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Abstract

High Performance Computations in NMR

by

Wyndham Bolling Blanton

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Alexander Pines, Chair

As an analytic noninvasive technique to study molecules in their natural envi-

ronment, NMR has little equal. The advancement of the technique is beginning to enter

a new phase, where many body dynamics, complex control, and precise measurements of

many body spin properties preclude any exact theoretical treatment. Approximation meth-

ods and other reductions in the set of parameter spaces are currently used to obtain some

form of intuition about a simplified NMR system; however, to exactly profile a real system,

numerical simulation is required.

The scope of most NMR simulations is chiefly regulated to small spin systems,

where the dynamics are simplified enough to simulate efficiently. The cause is typically

based on a poor understanding of how to simulate an NMR situation effectively and effi-

ciently. This seems consistent with the fact that most NMR spectroscopists are not com-

puter scientists as well. The introduction of novel programming paradigms and numerical

techniques seems to have eluded the field. A complete simulation environment for NMR is
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presented here marrying three fundamental aspects of simulations 1) numerical speed and

efficiency, 2) simplicity in implementation, and 3) NMR specific algorithmic developments.

The majority of numerical NMR is reduced to a simple simulation framework. The

framework allows for more complex simulations for explorations of both many body spin

dynamics and control. A specific large scale simulation is applied to recoupling sequences in

solid–state NMR. Using simple permutations on base pulse sequences can result in control

enhancements on both the simple system and the many body system beyond a theoretical

approach. The sheer number of permutations required to solve the problem would have

certainly been impossible without the aid of this framework. This new framework now

opens other unexplored possibilities of using simulation as a development tool for the larger

problems of many body dynamics and control.

Professor Alexander Pines
Dissertation Committee Chair
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Chapter 1

Introduction

Before the arrival of the computer, analytic mathematical techniques were the

only methods to gain insight into physical systems (aside from experiment of course). This

limited the scale of the problems that could be solved. For instance, there are few analytic

solutions to Ordinary Differential Equations (ODEs) in comparison to the massive number

that can be generated from simple physical systems. Nonlinearities in ODEs are extraordi-

narily hard to treat analytically. Now, computers and simulations have increased the scale,

complexity, and knowledge about many systems from nuclear reactions and global weather

patterns to describing bacteria populations and protein folding.

The basic function of numerical simulations is to provide insight into theoretical

structures, physical systems, and to aid in experimental design. Its use in science comes

from the necessity to extend understanding where analytic techniques fail to produce any

insight. Numerical techniques are as much an art form as experimental techniques. There

are typically hundreds of ways to tackle numerical problems based on the available computer

architecture, algorithms, coding language, and especially development cost. Though many
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numerical solutions to problems exist, some execute too slowly, others are too complicated

for anybody but the creator to use, and still others are not easily extendable.

The basic scientific simulation begins with a theory. The theory usually produces

the equations of motion for the system and the simulations task is to evolve a particular sys-

tem in time. The theory of Nuclear Magnetic Resonance (NMR) is over 50 years[1, 2, 3, 4]

strong. The theory is so well developed that simulations have become the corner stone to

which all experimental results are measured[5, 6]. This is the perfect setting for numerical

simulations. The equations of motion are well established, approximation methods and

other simplification techniques are prevalent, and the techniques for experimental verifica-

tion are very powerful.

Much of the advancement in NMR today comes from the aid provided by numeri-

cal investigations (to list single references would be futile, as virtually all NMR publications

include a simulation of some kind). Even though there is this wide spread usage of simula-

tion, there is surprisingly little available to assist in the task. This leaves the majority of

the numerical formulation to the scientist, when an appropriate tool kit can simplify the

procedure a hundred fold. Numerical tool kits are a collection of numerical routines that

make the users life easy (or at least easier).

The two largest and most popular toolkits available today are Matlab1 and Math-

ematica2. These two packages provide a huge number of tools for development of almost

any numerical situation. However, they are both costly, slow, and have no tools for NMR

applications. Of course it is possible to use these two to create almost any other tool kit,

but then the users will have to get the basic programs. Including other toolkits at this level
1The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, Matheworks,http://mathworks.com
2Wolfram Research, Inc., 100 Trade Center Drive, Champaign, IL 61820, Wolfram, http://wolfram.com

http://mathworks.com
http://wolfram.com
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is next to impossible as is creating parallel or distributed programs.

This thesis attempts to collapse the majority of NMR research into a fast numerical

tool kit, but because there are over 50 years of mathematics to include, not everything can

be covered in a single thesis. However, the presented tool kit here can easily provide a basis

to include the rest. After we describe the tool kit, we will show how much easier it is to

create NMR simulations from the tiny to the large, and more importantly, how it can be

used to aid the ever toiling researcher to develop more and more interesting techniques.

Six chapters will follow this introduction. The second chapter describes the com-

putational knowledge required to create algorithms and code that achieve both simplicity

in usage and, more importantly, speed. The third chapter then goes through the various

equations of motion for an NMR system in detail. It is these interactions that we need to

calculate efficiently and provide the abstract interface. The forth chapter describes most

all the possible algorithmic techniques used to solve NMR problems. The fifth chapter will

demonstrate the basic algorithms, data structures, and design issues and how to contain

them all into one tool kit called BlochLib. The next chapter includes a demonstration of a

class of simulations now possible using the techniques developed in previous chapters. Here

I investigate the effect of massive permutations on simple pulse sequences, and finally close

with several possible future applications and techniques.
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Chapter 2

Computer Mechanics

Contrary to almost every other Pines’ Lab thesis, this discussion will begin with

the fundamentals of computation, rather then the fundamentals of NMR. This discussion is

best begun with the bad definition of a Turing Machine from Merriam-Webster Dictionary.

“A hypothetical computing machine that has an unlimited amount of informa-
tion storage.”

This basically says that a Turing machine is a computational machine, which does

not help us at all. What Turing really said is something like the following[7]. Imagine a

machine that can both read and write along one spot on a one dimensional tape divided

into sections (this tape can be of infinite length). This machine can move to any section

on the tape. The machine has a finite number of allowed states, and the tape has a finite

number of allowed values. The machine can read the current spot on the tape, erase that

spot and write a new one. What the machine writes and does afterwards is determined by

three factors: the state of the machine, the value on the tape, and a table of instructions.

The table of instructions is the more important aspect of the machine. They specify for

any given state of the machine and value on the tape, what the machine should write on
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the tape and where the machine should move to on the tape. This very general principle

defines all computations. There is no distinction made between hardware (a physical device

that performs computations) or software (a set of instructions to be run by a computing

device). Both can be made to perform the same task, however, hardware is typically much

faster when optimally designed then software, but in comparison hardware is very hard to

make. Software allows the massive generalizations of particular ideas and algorithms, where

as hardware suffers the opposite extreme. Our discussions will be limited to software, only

introducing hardware where necessary.

A simple example of a two state Turing machine is shown in Figure 2.1. In this

very simple Turing machine example, the machine performs no writing, and the instructions

change the state of the machine and move the machine. The lack of an instruction for a

possible combination of machine state (B) and tape value (0), causes the machine to stop.

This particular example does not do much of anything except demonstrate the

basic principles of a Turing machine. To demonstrate a Turing machines instruction set

for even simple operations (like multiplication or addition) would take a few pages, and

is beyond the scope here1. Once a useful set of instructions is given, we can collapse the

instructions into a single reference for another Turing machine to use. A function is now

born. To be a bit more concrete, a function is a reference to a set of independent instructions.

Of course, writing complex programs using just a Turing machine instruction set is

very hard and tedious. When computers first were born, the Turing machine approach was

how computer programming was actually performed. One can easily see that we should be

able represent a function by a simple name (i.e. multiply), if we had some translator take
1A good place to find more Turing machine information, including a Turing machine multiplication

instruction set is at this web address http://www.ams.org/new-in-math/cover/turing.html.

http://www.ams.org/new-in-math/cover/turing.html
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0 1 1 1 10 0

the tape

Our machine

Machine States: A, B

Instructions Set
machine state tape value action

A

A

B

B

0

1

0

1

move Right, go into state A

move Right, go into state B

move Right, go into state B

not defined

0 1 1 1 10 0Start Machine State: A

0 1 1 1 10 0 Machine State: A

0 1 1 1 10 0 Machine State: B

0 1 1 1 10 0 Machine State: B

Halted...End

b)

a)

Figure 2.1: A two state Turing machine. The current machines position is represented by

the gray box, the tape inputs values can be 0 or 1, and the machine states can be A or

B. The instruction set is designed to stop because one of the four possible combinations of

states and inputs is undefined.
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our function name and write out the Turing machine equivalent, we could spend much less

time and effort to get our computer to calculate something for us. A compiler is such an

entity. It uses a known language (at least known to the compiler, and learned by the user),

that when the compiler is run, translates the names into working machine instructions.

Compilers and their associated languages are called High Level Languages, because there is

no need for a user to write in the low level machine instruction set.

Programming languages can then be created from a set of translation functions.

Until the development of programming languages like C++, many of the older languages

(Fortran, Algol, Cobal) were only “words” to “machine–code” translators. The next level

of language would the function of functions. These would translate a set of functions into a

series of functions then to a machine code level. Such a set of functions and actions are now

referred to as a class or an object, and the languages C++ and Java are such languages.

The next level, we may think, would be an object of objects, but this is simple a generality

of an object already handled by C++ and Java. For an in depth history of the various

languages see Ref. [8]. For a history of C++ look to Ref. [9].

2.1 Data Types

Besides simple functions, high level languages also provide basic data types. A

data type is a collection of more basic data types, where the most basic data type for a

computer is a binary value (0 or 1), or a bit. Every other data type is some combination and

construction of the bit. For instance a byte is simple the next smallest data type consisting

of eight bits. Table 2.1 shows the data available to almost all modern high level languages.
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Table 2.1: Basic High Level Language Data Types
Name Composition

bit None, the basic block
byte 8 bits

character 1 byte
integer 2 to 4 bytes
float 4 bytes

double 8 bytes

The languages also define the basic interactions between the basic data types. For example,

most compilers will know how to add an integer and a float. Beyond these basic types, the

compiler knows only how to make functions and to manipulate these data types.

In current versions of Fortran, C and most other modern languages, the language

also gives one the ability to create their own data types from the basic built in ones. For

example we can create a complex data type composed of two floats or two doubles, then

we must create the functions that manipulate this data type (i.e. addition, multiplication,

etc.).

Suppose we wish to have the ability to mix data types and functions: creation

of a data type immediately defines the functions and operations available to it, as well as

conversion between different data types. These are what we referred to as objects and are

the subject of the next section.

2.2 The Object

Scientific computation has seen much of its life stranded in the abyss of Fortran.

Although Fortran has come a long way since its creation in the early 1950s, the basic

syntax and language is the same. Only the basic data types (plus a few more) shown in

Table 2.1 are allowed to be used, and creation of more complex types are not allowed.
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The functions and function usage are typically long and hard to read and understand2. Its

saving grace is that it performs almost ideal machine translation, meaning it is fast (few

unnecessary instructions are used during the translation). Given the scientific need for

speed in computation, Fortran is still the choice today for many applications. However, this

all may change soon due to fairly recent developments in C++ programming paradigms.

2.2.1 Syntax

Before we can go any further, it is necessary to introduce some syntax. Throughout

this document, I will try to present actual code for algorithms when possible. As is turns

out, much of the algorithmic literature uses “pseudo-code” to define the working procedures

for algorithms. Although this usually makes the algorithm easier to understand, it leaves

out the details that are crucial upon implementation of an algorithm. The implementation

determines the speed of the algorithms execution, and thus its overall usefulness. Where

appropriate, both the algorithmic steps and actual code will be presented.

The next several paragraphs will attempt to introduce the syntax of C++ as it

will be the implementation language of choice for the remainder of this document. It will

be short and the reader is encouraged to look towards an introductory text for more detail

(Ref. [10] is a good example of many). Another topic to grasp when using C++ is the

idea of inheritance. This is not discussed here, but the reader should look to Ref. [11] as

inheritance is an important programming paradigm. It will be assumed that the reader has

had some minor experience a very high level language like Matlab.

• The first necessary fact of C++ (and C) is declaration of data types. Code Example

2.1 declares an integer data type, that can be used by the name myInt later on.
2Look to the Netlib repository, http://netlib.org for many examples of what is claimed here.

http://netlib.org
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Code Example 2.1 Integer declaration
int myInt;

• The definition of functions requires a return type, a name, and arguments where both

the return type and the arguments must be valid data types as shown in Code Example

2.2. In code example 2.3 the Return T is the return data type, Arg T1 through Arg TN

Code Example 2.2 Function declarations: general syntax
Return_T functionname(Arg_T1 myArg1, ..., Arg_TN myArgN)

are the argument data types. For example, in Code Example 2.3 is a function that

adds two integers.

Code Example 2.3 Function declarations: specific example
int addInt(int a, int b)
{ return a+b; }

• Pointers (via the character ‘*’ ) and references (via the character ‘&’) claim to

be what they say: Pointers point to the address (in memory) of the data type, and

references are aliases to an address in memory. The difference between them illustrated

in the example in Code Example 2.4.

• Creating different data types can be performed using a class or struct. A complex

number data type is shown in Code Example 2.5. The above example shows the

syntax for both creation of the a data type and how to access its sub elements.

• Templates allow the programmer to create generic data types. For instance in the

class complex example in Code Example 2.5, we assigned the two sub elements to

a double. Suppose we wanted to create one using a float or an int. We do not
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Code Example 2.4 Pointers and References
//declare a pointer
int *myPoinerToInt;
//assign it a value
//the ‘*’ now acts to extract the memory
// not the address
*myPoinerToInt=8;

//declare an integer
int myInt=4;

//this will print ‘‘4 8’’
cout<<myInt<<" "<<*myPoinerToInt<<endl;
//make out pointer above, point to this new integer
// using the reference
myPoinerToInt=&myInt;

//now when we change ’myInt’ BOTH objects will change
myInt=10;
//this will print ‘‘10 10’’
cout<<myInt<<" "<<*myPoinerToInt<<endl;

Code Example 2.5 Object declaration Syntax
class complex{

public:
//a complex number contains has two real numbers

double real;
double imag;

//The constructor defines how to create a complex number
complex():

real(0), image(0) {}
//The constructor defines how to create a complex number
//with input values

complex(double r, double i):
real(r), image(i) {}

};

//here we use the new data type
complex myCmx(7,4);
//this will print ‘‘7+i4’’
cout<<myCmx.real<<"+i"<<myCmx.imag<<endl;
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wish to create a new class for each type, instead we can template the class as in Code

Example 2.6. In C++ we can template both classes and the arguments of functions.

Code Example 2.6 Template Objects
template<class Type_T>
class complex{

public:
//a complex number contains has two real numbers

Type_T real;
Type_T imag;

//The constructor defines how to create a complex number
complex():

real(0), image(0) {}
//The constructor defines how to create a complex number
//with input values

complex(Type_T r, Type_T i):
real(r), image(i) {}

};

//here we use the new data type
// use a double as the sub element
complex<double> myCmx(7,4);
//this will print ‘‘7+i4’’
cout<<myCmx.real<<"+i"<<myCmx.imag<<endl;

// use a int as the sub element
complex<int> myCmxInt(7,4);
//this will print ‘‘7+i4’’
cout<<myCmxInt.real<<"+i"<<myCmxInt.imag<<endl;

This template procedure allows the creation of a wide range of generic data types

and function that operate over a large range of data types without having to code a

different function or object for each different combination of data types. In Fortran,

one must code a different function for each different data type making the creation of

general algorithms tedious[12]. Given M data types, and N functions, using templates

can in principle reduce the O(M×N) number of procedures in a Fortran environment

to O(N +M) procedures.
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Given those simple syntax rules, we can move forward to explain the object and

the power that resides in a templated object.

2.3 Expression Templates

2.3.1 Motivations

Until recently[13], C++ has been avoided for scientific computation because of an

issue with speed. We have shown how to create an object, but we can also create specific

functions, or operators, that define the mathematics of the object. Let us revisit the class

complex example and define the addition operator. We also must define the assignment

(‘=’) operator before we can define an addition operator as shown in Code Example 2.7.

Now we can use our addition operator to add two complex numbers. The addition operator

Code Example 2.7 Defining operators
template<class Type_T>
class complex{

public:
//define the sub elements
....
//define the assignment operator
//an INTERNAL CLASS FUNCTION

complex operator=(complex a){ real=a.real; imag=a.imag;}
};

template<class Type_T>
complex<Type_T> operator+(complex<Type_T> a, complex<Type_T> b)
{

return complex<Type_T>(a.real+b.real, a.imag+b.imag);
}

(and any others we define) can be nested into a long sequence as shown in Code Example

2.9.
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Code Example 2.8 simple addition
complex<double> A(4,5), B(2,3), C;
C=A+B;
//this will print ‘‘6+i8’’
cout<<C.real<<"+i"<<C.imag<<endl;

Code Example 2.9 Single operations
complex<double> A(4,5), B(2,3), C;
C=A+B-B+A;
//this will print ‘‘8+i10’’
cout<<C.real<<"+i"<<C.imag<<endl;

2.3.2 Stacks

We should take note as to what the compiler and the computer are doing when it

sees an expression like the one in Code Example 2.9. Initially the compiler will attempt to

translate our mathematical expression into a stack. A stack is a list with a last–in–first–out

property. The order of the list is determined by the syntax, using standard mathematical

rules (e.g. items inside parentheses are treated first, multiplication is performed before

addition, etc.). The expression will be parsed from the last element to the first in the

sequence, B+A, then B-(result of (B+A)), then A+(result of (B-(result of (B+A)), finally

C=result of (A+(result of (B-(result of (B+A))). Each step represents a stack step, and

can be best represented as a stack tree shown in Figure 2.2. After this stack is created, the

compiler writes the appropriate instruction set to complete the operation once the program

is run. When the program is run, the machine must go to the bottom of the stack and

perform each operation as it works its way up the stack tree. Another way to perform the

same operations shown in Code Example 2.9 is to follow the exact stack tree, in the code

itself as shown in Code Example 2.10.

It is then easy to see that in the process of using the operators we necessitate the
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AB

add

C=A+B-B+A

B

subtractA

assignC

Figure 2.2: A simple stack tree

Code Example 2.10 Code representation of a stack tree
complex A(4,5), B(2,3), C;
complex tmp1=B+A;
complex tmp2=B-tmp1;
C=A+tmp2;

use of temporary objects. For individual data types (doubles, floats, ints, and our complex

example), there is no way around this fact3. But for arrays of values, we can potentially

create a much more optimal situation.

2.3.3 An Array Object and Stacks

First we shall define a templated Vector class so that we can continue our discus-

sion. The vector class shown in Code Example 2.11-2.12 maintains a list of numbers and

defines appropriate operators for addition, multiplication, subtraction, and division of two

Vectors.

The code examples in Code Example 2.11 also gives the definitions for element
3There is no easy way to see how such a stack tree can be simplified. However, the ever increasing

complexity of microchip architectures are actually creating new instruction sets that give the compiler the
ability to, for example, add and multiply two numbers under the same instruction as in a PowerPC chip. The
complex functions like sin and cos are now included on the microchips instruction set which then increase
the speed of the produced code by reducing the stack tree length.
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Code Example 2.11 a simple Template Vector class
template<class T>
class Vector{

private:
T *data_;
int len_;

public:
Vector():data_(NULL), len_(0){}
Vector(int len, T fillval=0)
{

data_=new T[len];
len_=len;
for(int i=0;i<len;++i)
{ data_[i]=fillval; }

}
//this is the ‘destructor’ or how we free the memory
// after we are done with the Vector

~Vector()
{ if(data_!=NULL) delete [] data_; }
Vector &operator=(Vector rhs)
{

if(data_!=NULL) delete [] data_;
data_=new T[rhs.size()];
len_=rhs.size();
for(int i=0;i<len;++i)
{ data_[i]=rhs(i); }
return *this;

}
T &operator()(int i){ return data_[i]; }
T &operator[](int i){ return data_[i]; }
int size(){ return len_; }

};
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Code Example 2.12 a simple Template Vector operations
template<class T>
Vector<T> operator+(Vector<T> a, Vector<T> b)
{

Vector c(a.size());
for(int i=0;i<len;++i)
{ c[i]=a[i]+b[i]; }

}

template<class T>
Vector<T> operator-(Vector<T> a, Vector<T> b)
{

Vector c(a.size());
for(int i=0;i<len;++i)
{ c[i]=a[i]-b[i]; }

}

template<class T>
Vector<T> operator/(Vector<T> a, Vector<T> b)
{

Vector c(a.size());
for(int i=0;i<len;++i)
{ c[i]=a[i]/b[i]; }

}

template<class T>
Vector<T> operator*(Vector<T> a, Vector<T> b)
{

Vector c(a.size());
for(int i=0;i<len;++i)
{ c[i]=a[i]*b[i]; }

}
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access (the operator()(int) and operator[](int) ) as wells as a way to determine how

long the Vector is (the int size() function). The destruction (the ~Vector()) function

is also important as it frees the memory used by the vector. Also note that in the examples

there are no error checking on the sizes of the vectors when we perform an operation. Such

checks are easy to implement, but add clutter to the code, so they will be left out here.

A simple expression using our new object is shown in Code Example 2.13. Using

Code Example 2.13 a simple vector expression
Vector<double> a(5,7), b(5,8), c(5,9), d(5,3);
d=c+b+b-a;

our stack representation, we can also write the example in Code Example 2.13 as the stack

produced code as shown in Code Example 2.14. In the example in Code Example 2.14 we

Code Example 2.14 a simple vector expression as it would be represented on the stack.
Vector<double> a(5,7), b(5,8), c(5,9), d(5,3);
Vector<double> t1(5), t2(5), t3(5);
int i=0;
for(i=0;i<d.size();++i)
{ t1[i]=b[i]-a[i]; }
for(i=0;i<d.size();++i)
{ t2[i]=b[i]+t1[i]; }
for(i=0;i<d.size();++i)
{ t3[i]=c[i]+t2[i]; }
for(i=0;i<d.size();++i)
{ d[i]=t3[i]; }

could have both saved the temporary vectors (t1, t2, and t3), as well as the final assign-

ment loop. In general, however, this optimization is not possible for the compiler to see, and

this example is an accurate representation of the expression d=c+b+b-a. An experienced

programmer could easily reduce everything to a single loop requiring no temporary vectors

as shown in Code Example 2.15. This case is at least a factor of 3 faster then the previous
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Code Example 2.15 a simple vector expression in an optimal form.
Vector<double> a(5,7), b(5,8), c(5,9), d(5,3);
for(int i=0;i<d.size();++i)
{ d[i]=c[i]+b[i]+b[i]-a[i]; }

case in Code Example 2.14 (it is a even faster the three because we did not have to create

the temporaries). It is for this reason that C++ has been avoided for scientific or other

numerically intensive computations. One may as well write a single function that performs

the specific optimal operations of vectors (or any other array type). In fact the Netlib4 is

full of such specific functions.

2.3.4 Expression Template Implementation

A few years ago Todd Veldhuizen developed a technique that uses templates to

trick the compiler into creating the optimized case shown in Code Example 2.15 from a

simple expression like the one shown in Code Example 2.13[14]. This technique is called

expression templates. Because the technique is a template technique, it is applicable to

many data types without much alteration.

This trickery with templates began with Erwin Unruh when he made the compiler

itself calculate prime numbers[15]. He could do this because for templated objects to be

compiled into machine code, they must be expressed, or they must have a real data type

replace the template argument (as in our examples of using the Vector class with the

double replacing the class T argument). The code that generated the prime numbers can

be found in Appendix A. In fact Erwin showed that the compiler itself could be used as

Turing machine (albeit a very slow one).

Now we can describe the technique in painful detail. It uses fact that any template
4See http://netlib.org

http://netlib.org
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augment must be expressed before it can be used. To allow a bit of ease in the discussion

we will assume that only one data type, the double, is inside the array object5.

We will restrict ourselves to the Vector, as most other data types are simply

extensions to a vector type. Second, in our discussions, we will restrict the code to the

addition operation, as other operations are easily implemented in exactly the same way. A

better definition of what we wish to accomplish is given below.

Given an arbitrary right-hand-side (rhs) of a given expression, a single element
on the left-hand-side (lhs) should be able to be assignable by only one index
reference on the rhs.

This statement simply means that the entire rhs should be collapsible into one

loop. But the key is in the realization that we require the index for both the lhs and the

rhs. The beginning is already given, namely the operator()(int i) function shown in

Code Example 2.11. The remaining task is to figure out how to take an arbitrary rhs and

make it indexable by this operator.

We can analyze the inside of the operators in Code Example 2.12. Notice that

they are binary operations using a single index, meaning they require two elements to

perform correctly (the a[i] and b[i] with the index i). A new object can be created

that performs the binary operation of the two values a[i] and b[i] as shown in Code

Example 2.16. The addition operation has been effectively reduced to a class, which means

the operation can be templated into another class. The reason why the apply function is

static6 will be come apparent in the Code Example 2.17. The class, VecBinOp, in Code

Example 2.16 does not give us the single index desired. The class shown in Code Example

2.17 does. VecBinOp stands for a Vector-Vector binary operation. Note that the object is
5We can perform more generic procedures if we use the typedef. A typedef is essentially a short cut to

naming data types. For instance if we had a data type that was templated like Vector<Vector<double> >

we could create a short hand name to stand for that object like typedef Vector<Vector<double> > VDmat;
6A static function or variable is one that never changes from any declaration of the object.
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Code Example 2.16 A Binary operator addition class
class ApAdd {

public:
ApAdd() { }
static double apply(double a, double b)
{ return a + b; }

};

created by creating pointers to the input vectors not copying the vectors. This object takes

three template arguments, the two vector types and the operation class. One may wonder

Code Example 2.17 A Binary operator class
template<class V1, class V2, class Op>
class VecBinOp{

private:
V1 *vec1;
V2 *vec2;

public:
VecBinOp(V1 &a, V2 &b):

vec1(&a), vec2(&b){}
~VecBinOp(){ vec1=NULL; vec2=NULL; }
//requires ’Op::apply’ to be static
// to be used in this way
double operator()(int i)
{ return Op::apply(vec1(i), vec2(i)); }

};

why we templated the two vector class V1 and V2 as we know we are dealing with only

Vector<double> objects, the reasons for this will be clear below. Our object creates the

desired single index operator; however, we are far from finished. We could use the VecBinOp

alone, to create our new addition operator as shown in Code Example 2.18. This addition

operator did nothing more then make that code more complex, and actually slowed down

the addition operation because of the creation of the new VecBinOp object, and it does

not allow us to nest multiple operations (e.g. d=a+b+c) with any improvement. But we

are a step closer to realizing our goal and we wish to nest the template arguments and
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Code Example 2.18 A bad expression addition operator
template<class V1, class V2>
Vector &operator+(V1 &a, V2 &b)
{

Vector<double> out(a.size());
VecBinOp<V1, V2, ApAdd> addObj(a,b,ApAdd());
for(int i=0;i<a.size();++i)
{ out(i)=addObj(i); }
return out;

}

not the operations themselves. In order to nest the template operations, we need to create

another object that can maintain the binary operation in name only (e.g. VecBinOp<V1,

V2, ApAdd>), then use this name to pass to the next operation. Such an object is shown in

Code Example 2.19. This new object gives use the ability to pass an arbitrary expression

Code Example 2.19 A simple Vector Expression Object
template<class TheExpr>
class VecExpr{

private:
TheExpr *expr;

public:
VecExpr(TheExpr &a):
expr(&a){}

double operator()(int i)
{ return expr(i)); }

};

around as an object, but not evaluating the expression. The expression is only evaluated

when the operator()(int) is called. Thus we can delay the evaluation until have an

assignment. This object can then be passed back to the VecBinOp object as a template

argument (the reason why we left the ‘Vector’ template input for VecBinOp as a template

argument and not directly assigned it to the Vector). Now we can rewrite out addition

operator to simply pass back the VecExpr object as shown in Code Example 2.20. Now the
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Code Example 2.20 A good expression addition operator
template<class Expr_T1, Expr_T2>
VecExpr< VecBinOp<Expr_T1,Expr_T2, ApAdd> >

operator+(Expr_T1 &a, Expr_T2 &b)
{

return VecExpr<
VecBinOp<Expr_T1,Expr_T2, ApAdd>

>(a,b, ApAdd());
}

addition operation does not evaluate any arguments, it simply passes a staging expression

that we will need to find another means to evaluate. This new addition operator can

be used for any combination of Vector or VecExpr objects. It can also be used for any

object as well, but it will more then likely give you many errors because of conflicts of data

types. For instance there is not operator()(int) defined for a simple double number, thus

the compiler will give you an error. The best method around this problem is to create a

quadruple of operators using the more specific objects as shown in Code Example 2.21. Here,

we partially express the templates to show that they are only for Vector’s and VecExpr’s.

Now we have any rhs that will be condensed into a single expression. The final step is the

evaluation/assignment. Since all the operators return a VecExpr object, we simply need to

define an assignment operator (operator=(VecExpr)). Assignments can only be written

internal to the class, so inside of our Vector class in Code Example 2.11 we must define this

operator as shown in Code Example 2.22. Besides the good practice checking the vector

sizes and generalization to types other then doubles, this completes the entire expression

template arithmetic for adding a series of vectors. It is easy to extend this same procedure

for the other operators (-, /, *) and unary types (cos, sin, log, exp, etc.) where we would

create a VecUniOp object. Now that we have a working expression template structure, we

can now show in Figure 2.3 what the compiler actually performs upon compilation of an
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Code Example 2.21 A quadruple of addition operators to avoid compiler conflicts.
//Vector+Vector
template<class Expr_T2>
VecExpr< VecBinOp<Vector<double>,Vector<double>, ApAdd> >

operator+(Vector<double> &a, Vector<double> &b)
{

return VecExpr<
VecBinOp<Vector<double>,Vector<double>, ApAdd>

>(a,b, ApAdd());
}

//Vector+VecExpr
template<class Expr_T2>
VecExpr< VecBinOp<Vector<double>,VecExpr<Expr_T2>, ApAdd> >

operator+(Vector<double> &a, VecExpr<Expr_T2> &b)
{

return VecExpr<
VecBinOp<Vector<double>,VecExpr<Expr_T2>, ApAdd>

>(a,b, ApAdd());
}

//VecExpr+Vector
template<class Expr_T1>
VecExpr< VecBinOp<VecExpr<Expr_T1>,Vector<double>, ApAdd> >

operator+(VecExpr<Expr_T1> &a, Vector<double> &b)
{

return VecExpr<
VecBinOp<VecExpr<Expr_T1>, Vector<double>,ApAdd>

>(a,b, ApAdd());
}

//VecExpr+VecExpr
template<class Expr_T1, class Expr_T2>
VecExpr< VecBinOp<VecExpr<Expr_T1>,VecExpr<Expr_T2>, ApAdd> >

operator+(VecExpr<Expr_T1> &a, VecExpr<Expr_T2> &b)
{

return VecExpr<
VecBinOp<VecExpr<Expr_T1>,VecExpr<Expr_T2>,ApAdd>

>(a,b, ApAdd());
}
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Code Example 2.22 An internal VecExpr to Vector assignment operator
template<class Expr_T>
Vector &operator=(VecExpr< Expr_T > &rhs)
{

for(int i=0;i<size();++i)
{ this->operator(i)=rhs(i); }
return *this;

}

ab

add

d=c+b+b+a

b

addc

add

VecExpr<Vector<double>, 
        Vector<double>, ApAdd> >

VecExpr<Vector<double>, 
    VecExpr<Vector<double>, 
            Vector<double>, ApAdd> >,
  ApAdd> >

VecExpr<Vector<double>, 
    VecExpr<Vector<double>, 
        VecExpr<Vector<double>, 
                Vector<double>, ApAdd> >,
      ApAdd> >,
  ApAdd> >

d(i)=expr3(i)

expr1=

expr2=

expr3=

expr3(i)=ApAdd::apply(c(i), ApAdd::apply(b(i), ApAdd::apply(b(i), a(i)) ) )

Figure 2.3: How the compiler unrolls an expression template set of operations.

expression such as d=c+b+b+a. This technique is not limited to vectors but also matrices

and any other indexable data type; all one has to do is change the operator() to the size

and the index type desired.

To show the actual benefit of using the expression templates, Figure 2.4 shows a

benchmark for performing a DAXPY (Double precision A times X Plus Y) for a variety

of languages and programming techniques. You can see from the figure that the results

are comparable to a highly optimized Fortran version. The degree of matching depends

greatly on the compiler and the platform. The data in the figure is using gcc-3.2.1 under

the Cygwin environment, under Linux (Red Hat 7.3) the results match even better. From

the figure it is apperent that if the size of the vector is known and fixed before the code
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Figure 2.4: Double precision A times X Plus Y,DAXPY benchmarks in Millions of FLoating

Point operations per Second (MFLOPS) for a fixed length expression template vector (‘*’),

the basic expression template vector (the box), the optimized Fortran 77 routine (‘o’) and

the normal non–expression template vector (‘x’). All code was compiled under the Cygwin

environment using gcc-3.2.1.
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is compiled, then we can perform even further optimizations using the template structures.

This technique is called meta–programming[16, 17, 18, 19] and exploits the compilers ability

to be a Turing machine as in the example in Appendix A.1.1. An example meta-program

for unrolling fixed length vectors is shown in Appendix A.1.2. More about template based

programming can be found in Ref. [20].

There are, however, situations where this simple expression unrolling does not

improve the speed. Such operations typically require the use of a workspace; they require

the use of temporary data structures. This type of optimization is the topic of the next

section.

2.4 Optimizing For Hardware

Expression templates provide a nice technique for reducing complex expressions

into a single expression allowing similare speed of a hand produced reduction, but still

maintain the powerful ease and readability of the produced code.

Consider the matrix multiplication7. Figure 2.5 depicts a representation of a ma-

trix multiplication. To compute each element in the resulting matrix, an entire row of the

first matrix and an entire column of the second matrix is needed. We can implement a

simple matrix multiplication via the Code Example 2.23. Assume that we have defined a

matrix<T> class already, so we can perform some speed tests using our simple algorithm.

We will stick to square matrices (the most common case, and basically the only case in

NMR) for our speed test. The results on a 933 MHz Pentium III using gcc-3.2.1 is shown

in Figure 2.6. A Basic matrix multiplication takes N3 operations where the matrix is of
7A tensor multiplication, not the element–by–element multiplication. The element–by–element case is

handled well by the expression templates.
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Figure 2.5: A pictorial representation for the matrix–matrix tensor multiplication, C=A*B.

The sub box indicates the required elements from each matrix to compute one element in

the resulting matrix C.

Code Example 2.23 Simple tensor matrix multiplication
template<class T>
matrix<T> operator*(matrix<T> &a, matrix<T> b)
{
matrix<T> c(a.rows(), b.cols());
int i,j,k;
for(i=0;i<a.rows();++i){

for(j=0;j<b.cols();++j){
c(i,j)=a(i,0) * b(0,j);
for(k=1; k<b.cols();++k){
c(i,j)+=a(i,k) * b(k,j);

}
}

}
return c;
}
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Figure 2.6: Speed in MFLOPS of a double(a), complex <float> (b) and complex < double

> (c) matrix–matrix multiplication (C=A*B).

this size N ×N . A complex matrix multiplication is actually 4 separate non-complex mul-

tiplications (Cr = (Ar ∗ Br), Cr+ = (Ai ∗ Bi), Ci = (Ar ∗ Bi), Ci+ = (Ar ∗ Bi)). Also

shown in Figure 2.6 is the matrix multiplication from another library called ATLAS[21] and

the algorithm inside Matlab version 5.3. The ATLAS library is enormously faster and ap-

proaches the theoretical maximum for the 933 MHz processor of 933 MFLOPS. Matlab does

not have a float as a precision value, so those speed tests are not performed. In all cases

the ATLAS algorithm performs an order of magnitude better. How does ATLAS actually

perform the multiplication this much faster?
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Figure 2.7: A generic computer data path.

The answer is buried deep in the computer architecture. So before we can continue

with the explanation, we must first describe a generic computer. The discussion in the

following sections are not thorough by any means, they simply are designed to show how

one can manipulate programs to use the full potential of specific computer architectures. A

good place to learn more nasty details is from Ref. [22].

2.4.1 Basic Computer Architecture

The Data Path

To most programmers, the computer architecture is a secondary concern with

algorithms and designs taking precedent. However, Figure 2.6 demonstrates clearly that for

even simple algorithms, ignoring the architecture can reduce overall performance by orders

of magnitude. For numerically intense programs, this can be the difference in waiting days

as apposed to weeks for simulations to finish. To get the most optimum performance from a

computer architecture, we must know how the computer functions on a relatively basic level.

Figure 2.7 shows a simple generic layout of a Central Processing Unit’s (CPU) data path.

The data path is the flow of a single instruction, where an instruction tells the computer

what to do with selected data stored in memory (things like add, multiply, save, load, etc.).

The data path shown in Figure 2.7 is based on the figures and discussion in Ref. [22].

Each element in the data path shown in Figure 2.7 can be implemented in a
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variety of different ways giving rise to the production of many different brands (Intel, RISC,

PowerPC, etc.). The data path for each of the various CPU’s can be described in much the

same way based on the simple fact that both data and instructions can be represented as

numbers.

• Program Counter–This element controls which instruction should be executed and

takes care of jumps (function calls) or branches (things like if/else statements).

• Instruction Memory–This element holds the number representations of the various

instructions the program wishes to perform. The Program Counter then gives the

correct address inside the Instruction memory of the instruction to execute.

• Regsiter Memory–This element holds ‘immediate’ data. The immediate data is the

data closest to the Arithmetic Logical Unit (ALU) and is the only data that can have

any operation performed on it. Thus if a data element is stored in the Data Memory,

it must be placed into the Register Memory before an operation on it can occur.

• Arithmetic Logical Unit (ALU)–This element is the basic number cruncher of

the CPU. It typically takes in two data elements and performs a bit wise operation

on them (like add or multiply).

• Data Memory–The main data memory of a computer. This can be the RAM (Ran-

dom Access Memory), a Hard disk, a network connection, etc.

Given a specific architecture, each of the elements in the data path above and the instruction

set are fixed entities. A programmer cannot divide two numbers any faster then the data

path allows. The most important element of control for the programmer is in what order

specific instructions are given.
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Programmer Control

There are a number of enhancements to the basic data path described above. In

almost every modern processor today there are numerous other hardware additions.

• pipelines–This enhancement allows the next instruction to be executed before the

previous one has finished. For instance while one instruction is in the ALU, another

can be accessing the Register Memory.

• caches–The closest memory to the ALU is the fastest memory, caches provide various

levels inside the Data Memory that are closer to the ALU, the fastest being closer to

the ALU, the slowest farthest away.

• Single Instruction Multiple Data (SIMD)–This is called more generically vector

processing where more then two data elements can be operated on in one ALU oper-

ation. Thus we can add 4 floating point number to 4 another in a single instruction

rather then the usual method of 4 instructions for each addition of two floats.

The above list is only partial, but they are the three major features available to a program-

mer to enhance the speed of a calculation.

Pipelining is easily described in the context of loop unrolling. Many of you may

have noticed that in certain codes that there is typically a 4-fold unrolling of for/do/while

loops (see Code Example 2.24). This 4-fold unrolling may look simply like more typing and

added confusion about the algorithm, but this is in fact taking advantage of pipe lining

on the processor. In the not unrolled case, the for condition (i<16) must be evaluated

each time before continuing, which is an action that is hard to pipeline because of the

dependence on a condition. For the 4-fold unrolled case, not only can each of the four
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Code Example 2.24 A simply loop unrolling to a 4 fold pipe line.
//length 16 vectors
Vector<double> A(16), B(16), C(16);
//a standard for loop
for(int i=0;i<16;++i){

C[i]=A[i]+B[i];
}

//a ‘loop-unrolled’ loop
for(int i=0;i<16;i+=4){

int i2=i+1,i3=i+2,i4=i+3;
C[i]=A[i]+B[i];
C[i2]=A[i2]+B[i2];
C[i3]=A[i3]+B[i3];
C[i4]=A[i4]+B[i4];

}

operations be pipelined, but the condition testing is reduced by a factor of four. Figure

2.8 shows a pictorial representation of the data path as the loop shown in Code Example

2.24 is run. Some compilers (namely the GNU compiler) perform this sort of loop unrolling

automatically when called with optimizations, so writing the fully unrolled loop of the type

shown here are becoming a thing of the past. However, if there are more complex data

types in the loop or even other branch conditions, the harder it becomes for the compiler

to unroll them effectively, so having a good picture of pipelining is still necessary to achieve

optimal throughput.

SIMD optimizations are highly system specific and until recently were only avail-

able in super computers like Cray system machines. In recent years, consumer CPUs now

have these instructions. These instructions act on vectors worth of data at a time, rather

then just two elements at a time. They require both special data types and special CPU

instructions. Figure 2.9 shows pictorially how a 128 bit SIMD register can be thought of

as 4, 32 bit data values. Table 2.2 lists a few of the basic CPUs and there available SIMD
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data types.

Programming using the SIMD types is almost never portable to other CPUs. It

may be up to the compiler to attempt to use the SIMD where it can, but currently most

compilers are not able to optimize for these registers. As a result programming using SIMD

Table 2.2: SIMD registers available of common CPUs
Architecture SIMD size number of common data types

Intel Pentium II MMX 64 bit 4 ints (only int)
Intel Pentium III SSE1 64 bit 4 ints, 2 floats
Intel Pentium IV SSE2 128 bit 8 ints, 4 floats

AMD K5 3Dnow! 64 bit 4 ints, 2 floats
AMD K6 3Dnow2! 128 bit 8 ints, 4 floats

Motorola G4 128 bit 8 ints, 4 floats
Cray J90 64 bit 4 ints, 2 floats

Fujitsu VPP300 2048 bit 128 ints, 64 floats
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Figure 2.9: A 128 bit SIMD registers made of 4–32 bit data values

tends to be limited to a specific CPU and up to the programmer.

The final optimizing technique involves caching. Caching turns out to be one of

the more important aspect in optimizing for modern CPUs. The reason for this is based

on the ever growing speed difference between memory access and CPU clock speeds. For

instance a 2GHz Pentium IV processor can only access the main data memory (RAM) at

rate less then 400 MHz, meaning that while the CPU waits for the data element to arrive

from memory, over 5 CPU cycles were wasted doing no work. In actuality the number is

much higher because the data element must be found in RAM then sent back.

