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Preface

After our first publisher produced our first volume and we were in the
process of readying manuscripts for Volume 2, the publisher’s executive editor
innocently asked us if there was anything in the field of computational chem-
istry that we had not already covered in Volume 1. We assured him that there
was much. The constancy of change was noted centuries ago when Honorat de
Bueil, Marquis de Racan (1589–1670) observed that ‘‘Nothing in the world
lasts, save eternal change.’’ Science changes too. As stated by Emile Duclaux
(1840–1904), French biologist and physician and successor to Louis Pasteur in
heading the Pasteur Institute, ‘‘It is because science is sure of nothing that it is
always advancing.’’ Science is able to contribute to the well-being of mankind
because it can evolve. Topics in a number of important areas of computational
chemistry are the substance of this volume.

Cheminformatics, a term so new that scientists have not yet come to an
agreement on how to spell it, is a facet of computational chemistry where the
emphasis is on managing digital data and mining the data to extract knowl-
edge. Cheminformatics holds a position at the intersection of several tradi-
tional disciplines including chemical information (library science), quantitative
structure-property relationships, and computer science as it pertains to manag-
ing computers and databases. One powerful way to extract an understanding
of the contents of a data set is with clustering methods, whereby the mutual
proximity of data points is measured. Clustering can show how much similar-
ity or diversity there is in a data set. Chapter 1 of this volume is a tutorial on
clustering methods. The authors, Drs. Geoff M. Downs and John M. Barnard,
were educated at the University of Sheffield—the veritable epicenter and
fountainhead of cheminformatics. Each clustering method is described along
with its strengths and weaknesses. As frequent consultants to pharmaceutical
and chemical companies, the authors can knowledgeably point to published
examples where real-world research problems were aided by one or more of
the clustering methods.

The previous volume of our series, Volume 17, included a chapter
on the use of docking for discovery of pharmaceutically interesting li-
gands. Employed in structure-based ligand design, docking requires a
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three-dimensional structure of the receptor, which can be obtained from
experiment or modeling. Docking also requires computational techniques
for assessing the affinity of small organic molecules to a receptor. These tech-
niques, collectively called scoring functions, attempt to quantitate the favor-
ability of interaction in the ligand–receptor complex. In Chapter 2 of the
present volume, Drs. Hans-Joachim Böhm and Martin Stahl give a tutorial
on scoring functions. The authors share their considerable experience using
scoring functions in drug discovery research at Roche, Basel. Scoring functions
can be derived in different ways; they can be (1) based directly on standard
force fields, (2) obtained by empirically fitting parameters in selected force field
terms to reproduce a set of known binding affinities, or (3) derived by an
inverse formulation of the Boltzmann law whereby the frequency of occur-
rence of an interatomic interaction is presumed to be related to the strength
of that interaction. As with most modern computational methods used in
pharmaceutical research, viable scoring functions must be quickly computable
so that large numbers of ligand–receptor complexes can be evaluated at a
speed comparable to the rate at which compounds can be synthesized by com-
binatorial chemistry. Despite efforts at numerous laboratories, the ‘‘perfect’’
scoring function, which would be both extremely accurate and broadly appli-
cable, eludes scientists. Sometimes, several scoring functions can be tried on a
given set of molecules, and then the computational chemist can look for a con-
sensus in how the individual molecules are ranked by the scores.* A ligand
structure having good scores does not guarantee that the compound will
have high affinity when and if the compound is actually synthesized and tested.
However, a structure with high rankings (i.e., fits the profile) is more likely to
show binding than a randomly selected compound. Chapter 2 summarizes
what has been learned about scoring functions and gives an example of how
they have been applied to find new ligands in databases of real and/or conceiv-
able (virtual) molecular structures stored on computers.

In the 1980s when computers were making molecular simulation calcu-
lations more feasible, computational chemists readily recognized that account-
ing for the polarizability of charge distribution in a molecule would become
increasingly important for realistically modeling molecular systems. In most
force fields, atomic charges are assigned at the beginning of the calculation
and then are held fixed during the course of the minimization or simulation.
However, we know that atomic charges vary with the electric field produced
by the surrounding atoms. Each atom of a molecular system is in the field of all
the other atoms; electrostatic interactions are long range (effective to as much
as 14 Å), so a change in the molecular geometry will affect atomic charges,

*Such a consensus approach is reminiscent of what some computational chemists were
doing in the the 1970s and 1980s when they were treating each molecule by not one, but
several available semiempirical and ab initio molecular orbital methods, each of which gave
different—and less than perfect—predictions of molecular properties.
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especially if polar functional groups are present. In Chapter 3, Professors
Steven W. Rick and Steven J. Stuart scrutinize the methods that have been
devised to account for polarization. These methods include point dipole mod-
els, shell models, electronegativity equalization models, and semiempirical
models. The test systems commonly used for developing and testing these
models have been water, proteins, and nucleic acids. This chapter’s compari-
son of computational models gives valuable guidance to users of molecular
simulations.

In Chapter 4, Professors Dmitry V. Matyushov and Gregory A. Voth
present a rigorous frontier report on the theory and computational methodol-
ogies for describing charge-transfer and electron-transfer reactions that can
take place in condensed phases. This field of theory and computation aims to
describe processes occurring, for instance, in biological systems and materials
science. The chapter focuses on analysis of the activation barrier to charge
transfer, especially as it relates to optical spectroscopy. Depending on the
degeneracy of the energy states of the donor and acceptor, electron tunneling
may occur. This chapter provides a step-by-step statistical mechanical devel-
opment of the theory describing charge-transfer free energy surfaces. The
Marcus–Hush mode of electron transfer consisting of two overlapping parabo-
las can be extended to the more general case of two free energy surfaces. In the
last part of the chapter, the statistical mechanical analysis is applied to the
calculation of optical profiles of photon absorption and emission, Franck–
Condon factors, intensities, matrix elements, and chromophores.

In Chapter 5, Dr. George R. Famini and Professor Leland Y. Wilson teach
about linear free energy relationships (LFERs) using molecular descriptors
derived from—or adjuncts to—quantum chemical calculations. Basically, the
LFER approach is a way of studying quantitative structure-property relation-
ships (QSPRs). The property in question may be a physical one, such as vapor
pressure or solvation free energy, or one related to biological activity (QSAR).
Descriptors can be any numerical quantity—calculated or experimental—that
represents all or part of a molecular structure. In the LFER approach, the num-
ber of descriptors used is relatively low compared to some QSPR/QSAR
approaches that involve throwing so many descriptors into the regression
analysis that the physical significance of any of these is obscured. These latter
approaches are somewhat loosely referred to as ‘‘kitchen sink’’ approaches
because the investigator has figuratively thrown everything into the equation
including objects as odd as the proverbial kitchen sink. In the LFER approach,
the descriptors include quantities that measure molecular dimensions (molecu-
lar volume, surface area, ovality), charge distributions (atomic charges, electro-
static potentials), electronic properties (ionization potential, polarizability),
and thermodynamic properties (heat of formation). Despite use of the term
‘‘linear’’ in LFER, not all correlations encountered in the physical world are
linear. QSPR/QSAR approaches based on regression analysis handle this situa-
tion by simply squaring—or taking some other power of—the values of
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some descriptors and including them as separate independent variables in the
regression equation. In this chapter, the authors discuss statistical procedures
and give examples covering a wide variety of LFER applications. Quantum
chemists can learn from this chapter how their methods may be employed
in one of the most rapidly growing areas of computational chemistry, namely,
QSAR.

In the nineteenth century, the world powerhouses of chemistry were
Britain, France, and Germany. In Germany, Justus Liebig founded a chemistry
research laboratory at the University of Giessen in 1825. At the University of
Göttingen in 1828, Friedrich Wöhler was the first to synthesize an organic
compound (urea) from inorganic material. In Karlsruhe, Friedrich August
Kekulé organized the first international meeting on chemistry in 1860.
Germany’s dominance in the chemical and dye industry was legend well
into the twentieth century. In the 1920s, German physicists played central
roles in the development of quantum mechanics. Erwin Schrödinger formu-
lated the wave function (1926). Werner Heisenberg formulated matrix
mechanics (1925) and the uncertainty principle (1927). The German physicist
at Göttingen, Max Born, together with the American, J. Robert Oppenheimer,
published their oft-used famous approximation (1927). With such a strong
background in chemistry and physics, it is not surprising that Germany was
a fertile ground where computational chemistry could take root. The first fully
automatic, programmable, digital computer was developed by an engineer in
Berlin in 1930 for routine numerical calculations. After Germany was liber-
ated from control of the National Socialist German Workers’ Party
(‘‘Nazi’’), peaceful scientific development could be taken up again, notwith-
standing the enormous loss of many leading scientists who had fled from the
Nazis. More computers were built, and theoretical chemists were granted
access to them. In Chapter 6, Professor Dr. Sigrid D. Peyerimhoff masterfully
traces the history of computational chemistry in Germany. This chapter com-
plements the historical accounts covering the United States, Britain, France,
and Canada, which were covered in prior volumes of this book series.

Finally, as a bonus with this volume, we editors present a perspective on
the employment situation for computational chemists. The essay in the appen-
dix reviews the history of the job market, uncovers factors that have affected it
positively or negatively, and discusses the current situation. We also analyze
recent job advertisements to see where recent growth has occurred and which
skills are presently in greatest demand.

We invite our readers to visit the Reviews in Computational Chemistry
website at http://chem.iupui.edu/rcc/rcc.html. It includes the author and sub-
ject indexes, color graphics, errata, and other materials supplementing the
chapters. We are delighted to report that the Google search engine (http://
www.google.com/) ranks our website among the top hits in a search on the
term ‘‘computational chemistry’’. This search engine is becoming popular
because it ranks hits in terms of their relevance and frequency of visits. Google
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also is very fast and appears to provide a quite complete and up-to-date picture
of what information is available on the World Wide Web.

We are also glad to note that our publisher has plans to make our most
recent volumes available in an online form through Wiley InterScience. Please
check the Web (http://www.interscience.wiley.com/onlinebooks) or contact
reference@wiley.com for the latest information. For readers who appreciate
the permanence and convenience of bound books, these will, of course,
continue.

We thank the authors of this volume for their excellent chapters. Mrs.
Joanne Hequembourg Boyd is acknowledged for editorial assistance.

Donald B. Boyd and Kenny B. Lipkowitz
Indianapolis

January 2002
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Epilogue and
Dedication

My association with Ken Lipkowitz began a couple of years after he
arrived in Indianapolis in 1977. Ken, trained as an synthetic organic chemist,
was a new young assistant professor at Indiana University–Purdue University
Indianapolis, and I was a research scientist at Eli Lilly & Company, where I,
a quantum chemist by training, had been working in the field of computer-aided
drug design for nine years. Ken approached me to learn about computational
chemistry. I was glad to help him, and he was an enthusiastic ‘‘student’’. Our first
paper together was published in 1980. Unsure whether his career as a fledging
computational chemist would lead anywhere, he made a distinction in this and
other papers he wrote between his organic persona (Kenneth B. Lipkowitz)
and his computational persona (Kenny B. Lipkowitz). Over the subsequent
years, he focused his career more and more on computational chemistry and
established himself as a highly productive and creative scientist. He has always
been a hard-working, amiable, and obliging collaborator and friend.

In the late 1980s, Ken had the idea of initiating a book series on compu-
tational chemistry. The field was starting to come into full blossom, but few
books for it were being published. Whereas review series on other subjects
tended to be of mainly archival value and to remain on library shelves, his
inspiration for Reviews in Computational Chemistry was to include as many
tutorial chapters as possible, so that the books would be more used for teach-
ing and individual study. The chapters would be ones that a professor could
give new graduate students to bring them up to speed in a particular topic. The
chapters would also be substantive, so that the books would not be just a
journal with hard covers. As much as possible, the contents of the books
would be material that could not be found in any other source. Ken persuaded
me to join him in this endeavor.

I have viewed an editor’s prime duties to set high standards and to heed
the needs of both readers and authors. Hence, every effort has been made to
produce volumes of the highest quality. It has been a keen pleasure working
with authors who take exceptional pride in their workmanship. The expertise
and hard work of many authors have been essential for producing books of
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sustained usefulness in learning, teaching, and research. With this volume, the
eighteenth, more than 7300 pages have been published since the series began
in 1990. More than 200 authors have contributed the chapters. Appreciating
the value of these chapters, scientists and libraries around the world have pur-
chased more than 13,000 copies of the books since the series began.

My vision of computational chemistry, as embodied in this book series as
well as in the Gordon Conference on Computational Chemistry that I
initiated, was that there were synergies to be gained by juxtaposing all the var-
ious methodologies available to computational chemists. Thus, computational
chemistry is more than quantum chemistry, more than molecular modeling,
more than simulations, more than molecular design. Versatility is possible
when scientists can draw from their toolbox the most appropriate methodol-
ogies for modeling molecules and data. Important goals of this book series
have been to nurture the development of the field of computational chemistry,
advance its recognition, strengthen its foundations, expand its dimensions, aid
practitioners working in the field, and assist newcomers wanting to enter the field.

However, it is now time for me to rest my keyboard-weary hands. I wish
Ken and his new co-editors every success as the book series continues. Ken
could not have paid me a higher compliment than by enlisting not one, but
two, excellent people to carry on the work I did. I have every confidence
that as computational chemistry continues to evolve, its spectrum of methods
and applications will further expand and increase in brilliance.

Dedication

With completion of this, my final, volume, I am reminded of my blessings
to live in a country conceived by the Founding Fathers of the United States of
America. Nothing would have been possible for me without the selflessness
and devotion of Howard Milton Boyd, Ph.G., B.S., M.S. Nothing would
have been worthwhile without the following:

Andy
Cynthia
Douglas

Drew
Elisabeth

Emma
Joanne
Mary

Richard
Susanne

Donald B. Boyd
Indianapolis

January 2002
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CHAPTER 1

Clustering Methods and Their Uses
in Computational Chemistry

Geoff M. Downs and John M. Barnard

Barnard Chemical Information Ltd., 46 Uppergate Road,
Stannington, Sheffield S6 6BX, United Kingdom

INTRODUCTION

Clustering is a data analysis technique that, when applied to a set of
heterogeneous items, identifies homogeneous subgroups as defined by a given
model or measure of similarity. Of the many uses of clustering, a prime moti-
vation for the increasing interest in clustering methods is their use in the selec-
tion and design of combinatorial libraries of chemical structures pertinent to
pharmaceutical discovery.

One feature of clustering is that the process is unsupervised, that is, there
is no predefined grouping that the clustering seeks to reproduce. In contrast to
supervised learning, where the task is to establish relationships between given
inputs and outputs to enable prediction of the output from new inputs, in
unsupervised learning only the inputs are available and the task is to reveal
aspects of the underlying distribution of the input data. Clustering is thus com-
plemented by the related supervised process of classification, in which items
are assigned labels applied to predefined groups: examples include recursive
partitioning, naı̈ve Bayesian analysis, and K nearest-neighbor selection. Clus-
tering is a technique for exploratory data analysis and is used increasingly in
preliminary analyses of large data sets of medium and high dimensionality as a
method of selection, diversity analysis, and data reduction. This chapter
reviews the main clustering methods that are used for analyzing chemical
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data sets and gives examples of their application in pharmaceutical companies.
Compared to the other costs of drug discovery, clustering can add significant
value at minimal cost. First, we provide an outline of clustering as a discipline
and define some of the terminology. Then, we give a brief tutorial on clustering
algorithms, review progress in developing the methods, and offer some
example applications.

Clustering methodology has been developed and used in a variety of
areas including archaeology, astronomy, biology, computer science, electron-
ics, engineering, information science, and medicine. Good, general introduc-
tory texts on the topic of clustering include those by Sneath and Sokal,1

Kaufmann and Rousseeuw,2 Everitt,3 and Gordon.4 The main text that is
devoted to clustering of chemical data sets is by Willett,5 with review articles
by Bratchell,6 Barnard and Downs,7 and Downs and Willett.8 The present
chapter is a complement and update to the latter article. In a previous volume
of this series, Lewis, Pickett, and Clark9 reviewed the use of diversity analysis
techniques in combinatorial library design.

As will be shown in the section on Chemical Applications, the current
main uses of clustering for chemical data sets are to find representative subsets
from high throughput screening (HTS) and combinatorial chemistry, and to
increase the diversity of in-house data sets through selection of additional
compounds from other data sets. Methods suitable for compound selection
are the main focus of this chapter. The methods must be able to handle large
data sets of high-dimensional data. For small, low-dimensional data sets, most
clustering methods are applicable, and descriptions in the standard texts and
implementations available in standard statistical software packages10,11

suffice. Implementations designed for use on chemical data sets are available
from most of the specialist software vendors,12–17 the majority of which were
reviewed by Warr.18

The overall process of clustering involves the following steps:

1. Generate appropriate descriptors for each compound in the data set.
2. Select an appropriate similarity measure.
3. Use an appropriate clustering method to cluster the data set.
4. Analyze the results.

This chapter focuses on step 3. For step 1, descriptors may include property
values, biological properties, topological indexes, and structural fragments.
The performance of these descriptors and forms of representation have been
analyzed by Brown19 and Brown and Martin.20,21 Similarity searching for
step 2 has been discussed by Downs and Willett;22 characteristics of various
similarity measures have been discussed by Barnard, Downs, and Willett.23,24

For step 4, little has been published specifically about visualization and analy-
sis of results for chemical data sets. However, most publications that focus on
implementing systems that utilize clustering do provide details of how the
results were displayed or analyzed.
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The terminology associated with clustering is extensive, with many terms
used to describe the same thing (reflecting the separate development of cluster-
ing methods within a multitude of disciplines). Clusters can be overlapping or
nonoverlapping; if a compound occurs in more than one cluster, the clusters
are overlapping. At one extreme, each compound is a member of all clusters to
a certain degree. An example of this is fuzzy clustering in which the degree of
membership of an individual compound is in the range 0 to 1, and the total
membership summed across all clusters is normally required to be 1. This
scheme contrasts with crisp clustering in which each compound’s degree of
membership in any cluster is either 0 or 1. At the other extreme, is the situation
wherein each compound is a member of exactly one cluster, in which case the
clusters are said to be nonoverlapping. Intermediate situations sometimes
occur, where compounds can be members of several, though not of all, clus-
ters. The majority of clustering methods used on chemical data sets generate
crisp, nonoverlapping clusters, because analysis of such clusters is relatively
simple.

If a data set is analyzed in an iterative way, such that at each step a pair
of clusters is merged or a single cluster is divided, the result is hierarchical,
with a parent–child relationship being established between clusters at each
successive level of the iteration. The successive levels can be visualized using
a dendrogram, as shown in Figure 1. Each level of the hierarchy represents a
partitioning of the data set into a set of clusters. In contrast, if the data set is
analyzed to produce a single partition of the compounds resulting in a set of
clusters, the result is then nonhierarchical. Note that the term partitioning

1 23 4 5 6 78

................................................................................................................................................

Figure 1 An example of a hierarchy (dendrogram) generated from the clustering of eight
items (shown numbered 1–8 across the bottom). The top (root) is a single cluster
containing all eight items. The vertical positions of the horizontal lines joining pairs of
items or cluster indicate the relative similarities of those pairs. Items 1 and 2 are the most
similar and clusters [8,3,1,2] and [4,5,6,7] are the least similar. The dotted horizontal
line represents a single partition containing the four clusters [8], [3,1,2], [4,5], and [6,7].
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in this context is different from the technique of partitioning (otherwise
known as cell-based partitioning). The latter technique is a method of classi-
fication rather than of clustering, and a useful review of it, as applied to
chemical data sets, is given by Mason and Pickett.25 A broad classification
of the most common clustering methods is shown in Figure 2. Note that,
with the wide range of clustering methods devised, some can be placed in
more than one of the given categories.

If a hierarchical method starts with all compounds as singletons (in clus-
ters by themselves) and the latter are merged iteratively until all compounds
are in a single cluster, the method is said to be agglomerative. With respect
to the dendrogram in Figure 1, it is a bottom-up approach. If the hierarchical
method starts with all compounds in a single cluster and iteratively splits one
cluster into two until all compounds are singletons, the method is divisive, that

Figure 2 A broad classification of the most common clustering methods.
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is, it is a top-down approach. If, at each split, only one descriptor is used to
determine how the cluster is split, the method is monothetic; otherwise, more
descriptors (typically all available) are used, and the method is polythetic.

Nonhierarchical methods encompass a wide range of different tech-
niques to build clusters. A single-pass method is one in which the partition
is created by a single pass through the data set or, if randomly accessed, in
which each compound is examined only once to decide which cluster it should
be assigned to. A relocation method is one in which compounds are moved
from one cluster to another to try to improve on the initial estimation of the
clusters. The relocating is typically accomplished based on improving a cost
function describing the ‘‘goodness’’ of each resultant cluster. The nearest-
neighbor approach is more compound centered than are the other nonhier-
archical methods. In it, the environment around each compound is examined
in terms of its most similar neighboring compounds, with commonality
between nearest neighbors being used as a criterion for cluster formation. In
mixture model clustering the data are assumed to exist as a mixture of densi-
ties that are usually assumed to be Gaussian (normal) distributions, since their
densities are not known in advance. Solutions to the mixture model are
derived iteratively in a manner similar to the relocation methods. Topographic
methods, such as use of Kohonen maps, typically apply a variable cost func-
tion with the added restriction that topographic relationships are preserved so
that neighboring clusters are close in descriptor space. Other nonhierarchical
methods include density-based and probabilistic methods. Density-based, or
mode-seeking, methods regard the distribution of descriptors across the data
set as generating patterns of high and low density that, when identified, can be
used to separate the compounds into clusters. Probabilistic clustering generates
nonoverlapping clusters in which a compound is assigned a probability, in the
range 0 to 1, that it belongs to the chosen cluster (in contrast to fuzzy cluster-
ing in which the clusters are overlapping and the degree of membership is not
a probability).

Having now provided a broad overview of clustering methodology, we
next focus on the ‘‘classical’’ methods, which include hierarchical and single-
pass, relocation, and nearest-neighbor nonhierarchical techniques. The classi-
fication we have described in Figure 2 is one that is commonly used by many
scientists; however, it is just one of many possible classifications. Another way
to differentiate between clustering techniques is to consider parametric and
nonparametric methods. Parametric methods require distance-based compar-
isons be made. Here access to the descriptors is required (typically given as
Euclidean vectors), rather than just a proximity matrix derived from the
descriptors. Parametric methods can be further organized into generative
and reconstructive methods. Generative methods, including mixture model,
density-based, and probabilistic techniques, try to match parameters (e.g.,
cluster centers, variances within and between clusters, and mixing coefficients
for the descriptor distributions) to the distribution of descriptors within the
data set. Reconstructive methods, such as relocation and topographic, are
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based upon improving a given cost function. Nonparametric methods
make fewer assumptions about the underlying data; they do not adapt given
parameters iteratively and, in general, need only a matrix of pairwise prox-
imities (i.e., a distance matrix).

The term proximity is used here to include similarity and dissimilarity
coefficients in addition to distance measures. Individual proximity measures
are not defined in this review; full definitions can be found in standard texts
and in the articles by Barnard, Downs, and Willett.23,24 We now define the
terms centroid and square-error, because they will be used throughout this
chapter. For a cluster of s compounds each represented by a vector, let x(r)
be the rth vector. The vector of the cluster centroid, x(c), is then defined as

xðcÞ ¼ 1

s

� �Xs

r¼1

xðrÞ ½1�

Note that the centroid is the simple arithmetic mean of the vectors of the clus-
ter members, and this mean is frequently used to represent the cluster as a
whole. In situations where a mean is not applicable or appropriate, the median
can be used to define the cluster medoid (see Kaufman and Rousseeuw2 for
details). The square-error (also called the within-cluster variance), e2, for a
cluster is the sum of squared Euclidean distances to the centroid or medoid
for all s items in that cluster:

e2 ¼
Xs

r¼1

½xðrÞ � xðcÞ�2 ½2�

The square-error across all K clusters in a partition is the sum of the square-
errors for each of the K clusters. (Note also that the standard deviation would
be the square root of the square-error.)

CLUSTERING ALGORITHMS

This chapter concentrates on the ‘‘classical’’ clustering methods, because
they are the methods that have been applied most often in the chemical com-
munity. Standard reference works devoted to clustering algorithms include
those by Hartigan,26 Murtagh,27 and Jain and Dubes.28

Hierarchical Methods

Hierarchical Agglomerative
The most commonly implemented hierarchical clustering methods are

those belonging to the family of sequential agglomerative hierarchical non-
overlapping (SAHN) methods. These are traditionally implemented using
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what is known as the stored-matrix algorithm, so named because the starting
point is a matrix of all pairwise proximities between items in the data set to be
clustered. Each cluster initially corresponds to an individual item (singleton).
As clustering proceeds, each cluster may contain one or more items. Even-
tually, there evolves one cluster that contains all items. At each iteration, a
pair of clusters is merged (agglomerated) and the number of clusters decreases
by 1. The stored-matrix algorithm proceeds as follows:

1. Calculate the initial proximity matrix containing the pairwise proximities
between all pairs of clusters (singletons) in the data set.

2. Scan the matrix to find the most similar pair of clusters, and merge them
into a new cluster (thus replacing the original pair).

3. Update the proximity matrix by inactivating one set of entries of the
original pair and updating the other set (now representing the new cluster)
with the proximities between the new cluster and all other clusters.

4. Repeat steps 2 and 3 until just one cluster remains.

The various SAHN methods differ in the way in which the proximity between
clusters is defined in step 1 and how the merged pair is represented as a single
cluster in step 3. The proximity calculation in step 3 typically uses the Lance–
Williams matrix-update formula:29

d½k; ði; jÞ� ¼ ai d½k; i� þ aj d½k; j� þ bd½i; j� þ g
��d½k; i� � d½k; j�

�� ½3�

where d½k; ði; jÞ� is the proximity between cluster k and the cluster (i, j) formed
from merging clusters i and j. Different values for ai, aj, b, and g define various
SAHN methods, some of which are shown in Table 1 and described below.

In single-link clustering, the proximity between two clusters is the mini-
mum distance between any pair of items (one from each cluster), that is, the
closest pair of points between each cluster. In contrast, in complete-link clus-
tering, the proximity between two clusters is the maximum distance between
any pair of items, that is, the farthest pair of points between each cluster.
Single-link and complete-link represent the extremes of SAHN clustering. In

Table 1 Parameter Values for Some Common SAHN Methods Defined by the
Lance–Williams Matrix Update Formulaa

SAHN Method ai aj b g

Single-link 0.5 0.5 0 �0.5
Complete-link 0.5 0.5 0 0.5

Group-average
Ni

Ni þNj

Nj

Ni þNj

�Ni �Nj

ðNi þNjÞ2
0

Ward
Ni þNk

Ni þNj þNk

Nj þNk

Ni þNj þNk

�Nk

Ni þNj þNk
0

a The parameters Ni, Nj, and Nk ¼ number of compounds in clusters i, j, and k, respectively.
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the middle is average-link clustering in which the proximity between two
clusters is the arithmetic average of distances between all pairs of items.
Also in the middle is Ward’s method30 in which the proximity is the variance
between the clusters (where variance is defined as the sum of square-errors of
the clusters; see Eq. [2]). At each iteration, the pair of clusters chosen is that
whose merger produces the minimum change in square-error (or within-cluster
variance; hence the method is also known as the minimum-variance method).
As the number of clusters decreases, the square-error across all clusters
increases. Ward’s method minimizes the square-error increase and minimizes
the intracluster variance while maximizing the intercluster variance. Because a
cluster is represented by its centroid, Ward’s method is classified as a geometric
or cluster-center method. Other methods such as the single-link, complete-
link, and group-average methods are classified as graph-theoretic or linkage
methods. Murtagh27 introduced the concept of a reducibility property that
is applicable to geometric methods. The reducibility property states that for
the merger of two clusters, a and b, to form cluster c, there cannot be another
cluster, d, that is closer to c than to a or b. If the method satisfies the reduci-
bility property, agglomerations can be performed in localized areas of the
proximity space and then amalgamated to produce the full hierarchy. Ward’s
method, implemented using the Euclidean distance as the proximity measure,
is one of the few geometric methods satisfying the reducibility property. Voor-
hees31 subsequently showed that if the cosine coefficient of similarity is used as
the proximity measure, the group-average method can be implemented as a
geometric method, and it satisfies the reducibility property.

For a data set of N compounds, the stored-matrix algorithm for SAHN
methods requires OðN2Þ time and OðN2Þ space for creation and storage of the
proximity matrix while requiring OðN3Þ time for the clustering. This algo-
rithm is thus very demanding of resources for anything other than small
data sets. The importance of the reducibility property is that it enables
the stored-matrix algorithm to be replaced by the more efficient reciprocal
nearest-neighbor (RNN) algorithm that requires only OðN2Þ time and OðNÞ
space. Because agglomerations can be performed in localized areas of the
proximity space, the RNN algorithm works by tracing paths through proxi-
mity space from one point to its nearest neighbor until a point is reached
whose nearest neighbor is the previous point in the path, that is, a pair of
points that are reciprocal nearest neighbors. These points represent a pair
that should be merged into a single point as one of the agglomerations of
the full hierarchy. The RNN algorithm is carried out using the following steps:

1. Mark all points as ‘‘unused.’’
2. Begin at an unused point and trace a path of unused nearest neighbors until

a reciprocal nearest neighbor pair is found.
3. Add the pair of points to the list of RNNs along with the proximity

between them; mark one of the pair of points as ‘‘used’’ (to inactivate it and
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its centroid) and replace the centroid of the other point by the centroid of
the merged pair.

4. Continue the path tracing from the penultimate point in the path if one
exists; otherwise start path tracing from a new, unused starting point.

5. Repeat steps 2–4 until only one unused point remains.
6. Sort the list of RNNs by decreasing proximity values; the sorted list

represents the agglomerations needed to construct the hierarchy.

Because path tracing moves from one nearest neighbor to the next, random
access to each point is required.

Hierarchical Divisive
Most hierarchical divisive methods are monothetic, meaning that each

split is determined on the basis of a single descriptor. The methods differ in
how the descriptor is chosen with one possibility being to select the descriptor
that maximizes the distance between the resultant clusters. Monothetic divi-
sive methods are usually faster than the SAHN methods described above
and have found utility in biological classification. However, for chemical
applications, monothetic division often gives poor results when compared to
polythetic division or SAHN methods, even though the closely related classi-
fication method of recursive partitioning can be very effective in chemical
applications (e.g., see the article by Chen, Rusinko, and Young32). Unfortu-
nately, most polythetic divisive methods are very resource demanding (more
so than for SAHN methods), and accordingly they have not been used much
for chemical applications. One exception is the minimum-diameter method
published by Guenoche, Hansen, and Jaumard;33 it requires OðN2 log NÞ
time and OðN2Þ space. This method is based on dividing clusters at each itera-
tion in such a way as to minimize the cluster diameter. The cluster diameter is
defined as the largest dissimilarity between any pair of its members, with sin-
gleton clusters having a diameter of zero. The minimum-diameter algorithm
accomplishes its task by carrying out the following steps:

1. Generate a sorted list of all NðN � 1Þ=2 dissimilarities, with the most
dissimilar pairs listed first.

2. Perform an initial division by selecting the first pair from the sorted list (i.e.,
the most dissimilar points in the data set); assign every other point to the
closest of the pair.

3. Choose the cluster with the largest diameter and divide it into two clusters
so that the larger cluster has the smallest possible diameter.

4. Repeat step 3 for a maximum of N � 1 divisions.

Nonhierarchical Methods

Single-Pass
Methods that cluster data on the basis of a single scan of the data set are

referred to as single-pass. A proximity threshold is typically used to decide
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whether a compound is assigned to an existing cluster (represented as a cen-
troid) or if it should be used to start a new cluster. The first compound selected
becomes the first cluster; a single sequential scan of the data set then assigns
the remaining compounds, and cluster centroids are updated as each com-
pound is assigned to a particular cluster. The most common single-pass algo-
rithm is called the leader algorithm. The leader algorithm carries out the
following steps to provide a set of nonhierarchical clusters:

1. Set the number of existing clusters to zero.
2. Use the first compound in the data set to start the first cluster.
3. Calculate the similarity, using some appropriate measure, between the next

compound and all the existing clusters. If its similarity to the most similar
existing cluster exceeds some threshold, assign it to that cluster; otherwise
use it to start a new cluster.

4. Repeat step 2 until all compounds have been assigned.

This method is simple to implement and very fast. The major drawback is that
it is order dependent; if the compounds are rearranged and scanned in a dif-
ferent order, then the resulting clusters can be different.

Nearest Neighbor
A simple way to isolate dense regions of proximity space is to examine

the nearest neighbors of each compound to determine groups with a given
number of mutual nearest neighbors. Although several nearest-neighbor meth-
ods have been devised, the Jarvis–Patrick method34 is almost exclusively used
for chemical applications. The method proceeds in two stages.

The first stage generates a list of the top K nearest neighbors for each of
the N compounds, with proximity usually measured by the Euclidean distance
or the Tanimoto coefficient;23 K is typically 16 or 20. The Tanimoto coeffi-
cient has been found to perform well for chemical applications where the com-
pounds are represented by fragment screens (bit strings denoting presence/
absence of structural features). For finding nearest neighbors with Tanimoto
coefficients as a proximity measure, one can use an efficient inverted file
approach described by Perry and Willett35 to speed up the creation of
nearest-neighbor lists.

The second stage scans the nearest-neighbor lists to create clusters that
fulfill the three following neighborhood conditions:

1. Compound i is in the top K nearest-neighbor list of compound j.
2. Compound j is in the top K nearest-neighbor list of compound i.
3. Compounds i and j have at least Kmin of their top K nearest neighbors

in common, where Kmin is user-defined and lies in the range 1 to K.

Pairs of compounds that fail any of the above conditions are not put into the
same cluster.

10 Clustering Methods and Their Uses in Computational Chemistry



To scan the nearest-neighbor lists and create the clusters in this stage of
nonhierarchical clustering, the following three steps are carried out:

1. Tag each compound with a sequential cluster label so that each is a
singleton.

2. For each pair of compounds, i and j ði < jÞ, compare the nearest-neighbor
lists on the basis of the three neighborhood conditions. If the three
conditions are passed, replace the cluster label for compound j with the
cluster label for compound i. Then, scan all previously processed com-
pounds and replace any occurrences of the cluster label for compound j by
the cluster label for compound i.

3. Scan to extract clusters by retrieving all compounds assigned the same
cluster label.

The Jarvis–Patrick method requires OðN2Þ time and OðNÞ space.

Relocation
Relocation methods start with an initial guess as to where the centers of

clusters are located. The centers are then iteratively refined by shifting com-
pounds between clusters until stability is achieved. The resultant clustering
is reliant upon the initial selection of seed compounds that serve as cluster cen-
ters. Hence, relocation methods can be adversely affected by outlier com-
pounds. [An outlier is a cluster of one item (a singleton or noise). It is on its
own, and the clustering method has not put it with anything else because it is
not similar enough to anything else.] The iterative refinement seeks an optimal
partitioning of the compounds but would likely find a suboptimal solution
because it would require the analysis of all possible solutions to guarantee
finding the global optimum. Nevertheless, the computational efficiency and
mathematical foundation of these methods have made them very popular,
especially with statisticians.

The best-known relocation method is the k-means method, for which
there exist many variants and different algorithms for its implementation.
The k-means algorithm minimizes the sum of the squared Euclidean distances
between each item in a cluster and the cluster centroid. The basic method used
most frequently in chemical applications proceeds as follows:

1. Choose an initial set of k seed compounds to act as initial cluster centers.
2. Assign each compound to its nearest cluster centroid (classification step).
3. Recalculate each cluster centroid (minimization step).
4. Repeat steps 2 and 3 for a given number of iterations or until no

compounds are moved from one cluster to another.

In step 1, the initial compounds are usually selected at random from the data
set. Random selection is quick and, for large heterogeneous data sets, likely to
provide a reasonable initial set. Steps 2 and 3 can be performed separately or
in combination. If done separately, the classification (step 2) is performed on
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all compounds before recalculation of each cluster centroid (step 3). This
approach is referred to as noncombinatorial (or batch update) classification.
If steps 2 and 3 are done in combination, moving a compound from its current
cluster to a new cluster (step 2) immediately necessitates recalculation of the
affected cluster centroids (step 3). This latter approach is called combinatorial
or online update classification. Most implementations for chemical applica-
tions use noncombinatorial classification. In step 4, convergence to a point
where no further compounds move between clusters, is usually rapid, but,
for safety, a maximum number of iterations can be specified. k-Means cluster-
ing requires OðNmkÞ time and OðkÞ space. Here, m is the number of iterations
to convergence, and k is the number of clusters. Because m is typically much
smaller than N and the effect of k can be reduced substantially through effi-
cient implementation, k-means algorithms essentially require OðNÞ time.

Mixture Model
Clustering can be viewed as a density estimation problem. The basic prem-

ise used in such an estimation is that in addition to the observed variables (i.e.,
descriptors) for each compound there exists an unobserved variable indicating
the cluster membership. The observed variables are assumed to arrive from a
mixture model, and the mixture labels (cluster identifiers) are hidden. The task
is to find parameters associated with the mixture model that maximize the
likelihood of the observed variables given the model. The probability distribu-
tion specified by each cluster can take any form. Although mixture model
methods have found little use in chemical applications to date, they are men-
tioned here for completeness and because they are obvious candidates for use
in the future.

The most widely used and most effective general technique for estimating
the mixture model parameters is the expectation maximization (EM) algo-
rithm.36 It finds (possibly suboptimally) values of the parameters using an
iterative refinement approach similar to that given above for the k-means re-
location method. The basic EM method proceeds as follows:

1. Select a model and initialize the model parameters.
2. Assign each compound to the cluster(s) determined by the current model

(expectation step).
3. Reestimate the parameters for the current model, given the cluster

assignments made in step 2, and generate a new model (maximization step).
4. Repeat steps 2 and 3 for n iterations or until the nth and ðn� 1Þth model

are sufficiently close.

This method requires prior specification of a model and typically takes a large
number of iterations to converge.

Note that the k-means relocation method is really a special case of EM
that assumes: (1) each cluster is modeled by a spherical Gaussian distribution,
(2) each data item is assigned to a single cluster, and (3) the mixture weights
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are equal. Assignment of each compound to the closest-cluster centroid is the
expectation step; recalculation of the cluster centroids (model parameters)
after assignment is the maximization step.

Topographic
Topographic clustering methods attempt to preserve the proximities

between clusters, thus facilitating visualization of the clustering results. For
k-means clustering, the cost function is invariant, whereas in topographic clus-
tering it is not, and a predefined neighborhood is imposed on the clusters to
preserve the proximities between them. The Kohonen, or self-organizing,
map,37,38 apart from being one of the most commonly used types of neural
network, is also a topographic clustering method. A Kohonen network uses
an unsupervised learning technique to map higher dimensional spaces of a
data set down to, typically, two or three dimensions (2D or 3D), so that clus-
ters can be identified from the neurons’ coordinates (topological position); the
values of the output are ignored. Initially, the neurons are assigned weight vec-
tors with random values (weights). During the self-organization process, the
data vectors of the neuron having the most similar weight vector to each
data vector and its immediately adjacent neurons are updated iteratively to
place them closer to the data vector. The Kohonen mapping thus proceeds
as follows:

1. Initialize each neuron’s weight vector with random values.
2. Assign the next data vector to the neuron having the most similar weight

vector.
3. Update the weight vector of the neuron of step 2 to bring it closer to the

data vector.
4. Update neighboring weight vectors using a given updating function.
5. Repeat steps 2–4 until all data vectors have been processed.
6. Start again with the first data vector, and repeat steps 2–5 for a given

number of cycles.

The iterative adjustment of weight vectors is similar to the iterative refinement
of k-means clustering to derive cluster centroids. The main difference is that
adjustment affects neighboring weight vectors at the same time. Kohonen
mapping requires O(Nmn) time and OðNÞ space, where m is the number of
cycles and n the number of neurons.

Other Nonhierarchical Methods
We have delineated the main categories of clustering methods applicable

to chemical applications above. We have also provided one basic algorithm as
an example of each. Researchers in other disciplines sometimes use variants of
these main categories. The main categories that have been used by those
researchers but omitted here include density-based clustering and graph-based
clustering techniques. These will be mentioned briefly in the next section.
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PROGRESS IN CLUSTERING METHODOLOGY

The representations used for chemical compounds are typically ‘‘data-
prints’’ (tens or hundreds of real number descriptors, such as topological
indexes and physicochemical properties) or fingerprints (thousands of binary
descriptors indicating the presence or absence of 2D structural fragments or
3D pharmacophores). These numbers can be compared to the tens or hundreds
of descriptors typically encountered in data mining and the thousands of
descriptors encountered in information retrieval. We now outline the develop-
ment of clustering methods that are suited to handling these representations
and that have been, or in the near future are likely to be, used for chemical
applications. Specific examples of chemical applications are given later in
the section entitled Chemical Applications.

Algorithm Developments

Having briefly outlined the basic algorithms that are implemented in
many of the standard clustering methods, we now set the algorithms in context
by reviewing their historical development, discuss the characteristics of each
method, and then highlight some of the variants that have been developed
for overcoming certain limitations. Clustering is now such a large area of
research and everyday use that this chapter must be selective rather than com-
prehensive in scope. The interested reader can access further details from
the references cited throughout this chapter and from the recent review by
Murtagh.39

Most of the development of hierarchical clustering methods occurred
from the 1960s through the mid-1980s, after which there was a period of con-
solidation, with little new development until recently. From this developmen-
tal period, two key publications were those of Lance and Williams29 in 1967
and the review of hierarchical clustering methods by Murtagh27 in 1985.
Following this developmental period, a few variations have been proposed.
Matula40 developed algorithms that implemented both divisive and agglom-
erative average-linkage methods, but with high computational costs for pro-
cessing large data sets. That same year, Jain, Indrayan, and Goel41 compared
single and complete linkage, group and weighted average, centroid, and med-
ian agglomerative methods and concluded that complete linkage performed
best in failing to find clusters from random data. Podani42 produced a useful
classification of agglomerative methods, in which the standard Lance–Wil-
liams update recurrence formula29 is split into two formulas. He also intro-
duced three new parameter variations, that is, three new agglomerative
methods were defined, but these seem to represent more of an inclusion for
the sake of completeness than a significant alternative to previously defined
parameter variations. Roux43 recognized the complexity problems in Matula’s
implementations40 and mentioned restrictions that could be applied to
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overcome them for a polythetic divisive implementation. Unfortunately, no
algorithmic details were given.

Overall, the Lance–Williams recurrence formula, and its subsequent
extensions, provides a consolidating basis for the implementation of hierarchic
agglomerative methods. However, the standard ways of implementation, that
is, by generating, storing, and updating the full distance matrix, or by gener-
ating distances as required, tend to be very demanding of computational
resources. The review by Murtagh39 explained how substantial reductions in
the computational requirements for some of these methods could be achieved
by using the reciprocal nearest neighbor approach. El-Hamdouchi and
Willett44 described the use of this approach for the implementation of the
Ward method for document clustering. That same year (1989) Rasmussen
and Willett45 discussed parallel implementation of single-link and Ward meth-
ods for both document and chemical structure clustering. The RNN approach
and single-link clustering have the additional advantage of only requiring a list
of descriptor vectors and a function to return the nearest neighbor of any input
vector, rather than a full proximity matrix. Downs, Willett, and Fisanick46

used RNN implementations of the Ward and group-average methods in a
comparison of methods for clustering compounds on the basis of property
data (see section below on Comparative Studies on Chemical Data Sets). These
two agglomerative methods have been used successfully in comparative studies
covering a wide range of nonchemical applications, and they have been shown
to provide consistently reasonable results. However, centroid- and medoid-
based methods, such as Ward (and k-means nonhierarchical), and the
group-average and complete-link methods tend to favor similarly sized hyper-
spherical clusters (i.e., clusters that are shaped like spheres in a space of more
than three dimensions), and they can fail to separate clusters of different
shapes, densities, or sizes. Single-link is not a centroid method; it uses just
the pairwise similarities and is more analogous to density-based methods.
Accordingly, it can find clusters of different shapes and sizes, but it is very sus-
ceptible to noise, such as outliers, and artifacts, and it has a tendency to pro-
duce straggly clusters (an effect known as chaining). The development of
traditional hierarchical methods largely ignored the issues of noise, and,
although the abilities of different methods to separate clusters were noted,
little was done about this problem other than to advise users to adopt more
than one method so that different types of clusters could be revealed.

Recent developments in the data mining community have produced
methods better suited to finding clusters of different shapes, densities, and
sizes. For example, Guha, Rastogi, and Shim47,48 developed an algorithm
called ROCK (RObust Clustering using linKs) that is a sort of hybrid between
nearest-neighbor, relocation, and hierarchical agglomerative methods.
Although more expensive computationally than RNN implementations of
the Ward method, the algorithm is particularly well suited to nonnumerical
data (of which the Boolean fingerprints used for chemical data sets are a
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special case, although they can also be represented as binary, a special case
of numeric). The same authors developed another algorithm called CURE
(Clustering Using REpresentatives).49 Here centroid and single-link-type
approaches are combined by choosing more than one representative point
from each cluster. With CURE, a user-specified number of diverse points is
selected from a cluster, so that it is not represented by just the centroid (which
tends to lead to hyperspherical clusters). To avoid the problem of influence
from selected points that might be outliers, which can result in a chaining
effect, the selected points are shrunk toward the cluster centroid by a specified
proportion. This results in a computationally more expensive procedure, but
the separation of differently shaped and sized clusters is better. Karypis, Han,
and Kumar50 also addressed the problems of cluster shapes and sizes in their
Chameleon algorithm. These authors provide a useful overview of the pro-
blems of other clustering methods in their summary. Chameleon measures
similarity on the basis of a dynamic model, which is to be contrasted with
the fixed model of traditional hierarchical methods. Two clusters are merged
only if their interconnectivity and closeness is high relative to the internal
interconnectivity and closeness within the two clusters. The characteristics
of each cluster are thus taken into account during the merging process rather
than assuming a fixed model that, if the clusters do not conform to it, can
result in inappropriate merging decisions that cannot be undone subsequently.
In a different study, Karypis, Han, and Kumar51 evaluated the use of multi-
level refinement methods to detect and correct inappropriate merging decisions
in a hierarchy. Fasulo52 reviewed some of the other recent developments in the
area of data mining with World Wide Web search engines. The developments
cited in that review describe work that reassesses the manner in which cluster-
ing is performed; a range of methods, which are more flexible in their separa-
tion of clusters, were evaluated. It is further pointed out that problems still
remain when scaling-up hierarchical clustering methods to the very high
dimensional spaces characteristic of many chemical data sets. Other funda-
mental issues remain, such as the problem of tied proximities in hierarchical
clustering.53 This problem was mentioned many years earlier by Jain and
Dubes,28 among others. Tied proximities occur when the proximities between
two different pairs of data items are equal, and result in ambiguous decision
points when building the hierarchy, effectively leading to many possible hier-
archies of which only one is chosen. MacCuish, Nicolaou, and MacCuish53

show tied proximities to be surprisingly common with the types of fingerprints
commonly used in chemical applications, and the problem increases with data
set size. What is not clear is whether such ties have a major deleterious effect
on the overall clustering and whether the chosen hierarchy is significantly dif-
ferent from any of the others that might have been chosen.

There has been little development of polythetic divisive methods since
the publication of the minimum-diameter method33 in 1991. Garcia et al.54

developed a path-based approach with similarities to single-link. The method
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has time requirements of OðMN2Þ for M clusters and N compounds, making
the method particularly suitable for finding a small number of clusters. Wang,
Yan, and Sriskandarajah55 updated the single criterion minimum-diameter
method with a multiple criteria algorithm that considers both maximum split
(intercluster separation) and minimum diameter in deciding the best biparti-
tion. Their algorithm reduces the dissection effect (similar items forced into
different clusters because doing so reduces the diameter) associated with the
minimum-diameter criterion and the chaining effect associated with the
maximum-split criterion. More recently, Steinbach, Karypis, and Kumar56

reported an interesting variant of k-means that is actually a hierarchical poly-
thetic divisive method. At each point where a cluster is to be split into two
clusters, the split is determined by using k-means, hence the name ‘‘bisecting
k-means.’’ The results for document clustering, using keywords as descriptors,
are shown to be better than standard k-means, with cluster sizes being more
uniform, and better than the agglomerative group-average method.

Monothetic divisive clustering has largely been ignored, although there
have been applications and development of a classification method closely
related to monothetic divisive clustering. This classification is recursive parti-
tioning, a type of decision tree method.57–60

Nonhierarchical algorithms that cluster the data set in a single pass, such
as the leader algorithm, have had little development, except to identify appro-
priate ways of preordering the data set so as to get around the problem of
dependency on processing order (work on this is discussed in the Chemical
Applications section). For multipass algorithms, however, efforts have been
made to minimize the number of passes required, in some cases reducing
them to single-pass algorithms. In the area of data mining, this work has
resulted in a method that does not fit neatly into the categorization used in
this review. Zhang, Ramakrishnan, and Livny61 developed a program called
BIRCH (Balanced Iterative Reducing and Clustering using Heuristics), an
OðN2Þ method that performs a single scan of the data set to sort items into
a cluster features (CF) tree. This operation has some similarity with the leader
algorithm; the nodes of the tree store summary information about clusters
of dense points in the data so that the original data need not be accessed
again during the clustering process. Clustering then proceeds on the in-
memory summaries of the data. However, the initial CF tree building re-
quires the maximum cluster diameter to be specified beforehand, and the
subsequent tree building is thus sensitive to the value chosen. Overall, the
idea of BIRCH is to bring together items that should always be grouped
together, with the maximum cluster diameter ensuring that the cluster summa-
ries will all fit into available memory. Ganti et al.62 outlined a variant of
BIRCH called BUBBLE. It does not rely on vector operations but builds up
the cluster summaries on the basis of a distance function that obeys the trian-
gle inequality, an operation that is more CPU demanding than operations in
coordinate space.
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Nearest-neighbor nonhierarchical methods have received much attention
in the chemical community because of their fast processing speeds and ease of
implementation. The comparative studies outlined in the next section (Com-
parative Studies on Chemical Data Sets) led to the widespread adoption of
the Jarvis–Patrick nearest-neighbor method for clustering large chemical
data sets. To improve results obtained by the standard Jarvis–Patrick imple-
mentation, several extensions have been developed. The standard implementa-
tion tends to produce a few large heterogeneous clusters and an abundance of
singletons, which is hardly surprising because the method was originally
designed to be space distorting,34 that is, contraction of sparsely populated
areas clusters and splitting of densely populated areas. Attempts to overcome
these tendencies include the use of variable-length nearest-neighbor lists,12,20

reclustering of singletons,63 and the use of fuzzy clustering.64 For variable-
length nearest-neighbor lists, the user specifies a proximity threshold so that
the lists will contain all neighbors that pass the threshold test rather than a
fixed number of nearest neighbors. During clustering, the comparison between
nearest-neighbor lists is made on the basis of a specified minimum percentage
of the neighbors in the shorter list being in common. These modifications help
prevent true outliers from being forced to join a cluster while preventing the
arbitrary splitting of large clusters arising from the limitations imposed by
fixed length lists. When using fingerprints for clustering chemical data sets,
Brown and Martin20 showed improved results compared with the standard
implementation, whereas Taraviras, Ivanciuc, and Cabrol-Bass65 show con-
trary results when clustering descriptors.

The reclustering of singletons is used in the ‘‘cascaded clustering’’
method of Menard, Lewis, and Mason.63 This method applies the standard
Jarvis–Patrick clustering iteratively, removes the singletons, and reclusters
them using less strict parameters until fewer than a specified percentage of sin-
gletons remain. The fuzzy Jarvis–Patrick method outlined by Doman et al.64 is
the most radical Jarvis–Patrick variant. In the fuzzy method, clusters in dense
regions are extracted using a similarity threshold and the standard crisp
method. The compounds are then assigned probabilities of belonging to
each of the crisp clusters. Any previously unclustered compounds not exceed-
ing a specified threshold probability of belonging to any of the crisp clusters
are regarded as outliers and remain as singletons.

Other nearest-neighbor methods include the agglomerative hierarchical
method of Gowda and Krishna,66 which uses the position of nearest neigh-
bors, rather than just the number, in a measure called the mutual neighbor-
hood value (MNV). Given points i and j, if i is the pth neighbor of j and j is
the qth neighbor of i, then the MNV is ðpþ qÞ. Smaller values of MNV indi-
cate greater similarity, and a specified threshold MNV is used to determine
whether points should be merged. Dugad and Ahuja67 extended the MNV
concept to include the density of two clusters that are being considered for
merger. In addition to the threshold MNV, if there exists a point k with

18 Clustering Methods and Their Uses in Computational Chemistry



MNV (i,k) less than MNV (i,j) but distance (i,k) greater than or equal to dis-
tance (i,j), then i is not a valid neighbor of j, and j is not a valid neighbor of i.
The neighbor validity check can result in many small clusters, but these
clusters can be merged afterward by relaxing the reciprocal nature of the
check.

Relocation algorithms are widely used outside of chemical applications,
largely because of their simplicity and speed. The original k-means noncombi-
natorial methods, such as that by Forgy,68 and the combinatorial methods,
such as that by MacQueen,69 have been modified into different versions for
use in many disciplines, a few of which are mentioned here. Efficient imple-
mentations of k-means include those by Hartigan and Wong70 and Spaeth.71

A variation of the k-means algorithm, referred to as the moving method, looks
ahead to see whether moving an item from one cluster to another will result in
an overall decrease in the square error (Eq. [2]); if it does, then the moving is
carried out. Duda and Hart72 and Ismail and Kamel73 originally outlined
this variant, while Zhang, Wang, and Boyle74 further developed the idea
and obtained better results than a standard noncombinatorial implementation
of k-means. Because the method relies on the concept of a centroid, it is usually
used with numerical data. However, Huang75 reported variants that use
k-modes and k-prototypes that are suitable for use with categorical and
mixed-numerical and categorical data, respectively.

The main problems with k-means are (1) the tendency to find hyperspher-
ical clusters, (2) the danger of falling into local minima, (3) the sensitivity to
noise, and (4) the variability in results that depends on the choice of the initial
seed points. Because k-means (and its fuzzy equivalent, c-means) is a centroid-
based method, nothing much can be done about the tendency to produce
hyperspherical clusters, although the CURE methodology mentioned above
might alleviate this tendency somewhat. Falling into local minima cannot
be avoided, but rerunning k-means with different seeds is a standard way of
producing alternative solutions. After a given number of reruns, the solution is
chosen that has produced the lowest square-error across the partition. An
alternative to this is to perturb an existing solution, rather than starting again.
Zhang and Boyle76 examined the effects of four types of perturbation on the
moving method and found little difference between them. Estivell-Castro and
Yang77 suggested that the problem of sensitivity to noise is due to the use of
means (and centroids) rather than medians (and medoids). These authors
proposed a variant of k-means based on the use of medoids to represent
each cluster. However, calculation of a point to represent the medoid is
more CPU-expensive [Oðn log nÞ for each cluster of size n] than that required
for the centroid, resulting in a method that is slightly slower than k-means (but
faster than EM algorithms36). A similar variant based on medoids is the PAM
(Partitioning Around Medoids) method developed by Kaufman and Rous-
eeuw.2 This method is very time consuming, and so the authors developed
CLARA (Clustering LARge Applications), which takes a sample of a data
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set and applies PAM to it. An alternative to sampling the compounds has been
developed by Ng and Han.78 Their CLARANS (Clustering Large Applications
based on RANdomized Search) method samples the neighbors, rather than the
compounds, to make PAM more efficient.

The most common way of choosing seeds for k-means is by random
selection, which is statistically reasonable given a large heterogeneous data
set. Alternatively, a set of k diverse seeds could be selected using, for example,
the MaxMin subset selection method.79,80 Diverse seeds have been shown to
give better clustering results by Fisher, Xu, and Zard.81 One of the early sug-
gestions, by Milligan,82 was that a partition resulting from hierarchical
agglomerative clustering should be used as the initial partition for k-means
to refine. It may seem counterproductive to initialize an OðNÞ method by first
running an OðN2Þ method, because it means that very large data sets cannot
be processed, but k-means is then effectively being used to refine individual
partitions and to correct inappropriate assignments made by the hierarchical
method. An iterative method for refining an entire hierarchy has been dis-
cussed by Fisher.83 The iterative method starts at the root (i.e., the top of
the hierarchy, with all compounds in one cluster), recursively removes each
cluster, resorts it into the hierarchy, and continues iterating until no clusters
are moved, other than moving individual items from one cluster to another.

Of the mixture model methods, the expectation maximization (EM) algo-
rithm36 is the most popular because it is a general and effective method for
estimating the model parameters and for fitting the model to the data. Though
now quite old, the method was relatively unused until a surge of recent interest
has propelled its further development and implementation for data mining
applications.84 As mentioned earlier, k-means is a special case of EM. How-
ever, because standard k-means uses the Euclidean metric, it is not appropriate
for clustering discrete or categorical data. The EM algorithm does not have
these limitations, and, since the mixture model is probabilistic, it can also
effectively separate clusters of different sizes, shapes, and densities. A major
contribution to the development of the EM algorithm came from Banfield
and Raftery85 who reparameterized the standard distributions to make them
more flexible and include a Poisson distribution to account for noise. Various
models were developed and compared using the approximate weight of evi-
dence (AWE) statistic, which estimates the Bayesian posterior probability of
the clustering solution. Fraley and Raftery86 subsequently replaced AWE by
the more reliable Bayesian information criterion (BIC), which enabled them to
produce an EM algorithm that simultaneously yields the best model and deter-
mines the best number of clusters. One other interesting aspect of their work is
that the EM algorithm is seeded with the clustering results from hierarchical
agglomerative clustering. It is not clear whether, by using a less expensive seed
selection, the EM algorithm will scale to the very large, high-dimensional data
sets of chemical applications, or if the necessary parameterization will be
acceptable in practice.
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The use of a fixed model in a clustering method favors retrieval of clus-
ters of certain shapes (as exemplified by the hyperspherical clusters retrieved
by centroid-based methods). An alternative is to use a density-based approach,
in which a cluster is formed from a region of higher density than its surround-
ing area. The clustering is then based on local criteria, and it can pick out
clusters of any shape and internal distribution. Such approaches are typically
not applicable directly to high dimensions, but progress is being made in that
direction within the data mining community. An example is the DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) method of Ester
et al.87 that was subsequently extended by Ankerst et al.88 to give the OPTICS
(Ordering Points To Identify the Clustering Structure) method. These two
methods work on a principle that each point of a cluster must have at least
a given number of other points within a specified radius. Points fulfilling these
conditions are clustered; any remaining points are considered to be outliers,
that is, noise. The OPTICS method has been enhanced by Breunig et al.89 to
identify outliers, and by Breunig, Kriegel, and Sander,90 who combined it with
BIRCH61 to increase speed.

Other density-based approaches designed for high dimensions include
CLIQUE (Clustering In QUEst) by Agrawal et al.,91 and PROCLUS (PRO-
jected CLUSters), by Aggarwal et al.92 These two methods recognize that
high dimensional spaces are typically sparse so that the similarity between
two points is determined by a few dimensions, with the other dimensions being
irrelevant. Clusters are thus formed by similarity with respect to subspaces
rather than full dimensional space. In the CLIQUE algorithm, dense regions
of data space are determined by using cell-based partitioning, which are
then used as initial bases for forming the clusters. The algorithm works
from lower to higher dimensional subspaces by starting from cells identified
as dense in ðk� 1Þ-dimensional subspace and extending them into k-dimen-
sional subspace. The result is a set of overlapping dense regions that are
extracted as the clusters. Research into improving grid-based methods is con-
tinuing, as demonstrated by the variable grid method of Nagesh.93 In contrast,
the PROCLUS program generates nonoverlapping clusters by identifying
potential cluster centers (medoids) using a MaxMin subset selection proce-
dure. The best medoids are selected from the initial set by an iterative proce-
dure in which data items within the locality of a medoid (i.e., within the
minimum distance between any two medoids) are assigned to that cluster.
Rather than using all dimensions, the dimensions associated with each cluster
are used in the Manhattan segmental distance92 to calculate the distance of an
item from the cluster. The Manhattan segmental distance is a normalized form
of the Manhattan distance that enables comparison of different clusters with
varying numbers of dimensions. (The Manhattan, or city-block, or Hamming,
distance is the sum of absolute differences between descriptor values; in
contrast, the Euclidean distance is the square root of the sum of squares
differences between descriptor values.) Once the best medoids have been
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selected, a final single pass over the data set assigns each item to its nearest
medoid.

Graph-theoretic algorithms have seen little use in chemical applications.
The basis of these methods is some form of a graph in which the vertices are
the items in the data set and the edges are the proximities between them. Early
methods created clusters by removing edges from a minimum spanning tree or
by constructing a Gabriel graph, a relative neighborhood graph, or a Delauney
triangulation, but none of these graph-theoretic methods are suitable for high
dimensions. Reviews of these methods are given by Jain and Dubes28 and
Matula.94 Recent advances in computational biology have spurred develop-
ment of novel graph-theoretic algorithms based on isolating areas called
cliques or ‘‘almost cliques’’ (i.e., highly connected subgraphs) from the graph
of all pairwise similarities. Examples include the algorithms by Ben-Dor,
Shamir, and Yakhini,95 Hartuv et al.,96 and Sharan and Shamir97 that find
clusters in gene expression data. Jonyer, Holder, and Cook98 developed a hier-
archical graph-theoretic method that begins with the graph of all pairwise
similarities and then iteratively finds subgraphs that maximally compress the
graph. The time consumption of these graph-theoretic methods is currently too
great to apply to very large data sets.

One way to speed up the clustering process is to implement algorithms
on parallel hardware. In the 1980s Murtagh27,99 outlined a parallel version of
the RNN algorithm for hierarchical agglomerative clustering. Also in that
decade, Rasmussen, Downs, and Willett45,100 published research on parallel
implementations of Jarvis–Patrick, single-link, and Ward clustering for both
document and chemical data sets, and Li and Fang101 developed parallel algo-
rithms for k-means and single-link clustering. In 1990, Li102 published a
review of parallel algorithms for hierarchical clustering. This in turn elicited
a classic riposte from Murtagh103 to the effect that the parallel algorithms
were no better than the more recent OðN2Þ serial algorithms. Olson104 pre-
sented OðNÞ and OðN log NÞ algorithms for hierarchical methods using N
processors. For chemical applications, in-house parallel implementations
include the leader algorithm at the National Cancer Institute105 and k-means
at Eli Lilly79 (both discussed in the section on Chemical Applications), and
commercially available parallel implementations include the highly optimized
implementation of Jarvis–Patrick by Daylight14 and the multiprocessor version
of the Ward and group-average methods by Barnard Chemical Information.12

Another way of speeding up clustering calculations is to use a quick and
rough calculation of distance to assess an initial separation of items and then
to apply the more CPU-expensive, full-distance calculation on only those items
that were found to cluster using the rough calculation. McCallum, Nigam, and
Ungar106 exploited this idea by using the rough calculation to divide the data
into canopies (roughly overlapping clusters). Only items within the same canopy,
or canopies, were used in the subsequent full-distance calculations to deter-
mine nonoverlapping clusters (using, e.g., a hierarchical agglomerative, EM,
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or k-means method). The nature of the rough-distance measure used can guar-
antee that the canopies will be sufficiently broad to encompass all candidates
for the ensuing full-distance measure. These ideas to speed up nearest-
neighbor searches are similar to the earlier use of bounds on the distance
measure, as discussed by Murtagh.27

Comparative Studies on Chemical Data Sets

Much of the use of clustering for chemical applications is based on the
similar property principle.107 This principle, which holds in many, but cer-
tainly not all, structure–property relationships, states that compounds with
similar structure are likely to exhibit similar properties. Clustering on the basis
of structural descriptors is thus likely to group compounds having similar
properties. However, there exist many different clustering methods, each
having its own particular characteristics that are likely to affect the com-
position of the resultant clusters. Consequently, there have been several com-
parative studies on the performance of different clustering methods when
applied to chemical data sets. The first such studies were conducted by
Willett and Rubin5,108–110 in the early 1980s. These studies were highly
influential in the subsequent implementation of clustering methods in
commercial and in-house software systems used by the pharmaceutical
industry. Over 30 hierarchical and nonhierarchical methods were tested on 10
small data sets for which certain properties were known. Clustering was con-
ducted using 2D fingerprints as compound representations. The leave-one-out
approach (based on the similar property principle) was used to compare the
results of different clustering methods by predicting the property of each
compound (as the average of the property of the other members of the cluster)
and correlating it with the actual property. High correlations indicate that
compounds with similar properties have been clustered together. The results
indicated that the Ward hierarchical method gave the best overall per-
formance. But, this method was not well suited to processing large data sets due
to the requirement for random access to the fingerprints. The Jarvis–Patrick
nonhierarchical method results were almost as good and, because it does not
require the fingerprints to be in memory, it became the recommended method.

In the early 1990s, a subsequent study by Downs, Willett, and Fisanick46

compared the performance of the Ward and group-average agglomerative
methods, the minimum-diameter divisive hierarchical method, and the
Jarvis–Patrick nonhierarchical method when using dataprints of calculated
physicochemical properties. In this assessment, a data set was used that was
considerably larger than those used in the original studies.108–110 The results
highlighted the poor performance of the Jarvis–Patrick method in comparison
with the hierarchical methods. The hierarchical methods all had similar levels
of performance with the minimum-diameter method being slightly better for
small numbers of clusters. Brown and Martin20 then investigated the same
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clustering methods to compare their performance for compound selection,
using various 2D and 3D fingerprints. Active/inactive data was available for
the compounds in the data sets used, so assessment was based on the degree to
which clustering separated active from inactive compounds (into nonsingleton
clusters). Although the Jarvis–Patrick method was the fastest of the methods, it
again gave the poorest results. The results were improved slightly by using a
variant of the Jarvis–Patrick method that uses variable rather than fixed-length
nearest-neighbor lists.12 Overall, the Ward method gave the best and most
consistent results. The group-average and minimum-diameter methods were
broadly similar and only slightly worse in performance than the Ward method.

The influence of the studies summarized above can be seen in the
methods subsequently implemented by many other researchers for their appli-
cations (see the section on Chemical Applications). One method that was
included in the original assessment studies, but not in the later assessments,
is k-means. This method did not perform particularly well on the small data
sets of the original studies, and the resultant clusters were found to be very
dependent on the choice of initial seeds; hence it was not included in the sub-
sequent studies. However, k-means is computationally efficient enough to be
of use for very large data sets. Indeed, over the last decade k-means and its
variants have been studied extensively and developed for use in other disci-
plines. Because it is being increasingly used for chemical applications, any
future comparisons of clustering methods should include k-means.

How Many Clusters?

A problem associated with the k-means, expectation maximization, and
hierarchical methods involves deciding how many ‘‘natural’’ (intuitively
obvious) clusters exist in a given data set. Determining the number of ‘‘natural’’
clusters is one of the most difficult problems in clustering and to date no
general solution has been identified. An early contribution from Jain and
Dubes28 discussed the issue of clustering tendency, whereby the data set is ana-
lyzed first to determine whether it is distributed uniformly. Note that ran-
domly distributed data is not generally uniform, and, because of this, most
clustering methods will isolate clusters in random data. To avoid this problem,
Lawson and Jurs111 devised a variation of the Hopkins’ statistic that indicates
the degree to which a data set contains clusters. McFarland and Gans112 pro-
posed a method for evaluating the statistical significance of individual clusters
by comparing the within-cluster variance with the within-group variance of
every other possible subset of the data set with the same number of members.
However, for large heterogeneous chemical data sets it can be assumed that
the data is not uniformly or randomly distributed, and so the issue becomes
one of identifying the most natural clusters.

