate.

Figure 7. Superposition of the substrate alone before and after N5 protonation. The structure
shown in yellow represents the substrate before N5 protonation and the one in red represents
the substrate after the N5 protonation. The distances marked correspond to the contact N5 ...
HIO before (2.9 A) and after (4.2 A) the proton transfer. The red spheres denote the oxygen
atoms and the blue spheres the nitrogen atoms in the substrate.



HO4 ... N5 Distance ( A)

Figure 8. Total free energy profile for the transfer of the proton as a function of HO4...N5
distance.

The total free energy profile as a function of the HO4...N5 distance
during the proton transfer from Asp27 to N5 is shown in Figure 8. The
energy barrier of the proton transition from Asp27 to N5 is 8 kcal/mol. The
rotation of the O4...HO4 group towards the N5 atom comprises the next
stage of the mechanism corresponding to a 1.5 A movement of the proton.
This stage has a barrier of about 12 kcal/mol (Figure 8). The free energy
change when the proton jumps from O4 to N5 has a barrier 19 kcal/mol.
The total free energy change from the unprotonated to the protonated state is
12 kcal/mol. The N5 protonated species is expected to be present in very
low concentrations as shown from these calculations.

4.2 Protein-Substrate Interactions During the Proton
Transfer

Four of the snap shot geometries during the proton transfer mechanism
were analyzed to further characterize the mechanism. Structure 1
corresponds to the protonated Asp27, which is depicted in Figure 2.
Structure 3 represents the protonation of O4 in the pterin ring and the
negatively charged Asp27, which forms hydrogen bonds with N3 and N2 as
shown in Figure 3b. Structure 5 corresponds to one of the transition states
for the transfer of the proton from O4 of the pterin ring. Structure 6
corresponds to the N5 protonated form of the pterin ring. The van der
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Waals and hydrogen bond contacts associated with the substrate and the
surroundings during the proton transfer were analyzed and described below.

4.2.1 Contacts with Pteridine Moiety

The contacts made by the pteridine moiety in the four structures (1, 3, 5,
and 6) associated with the proton shuttle were identified. The pteridine
residue forms a strong van der Waals interaction with Ala6, in structures 1
and 3, with distances 2.65 A and 2.34 A, respectively. In structures 5 and 6,
pteridine has moved closer, resulting in hydrogen bond formation with the
carbonyl group of Ala6. Pteridine also maintains van der Waals contact
with the residue Ile94 in all four structures. The pteridine residue is
hydrogen bonded to TyrlOO in structure 1 (distance = 2.15 A). This
hydrogen bond becomes a van der Waals contact in structure 3 and 6
(contact distances of 2.52 A and 2.3 A respectively), while in the structure
5, it becomes a shorter hydrogen bond (2.0 A).

The pteridine residue is hydrogen bonded to the Tyrlll with a hydrogen
bond length of 2.25 A in structure 1. This bond contact is not observed in
any of the other structures. The atom HN2B of the residue pteridine adopts
a bifurcated hydrogen bond configuration with atoms OGi and HOG of
Thrll3 in structure 1. This reduces to a single hydrogen bond between
HN2B and HOG in structures 3 and 6 after developing a van der Waals
contact (distance = 2.39 A) in structure 5. It is notable that in structure 1 the
proton is actually shared between both ODl of Asp27 and O4 of the
pteridine ring. This interaction consequently brings HN3 of the pteridine
close to OD2 of Asp27 with a hydrogen bond distance of 1.79 A.
Furthermore, the Asp27 residue has two hydrogen bonds (structures, 3, 5
and 6) with minor differences in their values.

HN8 of the pteridine residue makes a hydrogen bond contact with the
carbonyl oxygen of Ile5 (in structure 1). This hydrogen bond length reduces
to 1.61 A in structure 3, and increases to 1.98 A in structure 5, and then
reduces to 1.67 A in structure 6. In structures 5 and 6, pteridine makes a van
der Waals contact with Ala7. It is worthwhile to note that structure 5 shows
two van der Waals, contacts which are not seen in any of the earlier three
structures. These are the contacts with residues Phe31 and Thr46.

4.2.2 Contacts withp-Aminobenzoic Acid Moiety

Changes in the pteridine ring affect the contacts between DHFR and the
/?-aminobenzoic acid (PBH) moiety. PBH maintains van der Waals contact
with Phe31 in all four structures (1, 3, 5 and 6) with contact distances
ranging within 0.4 A of one another. Contact is also observed with Leu54 in
all four structures with distances ranging from 3.0 A to 2.8 A. Only in



structure 5 does PBH develop an additional van der Waals contact with
Ser49. The PBH residue develops a single hydrogen bond with residue
Arg52 of the protein. In structure 1, the hydrogen bond is between oxygen
and HN12 with a distance of 1.75 A. The remainder of the structures (3, 5
and 6) each have two hydrogen bonds, namely O...HNE and O...HN21.

4.2.3 Contacts with Glutamate Moiety

The glutamate moiety of folate maintains van der Waals contact with the
protein. Distances vary from 2.7 to 2.9 A with the residue Leu28 in all four
structures. Structure 1 exhibited an additional van der Waals contact with
PheSl. The atom O2 of GXO is hydrogen bonded to HNZl of Lys32 in
structure 1. This distance shortens significantly (to 1.65 A) in structure 3,
and lengthens in structure 5 (to 1.74 A), and is broken in structure 6.
Structure 1 also has a single hydrogen bond contact with atoms OEl of
glutamate and HN22 of Arg52. Both residues move away in the other three
structures. Ol of glutamate forms a hydrogen bond with HN12 of Arg57 in
all four structures with distances moving from 1.65 A in structure 1 to 1.72
A in structure 6. One other hydrogen bond contact persists in all the four
structures, namely the hydrogen bond between O2 and HN22. Hydrogen
bond distances are 1.74 A, 1.65 A, 1.80 A and 1.89 A in structures 1, 3, 5
and 6, respectively. Structure 3 develops a single hydrogen bond contact
between OE2...HN22 of Arg52. Structure 6 develops two additional
hydrogen bonds between O2 ...HNZ2 (Lys32) and Ol ... HN22 (Arg57).

5. HYDRIDE TRANSFER REACTION PATHWAY

5.1 Free Energy Profile

The hydride ion transfer catalyzed by DHFR was divided into three snap
shot geometries selected from a total of nine pilot simulations. The three
structures represent the initial state, the transition state and the final product
of the hydride ion transfer, respectively. The structures obtained from gas
phase simulations are denoted as GHTl, GHT2 and GHT3, and the
structures obtained from the simulations in the presence of the protein are
denoted as PHTl, PHT2 and PHT3. The quantum mechanical energy
statistics are given in Table 2, along with the H41N...C6 distances. The
variation of the quantum mechanical contribution to the free energy as well
as the free energy from the surroundings to the hydride ion transfer are
given in Figure 9.



Distance (A)

Figure 9. Plot of energy profiles during hydride ion transfer as a function of the H41N...
C6 distance, (a) quantum mechanical energy contribution to the free energy obtained in the
presence of the protein; (b) quantum mechanical energy contribution to the free energy
obtained in gas phase; (c) free energy contribution from the protein surroundings; (d)
resultant energy of (b)+(c); (e) resultant energy of (a)+(c).

The relative quantum mechanical energy is computed for GHTl as the
base value, thereby enabling straight forward characterization of the relative
stabilization or destabilization by the protein during hydride ion transfer.
During the initial state, the quantum mechanical energy contribution to the
free energy in the gas phase is about 9 kcal/mol less than in the presence of
the protein. This value characterizes the amount of destabilization by the
protein in the initial state. At the transition state the destabilization by the
protein has significantly decreased so that the energy difference compared
to the gas-phase simulation is only 5 kcal/mol. In the final state where the

R
el

at
iv

e 
E

ne
rg

y 
(k

ca
l/m

ol
)

Table 2. Quantum mechanical energy obtained at the 6-31 G**

Structure

Simulation in gas phase:
GHTl
GHT2
GHT3
Simulation in protein:
PHTl
PHT2
PHT3

Distance [ in A]
C4N ... H41N

1.09
1.30
2.75

1.08
1.30
2.73

Hartree
Energy

-994.43
-994.38
-994.45

-994.42
-994.37
-994.41

Relative
Energy*

0.0
32.7

-10.7

8.6
37.6
12.0

#Energy in kcal/mol



product is formed there is a large distortion of the complex by the protein
surroundings. The quantum mechanical contribution to the free energy
change at this stage in the gas phase is -11 kcal/mol, which is nearly 23
kcal/mol lower in energy compared to the simulation performed in the
presence of the protein. These results clearly demonstrate that the protein
destabilizes the initial state and the final product of the hydride ion transfer.
It is important to note that there is greater energetic destabilization of the
product compared to the initial state.

5.2 Protein-Substrate Interactions During the Hydride
Transfer Reaction

The free energy associated with the hydride ion transfer from C4 of the
nicotinamide ring to C6 of the pteridine ring was computed in a manner

Figure 10. The ternary complex of the enzyme dihydrofolate reductase, the substrate and the
cofactor during the transition state of the hydride ion transfer. The enzyme backbone atoms
are shown alone for clarity and are colored blue. The substrate is shown in yellow and the
cofactor is in red. The bond colored in light blue indicates the hydride ion being shared by
both the cofactor and the substrate before the transfer to the substrate. Water molecules
around the residue pteridine of the substrate and the nicotinamide ring of the cofactor alone
are shown and colored in light blue. The yellow spheres represent the sodium ions and the
pink spheres the chloride ions.



similar to the proton transfer, i.e. by mutating structural transitions
generated from ab initio quantum mechanical optimized geometries. Three
structures comprising the reaction pathway were used for the analysis of the
molecular interactions. The first of these structures was designated as
PHTl, representing the ternary complex between the protein, the protonated
substrate and the reduced cofactor NADPH. The structure of the transition
state for the transfer of hydride ion, denoted as PHT2 is shown in Figure 10.
The third structure PHT3 represents the product of the hydride ion transfer,
where the hydride ion is bound to the substrate. The van der Waals and
hydrogen bond interactions are analyzed between the substrate, the cofactor
and the remainder of the system during hydride ion transfer.

5.2.1 Contacts with the Pterin Ring Moiety

The van der Waals and hydrogen bond contacts between the pterin ring
and both the nearby amino acids and water molecules in the three structures
PHTl, PHT2 and PHT3 were evaluated in order to better understand the
molecular factors controlling the hydride ion transfer. Ile5 makes a van der
Waals contact with the pterin in PHTl, which becomes stonger in PHT2 and
PHT3 where a hydrogen bond is established between HN8 and the O.
Accordingly, the van der Waals distance for this pair of atoms in structure
PHTl, 2.49 A, becomes 1.66 A in PHT2 and 2.09 A in PHT3. This is an
important interaction which results in hydrogen bond formation. The Ala?
residue develops a favorable nonbonded contact in PHTl with pterin, which
is not observed in PHT2, but reappears again in PHT3. Met20 gradually
moves away from pterin, as shown by the successive increase in the van der
Waals distances. Trp22 is in van der Waals contact with the pterin only in
structure PHTl. The pterin residue is also in contact with Phe31 in all the
three structures with little variation in the respective contact distance. Ile94
is in van der Waals contact with the pterin in PHTl and comes in closer
contact in PHT3, ultimately forming a hydrogen bond between H72 ...O.
These residues move apart in PHT3 such that the hydrogen bond becomes a
van der Waals contact. The pterin residue in PHTl develops three
additional van der Waals contacts with TyrlOO, Thrll3 and Wat787, which
are not observed in PHT2 and PHT3. Special mention should be noted
regarding the interaction between Asp27 and the pterin. In structure 1,
Asp27 forms four hydrogen bonds with the pterin residue using both the
main-chain and side-chain atoms. The side-chain atom OD2 of Asp27
shares two hydrogen bonds with HN2B and HN3 of the pterin. The other
hydrogen bond involves the side-chain atom of Asp27 and the pterin residue
(ODl ... HN3). A fourth hydrogen bond involving Asp27 is the HN2B ...O
hydrogen bond. In the PHTl structure, only one hydrogen bond involving
water is observed, i.e. the hydrogen bond between HN2A and O of water.



Asp27 had four hydrogen bonds with the pterin in PHTl and two hydrogen
bonds in structures PHT2 and PHT3. In PHT2, the two hydrogen bonds are
between HN2B - OD2 and HN3 - ODl. In both instances, the hydrogens
belong to pterin and the oxygens to Asp27. Both contacts are maintained in
PHT3, with a small variation in length. It is important to note that there are
several hydrogen bonds involving water in PHT2 and PHT3. The hydrogen
bond between the pterin residue and Watl94 (HN2A...O) is observed in both
PHT2 and PHT3. In PHT2, an additional hydrogen bond between the
pterin and a water molecule (Wat682) involves atoms O4 and H2. In PHT3,
the pterin residue forms a hydrogen bond with Wat755 (atoms O4 and H2).
An important finding is that throughout the entire course of hydride ion
transfer, the proton at the N5 position of pterin ring does not show direct
contact either with the protein molecule or with any of the water molecules.

5.2.2 Contacts withp-Aminobenzoic Acid Moiety

The p-aminobenzoic acid moiety (PBH) of the substrate maintains van
der Waals contact with Met20 in all the three structures (PHTl, PHT2 and
PHT3). Ile50 and Leu54 also make van der Waals contact with PBH in all
three structures. The contact distance between PBH and Leu54 is almost
constant (at 2.7A) whereas the contact distance with IleSO varies slightly in
the three structures. The van der Waals contact between PBH and Thr46 in
structure PHTl is not seen in PHT2, but is reestablished in PHT3 with an
increased distance. In structure PHTl, the remainder of the three van der
Waals contacts are between PBH and three water molecules (Wat 198,
Wat796 and Wat813). Wat479 is in van der Waals contact with PBH in
PHT2. PHT3 has van der Waals contacts between PBH and Leu28, Arg52,
and Ile94 which are not observed in PHTl and PHT2. In PHT3, two
additional van der Waals contacts between PBH and waters Wat537 and
Wat823 are also noted. There are two hydrogen bonds to water in both
PHTl and PIM; none of these bonds involve the same water molecule. The
hydrogen bond in PHTl is between O and H2 of Wat294 and Wat813. Only
PHT2 has a hydrogen bond with an amino acid Arg52. The other hydrogen
bond present in PHT2 is between PBH and Watl095. In PHT3, the
hydrogen bond is between Wat818 and PBH between the atoms O and Hl.

5.2.3 Contacts with Glutamate Moiety

The van der Waals contact between the glutamate (GXO) moiety of the
substrate folate and Leu28 becomes stronger as the transition is made from
PHTl to PHT2 and PHT3. The van der Waals contact between GXO and
Phe31 increases as the transition simulation proceeds from PHTl to PHT2,



and then decreases in PHT3. PHTl has four additional van der Waals
contacts, which are between GXO and Wat589, Wat727, Wat813 and
Wat850. PHT2 exhibits only a van der Waals contact between GXO and
Lys32 and no contacts between GXO and the water molecules. This
observation is in contrast to PHT3, which exhibits two van der Waals
contacts between GXO and Wat638 and Wat857. GXO forms hydrogen
bonds with Arg52, Arg57 and water molecules in all three structures. In
structure PHT3, an additional hydrogen bond develops between GXO and
Lys32 (OE2...HNZl). The hydrogen bond length between atoms O2 ...
HN12 of GXO and Arg52 decreases as the transition proceeds from PHTl
to PHT2, and decreases further in PHT3. The hydrogen bond between
atoms O2 and HN22 involving the same two residues increases in length
from structure PHTl to PHT2, and decreases slightly in PHT3. The
hydrogen bond length involving atoms Ol and HN12 between GXO and
Arg57 decreases relative to PHTl in PHT2 and decreases further in PHT3.
The hydrogen bond between Ol of GXO and HN22 of Arg57 remains
essentially constant in PHTl, PHT2 and PHT3. PHT2 has an additional
hydrogen bond (Ol ...HN12) between GXO and Arg52, which is not
observed in the other two structures. PHT3 has two additional hydrogen
bonds (OE2...HNZ1 and O2...HN22) between the residue GXO and Lys32
and Arg57. In addition, structures PHTl, PHT2 and PHT3 have three, four
and one hydrogen bonds between GXO and surrounding water molecules.

5.2.4 Contacts with the Nicotinamide Moiety

The van der Waals and hydrogen bonded contacts associated with the
nicotinamide moiety (NRP) and the surrounding amino acid residues of the
protein and the water molecules were examined. In PHTl and PHT3, GIu 17
makes van der Waals contacts with NRP. NRP in PHTl also exhibits van
der Waals with Met20 and His45 whereas these contacts are not observed in
PHT2 and PHT3. The contact between NRP and Trp22 persists throughout
in PHTl, PHT2 and PHT3. The contact decreases from PHTl to PHT2, and
increases in PHT3. Ile94 also uniformly maintains in contact with NRP in
all three structures. The contact between NRP and TyrlOO increases as the
simulation proceeds from PHTl to PHT2, and decrease in PHT3. PHTl has
only one van der Waals contact involving NRP and water (Wat200). PHT2
and PHT3 also exhibit unique contacts involving NRP with GIyIS, Alal9,
Thr46 and Thrl23 in PHT2 and with Ala6, Thr46 and Ser49 in PHT3.
PHT2 does not have any contacts between NRP and water molecules. This
is in contrast to PHT3, which forms two contacts between NRP and Wat 196
and Wat525. NRP exhibits hydrogen bonds with both Ala7 and Ilel4 which
are maintained in PHTl, PHT2 and PHT3. O7N of NRP forms a hydrogen
bond with HN of Ala7 in PHTl, which decreases in PHT2, and then



increases in PHT3. Also, H71N of NRP forms a hydrogen bond with O of
Ilel4 which is maintained in PHTl, PHT2 and PHT3. There is also a
hydrogen bond between residues NRP and Ser49 (HO2'...OG) in PHTl and
PHT2. In PHTl, we find two additional hydrogen bonds involving residues
NRP with Gly97 and Wat787. PHT3 also has two additional hydrogen
bonds in which NRP is hydrogen bonded to AsnlS and Wat725.

6. DISCUSSION

In this study, we characterized the stepwise transformations constituting
the mechanism by which DHFR catalyzes the reduction of dihydrofolate to
tetrahydrofolate using a novel combinatorial application of advanced
molecular simulation methods. By using this approach, we are able to make
concise statements regarding the role of Asp27 in the catalytic mechanism
of DHFR for the first time. Moreover, using the combined ab initio
quantum mechanical and molecular mechanics approach, we are able to
describe the mechanism in detail, including the electronic, energetic, and
structural features associated with the proton transfer and the subsequent
hydride ion transfer.

Based on experimental data, the initial state of the proton transfer
involves a protonated Asp27 and the pterin ring in the enolic configuration.
Our studies suggest that the proton moves ("shuttles") from Asp27 to O4 of
the pterin ring, and is accompanied by hydrogen bond switching from O4 to
N3 of the pterin. This step is followed by rotation of the O4-HO4 bond of
the pterin moiety toward N5, which is a critical step facilitating the proton
migration to N5. During this process, the proton shuttles from O4 to N5 of
the pterin where there is a critical conformational transition in the substrate.
This conformational transition subsequently drives the pteridine ring toward
the nicotinamide ring resulting in facile hydride ion transfer. Based on our
data, it is reasonable to believe that this conformational transition
contributes approximately 2 to 3 kcal/mol for catalysis, however, an exact
energetic contribution could not be fully characterized due to the complexity
of the computational steps beyond that used in the present work.