For large continuous data structure like vectors or matrices, if each element took

multiple cycles simply to retrieve and save, calculations would be exceedingly inefficient.

Caches, however, provide a method to increase performance using the spatial and temporal

locality of a program. This simply means that data just accessed will probably be accessed

again soon, and more then likely, the data next to the one just accessed will also be accessed

soon. Thus caches tend to load blocks of memory at a time with the hope that the data

elements within the block will also be used. Figure 2.10 shows the various levels of caching
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available to most computers today. Level 1 (L1) cache is the smallest ranging is size from

8 kb-64 kb but is the fastest with access times very close to the internal CPU Register

Memory. Level 2 (L2) caches range in size from 32 kb - 4 Mb and is much slower then the

L1 cache with access time about a fact of 2-5 more then the L1 cache. Some computers

provide Level 3 cache, but these are few. The next level is the actual RAM with the slowest

access times but is the largest.

To make software as fast as possible, careful management of the caches must be

maintained. If a data element is not in the cache then we call this a miss, if it is in the

cache we call this a hit. Our desire is to minimize misses. A miss can cost different amounts

depending on which cache level misses. If the data is not in the L1 cache, the L2 cache is

checked, then the RAM. Because the L2 cache is much larger we can place much more data

(i.e. the entire vector or matrix of interest) here initially, then place smaller data chunks

inside the L1 cache as needed. The key is to do optimal replacements of the block inside

the L1 cache. Simply meaning that when we fill the L1 cache, we only want to operate on

those elements, then place the entire block back to the next level and retrieve a new block.

This avoids many as many misses as possible.
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2.4.2 A Faster Matrix Multiplication

We can now develop a method to improve the matrix multiply. We will do this

in a sequential manner. The first step is to look at the loops in Code Example 2.23. Here

we can simply rearrange the loop such that the most accessed element c(i,j) is in the

innermost loop as in Code Example 2.25. Here the indexes i,j,k have been flipped. The

Code Example 2.25 Simple tensor matrix multiplication with loop indexes rearranged.
template<class T>
matrix<T> operator*(matrix<T> &a, matrix<T> b)
{
matrix<T> c(a.rows(), b.cols());
c=0; //fill with zeros
int i,j,k;
for(k=0;k<b.cols();++k){

for(j=0;j<b.cols();++j){
for(i=0; i<a.rows();++i){
c(i,j)+=a(i,k) * b(k,j);

}
}

}
return c;
}

GNU compiler will rearrange the loops automatically as shown, so we cannot show the

improvement in MFLOPS for this particular optimization.

The loop unrolling technique discussed above is also performed by the GNU com-

plier and even better then by hand as it will unroll the higher level loops also. Here we

demonstrate its effect for completeness sake. In Code Examples 2.26 we find a partially

unrolled loop. I found that using five fold unrolling was a bit better then the four fold

unrolling on the 933 MHz Pentium III. The comparison with the Code Example 2.25 is

shown in Figure 2.11.

The next level of optimization would be to make sure the L2 cache is completely
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Code Example 2.26 Partial loop unrolling for the matrix multiply.
matrix<T> mulmatLoopUnroll(matrix<T> &a, matrix<T> &b)
{
int i,j,k, leftover;
matrix<T> c(a.rows(), b.cols(), 0);
static int Unrolls=5;
//figure out how many do not fit in the Pipeline unrolling
leftover=c.cols() % (Unrolls);
for(k=0;k<c.rows();++k){

for(j=0;j<c.cols();++j){
i=0;
//do the elements that do not fit
//in the unrolling

for(;i<leftover;++i)
{ c(i,j)+=a(i,k) * b(k,j); }

//do the rest
for(;i<c.cols();i+=Unrolls){
//avoid calculating the indexes twice
int i1=i+1, i2=i+2, i3=i+3, i4=i+4;

//avoid reading the b(k,j) more then once
T tmpBkj=b(k,j);

//read the a(i,k)’s first into the registers
T tmpAij=a(i,k);
T tmpAi1j=a(i1,k);
T tmpAi2j=a(i2,k);
T tmpAi3j=a(i3,k);
T tmpAi4j=a(i4,k);

c(i,j)+=tmpAij * tmpBkj;
c(i1,j)+=tmpAi1j * tmpBkj;
c(i2,j)+=tmpAi2j * tmpBkj;
c(i3,j)+=tmpAi3j * tmpBkj;
c(i4,j)+=tmpAi4j * tmpBkj;

}
}

}
return c;
}
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Figure 2.11: MFLOPS of a matrix multiplication: comparison of Code Example 2.25 (solid

line) and Code Example 2.26 (‘*’).

full. For large matrices we would have to divide the matrix into sub matrices that fit into

the L2 cache. For a L2 cache of 1 Mb, we can fit approximately 125000 doubles. Of course

we have 3 matrices to consider so that would drop us to ~42000 doubles per matrix. This

assumes that we would have the total L2 cache, but we will need some space for the indexes

and other functional elements as well as operating system elements and other programs

running as well as the required instruction set. We will halve this number to 20000 doubles

as the L2 block size. The largest square matrix that will fit into a 20000 data chunk is

~140x140. If one looks back to Figure 2.6a and Figure 2.11 you can see the unoptimized

multiply has a performance drop when the matrix size is over 160. This is a result of the

L2 cache being unoptimally used on the 1Mb L2 cache of the Pentium III.

In order to realize our blocking technique, we must copy sub–matrices of the larger

matrix into smaller matrices that fit into the L2 cache. Each sub–matrix is then added to



2.4. OPTIMIZING FOR HARDWARE 40

50 100 150 200 250 300 350 400 450 500 550
0

20

40

60

80

100

120
C=A*B--double*double-- 933 MHz Pentium III, Cygwin, GNU gcc

NxN

M
FL

O
P

S

Partial Loop unrolling                                         
Partial Loop unrolling+L2 cache Blocking                       
Partial Loop unrolling+compiler Optimizations                  
Partial Loop unrolling+L2 cache Blocking+compiler Optimizations

Figure 2.12: MFLOPS of a matrix multiplication: comparison of simple loop unrolling Code

Example 2.26 (solid line) and the L2 cache blocking with unrolling (see Appendix A.1.3).

Compiler optimizations increase the total MFLOPS (line with dots) and the benefit of L2

blocking (dashed line).

the output matrix. This is same as performing a normal matrix multiply as in Figure 2.5 if

we consider each box a sub matrix rather then one element.

The code for performing the L2 cache blocking is shown in Appendix A.1.3 because

it is a bit long. Figure 2.12 shows the improvement over not blocking the L2 cache. In general

the L2 cache is still relatively slow when compared to the L1 cache and thus the speed

enhancement is small (a few MFLOPs here). We can turn on the compiler optimizations to

see a much more dramatic effect of L2 blocking and this is also shown in Figure 2.12.

The next level of optimization is L1 cache blocking. This turns out to be a very
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hard problem to optimize for many reasons. Each hardware has a different memory structure

for the L1 cache that needs to be matched exactly to improve performance. Because the

sub matrices need to be much smaller to fit into the L1 cache size, there is a large penalty

for copying the sub matrix if the copying is not optimized. Being in the L1 cache does

not guarantee the highest performance, because the register memory must then be used

effectively. Finally we would need to program in assembly to use the SIMD extensions.

All of these factors can then have varying degrees of pipe line optimizations. Finding an

optimal solution would take a single person much tinkering with all of them, or a computer

search algorithm to find the best one. ATLAS[21] performs this search effectively and this

is why its performance in Figure 2.6 is much higher then anything we have shown here.

Conclusions

In this chapter I have given you the tools and methods for constructing highly op-

timal computer algorithms. There are two essential levels. The first, expression templates,

involves an abstract software interface to reduce the number of operations on a stack while

still maintaining a high-level of simplicity for the user. The second, hardware optimizations,

is an art unto itself and should be used where we cannot rely on the compiler to generate

the optimized code. Because each hardware is different, optimizing for one architecture will

most definitely not work on another. For this reason, there is not generic abstraction like the

expression template technique. However, both code abstraction and hardware optimization

are necessary for fully optimal solutions.
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Chapter 3

NMR Forms

Before we can lay down the foundation of a complete NMR tool kit, we need to

know what sort of mathematics we are dealing with. What kind of interactions must we

take into account to achieve a real physical model? All of NMR, like most physical systems,

can be reduced to two extremes, the Quantum and the Classical. Both are treated in fun-

damentally different ways both mathematically and numerically. Since classical mechanics

is usually a bit more intuitive, we shall start there.

3.1 Classical Mechanics

The basic tenant of the classical description of NMR is a magnetic dipole inter-

acting with some external magnetic field. As we will show later there are many ‘external

magnetic fields’. The basic interaction is easily described by a first order differential equa-

tion

dM
dt

= −γM×B. (3.1)

Most of the world calls this the Bloch Equation [23]. Here M is the magnetic
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moment (sometimes called µ) and is a 3 dimensional vector (a coordinate). Various ortho–

normal representations can be given to the three components, here, we will stick to simple

Cartesian

M = (Mx,My,Mz). (3.2)

M is usually considered a bulk property: the entire macroscopic sample of spins add together

to produce M. An individual spin’s magnetic moment will be called µ, and a normalized

bulk magnetic moment will be called little m, m. B is also a 3-vector and represents the

external magnetic field. γ is a nuclear spin’s gyromagnetic ratio which converts the ‘Gauss’

or ‘Tesla’ of M × B to a frequency. The gyromagnetic ratio is spin specific. The cross

product is representative of a torque which the magnetic moment feels from the external

field.

3.2 Bloch Equation Magnetic Fields

We are interested in any and all magnetic fields of the most general form B(r, t),

a magnetic field as a function of position and time.

Offsets

The first sets of fields of interest are those that we can apply to the system using

electro–magnets, superconducting magnets, or simple coils. In most NMR circumstances

we apply a very large static magnetic field along the z–axis (actually we define our z–axis

about this large field). Typically superconducting fields are of the order of Telsa or higher,

and our Bloch equation is

dM
dt

= −γM×Bz. (3.3)
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This simple equation gives us a three equations of motion

dMx

dt
= −γBzMy (3.4)

dMy

dt
= γBzMx (3.5)

dMz

dt
= 0 (3.6)

If we specify an initial condition with M(0) = (Mo
x,M

o
y,M

o
z), we get the analytic solution

of

Mx(t) = Mo
x cos(γBzt)−Mo

y sin(γBzt) (3.7)

My(t) = Mo
y cos(γBzt) +Mo

x sin(γBzt) (3.8)

Mz(t) = Mo
z (3.9)

The magnetization therefore spins around the z–axis. The γBz term is very large. For a

Bz = 1 Telsa we get a oscillation frequency of 42.58 MHz for a proton. To solve such a fast

solution is akin to suicide when a typical NMR experiments can last on order of seconds. A

solver would be required to evaluate millions of functions, making it very inefficient. Given

that the field is static, we can go into the rotating frame of the field. That is, spin ourselves

at the in the opposite direction, but at the same rate as the magnetization is spinning.

The physics should not change in this new frame but we need to add this new term to the

equations of motion

dM
dt

= M×Ωr +
[
dM
dt

]
r

. (3.10)

Where Ωr is the rotational frequency of the rotating frame and
[
dM
dt

]
r

is the term for how

M appears in the rotating frame. We wish to satisfy the condition,

[
dM
dt

]
r

= 0. (3.11)
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In other words, we want everything to be still in the rotating frame. Comparing Eq. 3.11

and Eq. 3.10 we see we need to rotate counter to the Bz field, which give us

Ωr = −γBz[
dM
dt

]
r

= −γM×Bz − γM× (−Bz).

= 0

(3.12)

As you can see we have gone into a frame where nothing evolves, a rather boring

frame. So suppose that our magnetization feels a slightly different field. Call the difference

∆B then our applied field, we then must add a term that describes this new offset

dM
dt

= −γM× (Bz + ∆B) (3.13)

Looking at the 3–vector of equations of motion,

dMx
dt = −γ((Bz + ∆Bz)My −∆ByMz)

dMy

dt = γ((Bz + ∆Bz)Mx −∆BxMz)

dMz
dt = −γ(∆ByMx −∆BxMy)

(3.14)

If we assume that Bz >> ∆Bi by orders of magnitude, then the only terms that contribute

to the observable evolution will be terms with Bz, thus eliminating any solo ∆Bi terms in

our equations of motion. This approximation is sometimes called first order perturbation

theory, where the only terms that remain in a small perturbation are the ones parallel to

the axis of the main interaction. We will also call this truncation of an interaction because

we essentially drop some terms from the interaction. If we then apply to the rotating frame

to this reduced form we get

[
dMx
dt

]
r

= −γ∆BzMy[
dMy

dt

]
r

= γ∆BzMx[
dMz
dt

]
r

= 0.

(3.15)
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As you can see we are back to the form of the equation in Eq. 3.4 except now, the ∆Bz

terms are much smaller: anywhere from Hz to kHz. In the rotating frame a small offset

from the main magnetic field will appear to oscillate about the main magnetic field axis.

If we cannot assume that Bz >> ∆Bi, then we must use the full form of the

equations of motion in Eq. 3.14. This does have an analytic solution but it is a bit messy

to write here. Furthermore if the main static applied field is not along the z–axis then we

still can reduce the equations of motion to the form shown in Eq. 3.3 and we can use the

technique in section 4.1.1 to solve the problem.

Magnetic Pulses

Magnetic pulses are how one can manipulate the magnetization. I describe them

here as magnetic pulses, instead of the usual ‘Radio Frequency Pulses’ because the ‘Radio

Frequency’ applies only when there is a large Telsa external field already applied on the

system. In general a magnetic pulse is similar to an offset with the exception that it

is applied along an arbitrary direction and for some length of time. Offsets are usually

independent of time.

If the sample is not under the influence of a large external field, then any directed

DC (Direct Current) pulse will behave as the external field and the spins will evolve under

that field according to the same equations as section 3.2. If we are under the influence of a

large external field, a relatively weak DC pulse (all one can muster experimentally) will do

nothing unless applied along the same axis as the main field, as we showed in section 3.2.

All we would observe then is a larger offset. So we need some other way to use an applied

field to give us some control.

First lets assume that we can make our applied field time dependant. We will call
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this field B1 by convention. Then our equation of motion in the non-rotating frame become

dM
dt

= −γM× (Bz + B1(t)). (3.16)

We wish to go into the rotating frame to make things numerically simple, but now we have

an added complication. We wish that the rotated B1(t) (calling it Br
1(t)) appear in the

rotating frame and not become truncated. We have already made the assumption that our

Bz was much larger then anything else, so our rotating frame will still be −γBz giving our

rotating frame equation of motion as[
dM
dt

]
r

= −γM× (Br
1(t)). (3.17)

Now we can express the non-rotating frame B1 field as the rotating field multiplied by the

reverse time dependant rotation around the z–axis.

B1(t) = RBr
1(t) (3.18)

where R is a rotation matrix is given by the solution to dr̂
dt = r̂ × Ωz, the solution given in

Eq. 3.7 with M → r and Bz → Ωz.

R =


cos(Ωzt) sin(Ωzt) 0

− sin(Ωzt) cos(Ωzt) 0

0 0 1

 (3.19)

thus

B1(t) =


Br

1,x(t) cos(Ωzt) +Br
1,y(t) sin(Ωzt)

Br
1,y(t) cos(Ωzt)−Br

1,x(t) sin(Ωzt)

Br
1,z(t)

 (3.20)

So we see that in order for the external applied pulse to remain in the rotating frame, it

must be rotating at the same frequency as the rotating frame (i.e. a resonance condition).
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We could have intuitively guessed this result, but the result for off axis rotating frames and

other time dependant interactions, which give much more complicated expressions, can all

be derived the same way as this example.

This most typical magnetic pulse NMR uses is one that is constant in the rotating

frame, thus Br
1(t) = Br

1. The non-rotating frame from this point on will be called the lab

frame. In the lab frame, we still have a time dependence of Ωzt. In the rotating frame a

perfectly resonant pulse is typically applied perpendicular to the z–axis, and can reside any

where in the xy–plane. We represent this in the rotating frame as

B1 = (B1x cos(φ),B1y sin(φ),0) (3.21)

where φ is a phase factor. If we move off resonance, the B1 vector points out of the xy–plane

thus introducing an extra z term

B1 = (B1x cos(φ),B1y sin(φ),B1z) . (3.22)

Shaped pulses introduce time dependent amplitudes (B1i = B1i(t)) or phase factors (φ =

φ(t)) or both.

Gradients

Gradients can be thought of as a combination of magnetic pulses with a spatial

dependence. A gradient magnetic field will be called Bg.

Bg = Bg(r, t) (3.23)

Because they are spatially varying, the quantity of interest is its derivative with

respect to the spatial coordinates which have 9 components. The result is the gradient
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tensor

G =


δBgx

δx
δBgy

δx
δBgz

δx

δBgx

δy
δBgy

δy
δBgz

δy

δBgx

δz
δBgy

δz
δBgz

δz

 =


Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

 . (3.24)

In a high magnetic field along the z–axis, the only components of the gradient tensor that

contribute to any observed effect are the terms along the z direction

Bhf
g = (0, 0, Bgz). (3.25)

If we apply a linear gradient (the most common NMR situation) then

δBgi
δj

= const = Gij (3.26)

and we can get the total field along the z–axis via a sum of all the z derivatives times its

position

Bhf
gz = Giz • r = Gxz ∗ x + Gyz ∗ y + Gzz ∗ z (3.27)

As you can see this simply acts like a spatial dependent offset. If we are not in a high field

the entire tensor must be used; furthermore, the simple formula in Eq. 3.27 is not valid for

non-linear gradients.

Relaxation

Relaxation itself is not a ‘magnetic field’ but more a heuristic addition to the

equations of motion. There are two fundamentally different forms of relaxation. The first

occurs from energy transfer from the system we are interested in to a system outside of

our control (usually called the lattice). This form is usually called longitudinal relaxation

or T1 relaxation. This phenomenon occurs in almost every physical system where we must

separate control to the system of interest from the outside world. This basic relaxation is
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the driving force that drives the dynamics of the system back to it equilibrium condition at

some rate, 1/T1. If our equilibrium condition is Mo = (Mo
x,M

o
y,M

o
z), then at any given

time, relaxation will move the magnetization back towards this vector. Thus we have a new

term in the equation of motion defined as

dM
dt

=
1
T1

(Mo −M(t)). (3.28)

In NMR there are many ways to calculate T1 based on the system of study, the

reader is referred to Ref. [24] for more information and the various equations. For many

computational studies, all we need to know is this value. The most common case in NMR

is the high field case, where Mo = (0,0,Mo
z), so T1 relaxation is only applicable to the z

part of our equations.

The second form of relaxation is usually an internal phase disturbance relaxation.

In a many body system there are slight differences in the local environments of each in-

dividual spin cause slightly different evolutions between them. In a bulk sample (where

we have an Avogadros number of spins) this effect manifests itself as a dephasing of any

previously inphase magnetization. This type of relaxation is typically called transverse or

T2 relaxation. Unlike T1 relaxation, this interaction can be reversed because it is still within

our system (under our control). The reversibility or irreversibility of the relaxation mecha-

nism is what defines T2 from T1. It is called transverse relaxation because it acts in plane

perpendicular to the equilibrium condition. Because it acts on the plane perpendicular

to the equilibrium condition, we have to rotate from this axis to the perpendicular plane.

If we remain in our Cartesian basis, then we can get two angles from the z–axis to unit
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equilibrium vector (M̂o = Mo/ ‖Mo‖), θ, and the rotation about the xy–plane, φ as

θ = arccos
(
M̂o
z

)
φ = arctan

(
Mo

x
Mo

y

) (3.29)

T2 does not ‘return’ magnetization to equilibrium, it simply removes magnetization, so our

equation of motion should look something like

dM
dt

=
−1
T2

C ·M(t) (3.30)

where C is the rotation matrix to take us into the plane perpendicular to the equilibrium

axis.

C =


cos(φ) sin(φ)cos(θ) 0

cos(φ)cos(θ) sin(φ) 0

0 sin(θ) 0

 . (3.31)

To get C we can first assume that our plane of interest is the xy–plane, then rotate the

x and y axis to the M̂o axis. For those of you that are paying attention, to accurately

describe a three dimensional rotation, we need three angles, not just two. However, the

third angle here would describe the relative rotation of a vector in that plane perpendicular

to Mo. Luckily for us, this third angle is irrelevant as it would place the T2 relaxation along

a specific axis, where it actually is directionally independent in that plane. I say ‘luckily’,

because there is no way for us to get this third angle.

The standard high field NMR case of Mo = (0,0,Mo
z), leads us to the normal

form of the T2 relaxation equations

dM
dt

=
−1
T2

(Mx(t),My(t), 0) . (3.32)
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Figure 3.1: The magnitude of the dipole field in no static external field (a), and in a high

magnetic field along ẑ (b). Each shell represents BD • BD at r = 0.7..1 in 0.1 steps and

where µ = (0,0,1/µo).

Dipole Interaction

The dipole interactions is one of the most important to the field of NMR, for in

this one interaction we have a method for determination of distances between atoms, for

simplifying (and complicating) spectra, and basically adding a second dimension on to our

normal 1-D offset interaction. It is also one of the chief mechanisms for T2 type relaxation.

The interaction is a spin-spin interaction: the dipolar field on one spin is felt as a magnetic

field by its neighbor. In its most general form the dipolar field, BD, at position r from a

single spin is given by

BD(r) =
µo

4π
3 (µ • r̂) r̂− µ

(r • r)3/2
(3.33)

where µo is the permeability of free space (12.566370614 ∗ 10−7T 2m3/J). The dipolar field

from a single magnetic moment µ at r is proportional to the cube of the distance away from

the spin. If we are not in a high field, this give us the ‘dumbbell’ picture of the magnetic

field as shown in Figure 3.1a. To get the images in Figure 3.1, we have to first transform
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the spherical basis, and choose a direction for µ. Here we choose µ = (0,0, µz), to get the

following equations

BD
x (r) = µoµz

4π

[
3x̂ẑ

2|r−ri|3

]
= µoµz

4π

[
3 cosφ sin θ cos θ

|r−ri|3

]
BD
y (r) = µoµz

4π

[
3ŷẑ

2|r−ri|3

]
= µoµz

4π

[
3 sinφ sin θ cos θ

|r−ri|3

]
BD
z (r) = µoµz

4π

[
3ẑ2−1

2|r−ri|3

]
= µoµz

4π

[
3 cos2 θ−1
2|r−ri|3

]
.

(3.34)

In the high field case, we must remember that the only terms that survive from

the above equations are those that either contribute to the z–axis or those that are invariant

to any rotation (terms like µ • µ and µ • r̂). Then we get the following sets of equations

shown in Eq. 3.35 which has a field shown in Figure 3.1b

BD
x (r) = µoµx

4π

[
−1

2|r−ri|3

]
= µoµx

4π

[
−1

|r−ri|3

]
BD
y (r) = µoµy

4π

[
−1

2|r−ri|3

]
= µoµz

4π

[
−1

|r−ri|3

]
BD
z (r) = µoµz

4π

[
3ẑ2−1

2|r−ri|3

]
= µoµz

4π

[
3 cos2 θ−1
2|r−ri|3

]
.

(3.35)

In more interesting simulation we are interested in many spins, and every spin has a magnetic

dipole moment, thus every spin, spin j, sees a field generated by all of its neighbors, BD
i ,

as

BD
j =

N∑
i 6=j

BD
i (ri − rj) (3.36)

where N is the total number of spins and ri − rj is the vector separating the two spins.

This sum is one of the computationally limiting steps as it requires the sum to be calculated

for every spin j at every integration step. All the previous interaction have been had N

fold scaling, where this one has N2 scaling. There are other complications as well. In a

bulk sample, we are not concerned with a single spin magnetic moment, but a small volume

of spins, which has total magnetization M . Thus we need to calculate the dipole fields

due to the small volume. If M is not chosen properly the value of BD will grow out of
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control. These considerations dealing with what M really is will be treated at the end of

this chapter. Also in macroscopic samples, the sum in Eq. 3.36 becomes an integral, this

integral is the topic of another effect, the local field and will be discussed below.

Bulk Susceptibility

The next three and final fields I will discuss are all high field, bulk effects simply

meaning they are inherently due to the high magnetic field and the fact that we are dealing

with a macroscopic magnetized sample. The first and easiest to understand is the bulk

susceptibility. All matter when exposed to a magnetic or electric field ‘reacts’ to the field’s

presence by either opposing the field or aligning with the field. A sample of nuclear spins

is a slightly polarized by an applied field so it creates a magnetic moment in the sample.

Inside the sample the total field, B, is simply a sum of the two fields

B = µo(H + DM) (3.37)

where H = Bapplied

µo
is the applied field intensity, M is the sample magnetization. The

constant in front of M, D depends on the sample shape. For a perfect sphere this constant

is 0, for a flat disk it is 1/3, and for a long cylinder (i.e. a liquid NMR sample tube) it is

1 (its maximum value). A pictorial representation of this effect is shown in Figure 3.2. We

can further simply this equation by realizing that the applied field H is responsible for the

magnetization M

M = µoχH (3.38)

where χ, called the magnetic susceptibility, is related to the sample. We have made the

assumption that the material is isotropic and linear in H. For paramagnetic material this

constant is large, for diamagnetic materials (like water, and most NMR samples), χ is quite
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o oD D= −( ) = −( )B H M Hµ µ χ1

Figure 3.2: The magnetization of a sample inside a magneti field.

small (of order 10−6) and negative. We will discuss this constant more later. Thus our field

equation becomes, for diamagnetic samples,

Bbs = µo(1−Dχ)H. (3.39)

In a high H intensity (by high we mean |H| >> |M |), our rotating frame transfor-

mation indicates that only the components of χH that are parallel with H will contribute

to any observed effect. Again, this effect behaves simply like an offset. However, we can

control M using the magnetic pulses, as a consequence, in a high field along ẑ we can turn

on and off this effect (i.e. turn off and on the offset). If you place our magnetization on

the xy–plane, then there is no contributing effect, on the other hand, if we align our mag-

netization along the field, we would see a slight offset. The equations of motion are only

effected by the magnetic field along z and we get these terms in our equations of motion:

dMx
dt = χγMT

z (t)My

dMy

dt = −χγMT
z (t)Mx

dMz
dt = 0

(3.40)
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MT
z (t) is the TOTAL magnetization along the z axis at any given time.

Radation Damping

Another high field effect comes from the actual hardware used in an NMR exper-

iment. Typically, a solenoid is placed around the sample that acts both as the ‘magnetic

pulse’ and the detection apparatus. It detects signal using Faraday’s Law, which states any

moving magnetic field creates a reaction electric current inside a conductor. The changing

current/voltage (or electro-motive-force (emf)) is related to the changing magnetic flux, Φ

as

dΦ
dt

= emf (3.41)

In a simple solenoid Φ is simply the magnetic field B times a constant area, thus we can

relate this emf to our Bloch equations

dM

dt
∗Area = emf. (3.42)

This new emf , which is time dependant, then creates another magnetic field (Lenz’s Law),

which apposes our magnetization. This is in essence applying another magnetic pulse as

its time dependence is the same as the magnetization’s time dependence (i.e. still on

resonance).

d(emf)
dt

= −d(B
rd)

dt
= −αdM

dt
. (3.43)

The constant, α, simply represents the strength of the back reaction field. We

now have a non-linear equation as this effect depends directly on how much magnetization

is present (but in the opposite rotating sense). The amount of back reaction depends on a

number of physical parameters which can be reduced to two constants called the Quality

factor or Q and the sample filling factor, η. Q is dependant on the coil size, inductance,
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and a slew of other details. η is simply how much of the sample fills the space in the coil.

Obviously the effect is also driven by how much total magnetization exists in the sample.

This magnetization is only appreciable enough to create any effect in high magnetic fields,

so our rotating frame approximation still holds. Another key bit of information is that the

coils are aligned perpendicular to the main field, so the reaction field is then only applied

in the xy–plane. We can finally write down the radiation damping reaction field as

Brd
x (t) = −1/τrMT

y (t)/γ

Brd
y (t) = 1/τrMT

x (t)/γ
(3.44)

where the 1/τr is related to the coils parameters (1/τr = Qη|Mo|γ), and MT
i (t), is the total

magnetization at a given time t. We have made the assumption that the back reaction field

is the same at any point in the sample. If this is not the case (which it is not in a real

experiment due to coil edge effects) then Eq. 3.44 becomes an integral where Brd
i (t) →

Brd
i (r, t), τr → τr(r), and MT

i (t) → MT
i (r, t). Assuming a uniform interaction, the new

terms in our equations of motion are

dMx
dt = − 1

τr
MT
x (t)Mz

dMy

dt = − 1
τr
MT
y (t)Mz

dMz
dt = − 1

τr

(
MT
x (t)Mx +MT

y (t)My

)
.

(3.45)

Local Field

The final field I will discuss involves extending the bulk susceptibility and the

dipole fields to a more closed form. In macroscopic samples, the dipole field at a position r

would be the sum over all the various dipoles in the sample. The trouble with performing

this sum is that there is an Avogadros number of them, making this sum impossible to
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perform, but with such a large number, we can reduce the sum to an integral

BLF (r) =
µo
4π

∫
1− 3 cos(θr−r′)

2 |r− r′|3
[
3Mz(r′)ẑ −M(r′)

]
dr

′3. (3.46)

where θr−r′ is the angle between the r− r′ vector and the magnetic field. Eq. 3.46 assumes

that we are in a high field. BLF still exists in low field situations, however, the bulk property

of the magnetization is so small, that it all but eliminates this effect. This integral can only

be integrated analytically for a few special cases. If we assume uniform magnetization

(M(r) = M), then the integral reduces to

BLF (r) =
µo
4π

[3Mz ẑ −M]
∫

1− 3 cos(θr−r′)
2 |r− r′|3

dr
′3. (3.47)

The remaining term in the integral will give a simple constant which is dependant on the

shape of the sample, and we are left with something that looks very similar to the bulk

susceptibility. If the sample shape is an ellipsoid (a sphere, disk, cylinder) then the integral

in Eq. 3.47 is soluble[25, 26]. The dipolar local field looks like

BLF (r) =
µo
6

(3nz − 1) [3Mz ẑ −M] (3.48)

where nz is called the demagnetizing factor (nz = 0 for a long rod, nz = 1/3 for a sphere,

nz = 1 for a thin disk).

If the magnetization is not uniform, then in general we would have to evaluate

this integral. In this case the best we can do numerically is break the integral into a

sum over little ∆r3 volume elements. The problem with this technique is that it require

many volume cells for the integral to converge properly, which can result in very long

function evaluations. There do exist techniques using Fourier transforms to simply this

integral[27, 28]. Those techniques however are for the most general case and the algorithmic

complexity becomes daunting. There is another special case that is of greater interest
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because it allow manipulation of this field[29, 27]. Upon an applied external gradient which

completely ‘crushes’ (the magnetization in the total volume sums to 0) the magnetization

along a single direction, we can write the field as

BMLF (r) =
3(ŝ · ẑ)2 − 1

2τD

{
[Mz(ŝ)− 〈Mz〉]−

1
3

[M(ŝ)− 〈M〉]
}
. (3.49)

We will call this the Modulated local field. In Eq. 3.49, ŝ is the direction of the

modulation, and M(̂s) is the magnetization along the direction of the modulation. The 〈...〉

indicate the mean of the magnetization. Finally the time constant τd is 1/(µoγMo) where

Mo is the total equilibrium magnetization. This form of the BMLF does not require any

explicit sums, so this interaction scales a N as well.

3.3 Quantum Mechanics

The fundamental fields discussed in section 3.1 also form the basis of the quantum

mechanical description, with two fundamental differences: instead of fields, we are interested

in the Hamiltonian, H, of the system which evolve a density operator, ρ, rather then a

magnetization.

dρ

dt
= −i~[H, ρ] (3.50)

where [...] is a commutator operator ([A,B] = AB − BA). This equation is called the

Liouvill-Von Neumann equation. NMR specifically treats atomic spin states. There are a

variety of properties associated with the spin states based on the spins quantum number I.

A spin of quantum number I has 2I − 1 possible states. The most common NMR spin of

I = 1/2 has two states. NMR is a measure of bulk phenomena so simple states are not an

accurate description. Like the classical case we must pick a basis in which to describe our
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spin(s), here we choose the spin operator basis in a Cartesian frame

Ix = 1
2

 0 1

1 0


Iy = 1

2

 0 i

−i 0


Iz = 1

2

 1 0

0 −1


Ie =

 1 0

0 1

 .

(3.51)

The density operator has four possible states or linear combinations of any of the

above 4 operators.

ρ = aIe + bIy + cIx + dIz + higher order terms (3.52)

Usually, we work in a reduced basis, where we factor out an Ie term which describe a non-

polarized, and non–manipulable set of states (the identity operator, Ie never effects any

evolution nor is affected by any interactions). From this point on we will mention ρ as the

reduced density operator. The higher order terms (terms proportional to Ii to some power

n > 1) are typically ignored in NMR and will be discussed further in Section 3.4.

3.3.1 Rotations

Almost all of the mathematics of NMR can be reduced to rotations on quantum

operators. There are two equally important views in treating quantum mechanical rota-

tions: Cartesian based rotations and spherical tensor rotations. Computationally, Cartesian

rotations should be a slight bit faster in execution in the general case, as rotation matrices
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are all 3x3. Spherical tensor rotations are typically used for theoretical/symmetry based

rotational considerations because of their nice symmetry properties. Both, however, may

be used to treat NMR computationally or theoretically.

Cartesian Based Rotations

All 3 dimensional rotations can be reduced to three angles Ω = (φ, θ, γ). The angle

φ rotates the xy–plane around the z–axis into new axes x′ and y′, then θ around the old

y–axis to rotate z–axis creating three new rotated basis x′′, y′′, and z′. Finally, γ rotates x′′

and y′′ about the z′–axis into the final new rotated state (x′′′, y′′′, and z′). Mathematically,

this can be represented by a 3× 3 matrix

R(Ω) =


cos γ cosφ− cos θ sin γ sinφ cos γ sinφ− cos θ sin γ cosφ sin γ sin θ

− sin γ cosφ− cos θ cos γ sinφ − sin γ sinφ− cos θ cos γ cosφ cos γ sin θ

sin θ sinφ − cosφ sin θ cos θ

 .

(3.53)

This can easily be generates by taking into account the separate three rotations

R(Ω) = Rz(γ)Ry(θ)Rz(φ). (3.54)

Each Ri has the form shown in Eq. 3.7.

Spherical Tensor Rotations

The spherical tensor rotation representation actually comes about by treating sym-

metry and invariants of angular momentum in quantum mechanics. The most common form

for rotation of angular momentum are the Wigner matrix elements [30]. Given the total

angular momentum L, there are (2L−1)2 elements to rotate each of the 2L−1 eigenvectors
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Table 3.1: Wigner rank 1 rotation elements, D1
m,m′ .

. . . m′

m
. . .

-1 0 1

-1 e−i(γ+φ) cos
(
θ
2

)2 −e−iφ sin(θ)√
2

e−i(φ−γ) sin
(
θ
2

)2

0 e−iγ sin(θ)√
2

cos(θ) −e−iγ sin(θ)√
2

1 e−i(γ−φ) sin
(
θ
2

)2
eiφ sin(θ)√

2
ei(γ+φ) cos

(
θ
2

)2

(m). For L = 1, we have 9 matrix elements as shown in Table 3.1 using the same three

angles as in the Cartesian case.

These matrix elements are usually called Dl
m,m′ where l is the rank of the matrix,

and the m,m′ correspond to a particular matrix element. There is a reduced notation given

as

ei(mγ+m
′φ)dlm,m′(θ) (3.55)

where dlm,m′(θ) is called the ‘reduce Wigner element’ because the two z–rotation angles φ

and γ are easily factored out of the total matrix element. The reduced Wigner elements for

l = 2 are shown in Table 3.2. Almost all NMR interactions are some form of the rank 0, 1,

and 2 matrix elements. Like the Cartesian these rotations matrices can be generated from

the individual rotations

R(Ω) =
Rz(γ)Ry(θ)Rz(φ) =

eiIzγeiIyθeiIzφ.

(3.56)

We can decompose our Hamiltonian into a spherical tensor basis. Hamiltonians

are scalar/energy operators and invariant under a total system rotation, we end up with a
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Table 3.2: Reduced Wigner rank 2 rotation elements, d2
m,m′ .

. . . m′

m
. . .

-2 -1 0

-2 cos( θ2)4 2 cos( θ2)3 sin( θ2) 2
√

3
2sin(θ)2

-1 2 cos( θ2)3 sin( θ2) cos( θ2)2 (−1 + 2 cos(θ)) −
√

3
2 cos(θ) sin(θ)

0
√

3
2 sin(θ)2

√
3
2 cos(θ) sin(θ) 1+3 cos(2θ)

4

1 2 cos( θ2)sin( θ2)
3

(1 + 2 cos(θ)) sin( θ2)
2

√
3
2 cos(θ) sin(θ)

2 sin( θ2)
4

2 cos( θ2)sin( θ2)
3

√
3
2
sin(θ)2

2
. . . m′

m
. . .

1 2

-2 −2 cos( θ2)sin( θ2)
3

sin( θ2)4

-1 (1 + 2 cos(θ)) sin( θ2)2 −2 cos( θ2) sin( θ2)3

0 −
(√

3
2 cos(θ) sin(θ)

) √
3
2
sin(θ)2

2

1 cos( θ2)
2
(−1 + 2 cos(θ)) −2cos( θ2)

3
sin( θ2)

2 2cos( θ2)
3
sin( θ2) cos( θ2)

4

Hamiltonian of the form

H =
∑
l

αl=l. (3.57)

where each =l is a spherical tensor basis element and each αl is a complex constant. It is

implied that =l contains all the m subcomponents. An important aspect in NMR is that

the Hamiltonians can be separated into a spatial tensor component, Al and a spin tensor

component Tl. So we can rewrite = as a tensor product of the two

=l = Al · Tl. (3.58)

Using the explicit form of the product we get

=l =
l∑

m=−l
(−1)mAl,mTl,−m =

l∑
m=−l

(−1)mAl,−mTl,m (3.59)
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Each tensor component can be rotated by using our Wigner rotation matrix ele-

ments

Al,m′ =
l∑

m=−l
Dl
m′,m(Ω)Al,m (3.60)

3.3.2 Rotational Frames

PAS

The Hamiltonians are typically created with an initial reference frame centered on

the atom. We can think of the atomic frame as being the diagonal representation of the

interaction. As soon as we move from this frame via some rotation then elements become

mixed combinations of the atomic frame. This atomic frame is given the name Principle

Axis System (PAS). In the PAS frame the arbitrary interaction in NMR can be reduced

to 3 components. In the Cartesian frame these are typically given the labels δx, δy, and

δz in the spherical frame they are given the labels δiso (isotropic), δani (anisotropic) and η

(asymmetry), and are related via

δiso = 1/3(δx + δy + δz)

δani = δz

η = δx+δy
δz

(3.61)

The Cartesian interaction frame is a 3× 3 matrix, and in the PAS it is given as

APAScart =


δx 0 0

0 δy 0

0 0 δz

 . (3.62)
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The spherical basis reduced to a sum over the various rank l components as

APASsph = A0 +A1 +A2

A0,0 = −
√

3δiso

A1,±1 = A1,0 = 0

A2,±1 = 0, A2,±2 = 1
2δaniη, A2,0 =

√
3
2δani.

(3.63)

Molecule Frame

The next frame is the molecular frame, where we have gone past the atomic frame

and now look at the various atomic frames relationship to each other on a molecule where

we assume the atoms are fixed in space. To create this transformation, one needs to define

another axis system in the molecular frame, then rotate each of the atomic interactions

to this new frame, either by a Cartesian Euler rotation (Eq. 3.53) or a spherical Wigner

rotations (Eq. 3.60). The Euler angles used to perform this rotation will be called Ωmol.

Amolcart = R(Ωmol).APAScart .R(Ωmol)−1

Amolsph = APAS0 +
2∑

m′=−2

D2
m,m′(Ωmol)APAS2,m′

(3.64)

Rotor Frame

This particular rotation takes the molecule frame into the frame of the physical

sample. Again we need to pick a reference axis by which all molecules are to be rotated.

If the sample is a liquid, then this particular rotation would be time dependant as all the

molecules are rotating in various ways in time inside the liquid. In a solid powder sample,

then there are many different orientations relative to the chosen reference axis and they are

‘fixed’ in time. In a liquid this rotation is unnecessary as usually the time dependence of

this rotation (on the order of micro seconds) is much faster then the observable on the NMR
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times scale (on the order of seconds/millisconds). So the effect of this rotation in a liquid

averages away. This assumption is not true for large molecules like proteins or bicelles that

have a very slow rotational rate, then the rotational average is only partial and must be

included to achieve a proper model.