Nonhierarchical methods such as k-means and EM need to be initialized
with k seeds. This presupposes that k is a reasonable estimation of the number
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of natural clusters and that the seeds chosen are reasonably close to the cen-
ters of these clusters. Epter, Krishnamoorthy, and Zaki113 published one of the
few papers addressing these issues for large data sets. Their solution is appli-
cable to distance-based clustering and involves analysis of the histogram of
pairwise distances between data items. For small data sets, all pairwise dis-
tances can be used, whereas for large data sets, random sampling (up to
10% of the data set) can be used to lessen the quadratic increase in time
needed to generate the distances. For the distances calculated, the correspond-
ing histogram is generated and then scanned to find the first spike (a large
maximum followed by a large minimum). This point is used as the threshold
for intracluster distance. The graph containing distances within this threshold
contains connected components used to determine both the number of clusters
present in the data set and the initial starting points from within these clusters.
Assuming that a reasonable value for k is known, Fayyad, Reima, and
Bradley114,115 showed that one can minimize the problem of poor initial start-
ing points by sampling the data set to derive a better set of starting points. A
series of randomly selected subsets, larger than k, are extracted, clustered by k-
means, amalgamated, and then clustered again using each solution from the
subsets. The starting points from the subset giving the best clustering of the
amalgamated subset are then chosen as the set of refined points for the main
clustering, where ‘‘best’’ means the clustering that gives the minimal ‘‘distor-
tion,’’ that is, minimum error across the amalgamated subset. The method
aims to avoid selecting outliers, which may occur with other selection methods
such as MaxMin.

In hierarchical clustering, each level defines a partition of the data set
into clusters. However, there is no associated information indicating which
level is best in terms of splitting the data set into the ‘‘natural’’ number of clus-
ters present and with each cluster containing the most appropriate com-
pounds. Many methods and criteria have been proposed to try to derive
such information from the hierarchy so that the ‘‘best’’ level is selected.
Milligan and Cooper116 published the first comprehensive comparison of hier-
archy level selection methods, using psychology data. Thirty methods were
tested for their ability to retrieve the correct number of clusters from several
small data sets containing from 2 to 5 ‘‘natural’’ clusters. Fifteen years later,
Wild and Blankley117 published a major comparison of hierarchy level selec-
tion methods using chemical data sets. As part of that study, Ward clustering
with 2D fingerprints was used to evaluate the performance of nine hierarchy
level selection methods. The methods chosen were those that would be easy to
implement and that did not require parameters. Eight of those methods were
ones that Milligan and Cooper had previously examined; the ninth was a more
recent method published by Kelley, Gardner, and Sutcliffe.118 The study by
Wild and Blankley concluded that the point biseral,119 variance ratio criter-
ion,120 and Kelley methods gave the best overall results, with the Kelley
method being more computationally efficient than the others [scaling at less
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than OðN2Þ]. A test data set of 100 objects, represented by 2 features and
grouped into 5 natural clusters, is shown in Figure 3. The corresponding
plot of penalty values (calculated using the Kelley method) against the number
of clusters (Figure 4) shows a clear minimum at 5 clusters.
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Figure 3 An example data set of 100 objects, represented by 2 features, that fall into
5 natural clusters.
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Figure 4 Kelley plot of the penalty value against number of clusters for the data set of
100 items in Figure 3, showing the minimum at 5 clusters.
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Hierarchy level selection methods provide useful guidance in selecting
reasonable partitions from hierarchies where the underlying structure of the
data set is unknown. They are, however, a compromise in that they compare
entire partitions with each other rather than individual clusters. In disciplines
outside of chemistry, there is an increasing awareness that such global compar-
isons can mask comparative differences in local densities. For example, the
situation in Figure 5 shows three clusters (below the dendrogram) that cannot
be retrieved by using a conventional straight horizontal line across the dendro-
gram (such as that shown in Figure 1). Using a straight line can include either
item 8 with cluster [3,1,2] but merge [4,5] with [6,7], or keep [4,5] and [6,7]
separate but maintain 8 as a singleton. What may be required for the selection
of the ‘‘best,’’ nonoverlapping clusters from different partitions is a stepped (or
segmental) horizontal line, which is illustrated by the dotted line across the
dendrogram in Figure 5. No solution to deciding which is the best selection
of nonoverlapping clusters appears to have been published to date, but there
are examples of methods that are moving toward a solution. One such example
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Figure 5 An illustration of how a stepped hierarchy partition can extract particular
clusters (clusters [8,1,2,3], [4,5], and [6,7], as shown below the hierarchy).
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is the OPTICS method that orders items in a data set in terms of local criteria,
thus providing an equivalent to a density-based analysis.

A variety of different requirements exist for chemical applications. These
requirements dictate whether it is important to address the issues of how many
clusters exist, what the best partition is, and which the best clusters are. When
using representative sampling, for example, for high-throughput screening in
pharmaceutical research, the number of required clusters is usually set before-
hand. Hence, it is necessary to generate only a reasonable partition from which
to extract the required number of representative compounds. For analysis of
an unknown data set in, say, a list of vendor compounds, the number of clus-
ters is unknown. Hierarchical clustering with optimum level analysis should
provide suitable results for this scenario since the actual composition of
each cluster is not critical. For analysis of quantitative structure–activity rela-
tionships (QSAR), the number of clusters is unknown, and the quality of the
clusters becomes an important issue since complete clusters are required for
further analysis. It may be that recent developments87–93 related to density-
based clustering will help in this circumstance.

CHEMICAL APPLICATIONS

Having introduced and described the various kinds of clustering methods
used in chemistry and other disciplines, we are in a position to present some
illustrative examples of chemical applications. This section reviews a represent-
ative selection of publications that have reported or analyzed the use of clus-
tering methods for processing chemical data sets, largely from groups of
scientists working within pharmaceutical companies. The main applications
for these scientists are high-throughput screening, combinatorial chemistry,
compound acquisition, and QSAR. The emphasis is on pharmaceutical appli-
cations because these workers tend to process very large and high dimensional
data sets. This section is presented according to method, starting with hier-
archical and then moving to nonhierarchical methods.

Little has been reported on the use of hierarchical divisive methods for
processing chemical data sets (other than the inclusion of the minimum-
diameter method in some of the comparative studies mentioned above).
Recursive partitioning, which is a supervised classification technique very
closely related to monothetic divisive clustering, has, however, been used at
the GlaxoSmithKline57,58 and Organon59 companies.

There is, however, widespread use of hierarchical agglomerative tech-
niques, particularly the Ward method. At Organon, Bayada, Hamersma,
and van Geerestein121 compared Ward clustering with the MaxMin diversity
selection method, Kohonen maps, and a simple partitioning method to help
select diverse yet representative subsets of compounds for further testing.
The data came from HTS or combinatorial library results. Ward clustering

28 Clustering Methods and Their Uses in Computational Chemistry



was the only method that gave results consistently better than random selection
of compounds. It was also found that the standard technique of selecting the
compound closest to the centroid to serve as the representative for a cluster
tends to result in the selection of the smallest compound or the one with the
fewest features. This finding is not surprising because the centroid is the arith-
metic average of items in a cluster and hence the representative will be the
most common denominator. Users should be aware of this tendency
toward biased selection of a representative compound, since such a compound
could be less interesting as a drug-like molecule than others in the data set.
This effect was not observed when the clustering was done using the first 10
principal components of the descriptor set rather than relying directly on the
descriptors (such as fingerprints) themselves.

Van Geerestein, Hamersma, and van Helden122 used Ward clustering to
show that cluster representatives provide a significantly better sampling of
activity space than random selection. This key paper shows how clustering
can separate actives from inactives in a data set, so that a cluster containing
at least one active will contain more than an average number of other actives.
The introduction to their article also gives a succinct summary of why diversity
analysis (such as clustering) is of use as a lead finding strategy.

At Parke-Davis (now Pfizer), Wild and Blankley123 incorporated Ward
clustering and level selection (by the Kelley function118) into a program called
VisualiSAR, which supports structure browsing and the development of struc-
ture–activity relationships in HTS data sets. At the Janssen unit of the Johnson
and Johnson company, Engels et al.124 have similarly incorporated Ward clus-
tering and the Kelley function into a system (called CerBeruS) that is used for
analysis of their corporate compound database. The clustering was used to
produce smaller, more homogeneous subsets from which one representative
compound was selected as a screening candidate using the Kelley function
to determine the optimal clustering level(s). Engels et al.124 noted two further
advantages of a cluster-based approach. First, if a hit was found, related com-
pounds could be tested subsequently by extracting other possible candidates
from the cluster containing the hit, and, second, analyses of structure–activity
relationships (SAR) could be formulated by linking the results of all the screen-
ing runs so as to examine the cluster hierarchy at different levels. Engels and
Venkatarangan125 subsequently developed a two-stage sequential screening
procedure supported by clustering to make HTS more efficient.

Stanton et al.126 reported the use of complete-link clustering in the HTS
system at the Proctor & Gamble company. In situations where the screening
produces large numbers of hits, clustering was used to determine which com-
pound classes were present so that representatives could be taken. The amount
of follow-up analysis was reduced by an order of magnitude while still evalu-
ating which classes of compounds were present in the hits, thus increasing the
efficiency of selecting potential leads. The clusters also provided sets of com-
pounds to build preliminary SAR models. Furthermore, the clustering was
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found useful in the detection of false positives, especially from combinatorial
libraries. In these cases, the structural similarity between the hits was low and
their biological activity was subsequently attributed to a common side pro-
duct. Clustering was performed by Stanton127 using BCUT (Burden–CAS–
University of Texas) descriptors,128 with the optimum hierarchy level deter-
mined visually from the dendrogram. Visual selection was possible because
the hit sets were typically a few hundred compounds.

The most significant application of a nonhierarchical single-pass method
was for screening antitumor activity at the National Cancer Institute. A var-
iant of the leader algorithm was developed129 in which the descriptors were
weighted by occurrence in each compound, size of the fragment, and
frequency of occurrence in the data set. Because of the use of these weighted
descriptors, an asymmetric coefficient129 was used to determine similarity,
rather than the more usual Tanimoto coefficient. The data set was then
ordered by the increasing sum of fragment weights to remove the order depen-
dency associated with the leader algorithm (or at least, to have a reasonable
basis for choosing a particular order) and to enable the use of heuristics to
reduce the number of similarity calculations. Compounds were then assigned
to any existing cluster for which they exceeded the given similarity threshold,
thus creating overlapping clusters. The algorithm was implemented on parallel
hardware,105 and the results from clustering several data sets were presented
with a discussion on the large number of singleton clusters produced.130

Another variant on the leader algorithm was proposed by Butina.131 In his
approach, the compounds are first sorted by decreasing number of near neigh-
bors (within a specified threshold similarity), thus again removing the order
dependence of the basic algorithm. Of course, identifying the number of
near neighbors for each compound introduces an O(N2) step, which in turn
obviates the single-pass algorithm’s primary advantage of linear speed.

At Rohm and Haas Company, Reynolds, Drucker, and Pfahler132 devel-
oped a two-pass method similar to the initial assignment stage of k-means. In
the first pass, a similarity threshold is specified, and then the sphere exclusion
diverse subset selection method80 is used to select the cluster seeds (referred to
as probes). In the second pass, all other compounds are assigned to the most
similar probe (the published version unnecessarily performs this in two stages).
Clark and Langton133 adopted a similar methodology in the Tripos OptiSim fast
clustering system for selecting diverse yet representative subsets. OptiSim
works by selecting an initial seed at random, selecting a random sample of
size K, analyzing the random sample by choosing the most dissimilar member
of the sample from existing seeds, and, if the minimum similarity threshold, R,
to all existing seeds is exceeded, adding it to the seed set. This operation
continues until the specified number of seeds, M, has been selected or no
more candidates remain. All other compounds are then assigned to their near-
est seed (which is equivalent to the initial assignment stage of k-means, with
no refinement). OptiSim is an obvious amalgam of the MaxMin and sphere
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exclusion subset selection methods80 and the Reynolds system mentioned
above. It also bears similarities with other methods, particularly the clustering
of merged multiple random samples reported by Bradley and Fayyad.115

The widespread application of the Jarvis–Patrick nonhierarchical
method exists in part because of the influence of the publications by Willett
et al.5,108–110 but also because of the availability of the efficient commercial
implementation from Daylight14 for handling very large data sets. The first
publication on the use of Jarvis–Patrick clustering for compound selection
from large chemical data sets was from researchers who implemented it at
Pfizer Central Research (UK).134 Clustering was done using 2D fragment
descriptors, with calculation of the list of 20 nearest neighbors using the effi-
cient Perry–Willett inverted file approach.35 After clustering the data set of
about 240,000 compounds, singletons were moved to the most similar nonsin-
gleton cluster, and representative compounds were then extracted by generat-
ing cluster centroids and selecting the compound closest to each centroid.

Earlier in this chapter, we mentioned the cascaded Jarvis–Patrick63 and
fuzzy Jarvis–Patrick64 variants. The cascaded Jarvis–Patrick method was
implemented at Rhone-Poulenc Rorer (RPR) based on using Daylight 2D
structural fingerprints and Daylight’s Jarvis–Patrick program. With this var-
iant, singletons are reclustered using less strict parameters so that the single-
tons do not dominate the set of representative compounds selected. The
applications reported by the RPR researchers63 include selection of com-
pounds from the corporate database for HTS and comparison of the corporate
database with external databases, such as the Available Chemicals Directory,
to assist in compound acquisition. The fuzzy Jarvis–Patrick variant was devel-
oped and implemented at G. D. Searle and Company for analysis of their com-
pound database to help support their screening program. The Searle
researchers64 initially used the Daylight implementation but found the chain-
ing and singleton characteristics of the standard method to be significant
drawbacks. This in turn prompted them to develop a variant with different
characteristics.

McGregor and Pallai135 discussed an in-house implementation of the stan-
dard Jarvis–Patrick algorithm at Procept Inc. They used the MDL 2D
structural descriptors to compare and analyze external databases for efficient
compound acquisition. Shemetulskis et al.136 also reported the use of Jarvis–
Patrick clustering to assist in compound acquisition at Parke-Davis, giving
results from analysis and comparison of the CAST3D and Maybridge com-
pound databases with the corporate database. In a two-stage process, repre-
sentatives, comprising about a quarter of the compounds, were selected
from each data set by clustering on the basis of 2D fingerprints. Each data
set was then merged with the corporate database, and the clustering run again
on the basis of calculated physicochemical property descriptors. Clusters
containing only CAST3D or Maybridge compounds were tagged as highest
priority for acquisition. Dunbar137 summarized the compound acquisition
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report,135 discussed the use of clustering methods to assist in HTS, and then
outlined the use at Parke-Davis of Jarvis–Patrick clustering to assist tradi-
tional, low-throughput screening. The aim of the Parke-Davis group was to
generate a representative subset of no more than 2000 compounds selected
from about 126,000 compounds in the Parke-Davis corporate database so
that they could be used in a particularly labor-intensive cell-based assay.
Jarvis–Patrick clustering was run to generate an initial set of 25,000 non-
singleton clusters. The compounds closest to the centroids were reclustered
to give about 2,300 clusters. The compounds closest to these centroids were
then analyzed manually providing a final selection of about 1,400 compounds.
An interesting feature of this process was that singletons were rejected at each
stage, rather than being assigned to the nearest nonsingleton cluster (as at
Pfizer, UK) or being reclustered separately (as in the cascaded clustering
method used at Rhone-Poulenc Rorer).

Jarvis–Patrick clustering has also been used to support QSAR analysis
in a system developed at the European Communities Joint Research
Center.7,138–140 The EINECS (European Inventory of Existing Chemical Sub-
stances) database contains more than 100,000 compounds and has been clus-
tered using 2D structural descriptors. That database also has associated
physicochemical properties and activities, but the data is very sparse. Jarvis–
Patrick clustering was used to extract clusters containing sufficient compounds
with measured data for an attempt to be made to estimate the properties of
members of the cluster lacking the data. For a few clusters, it was used to
develop reasonable QSAR models.

An example of how use of k-means clustering can be used for QSAR ana-
lysis of small data sets is that by Lawson and Jurs141 who clustered a set of 143
acrylates from the ToSCA (Toxic Substances Control Act) inventory. For large
chemical data sets, the seminal paper is that published by Higgs et al.,79 at Eli
Lilly and Company. These authors examined three methods of subset selection
to assist their HTS and development of combinatorial libraries. The three
methods were k-means, MaxMin, and D-optimal design. Seed compounds
were selected by the MaxMin method, and the k-means algorithm was imple-
mented on parallel hardware. This research was part of the compound acqui-
sition strategy to support HTS. The Lilly group used an extensive system of
filters to ensure that selected compounds were pharmaceutically acceptable.
No recommendations were offered in the paper as to the best method.

The use of a topographic clustering method for chemical data sets is
exemplified by the work of Sadowski, Wagener, and Gasteiger.142 The authors
compared three combinatorial libraries using Kohonen mapping. Each com-
pound within a library was represented by a 12-element autocorrelation vector
(a sort of 3D-QSAR descriptor). The vectors were used as input to a 50� 50
Kohonen network. Mapping the combinatorial libraries onto the same net-
work placed each compound from the library at a particular node in the net-
work. A 2D display of the positions of each compound revealed the degree of
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overlap between the libraries. Two very dissimilar libraries formed two dis-
tinct clusters with little overlap, whereas two very similar libraries showed
no distinction.

The use of mixture-model or density-based clustering has not yet been
reported for processing chemical data sets. An interesting application of these
techniques is their use to group the compound descriptors so as to obtain a set
of orthogonal descriptors. Up to this point, the clustering that we have dis-
cussed has been applied to the patterns (fingerprints or dataprints) character-
izing each compound; this is the ‘‘Q-mode clustering’’ referred to by Sneath
and Sokal.1 One can also cluster the features (the descriptors used in the fin-
gerprints or dataprints) to highlight groups of similar descriptors. Sneath and
Sokal call this ‘‘R-mode clustering.’’ The similar property principle, upon
which structure–property relationships depend, assumes that the compound
descriptors are independent of each other. Reducing the number of descriptors
can thus help in subsequent Q-mode clustering by reducing the dimensionality.
Clustering the descriptors, so that a subset of orthogonal descriptors can be
extracted, is an alternative to factor analysis and principal components analy-
sis. Using an orthogonal subset of descriptors has the benefit that the result is a
set of individual descriptors rather than composite descriptors. Taraviras,
Ivanciuc, and Cabrol-Bass65 applied the single-link, group-average, complete-
link, and Ward hierarchical methods, along with Jarvis–Patrick, variable-
length Jarvis–Patrick, and k-means nonhierarchical methods to a set of 240
topological indices in an attempt to reveal any ‘‘natural’’ clusters of the
descriptors. Descriptors that were found to exist in the same clusters across
all seven methods were regarded as being strongly clustered. Reducing the
number of methods that needed to be in agreement revealed progressively
weaker clusters. Overall, it was found that the strategy of using multiple clus-
tering methods for R-mode clustering could be used to provide representative
sets of orthogonal descriptors for use in QSAR analysis.

CONCLUSIONS

Clustering methodology has been developed over many decades. The
application of clustering to chemical data sets began in the 1980s, coinciding
with the increasing size of in-house compound collections having their infor-
mation contained in structural databases and with advances made by the
information retrieval community to analyze large document collections. In
the 1990s the advent of high-throughput screening, combinatorial libraries,
and commercially available external chemical inventories placed a greater
emphasis on rational compound selection. The demands of clustering data
sets of several million compounds with high-dimensional representations led
to the widespread adoption of a few inherently efficient and optimally imple-
mented methods, namely, the Jarvis–Patrick, Ward, and k-means methods.
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Acceptance of these methods—and inclusion of them as routine operations
within such applications as lead-finding strategies, QSAR analyses, and com-
pound acquisition—has been a gradual process rather than an abrupt revolu-
tion. The current decade should see this process continue as the methodologies
are refined. The push for such advancement appears to be coming again from
the information retrieval community but also from the data mining commu-
nity, which has made significant progress. The emphasis of current research
is turning toward the quality of the resultant clusters. It has been shown
that, using representatives selected from clusters for lead-finding can increase
the active hit rate significantly and consistently.

The results so far in chemistry are promising, but research in other areas
outside of chemistry suggests that clustering is still a blunt instrument that can
be sharpened by refinements. An example of this refinement is to be able to
handle mixed or nonnumerical data, and another example is to take more con-
sideration of cluster sizes, shapes, and distribution. The existing methods and
implementations used to analyze chemical data sets do an impressive job when
compared with the situation a decade ago. What is exciting is the number of
new ideas that are being generated that should result in significant advances in
the next decade.
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CHAPTER 2

The Use of Scoring Functions in Drug
Discovery Applications

Hans-Joachim Böhm and Martin Stahl

F. Hoffmann-La Roche AG, Pharmaceuticals Division, Chemical
Technologies, CH-4070 Basel, Switzerland

INTRODUCTION

Structure-based design has become a mature and integral part of medici-
nal chemistry. It has been convincingly demonstrated for a large number of
targets that the three-dimensional (3D) structure of a protein can be used to
design small molecule ligands binding tightly at this target. Indeed, several
marketed compounds can be attributed to a successful structure-based
design.1–4 Several reviews summarize these results.5–9

Since the introduction of molecular modeling and structure-based design
into the drug discovery process in the 1980s, there has been a significant
change in the role these computational techniques are playing. Early molecular
modeling work concentrated on the manual design of protein ligands using the
3D structure of a target. Usually, the creativity of the designer was used to
build a novel putative ligand using computer graphics followed by a molecular
mechanics calculation of the resulting protein–ligand complex. A geometric
and energetic analysis of the energy-minimized complex was then used to
assess the putative ligand. A good complementarity of the shape and surface
properties between the protein and ligand was used as an indication that the
ligand might indeed bind to the protein with high affinity.
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However, designing a single, active, synthetically accessible compound
turned out to be a greater challenge than expected. It is still difficult to
computationally predict induced-fit phenomena and binding affinities for
new ligand candidates. But while existing modeling tools are certainly not sui-
table to design the one perfect drug molecule, they can help to enrich sets of
molecules with greater numbers of biologically active candidates, even though
the rates of false positives (and false negatives) are still high. Thus, an impor-
tant current goal of molecular design is to increase the hit rate in biological
assays compared to random compound selections, which means that struc-
ture-based design approaches now focus on the processing of large numbers
of molecules. These ‘‘virtual libraries’’ of molecules can consist of either exist-
ing molecules (e.g., the compound collection of a pharmaceutical company) or
of putative novel structures that could be synthesized via combinatorial chem-
istry. The computational goal is to rapidly assess millions of possible mole-
cules by filtering out the majority that are predicted to be extremely unlikely
to bind, and then to prioritize the remaining ones. This approach is, in fact, a
successful strategy, and several recent publications have demonstrated
impressive enrichment of active compounds.10–15 The change of focus from
individual compounds to compound libraries has been supported by three
major developments that have taken place since the early days of molecular
design:

1. An exponentially growing number of 3D protein structures is available in
the public domain. Consequently, the number of projects relying on
structural information has increased, and structure-based ligand design is
nowadays routinely carried out at all major pharmaceutical companies.
The amount of structural knowledge is so large that automated methods
are needed to make full use of it.

2. High throughput screening (HTS) has become a well-established process.
Large libraries of several hundred thousand compounds are routinely tested
against new targets. This biological testing can, in many cases, be carried
out in less than one month.

3. Synthetic chemistry has undergone a major change with the introduction of
combinatorial and parallel chemistry techniques. There is a continuous
trend to move away from the synthesis of individual compounds toward the
synthesis of compound libraries, whose members are accessible through the
same chemical reaction using different chemical building blocks.

To offer a competitive advantage, structure-based design tools must now
be fast enough to prioritize thousands of compounds per day. Several algo-
rithms have been developed that allow for de novo design16,17 or for flexible
docking18 of hundreds to thousands of small molecules into a protein bind-
ing site per day on a single CPU computer. Essential components of all
these structure-based design software tools are scoring functions that translate
computationally determined protein–ligand interactions into approximate
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estimations of binding affinity. These scoring functions guide the conforma-
tional and orientational search of a ligand within the binding site and ulti-
mately provide a relative ranking of putative ligands with respect to a target.
The purpose of this chapter is to describe some of these functions, discuss their
strengths and weaknesses, explain how they are used in practical applications,
and present selected results to highlight the current status of the field.

The Process of Virtual Screening

In this section, we discuss a general strategy of virtual screening based on
the 3D structure of a target. Typically, the following steps are typically taken.

1. Analysis of the 3D protein structure.
2. Selection of one or more key interactions that need to be satisfied by all

candidate molecules.
3. Computational search (by docking and/or pharmacophore queries) in

chemical databases for compounds that fit into the binding site and satisfy
key interactions.

4. Analysis of the retrieved hits and removal of undesirable compounds.
5. Synthesis or purchase of the selected compounds.
6. Biological testing.

The first step is usually a careful analysis of available 3D protein struc-
tures. If possible, highly homologous structures will also be analyzed, either to
generate additional ideas about possible ligand structural motifs or to gain
some insight on how to achieve selectivity relative to other proteins of the same
class. A superposition of different protein–ligand complexes can provide some
indication about key interactions that are repeatedly found in tight binding
protein–ligand complexes. Such an overlay will also highlight flexible parts
of the protein. Programs like GRID19 or LUDI20,21 are frequently used to
visualize potential interaction sites (hot spots) in the binding site of the pro-
tein. If there are conserved water molecules in the binding site mediating
hydrogen bonds between the protein and the ligand, and if these water
molecules cannot be replaced, then including them in the docking process
can dramatically improve the hit rate.13–15

An important result from the aforementioned 3D structure analysis is
usually the identification of one or more key interactions that all ligands
should satisfy. An example of such a binding hypothesis is that aspartic pro-
tease inhibitors should form at least one hydrogen bond to the catalytic Asp
side chains. Although it could be left to the computational algorithm using
a good scoring function to pick molecules, experience indicates that the per-
centage of active compounds in a designed library can be significantly
increased if a good binding hypothesis is used as filter. In addition, part of a
known ligand may be used as a starting scaffold, and virtual screening tech-
niques can then be used to select side chains.
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Once a reasonable binding hypothesis has been generated, the next step
is the actual virtual screening. Whether one uses databases of commercially
available compounds or ‘‘virtual’’ libraries of hypothetical chemical structures,
it makes sense to dock not just any compound, but only those that pass a num-
ber of simple property filters. Such filters remove

1. Compounds with reactive functional groups. Reactive groups such as
��SO2Cl and ��CHO cause problems in some biological assays due to
nonspecific covalent binding to the protein.

2. Compounds with a molecular weight below 150 or above 500. Very small
molecules like benzene are known to bind to proteins in a rather
nonspecific manner and at several sites. Very large molecules (like
polypeptides) are difficult to optimize subsequently because bioavailability
is usually low for compounds with a molecular weight above 500.

3. Compounds that are not ‘‘drug-like’’ according to criteria that have been
derived from sets of known drugs.22,23

Each remaining compound is then docked into the binding site and
scored. The docking process is the most demanding step computationally
and is usually carried out on multiprocessor computers. Depending on the
docking algorithm and the scoring function, this step may easily take several
days of CPU time. The result is a list of several hundred to a few thousand
docked small molecule structures each with a computed score, which is further
analyzed to weed out undesirable structures. Selection criteria could be

1. Lipophilicity, if not addressed before. Highly lipophilic molecules are
difficult to test because of their low solubility in water.

2. Structural class. If 50% of the docked structures belong to a single chemical
class, it is probably unnecessary to test all of them.

3. Improbability of docked binding mode. Fast docking tools cannot produce
reasonable solutions for all compounds. Often even some high-scoring
compounds are found to be docked to the outer surface of the protein.
Computational filters help to detect such situations.

Finally, the selected compounds are purchased or synthesized and then
tested. If the goal is to identify weakly binding small molecules, it is important to
ensure that the biological assay is sensitive and robust enough to pick up these
molecules. Measurements using 100–1000 mM concentration of the ligand fre-
quently cause problems due to the limited solubility of the ligands in water. To
compensate for this, the assay is often carried out in the presence of 1–5%
dimethyl sulfoxide (DMSO) (see, e.g., Ref. 14).

Note that the process of virtual screening still involves manual interven-
tions at various stages. In principle, the whole process can be carried out in a
fully automated manner, but in practice visual inspection and manual selection
are still very useful.
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Major Contributions to Protein–Ligand Interactions

The selective binding of a low molecular weight ligand to a specific pro-
tein is determined by the structural and energetic recognition of those two
molecules. For ligands of pharmaceutical interest, the protein–ligand interac-
tions are usually noncovalent in nature. The binding affinity can be determined
from the experimentally measured binding constant Ki

�G ¼ �RT ln Ki ¼ �H � T�S ½1�

The experimentally determined binding constants Ki are typically in the range
of 10�2 to 10�12 mol/L, corresponding to a Gibbs free energy of binding �G
between �10 and �70 kJ/mol in aqueous solution.6,24

There exists a growing body of experimental data on 3D structures of
protein–ligand complexes and binding affinities.25 These data indicate that
several features can be found in almost all complexes of tightly bound ligands.
These features include

1. A high steric complementarity between the protein and the ligand. This
observation is consistent with the long established lock-and-key paradigm.

2. A high complementarity of the surface properties. Lipophilic parts of the
ligands are most frequently found to be in contact with lipophilic parts of
the protein. Polar groups are usually paired with suitable polar protein
groups to form hydrogen bonds or ionic interactions.

3. The ligand usually adopts an energetically favorable conformation.

Generally speaking, direct interactions between the protein and the ligand are
essential for binding. The most important types of direct interactions are
depicted in Figure 1.

Structural data on unfavorable protein–ligand interactions are sparse.
The scarcity of such complexes is due, in part, to the fact that structures of
weakly binding ligands are more difficult to obtain and they are usually con-
sidered less interesting by many drug discovery chemists and structural biolo-
gists. However, weak binding data are vital for the development of scoring
functions. What data are available indicate that unpaired buried polar groups
at the protein–ligand interface are strongly adverse to binding. For example,
few buried CO and NH groups in folded proteins fail to form hydrogen
bonds.26 Therefore, in the ligand design process, one has to ensure that polar
functional groups, either of the protein or the ligand, will find suitable coun-
terparts if they become buried upon ligand binding. Another situation that can
lead to diminished binding affinity is imperfect steric fitting, which leads to
holes at the protein–ligand interface.

The enthalpic and the entropic component of the binding affinity can be
determined experimentally, for example, by isothermal titration calorimetry
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(ITC). Unfortunately, these data are still sparse and are difficult to interpret.27

Existing thermodynamic data indicate that there is always a substantial
compensation between enthalpic and entropic contributions.28–30 The data
also show that the binding may be enthalpy-driven (e.g., streptatividin–biotin,
�G ¼ �76:5 kJ/mol;�H ¼ �134 kJ/mol) or entropy-driven (e.g., streptavi-
din–2-(40-hydroxy-azobenzene)benzoic acid (HABA), �G ¼ �22:0 kJ/mol;
�H ¼ þ7:1 kJ/mol).31 Data from protein mutants yield estimates of
5� 2:5 kJ/mol for the contribution from individual hydrogen bonds to the
binding affinity.32–34 Similar values have been obtained for the contribution
of an intramolecular hydrogen bond to protein stability.35–37 The consistency
of experimental values derived from different proteins suggests some degree of
additivity in the hydrogen-bonding interactions.

The contribution of hydrogen bonds to the binding affinity strongly
depends on solvation and desolvation effects. Here lies the biggest challenge

O NH

O H O

O

O N

N

H

H

H

H

O

O

N
H

H H

N
+

S
H

Zn
2+

CH3 CH3

protein ligand

hydrogen bonds

ionic interactions

hydrophobic interactions

cation-π interaction

metal complexation

−

−
+

+

Figure 1 Typical interactions
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Cation–p interactions and metal
complexation can also play a sig-
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in the quantitative treatment of protein–ligand interactions: providing an
accurate description of the role of water molecules (Figure 2). It has been
shown, by comparing the binding affinities of ligand pairs differing by just
one hydrogen bond, that the existence of an individual hydrogen bond can
even be adverse to binding.38 Charge-assisted hydrogen bonds are stronger
than neutral ones, but this enhancement in binding is paid for by higher
desolvation penalties. The electrostatic interaction of an exposed salt bridge
is worth as much as a neutral hydrogen bond (5� 1 kJ/mol according to
Ref. 39), and the same interaction in the interior of a protein can be signifi-
cantly larger.40

The experimental determination of �H and �S sometimes yields surpris-
ing results, as, for example, in the thermodynamics of hydrogen-bond forma-
tion in the complex of FK506 or rapamycin with FK506-binding protein
(FKBP).34 Binding to the wild-type and to the mutant Tyr 82 ! Phe 82 was

N

H

H
O

H

H
O

H

O

N

H

H
O

H

H
O

H

O

protein

ligand protein-ligand
complex

CH3

H
O

H

H
O

H

CH3

CH3

H
O

H

H
O

H

CH3

protein

ligand protein-ligand
complex

+ +

+ +

Figure 2 Role of water molecules in hydrogen bonds (upper part) and lipophilic
interactions (lower part). In the unbound state (left side), the polar groups of the ligand
and the protein form hydrogen bonds to water molecules. These water molecules are
replaced upon complex formation. The hydrogen-bond inventory (total number of
hydrogen bonds) does not change. In contrast, the formation of lipophilic contact
increases the total number of hydrogen bonds due to the release of water molecules from
the unfavorable lipophilic environment.
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studied. From X-ray studies, it was known that the side chain hydroxyl of Tyr
82 forms a hydrogen bond with the ligand. If Tyr 82 is replaced by Phe, then
one hydrogen bond is lost. As expected, the ligand-binding affinity was slightly
reduced. The free enthalpy difference is 4� 1:5 kJ/mol. Somewhat unexpect-
edly, however, this destabilization is due to an entropy loss. In other words,
the formation of this particular hydrogen bond is enthalpically unfavorable
but entropically favorable. The entropy gain appears to be mainly due to
the replacement of two water molecules by the ligand.41

Lipophilic interactions are essentially contacts between apolar parts
of the protein and the ligand. The generally accepted view is that lipophilic
interactions are mainly the result of the replacement and release of ordered
water molecules and thus are entropy-driven processes.42,43 The entropy
gain is due to the fact that the water molecules are no longer positionally con-
fined. There are also enthalpic contributions to lipophilic interactions. Water
molecules occupying lipophilic binding sites are unable to form hydrogen
bonds with the protein. If they are released, they can form strong hydrogen
bonds with bulk water. It has been shown in many cases that the lipophilic
contribution to the binding affinity is proportional to the lipophilic surface
area buried from the solvent and typically has values in the range of 80–
200 J/(mol Å2).44–46

Conformational flexibility is another factor influencing the binding affin-
ity. Usually, a ligand binds in a single conformation and therefore loses much
of its conformational flexibility upon binding. Greater binding affinities have
been observed for cyclic derivatives of ligands that otherwise adopt the same
binding mode.47,48 The entropic cost of freezing a single rotatable bond has
been estimated to be 1.6–3.6 kJ/mol at 300 K.49,50 Recent estimates derived
from nuclear magnetic resonance (NMR) shift titrations of open-chain dicat-
ions and dianions are much lower (0.5 kJ/mol),51 but in those systems the con-
formational restriction may not have been as high as in a protein-binding site.
The entropic cost of the external (translational and orientational) degrees of
freedom has been estimated to be around 10 kJ/mol.52,53

In spite of many inconsistencies and difficulties in interpretation, most of
the experimental data suggests that simple additive models for the protein–
ligand interactions might be a good starting point for the development of
empirical scoring functions. Indeed, the first published scoring functions
were actually built based on experimental work that was published by about
1992, including studies on thermolysin54 and vancomycin.50,55

Figure 3 summarizes some of the interactions that play a role in receptor–
ligand binding. Binding involves a complex equilibrium between ensembles of
solvated species. In the next section, we will discuss various approaches that
are used to capture essential elements of this equilibrium in computationally
efficient scoring functions. The discussion focuses on general approaches
rather than individual functions. The reader is referred to Table 1 for original
references to the most important scoring functions.56–114
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DESCRIPTION OF SCORING FUNCTIONS FOR
RECEPTOR–LIGAND INTERACTIONS

A rigorous theoretical treatment of reversible receptor–ligand binding
requires full consideration of all species involved in the binding equilibrium.
In the unbound state, both the ligand and the receptor are separately solvated
and do not interact. In the bound state, both partners are partially desolvated
and form interactions with each other. Since it is the free energy of binding one
is interested in determining, the energies of the solvated receptor, the solvated
ligand, and the solvated complex should be calculated as ensemble averages.

hydrophobic contacts

hydrogen bond

charge-assisted hydrogen bond

solvated ensemble
of ligand conformations

solvated receptor
binding site

solvated receptor-ligand complex

OH

N

OO

HO

N

OO

Figure 3 Overview of the receptor–ligand binding process. All species involved are
solvated by water (symbolized by gray spheres). The binding free energy difference
between the bound and unbound state is a sum of enthalpic components (breaking and
formation of hydrogen bonds, formation of specific hydrophobic contacts), and entropic
components (release of water from hydrophobic surfaces to solvent, loss of
conformational mobility of receptor and ligand).
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The appropriate statistical mechanics treatment has been reviewed else-
where118 and is not the topic of this chapter. Large-scale Monte Carlo or
molecular dynamics (MD) simulations are necessary to derive reasonably
accurate values of binding free energies. These computational methods are
only suitable for small sets of compounds, since they require large amounts
of computational resources. Moreover, even the most advanced techniques
are reliable only for calculating binding free energy differences between closely
related ligands.119–122 However, a number of less rigorous but faster scoring
schemes have been developed that should be amenable to larger numbers of
ligands. For example, recent experience has shown that continuum solvation
models can replace explicit solvent molecules, at least in the final energy eval-
uation of the simulation trajectory.123 Another less expensive alternative for
computing binding free energies is the use of linear reponse theory109,110 in
conjunction with a surface term.112

Scoring functions that can be evaluated quickly enough to be practical in
docking and virtual screening applications are very crude approximations to
the free energy of binding. They usually take into account only one receptor–
ligand complex structure and disregard ensemble averaging and properties of
the unbound state of the binding partners. Furthermore, all scoring methods
have in common the fact that the free energy is obtained from a sum of terms.
In a strict physical sense, this is not possible, since the free energy of binding is
a state function, but its components are not.124 Furthermore, simple additive
models cannot describe subtle cooperativity effects.125 Nevertheless, it is often
useful to interpret receptor–ligand binding in an additive fashion,126–128 and
estimates of binding free energy are available in this way at very low compu-
tational cost. Fast scoring functions can be categorized into three main
classes: (1) force field-based methods, (2) empirical scoring functions, and
(3) knowledge-based methods. Each of these is now discussed.

Force Field-Based Methods

An obvious idea to circumvent parameterization efforts for scoring is to
use nonbonded energies of existing, well-established molecular mechanics
force fields for the estimation of binding affinity. In doing so, one substitutes
estimates of the free energy of binding in solution by an estimate of the gas-
phase enthalpy of binding. Even this crude approximation can lead to satisfy-
ing results. A good correlation was obtained between nonbonded interaction
energies calculated with a modified MM2 force field and IC50 values of 33
inhibitors of human immunodeficiency virus (HIV)-1 protease.129 Similar
results were reported in a study of 32 thrombin–inhibitor complexes with
the CHARMM force field.130 In both studies, however, experimental data
represented rather narrow activity ranges and little structural variation.

The AMBER131,132 and CHARMM133 nonbonded terms are used as a
scoring function in several docking programs. Protein terms are usually
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precalculated on a cubic grid, such that for each ligand atom only the interac-
tions with the closest grid points have to be evaluated.94 This leads to an
increase in speed of about two orders of magnitude compared to traditional
atom-by-atom evaluation. Distance-dependent dielectric constants are usually
employed to approximate the long-range shielding of electrostatic interactions
by water.100 However, compounds with high formal charges still obtain
unreasonably high scores due to overestimated ionic interactions. For this rea-
son, it has been common practice in virtual screening to separate databases of
compounds into subgroups according to their total charge and then to rank
these groups separately.

When electrostatic interactions are complemented by a solvation term
calculated by the Poisson–Boltzmann equation134 or faster continuum solva-
tion models (as in Ref. 135), the deleterious effects of high formal charges
are diminished. In a validation study on three protein targets, Shoichet
et al.103 observed a significantly improved ranking of known inhibitors after
correction for ligand solvation. The current version of the docking program
DOCK calculates solvation corrections based on the generalized Born136 sol-
vation model.105 The method has been validated in a study where several pep-
tide libraries were docked into various serine protease active sites.137

In the context of scoring, the van der Waals term of force fields is mainly
responsible for penalizing docking solutions with steric overlap between recep-
tor and ligand atoms. The term is often omitted when only the binding of
experimentally determined complex structures is analyzed.102,138,139

A recent addition to the list of force field-based scoring methods has been
developed by Charifson and Pearlman. Their so-called OWFEG (one window
free energy grid) method114 is an approximation to the expensive first-
principles method of free energy perturbation (FEP).140 For the purpose of
scoring, an MD simulation is carried out with the ligand-free, solvated recep-
tor site. The energetic effects of probe atoms on a regular grid are collected
and averaged during the simulation. Three simulations are run with three dif-
ferent probes: a neutral methyl-like atom, a negatively charged atom, and a
positively charged atom. The resulting three grids contain information on
the score contributions of neutral, positively, and negatively charged ligand
atoms located in various positions of the receptor site and can thus be used
in a straightforward manner for scoring. The OWFEG approach seems to be
successful for Ki prediction as well as for virtual screening applications.113 Its
conceptual advantage is the implicit consideration of entropic and solvent
effects and the inclusion of some protein flexibility in the simulations.

The calculation of ligand strain energy traditionally lies in the realm of
molecular mechanics force fields. Although effects of strain energy have rarely
been determined experimentally,141 it is generally accepted that high-affinity
ligands bind in low-energy conformations.142,143 If a compound must adopt
a strained conformation to fit into a receptor pocket, a less negative binding
free energy should result. Strain energy can be estimated by calculating the
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difference in conformational energy between the global minimum structure
and the current conformation of the ligand in the complex. However, force
field estimates of energy differences between individual conformations are not
reliable for all systems. In practice, better correlations with experimental
binding data are obtained when strain energy is used as a filter to weed out
unlikely binding geometries rather than when strain energy is added to the
final score. Estimation of ligand strain energy based on force fields can be
time consuming, and so alternatives such as empirical rules derived from
small-molecule crystal structure data are often employed.144 Conformations
generated by such programs are, however, often not strain free, because
only one torsional angle is treated at a time. Some strained conformations
can be excluded when two consecutive dihedral angles are simultaneously
taken into account, however.78

Empirical Scoring Functions

The underlying idea of empirical scoring functions is that the binding
free energy of a noncovalent receptor–ligand complex can be interpreted as
a sum of localized, chemically intuitive interactions. Such energy decomposi-
tions can be a useful tool to understand binding phenomena even without ana-
lyzing 3D structures of receptor–ligand complexes. Andrews, Craik, and
Martin126 calculated average functional group contributions to binding free
energy from a set of 200 compounds whose affinity to a receptor had been
experimentally determined. These average functional group contributions
can then be used to estimate a receptor-independent binding energy for a com-
pound that can be compared to experimental values. If the experimental value
is approximately the same as or higher than the calculated value, one can infer
a good fit between receptor and ligand and essentially all functional groups of
the ligand are involved in protein interactions. If the experimental energy is
significantly lower, one can infer that the compound can not fully form its
potential interactions with the protein. Experimental binding affinities have
also been analyzed on a per atom basis in quest of the maximal binding affinity
of noncovalent ligands.145 It was concluded that for the strongest binding
ligands, each nonhydrogen atom on average contributes 1.5 kcal/mol to the
total binding energy.

With 3D structures of receptor–ligand complexes at hand, the analysis of
binding phenomena can of course be much more detailed. The binding affinity
�Gbinding can be estimated as a sum of interactions multiplied by weighting
coefficients �Gi

�Gbinding 	
X

i

�Gi fiðrl; rpÞ ½2�

where each fi is a function of the ligand coordinates rl and the protein receptor
coordinates rp, and the sum is over all atoms in the complex. Scoring schemes
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that use this concept are called ‘‘empirical scoring functions.’’ Several reviews
summarize details of individual parameterizations.17,146–151 The individual
terms in empirical scoring functions are usually chosen so as to intuitively
cover important contributions of the total binding free energy. Most empirical
scoring functions are derived by evaluating the functions fi for a set of protein–
ligand complexes and fitting the coefficients �Gi to experimental binding
affinities of these complexes by multiple linear regression or by supervised
learning techniques. The relative weight of the individual contributions
depends on the training set. Usually, between 50 and 100 complexes are
used to derive the weighting factors, but in a recent study it was shown that
many more than 100 complexes were needed to achieve convergence.75 The
reason for this large number is probably due to the fact that the publicly avail-
able protein–ligand complexes fall in a few heavily populated classes of
proteins, such that in small sets of complexes few interaction types dominate.

Empirical scoring functions usually contain individual terms for hydro-
gen bonds, ionic interactions, hydrophobic interactions, and for binding
entropy. Hydrogen bonds are typically scored by simply counting the number
of donor–acceptor pairs falling within a given distance and angle range consid-
ered to be favorable for hydrogen bonding, weighted by penalty functions for
deviations from preset ideal values.56,71,73 The amount of error-tolerance in
these penalty functions is critical to the success of scoring methodology.
When large deviations from ideality are tolerated, the scoring function may
be unable to discriminate between different orientations of a ligand. Contrar-
ily, small tolerances lead to situations where many structurally similar com-
plex structures result in very similar scores. Attempts have been made to
reduce the localized nature of such interaction terms by using continuous mod-
ulating functions on an atom-pair basis.69 Other workers have avoided the use
of penalty functions altogether and introduced separate regression coefficients
for strong, medium, and weak hydrogen bonds.75 For example, at Agouron a
simple four-parameter potential, which is called the piecewise linear potential
(PLP), was developed that is an approximation of a potential well without
angular terms.62 Most empirical scoring functions treat all types of hydrogen-
bond interactions equally, but some attempts have been made to
distinguish between different donor–acceptor functional group pairs. Hydrogen-
bond scoring in the docking program GOLD,60,61 for example, is based on
a list of hydrogen-bond energies for all combinations of 12 defined donor and
6 acceptor atom types derived from ab initio calculations of model systems
incorporating those atom types. A similar differentiation of donor and accep-
tor groups is made in the hydrogen-bond functions in the program GRID,152 a
program commonly used for the characterization of binding sites.115–117 The
inclusion of such lookup tables in scoring functions is presumed to avoid
errors originating from the oversimplification of individual interactions.

Reducing the weight of hydrogen bonds formed at the outer surface of
the binding site is a useful measure for reducing the number of false positive
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hits in virtual screening applications. Reducing the weight can be done by
reducing charges of surface residues when explicit electrostatic terms are
used100 or by multiplying the hydrogen-bond by a factor that depends on the
accessibility of the protein-bonding partner91 in empirical scoring functions.

Ionic interactions are treated in a similar manner as hydrogen bonds.
Long-distance charge–charge interactions are usually disregarded, and so it
is more appropriate to refer to salt bridges or charged hydrogen bonds here.
The SCORE1 function by Boehm implemented in LUDI56 gives greater weight
to salt bridges than to neutral hydrogen bonds. This function was found to be
useful in scoring several series of thrombin inhibitors.57,72 But just as with
force field scoring functions, this weighting introduces the danger of giving
unreasonably high scores to highly charged molecules. Our experience with
the docking program FlexX,64–67 which contains a variant of SCORE1 (the
LUDI scoring function), has been that better results are generally obtained
when charged and uncharged hydrogen are treated equally in virtual screening
applications. This observation is also the case for the ChemScore function by
Protherics.71

Hydrophobic interaction energies are usually estimated by the size of the
contact surface at the receptor–ligand interface. A reasonable correlation
between experimental binding energies can often be achieved with a surface
term alone (see, e.g., Refs. 24,153,154 and the discussion in the earlier section
on Major Contributions to Protein–Ligand Interactions). Various approxima-
tions for surface terms have been used, such as grid-based methods56 and
volume-based methods (see especially the discussion in Ref. 101). Many func-
tions employ distance-scaled sums over neighboring receptor–ligand atom
pairs. Distance cutoffs for these functions have been chosen to be short64 or
to be longer to include atom pairs that do not form direct van der Waals con-
tacts.62,71 The assignment of the weighting factor �Gi for the hydrophobic
term depends strongly on the training set. Its value might have been underes-
timated in most derivations of empirical scoring functions,155 because most
training sets contain an overly large proportion of ligands containing an exces-
sive number of donor and acceptor groups (many peptide and carbohydrate
fragments).

In most existing empirical scoring functions, a number of atom types are
defined as being hydrophobic, and all their contributions are treated in the
same manner. Alternatively, the propensity of specific atom types to be located
in the solvent or in the interior of a protein can be assessed by so-called
‘‘atomic solvation parameters’’ that can be derived from experimental data
such as octanol–water partition coefficients156,157 or from structural data.81,158

Atomic solvation parameters are used in the VALIDATE scoring function,68

and they have been tested in DOCK.80 Entropy terms in empirical scoring
functions account for the restriction of conformational degrees of freedom
of the ligand upon complex formation. A crude but useful estimate of this
entropy contribution is the number of freely rotatable bonds of a ligand.

Scoring Functions for Receptor–Ligand Interactions 55



This simple measure has the advantage of being a function of the ligand
only.56,73 Since it is argued that purely hydrophobic contacts allow more
residual motion in the ligand fragments, more elaborate estimates try to
take into account the nature of each ligand fragment on either side of a flexible
bond and the interactions they form with the receptor.68,71 Such penalty terms
are also robust with respect to the distribution of rotatable bonds in the
ligands of the training set, but they offer little or no advantage in the virtual
screening of compound databases. The group at Agouron has further used an
entropy penalty term that is proportional to the score159 to account for entro-
py–enthalpy compensation.28–30,160

Knowledge-Based Methods

Empirical scoring functions ‘‘see’’ only those interactions that are part of
the model. Many less common interactions are usually disregarded, even
though they can be strong and specific, as exemplified, for example, by
NH–p hydrogen bonds. It would become a difficult task to generate a compre-
hensive and consistent description of all these interactions within the frame-
work of empirical scoring functions. But there exists a growing body of
structural data on receptor–ligand complexes that can be used to detect favor-
able binding geometries. ‘‘Knowledge-based’’ scoring functions try to capture
the knowledge about receptor–ligand binding hidden in the Protein Data
Bank161 (PDB) by means of statistical analysis of structural data alone—and
they do so without referring to inconsistent experimentally determined binding
affinities.162 They have their foundation in the inverse formulation of the
Boltzmann law:

Eij ¼ �kT lnðpijkÞ þ kT lnðZÞ ½3�

The energy function Eij is called a potential of mean force for a state defined
by three variables i; j; and k; pijk is the corresponding probability density, and
Z is the partition function. The second term of Eq. [3] is constant at constant
temperature T and does not need to be considered, because Z ¼ 1 can be cho-
sen by definition of a suitable reference state leading to normalized probability
densities pijk. The inverse Boltzmann technique has been applied to derive
potentials for protein folding from databases of protein structures.163 For
the purpose of deriving scoring functions, the variables i; j; and k are chosen
to be protein atom types, ligand atom types, and their interatomic distance.
The frequency of occurrence of individual contacts is presumed to be a mea-
sure of their energetic contribution to binding. When a specific contact occurs
more frequently than that from a random or average distribution, this indi-
cates an attractive interaction. When it occurs less frequently, it is interpreted
as being a repulsive interaction between those two atom types. The frequency
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distributions for a data set of interacting molecules can thus be converted to
sets of atom-pair potentials that are straightforward to evaluate.

The first applications of knowledge-based scoring functions in drug
research164–166 were restricted to small data sets of HIV protease–inhibitor
complexes and did not result in generally applicable scoring functions. Recent
publications82–86,92,93 have shown that useful general scoring functions can be
derived with this method. The de novo design program SMoG82,83 contained
the first general-purpose implementation of such a potential.

The ‘‘PMF’’ function by Muegge86 consists of a set of distance-
dependent atom-pair potentials EijðrÞ that are written as

EijðrÞ ¼ �kT ln½ fjðrÞrijðrÞ=rij� ½4�

Here, r is the atom pair distance, and rijðrÞ is the number density of pairs ij
that occur in a given radius range around r. The term rij in the denominator
is the average density of receptor atoms j in the whole reference volume. The
number density is calculated in the following manner. A maximum search
radius is defined. This radius describes a reference sphere around each ligand
atom j, in which receptor atoms of type i are searched, and which is divided
into shells of a specified thickness. The number of receptor atoms i found in
each spherical shell is divided by the volume of the shell and averaged over all
occurrences of ligand atoms i in the database of protein–ligand complexes.
Muegge argues that the spherical reference volume around each ligand atom
needs to be corrected by eliminating the volume of the ligand itself, because
ligand–ligand interactions are not regarded. This correction is done by the
volume correction factor fjðrÞ that is a function of the ligand atom only and
gives a rough estimate of the preference of atom j to be solvent exposed rather
than buried within the binding pocket. Muegge could show that the volume
correction factor contributes significantly to the predictive power of the
PMF function.90 Also, a relatively large reference radius of at least 7–8 Å
must be applied to implicitly include solvation effects, particularly the propen-
sity of individual atom types to be located inside a protein cavity or in contact
with solvent.89 For docking calculations, the PMF scoring function is evalu-
ated in a grid-based manner and combined with a repulsive van der Waals
potential at short distances and minima extended slightly toward shorter
distances.

The DrugScore function created by Gohlke, Hendlich, and Klebe92 is
based on roughly the same formalism, albeit with several differences in the
derivation leading to different potential forms. Most notably, the statistical
distance distributions rijðrÞ=rij for the individual atom pairs ij are divided
by a common reference state that is simply the average of the distance distri-
butions of all atom pairs rðrÞ ¼

P
i

P
j r

ijðrÞ=imax jmax, where the product in
the denominator yields the total number of pair functions. Furthermore, no
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volume correction term is used, and the sampling cutoff (the radius of the
reference sphere) is set to only 6 Å. The individual potentials have the form

EijðrÞ ¼ �kTðln½rijðrÞ=rij� � ln½rðrÞ�Þ ½5�

The pair potentials in Eq. [5] are used in combination with other potentials,
depending on one (protein or ligand) atom type only, that express the propen-
sity of an atom type to be buried within a lipophilic protein environment upon
complex formation. Contributions of these surface potentials and the pair
potentials are weighted equally in the final scoring function. DrugScore was
developed with the aim of differentiating between correctly docked ligand
structures versus decoy (arbitrarily placed) structures for the same protein–
ligand pair.

A different type of reference state was chosen by Mitchell et al.85 The
pair interaction energy is written as

EijðrÞ ¼ kT ln½1þmijs� � kT ln½1þmijsrijðrÞ=rðrÞ�

Here, the number density rijðrÞ is defined as in Eq. [4], but it is normalized by
the number density of all atom pairs at this same distance instead of by the
number of pairs ij in the whole reference volume. The variable mij is the num-
ber of atom pairs ij found in the data set of protein–ligand complexes, and s is
an empirical factor that defines the weight of each observation. This potential
is combined with a van der Waals potential as a reference state to compensate
for the lack of sampling at short distances and for certain underrepresented
atom pairs. Apart from data on 90 protein–ligand complexes used in the ori-
ginal validation, no further application has been published.

CRITICAL ASSESSMENT OF CURRENT
SCORING FUNCTIONS

Influence of the Training Data

All fast scoring functions share a number of deficiencies that one should
be aware of for any application. First, most scoring functions are in some way
fitted to or derived from experimental data. The resulting functions necessarily
reflect the accuracy of the data that were used in their derivation. A general
problem with empirical scoring functions is the fact that the experimental
binding energies are compiled from many different sources and therefore
form inconsistent data sets containing systematic experimental errors. Scoring
functions not only reflect the quality, but also the type of experimental data on
which they are based. Most scoring functions are still derived from data on
mostly high-affinity receptor–ligand complexes. Moreover, many of these
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structures are peptidic in nature, whereas interesting lead molecules in
pharmaceutical research are usually nonpeptidic. This influence of peptides
is reflected in the relatively high contributions of hydrogen bonds in the total
score. The balance between hydrogen bonding and hydrophobic interactions is
a critical issue in scoring, and its consequences are especially obvious in virtual
screening applications, as will be illustrated in the later section on Hydrogen
Bonding versus Hydrophobic Interactions.

Molecular Size

The simple additive nature of most fast scoring functions often leads to
large molecules being assigned high scores. Although it is true that small mole-
cules with a molecular weight below 200–250 are rarely of very high affinity,
there is no guarantee that larger compounds are more active. When it comes to
comparing scores of two compounds of different size, it therefore makes sense
to include a penalty term that diminishes the dependence of the score on mole-
cular size. In some applications, a constant penalty value has been added to the
score for each heavy atom.167 Alternatively, a penalty term proportional to the
molecular weight has been used.168 The scoring function of the docking pro-
gram FLOG, which contains force field and empirical terms, has been normal-
ized to remove the linear dependence of the crude score on the number of
ligand atoms that was found in a docking study of a 7500 compound data-
base.59 Entropy terms designed to estimate the restriction of conformational
mobility upon ligand binding also help to eliminate overly large and flexible
molecules, although they were originally introduced to improve the correla-
tion between experimental and calculated affinities.56,71 The size of the
solvent-accessible surface of the ligand within the protein-binding pocket is
also a useful penalty term because it helps avoid excessively large ligands
that cannot fit completely into the binding site. Note, however, that all these
approaches are very pragmatic in nature and do not solve the problem of size
dependence, which is closely linked to the understanding of cooperativity
effects.125

Other Penalty Terms

Scoring functions in general reward certain favorable interactions such
as hydrogen bonds, but rarely penalize unfavorable interactions. Since scoring
functions are derived from experimentally determined crystal structures,
‘‘unnatural’’ and energetically unfavorable orientations of a ligand within
the receptor cavity are rarely observed and therefore cannot be accounted
for by the scoring function. Knowledge-based scoring functions try to capture
such effects indirectly by making those interactions repulsive that are not
observed in crystal structures. It seems, however, that the statistical difference
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between what is not observed and what is to be expected on average is often
not significant enough to form reliable repulsive interactions. Furthermore, the
neglect of angular terms in the derivation of knowledge-based scoring
functions leads to average pair potentials that cannot discriminate well enough
between different binding geometries.

In the derivation of regression-based empirical scoring schemes, on the
other hand, penalty terms have traditionally not been included. However,
some situations like obvious electrostatic and steric clashes can be avoided
by guessing reasonable penalty terms or by importing them from molecular
mechanics force fields. An example of this is the ‘‘chemical scoring’’ function
available in the docking program DOCK.94–99 This function is a modified van
der Waals potential made to be attractive or repulsive between particular
groups of donor, acceptor, and lipophilic receptor atoms and ligand
atoms.169,170 Other unacceptable binding orientations cannot be avoided by
simple clash terms, but instead require a more refined analysis of binding geo-
metry. Among the causes for poor results are an imperfect steric fit of the
ligand within the cavity, an unnaturally high degree of solvent-accessible
ligand surface in the complex or the formation of voids at the receptor–ligand
interface. Possible remedies are empirical filters that measure such fit para-
meters and remove docking solutions above a user-specified threshold.171 A
promising approach along these lines is the inclusion of artificially generated,
erroneous, decoy solutions in the optimization of scoring functions. In the pro-
cess of deriving weights for individual terms of the scoring function, the decoy
solutions should always obtain lower ranks than the correct solutions, and
thus suitable penalty terms could be derived automatically. Such a procedure
was first reported for the scoring function of a flexible ligand superposition
algorithm.172,173

Specific Attractive Interactions

Another general deficiency of scoring functions stems from the simplified
description of attractive interactions. Molecular recognition is not based only
on classical hydrogen bonds and hydrophobic contacts. Many researchers,
especially those active in host–guest chemistry, are making use of other specific
types of interactions. For example, hydrogen bonds that are formed between
acidic protons and p systems.174 These bonds can substitute for conventional
hydrogen bonds in both strength and specificity, as has been noted, for exam-
ple, in protein–DNA recognition175 and as can be observed in serine protease
complexes deposited in the PDB.161 Another class of ‘‘unconventional’’ inter-
actions is the cation–p interaction, which is especially important at the surface
of proteins.176,177 Current empirical scoring functions do not model these
interactions and mostly disregard the directionality of, for example, interac-
tions between aromatic rings.178,179 In the derivation of empirical scoring
functions, one thus implicitly attributes some of the binding energy arising

60 The Use of Scoring Functions in Drug Discovery Applications



from these interactions to conventional interaction terms, which may be one
more reason why conventional hydrogen-bond contributions have tradition-
ally been overestimated. One could imagine adding terms to empirical scoring
functions that are omitted in the calibration of the functions, but adjusted
empirically to reward especially good fits, in a way analogous to penalty terms.
Knowledge-based methods would also allow one to incorporate these interac-
tions in a scoring function, again provided that directionality is taken into
account, which is not the case in current approaches.

Water Structure and Protonation State

Uncertainties about protonation states and water structure at the
receptor–ligand interface also make scoring difficult. These effects play a
role in the derivation as well as in the application of scoring functions. The
entropic and energetic contributions of water reorganization upon ligand
binding are very difficult to predict (see, e.g., Ref. 180). The only reasonable
approach for addressing this problem is to concentrate on conserved water
molecules and make them part of the receptor. For example, the docking pro-
gram FLOG has been applied to the search of inhibitors for a metallo-b-lactam-
ase13 within the Merck in-house database. Docking was performed with
three different configurations of bound water in the active site. The top-scor-
ing compounds showed an enrichment in biphenyl tetrazoles, several of which
were found to be active at a concentration below 20mM. A crystal structure of
one tetrazole (IC50 ¼ 1.9 mM) not only confirmed the predicted binding mode
of one of the inhibitors, but also displayed the water configuration that had—
retrospectively—been the most predictive one of the three models.

Scoring functions rely on a fixed assignment of a general atom type to
each protein and ligand atom. This also implies a fixed assignment of proton-
ation state for each acidic and basic functional group. Even though these
assignments can be reliable enough for conditions in aqueous solution, signif-
icant pKa shifts can be witnessed upon ligand binding.181 This phenomenon
can arise from local changes of dielectric conditions inside the binding pocket.
The change of a donor to an acceptor functionality due to modified protona-
tion states has important consequences for scoring.137 Accordingly, improved
docking and scoring algorithms will eventually need to have a more detailed
and flexible description of protonation states.

Performance in Structure Prediction

The multitude of different solutions that have been used for receptor–
ligand scoring calls for an objective assessment that could help future users
to decide which function to use under a given set of circumstances. To do this,
one must differentiate between predicting protein–ligand complex structures
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(i.e., the scoring function is used as the objective function in docking), rank
ordering a set of ligands with respect to the same protein (Ki prediction),
and the use of scoring functions to discover weakly binding compounds
from a large database of mostly nonbinders (virtual screening). Note that
the latter two tasks are indeed very different. In virtual screening, the focus
is on elimination of nonbinders, whereas the correct rank order of weakly,
medium, and strongly binding molecules is of secondary interest.

Even when the criteria are clear, a comprehensive assessment of scoring
functions is difficult because very few functions have been tested on the same
data sets. For example, studies where each scoring function is used in conjunc-
tion with two different docking algorithms (e.g., Ref. 170) are not meaningful
in this context, because each docking algorithm produces different sets of solu-
tion structures. For structure prediction, several studies have shown that
knowledge-based scoring functions are at least as good as empirical functions.
They are somewhat ‘‘softer’’ than empirical functions,162 meaning that small
root-mean-square deviations from the crystal structure usually do not lead to
huge changes in score, a fact that can mainly be attributed to the neglect of
directionality. The PMF function has been successfully applied to structure
prediction of inhibitors of neuraminidase88 and stromelysin 1 (matrix metal-
loprotease-3; MMP-3)182 in the program DOCK, yielding superior results to
the DOCK force field and chemical scoring options. The DrugScore function
was tested on a large set of PDB complexes and gave significantly better results
than the standard FlexX scoring function with FlexX as the docking engine.
DrugScore performed as well as the force field score in DOCK, but outper-
formed chemical scoring. Grueneberg, Wendt, and Klebe15 used the Drug-
Score function in a virtual screening study to find novel carbonic anhydrase
inhibitors (see the section on Application of Scoring Functions in Virtual
Screening later in this chapter). Two of the virtual hits that turned out to be
highly active compounds were then examined crystallographically. The dock-
ing solution predicted by DrugScore was closer to the experimental structure
than that predicted by the FlexX score.

Although the objective function (the function whose global minimum is
searched during docking) is used for both structure generation and energy eval-
uation in many docking programs, better results can often be obtained if dif-
ferent functions are used. More specifically, the docking objective function can
be adapted to the docking algorithm used. In a parameter study, Vieth et al.100

found that by using a soft-core van der Waals potential their MD-based dock-
ing algorithm became more efficient. Using FlexX as the docking engine, we
observed that when directed interactions (mostly hydrogen bonds) are empha-
sized in the docking phase, library ranking can be done successfully with the
more simple, undirected PLP potential (see the prior section on Empirical Scor-
ing Functions) that emphasizes the general steric fit of receptor and ligand.
Results are significantly worse when PLP is used for both docking and energy
evaluation.
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Rank Ordering Sets of Related Ligands

For structure prediction, structures of protein–ligand complexes from the
PDB can serve as a common pool to test scoring functions. It is more difficult
to draw valid conclusions about the relative performance of scoring functions
to rank order sets of ligands with respect to their binding to the same target.
First, there are few published studies in which different functions have been
applied to the same data sets. Second, experimental data are often not mea-
sured under the same conditions but collected from various literature refer-
ences. The latter practice can have especially dramatic effects when
inhibitory concentrations for 50% reduction of a biological effect (IC50 data)
are used instead of Ki values.

On average, empirical scoring functions seem to lead to better correla-
tions between experimental and calculated binding energies than do force field
based approaches because the nonbonded interactions in the latter are usually
not optimized to reproduce individual intermolecular binding phenomena.
However, the only available calculated data for most published functions
are those for the complexes used in the derivation of the functions themselves.
Very promising results of rank ordering have also been obtained with the
knowledge-based functions DrugScore93 and PMF.86,88,182

The task of rank ordering small (ca. 10–100) sets of related ligands with
respect to a target can also be accomplished with methods that are computa-
tionally more demanding than simple scoring functions. The most generally
applicable methods are probably force field scores augmented with electro-
static desolvation and surface area terms. An example is the MM–PBSA
method that combines Poisson–Boltzmann electrostatics with AMBER MD
calculations.183 This method has been applied to an increasing number of
studies, and it has led to promising results.106–108,184 Poisson–Boltzmann
calculations have been performed on a variety of targets with many related
computational protocols.102,138,139,185–188 Alternatively, extended linear
response protocols112 can be used. The OWFEG grid method by Pearlman
has also shown promising results.114

APPLICATION OF SCORING FUNCTIONS IN
VIRTUAL SCREENING

In recent years, virtual screening of large databases has emerged as the
central application of scoring functions. In the following sections, we describe
special requirements that scoring functions must fulfill for successful virtual
screening, and we indicate the level of accuracy that can nowadays be
expected from virtual screening.