During hydride ion transfer, careful analysis of the secondary structural
features of the protein in the ternary complex reveals that the overall
conformational features of the protein remain undisturbed. The
conformational angles of the residues in the MET loop25 were analyzed in
detail due to its proximity to the substrate. The MET loop is composed of
amino acid residues Ala9 through Leu24. Comparison of the initial,
transition, and final states of the MET loop during hydride ion transfer
reveals that: (a) between the initial state and the transition state, the 1F angle



of GIy 15, Met 16, AsnlS rotates by 30°, and (b) the Oangle of GIu 17, Asnl9
and Met21 also rotate by 30° These two factors distort the MET loop
significantly so that the MET loop is compressed and adopts a more
compact configuration in the transition state. However, when the final
product of the hydride ion transfer forms, the MET loop "springs" back to
nearly its original relaxed configuration. Between the initial and product
states, the O 1P angles of Asp 11 and VaI 13 undergo approximately a 30°
change. The single, largest conformational change occurs in the 1F angle of
GIy 15 which flips 180°. The O angle of Met 16 rotates by 80° and the ¥
angle 30° The conformational changes in the MET loop provide a
significant and direct effect in bringing closer the substrate and the cofactor,
in order to facilitate hydride ion transfer.

It is important to note that during these simulations, the solvent
molecules do not access either the N5 position or the O4 position of the
substrate. This fact supports the conclusion that the ternary complex in
which the proton is bound to Asp27 is a kinetically productive complex.

It has been proposed42'43 that a protonated Asp27 can donate the proton
to the substrate by means of intermediate solvent molecules. Another view25

proposed that the proton source is an explicit solvent molecule and that the
Asp27 acts as a proton relay. To resolve these contrasting views, we have
conducted a series of simulations starting with the cyclic amide form of the
pterin ring and a water molecule hydrogen bonding with HO4 and N5.
Eight structures were generated along the path of the proton transfer from
O4 to N5 using a 6-3IG** geometry optimization of the transfer process.
The hydrogen bond distances between O4-HO4 and the corresponding SCF
energy for each of these structures are listed in Table 3. It is important to
note that dhwO corresponds to the state in which O4 is protonated, and dhw7
represents the final product of the proton transfer in which N5 is protonated.

Table 3. Ab initio energy profile during water mediated proton transfer.
Structure

dhwO
dhwl
dhw2
dhw3
dhw4
dhw5
dhw6
dhw7

Ab Initio energy
(Hartree Units)

-693.58660
-693.58554
-693.58260
-693.57262
-693.58063
-693.58063
-693.58078
-693.59765

Relative Energy
(kcal/mol)

0.0000
0.6672
2.5088
8.7773
3.7462
3.7495
3.6551
-6.9300

Distance
N5-H23 (A)

2.165
1.906
1.609
1.361
1.302
1.231
1.291
1.033

aThe atom H2 belongs to the water molecule



Table 4. Ab initio energy profile during the proton transfer starting from the
reduced tetrahydrofolate.
Structure

h4fenll
h4fenl2
h4fenl3
h4fen!4
h4fen!5

Ab Initio energy
(Hartree Units)

-617.61312
-617.60907
-617.60251
-617.64567
-617.69796

Relative Energy
(kcal/mol)

53.2390
55.7788
59.8975
32.8124
0.0

Distance
H04-04 (A)

0.965
1.005
1.130
2.444
2.525

As the proton shuttles from the O4 to N5, there is a barrier of about 8.8
kcal/mol at which point the O4-HO4 distance is 1.4 A. Once this barrier is
crossed, the system becomes more stabilized. Following proton transfer the
energy is reduced by -6.9 kcal/mol. This series of findings support the
possibility that an energetically feasible mechanism can be proposed for
proton transfer from O4 to N5 via an intermediate water molecule. But as
has been discussed earlier, there was no solvent molecule in direct contact
with either O4 or N5 of the substrate during these simulations.

We have also addressed the possibility to achieve hydride ion transfer
without protonation of N5. The energy profile for proton transfer from N5
to O4 in the reduced tetrahydrofolate was obtained by means of five
intermediate structures. The SCF energies for various distances of O4-HO4
are listed in Table 4. It is clear from this data that when the tautomer is in
the keto form (hydrogen on N5), the energy difference is about 53 kcal/mol.
On the other hand, the energy difference between the hydroxy and keto
tautomer in the oxidized folate is 30 kcal/mol . There is no transition state
for this reaction to occur. Therefore the energy difference is 50-60 kcal/mol
, which is much greater than the free energy barrier height for hydride ion
transfer when Nl is protonated. Thus it is critical for N5 to be protonated
first, in order for hydride ion transfer to occur.

7. CONCLUSIONS

In this study, identification of the critical atomic and molecular
determinants pertaining to the mechanism of dihydrofolate to
tetrahydrofolate reduction was achieved by (i) ab initio quantum mechanics,
(ii) molecular mechanics, and (iii) free energy perturbation techniques. For
the first time, the complete free energy profile was calculated for the proton
transfer from Asp27 of the enzyme E. CoIi DHFR to the N5 position of the
dihydropterin moiety of the substrate dihydrofolate. In addition, the free



energy profile was calculated for the hydride ion transfer from NADPH to
the pteridine ring. These calculations represent almost one nanosecond of
molecular dynamics. The complete series of simulations required nearly
2000 cpu hours on the Cray-XMP supercomputer and 2000 cpu hours on the
IBM RS-6000/570 machines. In addition to the free energy profiles, the
chapter discussed the conformational changes associated with the catalysis.
The function of the enzyme is to bring the reactants together and position
them in the proper orientation so that the reaction can proceed through
donation of a proton to the substrate which, in turn, facilitates hydride ion
transfer. In principle the proton can come from the solvent, however, we
have shown that proton donation from the enzyme is the most probable
mechanism based on the energy profile. The rate of reaction is partially
enhanced by the conformational changes in the substrate, and by the
conformational changes in the protein. The catalytic rate of the forward and
reverse reaction for hydride ion transfer is enhanced by the relative
destabilization of the reactants and the products and the stabilization of the
transition state.

A detailed understanding of the mechanism of DHFR at the molecular
level enabled the identification of critical interactions between the substrate
and the enzyme during the catalytic process. This information is ultimately
expected to be useful in the design of potent and specific inhibitors of
DHFR.
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Chapter 14

Fructose 1,6-Bisphosphatase: Use of Free Energy
Calculations in the Design and Optimization of AMP
Mimetics

M. Rami Reddy and Mark D. Erion
Metabasis Therapeutics, Inc., San Diego, CA 92121

I. INTRODUCTION

Fructose 1,6-bisphosphatase (FBPase) catalyzes the hydrolysis of
fructose 1,6-bisphosphate to fructose 6-phosphate (F6P) and inorganic
phosphate and is a key regulatory enzyme in the gluconeogenesis pathway.1

Inhibitors of FBPase are postulated to be useful for the treatment of
diabetes,1 since excessive flux through the gluconeogenesis pathway is
responsible for the hyperglycemia associated with type II diabetes.
Discovery of potent and selective inhibitors of FBPase represents a
significant challenge for medicinal chemists due to the hydrophilic nature of
both the substrate binding site and the allosteric regulatory site. The latter
site binds adenosine monophosphate (AMP), which induces a protein
conformational change that results in decreased enzymatic activity.

The availability of a high resolution X-ray structure of FBPase,1'2 led to
our efforts to utilize computer-assisted drug design (CADD) approaches3'4

for the discovery of AMP mimetics that bind to FBPase with high affinity
and selectivity. CADD has been used successfully for the discovery of
several novel enzyme inhibitors, including inhibitors of thymidylate
synthase,5 HIV-I protease6' 7 and purine nucleoside phosphorylase.8 The
most accurate computational method for estimating relative binding
affinities of structurally similar inhibitors to an enzyme is the free energy
perturbation approach using with either molecular dynamics (MD) or Monte
Carlo (MC) simulations.9 Despite its high accuracy, free energy calculations
have primarily been used to rationalize experimentally-determined binding
affinities10"13 with few applications focusing on predictions.14'15 This chapter
describes our efforts to utilize relative solvation and binding free energies



for evaluating the binding affinity of AMP mimetics to the AMP binding site
prior to synthesis16'17 using the iterative process summarized in Figure 1.
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2. COMPUTATIONAL DETAILS

2.1 Methodology

The thermodynamic cycle-perturbation (TCP) method9' 18 computes the
relative difference in solvation and binding free energies through non-
physical paths connecting the desired initial and terminal states (see Figure
2, Chapter 16). This approach enables calculation of the relative change in
binding free energy difference between two related compounds by
computationally simulating the 'mutation' of one to the other. The relative
solvation and binding free energy changes for the two ligands is computed
using either single or double topology method.

The single topology method entails changing the appropriate reactant
atoms to product atoms. The mutation often results in geometrical changes
as well as changes in partial charges and van der Waals parameters. Prior to
the mutation, the system was minimized using 500 steps of steepest descent
and 2000 steps of conjugate gradient methods and then equilibrated for 20
ps. Each mutation entailed calculations using 101 windows, with each
window comprising 1 ps of equilibration and 2 ps of data collection or 303
ps of total MD simulation.

In the double topology or thread method,19'20 a single topology is defined
for those atoms which are identical in both molecules. For the portion of the
molecule that must be transformed, both the starting (reactant) and ending
(product) topologies are defined using their associated geometries, with one
beginning and the other ending the simulation entirely as dummy atoms.
Dummy atoms are identical to real atoms except that their Lennard-Jones
parameters and charges are set to zero. At intermediate points during the
transformation, all atoms in both topologies have fractional Lennard-Jones
parameters and charges. Additionally, molecules with both topologies
interact with the environment but not with each other. For each calculation,
the system was initially minimized using 500 steps of steepest descent and
2000 steps of conjugate gradient methods and then equilibrated for 20 ps. A
two-stage procedure was used to obtain relative free energy differences from
the molecular dynamics simulations. During the first stage, the charges of
the reactant atoms are turned off while the Lennard-Jones parameters of the
product atoms are turned on. During the second stage, the Lennard-Jones
parameters of the reactant atoms are turned off while the charges of the
product atoms are turned on. This procedure has been used previously20 to
achieve convergence. Each stage of the simulation was performed using 101
windows, each window comprising 1 ps of equilibration and 2 ps of data
collection to compute the free energy differences using the thread method
because shorter simulations often resulted in convergence problems.20 Thus,
a molecular dynamics simulation of 606 ps run was used for the complete
mutation.



2.2 Force Field Parameters

All molecular dynamics, molecular mechanics and FEP calculations were
carried out with the AMBER program using an all atom forcefield21'22 and
the SPC/E model potential23' 4 to describe water interactions. Electrostatic
charges and parameters for the standard residues were taken from the
AMBER database. For non-standard solute atoms, partial charges were
obtained by fitting wave functions calculated with Gaussian9425 ab initio 6-
3IG* basis set level with CHELP26. All equilibrium bond lengths, bond
angles, and dihedral angles for non-standard residues were taken from ab
initio optimized geometries. Missing force field parameters were estimated
from similar chemical species within the AMBER database.

2.3 Solvent Simulations

SPC/E explicit water was used for calculating solvation free energies.
All the water molecules located greater than 15.0 A or less than 2.5 A away
from any solute atoms were removed. Aqueous phase dynamics simulations
were carried out in a rectangular box using periodic boundary conditions in
all directions. Newton's equations of motion for all the atoms were solved
using the Verlet algorithm 7 with a 2 fs time step. SHAKE28 was used for
constraining all bond lengths. Constant temperature (N, P & T ensemble)
was maintained by velocity scaling all atoms in the system. Non-bonded
interaction energies were calculated using a 15.0 A residue based cutoff.

2.4 Complex Simulations

The EDIT module of AMBER was used to add hydrogens to the protein
tetramer and the crystallographic waters. The protonation state of histidine
was deduced from analysis of neighboring residues and from hydrogen
bonding potential. The total charge on the FBPase tetramer complex was +4
e. No counterions or changes in the customary charge of protein residues
were used. The entire system was immersed in a 25.0 A radius sphere of
solvent centered around the mutating group. The water sphere was subjected
to a half-harmonic restraint near the boundary to prevent evaporation.
During the simulation, all atoms of the protein were fixed beyond 25.0 A.
All non-bonded interactions involving the inhibitors and the charged
residues of the protein were computed with an infinite cutoff. A 15.0 A non-
bonded residue based cutoff was used for other residues of the system. The
algorithm for the complex simulation was identical to the solvent simulation,
except for the absence of periodic boundary conditions in the former.



3. STRUCTURALANALYSIS

3.1 AMP Model

FBPase is a tetrameric molecule with four identical polypeptide chains
(Cl to C4). Cl and C2 comprise the crystallographic n-symmetric unit. The
X-ray structure of the ZMP: human liver FBPase complex1 was solved at 2.3
A resolution by Prof. William Lipscomb (Harvard U.). Analysis of the X-
ray structure of the FBPase: ZMP complex shows that slight differences
exist between each subunit with regard to the atomic positions for several
binding site residues (e.g. Argl40 and Lysll2 side-chains) as well as the
number and position of water molecules. Consequently, we calculated the
interaction energy of ZMP in each subunit. The calculated interaction
energies after energy minimization indicated that the C4 subunit has the
lowest energy (C4<C1<C3<C2). Accordingly, the ZMP binding site of the
C4 subunit was used for all molecular modeling calculations.

3.2 Model Validation

A model of adenosine monophosphate (AMP) bound to the AMP binding
site was built by first overlaying AMP on ZMP in the enzyme subunit C4
(Figure 2). The model was then energy minimized using 500 steps of

Figure 2. Stereoview of the allosteric binding site of fructose 1,6-bisphosphatase and the
binding geometry of AMP (yellow).



steepest descent followed by 2000 steps of conjugate gradient. The complex
was then equilibrated with 20 ps MD simulation. The average 'dynamical1

structure of the complex was computed from the MD simulation. For time
steps of 1 fs and 2 fs, the root mean square (RMS) deviations from the
crystal structure were 1.10 A and 1.17 A for backbone atoms and 1.55 A and
1.61 A for side-chain atoms, respectively. As expected, the largest deviations
were observed on the surface (with RMS deviations of 1.28 A and 1.70 A for
backbone and side chain atoms, respectively) when compared to the rest of
the protein. This is primarily due to the flexibility of the protein in the
surface region. Nevertheless, the dynamical structure is a good model for
calculating relative free energy changes between two similar inhibitors.
Since both time steps gave similar structures and are in good agreement with
the X-ray structure, we used the larger time step, i.e. 2 fs, for all the free
energy calculations reported, to save computer time.

3.3 FEP Methodology Validation

Initially, the relative binding free energy between ZMP (1) to AMP (2)
was performed to test the validity of our protocol. Since this mutation
involves significant changes in ligand structure, the 'thread' method12 was
used to accomplish the transformation. For this mutation, the bases of ZMP
and AMP are 'threaded1 together at CY (Figure 3). The calculated difference
in binding free energy of 1.70±0.9 kcal/mol is in good agreement with the
experimentally measured free energy difference of 1.4 kcal/mol. These
results indicate that 2MP binds to FBPase with lower affinity relative to
AMP. The lower affinity appears to be due to the higher desolvation free
energy of ZMP (1.5 kcal/mol), which results from the increased number of
hydrogen bonds formed to solvent water, and the increased conformational
freedom (higher entropy) of ZMP relative to AMP.

(l->2) (2-»l)

Figure 3: Dual-topology definition for ZMP (1) and AMP (2). Dashed structures incorporate
"dummy" atoms (D).



Figure 2. Stereo view of the allosteric binding site of fructose 1,6-bisphosphatase and the
binding geometry of AMP (yellow).



4. ANALYSIS OF AMP MIMETICS

Scanning of AMP binding site of FBPase (Figure 2) using the free energy
perturbation method16 indicates that hydrogen bond interactions with the
phosphate, 6-amino group, and N7 may be very important to the binding
affinity of AMP to FBPase. Accordingly, discovery of more potent and
selective analogs required new analogs with groups that provide additional
favorable interactions or replacement of these groups with groups that are
equally effective. Thus, new AMP analogs were designed using the X-ray
structure of FBPase: AMP complex and CADD approaches. Newly designed
analogs were examined individually and the most promising analogs
selected for further calculations on the basis of their interactions with the
binding site residues. The relative binding affinities of selected new analogs
were calculated using the free energy perturbation method. Analogs
exhibiting significantly enhanced binding affinities were synthesized and
evaluated as FBPase inhibitors.

4.1 5'- Substituted AMP Analogs

Phosphates are often poor drug candidates29 due to their instability in
biological fluids and inability to penetrate cell membranes. As a result, we
focused our efforts on the discovery of suitable phosphate mimics. In these
studies we evaluated various analogs with well-known phosphate
replacements (Figure 4), namely phosphonate (3), sulfate (4), carboxylate (5)
and dicarboxylate (6).

Four mutations, AMP (2) —» phosphonate (3), AMP (2) —> sulfate (4),
AMP (2) -> carboxylate (5), and AMP (2) -» dicarboxylate (6) were
performed and relative solvation and binding free energies calculated. For
the mutations involving replacement of phosphate (2) with carboxylate (5)
and dicarboxylate (6), the double topology method was used due to the large
structural changes. For the AMP to phosphonate (3) and AMP to sulfate (4)
transformations, the single topology method was used. The free energy
differences between AMP and phosphonate (3) show that phosphonate costs
less to desolvate by 1.0 kcal/mol. The large loss in relative binding affinity is
likely due to the loss of a hydrogen bond with the Tyrll3 hydroxyl group,
and to decreased interaction energies of the phosphonate group with protein
residues relative to phosphate. As a result, phosphonate (3) is a much weaker
inhibitor (3.9 kcal/mol) of FBPase than AMP.

The calculated relative binding free energies for AMP to sulfate (4) and
AMP to carboxylate (5) mutations are 3.5±0.6 kcal/mol and 5.0±1.6
kcal/mol, respectively. These calculated free energies are qualitatively
similar to the experimental results of >2.6 kcal/mol and >3.6 kcal/mol for



Figure 4. 5'-Substituted AMP analogs evaluated in FEP calculations

the former and latter transformations. The large change in charge between
the phosphate (-2e) and either the carboxylate or sulfate (-Ie) is likely to
decrease accuracy in these free energy calculations. Nevertheless, the
qualitative trend was correctly predicted by the FEP method. Analysis of the
calculated relative solvation and binding free energies between dicarboxylate
(6) and AMP to FBPase showed that the dicarboxylate (6) costs 2.3 kcal/mol
more to desolvate but gains about 1.1 kcal/mol in the complex as compared
to AMP. Accordingly, the dicarboxylate analog (6) binds less effectively
(1.2 kcal/mol) to FBPase, even though it gained favorable interactions in the
binding site residues relative to AMP, because of its much larger desolvation
cost. Based on the calculated relative binding free energies none of the four
phosphonate mimics were predicted to bind to FBPase as effectively as
phosphate.