In solids, however, NMR experiments are performed in a ‘rotor’ (the sample holder)

which is aligned in some arbitrary direction. So we call the Euler angles to rotate into this

frame Ωrot and this rotation is given by

Arotcart = R(Ωrot).R(Ωmol).APAScart .R(Ωmol)−1.R(Ωrot)−1

Arotsph = APAS0 +
2∑

m′=−2

D2
m,m′(Ωrot)

2∑
m′′=−2

D2
m′,m′′(Ωmol)APAS2,m′′

(3.65)

Lab Frame

The final rotational frame relates the rotor frame back a chosen lab frame. The lab

frame is the final resting point for all interactions and is static (like the superconducting

magnet is static). This frame needs to be included only when the rotor frame moves,

otherwise, we could simply choose that static frame as the rotor frame and there is then

no need to perform this rotation. However, many solid–state techniques use the fact that

a rotating rotor provides another method of control over the interactions. We will call the

Euler angles that rotate the rotor into the lab frame Ωlab. The final set of rotations is then

given by

Alabcart = R(Ωlab).R(Ωrot).R(Ωmol).APAScart .R(Ωmol)−1.R(Ωrot)−1.R(Ωlab)−1

Alabsph = APAS0 +
2∑

m′=−2

D2
m,m′(Ωlab)

2∑
m′′=−2

D2
m′,m′′(Ωrot)

2∑
m′′′=−2

D2
m′′,m′′′(Ωmol)APAS2,m′′′

(3.66)
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Table 3.3: Spherical tensor basis as related to the Cartesian basis for spin i and spin j
Spherical Tensor T spinl,m Cartesian Representation

T i0,0 I · I
T i1,0 Iiz
T i1,±1

1√
2
Ii± = 1

2
√

2

(
Iix ± iIiy

)
T

(i,j)
2,0

1√
6

[
3IizI

j
z − Ii · Ij

]
T

(i,j)
2,±1

∓1
2

[
Ii±I

j
z + IizI

j
±

]
T

(i,j)
2,±2

1
2

[
Ii±I

j
±

]
3.3.3 The Hamiltonians

Now that we know how to move our interaction into any frame we desire, we can

describe the system Hamiltonians in the PAS frame. Before we will discuss the specific

interactions, we again must address the rotating frame/truncation in the new basis. In

the last section, there was no mention of any spin system or an NMR system (except of

some small enlightenments). The above discussion is general for any Hamiltonian, so in the

absence of any ‘rotating frame’ transformation, the final Hamiltonian will be of the form of

Eq. 3.57. If the spatial components can be separated from the other components, then the

rotation discussion and Eq. 3.59 holds. However, the rotations DO NOT effect the final

energy spectrum of the Hamiltonian. Applying a large magnetic field removes the spherical

symmetry of the Hamiltonian in Eq. 3.57, so that now the spectrum of the Hamiltonian

has a directional dependence. To show this we need to look at the spherical spin tensors

basis (Tl) shown in Table 3.3 and how they relate to the Cartesian basis in Eq. 3.51.
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Zeeman

The Zeeman interaction is the one responsible for the symmetry breaking. Like

Eq. 3.3 except that we desire an energy term, not a torque, the Zeeman Hamiltonian is

Hzee = γI ·B (3.67)

Again, if B is large and static, then all the remain interactions will be truncated with respect

to this axis. For simplicity B = Bz, thus the main Hamiltonian has a term proportional

to Iz. Using the fact that the first order perturbation theory only keeps those terms that

commute with the main Hamiltonian, in this case Iz. Looking at Table 3.3 only T0,0 and

T2,0 survive this truncation.

Chemical Shift Anisotropy

The Chemical Shift Anisotropy (CSA) Hamiltonian is caused by the electronic

shielding around the nucleus. The electron cloud slightly deforms in a field causing shifts

in the offset in 3 directions in the PAS. In Cartesian space we still perform the standard

I ·B, but with respect to the PAS system.

HCSA = Ii ·Ci ·B (3.68)

where Ci is the chemical shielding tensor on spin i

Ci,PAS
cart =


δx 0 0

0 δy 0

0 0 δz

 (3.69)

In the spherical basis this interaction reduces to

HCSA = δiso(Ii ·B) +ACSA,i2,0 T i2,0 (3.70)
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Even though the η term does not explicitly appear in the original Hamiltonian, upon a

rotation (where all m components become mixed), it will. Excluding the molecular rotation,

and the lab frame rotations, we can get a rotor frame angular dependence of the frequencies

(rad/sec) to be

ωcsa = 2πδiso + πδani
[
3 cos2 θ − 1 + η sin2 θ cos(2φ)

]
. (3.71)

Scalar Coupling

Scalar coupling (or J) comes as a 2 atom, through bond interaction. There is

no equivalent of this interaction in the classical sense because it is a result of the anti-

symmetry of the electron (a purely quantum mechanical effect). The atoms must be in-

equivalent for one to observe this effect, so atoms with the same chemical shift do not have

a J. Furthermore, if the two atoms have huge chemical shift differences when compared to

the J coupling, then the J-coupling is truncated again with respect to the isotropic part of

the chemical shifts. This is called ‘weak’ coupling, the other case being ‘strong’. For most

NMR the J-coupling is considered solely isotropic, but there can easily be an electron cloud

distortion like the CSA , so there is an anisotropic component as well. Below in Eq. 3.72

is the weak coupling limit where we have assumed the high magnetic field (and thus the

Chemical shifts) are along the z–axis. Eq. 3.73 shows the strong case.

HJ
weak = δi,jisoI

i
zI
j
z +AJ2,0

[
2IizI

j
z

]
(3.72)

HJ
strong = δi,jisoIi · Ij +AJ2,0

[
3IizI

j
z − Ii · Ij

]
(3.73)
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Dipole Coupling

The dipole interaction in a high field looks much like Eq. 3.33, except that we

are interested in the relative orientation of the two nuclei spin degree of freedom (Ii, Ij).

So the µ · r̂ terms switch to Ii · Ij terms. Much like J couplings, there are two extremes.

For two homonuclear spins the scale of the dipolar interaction is usually the same as the

chemical shift, so no chemical shift truncation will occur (Eq. 3.74). For hetero-nuclear

dipole systems, the chemical shift difference is in the MHz, where as dipole-dipoles are on

the order kHz. The hetero-nuclear coupling is truncated with respect to the chemical shift

difference on the two hetero nuclear spins (Eq. 3.75). The dipolar coupling is symmetric

about the z–axis, therefore there will be no η terms. Also, there is no part of the total

dipolar Hamiltonian invariant under rotations, therefore there is no isotropic component.

HD
hom = AD2,0T

i,j
2,0 =

ωi,jD
(
1− 3 cos2 θ

)
2

[
3IizI

j
z − Ii · Ij

]
(3.74)

HD
het = AD2,0T

i,j
2,0 = ωi,jD

(
1− 3 cos2 θ

) [
IizI

j
z

]
(3.75)

where ωi,jD is

ωi,jD =
γiγjµo~

4π |ri − rj |3
(3.76)

Quadrupole

The quadrupolar coupling is due to electric field gradients around a single nucleus,

and it only effect nuclei with spin > 1/2. If the gradient is 0 (spherical) then the interaction

is also 0, therefore there is no isotropic component, but there can be an asymmetry (η) to

the gradient. The anisotropic component (the gradient along the z–axis) is

δQz = e2qQ =
2
3
2I(2I − 1)ωQ (3.77)
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where e is the charge of an electron, qQ is the actual gradient value, and I is the spin of the

nucleus, and ωQ is the coupling constant. Simulations need only ωQ which can be expressed

as

ωQ =
3δQz

2I(2I − 1)
. (3.78)

The first order truncated Hamiltonian is then

HQ
1 = AQ2,0T2,0 = ωQ

(
1− 3 cos2 θ

) [
3I2
z − Ie(I(I − 1))

]
. (3.79)

The quadrupole interaction tends to be very large, on the order of MHz, the same order

as our magnetic field. Our truncation approximation breaks down, so the second order

quadrupole is needed for an accurate description. The second order effect is proportional to

ω2
Q

γBz
and includes contributions of all the commutors of the basic spin tensors that commute

with the Zeeman interaction (terms proportional to T2,1T2,−1 and T2,2T2,−2). The functional

form of this interaction can be broken down into a total rank 2 component and a total rank

4 component. Note that the rank 4 component is obtained from the rank 2 components via

rules for tensor multiplication [30]. The second rank quadrupolar Hamiltonian is

HQ
2 =

ω2
Q

γBz

{[
AQ2,−1A

Q
2,1

] [
T2,−1T2,1

]
+

[
AQ2,−2A

Q
2,2

] [
T2,−2T2,2

]}
=

ω2
QIz

γBz

[
AQ2,−1A

Q
2,1

(
4IeI(I + 1)− 8I2

z − Ie
)

+AQ2,−2A
Q
2,2

(
2IeI(I + 1)− 2I2

z − Ie
)]

(3.80)

Computationally, the second order quadrupole under the many rotations is best

done in the Cartesian basis where we only need to multiply 3× 3 matrices rather then the

many 5× 5 rotations. Let Q be the quadrupolar Cartesian tensor in the PAS frame as

Q =


η−1
2

−η+1
2

1

 . (3.81)
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After our series of rotations all the elements will be mixed and non–zero, the first and

second order quadrupole can be reduced to

HQ
1 = ωQQ(2, 2)T2,0

HQ
2 =

ω2
Q

γBz
c4

[
(Q(0,0)−Q(1,1))2

4 + Q(0, 1)2
]

− ω2
Q

γBz
c2

[(
Q(0, 2)2 −Q(1, 2)2

)]
(3.82)

where Q(i, j) indicate the matrix elements within Q and c4 and c2 are

c2 = 2Iz
(
4I(I + 1)− 8I2

z − Ie
)

c4 = 2Iz
(
2I(I + 1)− 2I2

z − Ie
) (3.83)

Pulses

Much like the classical case in the rotating frame, our magnetic pulse can be

described simply by giving each direction (̂i) the corresponding spin tensor. The pulse

Hamiltonian on spin j is then given as

Hj
RF = ω1(cosφIjx + sinφIjy) + ∆ω1I

j
z (3.84)

where ω1 = γjB1, φ a the phase factor, and ∆ω1 is the offset.

There are typically two extremes of pulses when we treat the problem computa-

tionally. The first are called ‘hard’ pulses where the pulse is very strong (much larger then

any other Hamiltonian) and of short duration such that the effective Hamiltonian for this

small time is only the pulse. The second case, a called ‘soft’ pulse, is the opposite extreme

where the pulse is either applied for long times and/or is relatively weak. In this case, the

total Hamiltonian is the system Hamiltonian plus the pulse.
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Other Second Order Effects

If the main field is weak enough (or the interactions strong enough), then all the

interactions will have second order affects much like the quadrupole. Not only will they

need to be treated individually to second order, but the total Hamiltonian will have to be

treated to second order. This results in very messy expressions for the Hamiltonians that

require much care to evalutate. A good reference how to treat the second order components

is by Sungsool and Frydman[31].

3.4 NMR Initial Conditions

3.4.1 Quantum

NMR measures bulk magnetic properties of nuclei, not a single nucleus. Much of

our quantum discussion above appeared as if we were treating one or two nuclei, when in

fact the Hamiltonians apply to the bulk sample of identical particles. The density matrix

ρ is the quantum mechanical way to treat many quantum states in terms populations of

states rather then explicit eigen–states. The density matrix at equilibrium is given by a

simple Boltmann distribution

ρo =
exp

[
−H
kBT

]
Tr

[
−~H
kBT

] =
exp

[
−~γBz

kBT

∑
i
Ii
z

]
Tr

[
−~H
kBT

]

ρo ≈
Ie−

[
~γBz
kBT

∑
i
Ii
z

]
+ 1

2

[(
~γBz
kBT

)2 ∑
j,i
Ij
zI

i
z

]
− 1

6

[(
~γBz
kBT

)3 ∑
j,i,k

Ik
z I

j
zI

i
z

]
+...

T r
[
−~H
kBT

]
(3.85)

where kB is Boltzamann constant and T is the temperature. We have also assumed the

Hamiltonian is simply the Zeeman Hamiltonian as it is the largest of all the other interac-

tions. The indexes i, j, k sum over the entire number of spins. At this point most of NMR

makes a fundamental approximation, the ‘high temperature limit’ where kBT >> γBz.
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Thus the only term that contributes any component to the density matrix is the first term,

which for a Bz of 7 Telsa, T = 300K, and one mole of nuclei is about 4.3 ∗ 10−5. The

deviation from an equal distribution is only 4.3∗10−5, so ignoring any spins that we cannot

manipulate or measure (the Identity (Ie) term), we only have about 1 in every 105 spins

that we can control. The reduced density matrix is then simply

ρo ≈
−~γBz
kBT

∑
i

Iiz/2
(

~γBz
kBT

)
≈ −1

2

∑
i

Iiz (3.86)

Since we are dealing with identical particles, the sum over Iz is easily reduced to

a single Iz matrix with the implication that when we effect this term we effect every spin.

So the Hamiltonians discussed above are valid to this reduced spin matrix as well as the

individual nuclei.

Eq. 3.86 is usually the initial condition in most NMR situations. However, certain

experimental observations lead Warren[32] to include higher order terms of the density

matrix. This results in an explanation for certain cross peaks in 2D NMR[33, 34, 35, 36]

and new imaging techniques[37, 38, 39]

3.4.2 Classical

In the classical case we are concerned with the total magnetization of a volume, or

a single spin. The magnitude of a single spin’s magnetic moment is simply a nuclear Bohr

magneton. The quantum density matrix picture describes a polarization difference. This

polarization difference manifests itself as a bulk magnetization of the form[3, 40]

Mo =
Nγ2~2I(I + 1)Bo

3µokBT
= χ

Bo
µo

= χH (3.87)

where N is the number of spins and I is the nuclear spin. This value, like the polarization is

very small. Figure 3.3 shows this magnetization as a function of temperature, concentration,
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Figure 3.3: Magnetization in iso–surfaces versus the applied magnetic field, Bo, the tem-

perature T , and number of moles.

and the applied magnetic field.
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Chapter 4

NMR Algorithms

4.1 Classical Algorithms

4.1.1 Eigenvalue Problem

The most general form for Eq. 3.1 can be given as a matrix equation

dM
dt

= −γ


Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz

 .


Mx

My

Mz

 . (4.1)

This is a standard tensor equation

dM
dt

= B ·M (4.2)

and due to the properties of the cross product we know that B is an antisymmetric matrix

(i.e. Bij = −Bji). We also know that B is always real as it represents a real physical

quantity. We can easily solve this equation using standard the eigensystem, where we know

that there is some transformation matrix Λ such that

B = Λ ·Ω ·Λ−1 (4.3)
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where Ω is a diagonal matrix. Ω are the eigen–frequencies and the matrix Λ are the eigen–

vectors of B. Because of the anti-symmetry of B, Λ forms a set of orthonormal basis states

equivalent to our Cartesian set. If we transform our Cartesian set into this eigen–basis via

M̃ = Λ ·M, (4.4)

the equations of motion become
˙̃M1

˙̃M2

˙̃M3

 =


ω1 0 0

0 ω2 0

0 0 ω3

 ·


M̃1

M̃2

M̃3

 . (4.5)

This has the trivial solution given at t = 0, M̃ = (M̃o
1 , M̃

o
2 , M̃

o
3 ) of

M̃1(t)

M̃2(t)

M̃3(t)

 =


M̃o

1 e
ω1t

M̃o
2 e
ω2t

M̃o
3 e
ω3t

 . (4.6)

The final step is then to transform back to our Cartesian basis to get the solutions in a

space we can visualize

M(t) = Λ−1 · M̃(t), (4.7)

Another equally valid, and algorithmically simple, is the solution directly in the

Cartesian basis of

M(t) = eBtMo (4.8)

This is a general solution to the Bloch equations. It requires, numerically, to perform a

matrix diagonalization (or matrix exponentiation) which for one spin is very simple, however

for many spins, the matrix becomes huge, rendering this method unusable especially if B

is a function of time, as we then must perform a numerical matrix integration of the form

M(t) = e

t∫
0

B(t′)∂t′

Mo (4.9)
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which requires many matrix diagonalizations and is prohibitively numerically expensive for

large (i.e. hundred to thousands) of spins.

Looking at the form of the these equations, you may think that this very large

matrix is simply many 3× 3 sub matrices along the diagonal. This is true so long as there

are no spin-spin interactions, and spin-spin interactions are what make NMR interesting in

the first place. So it seems we need another method to solve our systems of equations.

4.1.2 ODE solvers

Becuase the classical time evolution we wish to probe is a first order ordinary

differential equation (ODE), to evolve the system we simply need a differential equation

solver. The basic property of an ODE solver is that it marches through time using the

approximation that step size is small enough such that the integrating function is constant.

ODE solvers come in many varieties, here we are concerned only with the ‘Initial

Value Problem’ where we have an initial condition and that is all we know at the beginning.

Other algorithms treat more then one point of knowledge (a n-point boundary value prob-

lem). There are an abundance of such solvers all of them with certain accuracy, efficiency

and usefulness.

For our initial value problem there are a few subclasses of solvers

• Implicit–Requires a guess of the k point in order to evaluate a correct point at

k, where k is some step in the integration (for us k is always t, time). These are

sometimes called predictor–corrector methods because they must ‘guess’ the k value

at least initially (although the guess can be quite educated), then correct the ‘guess.’

• Explicit–An explicit need only the previous, k−1, point(s) to calculate the next one,
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k.

• Semi-Implicit–Uses a tad of both integration techniques.

The simplest Initial Value Problem ODE solver is the Euler solver. It is essentially

worthless in real life applications because it is much too inefficient, but is the basic model

for all others that follow it. Given an ODE like

dy

dt
= f(y, t) (4.10)

and an initial value

y(to) = x (4.11)

then we can approximate the next point, ∆t, from to in an explicit fashion as

y(to + ∆t) = y(to) + ∆t ∗ f(y(to), to) (4.12)

or in an implicit fashion

y(to + ∆t) = y(to) + ∆t ∗ f(y(to + ∆t), to + ∆t). (4.13)

The Euler solver is a linear solver. You can see the implicit formula Eq. 4.13 requires a

guess at the starting value for y(to + ∆t) to be useful. Both forms demonstrate how most

ODE solvers function. The typical difference from one ODE solver to the next is how many

other f(yn, tn) in between to and to + ∆t are sampled. Each sampled point would have a

series of coefficients associated with it. To extend the Euler solver, we could simply split ∆t

in half, and use two function evaluations, thus the new coefficients would be 1
2 rather then

1. The number of sampled points determines the order of the algorithm. Taking 4 function

evaluations between to and to + ∆t is a fourth order solver.
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The three classes of solvers have their benefits and hardships. Implicit methods

can usually handle stiff ODEs. A stiff ODE is one that has two or more solutions that differ

tremendously in there rates of evolution (one is very slow, the other very fast). Explicit

methods cannot treat these sorts of equations efficiently, because the time step must be

very small. The small time step is required for explicit solvers because one must be certain

not to ‘jump’ over the fast solution. This problem is reminiscent of the Nyquist Frequency

problem encountered in experimental spectra in NMR where if the time step is too large,

higher frequencies appear as much lower frequencies in the resulting spectrum. Implicit

methods perform better because we initially must guess the solution, then correct it and

continue this prediction–correction scheme until the solution stabilizes.

Implicit methods, however, tend to be very hard to start accurately (because they

need an initial guess and there is no previous points to get a educated guess from). This

results a large algorithmic complexity that can slow down the solvers and other accuracy

difficulties. Explicit methods can operate very efficiently and without the starting problems

so long as the system is not stiff.

It turns out that the NMR classical fields do not lead to stiff equations, so we can

freely use any explicit method we desire. The two basic solvers are the Runge-Kutta and

Richardson Extrapolation. Before we describe these two solver, lets review a few algorithmic

points/sections that one should be aware of when treating ODE solvers.

• Errors–To know our accuracy in the results, we must have some way to measure

errors. This is typically done by using the information of the next order. For example

if we had a 4th order algorithm, then we could monitor the error by the difference

between the 4th and 5th order results.
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• Time step adjustment–In order for an ODE algorithm to be efficient, it should be

able to take large time steps when the solution is slowly evolving and shrink the time

step when the solution is evolving faster. We can simply adjust the step size based

on the ratio of a desired accuracy and our error monitor[41].

• Kernel–The kernel should operate independently of any errors or time step adjusters.

It should simply produce the next point.

The 5th order embedded Runge–Kutta[42] algorithm uses a total of 6 function

evaluations and has the error estimate ‘embedded’ into the formula. By embedded we

mean it uses all 6 function evaluations to produce a 5th order result and a 6th order error

estimate. This kernel is a standard work horse for most any problem. It is very robust,

but can be slow as it requires 6 function evaluations. A much better kernel is the Bulirsh–

Stoer–Richardson–extrapolation method[43, 44]. This kernel evaluates n points between t

and t + ∆t (usually equally spaced), storing the final value, y(t + ∆t). It then performs

n + 2 points, stores another point at y(t + ∆t), and so on up to n + m where m can be

arbitrary (i.e. m = 2, 4, 6, 8, ..., for hard problems m should be 12, for easier problems m

can be 6). Given these m point at y(t+ ∆t) we can fit an m–order polynomial and use our

fitted function to extrapolate to the case where m→∞ (or as ∆tm → 0) . The benefit here

over the Runge–Kutta kernel is ∆t can be quite large due to the extrapolation, thus we can

minimize many function calls. The only problem with this kernel is that it is not nearly as

robust as the Runge–Kutta, and even slightly stiff problems cause this method to fail.

That is all the algorithmic complexity we really need to solve the classical form

of Bloch equation, for a review of even more ODE solvers one should look to these two

references [45] and [46].
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4.2 Quantum Algorithms

Unlike the classical case where everything can be placed in to one ODE solver and

the trajectories of N spins can be easily calculated, the Quantum Mechanical nature pro-

hibits the calculation of arbitrary N . For 10 spin 1/2 nuclei the matrix sizes are 1024×1024

equivalent to about 35000 classical spins. As shown in chapter 2, the matrix multiplication

can be quite time consuming. Unless other techniques are used to address the problem,

even a 10 spin system may prove prohibitively long. In this section, we do not wish to use

any theoretical approximations to simplify the problem because we are more interested in

the exact solution numerically, not the approximation.

4.2.1 The Direct Method

The solution to our Eq. 3.50 is given by

ρ(t) = UρoU
−1. (4.14)

where U is called the propagator and is defined as

U(to, to + ∆t) = T exp

−i to+∆t∫
to

H(t′)dt′

 . (4.15)

Here, T is the Dyson Time Ordering operator, and maintains that a propagator is multiplied

in correct time order. By time order it is easiest to look at the approximation to the integral

solution.

U(to, to + ∆t) =
kδt=∆t∏
k=1

exp
[
−iδtH

(
to + kδt

2

)]
(4.16)

where δt is much smaller then any time dependence in H. The product cannot be performed

in any other order then in the series given. This product requires two time consuming

operations to calculate. The first is the matrix exponential which takes about N3 operations
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to complete, the second is the matrix product, another N3 operations. Numerically we can

solve any NMR problem in this fashion, calling it the ‘Direct Method.’

For many cases of NMR simulation, this method is not as bad as it sounds. If the

Hamiltonian is not time dependant, then the integral vanishes only to produce a constant,

∆t, multiplication factor. This reduces the problem to a single matrix exponentiation. Most

liquid state or static solid state NMR simulations can be calculated very quickly using the

direct method. We run into computational trouble when time dependence is introduced

into the system.

4.2.2 Periodicity and Propagator Reduction

Periodic Hamiltonians appear over and over in NMR. In this section we will go over

the few algorithmic tricks we can play with periodic Hamiltonians and their propagators.

By periodic we mean that

H(t) = H(t+ τp) (4.17)

where τp is the period. There are three cases where using periodicity reduces the total

number of calculated propagators necessary to have a complete description of the dynamics.

The typical NMR experiment requires observation of the system at specific inter-

vals of time, ∆t. Given that every observation is the same distance in time away from the

last observation and that the time dependence of the Hamiltonian is periodic, we can have

3 possible situations. Figure 4.1 shows the three possible situations given those conditions

if we wish to observe the Hamiltonian at some rational fraction of the this periodicity time

(mn τp). In general the m factor, called the periodicity factor, represents the number of peri-

ods of length τp that must occur before an observation is synchronous with τp. The n factor,
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Figure 4.1: Various propagators needed for an arbitrary rational reduction.
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called the observation factor, represents the number of the m sub–propagators necessary to

advance one observation time step. Each sub propagator (Ui in Figure 4.1) is assumed to

been calculated via the direct method.

Point–to–Point, mod (m,n) = 0

The simplest way to use the periodicity is to realize that at each interval n of τp

(for a total time of nτp) the propagator equation reduces to

U(nτp) = (U(τp))
n . (4.18)

This means we only have to evaluate the computationally expensive integral in Eq. 4.16

n times, and we can take much larger steps in multiples of τp. This method I will call

‘Point–to–Point’ (PtoP) as we can only get the dynamics at the specific point of t = nτp,

not arbitrary points. The method is well suited for any rotor synchronized pulse sequences

where the pulses we apply and the rotor spinning frequency are synchronized. Here we only

have to store and calculate n propagators.

Rational Reduction, m > n (also n > m)

Many times one wants to get dynamics in-between the period and we may be re-

duced back to using the ‘Direct Method’ for such tasks. Consider still that our Hamiltonian

is periodic with a cycle of τp. The condition is where n > m is also the case where n < m,

all we have to do here is switch the indices and perform an extra observation step at the

begining of the sequence. In this case there will be a propogator (Ucarry in Figure 4.1) that

will span over a τp. To see how the reduction works first consider a normal propagation

series in time shown in Table 4.1.
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Table 4.1: Time propagation using individual propagators via the Direct Method
time step Propagator series

1 U0

2 U1U0

3 U2U1U0

4 U3U2U1U0

5 U4U3U2U1U0

6 U5U4U3U2U1U0

7 U6U5U4U3U2U1U0

8 U7U6U5U4U3U2U1U0

9 U8U7U6U5U4U3U2U1U0

10 U9U8U7U6U5U4U3U2U1U0

11 U10U9U8U7U6U5U4U3U2U1U0

Table 4.2: A reduced set of individual propagators for m = 9 and n = 7
observation time step Propagator series

1 U6U5U4U3U2U1U0=UT0
2 U4U3U2U1U0U8U7 ∗ UT0 =UT1
3 U2U1U0U8U7U6U5 ∗ UT1 =UT2
4 U0U8U7U6U5U4U3 ∗ UT2 =UT3
5 U7U6U5U4U3U2U1 ∗ UT3 =UT4
6 U5U4U3U2U1U0U8 ∗ UT4 =UT5
7 U3U2U1U0U8U7U6 ∗ UT5 =UT6
8 U1U0U8U7U6U5U4 ∗ UT6 =UT7
9 U8U7U6U5U4U3U2 ∗ UT7 =UT8
10 U6U5U4U3U2U1U0 ∗ UT8 =UT0 ∗ UT8

Consider now the case where m = 9, and n = 7. Here we require 7 time steps for

each observation, and we know that every 9 observations the propagator sequence repeats.

Table 4.2 shows a clearer picture of this situation.

From this table, we can see that based on the repetition number m we only need

to calculate m sub–propagators, Ui, each with a relatively small ∆t of τp/m using the direct

method. Then calculate 9 more larger time step propagators (that span a ∆t of n/mτp) of

propagators, UTi using simple matrix multiplication. The hardest calculation is the using
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the direct method to calculate the initial 9 propagators, and this step cannot be avoided.

However the remaining 9 larger propagators require 63 extra matrix multiplications to

calculate. If the matrices are large, this can be an expensive operation. To further reduce

the number of matrix multiplications, we can use that fact that one typically calculates the

Ui in sequence (i.e. i = 0, then i = 1, ..., i = m − 1) and that no matter what other tricks

we play, we know that we will have to calculate U6U5U4U3U2U1U0 = UT0 . Along the way to

calculating UT0 we can easily store each sub sequence (U0, U1U0 = U1,0, U2∗U1,0 = U2,1,0, ...).

Call these sequences the ‘forward’ sequences. Calculating these results in at least m matrix

multiplications. Calculating the ‘backwards’ sequences (U8, U8U7 = U8,7, U8,7∗U6∗ = U8,7,6,

...) is also relatively simple, because we have stored all the Ui’s and we can use the same

procedure as in calculating the ‘forward’ sequences resulting in another m multiplications.

Calculating the forward propagators seems to at least make intuitive sense, so why

did we calculate the seemingly unnecessary backwards propagators? The next step is to

realize that inside each UTi are sequences of Ui that repeat many times. For instance the

sub sequence U8U7 (a backwards propagator) appears 6 times in Table 4.2, so we could

save at least 5 matrix multiplications by simply storing the U8U7 result the first time we

calculate it. One can look over this entire set of propagators UTi looking at the ones we

have already saved from the above operations to see that there will be some optimal set of

backwards and forward propagators that reduce the total number of matrix multiplications

needed.

Of course to figure out this rational reduction of propagators, no propagators are

actually necessary, simply the indexes i, the ‘forward’ labels, (i, j, k...) and the ‘backward’

labels (k, j, i, ...). Givenm and n these can all be automatically generated as simple integers,
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Table 4.3: Matrix Multiplication (MM) reduction use rational reduction
m n Original MMs Reduced MMs % reduction
4 3 12 8 33%
6 5 30 14 53%
11 5 55 39 29 %
21 5 105 89 15%
9 7 54 21 61%
11 7 77 41 47%
13 7 91 55 40%
104 7 728 692 5%
104 103 10712 308 97%

as can each UTi sequence. The problem is then reduced to finding each forward and backward

set of indexes inside each UT set of indices. Comparing the number of multiplications

required by each set and pick the minimum. After the minimum is found, it is up to the

user to provide the set of Ui, Ui,j,k... and Uk,j,i,..., and the algorithm can then generate the

basic m propagators of observation. A C++ class is given in Appendix A.2.2 that performs

this task.

Table 4.3 shows the effective reduction in the matrix multiplications using this

technique for a range of m and n. From the Table it is easy to see that if the periodicity

factor m is much different then the observation factor n then the rational reduction does

not produce much improvement because we still need to calculate the m sub–propagators.

Figure 4.2 shows better picture as to the effectiveness of the rational reduction method. In

the Figure, the spikes are where m becomes a multiple of n and we get a PtoP method.

Sub–Point–to–Point, m = 1, n > 1,

This case is another special case closely related to the PtoP method because it

essentially means that n is a factor of τp, so each n sub–propagators calculated leads us
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Figure 4.2: Effectiveness of the rational propagator reduction method.

back to the τp. This special conditions leaves us only to calculate n sub–propagators and

the various combinations for an optimal minimization of the matrix multiplications. For

instance if n = 5 then we need to calculate the n sub–propagators (U0...U4) each spanning a

time of ∆t = τp/n = τp/5. While we complete one τp cycle, we collect the sub multiplications

shown in Table 4.4 using them in later observation points. This particular case is a typical

NMR situation, and will be used later.

4.2.3 Eigenspace

The past methods have only been treating time dependence explicitly. We can

easily do a transformation to treat the frequency domain. This is a natural transformation

because our Hamiltonians all have the units of Hz and NMR typically collects data in equal

spaced time steps. Because Hamiltonians are Hermetian, we know that all the eigenvalues
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Table 4.4: For m = 1 and n = 5 we have this series of propagators necessary to calculate

the total evolution
observe Point Propogators

1 U0 = UT0
2 U1U0 = UT1
3 U2U1U0 = UT2
4 U3U2U1U0 = UT3
5 U4U3U2U1U0 = UT4
6 UT0 U

T
4

7 UT1 U
T
4

8 UT2 U
T
4

... ...

are real and the eigenvectors form an orthonormal basis. The next few methods use the

eigenp–basis to potentially remove the explicit time dependence to avoid performing many

matrix multiplications, when only a matrix digitalization is necessary.

Eigenvalue propagation

One special case involves non time dependant Hamiltonians, or inhomogeneous

Hamiltonians. In this case the eigenvectors to not change in time, and we can easily write

our Hamiltonian in terms of the eigenvectors and eigenvalues.

H = ∆ ·Ω ·∆†. (4.19)

where ∆ is a matrix of the eigenvectors, and Ω is a diagonal matrix of the eigenvalues and

the † is the adjoint (complex transpose) of a matrix, which for unitary matrices is also the

inverse. To propagate forward in time, we can use this property of unitary matrices and

matrix exponentials

exp[H] = ∆ exp[Ω]∆−1. (4.20)

Placing this solution back into Eq. 4.15, we get

ρ(t) = ∆ exp[−itΩ]∆†ρ∆ exp[itΩ]∆† (4.21)
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In NMR we can only detect certain components of the density matrix at a given

time, those two components are the two axis where our coils sit, x̂ and ŷ. So we can only

detect Ix and Iy. We then need to project out the component of our detection operator

(which from now on will be called Idet) in the density matrix via the trace operator Tr.

Idet(t) = Tr[ρ(t)I†det]Idet (4.22)

Using Eq. 4.21, Eq. 4.22, and the cyclic permutation properties of the trace we find that

Idet(t) = Tr[ ˜ρ(t) ˜
I†det]Idet. (4.23)

where the Ã = ∆A∆†, a similarity transform. Our recorded signal, S is then just the Tr

constant

S(t) = Tr[exp[−itΩ]ρ̃o exp[itΩ] ˜
I†det]. (4.24)

This results in a sum over all over the diagonal of the multiplication inside the result.

The multiplied result contains all the differences in frequencies in Ω with coefficients given

by the ρ(t) and Idet. Thus when we calculate this signal, we only need to be concerned

with the multiplied quantities along the diagonal, turns a previously N3 operation into an

approximately N2 operation.

Tr[AB] =
N∑
i

N∑
j

AijBji (4.25)

If we assume that we are sampling n steps the evolution in equal times of ∆t, our signal in

terms of explicit elements is

S(n∆t) =
N∑
k

N∑
j

Idetkj ρ
o
jk(Φkj)n (4.26)

where Φkj is the transition frequency matrix, Φkj = exp(−i(ωk −ωj)∆t). An algorithm for

this static case is shown in Appendix A.2.3.
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Effective Hamiltonians

This method is an extension to the PtoP method. In the PtoP method, we have

only one propagator necessary to calculate our evolution. To move in to observation point n

of τp it is then necessary to multiply the propagator n times, resulting in n∗N3 operations.

We can in principle invert the propagator to find the effective Hamiltonian, Heff for this

one period using the matrix logarithm.

Heff =
−i
τp

log(U) (4.27)

This effective form is now time independent on the period. Once we have the effective

Hamiltonian, we can easily use this as the Hamiltonian in the static eigenvalue propagation

discussed in section 4.2.3. Thus we avoid performing many matrix multiplications. There is

a problem using this technique in general in that it has a very narrow frequency bandwidth.

The largest frequency it can accurately obtain from the propagator is one that falls within

the ±1/τp/2 range. If the real Hamiltonian has frequencies outside this range (which it usu-

ally does) then they will be folded into the resulting spectrum and will result in a cluttering

of spectral features. This problem leads to amplitude discrepancies in any frequencies of

integer multiples of the period, as higher order multiples that are not in the range will be

folded on top of ones that are in range.

This technique works very well when τp is very short when compared to the real

Hamiltonian time dependence because our spectral window is quite large. If one can accu-

rately claim this condition, no other technique can match this one for its speed in calculating

the evolution.



4.2. QUANTUM ALGORITHMS 93

Fourier components and the Floquet approximation

The Floquet method corrects the folding and amplitude problems of the effective

Hamiltonian by working totally in frequency space. But before we can venture further into

using frequency domain methods, we need to decompose our Hamiltonian into its Fourier

components. Mind you, this is not necessarily where the Hamiltonian is diagonal, but where

the Hamiltonian can be broken into a form

H =
∑
m

Hme
−imφ. (4.28)

where φ is some phase factor, and Hm is a Fourier component of H. Given our entire

sequence of possible rotations in Eq. 3.66 we have these Fourier components already calcu-

lated as well as the phase factor. So the Fourier components of the Hamiltonian are nothing

more the rotated l,m components.

Assuming that the time dependence is in the φ phase factor, and can be factored

(φ = φ(t) = ωt), we can write a Floquet Hamiltonian HF [47, 48, 49, 50, 51] of the form

〈pn|HF |qm〉 = nωδnmδpq + 〈p|Hn−m |q〉 (4.29)

where p, q are spin states and n,m and Fourier indices. Both n and m have the range

(−∞,∞) in integer multiples. Thus the Floquet Hamiltonian is an infinity sized matrix
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which looks like

HF =



. . . . . . . . . Hn

. . . H0 + 2ω H1 H2 . . .

. . . H−1 H0 + ω H1 H2

H−2 H−1 H0 H1 H2

H−2 H−1 H0 − ω H1
. . .

. . . H−2 H−1 H0 − 2ω
. . .

H−n
. . . . . . . . .



(4.30)

To evolve this matrix we must diagononalize it, but this time we get the raw

frequencies and amplitudes that are time independent, so we only have to diagonalize it

once. However the matrix is infinitely sized, so computationally we must set an arbitrary

size of N×N . We then get N frequencies and amplitudes. If N is contains all the necessary

frequencies to describe our system Hamiltonian then this matrix truncation is valid, if not,

then we must go to higher and higher N . Eventually we will hit a computational limit

as digonalization become prohibitively hard. We do have another simplification for this

matrix, in that the only Hn−m terms that appear in NMR are usually n−m = ±2 for most

interactions and n − m = ±4 for second order interactions (the second order quadrupole

for instance). So the Floquet matrix is a banded matrix. It turns out that the size of HF

necessary to handled most normal NMR spin systems is much to large to be used efficiently.

So this technique is not used much in computational NMR. It is still a valuable tool for

theoretical studies[52, 53, 54] and simuation of small (1-2 spins) systems.

It can be used rather powerfully when there are only a few frequencies that describe

the Hamiltonian. Cases like rotational resonance [53, 55, 56, 57] and multi–photon effects

[3, 58].
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4.2.4 Periodicity and Eigen–Space methods

This section will cover the blending of both aspects of periodicity in the Hamilto-

nians and the fact that they are easily decomposed Fourier components. In essence we wish

to combine the aspects of both the propagator reductions discussed in section 4.2.2 and the

Fourier methods discussed in 4.2.3.

COMPUTE

The COMPUTE algorithm was first proposed by Eden et. al in 1996[59]. First,

let’s assume that we are observing in the regime in our periodic picture where m = 1 and

n > 1. Eden shows we can use the sub–propagators along with the total period propagator

to remove the frequencies wrapping and amplitude problems of the effective Hamiltonian

method, as well as observe our system at times in-between periods.

To describe the algorithm in more detail, I will use the notation as in Table 4.4,

and elucidated a bit more in Figure 4.3. First we note that we can separate the total period

propagator UTn−1 can be factored into its diagonal form via

UTn−1 = Γe−iτpΩΓ† (4.31)

Our signal at each k∆t, where ∆t = τp/n, is then following the same discussion as in section
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t=0

U0

t=τp/n

U1

Un-1

Un-2

U0
T

U1
T

t=2τp/n

Un-2
T

Un-1
T

t=(n-1)τp/n

Figure 4.3: Diagram of one Hamiltonian period and the propagator labels used for the

COMPUTE algorithm

4.2.3, and using the fact that ΓΓ† = Ie

S(k∆t) = Tr
[
ρT (k∆t)Idet

]
= Tr

[
UTk ρo

(
UTk

)†
Idet

]
= Tr

[
Ieρo

(
UTk

)†
IeIdetU

T
k

]
= Tr

[
ΓΓ†ρo

(
UTk

)† ΓΓ†IdetU
T
k

]
= Tr

[
Γ†ρoΓΓ†

(
UTk

)†
IdetU

T
k Γ

]
= Tr

[
ρTo I

T
det

]

(4.32)

where we have defined these two important matrices

ρTo = Γ†ρoΓ

ITdet,k = Γ†
(
UTk

)†
IdetU

T
k Γ.

(4.33)

The next part comes from the realization that the NMR signal is simply of sum of frequencies

and amplitudes. There are no explicit frequencies in the form of the signal in Eq. 4.32,
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but we are always free to multiply the signal by 1=exp[−i(ωrs)t] exp[i(ωrs)t], where ωrs =

(ωr − ωs). When we do this we get

S(k∆t) =
N∑

r,s=1

fkrs exp[iωrsk∆t] (4.34)

where

fkrs =
(
ITdet,k

)
rs

(
ρTo

)
sr

exp[−iωrsk∆t]. (4.35)

Eden showed in Ref. [59] that this function is periodic with k → k + n, and thus

can be expanded as a discrete Fourier series as

fkrs =
n/2∑

j=−n/2+1

ajrs exp[i2πkj/n] (4.36)

This form can be easily inverted to give us the complex amplitudes, ajrs

ajrs = 1/n
n/2∑

j=−n/2+1

fkrs exp[−i2πkj/n]. (4.37)

We now have the the complex amplitudes and the system frequencies exactly for this specific

∆t. In essence what we have done is 1) use the Effective Hamiltonian method to get the

frequencies of within the period and 2) used the sub–propagators to correct these frequencies

and amplitudes due to the wrapping problems of the effective approach. We did all this

only calculating n propagators. We still must calculated the list of transformed detection

matrices ITdet,k and amplitude functions fkrs resulting in a few more multiplications.

The algorithm proceeds as follows

• Choose an n such that n∆t = τp.

• Calculate all the UTk from the system Hamiltonian.

• Invert UTn−1 using the matrix logarithm.
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• Calculate frequency differences, ωrs from the eigenvalues of the effective Hamiltonian

and use eigenvectors to calculate ρTo .

• Using the UTk propagators calculate and store all the ITdet,k matrices.

• Using Eq. 4.35 calculate and store all the fkrs.

• To generate the observed spectrum simply apply Eq. 4.34 using the fkrs and ωrs

realizing that at k > n that fkrs = fk+nrs .

A code example of this is not given, because of a more recent extension to this

algorithm which we will discuss in the next section.

γ-COMPUTE

Up until now, we have made minor assumptions about the Hamiltonians we are

dealing with: 1) they are periodic, and 2) the time dependence can usually be easily factored

out of the rest of the Hamiltonian. In order to describe the γ-COMPUTE algorithm, I will

need to expand the Hamiltonian more then I have thus far. In the section 4.2.6 I describe

methods of integrating over space using various powder averages. The powder average is

necessary to properly simulate all the various orientations of a single crystal in a real powder

solid sample. This corresponds the molecule–to–rotor rotation described in section 3.3.2.

Below we write out explicitly all the rotational sums in the spherical tensor basis if we only

rotate the spatial degree of freedom

Hm =
∑
l



l∑
m′=−l

l∑
m′′=−l

l∑
m′′′=−l

[
e−imγlabdlm,m′ (θlab) e−im

′φlab

]
[
e−im

′γrotdlm′,m′′ (θrot) e−im
′′φrot

]
[
e−im

′′γmoldlm′′,m′′′ (θmol) e−im
′′′φmol

]
Alm′′′


T lm (4.38)
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The typical φlab is the rotor spinning rate ωrt. Because the high magnetic field is

assumed cylindrically symmetric, the γlab is arbitrary and constant, so we can easily choose

0. Condensing the molecule rotation into new Âm terms, we get a more compact form of

the full Hamiltonian.

Hm =
∑
l

{
l∑

m′=−l

l∑
m′′=−l

[
dlm,m′ (θlab) e−im

′ωrt
] [
e−im

′γrotdlm′,m′′ (θrot) e−im
′′φrot

]
Âlm′′

}
T lm

(4.39)

Collecting terms we get

Hm =
∑
l

{
l∑

m′=−l

l∑
m′′=−l

[
dlm,m′ (θlab) e−im

′(ωrt+γrot)
] [
dlm′,m′′ (θrot) e−im

′′φrot

]
Âlm′′

}
T lm.