As discussed in the introductory sections, the goal of virtual screening is
to use computational tools together with the known 3D structure of the target
to select a subset of compounds from chemical libraries for synthesis and

Application of Scoring Functions in Virtual Screening 63



biological testing. This subset typically consists of ca. 100–2000 compounds
selected from libraries containing 100,000–500,000 compounds. Therefore,
it is essential that the computational process including the scoring function
is fast enough to handle several thousand compounds in a short period of
time. Consequently, only the fastest scoring functions are currently used for
this purpose. Speed is especially important for those scoring functions used
as objective functions during the docking calculations, since they are evaluated
several hundred to a thousand or so times during the docking process of a
single compound.18

Following a successful virtual screening run, the selected subset of com-
pounds contains a significantly enhanced number of active compounds as com-
pared to a random selection. A key parameter to measure the performance of
docking and scoring methods is the so-called ‘‘enrichment factor.’’ It is simply
the ratio of active compounds in the subset selected by docking divided by the
number of active compounds in a randomly chosen subset of equal size. In
practice, enrichment factors are far from the ideal case, where all active com-
pounds are placed on the top ranks of a prioritized list. Insufficiencies of cur-
rent scoring functions, as discussed in the previous section, are partly
responsible for moderate enrichment rates. Another major reason is the fact
that the receptor is still treated as a rigid object in the computational protocols
being used. To generate correct binding modes of different molecules, it is
necessary to predict induced fit phenomena. Unfortunately, predicting protein
flexibility remains extremely difficult and computationally expensive.189–196

Seeding Experiments

Enrichment factors can be calculated only when experimental data are
available for the full library. But only a few libraries containing experimental
data that have been measured under uniform conditions for all members are
available to the public. Several authors have therefore tested the predictive
ability of docking and scoring tools by compiling an arbitrarily selected set
of diverse, drug-like compounds and then adding to it a number of known
active compounds. This ‘‘seeded’’ library is then subjected to the virtual
screen, and, for the purpose of evaluation, it is assumed that the added active
compounds are the only true actives in the library. Several such experiments
have been published. An example is a study performed at Merck with the
docking program FLOG.59 A library consisting of 10,000 compounds includ-
ing inhibitors of various types of proteases and HIV protease was docked into
the active site of HIV protease. This resulted in excellent enrichment of the
HIV protease inhibitors: all inhibitors but one were among the top 500 library
members. However, inhibitors of other proteases were also considerably
enriched.197

Seeding experiments allow for comparisons of different scoring functions
with respect to their performance for different targets. Seeding experiments
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also teach how to recognize typical failure cases. Recent examples of library
ranking experiments include those by Charifson et al.,198 Bissantz, Folkers,
and Rognan,77 and Stahl and Rarey.78 Charifson and co-workers compiled
sets of several hundred active molecules for three different targets: p38
MAP kinase, inosine monophosphate dehydrogenase, and HIV protease.
The members of these sets were then docked into the corresponding active sites
together with 10,000 randomly chosen, but drug-like, commercial compounds
using DOCK98 and the Vertex in-house docking tool Gambler. Three scoring
functions performed consistently well in enriching active compounds, namely,
ChemScore,71,199 the DOCK AMBER force field score, and PLP.62 The finding
that these three scoring functions performed so well was partially attributed
to the fact that a rigid-body optimization could be carried out with these
functions, because the functions include repulsive terms in contrast to many
of the other tested functions. The study by Stahl and Rarey78 compared the
performance of DrugScore92 and PMF86 to that of PLP62 and FlexX score
using the docking program FlexX.64–66 Interestingly, the two knowledge-
based scoring functions showed significantly different behavior for extreme
cases of active sites. DrugScore coped well with situations where ligands are
tightly bound in narrow lipophilic cavities (e.g., COX-2 and the thrombin
S1 pocket), whereas PMF did not lead to good enrichment in such cases. Con-
versely, for the very polar binding site of neuraminidase, PMF gave better
enrichment than any other scoring function, whereas DrugScore failed. The
description of complexes in which many hydrogen bonds play a role seems
to be a general strength of PMF. This has also been noted by Bissantz, Folkers
and Rognan,77 who found PMF to perform well for the polar target thymidine
kinase and less well for the estrogen receptor.

Hydrogen Bonding versus Hydrophobic Interactions

It is of central importance in virtual screening to achieve a balanced
description of hydrogen bonding and hydrophobic contributions to the score
in order to avoid a bias toward either highly polar or completely hydrophobic
molecules. Empirical scoring functions have the advantage that they can be
quickly reparameterized to achieve such a balance, whereas such an adjust-
ment is impossible with knowledge-based functions. Because this is such an
important topic, we will illuminate it with a number of examples.

Consider the following database ranking experiment. A database of
about 7600 compounds was flexibly docked into the ATP binding site of
p38 MAP kinase. The database consisted of ca. 7500 random compounds
from the World Drug Index (WDI)200 and 72 inhibitors of p38 MAP kinase,
which in turn consisted of 30 inhibitors forming two hydrogen bonds with
the receptor and 20 inhibitors forming only one. Both groups covered the
same activity range from low micromolar (mM) to about 10 nM. For each
of the docked compounds, up to 800 alternative docking solutions were
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generated by FlexX64–66 using the FlexX scoring function. These alternative
solutions were rescored separately by the FlexX and PLP62 scoring functions
to select the lowest energy docking solution per compound. The compounds in
the database were then ranked according to these scores. Figure 4 shows the
ranks of the known inhibitors among the top 350 compounds as calculated by
both scoring functions. Although the overall performance of both scoring
functions in enriching inhibitors is comparable, it is obvious that the FlexX
score ‘‘specializes’’ on the doubly hydrogen-bonded inhibitors. On the other
hand, if one were to select screening candidates from the PLP list, one would
most likely select both types of inhibitors.

The PLP function generally emphasizes steric complementarity and
hydrophobic interactions with its more far-reaching pair potential, whereas
the FlexX score emphasizes hydrogen-bond complementarity. A combination
of PLP and FlexX scoring functions called ScreenScore was published
recently.78 It was derived by performing a systematic optimization of library
ranking results over seven targets, whose receptor sites cover a wide range of
form, size, and polarity. ScreenScore was designed to be a robust and general
scoring function that combines the virtues of both PLP and FlexX. Figure 5
shows that this is indeed the case. ScreenScore gives good enrichment values
for cyclooxygenase-2 (COX-2 has a highly lipophilic binding site), and neur-
aminidase (which has a highly polar site), whereas the individual functions fail
in one of the two cases. The authors of PLP have recently enhanced their

0

100

200

300

PLP score FlexX score

2H-bonds 1H-bond 2H-bonds 1H-bond

R
a

n
ks

o
f

kn
o

w
n

in
h

ib
ito

rs

Figure 4 Results of a seeding experiment. The ranks of known p38 MAP kinase
inhibitors are shown as horizontal lines in the four diagrams. Inhibitors have been
divided into two classes: those forming one or two hydrogen bonds to the p38 MAP
kinase ATP binding site. The FlexX scoring function preferentially enriches those
inhibitors that form two hydrogen bonds. This tendency is less pronounced for the PLP
scoring function. The inhibitors with the best predicted affinities are at the top. Data is
shown for the top 300 compounds in terms of docking scores.
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scoring function by including directed hydrogen bonding terms,63 which may
lead to a similarly robust scoring function as ScreenScore.

Another example where the balance between H-bonding and hydropho-
bic contributions is important involves the performance of the knowledge-
based scoring function DrugScore.92 The estrogen receptor binding site is a
large lipophilic cavity with acceptor groups at either end that can form hydro-
gen bonds with ligand hydroxyl groups as present in the agonists 1 and 2 or
the antagonists 3 and 4 (Figure 6). The narrow binding pocket and relatively
rigid nature of the ligands restrains possible binding modes significantly.
Accordingly, it can be assumed that FlexX is capable of generating reasonable
solutions likely to be in agreement with experiment. Therefore we can expect
the present example to represent a valuable test for scoring functions. For both
agonists and antagonists, lipophilic interactions largely determine the binding
energy. The majority of antagonists, however, differ from the agonists in an
additional side chain bearing a tertiary amino group. This difference is
reflected in the bound structures of the receptor. In the agonist-bound state
the binding pocket is not accessible to solvent, whereas in the antagonist-
bound state it opens up and allows the positively charged antagonist side chain
to form a salt bridge with the carboxylate group of Glu 351. Agonists should
bind equally well to both forms of the receptor. A 7500 compound subset from
the World Drug Index (WDI) and a library of 20 agonists and 16 antagonists
were docked into both agonist (PDB code 1ere) and antagonist (PDB code
1err) forms of the receptor. FlexX scores obtained from both structures are
plotted against each other in Figure 6(a). Due to the large contribution of
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Figure 5 Results of seeding experiments on two targets with three different scoring
functions. In both graphs, the accumulated percentages of active compounds are plotted
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the surface-exposed salt bridge formed with Glu 351 to the total score the
antagonists are clearly separated from the WDI compounds, whereas the
agonists are ranked among the bulk of the WDI entries in the antagonist struc-
ture. In the agonist form, the formation of a salt bridge is not possible, result-
ing in a lower average score for all molecules. Almost the same result as
with the FlexX score is obtained with the ChemScore function71,199 by
Protherics.201 The new DrugScore function92 performs better in this situation.
Using this scoring function, results shown in Figure 6(b) are obtained. Not
only are the agonists significantly better separated from the WDI subset

Figure 6 Docking estrogen receptor agonists and antagonists into two crystal structures
of the estrogen receptor, the agonist-bound conformation and the antagonist-bound
conformation. Scores for both docking results are plotted against each other.
Compounds 1 and 2 are examples of agonists, compounds 3 and 4 are typical
antagonists.
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when docked into the agonist structure, but more importantly, about half of
the agonists are also among the 10% top ranked molecules in the database
when docked into the open, antagonist structure, where they have to compete
with many structures forming salt bridges.

Finding Weak Inhibitors

Seeding experiments are often carried out with a handful of active com-
pounds that have already been optimized for binding to a given target. Enrich-
ment factors achieved in this way are often misleading, because finding potent
inhibitors from among a number of random molecules is significantly easier
than distinguishing weakly binding inhibitors from nonbinders. In practice,
virtual screening will find, at best, inhibitors in the low micromolar range,
simply because no chemical database will be large enough, diverse enough,
and lucky enough to find optimized leads right away.

The difficulties associated with weak binders are illustrated in Figure 7
with thrombin as a target. The 7500 compound subset of the WDI mentioned
above was docked into the thrombin active site together with three sets of 100
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Figure 7 Enrichment of three sets of 100 thrombin inhibitors that cover different ranges
of activity. Less active compounds are more difficult to enrich.

Application of Scoring Functions in Virtual Screening 69



known inhibitors in different activity ranges. It can be clearly seen in Figure 7
that enrichment decreases as the binding affinity of the active compounds
decreases. Note that thrombin is a relatively easy target for most virtual
screening methods (at least to identify compounds with charged moieties bind-
ing to the S1 subsite), and thus the separation of actives and inactives is still
good for the low micromolar inhibitors. According to the authors’ experience,
the situation is worse for many other targets.

Nevertheless, library ranking can successfully be applied to enrich even
very weak ligands. A database of approximately 4000 commercially available
compounds was screened against FKBP by means of the SAR-by-NMR tech-
nique202 and was found to contain 31 compounds with activities below 2 mM.
Three examples of these compounds are shown in Figure 8. Compounds 5, 6,
and 7 have measured dissociation constants of 0.1, 0.13 and 0.5 mM, respec-
tively. This set of structures was flexibly docked into the FKBP binding site
using DOCK 4.0 in conjunction with the PMF scoring function.87 For the top
20% of the ranked database, enrichment factors between 2 and 3 were
achieved. Enrichment factors were twice as large as those obtained with the
standard AMBER score implemented in DOCK.

Consensus Scoring

Different scoring schemes emphasize different physical phenomena that
are important for ligand binding. Differences between scoring schemes might
not be obvious in the calculation of binding affinities for known active com-
pounds, but they can be very pronounced in the assessment of nonbinding
molecules. The computational group at Vertex has reported good experience
with a concept called ‘‘consensus scoring,’’ whereby libraries of molecules are
docked and assessed with several scoring functions and only those molecules
are retained that score well with the majority of those functions. This can lead
to a significant decrease in false positives,198 but invariably a number of true
positives is also lost in the process (see, e.g., Ref. 77).

One should keep in mind that in consensus scoring the number of false
positives can be reduced, but one runs the risk of eliminating a number of
active compounds that only one of the scoring functions has ranked high. Con-
sider the example of the p38 MAP kinase inhibitors in Figure 4: consensus
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Figure 8 Weak binders to FKBP.
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scoring for the top 100 compounds by means of PLP and FlexX scores would
eliminate all but one of the singly hydrogen-bonded inhibitors.

Figure 9 shows a worked consensus scoring example for a virtual screen-
ing experiment on COX-2. (Figure 5 shows the corresponding FlexX and PLP
enrichment curves.) There are 23 inhibitors in the top 5% of the FlexX score
rank list and roughly twice as many in the PLP rank list. Consensus scoring
retains 22 of the actives. Because many inactive compounds are filtered out,
the ratio of actives to false positives increases relative to either of the original
lists. A different picture is obtained when one regards only the top 149 com-
pounds from the individual FlexX and PLP rank lists—the same number of
compounds that are in the consensus list. It becomes clear that the PLP func-
tion alone performs significantly better than does consensus scoring.

Thus, if one does not know in advance which scoring function will work
better, more robust results can be obtained with consensus scoring. If one has
a rough idea which function works better, one can decrease the number of
false positives more effectively by testing fewer compounds from the top of
a single rank list. Experience from seeding experiments with known inhibitors
or an analysis of the type of binding site of the target can help to identify a
suitable scoring function.
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Figure 9 Analysis of the consensus scoring concept with COX-2 as an example.
Numbers in the shaded areas are numbers of active compounds. The larger pie charts
at the top show the numbers of inhibitors in the top 5% of the database in terms of
scores. The smaller pie charts refer to fewer top ranking compounds for better
comparison with the smaller size of the consensus list.
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Successful Identification of Novel Leads through
Virtual Screening

It has been shown that virtual screening is an efficient way of finding
novel leads. The program DOCK, one of the most widely used docking
programs, has been applied in many published studies.101,158,161,163,258,302,316

Usually the DOCK AMBER force field score has been applied. Other docking
tools such as GREEN203 also use the AMBER force field as a scoring function,
and a successful screening application has been published.204 The docking pro-
gram SANDOCK205 uses an empirical scoring function that evaluates steric
complementarity, hydrophobic contacts, and hydrogen bonding. SANDOCK
has been used to find a variety of novel FKBP inhibitors.12

Docking routines in the program packages DOCK and ICM206 have
been used to identify novel nuclear hormone receptor antagonists207 and,
for an RNA target, the transactivation response element (TAR) of HIV-1.208

In both studies, the virtual screening protocol started with 153,000 com-
pounds from the Available Chemicals Directory (ACD),209 and the researchers
employed increasingly elaborate docking and scoring schemes for smaller
groups of selected compounds. In the HIV-1 TAR study, the ACD library
was first rigidly docked into the binding site with DOCK. Only a simple con-
tact scoring scheme was used in this step. The 20% best-scoring compounds
were then subjected to flexible docking with ICM in combination with an
empirical scoring function derived specifically for RNA targets, leading to a
set of about 5000 compounds. Two more steps of longer sampling for the con-
formational analysis of these remaining compounds within the binding site led
to 350 selected candidates. Two of the compounds that were experimentally
tested significantly reduced the binding of the Tat protein to HIV-1 TAR.

A study by Grueneberg, Wendt, and Klebe15 resulted in subnanomolar
inhibitors of carbonic anhydrase II (CAII). The study is a textbook example
of virtual screening focusing on successively smaller subsets of the initial data-
base in several steps and employing different methods at each step. Carbonic
anhydrase II is a metalloenzyme that catalyzes the reversible hydration of CO2

to HCO�3 .210 In the human eye, an isoform of the enzyme is involved in water
removal. Inhibitors of CAII can thus be used to reduce intraocular pressure in
the treatment of glaucoma. The CAII binding site is a rather rigid, funnel-
shaped binding pocket. Known inhibitors such as dorzolamide 8 (Figure 10;
see also Ref. 8) bind to the catalytic zinc ion via a sulfonamide group.

An initial database of 90,000 entries in the Maybridge211 and Lead-
Quest212 libraries was converted to 3D structures with the 3D structure genera-
tion program Corina.213,214 In a first filtering step, all compounds were passed
through a UNITY215 pharmacophore query. The pharmacophore query was
constructed from an analysis of available X-ray structures of the enzyme
and incorporated donor, acceptor, and hydrophobic features of the binding
site. Compounds passing this filter also had to contain a known zinc-binding
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group. A set of 3314 compounds passed these requirements. In the second
filtering step, the known CAII inhibitor dorzolamide 8 was used as a template
onto which all potential candidates were flexibly superimposed by means of the
program FlexS.172 The top-ranking compounds from this step were then
docked into the binding site with FlexX64–66 taking into account four con-
served water molecules in the active site. The top-ranking 13 hits were chosen
for experimental testing. Nine of these compounds showed activities below
1mM, and the sulfonamides 9 and 10 (Figure 10) have Ki values below 1 nM.

The de novo design of inhibitors of the bacterial enzyme DNA gyrase is
another example for a successful application of structure-based virtual screen-
ing.14 DNA gyrase is a well-established antibacterial target.216 It is an essen-
tial, prokaryotic type II topoisomerase with no mammalian counterpart
involved in the vital processes of DNA replication, transcription, and recom-
bination. DNA gyrase catalyzes the ATP-dependent introduction of negative
supercoils into bacterial DNA as well as the decatenation and unknotting of
DNA. The enzyme consists of two subunits A and B with the active enzyme
being an A2B2 complex. Subunit A of DNA gyrase is involved in DNA break-
age and reunion, whereas the B subunits catalyze the hydrolysis of ATP. Quin-
olones (e.g., the now famous ciprofloxacin), which inhibit DNA gyrase by
binding to the subunit A, are successfully used as broad-spectrum antibacterial
agents in the clinic. Unfortunately, resistance to quinolones emerged some
time ago. The two other classes of DNA gyrase inhibitors, cyclothialidines
and coumarins (e.g., novobiocin), bind to the ATP binding site of subunit B.
Novobiocin was clinically used against Staphylococcus aureus, but it suffers
from toxicity effects and resistance against it is developing rapidly. As demon-
strated by the cyclothialidines, this type of resistance can be overcome. Unfor-
tunately, the cyclothialidines have insufficient in vivo activities due to a class
specific rapid and extensive glucuronidation of the essential phenol moiety.

To overcome the limitations of known DNA gyrase inhibitors, a new
drug discovery project was inititated at Roche. Searching for novel inhibitors
by screening the Roche compound library provided no suitable lead structures.
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Figure 10 Inhibitors of carbonic anhydrase II. Compounds 9 and 10 are subnanomolar
inhibitors identified through virtual screening. Compound 8 is the marketed drug
dorzolamide.

Application of Scoring Functions in Virtual Screening 73



Therefore, a new rational approach was developed to generate lead structures
by using the detailed 3D structural information of the ATP binding site located
on subunit B. At the time of project initiation, the X-ray structures of the DNA
gyrase subunit B complexed with a nonhydrolyzable ATP analogue, with
novobiocin, and with cyclothialidine were available. In the inner part of the
pocket they all share a common binding motif: each donates a hydrogen-
bond to an aspartic acid side chain (Asp 73) and accepts a hydrogen bond
from a conserved water molecule. It was reasoned that a novel inhibitor
should have the ability to form these two key hydrogen bonds and a lipophilic
part to pick up some lipophilic interactions with the enzyme.

A computational search of the ACD209 and the Roche Compound Inven-
tory, employing the SCORE1 function also implemented in LUDI, was carried
out to identify molecules with a low molecular weight meeting the above cri-
teria. Relying on the results of the in silico screening, just 600 compounds were
tested initially. Then, analogues similar to the first hits were assayed. Overall,
assay results for 3000 compounds gave rise to 150 hits clustered into 14
chemical classes. Seven of those classes could be validated as true, novel
DNA gyrase inhibitors that act by binding to the ATP binding site located
on the B subunit. The maximum noneffective concentration (MNEC) was in
the 5–64 mg/mL range, that is, two to three orders of magnitude higher than
the MNEC of novobiocin or cyclothialidine. Subsequent structure-based opti-
mization of the hits led to compounds with potencies equal or up to 10 times
better than novobiocin. Compound 11 (Figure 11; MNEC < 0.03 mg/mL) is an
example of a novel potent inhibitor of DNA gyrase B resulting from structure-
based virtual screening.

An important factor contributing to the success of the project was a new
assay that allowed detecting not only highly potent inhibitors but also weak
ones, so as to allow testing compounds at high concentrations. Instead of a
supercoiling assay usually used to test DNA gyrase inhibitory activity, a
coupled spectrophotometric ATPase assay was employed. Compounds could
be assayed in concentrations up to 0.5 mM due to a higher tolerance of the
solubilizing agent DMSO in this assay.
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Figure 11 An inhibitor of DNA gyrase B, discovered at
Roche by means of virtual screening and subsequent
structure-based optimization.
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OUTLOOK

The first scoring functions were published about 10 years ago. Since
then, much experience has been gained in their application and in assessing
their accuracy. Significant progress in the development of better functions
has been made over the last few years, and it appears as if there now exist scor-
ing functions that can be applied to a wide range of different proteins and
which consistently yield considerable enrichment of active compounds. Con-
sequently, many large and small pharmaceutical companies are increasingly
using virtual screening techniques to identify possible leads.

In fact, structure-based ligand design is now seen as a very important
approach to drug discovery that nicely complements HTS.217 High throughout
screening has a number of serious disadvantages: it is expensive,218 and it leads
to many false positives and few real leads.22,219 Furthermore, not all biactivity
tests are amenable to HTS techniques. And finally, despite the large size of the
chemical libraries available to the pharmaceutical industry, it is far from pos-
sible to cover the whole universe of drug-like organic molecules. Because of
these limitations, and given the current aggressive patenting strategies, the
focused design of novel compounds and compound libraries will continue to
gain importance.

Thus, there is every reason to believe that the value of structure-based
approaches will continue to grow and become even more embraced by the
pharmaceutical, agricultural, and related industries than it now is. The devel-
opment of improved scoring functions is certainly vital for their success.

The major challenges to be overcome in the further development of
scoring functions include

1. Polar interactions are still not treated adequately. It is somewhat strange to
find that while the role of hydrogen bonds in biology has been well known
for a long time and hydrogen bonds are qualitatively well understood, a
quantitative treatment of hydrogen bonds in protein–ligand interactions is
still missing. Therefore, hydrogen bonds have been referred to as ‘‘the last
mystery in structure-based design.’’38

2. All scoring functions are essentially simple analytical functions fitted to
experimental binding data. Presently, there exists a heavy bias in the public
domain data toward peptidic ligands, which in turn leads to an
overestimation of polar interactions in many scoring functions. The
development of better scoring function clearly requires access to more
data on nonpeptidic, low molecular weight, drug-like ligands.

3. Unfavorable interactions and unlikely docking solutions are not penalized
strongly enough. General and robust methods that account for undesired
features of complex structures in the derivation of scoring functions are still
lacking.
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4. So far, fast scoring functions only cover part of the whole receptor–ligand
binding process. A more detailed picture could be obtained by taking into
account properties of the unbound ligand, that is, solvation effects and
energetic differences between the low-energy solution conformations and
the bound conformation.
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CHAPTER 3

Potentials and Algorithms for
Incorporating Polarizability in
Computer Simulations

Steven W. Rick* and Steven J. Stuarty

*Department of Chemistry, University of New Orleans,
New Orleans, Louisiana 70148 and Chemistry Department,
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70126, and yDepartment of Chemistry, Clemson University,
Clemson, South Carolina 29634

INTRODUCTION

Polarization refers to the redistribution of a particle’s electron density
due to an electric field. In terms of molecular interactions, polarization leads
to nonadditivity, since a molecule polarized by another molecule will interact
differently with a third molecule than it would if it were not polarized. The
change in the electron density can be characterized by changes in the mono-
pole charges, dipole moments, or higher order moments. Methods for treating
polarizability in molecular dynamics or Monte Carlo simulations achieve this
goal through inducible dipole moments (the polarizable point dipole and shell
models) or through fluctuating charges (the electronegativity equalization and
semiempirical models). This chapter describes these models, with a focus on
those methods that have been developed for molecular dynamics and Monte
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Carlo computer simulations, and reviews some of the systems that have been
simulated with polarizable potentials.

NONPOLARIZABLE MODELS

Before discussing polarizable models, a useful starting point is to consider
nonpolarizable models. A typical nonpolarizable potential for molecular
systems is1

U ¼
X
bonds

KBðr� r0Þ2 þ
X

angles

Kyðy� y0Þ2 þ
X

dihedrals

X
n

Vn

2
ð1þ cosðnf� gÞÞ

þ
X

nonbonded pairs

4eij
sij

rij

� �12

� sij

rij
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" #

þ qiqj

rij

( )
½1�

where U represents the potential energy of the system. There are terms for the
bond length, r, with a force constant, KB, and an equilibrium bond length, r0;
the bond angle, y, with a force constant Ky and an equilibrium angle, y0; and
the dihedral angle, f, with barrier heights, Vn, and equilibrium angles, g. The
intermolecular interactions are described with a Lennard–Jones (LJ) interac-
tion,

ULJðrÞ ¼ 4eij
sij

rij

� �12

� sij

rij

� �6
" #

½2�

in which e and s are parameters describing the energy and distance scale of the
interactions, respectively, and rij is the distance between nonbonded atoms i
and j. The Coulomb interaction between charged atoms is given by qiqj=rij,
where qi is the partial charge on atom i. These interactions are illustrated in
Figure 1.

The Lennard–Jones interaction contains a short-range repulsive part,
falling off as r�12, and a longer range attractive part, falling off as r�6. The
attractive part has the same dependence as the (dipole–dipole) London disper-
sion energy, which for two particles with polarizabilities a is proportional to
�a2=r6 (Ref. 2). The Lennard–Jones parameters are not typically assigned3

using known values of a, but this interaction is one way in which polarizabil-
ity, in an average sense, is included in nonpolarizable models.

Another way in which polarizability is included implicitly is in the value
of the partial charges, qi, that are assigned to the atoms in the model. The
charges used in potential energy models for condensed phases are often
enhanced from the values that would be consistent with the gas-phase dipole
moment, or those that would best reproduce the electrostatic potential (ESP)
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from gas-phase ab initio calculations. Enhanced charge values are a means
of accounting for the strong polarization of electron distributions by the elec-
tric fields of the other particles in a condensed phase environment. The
enhanced charges are obtained either through explicit parameterization4,5 or
by using charges obtained via quantum chemical methods that are known to
overestimate charge values.6 Although the enhanced charge values treat polar-
ization in an effective way, they cannot correctly reflect the dependence of
charge distributions on the system’s state, nor can they respond dynamically
to fluctuations in the electric field due to molecular motion. The average elec-
tric field, and therefore the charge distribution and dipole moment, will
depend on the physical state and composition of the system. For example, a
molecule in a solution with a high ionic strength may feel a field different
from a molecule in a pure solvent; even in the bulk liquid state, the polariza-
tion of a water molecule will depend on the density, and thus on the system’s
temperature and pressure. In addition, conformational changes may influence
the charge distribution of a molecule.7–13 Molecular motions in the system will
result in conformational changes and fluctuations in the electric field, causing
the electrostatic distribution to change on a subpicosecond time scale. Treating
these effects requires a polarizable model.

POLARIZABLE POINT DIPOLES

One method for treating polarizability is to add point inducible dipoles
on some or all atomic sites. This polarizable point dipoles (PPD) method has
been applied to a wide variety of atomic and molecular systems, ranging from
noble gases to water to proteins. The dipole moment, li, induced on a site i is

C

O

N

H

O
H H

(qiqj /rij) + 4  ij ∋
σij

rij

σij

rij

12 6

−

(1 + cos(nω + γ))
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2

KB (r − r0)
2

Figure 1 Schematic of the interactions between an amino group and a water showing
the Lennard–Jones and electrostatic nonbonded interactions along with the bond
length, bond angle, and dihedral angle (torsional) interactions.
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proportional to the electric field at that site, Ei. The proportionality constant is
the polarizability tensor, ai. The dipole feels an electric field both from the per-
manent charges of the system and from the other induced dipoles. The expres-
sion for the li is

li ¼ ai 	 Ei ¼ ai 	 E0
i �

X
j 6¼ i

Tijlj

" #
½3�

where E0 is the field from the permanent charges. (There also may be perma-
nent dipoles or other multipoles present contributing to E0.) The induced
dipoles interact through the dipole field tensor, Tij,

Tij ¼
1

r3
I� 3

r5

x2 xy xz

yx y2 yz

zx zy z2

0
B@

1
CA ½4�

where I is the identity matrix, r is the distance between i and j, and x, y, and z
are the Cartesian components of the vector between i and j.

The energy of the induced dipoles, Uind, can be split into three terms,

Uind ¼ Ustat þUmm þUpol ½5�

The energy Ustat is the interaction energy of the N induced dipoles with the
permanent, or static, field

Ustat ¼ �
XN
i¼1

li 	 E0
i ½6�

the energy Umm is the induced dipole–induced dipole interaction

Umm ¼
1

2

XN
i¼ 1

X
j 6¼ i

li 	 Tij 	 lj ½7�

and the polarization energy, Upol,

Upol ¼
1

2

XN
i¼ 1

li 	 Ei ½8�

is that required to distort the electron distribution to create the dipoles.4,14

Any polarizable model in which dipole moments, charges, or other multipoles
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are modified by their environment will have a polarization energy correspond-
ing to Upol. Even nonpolarizable models that are parameterized to have
charges enhanced from the gas-phase values should include such a term, and
Upol has been called the ‘‘missing term’’ in many pair potentials.4,5 By using
Eq. [3], the electric field can be replaced by a�1 	 li and Upol can be written as

Upol ¼
1

2

XN
i¼1

li 	 a�1
i 	 li ½9�

where a�1
i is the inverse of the polarization tensor. If the polarization matrix is

isotropic ðaxx ¼ ayy ¼ azz ¼ aiÞ and diagonal, then

Upol ¼
XN
i¼1

m2
i

2ai
½10�

Combining the three energy terms gives
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2
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which, using Ei ¼ E0
i �

P
Tij 	 lj (Eq. [3]), reduces to the relationship for the

static field, E0, and

Uind ¼ �
1

2

XN
i¼ 1

li 	 E0
i ½12�

Note that the energy is the dot product of the induced dipole and the static
field, not the total field.15–19 Without a static field, there are no induced
dipoles. Induced dipoles alone do not interact strongly enough to overcome
the polarization energy it takes to create them (except when they are close
enough to polarize catastrophically).

The static field at site i due to permanent charges is

E0
i ¼

X
j 6¼ i

qjrij

r3
ij

½13�

where qj is the charge at site j and rij is the distance between i and j. A point
charge at a site is generally assumed not to contribute to the field at that site.
For rigid models of water and other small molecules, charges on the same
molecule contribute a constant amount to the electric field at each site
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(in internal coordinates). These effects are often incorporated into the fixed
charge distribution and are not explicitly included in the static field, which
is calculated using only charges from different molecules.15,19–37

Some water models use a shielding function, SðrÞ, that changes the
contribution to Ei from the charge at j,20,26,30,31,37

Ei ¼
X
j 6¼ i

SðrijÞqjrij

jrijj3
½14�

The shielding function differs from 1 only at small distances and accounts
for the fact that at small separations the electric field will be modified by
the spatial extent of the electron cloud. For larger molecules, the interactions
from atoms that are directly bonded to atom i and are separated by two bonds
or less (termed 1–2 and 1–3 bonded interactions) do not typically contribute
to Ei.

32,38

In the most general case, all the dipoles will interact through the dipole
field tensor. The method of Applequist et al.39,40 for calculating molecular
polarizabilities uses this approach. One problem with coupling all the dipoles
with the interaction given by Eq. [4] is the ‘‘polarization catastrophe’’. As
pointed out by Applequist, Carl, and Fung39 and Thole,41 the molecular polar-
ization, and therefore the induced dipole moment, may become infinite at
small distances. The mathematical origins of such singularities are made
more evident by considering a simple system consisting of two atoms (A and
B) with isotropic polarizabilities, aA and aB. The molecular polarizability,
which relates the molecular dipole moment (l ¼ lA þ lB) to the electric field,
has two components, one parallel and one perpendicular to the bond axis
between A and B,

ajj ¼ ½aA þ aB þ ð4aAaB=r3Þ�=½1� ð4aAaB=r6Þ� ½15�

a? ¼ ½aA þ aB � ð2aAaB=r3Þ�=½1� ðaAaB=r6Þ� ½16�

The parallel component, ajj, becomes infinite as the distance between the two

atoms approaches ð4aAaBÞ1=6. The singularities can be avoided by making the
polarizabilities sufficiently small so that at the typical distances between the
atoms (>1 Å) the factor ð4aAaBÞ=r6 is always less than one. The Applequist
polarizabilities are in fact small compared to ab initio values.41,42 Applequist’s
atomic polarizabilities were selected to optimize the molecular polarizabilities
for a set of 41 molecules (see Table 1). Note that careful choice of polarizabil-
ities can move the singularities in Eqs. [15] and [16] to small distances, but not
eliminate them completely, thus causing problems for simulation techniques
such as Monte Carlo (MC), which tend to sample these nonphysical regions
of configuration space.
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Alternatively, the polarization catastrophe can be avoided by screening
(attenuating) the dipole–dipole interaction at small distances.41 As with the
screening of the static field, screening of the dipole–dipole interaction can be
physically interpreted as correcting for the fact that the electronic distribution
is not well represented by point charges and dipoles at small distances.39,41,43

Mathematically, screening avoids the singularities such as those in Eqs. [15]
and [16]. The Thole procedure for screening is to introduce a scaling distance
sij ¼ 1:662ðaiajÞ1=6. This results in a charge density radius of 1.662 Å, for
example, between atoms with a polarizability of 1 Å3. The dipole field
tensor is thus changed to

Tij ¼ ð4v3 � 3v4Þ 1

r3
I� v4 3

r5

x2 xy xz
yx y2 yz
zx zy z2

0
@

1
A ½17�

where v ¼ r=sij. Tij is unchanged if r is greater than sij. Thole’s polarizability
parameters, together with the scale factor 1.662, were selected to optimize the
molecular polarizabilities for a set of 16 molecules (Table 1). Unlike Apple-
quist, Thole assigns only one polarizability per atom independent of its valence
state and does not assign polarizabilities to halide atoms. The Thole para-
meters are closer to the experimental and ab initio polarizabilities.42 Although
the atomic polarizabilities of Applequist and Thole are different, the resulting

Table 1 Polarizability Parameters for Atoms

Polarizability (Å3)
——————————————————————————————

Atom Applequist et al.a Tholeb Experimental or ab initioc

H (alkane) 0.135 0.514 0.667
H (alcohol) 0.135 — —
H (aldehyde) 0.167 — —
H (amide) 0.161 — —
C (alkane) 0.878 1.405 1.76
C (carbonyl) 0.616 — —
N (amide) 0.530 1.105 1.10
N (nitrile) 0.52 — —
O (alcohol) 0.465 0.862 0.802
O (ether) 0.465 — —
O (carbonyl) 0.434 — —
F 0.32 — 0.557
Cl 1.91 — 2.18
Br 2.88 — 3.05
I 4.69 — 5.35

aRef. 39.
bRef. 41
cRef. 42.
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molecular polarizabilities are not that far off, with the Applequist method
tending to overestimate the polarization anisotropies.

Various computer simulation models have used either the Applequist
parameters and no screening15,16,24,27,28,32,34 or the Thole parameters and
screening of Tij.

19,31,38 Different screening functions have been used as well.
A large number of polarizable models have been developed for water, many
of them with one polarizable site (with a ¼ 1:44 Å3) on or near the oxygen
position.20–23,26,29,30,33,35–37 For these models, the polarizable sites do not
typically get close enough for polarization catastrophes {ð4aaÞ1=6 ¼ 1:4 Å,
see comments after Eq. [16]}, so screening is not as necessary as it would be
if polarization sites were on all atoms. However, some water models with a
single polarizable site do screen the dipole field tensor.20,22,37 Another model
for water places polarizable sites on bonds.25 Other polarizable models have
been used for monatomic ions and used no screening of T or E0.15,16,27,34

Polarizable models have been developed for proteins as well, by Warshel
and co-workers (with screening of T but not E0),44,45 and by Wodak and
co-workers (with no screening).46

An attractive feature of the dipole polarizable model is that the assign-
ment of electrostatic potential parameters is more straightforward than for
nonpolarizable models. Charges can be assigned on the basis of experimental
dipole moments or ab initio electrostatic potential charges for the isolated
molecule. The polarizabilities can be assigned from the literature (as in
Table 1) or calculated. Contrarily, with nonpolarizable models, charges may
have some permanent polarization to reflect their enhanced values in the con-
densed phase.6,47 The degree of enhancement is part of the art of constructing
potentials and limits the transferability of these potentials. By explicitly includ-
ing polarizability, the polarizable models are a more systematic approach for
potential parameterization and are therefore more transferrable.

Using Eqs. [9] and [11], the energy can be rewritten as

Uind ¼ �
XN
i¼ 1

li 	 E0
i þ

1

2

XN
i¼ 1

X
j 6¼ i

li 	 Tij 	 lj þ
1

2

XN
i¼ 1

lia
�1
i li ½18�

and the derivative of Uind with respect to the induced dipoles is

=li
Uind ¼ �E0

i þ
X
j 6¼ i

Tij 	 lj þ a�1
i 	 li ¼ 0 ½19�

The derivative in Eq. [19] is zero because a�1
i 	 li ¼ E0

i �
P

Tij 	 lj, accord-
ing to Eq. [3]. The values of the induced dipoles are therefore those that
minimize the energy. Other polarizable models also have auxiliary variables,
analogous to l, which likewise adjust to minimize the energy.

96 Polarizability in Computer Simulations



The polarizable point dipole models have been used in molecular
dynamics (MD) simulations since the 1970s.48 For these simulations, the
forces, or spatial derivatives of the potential, are needed. From Eq. [18], the
force23 on atomic site k is

Fk ¼ �rkUind ¼
XN
i¼ 1

lirkE0
i þ

X
i 6¼ k

lk 	 ðrkTkiÞ 	 li ½20�

All contributions to the forces from terms involving derivatives with respect to
the dipoles are zero from the extremum condition of Eq. [19].23,49

Finding the inducible dipoles requires a self-consistent method, because
the field that each dipole feels depends on all of the other induced dipoles.
There exist three methods for determining the dipoles: matrix inversion, itera-
tive methods, and predictive methods. We describe each of these in turn.

The dipoles are coupled through the matrix equation,

A 	 l ¼ E0 ½21�

where the diagonal elements of the matrix, Aii, are a�1
i and the off-diagonal

elements Aij are Tij. For a system with N dipoles, solving for each of them
involves inverting the N �N matrix, A—an OðN3Þ operation that is typically
too computationally expensive to perform at each step of an OðNÞ or OðN2Þ
simulation. Consequently, this method has been used only rarely.31 Note that
since Eq. [21] for l is linear, there is only one solution for the dipoles.

In the iterative method, an initial guess for the field is made by, for exam-
ple, just using the static field, E0, or by using the dipoles from the previous
time step of the MD simulation.48,49 The dipole moments resulting from this
field are evaluated using Eq. [3], which can be iterated to self-consistency.
Typical convergence limits on the dipoles range from 1� 10�2 D to
1� 10�6 D.21,27,34–36,50 Long simulations require very strict convergence lim-
its or mild thermostatting50 to prevent problems due to poor energy conserva-
tion. Alternatively, the energy Upol can be monitored for convergence.19,51 The
level of convergence, and therefore the number of iterations required, varies
considerably. Between 2 and 10 iterations are typically required. For some cal-
culations, including free energy calculations, a high level of convergence may
be necessary.38 The iterative method is the most common method for finding
the dipoles.

The predictive methods determine l for the next time step based on
information from previous time steps. Ahlström et al.23 used a first-order pre-
dictor algorithm, which uses the l values from the two previous times steps to
predict l at the next time step,

liðtÞ ¼ 2liðt ��tÞ � liðt � 2�tÞ ½22�
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where �t is the time step, and t is time. This method is not stable for long
times, but can be combined with an iterative solution, either by providing the
initial iteration of the electric field values,52,53 or by allowing the iteration to
be performed less frequently than every step.23,54 Higher-order predictor
algorithms have been used as well.23,52,55

A different predictive procedure is to use the extended Lagrangian
method, in which each dipole is treated as a dynamical variable and given a
mass Mm and velocity _l. The dipoles thus have a kinetic energy, 1

2

P
i Mm _l2

i

and are propagated using the equations of motion just like the atomic coordi-
nates.22,56–58 The equation of motion for the dipoles is

Mm�li ¼ �=li
Uind ¼ Ei � a�1

i 	 li ½23�

Here �li is the second derivative with respect to time, that is, the acceleration.
The dipole mass does not correspond to any physical mass of the system; it is
chosen for numerical convenience, by, for example, comparing the trajectories
with those from the iterative method.57 It is desirable to keep the kinetic
energy of the dipoles small so that the dipole degrees of freedom are cold
and near the potential energy minimum (corresponding to the exact solution
of Eq. [3]).

Because this method avoids iterations, which require recalculating Ei

multiple times for every sampled configuration, the extended Lagrangian
method is a more efficient way of calculating the dipoles at every time step.
But even with methods that allow for only a single evaluation of the energy
and force per time step, polarizable point dipole methods are more computa-
tionally intensive than nonpolarizable simulations. Evaluating the dipole–
dipole interactions in Eqs. [7] and [20] is several times more expensive than
evaluating the Coulombic interactions between point charges in Eq. [1]. A
widely used rule of thumb is that polarizable simulations based on a point
dipole model take roughly four times longer than a nonpolarizable simulation
of the same system.

The polarizable point dipole model has also been used in Monte Carlo
simulations with single particle moves.19,21,24,59–62 When using the iterative
method, a whole new set of dipoles must be computed after each molecule
is moved. These updates can be made more efficient by storing the distances
between all the particles, since most of them are unchanged, but this requires a
lot of memory. The many-body nature of polarization makes it more amenable
to molecular dynamics techniques, in which all particles move at once, com-
pared to Monte Carlo methods where typically only one particle moves at a
time. For nonpolarizable, pairwise-additive models, MC methods can be effi-
cient because only the interactions involving the moved particle need to be
recalculated [while the other ðN � 1Þ � ðN � 1Þ interactions are unchanged].
For polarizable models, all N �N interactions are, in principle, altered when
one particle moves. Consequently, exact polarizable MC calculations can be
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two to three orders of magnitude slower than comparable nonpolarizable cal-
culations.63 Various approximate methods, involving incomplete convergence
or updating only a subset of the dipoles, have been suggested.59 Unfortunately,
these methods result in significant errors in computed physical properties.19,63

Monte Carlo methods are capable of moving more than one particle at a time,
with good acceptance ratios,64,65 using, for example, the hybrid MC tech-
nique, but this method has not been applied to polarizable models, as far as
we are aware.

One final point concerns the long-range nature of the interactions in
dipole-based models. Dipole–dipole and dipole–charge interactions are termed
long range because they do not decrease faster than volume grows—that is, as
r3. If periodic boundary conditions are used, some treatment of the long-range
interactions is needed. The most complete treatment of the long-range forces is
the Ewald summation technique.64,66 All models, whether polarizable or not,
face this problem if they have long-range forces, but for polarizable models
this is a more significant issue. The use of cut-offs or other truncation schemes
will change both the static field and the dipole field tensor. These changes to
the electric field will modify the value of the induced dipole, which in turn will
change the field at other sites. Accordingly, the treatment of long-range forces
feeds back on itself in a way that does not occur with nonpolarizable models.
It is thus crucial to treat the long-range interactions as accurately as possible in
polarizable simulations. Nevertheless, a large number, if not most, of the simu-
lations using polarizable potentials have not used Ewald sums. Recently,
Nymand and Linse67 showed that different boundary conditions (including
Ewald sums, spherical cut-off, and reaction field methods) lead to more signif-
icant differences in equilibrium, dynamical, and structural properties for
polarizable water models than for nonpolarizable models.

Conventional methods for performing the Ewald sum scale as OðN3=2Þ
or OðN2Þ,68 and formulations specifically designed to include dipole–dipole
interactions66 are in fairly wide use. Faster scaling methods, such as the fast
multipole and particle–mesh algorithms, have also been extended to the treat-
ment of point dipoles.50,69

SHELL MODELS

A defining feature of the models discussed in the previous section,
regardless of whether they are implemented via matrix inversion, iterative
techniques, or predictive methods, is that they all treat the polarization
response in each polarizable center using point dipoles. An alternative
approach is to model the polarizable centers using dipoles of finite length,
represented by a pair of point charges. A variety of different models of polar-
izability have used this approach, but especially noteworthy are the shell
models frequently used in simulations of solid-state ionic materials.
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The shell model has its origin in the Born theory of lattice dynamics, used
in studies of the phonon dispersion curves in crystals.70,71 Although the Born
theory includes the effects of polarization at each lattice site, it does not
account for the short-range interactions between sites and, most importantly,
neglects the effects of this interaction potential on the polarization behavior.
The shell model, however, incorporates these short-range interactions.72,73

The earliest applications of the shell model, as with the Born model, were to
analytical studies of phonon dispersion relations in solids.74 These early appli-
cations have been well reviewed elsewhere.71,75–77 In general, lattice dynamics
applications of the shell model do not attempt to account for the dynamics of
the nuclei and typically use analytical techniques to describe the statistical
mechanics of the shells. Although the shell model continues to be used in
this fashion,78 lattice dynamics applications are beyond the scope of this chap-
ter. In recent decades, the shell model has come into widespread use as a model
Hamiltonian for use in molecular dynamics simulations; it is these applications
of the shell model that are of interest to us here.

The shell model to be described in detail below is essentially identical to
the Drude oscillator model;79,80 both treat polarization via a pair of charges
attached by a harmonic spring. The different nomenclature results largely
from the use of these models in recent decades by two different scientific com-
munities. The term Drude model is used more frequently in simulations of the
liquid state, whereas the term shell model is used more often in simulations of
the solid state. As polarizable models become more common in both fields,
the terms are beginning to be used indistinguishably. In this chapter, we will
use the term shell model exclusively to describe polarizable models in which
the dipoles are treated adiabatically; they are always at or near their mini-
mum-energy conformation. We reserve the term Drude oscillator specifically
for applications where the dipole oscillates either thermally or with a quantum
mechanical zero-point energy, and this oscillating dipole gives rise to a disper-
sion interaction. The literature has not been entirely consistent on this point of
terminology, but it is a useful distinction to make.

The shell model describes each polarizable ion or atom as a pair of point
charges separated by a variable distance, as illustrated in Figure 2. These
charges consist of a positive, ‘‘core’’ charge located at the site of the nucleus,
and a negative, ‘‘shell’’ charge. These charges are connected by a harmonic
spring. To some extent, these charges can be justified physically as an effective
(shielded) nuclear charge and a corresponding effective charge in the valence
shell that is responsible for most of the polarization response of the atom. This
interpretation should not be taken literally, however; the magnitude of the
charges are typically treated as adjustable parameters of the model rather
than true shielded charge values. As such, they should be viewed primarily
as an empirical method for representing the dipolar polarization of the site.

The magnitudes of both the core and shell charges are fixed in this
model. The polarization thus occurs via relative displacement of the core
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and shell charges. For a neutral atom i with a core charge of þqi, an equal and
opposite shell charge of �qi, and a shell charge that is displaced by a distance
di from the core charge, the dipole moment is

li ¼ �qidi ½24�

As with any model involving inducible dipoles, the potential energy of
the induced dipoles contains terms representing the interaction with any static
field, the interaction with other dipoles, and the polarization energy, that is,

Uind ¼ Ustat þUmm þUpol ½25�

The polarization energy arises in this case from the harmonic spring separating
the two charges,

Upol ¼
1

2

XN
i¼1

kid
2
i ½26�

for a collection of N polarizable atoms with spring constants ki and charge
displacements di ¼ jdij. Using di from Eq. [24] and comparing it with
Eq. [10] for polarizable point dipoles, we see that the polarizability of an
isotropic shell model atom can be written as

ai ¼ q2
i =ki ½27�

Mi

di

 zi + qi −qi

ki

Figure 2 In the shell model, a ‘‘core’’ charge zi þ qi is attached by a harmonic spring
with spring constant ki to a ‘‘shell’’ charge�qi. For a neutral atom, zi ¼ 0. The center of
mass is at or near the core charge, but the short-range interactions are centered on the
shell charge. (Not drawn to scale; the displacement di between the charges is much
smaller than the atomic radius.)
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The electrostatic interaction between independent polarizable atoms is
simply the sum of the charge–charge interactions between the four charge
sites,

Umm ¼
1

2

XN
i¼1

X
j 6¼ i

qiqj
1

jrijj
� 1

jrij � djj
� 1

jrij þ dij
þ 1

jrij � dj þ dij

� �
½28�

Typically, no Coulombic interactions are included between the core and shell
charges on a single site. Note that the electrostatic interaction in this model is
implemented using only the charge–charge terms already present in Eq. [1].
No new interaction types, such as the dipole field tensor Tij of Eq. [7], are
required. The computational advantage of avoiding dipole–dipole interactions
is almost exactly nullified by the necessity of calculating four times as many
charge–charge interactions, however.

The interaction of the induced dipoles with the static field is the sum of
the terms for each individual charge site,

Ustat ¼ �
XN
i¼ 1

qi½ri 	 E0
i � ðri þ diÞ 	 E00

i � ½29�

where E0
i is the static field at the location of the core charge, ri, and E00

i is the
static field at the location of the shell charge, ri þ di. Note that E0

i 6¼ E00
i , in

general.
Equations [28] and [29] correspond directly to Eqs. [7] and [6], but for

the case of dipoles with finite extent. In that sense, models based on point
dipoles can be seen as idealized versions of the shell model, in the limit of infi-
nitely small dipoles. That is, the magnitude of the charges qi and spring con-
stants ki approach infinity in such a way as to keep the atomic polarizabilities
ai constant. Indeed, in that limit, the displacements will approach zero in the
shell model, and the two models will be entirely equivalent.

To the extent that the polarization of physical atoms results in dipole
moments of finite length, it can be argued that the shell model is more physi-
cally realistic (the section on Applications will examine this argument in more
detail). Of course, both models include additional approximations that may be
even more severe than ignoring the finite electronic displacement upon polar-
ization. Among these approximations are (1) the representation of the electro-
nic charge density with point charges and/or dipoles, (2) the assumption of an
isotropic electrostatic polarizability, and (3) the assumption that the electro-
static interactions can be terminated after the dipole–dipole term.

In describing the shell model, the charge q was described as an effective
valence charge of the atom. In some applications of the shell model, the shell
charge is indeed interpreted physically in this manner, and q is assigned based
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on estimates of shielded charge values. More typically, however, this physical
interpretation is relaxed, and q is used as an adjustable parameter in the fitting
of the model. Recall that both q and k determine the polarizability of the atom
(Eq. [27]). These parameters are often obtained from experimental values for
the polarizability, as well as from the elastic and dielectric constants. There is
some redundancy in the model, however, as q and k are not independent.81 In
simulations, the shell can either be treated adiabatically (as in the iterative
methods) or dynamically (as in the extended Lagrangian method). In the
case where the shell is modeled dynamically, the spring constant k affects
the characteristic frequency of the spring oscillations, and thus can be chosen
from physical arguments or for numerical convenience.82

In the model described above, the core and shell charges have equal mag-
nitudes, such that the polarizable atom remains electrically neutral. The origi-
nal application of the shell model72,73 and the majority of applications since
then77,83–94 have been to ionic systems. Charged species can easily be accom-
modated through the introduction of a permanent charge zi coincident with
the core (nuclear) charge (see Figure 2). This permanent charge then contri-
butes to the static electric field experienced by the core and shell charges on
other sites. The charge zi can represent either an integer charge on a simple
ion, or the effective partial charge on an atom in a molecular species.95–100

Assigning charges this way is equivalent to allowing unequal core and shell
charges, which is how the model is usually implemented in practice. Concep-
tually, however, it is useful to consider the permanent charge as a separate
component of the model, so that the polarizable component is neutral, and
thus has a dipole moment that is independent of the choice of origin.

We should remain cognizant of the fact that there is a conceptual differ-
ence between the polarizable point dipole models and the shell model. In the
former, the point dipoles can be (and often are) assumed to be merely one term
in an infinite series of multipoles that is used in a mathematical expansion of
the electric field external to the molecule. In the shell model, on the other
hand, the dipole moment is assumed to arise physically from the electron
cloud’s displacement from the molecular center. Because of the finite length
of this dipole, it is important to specify whether the nonelectrostatic interac-
tion centers are located at the cores (nuclei) or the shells (center of electron
density). The nonelectrostatic interactions—including short-range repulsion
(exchange) and van der Waals terms—are purely electronic in nature. Conse-
quently, these interactions are typically taken to act between the shells, rather
than the cores. The specific functional form used for the short-range interac-
tions varies with the implementation, ranging from Buckingham or Born–
Mayer potentials for ions to Lennard–Jones potentials for neutral species.
Because a steep repulsive potential is an integral part of the shell model, polar-
ization catastrophe is typically not an issue for these models.91

Several different methods exist for treating the motion of the polarizable
degrees of freedom in dynamic simulations. As with the models based on point
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dipoles, there are iterative, adiabatic techniques as well as fully dynamic meth-
ods. In the adiabatic methods, the correspondence between the shell charge
and the effective electronic degrees of freedom is invoked, along with the
Born–Oppenheimer approximation. In this case, the slow-moving nuclei and
core charges are said to move adiabatically in the field generated by the shell
charges. In other words, the positions of the shell charges are assumed to
update instantaneously in response to the motion of the nuclei, and thus
always occupy the positions in which they feel no net force (i.e., the positions
that minimize the total energy of the system). The forces on the core charges
are then used to propagate the dynamics, using standard numerical integration
methods. The other alternative is to treat the charges fully dynamically, allow-
ing them to occupy positions away from the minimum-energy position dic-
tated by the nuclei, and thus experience nonzero forces.

When the charges are treated adiabatically, a self-consistent method
must be used to solve for the shell displacements, fdig (just as with the dipoles
flig in the previous section). Combining Eqs. [26], [28], and [29], we can
write the total energy of the shell model system as

Uindðfrig; fdigÞ ¼
XN
i¼ 1
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which is the equivalent of Eq. [18] for a model with polarizable point dipoles,
but with one important difference: Eq. [18] is a quadratic function of the flig,
guaranteeing that its derivative (Eq. [19]) is linear and that a standard matrix
method can be used to solve for the flig. Equation [30] is not a quadratic func-
tion of the fdig. Moreover, the dependence of the short-range interactions on
the displacements of the shell particles further complicates the matter. Conse-
quently, matrix methods are typically not used to find the shell displacements
that minimize the energy.

Iterative methods are used instead. In one such approach,101 the nuclear
(core) positions are updated, and the shell displacements from the previous
step are used as the initial guess for the new shell displacements. The net force,
Fi, on the shell charge is calculated from the gradient of Eq. [30], together with
any short-range interactions. Because the harmonic spring interaction is, by
far, the fastest varying component of the potential felt by the shell charge,
the incremental shell displacement ddi ¼ Fi=ki represents a very good estimate
of the equilibrium (energy minimizing) position of the shells. The forces are
recalculated at this position, and the procedure is iterated until a (nearly)
force-free configuration is obtained. Alternatively, this steepest descent style
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minimization can be replaced by more sophisticated minimization techni-
ques,102 such as conjugate gradients.103 Depending on the convergence criter-
ion used, these iterative methods typically require between 3 and 10
iterations.77,99,101,103

The dynamic approach to solving for the shell displacements was first
proposed by Mitchell and Fincham.90 In this method, the mass of each atom
or ion is partitioned between the core and the shell. The mass of the shell
charge is typically taken to be less than 10% of the total particle mass, and
often as light as 0.2 amu.82,90,97,104 No physical significance is attributed to
the charge mass, as it is not meant to represent the mass of the electronic
degrees of freedom whose polarization the shell charge represents. Rather, it
is a parameter chosen solely for the numerical efficiency of the integration
algorithm. Choosing a very light shell mass allows the shells (i.e., the dipole
moments) to adjust very quickly in response to the electric field generated
by the core (nuclear) degrees of freedom. In the limit of an infinitely light shell
mass, the adiabatic limit would be recovered. The choice of shell mass also has
a direct effect on the characteristic frequency of the oscillating shell model. For
a particle with total mass M, a fraction f of which is attributed to the shell and
1� f to the core, the reduced mass will be m ¼ f ð1� f ÞM, resulting in an
oscillation frequency of

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

f ð1� f ÞM

s
½31�

An overly small shell mass would thus result in high oscillation frequencies,
requiring the use of an exceedingly small time step for integration of the
dynamics—an undesirable situation for lengthy simulations. In practice, the
shell mass is chosen to be (1) light enough to ensure adequate response times,
(2) heavy enough that reasonable time steps may be used, and (3) away from
resonance with any other oscillations in the system.

The dynamic treatment of the charges is quite similar to the extended
Lagrangian approach for predicting the values of the polarizable point dipoles,
as discussed in the previous section. One noteworthy difference between these
approaches, however, is that the positions of the shell charges are ordinary
physical degrees of freedom. Thus the Lagrangian does not have to be
‘‘extended’’ with fictitious masses and kinetic energies to encompass their
dynamics.

With an appropriate partitioning of the particle masses between core and
shell, this dynamic method for integrating the dynamics of the shell model can
become more efficient than iterative methods. The lighter masses in the system
require time steps 2–5 times smaller than those required in an iterative shell
model simulation (or a nonpolarizable simulation).82,90,97,99,104 But because
the iterative methods require 3–10 force evaluations per time step to achieve
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comparable energy conservation,90,99,101,105 the dynamic methods can have a
computational advantage, in some cases by as much as a factor of two to
four.90 Because the shell model represents each polarizable site with two point
charges, it replaces the dipole–dipole interactions in the polarizable point
dipole models with four charge–charge interactions. The greater number of
pair distances largely offsets the computational advantage of the simpler inter-
action, and energy and force evaluations in the two methods are comparable in
speed. Between the reduced time step and the greater number of interactions,
shell models typically require 10 times more CPU time than corresponding
nonpolarizable simulations.105,106

In the shell model, as mentioned above, the short-range repulsion and
van der Waals interactions are taken to act between the shell particles. This
finding has the effect of coupling the electrostatic and steric interactions in
the system: in a solid-state system where the nuclei are fixed at the lattice posi-
tions, polarization can occur not only from the electric field generated by
neighboring atoms, but also from the short-range interactions with close
neighbors (as, e.g., in the case of defects, substitutions, or surfaces). This
ability to model both electrical and mechanical polarizability is one reason
for the success of shell models in solid-state ionic materials.73,107

There exist a variety of extensions of the basic shell model. One variation
for molecular systems uses an anisotropic oscillator to couple the core and
shell charges,99,108 thus allowing for anisotropic polarizability in nonspherical
systems. Other modifications of the basic shell model that account for explicit
environment dependence include a deformable or ‘‘breathing’’ shell75,76,109 and
shell models allowing for charge transfer between neighboring sites.75,76,110

Shell models have been used successfully in a wide variety of systems.
The greatest number of applications have been in the simulation of ionic
materials,86–88,90,111 especially systems including alkali halides,83 ox-
ides,85,89,91,92,112–115 and zeolites.93,94 The shell model is also commonly
used for the simulation of molten salts,77,84,90,101,116–120 and shell-type models
have been developed for various molecular95–99 and polymeric species.100,121

ELECTRONEGATIVITY EQUALIZATION MODELS

Polarizability can also be introduced into standard potentials (Eq. [1]) by
allowing the values of the partial charges to respond to the electric field of
their environment. A practical advantage of this approach is that it introduces
polarizability without introducing new interactions. And unlike the shell
model, this can be accomplished using the same number of charge–charge
interactions as would be present in a nonpolarizable simulation. Another
more conceptual advantage is that this treats the polarizable and permanent
electrostatic interactions with the same multipoles. One way to couple the
charges to their environment is by using electronegativity equalization.
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The energy required to create a charge, q, on an atom can be expressed as
a Taylor series expansion,

UðqÞ ¼ E0 þ w0qþ 1

2
Jq2 ½32�

which has been truncated after the second-order terms. If the Taylor series is
valid for charges of up to �1 e, then, because the ionization potential, IP, is
equal to Uð1Þ �Uð0Þ and the electron affinity, EA, is Uð�1Þ �Uð0Þ, the
Taylor series coefficients are

w0 ¼ ðIPþ EAÞ=2 ½33�
J ¼ IP� EA ½34�

Equation [33] is Mulliken’s definition of electronegativity,122 so the linear
coefficient in the Taylor series is the electronegativity of the atom. Mulliken’s
definition is consistent with other electronegativity scales. The second-order
coefficient, 1

2 J, is the ‘‘hardness’’ of the atom, Z.123 For semiconductors, the
hardness is half the band gap, and Z is an important property in inorganic and
acid–base chemistry.124 Physically, IP� EA is the energy required to transfer
an electron from one atom to another atom of the same type,

2AðgÞ ! AþðgÞ þ A�ðgÞ �E ¼ IP� EA ½35�

This energy is always positive (in fact, it is positive even if the two atoms are
not the same element), so J � 0. Figure 3 shows UðqÞ for chlorine and sodium,
as calculated from the experimental IP and EA. The energies of the ions, w0,
and J are all calculated using the experimental IP and EA. Chlorine is more
electronegative than sodium ðw0

Na ¼ 2:84 eV; w0
Cl ¼ 8:29 eVÞ and also harder

ðJNa ¼ 4:59 eV, JCl ¼ 9:35 eVÞ. This means that both the slope and the second
derivative of UðqÞ are larger for Cl than for Na.

When atoms are brought together to form molecules, the energy of the
charges is described in the EE model as

UðqÞ ¼
X

i

E0
i þ w0

i qi þ
1

2
Jiiq

2
i

� �
þ
X

i

X
j > i

JijðrijÞqiqj ½36�

The vector q represents the set of qi. The second-order coefficient, JijðrijÞ,
depends on the distance between the two atoms i and j, and at large distances
should equal 1=rij. At shorter distances, there may be screening of the interac-
tions, just as for the dipole–dipole interactions in the earlier section on Polar-
izable Point Dipoles. This screened interaction is typically assumed to arise
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from the Coulomb interaction between delocalized charge distributions rðrÞ,
rather than point charges,

JijðrÞ ¼
ð
riðriÞrjðrjÞ
jri � rj � rj dri drj ½37�

The charge distributions are frequently assumed to be spherical, for simpli-
city.125–128 Directional interactions can be incorporated with nonspherical
charge distributions, at some added computational expense.129–131

The partial charges on each atom of the molecule are found by minimiz-
ing the energy, subject to a constraint that the total charge is conserved.

X
i

qi ¼ qtot ½38�

The charge conservation constraint can be enforced using an undetermined
multiplier,

UðqÞ ¼ UðqÞ � l
X

i

qi � qtot

 !
½39�

Minimizing this expression for the energy with respect to each of the qi

under the assumption that the molecule in question is neutral ðqtot ¼ 0Þ gives
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Figure 3 Energy versus charge for chlorine (solid line) and sodium (dashed line). The
lines are a quadratic fit through the energies of the ions relative to the neutral atom.
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for all i ði:e:; 8 iÞ:

@U

@qi

� �
� l ¼ 0 8 i ½40�

Because ð@U=@qiÞ for each atom is equal to the same undetermined multiplier
l, this quantity must be identical for all atoms in the molecule,132

@U

@qi

� �
¼ @U

@qj

� �
8 i; j ½41�

Through Mulliken’s identification of @U=@q as the electronegativity, we see
that minimizing the energy with respect to the charges is equivalent to equal-
izing the electronegativities,

wi �
@U

@qi

� �
¼ w0

i þ Jii qi þ
X
j 6¼ i

JijðrijÞqj ½42�

for all atoms. Notice that the electronegativity of atom i in a molecule, wi,
differs from the electronegativity of the isolated atom, w0

i , and now depends
on its charge, the charge of the other atoms, its hardness, and the interactions
with other atoms through JijðrijÞ. In addition, Parr et al.132 identified the
chemical potential of an electron as the negative of the electronegativity,
m ¼ �@U=@q. So electronegativity equalization is equivalent to chemical
potential equalization. Thus, this model effectively moves charge around a
molecule to minimize the energy or to equalize the electronegativity or
chemical potential. These interpretations are all equivalent (for a dissenting
opinion, see Ref. 133).

Electronegativity equalization (EE) was first proposed by Sanderson.134

The EE model, with appropriate parameterization, has been successful in pre-
dicting the charges of a variety of molecules.125,135–138 The parameters w0 and
J are not typically assigned from Eqs. [33] and [34], but instead are taken as
parameters to be optimized and can be viewed as depending on the valence
state of the atom, as indicated by electronic structure calculations.139,140

Some models136 set JabðrijÞ ¼ 1=rij, and others use some type of screen-
ing.125,135,137 In addition, some models have an expression for the energy
that is not quadratic.125,135,141 Going beyond the quadratic term in the Taylor
expansion of Eq. [32] can possibly extend the validity of the model, but it
introduces complications in the methods available for treating the charge
dynamics, as will be discussed below.

For a collection of molecules, the overall energy is comprised of the
energy given by Eq. [36] for each molecule and an interaction between charge
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sites on different molecules,

Uðfqg; frgÞ ¼
X
a

X
i2 a

w0
i qi þ

1

2

X
i2a

X
j2a

qi qj JijðrijÞ � Egp
a

 !

þ
X
a

X
b > a

X
i2a

X
j2b

qi qj JijðrijÞ ½43�

where a and b label the molecules, and i and j represent atoms (or other charge
sites) in these molecules. The Egp

a term represents the gas-phase energy of mole-
cule a and defines the zero of energy as corresponding to infinitely separated
molecules. The energy given by Eq. [43] replaces the Coulomb energy qiqj=rij

in Eq. [1]. The charges qi are now treated as independent variables, and the
polarization response is determined by variations in the charge values. These
charges depend on the interactions with other molecules as well as other
charge sites on the same molecule, and will change for every time step or
configuration sampled during a simulation. The charge values used for each
configuration are, in principle, those that minimize the energy given by
Eq. [43]. This method for treating polarizability has thus been called the
fluctuating charge method126 and has been applied to a variety of sys-
tems.10,82,104,126,142–148 The JijðrÞ interaction between different molecules is
typically taken to be 1=r, although the interactions between atoms on the
same molecule may be screened. Therefore, this method does not modify the
intermolecular interactions.

Charge conservation can be imposed in either of two ways. A charge
neutrality constraint can be applied to the entire system, allowing charge to
move from atomic site to atomic site until the electronegativities are equal
on all the atoms of the system. Alternatively, charge can be constrained inde-
pendently on each molecule (or other subgroup), so that charge flows only
between atoms on the same molecule until the electronegativities are equalized
within each molecule, but not between distinct molecules.126 In most cases,
charge is taken to be conserved for each molecule, so there is no charge trans-
fer between molecules.