4.2 AMP Analogs Containing a Modified Pyrimidine Ring

The X-ray structure of the FBPase-AMP complex (Figure 2) revealed
unfilled space near Nl, C2 and N3. Since the residues in the vicinity were
hydrophobic and neither Nl nor N3 participated in a hydrogen bond with the
protein, analogs, 2-S-methyl AMP (7), 2-methyl AMP (8), 2-ethyl AMP (9)
and 2-chloro AMP (10) (Figure 5) were evaluated to determine whether
these substituents gained favorable hydrophobic interactions with Metl88.

The calculated binding free energies indicate that relative to AMP, 2-
methyl AMP (0.20 kcal/mol) and 2-ethyl AMP (0.7 kcal/mol) were predicted
to be slightly weaker FBPase inhibitors despite their reduced desolvation
costs. The rationale for the decreased binding affinity in the complex was
not apparent from analysis of the X-ray structure but the results were
consistent with the inhibition potency determined subsequently for 2-ethyl
AMP (1.0 kcal/mol). However, consistent with the experimental binding
affinity results, 2-S-methyl AMP (0.25 kcal/mol) and 2-chloro AMP (0.8
kcal/mol) also showed weaker FBPase inhibitors than AMP presumably
because of the large increase in desolvation costs predicted to occur with
these substituents. In addition to the 2-substituted analogs, several deaza
AMP analogs; 1-deaza AMP (11), 3-deaza AMP (12), 1,3-dideaza AMP



(13), 1,3-dideaza-l- fluoro AMP (14), and 1,3-dideaza-l-ethyl AMP (15)
were designed (Figure 5) and evaluated to determine whether the expected
reduction in desolvation costs produced by the base modification would
result in an AMP analog with enhanced binding affinity. The calculated
relative solvation and binding free energies for 1-deaza AMP, 3-deaza AMP,
1,3-dideaza AMP, 1,3-dideaza-l-fluoro AMP, 1,3-dideaza-l-ethyl AMP are,
0.7 kcaiymol, -0.6 kcal/mol, 1.1 kcal/mol, -0.5 kcal/mol, 1.3 kcal/mol -0.8
kcal/mol, 1.0 kcal/mol, -1.3 kcal/mol, and 1.2 kcal/mol, -0.5 kcal/mol,
respectively to FBPase as compared to AMP. As expected the calculated
results indicated decreased solvation and improved binding affinity.

An X-ray structure of the FBPase complexed with AMP (Figure 2)
showed the 6-amino group hydrogen bonds with both the hydroxyl group of
Tyr31 and the backbone carbonyl oxygen of VaI 17. In addition, N7
appeared to be within hydrogen bonding distance to the hydroxyl group of
Thr31. In order to understand the contribution of the 6-amino hydrogen
bonds to the binding affinity of FBPase enzyme, the compounds purine
riboside monophosphate (16), 6-methyl purine riboside monophosphate (17),
and 6-chloro purine riboside monophosphate (18) (Figure 5) were designed

Compounds X Y Z V

7 NH2 N SCH3 N
8 NH2 N CH3 N
9 NH2 N C2H6 N
10 NH2 N Cl N

11 NH2 N H CH
12 NH2 CH H N

13 NH2 CH H CH

14 NH2 CH H CF
15 NH2 CH H CC2H5

1 6 H N H N

17 CH3 N H N
18 Cl N H N

Figure 5. Substituted pyrimidine base analogs evaluated in FEP calculations



and evaluated. The relative solvation and binding free energies were
calculated between AMP and each of these analogs (16 to 18) using the
single topology and FEP method. The calculated relative solvation and
binding free energies between, AMP and purine riboside monophosphate
(16), AMP and 6-methyl purine riboside monophosphate (17), and AMP and
6-chloro purine riboside monophosphate (18), are -4.0 kcal/mol, 2.3
kcal/mol, -3.5 kcal/mol, 2.0 kcal/mol, -4.9 kcal/mol, and 1.2 kcal/mol,
respectively and consistent with available experimental data17. The observed
binding preference of AMP relative to 6-desamino AMP analogs (16 — 18) is
attributed to the two strong hydrogen bonds formed between the 6-amino
group and the carbonyl of VaI 17 and hydroxyl of Thr31 residues.
Apparently, these hydrogen bond interactions dominate the opposing
contribution arising from the large desolvation penalty of AMP relative to 6-
desamino AMP analogs. The larger desolvation penalty of AMP arises from
the two hydrogen bonds formed between water and the 6-amino group
compared to similar desamino analogs.

4.3 AMP Analogs Containing a Modified Imidazole Ring

7-deaza AMP (19) and formycin monophosphate (20) (Figure 6) were
evaluated to assess whether AMP analogs lacking N7 or using N7 as a
hydrogen bond donor or acceptor were suitable FBPase inhibitors. The
mutations between compounds, AMP to 7-deaza AMP (19) and AMP to
formycin monophosphate (20) were completed using the FEP method.
Relative to AMP, the desolvation gain for 7-deaza AMP (19) is about 0.8
kcal/mol. Apparently, however, the loss of the N7 hydrogen bond to the
hydroxyl of Thr31 residue results in a 2.8 kcal/mol loss in binding affinity
for 7-deaza AMP (19) compared to AMP.

2 W = N 2 0
19 W = CH

Figure 6. AMP analogs containing modifications in the imidazole ring used in FEP
calculations.



The major difference between AMP and formycin monophosphate (20) is
that in formycin N7 acts as a hydrogen bond donor, whereas N7 in AMP is a
hydrogen bond acceptor to the Thr31 hydroxyl group. Despite this
significant structural change and the earlier results with 7-deaza AMP
showing that N7 is very important, the mutation of AMP to formycin (20)
led to a relative free energy difference of only 0.6 kcal/mol. The graphical
analysis following 20 ps of MD simulation showed that the FBPase binding
site accommodates the change in N7 by a slight rearrangement in the binding
site residues, especially the Thr31 side chain. Overall, both compounds
showed similar number of hydrogen bonds both in complex as well as in
solvent states. However, the calculated relative solvation free energy
between AMP and formycin monophosphate indicates a small loss (0.5
kcal/mol) of free energy in the solvent state. This was more than
compensated in the complex by slightly more favorable interactions between
AMP and protein residues as compared to formycin monophosphate (20).
The changes in free energy, both in the solvent and in the complex, could be
due to the loss of an intramolecular hydrogen bond between N7 and the 6-
amino group and a change in the geometry of the 6-amino group. The net
result is that AMP is a slightly (0.6 kcal/mol) better inhibitor of the FBPase
than formycin monophosphate (20), which is in agreement with the
experimental data (0.3 kcal/mol). These results further indicate that the
hydroxyl group of Thr31 forms a hydrogen bond with N7 of the inhibitor,
either by donating a proton or accepting a lone pair and maintains similar
binding affinity.

5. CONCLUSIONS

An iterative CADD method that combines molecular design, molecular
mechanics, molecular dynamics and free energy perturbation calculations
with the synthesis, biochemical testing and crystallographic structure
determination of protein-inhibitor complexes has been successfully used to
predict the rank order of a series of nucleoside monophosphate analogs as
fructose 1,6-bisphosphate (FBPase) inhibitors. As part of this paradigm, the
free energy calculations were instrumental in identifying a series of
inhibitors for the FBPase enzyme. More importantly, once validated, this
approach was used in a predictive sense to prioritize design ideas and
eliminate the need to synthesize poor inhibitors, thus accelerating the drug
design cycle. In all the cases, where experimental data was available,
predictions based on this approach were accurate. This study also elucidated
the importance of solvation free energy in the binding of inhibitors to an
enzyme. If the goal is to design a more potent inhibitor, the energetic cost of
desolvation for the addition of polar groups to an inhibitor must be
compensated and overcome by stronger ligand-protein interactions. For
example, significant desolvation costs are associated with the 6-amino and
N7 of AMP. Fortunately, these losses are more than compensated in the



complex by forming strong hydrogen bonds with protein residues. While the
FEP method is very expensive computationally and can't be used for all
proposed analogs of a lead compound, it still represents the only method that
routinely generates accurate relative binding free energies. Moreover, the
method enables accurate calculation of relative solvation free energies,
which, in many cases, represent useful information for drug design.
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I. INTRODUCTION

The development of reliable methodology for the computation of relative
free energies of binding for ligands with proteins is central to structure-based
drug design. Enhanced binding normally correlates with greater drug
potency and increased specificity, and can contribute to lower toxicity.
Diverse approaches are available ranging from ligand docking and growing
procedures with empirical scoring functions to fluid simulations with full
atomic detail.1"3 We have emphasized the latter course owing to its
theoretical rigor, the direct connections that it provides between observed
and predicted free energies of binding, and the detailed structural
information that can be obtained to help understand the variations in binding.
Docking programs can be useful for lead generation; however, scoring
functions coupled with various levels of neglect of ligand flexibility, protein
flexibility, and configurational sampling limit their accuracy. With the full
simulation approach, there are several key choices: (a) the sampling
procedure, e.g., molecular dynamics (MD) simulations or Monte Carlo (MC)
statistical mechanics, (b) representation of the solvent as a continuum or as
discrete molecules, (c) the potential-energy evaluation, and (d) the
methodology for the free energy calculations. Each of these issues will be
discussed in further detail, and as examples of recent successes, free energy
perturbation (FEP) results for COX-I, COX-2 and SRC SH2 domain and
linear interaction energy (LIE) results for thrombin and HIV-RT are
illustrative.



2. COMPUTATIONAL BACKGROUND

Though MD has been the dominant choice of sampling procedure, recent
results suggest that Metropolis MC calculations may be particularly efficient
for conformational sampling of protein side chains.4 In view of this and
numerous successes of MC simulations for organic host-guest
complexation,5'8 recent work in our laboratory has explored the MC
approach for protein-ligand binding. The solvent, water, is represented as
discrete molecules with the TDP4P potential9 the description of specific
interactions such as hydrogen bonding with continuum models is a concern
for their application along with the loss of detail on variations in water
structure. The remaining interactions in our studies have employed the
OPLS force fields, which have been parameterized to give correct
conformational energetics and properties for organic liquids.10' n Finally,
free energy changes can be computed rigorously with FEP or
thermodynamic integration methods.2' 5' 12' 13 In both cases, a free energy
change is computed along a reaction path or for converting a system with a
molecule A to one with a molecule B, a series of non-physical intermediate
states is covered. The two methods are comparably effective and
computationally taxing, the latter owing to the need to run the series of
calculations for the intermediate states or for many points along the reaction
path. Consequently, more efficient, approximate methods are also being
evaluated, such as Aqvist's LIE procedure for free energies of binding.14"20

2.1 Energetics and Sampling

A classical force field is typically used in which the energy expression
consists of harmonic terms for bond stretching and angle bending, a Fourier
series for each torsional angle, and Coulomb and Lennard-Jones interactions
between atoms separated by three or more bonds (Equations 1- 4). The latter
"non-bonded" interactions are also evaluated between intermolecular atom
pairs, and they are reduced by a factor of 2 for intramolecular 1,4-
interactions. Inhibitors or substrates are represented in an all-atom format
with OPLS-AA parameters11 though sometimes with partial charges
obtained from quantum mechanical wavefunctions.

The proteins were described by the OPLS-UA force field with all
hydrogens explicit except those on aliphatic carbon10 in our earlier studies,
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though we now use the all-atom force field, OPLS-AA. The TIP4P water
molecules are treated as rigid bodies that only translate and rotate, while the
sampling for the inhibitors includes translations, rotations, bond angle
variations, and torsional motion in each case. For the proteins, attempted MC
moves involve variation of the bond angles and dihedral angles for one
randomly picked residue at a time. Variation of bond lengths can also be
performed at little additional cost in MC simulations. The protein backbone
is sometimes held fixed for efficiency, though our MCPRO program can
perform backbone sampling with internal coordinate or Cartesian Monte
Carlo.21' 22 Other, potentially more efficient procedures for backbone
sampling are also being explored.23'24

2.2 Free Energy Methods

The FEP calculations use the Zwanzig expression (Equation 5) to
compute the free energy change between the reference system X and the
perturbed system Y.2'5'12 For binding studies,

AG(X->Y) = - kBT In <exp [- (EY - Ex)/kBT]>x (5)

perturbations are made to convert one ligand to another using the
thermodynamic cycle shown below.25 The conversions use a coupling
parameter, X, that causes one molecule to be smoothly mutated to the other
by changing the force field parameters and geometry. The difference in free
energies of binding for A and B then comes from Equation 6. Two series of
mutations are performed to convert A to B unbound in water and complexed
to the protein, which yield AGF and AGc, respectively. The same cycle can
be used to compute the effect of a protein mutation on the binding of an
inhibitor P with A and B as the two proteins.

The experimental data usually come from inhibition constants or assays
of enzyme activity or cell mortality. In general, if a group of inhibitors have
the same mechanism of action, the ratios of ICso values should be the same
as the ratios of IQs, as long as the assays yielding the ICso values are
performed in the same way.26 The latter condition generally requires only
using ICso values from a single source for a given set of inhibitors. Thus,
when KJ values are not available, relative binding free energies are
approximated from AAGb (A - B) « RT In IC50(A)TIC5O(B).



AAGb = &GA - AG5 = AGF - AGC (6)

An approximate approach, LDE, based on linear response theory was
introduced by Aqvist et al.14 In this model, the free energy of interaction of a
solute with its environment is given by one-half the electrostatic
(Coulombic) energy plus the van der Waals (Lennard-Jones) energy scaled
by an empirical parameter, a. For binding a ligand to a protein, the
differences in the interactions between the ligand in the unbound state and
bound in the complex then provide an estimate of the free energy of binding
via Equation 7.

AGb = P <AEe,ec> + a<AEvdw> (7)

The required energy components were obtained from MD simulations for
the inhibitors in water and for the protein-inhibitor complexes in water. Key
advantages over FEP methods are (a) absolute free energies of binding are
readily obtained, and (b) only simulations at the endpoints of a mutation are
required. In principle, this might provide a factor of about ten gain in speed;
however, we find it necessary to run the LIE calculations several times
longer than a typical FEP window to obtain adequate precision for the
energy components. Nevertheless, a major plus for the LIE approach is that
it is easy to treat structurally diverse ligands, which might be impractical to
tackle with FEP calculations. In spite of the approximations in Equation 7
including the neglect of intramolecular energetics, the approach has yielded
promising results for several applications.16 It is expected to be most viable
for an analog series of a relatively rigid ligand, a common situation in lead
optimization.

Our extension of the LIE approach to calculate free energies of hydration
(AGhyd) incorporated a third term proportional to the solute's solvent-
accessible surface area (SASA), as an index for cavity formation within the
solvent.19'27 The latter term is needed for cases with positive AGhyd such as
alkanes and additional improvement occurred when both a and P were
allowed to vary. Equation 8 gives the corresponding LIE/SA equation for



AGb. We successfully applied this expression to correlate observed binding
affinities for series of inhibitors with thrombin,18 HIV-RT,28 and FKBP.20

AGb = (3 < AEeiec > + a < AEvdw > + y <ASASA> (8)

In all cases average errors of ca. 0.8 kcal/mol have been obtained, though
the data sets were limited to 35 free energies of hydration, and 7 (thrombin),
12 (HIV-RT), or U(FKBP) free energies of binding. As described below,
results have now been obtained for 40 analogs of nevirapine and thymine
analogs with HIV-RT,29 and for 20 thrombin inhibitors.30 These studies
show that better accuracy can be achieved by considering alternate
descriptors. It was also found that convergence of AEeiec must be carefully
validated.

2.3 Typical System Setup and MC Details

The MC simulations for the proteins and inhibitors are carried out with
the MCPRO program using water caps with 20-25 A radius. For the
complexes, amino acid residues more than ca. 18 A from the binding site are
removed and only residues within ca. 16 A are active (sampled). Typically,
the ca. 150 residues nearest the inhibitor are retained. The number of water
molecules in the calculations is ca. 1500 for the unbound inhibitors and ca.
1000 for the complexes. An attempt to move a protein residue is made every
10 configurations and the period is 20-100 for the inhibitors. The remaining
moves are for the water molecules. The protein fragments are normally made
neutral, so no counterions are added. Residue-based cutoffs are adopted with
truncation of the non-bonded interactions at 12-15 A. As a typical protocol,
the FEP calculations are performed over 10-20 windows. The MC run for
each window consists of ca. 10 M configurations of equilibration and 20 M
configurations of averaging. The extended LIE calculations typically cover
50 M configurations for equilibration, followed by averaging for 50 M
configurations with the unbound inhibitors and for 20 M configurations with
the complexes. Initial coordinates are needed for one member of the series of
complexes and are usually obtained from the Protein Data Bank. The utility
program, pepz, converts the PDB file to a Z-matrix with OPLS atom typing
that is suitable for input to MCPRO. Pepz also adds missing hydrogens, and
performs the residue truncation and capping. The ligand is typically
described by OPLS-AA potential functions except for the charges, which for
generality, come from PM3 calculations using the CMlP procedure31 and are
scaled by 1.3 to reflect the condensed-phase environment.32 The ligands are
usually built with XchemEdit33 and are then positioned in the binding site



with our MC docking program, Matador. Matador was derived from
MCPRO, but uses only the residues lining the binding site and no explicit
water molecules. Its scoring function includes the molecular mechanics
energetics and either a distance-dependent dielectric to screen electrostatic
interactions or the GB/SA continuum model34 to account for solvation. The
chosen docked structure is input to MCPRO, and the TIP4P water cap is then
added. Annealing of this initial hydrated protein-ligand complex can involve
conjugate gradient optimizations, MD with the Impact program, 35 and/or
elevated-temperature MC.

3. APPLICATIONS

3.1 COX-I and COX-2

The origins of binding affinity and cyclooxygenase isoform selectivity
(COX-2/COX-1) for analogs of celecoxib (1, R = Me) have been
explored.36 These inhibitors are COX-2-selective non-steroidal anti-
inflammatory drugs (NSAIDs) that are of current interest for their reduced
gastrointestinal irritation compared to traditional NSAIDs. Starting from the
crystal structure for COX-2 with 1 (R = Br),37 Matador was used to prepare
docked structures for the R = H, methyl, ethyl, hydroxymethyl, hydroxyl,
thiomethyl, methoxy, trifluoromethyl, chloro, and fluoro derivatives. MC-
FEP calculations were performed and the computed free energies of binding
relative to celecoxib are in good accord with the experimental data38 as
illustrated in Figure 1.

The structural information from the simulations also readily explained
the experimentally observed binding trends. Furthermore, the docking and
FEP results have provided clarification of the binding conformation of the
phenylsulfonamide moiety, which is, in fact, rotated nearly 180° from what
was originally reported in the 1CX2 crystal structure.



Experimental

Figure L Calculated vs. experimental AAGj, values for celecoxib analogs with COX-2

Convergence of the FEP results was carefully studied. A typical
mutation has 5-10 windows each consisting of 15 M configurations of
equilibration and 10 M configurations of averaging. From the batch means
procedure, the resulting statistical uncertainty in the computed AAGb values
was ca. 0.15 kcal/mol. Two closed perturbation cycles (H —» F —» Cl —> OH
—> H and Et —> Me —> OH —> OMe —> SMe -> Et) were also run and gave
hystereses of 1.0 and 0.7 kcal/mol. Thus, the current protocol is yielding fine
precision. Nevertheless, further detailed analyses have revealed some
interesting problems. First, the docking program found two orientations for
the thiomethyl group, basically up (CCSC = 90°) and down (CCSC = -90°);
note that this is the preferred geometry for thioanisoles as opposed to
anisoles which favor CCOC = 0°. Though the barrier to CCSC rotation in
the gas phase is only ca. 0.2 kcal/mol,39 the up and down structures did not
interconvert during two MC-FEP calculations for their respective
complexes. The tightly packed binding site provides an impeding steric
barrier. Though the two FEPs produced the same planar methoxy derivative
at the end of the runs, the computed AAGb values are -1.5 and -0.4 kcal/mol.
The latter result came from the structure with the more favorable docking
score, and it is closer to the experimental value of -0.07 kcal/mol.