(4.40)

Now we notice that the rotor spinning rate and the γrot powder angle are in the same

exponent of the sum, in essence the γrot powder angles acts like a shift in in time. γrot

is typically considered constant through the evolution. We can factor out an ωr from the

expression ωr + γrot to get ωr(t + γrot/ωr). In most circumstances ωr = 2π/τp. We can

pick γrot to be some multiple of our periodicity, say γrot = c2πτp/n, where c is some integer

index, and n is exactly the same n as discussed in the COMPUTE algorithm. We see the

effect of performing a γrot powder average in the COMPUTE framework is simply reordering

the sub–propagators Uk. Rather then recalculating the Uk for each different γrot angle, we

simply reuse the ones we have previously calculated saving us from have to perform a direct

method integration step for these angles.

To be a bit more explicit, we can write the propagator at kth or t = k/ωr/n division

relating to the previous k − 1 propagator as

U(t1, t2, γ) = U(t1 +
γ

ωr
, t2 +

γ

ωr
, 0) = U(

k − 1
nωr

,
k

nωr
,
2πc
n

) = Uk,c (4.41)

Because of the relation of the time shift and the γ angle to previously calculated propagators,
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we can remove the c dependence so that

Uk,c = U(c+k−1 mod n),(0). (4.42)

Our total sub–period propagators, UT , then become

UTk.c = U(c+k−1 mod n),(0)

(
U(n−1),(0)

)m (
U(p mod n),(0)

)† : m = int
(
k + c

n

)
−

( c
n

)
. (4.43)

We then use these propagators in the same analysis as in the COMPUTE method to get

an improved algorithm which shortens the total simulation time if we need to include γrot

angles.

This method was first elucidated by Hohwy et. al. in Ref. [60]. However, the γrot

as a time shift was realized by both Charpentier[61] and Levitt[62]. An implementation of

the γ–COMPUTE algorithm is given in Appendix A.2.4.

4.2.5 Non-periodic Hamiltonians

Non–periodic time dependant Hamiltonians are the hardest problems computa-

tionally. There is almost no other technique to perform the simulations other then the

direct method. The direct method is very slow for problems in general, but it is the only

one. Pulse shaping[63], slow molecular motion[64, 65, 66], and chemical exchange[67, 68] are

the largest classes of non–periodic Hamiltonians. Molecular motion and chemical exchange

are sometimes treated in the fast regime where the time dependence can be averaged away.

4.2.6 Powder Average Integration

There are two extremes in solid–sate NMR. The first is a single crystal experiment

where each molecule is aligned in the same direction. In this extreme, there is only one

angle that describes a molecular frame to the rotor frame. In this picture the γ–COMPUTE
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algorithm is invalid as there is only one γ angle. It also only requires us to compute the

observed signal once, making it similar in speed to a liquid NMR simulation.

The second extreme is much more common in solid–state NMR, where we have

many different crystallites oriented randomly throughout the sample. It is typically assumed

that over the billions of crystallites, every possible orientation is present. To get our total

signal then requires a sum over all these crystallites over the entire volume.

S(t) =
∫
S(t,Ωrot)dΩrot (4.44)

In most cases we do not know the analytical form of S(t,Ωrot), so we are forced to perform

the integral as a discrete sum

S(t) =
∑
i,j,k

S(t, φi, θj , γk). (4.45)

Calculation of each S(t, φi, θj , γk) can be time consuming itself, and to get the proper S(t)

we may have to perform many evaluations. Sampling the volume as best as possible using

as fewest possible angles is desired to achieve computational efficiency. The γ–COMPUTE

algorithm does aid us by attempting to eliminate the γk part of the sum, however, both θj

and φi remain. Instead of sampling the entire sphere represented by θ and φ we can look

at the angular dependences of the Hamiltonians. We can divide our spherical distribution

into equal volume octants as shown in Figure 4.4. The valid range of θ = [0, π] and the

valid range of φ = [0, 2π), and each octant has the range as shown in Figure 4.4. Using our

high field expressed Hamiltonian form in Eq 4.40 where m = 0 (the only part that survives

the truncation)

H = T 2
0

2∑
m′=−2

2∑
m′′=−2

[
d2

0,m′ (θlab) e−im
′(ωrt+γrot)

] [
d2
m′,m′′ (θrot) e−im

′′φrot

]
Â2
m′′ (4.46)
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θ=0

θ=π

φ=0

φ=π
φ=π/2

φ=3π/2

Figure 4.4: Octants of equal volume of a sphere.

Specific Hamiltonians can lead to a simplification of this form and different symmetry sets.

There are essentially 3 different symmetry groups that exist in NMR[69].

• No Symmetry–requires all 3 angles to be fully integrated over the entire range.

0 ≤ θ ≤ π

0 ≤ φ < 2π

0 ≤ γ < 2π

(4.47)

• Ci–Inversion symmetric therefore no γ dependence and inversion symmetric therefore

requiring only half a sphere. Such cases exist when the eigen–states of the Hamiltonian

do not change as the rotor rotates.

0 ≤ θ ≤ π
2

0 ≤ φ < 2π
(4.48)
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• D2h–Cylindrically symmetric and inversion symmetric therefore no γ dependence.

Inversion symmetric requires only half a sphere, and cylindrically symmetric requires

two octants (where 0 ≤ θ ≤ π). The two together implies one octant.

0 ≤ θ ≤ π
2

0 ≤ φ ≤ π
2

(4.49)

This case is most prevalent when there is no η term in the Hamiltonians, and the

molecule frame is the same for all atoms under static conditions[6].

For each three symmetry groups there are a variety of ways of generating points

with in the required ranges[70, 71, 72, 73, 74, 75, 76, 77, 78]. Since we cannot sample an

infinite number of angles, we wish to optimally choose the angles. From my own experi-

ence the best powder averaging schemes for no symmetry are the 3D-ZCW schemes[79, 80]

using Gaussian quadrature[69]. For the Ci symmetry the 2D-ZCW schemes seem to work

the best. Static NMR problems do not require that much time (by comparison to spin-

ning simulations). The choice for a D2h average should be handled best by the Lebedev

schemes[81, 82].

Powder averaging is the easiest point at which to parallelize a NMR simulation.

Each new processor should allow for linear scaling of the problem (i.e. n processors reduces

the running time by n). To help create such parallel programs, an master/slave based

MPI[83] implementation backbone is given in Appendix A.1.4.

4.3 Conclusions and Comments

Much of the numerical aspects of NMR are treated in the framework of the algo-

rithms presented in this chapter using the specific forms of the equations of motion found
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in chapter 3. The algorithms presented here are the sum total of the ones available to the

NMR spectroscopist. Given each different algorithm, powder averaging type, rotational

evolution, and Hamiltonians there are hundreds of different simulations one can perform.

The basic reason to review all the available algorithms is to be able to choose the proper

algorithm, interaction set, and other parameters that will perform the simulation at the

greatest speed and efficiency. There is no ‘one’ algorithm that will provide the best answer

every time, as a result constructing a master program that performs every possible simula-

tion will not prove fruitful. Instead a package that includes the algorithms, data structures,

and sub–routines needed to construct the correct program is more useful in general. The

next chapter will treat the development and implementation of such a toolkit.
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Chapter 5

BlochLib

5.1 Introduction

In the chapter 2, I laid down a foundation for a set of highly optimized data

structures needed for NMR, basically the Complex number, the Vector and the Matrix.

Everything else in computational NMR is based on these simple data types. Having very

fast Vectors and Matrix operations will then determine the speed and functionality of the

rest of the code that uses them. For this point on, I will take for granted the fact that

we have these fast data structures. C++ and objects allow such creation of nice ‘block–

boxes’ that performs specific tasks without any input from the user. This ability to create

foundation and foundations upon foundations provide a simple way to construct our total

simulation with ease. I will now present a tool kit specific to both classes of NMR, the

quantum mechanical and classical.
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5.2 The Abstract NMR Simulation

Numerical simulations in NMR (and most other physical systems) can be divided

into 2 basic classes: Experimental Evolutions (EEs) and Theoretical Evolutions (TEs). The

main object of both is some sort of generated data and both typically require some input

of parameters.

5.2.1 Experimental Evolutions (EE)

In Figure 5.1a, we find a pictorial representation of an EE. These types of simula-

tions are some of the simplest to construct and generalize. A basic EE simulation/program

is one designed to mimic some experimental condition. The basic experimental condition

is an RF coil that applies RF pulses and provides a detection mechanism within chemical

sample. The main function of an experiment is to apply different sets of pulse sequences to

retrieve different sets of information.

Because of the wide variety of different pulse sequences, an EE must first act as

a Parameter Parser. The Parameter Parser takes in some set of conditions and sets the

various mathematical structures (the Objects) such that a Kernel can perform the proper

calculation(s) which produces some sort of data we wish to see, thus Output.

5.2.2 Theoretical Evolutions (TE)

The other class of simulation, Theoretical Evolutions (TEs) (see Figure 5.1b), are

used to explore theoretical frameworks and theoretical modeling. Of course there can be

much overlap between the EEs and TEs, but the basic tenet of a TE simulation is they

are a designed to explore the physical properties of the system, even those not assessable
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a) Experimental Evolutions

b) Theoretical Evolutions

Kernel
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Obj1 ObjN

Output

Parameters

Kernel1 KernelN

Figure 5.1: Many basic simulations can be divided into two main subgroups, a) Experimen-

tal Evolutions (EE), and b) Theoretical Evolutions (TE). EEs tend to use a solid Kernel

driver, whereas the TEs can use many different Kernels, feedback upon itself; use the gen-

erated data in other kernel, and so forth. For this reason EEs can be developed to a large

degree of generality on the input parameters (e.g. various different types of pulse sequences).

Their main function is a parameter parser where much attention is given to the interface.

TEs, on the other hand, are usually complex in the kernels and transparent interfaces are

not necessarily their primary goal.
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to experiments, to develop an understanding and intuition about the systems involved.

Simulations of singular interactions (e.g. including only radiation damping in a spin system)

to see their effect is one such example. Development of a master TE program proves near

impossible simply because of the magnitude of different methods and ideas used to explore

an arbitrary model. The best one can do today is to create a tool kit that provides the

most common algorithms, structures, and ideas used for the theoretical modeling. These

tool kits should be a simple starting places for more complex ideas (see Figure 5.1). A good

overview of the methods desired in NMR can be found in Ref. [84].

5.2.3 Existing NMR Tool Kits

Programs such as Simpson[85] have generalized the EE form of NMR simulation

into a simple working structure not unlike programming a spectrometer itself. EEs typically

require only a few algorithms to solve the dynamics of the systems, the rest of the program

is simply a user interface to input experimental parameters (e.g. pulse sequences, rotor

angles, etc.). EEs are essential to understand or discover any anomalies in experimentally

observed data. Another common usage of EEs is to give the experimenter a working picture

of ‘what to expect’ from the experiment. Surprisingly, there are very few complete NMR

EE packages. In fact, up until this tool kit, Simpson seems to be the only EE publicly

available.

Currently there is only one TE tool kit available to the NMR spectroscopists,

Gamma[86]. The main focus of Gamma is liquid state NMR (the solid state practicalities

are becoming developed in later versions). However, NMR experimentation is evolving past

the basic high field liquid experiment.
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5.2.4 Why Create a new Tool Kit?

Complex interactions like the demagnetizing field and radiation damping are be-

coming important and are best treated classically (see Ref. [87] and references there in).

Solid state NMR (SSNMR) is being used more frequently and with better and better reso-

lution and techniques. Ex-situ NMR is a new branch currently under exploration[88, 89, 90]

requiring detailed knowledge of magnetic fields in the sample. Low field experiments(see

[91] and references there in) are also becoming more common. Pulse shaping[92] and mul-

tiple rotor angle liquid crystal experiments[93] are also becoming more frequent. Gamma

and Simpson are ill-equipped to handle these new developments.

To treat all these newer developments (and to use the fast data structures described

in chapter 2) I have created BlochLib to be the next generation NMR simulation tool kit.

The tool kit is quite large and the documentation that describes all of its functionality is

well over 1000 pages, I will try in thesis chapter to give a general overview of library itself.

The following section will discuss some generic classes of NMR simulations that drive the

basic design of the BlochLib. Following the design overview, several example programs will

be discussed. They will attempt to demonstrate both the generality of the library as well

as how to set up a basic program flow from parameter inputs to data output.

5.3 BlochLib Design

The design of a given tool kit relies heavily on the objectives one wishes to accom-

plish. These objectives then determine the implementation (code language, code structure,

etc). The key objectives for BlochLib are, in order of importance, speed, ease of use, the

incorporation of existing numerical techniques and implementations, and the ability to eas-
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ily create both TEs and EEs for NMR in almost any circumstance. Below, several issues

are addressed before the major design of BlochLib is discussed.

5.3.1 Existing Numerical Tool Kits

For the quantum mechanical aspects of NMR, the basic operation is matrix mul-

tiplication. The same expression template methodology can also by applied to matrices.

However, there are certain matrix operations that will always require the use of a temporary

matrix. Matrix multiplication is one such operation. One cannot unroll these operations

because an evaluated point depends on more then one element in the input. So the task

becomes one of optimizing a matrix-matrix multiplication. This task is not simple; in fact

it is probably one of the more complex operations to optimize because it depends dramat-

ically on the systems architecture. A tool kit called ATLAS (Automatically Tuned Linear

Algebra Software)[21] performs these optimizations.

The introduction of the fast Fourier transform made possible another class of

simulations. Since that time several fast algorithms have been developed an implemented

in a very efficient way. The Fastest Fourier Transform in the West (FFTW)[94] is one of

the best libraries for the FFT.

Another relatively recent development in scientific simulations is the movement

away from supercomputers to workstation clusters. To use both of them effectively one

needs to know how to program in parallel. The Message Passing Interface (MPI)[95, 83]

provides a generic interface for parallel programming.

Most any scientific endeavor eventually will have to perform data fitting of exper-

imental data to theoretical models. Data fitting is usually a minimization process (usually

minimizing a χ2 function). There are many different types of minimization routines and im-



5.3. BLOCHLIB DESIGN 111

plementations. One used fairly frequently for its power, speed, multiple types of algorithms

is the CERN package MINUIT[96].

5.3.2 Experimental and Theoretical Evolutions for NMR simulations

As stated above TEs tend to require more possible configurations then an EE

program. EEs tend to be heavily parameter based using a main driver kernel, while a

TEs are basically open ended in both parameters and kernels (a better assumption about

a TE simulation is that one cannot really make any assumptions). Figure 5.1 shows a

rough diagram of an NMR simulation for both types (of course it can be applied to many

simulation types).

EEs are easily parsed into four basic sections: Parameters, Parameter parser,

Main Kernel, and Data Output. The Parameters define a program’s input, the Parameter

parser decided what to do with the parameters, the Main Kernel performs the desired

computation, and the Data Output decides what to do with any generated data. BlochLib

is designed to make the Parameters, Main Kernel and Data Output relatively simple for

any NMR simulation. The Parameter Parser tends to be the majority of programming

an EE. BlochLib also has several helper objects to aid in the creation of the parser. The

objects Parameters, Parser and ScriptParse are designed to be extended. They serve as

a base for EE design. With these extendable objects almost any complex input state can

be treated with minimal programming effort.

The Main Kernel drivers need to be able to handle the two distinct classes of NMR

simulation the quantum mechanical and the classical as described in Chapter 4.

With these basic ideas of a TE and EE, the basic design of BlochLib will be

described in the next section.
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5.3.3 BlochLib Layout

BlochLib is written entirely in C++. Figure 5.2 shows the basic layout of the tool

kit. The Utilities, Parameters, Aux Libs, Containers, and Kernels sections comprise the

basic beginning of the tool kit and have little to do with NMR. They form a basic generic

data structure framework to perform almost any high performance scientific simulations.

The Quantum Mechanic and Bloch Equation sections assemble objects that comprise the

backbone for the NMR simulations. Finally the Programs section assembles the NMR pieces

into functional programs which perform general NMR simulations (like Solid), calculate

arbitrary fields from coil geometries, and a wide range of investigative programs on NMR

systems (see Table 5.2). It is designed to be as modular as possible with each main section

shown in Figure 5.2 treated as separate levels of sophistication. The first levels are the

main numerical and string kernels, the second levels utilize the kernels to create valid

mathematical objects, the third levels uses these objects to perform complex manipulations,

and the fourth levels creates a series of modules specific to NMR for both the classical and

quantum sense.

It uses C++ wrappers to interface with MPI, ATLAS, FFTW, and MINUIT.

BlochLib uses MPI to allow for programming in parallel and to pass the parallel objects to

various classes to achieve a seamless implementation in either parallel or serial modes. It also

allows the user to put and get the libraries basic data types (vectors of any type, matrices of

any type, strings, coords of any type, vectors of coords of any type) with simple commands

to any processor. The ATLAS library provides the backbone of the matrix multiplication for

BlochLib. Figure 5.3 shows you some speed tests for the basic quantum mechanical NMR

propagation operations. Each code sample (except for Matlab) was compiled using the GNU
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-Utilities

--Global functions

--Constants

--Matlab I/O

--VNMR I/O


-Parameters
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--Math parser

--Script parser


-Aux Libs

--FFTW

--MPI

--ATLAS

--MINUIT


-Containers

--Coords

--Vectors

--Matrices

--Grids


-Kernels

--Shapes

--ODE solvers

--Stencils


-Quantum Mechanics

--Isotopes

--Tensors, spin operators

--Spin systems

--Interactions, rotations

--Solid System

--FID algorithms


-Bloch Equations

--Bloch Parameters

--Gradients, Pulses

--Field calculators

--Interactions

--Bloch

--Solvers


-Programs
--Solid

--Fields

--'Others'

Figure 5.2: The basic design layout of the BlochLib NMR tool kit.
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compiler (g++) using the same optimizations (-O3 -finline-functions -funrool-loops). Both

a, b, and c are full, square, complex matrices. ATLAS shows the fastest speed, but BlochLib

using ATLAS as a base is not far behind. An existing C++ library, Gamma, shows normal

non-optimized performance. Matlab’s algorithm is slowed appreciably by this expression

because the overhead on its use of temporaries is very high. It may be interesting to note

that the speed of Matlab’s single matrix multiply (c = a ∗ b) is much better (and close to

that of Gamma’s) then the performance shown for (c = a∗ b∗a†) because of this temporary

problem. The matrix sizes are incremented in typical numbers of spin 1/2 particles. A ‘1

spin 1/2’ matrix is a 2 × 2, a ‘5 spin 1/2’ matrix is 32 × 32, and a ‘9 spin 1/2’ matrix is

512× 512.

You may notice that BlochLib’s speed is slower then ATLAS’s even though the

same code is used. The reason for this discrepancy is discussed in section 5.3.4. BlochLib

uses FFTW to perform FFTs on its vectors and matrices, and allows the usage of the

MINUIT algorithms with little or no other configuration.

The containers are the basic building blocks. It is critical that the operations on

these objects are as fast as possible. The optimizations of vector operations are critical

to performance of classical simulations as the solving of differential equations take place

on the vector level. Matrix operations are critical for quantum mechanical evolutions and

integration. For this reason the coord, Vector, and matrix classes are all written using

expression templates, with the exception of the matrix multiplication and matrix division

which use the ATLAS and LU decompositions algorithms respectively. The coord<> ob-

ject is exceptionally fast and should be used for smaller vector operations. The coord<>

object is specifically made for 3-space representations, with specific functions like rotations
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Figure 5.3: This figure shows a speed test for the common NMR propagation expression

c = a ∗ b ∗ a† in Millions of Floating point operations (MFLOPS) per second performed on

a 700 MHz Pentium III Xeon processor running Linux (Redhat 7.2).
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and coordinate transformations which only function on a 3-space. However, any length

is allowed, but as Figure 2.4 shows, the Vector speed approaches the coord<> for large

N, and with much less compilation times. The matrix class has several structural types

available: Full (all elements in the matrix are stored), Hermitian (only the upper triangle

of the matrix are stored), Symmetric (same as Hermitian), Tridiagonal (only the diagonal,

the super–diagonal, and the sub–diagonal elements are stored), Diagonal (only the diago-

nal is stored), and Identity (assumed ones along the diagonal). Each of these structures

has specific optimized operations, however, the ATLAS matrix multiplication is only used

for Full matrices. There are also a wide range of other matrix operations: LU decompo-

sitions, matrix inverses, QR decompositions, Gram-Schmidt ortho-normalization, matrix

exponentials and matrix logarithms. The Tridiagonal structure has an exceptionally fast

LU decomposition. The Grid class consists of a basic grid objects and allows for creation

of rectangular Cartesian grid sets.

The utilities/IO objects include several global functions that are useful string

manipulation functions. These string functions power the parameter parsing capabilities of

BlochLib. Several basic objects designed to manipulate parameters are given. The Parser

object can be used to evaluate string input expressions. For instance if “3 ∗ 4/ sin(4)” was

entered, the Parser can evaluate this expression to be −15.85. The object can also use

variables either defined globally (visible by every instance of Parser) or local (visible only

be the specific instance of Parser). For examples, if a program registers a variable x = 6, the

Parser object can use that variable in an expression, like “sin(x)∗3”, and return the correct

value, −0.83. The Parameters object comprises the basic parameter input capabilities.

Large parameter sets can be easily grouped into sections and passed between other objects
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in the tool kit using this object. The parameter sets can be nested (parameters sets within

parameters sets) and separated. Creation of simple custom scripts can be performed using

the ScriptParse object in conjunction with Parser. The ScriptParse object is used to

define specific commands to be used in conjunction with any mathematical kernels.

Data output can be as complicated as the data input. The Parameters object

can output and update specific parameters. Any large amount of data (like matrices and

vectors) can be written to either Matlab (5 or greater) format. One can write matrices,

vectors, and coords, of any type to the Matlab file, as well as read these data elements from

a Matlab binary file. Several visualization techniques are best handled in the native format

of NMR spectrometer software. A VNMR (Varian) reader and writer of 1D and 2D data

is available as well as a XWinNMR (Bruker) and SpinSight (Chemagnetics) 1D and 2D

readers are also included. Any other text or binary formats can be constructed as needed

using the basic containers.

The next level comprises the function objects, meaning they require some other

object to function properly. The XYZshape objects require the Grid objects. These combine

a set of rules that allow specific Cartesian points to be included in a set. It basically

allows the construction of non-rectangular shapes within a Cartesian grid. For instance

the XYZcylinder object will remove all the points not included in the cylinder dimensions.

Similar shapes exist for slice planes and rectangles, as well as the capability to construct

other shapes. The shapes themselves can be used in combination (e.g. you can easily specify

a grid to contain all the points within a cylinder and a rectangle, using normal operators

and (&& ) and or (||), “XYZcylinder && XYZrect”).

The ODE solvers require function generation objects . Available ODE solvers are
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listed in section 4.1.2. The solvers are created as generically as possible, allowing for vari-

ous data types (double, float, complex) and containers (Vectors, coords, matrices, and

vectors of coords). The ODE solver requires another object that defines a function. All

the algorithms require the same template arguments, template<class Engine T, class

ElementType T, class Container T> . Engine T is another class which defines the func-

tion(s) required by the solver. ElementType T is the precision desired or another container

type (it can be things like double, float, coord<>, Vector<>, etc.). The ElementType T

is the type inside the container, Container T. For instance if ElementType T=double, then

Container T will usually be Vector<double> or coord<double, N>. The Cash-Karp-

Runge-Kutta 5th order method (the ckrk class) is a basic work horse medium accuracy. It

is a good first attempt for attempting to solve ODEs[42, 45]. The Bulirsch-Stoer extrap-

olation method (the bs class) is of relatively high accuracy and very efficient (minimizes

function calls). However, stiff equations are not handled well and it is highly sensitive

to impulse type functions. The BlochSolver object uses the bs class as its default ODE

solver [43, 41, 44, 45]. The semi-implicit Bulirsch-Stoer extrapolation method is base on the

Bulirsch-Stoer extrapolation method for solving stiff sets of equations. It uses the jacobian

of the system to handle the stiff equations by using a combination of LU decompositions

and extrapolation methods[97, 45]. All the methods use adaptive steps size controls for

optimal performance.

Finally, the stencils perform the basic finite difference algorithms over vectors

and grids. Because there is no array greater then two dimensional in BlochLib yet, the

stencils over grid spaces are treated much differently then they would be over a standard

three dimensional array. They are included in this version of BlochLib for completeness,
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however, the N-dimensional array and tools should be included in later versions.

At this point the tool kit is split into a classical section and a quantum section.

Both sections begin with the basic isotropic information (spin, quantum numbers, gamma

factors, labels, mass, momentum).

The quantum mechanical structures begin with the basic building blocks of spin

dynamics: the spin and spatial tensors, spin operators, and spin systems. Spatial tensors

are explicitly written out for optimal performance. The spin operators are also generated

to minimize any computational demand. There is a Rotations object to aid in optimal

generation of rotation matrices and factors given either spherical or Cartesian spaces. After

the basic tensor components are developed, BlochLib provides the common Hamiltonians

objects: Chemical Shift Anisotropy (CSA), Dipoles, Scalar couplings, and Quadrupoles as

described in section 3.3.

These objects use the Rotations object in the Cartesian representation to generate

rotated Hamiltonians. The HamiltonianGen object allows for string input of Hamiltonians

to make arbitrary Hamiltonians or matrix forms more powerful. For example, the input

strings “45 ∗ pi ∗ (Ix 1 + Iz 0)” (Ix 1 + Iz 0 are the x and z spin operators for spin 1 and

0 respectively), and “T21 0, 1 ∗ 56” (T21 0, 1 is the second rank, m=1 spin tensor between

spin 0 and spin 1), can be parsed by the HamiltonianGen much like the Parser object.

The SolidSys object combines the basic Hamiltonians, rotations, and spin operators into a

combined object which generates entire system Hamiltonians and provides easy methods for

performing powder averages and rotor rotations to the system Hamiltonian. This class can

be extended to any generic Hamiltonian function. In fact, using the inheritance properties of

SolidSys is imperative for further operation of the algorithm classes oneFID and compute.
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The Hamiltonian functions from the SolidSys object, or another derivative, act as the

basis for the oneFID object that will choose the valid FID collection method based on rotor

spinning or static Hamiltonians. It uses normal eignvalue propagation for static samples

and the γ-COMPUTE[60] algorithm for spinning samples. If the FID is desired over a

powder, the algorithm is parallelized using a powder object. The powder object allows for

easy input of powder orientation files and contains several built–in powder angle generators.

For classical simulations the relevant interactions are offsets (magnetic fields), T2

and T1 relaxation, radiation damping, dipole–dipole interactions, bulk susceptibility, the

demagnetizing field, and diffusion1 as described in section 3.1.

These interactions comprise the basis for the classical simulations. Each interaction

is treated separately from the rest, and can be either extended or used in any combination

to solve the system. The grids and shapes interact directly with the Bloch parameters

to creates large sets of configured spins either in gradients or rotating environment. New

interactions can be added using the framework given in the library. The interactions are

optimally collected using the Interactions object, which is a crucial part of the Bloch

object. The Bloch object is the master container for the spin parameters, pulses, and

interactions. This object is then used as the main function driver for the BlochSolver

object (a useful interface to the ODE solvers).

As magnetic fields are the main interactions of classical spins, there is an entire

set of objects devoted to calculating magnetic fields for a variety of coil geometries. The

basic shapes of coils, circles, helices, helmholtz, lines, and spirals, are built–in. These

particular objects are heavily parameter based, requiring positions, turns, start and end

points, rotations, centering, lengths, etc. One can also create other coil geometries and add
1In the current version of BlochLib, diffusion is not treated.
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Table 5.1: Available Matlab visualization functions in BlochLib
Matlab Function Desicrption
Solidplotter A GUI that plots many of the NMR file formats
plotter2D A function that performs generic data plotting
plotmag Visualization functions for the magnetic field calculators
plottrag Magnetization trajectories classical evolutions visualizations

them to the basic coil set (examples are provided in the tool kit). The magnetic fields can

be added to the offset interaction object to automatically create a range of fields over a

grid structure, as well as into other objects to create rotating or other time dependant field

objects.

No toolkit would be complete without examples and useful programs. Many pro-

grams come included with BlochLib (see Table 5.2). Also included are several Matlab

visualization functions (see Table 5.1) that interact directly with the data output from

the magnetic field generators plotmag, the trajectories from solving the Bloch equations,

plottraj, and generic FID and data visualization, plotter2D and Solidplotter.

5.3.4 Drawbacks

As discussed before, the power of C++ lies within the object and templates that

allow for the creation of generic objects, generic algorithms, and optimization. There are

several problems inherent to C++ that can be debilitating to the developer if they are not

understood properly. The first three problems revolve around the templates.

Because templated objects and algorithms are generic, they cannot be compiled

until used in a specific manner (the template is expressed). For example to add two vectors,

the compiler must know what data types are inside the vector. Most of the main mathe-

matical kernels in BlochLib cannot be compiled until expressed (matrices, vectors, grids,
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shapes, coords, and the ODE solvers). This can leave a tremendous amount of overhead for

the compiler to unravel when a program is actually written and compiled.

The other template problem arises from the expression template algorithms. Each

time a new operation is performed on an expression template data type (like the vectors),

the compiler must first unravel the expression, then create the actual machine code. This

can require a large amount of time to perform, especially if the operations are complex.

The two template problems combined require large amounts of memory and CPU time

to perform, however, the numerical benefits usually overshadow these constraints. For

example the bulksus example in BlochLib takes approximately 170 Mb of memory and

around 90 seconds (using gcc 2.95.3) to optimally compile one source file, but the speed

increase is approximately a factor of 10 or greater. Compiler’s themselves are getting better

at handling the template problems. For the same bulksus example, the gcc 3.1.1 compiler

took approximately 100 Mb of memory and around 45 second of compilation time.

The final template problem arises from expression template arithmetic, which

require a memory copy upon assignment (i.e. A=B). Non-expression template data types

can pass pointers to memory rather than the entire memory chunk. For smaller array sizes,

the cost of this copying can be significant with respect to the operation cost. The effect

is best seen in Figure 5.3 where the pointer copying used for the ATLAS test saves a few

MFLOPS as opposed to the BlochLib version. However, as the matrices get larger the

relative cost becomes much smaller.

The last problem for C++ is one of standardization. The C++ standard is not

well adhered to by every compiler vendor. For instance Microsoft’s Visual C++ will not

even compile the most basic template code. Other compliers cannot handle the memory
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requirements for expression template unraveling (CodeWarrier (Metrowerks) crashes con-

stantly because of memory problems from the expression templates). The saving grace for

these problems is the GNU compiler, which is a good optimizing compiler for almost every

platform. GNU g++ 3.2.1 adheres to almost every standard and performs optimization of

templates efficiently.

5.4 Various Implementations

This section will describe a basic design template to create programs from BlochLib

using the specific example of the program Solid. Solid is a generic NMR simulator. Several

other programs are briefly described within the design template. The emphasis will not be

on the simulations themselves, but more on their creation and the modular nature the tool

kit.

There is potentially an infinite number of programs that can be derived from

BlochLib, however, the tool kit comes with many of the basic NMR simulations programs

already written and optimized. These programs serve as a good starting place for many

more complex programs. In Table 5.2 is a list of the programs included and their basic

function. Some of them are quite complicated while others are very simple. Describing

each one will show a large amount of redundancy in how they are created. A few of the

programs which represent the core ideologies used in BlochLib will be explicitly considered

in the following sections.
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Table 5.2: Key examples and implementation programs inside BlochLib
Catagory Folder Description

Classical

bulksus Bulk susceptibility interaction
dipole Dipole–dipole interaction over a cube
echo A gradient echo
EPI an EPI experiment[98]
magfields Magnetic field calculators
rotating field Using field calculators and offset interactions
splitsol Using field calculators for coil design
mas Simple spinning grid simulation
raddamp Radiation damping interaction
relaxcoord T1 and T2 off the z-axis
simple90 Simple 90◦ pulse on an interaction set
yylin Modulated demagnetizing field example[87]

Quantum

MMMQMAS A complex MQMAS program
nonsec Nonsecular quadrupolar terms exploration
perms Permutations on pulse sequences
shapes A shaped pulse reader and simulator
Solid-2.0 General Solid State NMR simulator

Other

classes Several ‘How-To’ class examples
data readers Data reader and conversion programs
diffusion 1D diffusion example
mpiplay Basic MPI examples

5.4.1 Solid

The program Solid represents the basic EE quantum mechanical simulation pro-

gram. Solids basic function is to simulate most 1D and 2D NMR experiments. It behaves

much like Simpson but is faster for large spin sets as shown in Figure 5.4. Solid tends to be

slower for small spin sets as explained in section 5.3.4. All simulations were performed on a

700 MHz Pentium III Xeon (Redhat 7.3), compiled with gcc 2.95.3 with donditions the same

as those shown in Figure 5 of Ref. [85] for Figure 5.4a. Figure 5.4b shows the speed of the

simulation of a C7 with simulations conditions the same as those shown in Figure 6e of Ref.

[85]. In both cases the extra spins are protons with random CSAs that have no interactions

between with the detected 13C nuclei. Solid is essentially a parameter parser which then

sends the obtained parameters to the main kernel for evaluation. The EE diagram (Figure
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Figure 5.4: Time for simulations of Solid (solid line) and Simpson (dashed–dotted line) as

a function of the number of spins. a) shows the simulation of a rotary resonance experiment

on set pair of spins, and b) shows the speed of the simulation of a C7.
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5.1) can be extended to more specific object usage used in Solid (Figure 5.5). Three basic

sections are needed. Definitions of a solid system (spins), definition of powder average

types, other basic variables and parameters (parameters and the subsection powder), and

finally the definition of a pulse section where spin propagation and fid collection is defined

(pulses). The pulses section contains the majority of Solid’s functionality. Based on this

input syntax, a simple object trail can be constructed. MultiSolidSys contains at least

one (or more) SolidSys objects. This combined with the powder section/object defines the

Propagation object where the basic propagation algorithms are defined. Using the extend-

able ScriptParse object, the SolidRunner object defines the new functions available to

the user. SolidRunner then combines the basic FID algorithms (in the oneFID object), the

Propagation object, and the output classes to perform the NMR experimental simulation.

Solid has three stages, parameter input, main kernel composition, and output

structures. The EE normal section, parameter parser, was written to be the main interface

to the kernel and output sections. It extends the ScriptParse object to add more simulation

specific commands (spin evolution, FID calculation, and output).

There are three basic acquisition types Solid can perform: a standard 1D, a stan-

dard 2D, and a point-to-point (obtains the indirect dimension of a 2D experiment without

performing the entire 2D experiment). Simple 1D simulations are shown in Figure 5.6.

The results of a 2D and point-to-point simulation of the post-C7 sequence[99]

are shown in Figure 5.7. Appendix A.3.1 shows the input configuration scripts for the

generation of this data.
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Figure 5.5: The design of the EE program Solid derived from the input syntax.
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Figure 5.6: A two spin system as simulated by Solid where a) is with no spinning, and b)

is with a rotor speed of 2000 Hz at the magic angle (54.7 deg). The spins system included 2

CSA’s with the first spins parameters as ωiso = 5000 ∗ 2π, ωani = 4200 ∗ 2π, and η = 0, the

second spin’s parameters as ωiso = 5000 ∗ 2π, ωani = 6012 ∗ 2π, and η = 0.5, with a scalar

J coupling of 400 Hz between the two spins. For a) and b) 3722 and 2000 powder average

points were used respectively. See Appendix A.3.1 for input configuration file.
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Figure 5.7: A two spin system as simulated by Solid of the post-C7 sequence where a) is

collected using a point-to-point acquisition, and b) is a full 2D collection. The spins system

includes a dipole coupling of 1500 Hz. For both a) and b) 233 powder average points were

used. See Appendix A.3.1 for input configuration file.
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5.4.2 Classical Program: Magnetic Field Calculators

Included in BlochLib is the ability to calculate magnetic fields over arbitrary coil

geometries. The main field algorithm calculates a discrete integral of Ampere’s equation

for the magnetic field.

B(r) =
µo
4π

∫
I(r′)× dl(r′)
|r − r′|2

(5.1)

where the magnetic field at the point r, B(r), is the volume integral of the current at

r′, I(r′), crossed into a observation direction, dl(r′), divided by the square of the distance

between the observation point, r, and the current point, r′. One way to evaluate this integral

numerically, the integral is broken into a sum over little lines of current (the Biot-Savart

Law). For this to function properly numerically, the coil must be divided into small line

segments.

There are numerous coil geometries, but most of the more complex designs can

be broken into a set of primitive objects. The geometric primitives included in BlochLib

are lines, circles, spirals, helices, an ideal helmholtz pair (basically 2 circles separated by

a distance), a true helmholtz pair (two sets of overlapping helices), input files of points,

and constant fields. BlochLib also allows the user to create their own coil primitives and

combine them along with the rest of the basic primitives. Figure 5.8 shows the basic design

of the field calculator using the MultiBiot object.

There are two basic parameters sections needed. The first describes the coil geom-

etry using the basic elements (see text) and any user written coils geometries. The second

describes the Cartesian grids where the field will actually be calculated. Again once the

parameter sets are known a simple object trail can be developed. Initially the user must

register their own geometries into the BiotCoil list. The parameters then feed into the
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Figure 5.8: The basic design for the Field Calculator program.

XYZshape and MultiBiot objects. Parallelization can be implemented simply by defin-

ing the MPIworld object and passing it to the MultiBiot object. The data is written in

2 formats; into one readable by Matlab for visualization and into a file readable by the

MultiBiot object.

This program is included in BlochLib under the magfields directory (see Table

5.2). Figure 5.9 shows the data generated by the program. The input file for this program

can be seen in Appendix A.3.2. It should be noted that the convergence of the integral in
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Eq. 5.1 is simply a function of the number of line segments you choose for the coils.

5.4.3 Classical Programs: Bloch Simulations

Programs of this type are designed to function on large spin sets optimally based

on the interactions present. The basic layout for these simulation can be see in Figure

5.10. These programs typically need as much optimization as possible in order to function

optimally over large spin sets. As a result, the parameter input is expected to be minimal,

with the bulk of the design to aid in optimization of the interaction sets and pulse sequences

used. Items in gray are optional objects, that can be simply added in the specific object

chain to be used.

The Grid serves as the basis for much of the rest of the Bloch interactions and

Bloch parameters. Grids also serve as the basis for gradients and physical rotations. The

interactions are also a key part of the simulation and can rely on the grid structures as well

as any magnetic fields calculated. A pulse on a Bloch system represents a type of impulse

function to the system. A pulse should be treated as a separate numerical integral step due

to this impulse nature (such impulses can play havoc with ODE solvers). The pulses, Bloch

parameters, and interactions are finally wrapped into a master object, Bloch, which is then

fed into the BlochSolver object which performs the integration.

Bulk Susceptibility

One such implementation attempts to simulate the result obtained in Ref. [100]

Figure 2. This is a HETCOR (Heteronuclear Correlation) experiment between a proton

and a phosphorous. The delay in the HETCOR sequence (see Figure 5.11a) allows the

offset of the 1H to evolve. Next the 1H magnetization is placed back on the z-axis. The z-
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Figure 5.9: The magnetic field calculated by the program shown in Figure 5.8. The configu-

ration file is shown in Appendix A.3.2 The Matlab function, plotmag, was used to generate

these figures (see Table 5.1). The coil and the sampled grid are shown in a), the fields along

the x, y, z directions are shown in b) –d) respectively.
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Basic Parameters Input
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XYZshape

Parameters

Gradient Grids, 
Rotating Grids

ListBlochParameter Pulses
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Field Calculators

Bloch

TimeTrains

BlochSolver

Data Ouput

Figure 5.10: A rough design for a classical Bloch simulation over various interactions.
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magnetization of the proton will oscillate (its magnitude effected by the time evolved under

the delay). If one then places the 31P magnetization in the xy-plane and collects an FID,

the 31P will feel a slight offset shift due to the varying 1H z-magnetization (effect of the

bulk susceptibility). Thus in the indirect dimension an oscillation of the 31P magnetization

due to the protons will be observed. The results is shown in Figure 5.11b and matches the

result obtained in [100]. In order to correctly replicate the figure, the 1H offset had to be

changed to 722 Hz (the reference quotes 115 Hz as the offset, but it seems a factor of 2π

was omitted (722 = 2π ∗ 115). The T2 relaxation of the 1H also had to be altered to 0.002

seconds (the reference quotes 0.015 seconds, however the diagram shows a much faster decay

then this time). The code for this diagram is in the bulksus folder of the distribution.

Radiation Damping

Another interesting implementation attempts to emulate the result obtained by

Y.Y. Lin, et.al[87]. In this simulation, the interplay between radiation damping and the

demagnetizing field resurrect a completely crushed magnetization (a complete helical wind-

ing). Radiation damping is responsible for the resurrection as the demagnetizing field alone

does not resurrect the crushed magnetization. The simulated data (Figure 5.12b) matches

Figure 2 in reference [87]. The result is a nonlinear partial resurrection of magnetization.

The input parameters are those in the reference [87]. The data was plotted using plottrag

in the distribution. The code for this diagram is in the yylin folder of the distribution and

can be seen in Appendix A.3.5.



5.4. VARIOUS IMPLEMENTATIONS 135

1H
t1

90y

31P

90-y

90-y

4 4.2 4.4 4.6 4.8 5

1

2

3

4

5

6

7

8

5.2 5.4 5.6 5.8 6

t 1
(m

s)

f2 (Hz)

t2

a)

b)

Figure 5.11: Simulated data from a HETCOR (Heteronuclear Correlation) experiment

showing the effect of bulk susceptibility on the offset of the 31P . a) shows the simulated

pulse sequence and b) shows the simulated data.
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Probe Coils

The final example involves analyzing an NMR probe coil design. Dynamic Angle

Spinning (DAS)[101] experiments require the probe stator to move during the experiment. A

solenoid coil moves with the stator, however, as the stator angle approaches 0 degrees (with

respect to the high field), there would be little detected signal (or pulse power transmission)

because the high static magnetic field and coils field are parallel (resulting in a 0 cross

product). One can remove this shortcoming by removing the coil from the stator. But this

represents its own problem if the coil is a solenoid, because the stator is large compared to

the sample, and thus the solenoid would also have to be large thus reducing the filling and

quality factor too much to detect any signal. A suitable alteration to the solenoid would be

to split it. The entire probe design is the subject of a forth coming paper[102]. To optimize

the split solenoid design one needs to see factors like inhomogeneities and effective power

within the sample area. Figure 5.13 shows a split solenoid design as well the inhomogeneity

profile along the xy-plane (the high field removes any need for concern about the z-axis).