Variations, including the atom–atom charge transfer (AACT)149 and the
bond-charge increment (BCI)146,150 model, only allow for charge to flow
between two atoms that are directly bonded to each other, guaranteeing
that the total charge of each set of bonded atoms is conserved. In some situa-
tions, charge transfer is an important part of the interaction energy, so there
are reasons to remove this constraint.151–154 However, this can lead to some
nonphysical charge transfer, as illustrated in the simple example of a gas-phase
sodium chloride molecule. The energy for one Na atom and one Cl atom is

UðqÞ ¼ E0
Na þ E0

Cl þ ðwNa � wClÞqNa þ
1

2

h
JNa þ JCl � 2 JNaClðrNaClÞ

i
q2

Na ½44�
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where we have used qCl ¼ �qNa. The charge that minimizes this energy is

qNa ¼
�ðwNa � wClÞ

JNa þ JCl � 2JNaClðrNaClÞ
½45�

At large distances, JNaClðrNaClÞ approaches zero, and, if the w and J parameters
are taken from Eqs. [33] and [34], then

qNa ¼
�ðwNa � wClÞ

JNa þ JCl
¼
� 1

2 ðIPNa þ EANa � IPCl � EAClÞ
IPNa � EANa þ IPCl � EACl

½46�

which gives qNa ¼ 0:391 e. Thus the model predicts a significant amount of
charge transfer, even at large distances. Similar errors in the dissociation limit
are seen with certain electronic structure methods.155,156 A significant amount
of charge separation, and a consequent overestimation of the dipole moment,
can be found for large polymers as well. Reducing this charge transfer along
the polymer can be accomplished with the AACT and BCI models.146,149,150 In
addition, when comparing fluctuating charge models with ab initio results for
water trimers, agreement was found to be much better for the model without
charge transfer, even after the charge-transfer model was reparameterized by
fitting to the ab initio three-body energies.145

These and associated problems with overestimated charge transfer are a
general characteristic of EE-based models. Unfortunately, such errors cannot
be eliminated through parameterization; the problem is a side effect of
attempting to treat quantum mechanical charge-transfer effects in a purely
classical way. As with all empirical potentials, the use of fractional charges
is necessary for an accurate description of the electrostatic potential. Yet by
allowing fractional charge transfer, the EE model has no means of enforcing
the transfer of only an integral number of electrons between distant species.
Indeed, the neutral dissociation products for NaCl are correctly predicted by
the EE model, if the infinitely separated ions are constrained to have integer
charge (see Figure 3). This constraint is difficult to apply in practice, however.
As discussed recently by Morales and Martinez,157 the EE-based models can
be viewed as analytically differentiable approximations to a more rigorous sta-
tistical interpretation of UðqÞ, which is discontinuous at integer values of
charge transfer and correctly predicts zero charge transfer at infinite distance.
In chemically bonded systems, the assumption of partial charge transfer is not
as unrealistic as in ionic compounds, as electrons are delocalized across cova-
lent bonds. However, in these covalent cases the EE model effectively assumes
that the coherence length of a delocalized electron is infinite and does not
depend on the surroundings. It is for this reason that the polarizability of poly-
mers, for example, increases too quickly with chain length under the EE
model.149 Molecular charge constraints can avoid problems at the dissociation
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limit, and methods constraining the charge based on the bonding network
are an extension of EE models that appear to be successful at controlling
the coherence lengths.149 There now exist classical models that can describe
the charge transfer reasonably across the full range of a dissociating bond,
but these are currently less well developed.157

The polarization energy in the EE models can be compared directly to
that in the polarizable point dipole and shell models. Consider the first term
in Eq. [43],

X
i2a

w0
i qi þ

1

2

X
i2 a

X
j2 a

qi qj JijðrijÞ � Egp
a ½47�

This term represents the energy required to induce charges qi on the atoms of
molecule a in the electric field of its neighbors, relative to the energy of the
isolated molecule. This quantity is simply the polarization energy of the mole-
cule. The polarization energy of the full system can thus be written

Upol ¼
X
a

X
i2a

w0
i qi þ

1

2

X
i2a

X
j2a

qi qj JijðrijÞ � Egp
a

" #
½48�

which can be compared to Eqs. [9] and [26].10

There exist other models that treat polarizability using variable charges
in a way similar to the fluctuating charge model.22,53,127,143,158 In the Sprik
and Klein22 model for water, four charge sites are located near the oxygen
atom in a tetrahedral geometry, in addition to the three atom-centered perma-
nent charges. The tetrahedron of charges is used to represent an induced dipole
moment on the oxygen center. This approach differs from a polarizable point
dipole model in using a dipole of finite extent. It also differs from a shell model
in that the point charges are fixed in the molecular frame. Consequently, the
Sprik–Klein model should perhaps best be considered an entirely different type
of model. The model of Zhu, Singh, and Robinson158 is similar to the Sprik–
Klein model, but it has no permanent charges. The four charge sites, two on
hydrogen atoms and two on lone-pair positions 1 Å from the oxygen atom, are
all variables coupled to the electric field. For both these models, the coupling is
described by the polarizability, a, just as with other dipole polarizable models.
Wilson and Madden159 described a model for ions in which charge is trans-
ferred between ends of a rigid, rotating rod. In the model of Perng et al.,143

the charge, qi, on an atom is equal to a permanent value, q0
i , plus an induced

part, dqi. The induced charge is dependent on the electrostatic potential at that
site and all the induced charges are coupled through Coulombic interactions,
similar to the fluctuating charge models. In the polarizable point charge (PPC)
model of Svishchev et al.,53 charges are coupled directly to the electric field at
that site, so this model is slightly different from the fluctuating charge model.
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Although a valence-type force field of the type illustrated by Eq. [1] is
most suitable for modeling molecular systems, the electronegativity equaliza-
tion approach to treating polarization can be coupled equally well to other
types of potentials. Streitz and Mintmire127 used an EE-based model in con-
junction with an embedded atom method (EAM) potential to treat polariza-
tion effects in bulk metals and oxides. The resulting ESþ EAM model has
been parameterized for aluminum and titanium oxides, and has been used
to study both charge-transfer effects and reactivity at interfaces.127,128,160,161

In most electronegativity equalization models, if the energy is quadratic
in the charges (as in Eq. [36]), the minimization condition (Eq. [41]) leads to a
coupled set of linear equations for the charges. As with the polarizable point
dipole and shell models, solving for the charges can be done by matrix inver-
sion, iteration, or extended Lagrangian methods.

As with other polarizable models, the matrix methods tend to be avoided
by most researchers because of their computational expense. And when they
are used, the matrix inversion is typically not performed at every step.160,162

Some EE applications have relied on iterative methods to determine the
charges.53,127 For very large-scale systems, multilevel methods are avail-
able.161,163 As with the dipole polarizable models, the proper treatment of
long-range electrostatic interactions is especially important for fluctuating
charge models.164 Monte Carlo methods have also been developed for use
with fluctuating charge models.162,165 Despite this variety of available tech-
niques, the most common approach is to use a matrix inversion or iterative
method only to obtain the initial energy-minimizing charge distribution; an
extended Lagrangian method is then used to propagate the charges dynami-
cally in order to take advantage of its computational efficiency.

In the extended Lagrangian method, as applied to a fluctuating charge
system,126 the charges are given a fictitious mass, Mq, and evolved in time
according to Newton’s equation of motion, analogous to Eq. [23],

Mq �qi ¼ �
@U

@qi
� la ½49�

where la is the average of the negative of the electronegativity of the molecule
a containing atom i,

la ¼ �
1

Na

X
i2a

wi � ��wa ½50�

Here, Na is the number of atoms in molecule a. Combining Eq. [49], [50], and
[42], we have

Mq �qi ¼ �wa � wi ½51�
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In other words, the force experienced by each charge is proportional to the
difference between the electronegativity at that site and the average electro-
negativity in the charge-constrained molecule that contains the charge site.

Equations [50] and [51] assume that the total charge of each molecule is
conserved. They also assume that all of the charge masses are identical. If
charge is allowed to transfer between molecules, then la and �wa are indepen-
dent of the molecule, a, and are given by126

l ¼ 1

Nmol

XNmol

a¼ 1

1

Na

X
i2a

wi � ��w ½52�

A short trajectory of the fluctuating charge on a water molecule using the
TIP4P-FQ model126 comparing the extended Lagrangian model with the exact
minimum energy value is shown in Figure 4. The extended Lagrangian values
oscillate around the exact values, until near the end of the interval at which
time the two trajectories begin to diverge from each other, due to the chaotic
nature of the system. The charges also oscillate with small magnitude around
the exact solution, demonstrating that they remain quite close to the true elec-
tronegativity equalizing (energy minimizing) values. The small oscillations also
imply that the charges are at a much colder temperature (� 1 K in Figure 4)
than the rest of the system. One drawback of the extended Lagrangian method
is that it contains an additional parameter, the charge mass. This mass must be
chosen to be small enough that the charges respond promptly to changes in the
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Figure 4 Negative charge near the oxygen atom versus time for the TIP4P-FQ water
model, comparing the exact (solid line) and extended Lagrangian value (dashed line).
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electronic potential (i.e., a large frequency for the oscillations about the exact
trajectory in Figure 4), but large enough so that reasonable length time steps
can still be used. In addition, the mass should be chosen so that the coupling
between the charge and nuclear degrees of freedom is relatively weak. Any
such coupling enables the cold charges to absorb energy from the rest of the
system, eventually reaching equilibrium with the warmer parts of the system.
Weak coupling results in relatively slow energy transfer, taking hundreds of
picoseconds or longer before the charge temperature and amplitude of the
charge oscillations become large enough to require reminimization. For
many applications, standard 1 femtosecond time steps can be used, and the
charges will remain at a temperature less than 6 K for a 50-ps simulation with-
out thermostatting. Thus EE combined with the extended Lagrangian method
is not much more computationally demanding than nonpolarizable simula-
tions.126,148 Finding the optimum masses can be difficult for systems with
many different atom types, each fluctuating on a different time scale.10 For
these cases, different Mq must be used for the different charge masses. The
expression for la becomes

la ¼ �
P

i wi=Mq;iP
i 1=Mq;i

½53�

For more complex systems, thermostatting may be required to keep the
charges near 0 K.10

Polarizable models based on EE implement the electrostatic interactions
using either point or diffuse charges, and can thus be combined quite easily
with other methods of treating polarizability to create hybrid models. The
EE and the dipole polarizable models have some features in common, but
they are not equivalent. They have, for example, different distance depen-
dences and polarizability responses. Some hybrid models have included both
dipole polarizability and fluctuating charges.131,144,150,166 The fluctuating
charge model has also been combined with a shell-type model, as a method
of allowing polarization in single-atom species such as simple ions, without
having to introduce the added complication of the dipole field tensor.82,104,167

The wi and Jij parameters for the EE models can be optimized so that the
resulting charges match gas-phase values as determined from either ab initio
quantum mechanical calculations or the experimental dipole
moment.125,126,136–138,148 Parameters derived along these lines can give accu-
rate gas-phase charge values. Information about many-body interactions can
be included in the parameterization in several ways. First, quantities including
ESP charges, geometries, and the strength of many-body interactions can be
obtained from ab initio calculations on clusters.142,145,150,166 Second, the
polarization response from an applied electric field can be used.146 Third,
one can optimize the parameters to give the optimal charges both in the gas
phase and in the presence of a solvent, as modeled using reaction field
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methods.10,168 Finally, the parameters themselves can be directly calculated
using density functional theory (DFT) methods.169,170

As presented, the EE approach given by Eq. [43] is a simple mathemati-
cal model resulting from a Taylor series; it can be given a more rigorous foun-
dation using electronic density functional theory.169 Using DFT, and making
simplifying approximations for the exchange and kinetic energy functionals,
expressions analogous to Eq. [43] can be derived.130,131,171 This approach
has been termed chemical potential equalization (CPE).130 Efforts like CPE
or even parameterizations of fluctuating charge models using electronic struc-
ture calculations represent a step away from empirical potential models toward
ab initio simulation methods. However, even with a sophisticated treatment of
the charges, empirical terms in the potential such as the Lennard–Jones inter-
action still remain. A standard method is to set the Lennard–Jones parameters
so that the energies and geometries of important dimer conformations (e.g.,
hydrogen-bonded dimers) are close to ab initio values.10,144,145,166 In some
cases, the remaining potential parameters have been taken from existing force
fields.146,150 One interesting extension of the fluctuating charge model has
been developed by Siepmann and co-workers.147 In their model, the
Lennard–Jones size parameter becomes a variable that is coupled to the charge
on a given atom. The size of the atom increases as the atom becomes
more negatively charged and obtains greater electronic density. This increase
in size is thus consistent with physical intuition. Other models in which some
of the remaining potential parameters are treated as variables are described in
the next section.

SEMIEMPIRICAL MODELS

A number of quantum polarizable models have been developed.144,172–177

These treatments of polarizability represent a step toward full ab initio meth-
ods. The models can be characterized by a small number of electronic states or
potential energy surfaces, which are coupled to each other. For the purposes of
this tutorial, our description is of the method of Gao.173,174 In his method,
molecular orbitals, fA, for each molecule are defined as a linear combination
of Nb atomic orbitals, wm,

fA ¼
XNb

m¼1

cmAwm ½54�

As is standard in semiempirical methods,178 the molecular orbitals are ortho-
normal, so the overlap matrix, SAB, is assumed to be diagonal. The molecular
wave function, �a, is a Hartree144 or Hartree–Fock173 product of the molecu-
lar orbitals. For a (closed-shell) molecule with 2M electrons, there will be M
doubly occupied molecular orbitals. The wave function of a system comprised
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of N molecules is taken as a Hartree product of the individual molecular wave
functions,

� ¼
YN
i¼1

�i ½55�

The Hartree product neglects exchange correlation interactions between
molecules. To include proper exchange would make these models inefficient
and impractical.

The Hamiltonian for the system

Ĥ ¼
XN
i¼ 1

Ĥ0
i þ

1

2

XN
i¼ 1

XN
j 6¼ i

Ĥij ½56�

contains the isolated molecular Hamiltonian, Ĥ0
i , given, in atomic units, by

Ĥ0
i ¼

X2M

a¼1

T̂a �
XA

a¼1

X2M

a¼1

ZaðiÞ
Raa

þ
X2M

a¼ 1

X
b> a

1

rab
½57�

where T̂ is the kinetic energy operator, ZaðiÞ is the nuclear charge of atom a on
molecule i, Raa is the distance between the nucleus of atom a and electron a,
and rab is the distance between two electrons. The interaction Hamiltonian
between molecules i and j, Ĥij, is

Ĥij ¼
X2M

a¼ 1

X2M

b¼1

1

rab
þ
XA

a¼ 1

XA

b¼1

ZaðiÞZbð jÞ
Rab

½58�

where Rab is the distance between atom a on molecule i and atom b on
molecule j. The interaction energy of the system is

E ¼ h�jĤj�i �Nh�0jĤ0
i j�0i ½59�

where �0 is the ground-state wave function of the isolated molecule and
h�0jĤ0

i j�0i is the energy of the isolated molecule. The polarization energy is

Epol ¼
XN
i¼1

ðh�jĤ0
i j�i � h�0jĤ0

i j�0iÞ ½60�

or, equivalently,

Epol ¼
XN
i¼1

ðh�ijĤ0
i j�ii � h�0

i jĤ0
i j�0

i iÞ ½61�
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which is the difference between the molecular energy of wave function � (or
�i), which is the expectation value of the Hamiltonian in Eq. [56], and the
molecular energy of the isolated molecule wave function. This expression
for the polarization energy is comparable to Eqs. [9], [26], and [48] for the
other models.

To avoid calculating the two-electron integrals in Eq. [59], the assump-
tion is made that no electron density is transferred between molecules. The
interaction Hamiltonian is then

Ĥijð�jÞ ¼ �
X2M

a¼1

Vað�jÞ þ
XA

a¼1

ZaðiÞVað�jÞ ½62�

where Vxð�jÞ is the electrostatic potential179 from molecule j at the position of
electron a or nuclei a of molecule i,

Vxð�jÞ ¼ �
ð

�2
j ðrÞ

jrx � rj drþ
XA

b¼1

Zbð jÞ
jrx � Rbj

½63�

If the Vxð�jÞ coming from the electrons and nuclei of molecule j is represented
just by point charges on atomic sites, then

Vxð�jÞ ¼
XA

b¼1

qbð�jÞ
jrx � Rbj

½64�

and

Ĥijð�jÞ ¼ �
X2M

a¼ 1

XA

b¼ 1

qbð�jÞ
rab

þ
XA

a¼1

XA

b¼1

ZaðiÞqbð�jÞ
Rab

½65�

where qbð�jÞ is the partial atomic charge on atom b in molecule j derivable
from the wave function �j. (Other semiempirical models have charges offset
from the atomic sites.)172,175,176 The energy of molecule i is then changed
by the partial charges from the other molecules. Since exchange correlation
interactions are neglected as mentioned above in regard to Eq. [55], the short-
range repulsive interactions need to be added, which can be done with a Lennard–
Jones potential. The interaction energy between molecules i and j is then

Eij ¼
1

2
ðh�ijĤijj�ii þ h�jjĤjij�jiÞ þ ELJ ½66�

which is used so that Eij is equal to Eji. The interactions between molecules
then consist of only Lennard–Jones and Coulombic components. Polarizability

118 Polarizability in Computer Simulations



is treated using variable charges. The total energy is then

E ¼ Epol þ
1

2

XN
i¼1

XN
j 6¼ i

Eij ½67�

and the forces on the nuclear coordinates are provided by the derivative of E
with respect to the positions.

The charges can be found through Mulliken population analysis,180

which, because the overlap matrix is diagonal, is

qa ¼ K Za � 2
XM
a¼ 1

X
m

c2
ma

 !
½68�

where the sum over m is over atomic orbitals centered on atom a, and K is an
empirical scaling parameter correcting for errors in the Mulliken charges (K is
about 2). The Lennard–Jones parameters are assumed to be independent of the
electronic states and all applications to date have been for rigid molecular geo-
metries, so the models do not need to include nonbonded interactions.

The electronic structure of molecules can be described at the semiempi-
rical level using, for example, the Austin model (AM1)181 or at the ab initio
level with a Gaussian basis set.182 Other quantum theoretical methods can be
used, however, as illustrated the method of Kim and co-workers175,176 who
use a ‘‘truncated adiabatic basis’’ consisting of the ground and first few excited
states of the isolated molecule. For water, these methods introduce about 7–10
basis functions per molecule.144,176 The wave function coefficients in these
models are found using an iterative method.144,172–176 An interesting variant
of the empirical valence bond (EVB) approach has recently been introduced by
Lefohn, Ovchinnikov and Voth.177 In this approach, as applied to water, there
are only three EVB states per molecule, and all potential parameters, rather
than being derived from ab initio or semiempirical methods, are parameterized
against experimental data.

Another method for treating polarizability is to have more than one
potential surface with different electronic properties coupled together. This
method is applicable to systems that can be represented by a few electronic
states, like those with resonance. Each of these states can have its own poten-
tial energy parameters. One such model was developed for the peptide
bond.183 The peptide bond can be described as consisting of the resonance
structures of two states, one with a N��C single bond and no formal charges
and the other with a N����C double bond and formal charges on the nitrogen
and oxygen. Each of these states is coupled to the environment, which in
turn can shift the energies of the states. The potential parameters for these
states can be different, but in the peptide bond model only the charges of
the peptide group atoms and the dihedral force constant for rotations about
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the peptide bond were taken to be state dependent. All other parameters were
taken from existing force fields. Each peptide group, i, has a coefficient for
each state, CiA and CiB, with the constraint that

C2
iA þ C2

iB ¼ 1 ½69�

The charge for atom a that would go into the potential (e.g., Eq. [1]) is given
by

qia ¼ C2
iAqaA þ C2

iBqaB ½70�

where qaX is the charge of atom a for state X. Similarly, the dihedral force
constant (for the n ¼ 2 term) is given by

Vi ¼ C2
iAVA þ C2

iBVB ½71�

The charges and dihedral force constants thus vary between the values for
state A and the values for state B. This model provides a method for treating
polarizability in which both the electrostatic parameters and the bonded para-
meters are coupled to the environment. It would be straightforward to couple
the short-range potential to the electrostatic variables, like in the shell models
and the fluctuating charge model of Siepmann and co-workers.147 The two
states are coupled with a term, CiACiBEAB. The coefficients for residue i are
coupled to those of other residues through the Coulomb interactions. The
coefficients are found by minimizing the energy, subject to the constraint of
Eq. [69], and they are propagated using the extended Lagrangian method.
Since the method treats the bonded parameters as variables too, it can also
handle the amino group pyramidalization. In addition, the two-state empiri-
cal model enforces a charge conservation constraint on all peptide groups.
Consequently, like the AACT and BCI electronegativity equalization
models,146,149,150 it will not overestimate the charge flow along the polymer.

One feature of the semiempirical models is that because the polarization
is described by a set of coefficients that have a normalization condition, for
example, Eq. [69], there will be no polarization catastrophe like there can
be with dipole polarizable or fluctuating charge models. With a finite basis
set, the polarization response is limited and can become only as large as the
state with the largest dipole moment.

APPLICATIONS

Water

Water is the most common substance to be studied with polarizable
potentials. An extremely large number of polarizable potentials for liquid
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water have been developed, including those that treat the polarizability using
polarizable point dipoles,15,19–21,23–31,33,35,36,52,54,58,184 shell models,97,99

charge-transfer models,22,126,130,144,145,147,158,185,186 semiempirical mo-
dels,144,172,174,176,177 and hybrid methods.166 The available literature on the
simulation of water is extensive enough to deserve separate reviews.187,188

Here, we concentrate primarily on general conclusions drawn from polariz-
able simulations of water.

Considerable latitude exists in choosing the nonelectrostatic features of a
water model, including the functional form for the van der Waals interactions,
the modeling of the intramolecular bonds and angles (flexible or rigid), and the
inclusion or omission of an explicit hydrogen-bonding term. The electrostatic
features of the model vary considerably as well. Although many polarizable
models are constrained to reproduce the gas-phase dipole, the molecular
polarizability, and sometimes the gas-phase quadrupole moment, these repli-
cations of the real data can all be accomplished in several ways with different
placement of charge sites. Because of this freedom, as well as the facts that dif-
ferent experimental properties were used for the parameterization of the var-
ious models and different boundary conditions were used in the various
simulations, it is difficult to compare different models on an equal footing.
Nevertheless, the large variety of available water models does permit some
general conclusions.

One of the principal purposes for using a polarizable model (of any type)
is the ability to model a system under a variety of experimental conditions. For
water models, a truly transferable model should cover the full range of states
from gas phase to condensed phases, including ice, liquid water at ambient
conditions, and even the supercritical fluid. It should also be capable of mod-
eling heterogeneous environments by incorporating the varying polarization
responses of water at interfaces,189 around highly charged solutes, and in
highly hydrophobic environments (as in the interior of proteins or lipid
bilayers). Because water is in fact found under such a wide variety of condi-
tions, and because of its anomalous properties, a fully transferable water
model unfortunately remains a holy grail. Nonetheless, polarizable potentials
have had considerable success in improving the transferability of water
potentials in general.

Most nonpolarizable water models are actually fragile in this regard;
they are not transferable to temperatures or densities far from where they
were parameterized.190 Because of the emphasis on transferability, polarizable
models are typically held to a higher standard and are expected to reproduce
monomer and dimer properties for which nonpolarizable liquid-state models
are known to fail. Consequently, several of the early attempts at polarizable
models were in fact less successful at ambient conditions than the benchmark
nonpolarizable models, SPC191 (simple point charge) and TIP4P192 (transfer-
able interaction potential, 4 points). Nonetheless, there is now a large collec-
tion of models that reproduce many properties of both the gas phase
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(monomer and dimer geometry, dipole moment, and/or polarizability; second
virial coefficient) and the bulk liquid (thermodynamic, structural, and dynamic
properties).30,36,52,53,126,166,185 The expectation is typically that such models
will also be able to perform well at conditions intermediate between gas and
liquid phases, such as clusters and interfaces. It is also assumed that a reason-
ably correct treatment of polarization will allow for some extrapolation
beyond these conditions, so that systems where the electric field is not as
homogeneous as in bulk water can be treated.

Even so, there are properties of small clusters and the bulk liquid that
remain fairly elusive. For example, many models, both polarizable and nonpo-
larizable, do a poor job of reproducing the geometry of the water dimer. The
methods typically predict a dimer that is too ‘‘flat’’, that is, with too small an
angle between the donated O��H bond on the donor and the C2v axis of the
acceptor. This lack of tetrahedral coordination at the oxygen acceptor is
usually attributed to the lack of lone pairs in the model; the electrostatic poten-
tial is insufficiently anisotropic on the oxygen end of the molecule when only
atom-centered charges and dipoles are used. Models with off-atom charge
sites,54,166 higher order multipoles,21,193or explicitly anisotropic poten-
tials15,193 can be used to avoid this problem.

For gas-phase properties, the second virial coefficient, B(T), provides one
of the most sensitive tests of a water model.186,194 Both polarizable and non-
polarizable models are capable of reproducing experimental values of B(T),
and some models have even been parameterized to do so explicitly.15,24,29

Polarizable models appear to provide significant improvements in reproducing
not only the second virial coefficient,24,25 but also the third coefficient,
C(T).186,195

In the liquid phase, calculations of the pair correlation functions, dielec-
tric constant, and diffusion constant have generated the most attention. There
exist nonpolarizable and polarizable models that can reproduce each quantity
individually; it is considerably more difficult to reproduce all quantities
(together with the pressure and energy) simultaneously. In general, polarizable
models have no distinct advantage in reproducing the structural and energetic
properties of liquid water, but they allow for better treatment of dynamic
properties.

It is now well understood that the static dielectric constant of liquid
water is highly correlated with the mean dipole moment in the liquid, and
that a dipole moment near 2.6 D is necessary to reproduce water’s dielectric
constant of e ¼ 78.4,5,185,196 This holds for both polarizable and nonpolariz-
able models. Polarizable models, however, do a better job of modeling the
frequency-dependent dielectric constant than do nonpolarizable models.126

Certain features of the dielectric spectrum are inaccessible to nonpolarizable
models, including a peak that depends on translation-induced polarization
response, and an optical dielectric constant that differs from unity. The dipole
moment of 2.6 D should be considered as an optimal value for typical (i.e.,
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classical and rigid) water models; it is not necessarily the best estimate of the
actual dipole moment. The dipole moment of liquid water cannot be measured
experimentally, nor can it even be defined unambiguously, since the electronic
density is not zero between molecules.197,198 Ab initio simulations of liquid
water predict that the average dipole moment varies from 2.4 to 3.0 D depend-
ing on how the density is partitioned, so a value of 2.6 D is consistent with
these studies.199–201

Dynamic properties, such as the self-diffusion constant, are likewise
strongly correlated with the dipole moment.5,23 This coupling between the
translational motion and the dipole moment is indicated in the dielectric spec-
trum.126 Models that are overpolarized tend to undergo dynamics that are
significantly slower than the real physical system. The inclusion of polarization
can substantially affect the dynamics of a model, although the direction of the
effect can vary. When a nonpolarizable model is reparameterized to include
polarizability, the new model often exhibits faster dynamics, as with polariz-
able versions of TIP4P,202 Reimers–Watts–Klein (RWK),185,203 and reduced
effective representation (RER)30 potentials. There are exceptions, however,
such as the polarizable simple point charge (PSPC)23,57 and fluctuating charge
(FQ)126 models. The usual explanation for faster dynamics in polarizable
models is that given by Sprik.202 Events governing dynamical properties,
such as translational diffusion and orientational relaxation, are activated
processes—they depend on relatively infrequent barrier-crossing events.
Adiabatic dynamics of the polarizable degrees of freedom allows for relaxa-
tion of the polarization at the transition, through means that are inaccessible
to nonpolarizable models. This in turn lowers the activation barrier and
increases the number of successful transition attempts. The nonunanimity
of published simulation results concerning dynamic properties is likely due
to such factors as: inconsistent parameterization procedures between the
polarizable and nonpolarizable models; a strong dependence of dynamic
properties on the system pressure (which is often insufficiently controlled
during simulations); and the effects of using point versus diffuse charge
distributions.

Transferability to different temperatures is a particularly difficult task
for polarizable water models. This statement is illustrated by the problems
in predicting the PVT and phase coexistence properties. There are a handful
of polarizable water models—including both dipole- and EE-based models—
that are reasonably successful in predicting some of the structural and ener-
getic changes in liquid water over a range of several hundred degrees.53,61,204

Many models fail to capture this behavior, however, so temperature transfer-
ability is far from an automatic feature of polarizable models.35,52,61,62 Indeed,
it has been demonstrated by several authors35,52,61 that a point dipole-based
model designed specifically to reproduce properties of the gas-phase monomer
and the bulk liquid at 298 K is doomed to fail at higher temperatures. This
failure could arise from insufficiencies in the Lennard–Jones function typically
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used for the short-range repulsion, as well as from the use of point charges or
dipoles rather than diffuse charge distributions. Evidence exists showing that
diffuse charge distributions are necessary to ensure transferability, in both
polarizable and nonpolarizable models.35,53,205

Predicting phase coexistence behavior near the critical point seems to be
a particularly difficult task, even for the best polarizable models. Almost no
existing model that works well at ambient conditions has been demonstrated
to predict the critical temperature and density to better than 10% accu-
racy.61,206 And those that are specifically designed to work well near the crit-
ical point seem to do a poor job of reproducing the liquid structure at lower
temperatures.61 Part of the problem is that the simulations required to measure
phase coexistence properties are computationally expensive due to the exten-
sive sampling required. Because of this expense, phase coexistence properties
have not typically been included in the list of target properties when parame-
terizing new water models. Thus, it is only now becoming clear how to con-
struct a model that is transferable across hundreds of degrees, from
supercooled liquid to supercritical fluid. It is not yet clear whether one partic-
ular type of polarizable model is better able to capture the variation of water
properties under varying temperatures and densities than another. However,
the current situation clearly underscores the considerable flexibility and ambi-
guities involved in parameterizing polarizable potentials.

Transferability from the solid state to the liquid state is equally problem-
atic. A truly transferable potential in this region of the phase diagram must
reproduce not only the freezing point, but also the temperature of maximum
density and the relative stability of the various phases of ice. This goal remains
out of reach at present, and few existing models demonstrate acceptable trans-
ferability from solid to liquid phases.33,52,207 One feature of water that has
been demonstrated by both an EE model study207 and an ab initio study200

is that the dipole moments of the liquid and the solid are different, so polar-
ization is likely to be important for an accurate reproduction of both phases.
In addition, while many nonpolarizable water models exhibit a computed
temperature of maximum density for the liquid, the temperature is not near
the experimental value of 277 K.53,62,208–215 For example, TIP4P192 and
SPC/E4 models have a temperature of maximum density, TMD, near 248
K.211,213,215 Several EE models53,147,207 and one EE–PPD hybrid model166

yield a TMD right at 277 K, suggesting that polarizability may be an important
factor for this property as well. However, PPD models do not reproduce the
TMD maximum density very well; one model does not even have a TMD

212 and
another has a temperature dependence on the density that is much too
strong.62 One nonpolarizable model, the TIP5P model, which includes lone-
pair interaction sites, has been successfully constructed to have the correct
TMD.216

The successful transferability of water models from the bulk phases to
more heterogeneous conditions is another important goal for scientists
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developing polarizable models. A vast literature exists in this area, with
applications ranging from the solvation of simple ions27,82,202,217,218 and
biomolecules10 to hydrophobic hydration and the structure of water at inter-
faces104,219,220 and in external electric fields.206,220 Due to the wide variation
in electrostatic environments encountered, it is not surprising to find that
polarizable models generally (but not always) provide significant improve-
ments over nonpolarizable models.

Proteins and Nucleic Acids

For both proteins and nucleic acids, there exist significant structure-
determining, hydrogen-bonding interactions between groups with p electrons:
the peptide group for proteins and bases for nucleic acids. The extensive net-
work of peptide hydrogen bonds in a-helices and b-sheets in proteins and the
base-pair stacking in the double helix of nucleic acids are stablized by polar-
ization of electrons with some p character. This stabilization has been labeled
p-bond cooperativity or resonance-assisted hydrogen bonding.221,222 The
polarization of the p electrons in amides can be represented by the usual
two dominant resonance structures
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Resonance structures like these are commonly cited as leading to the planar
geometry of the peptide bond and nucleic acid bases.

A number of quantum mechanical studies on the molecules N-methyl-
actamide (NMA) and N-methylformamide (NMF), have addressed the
importance of cooperative, or nonadditive, effects on hydrogen-bond
formation.223–225 Aggregates of NMA or NMF may be considered prototypes
of the protein backbone. For these systems, the cooperative effects were found
to add about 12–20% to the stabilization energy. Most of that energy can be
decomposed into the polarization energy, with charge transfer making only a
modest contribution, although the size of each component depends on the
method of decomposition.225 Experimental studies on NMA aggregates also
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indicate cooperativity in the hydrogen-bond energies,226 and dielectric meas-
urements on polypeptide chains show an enhancement of the dipole moment
of the peptide group in an a-helix.227 Other quantum mechanical studies have
addressed the importance of polarizability on protein folding,228 enzyme ca-
talysis,229 DNA base pair stacking,230 and nucleic acid interactions with
ions.231

Several polarizable models for proteins and the peptide group have been
developed, using polarizable point dipoles,32,44,45,232 electronegativity equali-
zation models,10,146 and the two-state empirical model.183 Simulations using
point polarizable dipole models by Warshel and co-workers44,45 and by
Wodak and co-workers46 examined the role of polarizability on protein stabil-
ity, dielectric properties, and enzymatic activity. For example, Van Belle et al.46

found that the helix dipoles are enhanced, in agreement with the dielectric
measurements of Wada,227 and, further, the helix dipoles are enhanced not
only through hydrogen bonds to the backbone, but also through association
with side chain atoms. Polarization has also been shown to influence the fold-
ing time scales for small polypeptides.183 For nucleic acids, a point polarizable
dipole model was recently introduced.232 Despite these studies and acknowl-
edgment of the importance of polarizability from both electronic structure and
experimental studies, not many simulations of proteins or nucleic acids using
polarizable models have been done to date.

An implication of resonance-assisted hydrogen bonding is that as the
charges are polarized, through hydrogen bonds or other interactions, the
hybridization of the atoms involved can change. For example, studies of crys-
tal structures of formamide reveal that the C����O bond length increases and the
C��N bond length decreases due to the formation of hydrogen bonded
dimers.233 Other crystal structures and ab initio quantum calculations on
amides further validate the fact that hydrogen bonds can change those bond
lengths.234 The hydrogen bonds in these structures are in the amide plane
and promote the double bond, zwitterionic state. On the other hand, the inter-
actions in which the amino nitrogen serves as a hydrogen-bond acceptor
would stabilize the single bond form. Partial sp3 hybridization of the amino
nitrogen leads to pyramidalization. Indeed, nonplanarities of some peptide
bonds have been observed in atomic-resolution structures of pro-
teins.183,235,236 In addition, the planarity of the peptide bond is dependent
on a protein’s secondary structure, with residues in an a-helix being more pla-
nar than elsewhere.183 For nucleic acids, ab initio calculations indicate that the
amino group can be pyramidalized through interactions with neighboring
molecules or ions.237 For both the peptide bond and nucleic acid bases, there
is reason to believe that a significant degree of nonplanarity can be induced by
the environment. To treat these effects, the polarization of the electrostatic
degrees of freedom—charges or dipoles—would have to be coupled to the
bonded interactions, as has been developed for the peptide bond.183
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COMPARISON OF THE POLARIZATION MODELS

Mechanical Polarization

One important difference between the shell model and polarizable point
dipole models is in the former’s ability to treat so-called mechanical polariza-
tion effects. In this context, mechanical polarization refers to any polarization
of the electrostatic charges or dipoles that result from causes other than the
electric field of neighboring atoms. In particular, mechanical interactions
such as steric overlap with nearby molecules can induce polarization in the
shell model, as further described below. These mechanical polarization effects
are physically realistic and are quite important in some condensed-phase
systems.

As mentioned earlier, the shell model is closely related to those based on
polarizable point dipoles; in the limit of vanishingly small shell displacements,
they are electrostatically equivalent. Important differences appear, however,
when these electrostatic models are coupled to the nonelectrostatic compo-
nents of a potential function. In particular, these interactions are the nonelec-
trostatic repulsion and van der Waals interactions—short-range interactions
that are modeled collectively with a variety of functional forms. Point dipole-
and EE-based models of molecular systems often use the Lennard–Jones poten-
tial. On the other hand, shell-based models frequently use the Buckingham or
Born–Mayer potentials, especially when ionic systems are being modeled.

Regardless of the specific potential used, PPD- and EE-based models
typically lack coupling between the short-range potential and the long-range
electrostatic degrees of freedom. The dipoles and fluctuating charges respond
solely to the local electric field (see Eq. [3]), with no regard for local short-
range interactions. In other words, the polarizability, a, of each point dipole
in a PPD model is independent of the local environment. The situation is dif-
ferent for the shell-based models. Because the van der Waals and exchange-
repulsion interactions being modeled by the short-range nonelectrostatic
part of the potential are electron–electron interactions, the interaction sites
are almost always taken to be coincident with the shell (electronic) charge,
rather than the core (nuclear) charge or center of mass. The short-range inter-
actions in the shell model couple with only one end of the finite dipole, rather
than with both ‘‘ends’’ of the point dipole. Consequently, the shell model
includes a coupling between the short-range interactions and the orientation
of the dipole—a coupling that is not present in point dipole-based models.
The coupling of short-range interactions and dipole orientations is in fact quite
realistic physically, and the lack of such a coupling is a disadvantage of the PPD
models. One way to better understand this coupling is to recognize that the
shell models have two mechanisms for polarization: a purely electrostatic
induction effect, governed by the fixed polarizability in Eq. [27], and a
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mechanical polarization effect that depends on the specific implementation of
the dispersion and short-range repulsive interactions. Thus each polarizable
site has an effective polarizability that depends on the local environment.
When a shell-model atom is confined in a condensed phase, the steric interac-
tions with neighboring ions will generally reduce the effective polarizability
compared to the gas-phase value. In a crystalline environment, there are addi-
tional effects to consider: the anions and cations will polarize by different
amounts in an applied electric field (due to the more diffuse electron density
in the anions). The mechanical polarization effects will act to increase the
effective polarizability in cations, and decrease it in anions.73 These effects
are completely realistic; the polarizabilities of atoms and ions do change
with their environment in just these ways,238–240 and shell models have at
times been specifically parameterized to include this effect quantitatively.73,96

Indeed, the inclusion of this mechanical polarizability effect has been shown to
be crucial for reproducing condensed-phase properties such as phonon disper-
sion curves.74,75

Another coupling of the short-range repulsive and long-range electro-
static interactions has been developed by Chen, Xing, and Siepmann.147 In
their EE model, the repulsive part of the Lennard–Jones potential is coupled
to the charge. This coupling is consistent with ab initio quantum calculations
that find that the size of an atom increases with its negative charge.241 Studies
of gas–liquid61 and solid–liquid207 coexistence of water also suggest that mod-
els that couple the volume of an atom (through the Lennard–Jones interaction)
to the size of the atom’s charge may be best suited for prediction of molecular
properties in the three phases. Empirical and semiempirical methods provide a
natural way to link the charges to other parts of the potentials, as is done in the
empirical valence bond approach242 and the two-state peptide bond model.183

To further illustrate the importance of coupling the electrostatic and
short-ranged repulsion interactions, we consider the example of a dimer of
polarizable rare gas atoms, as presented by Jordan et al.96 In the absence of
an external electric field, a PPD model predicts that no induced dipoles exist
(see Eq. [12]). But the shell model correctly predicts that the rare gas atoms
polarize each other when displaced away from the minimum-energy (force-
free) configuration. The dimer will have a positive quadrupole moment at
large separations, due to the attraction of each electron cloud for the opposite
nucleus, and a negative quadrupole at small separations, due to the exchange-
correlation repulsion of the electron clouds. This result is in accord with
ab initio quantum calculations on the system, and these calculations can
even be used to help parameterize the model.96

In essence, this difference between shell models and PPD models arises
from the former’s treatment of the induced dipole as a dipole of finite length.
Polarization in physical atoms results in a dipole moment of a small, but finite,
extent. Approximating this dipole moment as an idealized point dipole, as in
the PPD models, is an attractive mathematical approximation and produces
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negligible errors in such properties as the electric field generated outside the
molecule. Unfortunately, there are some physical effects that this idealization
obscures, such as the environment-dependent polarizability.

All polarizable models share the ability to polarize, by varying their
charge distribution in response to their environment. In addition, shell models
and EE models with charge-dependent radii have the ability to modify their
polarizability—the magnitude of this polarization response—in response to
their local environment. Consequently, it is reasonable to expect that shell
models and mechanically coupled EE models may be slightly more transferable
to different environments than more standard PPD and EE models. To date, it
is not clear whether this expectation has been fully achieved. Although some
shell-based models for both ionic and molecular compounds have been
demonstrated to be transferable across several phases and wide ranges of
phase points,73,96,99,243 it is not clear that the transferability displayed by these
models is better than that demonstrated in PPD- or EE-based models. And
even with an environment-dependent polarizability, it has been demonstrated
that the basic shell model cannot fully capture all of the variations in ionic
polarizabilities in different crystal environments.85

Computational Efficiency

One significant difference between the different methods of incorporat-
ing polarization is their computational efficiency. For energy evaluations, the
electronegativity equalization-based methods are considerably more efficient
than the dipole or shell models. Dipole-based methods require evaluation of
the relatively CPU-expensive dipole–dipole interactions (Eq. [7]). The
charge–charge interactions used in shell models are much cheaper, by about
a factor of three. But this advantage is eliminated by the need to represent
each polarizable center by two point charges, thus quadrupling the total num-
ber of interactions that need to be computed. Methods based on electronega-
tivity equalization typically represent each polarizable site by a single charge
(either point or diffuse), and energy evaluations are thus three-to-four times
faster than with the other models, for direct summation. Semiempirical meth-
ods have 4–10 basis functions per atom, and each energy evaluation requires
solving large matrices, thereby decreasing the computational efficiency of these
models.144,172–176 In the simpler two-state empirical model, the additional
computational requirements are comparable to the EE models.183

Energy evaluation for any collection of point charges and dipoles can be
accelerated significantly by using fast-multipole244,245 or particle-mesh246,247

methods. The computational advantages of these methods are proportionally
much greater for the dipole-based models, because they avoid the direct
evaluation of a more expensive interaction. In large systems, the overhead
associated with using dipoles can be reduced to about a third more than
the cost of using point charges. Algorithms for performing conventional,66
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fast-multipole,69 and particle-mesh Ewald50 summation on point dipoles are
available, and even quite efficient, but are considerably more complex than
the comparable methods for monopole charges.244,247–249

Regardless of the type of model used, a method must be chosen for the
self-consistent solution of the polarizable degrees of freedom. Direct solution
via matrix inversion is nearly always avoided by most researchers in the field,
because of the prohibitive OðN3Þ scaling with system size, N. Both iterative
and predictive methods reduce the scaling to match that of the potential eval-
uation [OðN2Þ for direct summation; O(N ln N) for Ewald-based meth-
ods;50,68 O(N) if interactions are neglected beyond some distance cutoff],
but the cost of the iterations means that the predictive methods are always
more efficient. Extended Lagrangian methods have been implemented for all
four types of polarizable potential.10,22,56–58,82,90,97,99,104,126,148,183 The
extended Lagrangian methods are least popular for PPD-based models; as a
general rule, simulations with these models still tend to use iterative methods.
The extended Lagrangian approach is perhaps most natural for the shell mo-
del, for which it is physically reasonable to assign a mass to the polarizable
degrees of freedom (the shell charges) and treat them dynamically. However,
the small mass of the shell charge usually requires an MD time step smaller
than would be chosen in a nonpolarizable simulation.82,90,97,99,104 The fluctu-
ating charge and PPD models usually do not require a reduction in time step,
thus making them somewhat more efficient in this regard.

Multiple time step methods250,251 can also be used to reduce the compu-
tational cost of simulations with polarizable models. Such methods have been
used successfully with shell and fluctuating charge models.82,104 However, it is
more problematic to apply these multiple time scale integrators in simulations
using iterative integrators. The multiple time scale integrators work by calcu-
lating updated values for only a fraction of the system’s interactions during
some of the time steps; but since all of the interactions are needed in order
to provide well-converged values for the polarizable degrees of freedom, the
bulk of the expensive electrostatic interactions must still be evaluated at every
step.

Hyperpolarizability

Note that linearly polarizable point dipoles provide only an approxima-
tion to the true polarization response in two different ways. First, polarization
can include terms that are nonlinear in the electric field. Thus, Eq. [3]
represents only the first term in an infinite series,

m ¼ a 	 Eþ 1

2
E 	 b 	 Eþ 	 	 	 ½72�

where b is a third-rank tensor representing the first hyperpolarizability of the
system.14 In water, for example, the nonlinear polarization effects begin to
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become significant at field strengths252,253 of 2–3 V/Å, which is comparable to
the mean field strength in an aqueous solution.53 This finding indicates that
perhaps there are improvements to be made by going beyond the approxima-
tion of linear polarization. Only occasional attempts have been made to
include these effects.55

Charge-Transfer Effects

The EE-based and semiempirical models implement polarization via
charge transfer between atoms on the same molecule. These models are funda-
mentally different from the treatment of shell and PPD models, which include
point polarization but no charge transfer. There are important differences
between the two approaches.

As pointed out in the section on Electronegativity Equalization Models,
the implementation of charge transfer in current EE models tends to lead to
overpolarization in large molecules or when intermolecular charge transfer
is allowed. In contrast, the lack of charge transfer in point-polarizable models
can sometimes lead to underpolarization. In general, the point-polarizable
models predict that the polarizability of a single molecule or a system of mole-
cules will increase linearly with its size, in proportion to the number of (line-
arly polarizable and weakly interacting) dipoles.254 This behavior is exactly
correct for systems without charge transfer, such as saturated hydrocarbon
molecules and most biomolecules. The PPD models severely underpredict,
however, the increase of polarization with system size for conductive systems
such as unsaturated hydrocarbons. An EE-based model does significantly bet-
ter at predicting the size-dependent polarization of conductive systems, but
exaggerates the polarization in large systems with no charge transfer.149

Thus we emphasize that it is important to choose the method of treating
polarization that is most appropriate for the system being studied. Hybrid
models containing both point-polarizable and charge-transfer sites are perhaps
the most flexible approach.145,146,150,166

Another side effect of the EE and semiempirical models’ reliance on
charge transfer for treating polarization is a geometry dependence that is
absent in point-polarizable models. The charge redistribution in an EE model
can arise only as a result of charge transfer from one site to another. Conse-
quently, the polarization response is constrained by the geometry of the charge
sites. This constraint is most severe for highly symmetric species. For planar
molecules such as benzene and water, the EE model unrealistically predicts
that the out-of-plane component of the polarizability tensor is zero. Linear
molecules cannot be polarized in the transverse direction. Atomic or ionic spe-
cies suffer the most dramatic limitation: they have no polarization response at
all under the EE approximation. Whereas this can be a severe limitation in
some circumstances, an EE model for water with purely planar polarizability
somewhat surprisingly performs as well as or better than PPD and shell models
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with three-dimensional polarizability tensors.126 Off-atom charge sites have
been successfully used to address this limitation in some cases, as have hybrid
models.82,96,104,145,146,150,166

The Electrostatic Potential

In addition to treating the polarization response in different ways, the
various methods considered here also provide different levels of approxima-
tion to the external electric field. Accurate simulation of intermolecular inter-
actions requires that the electrostatic potential be correctly represented
everywhere outside the molecular surface. The correct electrostatic potentials
can be reproduced, of course, by the physically correct nuclear and electronic
charge distribution. At points outside the molecular surface, however, it can
also be reproduced to arbitrary accuracy by a series of point monopoles,
dipoles, quadrupoles, and so on. This approach is taken in most computer
simulations. The simplest level of approximation is to include point charges
(monopoles) at the atomic sites. The accuracy of this approximation can be
improved by (1) adding more charge sites (off-atom sites); (2) increasing the
number of terms in the series (dipoles, quadrupoles, etc.); and (3) by replacing
the point multipoles with delocalized, diffuse charge distributions.

The PPD and shell models are nearly equivalent in this sense, because
they model the electrostatic potential via static point charges and polarizable
dipoles (of either zero or very small extent). Accuracy can be improved by
extending the expansion to include polarizable quadrupoles or higher order
terms.193 The added computational expense and difficulty in parameterizing
these higher order methods has prevented them from being used widely. The
accuracy of the ESP for dipole-based methods can also be improved by adding
off-atom dipolar sites.96,166

Because the EE-based methods truncate the series representation of the
electrostatic potential one term earlier (i.e., by using only monopole charges),
these methods would appear to sacrifice some accuracy in representing the
electrostatic potential. It is becoming widely appreciated that models based
solely on point charges may require the use of off-atom charge sites to success-
fully fit the electrostatic potential.166,255 However, nearly all polarizable simu-
lation methods based on charge-transfer methods have used some sort of
delocalized charges, rather than point charges.22,125,126,130,146,158,171 This
approach has been shown to be successful at reproducing the electrostatic
potential for most extramolecular sites, although the use of point dipoles
can improve the performance for certain conformations (such as bifurcated
hydrogen bonds) in which molecular symmetries prevent accurate charge dis-
tributions.146 Indeed, it has been claimed that the better representation of
intermolecular interactions due to diffuse charges is as important as the use
of polarizability.205 The chemical potential equalization (CPE) methods are
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noteworthy in this regard because they use both diffuse monopoles and dipoles
to represent the system’s polarization.130,131,171

The difference between models having polarizable point dipoles and
fixed point charges and those with fluctuating charges and fixed Lennard–
Jones interactions reduces to considering which term is static and which is pol-
arizable. For the PPD model, the charge–charge term is static and the induced
dipole–induced dipole term is polarizable. For the EE model, the charge–
charge term is polarizable and the induced dipole–induced dipole terms
(included in the Lennard–Jones r�6 interaction) are static. Note that including
a Lennard–Jones r�6 dispersion term is not redundant for polarizable models
because this represents the interaction arising from correlated thermal fluctua-
tions of the induced dipole. With a few exceptions,22,57,202 most models—
whether based on matrix, iterative, or extended Lagrangian algorithms—are
adiabatic and do not allow for substantial fluctuations away from the
minimum-energy polarization state.

SUMMARY AND CONCLUSIONS

There are a variety of different models used to treat polarizability in
molecular simulations: polarizable point dipoles, shell models, fluctuating
charge models, and semiempirical models, along with variations and combina-
tions of these. There are advantages and disadvantages of each model, as dis-
cussed in detail in previous sections. These relative merits range from differing
computational efficiencies and ease of implementation to different accuracies
in representing the external electric field and transferability of parameters.
Regardless of the differences in convenience and efficiency, the most important
consideration when choosing a polarizable model for a particular problem
should be the model’s applicability to the system in question.

Despite the many differences between the various polarizable models, it is
encouraging to note that the most recent models seem to be converging on
the same set of necessary features. A variety of successful models based
on different formalisms all share many of the same characteris-
tics.126,130,131,146,150,166,171,205 Regardless of the direction from which the
models evolved, there is a growing consensus that accurate treatment of polar-
ization requires (1) either diffuse charge distributions or some other type of
electrostatic screening (2) a mixture of both monopoles and dipoles to repre-
sent the electrostatic charge distribution, and (3) only linear polarizability.

Although much work remains to be done before there is a truly accurate,
transferable model for a wide range of conditions and systems, it is fair to say
that polarizable models have matured considerably since their earliest imple-
mentations. Future developments will almost certainly include continued
development and parameterization of the more mainstream models, along
with their incorporation into commercial and academic simulation software
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packages, thereby making these methods much more accessible to the nonspe-
cialist. In particular, we expect polarizable models, and especially polarizable
water models, to become more prevalent in biomolecular simulations invol-
ving heterogeneous solvent environments. Inclusion of polarizability in the
potentials for proteins and other macromolecular systems is also likely to
become more common, and hence a careful assessment of the importance of
polarizability to these systems is needed. Until the importance of polarizability
has been clearly demonstrated, the added computational cost of modeling the
polarization makes it is unlikely that polarizable models will displace more
traditional models for the bulk of routine simulation, particularly when
applied to large systems.

Future directions in the development of polarizable models and simula-
tion algorithms are sure to include the combination of classical or semiempir-
ical polarizable models with fully quantum mechanical simulations, and with
empirical reactive potentials. The increasingly frequent application of Car–
Parrinello ab initio simulations methods156 may also influence the develop-
ment of potential models by providing additional data for the validation of
models, perhaps most importantly in terms of the importance of various inter-
actions (e.g., polarizability, charge transfer, partially covalent hydrogen
bonds, lone-pair-type interactions). It is also likely that we will see continued
work toward better coupling of charge-transfer models (i.e., EE and semiem-
pirical models) with purely local models of polarization (polarizable dipole
and shell models).
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CHAPTER 4

New Developments in the Theoretical
Description of Charge-Transfer
Reactions in Condensed Phases
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INTRODUCTION

Nearly half a century of intense research in the field of electron transfer
(ET) reactions in condensed phases has produced remarkable progress in the
experimental and theoretical understanding of the key factors influencing the
kinetics and thermodynamics of these reactions. The field evolved in order to
describe many important processes in chemistry and is actively expanding into
biological and materials science applications.1 Due to its significant experi-
mental background and relative simplicity of the reaction mechanism, the
problem of electron transitions in condensed solvents turned out to be a
benchmark for testing fundamental theoretical approaches to chemical activa-
tion. A number of excellent reviews dealing with various aspects of the field
have been written. Two volumes of Advances in Chemical Physics (Vols.
106 and 107, 1999) covered much of the progress in the field achieved in
recent decades. Therefore, the aim of this chapter is not to replicate these
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reviews, but rather to highlight some very recent developments in the field that
have not been reviewed. This chapter will provide the reader with a step-by-
step statistical mechanical buildup of the theoretical machinery currently
employed in ET research. By virtue of the ‘‘frontier’’ nature of this material,
many traditional subjects of ET studies are not covered here. The reader will
be referred to previous reviews whenever possible, but many excellent contri-
butions are not directly cited.

This chapter concerns the energetics of charge-transfer (CT) reactions.
We will not discuss subjects dealing with nuclear dynamical effects on CT
kinetics.2–4 The more specialized topic of employing the liquid-state theo-
ries to calculate the solvation component of the reorganization parameters5 is
not considered here. We concentrate instead on the general procedure of the
statistical mechanical analysis of the activation barrier to CT, as well as on its
connection to optical spectroscopy. Since the very beginning of ET research,6

steady-state optical spectroscopy has been the major source of reliable infor-
mation about the activation barrier and preexponential factor for the ET rate.
The main focus in this chapter is therefore on the connection between the sta-
tistical analysis of the reaction activation barrier to the steady-state optical
band shape.

The ET reaction is usually referred to as a process of underbarrier tun-
neling and subsequent localization of an electron from the potential well of the
donor to the potential well of the acceptor (Figure 1). This phenomenon
occurs in a broad variety of systems and reactions (see Ref. 1 for a list of

<∆E>

∆E

D A

E

HOMO

LUMO

Figure 1 Potential energy wells for the electron localized on the donor (D) and acceptor
(A) sites. The parameter h�Ei indicates the average energy gap for an instantaneous
(Franck–Condon) transfer of the electron from the donor HOMO to the acceptor
LUMO. The dotted lines show the electronic energies on the donor and acceptor at a
nonequilibrium nuclear configuration with a nonequilibrium energy gap �E. The upper
dashed horizontal line indicates the bottom of the conduction band of the
electrons in the solvent.
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applications). For electron tunneling to occur, the electronic states of the
donor and acceptor sites must come into resonance (degeneracy) with each
other. Degeneracy occurs as a result of thermal nuclear motions of the
donor–acceptor complex and the condensed-phase medium. The condition
of zero energy gap, �E ¼ 0, between the donor and acceptor electronic levels
determines the position of the transition state for an ET reaction. The ET rate
constant is proportional to the probability of such a configuration

kET / FCWDð0Þ ½1	

where the Franck–Condon weighted density (FCWD), FCWD(�E), deter-
mines the probability of creating a configuration with energy gap �E.

Electron transfer refers to the situation when essentially all the electronic
density is transferred from the donor to the acceptor. The process of CT, in the
present context, refers to basically the same event, but the electron density is
not completely relocalized and is distributed between the two potential wells.
The key factor discriminating between ET and CT reactions is the ET matrix
element,7 Hab, often called the hopping element in solid-state applications.
The ET matrix element is the off-diagonal matrix element of the system
Hamiltonian taken on the localized diabatic states of the donor and acceptor
sites (see below). [The term diabatic refers to localized states which do not
diagonalize the system Hamiltonian. These localized states are the true states
of the donor and acceptor fragments when these fragments are infinitely sepa-
rated. For covalently bound complexes, diabatic states become just some basis
states that allow reasonable localization of the electronic density on the donor
and acceptor fragments of the molecule. Adiabatic states, in contrast, are
actual states of the molecule between which electronic (including optical) tran-
sitions occur.]

For long-range electron transitions, the direct electronic overlap, expo-
nentially decaying with distance between the donor and acceptor units, is
weak, leading to a small magnitude of the expectation value of Hab. Such pro-
cesses, especially important in biological applications,8 can be characterized as
nonadiabatic ET reactions. The small magnitude of the ET matrix element can
be employed to find the transition rate using quantum mechanical perturba-
tion theory. In this theory, the rate constant found by the Golden Rule approx-
imation9,10 is called the nonadiabatic ET rate constant, and the ET reaction is
classified as nonadiabatic ET.11 (The Golden Rule formula is the first-order
perturbation solution for the rate of quantum mechanical transitions caused
by that perturbation.) The ET rate constant is then proportional to jHabj2

kNA / jHabj2 FCWDð0Þ ½2	

Creation of the resonance electronic configuration of the ET transition
state, �E ¼ 0, is by necessity a many-body event, including complex interac-
tions of the transferred electron with many nuclear degrees of freedom. The
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great achievement of the Marcus–Hush (MH) model6,12–14 of ET was to
reduce the many-body problem to a one-dimensional (1D) picture of intersect-
ing ET free energy surfaces, FiðXÞ (i ¼ 1 for the initial ET state, i ¼ 2 for the
final ET state, Figure 2). Each point on the free energy surface represents the
reversible work invested to create a nonequilibrium fluctuation of the nuclei
resulting in a particular value of the donor–acceptor electronic energy gap

X ¼ �E ½3	

The electronic energy gap thus serves as a collective reaction coordinate X
reflecting the strength of coupling of the nuclear modes to the electronic states
of the donor and acceptor. The point of intersection of F1ðXÞ and F2ðXÞ sets
up the ET transition state, X ¼ 0.

The definition of the ET reaction coordinates according to Eq. [3] allows
a direct connection between the activated ET kinetics and steady-state optical
spectroscopy. In a spectroscopic experiment, the energy of the incident light
with the frequency n (�n is used for the wavenumber) is equal to the donor–
acceptor energy gap

hn ¼ X ½4	

and monitoring the light frequency directly probes the distribution of donor–
acceptor energy gaps. The intensity of optical transitions IðnÞ is then propor-
tional to FCWD(hn)15

IðnÞ / jm12j2 FCWDðhnÞ ½5	
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Figure 2 Two parameters defining the Marcus–Hush model of two intersecting
parabolas: the equilibrium free energy gap �F0 and the classical reorganization energy
lcl. The parabolas curvature is 1=ð2lclÞ.
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where m12 is the adiabatic transition dipole moment. Knowledge of the
spectral band shape can in principle provide the activation barrier through
FCWD(0) (Figure 3), and the Mulliken-Hush relation connects jHabj to
jm12j.6 (In contrast to Marcus-Hush which refers to the theory of electron
transfer activation, the Mulliken-Hush equation describes the preexponential
factor of the rate constant. We spell out Mulliken–Hush each place it occurs in
this chapter and use the acronym MH to refer to only Marcus–Hush.) In prac-
tice, however, FCWD(0) cannot be extracted from experimental spectra, and
one needs a theoretical model to calculate FCWD(0) from experimental band
shapes measured at the frequencies of the corresponding electronic transitions.
This purpose is achieved by a band shape analysis of optical lines.

The two main nuclear modes affecting electronic energies of the donor
and acceptor are intramolecular vibrations of the molecular skeleton of the
donor–acceptor complex and molecular motions of the solvent. If these two
nuclear modes are uncoupled, one can arrive at a set of simple relations
between the two spectral moments of absorption and/or emission transitions
and the activation parameters of ET. The most transparent representation is
achieved when the quantum intramolecular vibrations are represented by a
single, effective vibrational mode with the frequency nv (Einstein model).15–17

If both the forward (absorption) and backward (emission) optical transitions
are available, their first spectral moments determine the reorganization ener-
gies of quantum vibrations, lv, and of the classical nuclear motions of the
donor–acceptor skeleton and the solvent, lcl:

h nabs � nemð Þ ¼ 2 lcl þ lvð Þ ½6	

FCWD(0)
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Figure 3 Franck–Condon weighted density of energy gaps between the donor and
acceptor electronic energy levels. The parameters h�Ei and s2 indicate the first and
second spectral moments, respectively. FCWD(0) shows the probability of zero
energy gap entering the ET rate (Eq. [2]).
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where nabs and nem are the first spectral moments for absorption and emission,
respectively:

nabs=em ¼
Ð
nIabs=emðnÞdnÐ
Iabs=emðnÞdn

½7	

Here Iabs=emðnÞ is the transition intensity. The vibrational reorganization
energy lv is defined in terms of force constants, ka, and displacements,
�Qa, of the vibrational normal coordinates Qa as lv ¼ 1

2

P
a ka�Q2

a.
15–17 In

this chapter, we use l for the solvent component of the classical reorganization
energy lcl. The subscripts 1 and 2 are used to distinguish between the reorga-
nization energy of the initial (i ¼ 1) and final (i ¼ 2) ET states when the reor-
ganization energies in these states are different.

The mean of the first two moments gives the equilibrium free energy
difference between the final and initial states of the ET reaction

hnm ¼ 1
2 h nabs þ nemð Þ ¼ �F0 ¼ F02 � F01 ½8	

The two parameters, lcl and �F0, actually fully define the parabolic ET free
energy surfaces FiðXÞ in the MH formulation (Figure 2). Calculation of these
two parameters has become the main historical focus of the ET models addres-
sing the thermodynamics of the ET activation barrier. The latter, according to
MH theory, can be written in terms of �F0 and lcl as

Fact
i ¼ ðlcl 
�F0Þ2

4lcl
½9	

where i ¼ 1 and ‘‘þ’’ refer to the forward transition, and i ¼ 2 and ‘‘�’’ refer
to the backward transition.

The second spectral moments of absorption and emission lines

s2
abs=em ¼

Ð
n2Iabs=emðnÞdnÐ
Iabs=emðnÞdn

� nabs=em

� �2 ½10	

are equal in the MH formulation

s2
abs ¼ s2

em ½11	

They are related to the classical and vibrational reorganization energies as fol-
lows18

s2
abs=em ¼ 2kBT lcl þ hnvlv ½12	

where kB is the Boltzmann constant and T is temperature.

152 Charge-Transfer Reactions in Condensed Phases



Equations [6]–[12] establish a theoretical basis for calculating the activa-
tion barrier of ET from spectroscopic observables. This formalism rests on a
set of fundamental assumptions of the MH picture that can be summarized as
follows: (1) The electronic coupling between the donor and acceptor states is
neglected in the calculation of the Franck–Condon weighted density. The lat-
ter depends only on electronic energies of localized electronic states and their
coupling to the nuclear modes of the solvent and the donor–acceptor complex.
(2) A two-state solute is considered. The manifold of the donor and acceptor
electronic levels is limited to only two states between which the electron is
transferred. (3) The intramolecular vibrations and solvent molecular motions
are decoupled. (4) The linear response approximation is used for the interac-
tion of the donor–acceptor complex with the solvent. The linear response
approximation assumes that the free energy of solvation of an electric charges
localized on the donor–acceptor complex is a quadratic function of this
charge.

The neglect of the electronic coupling in the calculation of the FCWD
(assumption 1) was adopted in the original Marcus and Hush formulation.6,12

Within this framework, the ET matrix element does not strongly affect the
nuclear fluctuations, although a nonzero value of jHabj is required for electro-
nic transitions to occur. In other words, the transferred electron is assumed to
be fully localized in the calculation of the FCWD. To classify electronic delo-
calization, Robin and Day distinguished between three classes of symmetrical
(�F0 ¼ 0) systems.19

* In Class I systems, the coupling is very weak, and there are essentially no
electronic transitions.

* Class II systems remain valence-trapped (localized), and 0 < 2jHabj � lcl.

* In Class III systems, 2jHabj > lcl, and the electron is fully delocalized
between the donor and acceptor.

The MH formulation is designed to describe the case of intermediate couplings
(weak-coupling limit of Class II) when jHabj can be neglected in the FCWD(0)
for activated transitions and the transition moment m12 can be neglected in the
FCWDðnÞ for optical transitions. In the absence of a theory incorporating
jHabj and m12 into the FCWD, there is no general understanding when this
approximation is applicable to particular ET systems or how the relations
between optical and activation observables are affected by inclusion of electro-
nic delocalization into the FCWD.20

The limitations of the MH picture considerably narrow the range of sys-
tems covered by the theory. A considerable range of processes in which the
donor–acceptor coupling is strong enough to change the molecular charge
distribution under the influence of nuclear fluctuations cannot be treated theo-
retically. All such processes can be characterized as CT reactions. Weak
electronic coupling characteristic of ET exists for intermolecular and
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long-distance intramolecular reactions. Many systems with intramolecular
electronic transitions over a relatively short distance between the initial and
final centers of electron localization have been synthesized in recent years.21,22

They commonly incorporate the same basic design in which the donor and
acceptor units are linked in one molecule through a bridge moiety. In a case
of closely separated donor and acceptor units, electronic states on these two
sites are strongly coupled, resulting in a substantial delocalization of the elec-
tronic density. The electronic density is only partially transferred, and the pro-
cess can be classified as a CT transition.

The MH formulation for the activation barrier and the related connec-
tion between activation ET parameters and optical observables generally do
not apply to CT reactions. Hence the researcher is left without a procedure
of calculating the activation barrier from spectroscopy. Not being able to cal-
culate the barrier is a deficiency, and this chapter discusses some emerging
approaches to develop a theory of CT processes with an explicit account for
electronic delocalization effects. In application to optical transitions, this theory
should lead to the development of a band shape analysis broadly applicable
to Class II and III systems. The effect of electronic delocalization on the sol-
vent component of the FCWD is emphasized here. The previously reviewed
problem of delocalization effects on intramolecular vibrations23 is not
included. We also review some new approaches going beyond the two-state
approximation in terms of incorporating polarizability of the donor–acceptor
complex (assumption 2), and discuss some recent studies on nonlinear solva-
tion effects (assumption 4). There are some very recent indications in the lit-
erature pointing to a possibility of an effective coupling between vibrational
modes of the donor–acceptor complex and solvent fluctuations (assumption
3), but no consensus on when and why these effects are significant has yet
been reached. We briefly discuss the available experimental and theoretical
findings.