The AAGb for R = H -> F showed the largest error, AAG5 (calc) = 1.24,
AAGb (exptl) = 0.15 kcal/mol. The discrepancy was traced to the existence
of a water molecule near the H that is trapped as the FEP progresses to F. If
the calculation is run from F to H, the water molecule is not initially placed
near the F and it does not appear during the mutation to H; in this case the
calculated AAGb(H—>F) = 1.52 kcal/mol making the H analog too
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unfavorable. It is likely that the water molecule should be there for the R = H
analog and not for R = F.

We have also performed three FEP calculations for 1 (R = Et —» CE^OH,
OCHs, CH3) with COX-I. The results are again in excellent agreement with
the experimental data and confirm the binding order R = OCH3 > CH3 > Et >
CHaOH. Additional studies have been performed that clarify the origin of
the 30 to 1000-fold binding preference for COX-2 over COX-I. There are
only two residues that differ in the binding site for COX-I going to COX-2,
1523V and H513R. Mutagenesis studies indicate that the 1523V change is the
dominant factor.40 We have performed FEP calculations for the
celecoxib/COX-2 complex corresponding to the I523V mutant.41 The
energetic and structural results indicate that the substitution of the larger He
residue indeed makes unfavorable steric interactions with the ligand. This
steric contribution stems from repulsive Lennard-Jones interactions between
the 8-methyl group on He and a sulfonamide oxygen of the ligand. In
addition, this steric crunch manifests itself in our simulations by altering the
conformation of both the ligand and the He residue compared to their gas-
phase preferences.

3.2 SRC SH2 Domain

The therapeutic potential of disrupting interactions between the SH2
domain of SRC and its cognate receptor ligands, thereby disabling the
associated signaling pathways in hyperproliferative cells and osteoclasts, is
an attractive option for the treatment of several cancers and osteoporosis,
respectively.42"45 In order to predict the relative free energies of binding and
identify the structural requirements for high affinity binding within a series
of ligands, 2, MC-FEP calculations using the OPLS-AA force field were
performed.

Substituents at the 3-position of the central ring target interactions in the
glutamic acid binding region of the SH2 domain46 the amido, methylamido,
methyl keto, amino, chloro, methyl, and un-substituted compounds were
examined in this study.47 Agreement with experimental trends in binding
affinity is seen, although the computed relative free energy of binding of the
amido compound is underestimated relative to the methylamido and keto
compounds by ca. 1 kcal/mol.

2



These results are reconciled by examination of the hydration energies of
model systems, which predict primary amides as too hydrophilic by ca. 1.7
kcal/mol, indicating the amide is too well solvated in the unbound legs. As
these compounds are bound at the surface of the protein and have some
water contacts, it is unclear how much of the apparent heightened
hydrophilicity of the amide is also reflected in the bound mutation, thus
cancelling some of the error in the unbound leg. Also, the binding affinity of
the unsubstituted compound, was beyond the sensitivity of the experimental
assay, consequently only a lower bound for the experimental AAGb is
available, AAGb(CONH2 -^ H) > 1.6 kcal/mol. The calculated relative free
energies of binding agree with this result regardless of the pathway used to
determine it: AAGb(CONH2 -» NH2 -* Cl -» H) = 3.5 kcal/mol and
AAGb(CONH2 -> CH3 -> H) = 4.6 kcal/mol.

The simulations with explicit solvent give valuable detail at the atomic
level for the structures of the protein-ligand complexes. The best binder, the
amido compound, makes two hydrogen bonds in the glutamic acid binding
region, one to the backbone amide of Lys |3D6 HN and another to a highly-
coordinated water molecule. This water molecule completes its four-
coordination with the backbones of Lys (3D6 and He (3E5 and the
guanidinium group of Arg PD'1, and is present in every snapshot of every
simulation. The next tier of ligands includes the methylamido and keto
compounds, which only make the hydrogen bond to the Lys, whereas the
poorest binders (amino, methyl, and unsubstituted) also lose this contact.
The chloro compound cannot hydrogen-bond in the traditional sense;
however, it makes a favorable electrostatic contact with Lys (3D6 HN, thus
ranking in between the latter two groups.

Conformational searching with the GB/SA continuum solvation model34

was used to identify the lowest-energy conformer that could be used as the
starting geometry for the unbound simulations, thereby minimizing the
impact of infrequent exchange between conformers. However, the presence
of at least six low-energy minima for the ligands in solution suggests that
there is an entropic penalty contributing to the absolute AGb that comes from
constraining the flexible ligand upon binding. Furthermore, comparison of
low-energy structures to the distributions obtained from the bound
simulations establishes that the ligands are not in a low-energy conformation
when bound, further contributing an internal-energy penalty to AGb. Several
predictions can be made for modifications that lower the relative energy of
the binding geometry. In particular, predictions for methylation at the
benzyl amide methylene are supported by experimental results for the
racemic mixture of the compounds singly methylated at that position.46

While either methylation reduces the conformational flexibility, Pro(S)



methylation provides a favorable contact with Tyr (3D5, while a Pro(R)
methyl group points towards the solvent.

3.3 HIV-I Reverse Transcriptase (RT)

Recently, a large effort has been directed at the design of anti-HIV drugs.
The focus has been on non-nucleoside inhibitors of HFV-RT (NNRTIs).
FDA-approved drugs in this class are nevirapine (3), delavirdine (4), and
Sustiva (efavirenz), while clinical trials are in progress for others including
the HEPT analog MKC-442 (5, R1 = /-Pr, R2 = CH2OCH2CH3, Y = CH2),
and other candidates such as 9-chloro-TIBO (6) have been abandoned. These
ligands are non-competitive with the nucleoside analogs such as AZT; they
bind in a pocket between the "palm" and "thumb" subdomains of the p66
polymerase chain that is proximal to, but not overlapping with, the
polymerase active site.48'49

We reported an extensive LIE study of 6 and 11 analogs that included
consideration of the alternative amine epimers and protonation states.28 The
MC simulations were initiated from the crystal structure for the complex of
8-C1-TIBO and HIV-I RT.50 Partial charges came from RHF/6-31G*
CHELPG calculations for each inhibitor. The experimental data are IC50

values for the effective concentration required to achieve 50% protection of
MT- 4 cells against the cytopathic effect of HIV-I.51



Equation 8 yielded a fine correlation with rms error of 0.88 kcal/mol; a, (3
and Y were -0.150, 0.114, and 0.0286, though the ASASA term could be
replaced by a constant with little degradation of the fit. Nevertheless, we
remained concerned about the size of the data set (it is statistically desirable
to have at least 5 data points per descriptor) and slow convergence for the
Coulombic energy components.

Thus, we undertook a larger study using 20 HEPT and 20 nevirapine
analogs.29 The variety of R2 side chains for the HEPTs was particularly
substantial ranging from hydrogen to methyl benzyl ether. The convergence
issue was carefully addressed for the unbound inhibitors in water, which are
generally more problematic than for the bound systems. MC simulations
were run for all 20 HEPTs using two slightly different starting structures for
the inhibitors in droplets with 1485 TIP4P water molecules. After 5M
configurations of equilibration and 1OM configurations of averaging, there
were discrepancies of up to 10 kcal/mol in the solute-water Coulomb
energies for the two starting structures and with total values in the -30 to -60
kcal/mol range. An annealing protocol was then developed that reduced the
discrepancies to an average of less than 1 kcal/mol. It consists of repeating
five cycles of (1) 5M configurations of equilibration with the solute at 1000
K and the solvent still at 298 K, (2) 5M configurations of equilibration with
the entire system at 298 K, and (3) 1OM configurations of averaging. During
the 1000 K portion, the solute's bond lengths and bond angles are not varied
so they do not have to be cooled; the extra energy is targeted to promote
conformational changes by focusing the heating on the dihedral angles and
total translation and rotation of the solute. Thus, the length of the
calculations for the unbound ligands has increased to a total of 10OM
configurations, which for this system size corresponds to 300-400 ps of
MD.4 The MC simulations for the bound structures, which included 851
water molecules and 42 sampled of 123 total protein residues, covered 2OM
configurations; this corresponds to about 100 ps of MD.

Without the heating, the fits for the 40 compounds were poor. With the
heating, LIE Equation 8 provided a reasonable fit with r2 = 0.56, rms error =
1.24 kcal/mol, and average error = 0.84 kcal/mol over a range of 7 kcal/mol.
However, following our work on properties predictions,52'53 in addition to
the traditional LIE energy components, other terms are also now averaged
including the total numbers of solute-water and solute-protein donated and
accepted hydrogen bonds, solute dipole moment, and the hydrophobic,
hydrophilic, and aromatic components of the solute's SASA. An excellent
fit for the 40 data points was obtained (Figure 2), which uses five terms: the
protein-ligand Lennard-Jones energy, the reduction in exposed hydrophobic
surface area for the ligand, the change in total numbers of hydrogen bonds
for the ligand (this is a negative number as no medium forms more hydrogen
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Figure 2. Experimental vs. calculated free energies of binding with HIV-RT

bonds than water), a correction for the nevirapines, if they contain a
secondary amide, and a constant:

AG^ = 0.30/Evr f\ + 0.0085(AFOSA) - 0.94(MJB) - 2.8(2° amides) + 4.6

The correction stems from overestimation of the AAGhyd between secondary
and tertiary amides with the utilized HF/6-31G* CHELPG charges. The
statistical analyses have become far more sophisticated with the use of the
JMP program. F ratios (regression model mean/error mean square)
established the significance of the descriptors; they all satisfy the condition
that the probability of a greater F occurring by chance (Prob>F) is <0.001.
They also make perfect physical sense with emphasis on the desolvation
penalty for losing hydrogen bonds at a cost in free energy of 1 kcal/mol
each, the need for a good protein-ligand fit, and the benefit of burying
hydrophobic surface area.

3.4 Mutant Proteins and Drug Resistance

The effect of mutations of HIV-I RT on the drug binding is also being
explored. The principal mutants that confer resistance to the NNRTIs are
Y188C/H/L, Y181C, LlOOI, K103N, and V106A.54' 55 Interestingly, the
mutations are mostly to smaller residues, which likely reduces favorable
inhibitor-protein contacts. The only crystal structure of a mutant RT that has
been reported is for Y181C-RT with 8-chloro-TIBO at 3.2 A.56

Nevertheless, a novel series of MC/FEP calculations has been completed for
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Table L Inhibition penalties (kcal/mol) for HIV-I RT mutants
drug V106A AAG caU. V106A kGewt Y181C AAGrflfr Y181C AGgw,
Nevirapine 3.3 ±0.4 2.5,2.9,3.5 3.9±0.3 2.6,2.8,3.5,4.9
MKC-442 0.7±0.5 2.9 4.7 ±0.3 2.9,5.0
9-C1-TIBO 1.3 ±0.5 1.2,1.8,2.0 3.0 ±0.3 1.0,1.6,2.7,2.9
Sustiva O 0.5,0.5,0.7 O 0.1,0.2,0.6,2.1

the effects of the V106A and Y181C mutants on the binding of nevirapine,
MKC-442, 9-C1-TEBO, and efavirenz (Sustiva). This involved FEP
calculations for the V106A and Y181C conversions in the presence of the
four ligands and for the apoprotein.57

There is considerable scatter in the experimental data from different
groups, though it is clear that Sustiva has the best resistance profile, and that
the computations parallel the experimental data well. It appears that Sustiva
benefits from having weaker interactions (looser packing) in the vicinity of
V106 and Y181; it makes up for this by better hydrogen bonding with the
protein backbone, which is less variable in position.

Shown below are snapshots of structures from our simulations of native
RT with Sustiva and nevirapine. No crystal structure had been reported for
RT with Sustiva when the calculations were performed; however, confidence
in the computed structure comes from the quantitative accord for the
inhibition penalties and because Matador yielded docked structures for
nevirapine, MKC-442, and 9-Cl-TffiO that are virtually identical to the
crystal structures.57 Sustiva hydrogen bonds with the backbone of KlOl, as
do MKC-442 and 9-chloro-TIBO, and it has hydrophobic interactions in
the Y181-Y188 pocket, also typical of NNRTIs.

A crystal structure for the Sustiva/RT complex was subsequently
reported and fully confirmed the correctness of the computed structure.58

Sustiva Nevirapine

Figure 3. Sustiva (left) and nevirapine (right) shown with select residues in the NNRTI
binding site of HIV-RT. The initial structure of Sustiva/RT complex was obtained by
docking.



3.5 Thrombin

A similar set of calculations has been performed on a series of 20 active-
site-directed thrombin inhibitors with activities ranging from 5 (iM to 45
pM.30 Among these inhibitors, there are two different binding modes and at
least seven different functional groups binding in each of the three pockets
of the thrombin active site (Figure 4). Though the fits based on the standard
LIE equations (Equations 7-8) were poor, alternatives with 3-5 descriptors
such as Equation 9 yield good results with rms errors of 1.0 - 1.3 kcal/mol
and r2 values of 0.7-0.8 for the 20 data points that range over 7.0 kcal/mol in
AG^ (Figure 5).

(9)

As in the HIV-RT study, terms for Lennard-Jones interactions and
hydrogen bonding prove to be important for estimating binding affinities. In
this case, descriptors for the number of rotatable bonds in the ligand (#RB)
and for the change in internal energy of the ligand upon binding (AEinO are
also important. The latter term accounts for the fact that a ligand is less
likely to bind to the protein if conformational strain is induced upon binding,
while the former serves as an estimate of the loss of conformational freedom
in the bound inhibitor. Both of these descriptors have been used
successfully in earlier ligand binding studies, but they are likely to be
particularly important for more flexible ligands such as those considered in
this work.59 It is interesting to note that none of the descriptors used here or
in the HFV-RT study depend on long range-interactions or slowly
converging quantities,

Hydrophobia
D-pocket Hydrophobia

P-pocket

Specificity pocket

Figure 4. Inhibitor LB30057 in the binding site of thrombin



AGb calc. (kcal/mol)

Figure 5. Experimental vs. calculated free energies of binding

suggesting that similar results should be possible with considerably reduced
computational effort in future projects.
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HIV-I Protease: Structure-Based Drug Design
Using the Free Energy Perturbation Approach
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1. INTRODUCTION

The human immunodeficiency virus 1 (HIV-I) is a member of the
retroviruse family and is the cause of the debilitating and fatal disease
acquired immune deficiency syndrome (ADDS).1' 2 As part of an overall
effort to develop an effective treatment for AIDS, researchers mounted an
intense campaign to understand and exploit the critical pathways in the life-
cycle of HIV-1.3"4 Inhibition of HIV-I protease emerged as one of the most
promising drug targets identified to date.5"10 A wide range of approaches
were used to discover HFV-I protease inhibitors. These included the
screening of chemical libraries,11 designing substrate analogs,12 and using the
X-ray structure of HIV-I protease in structure-based drug design
approaches.13' 14 To complement the structural information, a variety of
computational tools15"18 were developed and incorporated in a computer-
assisted drug design (CADD) strategy.

Advances in protein crystallography and molecular simulations greatly
aided CADD paradigms and the accuracy of binding affinity predictions.19' °
Inhibitor design used methods ranging from graphical visualization of the
ligand in the binding site to calculation of relative binding affinities using
molecular dynamics simulations in conjunction with the FEP
approach.14' 21~24 Structure-based drug design typically follows the steps
outlined in the flowchart shown in Figure 1. The process begins by
generating a working computational model from crystallographic data. This
step usually entails developing molecular mechanics force field parameters
for non-standard residues, assigning the protonation states of histidines, and
orientating carbonyl and amide groups of asparagine and glutamine amino
acid residues based upon neighboring donor/acceptor groups. After
generation of the computer model, the active site is characterized using a



variety of visualization tools. For example, hydrophobic and hydrophilic
regions of the active site are readily identified by calculating the electrostatic
potential at different surface grid points. This information is then used to
design and optimize lead compounds.
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Discovery of a lead inhibitor often requires considerable experimentation.
In most cases the lead is discovered through screening of compound
libraries25 or combinatorial chemistry libraries,26 although there have been a
few reports suggesting that de novo molecular design methods were used to
design new structures by sequentially adding molecular fragments to a
growing structure, e.g. adding functionality to an appropriately-sized
molecular scaffold or adding fragments building toward the center of a
molecule starting from distant sites thought to interact with the target.27'2B

The last step is to optimize the lead compounds. The computational
methods in combination with SAR information has proved to be a powerful
approach to determine areas on the molecule to expand, contract, or modify.
Analogs of the lead compound are ranked using one or all of the following
methods: 1) qualitative predictions using molecular mechanics
calculations;29"32 2) semi-quantitative predictions33' 34 based on regression
methods that incorporate interaction variables (intra-and intermolecular
interaction energies) and ligand properties (desolvation, log P, etc.), and 3)
quantitative predictions35"37 based on relative free energy calculations. The
later method is a computationally demanding and sophisticated procedure to
compute highly accurate binding free energy differences. This chapter
reviews the use of free energy calculations for the design of HIV-I protease
inhibitors.

2. METHODOLOGY

2.1 Thermodynamic-Cycle Perturbation Approach

The thermodynamic cycle-perturbation (TCP) approach38'39 is a method
for computing the relative changes of binding free energy using non-physical
paths connecting the desired initial and terminal states. This approach
enables calculation of the relative change in binding free energy difference

Figure 2. TCP cycle for calculating binding affinities of inhibitors to HIV-I protease



(AAGbmd) between two related compounds, by computationally simulating
the 'mutation' of one to the other. The relative solvation free energy change
for two substrates is computed using the first cycle shown in Figure 2, as
represented in the following equation:

AG3 - AG4 = AGaq - AGgas = AAG501 (1)

The relative binding free energy change for the two substrates is computed
using the second cycle (Figure 2), which is represented by the following
equation:

-kBT In (k2/kl) = AG2 - AG1 = AGcom - AGaq = AAGbind (2)

where kB is the Boltzmann constant, T is the absolute temperature, and kl
and k2 refer to the experimentally measured binding constants for S1 and S2
inhibitors respectively, whereas AGi and AG2 are the corresponding free
energy differences. The free energy change for converting Sl into S2 is
computed by perturbing the Hamiltonian of reactant (initial) state Sl into
that of the product (final) state S2. This transformation is accomplished
through a parameterization of terms comprising the interaction potentials of
the system with a change of state variable that maps onto reactant and
product states when that variable is O and 1, respectively. The total free
energy change for the mutation from the initial to the final state is computed
by summing 'incremental' free energy changes over several windows visited
by the state variable changing from O to 1.