Compared with a normal solenoid, Figure 5.14, the field profile is much more

distorted, also given the same current in the two coils, the solenoid has 6 times more field

in the region of interest then the split-coil design. The figure also shows us a weak spot

in the split-coil design. The wire that connects the two helices creates the majority of

the asymmetric field profile, and is the major contributor to the inhomogeneity across the

sample. Correcting this by a U shape (or equivalent) should aid in correcting the profile.
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Figure 5.13: The magnetic field profile of a split solenoid (3 turns/cm with a radius of 0.3175

cm and a splitting of 0.6 cm), a practical coil to work around the Dynamic Angle Spinning

problem of the solenoid coil (see text). a) shows the coil as well as the region of interest

for the magnetic field (black points). b) shows the field profile along the x-direction given

3 amps of current. c) shows the effective inhomogeneity of such a coil for a proton. The

majority of the inhomogeneity is due to the small line connecting the two helical segments.

The average field of the coil was subtracted from the result in c).
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Figure 5.14: The magnetic field of a standard Solid State NMR probe detection coil (the

solenoid, 10 turns/cm with a radius of 0.3175 cm ). a) shows the coil as well as the region of

interest for the magnetic field (black points). b) shows the field profile along the x direction

given 0.5 amps of current. c) shows the effective inhomogeneity of such a coil for a proton.

The small peak to the right of the main peak is the edges of the sampled rectangle close to

the coil. The average field of the coil was subtracted from the result in c).
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5.5 Conclusions

Throughout this chapter, emphasis on the generic physical simulation design is

discussed for the specific case of NMR. The created tool kit, BlochLib, adheres to these

basic design ideas: speed using expression-templates and ease of use using C++ and ob-

jects/operators. BlochLib is designed to be the next generation of simulation tool kits for

NMR. It is highly optimized and generalized for almost any NMR simulation situation. It

has been shown that utilizing relatively modern numerical techniques and algorithms allows

a study of more complicated spin dynamics under various interactions and experimental de-

signs then previous NMR tool kits. The input of complex parameters, coding, and creation

of programs should be easy and highly optimized for both the classical and quantum me-

chanical aspects of NMR. Diffusion and other partial differential equation entities (like fluid

flow) are currently being designed for inclusion into the tool kit. Relaxation using normal

Louville space operators and Redfield approximations should also be included. The total

tool kit and documentation can be found at http://waugh.cchem.berkeley.edu/blochlib/, or

so I hope it remains after I leave. If it not there, I hope to maintain a copy and updates at

http://theaddedones.com/.

http://waugh.cchem.berkeley.edu/blochlib/
http://theaddedones.com/
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Chapter 6

Massive Permutations of Rotor

Synchronized Pulse Sequences

6.1 Introduction

Given that we have a large set of fast computational tools, I will now go into

an application beyond the typical scope of the ‘usual’ NMR simulation. The usual NMR

simulation consists of a pulse sequence that either needs to be simulated to validate an

experiment or add subtle corrections. Such simulations abound in the NMR literature to

the point that even including a reference list for such types of simulation, I would probably

have to reference 80% of the NMR publications around. In this chapter I wish to develop

a general frame work to optimize any rotor synchronized pulse sequence over long time

evolutions with an explicit example applied to the post-C7[99] sequence.
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Figure 6.1: A general rotor synchronized pulse sequence a) using pulses and delays, and b)

using a quasi continuous RF pulse.

6.1.1 Rotor Synchronization

Rotor synchronized sequences (RSS) are designed to create a specific average

Hamiltonian when observed in multiples of the synchronized parameter, n. n is the amount

of rotor periods the sequence takes to complete. Within the n cycle, there are typically two

different types of sequences. The first contains a series of pulses and delays as in Figure

6.1a. The second applies continuous RF radiation during the rotor cycles as in Figure 6.1b.

These RF sequences are designed to manipulate the spin space degree of freedom (the Tl,m

tensors) in conjunction with the spatial rotation the rotor performs (the Al,m tensors).

The RF pulses can be of arbitrary amplitude, phases and duration; however, the

rotor can only be spun in a constant direction and is not adjustable in terms of duration
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or phase during the course of an experiment. The speed of its rotation is manipulable,

however, doing so during the course of an experiment is unstable and unrealizable due to

the physical aspects of the rotation. For this reason, we typically say the rotor has a fixed

spinning rate, ωr and a corresponding period of τr = 2π/ωr. The synchronized parameter

then refers to n multiples of τr.

Almost all RSS sequences use continuous pulses. Each continuous pulse version

has a pulse–delay–pulse version counterpart. The pulse–delay–pulse versions have better

properties theoretically, but experimentally, they are extremely hard to implement. The

limitation is the assumption of hard pulses, for many experimental parameters and real spin

systems, a hard pulse is extremely hard to implement correctly.

6.2 Background Theory

6.2.1 Average Hamiltonian

Before we can really to describe specific RSSs, we need Average Hamiltonian The-

ory (AHT)[103] to attempt to understand the dynamics of such sequences. AHT uses the

periodicity of the Hamiltonian to render a time dependant problem into an approximate time

independent form. Given a periodic Hamiltonian of period τr, we can write the integrated

Hamiltonian at time τr as series of time independent Hamiltonians

τr∫
0

H(t)∂t = H̄0 + H̄1 + H̄2 + ... (6.1)
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where

H̄0 = 1
τr

τr∫
0

H(t)∂t

H̄1 = − i
2τr

τr∫
0

t∫
0

[H(t),H(t′)]∂t∂t′

H̄2 = −1
6τr

τr∫
0

t∫
0

t′∫
0

[H(t), [H(t′),H(t′′)]]

+ [H(t′′), [H(t′),H(t)]] ∂t∂t′∂t′′.

(6.2)

As an example, I will show the effect of the average Hamiltonian of a simple dipole

under a rotor rotation of ωr spinning at the rotor axis θr. The physical rotation only effects

the spatial tensors. The Hamiltonian for a disordered sample in a high field reduces to

H =

[∑
m

exp [−imωrt] d2
0,m(θr)

∑
m′

D2
m,m′(Ωrot)A2

m

]
T 2

0 (6.3)

where Ωrot = (φ, θ, γ) is the powder rotation. Given that there is no molecular orientation

to worry about, in a disordered solid, we easily expand the sum to get

H =

δz
16

√
3
2 (1 + 3 cos(2θ)) (1 + 3 cos(2θr))T 2

0 +

3δz
2

√
3
2e

−i(φ+ωrt) cos θ cos θr sin θ sin θrT 2
0 +

3δz
2

√
3
2e
i(−φ+ωrt) cos θ cos θr sin θ sin θrT 2

0 +

3δz
8

√
3
2e

−i(2φ+2ωrt) sin2 θ sin2 θrT
2
0 +

3δz
8

√
3
2e
i(2φ+2ωrt) sin2 θ sin2 θrT

2
0 .

(6.4)

When integrated over a period τr, we get

H̄0 =
δz
16

√
3
2

(1 + 3 cos(2θ)) (1 + 3 cos(2θr))T 2
0 . (6.5)

The rest of the average Hamiltonian orders, H̄n, are all zero because this Hamiltonian

commutes with itself at different times

H̄1 = − i
2τr

τr∫
0

t∫
0

[A(t)T 2
0 , A(t′)T 2

0 ]∂t∂t′

= − i
2τr

τr∫
0

t∫
0

A(t)A(t′)T 2
0 T

2
0 −A(t)A(t′)T 2

0 T
2
0 ∂t∂t

′ = 0.
(6.6)



6.2. BACKGROUND THEORY 145

Using Eq. 6.5 it is then easily to see we can pick θr such that H̄0 = 0. This

angle, called the magic angle, is arccos(1/
√

3) = 54.7◦. Magic angle spinning therefore

removes any isolated second order spatial tensors. For dipoles and 1st order quadrupoles,

this completely removes the interaction, for CSAs and J couplings it removes the anisotropic

shift. By isolated we mean there there is NO other interaction in the main Hamiltonian

that does not commute with the rest of the interactions. In real systems, we typically have

CSAs and dipoles and J couplings to consider over multiple spins. Then our commutation

rule breaks down and we must consider higher order AHT terms to get the proper answer.

It also should be noted that the solution here is only valid for the time t = τr, at any

other time, the other components of Eq. 6.4 do not integrate to zero. The typical NMR

experiment does not observe every t = τr but something less, the extra terms the introduce

‘side-bands’ in the resulting eigen–spectrum.

6.2.2 Recoupling RSS

RSSs have two main uses in NMR 1) to remove unwanted terms from the AHT

(decoupling) [104, 105, 106, 107, 108, 109] and 2) to selectively reintroduce certain terms

into an AHT (recoupling) [110, 111, 112, 113, 114, 115, 116, 99, 117, 118, 119, 120, 121,

122, 123, 124, 116]. Here we will focus on recoupling, but the methods introduced here are

easily extendable to decoupling.

Most RSS recoupling methods have been categorized very nicely by their symme-

tries. The reader is encouraged to look to Carravetta’s [110], Eden’s [105], and Brinkmann’s

[112] papers for more information, here we will simply give the results. RSSs are broken

into two different main classes, the R and C classes. Figure 6.2 show the main difference

between the two. Thus an entire RSS is made up from C or R subcomponents. The char-
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acteristics of the C sub element is that they perform a total rotation of 2π. The R subunit

rotates the spin states by π. To classify them even further Eden and Carravetta introduce

2 more symmetry elements along with n. N represents the time duration of a single sub

element as nτr/N = π for the R class and nτr/N = 2π for the C class. The next factor ν

along with N represent the phase iteration from one sub element to the next as shown in

Figure 6.2.

Carravetta and Eden showed that given proper selection of N , n, and ν that one

can select almost arbitrary elements to comprise the H̄0 element of the AHT given a certain

set of interactions (dipoles, CSAs, etc). To correct for higher order AHT terms one can

apply further symmetry if we know which tenser elements we desire.

Given a real experimental system, the basic C7 as shown in Figure 6.2 will fail

to produce desired results because of higher order commutators. Another aspect of a real

experimental system is that RF pulses are not perfect and resonant on only one frequency.

To make a C or R cycle robust towards inhomogeneity and offset of the RF pulse itself,

each C or R cycle must be internally compensated, in effect reversing the damage done by

a bad RF pulse. For the C cycles, this is easily performed by applying the same amplitude,

but reversing the RF phase by π, which reverses any problems, to first order, caused by

offsets and inhomogeneity problems. For the R cycles, we apply a second R with the phase

equal to −φ from the last (as we are treating a π pulse). We have assumed that over the

course of a single C/R cycle that the real system Hamiltonian can be considered constant,

which is why this only works to first order. Each C/R cycle gets an extra C/R attached as

shown in Figure 6.3a and b. This technique is called compensation. For the C cycles, we

have a total rotation of 4π, which can be divided into (π/2)φ − (2π)φ+π − (3π/2)φ which
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Figure 6.2: The two RSS classes C (a) and R (b).
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has better offset and inhomogeneity properties as demonstrated in Ref. [99]. This simple

reordering of the 4π is called ‘posting’ hence the name post-C7. The R sequences have now

a total rotation of 2π which can be split arbitrarily into many forms like a (θ1)φ − (2π −

θ1)φ+π − (θ1)−φ − (2π − θ1)−φ−π sequence. Figure 6.3c and d show this posting explicitly.

The RSS sequences produce desired tensor elements from a system Hamiltonian.

of the form

H̄0 =
∑
l

∑
m,m′

gm,m′Al,mTl,m′ + c.c. (6.7)

where c.c. means the complex conjugate and gm,m′ is a scaling factor. The scaling factors

is also an important aspect of these sequences as they determine the apparent spectral

distribution, and are needed when using these RSS in larger pulse sequences designs[113].

Calculation of the scaling factors for the R or a C type is a simple application of AHT.

A general rotation through the Euler angles (ψ, θ, φ), on an arbitrary tensor can

be represented using the notation for tensor rotation

Fl,m′ =
l∑

m=−l
e−im

′ψdlm′,m(θ)e−imφFl,m, (6.8)

where Fl,m′ is the rotated tensor and Fl,m is the original tensor. A given dipolar or CSA

interaction contains two unique tensor elements, the spatial part, A2,0, and a spin part, T2,0.

The RSS sequences rotate the spatial part by (0, θr, ωrt) where θr the angle of the rotor,

and ωr is the spinning speed (ωrt then represents the total phase). They also rotate the

spin part through the Euler angles (0, ωrf t, φ) where ωrf is the pulse amplitude (thus ωrf t

represents the total rotation angle) and φj is the pulse phase. Our dipolar Hamiltonian

under such a rotation becomes

A2,0T2,0 →
2∑

m=−2

d2
m,0(θr)e

−im2πωrtA2,m

2∑
m=−2

d2
m,0(2πωrf t)e

−imφjT2,m (6.9)
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Figure 6.3: Compensated C (a), R (b) and posted C (c), R(d) RSS sequences.
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Assuming that the symmetry pulse phases, φj , selects only terms with l = 2,m,m′ then

our rotated Hamiltonian becomes

A2,0T2,0 → (d2
2,0(θr)e

−i4πωrtA2,m)(d2
2,0(2πωrf t)e

−i2φT2,m′) + c.c. (6.10)

In order to calculate what the scaling factor in front of the A2,±mT2,±m′ terms we

need to make some assumptions about the applied sequence. First, the entire sequence is

applied over a multiple of a rotor cycle such that the sequence is periodic and AHT can be

used to continue the calculation. Second, the rotor cycle is divided into N subsections such

that during the jth subsection only the pulse phase, φi is varied and all subsections are the

same length in time, τ = n
ωrN

. The zeroth order average Hamiltonian is then

H̄0 =
N−1∑
j=0

1
τ

∫ (j+1)τ

jτ
d2
m,0(θr)e

−imπωrtd2
m′,0(2πωrf t)e

−im′φjdtA2,mT2,m′ + c.c. (6.11)

The scaling factor, g, is given as the total constant that multiplies A2,mT2,m′ in

the above equation.

gm,m′ =
N∑
j=0

1
τ

∫ (j+1)τ

jτ
d2
m,0(θr)e

−imπωrtd2
m′,0(2πωrf t)e

−im′φjdt (6.12)

6.2.3 C7

From this point I will discuss the C71
2, the C7[115] as it was originally named

before Eden’s paper. The post version was also tagged before Eden’s paper in Ref. [99].

This sequence produces a double quantum (DQ) AHT to zeroth order using the dipolar

Hamiltonian

H̄0 = g−1,2A2,−1T2,2 + g∗1,−2A2,1T2,−2. (6.13)

This Hamiltonian can then be used to determine approximate distance information

between atoms as it selectively evolves only terms from the dipolar Hamiltonian, creating



6.2. BACKGROUND THEORY 151

DQ coherences between them. The accuracy of the distances is related directly to how well

the C7 performs under all the various experimental and molecular considerations.

A good measure of the C7 ability to create DQ coherences, is to measure the

transfer between two spins. The transfer can be measured directly starting from an initial

polarization on spin 1 (ρo = I1
z ), application of the sequence, then a measurement of the

polarization on the second spin (Idet = I2
z ). Application of the sequence n times where

n >> 1 results in a steady state transfer of the coherence. Figure 6.4 shows the transfer

for different dipole couplings between the two spins. Introduction of CSA terms reduce the

effect of the transfer as also shown in Figure 6.4. The sequence used in the Figures is shown

in Figure 6.5a.

The dipole coupling determines the rate of transfer: a large rate means a closer

distance. One can easily see from Figure 6.4 that introduction of large CSA terms cause

the steady state transfer to fail. In multi–spin systems, this then leads to confusion of the

distance information. The effect is most pronounced at small dipole couplings where we

would like to achieve the best data for longer range distance determination. It would be

beneficial to remove as many higher order average Hamiltonians as possible in these RSS

type sequences.

6.2.4 Removable of Higher Order Terms

Usage of the RSS sequences is restricted to multiples of the rotor period. So long as

we create the zeroth order average Hamiltonian at the final observation point, the number of

rotor periods is arbitrary. The higher order terms of the C7 sequence introduce a variety of

other unwanted tensor components due to the commutators between the CSA and dipolar

Hamiltonians during each cycle. For a simple two spin system, the only other terms that
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Figure 6.4: Post-C7 transfer efficiencies on a two spin system with ωr = 5kHz for various

dipolar coupling frequencies (ωd). The dashed lines indicate a CSA on spin one of (δiso =

12000Hz, δani = 8700Hz, η = 0) and on spin two of (δiso = −5400Hz, δani = 12300Hz, η =

0).
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the barred sequence, c)permuted sequence, and d) the composition of a sub element.



6.2. BACKGROUND THEORY 154

can appear are combinations of T2,0, T2,±1 and T2,±2. Because we only wish to observe the

Iz terms in the evolved density matrix any solo T2,0 terms can be ignored as [T2,0, Iz] = 0.

Thus the only tensor component we wish to remove are the T2,±1 terms. These terms have

the property that they are odd under a parity transformation where as the T2,±2 are not.

In the first application of a RSS sequence generates any T2,±1 terms, the same sequence

with a global π phase shift (called barring) from the last will ‘reverse’ any evolution from

the T2,±1 while maintaining the evolution under T2,±2 terms. We can then easily alter the

original C7 sequence to include two C7 sequences with one barred relative to the last as

shown in Figure 6.5b.

Even in the 2–cycle C7 sequence errors can still accumulate from even higher order

terms, thus we can even bar the next 2 C7 relative to the last 2 resulting in a sequence like

C7− C̄7− C̄7− C7. We can continue this process, which is called super–cycling, until the

signal has decayed beyond observation. This super–cycling process was initially used most

dramatically in liquid state broadband decoupling[125, 126, 127, 128, 129, 130, 131, 132] but

is becoming more prevalent in solid–state NMR as the hardware and theory improve[112,

113].

Problems with super–cycling

The removal of higher order terms comes typically with a penalty. The sequence is

usually altered to include super cycles which can make the sequence very long. Most solid–

state samples have a relatively fast decay rate (T2 is on the order of mille–seconds where as

in liquids it can be seconds) meaning that super cycles cannot get very long. Perhaps not

long enough to remove all the terms necessary for efficient use of the sequence. Not only

do we have a time constraint, but even super–cycling for anisotropic samples can lead to
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diminishing returns due to hardware imperfections[133, 134].

This leads us to ask weather or not we can improve on the basic RSS in a framework

that allows us to measure the effectiveness of a particular super–cycle. We still would like

to use the basic symmetry principles that do provide useful removal of terms, but use them

in a time constrained way.

6.3 Permutations

The problem of determining the best set of RSS sub–cycles to use for a super–cycle

was one best handled using the symmetries of the underlying Hamiltonians. This technique

works very well for liquid samples where the Hamiltonians as isotropic and have nice sym-

metry properties. Techniques like MLEV[131, 130], WALTZ [127, 126], SPARC[125], and

GARP[128] use the symmetries to decouple liquid state spins in a highly optimal way. The

anisotropic and spinning environment of a solid–state experiment makes such application of

super–cycles hard and less effective. We now wish to see if there is a way for us to determine

the best set of cycles where the symmetry principles seem to fail. In order to investigate

the effect of different cycles, we will use the symmetry principles as our starting point, but

from there, the problem is open ended. We will use simple permutation to determine the

best sequence.

6.3.1 The Sub–Units

Any particular defined ordering of RSS sequences is a subunit. We will use a

particular naming scheme: the basic RSS sequence is labeled ‘o’ (lowercase ‘o’) as in Figure

6.5a, a barred RSS sequence is labeled ‘O’ (capital ‘O’) as in Figure 6.5b, an internal
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Table 6.1: A list of some sub–units for a C7 permutation cycle.
sub–units
o
O
w
W
oO
oOOo
wW
wWWw
oOWw
OooO
WwwW

permutation (a reordering internal to a single RSS cycle) of a RSS sequence is given the

label ‘w’ (lowercase ‘w’) as in Figure 6.5c, the bared version of the internal permutation

is given the label ‘W’ (captial ‘W’). A sub unit can be constructed from other subunits as

well so long as the subunit return the Average Hamiltonian to the desired result. Table 6.1

lists a few of the sub units for a C7.

6.3.2 The Measure

To determine the best sequence, we need some sort of measure that typifies the

RSS sequence. For a C7 sequence we desire T2,±2 terms above all other elements. So the

measure of a good sequence will have large T2,±2 terms while minimizing any other terms.

Since we are performing exact numerical simulations of the propagator of the various C7

cycles, we need to use the effective Hamiltonian

Heff =
−i
τ

log(U) =
∑
l

αl,mTl,m +
∑
l,l′

βl,m[Tl,m, Tl′,m′ ] + ... (6.14)

where τ is the total time of the super–cycle, α and β are complex constants. Because of the

commutation relations of Tl,m the higher order terms, when expanded, will reduce to terms
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proportional to a single tensor, thus numerically the sum is reduced to a sum of only the

αl,m components. αl,m is easily extracted by the trace operation

|αl,m| =

∣∣∣∣∣∣
∫ Tr

[
Heff (Ω) (Tl,m)†

]
Tr

[
Tl,m (Tl,m)†

] dΩ

∣∣∣∣∣∣ . (6.15)

In Eq. 6.15 the integral over all the power angles as the effective Hamiltonian is Ω dependent.

We are also only interested in the magnitude as any sign changes are easily phased away.

For the C7 we can now define two measures. Given n different sequences, the ratio of the

magnitudes of the ith sequences αi2,±2 to the original ‘non-permuted’ sequence α0
2,±2 should

be large for good signal–to–noise in an experimental setting, M i
mag. The second, and better

theoretical measure is the ratio of the αi2,±2 terms to the rest the undesired tensor terms,

the maximum being the best sequence, M i
R.

M i
mag = |αi

2,±2|
α0

2,±2

M i
R = |αi

2,±2|∑
l6=2,m6=±2

|αi
l,m|

Mmag = max(M i
mag)

MR = max (M i
R)

(6.16)

The goal for any given master cycle is to maximize both of these measures, using MR as the

master measure. Some of the αl,m terms are not relevant to the MR measure. For instance,

because the T2,0 terms do not effect the evolution, they should not be counted in the sum.

Also other generated tensors are more harmful to the evolution then others. For the C7,

extra Iz terms are worse then Ix,y terms, so the MR should weight the z terms more. A

revised version of the M i
R is given as

M i
R =

∣∣αi2,±2

∣∣∑
l 6=2,m 6=±2

bl,m

∣∣∣αil,m∣∣∣ (6.17)

where bl,m are the relevant weighting factors.
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6.3.3 Algorithmic Flow

There are many algorithmic sub components to optimally generate and measure

each master cycle. Because we have a time constrained problem, there will be a maximum

number of sub–units that we can apply, P . An arbitrary permutation can be constructed

from any subset of the available sub–units. The number of sub–units in a given subset is

called N . The task is to generate all the valid permutations of length P from subset of

length N . P is not necessarily a factor of N (i.e. P/N 6= 0), we then must select the

largest subset, N ′, of the N sub–units that are factors of P . Then to generate all the valid

permutations we need to generate all the K–subsets of N of length N ′, then generate all

the permutations of length P . Using the K–subsets can produce similar permutations from

another K–subset, so we need to remove any duplicates. The time symmetry all the RSS

sequences indicates that a master cycle will give exactly the same results as the reverse

of that master cycle, so when we generate the permutation list we must remove all the

duplicates and reverse duplicates (i.e. [1234] is the same as [4321]). The general method to

generate the permutations lists can be summarized below.

1. Determine the number of distinct sub–units, N .

2. Determine the sequence length (the total number of individual sub–units to apply),

P .

3. Generate all the possible K-subsets given N sequences and the length P . For instance

if N = 2, and P = 3, the available K-subsets are {1, 2}, {1, 3}, and {2, 3}. K-subsets

that are the reverse of another K-subset are also removed from further calculation.

4. For each K-subset, generate all the permutations. For instance a K-subset of {1, 2, 3}
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and P = 3 has these permutations: {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, and

{3, 2, 1}.

5. Since there can be duplicate permutations within different K-subset permutation lists,

remove all duplicates.

6. Remove all the reverse permutations from the master list. For instance the permuta-

tion {2, 3, 1} would be removed because {1, 3, 2} is already included.

To save much computational effort, the removal of reverse permutations and du-

plicates can occur at the time each permutation is generated. The removal of the reversed

permutations for large permutations sets (sets larger than 20 items) is a computational lim-

itation because of the searching problem. On a 700 MHz Pentium III Xeon, the generation

of unique non-reversed, permutations for a length 20 system takes 2 hours. The generation

of a length 40 list proved too memory intensive as over 1047 permutations would need to be

searched for duplicates and reversed duplicates. Given a list that large (even if it was cut in

half) would also prove prohibitively time demanding to calculate the effective Hamiltonians

for all 1047/2 sequences. In practice, the simulations used either N = 2 or N = 4 distinct

sequences. The maximal length, P , for the sequences was found to be 20 for N = 2 and

12 for N = 4 that can be handled without huge memory and time requirements. We will

apply the label N × P for each of the calculated permutation data segments. For a 2× 20

segment there are 92504 unique non reversible permutations and for a 4× 12 segment there

are 184800 unique non reversible permutations.

As an algorithmic point, only integers representing each sub–unit are necessary

to perform the permutation calculation. This saves much time when both generating the

permutations and comparing them for duplication.
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Table 6.2: Sequence Permutation set for the effective Hamiltonian calculations of the

post-C7 sequence.
N P basic Units (length)

2 (2,4,8,12,16,20)

o, O (2,4,8,12,16,20)
w, W (2,4,8,12,16,20)
oO, wW (4,8,16,24,32,40)
wO, oW (4,8,16,24,32,40)
ow ,OW (4,8,16,24,32,40)
oOOo, wWWw (8,16,32,48)
oOWw, OowW (8,16,32,48)
oOOo, WwwW (8,16,32,48)

4 (4,8,12)
o, O,w,W (4,8,12)
oOOo, wWWw, Ww, Oo (12, 40)

Because the 2 × 20 and 4 × 12 was our computer limitation, and many of the

desired sequences are applied for many more cycles then 20 or 12, the third stage of the

program allows the ability to use any number of sub permutations for each index N. To

calculate all the effective Hamiltonians and their spin operator components in a 2 × 20

system for 2 spins spinning at a rotor speed of 5000 Hz for 1154 powder average points

took 5 days on a single processor. The program is able to distribute the powder average

over multiple workstations to allow linear scaling of the calculation. Table 6.2 shows the

calculated sequences calculated for the post-C7 permutations.

The next stage is generating all of the spin tensors desired to figure out the tensor

components. The tensors themselves can be generated using similar permutation techniques

as the N × P by labeling each spin by an integer and each direction as an integer. Table

6.3 shows which tensors were used for this study.
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Table 6.3: Spin operators and tensors generated to probe the effective Hamiltonians
Type Form
1st order Cartesian Iir, (r = x, y, z)
2nd order Cartesian IirI

i′
r′(r = r′ = x, y, z)

1st order spherical T
(i,i′)
l,m , (l = 1, 2,m = −l...l)

2nd order spherical T
(i,i′)
l,m T

(i′′,i′′′)
l′,m′ , (l = l′ = 1, 2,m = m′ = −l...l)

Table 6.4: Spin System parameters for the three sets of permutations. All units are in Hz
System Label Spin parameters

SS1

13C1 CSA (δiso = 1254, δani = 12345, η = 0)
13C2 CSA (δiso = −1544, δani = 8552, η = 0)
13C1–13C2 dipole (δani = 2146)

SS2

13C1 CSA (δiso = 1254, δani = 12345, η = 0)
13C2 CSA (δiso = −1544, δani = 8552, η = 0)
13C1–13C2 dipole (δani = 2146)
1H3–13C1 dipole (δani = 4506)
1H3–13C2 dipole (δani = 7564)

SS3

13C1 CSA (δiso = 1254, δani = 12345, η = 0)
13C2 CSA (δiso = −1544, δani = 8552, η = 0)
13C1–13C2 dipole (δani = 2146)
1H3–13C1 dipole (δani = 4506)
1H3–13C2 dipole (δani = 7564)
1H4–13C1 dipole (δani = 2150)
1H4–13C2 dipole (δani = 4562)
1H3–1H4 dipole (δani = 15546)

6.4 Data and Results

6.4.1 Sequence Measures

There were over 500000 different C7 master cycles simulated and measured. The

next few figures will show the data, giving both the MR and Mmax for all the sequences of

a given number of C7 cycles as well as the best one showing you the tensor components.

There are three different sets of data corresponding to 3 different numbers of nuclei. Table

6.4 shows the spin system parameters for each set.



6.4. DATA AND RESULTS 162

Table 6.5: Relevant weighting factors for Eq. 6.17
Tensor weight(bl,m)
Iiz 0.2381 (a factor of 5)
Iix,y 0.0952 (a factor of 2)
T i,j2,0 0 (a factor of 0)
T i,j2,±1 0.0476 (a factor of 1)

The spin parameters were chosen to avoid any rotational resonance conditions with

either the spinning rate or the RF amplitude. They were also chosen as a representative

organic molecule so dipole and CSA values are consistent with peptides and amino acids

(although no one amino acid was used). The couplings were chosen to be all the same order

of magnitude as the spinning frequency ωr = 5kHz as to be in the regime of truly non-ideal

conditions where the benefits of the permutation cycles would show more dramatically. If

the spinning rate (and consequently the RF power) are high, then the average Hamiltonian

series converges must faster as each order falls off like (1/ωr)n. As with most of the RSS

sequences, an experimental limit is usually reached with an RF power of 150kHz. For the

C7 this implies a maximum rotor speed of about 20 kHz. For other CN sequences ωr is

much less, so 5000 kHz is a good value to investigate the properties of the sequences.

To handled the data more effectively, only the first order tensors of Table 6.3 were

considered in theMR measure. The higher order tensors were recorded, but as stated before,

the commutation relations of 2 spin 1/2 nuclei reduce them all to first order tensors. The

higher order tensors can give better insight as to the coherence pathways the error terms

follow, which could potentially be used to construct sequences and phase cycles that remove

these pathways. The relevant weighting factors for Eq. 6.17 are given in Table 6.5.
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Figures 6.6–6.14 show the data recorded for the SS1 system for a total sequence

length of 4,8,12,16,20,24,32,40,48 respectively. Figures 6.15–6.20 show the data recorded for

the SS2 system for a total sequence length of 4,8,12,16,24,32 respectively. Figures 6.21–6.26

show the data recorded for the SS3 system for a total sequence length of 4,8,12,16,24,32

respectively.
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Figure 6.13: Spin system SS1 with 40 total number of C7s applied.
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Figure 6.14: Spin system SS1 with 48 total number of C7s applied.



6.4. DATA AND RESULTS 173

5 10 15 20 25

0.5

1

1.5

2

5 10 15 20 25

0.1

0.11

0.12

0.13

0.14

0.08 0.1 0.12 0.14 0.16
0

1

2

3

0 0.5 1 1.5 2 2.5
0

1

2

3

oooo
woOW 
OooO 

Sequence (i) Sequence (i)

bi
n 

co
un

t

bi
n 

co
un

t

Ix
1

-1T2, 
0,1

T2,0
0,1

T2,1
0,1

T2,2
0,1

T2,-2
0,1

Ix
0

I y
1

I y
0

I z
1

I z
0

Mmag
i

MR
i

MR
i

Mmag
i

Spin System, SS2, Total number of post-C7's=4

Mmag
M R

post-C7

10
-3

10
-2

Magnitude of Tensor

Figure 6.15: Spin system SS2 with 4 total number of C7s applied.
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Figure 6.16: Spin system SS2 with 8 total number of C7s applied.
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Figure 6.17: Spin system SS2 with 12 total number of C7s applied.
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Figure 6.18: Spin system SS2 with 16 total number of C7s applied.
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Figure 6.19: Spin system SS2 with 24 total number of C7s applied.
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Figure 6.20: Spin system SS2 with 32 total number of C7s applied.
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Figure 6.21: Spin system SS3 with 4 total number of C7s applied.
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Figure 6.22: Spin system SS3 with 8 total number of C7s applied.



6.4. DATA AND RESULTS 181

200 400 600 800

1

2

3

4

200 400 600 800

0.08

0.1

0.12

0.06 0.08 0.1 0.12 0.14 0.16
0

2

4

6

8

0 1 2 3 4 5
0

5

10

15

oooooooooooo
wWwWwwwWWWWw
oOooooOOOoOO

Sequence(i) Sequence (i)

bi
n 

co
un

t

bi
n 

co
un

t

Ix
1

-1T2, 
0,1

T2,0
0,1

T2,1
0,1

T2,2
0,1

T2,-2
0,1

Ix
0

I y
1

I y
0

I z
1

I z
0

Mmag
i

MR
i

MR
i

Mmag
i

Spin System, SS3, Total number of post-C7's=12

Mmag
M R

post-C710
-3

10
-2 10

-1
Magnitude of Tensor

Figure 6.23: Spin system SS3 with 12 total number of C7s applied.
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Figure 6.24: Spin system SS3 with 16 total number of C7s applied.
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Figure 6.25: Spin system SS3 with 24 total number of C7s applied.
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Figure 6.26: Spin system SS3 with 32 total number of C7s applied.
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6.4.2 Transfer Efficiencies

The amount of data is quite overwhelming however; the results can be consolidated

into a single sentence. Small permutation cycles (i.e. the total number of C7 was less then

8) give expected results from symmetry considerations, any master cycles where the total

number of C7s is greater then 8 give results seemingly uncorrelated results using only the

basic symmetry principles. This is in fact what we were looking for. It does not necessarily

mean that for the longer sequences, that symmetry considerations could not have produced

the desired sequences. In fact the generated sequences are the best conditions to cancel

higher order terms, which if the full average Hamiltonian sequence was generated could

have designed by hand. Of course calculating the average Hamiltonian sequence is a much

harder problem then simply probing the effectiveness of a given sequence. Table 6.6 lists

the best permutation cycles found for each spin system and total number of C7 calculated.

In both the SS2 and the SS3 data sets, the protons were not decoupled from

the 13C nuclei, and the generated sequences are thus different for each spin system. Ideal

decoupling of the protons would give the same sequences as SS1. There is a problem using

decoupling in RSS sequences. As we are applying a continuous rotation to the carbons,

the RF power applied to the protons must be larger then the power applied to the carbons

for decoupling otherwise we would effectively synchronize the motions of the two nuclei,

creating more recoupling then decoupling. The power ratio condition has been empirically

found to be ωdecouplingrf > 3 ∗ω13C
rf [108, 135, 136]. For large N or large spinning rates in RSS

sequences this is very hard to satisfy experimentally. Because ω
13C
rf can be large itself, we

should be able to use this as our decoupling field. One can then use similar the symmetry
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Table 6.6: Best C7 permutation sequences for each spin system and C7 cycle length.
System permutations

SS1

length best permutation
4 oOOo
8 oOOoOooO
12 oOOooOoOOooO
16 oOoOOoooOOOooOoO
20 ooooOoooooOOOOoOOOOO
24 owOWOWowowOWowOWOWowowOW
32 owowOWowowOWOWOWowowowOWOWowOWOW
40 owowowowowowOWOWOWOWowowowowOWOWOWOWOWOW
48 oOOooOOooOOooOOooOOooOOowWWwwWWwwWWwwWWwwWWwwWWw

SS2

length best permutation
4 OooO
8 oOOoOooO
12 oooOOOoooOOO
16 ooooOOOoOoooOOOO
24 owOWowowOWowOWowOWOWowOW
32 oOOowWWwoOOowWWwoOOowWWwoOOowWWw

SS3

length best permutation
4 ooOO
8 woOwoWOW
12 oOooooOOOoOO
16 oOoOooooOOOOoOoO
24 owOWOWowOWOWowowOWowowOW
32 wOoWoWwOwOwOoWwOwOoWoWoWwOoWwOow
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Figure 6.27: Pulse sequence, initial density matrices and detection for a transfer efficiency

measurement.

considerations to also remove higher order 1H−13C cross terms. For systems SS2 and SS3

the search found permutation sequences that minimized these as well simply because the

larger a T2,±2 term the less the 1H −13 C cross terms as our polarization is conserved1.

To investigate the effectiveness of the generated sequences, we looked at the trans-

fer efficiencies over a range of offset conditions. The applied pulse sequence is shown in

Figure 6.27. The efficiencies for the original C7 and the post-C7 are shown in Figure 6.28

for the SS1 system changing only the offset parameters of 13C1 and 13C2. The basic C7 is

only effective when the difference between two offsets is zero, with dramatic increases when

a rotational resonant condition is met (|δ1iso − δ2iso| = nωr). The post-C7 is effective over

a much wider range of offsets, with a sharp drop after a positive offset difference over the

spinning rate.

The next few figures will show the transfer efficiencies for each of the best sequences

as determined from the total C7 length of 4, 8, 12, and 16, comparing them to the original
1Unitary evolution cannot increase the polarization of the system.
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Figure 6.28: Transfer efficiencies for a 4 fold application of the basic C7 and the post-C7

for the SS1 system as a function of 13C1 and 13C2 offsets at ωr = 5kHz.
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post-C7 sequence given a length of 4, 8, 12, and 16. There are two different views for

each data set. The first is the 3D profile, which gives a better view of the form of transfer

function, the second is the gradient–contour plot for numerical representations. Data for

spin system SS1 are shown in Figures 6.29 and 6.30. Data for spin system SS2 are shown

in Figures 6.31 and 6.32, and data for spin system SS3 are shown in Figures 6.33 and 6.34.
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Figure 6.29: 3D transfer efficiencies plots for a 4,8,12,16 fold application of the post-C7 and
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Figure 6.30: Contour–gradient transfer efficiencies plots for a 4,8,12,16 fold application of

the post-C7 and the best permutation cycles for the SS1 system as a function of 13C1 and
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Figure 6.31: 3D transfer efficiencies plots for a 4,8,12,16 fold application of the post-C7 and

the best permutation cycles for the SS2 system as a function of 13C1 and 13C2 offsets at

ωr = 5kHz.



6.4. DATA AND RESULTS 193

0 0

0
0

0

0. 1

0 .1

0.2

0. 2

0.3

0. 3

0

0

00
0. 10. 2 0.3

0 3

0. 4

0. 4

0. 5

0.5

0.6

0

0

0

0

0. 1

0.1

0.2

0. 2

0.30. 3

 

0

0

0

0

0

0.
1

0.
1

0
.10. 2

0.2

0.20.
3

0. 3

0.3

0. 4
0. 4

0

0

0

0

0

0
0. 1

0. 1

0.1
0.1

0.2

0. 2

0.2
0 0

0

0
0

0
0

0

0

0
0

0

0.
1

0.
1

0.1

0.20.2

0.3

0.3

 20  10 0 -10 -20
 20

0

20
 0. 1

0

0

0

0

0

0

0 1

0. 1

0.1

0. 1

0.1

0.2
0.
2

0.2

0.
2

 20  10 0 -10 -20
 -20

0

20

0

0

00
0

0

0 0 1

0.1

0. 1

0.1

0. 1

0.2

0. 2

post-C7 after 4 applications

post-C7 after 8 applications

post-C7 after 12 applications

post-C7 after 16 applications

Best 4 permutation

Best 8 permutation 

Best 12 permutation 

Best 16 permutation 

Transfer Efficencies for SS2 Spin System vs. Offsets

13C2-offset (kHz)

13
C

1-
of

fs
et

 (k
H

z)

13C2-offset (kHz)

Figure 6.32: Contour–gradient transfer efficiencies plots for a 4,8,12,16 fold application of

the post-C7 and the best permutation cycles for the SS2 system as a function of 13C1 and
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Figure 6.34: Contour–gradient transfer efficiencies plots for a 4,8,12,16 fold application of

the post-C7 and the best permutation cycles for the SS3 system as a function of 13C1 and

13C2 offsets at ωr = 5kHz.
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As the Figures clearly show, the permuted sequences are always better then the

standard post-C7 sequences. We can generate similar views as in Figure 6.4 by taking slices

along each of the above figures using each the best permutation cycle. These complete

transfer diagrams are shown in Figures 6.35-6.37 for systems SS1, SS2 and SS3 respectively.

The resulting transfers are on average 50% better in efficiency transfer and 25% more stable

(the standard deviation across specific offset value) then the original sequence.

6.5 Conclusions

RSS sequences represent a large class of the pulse sequences used in solid-state

NMR. They rely on generation of a specific zeroth order average Hamiltonian. However, in

real systems the desired effect this zeroth order average Hamiltonian is destroyed by many

experimental and system specific parameters. To correct for these problem, the symmetry

of the system and the zeroth order average Hamiltonians are used to cancel other terms in

the expansion. The implementation of symmetry is usually broken into two parts. Internal

compensation and posting techniques as designed to act on a small part of the total sequence.

Super–cycling takes these internally compensated sequences through application of phase

shifts, attempts to compensate for errors in the total sequence. This process, for small

number of sequence applications tends to work very well to compensate for errors. As

the sequence becomes longer and longer, this simple approach breaks down as higher and

higher order terms and errors accumulate. Determination of the best super–cycle for these

longer sequences becomes a tedious task as many orders of the average Hamiltonian must

be calculated and analyzed for weaknesses, a task for the general spin system is nearly

impossible analytically. We can, however, use a permutation approach to the problem as
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over different cycles for the SS1 spin system.



6.5. CONCLUSIONS 198

4 6 8 10 12 14 160. 4

0. 3

0. 2

0. 1

0

0.1

0.2

0.3

0.4

4 6 8 10 12 14 16 0.2

 0.1

0

0.1

0.2

0.3

0.4

0.5

cycles

Tr
an

sf
er

 E
ffi

en
cy

 

Original post-C7

Best Permutation

 -12000 Hz     |      -12000 Hz  

 -12000 Hz     |       0 Hz  

 -12000 Hz     |    12000 Hz  

 0 Hz              |    -12000 Hz  

 0 Hz              |    0 Hz  

 0 Hz              |    -12000 Hz  

12000 Hz       |   -12000 Hz  

 12000 Hz      |    0 Hz  

 12000 Hz      |    12000 Hz  

13C1,δiso 13C2,δiso 

Figure 6.36: Transfer efficiencies using the post-C7 and the best permutated cycles across

over different cycles for the SS2 spin system.
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Figure 6.37: Transfer efficiencies using the post-C7 and the best permutated cycles across

over different cycles for the SS3 spin system.