The first part of this chapter contains an introduction to the statistical
mechanical formulation of the CT free energy surfaces. Importantly, it shows
how to extend the traditional MH picture of two ET parabolas to a more gen-
eral case of two CT free energy surfaces of a two-state donor–acceptor com-
plex. The notation we utilize below distinguishes between these two cases in
the following fashion: we use the indices 1 and 2 to denote the two ET free
energy surfaces, as in Figure 2, and refer to the lower and upper CT free energy
surfaces with ‘‘�’’ and ‘‘þ’’, respectively. The parameters entering the activa-
tion barrier of CT transitions depend on the choice of the basis set of wave
functions of the initial and final states of the donor–acceptor complex. The
standard MH formulation is based on the choice of a localized, diabatic basis
set. When this choice is adopted, we use the superscript ‘‘d’’ to refer to diabatic
wave functions. An alternative description is possible in terms of adiabatic
wave functions, and this situation is distinguished by the superscript ‘‘ad’’.
We also provide a basis-invariant formulation of the theory for a two-state
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donor–acceptor complex. A description of CT activation and spectroscopy in
terms of two crossing, free energy surfaces (Figure 2) is in fact possible for any
choice of the basis set as long as the off-diagonal matrix elements of the solute
quantum mechanical operators can be neglected. In cases when a description
in both diabatic and adiabatic representations is possible (as it is for the
Q-model discussed below), we will not specify the basis by dropping the
‘‘d’’ and ‘‘ad’’ superscripts.

The statistical mechanical analysis of ET and CT free energy surfaces
developed in the first part of this chapter is applied to the calculation of optical
absorption and emission profiles in the second part. This application of the
theory, related to the band shape analysis of optical line shapes, has been a cen-
tral issue in understanding CT energetics for several decades.16 The chapter is
designed to demonstrate how the extension of the basic models used to
describe the thermodynamics of CT is reflected in asymmetry of the energy
gap law (dependence of the CT activation barrier on the equilibrium free energy
gap) and more complex and structured optical band shapes. The development
of a corresponding band shape analysis incorporating these new features is in
its infancy, and we will certainly see more activity in this field in the future.

PARADIGM OF FREE ENERGY SURFACES

The CT/ET free energy surface is the central concept in the theory of CT/
ET reactions. The surface’s main purpose is to reduce the many-body problem
of a localized electron in a condensed-phase environment to a few collective
reaction coordinates affecting the electronic energy levels. This idea is based
on the Born–Oppenheimer (BO) separation24 of the electronic and nuclear
time scales, which in turn makes the nuclear dynamics responsible for fluctua-
tions of electronic energy levels (Figure 1). The choice of a particular collective
mode is dictated by the problem considered. One reaction coordinate stands
out above all others, however, and is the energy gap between the two CT states
as probed by optical spectroscopy (i.e., an experimental observable).

Our discussion of the CT free energy surfaces involves a hierarchy of
reaction coordinates (Figure 4). It starts from the instantaneous free energy
surfaces obtained from tracing out (statistical averaging) the electronic degrees
of freedom in the system density matrix (i.e., solving the electronic problem
for fixed nuclear coordinates). In the case when the direction of electron trans-
fer sets up the only preferential direction in the CT system, one can define a
scalar reaction coordinate as the projection of the nuclear solvent polarization
on the differential electrical field of the solute. Depending on the basis set
employed, this gives the diabatic or adiabatic scalar reaction coordinates, Yd

and Yad (Figure 4). At this step, a reaction coordinate depends on the basis set
of solute wave functions employed. This dependence is eliminated when a sca-
lar reaction coordinate is projected on the energy gap between the CT surfaces.
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The free energy gap, equal to the energy of the incident light, is basis indepen-
dent. It defines the Franck–Condon factor entering the optical band shapes.
The analysis below follows this general scheme (Figure 4).

Formulation

Electron transfer and, more broadly, CT reactions belong to a general
class of problems having a quantum subsystem interacting with a con-
densed-phase thermal bath. The main challenge in describing such systems is
the necessity to treat the quantum subsystem coupled to a wide spectrum of
classical and quantum modes of the condensed environment. It implies that
the calculation of some property of interest F involves taking a restricted sta-
tistical average (trace, Tr) over both the electronic and nuclear modes

FðQ; tÞ ¼ Tr0nTrel r̂ðtÞ½ 	 ½13	

where

r̂ðtÞ ¼ eiHtr̂ð0Þe�iHt ½14	

is the density matrix of the system defined by the Hamiltonian H; r̂ð0Þ ¼
expð�bHÞ and b ¼ 1=kBT. The quantity Trel denotes the trace over the elec-
tronic degrees of freedom, and Tr0n refers to an incomplete or restricted trace
over the nuclear degrees of freedom, excluding a manifold of modes Q that are
of interest for some particular problem.

Depending on the order of the statistical average in Eq. [13], there are
two basic approaches to calculate FðQ; tÞ. Considerable progress has been

Hamiltonian

Statistical average over
the electronic degrees of freedom

Projection on
the nuclear polarization Pn

Projection on the energy gap
reaction coordinate, X

Adiabatic

Franck−Condon factor

Diabatic Y d Y ad

Fel (q)

Figure 4 Hierarchy of reaction coordinates in deriving the Franck–Condon factor from
the system Hamiltonian.
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achieved in treating the quantum dynamics in the framework of the functional
integral representation of the quantum subsystem.25,26 In this approach,
the electron trace is taken out (TrelTr0n) and is represented by a functional inte-
gral over the quantum trajectories of the system. The inner trace over the
nuclear coordinates is then taken for each point of the quantum path by sta-
tistical mechanics methods or by computer simulations of the many-particle
system.

The more traditional approach to treat the problem outlined by Eq. [13]
goes back to the theory of polarons in dielectric crystals.27,28 It employs
the two-step procedure corresponding to two traces in Eq. [13]: first, the trace
over the electronic subsystem is taken with the subsequent restricted trace over
the nuclear coordinates. This approach, basic to the MH theory of ET, turns
out to be very convenient for a general description of several quantum dyna-
mical problems in condensed phases. It is currently widely used in steady-
state29 and time-resolved2 spectroscopies and in theories of proton transfer,30

dissociation reactions,31 and other types of reactions in condensed media. The
central feature of the approach is the intuitively appealing and pictorially con-
venient representation of the activated electron transition as dynamics on the
free energy surface of the reaction. Here, we start with outlining the basic steps
and concepts leading to the paradigm of the free energy surfaces. In this sec-
tion, we confine the discussion only to classical modes of the solvent. The
results obtained here are then used to discuss the construction of the
Franck–Condon factor of optical transitions, including quantum intramolecu-
lar excitations of the donor–acceptor complex.

The first step of the derivation involves the BO approximation separating
the characteristic timescales of the electronic and nuclear motions in the
system. In this step, the instantaneous free energy depending on the system
nuclear coordinates q is defined by

e�bFelðqÞ ¼ Trel e�bH
� �

½15	

For many homogeneous ET reactions, the energies of electronic excitations are
much higher than the energy of the thermal motion, which is of the order of
kBT. In such cases, the free energy FelðqÞ in Eq. [15] can be replaced by the
energy, independent of the bath temperature. This does not, however, happen
for electrochemical discharge where states of conduction electrons form a con-
tinuum with thermal excitations between them. Entropic effects then gain
importance, and the free energy FelðqÞ should be considered in Eq. [15] (see
below).

The instantaneous free energy FelðqÞ is the equilibrium free energy,
implying equilibrium populations of the electronic states in the system. It is
not suitable for describing nonequilibrium processes with nonequilibrium
populations of the ground and excited states of the donor–acceptor complex.
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In such cases, the instantaneous eigenvalues EiðqÞ of the solute electronic
Hamiltonian that form the free energy FelðqÞ

X
i

e�bEiðqÞ ¼ e�bFelðqÞ ½16	

should be considered as the basis for building the ET free energy surfaces. The
energies EiðqÞ can be used for nonequilibrium dynamics, since the population
of each surface is not limited by the condition of equilibrium as it is the case in
Eq. [16].

An electron is transferred between its centers of localization as a result of
underbarrier tunneling when the instantaneous electronic energies EiðqÞ come
into resonance due to thermal fluctuation or radiation of the medium
(Figure 1). The difference between the energies EiðqÞ thus makes a natural
choice for the ET reaction coordinate (cf. to Eq. [3])

X ¼ �EðqÞ ¼ E2ðqÞ � E1ðqÞ ½17	

as first suggested by Lax15 and then utilized in many ET studies.5,17,32,33 The
reversible work necessary to achieve a particular magnitude of the energy gap
X defines the free energy profile of CT in terms of a Dirac delta function

e�bFiðXÞþbF0i ¼ b�1Trn½d X��EðqÞð Þe�bEiðqÞ	=Trn½e�bEiðqÞ	 ½18	

The partial trace in nuclear degrees of freedom in Eq. [13] is replaced in Eq.
[18] by the constraint imposed on the collective reaction coordinate X repre-
senting the energy gap between the two levels involved in the transition. This
reduces the many-body problem of calculating the activation dynamics in the
coordinate space q to the dynamics over just one coordinate X. As we show in
the discussion of optical transition below, the same Boltzmann factor as in Eq.
[18] comes into expressions for optical profiles of CT bands. The solvent com-
ponent of the FCWD then becomes

FCWDs
i ðXÞ ¼ be�bFiðXÞþbF0i ½19	

A more general definition of the FCWD includes overlap integrals of quantum
nuclear modes.15,17 The definition given by Eq. [19] includes only classical sol-
vent modes (superscript ‘‘s’’) for which these overlap integrals are identically
equal to unity. An extension of Eq. [19] to the case of quantum intramolecular
excitations of the donor–acceptor complex is given below in the section
discussing optical Franck–Condon factors.
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In Eqs. [18] and [19], F0i is the equilibrium free energy of the system in
each CT state

e�bF0i ¼ Trn½e�bEiðqÞ	 ½20	

Although the free energy profile FiðXÞ and the free energy F0i are combined in
one equation (Eq. [18]), they have a somewhat different physical meaning. The
free energy F0i is the total, equilibrium free energy of the system calculated for
all its configurations. The difference of F02 and F01 makes the free energy gap
�F0 entering the MH theory of ET (Figure 2). Thus

�F0 ¼ F02 � F01 ½21	

On the other hand, FiðXÞ is the constrained, incomplete free energy implying
that some of the configurations of the system separated by the d-function in
Eq. [18] are not included in the calculation of FiðXÞ.33 The phase space of
the system is not completely sampled in defining FiðXÞ, in contrast to the com-
plete sampling for F0i. Using molecular dynamics simulations and explicit atom-
istic models, the free energy in Eq. [18] can be explicitly mapped out. This
kind of calculation has become fairly routine (see, e.g., Refs. 32 and 33). It
should be noted, however, that such simulations usually neglect the electronic
polarizability of both the CT complex and the solvent. These effects may be
large (cf. Ref. 32 and the later discussion in this chapter).

When the number of electronic states can be limited to two (two-state
model), the analytic properties of the generating function for the two CT
free energy surfaces can be used to establish a linear relation between
them.32 The d-function in Eq. [18] can be represented as a Fourier integral
that allows one to rewrite the CT free energy in the integral form

e�bFiðXÞþbF0i ¼
ð1
�1

dx
2p
Giðx;XÞ ½22	

The integral is taken over one of the variables of the generating function

Giðx;XÞ ¼ eixbXTrn e�ixb�E�bEi
� �	

Trn e�bEi
� �

½23	

Analytic properties of Giðx;XÞ in the complex x-plane then allow one to obtain
a linear connection between the free energy surfaces

F2ðXÞ ¼ F1ðXÞ þX ½24	

as first established by Warshel.32,34 This relation is based on the transforma-
tion of the integralð1

�1

dx
2p
G2ðx;XÞ ¼ ebð�F0�XÞ

ð�iþ1

�i�1

dx
2p
G1ðx;XÞ ½25	
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that leads to Eq. [24] provided the integrals over the segments ð�i�1;
�iþ1Þ and ð�1;þ1Þ are equal. This happens when G1ðx;XÞ is analytic
in x inside the closed contour with the two segments as its boundaries. The
linear relation between F2ðXÞ and F1ðXÞ breaks down when the generating
function is not analytic inside this contour.

Two-State Model

The two-state model (TSM) provides a very basic description of quan-
tum transitions in condensed-phase media. It limits the manifold of the electro-
nic states of the donor–acceptor complex to only two states participating in
the transition. In this section, the TSM will be explored analytically in order
to reveal several important properties of ET and CT reactions. The gas-phase
Hamiltonian of the TSM reads

H0 ¼
X

i¼ a;b

Iia
þ
i ai þHab aþa ab þ aþb aa

� �
½26	

where Ii are diagonal gas-phase energies, and Hab is the off-diagonal Hamilto-
nian matrix element usually called the ET matrix element.7 In Eq. [26], aþi , ai

are the fermionic creation and annihilation operators in the states i ¼ a; b.
The Hamiltonian in Eq. [26] is usually referred to as the diabatic repre-

sentation, employing the diabatic basis set ffa;fbg in which the Hamiltonian
matrix is not diagonal. There is, of course, no unique diabatic basis as any pair
f~fa;

~fbg obtained from ffa;fbg by a unitary transformation can define a new
basis. A unitary transformation defines a linear combination of fa and fb

which, for a two-state system, can be represented as a rotation of the
ffa;fbg basis on the angle c

~fa ¼ coscfa þ sincfb

~fa ¼ �sincfa þ coscfb

½27	

One such rotation is usually singled out. A unitary transformation ffa;fbg !
ff1;f2g diagonalizing the Hamiltonian matrix

H0 ¼
X
i¼1;2

Eia
þ
i ai ½28	

generates the adiabatic basis set ff1;f2g. The adiabatic gas-phase energies are
then given as

Ei ¼ 1
2ðIa þ IbÞ 
 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIb � IaÞ2 þ 4H2

ab

q
; �E12 ¼ E2 � E1 ½29	
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where ‘‘þ’’ and ‘‘�’’ correspond to i ¼ 1 and i ¼ 2, respectively. Here, we out-
line the procedure of building the CT free energy surfaces in the diabatic repre-
sentation and then discuss advantages of using the adiabatic representation.

When the donor–acceptor complex is placed in a solvent, its Hamilto-
nian changes due to the solute–solvent interaction

Hint ¼ �Ê � P ½30	

Here, the dot product of two calligraphic letters stands for an integral over the
solvent volume V

Ê � P ¼
ð

V

Ê � P dr ½31	

and Ê is the electric field operator of the transferred electron coupled to the
polarizability of the solvent P. The system Hamiltonian then becomes

H ¼ HB þ
X
i¼a;b

Ii � Ei � Pð Þaþi ai þ Hab � Eab � Pð Þ aþb aa þ aþa ab

� �
½32	

where HB refers to the Hamiltonian of the solvent (thermal bath); Ei ¼
hfijÊjfii and Eab ¼ hfajÊjfbi.

The solvent Hamiltonian HB includes two components. The first one is
an intrinsically quantum part that describes polarization of the electronic
clouds of the solvent molecules. This polarization is given by the electronic sol-
vent polarization, Pe. The second part is due to thermal nuclear motions that
can be classical or quantum in character. Here, to simplify the discussion, we
consider only the classical spectrum of nuclear fluctuations resulting in
the classical field of nuclear polarization, Pn. Fluctuations of the solvent
polarization field are usually well described within the Gaussian approxima-
tion,35 leading to the quadratic solvent Hamiltonian

HB ¼ HB½Pn	 þHB½Pe	 ¼ 1
2Pn � w�1

n � Pn þ 1
2 o�2

e
_Pe � _Pe þ Pe � w�1

e � Pe

� �
½33	

Here, we and wn are the Gaussian response functions of the electronic and
nuclear solvent polarization, respectively; _Pe is the time derivative of the elec-
tronic polarization field entering the corresponding kinetic energy term.
In terms of the Gaussian solvent model,35 the nuclear response function is
defined through the correlator of corresponding polarization fluctuations
(high-temperature limit of the fluctuation–dissipation theorem36)

wnðr� r0Þ ¼ b hdPnðrÞ dPnðr0Þi ½34	

In Eq. [33], oe denotes a characteristic frequency of the optical excitations of
the solvent. The kinetic energy of the nuclear polarization Pn is left out in
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Eq. [33] according to the assumption of the classical character of this collective
mode. Depending on the form of the coupling of the electron donor–acceptor
subsystem to the solvent field, one may consider linear or nonlinear solvation
models. The coupling term �Ei � P in Eq. [32] represents the linear coupling
model (L model) that results in a widely used linear response approximation.37

Some general properties of the bilinear coupling (Q model) are discussed
below.

Equations [32] and [33] represent the system Hamiltonian that can be
used to build the CT free energy surfaces. According to the general scheme
outlined above, the first step in this procedure is to take the average over
the electronic degrees of freedom of the system. This implies integrating
over the electronic polarization Pe and the fermionic populations aþi ai. The
trace Trel can be taken exactly, resulting in two instantaneous energies38

E
½Pn	 ¼ ~Iav½Pn	 
 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�~I½Pn	Þ2 þ 4ðHeff

ab ½Pn	Þ2
q

½35	

where ~Iav ¼ ð~Ia þ ~IbÞ=2 and �~I ¼ ~Ib � ~Ia. For i ¼ a; b

~Ii½Pn	 ¼ Ii � Ei � Pn � 1
2 Ei � we � Ei þ E12 � we � E12ð Þ ½36	

The effective ET matrix element has the form

~Heff
ab ½Pn	 ¼ e�Se=2 Hab � Eab � Pn � Eav � we � Eab½ 	 ½37	

with Eav ¼ ðEa þ EbÞ=2. The matrix element ~Heff
ab ½Pn	 depends on the solvent

through two components: (1) interaction of the off-diagonal solute electric
field with the nuclear solvent polarization (second term) and (2) solvation of
the off-diagonal field by the electronic polarization of the solvent (third term).
The former component leads to solvent-induced fluctuations of the ET matrix
element, which represent a non-Condon effect39 of the dependence of electron
coupling on nuclear degrees of freedom of the system. This effect is commonly
neglected in the Condon approximation employed in treating nonadiabatic ET
rates.11

Equation [37] is derived within the assumption that both the electronic
polarization and the donor–acceptor complex are characterized by quantum
excitation frequencies,38 b�hoe � 1, b�E12 � 1, where �E12 ¼ E2 � E1 is
the gas-phase adiabatic energy gap in Eq. [29]. The derivation does not assume
any particular separation of these two characteristic time scales. The tradi-
tional formulation27 assumes �E12 � �hoe that eliminates the electronic
Franck–Condon factor expð�Se=2Þ in Eq. [37]. The parameter38,40

Se ¼ �Eab � we ��Eab=2�hoe �Eab ¼ Eb � Ea ½38	
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is, however, small for the usual conditions of CT reactions and will be
neglected throughout the discussion below.

The energies E
½Pn	 in Eq. [35] depend on the nuclear solvent polariza-
tion that serves as a three-dimensional (3D) nuclear reaction coordinate
driving electronic transitions. The two-state model actually sets up two direc-
tions: the vector of the differential field �Eab and the off-diagonal field Eab.
Therefore, only two projections of Pn need to be considered: the longitudinal
field parallel to �Eab and the transverse field perpendicular to �Eab. In the case
when the directions of the differential and off-diagonal fields coincide, one
needs to consider only the longitudinal field, and the theory can be formulated
in terms of the scalar reaction coordinate

Yd ¼ �Eab � Pn ½39	

The superscript ‘‘d’’ in the above equations refers to ‘‘diabatic’’ since the dia-
batic basis set is used to define the electric field difference �Eab. The corre-
sponding free energy profile is obtained by projecting the nuclear
polarization Pn on the direction of the solute field difference

e�bF
ðYdÞ ¼
ð
DPndðYd ��Eab � PnÞe�bE
½Pn	 ½40	

where DPn denotes a functional integral41 over the field PnðrÞ.
The integration in Eq. [40] generates the upper and lower CT free energy

surfaces that, after the shift in the reaction coordinate Yd ! Ydþ
�Eab � wn � Eav, take the following form42

F
ðYdÞ ¼ ðY
dÞ2

4ld

�EðYdÞ

2
þ C ½41	

with

�EðYdÞ ¼ ½ð�Fd
0 � YdÞ2 þ 4ðHab þ aabð�Fd

s � YdÞÞ2	1=2 ½42	

and

C ¼
Fd

0a þ Fd
0b

2
þ ld

4
½43	

The constant aab in Eq. [42] represents the ratio of the collinear differ-
ence and off-diagonal fields of the solute

aab ¼ Eab=�Eab ½44	
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The diabatic solvent reorganization energy is defined by the nuclear response
function wn and by the diabatic field difference

ld ¼ 1
2�Eab � wn ��Eab ½45	

The free energy gap

�Fd
0 ¼ Fd

0b � Fd
0a ¼ �Iab þ�Fd

s ½46	

is composed of the gas-phase splitting �Iab ¼ Ib � Ia and the solvation free
energy

�Fd
s ¼ �Eav � w ��Eab ½47	

where w ¼ we þ wn is the total response function of the solvent.
Projection on the energy gap reaction coordinate in Eq. [18] is simple to

perform for the scalar reaction coordinate Yd

FCWDs

ðXÞ ¼

X
k

ðbQ
�E0½YðkÞ	Þ�1e�bE
½YðkÞ	 ½48	

where

Q
 ¼
ð

e�bE
ðYdÞdYd ½49	

and YðkÞ are all the roots of the equation

X ¼ �E½Yd	 ½50	

In Eq. [48], �E0½YðkÞ	 denotes the derivative

�E0
�
YðkÞ

�
¼ d�EðYdÞ

dYd

�����
Yd¼YðkÞ

½51	

where Yd ¼ YðkÞ indicates that the derivative is taken at the coordinate YðkÞ

obtained as a solution of Eq. [50].
Equations [41]–[50] provide an exact solution for the CT free energy sur-

faces and Franck–Condon factors of a two-state system in a condensed med-
ium with quantum electronic and classical nuclear polarization fields. The
derivation does not make any specific assumptions about the off-diagonal
matrix elements of the Hamiltonian. It, therefore, includes the off-diagonal
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solute–solvent coupling through the off-diagonal matrix element of the electric
field of the solute.40 This coupling represents a non-Condon dependence of the
ET matrix element on the nuclear solvent polarization (this contribution is
commonly neglected in MH theory13). In the case of weak electronic overlap,
all off-diagonal matrix elements are neglected in the free energy surfaces, and
the above equations are transformed to the well-known case of two intersect-
ing parabolas (Figure 2) representing the diabatic ET free energy surfaces

FiðYdÞ ¼ F0i þ
ðYd 
 ldÞ2

4ld
½52	

The reaction rate constant is then given by the Golden Rule perturbation
expansion in the solvent-dependent ET matrix element Heff

ab ½Pn	.43 Careful
account for non-Condon solvent dependence of the ET matrix element gener-
ates the Mulliken-Hush matrix element in the rate preexponent (see below). In
the opposite case of strong electronic overlap, the off-diagonal matrix ele-
ments cannot be neglected, and one should consider the CT free energy
surfaces, instead of ET free energy surfaces, with partial transfer of the electro-
nic density. The free energy surfaces are then substantially nonparabolic; we
discuss this case in the section on Electron Delocalization Effect.

Heterogeneous Discharge

The diabatic two-state representation for homogeneous CT can be
extended to heterogeneous CT processes between a reactant in a condensed-
phase solvent and a metal electrode. The system Hamiltonian is then given
by the Fano–Anderson model44,45

H ¼ HB þ ½E�De � Pn	cþcþ
X

k

Ek cþk ck þ
X

k

ðHkcþk cþ h:c:Þ ½53	

where k is the lattice reciprocal vector, the two summations are over the wave
vectors of the electrons of a metal, ek is the kinetic energy of the conduction
electrons (hence ek ¼ k2=2me, with me being the electron mass), and ‘‘h.c.’’
designates the corresponding Hermetian conjugate. In Eq. [53], cþ and c are
the Fermionic creation and annihilation operators of the localized reactant
state. cþk and ck are the creation and annihilation operators, respectively, for
a conduction electron with momentum k, and Hk is the coupling of this metal
state to the localized electron state on the reactant. The energy of the localized
reactant state includes solvation by the solvent electronic polarization
(included in E) and the interaction of the electron electric field De with the
nuclear solvent polarization Pn. The transferred electron is much faster than
the ions dissolved in the electrolyte. Therefore, on the time scale of charge
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redistribution, no screening of the electron field by rearrangement of the elec-
trolyte ions occurs, and the electron field includes the field of the image charge
on the metal surface

DeðrÞ ¼ e

ð
j�eðr0Þj2r

1

jr� r0j �
1

jr� r0imj


 �
dr0 ½54	

where r0im is the mirror image of the electron at the point r0 relative to the elec-
trode plane, �eðrÞ is the wave function of the localized electron, and e is the
electron charge. (In Eq. [54], e appears because we are not using atomic units.
Thoughout this chapter, the energies are generally in electron volts.) The off-
diagonal solute–solvent coupling is dropped in the off-diagonal part of the sys-
tem Hamiltonian in Eq. [53] as no experimental or theoretical information is
currently available about the strength of the off-diagonal solute field in the
near-to-electrode region.

The free energy surface for the electron heterogeneous discharge can be
directly written as

e�bFðYdÞ ¼ ðbQBÞ�1TrnTrel½dðYd �De � PnÞr̂	 ½55	

where QB refers to the partition function of the pure solvent and the Dirac del-
ta function is invoked. In electrochemical discharge, the reactant is coupled to
a macroscopic bath of metal electrons. The total number of electrons in the
system is thus not conserved, and the grand canonical ensemble should be con-
sidered for the electronic subsystem. The density matrix in Eq. [55] then reads

r̂ ¼ ebðmeN�HÞ ½56	

Here, me is the chemical potential of the electronic subsystem containing

N ¼ cþcþ
X

k

cþk ck ½57	

electrons.
The path-integral formulation of the trace in Eq. [55] allows us to take it

exactly. This leads to the following expression for the free energy surface46

FðYdÞ ¼ ðY
dÞ2

4ld
þ EðYdÞ

2
þ b�1ln �

b ~�
2p
� i

bEðYdÞ
2p

 !�����
�����
2

2
4

3
5 ½58	

Here, Yd is the classical reaction coordinate, �ðxÞ is the gamma function, and

EðYdÞ ¼ E� me � Yd ¼ ld þ eZ� Yd ½59	
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where Z is the electrode overpotential. Equation [58] presents the exact solu-
tion for the free energy surface of an electrochemical system along the classical
reaction coordinate Yd. It includes the free energy of a classical Gaussian sol-
vent fluctuation (the first term) and the free energy of charge redistribution
between the localized reactant state and the continuum of delocalized con-
duction states of the metal (the second and the third terms). Delocalization
effectively proceeds on the range of reaction coordinates given by the effective
width

~� ¼ �þ pb�1 ½60	

built on the direct electron overlap

� ¼ p
X

k

rFjHkj2 ½61	

and the width of the thermal distribution of the conductance electrons on the
metal Fermi level (pb�1); rF is the electron density of states of the metal on its
Fermi level. In the limit

b ~�� 1 ½62	

Eq. [58] reduces to the free energy

FðYdÞ ¼ ðY
dÞ2

4ld
þ EðYdÞ

p
cot�1 EðYdÞ

~�
þ

~�

2p
ln ½ðb ~�Þ2 þ ðbEðYdÞÞ2	 ½63	

The overlap ~� can be replaced by � when �� pb�1. Equation [63] then leads
to the ground-state energy EðYdÞ (zero temperature for the electronic sub-
system) often used to describe adiabatic heterogeneous CT.45

Equations [58] and [63] indicate an important point concerning the
instantaneous energies obtained by tracing out (integrating) the electronic
degrees of freedom of the system (Eq. [15]). When the separation of electronic
states is much higher than the thermal energy kBT, the free energies can be
replaced by energies. This does not happen for heterogeneous discharge
where thermal excitations of the conductance electrons lead to entropic effects
embodied in the temperature-dependent summand in ~� (Eq. [60]).

BEYOND THE PARABOLAS

The paradigm of free energy surfaces provides a very convenient and
productive conceptual framework to analyze the thermodynamics and
dynamics of electronic transitions in condensed phases. It, in fact, replaces the
complex dynamics of a quantum subsystem interacting with a many-body
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thermal bath with the motion of a classical representative particle over the
activation barrier.47 The MH solution gives the barrier as the vertical gap
between the bottom of the initial free energy surface and the intersection point.
The problem of finding the activation barrier then reduces to two parameters:
the free energy equilibrium gap, �F0, and the classical nuclear reorganization
energy, lcl (Figure 2). From a broader perspective, as surprising as it seems, the
MH model for classical nuclear modes and its extension to quantum intramo-
lecular skeletal vibrations17 presents the only exact, closed-form solution for
FiðXÞ available currently in the field of ET.

The success of the MH theory can also, to a large degree, be attributed to
the fact that the parameters of the model are connected to spectroscopic obser-
vables. The first spectral moments for absorption and emission transitions
nabs=em fully define the classical reorganization energy lcl and the equilibrium
free energy gap �F0 through the mean energy and the Stokes shift (Eqs. [6]
and [8])

h�nst ¼ h nabs � nemð Þ ¼ 2lcl ½64	

Clearly, the MH description does not capture all possible complicated
mechanisms of ET activation in condensed phases. The general question
that arises in this connection is whether we are able to formulate an extension
of the mathematical MH framework that would (1) exactly derive from the
system Hamiltonian, (2) comply with the fundamental linear constraint in
Eq. [24], (3) give nonparabolic free energy surfaces and more flexibility to
include nonlinear electronic or solvation effects, and (4) provide an unambig-
uous connection between the model parameters and spectroscopic observa-
bles. In the next section, we present the bilinear coupling model (Q model),
which satisfies the above requirements and provides a generalization of the
MH model.

It has in fact been anticipated for many years that the CT free energy sur-
faces may deviate from parabolas. A part of this interest is provoked by experi-
mental evidence from kinetics and spectroscopy. First, the dependence of the
activation free energy, Fact

i , for the forward (i ¼ 1 ) and backward (i ¼ 2) reac-
tions on the equilibrium free energy gap �F0 (ET energy gap law) is rarely a
symmetric parabola as is suggested by the Marcus equation,48 Eq. [9]. Second,
optical spectra are asymmetric in most cases17 and in some cases do not show
the mirror symmetry between absorption and emission.49 In both types of
experiments, however, the observed effect is an ill-defined mixture of the intra-
molecular vibrational excitations of the solute and thermal fluctuations of the
solvent. The band shape analysis of optical lines does not currently allow an
unambiguous separation of these two effects, and there is insufficient informa-
tion about the solvent-induced free energy profiles of ET.

Nonlinear solvation (breakdown of assumption 4 in the Introduction)
has long been considered as the main possible origin of nonparabolic free
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energy surfaces of ET.33,50–56 It turns out, however, that equilibrium solvation
of fixed solute charges in dense liquids is well described within the linear
response approximation,37 which leads to parabolic free energy surfaces.
When the distribution of fixed molecular charges changes with excitation,
the equilibrium solvation is still linear and deviations from the linear dynamic
response are well described by linear solvation with a time-varying force con-
stant of the Gaussian fluctuations of the medium.57 The situation changes,
however, when the model of fixed charges is replaced by a more realistic model
of a distributed electronic density that can be polarized by an external field.
The solute free energy then gains the energy of self-polarization that is gener-
ally quadratic in the field of the condensed environment.58 When this self-
polarization energy changes with electronic transition, the solute–solvent cou-
pling becomes a bilinear function of solvent nuclear modes instead of a linear
function incorporated in the MH model of parabolic ET surfaces. This bilinear
coupling model (Q model) produces some very generic types of behavior that
are substantially different from what is predicted by the MH model. We thus
start our discussion of nonparabolic CT surfaces with a general analysis of the
Q model.

Bilinear Coupling Model

The MH description is isomorphic to the two-state (TS) model with a
linear coupling of the solute to a classical harmonic oscillator (L model). Since
the earliest days of the theory of radiationless transitions, a possibility of a
bilinear solute–solvent coupling (Q model) has been anticipated.38,59,60 This
problem can be interpreted as a TS solute linearly coupled to a harmonic sol-
vent mode with force constants different in the initial and final electronic states
(Duschinsky rotation of normal modes38). Although a general quantum solu-
tion of the Q model exists,59 no closed-form, analytical representation for
FiðXÞ was given. The model hence has not received wide application to ET
reactions. Instead, nonlinear solute–solvent coupling has been modeled by two
displaced free energy parabolic surfaces FiðXÞ with different curvatures.50,53

This approach, advanced by Kakitani and Mataga,50 was designed to repre-
sent nonlinear solvation effects on the ET energy gap law. However, the
approximation of the ET energy surfaces by two displaced parabolas with dif-
ferent curvatures suffers from a general drawback of not complying with the
exact linear relationship between the free energy surfaces in Eq. [24].

The Q model allows an exact formulation for FiðXÞ for classical solvent
modes.61 The instantaneous energy in this case is given by the bilinear form

EiðqÞ ¼ Ii � Ciqþ 1
2kiq

2 ½65	

where q is a collective nuclear mode driving electron transitions (the longitu-
dinal projection of the nuclear polarization Pn is an example of such a
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collective mode). In Eq. [65], both the linear coupling constant, Ci, and the
harmonic force constant, ki, change with the transition. The MH L model is
recovered when k1 ¼ k2. Note, that since the off-diagonal matrix elements of
the Hamiltonian are excluded from consideration, the formalism described
here may apply to any choice of wave functions for which such an approxima-
tion is warranted. We therefore do not specify the basis set here, and the indices
i ¼ 1; 2 refer to any basis set in which the energies EiðqÞ are obtained.

The calculations of the diabatic (no off-diagonal matrix elements) free
energy surfaces in Eq. [18] can be performed exactly for EiðqÞ given by Eq.
[65]. This procedure yields the closed-form, analytical expressions for the
free energies FiðXÞ. It turns out that the solution exists only in a limited,
one-sided band of the energy gaps X.61 Specifically, an asymptotic expansion
of the exact solution leads to a simple expression for the free energy

FiðXÞ ¼ F0i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaijjX�X0j

p
� jaij

ffiffiffiffi
li

p� �2
½66	

within a one-sided band of reaction coordinate X and

FiðXÞ ¼ 1 ½67	

outside the band.
The parameter X0 establishes the boundary of the energy gaps for which

a finite solution FiðXÞ exists. The band definition and its boundary

X0 ¼ �I ��C2

2�k
½68	

both depend on the sign of the variation of the force constant �k. The one-
sided band is defined as (Figure 5):

fluctuation band ¼ X < X0 at �k < 0
X > X0 at �k > 0

�
½69	

X 0 X 0 X

∞ ∞F (X )

∆κ < 0∆κ > 0

Figure 5 Upper energy (�k > 0) and lower energy (�k < 0) fluctuations boundaries in
the Q model.
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This result indicates a fundamental distinction between the Q and L models. In
the latter, the band of the energy gap fluctuations is not limited, leading to a
finite, even small, probability to find a fluctuation of any magnitude of the
energy gap. On the contrary, the Q model suggests a limited band for the
energy gap fluctuations. The gap magnitudes achievable due to the nuclear
fluctuations are limited by a low-energy boundary for �k > 0 and by a
high-energy boundary for �k < 0. The probability of finding an energy gap
fluctuation outside these boundaries is identically zero because there is no
real solution of the equation

X ¼ �EðqÞ ¼ E2ðqÞ � E1ðqÞ ½70	

The absence of a solution is the result of a bilinear dependence of the energy
gap �EðqÞ on the driving nuclear mode q (Figure 6).

The other model parameters entering Eq. [66] are the nuclear reorgani-
zation energies defined through the second cumulants of the reaction coordi-
nate

li ¼ 1
2bhðdXÞ2ii ¼ 1

2ki
ðCi=ai ��CÞ2 ½71	

and the relative changes in the force constants

ai ¼
ki

�k
½72	

The two sets of parameters defined for each state are not independent because
of the following connections between them

a3
1l1 ¼ a3

2l2 ½73	

q

∆E
(q

)

q

X 0

X 0

∆κ < 0 ∆κ > 0

Figure 6 The origin of the upper energy (�k < 0) and lower energy (�k > 0) fluctuation
boundaries due to a bilinear dependence of �E on q.
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and

a2 ¼ 1þ a1 ½74	

An additional constraint on the magnitudes of the parameter a1 comes from
the condition of the thermodynamic stability of the collective solvent mode in
both states, ki > 0, resulting in two inequalities

a1 > 0 or a1 < �1 ½75	

The inequalities in Eq. [75] also define the condition for the generating func-
tion (Eq. [23]) to be analytic in the integration contour in Eq. [25]. This con-
dition is equivalent to the linear connection between the diabatic free energy
surfaces, Eq. [24]. The Q model solution thus explicitly indicates that the linear
relation between the diabatic free energy surfaces is equivalent to the condition
of thermodynamic stability of the collective nuclear mode driving ET.

Equations [73] and [74] reduce the number of independent parameters of
the Q model to three: �F0, l1, and a1. Here, �F0 (Eq. [21]) is the free energy
gap between equilibrium configurations of the system (Figure 2). The fluctua-
tion boundary X0 is connected to �F0 by the relation

X0 ¼ �F0 þ l1a2
1=a2 ½76	

Compared to the two-parameter MH theory (l and �F0),12 the Q model intro-
duces an additional flexibility in terms of the relative variation of the fluctua-
tion force constant through a1. The MH theory is recovered in the limit
a1 !1.

Importantly, the new free energy surfaces lead to qualitatively new
features for the activated ET kinetics. The standard high-temperature limit
of two diabatic ET free energy surfaces

FiðXÞ ¼ F0i þ
ðX��F0 � liÞ2

4li
½77	

is reproduced when ai � 1 (the driving mode force constants ki in the two
states are similar) and, additionally, jX��F0 � lij � jaijli. Here, ‘‘�’’ and
‘‘þ’’ correspond to i ¼ 1 and i ¼ 2, respectively. The second requirement
implies that the reaction coordinate should be not too far from the free energy
minimum to preserve its parabolic form. By contrast, in the limit
jX�X0j � lijaij, the linear dependence wins over the parabolic law

FiðXÞ ¼ F0i þ jaij X��F0 þ l1
a2

1

a2

����
���� ½78	
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As a combination of these two effects, plus the existence of the fluctuation
boundary, the free energy surfaces are asymmetric with a steeper branch on
the side of the fluctuation boundary X0. The other branch is less steep tending
to a linear dependence at large X (Figure 7). The minima of the initial and final
free energy surfaces get closer to each other and to the band boundary with
decreasing a1 and l1. The crossing point then moves to the inverted ET region
where the free energies are nearly linear functions of the reaction coordinate.

The ET activation energy follows from Eq. [66]

Fact
i ¼ Fið0Þ � F0i

¼ jaij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�F0 � l1a2

1=a2j
q

�
ffiffiffiffiffiffiffiffiffiffiffi
jaijli

q
 �2

½79	

Equation [79] produces the MH quadratic energy gap law at small
j�F0j � ja1l1j and yields a linear dependence of the activation energy on
the equilibrium free energy gap at j�F0 � l1a2

1=a2j � jaijli.
A linear energy gap law is by no means unusual in ET kinetics. It is quite

often encountered at large equilibrium energy gaps. Experimental observations
of the linear energy gap law are made for intermolecular62 as well as intramo-
lecular63 organic donor–acceptor complexes, in binuclear metal–metal CT
complexes,16 and in CT crystals.64 It is commonly explained in terms of the
weak coupling limit of the theory of vibronic band shapes yielding the
linear-logarithmic dependence proportional to �Fi ln�Fi on the vertical
energy gap �Fi.

17 On the contrary, a strictly linear dependence proportional
to �Fi arises from the Q model.

To complete the Q model, one needs to relate the model parameters to
spectral observables. Already, the reorganization energies li are directly
related to the solvent-induced inhomogeneous widths of absorption (i ¼ 1)
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= 40
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βF
i (

X
 )

Figure 7 The free energy surfaces F1ðXÞ (1) and F2ðXÞ (2) at various a1; �I ¼ 0. The
dashed line indicates the position of the fluctuation boundary X0.
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and emission (i ¼ 2)

li ¼ 1
2bh2hdn2ii ¼ 1

2bs
2
i ½80	

where the Gaussian spectral width si is experimentally defined through the
half-intensity width �i as

s2
i ¼ �2

i =ð8 ln 2Þ ½81	

As is easy to see from Eq. [80] and Figure 7, the Q model predicts the breaking
of the symmetry between the absorption and emission widths (Eq. [11]) gen-
erated by a statistical distribution of solvent configurations around a donor–
acceptor complex (inhomogeneous broadening). This fact may have a signifi-
cant application to the band shape analysis of optical transitions since unequal
absorption and emission width are often observed experimently.65,66

The parameter a1 is defined through the Stokes shift and two reorganiza-
tion energies from optical widths

a1 ¼ ��l�1 h�nst þ l2ð Þ �l ¼ l2 � l1 ½82	

Similarly, the equilibrium energy gap is (cf. to Eq. [8])

�F0 ¼ hnm �
l1

2

a1

a2
2

½83	

which is equivalent to

�F0 ¼ hnm þ
l1�l

2

h�nst þ l2

ðh�nst þ l1Þ2
½84	

The Stokes shift and two second spectral moments fully define the parameters
of the model. In addition, they should satisfy Eqs. [73] and [74]. The latter
feature establishes the condition of model consistency that is important for
mapping the model onto condensed-phase simulations that we discuss below.

The connection of the model parameters to the first and second spectral
cumulants enables one to build global, nonequilibrium free energy surfaces of
ET based on two cumulants obtained at equilibrium configuration of the sys-
tem. This allows one to apply the model to equilibrium computer simulations
data or to spectral modeling. Compared to the MH picture of intersecting
parabolas, the Q model predicts a more diverse pattern of possible system
regimes including (1) an existence of a one-sided band restricting the range
of permissible reaction coordinates, (2) singular free energies outside the fluc-
tuation band, and (3) a linear energy gap law at large activation barriers. The
main features of the Q and L models are compared in Table 1.
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Electron Transfer in Polarizable
Donor–Acceptor Complexes

The mathematical model incorporating the bilinear solute–solvent
coupling considered above can be realized in various situations involving non-
linear interactions of the CT electronic subsystem with the condensed-phase
environment. The most obvious reason for such effects is the coupling of the
two states participating in the transition to other excited states of the donor–
acceptor complex. These effects bring about polarizability and electronic delo-
calization in CT systems. The instantaneous energies obtained for a two-state
donor–acceptor complex contain a highly nonlinear dependence on the solvent
field through the instantaneous adiabatic energy gap. Expansion of the energy
gap in the solvent field truncated after the second term generates a state-
dependent bilinear solute–solvent coupling characteristic of the Q model.
The second derivative of the energy in the external field is the system’s polar-
izability. It is therefore hardly surprising that models incorporating the polar-
izability of the solute67 turn out to be isomorphic to the Q model.61 Here, we
focus on some specific features of polarizable CT systems.

The common starting point to build a theoretical description of the ther-
modynamics and dynamics of the condensed environment response to an elec-
tronic transition is to assume that the transition alters the long-range solute–
solvent electrostatic forces. This change comes about due to the variation of
the electronic density distribution caused by the transition. The combined elec-
tron and nuclear charge distributions are represented by a set of partial
charges that are assumed to change when the transition occurs. Actually, a
change in the electronic state of a molecule changes not only the electron-
ic charge distribution, but also the ability of the electron cloud to polarize
in the external field. In other words, the set of transition dipoles to other elec-
tronic states is individual for each state of the molecule, and the dipolar (and
higher order) polarizability changes with the transition.

Table 1 Main Features of the Two-Parameter L Model (MH) and the Three-Parameter
Q Model

L Model Q Model

Parameters �F0; l �F0; l1; a1

Reaction coordinate �1 < X <1 X > X0 at a1 > 0
X < X0 at a1 < 0

Spectral moments �F0 ¼ hnm �F0 ¼ hnm � ½l1a1=2ð1þ a1Þ2	
l ¼ 1

2 h�nst l1 ¼ 1
2bh2hðdnÞ2i1

a1 ¼ ðh�nst þ l2Þ=ðl1 � l2Þ
Energy gap law
�F0 þ l1 � l1 Fact

1 / ð�F0 þ lÞ2 Fact
1 / ð�F0 þ l1Þ2

j�F0j � l1 Fact
1 / �F2

0 Fact
1 / j�F0j
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Optical excitations quite often generate considerable changes in fixed
partial charges, usually described in terms of the difference solute dipole
�m0 (‘‘0’’ refers here to the solute). Chromophores with high magnitudes of
the ratio �m0=R3

0, where R0 is the effective solute radius, are often used as
optical probes of the local solvent structure and solvation power.68 High
polarizability changes are also quite common for optical chromophores,69 as
is illustrated in Table 2. Naturally, the theory of ET reactions and optical tran-
sitions needs extension for the case when the dipole moment and polarizability
both vary with electronic transition:

m01 ! m02 a01 ! a02 ½85	

To derive the instantaneous free energies Ei, one needs an explicit model
for a dipolar polarizable solute in a dipolar polarizable solvent. This need is
addressed by the Drude model for induced solute and solvent dipole
moments.70 The Drude model represents the induced dipoles as fluctuating
vectors: pj for the solvent molecules and p0 for the solute. The potential energy
of creating a fluctuating induced dipole p is given by that of a harmonic oscil-
lator, p2=2a, with the polarizability a appearing as the oscillator mass. The
system Hamiltonian Hi is the sum of the solvent–solvent, Hss, and solute–
solvent, H

ðiÞ
0s , parts, giving

Hi ¼ H
ðiÞ
0s þHss ½86	

In Hi, the permanent and induced dipoles add up resulting in the solute–
solvent and solvent–solvent Hamiltonians in the form

H
ðiÞ
0s ¼ Ii þUrep

0s �
X

j

ðm0i þ p0Þ � T0j � ðmj þ pjÞ þ ð1=2a0iÞ½o�2
0 _p2

0 þ p2
0	 ½87	

Table 2 Ground-State Polarizability (a1) and Trace of the Tensor of Polarizability
Variation (1/3)Tr[�a] for Several Optical Dyes and Charge Transfer Complexes

Chromophore a1/Å3 (1/3)Tr[�a]/Å3

Anthracene 25 17
2,20-Bipyridine-3,30diol 21 11
Bis(adamantylidene) 42 29
1-Dimethylamino-2,6-dicyano-4-methylbenzene 22 35
Tetraphenylethylene 50 38
[(NC)5FeIICNOsIII(NH3)5]� 57
[(NC)5OsIICNRuIII(NH3)5]� (190) 317a

aFor two different CT transitions.
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and

Hss ¼ Urep
ss � 1

2

X
j;k

ðmj þ pjÞ � ~Tjk � ðmk þ pkÞ þ
�

1
2a

�X
j

½o�2
e _p2

j þ p2
j 	 ½88	

Here, Tjk is the dipole–dipole interaction tensor, and ~Tjk ¼ Tjkð1� djkÞ; Urep
0s

and Urep
ss stand for repulsion potentials, and o0 ¼ �E12=�h, where �E12 is the

adiabatic gas-phase energy gap (Eq. [29]).
The statistical average over the electronic degrees of freedom in Eq. [15]

is equivalent, in the Drude model, to integration over the induced dipole
moments p0 and pj. The Hamiltonian Hi is quadratic in the induced dipoles,
and the trace can be calculated exactly as a functional integral over the
fluctuating fields p0 and pj.

39,67 The resulting solute–solvent interaction energy
is67

E0s;i ¼ Ii þUrep
0s þUdisp

0s;i � aefeim
2
0i � feim0i � Rp � 1

2a0ifeiR
2
p ½89	

Here, Rp is the reaction field of the solvent nuclear subsystem, and the factor

fei ¼ 1� 2aea0i½ 	�1 ½90	

describes an enhancement of the condensed-phase solute dipole and polariz-
ability by the self-consistent field of the electronic polarization of the solvent.

For the statistical average over the nuclear configurations, generating the
distribution over the solute energy gaps (Eq. [18]), one needs to specify the
fluctuation statistics of the nuclear reaction field Rp. A Gaussian statistics of
the field fluctuations35 implies using the distribution function

PðRpÞ ¼ 4p apkBT
� ��1=2

exp½�bR2
p=4ap	 ½91	

where ap is the response coefficient of the nuclear solvent response. Combined
with the Gaussian function PðRpÞ, Eq. [89] is essentially equivalent to the Q
model (Eq. [65]). The vector of the nuclear reaction field plays the role of the
nuclear collective mode driving activated transitions (q). One can then directly
employ the results of the Q model to produce the diabatic free energy surfaces
of polarizable donor–acceptor complexes or to calculate the spectroscopic
observables.

The reorganization energies follow from Eq. [71] and take the following
form for polarizable chromophores:

li ¼ ðapfi=feiÞ �~m0 þ 2apfi�~a0m0i

� �2 ½92	
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The parameter fei is defined by Eq. [90]. It scales the solute dipole moment and
the polarizability yielding the effective difference values

�~m0 ¼ fe2m02 � fe1m01 �~a0 ¼ fe2a02 � fe1a01 ½93	

The parameter

fi ¼ 1� 2a a0i½ 	�1 ½94	

represents the self-consistent reaction field of the solvent including both the
electronic and nuclear polarization components; a ¼ ae þ ap, where ae is the
solvent response coefficient of the solvent electronic polarization. The electronic
and total solvent response coefficients can be evaluated from the dielectric
cavity or explicit solvent models.5,71,72 The dielectric continuum estimate
for a spherical solute yields

ae ¼
1

R3
0

E1 � 1

2E1 þ 1
a ¼ 1

R3
0

Es � 1

2Es þ 1
½95	

where E1 and Es are the high frequency and static dielectric constants of the
solvent. When the solute polarizability is constant, the reorganization energy
is the same in both reaction states ð f ¼ f1 ¼ f2; fe ¼ fe1 ¼ fe2Þ and is given by
the well-known relation73

l ¼ af � ae feð Þ�m2
0 ½96	

A polarizability change leads to a significant variation of the reorganiza-
tion energy, which is illustrated in Figure 8, where li are plotted against a02.
As can be seen, the reorganization energy approximately doubles with excita-
tion when the excited-state polarizability is about 50% higher than the
ground-state value. Such polarizability differences are not uncommon for opti-
cal chromophores (Table 2). The effect of the negative polarizability variation
is much weaker, and l2 is only slightly smaller than l1.

From the Q model, the solvent-induced shift of the equilibrium free
energy gap F0i ¼ Ii þ�Fs;i is given by the following relation:

�Fs;i ¼ �2apfi �~m0 �m0i þ apfi�~a0 m2
0i

� �
½97	

Also, the solvent-induced Stokes shift between the absorption and emission
first spectral moments is

h�nst ¼ hnabs � hnem

¼ 2ap�~m0 � ½ f2m02 � f1m01	 þ 2a2
p�~a0½ðf2m02Þ2 � ðf1m01Þ2	 ½98	
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Both the free energy gap and the Stokes shift include two contributions: one
arising from the variation of the solute dipole (the first term) and one due to
the polarizability change (the second term). The Stokes shift is hence nonzero
even if the charge distribution does not change in the course of the transition
(m02 ¼ m01).

The polarizability difference determines the relative change in the
frequency of the solvent driving mode given by the parameter a1 of the Q
model

a1 ¼ �
fe1

2ap f1�~a0
½99	

The fact that the parameter a1 is connected to spectroscopic moments for
absorption and emission transitions opens an interesting opportunity to derive
the polarizability change of optical chromophores from spectroscopic first and
second moments. The equation for the polarizability change is as follows:

�~a0 ¼
1

2l1

�l
h�nst þ l2

~m02 � ~m01
h�nst þ l1

h�nst þ l2


 �2

½100	
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Figure 8 Dependence of the solvent reorganization energy in the neutral (1, m01) and
charge-separated (2, m02) states on the polarizability of the final state a02. The solvent
response coefficients are estimated from the continuum dielectric model (Eq. [95]).
Solute and solvent parameters are m01 ¼ 0, m02 ¼ 15 D, a01 ¼ 20 Å3, R0 ¼ 4 Å, E1 ¼ 2,
Es ¼ 30. In this and subsequent figures, some of the axes are labeled as the ratios shown
in order to make the quantities dimensionless. For example, the ordinate in this plot
is in units of electron volts, and the abscissa is in units of cubic angstroms.
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In many practical cases, the factors fei are very close to unity and can be
omitted. The parameters ~a0i and ~m0i are then equal to their gas-phase values
a0i and m0i. Equation [100] then gives the polarizability change in terms of
spectroscopic moments and gas-phase solute dipoles. Experimental measure-
ment and theoretical calculation of �a0 ¼ a02 � a01 is still challenging.
Perhaps the most accurate way to measure �a0 presently available is that
by Stark spectroscopy,74–76 which also gives �m0. Equation [100] can there-
fore be used as an independent source of �a0, provided all other parameters
are available, or as a consistency test for the band shape analysis.

One of the consequences of a nonzero �a0 is that the relation between
the solvent-induced Stokes shift and the corresponding spectral width (lv ¼ 0)

h�nst ¼ bs2 ½101	

which is valid for linear solvation response and �a0 ¼ 0, does not hold any
more. In Figure 9, the widths bs2

i are plotted versus the Stokes shift obtained
by varying the static dielectric constant of the solvent in the range Es ¼ 3 – 65.
The aborption width deviates downward from the unity slope line predicted
by Eq. [101], and the emission width goes upward. The opposite behavior fol-
lows from nonlinear solvation effects:77 the absorption width deviates upward
from Eq. [101], and the emission width goes downward. This situation arises
because nonlinear solvation results in narrowing of emission lines in contrast
to the broadening effect of �a0 > 0. The two effects, therefore, tend to
compensate each other for �a0 > 0 and to enforce each other for �a0 < 0.

Both the inequality of the charge separation (CS) and charge recombina-
tion (CR) reorganization energies (l1 6¼ l2, Figure 8) and the deviation from
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Figure 9 Absorption (abs.) and emission (em.) widths obtained by changing the static
solvent dielectric constant in the range Es ¼ 3� 65 versus the Stokes shift; E1 ¼ 2:0.
The dash–dotted line indicates the equality h�nst ¼ bs2 is valid for �a0 ¼ 0.
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the width/Stokes shift relation (Eq. [101], Figure 9) are indicators of a non-
parabolic form of the CS and CR free energy surfaces. Another indication of
this effect is the energy gap law. The energy gap law refers to the dependence
of the activation energy of a reaction on the difference in the Gibbs energy
between the products and reactants.34,38,50 The Marcus equation, Eq. [9], is
an example of the energy gap law. Experimentally, the energy gap law is mon-
itored by changing the gas-phase component of �F0 through chemical substi-
tution of the donor and/or acceptor units.48 The solvent component of �Fi is
usually assumed to be reasonably constant. Figure 10 shows the activation
energy of the forward (charge separation, CS) reaction plotted against
�FCS ¼ �F0 and backward (charge recombination, CR) reaction plotted
against �FCR ¼ ��F0 for the transition m01 ¼ 0 ! m02 ¼ 15 D and a01 ¼
20 Å3 ! a02 ¼ 40 Å3. Two important effects of nonzero �a0 manifest them-
selves in Figure 10. First, in contrast to the case of zero �a0, the maxima of the
CS and CR curves do not coincide, as is suggested by Eq. [9]. Second, the CR
curve is broader and shallower from the side of negative energy gaps compared
to the CS curve.

The energy gap law for thermally activated ET reactions is often
obtained by superimposing CS and CR data on a common scale of �F0.78

For such a procedure, depending on the energy range studied, two outcomes
can be predicted. For a narrow range of �FCS and �FCR values close to zero,
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Figure 10 ET energy gap law for the charge separation (CS, m01 ! m02, �FCS ¼ �F0)
and charge recombination (CR, m02 ! m01, �FCR ¼ ��F0) reactions at a01 ¼ 20 Å3

and a02 ¼ 40 Å3. Parameters are as in Figure 8. The points and dashed line are drawn
to illustrate two possible outcomes of combining CS and CR experimental data in one
plot with a common energy gap scale (see the text). The open circles correspond to
crossing curves, whereas the solid squares correspond to a single curve bridged
by the dashed line.
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intersection of the two curves (illustrated by circles in Figure 10) may occur.
Such a behavior was indeed observed in Ref. 78 for a series of porphyrin–
quinone diads in tetrahydrofuran. Maxima of the CS and CR curves get
closer to each other with decreasing solvent polarity, and, in fact, no curve
crossing was seen for the same systems in benzene as a solvent.78 When the
normal region of CS is combined with the inverted region for CR, another sce-
nario is possible. The two branches (shown by squares in Figure 10) fitted by a
single curve (the dashed line in Figure 10) result in a plateau in the energy gap
law (a picture reminiscent of this behavior can be seen in Figure 4 of Ref. 79).

Nonlinear Solvation Effects

Experiment provides very limited evidence whether the free energy sur-
faces of ET should be calculated invoking the linear or nonlinear solvent
response. In the absence of direct experimental evidence, the problem of
nonlinear solvation effects on the ET free energy surfaces has been approached
by computer simulations33,51–53 and liquid-state solvation theories (integral
equations80 and perturbation techniques81). In computer simulations, the
free energy surfaces are calculated either directly by umbrella sampling
techniques82 or indirectly by generating a few equilibrium cumulants. In
both cases, the lack of a general analytical framework to generate global
free energy surfaces from limited data available from simulations considerably
impedes the application of the simulation results to generate optical band
shapes or to make predictions concerning the ET energy gap law.

The Q model considered above may provide enough flexibility to be used
as an analytical background to analyze condensed-phase simulations of the ET
energetics. The great advantage of the model is that it requires only two first
equilibrium cumulants of the energy gap fluctuations for each electronic state
to generate FiðXÞ in the whole range of X values in the permissible fluctuation
band. The applicability of the model to mapping the simulations can be tested
on the consistency requirement given by Eq. [73]. Rewritten in terms of the
moments of the reaction coordinate X, this requirement implies that the factor

g ¼ hðdXÞ2i1
hðdXÞ2i2

hðdXÞ2i2 þ 2kBT�hXi
hðdXÞ2i1 þ 2kBT�hXi

 !3

½102	

(�hXi ¼ hXi2 � hXi1) should obey the condition

g ¼ 1 ½103	

Table 3 lists the parameters g extracted from simulations available in the
literature. The condition of Eq. [103] holds very well indeed, which allows one
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to apply the Q model to generating FiðXÞ from equilibrium simulations.
Figure 11 (left panel) compares the results of the analytical Q model with
simulated free energy surfaces for a dipolar solute in a lattice of dipolar
hard spheres (DHS) (the two sets of curves coincide on the plot scale). A dipo-
lar lattice as a solvent is chosen because it generates a far larger nonlinear sol-
vation effect than nonpolarizable and polarizable liquids of the same polarity
(Figure 11). The parameter

a1 ¼ �
2kBT�hXi þ hðdXÞ2i2
hðdXÞ2i2 � hðdXÞ2i1

½104	

of the Q model serves as an indicator of the strength of nonlinear solvation
effects (the linear response is recovered in the limit a1 !1). The right panel

Table 3 Mapping of the Q Model on Simulation Data for Charge Separation
Reactions (Energies are in kcal/mole)

Solvent h�nst
a l1 l2 a1 g Reference

Lattice of point dipoles 157 121.1 48.3 2.82 1.01 54
Lattice of point dipoles 14.3 9.1 5.6 5.6 1.00 61
Dipolar liquid 20.3 10.5 8.7 14 1.01 61
Polar liquid 50 27.0 17.4 7.04 1.04 53
Polar liquid 267 231.5 67.1 2.03 1.04 55
Water 421 164.4 181.2 �35.8 0.99 56

ah�nst ¼ hXi1 � hXi2.
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Figure 11 Left panel: F1ðXÞ (1) and F2ðXÞ (2) from the analytical Q model (dashed lines)
and from simulations (dash–dotted lines) at m01=m ¼ 2 and m02=m ¼ 10 in the dipolar
lattice with bm2=s3 ¼ 1:0; R0=s ¼ 0:9; s is the hard-sphere diameter of the solvent
molecules; m is the solvent dipole moment. The dashed and dash–dotted curves
essentially superimpose. Right panel: 1=a1 versus �m0=m. Circles indicate the lattice
DHS solvent, squares correspond to a liquid DHS solvent, and triangles indicate a
nonpolarizable solute in a polarizable DHS liquid; bm2=s3 ¼ 1, a=s3 ¼ 0:05, a is the
solvent polarizability.
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in Figure 11 shows the dependence of a1 on the magnitude of solute’s dipole.
The dipolar lattice demonstrates a considerably higher extent of nonlinear sol-
vation compared to dipolar liquids. The reason for this effect is that the lattice
dipoles are immobilized and the orientational saturation is not compensated by
local density compression as happens in liquid solvents.83

Electron Delocalization Effects

Equations [41]–[42] give a general, exact solution for the free energy sur-
faces of a two-level system characterized by two collinear vectors: differential,
�Eab, and off-diagonal, Eab, electric fields of the donor–acceptor complex.
When the off-diagonal matrix elements are nonnegligible, the free energy sur-
faces are substantially nonparabolic. They are defined by five parameters: ld,
�Fd

s , �Iab, Hab, and aab. A careful choice of the basis set allows the elimina-
tion of one parameter. Two approaches can be employed. In the adiabatic basis
set, ff1;f2g, the gas-phase ET matrix element is zero, H12 ¼ 0. Alternatively,
one can define the basis set by demanding the off-diagonal matrix element of
the solute electric field be zero, aab ¼ 0. This choice sets up the generalized
Mulliken–Hush (GMH) basis.7 These two approaches are essentially equiva-
lent in terms of building the CT free energy surfaces,42 but the adiabatic basis
may be more convenient for practical applications. The reason is that most
quantum chemical software packages are designed to diagonalize the gas-
phase Hamiltonian matrix, thus generating the adiabatic basis and corres-
ponding adiabatic matrix elements of the solute electric field.

There are several fundamental reasons why the GMH and adiabatic for-
mulations are to be preferred over the traditionally employed diabatic formu-
lation. The definition of the diabatic basis set is straightforward for
intermolecular ET reactions when the donor and acceptor units are separated
before the reaction and form a donor–acceptor complex in the course of diffu-
sion in a liquid solvent. The diabatic states are then defined as those of sepa-
rate donor and acceptor units. The current trend in experimental design of
donor–acceptor systems, however, has focused more attention on intramolecu-
lar reactions where the donor and acceptor units are coupled in one molecule
by a bridge.22 The direct donor–acceptor overlap and the mixing to bridge
states both lead to electronic delocalization,75,76 with the result that the cen-
ters of electronic localization and localized diabatic states are ill-defined. It is
then more appropriate to use either the GMH or adiabatic formulation.

There is an additional, more fundamental, issue involved in applying the
standard diabatic formalism. The solvent reorganization energy and the sol-
vent component of the equilibrium free energy gap are bilinear forms of
�Eab and Eav (Eqs. [45] and [47]). A unitary transformation of the diabatic
basis (Eq. [27]), which should not affect any physical observables, then
changes �Eab and Eav, affecting the reorganization parameters. The activation
parameters of ET consequently depend on transformations of the basis set!
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This situation is of course not satisfactory as observable quantities should be
invariant with respect to unitary basis transformations.84 Here, we outline the
adiabatic route to a basis-invariant formulation of the theory.42

In the adiabatic gas-phase basis, the number of independent parameters
drops to four: lad, �Fad

s , �E12, and a12, where the superscript ‘‘ad’’ refers to
the adiabatic representation in which �E12 is the gas-phase gap between the
eigenenergies, Eq. [29]. The equation for the free energy surfaces can then be
rewritten in the basis-invariant form

F
ðYadÞ ¼ ðYadÞ2

4�e2lI

 1

2�EðYadÞ þ C ½105	

with

�EðYadÞ ¼ �E2
12 þ 2�E12ð�e�FI

s � YadÞ þ ½�FI
s � ðYad=�eÞ	2

h i1=2
½106	

and

�e ¼ 1þ 4a2
12

� ��1=2 ½107	

The reaction coordinate is now a projection of the nuclear solvent polarization
on the adiabatic differential solute field

Yad ¼ �E12 � Pn ½108	

Both the solvent reorganization energy

lI ¼ 1
2 �E2

12 þ 4E2
12

� �1=2� wn � �E2
12 þ 4E2

12

� �1=2 ½109	

and the solvent component of the free energy gap

�FI
s ¼ � 1

2 �E2
12 þ 4E2

12

� �1=2� w � E1 þ E2ð Þ ½110	

are invariants of unitary basis transformations (Eq. [27]) and have the same
magnitude in the GMH and any diabatic basis set. This follows from the invar-
iance property of the matrix trace

X
i

Aii ¼ inv ½111	

and the expression

�A2
12 þ 4A2

12 ¼ �A2
ab þ 4A2

ab ¼ inv ½112	
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Here ‘‘inv’’ stands for an invariant in respect to transformation consistent with
the symmetry of the system. For quantum mechanical operators, this means
unitary transformations. The parameter �e in Eq. [107] quantifies the extent
of mixing between two adiabatic gas-phase states induced by the interaction
with the solvent. For a dipolar solute, it is determined through the adiabatic
differential and the transition dipole moments

�e ¼ 1þ 4m2
12

�m2
12

� ��1=2

½113	

The differential and transition dipoles can be determined from experiment: the
former from the Stark spectroscopy75,76 and the latter from absorption or
emission intensities (see below).

The parameter �e should not be confused with the actual difference in
electronic occupation numbers of the two CT states. When the eigenfunctions
f~fþðYadÞ; ~f�ðYadÞg corresponding to the eigenstates F
ðYadÞ are represented
as a linear combination of the wave functions of the adiabatic basis, ff1;f2g,

~fþðYadÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f ðYadÞ

q
f1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðYadÞ

q
f2

~f�ðYadÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðYadÞ

q
f1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f ðYadÞ

q
f2

½114	

then the parameter f ðYadÞ defines the occupation number of the adiabatic state
1 on the lower CT free energy surface at the reaction coordinate Yad. For CT
transitions in the normal region, two equilibrium minima are located on the
lower CT free energy surface. The occupation number difference in the final
and initial states can thus be defined as

�z ¼ j1� f ðY�1 Þ � f ðY�2 Þj ½115	

where Y�1 and Y�2 are two minima positioned on the lower CT surface
(Figure 12). In contrast, when transitions between the lower and upper CT
surfaces occur in the inverted CT region, the occupation number difference
becomes

�z ¼ jf ðYþÞ � f ðY�Þj ½116	

where now Yþ and Y� define the positions of equilibrium on the upper and
lower CT surfaces, respectively (Figure 13). Figure 14 illustrates the difference
in the dependence of the occupation number difference on �e in the normal
and inverted CT regions. The parameter �z is indeed close to �e for reactions
with j�FI

s j � lI. As the absolute value of the equilibrium energy gap increases,
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Figure 12 The CT adiabatic free energy surfaces in the normal CT region. The labels

hnð1Þabs and hnð2Þabs indicate two adiabatically split absorption transitions corresponding to
two minima of the lower surface with the coordinates Y�1 and Y�2 ; �e ¼ 0:7, �FI

s ¼ 0,
�E12=l

I ¼ 0:2. The gap �Emin is the minimum splitting between the upper and
lower CT surfaces (Eq. [149]).
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Figure 13 The CT adiabatic free energy surfaces in the CT inverted region; �e ¼ 0:7,
�FI

s=l
I ¼ �1:0, �E12=l

I ¼ 3:0. The points Y� and Yþ indicate the minima of the lower
and upper adiabatic surfaces, respectively. The labels hnabs=em are absorption and
emission energies, and �Emin is the minimum energy gap between the free
energy surfaces (Eq. [149]).
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�z increasingly deviates from �e. In the inverted region, �z is nearly 1 and is
almost independent of �e.