2.2 Single Topology Method

JG365 JG365A

Figure 3. Single topology definition for compound JG365 and JG365A. The chemical
symbols with the "D" prefix indicate dummy atoms and X=Ac-Ser-Leu-Asn-(Phe-Hea-Pro)



In this commonly used method, the appropriate reactant atoms are changed
to product atoms. These mutations include changes in the geometry, partial
charges, and van der Waals parameters. Figure 3 shows a typical example of
single topology method for the mutation of JG365 inhibitor to JG365A
shown in Figure 5 (a).

2.3 Double Topology Method

In the double topology method40'41 a single topology is defined for those
atoms that are identical in both molecules in the sense that force constants
and equilibrium geometries are the same (partial charges can vary). For the
portion of the molecule which must be transformed, both the starting
(reactant) and ending (product) topologies are defined with their correct
geometries, one beginning and the other ending the simulation entirely as
dummy atoms. Dummy atoms are identical to real atoms except for their
Lennard-Jones parameters and charges which are set to zero. At
intermediate points during the transformation, all atoms in both topologies
have fractional Lennard-Jones parameters and charges. Molecules with both
topologies interact with the environment, but not with each other. A typical
example of the thread method is shown in Figure 4 for the mutation of the
HIV-I protease inhibitors JG365 and its analog JG365A which are shown
in Figure 5 (a).

JG365 JG365A

Figure 4. Single topology definition for compound JG365 and JG365A. The chemical
symbols with the "D" prefix indicate dummy atoms and X=Ac-Ser-Leu-Asn-(Phe-Hea-Pro)



3. VALIDATION OF FEP METHODOLOGY

Validation of free energy perturbation methodology for estimating
relative binding affinities of known HIV-I protease inhibitors is very
important before using this methodology for predicting relative binding
affinities of unknown HIV-I protease inhibitors. As discussed below, three
studies using AMBER and the FEP methodology provided support for the
protocol and its subsequent use in the design of HIV-I protease inhibitors.

Reddy et al.13 reported the first validation study for the mutation of
JG365 into JG365A (Figure 5(a)) using the X-ray structure of HIV-I
protease complexed with JG365.6 All the computational details are
described elsewhere.13 The calculated relative solvation free energy
difference (AAGsoi) between inhibitors JG365 and JG365A indicated that
removing the valine residue results in a difference of about 8 kcal/mol. This
large relative difference was attributed to three good hydrogen bonds formed
between the valine backbone atoms of JG365 inhibitor and solvent water.
The calculated relative solvation free energy (8.0 kcal/mol) agreed with the
experimental result obtained for isolated valine (8.2 kcal/mol).42 This
agreement suggested that the force field parameters and FEP methodology
are very good for calculating relative solvation free energies between these
inhibitors.

R = He-VaI-OMe (JG365)
R = He-OMe (JG365A)

Figure 5. HIV-I Protease inhibitors, (a) JG365 and JG365A, (b) Hydroxyethlene isostere
inhibitor.



The relative binding free energy difference for JG365 and JG365A
inhibitors to HIV-I protease was calculated using the second cycle shown in
Figure 2. The X-ray structure of HIV-I protease complexed with Ac-Ser-
Leu-Asn-(Phe-Hea-Pro)-Ile-Val-OMe, where Hea is hydroxyethylamine,
was used as the starting configuration. The VaI residue of the inhibitor was
mutated to nothing (JG365A) with Hea in both the (R) and (S)
configurations. The (R) configuration of Hea was generated starting from
the (S) configuration of the complex crystal structure. The relative
differences in the binding affinity for the mutation of VaI to nothing with (S)
and (R) Hea are 2.95 ± 1.02 kcal/mol and 3.55 ±1.10 kcal/mol, respectively.
Therefore, the average calculated relative binding difference (AAGbmd (cal))
for the mutation with (R) and (S) configurations of Hea was 3.25 ± 1.06
kcal/mol and was in good agreement with experimentally measured (as
found by binding of a racemic mixture) value of 3.8 ± 1.3 kcal/mol. The
calculated results indicate that, even though JG365 costs about 8 kcal/mol
more to desolvate, it is a better inhibitor of HIV-I protease than JG365A. A
comparison of the HIV-I protease-inhibitor complexes suggests that the high
binding preference for JG365 is due to a good hydrogen bond and strong
electrostatic interactions between the carbonyl oxygen of valine and Arg8 as
well as good hydrophobic interactions between the valine side-chain
(JG365) and other protein residues. These interactions dominate over an
opposing contribution arising from the larger desolvation penalty of JG365
compared to JG365A.

In the second validation study, Ferguson et al.36 used the same structure
of HIV-I protease complexed with JG365 and computed the relative binding
free energies of the S-(OH) and R-(OH) diastereomers of the peptide
inhibitor, Ac-Ser-Leu-Asn-(Phe-Hea-Pro)-Ile-Val-OMe (JG365)6 to the
HIV-I protease. The calculations were carried out using the AMBER 3.0
revision A with united-atom force field. During the free energy calculation
in the reverse direction [R-(OH) back to S-(OH)], the structure of the S-OH
diastereomer did not return to the original conformation. To compensate for
this, the reverse simulation was corrected by constraining the backbone
atoms of the protein. A close agreement with the experimental value was
found for the protonated Asp 125 model where calculated relative binding
free energy and experimental binding free energy were 2.8 ± 0.2 kcal/mol
and 2.6 kcal/mol, respectively.

Rao et al.37 reported the third validation study on HIV-I protease
inhibitors. In this study the hydroxyethlene isostere inhibitor (Figure 5(b))
was modeled beginning from the X-ray structure of HIV-I complex to the
inhibitor MVT-IOl. The calculated binding free energy differences for the
mutations of (S)-OH to hydrogen, and (R)-OH to hydrogen in
hydroxyethlene isostere were 3.92 ± 1.03 kcal/mol, and 3.07 ± 0.26
kcal/mol, respectively. The calculated (Asp diad unconstrained and
constrained) and experimental binding free energy differences for the (S)-
OH to (R)-OH mutation were 3.37 ± 0.64 kcal/mol, 2.16 ± 0.65 kcal/mol and



2.6 kcal/mol, respectively. The calculated binding free energy difference
using constraints on the Asp diad more closely matched the experimental
result. However, two experimental studies43' have reported that the R-
diastereomers of a few inhibitors bind to HIV-I PR better than the
corresponding S-diastereomer, a result that is confirmed by the calculations
using no constraints.

In summary all the relative free energy calculations on HIV-I protease
inbitors indicated that FEP methodology and force field parameters in the
AMBER database would be useful for estimating relative binding affinities
of inhibitors to HFV-I protease and therefore suggested that this method
could be used for screening proposed analogs of potential HFV-I protease
inhibitors prior to synthesis.

4. DESIGN OF NON-PEPTIDIC INHIBITORS

At the beginning of this project, several peptide-based inhibitors for HIV-
1 protease were available, but all were peptides and therefore relatively poor
drug candidates.45' 46 Thus, efforts were focused on structural modifications
that would lessen the peptide nature of these leads. A model of the
unsubstituted hydroxyethylene-based inhibitor, created by simply overlaying
an AMI47 minimized structure of an initial compound (Figure 5(b)) on the
MVT-IOl:HFV-1 protease complex reported by Wlodawer and coworkers48

(pdb:HVP4) was used as a guide. The C-terminal Val-Val-methyl ester was

Compound

1
2
3
4
5
6
7
8
9

R

Ph
2-Indole
2-Benzimidazole
2-Indole
2-Indole
2-Indole
2-Indole
2-Indole
2-Indole

Rf

Ph
Ph
Ph
Hi-CF3Ph
Hi-CH3Ph
P-NH2Ph
4-pyridyl
cyclohexyl
Ph

R"

H
H
H
H
H
H
H
H
Benzyl

Figure 6. HIV-I inhibitors evaluated by FEP calculations.



then removed and replaced with a diphenhydramine moiety (1 in Figure 6).
This simple scaffold served to fill the P2' and P3' sites in the protein with
phenyl groups. Later, compound 1 was synthesized, the binding constant (K1

= 1.67/iM) measured and the X-ray structure of the complex solved.
Concurrently, compound 2 was designed and selected for synthesis based on
space-filling considerations and molecular mechanics calculations that
indicated that it would have better enthalpic interactions with the protein
than 1. After synthesis, biochemical testing revealed that compound 2 indeed
a more potent inhibitor than 1 by a factor of eight (Kj = 0.2 juM).

4.1 X-ray Structures

The X-ray structures of HIV-I protease complexes with inhibitor 1 and 2
were solved.49 Both exist in the orthorhombic space group P2i2i2i with the
unit cell dimensions of a = 66.4 A, b = 92.4 A, and c = 28.8 A. The
resolutions and crystallographic R factors for HIV-I complexed with
compound 1 were 2.6 A and 0.163, respectively, and for HFV-I complexed
with compound 2 were 2.5 A and 0.158, respectively. Crystallographic
analysis of HFV-I protease complexed with compound 2 indicated that the
increased binding, relative to compound 1, was probably due to a
combination of both increased hydrophobic interactions with active site
protein residues as well as an additional hydrogen bond from the indole NH
to the Gly27 carbonyl oxygen via an intervening water molecule.50 Analysis
of the crystal structures of the complexes with 1 and 2 indicated that there
was some empty space in the vicinity of the phenyl ring. Therefore, there
was a possibility of enhancing hydrophobic interactions by suitable
substitutions in the meta position of the phenyl ring.

4.2 Computational Details

All molecular dynamics, molecular mechanics and FEP calculations were
carried out with AMBER 3.3 using an all-atom force field51'52 and with the
SPC/E water potential53' 54 to describe water interactions. Electrostatic
charges and parameters for the standard residues were taken from the
AMBER database. For nonstandard solute atoms, partial charges were
obtained by electrostatic fitting with CHELP55 from ab initio 6-31G*//3-
2IG* basis set level wave functions calculated with Gaussian 88.56 All
equilibrium bond lengths, bond angles, and dihedral angles for nonstandard
residues were taken from optimized geometries. Missing force field
parameters were estimated from similar chemical species within the
AMBER database.

To compute relative solvation free energies, the solute was first solvated
with SPC/E water using the AMBER box option and all solvent molecules
located more than 10 A from any of the solute atoms were removed. Water



molecules located less than 2.5 A from the solute atom were also removed.
Aqueous phase MD simulations were carried out in a rectangular box using
periodic boundary conditions in all directions. Newton's equations of motion
for all the atoms were solved using the Verlet algorithm with a 2 fs time
step and SHAKE58 was used for constraining all bond lengths. A constant
temperature (NPT) ensemble was maintained by velocity scaling of all-
atoms in the system. Nonbonded interaction energies were calculated using a
10 A residue based cutoff. Molecular dynamics simulations in conjunction
with the thermodynamic cycle approach shown in the Figure 2 was used to
calculate relative solvation free energies between ligands given in Figure 6.

For the protein complex simulations (second cycle in Figure 2), it was
necessary to generate all the hydrogen atom coordinates in order to use the
all-atom force field. The EDIT module of AMBER was used to add
hydrogens to the protein dimer and the crystallographic waters. One of the
aspartic acids in the catalytic dyad (Asp 124) was protonated for the
simulations. The histidine protonation at one or both ring nitrogens was
deduced from hydrogen bonding and other features of its environment. The
total charge on HIV-I protease was +5 e. No counter ions or changes in the
customary charge of protein residues were used. While such an electrostatic
model is far from ideal, alternatives sometimes adopted have their own
drawbacks. The entire system was immersed in a 25 A radius sphere of
solvent from the center of mutating groups, which was subjected to a half-
harmonic restraint near the boundary to prevent evaporation. During the
simulation, all atoms of the protein beyond 25 A were fixed. All nonbonded
interactions involving the inhibitors and the charged residues of the protein
were computed with no cutoff. A 10 A nonbonded residue-based cutoff was
used for other residues of the system. The algorithm for the complex
simulation was identical to the solvent simulation, except for the absence of
periodic boundary conditions in the former.

4.3 Structural Comparison

A comparison of structural differences between the X-ray and the energy
minimized structure can provide information about the quality of the force
field parameters. Assuming the force field is satisfactory, a comparison
between the X-ray structure and the MD-averaged structure can provide
information about the quality of the X-ray structure as well as determine the
time step required in the simulations. An energy minimization (500 steps of
steepest descent followed by 2000 steps of conjugate gradient optimization)
of the HTV-l-protease:2 complex was performed. Using the minimized
coordinates, two separate 20 ps MD simulations were carried out using 1 fs
and 2 fs time steps. The average "dynamical" structure of the complex was
computed for each simulation. The root mean square (RMS) deviations
between the X-ray structure and energy minimized structure were 0.4 A and



(b)
Figure 7. (a) Stereoview of comparison of the main chain of the X-ray structure of the HIV-1
protease complex with compound 2 (red) with the main chains of the minimized complex
(yellow) and a 20ps average dynamical structure of the same complex of HIV-I protease
(green), (b) Stereoview of the active-site geometry of the crystal structure (in half-bond color)
of the HIV-1 protease complexed with the compound 2 (with the indole and phenyl groups
shown in red) as revealed by X-ray crystallography.

0.6 A for backbone and side-chain atoms, respectively. For the MD-
averaged structure using time steps of 1 fs and 2 fs, the RMS deviations
from the crystal structure were 1.01 A and 1.05 A for backbone atoms and
1.5 A and 1.55 A for side-chain atoms, respectively. Larger deviations were
observed in the flap region (RMS deviations of 1.30 A and 1.75 A for
backbone and side-chain atoms, respectively). Figure 7a show the structure
comparisons of the average dynamical structure from 20ps dynamic
trajectory (with a time step of 2 fs) with the X-ray structure of the HIV-I
protease dimmer. This is due primarily to the flexibility of the protein in the
flap region. Nevertheless, the dynamical structure was a good model for
calculating relative free energy changes between two similar inhibitors.
These comparisons indicate that the quality of the X-ray structure, and the
force field parameters were adequate for performing MD simulations. Since
both time steps yielded good agreement with the X-ray structure, the longer
time step of 2 fs was used for all free energy calculations reported, in the
interest of saving computer time.



4.4 Analysis of Lead Inhibitors Using FEP Methodology

Mutation of compound 1 to compound 2 was performed to validate the
FEP method for HFV-I protease inhibitors. Since this mutation involves
significant changes in the ligand structure (phenyl to indole), the commonly
used "single topology method" was unsuitable for this type of mutation.
Therefore, the "thread" method,40"41 which was developed for large structural
changes between two ligands, was used to accomplish this nonphysical
transformation. For the mutation 1 —> 2, the phenyl group of molecule 1 and
the indole group of molecule 2 are "threaded" together at Ca positions
similar to compounds shown in Figure 3 was used, where one is real and the
other is dummy. In all free energy simulations, the system was initially
minimized (using 500 steps of steepest descent and 2000 steps of conjugate
gradient methods) and then equilibrated for 20 ps. A two-stage procedure
was used to obtain relative free energy differences from the molecular
dynamics simulations. During the first stage, the charges of the reactant
atoms are turned off while the Lennard-Jones parameters of the product
atoms are turned on. During the second stage, the Lennard-Jones parameters
of the reactant atoms are turned off while the charges of the product atoms
are turned on. This procedure was used previously 29~32 and shown to give
better convergence. Each stage of the simulation was performed using 101
windows. Each window consisted of 1 ps equilibration and 2 ps of data
collection except for the last 10 windows which required longer times for
equilibration (3 ps) and data collection (6 ps). Trying to compute the free
energy differences using the thread method with shorter simulations can lead
to problems in convergence. Thus, a molecular dynamics simulation of 726
ps was needed for the complete mutation.

Each mutation used the doublewide sampling procedure. The results
reported are based on the averages of the backward and forward simulations
of the mutation. Table 1 lists the results of the FEP calculations. Although
compound 2 was found to have a greater desolvation penalty than compound
1, it binds more tightly to HFV-I protease by forming more favorable
interactions in the complex. In particular, it forms additional hydrogen
bonds and hydrophobic interactions, as shown in Figure 7b, with protein
residues. In summary, FEP calculations suggested that compound 2 showed
1.9 kcal/mol greater binding affinity relative to compound 1, which is
consistent with the experimental results.

The convergence of the calculated free energy results was tested by
comparing the free energy differences between compound 2 and 1 to HFV-I
protease by varying the molecular dynamics simulation length (363 ps and
726 ps). The calculated results for 363 ps and 726 ps were 2.2 ± 0.8
kcal/mol and 1.9 ± 0.6 kcal/mol, respectively whereas the experimental
result was 1.3 ± 0.3 kcal/mol. Therefore, the calculated result obtained with
longer simulation more closely matches the experimental result. Error bars
were estimated for each window by dividing the window statistics into four
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Figure 7. (a) Stereoview of comparison of the main chain of the X-ray structure of the HIV-I
protease complex with compound 2 (red) with the main chains of the minimized complex
(yellow) and a 20ps average dynamical structure of the same complex of HIV-I protease
(green), (b) Stereoview of the active-site geometry of the crystal structure (in half-bond color)
of the HIV-I protease complexed with the compound 2 (with the indole and phenyl groups
shown in red) as revealed by X-ray crystallography.



groups (in both forward and backward directions) and computing the
standard deviation for the indicated free energy change. The root mean
square of these window errors is reported in Table 1 as a measure of the
statistical uncertainty in the result for each mutation.

4.5 Lead Optimization Using FEP Calculations

Compound 3 was evaluated using the free energy perturbation method
based on the possibility that replacement of a carbon with nitrogen in the
indole ring of compound 2 could enhance the electrostatic interaction with
the main chain Gly48 of HIV-I protease. The desolvation penalty for
compound 3, however, was expected to be greater than that of compound 2
because of this additional hydrophilic nitrogen. Two mutations (1—» 3 and 2
—> 3) were performed prior to the synthesis and testing of compound 3. For
the mutation 1-» 3, the thread method was used again because of the large
structural change involved. For the other mutation 2 —> 3, a single topology
method, was used. The calculated relative binding free energy results (Table
1) indicated that the compound 1 binds better (by 1.2 kcal/mol) to HIV-I
protease than the compound 3, whereas compound 3 binds weaker to HIV-I
protease as compared to compound 2 by 1.3 kcal/mol.

In another attempt to improve on our lead compound 2, we focused on
the other phenyl ring in the active site. The crystal structures of HIV-I
protease complexes with 1 and 2 showed that there existed some unfilled
space in the vicinity of the phenyl ring. Based on graphical analysis,
substituents at the meta position of the phenyl ring could be used to enhance
hydrophobic interactions whereas substituents at the para position could be
used to form hydrogen bonds or gain electrostatic interactions with Asp 129.
Initially, more than 20 analogs were proposed, but based on graphical and
conformational analyses and assessment of desolvation costs, six molecule
(4 to 9) were identified for further computational study using FEP.

Table L Relative binding free energies (kcal/mol) of inhibitors to HIV-I protease.

"Mutations" AAGsoi(calc) AAGbind(calc) AAGbind(expt)
l - » 2 - 3 . 0 0 ± 0 . 4 0 -2.30+0.60 -1.30+0.30
2-»l .3.50+0.40 1.90+0.60 1.30+0.30
l->3 -5.00+0.60 1.20+0.80 0.70+0.20
2->3 -2.00+0.50 1.30+0.60 1.95+0.31
2-» 4 -1.00+0.40 0.20+0.50 -0.16a+0.24
2->5 0.04+0.20 0.40+0.50 -0.06a+0.26
2-» 6 -3.20+0.40 1.10+0.60
2->7 -0.90+0.30 0.80+0.50
2->8 .0.90+0.50 1.80+0.70 2.03a+0.40
2-»9 -1.00+0.50 0.70+0.60 0.86a ±0.30
"Experimental values for these molecules are based on a different N-terminal group, an asparagine-quinoline moiety
replacing NHa-Ala-Ala in the compounds 2, 4, 5, 8 and 9.