6.5. CONCLUSIONS 200

we have shown here to generate markedly improved sequences using only the well known

symmetry principles used for the shorter sequences.
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Chapter 7

Future Expansions

The permutation technique described in chapter 6 is limited only by computer

power and memory. For the study of the post-C7 the total simulation time for all of the

permutations in all of the spin systems took about 3 weeks running on 4 different processors.

If we had not optimized each step as we have done in chapters 4 and 2 this problem would

have taken months to accomplish.

One may ask themselves why every permutation had to be calculated? Why

not perform a minimization (or maximization in this case)? There are two fundamental

problems associated with using normal minimization methods. The first is the vast di-

mensionality of the system. Using gradient or simulate annealing methods would almost

certainly find local minima and not global minima unless it can sample most of the space.

The second problem is that there is little information about the functional form of this

‘minimization’ function. We cannot say it is continuous or single valued making gradient

searching techniques inaccurate and not robust. We are still not even sure if the function

at point a parameter point A has any method of getting us to A+ 1 without a look–up
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table approach. If it is a look–up table, then running all the permutations seems to be

the only way, unless we leave gradient/distance based minimization techniques. It is for

these reasons that these techniques failed to produce any reasonable answers, and why the

permutation approach seems to be the best alternative at the time.

There are techniques for both search very large dimensional spaces as well as the

‘look–up’ table problem and both are easily tackled using Evolutionary type Algorithms

(EA)[137, 138], or Neural Networks (NN), or even both. I will discuss both in turn a give

the basic structure for implementing both of these structures and the problems that should

be able to be tackled using them.

7.1 Evolutionary Algorithms (EA)

The basics of an EA begin with a ‘gene.’ A gene in the biological sense propagates

forward by creating children. These children contain some mixture of both parents due to

crossover/breeding and mutations. A gene is then only likely to survive if it has a suitable

mixture of the good qualities from the parents. It will die off if the child has inherited most

of the bad ones. The relevance of ‘good’ and ‘bad’ from an algorithmic point of view is

given as follows: a ‘good’ gene is one which has a fitness better or close to the parents value,

a ‘bad’ gene has a worse fitness then the parents. The fitness can simply be an evaluation

of the function giving a χ2 or distance value or in our case the MR value. We wish to find

the best gene/phenotype we can.

There two different classes of EA using the blending mechanisms. If the blending

mechanism includes both crossover and mutation it is called a Genetic Algorithm (GA)[139,

140, 141], if it only uses mutation (i.e. the children have no ‘parents’, just mutated versions
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of itself) then this is call Evolutionary Programming (EP)[142, 143]. GAs use both a type

of forced evolution from the parents and a pure evolution from mutation, where as EPs use

only the pure evolution. A sub class of GAs is the Differential Evolution (DE)[144] where

a child can have more then one parent. However the blending is performed, a strategy

is typically devised for moving one step in a generation. These are usually called p–c

Evolutionary strategies[145, 146], ES(p,c). Here p is the number of parents, and c is the

number of children to be generated. These ESs are best shown pictorially as shown in

Figure 7.1 along with a sub class of ESs, the ‘plus’ and ‘comma’ methods.

Which ever strategy is used we need to make our problem and the parameter space

fit into a gene. There are many different ways of implementing such a gene using the RSS

structure based on the number of assumption we can/wish to make. Using the methodology

we discussed in chapter 6 our gene is of the length of the total number of cycles in we wish

to optimize. A ‘base–pair’ is then one of the 4 possible symmetry cycles (o,O,w,W ). Two

arbitrary parent genes and a resulting child gene is shown in Figure 7.2. Initially we would

generate a random set of these genes for the parents and evaluate the fitness for each of

them (here it would be MR) . In fact it would be better to pick genes that span the extremes

of the parameter space. This means including genes with all of one type of base–pair (i.e.

(o,o,o,o,o...), (W,W,W,W,W,W,...), (w,w,w,w,w,w,...), (O,O,O,O,O,...)). If one does not

span the entire range initially, it is likely that the minimization will remain in the local

range initially generated, or that it will take many iterations to get out of the local area.

The next step is where a GA or DE or EP algorithmic decision comes into play

as well as the rates of mutation and cross over points. A diagram showing the plus and

comma type of ES(2,1) for an EP algorithm is shown in Figure 7.3. A diagram showing the
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Figure 7.1: The standard evolutionary strategy methods and controls.
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crossover point=3
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no mutations

Figure 7.2: An arbitrary permutation cycle parent genes and resulting child.

plus and comma type of ES(3,2) for a GA algorithm is shown in Figure 7.4, and a diagram

showing the plus and comma type of ES(3,1) for a DE algorithm is shown in Figure 7.5.

DE methods are particular suited for continuous parameter space problems where the ‘add’

function in Figure 7.5 makes some sort of since. Both EP and GA methods are better suited

for the ‘4–switch’, (w,W,o,O), type of values we want to search for.

In the permutations examples, we have limited ourselves to the basic symmetry

4–switch, we should be able to use the DE types for more complex searches. For instance

we can arbitrarily change the phase of each RSS cycle and find a minimum. This phase

changing should provide even better cycles then the permutation method as hinted by the

super–cycle of Ref. [120]. This leads us to another branch of searches were we may begin

to find different ‘post’ methods for an internal compensation of sequences. This type of

internal search has been performed before, however, using the gradient techniques and for

a much less general problem[147].
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Figure 7.6: Basic 1 and 2 layer feed–forward neural networks.

7.2 Neural Networks

There is astounding amount of literature on neural networks, much of it organized

towards programmers[148, 149, 150]. To go through all but the most basic of neural networks

here, would be much too much, so I will only attempt to scratch the surface of their

capability. A neural network is simply a number of nodes connected by weights to other

nodes based on neurons in a brain. It is designed to recreate a function when the function

is unknown. Like a brain, in order to make predictions it must be trained. The training

process is the hardest part of designing a NN and is crucial to the prediction power of a

network[151]. For a network to begin to model a function, it must be trained with known

inputs and outputs, then it should be able to give the correct outputs based on arbitrary

inputs for a particular model. Figure 7.6 represents a subclasse of NNs used for predictive

purposes, a one and two level feed–forward (FF) NN (there are others, such as self organizing
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networks). The ‘feed-forward’ implies that the input layer, I, effects the next layer(s) (called

the hidden layers) and these effect the output layers. Each node, i, in a FFNN uses the

weights, wij of the previous layer passed through a ‘relevance’ or threshold (R) function

which determines its value, Ni.

Ni = R

[ ∑
connected nodes

wijIj + bi

]
(7.1)

The relevance function is used to model a typical neuron electronic switch where

if the electric potential is high enough, it will pass on the signal, if it is not, the signal will

halt there. The relevance function is usually a sigmoid function (1/(1 + exp(−A))) or a

simple step function. The sigmoid allows for a small range of valid signals to pass, where

as the step function does not. There is also a bias value bi applied to each value.

To train a network one typically picks a fixed number of hidden layers, and then

manipulates the weights wij and the connectivity of the nodes. This is where the majority

of the NN literature is based as in essence we wish to choose only the relevant data[152]

and determine the connectivity and weights as a minimization process. One can even use

evolutionary techniques to perform the minimization[153]. The simplest technique is back

propagation. This minimization process does not try to determine any relevance or node

removal; it simply uses the differences in the desired values and the current output values

to adjust the weights and biases. Given a training data set, we can specify a ‘learning–rate’

(a value from 0..1) that determines the amount to adjust the weights given the distances.

If we choose a learning rate of 1 then the network will quickly adjust the weights to match

that one data set, if it is 0 then no adjustments occur with the differences. A simple back

propagation fully connected FFNN C++ class is given in Appendix A.1.5.

So what could a NN provide in our optimization of the generic RSS (and potentially
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other) sequences? As you can see the amount of data generated from the permutation study

is quite large. We now have a huge training data set. In essence one could train a NN given

the permutation order as the output, and the tensor coefficients as the input. As we generate

more and more data we could even output a phases of an RSS sub–cycle from the tensor

coefficients. After the training, we should be able to see two things. The first, and most

obvious, is attempting to input our maximum T2,±2 condition and see what the network

produces as an answer. The second, and I think more interesting, is the information that

can be obtained from the relevant weights and connectivity’s. From these particular values,

it could be possible to find the most relevant pathways, which we could then infer possible

symmetry classes to the general analytical problem. If nothing else, a properly trained NN

can at least give us the good answers from a sequence abstraction without having to go

through each permutation or phase shift, only a much smaller subset of them.

7.3 Final Remarks

The majority of this thesis is geared to the creation of fast numerical techniques

and algorithms to simulate NMR situations as fast as one can. We can now tackle problems

that were before next to impossible before this assembly. The genetic and neural networks

applications are some of the more interesting paths to follow as their implementation is now

some what possible given the processes shown here. There results, however, are unknown.

For all I know, these newer algorithmic techniques may not give much new insight to the

basic problems and control of NMR. However, simply looking at the statistical distributions

of one RSS sequence has demonstrated that the solution NMR seeks is usually the far outlier

(our evolutionary searches), while most of the data fits into a nice distribution (the neural
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networks). Optimal control of a given NMR system may soon be reduced to a trained neural

network producing first order results (pulse sequences), while the evolutionary techniques

find the optimum.
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Appendix A

Auxillary code

The code presented here are all dependant on the BlochLib library and tool kit.

As a result you will probably need it to compile this code. You can get it here

http://waugh.cchem.berkeley.edu/blochlib/ (and if it is not there I hope to maintain a copy

here http://theaddedones.com/ and perhaps http://sourceforge.net/). The code examples

here are relatively short and should be easily typed in by hand.

A.1 General C++ code and examples

A.1.1 C++ Template code used to generate prime number at compilation

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Program by Erwin Unruh
// Compile wi th : g++−c prime . cc | & grep convers ion
// The ’ grep ’ command p i c k s out on ly the e r ro r s we want to see
// namely those wi th the prime numbers

// Class to c r ea t e ” output ” at compi le time ( error messages )

// g i v e s error on D=in t
template < int i , int prim> struct D { } ;
//no error on D=in t
template < int i > struct D<i ,0> { D( int ) ; } ;

// Class to compute prime cond i t i on
template < int p , int i > struct i s p r ime {

enum { prim = ((p%i ) && is pr ime < ( i >2 ? p : 0 ) , i −1>::prim ) } ;
} ;
// s p e c i f i c i n s t ance s to s top
template<> struct i s p r ime <0 ,1> { enum { prim = 1 } ; } ;
template<> struct i s p r ime <0 ,0> { enum { prim = 1 } ; } ;

http://waugh.cchem.berkeley.edu/blochlib/
http://theaddedones.com/
http://sourceforge.net/
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// Class to i t e r a t e through a l l v a l u e s : 2 . . i
template < int i > struct Prime pr int {

Prime print<i−1> a ; // cascade from i to 2
enum { prim = is pr ime<i , i −1>::prim } ;

// w i l l produce an error i f ’ prim’==1
// ( i f we have a prime number )
void f ( ) { a . f ( ) ; D<i , prim> d = prim ; }

} ;
// s p e c i f i c in s tance to s top at i=2
template<> struct Prime print <2> {

enum { prim = 1} ;
void f ( ) { D<2,prim> d = prim ; }

} ;

void f oo ( ) {
Prime print <25> a ;
a . f ( ) ;

}

/∗∗∗∗∗∗ expec ted output from ’ Prime print<25> a ; a . f ( ) ; ’

prime . cc : 3 0 : convers ion from ‘ Prime print <2>::{anonymous enum} ’
to non−s c a l a r type ‘D<2,1> ’ r e que s t ed

prime . cc : 2 5 : convers ion from ‘ Prime print <3>::{anonymous enum} ’
to non−s c a l a r type ‘D<3,1> ’ r e que s t ed

prime . cc : 2 5 : convers ion from ‘ Prime print <5>::{anonymous enum} ’
to non−s c a l a r type ‘D<5,1> ’ r e que s t ed

prime . cc : 2 5 : convers ion from ‘ Prime print <7>::{anonymous enum} ’
to non−s c a l a r type ‘D<7,1> ’ r e que s t ed

prime . cc : 2 5 : convers ion from ‘ Prime print <11>::{anonymous enum} ’
to non−s c a l a r type ‘D<11 ,1> ’ r e que s t ed

prime . cc : 2 5 : convers ion from ‘ Prime print <13>::{anonymous enum} ’
to non−s c a l a r type ‘D<13 ,1> ’ r e que s t ed

prime . cc : 2 5 : convers ion from ‘ Prime print <17>::{anonymous enum} ’
to non−s c a l a r type ‘D<17 ,1> ’ r e que s t ed

prime . cc : 2 5 : convers ion from ‘ Prime print <19>::{anonymous enum} ’
to non−s c a l a r type ‘D<19 ,1> ’ r e que s t ed

prime . cc : 2 5 : convers ion from ‘ Prime print <23>::{anonymous enum} ’
to non−s c a l a r type ‘D<23 ,1> ’ r e que s t ed

∗/

A.1.2 C++ Template meta-program to unroll a fixed length vector at
compilation time

// This meta program a p l i e s to a f i x e d l en g t h vec to r
// where the temp la te arguments f o r t h i s v e c t o r
// would be T=the data types , and N the vec to r l e n g t h
// we w i l l c a l l t h i s v e c t o r a ‘ coord<T,N> ’ to d i s t i n g u i s h
// between the genera l v e c t o r case .
//
// t h i s i s on ly a code p ieces , i t w i l l not work un l e s s
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// one has de f ined a v a l i d coord , and the coordExpr c l a s s e s

//Here i s the = opera tor t ha t passes
// the expre s s i on To the ’ coordAssign ’ meta program
template<class T, int N>
template<class Expr T>
coord<T, N> &coord<T, N> : : operator=(const coordExpr<Expr T> &rhs )
{

coordAssign<N,0 > : : a s s i gn (∗ this , rhs , ApAssign ) ;
return ∗ this ;

}

// This i s a ‘ ApAssign ’ c l a s s f o r
// a data type ‘T ’
template<class T>
class ApAssign{
public :
ApAssign ( ){}
stat ic inl ine void apply (T &a , T &b)
{ a=b ; }
} ;

// a ’ qu i ck ’ meta program ( one the compi ler performs )
// to un r o l l l oop s comp le t e l y . . . t h i s i s the ’ entry ’ point ,
// be low a s p e c i f i c in s tance (N=0 , I =0) i s expres sed
// to s top the temp la te casscade
template<int N, int I>
class coordAss ign {
public :

// t h i s i s t e l l s us when to s top the casscade
enum { loopFlag = ( I < N− 1 ) ? 1 : 0 } ;

template<class CoordType , class Expr , class Op>
stat ic inl ine void a s s i gn (CoordType& vec , Expr expr , Op u)
{
// as s i gn the two e lements

u . apply ( vec [ I ] , expr ( I ) ) ;
//move on the the next in s tance ( I+1)

coordAssign<N ∗ loopFlag ,
( I +1) ∗ loopFlag > : : a s s i gn ( vec , expr , u ) ;

}

} ;

// the c l a s s to ’ k i l l ’ or s top the above one . .
// we ge t here we s top the temp la te un r o l l i n g
template<>
class coordAssign <0,0> {
public :

template<class VecType , class Expr , class Op>
stat ic inl ine void a s s i gn (VecType& vec , Expr expr , Op u)
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{ }
} ;

A.1.3 C++ code for performing a matrix multiplication with L2 cache
blocking and partial loop unrolling.

template<class T>
void mulmatUnrool ( matrix<T> &c , matrix<T> &a , matrix<T> &b)
{
int i , j , k , l e f t o v e r ;
stat ic int Unro l l s =5;

// f i g u r e out how many do not f i t in the un r o l l i n g
l e f t o v e r=a . rows ( ) % ( Unro l l s ) ;

for ( k=0;k<b . rows ();++k){
for ( j =0; j<b . c o l s ();++ j ){

i =0;
//do the e lements t ha t do not f i t in the unro l lment

for ( ; i<l e f t o v e r ;++ i )
{ c ( i , j )+=a ( i , k ) ∗ b(k , j ) ; }

//do the r e s t
for ( ; i<a . rows ( ) ; i+=Unro l l s ){

// avoid c a l c u l a t i n g the indexes tw ice
int i 1=i +1 , i 2=i +2 , i 3=i +3 , i 4=i +4;

// avoid read ing the b ( k , j ) more then once
typename matrix<T> : : numtype tmpBkj=b(k , j ) ;

// read the a ( i , k ) ’ s f i r s t i n t o the r e g i s t e r s
typename matrix<T> : : numtype tmpAij=a ( i , k ) ;
typename matrix<T> : : numtype tmpAi1j=a ( i1 , k ) ;
typename matrix<T> : : numtype tmpAi2j=a ( i2 , k ) ;
typename matrix<T> : : numtype tmpAi3j=a ( i3 , k ) ;
typename matrix<T> : : numtype tmpAi4j=a ( i4 , k ) ;

c ( i , j )+=tmpAij ∗ tmpBkj ;
c ( i1 , j )+=tmpAi1j ∗ tmpBkj ;
c ( i2 , j )+=tmpAi2j ∗ tmpBkj ;
c ( i3 , j )+=tmpAi3j ∗ tmpBkj ;
c ( i4 , j )+=tmpAi4j ∗ tmpBkj ;

}
}

}
}

/∗ L2 b l o c k i n g ∗∗∗ ∗/
int L2rowMAX=140;
int L2colMAX=140;
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//makes the sub matrix e lements in t o the
// proper p l ace from the o r i g i n a l
template<class T>
void makeSubMatrixFrom(

matrix<T> &out ,
matrix<T> &Orig ,
int beR , // beg in ing row index
int enR , // ending row index
int beC , // beg in ing column index
int enC ) // ending column index

{
out . r e s i z e (enR−beR , enC−beC ) ;
for ( int i=beR , ctR=0; i<enR;++i , ++ctR ){

for ( int j=beC , ctC=0; j<enC;++j , ++ctC ){
out ( ctR , ctC)=Orig ( i , j ) ;

}
}

}

// puts the sub matrix e lements in t o the
// proper p l ace in the o r i g i n a l
template<class T>
void putSubMatrixTo (

matrix<T> &in ,
matrix<T> &Orig ,
int beR , // beg in ing row index
int enR , // ending row index
int beC , // beg in ing column index
int enC ) // ending column index

{
for ( int i=beR , ctR=0; i<enR;++i , ++ctR ){

for ( int j=beC , ctC=0; j<enC;++j , ++ctC ){
Orig ( i , j )+=in ( ctR , ctC ) ;

}
}

}

template<class T>
void L2BlockMatMul ( matrix<T> &C, matrix<T> &A, matrix<T>& B)
{
// r e s i z e our re turn matrix to the proper s i z e

C. r e s i z e (A. rows ( ) , B. c o l s ( ) ) ;
C=0;

//no need to do t h i s i f matrix i s l e s s then L2 s i z e
i f (A. rows()<L2rowMAX && B. c o l s () < L2colMAX)
{ mulmatLUnrool (C,A,B ) ; return ; }

// the number o f d i v i s i o n s a long rows and c o l s
int rDiv=( int ) c e i l (double (A. rows ( ) ) / double (L2rowMAX) ) ;
int cDiv=( int ) c e i l (double (B. c o l s ( ) ) / double (L2colMAX ) ) ;
int BDiv=( int ) c e i l (double (B. rows ( ) ) / double (L2colMAX ) ) ;
int i , j , k ;
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//now do C( i , j )=Sum k ( a ( i , k )∗ b ( k , j ) )

for ( i =0; i<rDiv;++ i ){
// the curren t beg inn ing Row index f o r out matrix

int beCr=i ∗L2rowMAX;
// the curren t ending Row index f o r out matrix

int enCr=( i +1)∗L2rowMAX;
i f ( enCr>A. rows ( ) ) enCr=A. rows ( ) ;

for ( j =0; j<cDiv;++j ){
// the curren t beg inn ing Column index f o r out matrix

int beCc=j ∗L2colMAX ;
// the curren t ending Row index f o r out matrix

int enCc=( j +1)∗L2colMAX ;
i f ( enCc>B. c o l s ( ) ) enCc=B. c o l s ( ) ;

// sub output matrix f o r out matrix
matrix<T> Ci j ( enCr−beCr , enCc−beCc ) ;

// zero out the matrix
Ci j =0;

//now loop through the B Row d i v i s i o n s
for ( k=0;k<BDiv;++k){
// t h i s va lue i s beg inn ing f o r the columns
// o f A and the rows o f B

int beAB=k∗L2colMAX ;

// t h i s va lue i s f o r end the columns
// o f A and the rows o f B

int enAB=(k+1)∗L2colMAX ;
i f (enAB>B. c o l s ( ) ) enAB=B. rows ( ) ;

// sub A and B matr ices
matrix<T> Aik ;
makeSubMatrixFrom(Aik , A, beCr , enCr , beAB , enAB ) ;
matrix<T> Bkj ;
makeSubMatrixFrom(Bkj , B , beAB , enAB , beCc , enCc ) ;

//perform the mu l t i p l y on the subs
// note ing t ha t the e lements in Ci j w i l l be
// added to ( not o v e rwr i t t en )

mulmatLUnrool ( Cij , Aik , Bkj ) ;
}

// put the sub C matrix back in t o the o r i g i n a l
putSubMatrixTo ( Cij , C, beCr , enCr , beCc , enCc ) ;

}
}

}

A.1.4 An MPI master/slave implimentation framework

#include ” b l o c h l i b . h”
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//need to use the proper namespaces
using namespace BlochLib ;
using namespace std ;

// de f i n e out f unc t i on we wish to run in p a r a l l e l
void MyFunction ( int kk ){

cout<<endl<<” I was c a l l e d on : ”<<MPIworld . rank ( )
<<” with value : ”<<kk<<endl ;

s l e e p (MPIworld . rank ()−1) ;
}

int main ( int argc , char ∗ argv [ ] )
{
// S ta r t up the Master c o n t r o l l e r

MPIworld . s t a r t ( argc , argv ) ;

//dump out i n f o about what and where we are
std : : cout<<MPIworld . name()<<” : : ”<<MPIworld . rank ( )

<<”/”<<MPIworld . s i z e ()<< std : : endl<<endl ;

// t h i s i n t g e t s sen t went the Master has sen t
// ev e r y t h in g ( the k i l l sw i t ch )

int done =−1;
int cur =0; // the curren t va lue

// i f we are the master , we need to i n i t i a l i z e some t h i n g s
i f (MPIworld . master ( ) ){

// the e lements in here w i l l be sen t to the s l a v e procs
int Max=10; // only want to send 10 t h i n g s
int CT=0 , r r=−1;

//we must perform an i n i t i a l send to a l l the proc
// from 1 . . s i z e , i f s i z e>Max we need to send no more

for ( int qq=1;qq<MPIworld . s i z e ();++qq ){
MPIworld . put (CT, qq); ++CT;
i f (CT>Max) break ;

}
int get ;

//now we ge t an In t e g e r from ANY proces sor t ha t i s NOT
// the master . . . and keep pu t t i n g va l u e s u n t i l we run out

while (CT<Max){
// ge t an i n t ( ’ g e t ’= the proc i s came from )

get=MPIworld . getAny ( r r ) ;
MPIworld . put (CT, get ) ; // put the next va lue
++CT; //advance

}

// put the ’We−Are−Done ’ f l a g to a l l the procs once we f i n i s h
for ( int qq=1;qq<MPIworld . s i z e ();++qq )
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MPIworld . put ( done , qq ) ;

} else { // s l a v e procs

// keep l oop ing u n t i l we the master t e l l s us to q u i t
while (1){

MPIworld . get ( cur , 0 ) ;
i f ( cur==done ) break ; // id we ge t the k i l l sw i t ch ge t out
MyFunction ( cur ) ; //run out f unc t i on wi th the go t t en va lue
MPIworld . put ( cur , 0 ) ; // send back a r e que s t f o r more

}
}

// e x i t MPI and l e a v e the prog
MPIworld . end ( ) ;
return 0 ;

}

A.1.5 C++ class for a 1 hidden layer Fully
connected back–propagation Neural Network

/∗
A simple 1 hidden l a y e r Back propgat ion
f u l l y connected Feed Foward neura l Net
∗/

#include ” b l o c h l i b . h”

using namespace BlochLib ;

template<class Num T>
class s igmoid {
public :
Num T operator ( ) ( int i , Num T &in ){ return s igmoid ( in ) ; }
inl ine stat ic Num T sigm (Num T num) // The sigmoid func t i on .
{ return ( 1 . / ( 1 .+ exp(−num) ) ) ; }

} ;

template<class Num T> //Num T i s the output / input data type
class BackPropNN {

private :
// Weights f o r the neurons input−−hidden
rmatr ixs IHweights ;

// Weights f o r the neurons hidden−−>output
rmatr ixs HOweights ;

Vector<f loat > IHbias ; // the in−−hidden b i a s e s
Vector<f loat > HObias ; // the hidden−−out b i a s e s
Vector<Num T> h l ay e r ; // the hidden l a y e r ’ va l u e s ’
Vector<Num T> outTry ; // the at tempted ou tpu t s

Vector<Num T> outError ; // the ouput−−>hidden er ro r s
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Vector<Num T> hiddenError ; // the hidden−−>input e r ro r s

f loat l r a t e ;

public :
BackPropNN ( ) ;
BackPropNN( int numin , int numH, int numout ) ;
˜BackPropNN ( ) { } ;

// r e s i z e the ins and outs
void r e s i z e ( int numin , int numH, int numout ) ;

// r e s e t the we i gh t s to random
void r e s e t ( ) ;

inl ine f loat l ea rn ingRate ( )
{ return l r a t e ; } // g e t t h e l e a r i n g ra t e

void l ea rn ingRate ( f loat l r )
{ l r a t e =l r ; } // s e t the l e a r i n g ra t e

void fowardPass ( Vector<Num T> &in ) ;
void backPass ( Vector<Num T> &input , Vector<Num T> &ta rg e t ) ;

Vector<Num T> run ( Vector<Num T> &input ) ;
Vector<Num T> t r a i n ( Vector<Num T> &input , Vector<Num T> &ta rg e t ) ;

rmatr ixs IHweights ( ){ return IHweights ; }
rmatr ixs HOweights ( ){ return HOweights ; }

//dumps a matlab f i l e t h a t
// p l o t s the neurons wi th l i n e s between
// them based on the we igh t
void pr in t ( std : : s t r i n g fname ) ;

f loat e r r o r ( Vector<Num T> &ta rg e t ) ;

} ;

template<class Num T>
BackPropNN<Num T> : :BackPropNN( int numin , int numout , int numH=0 )
{

l r a t e =0.5 ;
r e s i z e (numin , numout ,numH) ;

}

template<class Num T>
void BackPropNN<Num T> : : r e s i z e ( int numin , int numout , int numH=0)
{
RunTimeAssert (numin>=1);
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RunTimeAssert (numout>=1);
i f (numH==0) numH=numin ;
RunTimeAssert (numH>=1);

// the we igh t s i z e i s ( numin+1)x (numin+1)
// the ’+1 ’ f o r the b i a s e n t r i e s
IHweights . r e s i z e (numin , numH) ;
HOweights . r e s i z e (numH, numout ) ;
IHb ias . r e s i z e (numH, 0 ) ;
HObias . r e s i z e (numout , 0 ) ;
h l ay e r . r e s i z e (numH, 0 ) ;
outTry . r e s i z e (numout , 0 ) ;
outError . r e s i z e (numout , 0 ) ;
h iddenError . r e s i z e (numH, 0 ) ;
r e s e t ( ) ;

}

template<class Num T>
void BackPropNN<Num T> : : r e s e t ( )
{
Random<UniformRandom<f loat > > myR( −1 , 1) ;
HOweights . apply (myR) ;
IHweights . apply (myR) ;
IHbias . apply (myR) ;
HObias . apply (myR) ;
h l ay e r . f i l l ( 0 . 0 ) ;
outTry . f i l l ( 0 . 0 ) ;

}

// t h i s does the foward propogat ion . . .
template<class Num T>
void BackPropNN<Num T> : : fowardPass ( Vector<Num T> &in )
{
register int i , j ;
register Num T tmp=0;

// input −−> hidden
for ( i =0; i<IHweights . c o l s ();++ i ){
for ( j =0; j<in . s i z e ();++ j ){
tmp+=in ( j )∗ IHweights ( j , i ) ;
}
h l ay e r [ i ]= sigmoid<Num T> : : sigm (tmp+IHbias ( i ) ) ;
tmp=0;
}

// hidden −−> output
for ( i =0; i<outTry . s i z e ();++ i ){
for ( j =0; j<HOweights . rows ();++ j ){
tmp+=h lay e r ( j )∗HOweights ( j , i ) ;
}
outTry [ i ]= sigmoid<Num T> : : sigm (tmp+HObias ( i ) ) ;
tmp=0;
}
}
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template<class Num T>
f loat BackPropNN<Num T> : : e r r o r ( Vector<Num T> &ta rg e t )
{
return norm( target−outTry ) ;
}

// t h i s does the backwards propogat ion . . .
template<class Num T>
void BackPropNN<Num T> : : backPass (

Vector<Num T> &input ,
Vector<Num T> &ta rg e t )

{
register int i , j ;
register Num T tmp=0;

// error f o r ouputs
outError =target−outTry ;

// error f o r hidden
for ( i =0; i<HOweights . c o l s ();++ i ){
for ( j =0; j<outTry . s i z e ();++ j ){
tmp+=outError [ j ]∗HOweights ( i , j ) ;
}
hiddenError ( i )= f loat ( h l ay e r ( i )∗(1.0− h l ay e r ( i ) )∗ tmp ) ;
tmp=0;
}

// ad ju s t hidden−−>output we i gh t s
Num T len =0;
l en=sum( sqr ( h l ay e r ) ) ; // the mean l en g t h o f the hidden
i f ( len <=0.1) l en =0 .1 ; //do not reduce too much . . .
for ( i =0; i<HOweights . rows ();++ i ){
for ( j =0; j<outTry . s i z e ();++ j ){
HOweights ( i , j )+=f loat ( l r a t e ∗ outError ( j )∗ h l ay e r ( i )/ l en ) ;
}
}

// ad ju s t hidden b i a s l e v e l s
for ( i =0; i<HObias . s i z e ();++ i ){
HObias ( i )+=f loat ( l r a t e ∗ outError ( i )/ l en ) ;
}

// ad ju s t we i gh t s from input to hidden
l en=sum( sqr ( input ) ) ;
i f ( len <=0.1) l en =0.1 ; //do not reduce too much . . .
for ( i =0; i<input . s i z e ();++ i ){
for ( j =0; j<IHweights . c o l s ();++ j ){
IHweights ( i , j )+=f loat ( l r a t e ∗ hiddenError ( j )∗ input ( i )/ l en ) ;

}
}

// ad ju s t input b i a s l e v e l s
for ( i =0; i<IHweights . c o l s ();++ i ){
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IHbias ( i )+=f loat ( l r a t e ∗ hiddenError ( i )/ l en ) ;
}
}

template<class Num T>
Vector<Num T> BackPropNN<Num T> : :
t r a i n ( Vector<Num T> &in , Vector<Num T> &out )

{
fowardPass ( in ) ;
backPass ( in , out ) ;
return outTry ;
}

template<class Num T>
Vector<Num T> BackPropNN<Num T> : :
run ( Vector<Num T> &in )
{
fowardPass ( in ) ;
return outTry ;
}

// t h i s dumps the i n f o to a matab
// s c r i p t so t ha t i t can be e a s i l y p l o t t e d
template<class Num T>
void BackPropNN<Num T> : : p r i n t ( std : : s t r i n g fname )
{
std : : o f s tream oo ( fname . c s t r ( ) ) ;
i f ( oo . f a i l ( ) ){
std : : cer r<<std : : endl<<”BackPropNN . p r in t ”<<std : : endl ;
s td : : ce r r<<” cannot open ouput f i l e ”<<std : : endl ;
return ;
}

/∗we wish the p i c t u r e to l ook l i k e
O O

/ \ / \
O O O
\ / \ /
O O

∗/

// the ’ dot ’ f o r a Neuron
oo<<” f i g u r e ( 153 ) ;\n”
<<” c l f r e s e t ;\n” ;

//we want each node to be speara ted by
// 5 in the on the x ’ a x i s ’ and 10 on the yax i s
// we need to s c a l e the xax i s based on the maxNode
oo<<” inNodes=”<<IHweights . rows()<<” ;\n”
<<”hNodes=”<<IHweights . c o l s ()<<” ;\n”
<<”outNodes=”<<outTry . s i z e ()<<” ;\n”
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<<”maxNodes=max( inNodes ,max( hNodes , outNodes ) ) ; \ n”
<<”ySep=10; \n”
<<”xSep=2∗ySep ; \ n”
<<”ybSep=2; \n”
<<” inSep=(xSep /( inNodes +2)) ;\n”
<<”hSep=(xSep /( hNodes +2)) ;\n”
<<”outSep=(xSep /( outNodes +1)) ;\n”
<<”xc =[−1 , −1 , 1 , 1] ; \n”
<<”yc =[−1 , 1 , 1 , −1] ;\n ”
<<”hold on\n” ;

// p r i n t out the we i gh t s and b i a s e s
oo<<” IHweights=[” ;
for ( int i =0; i<IHweights . rows ();++ i ){
oo<<” [ ” ;
for ( int j =0; j<IHweights . c o l s ();++ j ){
oo<<IHweights ( i , j )<<” ” ;
}
oo<<” ]\n” ;

}
oo<<” ] ; \ n” ;

oo<<”HOweights=[” ;
for ( int i =0; i<HOweights . rows ();++ i ){
oo<<” [ ” ;
for ( int j =0; j<HOweights . c o l s ();++ j ){
oo<<HOweights ( i , j )<<” ” ;
}
oo<<” ]\n” ;

}
oo<<” ] ; \ n”
<<” IHbias=[”<<IHbias <<” ] ; \ n”
<<”HObias=[”<<HObias <<” ] ; \ n”

// f i nd the max o f a l l o f them
<<”maxW=max(max( abs ( IHweights ) ) ) ; \ n”
<<”maxW=max(maxW,max(max( abs (HOweights ) ) ) ) ; \ n”
<<”maxW=max(maxW,max(max( abs ( IHbias ) ) ) ) ; \ n”
<<”maxW=max(maxW,max(max( abs (HObias ) ) ) ) ; \ n”
<<”maxWidth=5;\n”
<<” a l tCo l o r = [ 0 , 0 , 0 . 8 ] ; \ n”
<<”posColor = [ 0 . 8 , 0 , 0 ] ; \ n”

// p r i n t a l i n e f o r each one o f them . . .
<<”% INput−−>HIdden l i n e s \n”
<<” f o r i =1:hNodes \n”
<<” f o r j =1: inNodes \n”
<<” c o l o r=posColor ; \ n”
<<” i f IHweights ( j , i )<0 , c o l o r=a l tCo l o r ; , end ; \ n”
<<” l i=l i n e ( [ j ∗ inSep i ∗hSep ] , [ 2 ∗ ySep ySep ] , ”
<<” ’ Color ’ , co lo r , ’ LineWidth ’ , ”
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<<” maxWidth∗abs ( IHweights ( j , i ) ) /maxW) ; \ n”
<<” end\n”
<<”end\n”

<<”% Hidden−−>out l i n e s \n”
<<” f o r i =1:hNodes \n”
<<” f o r j =1: outNodes \n”
<<” c o l o r=posColor ; \ n”
<<” i f HOweights ( i , j )<0 , c o l o r=a l tCo l o r ; , end ; \ n”
<<” l i=l i n e ( [ i ∗hSep j ∗outSep ] , [ ySep 0 ] , ”
<<” ’ Color ’ , co lo r , ’ LineWidth ’ , ”
<<” maxWidth∗abs (HOweights ( i , j ) ) /maxW) ; \ n”
<<” end\n”
<<”end\n”

<<”% input Bias−−>Hidden l i n e s \n”
<<” j=inNodes+1;\n”
<<” f o r i =1:hNodes \n”
<<” c o l o r=posColor ; \ n”
<<” i f IHbias ( i )<0 , c o l o r=a l tCo l o r ; , end ; \ n”
<<” l i=l i n e ( [ j ∗ inSep i ∗hSep ] , [ 2 ∗ ySep−ybSep ySep ] , ”
<<” ’ Color ’ , co lo r , ’ LineWidth ’ , ”
<<” maxWidth∗abs ( IHbias ( i ) )/maxW) ; \ n”
<<”end\n”

<<”% Hidden Bias−−>output l i n e s \n”
<<” j=hNodes+1;\n”
<<” f o r i =1: outNodes \n”
<<” c o l o r=posColor ; \ n”
<<” i f HObias ( i )<0 , c o l o r=a l tCo l o r ; , end ; \ n”
<<” l i=l i n e ( [ j ∗hSep i ∗outSep ] , [ ySep−ybSep 0 ] , ”
<<” ’ Color ’ , co lo r , ’ LineWidth ’ , ”
<<” maxWidth∗abs (HObias ( i ) )/maxW) ; \ n”
<<”end\n” ;

oo<<” f o r i =1: inNodes\n”
<<” f i l l ( xc/ inNodes+i ∗ inSep , yc/ inNodes+2∗ySep , ’ r ’ ) ; \ n”
<<”end\n”
<<”%b ia s I−−>H node\n”
<<” f i l l ( xc/ inNodes+(inNodes+1)∗ inSep , ”
<<” yc/ inNodes+2∗ySep−ybSep , ’ g ’ ) ; \ n”
<<”\n”
<<” f o r i =1:hNodes\n”
<<” f i l l ( xc/hNodes+i ∗hSep , yc/hNodes+ySep , ’ k ’ ) ; \ n”
<<”end\n”
<<”%b ia s H−−>O node\n”
<<” f i l l ( xc/hNodes+(hNodes+1)∗hSep , yc/hNodes+ySep−ybSep , ’ g ’ ) ; \ n”
<<”\n”
<<” f o r i =1: outNodes\n”
<<” f i l l ( xc/outNodes+i ∗outSep , yc/outNodes , ’ b ’ ) ; \ n”
<<”end\n”
<<” daspect ( [ 1 1 1 ] ) ; \ n”
<<” ax i s t i g h t ;\n”
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<<”hold o f f \n”
<<”\n” ;

}

A.2 NMR algorithms

A.2.1 Mathematica Package to generate Wigner Rotation matrices and
Spin operators.

This small and simple Mathematica package (a .m file) allows the creation of the

basic Cartesian spin operators and Wigner rotation matrices of a given spin space of spin

I. To use the package, simple call MakeSpace[Spin] where Spin is the total spin (i.e. 1/2,

1, 3/2, etc). It will make Iz, Ix, Iy, Ipp and Imm as global matrices. To generate the

Wigner rotation matrix call Wigner[Spin] where Spin is the same as the MakeSpace value.

(∗ sp in t en .m∗)
(∗ In t h i s package we t r y to c r ea t a l l the nessesary b i t s
f o r genera t ing e v e ry t h in g we cou ld p o s s i b l y want to
do wi th sp in t en so r s and r o t a t i o n s ∗)

Unprotect [ Ix , Iy , Iz , Ipp , Imm, rank , created , WignerExpIy , D12 , d12 ]
Clear [ Ix , Iy , Iz , Ipp , Imm, rank , created , WignerExpIy , D12 , d12 ]

BeginPackage [ ” sp inten ‘ ” ]

Unprotect [ MakeSpace , MakeIz , MakeIplus , MakeIx , MakeIy , MakeImin ,
Wigner , Direct , MultWig , MakeSpinSys , MakeExpIz ]

Clear [ MakeSpace , MakeIz , MakeIplus , MakeIx , MakeIy , MakeImin ,
Wigner , Direct , MultWig , MakeSpinSys , MakeExpIz ]

(∗Usages ∗)

Wigner : : usage=
”Wigner [ L ,m, mp, { alpha , beta , gamma} ] g ene ra t e s a wigner
\n ro t a t i on element

\n <mp,L |Exp[− I I z alpha ] Exp[− I Iy beta ] ∗
Exp[− I I z gamma ] |m, L>.

\n Other p o s s i b l e s i n c lude :
\n Wigner [ L] −−> For an e n t i r e matrix
\n Wigner [ L , { alpha , beta , gamma}] −−> matrix us ing d e f au l t
’ alpha , beta , gamma’
\n Wigner [ L , mp, m] −−> us ing d e f au l t
\n ’ alpha , beta , gamma’ symbols ” ;

Wigner : : errmb=”m’ s in ’ Wigner ’ i s b i gge r then L . . Bad , bad , person ” ;
Wigner : : errms=”m’ s in ’ Wigner ’ i s sma l l e r then −L . . Bad , bad , person ” ;
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MultWig : : usage=
”MultWig [{L1 , L2} , {J , M3p, M3} ] Wil l g ive the Dj (m3p ,m3) wigner
\n elements from two Other Wigner Matr ices ! ! ” ;

MultWig : : errm=”You J or M3p or M3 i s too big f o r L1+L2” ;

MakeSpace : : usage=
”MakeSpace [L ] t h i s func t i on gene ra t e s a l l the matr i ce s f o r sp in=L
\n systems . The output simply c r e a t e s d e f i n i t i o n s f o r Iz , Ix ,
\n and Iy Which can then be c a l l e d up as Ix , Iy , I z .
\n I f you have de f ined them prev i ou s l y t h i s w i l l r e d e f i n e them” ;

MakeSpace : : e r r = ”you have entered in a value f o r L that i s not
\n and i n t e r g e r or h a l f an i n t e r g e r ” ;

MakeIz : : usage =”MakeIz [ L ] Generates I z in space o f rank L” ;
MakeIx : : usage=”MakeIx [L ] Generates Ix in space o f rank L” ;
MakeIy : : usage=”MakeIy [L ] Generates Iy in space o f rank L” ;
MakeIplus : : usage =”MakeIplus [ L ] Generates I+ in space o f rank L” ;
MakeImin : : usage =”MakeImin [L ] Generates I− in space o f rank L” ;
MakeExpIz : : usage=”MakeExpIz [ a , L ] A f a s t e r way o f doing exp [ a I z ] ” ;

D i rec t : : usage =
” Direc t [m, p ] the c r e a t e s a d i r e c t product o f
two matr i ce s {m and p}” ;

MakeSpinSys : : usage=
”MakeSpinSys [{L1 , L2 , L3 } ] t h i s f unc t i on gene ra t e s a l l the
\n matr i ce s f o r sp in=L systems .
\n The output simply c r e a t e s A LIST f o r Iz , Ix ,
\n and Iy Which can then be c a l l e d up as Ix , Iy , I z .
\n I f you have de f ined them prev i ou s l y t h i s w i l l r e d e f i n e them” ;

Begin [ ” ‘ Pr ivate ‘ ” ]

(∗ here we de f i n e the ’ base / de f au l t ’ p au l i matr ices
( they are f o r sp in 1/2 ) ∗)

Global ‘ I z =1/2{{1 ,0} ,{0 ,−1}}
Global ‘ Ix =1/2{{0 ,1} ,{1 ,0}}
Global ‘ Iy =1/2{{0 , − I } ,{ I , 0}}
Global ‘ Ipp ={{0 ,1} ,{0 ,0}}
Global ‘Imm={{0 ,0} ,{1 ,0}}
Global ‘ numspin=1;
Global ‘ rank=1/2
Global ‘ d12=MatrixExp[−I Global ‘ \ [ Beta ] \

Global ‘ Iy ] // ExpToTrig//Simplify
Global ‘ D12=(MatrixExp[−I Global ‘ \ [ Alpha ] Global ‘ I z ] .