The establishment of the invariant reorganization energy lI allows one
to use electrostatic models for the reorganization energy based on solvation
of fixed charges located at molecular sites5 instead of using a more compli-
cated algorithm through the delocalized electronic density.84 This ability to
use electrostatic fixed charge models instead of distributed density of quantum
mechanics is permitted because the invariant reorganization energy sets up the
characteristic length between centers of charge localization to be used in elec-
trostatic models of solvent reorganization7

rCT ¼ e�1 �m2
12 þ 4m2

12

� �1=2 ½117	

For self-exchange transitions, due to the relation 2m12 ¼ �mab, one gets

rCT ¼ r2
12 þ r2

ab

� �1=2 ½118	

where rab is the distance between the centers of electron localization in the dia-
batic representation.

The mixing parameter �e makes the CT free energy surfaces dependent
on the gas-phase, adiabatic transition dipole moment. The standard extension
of the MH theory on the case of strong electronic overlap85 assumes a nonzero
ET matrix element Hab, but neglects the diabatic transition dipole (or eliminates
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Figure 14 Dependence of the occupation number difference �z on the mixing
parameter �e at �E12=l

I ¼ 0:2, �FI
s ¼ 0 (solid line); �E12=l

I ¼ 0:5, �FI
s ¼ 0 (dot–

dashed line); �E12=l
I ¼ 3:0, �FI

s=l
I ¼ �1:0 (dashed line).
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it by choosing the GMH basis set7). In this case, the CT free energy surface is
defined by Eq. [41] with the following energy gap:

�EdðYdÞ ¼ ½�E2
12 þ 2�Iabð�Fd

s � YdÞ þ ð�Fd
s � YdÞ2	1=2 ½119	

The diabatic and adiabatic formulations can be compared when the condition
Eab ¼ 0 is imposed. Then, one obtains Yad ¼ �eYd, lI ¼ ld, �FI

s ¼ �Fd
s .

Figure 15 compares the free energy surfaces given by Eqs. [105] and
[106] to those from Eqs. [41] and [119] for self-exchange CT (�Iab ¼ 0,
�Fd

s ¼ �FI
s ¼ 0). Several important distinctions between the two formulations

can be emphasized. (1) The positions of transition points do not coincide. The
maximum of F�ðYadÞ in the present formulation deviates from the position of
the resonance of the diagonal elements of the two-state Hamiltonian matrix,
Yz ¼ 0, and is approximately equal to Yz ¼ ð�eÞ2�E12 when �E12=l

I � 1
and �FI

s ¼ 0. (2) The splitting of the lower and upper adiabatic surfaces is lar-
ger in the MH formulation than in the basis-invariant formulation. For self-
exchange CT, the splitting is 2jHabj ¼ �E12 in the former case and

�E12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��e2

p
in the latter case. (3) The MH formula involves the diabatic

equilibrium free energies Fd
0i without donor–acceptor overlap. The gap �Fd

0

is therefore zero for self-exchange reactions. The adiabatic representation
includes explicitly the donor–acceptor overlap that results in a symmetry-
breaking splitting of the gas-phase electronic states to the energy �E12.
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Figure 15 Adiabatic free energy surfaces F
ðYadÞ in the present model (solid lines,
Eqs. [105] and [106]) and in the Marcus–Hush formulation (long-dashed lines, Eqs. [41]
and [119]) for self-exchange CT with �FI

s ¼ �Fd
s ¼ 0, lI ¼ ld ¼ 1 eV, �E12 ¼ 0:2 eV,

and �e ¼ 0:7. All free energy surfaces are vertically shifted to have zero value (dotted
line) at the position of the left minimum.
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Electronic transitions in the gas phase thus proceed from the lower state E1 to
the upper state E2. In condensed phases, these states are of course ‘‘dressed’’
by a solvating environment, but at �FI

s ¼ 0 one gets a nonzero equilibrium
driving force approximately equal to �e�E12 when �E12=l

I � 1. The factor
�e in the free energy driving force appears because the free energy represents
the work done to transfer the charge �e (�z  �e at �E12=l

I � 1, see
Figure 14) over the energy barrier �E12 that results in �e�E12 for small split-
tings �E12.

Note above that the GMH7 and adibatic formulations are equivalent in
terms of building the CT free energy surfaces. The distinctions seen in
Figure 15 may seem to contradict to this statement. The problem is resolved
by noting that the requirement Eab ¼ 0 imposed by the GMH formulation
makes the diabatic energy gap nonzero for self-exchange transitions:

�IGMH
ab ¼ �e�E12 ½120	

which is indeed the gap shown in Figure 15. The standard MH formulation85

is then recovered when m12 ¼ 0 for symmetry reasons and thus �e ¼ 1.

Nonlinear Solvation versus Intramolecular Effects

The origin of nonparabolic free energy surfaces of ET can be divided
into two broad categories: (1) intramolecular electronic effects and (2)
nonlinear solvation effects. Although these two origins can, at some instances,
be treated within the same mathematical framework (Q model), there are sub-
stantial differences between them at both the quantitative and qualitative
levels. From the quantitative viewpoint, nonlinear solvation produces a
much weaker distortion of ET parabolas than do the polarizability change
and electronic delocalization. From a qualitative viewpoint, the two categories
of effects produce a nonzero nonparabolic distortion in different orders of the
expansion of the system Hamiltonian in the driving solvent mode.

The free energy FðPÞ invested in creation of a nonequilibrium solvent
polarization P can be expressed as a series in even powers of P with the two
first terms as follows:

FðPÞ ¼ a1P2 þ a2P4 ½121	

where a1; a2 > 0. The interaction energy of the solute field with the solvent
polarization, U0s, is linear in P

U0s ¼ �bP b > 0 ½122	

For weak solute–solvent interactions, deviations from zero polarization of the
solvent are small, and one can keep only the first, harmonic, term in Eq. [121].
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Anharmonic higher order terms gain importance for stronger solute-solvent
couplings requiring a2 6¼ 0 in Eq. [121]. The nonequilibrium solvent polariza-
tion can be considered as an ET reaction coordinate. The curvature of the cor-
responding free energy surface is

F00ðP0Þ ¼ 2a1 þ 12a2P2
0 ½123	

at the minimum point P0 defined by the condition F0ðP0Þ ¼ b. Equation [123]
indicates that nonlinear solvation effects, usually associated with dielectric
saturation, enhance the curvature compared to the linear response result
F00 ¼ 2a1. This enhancement of curvature leads to a decrease in the solvent
reorganization energy. The effect is, however, relatively small as it arises
from anharmonic expansion terms.

When the electron is partially delocalized, one should switch to the adia-
batic representation in which the upper and lower CT surface are split by an
energy gap depending on P. If this energy gap is expanded in P with truncation
after the second-order term, we come to the model of a donor–acceptor com-
plex whose dipolar polarizabilities are different in the ground and excited
states. The solute–solvent interaction energy then attains the energy of solute
polarization that is quadratic in P

U0s ¼ �bP� cP2 c > 0 ½124	

The total system energy FðPÞ þU0s includes, therefore, a quadratic in P term
with the coefficient ða1 � cÞ. This quadratic term initiates a revision of the fre-
quency of solvent fluctuations driving CT. The curvature of harmonic surfaces
decreases producing higher reorganization energies. Since the solute polariz-
ability contributes already to the harmonic term, its effect on the reorganiza-
tion energy is stronger than that of nonlinear solvation.

The revision of characteristic frequencies of nuclear modes is a general
result of electronic delocalization holding for both the intramolecular vibra-
tional modes65 and the solvent modes. The fact that this effect shows up
already in the harmonic expansion term makes it much stronger compared
to nonlinear solvation in respect to nonparabolic distortion of the free energy
surfaces.

OPTICAL BAND SHAPE

Spectral measurements open a door to access the rate constant para-
meters of ET. The connection between optical observables and ET parameters
can be divided into two broad categories: (1) analysis of the optical band pro-
file (band shape analysis) and (2) the use of integrated spectral intensities (see
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below). The former route connects the spectral moments to ET activation
parameters (Table 1). The latter is applied to extract off-diagonal matrix ele-
ments, most often the ET matrix element and the transition dipole. Band shape
analysis of optical spectra has been successfully used in ET research for many
years, and our present knowledge about mechanisms and energetics of ET ori-
ginates largely from spectroscopic measurements.16 The understanding of elec-
tronic and solvent effects on the ET kinetics has been recently supplemented
by extensive information about the intramolecular, vibronic envelope from
resonance Raman spectroscopy.86

The fast growth of the field of ET research and, especially, the design of
new bridge-coupled donor–acceptor pairs imposes new demands on the theory
of optical spectra. Several major challenges are currently faced by the field.
They may be summarized as follows: (1) The presently existing band-shape
analysis has been created for ET transitions.17 It has not anticipated strong
electronic coupling and thus fails when applied to transitions with high mag-
nitudes of the ET matrix element.87 (2) The model is limited to two states only.
Mixing to higher excited states, resulting in intensity borrowing, is commonly
neglected. Extension to more then two states is especially important for photo-
induced CT where a CT state is formed from and is strongly coupled to a
locally exited state of either donor or acceptor unit.17,88 (3) There are indica-
tions in the literature that the common assumption of complete decoupling
between the intramolecular vibrational modes and solvent thermal motions
may fail for some systems.89,90 Understanding the origin of and full account
for these effects should be incorporated into new models of optical bands.

The challenges outlined above still await a solution. In this section, we
show how some of the theoretical limitations employed in traditional formu-
lations of the band shape analysis can be lifted. We discuss two extensions of
the present-day band shape analysis. First, the two-state model of CT transi-
tions is applied to build the Franck–Condon optical envelopes. Second, the
restriction of only two electronic states is lifted within the band shape analysis
of polarizable chromophores that takes higher lying excited states into account
through the solute dipolar polarizability. Finally, we show how a hybrid model
incorporating the electronic delocalization and chromophore’s polarizability
effects can be successfully applied to the calculation of steady-state optical
band shapes of the optical dye coumarin 153 (C153). We first start with a gen-
eral theory and outline the connection between optical intensities and the ET
matrix element and transition dipole.

Optical Franck–Condon Factors

Absorption of light by molecules, resulting in electronic excitations, is
caused by the interaction of the bound molecular electrons with the electric
field of the radiation. In the dipolar approximation, the interaction of the
dipole operator of the solute m̂0 with the time-dependent electric field EðtÞ
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of the radiation is the perturbation that drives the electronic excitation. The
time-dependent interaction Hamiltonian is

�f ðnDÞ m̂0 � EðtÞ ½125	

where the parameter f ðnDÞ accounts for the deviation of the local field acting
on the solute dipole from the external field EðtÞ; nD is the solvent refractive
index. Dielectric theories91 predict for spherical cavities

f ðnDÞ ¼
3n2

D

2n2
D þ 1

½126	

The perturbation given by Eq. [125] mixes the electronic states for which
the off-diagonal matrix element of the dipole operator, mjk, is nonzero. The
latter is called the transition dipole.49 Mixing of electronic states by a time-
dependent external field leads to the dependence of the corresponding elec-
tronic state populations on time. The rate constant of the population kinetics is
given by the transition probability. Quantum mechanical perturbation theory,
limited to the first order in the interaction perturbation, is commonly used to
calculate the one-photon transition probability and absorption intensity.15,92

This formalism, combined with the Einstein relation between absorption
intensity and the probability of spontaneous emission,49,92 leads to experimen-
tal observables, the extinction coefficient of absorption, EðnÞ (cm�1 M�1), and
the emission rate, IemðnÞ (number of photons per unit frequency), as functions
of the light frequency n. They are given by the following relations:

EðnÞ
n
¼ 8p3NA

3000 ðln 10Þ c

f 2ðnDÞ
nD

G�ðnÞ ½127	

and

IemðnÞ ¼
64p4n3

3c3
nDf 2ðnDÞGþðnÞ ½128	

In Eq. [127], NA is the Avogadro number, and c in Eqs. [127] and [128] is the
speed of light in vacuum.

The extinction coefficient and emission rate are defined through the spec-
tral density function G
ðnÞ that combines the effects of solvent-induced inho-
mogeneous broadening and vibrational excitations of the donor–acceptor
complex. A substantial simplification of the description can be achieved if
the two types of nuclear motions are not coupled to each other. The spectral
density G
ðnÞ is then given by the convolution17

G
ðnÞ ¼ j ~m12ðhnÞj2
ð

FCWDs

ðxÞFCWDv


ðn� xÞdx ½129	
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of the gas-phase vibronic envelope FCWDv

ðnÞ with the normalized solvent-

induced band shape

FCWDs

ðnÞ ¼ hd �EðqÞ � hnð Þi
 ½130	

where the average is taken over the solvent configurations statistically weighted
with the Boltzmann factor expð�bF
Þ with ‘‘�’’ for absorption and ‘‘þ’’ for
emission.

In Eqs. [129] and [130], FCWDv

ðnÞ and FCWDs


ðnÞ refer to the normal-
ized Franck–Condon weighted density of the vibrational excitations of the
solute (including quantum overlap integrals of the vibrational normal modes
of the solute coupled to the transferred electron17) and the normalized solvent-
induced spectral distribution function, respectively. The gap, �EðqÞ ¼
EþðqÞ � E�ðqÞ, in Eq. [130] is defined between the upper adiabatic surface
EþðqÞ and the lower adiabatic surface E�ðqÞ depending on a set of nuclear sol-
vent modes q. Because the transitions occur between the adiabatic free energy
surfaces E
ðqÞ, the unperturbed basis set in the quantum mechanical perturba-
tion theory is built on the wave functions f~f1ðqÞ; ~f2ðqÞg diagonalizing the cor-
responding two-state Hamiltonian matrix (Eq. [114]). The dependence on the
nuclear solvent configuration comes into the transition dipole moment (as cal-
culated within the two-state model, TSM)

j ~m12ðqÞj ¼ jh~f1ðqÞjm̂0j~f2ðqÞij

¼ jm12j
�E12

�EðqÞ ½131	

only through the energy gap �EðqÞ, which is equal to hn according to
Eq. [130]. This relationship is the reason for the dependence of the transition
dipole on the light frequency in Eq. [129]. Coupling to higher lying excited
states modifies Eq. [131], but if the dependence on the solvent field comes
into ~m12ðqÞ only through the instantaneous energy gap, the transition dipole
can still be taken out of the solvent average with, however, a more compli-
cated dependence on the frequency of the incident light.17,93 In the TSM,
one has, according to Eq. [131]

~m12ðnÞ ¼ m12�E12=hn ½132	

where m12 is the gas-phase adiabatic transition dipole moment.
The vibronic envelope FCWDv


ðnÞ in Eq. [129] can be an arbitrary gas-
phase spectral profile. In condensed-phase spectral modeling, one often simpli-
fies the analysis by adopting the approximation of a single effective vibrational
mode (Einstein model) with the frequency nv and the vibrational reorganiza-
tion energy lv. The vibronic envelope is then a Poisson distribution of
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individual vibrational excitations44

FCWDv

ðnÞ ¼ e�Sv

X1
m¼0

Sm
v

m!
d hn
mhnvð Þ ½133	

where Sv the Huang–Rhys factor Sv ¼ lv=hnv (cf. to Eq. [38]). The whole
inhomogeneous line shape then takes the form of a weighed sum over the
solvent-induced bands, each shifted relative to the other by nv

G
ðnÞ ¼ j ~m12ðhnÞj2e�Sv

X1
m¼0

Sm
v

m!
FCWDs


ðn
mhnvÞ ½134	

Equation [134], given in the form of a weighted sum of individual sol-
vent-induced line shapes, provides an important connection between optical
band shapes and CT free energy surfaces. Before turning to specific models for
the Franck–Condon factor in Eq. [134], we present some useful relations,
following from integrated spectral intensities, that do not depend on specific
features of a particular optical line shape.

Absorption Intensity and Radiative Rates

Extraction of activation CT parameters requires an analysis of spectral
band shapes. One parameter, however, can be obtained from the integrated
absorption and emission intensities. Since mixing of the electronic states in
the external electric field of radiation is governed by the magnitude of the tran-
sition dipole, the transition dipole also defines the intensity of the correspond-
ing optical line. The extinction coefficient or emission rate integrated over
light frequencies then allows one to obtain the transition dipole, provided
its frequency dependence is known. [Traditionally, the transition dipole is
assumed to be frequency independent.49 This leads, however, to systematic
errors in estimates of transition dipoles from optical spectra, see below.] For
the TSM, this procedure leads to the gas-phase transition dipole. The tran-
sition dipole is important as a parameter quantifying the extent of CT delocal-
ization and to generate CT free energy surfaces in electronically delocalized
donor–acceptor complexes. It also has an important implication due to its con-
nection to the ET matrix element (through the Mulliken-Hush relation),7

which enters the rate constant of nonadiabatic ET reaction rates (Eq. [2];
see below).

Integration of absorption extinction coefficient (Eq. [127]) and emission
rate (Eq. [128]) gives two alternative estimates for the adiabatic gas-phase
transition dipole m12 (in D) within the TSM frequency-dependent ~m12ðnÞ
(Eq. [132])

m12 ¼ 9:585! 10�2

ffiffiffiffiffiffi
nD

p

�n0f ðnDÞ

ð
�nEð�nÞd�n

� �1=2

½135	
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and

m12 ¼ 3:092! 108 �n0
ffiffiffiffiffiffi
nD

p
f ðnDÞ½ 	�1

ð
IemðnÞn�1dn

� �1=2

½136	

where �n is the wavenumber (cm�1) and �n0 ¼ �E12=hc. When the emission
spectrum is not available, the radiative rate49

krad ¼
ð

IemðnÞdn ¼ 
emt�1
em ½137	

can be used; 
em and tem are the quantum yield and emission lifetime. By
defining the average frequency

nav ¼
ð

IemðnÞdn
�ð

IemðnÞn�1dn ½138	

one gets

m12 ¼ 1:786! 103 krad

�nav�n2
0nDf 2ðnDÞ

� �1=2

½139	

Equation [139] is not very practical because an accurate definition of the aver-
age wavenumber, �nav ¼ nav=c, demands knowledge of the emission spectrum
for which Eq. [136] provides a direct route to the transition dipole. But Eq.
[139] can be used in approximate calculations by assuming �nav ¼ �nem.

Equation [139] is exact for a two-state solute, but differs from the tradi-
tionally used connection between the transition dipole and the emission inten-
sity by the factor �n0=�nav.49 The commonly used combination m12�n0=�nav

appears as a result of neglect of the frequency dependence of the transition
dipole ~m12ðnÞ entering Eq. [129]. It can be associated with the condensed-
phase transition dipole in the two-state approximation.43 Exact solution for
a two-state solute makes the transition dipole between the adiabatic free
energy surfaces inversely proportional to the energy gap between them. This
dependence, however, is eliminated when the emission intensity is integrated
with the factor n�1.93

The transition dipole m12 in Eqs. [136] and [139] is the gas-phase adia-
batic transition dipole. Therefore, emission intensities measured in different
solvents should generate invariant transition dipoles when treated according
to Eqs. [136] and [139]. A deviation from invariance can be used as an indica-
tion of the breakdown of the two-state approximation and the existence of
intensity borrowing from other excited states of the chromophores (the Murrell
mechanism17,88,94). Figure 16 illustrates the difference between Eq. [139] and
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the traditional formulation. It shows the dependence of m12 (circles) and
m12�n0=�nav (squares, �n0 ¼ 25,400 cm�1) on the emission frequency �nem for
the dye C153 measured in solvents of different polarity.95 The two sets of
transition dipoles are noticeably divergent in strongly polar solvents.

Electron-Transfer Matrix Element

The transition dipole between the free energy surfaces F
ðXÞ is not the
only parameter that depends on the nuclear configuration of the solvent.
The effective ET matrix element Heff

ab ½Pn	 following from the trace of the
two-state Hamiltonian over the electronic degrees of freedom also depends
on the nuclear configuration of the solvent (Eq. [37]). In contrast to the case
of optical transitions where the dependence on the nuclear solvent configura-
tions is transformed into a frequency dependence of the transition dipole
~m12ðnÞ (Eq. [132]), the dependence of the ET matrix element Heff

ab ½Pn	 on the
nuclear field Pn should be fully included into the statistical average over Pn

when the ET rate constant is calculated in the Golden Rule perturbation
scheme over Heff

ab ½Pn	.11 The Pn dependence represents a non-Condon effect
of the solvent field on the rate preexponential factor. The result of the calcula-
tions43 is the standard Golden Rule expression9,11 for the nonadiabatic rate
constant

k
ðiÞ
NA ¼ �h�1 pb=lð Þ1=2 HMH

�� ��2FCWDið0Þ ½140	
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Figure 16 The transition dipole m12 according to Eq. [139] (�nav ¼ �nem, circles) and
m12�n0=�nem (squares) versus �nem for emission transitions in C153 in different solvents.95

The dashed lines are regressions with the slopes 0.02 (squares) and 0.27 (circles).
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with the Mulliken–Hush6 ET matrix element

HMH ¼ Hab �
ðmab ��mabÞ

�m2
ab

�Iab ½141	

where mab and �mab refer to, respectively, the gas-phase transition and differ-
ential dipole moments calculated in the diabatic basis set; �Iab is the diabatic
gas-phase energy gap. The term Mulliken–Hush6 here refers to the fact that the
matrix element in Eq. [141] is related to the projection of the adiabatic transi-
tion dipole on the direction of the difference diabatic dipole

HMH ¼ ðm12 ��mabÞ
�m2

ab

�E12 ½142	

Under the special condition that m12 and �mab are parallel, one obtains the
MH relation6,7

HMH ¼ m12

�mab
�E12 ½143	

Equations [140]–[143] provide a connection between the preexponential fac-
tor entering the nonadiabatic ET rate and the spectroscopically measured adia-
batic transition dipole m12. It turns out that the Mulliken–Hush matrix
element, commonly considered as an approximation valid for mab ¼ 0,7 enters
exactly the rate constant preexponent as long as the non-Condon
solvent effects are accurately taken into account.43 Equation [142] stresses
the importance of the orientation of the adiabatic transition dipole relative
to the direction of ET set up by the difference diabatic dipole �mab. The value
of HMH is zero when the vectors m12 and �mab are perpendicular.

Electronically Delocalized Chromophores

Equation [48] gives the Franck–Condon factor that defines the probabil-
ity of finding a system configuration with a given magnitude of the energy gap
between the upper and lower CT free energy surfaces. It can be directly used to
define the solvent band shape function96 of a CT optical transition in Eq. [134]

FCWDs

ðn
mhnvÞ ¼ Q�1



X

k¼1;2

�E0ðYkmÞj j�1
exp �bF
ðYkmÞ½ 	 ½144	

where

Q
 ¼
ð

e�bF
ðYadÞdYad ½145	
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In Eq. [144], the coordinates Ykm (k ¼ 1; 2) are two roots of the quadratic
equation

�EðYadÞ ¼ hðn
mnvÞ ½146	

given by the expression

Y1m ¼ Ymin þ�e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ðn
mnvÞ2 ��E2

min

q

Y2m ¼ Ymin ��e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ðn
mnvÞ2 ��E2

min

q ½147	

The appearance of the square root in Eq. [147] is an indication of one impor-
tant feature of delocalized CT systems: the existence of a lower limiting fre-
quency of the incident light that can be absorbed by a donor–acceptor
complex. This effect results in asymmetries of CT absorption and emission
lines as discussed below.

A real root of Eq. [146] exists only if the following condition holds:

hn " 
mhnv þ�Emin ½148	

for a vibronic transition with m phonons of vibrational excitation. The 0–0
transition (m ¼ 0) sets up the absolute minimum frequency

hnmin ¼ �Emin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��e2

p
�E12 ½149	

where �e is the gas-phase mixing parameter (Eq. [107]), and �E12 is the
gas-phase adiabatic energy gap (Eq. [29]). The energy �Emin corresponds to
the minimum splitting between the upper and lower CT free energy surfaces
(Figures 12 and 13) that occurs at the coordinate

Ymin ¼ �e2�E12 þ�e�FI
s ½150	

The transition intensity is always zero at n < nmin. The existence of the
lower transition boundary makes a profound effect on optical band shapes for
a large extent of mixing of adiabatic states. The general effect of the existence
of the minimum frequency on optical lines is to produce line asymmetry by
squeezing its red wing.20,97 We consider here this effect for the example of
transitions in the inverted CT region when both the absorption and emission
lines can be observed (Figure 13). For positively solvatochromic dyes with a
major multipole higher in the excited state than in the ground state, emission
lines are shifted more strongly to the red side of the spectrum than the absorption
lines. Therefore, the emission lines are closer to the low-energy boundary nmin
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and get narrower than the absorption lines (Figure 17). The opposite trend
holds for negatively solvatochromic dyes with higher major multipoles in their
ground states.

The lower free energy surface has two minima in the normal CT region
(Figure 12). Two absorption transitions exist in this case, even for self-
exchange reactions. The reason is the symmetry breaking induced by a non-
zero adiabatic transition dipole leading to �e < 1 (the standard MH picture,
Figure 15, is recovered when m12 ¼ 0). The energy splitting between the two
minima of the lower free energy surface gives rise to two transition frequencies

hnð1Þabs ¼ lv þ lI þ�FI
s þ�e�E12 ½151	

and

hnð2Þabs ¼ lv þ lI ��FI
s ��e�E12 ½152	

The combination of Eq. [134] with Eq. [144] provides an effective form-
alism for the band shape analysis of CT spectra when a substantial degree of
electronic delocalization is involved. Equation [134] is exact for a TS donor–
acceptor complex and, therefore, can be used for an arbitrary degree of electronic
delocalization as long as the assumption of decoupling of the vibrational and
solvent modes holds. Figure 18 illustrates the application of the band shape
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Figure 17 The normalized absorption (abs.) and emission (em.) intensities at �e ¼ 0:7
(solid lines) and �e ¼ 0:8 (long-dashed lines) versus the reduced frequency hn=lI.
The dash–dotted lines indicate the lower boundary for the energy of the
incident light nmin (Eq. [149]).
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analysis via Eqs. [134] and [144] to two CT complexes studied in Ref. 87
when the traditional band shape analysis16,17 fails to fit the experimental spec-
tra. The fitting procedure employs the simulated annealing technique in the
space of four parameters: lI, lv, nv, and �E12.

Polarizable Chromophores

The model of polarizable dipolar chromophores suggests that the 3D
nuclear reaction field of the solvent serves as a driving force for electronic tran-
sitions. Even in the case of an isotropic solute polarizability, two projections of
the reaction field should be included: the longitudinal (parallel to the differ-
ence solute dipole) component and the transverse (perpendicular to the differ-
ence dipole) component. The d function in Eq. [18] eliminates integration over
only one of these two field component. The integral still can be taken analy-
tically resulting in a closed-form solution for the Franck–Condon factor

FCWDs
i ðnÞ ¼ bAi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lijaij3

jhn�X0j

s
e�bðjaijjhn�X0jþlia2

i ÞI1 2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaij3lijhn�X0j

q
 �

½153	

where I1ðxÞ is the first-order modified Bessel function. The normalization
factor

Ai ¼ ð1� e�blia2
i Þ�1 ½154	
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Figure 18 Fits of experimental spectra in acetonitrile (solid lines)87 to Eqs. [134] and
[144] (dash–dotted lines, almost indistinguishable from the experimental spectra on the
graph scale). The labeling of the donor–acceptor complexes is according to Ref. 87.
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is included to ensure the identity

h

ð1
�1

FCWDs
i ðhnÞdn ¼ 1 ½155	

In Eq. [153], the parameters ai are given by Eqs. [74] and [99]. The reorgani-
zation energies are defined through the second spectral cumulants and are con-
nected to each other according to Eq. [73]. The boundary of the permissible
energy gaps between the two-electron states sets up the range of light frequen-
cies for which the transition intensity is nonzero. The magnitude of the spec-
tral boundary is defined for dipolar chromophores through the difference
dipole moment and the polarizability difference

X0 ¼ �I þ�Edisp þ�Find � �~m2
0

2j�~a0j
½156	

where �Edisp and �Find are the differences in dispersion and induction stabi-
lization energies between the two states. When the polarizability does not
change with the transition (�a0 ¼ 0), the spectral boundary moves to infinity,
X0 !1, and no limiting frequency exists.

The Franck–Condon factors of polarizable chromophores in Eq. [153]
can be used to generate the complete vibrational/solvent optical envelopes
according to Eqs. [132] and [134]. The solvent-induced line shapes as given
by Eq. [153] are close to Gaussian functions in the vicinity of the band max-
imum and switch to a Lorentzian form on their wings. A finite parameter a1

leads to asymmetric bands with differing absorption and emission widths. The
functions in Eq. [153] can thus be used either for a band shape analysis of
polarizable optical chromophores or as probe functions for a general band
shape analysis of asymmetric optical lines.

Hybrid Model

Both electronic delocalization and polarizability of the donor–acceptor
complex lead to a significant asymmetry between the absorption and emission
optical lines as is often observed in experiment.66,98,99 The importance of this
effect can be assessed by comparing the dependence of the observed spectral
width on solvent polarity with the prediction of MH theory. Equations [6] and
[12] can be combined to give

bh2hðdnÞ2iabs=em ¼ h�nst þ lv bhnv � 2ð Þ ½157	

The MH theory thus predicts that the absorption and emission widths are
equal to each other (Eq. [11]) and are linear functions of the Stokes shift
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h�nst with unit slope. This prediction can be dramatically violated for some
optical dyes. An illuminating example of such a breakdown is the steady-state
spectroscopy of C153 (Figure 19; data according to Ref. 99). The spectral
widths in Figure 19 are obtained from half-intensity widths �abs=em according
to Eq. [81] (in Eq. [81], i ¼ 1 and i ¼ 2 stand for absorption and emission,
respectively). As is seen from Figure 19, not only do the spectral widths differ,
but also the slopes of s2

abs=em versus h�nst have different signs for absorption
and emission transitions. This phenomenon is actually well explained by con-
sidering a combined effect of the dye polarizability and the electronic coupling
between the ground and excited electronic states on the optical band shape.

Within the TSM, the emission width is lower than the absorption width
for electronic transitions with a higher magnitude of the dipole moment in the
excited state compared to the ground state, as is seen in Figure 17. This is
indeed the feature observed in Figure 19. Despite this qualitative agreement,
the TSM is very unrealistic due to the neglect of excited electronic states of
the chromophore, leading, for example, to a negative excited state polarizabil-
ity. The polarizability of the excited state of essentially all known chromo-
phores is, on the contrary, positive, and, in the majority of cases, is higher
than that of the ground state.69 To incorporate correctly the chromophore
polarizability on the one hand and generate explicit electronic delocalization
on the other, a hybrid model was developed.100 The two states participating in
the transition are explicitly considered. Transitions to all other excited states
of the chromophore are assumed to result in polarization of the electron den-
sity defined by the dipolar polarizability �a0i (i ¼ 1; 2). The total vacuum
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Figure 19 Absorption (circles) and emission (squares) widths (Eq. [80]) versus the
Stokes shift for the coumarin dye C153 in 40 molecular solvents according to
Ref. 99. The dashed lines are regressions drawn to guide the eye.
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polarizability of the solute, a0i, treated as input available from experiment or
independent calculations, is thus split into the polarizability from the 1 $ 2
transition and the component �a0i from all other transitions. The solvent effect
on the transition between the states 1 and 2 then includes three components:
(1) solvation of the fixed charges (dipole moments) of the chromophore, (2)
self-polarization of the solute’s electronic cloud due to polarizability, and
(3) change in the electronic occupation numbers induced by the off-diagonal
coupling of the transition dipole to the solvent field.

Figure 20 compares the solvent-induced FCWD calculated in the TSM
(dash–dotted lines, Eq. [144]), the polarizable model (dashed line, Eq. [153]),
and the hybrid model (solid lines). The latter incorporates the effects of both
the electronic delocalization between the ground and excited states and polar-
izability due to the coupling of these two states to all other excited states of the
chromophore. The latter model was called the adiabatic polarizable model
(APM).100 The APM thus includes the linear and all nonlinear polarizabilities
arising from transitions between the ground and excited states and only linear
polarizability for all other states. The emission line is broader than the ab-
sorption line due to a higher excited state polarizability when electron delocal-
ization is neglected (Figure 20, dashed lines). The inclusion of electronic
delocalization through the transition dipole narrows the emission line and
reduces the maxima separation (APM, solid lines). Finally, the neglect of
polarizability from higher lying electronic states in the TSM (dash–dotted
lines) generates an even narrower emission band. The line shape is therefore
a result of a compensation between the polarizability effect tending to increase
both the emission width and the Stokes shift for �a0 > 0 and the opposite
effect of electronic delocalization.
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Figure 20 Absorption (abs.) and emission (em.) solvent-induced FCWD of C153 in
acetonitrile calculated according to the APM model (solid lines), the TSM (dash–dotted
lines), and the polarizable model (Eq. [153], dashed lines).
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The application of the APM model to the absorption and emission spec-
tra of C153 gives good agreement with experimentally observed spectra in a
broad range of solvent polarities.100 The quality of the calculations is illu-
strated in Figure 21 where the experimental (dashed lines) and calculated
(solid lines) absorption and emission spectra are compared for acetonitrile
and acetone as the solvent. The distinction between the optical band shapes
calculated on various levels of the theory shown in Figure 20 and the excellent
agreement with the experimental results shown in Figure 21 indicate that tran-
sitions to higher excited states (polarizability) and solvent-induced mixing
between the adiabatic states (transition dipole) are both crucial for reproducing
the optical band shape of C153. For this chromophore, the electronic mixing
effect is significant due to its high transition dipole moment, m12 ¼ 5:78 D,
close in magnitude to the difference in the excited- and ground-state dipole
moments, �m0  7:5 D. Depending on the relative magnitudes of the polariz-
ability change, �a0, and the transition dipole, m12, polarizability and electro-
nic mixing effects may become more or less important for other optical dyes.
For all such cases, the APM provides a general framework for analyzing the
FCWD of activated and optical transitions by lifting the two restrictions of
the MH theory: the TSM and the neglect of electronic overlap in the FCWD
(assumptions 1 and 2 in the Introduction). In fact, the APM also provides a
general framework for analyzing the effects of coupling between the vibra-
tional solute modes and the solvent fluctuations (assumption 3),100 but this
problem still requires further studies, both experimental and theoretical.

SUMMARY

The concept of free energy surfaces has proven its vitality over many
years of fruitful applications to electron transfer kinetics. The direct connection
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Figure 21 Normalized experimental (dashed lines) and calculated (solid lines)
absorption (abs.) and emission (em.) spectra of C153 in acetonitrile (acn)
and acetone (acet).
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of the ET free energy surfaces to the solvent-induced component of the optical
Franck–Condon provides a unique possibility to apply the statistical mechan-
ical analysis of ET and CT energetics and to test it on experiment. The band
shape analysis of optical profiles is thus the key factor in a successful interplay
between theory and experiment.

This chapter outlines some recent advances in the statistical mechanical
analysis of the CT energetics. The basic strategy used in this approach is to
introduce new physical features of CT activation into the system Hamiltonian
used to build the free energy surfaces. These are then applied to calculate the
Franck–Condon factors and determine how the changes in the physics of the
problem affect the optical observables. This development highlights two fun-
damental results. First, the MH model of fixed charges solvated in a dense,
condensed-phase environment leads to a very accurate representation of the
ET energetics in terms of two intersecting parabolas. The static nonlinear sol-
vation effects are generally weak and do not substantially distort the parabo-
las. There is, however, ample room to modify the free energy surfaces when
changes in the electronic density of the donor–acceptor complex are allowed
either through polarizability or electronic delocalization. The CT free energies
then inherit nonlinear features, and a number of interesting consequences for
optical observables can be anticipated. These fascinating phenomena will be
the subject of future research.
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63. N. Tétreault, R. S. Muthyala, R. S. H. Liu, and R. P. Steer, J. Phys. Chem. A, 103, 2524 (1999).
Control of Photophysical Properties of Polyatomic Molecules by Substitution and Solvation:
The Second Excited Singlet State of Azulene.

64. T. Asahi, Y. Matsuo, H. Masuhara, H. Koshima, J. Phys. Chem. A, 101, 612 (1997).
Electronic Structure and Dynamics of Excited State in CT Microcrystals as Revealed by
Femtosecond Diffuse Reflectance Spectroscopy.

65. A. Painelli and F. Terenziani, J. Phys. Chem. A, 104, 11041 (2000). Optical Spectra of Push–
Pull Chromophores in Solution: A Simple Model.

66. P. van der Meulen, A. M. Jonkman, and M. Glasbeek, J. Phys. Chem. A, 102, 1906 (1998).
Simulation of Solvation Dynamics Using a Nonlinear Response Approach.

67. D. V. Matyushov and G. A. Voth, J. Phys. Chem. A, 103, 10981 (1999). A Theory of Electron
Transfer and Steady-State Optical Spectra of Chromophores with Varying Electronic
Polarizability.

68. C. Reichardt, Chem. Rev., 94, 2319 (1994). Solvatochromic Dyes as Solvent Polarity Indicators.

69. W. Liptay, in Excited States, E. C. Lim, Ed., Academic Press, New York, 1974, Vol. 1,
pp. 129–229. Dipole Moments and Polarizabilities of Molecules in Excited Electronic States.

70. L. R. Pratt, Mol. Phys., 40, 347 (1980). Effective Field of a Dipole in Non-Polar Polarizable
Fluids.

71. P. Vath, M. B. Zimmt, D. V. Matyushov, and G. A. Voth, J. Phys. Chem. B, 103, 9130 (1999).
A Failure of Continuum Theory: Temperature Dependence of the Solvent Reorganization
Energy of Electron Transfer in Highly Polar Solvents.

72. D. V. Matyushov and G. A. Voth, J. Chem. Phys., 111, 3630 (1999). A Perturbation Theory
for Solvation Thermodynamics: Dipolar-Quadrupolar Liquids.

73. W. Liptay, in Modern Quantum Chemistry, Part. II, O. Sinanoğlu, Ed., Academic Press, New
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79. H. Heitele, F. Pöllinger, T. Häberle, M. E. Michel-Beyerle, and H. A. Staab, J. Phys. Chem.,
98, 7402 (1994). Energy Gap and Temperature Dependence of Photoinduced Electron
Transfer in Porphyrin–Quinone Cyclophanes.

References 209



80. T. Fonseca, B. M. Ladanyi, and J. T. Hynes, J. Phys. Chem., 96, 4085 (1992). Solvation Free
Energies and Solvent Force Constant.

81. D. V. Matyushov and B. M. Ladanyi, J. Chem. Phys., 110, 994 (1999). A Perturbation Theory
and Simulations of the Dipole Solvation Thermodynamics: Dipolar Hard Spheres.

82. H. Meirovitch, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds.,
Wiley-VCH, New York, 1998, Vol. 12, pp. 1–74. Calculation of the Free Energy and the
Entropy of Macromolecular Systems by Computer Simulations.
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CHAPTER 5

Linear Free Energy Relationships Using
Quantum Mechanical Descriptors

George R. Famini,* and Leland Y. Wilsony

*Edgewood Chemical Biological Center, United States Army
Soldier and Biological Chemical Command, Aberdeen Proving
Ground, Maryland 21010, and yDepartment of Chemistry and
Biochemistry, La Sierra University, Riverside, California 92515

INTRODUCTION

The idea that molecular structure is related to a compound’s bulk
properties is inherent to chemistry. For example, a compound containing a
carboxylic group is acidic. This concept leads to a fundamental tenet of
computational chemistry: structure–property relationships exist and may be
quantified. A natural step is to inquire about using first principles (quantum
mechanics) to calculate an appropriate property such as a pKa value, for
example. Quantum mechanical (QM) calculations involving isolated
molecules are practical; however, QM calculations for systems involving
collections of molecules, such as would be required for pKa values, are very
time consuming.

This chapter provides a tutorial focused on the uses of quantum mechanical
descriptors in linear free energy relationships (LFERs). Often, LFERs derived
with empirically based (i.e., experimental) descriptors are superior in quality
to those derived with quantum mechanical descriptors. However, theoretically
based LFERs have some advantages including ease of calculation. The QM

211

Reviews in Computational Chemistry, Volume 18
Edited by Kenny B. Lipkowitz and Donald B. Boyd

Copyr ight   2002 John Wiley & Sons, I nc.
ISBN: 0-471-21576-7



descriptor can be obtained for almost any functional group or combination of
atoms, whereas empirical parameters are limited to moieties that have been
studied previously. Also, electronic structure is fundamental to other molecu-
lar observables. (To understand the material in this chapter, we assume the
reader is familiar with QM and its application to chemistry at a level found
in undergraduate physical chemistry.)

Once a LFER is established for a given property, the resulting equation is
useful for (1) calculating the value for that property for some unmeasured,
related compounds and (2) serving as a basis for understanding molecular
interactions in the system. This chapter has three goals: (1) to show how
LFERs fit into the general scheme for computing properties, (2) to introduce
some quantum mechanically derived quantities that have been used in LFERs,
and (3) to show how multiple regression analysis is applied to obtain the LFER
equations. Achieving these goals will allow you to assess the pertinent litera-
ture and work with linear free energy relationships yourself.

To carry out these objectives, the chapter is organized in the following
way. The first section briefly describes the overall LFER methodology. The
second section provides background information for LFER. The third section
discusses descriptors with an emphasis on QM-derived quantities. The fourth
section discusses statistical procedures commonly employed to derive LFERs
with emphasis on multiple regression analysis. The fifth and final section
provides examples taken from seminal papers and recent literature; the
citations listed provide leads to earlier work.

Another objective of this chapter is to explain how LFER fits in with
respect to linear solvation energy relationships (LSER), quantitative structure–
activity relationships (QSAR), and quantitative structure–property relation-
ships (QSPR). Often, these methods are operationally quite similar. Their
connection is addressed in the Background section.

LFER METHODOLOGY

This section provides a concise overview of how an LFER analysis is
performed. An LFER analysis involves deriving an equation of the form,

Y ¼
X

j

ajXj ¼ a1X1 þ a2X2 þ a3X3 þ � � � ½1�

Equation [1] relates a (macroscopic) bulk, empirical property, Y, with some
set, {X}, of (microscopic) molecular structural parameters (descriptors). The
equation as shown is linear in that each term involves a first power for its
descriptor. Higher order descriptors may also be used. The coefficients, aj,
are obtained with the aid of statistical methods, particularly, regression
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analysis. The process of determining an LFER involves the following steps.

1. A set of experimental values, (Y1, Y2, . . . , Yn), for a given property are
measured or otherwise obtained for each member of a set of n compounds.
The experimental values are called the dependent variables of Eq. [1].

2. A set of molecular descriptors, (Xj1, Xj2, . . .) is selected and then measured,
estimated, or calculated for each compound, j, in the data set containing n
compounds. The descriptors are the independent variables in statistics.

3. The coefficients in Eq. [1] are determined with the aid of regression analysis
by solving a set of n simultaneous equations. In addition to providing
coefficient values, aj, these calculations provide statistical parameters that
assess the quality of the equation derived.

To quantitate the quality of the equation as a whole, standard statistical
parameters are examined. (1) The correlation coefficient, r, and the variance,
which is the correlation coefficient squared, r2, are measures of ‘‘goodness of
fit.’’ Values for r range between 0 and 1; r (and r2) values closer to 1 indicate a
better correlation. (2) The standard error of the estimate, s, also commonly
referred to (incorrectly) as the standard deviation, is a measure of the error
associated with calculating the Y values from the X values using the derived
equation. (3) The p parameter and the F ratio are measures of the statistical
significance of the regression equation. A smaller p value indicates a smaller
probability of chance correlation, whereas a larger F value implies a lower
probability. (4) The cross-validated correlation coefficient squared, q2, is a
measure of the ability of the derived equation to predict the value of Y for
some as yet unmeasured compound. Similar to r2, values for q2 generally range
between 0 and 1; values closer to 1 indicate a better ability to predict. To eval-
uate the significance of each individual descriptor term in an LFER equation,
the following statistical quantities can be invoked. (1) Student’s t ratio deter-
mines which descriptors should be removed due to nonsignificance; the usual
rule of thumb is that independent variables with a t ratio below 2 should be
dropped from a regression equation. The larger the better. (2) The variance
inflation factor (VIF) is a measure of how a given descriptor correlates with
the other descriptors; that is, it indicates the degree of redundancy among
the descriptors. More details about these statistical quantities and how they
should be used in development of LFERs is given in the section on Statistical
Procedures.

Molecular descriptors may suggest some underlying physicochemical
concepts involved. The correlation of Y with a particular X descriptor does
not necessarily imply causality; it implies only that when X increases, Y may
also increase or decrease with it, for whatever reason.

Having put into perspective what an LFER is, how it is derived, and
what types of statistical assessments are used to assess its validity, we now
provide some additional, detailed background information one would need
to be able to carry out such an analysis successfully.
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BACKGROUND

Computational Methods

This section aims to show how the LFER approach compares to other
property calculation methods. Biological, chemical, and physical responses
originate from interactions between two or more molecules. Many of these
interactions can be looked at as involving a solute molecule surrounded by
solvent molecules. The successful application of solute–solvent interaction
models to many such properties has been well documented.1 Examples of these
properties include solubility, partition coefficients, rate constants, and
biological activities, such as equilibrium binding constants, effective doses,
and toxicities, as well as other topics of interest in medicinal chemistry.

There are three approaches to applying QM for predicting and under-
standing properties. In decreasing order of computational complexity, these
may be classified as explicit, implicit, and empirical methods. The LFERs fit
in the empirical category.

The explicit modeling approach surrounds a solute molecule with
solvent molecules and then examines each molecule in that solvated environ-
ment. Quantum chemical methods, both semiempirical2,3 and ab initio4 have
been used to do this; however, molecular dynamics and Monte Carlo simula-
tions using force fields are used most often.5–8 Calculations on ensembles of
molecules are more complex than those on individual molecules. Dykstra
et al. discuss calculations on ensembles of molecules in a chapter in this
book series.9 Because of the many conformations accessible to both solute
and solvent molecules, in addition to the great number of possible solute
molecule–solvent molecule orientations, such direct QM calculations are very
computer intensive. However, the information resulting from this type of cal-
culation is comprehensive because it provides molecular structures of the
solute and solvent, and takes into account the effect of the solvent on the
solute. This is the method of choice for assessing specific bonding information.

The implicit modeling approach treats solute molecules explicitly but
uses a continuum model or potential to represent the solvent.10 Because solute
molecule conformations alone are involved, this approach allows one to use
ab initio or semiempirical QM methods more readily than in the explicit
approach. Although this implicit solvent modeling strategy does not provide
specific solute–solvent or solvent–solvent bonding information, it does give free
energies of solvation that have been applied to studies of partition coefficients
and solubilities.10–12 Many of the current quantum chemistry software
packages incorporate one or more implicit solvation models.

The empirical modeling approach makes use of existing data to obtain
an equation relating that property to molecular parameters. For example,
the boiling point could be related to the molecular weight and hydrogen-
bonding properties of the compounds. This modeling is in contrast to the
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explicit and implicit methods where a property is calculated directly from first
principles. In a general sense, empirical modeling may be thought of as invol-
ving an interpolation process. For a particular compound, a property value
calculated with the derived equation can be expected to be reliable when (1)
the compound is structurally related to the molecules employed in deriving
that equation, and (2) the calculated value is in the range of the measured
values. However, such equations may be used to extrapolate a bit at the
ends of the lines and, thus, provide a convenient way to estimate the effect
of altering molecular structure.

Disadvantages of the empirical modeling approach include (1) time-
consuming experiments must be performed to acquire data on compounds
in a data set, (2) the data set must be sufficiently large so that the statistics
will be significant, (3) only inferences about the property of the system under
study can be made, and (4) the resulting correlation equation is valid primarily
for interpolation and might be less valid for extrapolation outside of the data
set region. Still, for the study of complex systems such as receptor sites where
explicit or implicit methods require prohibitive amounts of computing power,
correlation methods using extant data can give useful insights that the other
methods cannot. A rationalization for this less rigorous approach was
summarized succinctly by Exner in his comment that ‘‘any regularity found
in nature raises some kind of satisfaction.’’13

The molecular parameters themselves do not have to be empirical; they
may have some theoretical basis. Although theoretical descriptors may be
used, the bulk property still has to be measured. With the availability of
QM programs such as MOPAC,14 theoretically derived descriptors are
particularly convenient to generate. Indeed, these QM-derived descriptors
can act as probes for understanding complex interactions similar to the way
that the octanol/water partition coefficient15 was used in QSAR starting in
the 1970s.1,16,17 However, the use of QM to understand structure–property
relationships is not new. For example, Kier18 authored a book in 1971 on
using molecular orbitals (MOs) in drug research, and Boyd et al.,19 published
a paper in 1980 correlating antibacterial activity of cephalosporins with a
reactivity descriptor obtained from MO calculations.

Linear Free Energy Relationships

This section provides some historical background for LFER and shows
how it compares to similar empirical methods including QSAR. Early
contributions to LFER are primarily attributed to the work of Burkhardt20

and Hammett in the 1930s.21 Abraham et al.22 and Reichardt23 list some
even earlier examples of such relationships. The term ‘‘linear free energy rela-
tionship’’ stems from the observation that, often, there is a linear relationship
between the Gibbs free energy change and the Gibbs free energy of activation
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for a series of related reactions.24,25 With this background in mind, LFER has
its basis in physical organic chemistry.

One of the first reaction series studied involved triethylamine reacting
with a series of methyl esters of substituted benzoic acids. A plot of the
logarithm of the rate constant (ln k) versus the logarithm of the acid
equilibrium constant (ln Ka) was linear.24 In mathematical form, this is
Eq. [2] where m is the slope and b the intercept.

ln k ¼ m ln Ka þ b ½2�

From a heuristic (suggestive, not rigorous) viewpoint, this linear relationship
between ln Ka and ln k is not surprising given the relation between the equili-
brium constant K for an elementary reaction and its forward and backward
rate constants, kf and kb, respectively,

K ¼ kf=kb or ln K ¼ ln kf � ln kb ½3�

The free energy terminology can be interpreted as coming from the familiar
relations

�G� ¼ �RT ln K �Gaf ¼ �RT ln kf ½4�

with �G� being the standard state Gibbs free energy and �Gaf being the Gibbs
free energy of activation in the forward direction.

Hammett and Taft26 took leadership roles in developing descriptor sets
that account for the effect of substituents on molecular reaction properties.
For a given reaction type, such as ionization, hydrolysis, and so on, for a set
of aromatic compounds distinguished by different substituents, Z, a plot of the
logarithm of the rate constant for each compound versus the corresponding
Hammett substituent constant, s(Z), often gives a straight line, that is, it pro-
vides a LFER. The s values are obtained from log (KZ/KH), where KH and KZ

refer to the equilibrium constants for the unsubstituted molecule (benzoic
acid) and the Z-substituted analogue, respectively. The s values depend on
the substituent position, for example, sm and sp refer to substituents at the
meta and para positions, respectively.

An extension of the LFER concept is the idea that properties (usually the
logarithm unless the property is directly related to �G) may be modeled by
correlation equations (often linear) containing other parameter sets related
to molecular structure. As mentioned earlier, many properties may be modeled
by an equilibrium or a rate constant. The free energy relationship in the form,
ln K ¼ ��H�/RT þ �S�/R, suggests an association of bulk properties with
molecular interactions contributing to reaction enthalpies and entropies.
Heuristically, this leads to the idea that ln K values may be related to molecu-
lar properties affecting molecular interactions such as hydrogen bonding.
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In a broader context, LFER and similar approaches are subsets of corre-
lation analyses. Exner defines correlation analysis as ‘‘a mathematical treat-
ment starting from experimental data and seeking empirical relationships
which can subsequently be interpreted theoretically.’’13 Although certainly
not restricted to chemistry, correlation analysis has been developed extensively
in physical organic chemistry. In addition to LFER, LSER, QSAR, and QSPR
involve empirical models and, hence, fall in the category of correlation analysis.

When the investigation of LFERs began (1930s) in the field of physical
organic chemistry, equations were generally simple and involved small num-
bers of descriptors. Later (1960s) the LFER approach was generalized result-
ing in QSARs and QSPRs. These amount to ‘‘uninhibited’’ LFERs. Rather
than being limited to studying a simple process like dissociation, they are
employed to correlate a wide range of biological, chemical, and physical prop-
erties with a wide variety of descriptors.

From an operational standpoint, the LFER, LSER, QSAR, and QSPR
approaches can be quite similar, with distinctions based on their
applications. QSAR is usually applied to biological properties, especially those
important to pharmacology and toxicology. QSPR usually dwells on physico-
chemical properties in general. LSER focuses on solute–solvent systems. For
organizational purposes, we like to view LSER and some applications of
QSAR and QSPR (along with related methods) as subsets of LFER. Each
approach typically uses some form of regression analysis (statistics) to help
find a mathematical relationship between a property and a set of descriptors.

From another viewpoint, LFER methods tend to be model based. Model-
based methods employ sets of descriptors that often (1) model classical
chemical concepts, (2) are small in number, and (3) use simple regression ana-
lyses. For example, the Hammett equation involving the logarithm of the rate
constant as a linear function of the substituent constant, s (mentioned earlier),
is model based. Similarly, some QSAR and QSPR studies may be viewed in this
manner, and so they are included as LFER subsets in this chapter.

However, many QSAR and QSPR studies also use nonmodel-based
approaches. Nonmodel-based studies tend to have the following characteris-
tics: (1) they use large numbers of descriptors (hundreds), (2) many of those
descriptors are not readily interpreted in classical chemical terms, and
(3) they may use quite complex regression analysis and nonlinear methods.
For example, three-dimensional (3D) QSAR27 and other methods are of the
growing importance of biological systems and ligand design. Nonmodel
approaches tend to mix many descriptors together in an ad hoc manner result-
ing in equations that produce good correlations. However, these may some-
times be difficult to interpret in classical chemical terminology.

Bakken and Jurs28 classify three types of models. A type 1 model uses
multiple regression analysis to find a linear equation involving a descriptor
set. This is the type we have discussed so far—and focus on—in this chapter.
A type 2 model uses neural network analysis29 to develop a linear/nonlinear
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model in terms of the descriptors. A type 3 model uses a genetic algorithm29 to
find the best set of descriptors to form a nonlinear model.

It is helpful to note the complexity of the systems involved when consid-
ering property calculations. A physical property of a pure compound involves
only interactions between molecules of the same kind. For example, the vapor-
ization process, R(l)!R(g) with Kvap ¼ pvap, (pvap is the vapor pressure)
involves R � � � R intermolecular interactions and possibly a large number of
interacting conformations. Solute–solvent processes, such as a solubility
distribution, R(l)!R(solvent), involve solute–solute, solvent–solvent, and
solute–solvent interactions with each species interacting as an assortment of
molecular conformations.

Chemical reactions and biological processes involve more complex
interactions. These processes may be modeled in similar fashion with substrate
or receptor and associated equilibrium or rate constant; R(aq)!R(receptor)
with K ¼ 1/[R(aq)]. Kinetic and binding properties are not distinguished in
this representation. Indeed, many biological activities (properties) are
expressed as some minimum concentration causing a certain effect; an exam-
ple is the LD50, the dose lethal to 50% of the test animals in an experiment. In
much of the following discussion, solute–solvent systems and terminology will
be used; however, QSAR and QSPR application can be quite similar.

To reiterate some of the important points covered thus far, LFER equa-
tions correlate a physical property, Y, with a set of molecular properties, {X},
often in a linear model (Eq. [1]). A fairly large set of the empirical Y values is
required for obtaining statistically meaningful results. The dependent variables
are frequently expressed as the logarithm of the property because the range of
Y values may vary over several orders of magnitude. Moreover, a logarithmic
form is suggested by the expressions relating free energy and equilibrium con-
stant as well as the free energy of activation and rate constant.

Although the terms in Eq. [1] are linear, a nonlinear transformation of
one or more ‘‘simple’’ descriptors may also be included. For example, a non-
linear term might be volume squared, polarizability divided by volume, an
electrostatic potential times a charge, or some other term involving a product,
division, exponentiation, or logarithm of the descriptors. In effect, the
nonlinear terms can be introduced into a ‘‘linear’’ regression.

DESCRIPTORS

Classifications

Correlation analysis can employ empirical (experimental) descriptors or
theoretical descriptors or both. As introduced earlier, theoretical (computa-
tional) descriptors offer several advantages over empirical ones. They are
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usually more easily obtained, their interpretation is usually straightforward,
and they are usually not restricted to a particular compound class. Moreover,
the predictive ability of a LFER is especially important when it involves com-
puted descriptors because these can be obtained for structures not yet studied
experimentally. Some empirical descriptors will be mentioned later in this
chapter for comparative and historical reasons. In fact, the quality of correla-
tion equations using empirical descriptors often provides a standard to which
theoretical descriptors are judged.

It is convenient to classify theoretical descriptors into topological, consti-
tutional, geometrical, and quantum mechanical types. Topological descriptors
arise from graph theory applied to chemistry, often using atoms (vertices) and
bonds (edges), but they also may be geometrical in that they involve distances.
Earlier chapters in this series described topological descriptors.30 Constitu-
tional descriptors include counting descriptors (e.g., numbers of atoms of a
certain type), indicator descriptors (e.g., indicating whether a molecule does
or does not have some feature), geometrical descriptors, and molecular weight.
Counting descriptors could be the number of nitrogen atoms or ring structures
in a molecule. Geometrical descriptors might include atom distances, molecu-
lar surface areas, and molecular volumes. These geometrical quantities may be
calculated with QM or non-QM methods. The latter might be molecular
mechanics or simply the use of standard bond lengths and bond angles and
van der Waals based atomic radii.

Quantum Mechanical Descriptors

Quantum mechanical descriptors are those that may be obtained from
QM calculations primarily. Although there are empirical methods for estimat-
ing values for partial charges, QM calculations yield a wide array of quanti-
ties. These descriptors include orbital energies and electron distributions
needed to give atomic charges, dipole and higher moments, and polarizabil-
ities, among others. Most solutions of the Schrödinger equation produce a
set of MOs, {ci}, their energies, {Ei}, and the molecular geometry (distances
and angles) corresponding to a local minimum on that molecule’s potential
energy surface. The MOs are often written as linear combinations of atomic
orbitals (LCAO),

ci ¼
X

r

cirfr ¼ ci1f1 þ ci2f2 þ ci3f3 þ � � � ½5�

where cir is the coefficient of the rth atomic orbital (AO), fr, in the ith MO.
The AOs, fr, are the 1s, 2s, 2p, and so on, of appropriate atoms comprising
the molecule. The AO coefficients, cir, are related to electron population den-
sity which can be used to calculate charges on atoms.
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Quantum calculations can be done easily for small systems, but large
systems require great computing power; calculation times for N electron
systems can scale as much as N7 depending on the level of theory. An
alternative way to treat large systems is to use QM solutions for simpler
analogues or subspecies. Using quantum mechanics has worked well with
gas-phase systems but is far more difficult for condensed phases.

Molecular orbital calculations can be used to generate a large number of
descriptors. We will not attempt to list them now; instead, we will organize
them in general terms and include specific descriptors in connection with
specific examples later in this chapter. Lewis31 provided a list of some
QSAR equations that correlate various biological activities with quantum
mechanically derived descriptors. Karelson, Lobanov, and Katritsky32 pro-
vided a summary of QM descriptors used in QSAR and QSPR including: mole-
cular (overall) energies, orbital energies, atomic charges, electron densities,
polarizabilities, dipole moments, super-delocalizabilities, and geometrical
quantities. Katritsky et al.33 provided an extensive list of empirical and theo-
retical descriptors used in QSPR treatments of solvent scales. Solvent scales
consist of sets of empirical descriptors designed to help explain and predict
the influence of solvents on physicochemical phenomena. For example, some
parameters are designed to be a measure of solvent polarity or acidity.

Quantum Mechanical Calculations

Semiempirical, ab initio (Hartree–Fock), and density functional theory
(DFT) QM models may be used to calculate descriptors. Semiempirical meth-
ods offer greater computational speed than the others, which is advantageous
for large molecules. Based on the neglect of diatomic differential overlap
(NDDO) approximation, Dewar et al. developed the modified neglect of dif-
ferential overlap (MNDO),34 Austin model 1 (AM1),35 and parametric model
3 (PM3)36 semiempirical Hamiltonians commonly used in MO calculations.
Chapters in this series by Stewart2 and Zerner3 discuss semiempirical methods.
These model Hamiltonians are incorporated in commonly used software
packages such as MOPAC,14 AMPAC,37 and Gaussian,38 Spartan,39 and
others. A variety of ab initio and, more recently, DFT methods are also being
used to calculate descriptors. Again, a number of chapters in this series have
covered these methods.9,40–48

An essential rule is that descriptors should be calculated by the same level
of theory for all molecules in a given data set. Trends in computed quantities
have a chance to be consistent within a given computational method but not
across different methods. For example, AM1 and MNDO atomic charge
values may differ; but within the framework of either method the relative
order of numerical values may be similar.

Note that the QM molecular parameters generally apply to the electronic
ground state for a single conformation of the isolated system at 0 K. Properties
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calculated for such a system in a vacuum do not directly describe bulk
phenomena, nor do they usually account for the variety of conformations pos-
sible near room temperature. Nevertheless, it is possible for a given property of
an isolated molecule to correlate well with a property of the molecule when
surrounded by other molecules in the bulk.

Some of the more common descriptors with their common symbols are
listed in Tables 1–3. The section on Examples of LFER Equations illustrates
and explains some of these. Because of the need for consistency in this chapter,
the symbols used here might not always match those used in the original
articles. Nonetheless, we have endeavored to retain their meaning as faithfully
as possible. Descriptors, along with their symbols, often tend to evolve as
their application changes.

Atomic Charges
One component of molecular association involves electrostatic interac-

tions; consequently, it is natural to expect local (atomic and group) electron
densities (charges) to be related to properties of compounds and, thus, to be
good descriptors. For example, the most negative charge on an oxygen atom
could help model hydrogen-bond acceptor (HBA) basicity. Similarly, the most
positive charge on a hydroxyl hydrogen could help model hydrogen bond
donor (HBD) acidity. Furthermore, charges are incorporated in other descrip-
tors as described below. In most cases, charge, as used here, refers to the
Mulliken net atomic charge; it is the number of valence electrons that a given
atom should have minus the valence electron population that the atom
actually has.

Table 1 Some QM Terminology and Parameters Used in (and as) Descriptors

Symbols Meaning or Definition Occurs in Equation Number

ck kth molecular orbital (MO)
Ek; ek Energy of kth MO
fr rth atomic orbital (AO)
ckr Coefficient of rth AO in kth MO
HOMO Highest (in energy) occupied MO
LUMO Lowest (in energy) unoccupied MO
EHOMO;Eh HOMO energy [23], [24], [46]
Ehw HOMO energy of water
ELUMO;El LUMO energy [46]
Elw LUMO energy of water
rjk Distance between atoms j and k
r Position vector
Srs Overlap integral of AOs r and s on

different centers (atoms)
qk Mulliken charge
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Computed atomic charge is subjective because its value depends on the
algorithm used (their values cannot be observed experimentally). Regardless of
the algorithm used, however, trends and relative charge values are sometimes
useful. To more directly illustrate the relationship between the coefficients, cir,
in Eq. [5], and the electron density, we briefly describe Mulliken population

Table 2 Some QM Descriptors Developed for Model-Based Methods

Occurs in Equation
Symbol Name or Description Numbers

General Descriptors

a Average molecular polarizability [31], [32]
m Dipole moment [41], [42], [49]
A;Ad; S Surface area [42], [43], [49]
V;Vmc;Vd Molecular volume [27], [29a, b], [41], [42]
�Hf Heat of formation [24]

TLSER Descriptors

pI Polarizability index [27], [30]
eB Covalent HB acceptor basicity [27], [30]
eA Covalent HB donor acidity
q� Electrostatic HBA basicity [27], [29b], [30]
qþ Electrostatic HBD acidity [27], [29a], [30]

GIPF (MEP) Descriptors

A
s Positive or negative molecular electrostatic
potential (MEP) surface area [39]

U(r) MEP at point r near molecule
Umin;max Most negative or positive MEP [39]P

Umin;max Sum of negative or positive MEP [42]
US Average MEP over the surface
US;max;min Most positive or negative MEP on surface [39]
U
S;avg Average positive or negative MEP [39]

over surface
U�S;% Percent of negative electrostatic potential [42]
dUj MEP deviation
� Average MEP deviation over surface
s2

 MEP variance for 
 potentials

s2
tot MEP total variance [40]

n Electrostatic balance parameter
I(r) Average local ionization energy
Imin Most negative average local

ionization energy
IS;min Most negative average local ionization

energy on surface
½U�S;avg�2 Mean square of negative MEP on surface [42]
I� Average of negative MEP over the volume [42]
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analysis.45,49 The integral over all space of the square of the ith MO gives the
number of electrons associated with that MO (Eq. [6]).

hcijcii ¼ NðiÞ
X

r

c2
irhfrjfri þ 2

X
r>s

circishfrjfsi
( )

¼ NðiÞ
X

r

c2
ir þ 2NðiÞ

X
r>s

circisSrs ½6�

Table 3 Some QM Descriptors Developed for Nonmodel-Based Methods

Occurs in
Equation

Symbol Name or Description Numbers

CPSA and Related Descriptors

DMSI, A Dispersion molecular surface interaction
(MSI) [43]

ENMSI, A�, PNSA3 Electrostatic negative MSI [43]
EPMSI, Aþ Electrostatic positive MSI [43]
HBMSI, AHB Hydrogen-bond MSI [43]
PPSA3 Partial positive atomic charge weighted

surface area
PNSA3, ENMSI Partial negative atomic charge weighted

surface area
DPSA Differential partial surface areas [44]
RPCG Relative positive charge [44]
qD Charge on hydrogen-bond donor (HBD)

H atoms
AD Exposed surface area of HBD H atoms
HDCA2 HBD surface area over donor H atoms [46],[48]
HDSA2 HBD surface area over donor H atoms [47]

(modified)
HASA1 HBA surface area over acceptor atoms [47]
CSA2H Charged surface area of H atoms [47]
CSA2Cl Charged surface area of Cl atoms [47]
EA Maximum electrophilic reactivity index [48]

of C atom
Y Maximum AO electronic population [48]
Qmin Most negative charge
PCWTE Partial charge weighted topological [47]

electronic index
TI Topographic electronic index [47]
GI Gravitational index [47]
QO or N Square root of sum of squares of N or [49]

O charges
QON Sum of absolute values of N and O charges [49]
ABSQ Sum of absolute values charges on all atoms [49]
O Ovality, actual area/area as sphere [49]
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Here S is the AO overlap matrix, and N(i) is the number of electrons occupy-
ing MO ci. We assume each AO fi is normalized and orthogonal to all other
AOs centered on that atom. The sum (Eq. [7]) over all MOs must give the total
number, N, of electrons in the molecule.

N ¼
XMOs

i

NðiÞ
XAOs

r

c2
ir þ 2

XMOs

i

NðiÞ
XAOs

r>s

circisSrs ½7�

Now we can break the two terms in Eq. [7] into sums over specific atoms.
Summing over only the AOs centered on atom k in the first term, we obtain
the net atomic population n(k), Eq. [8].

nðkÞ ¼
XMOs

i

NðiÞ
X

rk

c2
irk

½8�

Similarly, summing over the AOs centered on atom k and the AOs centered on
atom l in the second term of Eq. [7], we obtain the total overlap population
N(k,l) between the two atoms, Eq. [9].