Results in Table 1 show that the desolvation penalty relative to
compound 2 is higher for compounds 6 (by -3.2 kcal/mol), 4 (by -1.0
kcal/mol), 9 (by -1.0 kcal/mol) and 7 (by -0.9 kcal/mol), whereas it is
slightly lower for compounds 5 (by 0.04 kcal/mol) and 8 (by 0.90 kcal/mol)
because of the hydrophobic substituents. While it is important to take the
desolvation penalty into consideration in the design of new analogs of a lead
compound, it should be noted that in some cases the design modification that
increases the desolvation penalty might improve binding if the additional
polar groups form good hydrogen bonds and/or electrostatic interactions
with the protein residues, as were the cases of compounds 1 —-> 2 and JG365
-> JG365A.

Compounds 4 and 5 were predicted to have a relative binding free energy
near zero. The compound 4 gained free energy in the complex but this was
not enough to overcome the desolvation penalty. We still felt that there is
some possibility of improving binding with these compounds, because of the
error bounds on these free energy estimates. We therefore, made some
design modifications at the N-terminal position involving the replacement of
NH2-AIa-AIa with the aparagine-quinaloyl moiety. These modified
structures for compound 2, 4, 5, 8 and 9 were synthesized and tested. No
relative free energy calculations were performed for these N-terminal
modified variants. Experimental results (Table 1) for modified compounds
show slight improvement in binding. Though free energy predictions (2 —»
4, 2 —» 5) are based on the original structures (reported as free energy
difference between 2 and 4 or 5 in Table 1), these are comparable to the
experimental results of modified 2, 4, 5, 8 and 9 structures, because each
member of a given pair has the same N-terminal moiety as the other member
of that pair. As may be seen from Table 1, relative free energy results
indicate a slight net loss of binding when 2 is replaced with 4 and 5.
Discrepancy between relative free energy calculations and experimental
results could be due to the modifications at the N-terminal site as well as
errors both in the experimental measurements and in calculations. Overall,
relative free energy results are in good agreement with experiments. In the
case of compounds 6 and 7, relative free energy calculations indicated
weaker binding (by 1 kcal or more) relative to compound 2, primarily
because of the larger desolvation penalty on these ligands, and hence these
compounds were not synthesized. The free energy calculations predicted
lower binding affinity to HIV-I protease for compounds, 8 (by 1.80
kcal/mol) and, 9 (by 0.70 kcal/mol) as compared to compound, 2 which was
later confirmed experimentally.

5. CONCLUSIONS

In summary, successful application of a computer-assisted drug design
paradigm is described in this report. As part of this paradigm, the free



energy perturbation approach has been instrumental in screening a series of
promising inhibitors for the HIV-I protease. Once validated, this approach
was used in a predictive sense to prioritize design ideas and eliminate the
need to synthesize poor inhibitors, thus accelerating the drug design cycle. In
all cases where experimental data is available, predictions based on this
approach were shown to be correct with an error margin of less than 1
kcal/mol. This study also brought to light the role played by solvation free
energy in binding. The energetic cost of desolvation for the addition of polar
groups to an inhibitor has to be compensated and overcome by stronger
ligand-protein interactions, if the goal is to design a stronger inhibitor.
Careful design, modeling and FEP calculations enable the achievement of
that goal.
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1. INTRODUCTION

Thymidylate Synthase (TS) is a 70 kDa dimeric protein that catalyzes the
conversion of 2'-deoxyuridine 5'-monophosphate (dUMP) into 2'-
deoxythymidine 5'-monophosphate (dTMP) using 5,10-methylene-5,6,7,8-
tetrahydrofolate as cofactor. Inhibitors of TS represent potential
chemotherapy agents since DNA synthesis requires dTMP and TS catalyzes
an important step in the only known pathway for dTMP biosynthesis. Given
the importance of TS as a drug target, free energy calculations have been
applied to the design and evaluation of potential TS inhibitors with the goal
of finding inhibitors that are selective for pathogen or cancer isozymes.1'2

Calculations have also been used to study TS specificity 3 and the relative
binding free energies of the inhibitor methotrexate (MTX) to wild type and
mutant forms of TS.4 In all of the above cases, the results have tied nicely
into available experimental data on these systems.

2. METHODS

The methods used in these calculations are described in detail in the
original references. In brief, the various studies of TS used different
versions of AMBER5 and carried out free energy perturbation or
thermodynamic integration calculations on free ligand or ligand bound to
either wild type TS1" or mutant protein.4 Simulations used either the Weiner
et al.6 or Cornell et al.7 force fields and electrostatic potential or RESP8

derived charges for the inhibitors. The free energy calculations ranged in



length from -50 to -300 ps and, in every case, multiple runs were conducted
to test for statistical accuracy. Calculations on the free ligand used periodic
boundary conditions. Calculations on the protein complex used a solvated
active site and a spherical mobile zone around the bound ligand where
protein residues outside this mobile zone were kept rigid.

3. VALIDATION STUDIES

Reddy et al.1 calculated the first relative binding free energy of two TS
inhibitors (Figure 1), namely 10-propargyl-5,8-dideazafolic acid (PDDF)
and 10-formyl-5,8 dideazafolic acid (FDDF). The calculations evaluated
binding to the binary complex consisting of the E. coli TS and 5-fluoro-2'-
deoxyuridylate monophosphate (FdUMP) with the X-ray structure of the TS:
FdUMP: PDDF complex9'10 providing the starting coordinates.

The two inhibitors, PDDF and FDDF, differed in the 10N-substitution, i.e.
a propargyl (-C = C-H) group for a formyl (-C(O)H) group. Interestingly,
PDDF was calculated to have a 3.6 kcal/mol more favorable solvation free
energy than FDDF suggesting that the propargyl group was more difficult to
desolvate than the formyl group in aqueous solution. Relative solvation free
energy calculations on but-1-yne vs. acetaldehyde supported these results,
since acetaldehyde was more solvated (AAG = -3.4 kcal/mol (calculated) and
-3.3 kcal/mol (experimental)). In the protein, the propargyl group interacts
with a backbone carbonyl of the synthase and makes good hydrophobic
contacts with side-chain atoms, whereas the formyl oxygen of FDDF, which
does not interact with the side-chain atoms, accepts a hydrogen bond from a
bound water molecule and has a repulsive interaction with the carbonyl
oxygen of 5-fluoro-2'-deoxyuridylate. Thus, PDDF gains very strong
favorable interactions in the complex as compared to FDDF, which more

R = CH2-C=CH (PDDF)

R = CHO (FDDF)

Figure 1. TS inhibitors used for free energy calculations.



than compensates for the higher desolvation costs associated with PDDF. As
a result the calculated relative binding free energy is 2.9 kcal/mol, favoring
PDDF, compared to the experimental relative binding free energy of 3.8
kcal/mol.l

The second calculation reported for TS3 was focused on the origin of the
enzyme substrate specificity. Wild type TS methylates 2'-deoxyuridine 5'-
monophosphate (dUMP) and not 2'-deoxycytidine 5'-monophosphate
(dCMP). Rastelli et al. calculated relative binding free energies of dUMP
and dCMP to TS (Figure 2) and two Asn229 mutants using the X-ray
structure of the TS:dUMP complex11 and the free energy perturbation
method. The calculated relative binding free energy of dUMP and dCMP
with TS was analyzed as the sum of two components, the relative free
energy difference of these two ligands in solvent water and the relative free
energy difference in the protein complex. The calculated solvation free
energy (-9.4 kcal/mol) indicates that dCMP is better solvated than dUMP in
water despite the fact that cytosine and uracil each have five potential
hydrogen bonding sites and therefore would have been predicted to interact
with bulk solvent to approximately the same extent. The difference was
attributed in part to the larger dipole moment of dCMP, which would be
expected to increase the strength of the interactions with bulk solvent. In
contrast, dCMP gained only -6.56 kcal/mol in the TS complex as compared
to dUMP. Thus, the calculated relative binding free energy between dCMP
and dUMP to TS (-6.56 +9.4 =2.84 kcal/mol) indicated that TS prefers to
bind dUMP by 2.84 kcal/mol as compared to dCMP, which is consistent
with the experimental value of 3.6 kcal/mol. Moreover, the simulations
support the key role of Asn229 in the TS substrate preference for dUMP
over dCMP. Repulsion between the base of dCMP and the Asn229 side-
chain (Figure 2) reduces its free energy of binding to the protein and causes
the displacement of this nucleotide into a position unsuitable for reaction.
Similar relative binding free energy calculations on the Asn229Asp and
Asn229Val mutants led to much smaller relative binding free energies,
which is consistent with the experimental findings showing that the mutant
enzymes exhibit little preference for dUMP relative to dCMP methylation.

In another study, Reddy and Villafranca4 carried out free energy
calculations analyzing TS mutants and their binding of methotrexate (MTX).
The relative binding free energies of MTX with wild type TS relative to the
two TS mutants Ile79Val and Ile79Ala (AAGbind (calc) = 0.4 kcal/mol and
1.9 kcal/mol for Ile79Val and Ile79Ala, respectively; whereas AAGbind (exp)
= 0.6 kcal/mol and 1.4 kcal/mol, respectively) revealed the importance of
large non-polar groups at position 79 to MTX binding. The AAGbind for
Phel76Ile (calculated 1.8 kcal/mol; experimental 1.2 kcal/mol) indicated
that a portion of the MTX binding affinity could be attributed to aromatic-



dUMP dCMP

Figure 2. Hydrogen bond potential of dUMP vs. dCMP with the side-chain amide of Asn229.

MTX interactions, since, despite the more favorable desolvation of He
compared to Phe, MTX bound more strongly to TS with Phel76.

4. NON-ADDITIVITY IN TS INHIBITION

Jones et al.12 synthesized a total of 31 propargyl lipophilic quinazoline
analogs in an effort to develop a potent antifolate inhibitor of TS. These
compounds were quite promising in that they bound to TS almost as strongly
as the tight binding polyglutamic acid inhibitors while possessing a
molecular structure expected to exhibit superior pharmacological properties.

Inspired by these results, we attempted to reproduce the interesting non-
additivity observed by Jones using free energy calculations (Figure 3). The
experimental results indicated that the free energy change for the di-
substituted compound was less than the sum of the free energy gains
associated with each mono-substituted compound relative to the
unsubstituted molecule. The hope from our studies was that accurate
predictions of the non-additivity would lead to accurate predictions of the
inhibitory potential of related analogs and ultimately to the discovery of an
even more potent inhibitor. Our results showed that we could reproduce the
non-additivity with reasonable accuracy. Moreover, using our software
PROFEC,10 we suggested a new inhibitor, which we calculated to bind even
better to TS than any synthesized by Jones et al.12

The relative free energies for the molecules shown in Figure 3 (a-d) were
calculated using the PROFEC program and the free energy program in the
AMBER package.5'13 The calculated relative binding free energy for adding

Asn229 Asn229



Figure 3. Four compounds designed by Jones et al12. The upper is the common structure and
the lower shows different substitutions for these compounds. Each compound is named as the
letter appearing on the aniline ring.

a -CF3 group to the unsubstituted inhibitor (a-»b) is -1.92 kcal/mol,
compared to the experimental result of -1.26 kcal/mol. The calculated
relative binding free energy for adding a -NO2 group is -3.12 kcal/mol vs.
the experimental (a-»c) value of -2.41 kcal/mol. However, when one
considers the relative binding free energy changes (AAG) for the double
substitution, the experimental value (a —» d) is -2.76 kcal/mol, whereas one
would expect it to be -1.26 + (-2.41), or -3.67 kcal/mol, i.e. a non-additivity
of 0.9 kcal/mol. The calculated relative binding free energy for mutating
a—>d via b is -4.59 kcal/mol and a—>d via c is -3.95 kcal/mol, with the
average relative binding free energy of -4.27 kcal/mol for a —>d. This is 0.8
kcal/mol larger than the sum of the relative binding free energies for a—»b
and a->c mutations (-3.12 + (-1.92)), i.e. -5.04 kcal/mol. Thus, the
calculations reasonably reproduce the non-additive effect of double
substitution. By carrying out MD trajectories on the various inhibitors, we
found2 that residues Val262 and Ile79 move on either 3-CF3 or 4-NO2

substitution and that it appears that both substitution sites "compete" for
interaction with these residues. This observation may provide a reasonable
rationalization for the non-additivity observed for the 3-CF3 and 4-NO2

substituted compounds.



5. DESIGN OF POTENT TS INHIBITORS

The PROFEC calculations and similar qualitative analyses suggested that
the 2,3-difluoro substitution of the 4-NO2 analog (compound g in Figure 4)
should increase binding strength, whereas adding 5,6-difluro to the 3-CF3

analog (compound h in Figure 4) should decrease binding. As one can see
from Figure 4, the addition of the 2,3-difluoro substitution to compound a
(a—>f) resulted in a calculated relative binding free energy of -2.98 kcal/mol.
The effect of the 2,3-difluoro substitution on the 4-NO2 analog (a—>c—>g)
gave a relative free energy of (-3.12 +(-2.38)) -5.50 kcal/mol, whereas the
effect of adding both the 5,6-difluro substitutions and a 3-CF3 group
(a—>f—>h) on the relative binding free energy was approximately -2 kcal/mol
(the average of -2.22 and -1.66 kcal/mol). Thus, the calculated results
predicted that the 2,3-difluoro, 4-NO2 analog would bind about 1 order of
magnitude more tightly than the 3-CF3, 4-NO2 disubstituted analog, which is
the tightest binding inhibitor reported in this series.13

Figure 4. The free energy calculation results for all mutations. The numbers in italics are the
relative binding free energies calculated from experimental Kj values. Other numbers are the
relative binding free energies from the simulations. Units are kcal/mol.



6. CONCLUSIONS

Free energy calculations provided important insight into ligand binding to
TS. The calculated relative binding free energies were in good agreement
with experimental results.1"4 In the most recent study, a combination of free
energy calculations and molecular dynamics simulations was used to analyze
an inhibitor series and provide a qualitative analysis of the free energy
changes resulting from various aromatic substitutions. The results
reproduced experimental values and rationalized the non-additivity in TS
inhibitor binding. Moreover, the studies were extended to the design of new
TS inhibitors with one of the compounds predicted to be an even more
potent TS inhibitor. It is hoped that this work will inspire an interest in
synthesizing this new compound.
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1. INTRODUCTION

The enzyme dihydrofolate reductase (DHFR) catalyses the nicotinamide
adenine dinucleotide phosphate (NADPH) dependent reduction of folate to
tetrahydrofolate, and dihydrofolate (DHF) to tetrahydrofolate, and is a target
for various antineoplastic and antibacterial drugs.1' 2 DHFR has become a
popular test case for computer-aided drug design. Consequently several
molecular dynamics and free energy perturbation (MD/FEP) calculations on
the DHFR-binding of the anti-cancer drug methotrexate and the antibacterial
drug trimethoprim have been reported in the literature.3"10 The majority of
these studied small polar to nonpolar transformations of the 3-, 4- and 5-
substituents of the phenyl ring in trimethoprim.5"9 Fewer studies have been
carried out on methotrexate3' 4 or methotrexate derivatives10 binding to
DHFR. Due to the availability of experimental binding constants and the
small structural differences involved, the trimethoprim derivatives appear to
have been the dominant test case for new free energy methodologies as
applied to DHFR-binding ligands. Gerber et al.9 developed an efficient
strategy based on free energy derivatives to estimate differences in ligand
binding and applied it to the trimethoprim derivatives. Although orders of
magnitude more efficient than the more rigorous FEP approach, there is
some loss of accuracy. In addition to the MD/FEP and related calculations
on relative binding free energies, some other methods not based on MD
simulation have also been employed. An efficient empirical scoring function
approach for estimating binding constants has been developed and used to
predict the binding constants of DHFR-inhibitor complexes of trimethoprim



derivatives,11 while the Poisson-Boltzmann equation has been applied to the
study of the pH-dependence of methotrexate inhibition of DHFR.12

As part of our strategy for the rational design of biologically active
molecules, for a number of years we have been engaged in the use of MD
simulation together with standard FEP and thermodynamic integration (TI)
calculations to study the relative affinities of the novel mechanism-based 8-
substituted pterins and N5-deazapterins for DHFR. Underpinning the
rational design of these new types of substrates and inhibitors of DHFR is a
detailed understanding of enzymic mechanism, i.e. how DHFR catalyses the
reduction of folate and DHF. To address this question, we are currently
using combined quantum mechanical and molecular mechanical (QM/MM)
methodologies together with MD simulation and free energy (FEP and TI)
methods. In the present chapter, we review our approach to the use of free
energy calculations in the design of mechanism-based DHFR-binding
ligands.

2. MECHANISM-BASED SUBSTRATES AND
INHIBITORS OF DHFR

The design rationales we used in the development of mechanism-based
8-substituted-pterin (8-R-pterin) substrates of DHFR13"19 suggested that 8-R-
N5-deazapterins might well be inhibitors of DHFR. Central to the pterin-
substrate design is substitution at the N8 position, which produces a more
basic compound. Experimental work carried out in our laboratory has shown
that 8-substituted-N5-deazapterins are indeed inhibitors of DHFR and
display strong binding in ternary complexes with NADPH cofactor.20 The
non-8-R-substituted compound, N5-deazafolate, is also known to be an
inhibitor and binds more tightly than folate to DHFR from E. coli and
chicken liver.21 Quantum chemical calculations of protonation behaviour and
electronic spectra17'20 in solution indicate that N5-deazapterins (i.e.analogues
of N5-deazafolate) protonate at N8, whereas N3 is the protonation site for
the 8-R-substituted compounds,13' 14' 17 findings also supported by
experiment.17' 19' 22 Spectral studies are also consistent with binding of the
N3 protonated forms of 8-substituted N5-deazapterins in the active site of
DHFR.24 Structures of the N8-protonated and neutral forms of 6-substituted-
N5-deazapterins (e.g. 6-methyl-N5-deazapterin and N5-deazafolate) are
shown in Figure 1. The structures of N3-protonated and neutral 6-R'-8-R-
N5-deazapterins (e.g. 6,8-dimethyl-N5-deazapterin) are shown in Figure 2.
Both the 8-substituted (N3-protonated) and non-8-substituted (N8-
protonated) cations are stabilized by the resonance-delocalized extended-
guanidimum group.13'16'17



Figure L Structures for (a) the stable cation showing the extended guanidinium resonance,
and (b) the neutral form of 6-R'-N5-deazapterins. In the inhibitor N5-deazafolate, the side
chain is R1 = methylene(p-aminobenzoyl)-L-glutamate.

Figure 2. Structures for (a) the stable cation showing the extended guanidinium resonance,
and (b) the neutral form of 6-R'-8-R-N5-deazapterins.