Global ‘ d12 .
MatrixExp[−I Global ‘ \ [Gamma] Global ‘ I z ] ) / / Simplify
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(∗ t h i s f l a g t e l l s me t ha t i have a l r eady crea t ed made the matrix
Exp[− I be ta Iy ] . This can be a l a r g e large ,

e s p e c i a l l y s ymbo l i c a l l y and need only be done
once ( o f course un l e s s i change my L) ∗)

Global ‘ c reatedwig =0;

(∗ here i s a func t i on t ha t does a d i r e c t
product between two matr ices ∗)

Direc t [m , p ] :=
Module [{dimM=Dimensions [m] [ [ 1 ] ] , dimP=Dimensions [ p ] [ [ 1 ] ] , f r o o } ,
I f [dimM==0||dimP==0,

Print [ ”Bad person , you gave me a ’NULL’ f o r a matrix ” ] ] ;

f r o o=Table [ 0 , { i , 1 , dimP∗dimM} ,{ j , 1 , dimP∗dimM} ] ;
Table [ Table [

f r o o [ [ i +( l ∗dimP) , j+(k∗dimP) ] ]=m[ [ l +1,k +1 ] ] ∗p [ [ i , j ] ] , \
{ i , 1 , dimP} ,{ j , \

1 , dimP} ,{ l , 0 , dimM−1} ,{k , 0 , dimM− 1 } ] ] ] ;

(∗ here i s a func t i on t ha t c r ea t e s the Iz , Ip lu s ,
and Imin matrix f o r a Rank L sp in space by doing
us ing t h e s e s imple i d e n t i t i e s

I z |L,m>=m|L,m>
I+/−|L,m>=Sqr t [L(L+1)−m(m+/−1)] |L , m+/−1>
∗)

MakeIz [ L ] :=
Table [
Table [
I f [mp==m, m, 0 ] ,
{mp, L, −L, −1} , {m, L, −L, −1} ] ]

MakeIplus [ L ] :=
Table [
Table [
I f [mp==(m+1) , Sqrt [ L(L+1)−m(m+1) ] , 0 ] ,
{mp, L, −L, −1} , {m, L, −L, −1} ] ]

MakeImin [ L ] :=
Table [
Table [
I f [mp==m−1 , Sqrt [ L(L+1)−m(m−1 ) ] , 0 ] ,
{mp, L,−L, −1} , {m, L, −L, −1} ] ]

MakeIx [ L ] :=1/2 ( MakeIplus [ L]+MakeImin [L ] )

MakeIy [ L ] :=− I 1/2( MakeIplus [ L]−MakeImin [L ] )

MakeSpace [ L ] : = Module [{} ,
I f [Mod[ L , 0 . 5 ] ! = 0 , Message [ MakeSpace : : e r r ] ; ,
I f [ Global ‘ rank !=L ,
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Global ‘ rank=L ;
Global ‘ I z=MakeIz [ L ] ;
Global ‘ Ipp=MakeIplus [ L ] ;
Global ‘Imm=MakeImin [L ] ;
Global ‘ Ix=1/2(Global ‘ Ipp+Global ‘Imm) ;
Global ‘ Iy=−I 1/2( Global ‘ Ipp−Global ‘Imm) ;
Global ‘ c reatedwig = 0 ; ] ] ]

MakeExpIz [ a , L ] :=
Table [
Table [
I f [mp==m, Exp [m a ] , 0 ] ,
{mp, L, −L, −1} , {m, L, −L, −1} ] ]

Wigner [ L , mp , m ,{ alpha , beta , gamma } ] :=
Module [{ l =1/2} ,
I f [mp>L , Message [ Wigner : : errmb ] ,
I f [mp<−L , Message [ Wigner : : errms ] ,
I f [m>L , Message [ Wigner : : errmb ] ,
I f [m<−L , Message [ Wigner : : errms ] ] ] ] ] ;

tmp=Global ‘ d12 ;
While [ l<L−1/2 ,
tmp=MultWig [{ tmp , Global ‘ d12 } , l +1/2] ;
l=l +1/2;

] ;
I f [ L==0 , 1 ,
I f [ L==1/2, Global ‘ D12 ,
Exp[−I mp Global ‘ \ [ Alpha ] ] ∗Exp[−I m Global ‘ \ [Gamma] ] ∗
MultWig [{ tmp , Global ‘ d12 } , {L , mp, m} ] ] ]

]

Wigner [ L , mp , m ] : = Wigner [ L , mp, m, { alpha , beta , gamma} ]

Wigner [ L , { alpha , beta , gamma } ] :=
Module [{ l , tmp} ,

l =1/2;
I f [mp>L , Message [ Wigner : : errmb ] ,
I f [mp<−L , Message [ Wigner : : errms ] ,
I f [m>L , Message [ Wigner : : errmb ] ,
I f [m<−L , Message [ Wigner : : errms ] ] ] ] ] ;

tmp=Global ‘ d12 ;
While [ l<L−1/2 ,
tmp=MultWig [{Global ‘ d12 , tmp} , l +1/2] ;
l=l +1/2;

] ;
MakeExpIz[−I Global ‘ \ [ Alpha ] , L ] .
I f [ L==0 , 1 ,
I f [ L==1/2, Global ‘ d12 ,
MultWig [{Global ‘ d12 , tmp} , L ] ] ] .

MakeExpIz[−I Global ‘ \ [Gamma] , L ]
]
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Wigner [ L ] := Wigner [ L , { alpha , beta , gamma} ]

MultWig [{ L1 ?MatrixQ , L2 ?MatrixQ} , { J , m3p , m3 } , { a , b , g } ] :=
Module [{

l 1=(Dimensions [ L1 ] [ [ 1 ] ] − 1 ) / 2 ,
l 2=(Dimensions [ L2 ] [ [ 1 ] ] − 1 ) / 2 } ,

I f [ J>l 1+l2 , Message [ MultWig : : errm ] ,
(Sum[
Sum[ I f [m3−m1>l 2 | |m3−m1<−l 2 | |m3p−m1p>l 2 | |m3p−m1p<−l2 , 0 ,
ClebschGordan [{ l1 , m1} ,{ l2 , m3−m1} ,{J , m3} ]∗
ClebschGordan [{ l1 , m1p} ,{ l2 , m3p−m1p} ,{J , m3p} ]∗
L1 [ [ l1−m1p+ 1 ] ] [ [ l1−m1+1] ]∗
L2 [ [ l2−(m3p−m1p ) + 1 ] ] [ [ l2−(m3−m1)+1 ] ] ] ,
{m1, l1 , − l1 , −1}] ,
{m1p , l1 ,− l1 , −1} ] )// Simplify ]

]

MultWig [{ L1 ?MatrixQ , L2 ?MatrixQ} , { J , m3p , m3 } ] :=
MultWig [{L1 , L2 } , { J , m3p , m3} , { a , b , g } ]

MultWig [{ L1 , L2 } , J ] :=
Table [ MultWig [{L1 , L2} ,{J , i , j } ] , { i , J , −J , −1} , { j , J , −J , −1} ]

MultWig [{ L1 , L2 } , J , { a , b , g } ] :=
Table [ MultWig [{L1 , L2} ,{J , i , j } , { a , b , g } ] , \

{ i , J , −J , −1} , { j , J , −J , −1} ]

MakeSpinSys [ s p i n s i z e s ] :=
Module [{ i } ,
I f [Length [ s p i n s i z e s ]==1 , MakeSpace [ s p i n s i z e s [ [ 1 ] ] ] ,
I f [Length [ s p i n s i z e s ]==0 , MakeSpace [ s p i n s i z e s ] ,

Global ‘ Ix=Table [ MakeIx [ s p i n s i z e s [ [ i ] ] ] , \
{ i , 1 , Length [ s p i n s i z e s ] } ] ;

Global ‘ Iy=Table [ MakeIy [ s p i n s i z e s [ [ i ] ] ] , \
{ i , 1 , Length [ s p i n s i z e s ] } ] ;

Global ‘ I z=Table [ MakeIz [ s p i n s i z e s [ [ i ] ] ] , \
{ i , 1 , Length [ s p i n s i z e s ] } ] ;

Global ‘ Ipp=Table [ MakeIplus [ s p i n s i z e s [ [ i ] ] ] , \
{ i , 1 , Length [ s p i n s i z e s ] } ] ;

Global ‘Imm=Table [ MakeImin [ s p i n s i z e s [ [ i ] ] ] , \
{ i , 1 , Length [ s p i n s i z e s ] } ] ;

Global ‘ numspin=Length [ s p i n s i z e s ] ;
] ] ; ]

(∗T=Function [{L , m, sp in sy s } ,
Module [{ tmpix } ,
MakeSpinSys [ s p in s y s ] ;

∗)

End [ ]

Protect [ Wigner , MakeSpace , MakeIz , MakeIplus , MakeImin ,
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MakeIx , MakeIy , Direct , MultWig , MakeSpinSys , MakeExpIz ]

EndPackage [ ]

A.2.2 Rational Reduction C++ Class

This includes both the C++ header file, the C++ source file and an example usage

file.

The header file

#ifndef Prop Reduce h
#define Prop Reduce h 1

#include ” b l o c h l i b . h”

/∗ ∗∗∗ This c l a s s shou ld be used as f o l l o w s . . .

PropReduce myred ( base , f ac t , l o g ) ;
myred . reduce ( ) ;

f o r ( i n t i =0; i<base;++i ){
< genera te the ind and fow props . . . >
}
f o r ( i n t i =0; i<myred . maxBackReduce();++ i ){
< genera te the back props . . . >
}

Vector<matrix> myred . generateProps ( ind , fow , bac ) ;
∗∗∗/

/∗ ∗∗ The Rat iona l Reduction o f Propogators ∗∗ ∗/

using namespace BlochLib ;

class PropReduce{
private :
Vector<Vector<int> > BackRed ;
Vector<int> BackName ;

Vector<Vector<int> > FowardRed ;
Vector<int> FowardName ;

Vector<Vector<int> > Specia lRed ;
Vector<int> SpecialName ;

Vector<Vector<int> > dat ;

int Mults , UseMe , baseTag , speTag ;
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bool i t e r a t i o n ( Vector<Vector<int> > &dat ,
Vector<Vector<int> > &propRed ,
Vector<Vector<int> > &subN ,
Vector<int> &name ) ;

public :

int base , f a c t o r ;
s td : : ostream ∗ l o g f ;

// con s t ru c t o r s
PropReduce ( ){}
PropReduce ( int bas , int f a c to r , s td : : ostream ∗ oo=0);

void setParams ( int bas , int f ac t , s td : : ostream ∗ oo=0);

void fowardReduce ( ) ;
void backReduce ( ) ;
void spec ia lReduce ( ) ;

void reduce ( ) ;
inl ine int b e s tMu l t i p l i c a t i o n s ( ){ return Mults ; }

inl ine int maxBackReduce ( ) const { return UseMe+1; }
inl ine int maxFowardReduce ( ) const { return FowardRed . s i z e ( ) ; }

// the s e f unc t i on s w i l l c r ea t e the propogators
// from 3 input matrix l i s t s . . the f i r s t are the
// i n d i v i d u a l propogators ( ”0” , ”1” , ”2” . . . )
// the second the ’ Foward ’ props ( ”0∗1” , ”0∗1∗2” . . . )
// the t h i r d the , ’ Back ’ props ( ”7∗8” , ”6∗7∗8” . . . )
// the f o r t h i s the p l ace to f i l l . . .
void generateProps ( Vector<matrix> &indiv ,

Vector<matrix> &Foward ,
Vector<matrix> &Back ,
Vector<matrix> &Fil lMe ) ;

} ;

#endif

The source file

#include ” b l o c h l i b . h”
#include ”propreduce . h”

using namespace BlochLib ;
using namespace std ;

PropReduce : : PropReduce ( int bas , int fac , ostream ∗ oo )
{ setParams ( bas , fac , oo ) ; UseMe=0; Mults=0;}
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void PropReduce : : setParams ( int bas , int fac , ostream ∗ oo )
{
// f i nd the g r e a t e s t common d i v i s o r . . .
int u = abs ( bas ) ;

int v = abs ( f a c ) ;
int q , t ;
while ( v ){

q = int ( f l o o r ( double (u)/double ( v ) ) ) ;
t = u − v∗q ;
u = v ;
v = t ;

}

base=bas/u ;
f a c t o r=fac /u ;
l o g f=oo ;

dat . r e s i z e ( base , Vector<int>( f a c t o r ) ) ;
FowardName . r e s i z e ( base −1);
FowardRed . r e s i z e ( base −1);

BackName . r e s i z e ( base −1);
BackRed . r e s i z e ( base −1);

int ct =0 , ct2 =0;
for ( int i =0; i<base ∗ f a c t o r ;++ i ){

dat [ c t ] [ c t2 ]= i%base ;
++ct2 ;
i f ( ct2>=fa c t o r ){ ++ct ; ct2 =0; }

}

baseTag=100∗BlochLib : : max( base , f a c t o r ) ;
for ( int i =1; i<base;++ i ){
FowardName [ i−1]= i ∗baseTag ;
FowardRed [ i −1] . r e s i z e ( i +1);
for ( int j =0; j<=i ;++j ) FowardRed [ i −1] [ j ]= j ;

i f ( l o g f )
∗ l o g f<<”Foward reduct i on : ”<<FowardName [ i−1]<<”=”
<<FowardRed [ i−1]<<std : : endl ;

BackName [ i−1]=− i ∗baseTag ;
BackRed [ i −1] . r e s i z e ( i +1);
for ( int j=base−i −1 , k=0; j<base;++j ,++k){ BackRed [ i −1] [ k]= j ;}

i f ( l o g f )
∗ l o g f<<”Back reduct ion : ”<<BackName [ i−1]<<”=”
<<BackRed [ i−1]<<std : : endl ;

}

// t h i s i s a s p e c i a l one which s imply tr ims the the 0 and base−1
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// f a c t o r and can be ca l c ed by U(0) ’∗U( t r )∗U( base −1) ’
Specia lRed . r e s i z e ( 1 , Vector<int>(base −2)) ;
speTag=20000∗BlochLib : : max( base , f a c t o r ) ;
SpecialName . r e s i z e (1 , speTag ) ;
for ( int i =1; i<base−1;++i ){
Specia lRed [ 0 ] [ i−1]= i ;

}
i f ( l o g f )
∗ l o g f<<” Spe c i a l r educt i on : ”<<Specia lRed [0]<<”=”
<<SpecialName [0]<< std : : endl<<std : : endl ;

}

bool PropReduce : : i t e r a t i o n ( Vector<Vector<int> > &dat ,
Vector<Vector<int> > &propRed ,

Vector<Vector<int> > &subN ,
Vector<int> &name)

{
// loops to f i nd the matches
bool gotanyTot=fa l se ;

for ( int i =0; i<dat . s i z e ();++ i ){
bool gotany=fa l se ;
Vector<int> curU ;
for ( int M=0;M<dat [ i ] . s i z e ();++M){
bool got=fa l se ;
int p=0;
for (p=subN . s i z e ()−1;p>=0;−−p){
i f ( subN [ p ] . s i z e ()+M<=dat [ i ] . s i z e ( ) ){
i f ( subN [ p]==dat [ i ] ( Range (M,M+subN [ p ] . s i z e ()−1))){
got=true ;
break ;
}
}
}

i f ( got ){
for ( int k=0;k<M;++k){
curU . push back ( dat [ i ] [ k ] ) ;
}
curU . push back (name [ p ] ) ;
for ( int k=subN [ p ] . s i z e ()+M; k<dat [ i ] . s i z e ();++k){
curU . push back ( dat [ i ] [ k ] ) ;
}
propRed [ i ]=curU ;
gotany=true ;
break ;
}
}
i f ( ! gotany ){
for ( int k=0;k<dat [ i ] . s i z e ();++k){
curU . push back ( dat [ i ] [ k ] ) ;
}
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propRed [ i ]=( curU ) ;
} else {
gotanyTot=true ;

}
}
return gotanyTot ;
}

/∗ ∗∗ foward reduc t i ons . . . ∗ ∗ ∗/
void PropReduce : : fowardReduce ( )
{
Vector<Vector<int> > propRed ( base , Vector<int > (0 ) ) ;
while ( i t e r a t i o n ( dat , propRed , FowardRed , FowardName) ){
dat=propRed ;

}

int mult i =0;
for ( int i =0; i<dat . s i z e ();++ i ){
i f ( l o g f ) ∗ l o g f<<”Sequence ”<<i<<” : ”<<dat [ i ]<<endl ;
mult i+=dat [ i ] . s i z e ( ) ;

}
i f ( l o g f )
∗ l o g f<<” After Foward Reduction . . . Number o f mu l t i p l i c a t i o n s : ”
<<multi<<endl<<endl ;

}

/∗∗∗Back Reductions ∗∗ ∗/
// the back reduc t i ons we do note g e t f o r f r e e
// ( l i k e the forward ones whcih we have to ca l c
// from the exp (H) opera t ion ) , so the number
// o f back reduc t i ons used depends on the t o t a l mu l t i p l i c a t i o n
// save ing s . . . so we need to go through the en t i r e l oops o f
// back reduc t i ons . . .
void PropReduce : : backReduce ( )
{
Vector<Vector<int> > propRed ( base , Vector<int > (0 ) ) ;
Vector<Vector<int> > holdDat ( dat . s i z e ( ) ) ;
for ( int i =0; i<dat . s i z e ();++ i ) holdDat [ i ]=dat [ i ] ;

Mults=1000000;
int mult i =0;
UseMe=0;
Vector<Vector<int> > curBack ;
Vector<int> curName ;
for ( int k=0;k<BackRed . s i z e ();++k){
i f ( l o g f ) ∗ l o g f<<” Number o f ’ Back Reductions ’ : ”<<k<<endl ;
curBack=BackRed (Range (0 , k ) ) ;
curName=BackName(Range (0 , k ) ) ;

for ( int i =0; i<dat . s i z e ();++ i ) dat [ i ]=holdDat [ i ] ;
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while ( i t e r a t i o n ( dat , propRed , curBack , curName ) ){
dat=propRed ;

mult i=curBack . s i z e ( ) ;
for ( int j =0; j<dat . s i z e ();++ j ){
mult i+=dat [ j ] . s i z e ( ) ;

}

i f ( Mults>mult i ){
UseMe=k ;
Mults=mult i ;
}
}
for ( int j =0; j<dat . s i z e ();++ j ){
i f ( l o g f )
∗ l o g f<<”Sequence ”<<j<<” : ”<<dat [ j ]<<std : : endl ;

}
i f ( l o g f )
∗ l o g f<<” After Back Reduction . . . Number o f mu l t i p l i c a t i o n s : ”
<<multi<<std : : endl<<std : : endl ;

}

//need to ’ regen ’ the b e s t one f o r d i s p l a y i n g
i f ( l o g f ) ∗ l o g f<<” Number o f ’ Back Reductions ’ : ”<<UseMe<<std : : endl ;
curBack=BackRed (Range (0 ,UseMe ) ) ;
curName=BackName(Range (0 ,UseMe ) ) ;

for ( int i =0; i<dat . s i z e ();++ i ) dat [ i ]=holdDat [ i ] ;

Vector<int> BackNeedToGen ;
while ( i t e r a t i o n ( dat , propRed , curBack , curName ) ){
dat=propRed ;

}
}

/∗ ∗∗ Spec i a l Reductions ∗∗ ∗/
void PropReduce : : spec ia lReduce ( )
{
Vector<Vector<int> > propRed ( base , Vector<int > (0 ) ) ;
while ( i t e r a t i o n ( dat , propRed , SpecialRed , SpecialName ) ){
dat=propRed ;

}

Vector<Vector<int> > curBack=BackRed (Range ( 0 , UseMe ) ) ;
int mult i=curBack . s i z e ( ) ;
for ( int i =0; i<dat . s i z e ();++ i ){
i f ( l o g f ) ∗ l o g f<<”Sequence ”<<i<<” : ”<<dat [ i ]<<std : : endl ;
mult i+=dat [ i ] . s i z e ( ) ;

}
int t t t=Mults−mult i ; // sav ing s f o r ’ s p e c i a l s ’
Mults−=t t t ;
i f ( l o g f )
∗ l o g f<<” After Spe c i a l Reduction . . . Number o f mu l t i p l i c a t i o n s : ”
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<<Mults<<std : : endl<<std : : endl ;
}

void PropReduce : : reduce ( )
{
fowardReduce ( ) ;
backReduce ( ) ;
spec ia lReduce ( ) ;
i f ( l o g f ){
∗ l o g f<<endl<<” The Best Reduction i s f o r us ing ”
<<UseMe+1<<” Back Reductions ”<<std : : endl ;
∗ l o g f<<” For a grand t o t a l o f ”<<Mults
<<” mu l t i p i c a t i on s ”<<std : : endl ;
∗ l o g f<<” The t o t a l Sequence . . . . ”<<std : : endl ;
}
for ( int j =0; j<dat . s i z e ();++ j ){
i f ( l o g f ) ∗ l o g f<<”Sequence ”<<j<<” : ”<<dat [ j ]<<std : : endl ;

}
}

// the s e f unc t i on s w i l l c r ea t e the propogators
// from 3 input matrix l i s t s . . the f i r s t are the
// i n d i v i d u a l propogators ( ”0” , ”1” , ”2” . . . )
// the second the ’ Foward ’ props ( ”0∗1” , ”0∗1∗2” . . . )
// the t h i r d the , ’ Back ’ props ( ”7∗8” , ”6∗7∗8” . . . )
// the f o r t h i s the p l ace to f i l l . . .
void PropReduce : :

generateProps ( Vector<matrix> &indiv ,
Vector<matrix> &Foward ,
Vector<matrix> &Back ,
Vector<matrix> &Fil lMe )

{
i f ( i nd iv . s i z e ( ) != base ){
std : : cer r<<”PropReduce : : generateProps ( ) ”<<endl ;
s td : : ce r r<<” Ind i v i dua l Mat r i c i e s must have l ength ’ base ’ ”<<endl ;
e x i t ( 1 ) ;

}

i f (Foward . s i z e ( ) != base−1){
std : : cer r<<”PropReduce : : generateProps ( ) ”<<endl ;
s td : : ce r r<<” Foward Mat r i c i e s must have l ength ’ base−1’”<<endl ;
e x i t ( 1 ) ;

}

i f ( Fi l lMe . s i z e ( ) != base ){
std : : cer r<<”PropReduce : : generateProps ( ) ”<<endl ;
s td : : ce r r<<” Fi l lMe Mat r i c i e s must have l ength ’ base ’ ”<<endl ;
e x i t ( 1 ) ;

}

i f (Back . s i z e ( ) != UseMe+1){
std : : cer r<<”PropReduce : : generateProps ( ) ”<<endl ;
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std : : cer r<<” Back Mat r i c i e s must have the proper ”<<endl ;
s td : : ce r r<<” l ength from ’maxBackReduce ( ) ’ ”<<endl ;
e x i t ( 1 ) ;

}

for ( int i =0; i<dat . s i z e ();++ i ){
for ( int j =0; j<dat [ i ] . s i z e ( ) ; j++){
i f ( j==0){
i f ( dat [ i ] [ j ]>=baseTag && dat [ i ] [ j ] != speTag ){
Fil lMe [ i ]=Foward [ dat [ i ] [ j ] / baseTag −1 ] ;

} else i f ( dat [ i ] [ j ]<0){
Fil lMe [ i ]=Back[−dat [ i ] [ j ] / baseTag −1 ] ;

} else i f ( dat [ i ] [ j ]==speTag ){
Fil lMe [ i ]= ad j o i n t ( ind iv [ base −1])∗Foward [ base −2]∗
ad j o i n t ( ind iv [ 0 ] ) ;

} else {
Fil lMe [ i ]= ind iv [ dat [ i ] [ j ] ] ;

}
} else {
i f ( dat [ i ] [ j ]>=baseTag && dat [ i ] [ j ] != speTag ){
Fil lMe [ i ]=Foward [ dat [ i ] [ j ] / baseTag −1]∗Fil lMe [ i ] ;

} else i f ( dat [ i ] [ j ]<0){
Fil lMe [ i ]=Back[−dat [ i ] [ j ] / baseTag −1]∗Fil lMe [ i ] ;

} else i f ( dat [ i ] [ j ]==speTag ){
Fil lMe [ i ]= ad j o i n t ( ind iv [ base −1])∗Foward [ base −2]∗
ad j o i n t ( ind iv [ 0 ] ) ∗ Fil lMe [ i ] ;

} else {
Fil lMe [ i ]= ind iv [ dat [ i ] [ j ] ] ∗ Fil lMe [ i ] ;

}
}
}
}
}

Example usage

/∗ ∗∗ Sample Usage o f the ’ PropReduce ’ c l a s s ∗∗ ∗/

#include ” b l o c h l i b . h”
#include ”propreduce . h”
using namespace BlochLib ;
using namespace std ;

int main ( int argc , char ∗ argv [ ] ) {

int base , f a c t o r ;
query parameter ( argc , argv , 1 , ”Enter Base : ” , base ) ;
query parameter ( argc , argv , 2 , ”Enter f a c t o r : ” , f a c t o r ) ;
s td : : s t r i n g fname ;
query parameter ( argc , argv , 3 , ”Enter l og f i l e name : ” , fname ) ;
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ofstream oo ( fname . c s t r ( ) ) ;

PropReduce myReduce ( base , f a c to r , & oo ) ;
myReduce . reduce ( ) ;

}

A.2.3 Optimized static Hamiltonian FID propogation

Vector<complex> StaticFID ( matrix &H, matrix &rho ,
matrix &detect , int npts , double dt )

{
Vector<complex> f i d ( npts , 0 ) ;
complex z (0 .0 , − dt ∗2 .0∗Pi ) ; // i ∗2 p i d t
matrix evect ; // e i g en v e c t o r s o f H

dmatrix eva l ; // e i g enva l u e s o f H

// d i a g ona l i z e the Hamiltonian
diag (H, eval , evec t ) ;
const double c u t o f f = 1 .0 e−10;

// put rho in t o e i genbase o f H
matrix s i g 0=adjprop ( evect , rho ) ; // ad j o i n t ( e v e c t )∗ ro ∗( e v e c t ) ;

// Put d e t e c t i on op . to e i genbase o f H
matrix Do=adjprop ( evect , dectec ) ; // ad j o i n t ( e v e c t )∗ de ∗( e v e c t ) ;

int hs = hamil . rows ( ) ;
int l s = hs∗hs ;
eva l=exp ( z∗ eva l ) ; // exp [− i 2 p i t Omega ]

// s t o rage f o r the c o e i f f i c e n t s
complex ∗A=new complex [ l s ] ;

// s t o rage f o r the e i g enva l u e d i f f e r e n c e s
complex ∗B=new complex [ l s ] ;
int i , j , pos=0;

// c a l c u l a t e them , ommiting anyth ing t ha t i s ’ 0 ’
for ( i =0; i<hs ; i++){
for ( j =0; j<hs ; j++){
// the sho r t e r matrix t race and matrix mu l t i p i c a t i on
// in t o an Nˆ2 loop ra the r then an Nˆ3 loop
A[ pos ] = Do( i , j )∗ s i g 0 ( j , i ) ;
// c a l c u l a t e the e i g enva l u e terms from
// the mu l t i p l i c a t i o n
B[ pos ] = eva l ( i )∗ conj ( eva l ( j ) ) ;
//do not care about the va lue i f the c o i e f
// i s be low our c u t o f f va lue
i f ( square norm (A[ pos ])> c u t o f f ){ pos++;}

}
}
//move npts ∗ dt in time
for ( int k=0; k<npts ( ) ; k++){
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z = 0 ; // temporary s i g n a l

// t h i s i s our reduced
//matrix and t race mu l t i p l i c a t i o n
for ( int p=0; p<pos ; p++){
//add a l l the c o i e f f ∗ f r e q u enc i e s
z += A[ p ] ;
A[ p ] ∗= B[ p ] ;
}
// as s i gn temp s i g n a l to f i d
f i d ( k)=z ;

}
delete [ ] A;
delete [ ] B;
return f i d ;
}

A.2.4 γ − COMPUTE C++ Class

/∗compute . cc
∗ t h i s l i t t l e c l a s s deve l op s s t r o p o s c o p i c a l l y observed

spec t ra us ing the ’COMPUTE’ method g iven in

@Art ic le {Eden96 ,
author=”Matt ias Eden and Young K. Lee and Malcolm H. L e v i t t ” ,
t i t l e =”E f f i c i e n t Simulat ion o f Per iod ic Problems in NMR.

App l i ca t i on to Decoupl ing and Rota t iona l Resonance ” ,
j ourna l=”J . Magn . Reson . A.” ,
volume=”120” ,
pages=”56−71”,
year=1996

}

@Art ic le {Hohwy99 ,
author=”Hohwy , M. and Bi ldse , H. and Nie lsen , N. C.” ,
t i t l e =”E f f i c i e n t Spe c t r a l S imula t ions in {NMR} o f Rotat ing
So l i d s . The $\gamma$−COMPUTE Algorithm ” ,
j ourna l=”J . Magn . Reson .” ,
volume=”136” ,
pages=”6−14”,
year=1999

}

∗ i t c a l c u a l t e s a s i n g l e propogator f o r some modulation
∗ period , T. I t uses a l l the l i t t l e compute s tep used to c a l c u l a t e
∗ propogator to r e con s t ru c t the en t i r e f r e quecy range
∗ and thus a f i d from the f r e qu enc i e s
∗
∗ i t a l s o c a l c u l a t e s propogators v ia a d i r e c t method
∗ i . e . U( t )=Prod ( exp(− i d t H( t ) ) )

the ’ f u n c t i o n t ’ c l a s s MUST have a func t i on c a l l e d
’ hmatrix Hamiltonian ( doub le TIME1, doub le TIME2, doub le WR) ’
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where ’TIME1=the beg in ing o f a d e l t a T s t ep
’TIME2=the END of a d e l t a T s t ep
’WR’= the Rotor Speed

The Hamiltonian func t i on Must perform the co r r e c t
r o t a t i on under WR, i t i s a l s o up to the user
to s e t the co r r e c t ROTOR ANGLE BEFORE t h i s i s c a l l e d

I t i s desg ined to be par t o f the BLOCHLIB t o o l k i t
thus the ’BEGIN BL NAMESPACE ’ macro and the
’ odd ’ i n c l u d e s .
∗/

#ifndef compute h
#define compute h 1
#include ” conta ine r /matrix /matrix . h” // B l o c h l i b f i l e
#include ” conta ine r /Vector /Vector . h” // B l o c h l i b f i l e

BEGIN BL NAMESPACE

template<class f unc t i on t>
class compute {
private :
// s t o rage f o r U k
stat ic Vector<matrix > U k ;

//a po in t e r to the hami l tonian func t i on c l a s s
f u n c t i o n t ∗mf ;

// 1 i f ro==1/2(de t+ad j o i n t ( de t )) , 0= f a l s e , 2= not c a l c u l a t e d YET
// c a l c u l a t e d v ia ’ isroSYM ’ below
int rosym ;
int isroSYM( const matrix &ro , const matrix &det )
{
i f ( rosym==2){
i f ( ro==0.5∗( det+ad jo in t ( det ) ) ) return 1 ;
else return 0 ;

} else {
return rosym ;
}
}

// g iven a per iod o f ‘1/wr ’
// and a de s i r ed sweep width ‘ sw ’
// the number ‘ n ’ ( compute s tep ) d i v i s i o n s o f
// the ro to r c y c l e i s f l o o r ( sw/wr+0.5)
// as i t must be an i n t e g e r
// thus the sweep width may need to modi f ied
// to accomidate ‘ n ’
//
// This a l s o c a l c u l a t e s the number o f
// ‘gamma ’ powder ang l e s we can c a l c u l a t e
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// g iven ‘ n ’ , shou ld we d e s i r e and gamma ang l e s
// computed at a l l , we a l t e r the ‘ gammaloop ’
// f a c t o r to > 1 to perform the reorder ing
// gamma step needs to be a mut ip l e o f compute s tep
void CalcComputeStep ( )
{
i f ( wr ==0.0) return ;
compute step=int ( f l o o r ( sw /wr +0 .5 ) ) ;
i f ( gamma step>=compute step ){
gammaloop=gamma step/ compute step ;
}
i f ( gammaloop<1) gammaloop=1;
gamma step=gammaloop∗ compute step ;

// compute time =1./( doub le ( compute s tep )∗wr ) ;
sw =double ( compute step ∗wr ) ;

}

public :
// the TOTAL one per iod propogator
matrix Uf ;

//number o f ro to r d i v i s i o n s
int compute step ;

// t o t a l number o f gamma ang l e s
// to c a l c u l a t e
int gamma step ;

// t o t a l number o f r eo rde r ing s o f propogators to c a l c u l a t e
// more gamma steps ( gamma step=compute s tep ∗gammaloop )
int gammaloop ;

// sweep width and ro to r speed in Hz
double sw , wr ;

// s t a r t time and end time and s t ep time f o r
// the per iod
double tmin ;
double tmax ;
double tau ;

compute ( ) ;
compute ( f un c t i o n t &) ;
compute ( f un c t i o n t &in , int compute stepIn )
compute ( f un c t i o n t & , double wr , double sw , double tmin ,

double tmax ) ;
compute ( f un c t i o n t & , int compute stepIn , double tmin ,

double tmax ) ;

˜compute ( ){ mf=NULL; }

// func t i on s f o r i n t e r n a l v a r i a b l e s
inl ine double wr ( ) const
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{ return wr ; }
inl ine void setWr (double in )
{ wr =in ; CalcComputeStep ( ) ; }

inl ine double sweepWidth ( ) const
{ return sw ; }
inl ine void setSweepWidth (double in )
{ sw =in ; CalcComputeStep ( ) ; }

inl ine int gammaStep ( ) const
{ return gamma step ; }
inl ine void setGammaStep ( int in )
{
RunTimeAssert ( in>=1);
gamma step=in ;
CalcComputeStep ( ) ;
}

// c a l c u l a t e s the U k propogators
// g iven no add i t i o n a l r eorder ing
// to compute the gamma ang l e s
void calcUFID (){ calcUFID ( 1 ) ; }

// c a l c u l a t e s the U k propogators
// g iven the curren t gamma ang le index de s i r ed
void calcUFID ( int gammaon ) ;

//computes the FID given i n i t i a l and d e t e c t i on
// matr ices and the number o f propogator
// po in t s d e s i r ed
Vector<complex> FID( matrix &ro , matrix &det , int npts ) ;

} ;

// t h j e s t a t i c l i s t o f U k matr ices
template<class f unc t i on t>
Vector<typename compute<f unc t i on > : : matrix>
compute<f unc t i on t > : : U k (1 , matrix ( ) ) ;

// d e f a u l t cons t ruc t o r
template<class f unc t i on t>
compute<f unc t i on t > : : compute ( )
{
mf=NULL;
compute step=0;pmax=0;
tmin =0 . ; tmax =0 . ; tau =0. ;
rosym=2;
gammaloop=1;
gamma step=10;
wr =0;
sw =0;

}



A.2. NMR ALGORITHMS 257

// cons t c t o r a s s i gn s func t i on po in t e r
template<class f unc t i on t>
compute<f unc t i on t > : : compute ( f un c t i o n t & in )
{
mf=&in ;
tmin =0. ; compute step=0;
tmax =0 . ; tau =0. ;pmax=0;
rosym=2;
gammaloop=1;
gamma step=10;
wr =0;
sw =0;

}

// cons t c t o r a s s i gn s func t i on po in t e r
// and compute s tep
template<class f unc t i on t>
compute<f unc t i on t > : : compute ( f un c t i o n t &in , int compute stepIn )
{
mf=&in ;
compute step=compute stepIn ;
U k . r e s i z e ( compute step +1 , mf−>Fe ( ) ) ;
Uf=mf−>Fe ( ) ;
pmax=compute step+1;
tmin =0. ; tmax =0 . ; tau =0. ;
rosym=2;
}

template<class f unc t i on t>
compute<f unc t i on t , MatrixType T > : : compute (

f un c t i o n t &in , // func t i on
double wr , // ro to r speed
double sw , // sweep width
double tminin , // s t a r t time o f a per iod
double tmaxin ) //end time o f a per iod

{
mf=&in ;
wr =wr ;
sw =sw ;
gammaloop=1;
gamma step=10;
CalcComputeStep ( ) ;
U k . r e s i z e ( compute step +1 , mf−>Fe ( ) ) ;
pmax=compute step+1;
Uf=mf−>Fe ( ) ;
tmin=tminin ;
tmax=tmaxin ;
tau=(tmax−tmin )/ compute step ;
i f ( tau<=0){
std : : cer r<<std : : endl<<std : : endl

<<”Error : compute : : compute ( ) ”<<std : : endl ;
s td : : ce r r<<” your time f o r the propgator i s negat ive ”<<std : : endl ;
s td : : ce r r<<” . . . an e v i l s tench f i l l s the room . . . ”<<std : : endl ;
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BLEXCEPTION( FILE , LINE )
}
rosym=2;

}

template<class f unc t i on t>
compute<f unc t i on t > : : compute ( f un c t i o n t &in , // the func t i on

int compute stepin , // i n i t i a l compute s t e p s
double tminin , // beg in ing time o f the per iod
double tmaxin ) // the end time o f the per iod

{
mf=&in ;
compute step=compute stepin ;
U k . r e s i z e ( compute step +1 , mf−>Fe ( ) ) ;
gammaloop=1;
gamma step=10;
Uf=mf−>Fe ( ) ;
tmin=tminin ;
tmax=tmaxin ;
tau=(tmax−tmin )/ compute step ;
i f ( tau<=0){
std : : cer r<<std : : endl

<<std : : endl<<”Error : compute : : compute ( ) ”<<std : : endl ;
s td : : ce r r<<” your time f o r the propgator i s negat ive ”<<std : : endl ;
s td : : ce r r<<” . . . an e v i l s tench f i l l s the room . . . ”<<std : : endl ;
BLEXCEPTION( FILE , LINE )
}
rosym=2;
}

// c a l c u l a t e the U k propogators
template<class f unc t i on t>
void compute<f unc t i on t > : : calcUFID ( int gammaon)
{
// the e f f e c i t v e ’gamma ’ ang le i s
// performed by ’ s h i f t i n g ’ time . . . .
double tadd=PI2∗double (gammaon)/

double ( gammaloop∗ compute step )/ wr ;
double t1=tmin+tadd ;
double t2=tmin+tadd+tau ;
stat ic matrix hh ;

// loop through the compute s t ep d i v i s i o n s
// us ing the ’ Hamiltonian ( t1 , t2 , wr ) func t i on
// requ i r ed in the f u n c t i o n t
for ( int i =0; i<compute step ; i++){
hh=Mexp(mf−>Hamiltonian ( t1 , t2 , wr ) , − complex (0 ,1 )∗ tau∗PI2 ) ;
i f ( i ==0){ U k [ 0 ] . i d e n t i t y (hh . rows ( ) ) ; }
U k [ i +1]=hh∗U k [ i ] ;
t1+=tau ;
t2+=tau ;
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}
// t o t a l per iod propogator i s the l a s t s t ep
Uf=(U k [ compute step ] ) ;
}

// f i d c a l c u l a t i o n
// needs 1 ) to loop through a l l permutat ions
// o f the gammaloop , to s h i f t t ime prope r l y
// 2 ) use the propogators to c a l c u l a t e the FID
template<class f unc t i on t>
Vector<complex>

compute<f unc t i on t > : :FID( matrix &ro , matrix &det , int npts )
{
Vector<complex> f i d ( npts , 0 ) ;
for ( int q=0;q<gammaloop ; q++){
calcUFID (q ) ;
f i d+=calcFID ( ro , det , npts ) ;

}
return f i d ;
}

template<class f unc t i on t>
Vector<complex>

compute<f unc t i on t > : : calcFID ( matrix &ro , matrix &det , int npts )
{
// zero out a new FID vec to r
Vector<complex> f i d ( npts , 0 ) ;

// i s ro and de t symmetric?
rosym=isroSYM( ro , det ) ;
matrix evect ; // e i gn e v e c t o r s
dmatrix eva l ; // e i g enva l u e s

// c a l c u l a t e the e f f e c t i v e Hamiltonian
// from the t o t a l per iod propogator
diag (Uf , eval , evect ) ;
int N=Uin . rows ( ) ;
int i =0 , j =0 , p=0 , r =0 , s=0;

// vec t o r o f l o g ( e i g enva l u e s ) in H e f f
Vector<complex> ev (N, 0 ) ;

// the matrix o f f r e qu enc i e s d i f f e r e n c e s
// w rs
matrix wrs (N, N) ;
double tau2PI=tau ;