Nðk; lÞ ¼
XMOs

i

NðiÞ
X
rk>sl

cirk
cisl

Srksl
½9�

The net atomic population, n(k), does not include any of the electron density
associated with the overlap population, N(k,l). It is clear that some of these
electrons in the overlap population belong to atom k and the remaining elec-
trons belong to atom l. Furthermore, these should be added to n(k) and n(l) to
get the total number of electrons on each atom. Arbitrarily, Mulliken divided
this overlap population evenly between the two atoms resulting in the gross
atomic population N(k) for atom k, Eq. [10].

NðkÞ ¼
XMOs

i

NðiÞ
X

rk

cirk
cirk

X
sk 6¼l

cisl
Srksl

0
@

1
A ½10�

Thus, any differences in the atom types and their electronegativities are
ignored. To summarize, Mulliken assigned all electrons associated with an AO
centered on that atom to that atom and then split the overlap density evenly
between atom pairs. The net charge on an atom, qk, with nuclear charge, Zk, is
then given by Eq. [11].

qk ¼ Zk �NðkÞ ½11�
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Many schemes exist for estimating atomic charges that have been derived
from MOs. Katritsky and colleagues,32 for example, have used partial charges
calculated with an empirical method by Zefirov et al.50 The fact remains that
charge calculations are usually obtained by MO calculations.

Orbital Energy
In QM theory, covalent interactions arise from orbital overlap.

The interaction of two orbitals also depends on their energy eigenvalues.
Consequently, energies associated with the highest occupied molecular orbital,
EHOMO, and lowest unoccupied molecular orbital, ELUMO are often good
candidates for descriptors. For example, EHOMO might model the covalent
basicity of a hydrogen bond acceptor or the ELUMO might model the covalent
acidity of the proton of an H-bond donor. Further interpretation is possible
because the HOMO energy is related to the ionization potential and is a
measure of the molecule’s tendency to be attacked by electrophiles.
Correspondingly, the LUMO energy is related to the electron affinity and is
a measure of a molecule’s tendency to be the attacked by nucleophiles.
Furthermore, according to frontier molecular orbital (FMO) theory, transition
state formation involves the interaction between the frontier orbitals, HOMO
and LUMO, of reacting molecules.

Molecular Size
The molecular volume descriptor, V, can be recognized as an important

descriptor once one realizes that the free energy of solution is related in part to
the size of the cavity that must be carved out of the solvent bath by the solute
molecule during the solvation process. The surface area, A, of a molecule or a
fragment of a molecule may be construed51,52 as a measure of the region avail-
able for interaction with another molecule. For computing V and A, one could
use a particular electron density contour 45,51 or a non-QM-derived measure
of atomic size such as the van der Waals radii available from standard tables in
physical chemistry textbooks.

Polarizability
Molecular polarizability, a, is a measure of the ability of an external

electric field, E, to induce a dipole moment, l ¼ aE, in the molecule. As
such, it can be viewed as contributing to a model for induced dipole (disper-
sive) interactions in molecules. Because the polarizability is a tensor (matrix)
quantity, there is the question of how to represent this in a scalar form. One
approach is to use the average of the diagonal components of the polarizability
matrix, (axx þ ayy þ azz)/3. Since the polarizability increases with size (and
has units of volume), it is convenient to define a dimensionless variable, the
polarizability index, pI, by dividing the quantity (axx þ ayy þ azz)/3 by the
molecular volume, V.
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Dipole Moment and Polarity Indexes
These polarity descriptors combine charge and geometry. Dipole

moments are used to model dipole–monopole, dipole–dipole, dipole–induced
dipole, and other interactions. Both molecular dipole (l) as well as bond dipole
moments may be defined for neutral molecules. A bond dipole moment due to
atoms k and l separated by distance, rkl, can be defined as jql� qkjrkl. The
topographic electronic index defined in Eq. [12] is another measure (index)
of polarity.53 The sum extends over the number of bonded atoms, NB.

TI ¼
XNB

l<k

jql � qkj=r2
lk ½12�

Electrostatic Potentials
The symbol V is often associated with the electrical potential in the lit-

erature, but U is employed here so as not to conflict with the volume descrip-
tor. Another aspect of chemical reactivity involves the molecular electrostatic
potential (MEP).54 The MEP is the interaction energy between a unit point
charge and the molecular charge distribution produced by the electrons and
nuclei. The electrostatic potential, U(r), at a point, r, is defined by Eq. [13].

UðrÞ ¼
X

A

ðZA=jrA � rjÞ �
ð
rðr0Þdr0=jr0 � rj ½13�

ZA is the charge on nucleus A located at point rA, and r(r0) is the total electro-
nic density, �(r0)*�(r0), at each point in space r0, and �ðr0Þ is the molecular
wave function. The perturbation caused by the unit test charge is not consid-
ered; rather it is simply a hypothetical probe to obtain the relative energy of
interaction at points surrounding a molecule.

Overall Energies
The parameter ET is the total (Hartree–Fock) molecular energy; it is

listed in the output of most QM programs. The parameter �Hf is the heat
of formation for the molecule and also is computed in most semiempirical
MO programs.

Superdelocalizability
The superdelocalizability of an atom in a molecule provides another

measure of the tendency of the molecule to be attacked by an electrophile
or nucleophile. It is related to electron density on that atom. The electrophilic
superdelocalizability for a given atom k in the molecule may be defined as a
sum over occupied MOs (index i) and valence AOs (index r), Eq. [14].

SA;k ¼ 2
X

i

X
r

ðc2
ir;k=eiÞ ½14�
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Here ei is the orbital energy of the ith occupied MO. Large electron charge
densities and low energies would contribute to electrophilic attack near that
atom. There is an analogous nucleophilic quantity, SN,k, involving the unoccu-
pied MOs.

Charged Partial Surface Areas
This is a set of parameters that combine geometry and charge data. The

charged partial surface areas (CPSAs), as developed by Stanton and Jurs,55

model electrostatic interactions at the molecular surface. Some of these
descriptors were designed as models for hydrogen bonding.56 For example,
PPSA1 is the partial positive surface area. It is the sum of the surface areas
of the positively charged atoms,

P
Aþk, where Aþk is the surface area contri-

bution of the kth positive atom. PPSA2 is the total charge weighted PPSA,
Qþ tot

P
Aþk, where Qþ tot is the sum total positive charge on the molecule.

PPSA3 is the atomic charge weighted PPSA,
P

AþkQþk. Many other similarly
arbitrary descriptors may be defined and used; for example, analogous
parameters to these might use negative charges in place of the positive charges.
An example is PNSA1, the partial negative surface area,

P
A�k, where A�k is

the surface area contribution of the kth negative atom. Early implementation
of CPSA parameters by Stanton and Jurs55 employed partial atomic charges
that were obtained by an empirical (but not experimental) method. The
charges were parameterized to reproduce experimental dipole moments.

STATISTICAL PROCEDURES

The most common statistical procedure for deriving correlations involves
regression analysis as mentioned earlier. We discuss it here in some detail.
Basically, it is a least-squares method for more than one variable and is
suitable for small descriptor sets. Other methods for handling large descriptor
sets exist, and some of them are mentioned later along with appropriate
references providing more detail. The reader is directed to almost any
statistical textbook (e.g., Belesley, Kuh, and Welsh57) for further elaboration.

Multiple Regression Analysis

General Process
A bulk property, Y, is measured for a set of n compounds leading to a set

of values, fYig; 1 � i � n. For each of the n compounds, a set of m molecular
descriptors, fXjg; 1 � j � m, with the requirements that (mþ 1Þ � n, is
obtained by empirical or computational methods. The (mþ 1) arises because
of the possibility of a nonzero intercept appearing in a relationship. A mini-
mum of m measurements are required, one for each parameter. The regression
coefficients have greater statistical validity if there exist more measurements
than coefficients; a common rule of thumb is n � 5 m (i.e., at least five
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compounds or Yi values for each descriptor used in the regression equation. To
derive a linear correlation, which is the simplest model, the data is then fit to
an equation, as in Eq. [1]. Hence, for a given property, Y, the coefficients, aj,
for each molecular parameter, Xj, are determined. There are (mþ 1) terms in
the summation; the intercept can be associated with a0 by using X0 ¼ 1 for all
compounds.

If the relationship between dependent (Y) and independent (X) variables
were perfect, the Y values for any (mþ 1) compounds could be used resulting
in a square matrix. If the m parameters, X, are independent (orthogonal, i.e.,
have no intercorrelation), the matrix may be inverted and the coefficients, aj,
calculated. However, the relationships are seldom perfect so using another set
of compounds would lead to another set of coefficients with values different
from the previous set. This process could be repeated until all combinations
had been tried giving, ultimately, a range of values (a distribution) for each
coefficient. For even a medium sized data set, this is a daunting task!

Fortunately, statistical methods exist that may be used to help derive the
coefficients, thus minimizing the work. The full data matrix is employed to
find the set of coefficient values, {ai}, using the requirement that the variance,
s2, (Eq. [15]) is a minimum.

s2 ¼ 1

n


 �Xn

i¼1

d2
i ½15�

Here di is the difference between the observed and calculated values for Yi:

di ¼ YiðobsÞ � YiðcalcÞ ½16�

Yi(calc) is the value obtained by using the correlation equation with the set of
coefficients (to be determined) that will minimize s2; this is the least-squares
approach. Rather than try all possible coefficient sets, expressions in terms
of the Y and X values for the coefficients can be obtained. Differentiation
with respect to each of the aj, in turn, leads to mþ 1 simultaneous equations
from which the m coefficient values and intercept are obtained. The resulting
equations become more numerous as the number of parameters increase; con-
sequently, calculations must be done by computer. Chemistry is greatly aided
through computing.

Term Significance
The statistical parameters generated in the process of fitting the data to

the equation are also used to determine the significance of the equation. A
common criterion is to retain coefficients if their two-tailed probability is
less than 0.05; P(2-tail) < 0.05. A two-tailed probability smaller than 0.05
means that the deviation from the ‘‘true’’ value lies in the positive or negative
regions of the normal error curve corresponding to less than 5% of the area. It
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amounts to saying that there is less than 5% probability that the value could
occur (be significant) by chance. Small P(2-tail) values are associated with
large t ratios (Student’s t statistic or test).

Descriptor Orthogonality
The orthogonality (linear independence, cross-correlation, intercorrela-

tion) of the parameters may be assessed several ways. Nonorthogonal descrip-
tors introduce redundancy into the equation and are therefore undesirable. For
example, a descriptor could be expressed as a function of the other descriptors,
thus, implying that its term in the correlation equation could be replaced by an
expression involving only the other parameters.

One method for measuring the degree of orthogonality is to correlate a
particular descriptor, Xj, with all other descriptors, thus providing a set of
correlation coefficients, {rj}. The square of the correlation coefficient, rj

2,
may be converted to the tolerance, Tol, by taking (1� rj

2) and into the var-
iance inflation factor (VIF) by taking the reciprocal of the tolerance. Adequate
orthogonality occurs with rj

2 values <0.8, or tolerances >0.2 or VIF values
<5. This latter statistical value means, for example, that if a term’s VIF value
is greater than 5, that descriptor should not be included in the final equation.
(Note that some statistics textbooks suggest that VIF values <10 are satisfac-
tory.) It is important to note that a correlation matrix, rjk, of descriptors does
not provide the same information as the VIF or tolerance, and is not sufficient
to determine the orthogonality of the descriptors. The reason for this is that the
descriptors may not individually correlate with a fourth descriptor, but the
combination of the three descriptors may adequately describe the fourth.

Equation Significance
For physicochemical systems, the overall correlation equation is often

considered to be acceptable if its Pierson product correlation coefficient, r,
satisfies r2 > 0.8. The goal is for r2 to be as close to unity as possible with
the concomitant standard error of the estimate, se or s, to be as close to
zero as possible. It is common in the literature to find the standard error of
the estimate referred to, incorrectly, as the standard deviation, sd. A value
of 0.10 (10%) or less for the ratio, se/range, (the range is the difference
between the highest and lowest values in the data set) is also a good rule of
thumb in judging the significance of the equation. One wants the standard
error to be small compared to the size (as indicated by the range) of the vari-
able. There often exists some redundancy between r2 and se; high values of r2

tend to be associated with low se values. In the social sciences, and to a lesser
extent biological sciences, correlation equations may be considered significant
with smaller r2 values than typically found in physical sciences. Social and
biological systems can be exceedingly complex and produce noisy data.

Another commonly used measure of equation significance is the Fisher F
ratio. This is the regression mean square divided by the error mean square,
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which means, basically, that it is large (better) when the residual mean square
error of a regression equation is small and the amount of variance explained
by the equation is large.

Predictive Ability
The ability of the derived correlation equation to predict values can be

measured with the cross-validated r2 value, q2. Values of q2 greater than 0.5
indicate acceptable ability to predict; a q2 of 0.6 is considered quite respect-
able. Often q2 values are less than r2 values. The simplest cross-validated r2

value is calculated by excluding each point in turn (leave-one-out method)
and using the remaining points to calculate a regression equation. The result-
ing r2 values are averaged to obtain q2.

Other cross-validated correlation coefficient calculation methods are
also used. For example, instead of leaving one point out, 20% of the individual
cases may be excluded each time. A correlation equation is derived from
the remaining set as before, and the resulting equation is used to calculate
predicted values for each of the 20% of points omitted in this procedure.
The deviations are then accumulated resulting in a q2.

Cross-validation is an internal check on the validity of a correlation
equation for a data set. To test for so-called ‘‘external’’ predictive ability,
one separates the data into training (larger) and test (smaller) sets. A regression
equation is then derived with the training set only, and the resulting equation
is used to predict the values for the test set. Deviations for the test set may be
accumulated, and r2 and s values calculated. These values are compared to the
corresponding r2 and s values for the training set. Typically, the r2 values for
the test set are smaller while the s values are larger than the corresponding
values for the training set. This indicates that the statistical errors for the
test set are larger than those for the training set.

Outliers
Compounds with deviations (di of Eq. [16]) three or more times greater

than the standard deviation are considered to be outliers. A case can be made
for considering compounds with deviations two or more times larger than the
standard deviation as outliers; this can be done at the 95% confidence level.
Outliers may be removed from the data set and not used when deriving the
final correlation equation. The question naturally arises regarding the number
of outliers that can be removed without making the result look fudged. A good
rule of thumb is for outliers to constitute no more than 10% of the data.

The presence of outliers is not necessarily bad because they can indicate
aberrant behavior where, for example, the compound may undergo a different
mechanism than the other compounds in the data set. For example, aldehydes
did not fit an otherwise good correlation equation for a toxicity index58

presumably because of Schiff base formation at membrane surfaces by the
aldehyde group with amino groups. Outliers also can be indicative of an
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inadequate model in general, or that there may be experimental errors in the
input data. The exclusion of outliers should be fully disclosed when a study is
published.

Descriptor Reduction
To reduce the number of descriptors to only the most relevant ones, one

may use a descending regression analysis. Only the first model uses all the
descriptors. The statistical parameters resulting from the first iteration are used
to accept or reject the least significant term(s); that is, the ones with lowest
probability and with P(2-tail) >0.05. The process is repeated until the remain-
ing terms are significant. The descriptors are then examined for
intercorrelation; those with VIF >5 are removed because they represent redun-
dancy. Several of the common statistics programs such as JMP59 and
SYSTAT60 are capable of automating this so-called stepwise regression.

There is also the issue of when to remove outliers. Sometimes removing
an insignificant descriptor will result in a compound no longer being consid-
ered an outlier. One approach to addressing this issue is to reduce the number
of descriptors first and then remove outliers.

Another approach to reducing the number of descriptors is to use an
ascending regression analysis. The first step involves generating regressions
with individual descriptors. The next step uses the model retaining the most
significant descriptor plus the next most significant descriptor. The procedure
is continued until each succeeding added descriptor is no longer deemed sig-
nificant. If the descriptors were truly orthogonal, the final correlation equation
would be the same regardless of the pathway followed to derive that equation.
This is seldom the case, and accordingly, the resulting equation may not be the
optimum least-squares solution. This method for descriptor reduction can only
be justified by trying all possible descriptor combinations but is not practical
for large descriptor sets.

There exist variations on aforementioned procedures. Equations with
parameters raised to a power, such as Xj

2, may be considered as linear in a
variable zj (� Xj

2). For example, a squared parameter might be used in the
case of an extremum occurring in a plot of a property versus some
parameter such as the molecular volume. Such a relation might be expected
if there exists maximum molecular size for fitting into a receptor cavity. Other
mathematical functions of the ‘‘primitive’’ descriptors can likewise be used to
generate terms. Linear regression models are preferred because the terms in
Eq. [1] have relatively simple physical interpretations.

EXAMPLES OF LFER EQUATIONS

Representative correlation equations are presented here for illustrative
and comparative purposes. For convenience, the examples are classified as
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‘‘model based’’ or ‘‘nonmodel based’’ in keeping with the corresponding
definitions in the LFER background section.

Because authors present correlation equations in different ways, a
uniform pattern of presentation is employed. For each example given, the
following information is provided: the author(s), the bulk property with its
units, the number and types of compounds in the data set, the types of descrip-
tors used, and QM methods employed. Computer programs used in molecular
model visualization, QM calculation, descriptor calculation, and statistical
calculation will be mentioned. More information on some of the computer
programs available for these purposes may be found in two chapters in
this series.61,62 A brief explanation of the descriptors will precede the
equation and, where possible, units associated with the descriptors will be
provided. To avoid conflicts within this chapter, the symbols might not
be those used in the original papers. The intercept will be the last term in
the equation.

Statistical parameters, when available, indicating the significance of each
of the descriptor’s contribution to the final regression equation are listed under
its corresponding term in the equation. These include the standard errors
written as 
 values, the Student t test values, and the VIF. The significance
of the equation will be indicated by the sample size, n; the variance
explained, r2; the standard error of the estimate, s; the Fisher index, F; and
the cross-validated correlation coefficient, q2. When known, outliers will be
mentioned. The equations are followed by a discussion of the physical
significance of the descriptor terms.

Model-Based Methods

Empirical Descriptors
Classical QSAR In the ‘‘classical’’ QSAR approach, pioneered by

Hansch and Leo,63 biological properties are usually correlated with a set of
descriptors using equations similar to Eq. [17].

logð1=cÞ ¼ b log Pþ cpþ dsþ eEs þ a ½17�

Here, c represents a biological activity, often in concentration units, such as an
LD50. The coefficients, a through e, are determined from regression analysis; a
is the intercept. Log P is the logarithm of the partition coefficient for R(aq)! 
R(octanol); it models lipophilicity of a molecule and is a bulk physicochemical
property. The other three terms contain molecular substructural parameters; p
represents a hydrophobic or lipophilic effect associated with a substituent, the
Hammett–Taft substituent constant s models electronic (electron withdraw-
ing or donating) effects of a substituent, and Es models steric effects of a sub-
stituent. Equation [17] is typically applied to a related series of molecules with
different substituents.
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LSER General Model Kamlet, Taft, and their colleagues proposed
a type of LFER, called the LSER, which employs a representation for solute–
solvent interaction as expressed in general form as Eq. [18].64,65

log P ¼ cavity termþ dipole=polarizability terms

þ hydrogen-bonding termsþ intercept ½18�

The LSER approach relates a bulk property, P, to molecular parameters
thought to account for cavity formation, dipole moment/polarizability, and
hydrogen-bonding effects at the molecular level. The cavity term models the
energy needed to provide a solute molecule-sized cavity in the solvent. The
dipole moment/polarizability terms model dipole and induced dipole interac-
tions between solute and solvent; these can be viewed as related to dispersion
interactions. The hydrogen-bonding terms model HBA basicity and HBD
acidity interactions.

Kamlet and Taft recast Eq. [18] in the form of Eq. [19] with a set of
empirical parameters designed to model the various terms. This so-called
solvatochromic parameter set (p�2, d2, a2, b2) was derived from ultraviolet
(UV) spectral shifts of solutes in solvents. The subscript 2 refers to solute
parameters; solvent parameters may have different values.

P ¼ mVx2 þ sðp�2 � ddÞ þ aa2 þ bb2 þ P0 ½19�

In Eq. [19], Vx2 is the McGowan volume that models the energy needed to
make a solute molecule-sized cavity in the solvent. Again, the subscript 2
denotes a solute molecule. The parameters p�2 and d2 account for dipolarity/
polarizability, and a2 and b2 model hydrogen bond (HB) acidity and basicity,
respectively. This parameter set was used to correlate more than 250
biological, chemical, and physical properties successfully.66

Abraham67 built on this approach and developed a new empirical
parameter set that provided better correlations, Eq. [20].

P ¼ vVx2 þ rR2 þ spH
2 þ a

X
aH

2 þ b
X

bH
2 þ P0 ½20�

In Eq. [20], R2 is the excess molar refraction (MR), which is the MR of the
solute less the MR of the alkane with the same characteristic volume, Vx2,
as the solute. The p2

H symbol is the dipolarity/polarizability, and
P

aH
2 andP

bH
2 are the so-called overall HB acidity and basicity descriptors, respec-

tively. The summation sign is used to emphasize that these are ‘‘overall’’ HB
properties designed to be appropriate to situations where the solute molecule
is surrounded by an excess of solvent molecules. These descriptors are in con-
trast to the HB descriptors a2 and b2 employed in Eq. [19], which are derived
from 1:1 complexation constants. Equation [20] has also been used with the
Vx2 term replaced by a log (L16) term, where L16 is the equilibrium constant
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for the distribution of solute (gas) ! solute (hexadecane), generally at 25 �C.
Such LSER parameters can be determined with chromatographic techniques.
For example, an acidic stationary phase in gas–liquid chromatography (GLC)
could be used to measure the HB basicity values. Good correlation equations
for many properties have been derived with these parameters. Not surpris-
ingly, the chromatographic retention index is one of the properties with
good regression equations.67

Although the Abraham LSER parameter set produces good correlations
for many properties, two questions arise. First, what about compounds for
which these empirical parameters have not yet been obtained? Second, can a
theoretical, structurally based molecular parameter set be calculated that
might model the empirical parameters and/or produce good quality correla-
tion equations? The first question can be answered by noting that already there
are methods68 for estimating empirical parameter values of new functional
groups and elements. However, theoretical descriptors would be more conven-
ient. The answer to the second question is affirmative; indeed, it is the reason
for this chapter.

Abraham et al.22 correlated the gas–water [R(g) ! R(aq)] distribution
coefficient, LW (unitless), at 298 K in water for a large set of compounds,
with the LSER descriptors to obtain Eq. [21].

log LW

¼�0:869 Vx þ 0:577 R2 þ 2:5492 pH
2 þ 3:813

X
aH

2 þ 4:841
X

bH
2 � 0:994


0:031 
0:032 
0:037 
0:040 
0:040 
0:31

½21�
n ¼ 408 r2 ¼ 0:9952 s ¼ 0:151 F ¼ 16,810

The statistical results indicate that the five descriptors give a very good fit of
the experimental data. The positive signs for R2 and pH

2 that suggest that aque-
ous solubility increases with an increase in the dipolarity/polarizability for
each molecule. Similarly, aqueous solubility increases with an increase in
HB parameters, while it decreases with an increase in size of the cavity that
must be created in water.

In another example, Abraham et al.69 correlated the nasal pungency
thresholds (NPT), in parts per million (ppm), for a set of compounds at
298 K with the LSER parameters to obtain Eq. [22].

�log NPT¼2:154 pH
2 þ 3:552

X
aH

2 þ 1:397
X

bH
2 þ 0:860 logðL16Þ�8:519

½22�
n ¼ 43 r2 ¼ 0:955 s ¼ 0:27 F ¼ 201

The one outlier, acetic acid, was excluded from this equation. The compounds
used in this study included esters, aldehydes, ketones, alcohols, carboxylic
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acids, aromatics, hydrocarbons, and pyridines. The relationship is both statis-
tically and physically understandable. As expected, NPT values increase with
increases in the dipolarity/polarizability, HB acidity and basicity as well as the
gas–hexadecane distribution coefficient. From this type of analysis, one can
conclude that the nasal receptor has both acidic and basic sites and that the
better molecules are at sticking to the nasal tissue, the more pungent they are.

Quantum Mechanical Descriptors
Energy and Charge Descriptors The introduction commented on the

possibility of calculating pKa values of carboxylic acids starting from molecu-
lar structure. Using a set of 32 aliphatic carboxylic acids, Grüber and Buss70

correlated pKa values with a set of QM descriptors that were based on the
structure of the molecule and its conjugate base anion. These authors used
both MNDO and AM1 MO methods with the latter giving slightly (insignif-
icantly) better (0.001 in r2) correlation equations. The �Hf descriptor value
(kcal/mol) used refers to the difference in enthalpy of formation for the anion
and neutral molecule. It is related to the gas-phase acidity of the compound.
This descriptor is not to be confused with the usual Hf values produced in QM
output files. The EHOMO (eV) is the energy of the HOMO of the anion. Several
atomic charges (acu, atomic charge units) were used in the regression: q11

refers to the RO� oxygen; q12 refers to the COO� carbon. Equation [23] is
the regression equation for carboxylic acids; three of the parameters (EHOMO,
q12, and q11) pertain to the corresponding carboxylate ion.

pKa ¼ �0:06�Hf þ 41:70 q12 � 1:58 EHOMO � 51:90 q11 � 45:28 ½23�

0:03 
7:47 
0:35 
8:47 
6:76

n ¼ 30 r2 ¼ 0:86 s ¼ 0:51 F ¼ 46:4

In this analysis, two outliers were detected, 2,2-dimethylpropanoic acid and 3-
sulfopropanoic acid; they were excluded from the final model. The physically
reasonable nature of the relation is illustrated by noting that a decrease in pKa

(increase in acidity, less tendency to hold the proton) is associated with a smal-
ler positive charge on the COO� carbon and less negative charge on the RO�

oxygen.
For a combined set of 183 phenols and aromatic and aliphatic carboxylic

acids, in the same paper, Grüber and Buss derived Eq. [24]. Here q1 is the
charge on the OH oxygen; the other descriptors were defined in regard to
Eq. [23].

pKa ¼ 0:16�Hf � 13:01 q1 þ 0:12 EHOMO þ 33:74 q11 ½24�

0:08 
 2:93 
0:01 
5:87

n ¼ 183 r2 ¼ 0:88 s ¼ 1:01
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No intercept value was listed, and there were no outliers. It is of interest to
note the reversal of signs for q11, �Hf, and EHOMO when comparing
Eq. [24] with Eq. [23] for the aliphatic carboxylic acids. The primary differ-
ence is the q1 term suggesting that a decrease in negative charge on the ROH
oxygen is associated with an increase in acidity (lower pKa).

Theoretical Linear Solvation Energy Relationship (TLSER) With the
LSER descriptors of Kamlet and Taft in mind, Famini and Wilson71

developed QM-derived parameters to model terms in Eq. [18] and dubbed
these the TLSER descriptors. Descriptor calculations are done with the
MNDO Hamiltonian in MOPAC and AMPAC. MNDO has greater system-
atic errors than do AM1 and PM3, but the errors tend to cancel out better
in MNDO-derived correlation equations. A program called MADCAP was
developed72 to facilitate descriptor calculation from MOPAC output files.

In the work of Famini and Wilson,71 a molecular volume, Vmc, (units of
100 Å2) is used to model the cavity term that measures the energy required to
create a solute-molecule sized cavity in the solvent. The dipolarity/polarizability
term, which attempts to account for dispersion-type interactions, is modeled
by the polarizability index, pI, (unitless). This index is defined as the average
molecular polarizability divided by the molecular volume, a/Vmc, and helps
account for the correlation between polarizability and molecular volume.

Hydrogen bonds are modeled by covalent and electrostatic terms.
Covalent HB basicity is accounted for by a linear transformation of the
HOMO energy, eB ¼ 0.30 � 0.01(Elw� Eh), in units of 0.01 eV, where Elw

is the LUMO energy for water, and Eh is the HOMO energy of the molecule.
The particular parameter has been scaled to be similar in magnitude to the
other descriptors. Covalent HB acidity is modeled analogously, eA ¼ 0.30 �
0.01(El� Ehw), in units of 0.01 eV, where El is the LUMO energy of the mole-
cule, and Ehw is the HOMO energy of water. The electrostatic HB basicity
descriptor is described by the most negative atomic charge, q� (acu, atomic
charge units). Analogously, the electrostatic acidity descriptor is modeled by
the most positive hydrogen-atom charge, qþ (acu).

Two other types of descriptor have been included recently to help
describe dipolarity and the possibility of multiple ligands. The molecular
dipole moment, m, has been found to be insignificant in these TLSER correla-
tions; consequently, it was not included in the overall set of descriptors.
However, it is possible to define local dipole moments in terms of atomic
charges and interatomic distances, Eq. [25].

mtot ¼
1

2

X
j

X
k

jqj � qkjjrj � rkj mmax ¼
1

2
ðjqj � qkjjrj � rkjÞmax ½25�

Here the sums are over all pairs, and n is the number of pairs. In addition, the
average dipole moment is given by mavg ¼ mtot=n. A more realistic approach
might be to sum over the bonded pairs. The units are in acu Å. The second
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new descriptor, intended to model multiple ligand possibilities, involves
charge variance defined in a manner suggested by the Politzer and Murray
electrostatic potential variances.16 The charge variance (in units of acu2) is
defined by Eq. [26] with qk being the charge on atom k.

d2
cv ¼

1

n� 1

X
k

ðqk � hqiÞ2 ½26�

Here n is the number of atoms, and hqi is the average atomic charge. The latter
should be zero for a neutral molecule. Analogous parameters can be defined
for negative and positive charge variances separately. Large variation in charge
is presumed to model the possibility of multiple ligand sites on a molecule. For
example, two amino groups on a molecule would provide two HB proton
acceptor (ligand) sites; the N atoms would have similar charges. Such a mole-
cule would have a larger variation in charge across its surface, hence, larger
charge variance, than a molecule with only one amino group.

For the same large set of compounds used in deriving Eq. [21], the gas–
water distribution coefficient, LW (unitless), for a set of 423 compounds at
298 K was correlated with the set of TLSER descriptors resulting in
Eq. [27].71 (The subscript 2 refers to solvent parameters.)

log LW

¼ �0:766 Vmc2 þ 29:02 pI2 þ 36:17 eB2 þ 9:370 q�2 þ 12:39 qþ2 � 8:706

t ratio 4:8 6:1 6:6 21:4 15:7 14:2

VIF 2:20 2:20 1:30 1:48 1:14 ½27�

n ¼ 417 r2 ¼ 0:810 s ¼ 0:939 F ¼ 352 q2 ¼ 0:745

There were six outliers, cyanomethane, cyanoethane, 1-cyanopropane, 1-cya-
nobutane, n-acetyl-pyrrolidine, 3-acetylpyridine, compared to none found in
deriving Eq. [21]. The statistical significance of Eq. [27] is given by the corre-
lation coefficient, r2, indicating that it accounts for at least 81% of the var-
iance in the data set. Furthermore the cross-validated correlation coefficient,
q2, indicates that the equation has good predicting ability. The s/range ratio
is on the order of 10% giving a further indication of equation’s significance.
This suggests that the standard error is small compared to the range of values
for the property. The physical significance is indicated by the signs of the co-
efficients that show the expected increase in solubility in water with increased
HB acidity and basicity. In fact, the most statistically significant terms in
Eq. [27] (those with the highest t ratios) involve the HB electrostatic models
for basicity and acidity. Also, as expected, increased volume, associated with
increased dispersion interactions, accompanies decreased water solubility
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(log LW). Only 6 out of the 423 compounds are outliers; each of them contains
nitrogen, with four being CN groups.

When dipole moments and charge variances are incorporated in the
descriptor set, the resulting equation contains the same terms as in Eq. [27],
but it also contains the total and positive charge variances. The HB electro-
static models for basicity and acidity are still the most significant contributors
in that order. There is one more outlier, triethyl phosphate. The statistics are
r2 ¼ 0:808; s ¼ 0:935; F ¼ 247; and q2 ¼ 0.754. The average VIF value, a
measure of the intercorrelation or orthogonality of the descriptors in the
equation, is higher at 1.73 as compared to 1.66 for Eq. [27]. For this property
and this set of compounds, there is little advantage to including the new
descriptors.

Debord and colleagues73 correlated LSER and TLSER parameters with
the concentration for 50% inhibition, C50 (M), at 298 K for arylesterase by
11 aliphatic alcohols. The LSER parameters gave rise to Eqs. [28a–b], and
the TLSER yielded Eqs. [29a–b]. There are two isozymes, A and B; separate
equations were derived for each. The intercepts were insignificant in all four
equations; so no deviation is listed. Here we use the common transform
pC50 ¼ �log C50.

pC50 ðAÞ ¼ 10:23 Vx � 4:61 V2
x � 5:17 pH

2 � 0:44 ½28a�

0:97 
0:65 
1:12

n ¼ 11 r2 ¼ 0:99 s ¼ 0:12 F ¼ 217

pC50 ðBÞ ¼ 10:82 Vx � 5:02 V2
x � 4:85 pH

2 � 0:73 ½28b�

1:24 
0:84 
1:42

n ¼ 11 r2 ¼ 0:98 s ¼ 0:15 F ¼ 134

pC50 ðAÞ ¼ 11:14 Vmc � 4:61 V2
mc � 253:04 qþ � 46:22 ½29a�


0:94 
0:54 
84:90

n ¼ 11 r2 ¼ 0:98 s ¼ 0:16 F ¼ 125

pC50 ðBÞ ¼ 11:74 Vmc � 5:05 V2
mc � 99:14 q� � 28:93 ½29b�


1:05 
0:60 
36:88

n ¼ 11 r2 ¼ 0:98 s ¼ 0:17 F ¼ 106

The empirical LSER parameter set provides slightly better correlation
equations. The volume contributions were similar for the LSER and TLSER
derived regressions since the empirical (McGowan) and theoretical volume
parameters are highly correlated. The inclusion of a volume squared term is
consistent with the qualitative observation of an increase with size up to a
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certain point (a maximum), hence a parabolic relationship. In Eqs. [22a–b],
inhibitory activity is enhanced (pC50 made smaller) by greater dipolarity/
polarizability suggesting some dipole interaction at the enzyme site. Smaller
pC50 values, hence smaller concentrations, imply greater effectiveness in
inhibiting the enzyme.

The TLSER correlations have charges in place of the LSER dipolarity/
polarizability, pH

2 . The interesting thing to note is that isozyme A involves
a positive charge parameter, and isozyme B involves a negative charge
parameter. A partial explanation for this peculiarity is that the two charge
descriptors happen to correlate with each other (r ¼ 0.76).

Famini and Wilson74 correlated the solubility, S (mol fraction� 104), for
a set of aromatic compounds in supercritical CO2 at 308 K and 14 megapascal
(MPa).

log S ¼ �6:04pI þ 10:4 eB � 20:1 q� þ 24:4 qþ � 8:37 ½30�
t test 3:4 2:4 7:6 6:2

VIF 2:4 2:6 7:0 7:1

n ¼ 19 r2 ¼ 0:861 s ¼ 0:477 F ¼ 22

Figure 1 displays the relation between the observed and calculated log S values
for data used in Eq. [30]. Three compounds were found to be outliers: benzoic
acid, phthalic anhydride, and acridine. Their values (not shown in Figure 1)
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Figure 1 Plot of calculated versus observed log S values based on Eq. [30]. See Ref. 74.
S is the solubility of aromatics in supercritical CO2 at 308 K and 14 MPa.
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would have been considerably farther from the line representing perfect corre-
lation than those displayed. The VIF values for Eq. [30] for the charges are a
bit high; some references57 suggest that a VIF value less than 10 is acceptable.
However, most publishable TLSER work is limited to VIF values less than 5.
The physical significance of Eq. [30] is not obvious. Carbon dioxide is incap-
able of acting as an acid (except in water as carbonic acid); consequently, the
presence of the basicity terms, regardless of sign, is difficult to explain (unless
the CO2 were wet). However, the positive sign on the electrostatic acidity term
makes sense; it suggests that increased acidity of the solutes would increase
their solubility in the base, CO2. The negative sign on the polarizability index,
pI2, is reasonable if one considers CO2 to be a ‘‘hard’’ base.75 ‘‘Hard’’ solutes
would have decreased polarizability indexes and, thus, increased solubility in
accord with Eq. [30].

Using a set of 479 compounds, Liang and Gallagher76 correlated the
vapor pressure, p (Torr), at 298 K with the TLSER related descriptors to
obtain Eq. [31]. Only a single descriptor was needed to provide a respectable
result.

log p ¼ �0:401 aþ 3:940

n ¼ 479 r2 ¼ 0:922 s ¼ 0:745 q2 ¼ 0:920
½31�

Here, a is the polarizability related through TLSER descriptors by a ¼ pI2

Vmc. The physical meaning of Eq. [31] is indicated by the negative sign on the
polarizability term. Increased polarizability would increase the dispersion type
intermolecular interactions and, thus, decrease the vapor pressure.

Liang and Gallagher76 found that the inclusion of counting descriptors
for OH, C����O, NH, COOH, NO2, and CN groups improved somewhat the
correlation as expressed in Eq. [32].

log p ¼ �0:432 a� 1:382 NOH � 0:482 NC¼O � 0:416 NNH � 2:197 NCOOH

� 1:383 NNO2
� 1:101 NCN þ 4:610 ½32�

n ¼ 479 r2 ¼ 0:960 s ¼ 0:534 q2 ¼ 0:957

The negative signs are physically reasonable because these additional param-
eters would be expected to be associated with increased intramolecular
attractions. The authors provided no measure of intercorrelation; indeed,
one might expect some correlation of a, the average molecular polarizability,
with the presence of C����O, COOH, NO2, and CN groups. The counting
descriptors are not QM quantities; their inclusion is not philosophically satis-
fying, but they do improve the fit.

GIPF (Molecular Electrostatic Potential) Politzer and Murray54,77 devel-
oped a general interaction property function (GIPF) based on MEP symbolized
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here as U. The GIPF emanates from the idea that the electrostatic field of a
molecule influences its interactions with other molecules. The GIPF descriptors
are calculated by ab initio MO methods. Early work was done with Hartree–
Fock theory with the STO-3G* basis set for finding the optimized geometry
and the STO-5G* for the electrostatic potential. However, for the example
to be presented here, the QM calculations were done with DFT using
B3P86 functionals with the 6-31þG** basis set option in Gaussian 94.78

Early MEP-based parameters considered included surface area (A), �,
s2

tot, and n. Here � is a measure of local polarity, and s2
tot is a measure of elec-

trostatic interaction tendency. Larger values imply larger charge separation
leading to greater electrostatic interaction. Electrostatic interactions are also
described by n, which is a measure of electrostatic balance. The three charge
related variables are defined in terms of the surface electrostatic potential dif-
ference, dUi, at the ith point, Eq. [33],

dUi ¼ ½UðriÞUS� ½33�

where US is the average MEP over the surface. The local polarity, �, is
defined in Eq. [34], where n is the number of surface points used in the
summation.

� ¼ 1

n

Xn

i

jdUij ½34�

The s2
tot descriptor, another measure of local interaction tendency, is defined

in Eq. [35]

s2
tot ¼ s2

þ þ s2
� ½35�

where the individual terms are sums over the positively and negatively charged
surface points, respectively, as described in Eq. [36]. These are equivalent to
variances in the electrostatic potential difference, dUi, for the positive, nega-
tive, and total points on the surface.

s2

 ¼

1

n


Xn

i¼1

jdUij2 ½36�

Finally, the electrostatic balance parameter, which is made up of the para-
meters defined in Eqs. [35] and [36] and is seen to be dimensionless, is
expressed by Eq. [37].

n ¼ s2
þs

2
�=ðs2

totÞ
2 ½37�
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Electrostatic balance can be illustrated by noting that alcohols are more
‘‘balanced’’ between having HB donors and acceptors; that is, they have higher
n values than their structurally isomeric ethers. This correlates with alcohols
being relatively strong HB donors and acceptors, whereas the ethers are only
HB acceptors.

Another descriptor used in this MEP approach is the average
local ionization energy, I(r), defined at some point, r, as the following sum,
Eq. [38].

IðrÞ ¼
X

i

riðrÞjeij=rðrÞ ½38�

Here ri(r) and r(r) are the electron density for the ith MO and total electron
density at some point r, respectively, and Ej is the MO energy. The parameter
I(r) models the energy need to remove an electron from that point in the field
of the molecule. Consequently, the ionization potential measured at the site
with the lowest value, Imin, could account for the tendency of a molecule to
react with electrophiles. The quantity, IS,min, is evaluated at the surface of low-
est potential; US,min is the analogous electrostatic potential. Averages over the
positive and negative values can also be computed in this way. Other related
parameters include A�S, the negatively charged surface area, and U�S,avg, the
average electrostatic potential over this area. The parameter Umin is the most
negative MEP value anywhere around the molecule.

Murray, Abu-Awwad, and Politzer79 used GIPF descriptors to correlate
aqueous solvation Gibbs free energies, �Gsol (kJ/mol), for R(g) ! R(aq) at
298 K.

�Gsol ¼ 0:712Umin � 2:6412� 10�5ðUS;max �US;minÞ3 þ 5:1892

� 10�2A�SU�S;avg þ 9:7042� 103ðA�SU�S;avgÞ�1 þ 46:827 ½39�

n ¼ 50 r2 ¼ 0:976 s ¼ 1:57

The physical significance of Eq. [39] can be interpreted by the negative
(US,max � US,min) term. Greater charge variation on the surface of a solute
molecule means a greater separation of positive and negative charges on
the surface. This variation implies more space for interaction with hydrogen
and oxygen atoms on water molecules and, hence, a decrease in �Gsol.
Decreased (more negative) free energy implies greater tendency to interact
(greater ‘‘spontaneity’’). The increase in free energy with Umin implies that
the H atom interactions are more important than oxygen interactions. Terms
involving the area multiplied by potential may be viewed as terms describing
size effects; these may be associated with dispersion interactions, for example.
Larger dispersion interactions would lead to stronger solute–solute attractions
and smaller solute-water attraction.
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Using the same set of compounds as those for Eq. [30], Politzer et al.80

correlated the solubility, S (mol fraction� 104), in supercritical CO2 at 308 K
and 14 MPa with the GIPF descriptors to derive Eq. [40].

log S ¼ 12:321� 103ðVÞ�1:5 � 2:24� 10�4ðs2
totÞ

2 � 10:378 ½40�

n ¼ 21 r2 ¼ 0:90

Only one compound was an outlier for Eq. [40], whereas there were three for
Eq. [30]. As in the case for Eq. [30], the physical significance of Eq. [40] is not
readily apparent, although decreased volume could be associated with
decreased polarizability and, thus, greater ‘‘hardness’’. This in turn would
increase the interaction with ‘‘hard’’ CO2 and, hence, increase the solute solu-
bility. The decrease in solubility associated with the increase in the charge var-
iance might be associated with decreased interaction with the nonpolar CO2

molecule. As with Eq. [39], Eq. [40] has terms raised to unusual powers.
Eisfeld and Maurer81 correlated the octanol/water partition coefficient,

Pow (unitless), defined as the ratio of the concentration of the solute R in
the two phases, [R(octanol)]/[R(aq)], for the process, R(aq) ! R(octanol),
to obtain Eq. [41] for a set of about 200 compounds. As mentioned previously,
this empirical quantity has been used as a descriptor in the classical Hansch
QSAR correlations. In the study of Eisfeld and Maurer, the descriptors were
calculated with an ab initio Hartree–Fock model using a 3-21G* basis set and
the Gaussian 94 program. The polarity of each molecule is accounted for by
terms containing the dipole moment (m), polarizability (a), percentage of nega-
tive electrostatic potential (U�S,%), and mean square of the negative electro-
static potential on the surface ([U�S,avg]

2). The influence of p bonds in the data
set is accounted for by the average of the negative electrostatic potential (I�),
which is the negative electrostatic potential summed over the volume divided
by the total electrostatic potential summed over the same volume. The deloca-
lized electrons associated with p bonds are expected to correspond to a large
negatively charged surface area compared to the total area. Hydrogen bonding
is modeled by the

P
Umin and

P
Umax terms. The parameter V is the molecular

volume. The counting descriptors, NN and NO, which measure the number of
N and O atoms, respectively, were included to improve the overall quality of
the correlation. The equation is linear in composite descriptors but not in volume.

log Pow ¼ 3:393 V þ 0:595mV þ 0:739 a=V2 � 0:876 US;% � 5:769 I�

þ 3:393
X

Umin � 0:586
X

Umax � 0:034 ½U�S;avg�2V2

� 0:259 NN � 0:241 NO � 0:305 ½41�

n ¼ 202 s ¼ 0:274

The only statistical parameter provided was s. However, Figure 2, plotted
from their data, shows that the data clusters quite well around the line
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corresponding to perfect correlation. The physical meaning of Eq. [41] is dif-
ficult to decipher. However, the volume term, V, implies an increase in solu-
bility in octanol with increased molecular volume. This trend is reasonable
because increased solute size can be associated with increased dispersion inter-
actions, which leads to increased intermolecular interactions with the nonpo-
lar layer and, hence, increased solubility in octanol, leading to increased Po/w

values. The negative sign for
P

Umax, a HBD acidity measure, implies that an
increase in solute acidity would lead to increased water solubility and, hence,
decreased Po/w values. This trend is reasonable because increased HBD acidity
would lead to increased interaction with water as compared to octanol. Ana-
logous reasoning suggests that increased HBA basicity,

P
Umin, should

increase solubility in octanol as compared to water, which implies that the
HBA basicity of water contributes more to solute solubility than does its
HBD acidity.

Using a smaller (74) set of compounds, Haeberlein and Brinck82

correlated the log Po/w at 298 K with a set of GIPF related descriptors to obtain
Eq. [42]. Calculations were done at the HF/6-31G* ab initio level using
Gaussian 94. In Eq. [42], A is the surface area (Å2) defined as the isodensity
surface of 0.001 electrons/bohr3; [U�S,avg]

2 is the mean of the squares of the
negative molecular electrostatic potential points (kJ/mol) on that same surface;
m is the dipole moment (Debye); V is the molecular volume (Å3); and

P
Umin is

the sum over the surface of the MEP less than �147 kJ/mol with the provision
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Figure 2 Plot of calculated versus observed log Pow values based on Eq. [41].
See Ref. 81. Po/w is the octanol/water partition coefficient at 298 K.
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that, if two minima were 2.1 Å apart, only the lowest would be used.

log Po=w ¼ 0:0290 A� 9:99� 10�7A½U�S; avg�2 þ 2:02m2=V

þ 3:81� 10�3
X

Umin � 0:894 ½42�

n ¼ 74 r2 ¼ 0:966 s ¼ 0:292 F ¼ 481

The physical meaning of Eq. [42] is tied to the interpretation of some of the
terms, some being convoluted. The A term can be associated with dispersion
interactions; an increase in surface area suggests an increase in dispersion
interactions (attractions) and, thus, increased solubility in octanol that in
turn results in enhanced Po/w values. A similar interpretation holds if one
associates m2/V with dipolarity/polarizability effects. The positive sign on the
HBA term (

P
Umin) for the solute suggests that the HBD acidity of water is less

important than the HBA basicity of water for those molecules partitioning
between phases. This implies that increased solute HBD acidity would increase
the solute–water interaction.

Grigoras83 employed the concept of molecular surface interactions (MSI)
to propose new descriptors involving areas quite similar to those in the CPSA
set that was described in an earlier section. The four descriptors can be calcu-
lated with the extended Hückel theory (EHT) method using modified hydro-
gen parameters. The total molecular surface area, A, is the dispersion
molecular surface interactions (DMSI) term. The electrostatic negative mole-
cular surface interactions (ENMSI) term, A�, is the sum of surface areas of
negatively charged atoms multiplied by their charges, (

P
A� j q�j). The elec-

trostatic positive molecular surface interactions (EPMSI) term, Aþ , is analo-
gous to A� but excludes positive charges on hydrogen atoms H-bonding to
oxygen and nitrogen. The HB molecular surface interactions (HBMSI) term,
AHB, is analogous to A� but includes positive charges on hydrogens involved
with HB to oxygen and nitrogen, only. Care is taken in the latter two descrip-
tors so that charges are not overcounted.

Grigoras83 correlated the normal boiling point, Tb (K), for a set of 137
compounds, with these MSI descriptors to obtain Eq. [43]. To minimize
confusion with the previously defined symbol A for area, the extended symbols
are used here.

Tb ¼ 0:718 DMSI� 1:105 ENMSI þ 0:230 EPMSIþ 8:800 HBMSIþ 127:7


0:038 
0:030 
0:024 
0:225 
6:1

½43�
n ¼ 137 r2 ¼ 0:958 s ¼ 14:1 F ¼ 745

The physical meaning of this equation can be discerned by noting the positive
signs on the DMSI and HBMSI terms. Increased dispersion interactions
increase molecular attractions and, hence, increase the boiling point. Similarly,
an increase in H-bonding molecular interactions would have the same result.
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Nonmodel-Based Methods

Nonmodel-based methods use large sets of descriptors and, often,
complex methods for regression analysis. The equations from regression
analysis have been labeled by Bakken and Jurs as ‘‘type 1’’ equations.28 The
equations are similar in form to those used with small descriptor sets. Type 1
equations rely on QM and other theoretical descriptors.

Jurs and Katritsky Methodology
Stanton and Jurs55 developed and used large sets of descriptors consist-

ing of charged partial surface area descriptors along with other theoretical
descriptors in correlation studies of a wide range of properties. Some of the
CPSA descriptors were designed as models representing hydrogen bonding.
The Jurs group relied on the PM3 semiempirical Hamiltonian and employed
their ADAPT program to generate a large set of descriptors. As mentioned
earlier, CPSA QM descriptors involve charges not necessarily found from
QM calculations directly.

Using a set of 352 hydrocarbons and halohydrocarbons, Goll and Jurs84

correlated the vapor pressure, p (Pa), at 298 K with a mixture of the CPSA and
indicator descriptors to derive Eq. [44]. These authors used topological
(connectivity) parameters (V0 and N3C), three counting descriptors (NF,
NSB, NRA), and two QM descriptors (DPSA, RPCG). The parameter V0 is
the zero-order molecular connectivity found by a valence molecular connectiv-
ity term; N3C is a third-order cluster that involves counting the number of
connections or paths. The terms NF, NSB, and NRA are the numbers of
fluorine atoms, single bonds, and atoms appearing in rings (saturated or unsat-
urated), respectively. The DPSA is the difference between the atomic charge
weighted partial positive and partial negative surface areas, (PPSA3)�
(PNSA3). Table 3 and the subsection on charged partial surface area descrip-
tors help clarify the notation here; PPSA3 refers to atomic charge weighted
PPSA, PPSA2 refers to the total charge weighted PPSA, whereas PPSA1 refers
to the ordinary (noncharge weighted) PPSA. The RPCG parameter, relative
positive charge, is the charge of the most positive atom divided by the summa-
tion of positive charges in the molecule.

log p ¼ �0:670 V0þ 0:204 NFþ 0:0547 NSB� 0:121 NRA� 0:0635 DPSA


0:00123 
0:018 
0:0072 
0:004 
0:0023

þ 0:117 N3Cþ 0:518 RPCGþ 8:15 ½44�

0:007 
0:067 
0:05

n ¼ 352 r2 ¼ 0:983 s ¼ 0:186

The interpretation of Eq. [44] is suggested by the negative DPSA term. De-
creased DPSA values mean decreased positively charged surface atom area
as compared to negatively charged surface atom area. This could be associated
with smaller (weaker) intermolecular surface electrostatic interactions which
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would make it easier for molecules to enter the gas phase. The increase of
vapor pressure with RPCG, the largest fraction of positive charge on an
atom, could be attributed to the mutual repulsion by neighboring molecules.

Katritsky, Mu, and Karelson85 used the same large set of compounds
that was used for deriving Eqs. [21] and [27] to correlate the gas–water distri-
bution coefficient, LW (no units), at 298 K. A mix of CPSA and indicator
descriptors were adopted to obtain Eq. [46]. The QM descriptors were
calculated with the AM1 Hamiltonian. To facilitate matters, Katritsky and
colleagues developed a program they call CODESSA86 (comprehensive
descriptors for structural and statistical analysis) that generates most of the
theoretical descriptors automatically from output files of some common QM
programs. CODESSA also contains statistical routines. A descriptor labeled
HDCA2 is a HBD surface area weighted charge descriptor defined byP

qD(AD/Atot)
1/2, where qD is the partial charge on atom D (an HBD

H atom), AD is the exposed surface area of atom D, and Atot is the total
molecular surface area. The most negative partial charge weighted topological
electronic index, PCWTE, is defined by

PCWTE ¼ 1

Qmin


 �X
j

X
k 6¼j

jqj � qkj=r2
jk ½45�

The parameter qj is the Zefirov50 partial charge on atom j mentioned earlier,
Qmin is the most negative partial charge, and rjk is the distance between atoms j
and k. It would be interesting to use QM calculated partial charges to compare
and contrast with the work of Katritzky, Mu, and Karelson.85 The O and N
counting descriptors are combined in a single term in the following equation:

log LW ¼ 41:61 HDCA2þ 0:71 ðNO þ 2�NNÞ � 0:17 ðEHOMO � ELUMOÞ

1:11 
0:02 
0:02

t ratio 37:44 28:41 9:42

þ 0:13 PCWTE � 2:82 ½46�

0:01 
0:22

t ratio 19:03 12:92

n ¼ 406 r2 ¼ 0:941 s ¼ 0:53 F ¼ 1269 q2 ¼ 0:939

The physical meaning of Eq. [46] is suggested by the positive sign of the HBD
surface area parameter, HDCA2. Increased HDCA2 values implies increased
HBD acidity, which then means greater water solubility and, hence, increased
LW values. Furthermore, the high t-test value (37.44) for HDCA2 indicates
that it is the statistically most significant term. The most negative charge
weighted topological electronic index (PCWTE) term, which is a measure of
electrostatic solute–solvent interaction, provides more evidence for the physi-
cally reasonable nature of Eq. [46]. As expected, an increase in this index
results in an increase in LW.
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Katritsky, Lobanov, and Karelson53 correlated the boiling point, Tb (K),
for a set of 584 compounds with a very large set (>800) descriptors of various
types, including many of those employed by Jurs and colleagues. Equation [47]
regresses on eight descriptors. As before, QM descriptors were calculated with
the AM1 Hamiltonian and other calculations were done with CODESSA.

Four QM descriptors involved surface areas: (1 and 2) CSA2H and
CSA2Cl, the charged surface area of H (

P
j AHjqHj) or Cl atoms (

P
j AClj

qClj); (3) HDSA2, the HB donor surface area,
P

j qD(AD)1/2/Atot, with the
sum over donor H atoms (similar to HDCA2 in Eq. [46]); (4) HASA1, the
HB acceptor surface area,

P
j AHBAj, over acceptor atoms [O atoms in C����O

(but not COOR) and OH, N atoms in amino and aromatic groups, and S
atoms in SH groups]. The parameter GI is the gravitational index,

P
mj mk/

rjk, with mj and mk being the masses of atoms j and k, and the summation
(j<k) is over the bonded pairs; it is a measure of bulk cohesiveness. The
term TI is the topographic electronic index,

P
jqj � qkj/r2

jk (see Eq. [12]), where
qj and qk are partial charges on atoms j and k also summed (j<k) over the
bonded pairs. NF, N, and NCN are counting descriptors for F atoms, total
atoms, and CN groups, respectively.

Tb ¼ 64:6 G
1=3
I þ 536 HDSA2� 193:0 NF=N � 86:0 NCN þ 0:75 HASA1


0:73 
16 
10:8 
3:0 
0:04

� 85:8 TI þ 10:4 CSA2H þ 21:9 CSA2Cl � 166:5 ½47�

4:7 
0:68 
2:1 
5:3

n ¼ 584 r2 ¼ 0:9645 s ¼ 15:5

A physical interpretation of Eq. [47] can be made by noting the positive signs
on the gravitational and QM descriptors. It is expected that boiling points
would increase with increased intermolecular attractions. The gravitational
index, GI, is a size dependent descriptor that accounts for dispersion and cavi-
tation effects in the liquid. Hydrogen-bonding donor–acceptor interactions
would be expected to increase with increased values for HDSA2, HASA1,
and CSA2H.

Following a similar approach but using a smaller data set of 369 com-
pounds, Ivanciuc et al.87 correlated their liquid viscosity (10�3 Pa s) at 298
K with a mixed set of descriptors to obtain Eq. [48]. This involves three QM
descriptors, one topological, and one constitutional descriptor. The QM
descriptors were calculated with the AM1 Hamiltonian in AMPAC, and
CODESSA was used to calculate the descriptors and perform the statistical
analyses. The HDCA2 parameter is the same HBD charged surface area
used in Eq. [46]. The maximum electrophilic reactivity index, EA, for a carbon
atom is defined by

P
j c2

LUMO,j=(ELUMOþ10), with the summation over the
valence AOs on a carbon atom in the LUMO. The maximum AO electronic
population, Y, models the molecular nucleophilicity and is defined by
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2
P

j c2
j , where the sum runs over the occupied MOs for a single AO. The

molecular mass is represented by M, and 3w is the Randić connectivity index
of order 3.

lnZ ¼ þ3:387 HDCA2þ 8:858� 10�3 Mþ 0:3919 3w


0:139 
0:647� 10�3 
0:0303

�8:486 EA þ 0:6684 Y� 2:184 ½48�

1:435 
0:0803 
0:144

n ¼ 337 r2 ¼ 0:846 s ¼ 0:371 F ¼ 367

The physical meaning of Eq. [48] is indicated by the positive sign on the hydro-
gen-bonding charged surface parameter, HDSA2. Increased hydrogen bonding
would be expected to increase intermolecular attractions and, hence, viscosity.
The increase of viscosity with increased molecular mass is also expected; dis-
persion interactions increase with mass. A similar argument applies to Y,
which models nucleophilic reactivity.

Bodor and Huang88 correlated the octanol/water partition coefficient,
Po/w (unitless) at 298 K for a set of 302 compounds with a set of 58 descriptors
to obtain Eq. [49]. These parameters include seven QM based descriptors that
were calculated with the AM1 method. The dipole moment is m(D); QO and
QN are the square roots of the sum of the squares of charges on the O and N
atoms, respectively. The parameter QON is the sum of absolute values of
charges on the O and N atoms, and ABSQ is the sum of the absolute values
of the charges on all atoms. In addition to these QM descriptors, the surface
area, A (Å2) , and the ovality, O, were calculated from the QM-optimized geo-
metry. The ovality is defined by actual area/area as a sphere, O ¼ A=½4pð3V=
4pÞ2=3�. The molecular mass, M, and two indicator variables, Nalk and NC, for
alkanes and carbon atoms, respectively, were also employed.

log Po=w ¼ 0:057261 mþ 1:0392 Nalk � 17:377 Q4
N þ 31:243 Q2

N


0:043557 
0:2198 
3:843 
3:443

� 8:5144 QN � 5:4195 Q4
O þ 20:346 Q2

O � 4:6249 QO


1:3688 
3:5436 
3:261 
1:1402

� 5:0040 QON þ 0:0052861 M� 1:1414� 10�4A2 þ 0:059838 A


0:7632 
0:0026608 
0:1641� 10�4 
0:014051

þ 0:083249 NC � 0:27406 ABSQ � 7:6661 O� 5:5961 O2


0:058322 
0:14935 
29:1952 
14:6597

þ 2:1059 O4 � 9:5524 ½49�

1:0550

n ¼ 302 r2 ¼ 0:95656 s ¼ 0:30579 F ¼ 367:9
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This equation is the lengthiest in this chapter. The uncertainties associated
with the O and O2 terms are very high; it is not clear why the authors included
them. The physical significance of Eq. [49] is hinted at by the signs on the first
power QN and QO terms as well as the ABSQ term. Increasing values of these
parameters would accompany increased HB basicity leading to increasing
water solubility and, hence, a lower Po/w value. The sign on the surface area
parameter, A, also is reasonable in that increased molecular surface area is
associated with increased dispersion interactions that in turn leads to increased
solubility in octanol and, hence, a higher Po/w value.

CONCLUSIONS

Seeking correlations in a chemical system presumes an inherent relation-
ship between a bulk (macroscopic) property of a compound and its molecular
structural (microscopic) properties. Based on the examples given here,
QM-derived descriptor sets can provide statistically significant correlation
equations for a wide range of properties. However, as mentioned in the Intro-
duction, empirical descriptor sets often provide better quality correlation
equations than do the QM sets. Despite this, QM descriptor sets can still
provide significant regression equations to go along with the convenience in
obtaining the descriptors.

Including counting descriptors (indicator variables) with the QM
descriptors tends to improve the quality of some of the theoretical correlation
equations. As pointed out by the Katritsky group,85 the inclusion of the count-
ing descriptors for O and N may be due to a deficiency in calculated charges
needed to adequately describe electrostatic and hydrogen-bonding interac-
tions. A possible explanation for this could be defective or inadequate param-
eterization of the semiempirical QM model Hamiltonians; perhaps inclusion
of more oxygen- and nitrogen-containing compounds in the parameterization
of the semiempirical methods might have improved the fit. However, the para-
meterization was done as best as possible at the time of the method develop-
ment. Interpretation of the regression equations is facilitated when more than
one QM descriptor is viewed as contributing to a given classical chemical con-
cept, for example, dispersion interactions, dipolarity–polarizability, and
hydrogen bonding, which provide the underpinning for the molecule’s
observed physical properties.

The examples presented here help us to address the question of
whether to use a model-based (small sets of simply interpreted descriptors)
or nonmodel-based QSAR/QSPR method (large sets of descriptors). The
model-based equations (which includes LFERs) can be used to fairly readily
predict the result of changing molecular structure on a property. This is
because these equations can often be easily interpreted from a chemical view-
point. The nonmodel-based equations are frequently not so easily interpreted
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in chemical terms. On the other hand, the quality of their statistical parameters
suggest that values calculated with nonmodel-based equations might be closer
to what would be measured.

Because many chemical (and all biochemical) processes occur in
condensed phase, a fruitful approach for improving QM correlation equations
might involve QM descriptor calculation with a computational scheme that
includes solvation effects.32 In this connection, it is important to note that a
QSPR study of gas/water distribution showed little difference between
a regression equation derived with isolated molecule parameters and one
calculated with solvated molecular parameters.85 Since one example does
not constitute proof, continued investigation is warranted.
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CHAPTER 6

The Development of Computational
Chemistry in Germany

Sigrid D. Peyerimhoff

Institut für Physikalische und Theoretische Chemie, Universität
Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany

INTRODUCTION

Computational chemistry was able to develop thanks to two major
advances: first was the understanding and formulation of a mathematical
description of the microscopic behavior of matter, and second was the techni-
cal development of computers much more powerful than mechanical desk
calculators. A large part of the foundation of the mathematical theory was
laid by the physics community in Europe in the 1920s. The University of
Göttingen in Germany became a center of the new quantum mechanics.

Although various established chemists in Germany had become aware of
the amazing explanatory power of the new quantum mechanics by Heisenberg
and Schrödinger, they were not yet ready to make use of this tool for chemis-
try. Very likely they could not imagine that a mathematical theory would be
able to describe data and processes that generations of experimentalists
had collected and studied. Thus several young people were the first to apply
the new theory to chemical problems. In early 1927, two Germans, Walter
Heitler (from Karlsruhe) and Fritz London (who had received his Ph.D. degree
in München), supported by a Rockefeller fellowship, spent some time in
Zürich where Erwin Schrödinger was at that time. Both wanted to work in
quantum mechanics. Apparently, Schrödinger was not fond of collaborations,
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so Heitler and London decided in Zürich to calculate the van der Waals force
between two hydrogen atoms. According to the article of Gavroglu and
Simoes1 on the history of quantum chemistry, ‘‘nothing indicates that
Schrödinger gave them the problem of the hydrogen molecule or that they
talked with him about it.’’ This work culminated in their famous Heitler–
London paper2 as basis for the valence bond approach of chemical binding.
Later in 1927, Heitler became Max Born’s assistant in Göttingen, and London
became the assistant to Schrödinger who had then moved to Berlin as the
successor to Max Planck. Heitler and London had to resign their positions
in 1933, and both emigrated to England.

Linus Pauling from the United States spent 1926 to 1927 (his postdoc-
toral year) with Arnold Sommerfeld in München. He was supported by a Gug-
genheim fellowship and made visits to Göttingen. Pauling used the new
quantum mechanics to study the electronic structure and physical properties
of complex atoms and atomic ions.3 The young Robert S. Mulliken, also
from the United States, spent 1927–1928 as a postdoctoral fellow in Göttingen
where he met Friedrich Hund. They not only had intense scientific discussions
with each other, but also became friends and even spent some vacation time
hiking together in the Black Forest. Their approach to chemical binding, today
referred to as the molecular orbital (MO) method, was derived from the study
of molecular spectra.4,5 It was an exciting time, and Germany was an attrac-
tive place for scientific visits, especially for young people.

Still, skepticism remained as to the general power of quantum mechanics
applied to complex chemical systems. The situation around 1930 is described
by the well-known dictum of Paul Dirac6 (the Nobel Prize winning physicist at
Cambridge): ‘‘The underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry are thus com-
pletely known, and the difficulty is only that the exact application of these
laws leads to equations much too complicated to be soluble. It therefore
becomes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the main
features of complex atomic systems without too much computation.’’

Indeed, approximate methods were quickly designed, and during the first
years German scientists contributed their share. Erich Hückel7 developed the
very simple but highly successful Hückel method for aromatic p-electron sys-
tems, and Hans G. A. Hellmann8 made important contributions to the meth-
odology of quantum chemistry. These two men may be considered the most
prominent German representatives to apply quantum mechanics to chemistry
in this era. Starting in 1933, the political influence of Nazi Germany forced
many scientists to emigrate, including Hellmann, and Germany lost its lead
in the field. It was probably the United States that became the strongest player
due to the work and effort of Pauling, Mulliken, and John Slater.9

What Dirac did not—and perhaps could not—foresee is the development
of computers. The first programmable computer was designed by Konrad
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Zuse shortly before and during World War II. Zuse was a young engineer
who was tired of all the very similar calculations required in his study
and early job; he dreamed of making these steps all automatic. His project
was not triggered by military needs unlike some of the computer
developments in England and the United States. At least in the United
Kingdom, the main impetus for the development of a digital computer10

came from the need to break the codes of the German forces in World
War II.

It is obvious that after World War II the groundwork was prepared so
that computational chemistry could develop. This review will start with this
period. Because the field of computational chemistry is based on developments
in both computer technology and in theoretical methods, these areas and their
interplay will be addressed. This essay considers progress in the various dec-
ades, although it is clear that such a chronological division has a feature of
arbitrariness.

In the first decades after the war, the primary users of computers
were quantum chemists. Considering German history, this outcome was
logical considering all the work that was stopped in the early 1930s and
which was reanimated after the war making use of the new computational
tools. For the same historical reason and with the outlook to more computer
power, relatively little semiempirical quantum chemical work was developed
in Germany. Instead, an emphasis was placed on ab initio quantum chemistry,
and, accordingly, only the latter will be discussed in this chapter.

As time went on, computers were used for increasingly complex
problems in chemistry, as will be shown. In this process, the early quantum
chemistry users received competition from the theoretical chemists oriented
toward a broader field of mathematical chemistry. Eventually many experi-
mentalists started to use computational tools for quantum and classical
mechanics, statistical mechanics, and database searching. Parallel to these
applications, almost every experimental setup had a dedicated computer to
run experiments and evaluate data automatically. Laboratory automation
will not be treated in this chapter. Likewise, no attempt will be made to cover
the impact of computers on experimental structure determination (e.g., X-ray
crystallography).