3. FREE ENERGY METHODS

The difference in binding affinity between two forms of a ligand A and B
reduces to solving the equation for the free energy difference (Chapter 16)
given by

AAGbind =AGcom-AGaq (1)

where AGaq is the free energy for the mutation of the ligand from A to B in
aqueous solution and AGcom is for the corresponding mutation for the ligand
bound in the solvated protein complex. The MM force field used in the
simulations to compute AGcom and AGaq has the general form

V = Vbad + Vele + VvdW (2)

where Vbad includes all bond, angle and dihedral terms, Veie is the
electrostatic term arising from nonbonded coulomb interactions between



atomic charges, and Vvdw is the nonbonded van der Waals (vdW) 6-12
Lennard-Jones potential interaction term. The free energy changes AGcom

and AGaq may be computed using either FEP or thermodynamic integration
(TI) methods. A detailed account of these methodologies can be found in
Chapter 2. Following the procedure outlined by Rao and Singh,25 we usually
evaluate the AG's in two steps. In the first step the free energy change due to
mutation of the electrostatic terms (Vele) only in the force field is calculated,
followed by the free energy change due to mutation of the vdW terms (Vvdw)
in the second step.

The practical difficulties inherent in the estimation of free energy
differences by molecular simulation are well known and have been discussed
in various review articles,26"29 including this volume. Many of these
difficulties are associated with the choice of initial conditions, subsequent
MD simulation conditions, simulation times and the efficiency of
configuration-space sampling. Note that actual X-ray structures of
complexes formed between DHFR and 8-substituted-N5-deazapterins have
not been determined. Consequently we must use starting coordinates for
DHFR from available X-ray studies on complexes where other substrates or
inhibitors are bound. These substrate or inhibitor molecules are then deleted
from the structure and the 8-substituted-N5-deazapterin modeled into the
binding site using the known binding-geometry information.15"18 If the initial
X-ray structure turns out to be a poor guess to the structure of the true
complex, lengthy equilibration may be required, and a priori it is not clear
how long the simulation must be run in order to obtain adequate statistics for
a free energy determination. A number of free energy determinations should
be made by varying the simulation time in order to test the validity of the
results. The success of free energy simulations, therefore, depends critically
on the development of protocols which are appropriate for a given problem.
The other major concern for accurate free energy determination is the quality
of the potential energy function and the inclusion of solvent. We have
examined many of these issues involved in the calculation of AGcom and
AGaq for the binding of 8-substituted pterins and N5-deazapterins to DHFR.

4. FREE ENERGY OF SOLVATION

For molecules and molecular ions, such as the cations of 8-methyl-N5-
deazapterin and 8-methyl-pterin, the charge distribution (which is
represented in MD simulations by a set of discrete atomic charges) will be
dependent on the chosen quantum chemical model. Differences in the charge
distributions of these cations may influence both the relative binding and
solvation thermodynamics. Consequently, we studied the relative solvation
thermodynamics of similar DHFR-binding molecular ions.30 Atomic charges



were obtained from a fit to the molecular electrostatic potential (MEP)
calculated using quantum chemical methods. Due to the importance of
electrostatics in the binding and solvation of ions, we restricted our attention
in this study to free energy changes arising from mutation of the
intermolecular (i.e. cation-solvent) electrostatic terms (Veie) in the MD force
field.

In order to examine the effect of truncating the non-bonded interactions,
simulations were performed using a box containing 804 water molecules.
The free energies in Table 1 were computed using TI carried out over 80 ps
simulation times. We found that TI gives essentially the same results as the
FEP method. Note the cutoff radii are determined by the box size according
to RC < dmin/2 where dmin is the minimum box dimension. Calculations have
also been carried out using a smaller number of solvent waters
(approximately 400 molecules). If the interaction radius in the 804 water
molecule system is kept the same as for the simulations performed using the
smaller 400 water molecule system, i.e. 8 A for both the cation-solvent and
solvent-solvent interactions, the magnitude of the free energy change is
increased by a small amount (ca. 0.1 kcal/mol). Water molecules which
interact with the cation will also interact with water images due to the
boundary condition. Many of these water images will in turn have been
influenced by interactions with the cation and may, therefore, occupy
unrealistic configurational states.31 Consequently, in the simulations using
the smaller box the dielectric relaxation of the solvent is effectively
incomplete and the free energy change can be artificially raised, i.e. more
positive, although in this particular case the effect appears to be almost
negligible. This effect is known to be larger for the mutation of neutral to
charged atoms in solution, i.e. the hydration of simple ions.31

Increasing the cation-solvent interaction radius from 8 to 10 A while the
solvent-solvent interactions remain at 8 A results in only a small change (<
0.1 kcal/mol) in the free energy. However, if the solvent-solvent interaction
radius is also increased to 10 A the change in the free energy becomes +0.4
kcal/mol which is much larger than would be expected from the water-image
effect. It appears that for this mutation the choice of cutoff radius for the
solvent-solvent interactions is more important than the radius for the cation-

Table L Dependence of free energies (kcal/mol) on the residue-based cutoff radii Rc (A) for
generation of cation-solvent (c-s) and solvent-solvent (s-s) interaction lists. Free energy
changes are given for the forward AGf (i.e. 8-methyl-N5-deazapterin —» 8-methyl-pterin) and
reverse AG1. mutations of the electrostatic terms.

Simulation r » / \ A ^ A^ A^. A ̂RC(S-S) AGf AGr AGf + AG1.KCIC-S;
8 8 -4.205 4.129 -0.076
10 8 -4.102 4.133 0.031

10 10 -3.730 3.778 0.048
"804 T1P3P water molecules; AMI optimized geometry; AMI atomic charges; simulation time of 80 ps.



solvent interactions. The hydration free energies of simple ions are also
found to be sensitive to the solvent-solvent interaction cutoff, but also very
dependent on the ion-solvent cutoff.31 In the present mutation, charge is
conserved and the effective Hamiltonian for the change is dipolar (R"3)
whereas in the hydration studies31 the charge state of the solute is being
changed (with R"1 dependence). Also the ions considered here are much
larger and, therefore, have a much smaller charge density compared with
Na+ or Cl". Consequently, we would expect the dependence of the free
energy on the cation-solvent cutoff to be very much reduced.

The electrostatic free energy changes using the TIP3P or SPC water
models and several levels of ab initio SCF charges were computed by
performing integrations over 80 ps simulation times (Table 2). The 6-3IG*
and 6-3UG** charges computed at AMI optimized geometries (AM1/6-
31G* and AMI/6-31 IG**) yield similar free energy changes. In all cases the
ab initio charges give a free energy change which is more negative than that
for AMI charges computed using the same simulation conditions. The AMI
and AM 1/6-3IG free energy changes differ by 1 kcal/mol, while the free
energies from simulations in which AM1/3-21G, AM1/6-31G* or AM1/6-
3 UG** charges were used differ by only 5-10% from those obtained using
the AMI charges. Also, some variation in the sampling becomes apparent
with the use of different solvent/cation models, as the hystereses in the SPC-
AM1/6-3IG and TEP3P-AM1/6-31G* calculations are notably larger than
for the other 80 ps electrostatic mutations. Free energies computed using 3-
21G geometries and 3-21G or 6-3IG* charges (3-21G/3-21G and 3-21G/6-
3IG*) are 0.5 to 0.8 kcal/mol larger than those obtained at the AMI
geometries (AM 1/3-2IG and AM 1/6-3IG*). Other studies32'33 had reported
more significant differences between free energies calculated using AMI
and 6-3IG* charges. As we have used AMI geometries and charges

Table 2. Dependence of free energies (kcal/mol) on the atomic charges computed at the AMI
and ab initio SCF level for both AMI and 3-2IG optimized geometries. Free energy changes
are given for the forward AGf (i.e. 8-methyl-N5-deazapterin —> 8-methyl-pterin) and reverse
AG1. mutations of the electrostatic terms.

Solvent3

TIP3P

SPC

Cation geometry/charges

AMI/AMI
AM 1/3-2 IG
3-21G/3-21G
AM 1/6-3 IG
AM1/6-31G*
3-21G/6-31G*
AM 1/6-3 11 G**
AM 1/6-3 IG
AM1/6-311G**

AGf

-4.066
-4.557
-5.347
-5.161
-4.204
-4.964
-4.335
-4.988
-4.043

AGr

4.070
4.531
5.169
5.139
4.400
4.928
4.306
5.235
3.946

AGf + AGr

0.004
-0.026
-0.178
-0.022
0.196

-0.036
-0.029
0.247

-0.097
a 389 water molecules; 8 A residue-based cutoff for non-bonded interactions; simulation time of 80 ps.



extensively in studies of pterin and N5-deazapterin binding to DHFR, it is
encouraging that for the present mutations between cations the results
indicate the AMI model gives free energies reasonably close (within ca. 1
kcal/mol) to those from simulations based on ab initio SCF geometries and
charges.

The free energy was also calculated for the change 6,8-dimethyl-N5-
deazapterin —> 6-methyl-N5-deazapterin in aqueous solution using the FEP
method.34 In this simulation the 8-methyl substituent is changed to
hydrogen. Like the CH —> N mutation between pterin and N5-deazapterin
discussed above, a non-polar hydrophobic group is changed to a polar one
that can form H bonds with the solvent water molecules. However, the N-
CHs —> N-H mutation in the 8-position involves a more substantial change in
volume. In this case the free energy change may well be largely dependent
on the vdW parameters of the hydrogen at N8, rather than on the partial
atomic charges. Thus, we calculated the free energy change for two values of
the atomic hardness, 8 = 0.02 and e = 0.0 for the N8 hydrogen. The total free
energy change, AGaq, has been obtained as the sum of electrostatic and vdW
contributions. The results in Table 3 show a relatively small free energy
change for mutation of the coulomb energy terms Veie. This is to be expected
since the total ligand charge is conserved and the atomic partial charges34

indicate only minor differences in the molecular charge distributions and,
hence, MEPs of the two ligands. In contrast, mutation of the vdW terms
gives a substantial free energy difference, which is very dependent on the
choice for 8, i.e. the strength of the H bonding between N8-H and water.
Care needs to be taken here in the interpretation of this result and the
meaning of "electrostatic" and "vdW" free energy components as obtained
by partial mutation of the potential energy function. Although the free
energy change is obtained by mutation of vdW terms only, the origin of the
H bonding remains largely electrostatic. The magnitude of the repulsive

Table 3. Free energy changes (kcal/mol) calculated for the mutation 6,8-dimethyl-N5-
deazapterin —> 6-methyl-N5-deazapterin in solution. Results for 80 ps simulation, with 200 ps
simulation in parentheses.
ea AG3^eIe)15 AG^vdw)11 AG^total)'

0.02 -0.25 ± 0.01 -3.83 ± 0.07 -4.08 ± 0.08
-0.25 ± 0.01 3.38 ± 0.02d -3.63 ± 0.03

-0.25 ± 0.01 (-3.48 ± 0.05) (-3.73 ± 0.06)

0.00 -0.25 ± 0.01 -6.63 ± 0.02 -6.88 ± 0.03
-0.25 ±0.01 -5.56±0.10d -5.81 ±0.11

-0.25 ± 0.01 (-6.11 ± 0.06) (-6.36 ± 0.07)
a vdW parameters E = 0.0 and 0.02 kcal/mol for H(NS) of 6-methyl-N5-deazapterin. bMean value and standard error from
the FEP calculations (ref. 34). Total free energy change is the sum of the electrostatic and vdW components. dReverse
mutation.



vdW energy depends on the strength of the coulomb energy. Strongly
interacting molecules will have a significant overlap of electron density and,
hence, also a large repulsive vdW energy term. Thus, the magnitude of
electrostatic binding energy is reflected simply in the mutation of the vdW
terms.

Brooks and Freischman5'6 have also carried out extensive FEP studies on
the relative solution thermodynamics of a DHFR-binding drug, but involving
multiple polar to nonpolar type mutations. They mutated the 3',4',5'-
methoxybenzyl group of trimethoprim (TMP) to 4' (para)-ethyl (PET) or
3',4f,5'-triethyl (TET) moieties. This O —> CH2 mutation is comparable with
the N —> CH mutation between pterin and N5-deazapterin. As expected the
nonpolar ethyl derivatives were found to be less stable in solution than TMP.
However, the calculated AGaq are not additive with respect to the number of
ethyl substituents as the AGaq = 3.8 ± 0.5 kcal/mol for TMP -^ TET (three
ethyl substituents) is only twice the AGaq = 1.9 ± 0.2 kcal/mol for TMP —>
PET (one ethyl substituent).6 In addition to the free energy, the enthalpy and
entropy changes were also computed. There is a large contribution from the
entropy in the mutation from TMP -> PET, but not in the TMP -> TET
mutation, which is consistent with the 4'-methoxy group being more
hydrophilic than the methoxy groups at the 3' or 5' positions.

5. FREE ENERGY OF BINDING

We have examined the convergence of the computed free energies and
structures obtained by MD simulation by performing calculations under
different conditions, i.e. initial X-ray coordinates, simulation times and
force-field parameters for the mutation 6,8-dimethyl-N5-deazapterin —> 6-
methyl-N5-deazapterin for the enzyme-bound cation.34 The MD/FEP
simulations were carried out on several examples of DHFR from
bacterial35"37 and vertebrate38"41 sources. Many of these X-ray crystal
structures have the cofactor NADP+ or NADPH bound, and all have either a
known substrate or inhibitor molecule bound in the active site. For some of
the complexes studied, the mutations were carried out in both directions, i.e.
the free energy was calculated for the change 6,8-dimethyl-N5-deazapterin
—> 6-methyl-N5-deazapterin and also for the change 6-methyl-N5-
deazapterin —> 6,8-dimethyl-N5-deazapterin. As an additional source of
error in the calculations derives from the approximations used to obtain
potential energy functions in MD simulations, the sensitivity of the
computed free energies and structures to the possible H-bond interaction was
tested by carrying out simulations using two potential energy functions
which differ only in the assignment of the atomic hardness parameter (e) for



the description of interactions between the enzyme and H(NS) of the 6-
methyl-N5-deazapterin ligand.

The free energy change, AGcom, was obtained as the sum of electrostatic
and vdW contributions, according to the respective mutations of electrostatic
and vdW potential energy terms. The vdW contribution and total free energy
terms are given in Table 4, where the change for a total mutation is given by
AGCom(total) = AGcom(ele) + AGcom(vdW). The results in parentheses are for
the vdW mutation performed over a 200 ps simulation time. Note that for all
systems the electrostatic components, i.e. difference between AGcom(total)
and AGCom(vdW) are quite small compared with the vdW components, as
was found for the corresponding mutation for the cation in aqueous solution
(Table 3).

The vdW component depends heavily on the enzyme source of the initial
coordinates for the complexes and also on the 8 parameter for H(NS). With
the exception of the IcDHFR.ligand complex, the parameter 8 = 0 kcal/mol
consistently gives lower AGcom(vdW) values than 8 = 0.02 kcal/mol.
However, no definite trend emerges when comparing AGCOm(vdW) for the
different initial structures or when considering the presence or absence of
NADPH cofactor. The relative thermodynamic stabilities of ligand binding,
AAGbind* also vary markedly, giving a range of values depending on initial
coordinates and 8. The simulation performed on lcDHFR(e=0) yields
AAGbind = 1.37 ± 0.15 kcal/mol, i.e. the 6,8-dimethyl-N5-deazapterin
complex is a factor of ca. 10 more stable than the 6-methyl-N5-deazapterin
complex. In contrast, rhDHFR(8=0) yields AAGbind = -3.66 ± 0.21 kcal/mol,
i.e. the 6-methyl-N5-deazapterin complex is the more stable by a factor
greater than 102.

The vdW mutation was repeated for several complexes using the longer
simulation time of 200 ps. The results are included in Table 4 for
comparison with the 80 ps simulations. There are only small (< 0.5
kcal/mol) differences between the 80 and 200 ps estimates of AAGbmd for the
two ecDHFR(e = O) simulations. Thus, regardless of whether the simulation
time for the vdW mutation is 80 ps or 200 ps, values for AAGbmd differ by
almost 2 kcal/mol for the two initial ecDHFR structures (8 = O). A small (<
0.5 kcal/mol) difference between the 80 and 200 ps simulations is also
obtained for clDHFR.NADPH(8=0). By contrast, on increasing the
simulation time changes in AAGbind that are greater than 1 kcal/mol are
obtained for lcDHFR(8 = O), clDHER(8 = 0.02) and rhDHFR(e = O). For
IcDHFR the change on going from 80 ps to 200 ps is as high as 3 kcal/mol.
The reverse 200 ps mutation for rhDHFR(8= O) gives a hysteresis of 1.8
kcal/mol which is approximately the same absolute magnitude as for the
corresponding 80 ps mutation.34 These results indicate that the free energies
are generally still not converged after 200 ps.



Table 4. Free energy changes (kcal/mol) for the mutation 6,8-dimethyl-N5-deazapterin — » 6-
methyl-N5-deazapterin for the ligands bound to various dihydrofolate reductases with and
without NADPH cofactor. Results are for 80 ps simulation, with 200 ps simulation in
parentheses.

System
lcDHFRc

lcDHFR.NADPHe

ecDHFR'

ecDHFRg

ecDHFR.NADPHg

clDHFRh

clDHFR.NADPHh

rhDHFR1

ea

0.02
0.00

0.02
0.00

0.02
0.00

0.02
0.00

0.02
0.00

0.02

0.00

0.02
0.00

0.02
0.00

AGcom(vdw)b

-6.05 ±0.15
-4.88 ±0.10

(-7.42 ± 0.02)

-6.53 ± 0.08
-9.33 ± 0.05

-3.82 ±0.10
-7.90 ± 0.09

(-7.34 ±0.01)

-4.40 ±0.01
-5.82 ±0.03

(-5.57 ± 0.07)

-3.79 ± 0.02
-7.02 ±0.11

-2.79 ± 0.03
(-3.62 ± 0.07)

-5.39 ±0.02

-3.60 ± 0.02
-5.35 ±0.03

(-4.41 ±0.01)

-6.29 ± 0.07
-10.29 ±0.17

(-7.34 ± 0.02)

AGcom(total)c

-6.68 ±0.17
-5.51 ±0.12

(-8.05 ± 0.04)

-6.96 ± 0.09
-9.76 ± 0.06

-4.34 ±0.11
-8.42 ±0.10

(-7.86 ± 0.02)

-5. 09 ±0.03
-6.51 ±0.05

(-6.26 ± 0.09)

-4.28 ± 0.03
-7.51 ±0.12

-3.33 ±0.04
(-4. 16 ±0.08)

-5.93 ± 0.03

-4.03 ± 0.03
-5.78 ±0.04

(-4.84 ± 0.02)

-6.54 ± 0.08
-10.54 ±0.10

(-7.59 ± 0.03)

AAGhind
d

-2.60 ± 0.25
1.37 ±0.15

(-1.69 ±0.11)

-2.88 ±0.17
-2.88 ± 0.09

-0.26 ±0.19
-1.54±0.13

(-1.50 ±0.09)

-1.01 ±0.11
0.37 ±0.08

(0. 10 ±0.16)

-0.20 ±0.11
-0.63 ±0.1 5

0.85 ±0.12
(-0.43 ±0.14)

0.95 ± 0.06

0.05 ±0.11
1.10 ±0.07

(1.52 ±0.09)

-2.46 ±0.1 6
-3.66 ±0.21

(-1.23 ±0.10)
a vdW parameters e = 0.0 and 0.02 kcal/mol for H(N8) of 6-methyl-N5-deazapterin. b Mean value and standard error from
the FEP calculations (ref. 34). c Total free energy change is the sum of the electro-static and vdW components. d From
AGaqCtotal) in Table 3 and Equation 1. c DHFR.NADPH.methotrexate coordinates (ref. 35). ' DHFR.-methotrexate
coordinates (ref. 36). g DHFR.NADP*.folate coordinates (ref. 37). h DHFR.NADP*.biopterin coordinates (ref. 40).
' DHFR.folate coordinates (ref. 41).