// c a l c u l a t e the t r a n s i t i o n matrix
complex t o t t=complex ( 0 . , double ( compute step )∗ tau2PI ) ;
for ( i =0; i<N; i++){
ev [ i ]= log ( eva l ( i , i ) ) ;
}

for ( i =0; i<N; i++){
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for ( j =0; j<N; j++){
wrs ( i , j )=chop ( ( ev [ i ]−ev [ j ] ) / tot t , 1 e−10);
}
}

// the gamma−compute a l gor i thm use the symetry r e l a t i o n
// between the gamma powder ang l e s DIVIDED in to 2 Pi/ compute s tep
// s e c t i o n s . . . the d e t e c t i on opera tor
// so f o r each gamma ang le we would t h ink t ha t we would need
// ( compute s tep ) propoga tors f o r each ro to r c y c l e d i v i s i o n
// ( which we s e t to be equa l to ( compute s tep ) a l s o ) to
// cor i spond to each d i f f e r e n t gamma ang le . . . w e l l not so ,
// becuase we have some nice time symetry between the gamma
// ang le and the time eveo l v ed . So we only need to c a l c u l a t e the
// propogators f o r gamma=0. . . from t h i s one in s e l e c t combinat ions
// we can genera te a l l the ( compute s tep ) propoga tors from
// the gamma=0 ones we s t i l l need to d i v i d e our ro to r c y c l e up
// however , a l s o in t o ( compute s tep ) propoga tors
// f o r the remaining notes i w i l l use t h i s l a b a l i n g convent ion
//
// pQs k −−> the transformed d e t e c t i on opera tor f o r the k th
// ro to r d i v i s i o n f o r a gamma ang le o f
// ’ p ’∗2Pi /( compute s tep )
//
// pRoT −−> the transformed den s i t y matrix f o r the f o r a gamma
// ang le o f ’ p ’∗2Pi /( compute s tep )
// NOTE: : the ro to r d i v i s i o n in f o i s conta ined in the Qs
//
// pU k −−> the un i ta ry t ra s fo rmat ion f o r the i t h ro to r d i v i s i o n
// f o r a gamma ang le o f ’ p ’∗2Pi /( compute s tep ) . . .
// the opera tor s 0U k were c a l c u l a t e d in the func t i on
// ’ calcUFID ( i n t ) ’
//
// the ’ pth ’ one o f a l l o f t h e s e i s r e a l a t e d back to the ’0 th ’
// opera tor by some s e r i e s o f i n t e r n a l mu l t i p l i c a t i o n s
//

complex tmp1 ;
stat ic Vector<matrix> Qs ;
Qs . r e s i z e ( compute step ) ;
stat ic Vector<matrix> RoT;
RoT. r e s i z e ( compute step ) ;

// c a l c u l a t i n g
// the k th d en s i t y matrix
// (0RoT)ˆd=(evec t )ˆd∗(0U k )ˆd∗ ro ∗(0U k )∗ e vec t
// the k th d e t e c t i on op
// (0Qs k )ˆd=(evec t )ˆd∗(0U k )ˆd∗ ro ∗(0U k )∗ e vec t
//
//IF ro=1/2( de t+ad j o i n t ( de t ) ) then
// the i t h d en s i t y matrix i s (0RoT)ˆd=0Qs k+(0Qs k )ˆd
//
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// the ’ˆ d ’ i s a ad j o i n t opera t ion

for ( i =0; i<compute step ; i++){
Qs [ i ]=adjprop ( evect , adjprop (U k [ i +1] , det ) ) ;
i f ( rosym==0) RoT[ i ]=adjprop ( evect , adjprop (U k [ i +1] , ro ) ) ;
else RoT[ i ]=Qs [ i ]+ ad j o i n t (Qs [ i ] ) ;

}

//The s i g n a l i s then a nice sum over the t r a n s i t i o n matrix
// and the pQs ’ s and pRos Of course t h i s i s where we
// manipulate the ’0 th ’ opera tor s to c r ea t e the ’ pth ’
// and combine them a l l i n t o a ’ f ’ matrix which
// conta ins the ampl i tudes
//
// pF k ( r , s )= means the ’ pth ’ gamma ang le f o r the
// ’ k th ’ ro to r d i v i s i o n element ( r , s )
//
// pF k ( r , s )= exp [ i m wrs ( r , s ) t o t t ] ∗ Ro[ p%compute s tep ] ( s , r )
// ∗ Qs [ k+p%compute s tep ] ( r , s ) exp [− i wrs ( r , s ) j t o t t ]
//
// here m=in t ( ( k+p)/ compute s tep )) − i n t ( p/ compute s tep )

// o f course we have many ’ p ’ s e c t i o n s ( or gamma ange l s )
// t ha t c on t r i b u t e to the ampl i tude f a c t o r s , and becuase
// they are s t r i c t l y ampl i tudes f o r separa t e gamma anlges , we can
// e a s i l y sum them in to a t o t a l ampl i tude
//
// Fave k ( r , s )=1/ compute s tep ∗ Sum (p=0)ˆ(p=n−1) { pF k ( r , s ) }
// = 1/( compute s tep )∗Sum ( . . . ) { [ ( p%compute s tep )R] ( s , r )
// exp ( i [ p−i n t ( p/ compute s tep )∗
// compute s tep ] wrs ( r , s ) tau )}
// ∗0Qs ( k+p%n)( r , s ) ] exp(− i
// [ j+p−i n t ( ( j+p)/ compute s tep ))∗
// compute s tep ] wrs ( r , s ) tau )

stat ic Vector<matrix> Fave ;
Fave . r e s i z e ( compute step , mf−>Fz ( ) ) ;

// ampl i tude c a l c u l a t i n g
int ind1 , ind2 ;
for ( i =0; i<compute step ; i++){
for (p=0;p<compute step ; p++){
// proper ‘ p ‘ f o r Q s e l e c t i o n index
ind1=( i+p)%( compute step ) ;
i f ( ( i+p)>=compute step ){
ind2=p−compute step ;

} else {
ind2=p ;

}
tmp1=complex (0. ,−double ( ind2 )∗ tau2PI ) ;
matrix tmm(N,N) ;
for ( r=0; r<N; r++){
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for ( s=0; s<N; s++){
Fave [ p ] ( r , s)+=Qs [ ind1 ] ( r , s )∗

RoT[ i ] ( s , r )∗
exp ( tmp1∗wrs ( r , s ) ) ;

}
}
}
}
complex tmp=complex ( 0 . , ( tau2PI ) ) ; // i ∗ tau

//a l i t t l e computation time save . . .
// c a l c u l a t e the exp ( i ∗ tau ∗wrs ) once
wrs=exp (tmp∗wrs ) ;
matrix tmpmm( wrs ) ; // copy w rs

// the FID at i n t e r v a l s o f i ∗ tau i s then g iven by
//
// s ( i ∗ tau)=Sum ( r , s ) { Fave i ( r , s )∗ exp [ i wrs ( r , s ) i ∗ tau ] }

// here i s the j =0 po in t . . . saves us a exp c a l c u l a t i o n

for ( i =0; i<N; i++){
for ( j =0; j<N; j++){
f i d [0]+=Fave [ 0 ] ( i , j ) ;

}
}

for ( i =1; i<npts ; i++){
// to s e l e c t the proper ’ p ’ f o r Fave p
p=i%compute step ;
for ( r=0; r<N;++r ){
for ( s=0; s<N;++s ){
f i d [ i ]+=Fave [ p ] ( r , s )∗tmpmm( r , s ) ;
//advance ’ time ’ exp ( dt ∗wi j )
tmpmm( r , s )∗=wrs ( r , s ) ;
}
}
}

//need to normal ize the f i d as we have
// added t o g e t h e r many ‘ sub f i d s ’
// but the t o t a l shou ld s t i l l be 1
int f f = rosym==1?2:1;
f i d∗=double ( 1 . / double ( compute step / f f ) ) ;
return f i d ;
}
/∗ ∗∗ END compute CLASS ∗∗ ∗/
END BL NAMESPACE
#endif
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A.3 BlochLib Configurations and Sources

A.3.1 Solid configuration files

1D static and spinning experiments shown in Figure 5.6

# a simple MAS and S t a t i c FID c o l l e c t i o n
sp in s {
#the g l o b a l op t i ons }
numspin 2
T 1H 0
T 1H 1
#csa < i so> <de l> <eta> <spin>}
C 5000 4200 0 0
C −5000 6012 0 .5 1
#j coup l ing < i so> <spin1> <spin2>}
J 400 0 1
}

parameters {
#use a f i l e found with the $BlochLib$ d i s t r i b u t i o n }

powder{
#powder f i l e used f o r the s t a t i c FID

aveType ZCW 3 3722
#powder f i l e used f o r the sp inn ing FID
#aveType rep2000
}

#number o f 1D f i d po in t s
npts1D=512

#sweep width }
sw=40000
}

pu l s e s {
#se t the sp inn ing

wr=0 #se t f o r NON−sp inn ing FID
#wr=2000 # s e t f o r SPINNING FID

#se t the ro to r }
r o to r =0 #se t f o r NON−sp inn ing f i d s
#ro tor=acos (1/ s q r t (3) )∗ rad2deg #s e t f o r SPINNING FID

#se t the d e t e c t i on matrix
de te c t ( Ip )

#se t the i n i t i a l matrix
ro ( Ix )

#no pu l s e s necessary f o r ro=Ix
#c o l l e c t the f i d

f i d ( )
s a v e f i d t e x t ( simpStat ) #save as a t e x t f i l e

}

post-C7 input file for the point-to-point FID in Figure 5.7a

#performs a point−to−po in t C7 ( a 1D FID)
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sp in s {
#the g l o b a l op t i ons

numspin 2
T 1H 0
T 1H 1
D 1500 0 1
}

parameters {
powder{
aveType zcw
thetaStep 233
phiStep 144

}
#the i n t e g r a t o r s t ep s i z e

maxtstep=1e−6
#number o f 1D f i d po in t s

npts1D=512
roeq= Iz
de t e c t=Iz

}

pu l s e s {
#our post−C7 sub pu l s e s e c t i on

sub1{
#pos t C7 pu l s e ampl i tude

amp=7∗wr
amplitude (amp)

#phase s t e pp e r s
stph=0
phst=360/7

#pu l s e t imes
t90=1/amp/4
t270=3/amp/4
t360=1/amp

#pos t C7 loop
loop (k=1:7)
1H: pu l s e ( t90 , stph )
1H: pu l s e ( t360 , stph+180)
1H: pu l s e ( t270 , stph )
stph=stph+phst

end
}

#a s i n g l e f i d i s cons idered po in t to po in t }
ptop ( )

#se t the sp inn ing
wr=5000
ro to r=rad2deg∗ acos (1/ sqrt ( 3 ) )

#can use ’ reuse ’ as the v a r i a b l e s
# are s e t once in our sub s e c t i on

r euse ( sub1 )
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#c o l l e c t the f i d }
f i d ( )
s a v e f i d t e x t ( simpC7 ) #save ta s a t e x t f i l e

}

post-C7 input file for the 2D FID in Figure 5.7b

# performs a ’ r e a l ’ experiment
# fo r the post−C7 ( a s e r i e s o f 2D f i d s are c o l l e c t e d )

sp in s {
#the g l o b a l op t i ons
numspin 2
T 1H 0
T 1H 1
D 1500 0 1
}

parameters {
powder{
aveType zcw
thetaStep 233
phiStep 144

}
#number o f 1D f i d po in t s

npts1D=512
}

pu l s e s {

#our post−C7 sub pu l s e s e c t i on
sub1{
#pos t C7 pu l s e ampl i tude

amp=7∗wr
amplitude (amp)

#phase s t e pp e r s
stph=0
phst=360/7

#pu l s e t imes
t90=1/amp/4
t270=3/amp/4
t360=1/amp

#pos t C7 loop }
loop (k=1:7)
1H: pu l s e ( t90 , stph )
1H: pu l s e ( t360 , stph+180)
1H: pu l s e ( t270 , stph )
stph=stph+phst

end
}
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#number o f 2D po in t s
f i d p t =128

#co l l e c t i o n a matrix o f data
2D( )

#se t the sp inn ing
wr=5000

#the ba s i c ro to r ang le
r o to r=rad2deg∗ acos (1/ sqrt ( 3 ) ) )

#se t the d e t e c t i on matrix
de te c t ( Ip )

#re s e t the ro back to the eq
ro ( I z )

#90 time ampl i tudes
amp=150000
t90=1/amp/4

#loop over the ro to r s t e p s
loop (m=0: f idpt −1)

#may use ’ reuse ’ a l l v a r i a b l e s are s t a t i c in sub1
# must be repea t m times to advance the d en s i t y matrix
# fo r each f i d ( the f i r s t f i d g e t s no c7 )

r euse ( sub1 , m)

#pu l s e the IZ down to the xy p lane f o r d e t e c t i on
1H: pu l s e ( t90 , 2 7 0 , amp)

#c o l l e c t the f i d at the ’mth ’ p o s i t i o n
f i d (m)

#re s e t the ro back to the eq
ro ( I z )

end
save f idmat lab (2 dc7 ) #save the matlab f i l e

}
}

A.3.2 Magnetic Field Calculator input file

The input coil type ‘Dcircle’ is a user registered function, and not part of the
normal please view the source code in the distribution for details. par

MyCoil{
s ubco i l 1 {
type helmholtz
l oops 25
amps −4
numpts 4000
R 2
length 3
ax i s z

}

s ubco i l 2 {
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type Dc i r c l e
l oops 1
amps 2
numpts 2000
R 2
theta1 0
theta2 180
ax i s z
c ente r 0 ,− .6 ,5

}

s ubco i l 3 {
type Dc i r c l e
l oops 1
amps 2
numpts 2000
R 2
theta1 0
theta2 180
ax i s z
c ente r 0 ,− .6 ,−5

}
}

g r id {
min −1,−1,−1
max 1 ,1 , 1
dim 10 ,10 ,10
}

params{
#which magnetic f i e l d s e c t i on to use
s e c t i o n MyCoil

#output t e x t f i l e name
t extout shape . b i o t
#output matlab f i l e name
matout f i e l d . mat

}

A.3.3 Quantum Mechanical Single Pulse Simulations

A.3.4 Example Classical Simulation of the Bulk Susceptibility

This simulation is a replication of the simulation performed by M. Augustine in

Figure 2 of Ref. [100]. It demonstrates the slight offset effect imposed by the magnetization

of one spin on another. Both the C++ source using the BlochLib framework and the
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configuration file is given. Results from this simulation can be found in Figure 5.11.

C++ source

#include ” b l o c h l i b . h”

// the r equ i r ed 2 namespaces
using namespace BlochLib ;
using namespace std ;

/∗
THis s imu la t e s the e f f e c t o f the Bulk S u s e p t i b i l i t y on
a HETCOR experiement . . . h o p e f u l l y we s h a l l see s e v e r a l echos
in the i n d i r e c t dimension

a HETOCR i s a 2D experiement

spin1 :: 90−− t−−90−−−−−
sp in2:: −−−−−−−90−FID

∗/
t imer stopwatch ;
void printTime ( int nrounds=1){

std : : cout <<std : : endl<< ”Time taken : ”
<< (stopwatch ( )/ nrounds ) << ” seconds ” ;

}

void In f o ( std : : s t r i n g mess )
{

cout<<mess<<endl ;
cout . f l u s h ( ) ;

}

int main ( int argc , char ∗ argv [ ] )
{

std : : s t r i n g fn ;

// the parameter f i l e
query parameter ( argc , argv , 1 , ”Enter f i l e to parse : ” , fn ) ;
Parameters pset ( fn ) ;

// ge t the ba s i c parameters
int nsteps=pset . getParamI ( ”npts ” ) ;
double t f=pset . getParamD(” t f ” ) ;
double inTemp=pset . getParamD(” temperature ” ) ;
s t r i n g sp intype1=pset . getParamS ( ” sp intype1 ” ) ;
s t r i n g sp intype2=pset . getParamS ( ” sp intype2 ” ) ;
s t r i n g detsp=pset . getParamS ( ” de t e c t ” ) ; ;

double moles=pset . getParamD(”moles ” ) ;

s td : : s t r i n g fout=pset . getParamS ( ” f i d ou t ” ) ;
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coord<int> dims ( pset . getParamCoordI ( ”dim” ) ) ;
coord<> mins ( pset . getParamCoordD( ”min” ) ) ;
coord<> maxs ( pset . getParamCoordD( ”max” ) ) ;

s td : : s t r i n g dataou=pset . getParamS ( ” t r a j e c t o r i e s ” , ”” , fa l se ) ;

// Grid Set up
typedef XYZfull TheShape ;
typedef XYZshape<TheShape> TheGrid ;

In f o ( ”Creat ing g r id . . . . ” ) ;
Grid<UniformGrid> gg (mins , maxs , dims ) ;

In f o ( ”Creat ing i n i t a l shape . . . . ” ) ;
TheShape t e s t e r ;
In f o ( ”Creat ing t o t a l shape−g r id . . . . ” ) ;
TheGrid j j ( gg , t e s t e r ) ;

// L i s t BlochParameters
typedef ListBlochParams<

TheGrid ,
BPoptions : : Density | BPoptions : : HighField ,
double > MyPars ;

int nsp=j j . s i z e ( ) ;
I n f o ( ”Creat ing e n t i r e sp in parameter l i s t f o r ”

+i t o s t ( nsp)+
” sp in s . . . . ” ) ;

MyPars mypars ( nsp , ”1H” , j j ) ;
nsp=mypars . s i z e ( ) ;

//The pu l s e l i s t f o r a r e a l pu l s e on protons . .
In f o ( ”Creat ing r e a l pu l s e l i s t s . . . ” ) ;

// ge t the i n f o from the p s e t
coord<> pang1=pset . getParamCoordD( ” pu l se1 ” ) ;
coord<> pang2=pset . getParamCoordD( ” pu l se2 ” ) ;
double de lays t ep=pset . getParamD(” de lay ” ) ;

// ( spin , ampli tude , phase , o f f s e t )
Pulse PP1( spintype1 , pang1 [ 2 ] ∗ PI2 , pang1 [ 1 ] ∗DEG2RAD) ;

Pulse PP2( spintype1 , pang2 [ 2 ] ∗ PI2 , pang2 [ 1 ] ∗DEG2RAD) ;
PP2+=Pulse ( spintype2 , pang2 [ 2 ] ∗ PI2 , pang2 [ 1 ] ∗DEG2RAD) ;

// ge t the Bo
double inBo=pset . getParamD(”Bo” ) ;

In f o ( ” Se t t i ng sp in parameter o f f s e t s . . . . ” ) ;
for ( int j =0; j<nsp ; j++){

i f ( j %2==0){ mypars ( j )=spintype1 ; }
else { mypars ( j )=spintype2 ;}

mypars ( j ) . moles ( moles /nsp ) ;
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mypars ( j ) . Bo( inBo ) ;
mypars . temperature ( inTemp ) ;

}

mypars . calcTotalMo ( ) ;
mypars . p r i n t ( cout ) ;
PP1 . p r i n t ( cout ) ;
PP2 . p r i n t ( cout ) ;

//Extra i n t e r a c t i o n s
typedef I n t e r a c t i on s<

Off se t <>,
Relax<>,
BulkSus > MyInteract ions ;

In f o ( ” Se t t i ng I n t e r a c t i o n s . . . . ” ) ;

// the o f f s e t s
// ge t the f i r s t o f f s e t

double o f f s e t 1=pset . getParamD(” o f f s e t 1 ” )∗PI2 ;
double o f f s e t 2=pset . getParamD(” o f f s e t 2 ” )∗PI2 ;
Of f se t<> myOffs (mypars , o f f s e t 1 ) ;

// Re laxa t ion
double t2s1=pset . getParamD(”T2 1” ) ;
double t1s1=pset . getParamD(”T1 1” ) ;
double t2s2=pset . getParamD(”T2 2” ) ;
double t1s2=pset . getParamD(”T1 2” ) ;
Relax<> myRels (mypars ,

( ! t2s1 ) ? 0 . 0 : 1 . 0 / t2s1 ,
( ! t1s1 ) ? 0 . 0 : 1 . 0 / t1s1 ) ;

for ( int i =0; i<nsp;++ i ){
// s e t the o f f s e t s and r e l a x t i o n v a l s
i f ( i%2==0){
myOffs . o f f s e t ( i )= o f f s e t 1 ;
myRels .T1( i )=(! t1s1 ) ? 0 . 0 : 1 . 0 / t1s1 ;
myRels .T2( i )=(! t2s1 ) ? 0 . 0 : 1 . 0 / t2s1 ;
} else {
myOffs . o f f s e t ( i )= o f f s e t 2 ;
myRels .T1( i )=(! t1s2 ) ? 0 . 0 : 1 . 0 / t1s2 ;
myRels .T2( i )=(! t2s2 ) ? 0 . 0 : 1 . 0 / t2s2 ;
}
}

//Bulk s u s e p t i b i l i t y
double D=pset . getParamD(”D” ) ;
BulkSus myBs(D) ;

// t o t a l i n t e r a c t i o n obec t
MyInteract ions MyInts (myOffs , myRels , myBs ) ;

// t y p ed e f s f o r Bloch parameter s e t s
typedef Bloch< MyPars , Pulse , MyInteract ions > PulseBloch ;
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typedef Bloch< MyPars , NoPulse , MyInteract ions > NoPulseBloch ;

// second dimension po in t s
int npts2D=pset . getParamI ( ”npts2D” ) ;

//our data matrix
matrix FIDs ( npts2D , nsteps ) ;

// ge t the time f o r the 2 90 pu l s e
double tpu l s e1=PP1 . timeForAngle ( pang1 [ 0 ] ∗ Pi /180 . , sp intype1 ) ;
double tpu l s e2=PP2 . timeForAngle ( pang2 [ 0 ] ∗ Pi /180 . , sp intype1 ) ;

// the time t r a i n s t h i s one w i l l a lways be the same
In f o ( ” I n i t i a l i z i n g Time t r a i n f o r f i r s t Pulse . . . . ” ) ;
TimeTrain<UniformTimeEngine >

P1( UniformTimeEngine ( 0 . , tpu l se1 , 1 0 , 1 0 ) ) ;

// loop over a l l our D va lue s
for ( int kk=0;kk<npts2D;++kk )
{

double curDelay=double ( kk )∗ de lays t ep ;
cout<<”On delay : ”<<curDelay<<” ”<<kk<<”/”<<npts2D

<<” \ r ” ; cout . f l u s h ( ) ;

// the time t r a i n s f o r the dea l y
TimeTrain<UniformTimeEngine >

D1( UniformTimeEngine ( tpul se1 , tpu l s e1+curDelay , 1 0 , 5 ) ) ;

// the time t r a i n s f o r the dea l y
TimeTrain<UniformTimeEngine >

P2( UniformTimeEngine (
tpu l s e1+curDelay ,

tpu l s e2+tpu l s e1+curDelay ,
10 ,
1 0 ) ) ;

TimeTrain<UniformTimeEngine >
F1( UniformTimeEngine (

tpu l s e2+tpu l s e1+curDelay ,
tpu l s e2+tpu l s e1+curDelay+t f ,
nsteps ,
5 ) ) ;

//This i s the ‘ Bloch ’ to perform a pu l s e
PulseBloch myparspulse (mypars , PP1 , MyInts ) ;

//This i s the Bloch s o l v e r to Co l l e c t the FID
// ( i . e . has no pu s l e s . . . FASTER)

NoPulseBloch me ;
me=(myparspulse ) ;

// out i n i t i a l cond i t i on
Vector<coord<> > tm=me . currentMag ( ) ;
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stopwatch . r e s e t ( ) ;
BlochSolver<PulseBloch > drivP ( myparspulse , tm , ”out” ) ;

drivP . se tProgres sBar ( SolverOps : : Off ) ;

// i n t e g r a t e the Pulse
drivP . s e tWr i t ePo l i cy ( SolverOps : : Hold ) ;
i f ( ! drivP . s o l v e (P1 ) ){

In f o ( ” ERROR! ! . . could not i n t e g r a t e pu l s e P1 . . . . ” ) ;
return −1;

}

// the f i d s i n i t i a l cond i t i on i s j u s t the prev ious
// i n t e g r a t i o n s l a s t po in t

BlochSolver<NoPulseBloch > dr iv (me , drivP . l a s tPo i n t ( ) ) ;
d r iv . s e tProgres sBar ( SolverOps : : Off ) ;

// i n t e g r a t e the Delay
dr iv . s e tWr i t ePo l i cy ( SolverOps : : Hold ) ;
i f ( ! d r iv . s o l v e (D1) ){

In f o ( ” ERROR! ! . . could not i n t e g r a t e de lay D1 . . . . ” ) ;
return −1;

}

// i n t e g r a t e second the Pulse
drivP . s e tWr i t ePo l i cy ( SolverOps : : Hold ) ;

// s e t the new pu l s e s e t
myparspulse . s e tPu l s e s (PP2 ) ;

drivP . s e t I n i t i a lC ond i t i o n ( dr iv . l a s tPo in t ( ) ) ;
i f ( ! drivP . s o l v e (P2 ) ){

In f o ( ” ERROR! ! . . could not i n t e g r a t e pu l s e P2 . . . . ” ) ;
return −1;

}

// s e t the d e t e c t i on sp in
dr iv . s e tDetec t ( detsp ) ;

// s e t var ious data c o l l e c t i o n p o l i c i e s
dr iv . s e t I n i t i a lC ond i t i o n ( drivP . l a s tPo in t ( ) ) ;
d r iv . s e tCo l l e c t i o nPo l i c y ( SolverOps : : MagAndFID ) ;
dr iv . s e tWr i t ePo l i cy ( SolverOps : : Hold ) ;

// i n t e g r a t e the FID
i f ( dr iv . s o l v e (F1 ) ){

FIDs . putRow(kk , dr iv . FID ( ) ) ;
}

}

matstream matout ( fout , i o s : : b inary | i o s : : out ) ;
matout . put ( ”vdat” , FIDs ) ;
matout . c l o s e ( ) ;
printTime ( ) ;

}
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Input Config File

#parameter f i l e f o r l oop ing through
# s e v e r a l BulkSus parameters

dim 1 ,1 , 2
min −0.5 ,−0.5 ,−0.5
max 0 . 5 , 0 . 5 , 0 . 5

#f i d p i e c e s
npts 512
t f 8

#the pu l s e b i t s
#angle , phase , ampl i tude
pul se1 90 ,90 ,80000
pu l se2 90 ,−90 ,80000

#the t2 de lay
delay 0 .000125
npts2D 64

#bas i c sp in parameters
sp intype1 1H
spintype2 31P
dete c t 31P

Bo 4 . 7
temperature 300
moles . 1 0 4

#o f f s e t s f o r each sp in
o f f s e t 1 −722
o f f s e t 2 −4.9

#re l a x a t i o n params f o r each sp in
T2 1 0 . 002
T1 1 0
T2 2 0 . 5
T1 2 0

#for the Bulk S u s e p t i b i l i t y
D 1

#f i l e output names f o r the data
f i d ou t data
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A.3.5 Example Classical Simulation of the Modulated Demagnetizing
Field

This simulation is a replication of the simulation performed by Y.Y Lin in Sci-

ence [87]. It demonstrates the non-linear properties of including both Radiation Damping

and the Modulated Demagnetizing field resulting in a resurrection of a completely crushed

magnetization. Both the C++ source using the BlochLib framework and the configuration

file is given. Results of this simulation can be seen in Figure 5.12.

C++ source

#include ” b l o c h l i b . h”

/∗
t h i s i s an at tempt to im i t a t e the r e s u l t from YY Lin in
6 OCTOBER 2000 VOL 290 SCIENCE
The s imu la ted e f f e c t i v e pu l s e sequence

RF −−−90x−−−−FID
Grad−−−−−Gzt−−−−−−

where the g rad i en t complete crushes the magnet i za t ion
with some smal l eps error from the idea
∗/

using namespace BlochLib ;
using namespace std ;

t imer stopwatch ;
void printTime ( int nrounds=1){

std : : cout <<std : : endl<< ”Time taken : ”
<< (stopwatch ( )/ nrounds )
<< ” seconds \n” ;

}

void In f o ( std : : s t r i n g mess )
{ std : : cout<<mess ; s td : : cout . f l u s h ( ) ; }

//some t y p ed e f s to make t yp ing e a s i e r
typedef XYZcylinder TheShape ;
typedef XYZshape<TheShape> TheGridS ;
typedef GradientGrid<TheGridS > TheGrid ;
typedef ListBlochParams< TheGrid ,

BPoptions : : P a r t i c l e | BPoptions : : HighField ,
double > MyPars ;
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//Extra i n e r a c t i on s
typedef I n t e r a c t i on s<Off se t<MyPars>,

Relax<>,
RadDamp,
ModulatedDemagField > MyInteract ions ;

// t y p ed e f s f o r Bloch parameter s e t s
typedef Bloch< MyPars , Pulse , MyInteract ions > PulseBloch ;
typedef Bloch< MyPars , NoPulse , MyInteract ions > NoPulseBloch ;

int main ( int argc , char ∗ argv [ ] )
{

//Get a l l the var ious parameters
std : : s t r i n g fn ;
query parameter ( argc , argv , 1 , ”Enter f i l e to parse : ” , fn ) ;
Parameters pset ( fn ) ;
double pang1=pset . getParamD(” pu l s eang l e1 ” ) ;
double amp=pset . getParamD(”pulseamp” ) ;

int nsteps=pset . getParamI ( ”npts ” ) ;
double t f=pset . getParamD(” t f ” ) ;

s td : : s t r i n g fout=pset . getParamS ( ” f i d ou t ” ) ;
s td : : s t r i n g magout=pset . getParamS ( ”magout” ) ;

int cv=pset . getParamI ( ” lyps ” , ”” , fa l se ) ;
s td : : s t r i n g l y p f i l e=pset . getParamS ( ” lypout ” , ”” , false , ” lyps ” ) ;

s td : : s t r i n g dataou=pset . getParamS ( ” t r a j e c t o r i e s ” , ”” , fa l se ) ;

// g rad i en t pars
double gradtime1=pset . getParamD(”gradtime1” ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
//Grids
coord<int> dims ( pset . getParamCoordI ( ”dim” ) ) ;
coord<> mins ( pset . getParamCoordD( ”gmin” ) ) ;
coord<> maxs ( pset . getParamCoordD( ”gmax” ) ) ;

coord<> smins ( pset . getParamCoordD( ”smin” ) ) ;
coord<> smaxs ( pset . getParamCoordD( ”smax” ) ) ;

In f o ( ”Creat ing g r id . . . . \ n” ) ;
Grid<UniformGrid> gg (mins , maxs , dims ) ;
In f o ( ”Creat ing i n i t a l shape . . . . \ n” ) ;
TheShape t e s t e r ( smins , smaxs ) ;
In f o ( ”Creat ing t o t a l shape−g r id . . . . \ n” ) ;
TheGridS g r i d s ( gg , t e s t e r ) ;

//dump the g r i d to a f i l e
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std : : o f s tream goo ( ” g r id ” ) ;
goo<<gr ids<<std : : endl ;

// c rea t e the g rad i en t g r i d s . .
char i d e a l=pset . getParamC(” i d e a l ” ) ;
coord<> grad=pset . getParamCoordD( ”grad” ) ;

In f o ( ”Creat ing Gradient map g r i d s . . . . \ n” ) ;
TheGrid j j ( g r i d s ) ;

j j .G( grad ) ;
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// s e t up Parameter l i s t s
int nsp=j j . s i z e ( ) ;
I n f o ( ”Creat ing e n t i r e sp in parameter l i s t f o r ”

+i t o s t ( nsp)+
” sp in s . . . . \ n” ) ;

MyPars mypars ( j j . s i z e ( ) , ”1H” , j j ) ;
nsp=mypars . s i z e ( ) ;

double inBo=pset . getParamD(”Bo” ) ;
double inTemp=pset . getParamD(” temperature ” ) ;
s td : : s t r i n g sp intype=pset . getParamS ( ” sp intype ” ) ;
double moles=pset . getParamD(”moles ” ) ;
s td : : s t r i n g detsp=sp intype ;

In f o ( ” s e t t i n g sp in parameter o f f s e t s . . . . \ n” ) ;
for ( int j =0; j<nsp ; j++){
mypars ( j )=sp intype ;
mypars ( j ) . Bo( inBo ) ;
mypars ( j ) . temperature ( inTemp ) ;
}

mypars . calcTotalMo ( ) ;
mypars . p r i n t ( std : : cout ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
//The pu l s e l i s t f o r a r e a l pu l s e on protons . .

In f o ( ”Creat ing r e a l pu l s e l i s t s . . . \ n” ) ;

// ( spin , ampli tude , phase , o f f s e t )
Pulse PP1( spintype , amp , 0 . ) ;

PP1 . p r i n t ( std : : cout ) ;
double tpu l s e=PP1 . timeForAngle ( pang1∗Pi /180 . , sp intype ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// time t r a i n
double t c t =0;
In f o ( ” I n i t i a l i z i n g Time t r a i n f o r f i r s t Pulse . . . . \ n” ) ;
TimeTrain<UniformTimeEngine > P1 ( 0 . , tpu l se , 1 0 , 1 0 0 ) ;
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t c t+=tpu l s e ;
In f o ( ” I n i t i a l i z i n g Time t r a i n f o r F i r s t Gradient Pulse . . . . \ n” ) ;
TimeTrain<UniformTimeEngine > G1( tct , t c t+gradtime1 , 5 0 , 1 0 0 ) ;
t c t+=gradtime1 ;
In f o ( ” I n i t i a l i z i n g Time t r a i n f o r FID . . . . \ n” ) ;
TimeTrain<UniformTimeEngine > F1( tct , t f+tct , nsteps , 5 ) ;
i f ( i d e a l==’y ’ ){ F1 . setBeginTime ( 0 ) ; F1 . setEndTime ( t f ) ; }

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// i n t e r a c t i o n s
double t2 s=pset . getParamD(”T2” ) ;
double t1 s=pset . getParamD(”T1” ) ;
double o f f s e t=pset . getParamD(” o f f s e t ” )∗PI2 ;

//demag f i e l d ’ time cons tant ’
// because we are in the ’ p a r t i c l e ’ rep
// we need to c a l c u l a t e the r e a l Mo s e pa r a t e l y
double mo=mypars [ 0 ] . gamma()∗ hbar∗

tanh ( hbar∗PI ∗( inBo∗mypars [ 0 ] . gamma()/ PI2 )/kb/inTemp)
∗No∗moles ∗1 e6 / 2 . 0 ;

double demag=1.0/(mo∗permVac∗mypars [ 0 ] . gamma ( ) ) ;

double t r=pset . getParamD(”raddamp” ) ;

In f o ( ” s e t t i n g I n t e r a c t i o n s . . . . \ n” ) ;

Of f se t<MyPars> myOffs (mypars , o f f s e t ) ;
Relax<> myRels (mypars , ( ! t 2 s ) ? 0 . 0 : 1 . 0 / t2s , ( ! t 1 s ) ? 0 . 0 : 1 . 0 / t1 s ) ;
RadDamp RdRun( t r ) ;
ModulatedDemagField DipDip (demag , j j .G( ) ) ;
s td : : cout<<”Total Manget izat ion : ”<<mo<<std : : endl ;
s td : : cout<<DipDip<<” Td : ”<<DipDip . td ( )

<<” ax i s : ”<<DipDip . d i r e c t i o n ()<< std : : endl ;

MyInteract ions MyInts (myOffs , myRels , RdRun , DipDip ) ;
demag=pset . getParamD(”demagOff” , ”” , false , 0 . 0 ) ;
i f (demag !=0) DipDip . o f f ( ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

//This i s the ‘ Bloch ’ to perform a pu l s e
In f o ( ” I n i t i a l i z i n g t o t a l parameter l i s t with a pu l s e . . . . \ n” ) ;
PulseBloch myparspulse (mypars , PP1 , MyInts ) ;

//This i s the Bloch s o l v e r to Co l l e c t the FID
// ( i . e . has no pu s l e s . . . FASTER)

In f o ( ” I n i t i a l i z i n g t o t a l parameter l i s t f o r FID c o l l e c t i o n . . . . \ n” ) ;
NoPulseBloch me ;
me=myparspulse ;

Vector<coord<> > tm=me . currentMag ( ) ;
s td : : cout<<”TOTAL mag i n i t i a l c ond i t i on : ”<<sum(tm)<<std : : endl ;
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// the ’ e r ror ’ in the h e l i x
double emp=pset . getParamD(” eps ” , ”” , false , 1 e−3);

// s e t the c i r c u l a r i n i t i a l c o n d i t i o n . . a s i n g l e h e l i x
i f ( i d e a l==’y ’ ){
MyPars : : i t e r a t o r myit (mypars ) ;
double lmax=smaxs . z ()− smins . z ( ) ;
coord<> tp ;
while ( myit ){
tp=myit . Point ( ) ;
tm [ myit . curpos ( ) ] . x()= s i n ( tp . z ( )/ lmax∗PI2)+emp ;
tm [ myit . curpos ( ) ] . y()= cos ( tp . z ( )/ lmax∗PI2 ) ;
tm [ myit . curpos ( ) ] . z ( )=0 .0 ;
++myit ;
}
}
stopwatch . r e s e t ( ) ;

// the two main s o l v e r s
BlochSolver<PulseBloch > drivP ( myparspulse , tm ) ;
BlochSolver<NoPulseBloch > drivD (me , tm ) ;

// i n t e g r a t e pu l s e and g rad i en t pu l s e
// only i f NOT i d e a l experiment
i f ( i d e a l==’n ’ ){
// output t r a j e c t o r y data i f wanted
i f ( dataou !=”” ){
drivP . s e tWr i t ePo l i cy ( SolverOps : : Continous ) ;
drivP . setRawOut ( dataou , std : : i o s : : out ) ;

} else {
drivP . s e tWr i t ePo l i cy ( SolverOps : : Hold ) ;

}
drivP . s e tCo l l e c t i o nPo l i c y ( SolverOps : : F ina lPo int ) ;

// i n t e g r a t e the f i r s t pu l s e
myOffs . o f f ( ) ; // turn o f f g rad i en t
In f o ( ” I n t e g r a t i n g f i r s t Pulse . . . . \ n” ) ;

i f ( ! drivP . s o l v e (P1) ){
In f o ( ” ERROR! ! . . could not i n t e g r a t e pu l s e P1 . . . . \ n” ) ;
return −1;
}

// i n t e g r a t e the g rad i en t pu l s e

In f o ( ”\ nIn t eg ra t ing the Gradient Pulse . . . . \ n” ) ;
drivD . s e t I n i t i a lC ond i t i o n ( drivP . l a s tPo in t ( ) ) ;

// output t r a j e c t o r y data i f wanted
i f ( dataou !=”” ){
drivD . s e tWr i t ePo l i cy ( SolverOps : : Continous ) ;
drivD . setRawOut ( dataou , std : : i o s : : app | std : : i o s : : out ) ;
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} else {
drivD . s e tWr i t ePo l i cy ( SolverOps : : Hold ) ;

}

i f ( gradtime1>0){
myOffs . on ( ) ; // turn on grad i en t
i f ( ! drivD . s o l v e (G1) ){
In f o ( ” ERROR! ! . . could not i n t e g r a t e G1 . . . . \ n” ) ;
return −1;
}
}
}

// i n t e g r a t e FID
i f ( cv ){
me. c a l cVa r i a t i o n a l ( ) ;
drivD . s e tVar i a t i ona l In i tCond (me . cu rVar i a t i ona l ( ) ) ;
drivD . setLyapunovPol icy ( SolverOps : : LypContinous ) ;
drivD . setLypDataFi le ( l y p f i l e ) ;

}

myOffs . o f f ( ) ;
I n f o ( ”\ nIn t eg ra t ing f o r FID . . . . \ n” ) ;

// output t r a j e c t o r y data i f wanted
drivD . s e tCo l l e c t i o nPo l i c y ( SolverOps : : MagAndFID ) ;
i f ( dataou !=”” ){
drivD . s e tWr i t ePo l i cy ( SolverOps : : Continous ) ;
i f ( i d e a l==’y ’ ) drivD . setRawOut ( dataou , std : : i o s : : out ) ;
else drivD . setRawOut ( dataou , std : : i o s : : app | std : : i o s : : out ) ;

} else {
drivD . s e tWr i t ePo l i cy ( SolverOps : : Hold ) ;

}

// s o l v e the FID and wr i t e i t to a f i l e
i f ( drivD . s o l v e (F1 ) ){
drivD . writeSpectrum ( fout ) ;
drivD . writeMag (magout ) ;

}
printTime ( ) ;

// r ing a b e l l when we are done
std : : cout<<”\a”<<std : : endl ;

}

Input Config File

#parameter f i l e f o r 1 pu l s e − 1 Grad Z sequences
#gr i d un i t s in cm
dim 1 , 1 , 100



A.3. BLOCHLIB CONFIGURATIONS AND SOURCES 280

gmin −0.02 ,−0.02 , −0.004693
gmax 0 . 0 2 , 0 . 0 2 , 0 . 0 0 4 6 9 3

#cy l i n d e r shape min and max
smin 0 ,0 , −0 .004693
smax . 0 0 3 , 6 . 2 8 , . 0 0 4 6 9 3

#f i d p i e c e s
npts 512
t f 2

#the pu l s e b i t s
pu l s eang l e1 90
pulseamp 80000

#bas i c sp in parametesr
Bo 14 . 1
temperature 300
o f f s e t 0
T2 0
T1 0
sp intype 1H

#error in i d e a l g rad i en t pu l s e
# along the x−ax i s
eps 1 e−3

#turn on (0 ) or o f f ( 1 ) the demagnet i z ing f i e l d
demagOff 0

#95% water ( 2 protons a pop )
moles 0 . 1045

#the ex t ra i n t e r a c t i o n s par t s
raddamp 0 . 0 1

## #grad i en t t h i n g s
#choose ’ r e a l g rad i en t ’ (n ) or i d e a l i n i t i a l cond i t i on ( y )
#i f i d e a l magnet i za t ion w i l l be spread even l y
#around a c i r c l e in the xy p lane
i d e a l y
#non−i d e a l b i t s ( grad un i t s in Gauss/cm)
grad 0 , 0 , 1
gradtime1 0 . 005

#ouput data f i l e names
f i d ou t data
magout mag
t r a j e c t o r i e s t r a j
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