Figure 3 shows the correlation between thermodynamic stability (AAGbind
results from Table 4) and the N8-oxygen distance in the 6-methyl-N5-
deazapterin complexes obtained after mutation. This distance has a value of
2.7 A in the X-ray structure of the rhDHFR.NS-deazafolate complex,38 from
which ligand protonation and H bonding are inferred, compared with a
distance of 3.4 A in the ecDHFR.NS-deazafolate X-ray structure,42

suggesting binding of unprotonated ligand. A range of distances is obtained
from the simulations, although the majority lie between 2.5 and 3.2 A, which
may be regarded as the H-bonded range.



N8-O distance (A)

Figure 3. Correlation between the calculated AAGbind values (Table 4) and the N8-O
distances (where O is the carbonyl oxygen of the conserved Ile/Leu residue in the active site
of DHFR) in the 6-methyl-N5-deazapterin MD complexes.

These distances for 8 = O are within ±0.2 A of the experimentally observed
distance (2.7 A) in the rhDHFR.NS-deazafolate complex, whereas the
parameter 8 = 0.02 kcal/mol yields H bonds which are longer by 0.2 to 0.5 A,
consistent with previous experience that e(H) > O leads to an
underestimation of H-bond strength.43 The majority of simulations with a
N8-O distance within the H-bonded range yield AAGbind < O, suggesting that
complexes involving H-bonded 6-methyl-N5-deazapterin are the
thermodynamically more stable ones. Nevertheless, several of the H-bonded
structures at the higher end of the H-bonded range are found to give AAGbind
> O, namely lcDHFR(e = O), ecDHFR(e = O) and clDHFR(e = O), while
clDHFR.NADPH (8 = 0.02) gives AAGbind > O. Two of the structures
[clDHFR(8 = 0.02) and clDHFR.NADPH(8 = O)] are well outside the H-
bonded range at 4.0 and 4.5 A respectively, i.e. distances which are typical
of the N8-O separations found in the initial 6,8-dimethyl-N5-deazapterin
complexes before mutation. Both of these structures correspond to AAGbind >
O. The 6-methyl-N5-deazapterin structures exhibit34 a higher degree of
overlap with the initial 6,8-dimethyl-N5-deazapterin structures than those
where H-bonding at N8 takes place. Not surprisingly, therefore, H-bonding
appears to involve quite a substantial displacement of the binding geometry
from the initial non-H-bonded state. This fact is also reflected in the small
difference between the free energies for the forward and reverse vdW
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mutations in the calculations on clDHFR.NADPH(e = O).34 As no large
variations in structure occur during the vdW mutation (in either direction),
the free energies are not expected to be very dependent on the mutation path,
unlike the H-bonded structures which often give rise to a much larger
hysteresis. The H bond does, however, have time to form over the longer
simulation of 200 ps. For the clDHFR.NADPH(e = O) complex^ the 200 ps
simulation gave an MD structure with an N8-O distance of 2.75 A compared
with 4.44 A obtained from the 80 ps simulation (Figure 3). The simulations
performed for clDHFR(e = 0.02) yielded 3.21 A for 200 ps and 4.03 A for
80 ps.

6. LINEAR RESPONSE APPROXIMATION

The linear response approximation (LRA) allows for the estimate of a
free energy change without the need to mutate potential energy terms as in
the FEP or TI methods. Consequently, the LRA is more generally applicable
and well suited for obtaining the absolute binding free energy of a ligand, i.e.
the free energy relative to the unbound ligand in solution, rather than just the
free energy difference AAGbind between chemically similar ligands.
However, its accuracy depends on the availability of known binding
constants. A free energy of binding AGbind incorporating the ligand
desolvation term is given within the LRA by44

(3)

where AV^ and V^w are, respectively, the electrostatic and van der

Waals energy differences between the ligand in the solvated protein and the
unbound ligand in solution. The parameter a is determined by fitting a set of
calculated free energies of binding with experimental data. To determine a
for DHFR-binding ligands it was most suitable to choose compounds whose
binding modes are expected to be close to that of the biopterin. The 8-
methyl-, 5,8-dimethyl-, 6,8-dimethyl- and 7,8-dimethyl-N5-deazapterin
cations were chosen as good candidates for this purpose as the substituents
are small enough to avoid significant changes in the enzyme structure and
they cover a range of free energy values from -6.4 to -8.7 kcal/mol. A value
of a = -0.32 gives a good correlation with the experimental data, resulting
in an average absolute error of 0.31 kcal/mol for the set of ligands used in
the calibration.45 This value was then used to estimate the binding free
energy of a series of larger 8-substituted-N5-deazapterins in different
binding pockets in the active site of DHFR that had been generated by



simulated annealing, and, thus, predict the most likely binding geometry by
correlating with experimentally determined binding constants.45

7. HYDROPHOBIC HYDRATION

The results of the calculations on the binding of trimethoprim to DHFR5"8

suggest that entropic contributions and desolvation effects including solvent
structural changes may play an essential role in the binding to DHFR. In
particular, solvent structural changes may be significant in enhancing
protein-ligand binding. As changes in the solvent structure surrounding a
ligand may be influenced by the presence of hydrophobic groups, we have
studied the relative binding free energies of methyl-substituted 8-
methylpterins and 8-methyl-N5-deazapterins.46

The relative free energies of the various methylated ligands in Figure 4
were computed as the sum of electrostatic and vdW mutations using the FEP
method and over different mutation pathways.46 The free energies computed
over the various pathways were then averaged to obtain the values given in
Table 5, with the corresponding standard deviation for the error estimate.
The combined effects of sampling errors in AGaq and AGcom yielded
uncertainties larger than 1 kcal/mol in the relative thermodynamic stabilities
of ligand binding of the different methylated forms.

Errors of this magnitude make the useful prediction of free energies a
difficult task, when differences of only one to three kcal/mol are involved.
Nevertheless, within the error limits of the computed free energy differences,
the trend is that relative to 8-methyl-N5-deazapterin or 8-methyl-pterin, the
compounds methyl substituted in the 5, 6 or 7 positions are
thermodynamically more stable when bound to DHFR largely by virtue of a
hydrophobic effect, i.e. methyl substitution reduces the affinity of the ligand
for the solvent more than it reduces affinity for the DHFR active-site. The
stability of ligand binding to DHFR appears to be optimal with a 6-methyl
substituent: additional 5-methyl and/or 7-methyl substitution has little effect

Figure 4. Structures for cations (i.e. N3 protonated forms) of the 8-methyl substituted (a) N5-
deazapterins and (b) pterins: R5, R6 and R7 are either H or CH3.



Table 5. Free energies (kcal/mol) relative to 8-methyl-N5-deazapterin
Ligand AGaq

a AGcom
a AAGhincl

5,6,7,8-tetramethyl-N5-deazapterin 3.56±0.24 1.28±036 -2.28±0.60

6,7,8-trimethyl-N5-deazapterin 2.43±0.47 0.43±0.68 -2.00±1.15

5,7,8-trimethyl-N5-deazapterin 2.63±0.23 1.02±0.57 -1.61±0.80

5,6,8-trimethyl-N5-deazapterin 3.14±0.24 1.14±0.36 -2.00±0.60

7,8-dimethyl-N5-deazapterin 1.56±0.34 -0.05±0.63 -1.61±0.97

6,8-dimethyl-N5-deazapterin 1.57±0.32 -0.65±0.55 -2.23±0.87

5,8-dimethyl-N5-deazapterin 2.01 ±0.24 1.18±0.52 -0.83±0.76

6,7,8-dimethyl-pterin -1.75±0.26 -3.94±0.63 -2.19±0.89

7,8-dimethyl-pterin -2.82±0.42 -3.87±0.88 -1.05±1.30

6,8-dimethyl-pterin -2.11 ±0.29 -4.14±0.68 -2.03±0.97

8-methyl-pterin -4.08±0.26 -4.01±0.39 0.07+0.65
aMean value and standard error from the FEP calculations (ref. 46).

on the strength of binding. This saturation effect is most likely due to the
fact that the methyl substituents are in close proximity to one another. Thus,
the first hydrophobic substituent effectively produces a solvent cage in its
vicinity25 which allows adjacent methyl groups to be accommodated with a
much smaller free energy change. Also, with regard to the stability of ligand
binding, the FEP calculations indicate only minor differences between
similarly substituted pterins and N5-deazapterins, e.g. the binding constants
of 6,8-dimethylpterin and 6,8-dimethyl-N5-deazapterin are predicted to be of
the same order of magnitude.

8. ROLE OF SOLVENT IN LIGAND BINDING IN
THE ACTIVE SITE OF DHFR

In MD simulation studies of NADPH and NADP+ binding, solvent
interactions in the active site of DHFR were found to have a significant
effect on the relative binding thermodynamics.47 However, most studies on
DHFR-ligand binding have used limited numbers of water
molecules.3"10' 34' 46 We have examined how different ways of including
solvent influence the structural details of the active-site region and also the
computed free-energy change for the mutation between the substrate 8-
methyl-pterin and the inhibitor 8-methyl-N5-deazapterin.48



In the method proposed by Solmajer and Mehler49 for modeling the
effects of bulk solvent in protein simulations, the functional form for the
configurational energy of the system is obtained by adding an external
potential Vext for restraining the dynamics of solvent molecules to the
standard potential energy function in Equation 1 to give

V = Vbad + Vele + VvdW + Vext (4)

The introduction of the external potential Vext in Equation 4 is designed to
mimic the effect of the surrounding (implicit) bulk solvent on the system by
restricting the movement of any explicit water molecules.49 Thus, Vext is
interpreted as arising from the force exerted on the explicit atoms by the
implicit surrounding bulk solvent. This restraining potential has the simple
harmonic form,49

v«= S^(Rix)2 (5)
i 2

where Rix is the distance from atom i of a water molecule to a fixed
reference point x, and kj is the empirically-determined force constant. We
consider two models for the inclusion of bulk-solvent effects in the MD
simulations, each based on the use of the external potential Vext given by
Equation 5 with the same force constant k = kj assumed for all atoms. In the
capped water (CW) model, Rix is the distance of a water molecule's atom i
from the ligand center minus the radius of the spherical solvation shell (Rw).
Thus, the CW model simply prevents water from escaping the dynamics
region, but otherwise the water molecule dynamics is not directly affected by
an external potential. This model has been widely used in active-site
simulations.28 We use a value of 0.6 kcal/mol/A.2 for this force constant.48 In
the "tethered" water (TW) model, Rix is the distance of the water oxygen
from its initial bulk solvent or crystallographic positions. Taking account of
theoretical (MD simulation) studies50 that suggest water dipoles align
tangentially to protein surfaces, we apply Vext only to the oxygen atoms,
allowing water molecules to attain their preferred orientations without
artificially hindering their librational degrees of freedom.

We found that smaller shells of dynamically-restrained water molecules
yielded active sites that are in broad structural terms similar to those
obtained using much larger solvent shells of unrestrained molecules, without
the artifacts and distortions that were apparent when restraining potentials
were not used.48 This trend suggests that shells of restrained water would be
an efficient model for bulk solvent in both active-site MD simulations and
unconstrained-protein dynamics.49 Moreover, we found that the value of



Table 6. Free energies (kcal/mol) calculated using solvated-protein models.

AG00J

Model11 Rw
b Nw

c 9 Ae No cutoff

CW 16 46 -4.88 ±0.02 -3.74 ±0.13
CW 22 392 -3.83 ±0.04 -2.98 ± 0.25
CW 26 1033 -4.19 ±0.03 -3.04 ±0.07
TW(k=2.5) 16 46 -4.22±0.19 -4.01 ±0.08
TW(k=0.005) 16 46 -4.78 ±0.01 -3.85 ±0.18
TW(k=0.005) 22 392 -4.23 ± 0.30 -2.56 ±0.04
TW(k=0.005) 26 1033 -3.43 ±0.12 -2.67 ± 0.23
11CW = capped water, TW = tethered water (see text), k = force constant for restraining potential (kcal/mol/A2). b Radius
(A) of solvation sphere. c Numbers of dynamical water molecules within solvation sphere. dMean and standard error for
the forward (i.e. 8-methyl-N5-deazapterin —> 8-methylpterin) and reverse mutation of the electrostatic force field
eCutoff for protein-ligand and solvent-ligand interaction; all other interactions are subject to a 9 A cutoff.

0.005 kcal/mol/A2 for the restraint used by Solmajer and Mehler49 in BPTI
simulations works quite well for the active site of DHFR. This value gave
satisfactory results over a range of solvent shell sizes. In accord with the
BPTI calculations,49 larger values of the force constant resulted in protein
structures that are too similar to the initial X-ray structure.

It is known from our other studies on 8-substituted pterins and N5-
deazapterins that the contributions to the free energies due to mutation of
vdW terms is quite small and these contributions cancel when differences
are taken.30 Consequently, in Table 6 we report the free-energy change for
mutation of electrostatic terms only, with a 9 A cutoff, and no cutoff for
ligand-protein and ligand-solvent interactions. As may be seen, a range of
binding free energies spanning ~2 kcal/mol is obtained. We have also
performed other calculations with a cutoff of 8 A for the nonbonded
interactions (see Table S).46 However, it is clear from the results in Table 6
that substantial errors (ca. 1.5 kcal/mol) may arise from truncation of the
long-range electrostatic forces.

With no cutoff for the nonbonded interactions between ligand and the
rest of the system, the TW (Rw = 22 A) model gives the smallest free energy
change of -2.56 ± 0.04 kcal/mol, while the largest change (-4.01 ± 0.08
kcal/mol) is obtained for the unsolvated CW (Rw = 16 A) model. The
solvated models give absolute values of free energies about 1 kcal/mol
below those obtained from the unsolvated (Rw = 16 A) models. However, the
variation of the free energy with the type of solvent model is much less than
1 kcal/mol. The difference between CW and TW models is ca. 0.4 kcal/mol,
while the difference between Rw = 22 A and Rw = 26 A for both models is
only ca. 0.1 kcal/mol. These results suggest that while the free energies are
clearly affected by the presence of explicit solvent, the fine details of the
solvent distribution and protein structural changes are of lesser importance.
This conclusion also tends to be supported by comparing the results obtained



for the tethering potentials k = 2.5 and k = 0.005. Although the results for
k = 0.005 (Rw = 16 A) deviate more from the initial X-ray structure as
measured by overall rms deviations,48 the difference in the computed free
energy is less than 0.2 kcal/mol. Note, however, that significantly larger free
energy differences between solvent/protein structures are obtained with the 9
A cutoff.

The relative thermodynamic stability of the binding is given by the
difference for ligand bound to the DHFR complex (AGCOm) and free ligand in
solution (AGaq). This latter solvation free energy has been calculated
previously to be in the range 3.7 to 4.2 kcal/mol, using parameter sets
derived from the AMI model for the ligands.30' 46 Assuming a value of -4.0
kcal/mol for AGaq (AMI in Table 1) a value of -2.7 kcal/mol (TW model, Rw

= 26 A, k=0.005 in Table 6) for AGcom gives a difference (AGCOm - AGaq) in
binding free energy of 1.3 kcal/mol, which may be compared with the
experimental value of ± 0.2 kcal/mol.15'19'20

9. CATALYTIC MECHANISM OF DHFR

DHFR catalyses the hydride-ion transfer between the nicotinamide
adenine dinucleotide phosphate (NADPH) cofactor and a substrate molecule
(S) according to

NADPH + S' + H+ -> NADP+ + SH2 (6)

where the normal substrates are folate and dihydrofolate. Note that the
hydride-ion transfer is pH dependent requiring the transfer of a proton to the
substrate. As the natural substrates, folate and dihydrofolate (DHF), are
unprotonated when bound to the enzyme at physiological pH, how the
proton finds its way to the substrate in the active site appears to be critical to
an understanding of the mechanism of activation towards hydride-ion
transfer. The novel 8-substituted pterins, which, unlike folate and DHF, have
a high pKa (ca. 5.5) in solution and, on the basis of both experimental and
theoretical studies to date, bind strongly to the active site in the protonated
form. This provides strong evidence for a pre-protonation mechanism, i.e.
the enzyme-bound substrate exists in the N3 protonated form (SH+). We
have used combined QM and molecular mechanics (QM/MM) methods to
compute the free energy change for the hydride-ion transfer step between
NADPH and the 8-methylpterin substrate.51 Of critical importance in
understanding the reaction mechanism and ligand binding process is the
protonation behaviour of the functional groups within the active site of
DHFR,3'12'52'53 particularly the relative protonation energies of various sites
in the binding of the natural substrates folate and dihydrofolate.54



10. FUTURE PROSPECTS FOR BINDING FREE
ENERGY STUDIES ON DHFR

As we have found for DHFR-binding ligands, the results of free energy
calculations often depend on variations in simulation conditions. The free
energy changes due to mutation of the electrostatic terms converge relatively
quickly, i.e. over short (50 ps to 100 ps) simulation times. However, where
larger structural perturbations are involved, such as may occur in the
mutation of the vdW terms, sampling becomes more problematic. Structural
changes (vdW terms) that involve creation and annihilation of H bonds, e.g.
6,8-dimethyl-N5-deazapterin —> 6-methyl-N5-deazapterin, in the enzyme
require substantially longer simulation times than those used to date (200
ps). Although free energy contributions due to mutation of the electrostatic
potential energy terms converge relatively quickly they are sensitive to the
atomic charges and cutoffs used for the neglect of non-bonded interactions.
This applies not only to the ligand-solvent interactions but also solvent-
solvent interactions. Even for relatively small enzymes such as DHFR, large
numbers of solvent molecules may be required in order to predict relative
free energies accurately. With ever increasing computer power, these size-
related restrictions should no longer be a problem for a 150 to 200 residue
enzyme such as DHFR.

While increases in the speed of computer hardware is promising for the
future of free energy calculations on ligand binding to DHFR there are other
more methodologically-based issues that need addressing. The binding
geometries obtained from the modeling of large side-chains in the active site
by simulated annealing require verification by X-ray crystallography. In
general, our studies on DHFR indicate that moderate variations in force field
parameters may also have a significant effect on the computed free energies.
The use of MM potentials in itself limits the application of the FEP and TI
methodology. The standard MM energy term Vbad (Equation 1) cannot
accurately predict the difference between the highly conjugated pterin and
N5-deazapterin ring systems. Our strategy has been to simply not include
these terms in the calculation of free energy differences. This amounts to
assuming that the change in the internal energy of the molecular fragment
being mutated is about the same in both solution and enzyme-bound states
and can, therefore, be safely neglected. Consequently, studies of DHFR-
binding ligands have not yet proceeded beyond small polar to nonpolar
transformations. The mutation (FEP and TI) approach is less general for QM
methods but the LRA method can be adapted to a larger number of
problems. As we are currently building on experience in using QM/MM
methods in the study of the catalytic mechanism, the use of QM/MM-based



methods combined with faster computers may also offer some future
prospects for rational design of DHFR inhibitors.
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