This account is based on my own experience in the quantum chemistry
field, which began around 1961, initially still with a desk computer. I received
information that I tried to incorporate in this chapter from many colleagues,
and I have extracted a number of details from the literature. As a personal
review, it will certainly possess a bias, and I apologize to all those German
colleagues whose efforts I should have mentioned but have inadvertently over-
looked. Nevertheless, I hope that this essay will give an impression of a fasci-
nating era with many challenges and some real pioneers. Finally, for reasons
given later, the development of computational chemistry in only what was
West Germany will be discussed.
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COMPUTER DEVELOPMENT

The ZUSE Computers

The first fully automatic digital computer that could be programmed was
developed by Konrad Zuse in Berlin during World War II. A description of the
years of intense work under very difficult conditions is found in Zuse’s book
appropriately entitled ‘‘Der Computer—Mein Lebenswerk.’’11 The first work-
ing model was the Z3 introduced in May 1941. It was based on electromag-
netic relays: 600 relays in the computing unit and 1400 in the storage unit. It
used a binary number system, floating point operation, 22 bit word length and
had a storage capacity of 64 words. It required a special keyboard to generate
the input via an 8-channel punched tape (i.e., one instruction represented by
8 bits). Most parts of the computer were constructed from used materials
because new materials were hardly available during the war. This meant,
for example, that the various relays required different voltage, and this had
to be considered also. Nevertheless, the machine was apparently relatively
stable in its performance. The speed was about 3 seconds for multiplication,
division, or taking a square root. The Z3 was used to calculate determinants
and, in particular, complex matrices that were important in optimizing the
design of airplane wings. Part of the work on the Z3 was financially supported
by the Deutsche Versuchsanstalt für Luftfahrt. This first model was completely
destroyed in 1944 by Allied bombs, but a replica was reconstructed 1960
and can be seen in the Deutsche Museum in München.

Further development of the Z-series was seriously hampered by the war.
The design of a much larger system Z4 started in 1942. The machine was trans-
ported in 1944 to Göttingen, which seemed a somewhat safer place than
Berlin, but as Zuse writes,11 it took two weeks for the transport, interrupted
by heavy bombing of the trains. Work continued for a while in the building of
the Aerodynamische Versuchsanstalt in Göttingen, which is near the center of
Germany. From Göttingen, Zuse and some of his friends escaped in 1945 with
the Z4 to Hinterstein, a small village close to Hindelang in the German Alps
where other scientists such as Wernher von Braun had also found some shelter.
In these years, they were entirely isolated from the rest of the world and heard
only after the war the details of computer developments in the United States
(MARK I, in operation 1944, and ENIAC, operating somewhat later) and in
Britain (COLOSSUS, which was a stored program machine to break the code
of the German forces in the war). There was no possibility of continuing work
on the Z4 until the monetary reform of 1948. Zuse in Germany had been the
first with an operational freely programmable digital computer but had lost
the competition with other countries due to the war situation in Germany.

In 1949, Zuse started his company ZUSE KG (at Hünfeld in Hessen).
The Z22 was his first computer with vacuum tubes (1955), followed by the
Z23 with transistors. A small number of German universities was able to
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obtain such machines. Personally, I saw a Z22 for the first time in operation at
the Technische Hochschule (TH) of Darmstadt (around 1960 in the Institute
of Professor Alwin Walther) during an excursion organized by a course in
applied mathematics from the University of Giessen, at which I was a
student at that time. Around 1962, a Z23 was installed at the University of
Giessen, and I was one of the first users. The instruction language was
‘‘Freiburger Code,’’ the input by punched paper tape. Each instruction or
number had 40 bits. There was a fast storage with 255 words and a magnetic
drum with 8191 addresses, of which the first 1052 were used by basic pro-
grams. The calculation of a trigonometric function took approximately 0.2 s.

As far as I know, there were no funding programs from the government
to support computer development in Germany during the period before 1960.
Unlike in the United States, it was impossible for the civilian technical sector to
take advantage of products developed for the military. It was the Deutsche
Forschungsgemeinschaft (German Science Foundation) that made it eventually
possible for computers to be purchased at universities starting in the early
1960s. The ZUSE company was eventually taken over by Brown-Boveri
(1964) and has belonged to Siemens AG since 1967.

The G1, G2, and G3 of Billing in Göttingen

Late in 1947 the building of the Aerodynamische Versuchsanstalt in
Göttingen, which had housed the ZUSE Z4 for a short time during the war,
became available for new institutions and institutes, including the Kaiser-
Wilhelm-Gesellschaft (today called the Max Planck Gesellschaft) with Max
Planck and Otto Hahn, and the Institute of Physics with Werner Heisenberg,
Max von Laue, and Carl Friedrich von Weizsäcker. The experimental groups
had to construct equipment since nearly all laboratory equipment had been
destroyed in the war. Heinz Billing12 started to build a small High-Frequency
Lab in the ‘‘Institut für Instrumentenkunde’’ with a few instruments to meas-
ure electric currents and with some vacuum tubes left over from the German
army. He was fascinated by a very short note on the existence of the ENIAC
computer9 in the United States, a computer containing 18,000 vacuum tubes
and with a weight of 30 tons.

At this time, a group of British computer experts from Teddington, who,
among others included Alan Turing, J. R. Womersley, and A. Porter, visited
the British occupation zone of Germany. They intended to investigate whether
there were new developments in Germany and met in Göttingen with selected
German scientists, including Heinz Billing of Göttingen, Alwin Walther of the
TH Darmstadt who had worked on Hollerith machines, and Konrad Zuse.
Another pioneer in the computer development, Professor Friedrich Willers
from Dresden was apparently not able to come to this visit because he was
in the Soviet occupation zone. Womersley discussed with Billing computer
plans in England that led in 1950 to the ACE (Automatic Computing Engine)
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machine, and Billing considers this discussion as the basis for his development
of the G1 and G2 computers (G stands for Göttingen).

One of the big problems at that time was intermediate storage of num-
bers with fast access during the calculations. For this reason, great effort was
directed toward the development of storage methods. Billing’s British col-
leagues worked with a delay line in which a number is represented as a sequence
of impulses continuously circulating around a closed path; their realization
were mercury delay lines, that is, the information was represented as a
sequence of acoustic pulses traveling round a tube filled with mercury. This
general storage idea led Billing to introduce the magnetic drum.12 Magnetic
tapes and magnetic recorders already had been used by him in 1943, and
his first successful magnetic drum storage system was in 1948. The drum,
which had magnetic tapes glued around, could store 192 dual (20-digit) num-
bers. The publication describing this device, submitted in July 1948 as
‘‘Numerische Rechenmaschinen mit Magnetophonspeicher’’ in Zeitschrift
für Angewandte Mathematik und Mechanik, showed, in addition, general
aspects of how to construct a computer to solve the Schrödinger equation,
Y 00 þ FðxÞY þ TðxÞ ¼ 0.

Billing’s development work was interrupted by the monetary reform of
1948, which caused heavy cuts in the Institute’s budget. Billing’s engineers
took job offers from Argentina, and he himself accepted an offer from Austral-
ia in order to develop a computer including his magnetic drum at the Univer-
sity of Sydney. He left a detailed description of the design of his computer in
Göttingen, however. Since the astrophysicist Ludwig Biermann in Göttingen
was extremely interested in numerical calculations and believed in the future
of digital computers, he convinced Heisenberg to bring Billing back. In June
1950, Billing was back in Göttingen and started to work on the computer,
and Heisenberg was even able to obtain funds from the Marshall Plan to
buy vaccum tubes and resistors.

Since for Biermann the construction of the computer in its original
concept would have taken too much time, a smaller model, the G1, was con-
structed and went into operation by the middle of 1952. This machine was the
first programmable computer operating with vacuum tubes in Germany, and it
was based on Zuse’s programmable relay computer. It made two operations
per second, but was, as such, 10–20 times faster than a good mechanical
desk calculator. In addition, it could be used 24 hours/day. The magnetic
drum had a frequency of 50 revolutions per second; it had 9 tracks and could
store four 32-bit numbers per track. Since 10 positions were required for trans-
forming decimal numbers into binaries, only 26 of the 36 positions of the
drum remained for the storage of numbers. In spite of this, the machine was
used by many scientists from various places in Germany. The first applications
included the calculation of the motion of charged cosmic ray particles in the
earth’s magnetic field, a topic of interest to Biermann. A chemical application
involved the electronic structure of the helium atom. Many of the integrals
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required in quantum chemical calculations (see the section on Quantum
Chemistry, A New Start) were computed on this machine, which remained in
operation until 1958 and was operable 82% of the time during its life span.
Technical details can be found elsewhere.12

The larger model, the G2, with 30 operations per second and a magnetic
drum storage of 2048 words at (50þ1) bits fixed point, went into operation in
the fall of 1954 in Göttingen, two years before the main German competitor
PERM in München.

Billing’s third machine, the G3, used already existing ferrite kernels as
main storage and floating point arithmetic. This storage device had been devel-
oped in 1952 in the United States. In 1953 a German company also started to
produce such ferrite core storage for the G3. The storage of the G3 had 4096
words at (42þ1) bits, that is, it needed 176,000 ferrite kernels, each costing
0.5 Deutsche Mark (DM), which amounted to the large sum of 90,000 DM.
The main goal of the G3 was to have a very reliable machine—the speed was
of second priority. So, the faster vacuum tubes were replaced as much as pos-
sible by more stable germanium diodes (1500 vacuum tubes, 6000 germanium
diodes). This G3 model could then perform 5000 operations per second it was
very robust and was inoperable only 1.1% of its entire life span from 1960 to
1972. Its operation ended in 1972, some time after it had been moved into the
new buildings of the Max Planck Institut für Physik und Astrophysik in
München. All three machines were eventually dismantled; only photographs
are left of them today.

Computer Development at Universities

In the 1950s, the design of computers also started at various German
universities. These efforts were supported by the German Science Foundation
(Deutsche Forschungsgemeinschaft, DFG), which initiated a special committee
for this purpose (Kommission für Rechenanlagen). Main competitors to the
machine in Göttingen were Professor Walther with Hans-Joachim Dreyer at
the TH Darmstadt whose DERA machine went in operation in 1957, Robert
Piloty at the Technical University (TU) of München with the PERM (1956),
and Friedrich Willers with Joachim Lehmann in Dresden with D1 (1956)
and D2 (1957). Even though PERM stands for ‘‘Programmgesteuerte Elektro-
nische Rechenmaschine München,’’ some people called it ‘‘Piloty’s erstes
Rechen-Monster’’. This computer was later put under the guidance of Profes-
sor Friedrich L. Bauer at the TU München. More information can be found in
Refs. 12 and 13.

Looking back at these early developments at a research institution in
Göttingen and at several universities, it is regrettable that the German industry
was not able to take advantage of this knowledge and lost out in the interna-
tionally fast growing competition in computer technology.
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The Analog Computer in Chemistry

Hans Kuhn at the University of Marburg was interested in the spectra of
dyes.14 Based on the electron gas model, he could understand the quantum
mechanical states involved in such light absorption processes in a qualitative
way, but he wanted to have quantitative results. So he developed an analog
computer to determine stationary wave functions and corresponding energies
of a particle (p electron) in a one- and two-dimensional (1D and 2D) potential
field as given by the Schrödinger equation. The basic idea was put forth15 in
1951 when he experimentally determined the vibrational frequencies of mem-
branes whose form represented that of certain (planar) molecules. The transi-
tion from the mechanical system described by masses and springs to the
analogous electrical system replaces masses by self-induction (coils) and
springs by capacitances. The potential acting on the site of an atom could
be changed by an adjustable capacitor. The entire network was driven by
high-frequency voltage that was varied to obtain stationary electric waves.
Hence, the actual computer was based on the analogy between oscillatory
states of a network of electric circuits and the stationary waves of a corre-
sponding quantum mechanical system. The energies of the stationary states
were given by the applied frequencies and the corresponding wave functions
by the voltage at each mesh point of the network. The entire network had
4000 resonators; a picture of the size of the installation can be found in
Ref. 16 and details to the installation in Ref. 17.

In this way, Kuhn and his co-workers calculated p electron distributions
in effective potentials of the molecular skeletons of many organic dyes18 and
found that in long polyene chains the alternating bond lengths had analogous
values as the C��C single and C����C double bond in butadiene. The treatment
of benzene showed equal bond length in such ‘‘calculations.’’ Later on, Kuhn
was also able to obtain from this analog computer transition moments, and
in this way he could determine and explain the location, intensity, and form
of absorption bands and even the shift of a phosphorescence band of a dye
relative to its fluorescence location.

With the introduction of digital computers to German universities and
research institutions in the mid-1960s and ab initio programs for larger poly-
atomic molecules in the 1970s, the Marburg analog computer reached the end
of its service. It should not be forgotten, however, that it was a considerable
technical achievement and a very valuable tool during its time, at which time
the calculational alternatives were very simple Hückel type (without the pos-
sibility of taking into account different nuclear potentials) and semiempirical
Pariser–Parr–Pople (PPP)19 MO treatments.

QUANTUM CHEMISTRY, A NEW START

After the important work of Heitler and London2 in 1927 as well as that
of Hund4 and Mulliken,5 a great interest arose among scientists to apply the
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new quantum theory to problems in chemistry, particularly to molecular struc-
ture and spectra and to the study of the chemical bond. According to Schwarz
et al.,8 the word ‘‘Quantenchemie’’ was probably used first in 1929 by Arthur
Haas in his presentations at the Chemisch-Physikalische Gesellschaft in
Vienna. One of the young Germans in this field was Hans G. A. Hellmann
in Hannover, close to the center of development of this new theory (Göttin-
gen). His scientific achievements to the further development of quantum chem-
istry are summarized in a recent article that also contains details of his life.8 He
left Germany in 1934, being married to a Jewish wife and in opposition to the
Nazi regime, and found an attractive position at the Karpov Institute in
Moscow. Under the Stalin regime, he was arrested and executed in 1938.
His heritage is the excellent textbook ‘‘Einführung in die Quantenchemie,’’20

which appeared in the German language in 1937 and served as a basis to intro-
duce German scientists to this field after World War II.

The first activity after the war seems to have started at Göttingen, again
at the Max Planck Institut für Physik, where the G1 computer was also de-
signed. Various publications by H.-J. Kopineck21 derive analytical expressions
for Coulomb and exchange two-center integrals over 2s and 2p Slater-type
functions (e��r) required for the quantum chemical calculations of diatomic
molecules and give extensive tables of numerical values of such integrals as
a function of internuclear separation. Kopineck based some of this work on
the tables of auxiliary functions published in 1938 by Kotany, Ameniya,
and Simose,22 but was careful enough to recalculate all those that he specifi-
cally needed and found that the Japanese tables were very reliable. Apparently,
these latter tables had been overlooked when other work started on the evalua-
tion of integrals for selected applications.23 In Kopineck’s papers,21,24,25

acknowledgment is expressed to Professor K. Wirtz for suggesting the work,
to Professor L. Biermann for support, and to a group of people of the astro-
physical section of the institute (director Biermann) for carrying out all the
tedious numerical computations. This happened all before the electronic com-
puter G1 became available. A very interesting work on the potential energy
curve of N2 as a 6- and 10-electron problem based on the Heitler–London
method as described by Hellmann20 made use of the previous tables of inte-
grals and is among the first German publications24 in this area. This 1952
paper was dedicated to the 50th birthday of Heisenberg.

While work on the computation of two-center two-electron molecular
integrals continued in Göttingen, it became known25 that Clemens C. J.
Roothaan26 and Klaus Ruedenberg27 at the University of Chicago had also
started a program to evaluate molecular integrals, obviously in connection
with the seminal Roothaan article on the self-consistent field (SCF) proce-
dure.28 In 1952, Heinzwerner Preuß came to the Institute in Göttingen as suc-
cessor to Kopineck. He already had experience in H2 calculations and integral
approximations,29 performed while at Hamburg, and was the ideal person to
continue the work on integral evaluation in Göttingen. He first extended the
studies to heteronuclear diatomics, and later on, with the use of the G1 and G2
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electronic computers, this work culminated in four books ‘‘Integraltafeln
zur Quantenchemie.’’30 These volumes give an excellent introduction to
the general problem of quantum chemical calculations and contain many
references to historical work in this connection. They are also an excellent
dictionary to look up details of the analytical derivations of molecular
two-center integrals over Slater functions and their necessary auxiliary func-
tions. The numerical values are tabulated for a small grid so that intermediate
values could easily be obtained by interpolation. These tables were used for
quantum chemical calculations31 of diatomics until the beginning of the
1960s.

I used these tables of Preuß for the first part of my doctoral work. The
computation of integrals for a valence bond treatment of the H��F molecule on
a mechanical desk calculator was greatly simplified by the fact that I could
look up values for the required auxiliary functions in these tables. Toward
the end of this work (1962–1963), I got access to the electronic computer
Z23, which of course could perform the calculations in a much shorter time
with much higher accuracy.

Other numerical tables were apparently also produced in 1954–1956 by a
Japanese group.32 One must conclude that at that time it was not widely
forseeable that such numerical tables of functions, similar to tables of loga-
rithms, would become obsolete so soon due to the rapid progress in electronic
computers.

Parallel to the work on molecular integrals, Preuß also worked on con-
ceptual developments. Boys had introduced Cartesian Gaussian functions33 as
a possible basis for molecular calculations. Preuß was the first to discuss what
he called ‘‘reine Gaußfunktionen’’34 and what is known today as ‘‘floating Gaus-
sians.’’ It is interesting that in Vol. IV of his Tables of Integrals30 Preuß already
had a chapter of numerical examples comparing integrals over Gaussians with
those over exponential (Slater) functions and concluded that numerical tables
for integrals involving pure Gaussians with different origins are not required
because integrals over Gaussians are so easy to compute. Calculations with
such basis sets were started later on by J. L. Whitten35 without the knowledge
of this part of the work of Preuß. Other important early papers of Preuß treat
effective core potentials36 (kombiniertes Näherungsverfahren nach Hellmann),
variational treatments with respect to expectation values other than the energy,
and simple building-up principles for the construction of energy hypersurfaces
with an arbitrary number of centers. Unfortunately, Preuß’s work was not
publicized as much as it should have been, simply because all his publications
(at least until 1970) were written in the German language and appeared mostly
in the journal Zeitschrift für Naturforschung. Even though the seminal
German publications (e.g., Zeitschrift für Physik) of the 1920s were well
known, the situation after World War II had changed and publication in the
English language seemed to be required to get the work into circulation and
the necessary widespread attention.

266 The Development of Computational Chemistry in Germany



Even though the incentive to perform quantum chemical ab initio calcu-
lations came from the Max Planck Institute at Göttingen, quantum chemistry
ideas were also used in other physical chemistry departments of German uni-
versities. The work of Hans Kuhn on large p-electron systems with the use
of his analog computer has already been mentioned in the previous section.
Hermann Hartmann in Frankfurt published his textbook Theorie der chem-
ischen Bindung37 in 1954 and had a great influence for the next 10 years
on advertising theoretical chemistry to the chemistry community. Theodor
Förster in Stuttgart was also open to quantum chemistry ideas in his investiga-
tions of molecular excited states and energy transfer. Bernhard Kockel from the
Institute of Theoretical Physics at Leipzig used his book Darstellungs-
theoretische Behandlung einfacher wellenmechanischer Probleme38 to present
numerous examples of how to apply algebraic concepts to the quantum theory
of atoms and molecules. As a result of this, he began actual quantum chemical
calculations himself. Finally, the textbook by P. Gombas from Budapest The-
orie und Lösungsmethoden des Mehrteilchenproblems der Wellenmechanik39

should also be mentioned since it is an excellent introduction to the quantum
theory of many-body problems, oriented especially toward experimental phys-
icists and chemists, and which has an appendix with analytical formulas for
important molecular one- and two-center integrals.

THEORETICAL CHEMISTRY 1960–1970

After a slow and almost unnoticed start in the 1950s, the application of
quantum mechanics to problems of chemistry received several major boosts in
the 1960s. First of all, the isolation of Germany, which was still a problem
in the early 1950s, came to an end, and the international exchange of ideas
began. Likewise the travel of young Germans to other countries, at that
time in particular to the United States, where they found much better working
conditions, became very attractive. International summer schools were adver-
tised. In Germany a central computer (Deutsches Rechenzentrum) was
installed in 1961, which was open to all German universities. Several chairs
in theoretical chemistry were added to the faculty at universities in the latter
part of the 1960s to support research and to include at least some theoretical
concepts into the teaching and education of chemistry students. Meetings to
publicize theoretical chemistry methods and their results were organized and
a special priority program to support theoretical chemistry was created by the
Deutsche Forschungsgemeinschaft in 1966. At least part of the German orga-
nizational support was due to the influence of Professor Hermann Hartmann
in Frankfurt. He was also the first (in 1963) to establish a journal devoted spe-
cifically to the subject of theoretical and computational chemistry: Theoretica
Chimica Acta. I personally remember this era as having an atmosphere of great
fascination and competition.
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On the other hand, one should not forget that at the beginning of this
period the Wall went up on August 13, 1961 and separated Germany into
two parts. The travel of colleagues from the East (Deutsche Demokratische
Republik, DDR) to the West (Bundesrepublik Deutschland, BRD) was severely
restricted, and only a very small percentage of the Eastern colleagues received
permission to visit institutes or to attend meetings in the BRD. Likewise travel
from the BRD to the DDR became more difficult, and even the exchange
of letters was controlled. While scientists from the BRD could freely move
to almost all countries, the flow of information between the two parts
of Germany became very much restricted. Scientists in the DDR became
increasingly isolated internationally.

The Deutsche Rechenzentrum at Darmstadt

The realization of a central German Computer Center (Deutsches
Rechenzentrum; DRZ) had been suggested by the Kommission für Rechenan-
lagen of the Deutsche Forschungsgemeinschaft (DFG) in 1956. It finally came
into existence on October 3, 1961. It was accessible to all universities and
research institutions in Germany for such jobs that could not be handled on
the computer (if there was any at all) of the local institution. The first machine
at the DRZ was an IBM 704, which was replaced in June 1963 by an IBM
7090, which was about five times faster than the IBM 704. The front-end
was an IBM 1401, financed by the Volkswagen Foundation and the DFG.
In 1965, the DFG financed another disk and the total investment amounted
to about 18 million DM. The chairman of the scientific board was Professor
Walther from Darmstadt, who, as already mentioned, had been involved
earlier in computer developments.

The building for this central German computer center had 85 rooms, al-
together 2150 m2, and the part of the computer installation plus tape units
required air conditioning of 570 m2. The total area of the entire site was
8700 m2. In 1966 the DRZ had a staff of 50 scientific and technical persons, in
addition to a number of operators, people to punch cards and handle the
program libraries, secretaries, and others.40 Three technicians from IBM were on
site. Details of the installation can be found in Ref. 40. In short, the equipment
consisted of a main memory of 32,768 words, 13 magnetic tapes, 1 disk,
1 cardreader, 1 automatic punch, 1 plotter, 1 reader for punched paper
tape, 1 sorting machine, 10 card punches for users, 8 card punches for internal
use, and 2 teletypes. The cost of one hour of computer time was 240 DM.
Starting at the end of 1965, the trade unions did not allow any work on Sun-
day any more, so that this computer center was shut down on Sundays and on
holidays. Office hours were from 8.00 to 17.30 from Monday to Friday.

Looking back from today’s standard, where a workstation or a laptop
personal computer is more powerful and has more memory than the entire
DRZ in 1966, it is almost unbelievable that method developments and actual
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calculations could have been performed under the circumstances given. Access
to the DRZ was in three ways: either one traveled to Darmstadt by train or car
with one or several boxes of punched cards—in case one had a card punch at
the home university. This way was probably the ‘‘normal’’ situation. One tried
to compile the programs, correct errors and, if fortunate, stored the program
somewhere on tape in binary code for further use at the DRZ. Such a proce-
dure worked quite well as long as a friendly person of the DRZ staff took care
of the programs and was available for further telephone instructions. We had
such a person who had worked at our university for a while, and so we were
lucky people. The second way was to send cards by mail to the DRZ, but to
debug programs or to run them using this approach was a very slow process. If
one was very fortunate, one could use the third way: a teletype (which was the
exception at universities), via which one could send input data for programs
already stored in binary somewhere in the DRZ and administered by the DRZ
personnel. The output was always sent back by regular mail.

From the 1966 annual report,41 one learns that quantum mechanical
calculations used 8% of the total computer time available. Next to Hückel cal-
culations, one finds projects involving linear combination of atomic orbitals–
molecular orbitals–self-consistent field (LCAO–MO–SCF) calculations using
Gaussian functions, and calculation of natural orbitals using Gaussian func-
tions. I myself was a heavy user, and projects of Martin Klessinger and
Reinhart Ahlrichs are also found in that report. The statistics show further
that a considerable number of computational projects were in connection
with doctoral theses, that is, young people using the modern tool. Within
chemistry, the heavy users besides the quantum chemists were those processing
measured nuclear magnetic resonance (NMR) data and crystal structure data.
The preferred symbolic languages were FORTRAN II and IV, ALGOL (devel-
oped in Germany) and COBOL; FAP, MAP, and LISP were also heavily
used to optimize computer codes. In 1965, the DRZ had acquired programs
from the Quantum Chemistry Program Exchange (QCPE) at Indiana Univer-
sity and was proud that by 1965–1966 they had distributed 65 such programs
to researchers outside of Germany such as Great Britain (15), France (13),
Sweden (2), Spain (2), Switzerland (3), Italy (1), Denmark (11), Finland (1),
Belgium (1), and Romania (1), demonstrating their international visibility.

Formation of Theoretical Chemistry Groups

Most experimental chemists in Germany in those times did not believe
that quantum theory beyond the simple Hückel model had any use for chem-
istry in the foreseeable future.42,43 So quantum chemistry had to get its main
support from the more optimistic international community. Per-Olov Löw-
din’s summer schools held in Uppsala (Sweden) were instrumental in getting
young researchers interested in quantum molecular science. Since these schools
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(lasting 4–5 weeks) had international participation from both teachers and stu-
dents, they were also a very attractive place to start international contacts.
Heinzwerner Preuß was the first German to spend a postdoctoral year in Löw-
din’s quantum chemistry group in 1958–1959. Werner Kutzelnigg and Martin
Klessinger participated in Löwdin’s summer school in 1960. My turn came in
1962, together with four other Germans, all of whom later became professors
of physical or theoretical chemistry at German universities. Raphael Levine
(Jerusalem) was one of the most eager students in my class.

Access to international publications also improved in West Germany.
The Technical Reports of the Laboratory of Molecular Science and Spectra
in Chicago, which contained reprints and preprints of the work done around
Mulliken and Roothaan, got distributed to some of the German scientists44

(e.g., L. Biermann, G. Briegleb, Th. Förster, H. Hartmann, F. Hund, H. Kuhn,
R. Mecke, and Georg Maria Schwab). The results of the 1959 Conference on
Molecular Quantum Mechanics held in Boulder, Colorado, were published in
Reviews in Modern Physics45 and were extremely exciting. This conference is
also discussed in connection with the history of computational chemistry in
the United States9 and the United Kingdom.10 All of this work offered encour-
agement, especially for young people.

Nevertheless, progress was very slow. Preuß had moved to the Max
Planck Institute (MPI) at München in 1959 after his stay with Löwdin in Swe-
den and started to build up a group in quantum chemistry—for which he had
Heisenberg’s support. In Gerd Diercksen, he found an excellent student, and,
in the MPI staff, competent help in carrying out computations. Furthermore,
the MPI was able to purchase a computer in the first half of the 1960s, so that
this group did not have to rely solely on the DRZ in Darmstadt.

Hartmann had his group at the University of Frankfurt, but believed
more in models than in ab initio calculations. Nevertheless he tried hard to
get students interested in theoretical chemistry and held extra summer courses
at Konstanz. Bernhard Kockel, from the University of Leipzig, had been vacation-
ing together with his wife in West Germany (canoeing on the Danube) when
the Wall was built (1961); he remained in the BRD upon receiving an offer for the
theoretical physics chair at the University of Giessen. He started a small com-
putational group to which I belonged. W. A. Bingel, who was the only German
of his generation whose doctoral advisor had been a pioneer in theoretical
chemistry (E. Hückel), became professor at the University of Göttingen in
1963. Werner Kutzelnigg joined him in 1964 after his postdoctoral years
from 1960 to 1963 (with a NATO fellowship) first in Paris with Bernard Pull-
man and Gaston Berthier and later on with Per-Olov Löwdin at Uppsala.
Kutzelnigg had received his doctorate with Reinhard Mecke in Freiburg and
had been so impressed by Bernard Pullman’s invited talk in Freiburg that
he decided to move into the field of quantum chemistry. Bingel and Kutzelnigg
soon attracted the excellent students Reinhart Ahlrichs and Volker Staemmler,
most probably because at that time the chair in theoretical physics at Göttingen
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was vacant and also because theoretical chemistry seemed to be the closest to
the original intention of these two students.

I myself was fascinated from what I heard from Chicago and in 1963
went with a fellowship of the Volkswagen Foundation administered by the
Cusanuswerk to join the group of Clemens Roothaan and Robert Mulliken.
Then in 1964 I spent several months in the laboratory of Ernest R. Davidson
in Seattle. In Chicago, I realized for the first time how important it was to have
access to a reasonably-sized computer (IBM 7090) on campus, even if runs
could be performed only during the night. And furthermore that a turnaround
time of a day or two for computer jobs made all the difference compared to the
German situation using a Z23 or sending programs and outputs back and
forth to the DRZ in Darmstadt by regular mail. After a short visit back to Ger-
many, I spent another postdoctoral period (1965–1966) with Leland C. Allen
at Princeton, where we could use the Gaussian-lobe function SCF program for
polyatomics, which was due to J. L. Whitten,35 also a postdoc at that time in
Allen’s group. To compute realistic molecular structures and properties, based
solely on the Schrödinger equation, was a great challenge to us. I seriously con-
sidered staying in the United States. But then the situation for such kind of
work had improved drastically in Germany because it had been realized that
other countries were far ahead, and for this reason special programs were
initiated in Germany to produce top-quality researchers in this field. It was
finally realized that state-of-the-art computers were needed at research institu-
tions in addition to the central DRZ and that special support for research in
theoretical chemistry was needed.

Deutsche Forschungsgemeinschaft–Schwerpunktprogramm
Theoretische Chemie

In 1966, the DFG decided to initiate a special priority program for theo-
retical chemistry for the next 5 years in order to support this field on a broad
basis.46 The intention was to support primarily new ideas and the develop-
ment of methods in theoretical chemistry and to a lesser extent computations.

The DFG had been reestablished after World War II on January 11,
1949, under the name of ‘‘Notgemeinschaft der Deutschen Wissenschaft.’’
Its present name came into existence after merging with the Deutsche For-
schungsrat in 1951. The DFG is legally registered as a private association
based in Bonn. Its members are universities, some research institutions, and
academies of science. Member institutions delegate one representative each
to a general assembly that meets annually. This general assembly (among other
duties) elects the DFG president, vice presidents, and the members of the DFG
Senate, and decides on the admission of new members into the DFG. The
DFG’s mission is according to Article 1 in its statutes: ‘‘The Deutsche For-
schungsgemeinschaft serves all branches of science and the humanities by
financing research projects and by promoting cooperation among researchers.
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It advises parliaments and governments on scientific matters and fosters rela-
tions between academic research and the private sector as well as research
abroad. It devotes particular attention to the education and promotion of
young scientists.’’ To accomplish this mission, the DFG receives funds from
the federal government and from the states (Länder) on a 50:50 basis for reg-
ular programs. (For special programs, the formula for funding is somewhat
different, i.e., 60:40.) The total amount in the year 2000 was around 2000 mil-
lion DM.

All research supported by the DFG is investigator initiated. It is the
‘‘bottom-up’’ principle. Funds can be granted only on the basis of applications,
and the responsibility for all projects for which funds are granted lies with the
principal investigator. All applications are subject to peer review, and in all
DFG programs the reviewers’ evaluation is the basis for the decision on fund-
ing. The DFG’s peer reviewers work in an honorary capacity. They are elected
every four years by direct, secret ballot. Active voting rights are accorded to all
scientists who have held a doctorate for at least three years and are working in
a university or other publicly funded research institution. In the year 2000,
there were 524 elected members of 37 review committees responsible for
186 disciplines.

There are basically two forms of research support under the DFG system:
financing of individual research projects (‘‘Normalverfahren’’ is the largest in
this category) and coordinated, cooperative funding programs with structural
effects, among which the most important are the Schwerpunktprogramm (spe-
cial priority program) and Sonderforschungsbereich (collaborative research
centers). Again the initiative for such programs comes from the scientific com-
munity. To establish a Schwerpunktprogramm, researchers draft a program,
submit it to the DFG Senate, which decides once a year on the adoption of
new programs. Within a given scope, participants in such a priority program
are free to choose their project, research plan, and methods. Coordination is
ensured through a coordinator—generally one of the initiators of the applica-
tion for such research program—and through annual colloquia.

The priority program in theoretical chemistry in 1966 was one of 14
newly adopted priority programs. It was the only one in chemistry [the others
were in medicine (2); biology (3); physics (1), geoscience (2); engineering (3);
agriculture (1); and a special project in Mexico, to show the broad range of
DFG funding]. Since such priority programs generally run for six years, the
priority program in theoretical chemistry was one out of a total of 61 new
and continuing programs47 funded altogether with a total sum of about 55
million DM.

Looking back, this theoretical chemistry program turned out to be one of
the most successful priority programs of the DFG. It was adopted immediately
and welcome to all researchers in the field. In the first year, there were 29 proj-
ect proposals, 13 of which were applications to participate in summer
schools. The total budget in this first year was 350,000 DM, that is, 0.64%
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of the total priority program budget. These funds were used primarily to pay
students (60%), but also to pay for computer time at the DRZ or at some
other installation (such as the research institution at Jülich), or for short-
term visitors. These funds were vital for the work of young scientists, most of
whom had become Privatdozent without—or with very little—budget from
their own university institution. In the last year of this priority program
(1970), the number of accepted research proposals was increased to 45 for
which a total sum of 720,000 DM was granted. Fifteen of these proposals
were applications to participate in summer schools in Uppsala or in Oxford.
This increase in the number of proposals in the course of the program showed
the growing acceptance and interest in the field, but also that there was a spe-
cial need for teaching theoretical chemistry, which at that time had not been
introduced into the standard curriculum of chemistry studies in Germany.

The total amount spent in this special priority program over the five-year
period (1966–1970) was 2.8 million DM. Even though the success of such a
program cannot be measured by simple numbers, the report46 quotes an
impressive number of publications: 7 diploma and 30 doctoral theses, 190 pub-
lications in 22 different journals. An increasing tendency for German scientists
to become visible in the field was also observed, as measured by the invited
talks at international meetings. And finally, the list of applicants in this pro-
gram includes many names whose carreer in this field is now well known
(Werner A. Bingel, Jürgen Brickmann, Gerd Diercksen, Hermann Hartmann,
Georg Hohlneicher, Martin Klessinger, Edgar König, Hans Georg Kuball,
Werner Kutzelnigg, Jörn Manz, Sigrid Peyerimhoff, Heinzwerner Preuß, Ernst
Ruch, and Armin Schweig).

Theoretical Chemistry Symposia

Professor Hartmann, who had been among the initiators of the DFG spe-
cial priority program, also organized the first ‘‘Symposium für Theoretische
Chemie’’ in Frankfurt in 1965. His goal was to bring experimentalists together
with theoreticians in this new field. About 60 scientists participated in this first
event48 coming from the German speaking countries: Germany, Austria, and
Switzerland.

The main emphasis of the 1965 symposium48 was on ligand-field theory,
a topic close to Hartmann’s interests at that time, and on Kuhn’s electron gas
model. The organization committee, consisting of Hartmann (Frankfurt),
H. Labhart (Zürich), and O. E. Polansky (Vienna)—to which at a later time
W. A. Bingel (Göttingen), E. Ruch (Berlin), G. Wagniere (Zürich), and
P. Schuster (Vienna) were added—suggested holding an annual symposium
with the location rotating between the three countries. These meetings not
only provided the opportunity to exchange ideas between experimentalists
and theoreticians and to meet with colleagues in a similar field, but were pri-
marily a platform for diploma or doctoral students to present their own results
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for the first time to a larger audience in the scientific community without
language difficulties.

Attendance grew to 90 participants at the 1966 meeting in Zürich and
about 110 at the third symposium in 1967 at Vienna. At Zürich, electron
transfer due to excited molecular states (A. Weller), solvation effects in elec-
tronic spectra (W. Liptay), and determination of vibrational force constants
(W. Zeil) were topics from the experimental side.48 On the theoretical side,
lower limits of eigenvalues (N. Bazley), electron pair approximations (W.
Kutzelnigg), and six contributions on ab initio calculations using Gaussian
functions of the group around Preuß were presented. Apparently, the
SCF computer program based on ‘‘pure’’ Gaussians, as Preuß used to call
them, had been finished by G. Diercksen and gave its first results as presented
in Zürich.

To some extent, these symposia reflect the state of the art in the field of
theoretical quantum chemistry in Germany at a given time. The meetings con-
tinue. For many years, W. A. Bingel was the person who selected the next
organizer, and this procedure worked quite well. Today, the symposium orga-
nizer is selected by the Arbeitsgemeinschaft Theoretische Chemie (AGTC),
which was founded in 1992 to give this field a more official status in concert
with the established professional organizations of chemistry (Gesellschaft
Deutscher Chemiker, GDCh), physical chemistry (Deutsche Bunsenge-
sellschaft für Physikalische Chemie, DBG), and physics (Deutsche Physika-
lische Gesellschaft, DPG). Initially, experimentalists and theoreticians had
about equal weight among the participants, but gradually the theoreticians
took the lead. Today the symposium is the annual meeting for German speak-
ing theoretical chemists, even though an increasing number of talks and pos-
ters are presented in the English language. For many students, these symposia
are still the first opportunity to present their results and to learn about the
scientific work and atmosphere in other groups from personal contacts. These
contacts on the student level are also very important for the exchange of
computer programs or computer information. The location of these meetings
varies in the series between Germany–Switzerland–Germany–Austria.

Scientific Developments

The period of diatomic SCF calculations using Slater functions, which
were extensively pursued in the Laboratory of Molecular Structure and
Spectra in Chicago,9 passed by the German scientists. I think I was one of
the few Germans who got a glimpse of this fascinating work during my stay
at Chicago49 and less so during my doctoral work on valence bond (VB)
calculations of the hydrogen fluoride molecule.50 Starting in 1966, a large
number of polyatomic molecules were treated by the newly written SCF–
MO–LC(LCGO) program of Preuß and Diercksen.51 This program con-
structed MOs as a linear combination (LC) of another linear combination of

274 The Development of Computational Chemistry in Germany



Gaussian orbitals (LCGO). Preuß called this group of pure Gaussians with
fixed linear coefficients ‘‘LCGO;’’ these could consist of atom-centered Gaus-
sians or a group of functions representing molecular fragments. Numerous
applications including molecules such as C6H6, C5H�5 , C3H6, C2H4, CH4,
CHþ3 , and so on52 were published side by side in the International Journal
of Quantum Chemistry.

At about the same time, SCF calculations for a series of polyatomic mole-
cules53 such as AH2 (A¼ first-row atom) C2H6, B2H6, F2O, CH2, C2H4,
C2H6, and ozone54 were carried out independently at Princeton, employing
the same type of Gaussian functions. In this approach, various Gaussian
(lobe) functions were also grouped together in a linear combination with fixed
coefficients, referred to as ‘‘atomic group orbitals.’’ Later on, the name ‘‘con-
tracted Gaussian orbitals’’ for such groupings or LCGO became more popular.
This was the early exciting time of polyatomic ab initio treatments. Relatively
soon, however, it became clear that SCF treatments have serious drawbacks if
one is interested in relative stabilities, dissociation energies, or electronically
excited states. Configuration interaction (CI) calculations, carried out at what-
ever computer was available in the United States or Germany, started on for-
mate anion and cyclobutadiene,55 and even systems as large as C10H8 were
treated by ab initio methods.56 Such work was only possible by a combined
use of computers in Germany and at various sites in the United States.

Parallel to these endeavors, work started in Germany on new concepts to
account for electron correlation. The independent electron pair approach
(IEPA) was developed by Ahlrichs and Kutzelnigg,57 followed a few years later
by the CEPA (coupled electron pair approach).58,59 The relation of these meth-
ods to contemporary Møller–Plesset second order (MP2) and coupled cluster
treatments is discussed in Ref. 60. Work on circular dichroism by Ruch46 and
on the chemical shift by Voitländer46 showed the variety of ab initio problems
treated. The special priority program of the DFG from 1966–1970 demon-
strated the intended impact.

In 1962, the newly established journal Theoretica Chimica Acta (TCA;
edited by H. Hartmann in Frankfurt) contributed also to the visibility of theo-
retical chemistry in the German scientific community. It preceded the Interna-
tional Journal of Quantum Chemistry (founded in 1967 by Per-Olov Löwdin)
by 5 years. TCA welcomed manuscripts from the entire field of theoretical
chemistry, and special emphasis was placed on the application of quantum
theory and problems of chemical physics. According to Hartmann’s philoso-
phy, general and analytical work in the field of quantum chemistry was pre-
ferred, and computational work was considered if it concerned new methods
and questions of special chemical interest. Articles could be published in Eng-
lish, German, and French, and even articles in the Latin language were
allowed, presumably to point to the common background of European lan-
guages and the language of erudition for many centuries in Europe. The first
volume 1962–1963 had 25 articles in English (from many European countries,
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the United States, and Canada), 19 in German, and 5 in the French language. All
abstracts—at least for many years to come—appeared trilingually (English,
German, French), translated into the corresponding two other languages by
the editorial office. This journal showed very distinctly the growth of the field
of theoretical chemistry within Europe; but it also made clear that there were
still language barriers in international communication. In 1984, the sentence
‘‘Papers will preferably be published in English’’ was added to the stated
editorial policy. Shortly before his death (1984), Hartmann turned the editor-
ship of TCA over to an editorial team headed by Klaus Ruedenberg at the
Iowa State University in the United States. After Ruedenberg’s retirement
1997, the name of Theoretica Chimica Acta TCA was broadened to Theo-
retical Chemistry Accounts: Theory, Computation, and Modeling, still keep-
ing its initials TCA, with the new editor Donald G. Truhlar, at the
University of Minnesota in the United States.

Before concluding the decade 1960—1970, it should be mentioned that
theoretical chemistry started to influence not only chemical research in Ger-
many but slowly became an independent field for which professorships were
created at universities. H. Preuß moved from the MPI in Munich to a chair of
theoretical chemistry at the University of Stuttgart in 1969, while Diercksen
remained at the MPI at München. Ludwig Hofacker, coming from North-
western University near Chicago, took the chair at the Technical University
of Munich, E. Ruch was appointed professor of theoretical chemistry at the
Freie Universität of Berlin, and Karl Heinz Hansen became professor of
theoretical chemistry at the University of Bonn.

COMPUTATIONAL CHEMISTRY 1970–1980

Theoretical chemistry, whose major part in the 1960s was quantum
chemistry of molecular structure, was now ready to propagate into other areas
of chemistry. Work started on the dynamics of chemical reactions, on spectro-
scopy, on database and expert systems in chemistry, and on synthesis plan-
ning. During the 1970s, about 15 chairs in theoretical chemistry at German
universities became available in addition to five positions for associate profes-
sors. International conferences were organized by Germans and took place in
Germany. Germans participated in the design of the European Centre for
Atomic and Molecular Calculations (CECAM), which is described later. How-
ever, computer time was still a bottleneck since the demand for computer
power was much greater than could be financed by the universities or the
DFG.

Some of the German universities had been able to obtain International
Business Machines and Control Data Corporation machines. (For example,
Münster had an IBM 360-50 around 1968, while Mainz and Gießen had
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CDC 3300 computers around 1968 and 1970.) But there was a definite
tendency from the DFG (in its funding and advisory capacity) to support the
German AEG Telefunken company which offered the Telefunken Rechner
TR4 and the larger model TR440. The DRZ, for example, had applied for
an IBM 360-75 to replace their IBM 7090 hoping for an increase in efficiency
of a factor of 10, but the DFG had ordered for them41 a TR440.

Again, it should be stressed that it was the initiative of the potential
scientific users that was the driving force to obtain a computer installation
at their university; the proper choice of the director of the computer center
and its advisory committee was of great importance. The Kommission für
Rechenanlagen (KfR) of the DFG had given general recommendations to the
government about the necessity of computational resources, but the negotia-
tion with the various computer companies and the formal application for the
computer installation had to be submitted from the universities with a very
detailed justification for every item, generally based on the research require-
ments of the faculty. The KfR reviewed the application, oftentimes made visits
to the site, and then gave final recommendation to the Science Council.
Because an application had to include comparable offers from three different
computer companies, the KfR recommendation (considering a variety of
arguments) sometimes took precedence over the specification outlined in the
application.

For users, there was always the problem of computer program compat-
ibility between different machines. An IBM 7094 had a word length of 36 bit,
a CDC 3300 generally 24 bit, the TR machines 48 bit, and the IBM 360 series
had 24 bit. A large problem for quantum chemical calculations was the small
main memory. Our CDC 3300 at Mainz had 5 modules at 16 K word mem-
ory, which were separated so that one array of floating point numbers (e.g., a
matrix) had to fit in a single module; this meant that we could have only
symmetric CI matrices up to dimension 178 in core storage. External storage
on magnetic tape with 800 bits/inch was extremely slow.

The reason for my accepting a professorship from the University of Bonn
(1972) (over that of Berlin and Bochum) was primarily the much better com-
puter installation compared to the other places. With our atomic orbital (AO)
integral program (floating point number crunching), the four-index transfor-
mation routine (integer arithmetic), SCF program (input/output oriented),
and a special integral program testing double precision arithmetic, I compared
the running time on the CDC 3300 (Mainz), Siemens S4004/55 (Berlin),
TR440 (Bochum) and IBM 370/165 (Bonn). In all cases, the IBM at Bonn
was ahead of the others. For number crunching, the relative times were
1.0:1.64:0.43:0.086, for integer arithmetic 1.0:1.15:0.37:0.08, for I/O 1.0:
1.5:0.35:0.1, and for double-precision (DP) arithmetic 1.0:0.24:0.08:0.036.
This example also shows that, in spite of commercial benchmarks, computer
performance could depend very much on the individual program require-
ments.
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European Efforts

At the end of the 1960s, the idea arose to create a European Centre for
Atomic and Molecular Calculations61 (Centre Européen pour des Calculs Atom-
iques et Moléculaires). CECAM opened in Orsay, France, in October 1969
with IBM 360–50-75, CDC, and UNIVAC computers. The main aim of
CECAM was not to offer computer time, and simply ‘‘cranking away’’ was
not permitted. It was expected that the most original and creative uses of com-
puters must be developed. The lag behind the United States in this field was
clearly evident, and it is stated61 ‘‘that the level in many laboratories could
be raised by bringing together for short periods of time from these several
laboratories scientists who are interested in the same or related problems, so
that they could benefit from a mutual stimulation which would lead to a much
more rapid development of ideas in the employment of computers.’’ The
general hope was expressed that this center would become a driving force
for progress in atomic and molecular physics. Carl Moser (France) was the
first director, and W. A. Bingel and W. Kutzelnigg from Germany were in
the governing body.

The CECAM designed a plan for its future efforts that included the
calculation of atomic and molecular wave functions with the inclusion of
relativistic and correlation effects, both by perturbation and variational
approaches. Fourier transform techniques, crystallography, chemical reactivity
at surfaces, statistical mechanics, and information retrieval were major areas
of the proposed work. This was certainly an ambitious undertaking. As an
example, consider the workshop in 1973 on ‘‘Dynamics on Potential Energy
Surfaces,’’62 which laid down significant guidelines for further research and
influenced a number of European scientists. At this workshop, Jörn Manz
from Germany presented exciting investigations of the HþF2!HFþF and
FþH2! FHþH reactions. As far as I remember, German participation in
the interesting workshops of CECAM was infrequent, however, simply
because researchers had to provide their own money for travel and accommo-
dation, and Orsay/Paris was not the least expensive place one can think of.

Computer-Aided Synthesis

The first internationally available computer programs for planning
organic syntheses63 were primarily based on the retrieval and manipulations
of filed data on known reactions (reaction library as databases).64 This
approach led to programs such as LHASA,65 SECS,66 or SYNCHEM,67 and
Ugi had also his own version for peptide syntheses.68 These programs are typi-
cal expert systems with a large database and a set of rules, and are based on a
retrosynthetic approach from which one does not expect totally novel syn-
thetic reactions. A completely different approach to the use of computers in
chemistry came from the organic chemist Ivar Ugi at the Technical University
of München and the mathematician J. Dugundji.69

278 The Development of Computational Chemistry in Germany



Ugi, Dugundji, and co-workers conceived a novel mathematical model of
constitutional chemistry.69 It is based on an algebraic model and logical con-
nectivity. It represents reactants with B and R matrices resulting in E matrices
for the products. The ‘‘chemical distance’’ between B and E is an important
metric and represents something as the minimum number of valence electrons
which must be shifted to convert reactants into products. In this approach, it is
possible in principle to find entirely novel synthesis routes not based on prior
experience stored in databases. The hard part is to cut the branches of the
enormous tree of possible reactions. The approach was implemented in a series
of computer programs such as CICLOPS,70 EROS, and IGOR. A detailed dis-
cussion of this work is contained in a summarizing article,64 which presents
examples of true novel syntheses and simplifications of syntheses designed ear-
lier by empirical approaches.

Progress in Quantum Chemical Methods

Even though computers were an essential tool in quantum chemical cal-
culations, the main challenge was the further development of methods and
concepts to describe even more facets of chemistry and with higher accuracy.
Methods that account for electron correlation were extended to be able to
describe energy surfaces more reliably. Several variants of the CEPA Ansatz
(CEPA-1, CEPA-2) were developed as well as the method of self-consistent
electron pairs (SCEP).71 Formulations using canonical or localized orbitals
(e.g., pair natural orbitals,72 PNO, as a kind of optimized virtual orbitals)
were put forth. These methods were extensively used for two decades, primar-
ily in Germany, until coupled cluster formulations became more popular.73

The computation of electronically excited states and hence the inter-
pretation of ultraviolet–visible (UV–vis) spectra saw much activity outside
Germany in the postwar years by semiempirical methods such as the Platt
perimeter model, the PPP,19 and the complete neglect of differential overlap
(CNDO)74 approaches. Thus after more than a decade of dealing primarily
with ground-state properties of molecular systems, the stage was now set to
attack this problem by ab initio methods. The first international discussion
meeting, under the auspices of the DFG, was held at Schloß Reisensburg in
1974. The book of abstracts75 contains many of the ideas that were extended
technically to much higher proficiency at a later time. Multireference config-
uration interaction (MR–CI) was presented for excited states of a number of
small diatomic and polyatomic molecules (by Robert J. Buenker and Sigrid D.
Peyerimhoff and by Jerry L. Whitten), different ways of configuration selection
were discussed (by Isaiah Shavitt and by Buenker and Peyerimhoff), and the
choice of orbitals for CI, that is, natural orbitals (Charles F. Bender) and
MC–SCF orbitals (Fritz Grein) to improve CI convergence was treated.
Ruedenberg presented advantages of the even-tempered orbital basis. Enrico

Computational Chemistry 1970–1980 279



Clementi showed that adjoined basis sets, used to evaluate less important inte-
grals and matrix elements, could reduce the computation time for 450 primi-
tive Gaussians from 4 h to 35 min without loss of accuracy in the results. The
mixing of Rydberg states with valence states was discussed from experimental
(Camille Sandorfy) and theoretical (by Robert S. Mulliken, by Helene
Lefebvre-Brion, and by Eugen Schwarz) perspectives in great detail. The role of
negative ions as interstellar molecules (Jürgen Barsuhn) and responsible for
Feshbach resonances (Lefebvre-Brion) was discussed, and suggestions were
given for how to compute nonadiabatic couplings in predissociation processes
due to avoided crossing of states (Jean-Claude Lorquet). Studies using equa-
tion of motion (EOM) methods for excited states and data on photoionization
cross sections based on a discrete orbital basis (Vincent McKoy) were shown.
Even first results for transition metal compounds (Alain Veillard) were pre-
sented. This meeting was remembered by many of the participants for its scien-
tific content, but also because of the beautiful site of this castle, which serves as
the guest house of the University of Ulm.

In the middle of the 1970s, experimentalists realized that theoretical
treatments had made great progress and renewed their interest in cooperation
or in challenging the theoreticians. At the 1976 Theoretical Chemistry Sympo-
sium, for example, Christoph Schlier (Freiburg), an expert on molecular beam
experiments, presented his talk on ‘‘Scattering Collision Experiments—And
What We Always Would Have Liked To Know About It from Theoretical
Chemistry.’’ Similarly, Peter Toennies (Göttingen) had approached theoretical
chemists on this subject before.

In 1976, Paul von Ragué Schleyer moved from Princeton to the Univer-
sity of Erlangen-Nürnberg to accept a professorship in organic chemistry, after
he had spent 1974–1975 at the Technical University of München as Senior
U.S. Scientist Awardee of the Alexander von Humboldt Stiftung. Trained as
an experimental organic chemist, he had become aware of the great potential
of computational quantum chemistry for the study of new chemical com-
pounds and reactions. Coming from the same background as other organic
chemists, he spoke their language and—after a number of years76—was able
to convince them of the practicability of this new theoretical tool. In particu-
lar, his work on organolithium compounds77 and carbonium ions, carbanions,
and reactive intermediates was essential in this respect. His work certainly
had a great impact on the acceptance of computational chemistry within the
community of German (experimental) organic chemists.

IBM in Germany organized a symposium on ‘‘Computational Methods
in Chemistry’’78 at Bad Neuenahr in 1979 with the preface: ‘‘According to
Graham Richards79 the ‘Third Age of Quantum Chemistry’ has started, where
the results of quantum chemical calculation can guide the experimentalists in
their search for the unknown.’’ One of the examples chosen to underline this
statement was the acetylene molecule. In 1970 Kammer80 had made qualita-
tively correct predictions for the first cis (3B2, 3A2) and trans (3Bu, 3Au) bent
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electronically excited states of this molecule. In 1975 Demoulin81 had calcu-
lated the corresponding potential energy curves, and in 1978 Wetmore and
Schaefer82 reliably determined the geometry of C2H2 in these states. With
the help of this guidance, Wendt, Hunziker, and Hippler83 took up the search
and succeeded in finding the theoretically predicted near infrared (IR) absorp-
tion for the cis conformer. The measured spectrum confirmed all theoretical
predictions quantitatively.

This symposium showed very convincingly how theoretical methods had
taken up a large variety of different problems and had influenced experimental
studies. At the symposium, W. Meyer with co-workers P. Botschwina,
P. Rosmus, and H.-J. Werner reported on their work on molecular properties.
This group discussed results on spectroscopic data (Re, oe, oexe, ae), ionization
energies, electron and proton affinities, dipole moment functions, and static
dipole polarizabilities, and even showed results on polarizability anisotropies.
In all calculations, they included electron correlation (PNO–CI or PNO–
CEPA) and showed the importance of going beyond simple Hartree–Fock cal-
culations. W. von Niessen, L. S. Cederbaum, W. Domcke, and J. Schirmer
showed how the Greens function approach,84,85 which computes energy dif-
ferences directly, can be used to analyze vibrational structure and vibronic
coupling effects in photoelectron spectra (PES). They also discussed complica-
tions in inner-shell ionization spectra due to the breakdown of the one-particle
picture. Inner-shell phenomena were also discussed by MR–CI methods
(Buenker and Peyerimhoff), and it was shown that such methods can reliably
predict details of molecular spectra in small polyatomic molecules including
vibrational features and intensities. The use of computer chemistry for the
study of organic reactions (in particular the Wolff rearrangement which
involves isomerization of a-carbonyl carbenes into ketenes) presented by the
IBM crew was an excellent example of how quantum chemistry had joined
experimental organic chemistry to study chemical reactions. First calculations
on silicon clusters prepared the way to investigate problems in surface chem-
istry.86 One section of this symposium was devoted to the analysis of molecu-
lar spectra (NMR, IR) and the problem of data storage and man–machine
communication, and another section was held on computer-aided synthesis,
as discussed before. This symposium not only treated quantum chemical
methods, but demonstrated further uses of computers in chemistry; its title
‘‘Computational Methods in Chemistry’’ was thus fully justified.

Toward the end of the 1970s, the challenge of Ch. Schlier to describe
atom–molecular collisions by quantum chemical methods was met by two
young Germans, Jörn Manz and Joachim Römelt for a three-body AþBC
reaction. Traditionally, chemical reactions had been treated using the coordi-
nates leading from the reactants to the product,87 according to chemist’s intui-
tion. In accurate quantum calculations, such a scheme excludes the description
of branching ratios, dissociative processes, or heavy–light–heavy reactions
associated with small skewing angles. The polar Delves or hyperspherical
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coordinates, on the other hand, allow the treatment of all such processes (elas-
tic, inelastic, reactive, and dissociative) for all mass combinations. In 1980,
Hauke, Manz and Römelt, using such coordinates, published their theory
and a first numerical example for a quantum mechanically exact treatment88

of a collinear reaction, which was followed by applications to HþHI, HþH2,
and dissociative collinear reactions.89 When Römelt saw his third paper in
print, he realized that A. Kuppermann and co-workers had thought very
much along the same lines.90

Work on clusters91,92 also had its origin in this decade. Initial work led in
following years to the production of the well-known Stuttgart pseudopoten-
tials,93 which enables the realistic calculation of systems containing heavier
elements. It also prepared the route to many studies on magic numbers in clus-
ter chemistry and eventually to fullerenes and nanotubes.

Finally, the ground was almost ready for the ab initio calculation of
NMR chemical shifts. Kutzelnigg94 designed the IGLO (individual gauge for
localized orbitals) method, and Schindler95 presented the first systematic appli-
cation of this method to compute 13C chemical shifts of carbocations. The
computation of NMR chemical shifts96 is an ideal link between theory and
experiment because calculated shifts can be used in combination with the
NMR measurements to differentiate between various structural possibilities
of the species under investigation. Hence, IGLO calculations are an
ideal tool to give fingerprints to identify transient species with unusual
structures.

BEYOND 1980

The field of computational chemistry found itself in good times by the
1980s, and many young students were fascinated by the combination of com-
puter usage and chemical research. At the 1981 Theoretical Chemistry Sympo-
sium, about 160 people participated. Henry Fritz Schaefer III talked about the
third age of quantum chemistry. He stated that the Americans had been proud
to have the center of gravity of quantum chemical or computational research
after World War II. He had to admit that this center had moved—seen from a
geographical point of view—at least toward the middle of the Atlantic Ocean,
and that German scientists had a heavy weight in this change.

International cooperation had become the rule in universities and
research institutions. Computers became cheaper so that it became possible
to purchase ‘‘minicomputers’’ such as VAX 11/780 (Digital Equipment Cor-
poration), Perkin-Elmer 8/32, or Convex C220 for dedicated purposes. For
a number of theoretical chemistry groups, this helped them to become inde-
pendent of the long queue of users at their university central computer. In
addition, access over a network to machines at a remote site became realistic,
even if it was only via a 1200-baud special telephone line. For these reasons the
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development of computational chemistry seems to have become very similar in
various countries. Applications rather than method development became
dominant and many inorganic and organic chemists as well as scientists in
molecular physics and pharmaceutical research were no longer hesitant to
use the new computational methods. Computer programs for molecular mod-
eling based on quantum chemistry, on classical mechanics, or on empirical
force fields became available in international exchange. Monte Carlo simula-
tions became feasable on vector computers and parallel machines, and access
to large databases was made possible. The quantum chemistry tools were
extended to include relativistic effects,97 which play an important role in tran-
sition metal and heavy-element chemistry. Such efforts were later on sup-
ported by a program from the European Science Foundation98 which gave
financial support to a number of European groups working in this field.
The possibility to include relativistic effects, either directly or by effective
potentials93 made quantum chemical calculations also interesting for many
inorganic chemists and organometallic chemists. Today, theoretical and com-
putational chemists participate in many of the collaborative research centers
(Sonderforschungsbereich) at German universities, which are created to sup-
port interdisciplinary work in areas expected to have great impact for our
future.

In 1981, the computational chemists who are primarily interested in a
wide area of applications rather than in developing quantum methods founded
their own Fachgruppe (Section) ‘‘Chemie-Information-Computer’’ (CIC)
within the Gesellschaft Deutscher Chemiker (GDCh). Of special interest in
this Fachgruppe are discussions on the use of computers in all fields of chem-
istry, development of chemical software, databases, information retrieval sys-
tems, computer-aided synthesis, molecular modeling, expert systems, and
artificial intelligence. The members have their annual meetings, generally in
the frame of the annual meeting of the GDCh. Some of the CIC members
participate in the Theoretical Chemistry Symposia, and delegates of the
Arbeitsgemeinschaft Theoretische Chemie attend CIC events.

At this point, a look at computational chemistry in German industry is
appropriate. An evaluation is somewhat difficult, however, because generally
only a few of the industrial computational chemists attend the annual chem-
istry conferences in Germany, and in addition, these chemists are generally
reluctant to talk about details of their work. The main topic in the era
1970–1980 was presumably computer-aided synthesis. It was a joint endeavor
of seven companies in Germany and Switzerland (BASF, Bayer, Ciba–Geigy,
Hoffmann–LaRoche, Merck, Hoechst, and Sandoz). Pattern recognition was
also an important tool to find structurally related compounds that show simi-
lar or better molecular properties. Computer programs for the automatic
recognition of the maximal common substructures among drug molecules,
or computerized systems with graphical and topological information for
handling and analysis of large databases were topics at special conferences.99
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Quantum chemistry played a minor role in these investigations; in industry it
was used at most on the semiempirical level in this era.

In the middle of the 1980s, molecular modeling, molecular mechanics
(MM), molecular dynamics (MD), and some ab initio quantum chemistry
became important tools in industry to study quantitative structure–activity
relationships (QSAR). The necessary computer programs were purchased
from academic or commercial institutions. A number of young German theo-
retical chemists accepted job offers from chemical industry in the 1980s in the
hope to build up a computational chemistry nucleus within the companies,
doing applied but also some basic research. At a special symposium on ‘‘Scien-
tific Computing and Modeling in Chemical Industry’’ at the annual meeting
1994 of the Physical Chemistry Society (Bunsentagung), young computational
chemists from seven chemical and pharmaceutical companies in Germany pre-
sented already 13 talks. The main topics were QSAR, enzymes, polymers, and
databases, and the studies were clearly dominated by applications. The
restructuring of chemical companies that took place in the second half of
the 1990s under new managements left little room for the development of
computational chemistry methods in industry. Invitations for consultants
were seldom. The future will show whether the cooperation between German
universities and industry in the area of computational chemistry will
strengthen.

Fast expansion of the German university system in the 1970s had
brought a considerable number of new positions in theoretical and computa-
tional chemistry to universities. However, this positive side was turned around
in the following 20 years. Financial restrictions lead to a decrease in budgets,
and salary lines of postdoctoral positions at universities were often simply cut
off. Since many of the professors, who came into office toward the end of the
1970s, were quite young, there was essentially no university post open for
young people until the mid 1990s when retirement of this first generation of
professors started. In other words, the generation of young scientists who were
all well trained in the field could not really use their talents for research
at German universities or research centers. Many of those people went into
(computer-oriented) industry or took their talents to other countries.

This chapter has dealt almost exclusively with the development of
quantum chemistry in the western part of Germany after World War II. In
East Germany the situation under a harsh, centralistic regime was vastly dif-
ferent. The ideology of the ruling party reached all facets of society. Thus a
top-down philosophy of science administration led to a concentration of a
large part of research in the many institutes of the Akademie der Wissenschaf-
ten der DDR. It remains for an insider to record the full story. With the fall of
the Wall (November 9, 1989) and reunification of Germany (October 3,
1990), the situation has changed drastically, but it appears too early to judge
the lasting effects of the new structures or the lingering effects of the old
structures.
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Looking back, I find it truly amazing with what intensity science in
Germany recuperated after the total vacuum caused by the Nazi regime and
World War II. If I ask myself what were the main influences on the positive
development of computational chemistry in Germany, I see it in our
‘‘bottom-up’’ principle of support. Contrary to some other countries, in which
the ‘‘top-down’’ principle is favored, that is, in which research topics that are
thought to deserve funding are earmarked from a centralized body, West Ger-
man support of science wanted to be far away from dictating any route —espe-
cially after considering Germany’s recent history. Hence, a small number of
young energetic people, in competition with each other, fascinated by new
tools and methods, were the hard core to develop the field. The first generation
was generally trained in physics or mathematics; the second generation origi-
nated mostly from chemistry. The foresight of a few senior scientists that digi-
tal computers would become an extremely useful tool and should be made
available to researchers (recommended by a committee of the DFG) and
that it was worthwhile to bring the young German researchers together within
a special priority program gave important support to the field. The advance of
quantum chemistry and computational chemistry and its introduction into the
education of chemistry students occurred without the support of large govern-
ment contracts from the ministry of education or ministry of research and
technology and largely without the support of dedicated research institutions
such as the Max Planck Institutes or industry.

It is gratifying to observe that computational chemistry in Germany is
again strongly visible internationally. This remarkable development should
be kept in mind in the present tendency to favor the support of large scientific
centers over modest proposals from young individuals.
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Problemstellung und Grundlagen der durchzuführenden Untersuchungen. Das N2-Molekül
als Sechselektronenproblem. H.-J. Kopineck, Z. Naturforsch., 7a, 314 (1952). Quantenthe-
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APPENDIX

Examination of the Employment
Environment for Computational
Chemistry

Donald B. Boyd and Kenny B. Lipkowitz

Department of Chemistry, Indiana University–Purdue University
at Indianapolis (IUPUI), Indianapolis, Indiana 46202-3274

Draw from others the lesson that may profit yourself.
Publius Terentius Afer (ca. 190–159 B.C.)

INTRODUCTION

The purpose of this essay is to put into perspective the job market for
computational chemists. Professors and career counselors may find the
information useful when advising their students. For students thinking about
career directions, the data we present give an indication of the growing value
of expertise in computational chemistry. The right kinds of computational
chemist are needed to meet important economic and societal needs; for exam-
ple, in designing new materials or in helping to find cures to debilitating dis-
eases. Experienced laboratory chemists who are thinking of reinventing
themselves for the information age may find the trends reported here pertinent
to their decision making. We are not advocating that everyone should become
a computational chemist, but we do point out that job opportunities expand
for specialists in other areas of science if those scientists also possess some
expertise in computational chemistry.
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The last discussion of the job market for computational chemists was a
brief one that DBB wrote for Volume 12 of this book series.1 In the present
chapter, the history of the job market is reviewed and brought up to date.
We discuss factors that have affected the job market either positively or nega-
tively and look at where recent growth has occurred. We ascertain which skills
are currently in greatest demand. We then look at some data on R&D spend-
ing, graduation rates, and the number of patents granted, which reveal the
broader R&D environment in which many computational chemists work.
Lastly, we look at a subject dear to the heart of most everyone: salaries.

HIRING TRENDS

A barometer of job opportunities for scientists with computational
chemistry expertise is the number of relevant positions advertised in Chemical
and Engineering News (C&EN), the widely-read weekly magazine of the
American Chemical Society (ACS). Although many of the world’s computa-
tional chemists are in the United States, it should be emphasized that advertise-
ments in this one magazine reflect only partially the total number of positions
available in any given year. Job opportunities in other nations are not usually
advertised in C&EN, unless a search committee is seeking candidates to return
to their homeland after having obtained an education in the United States. Still
other job openings not appearing in C&EN are those advertised in other
magazines or journals, those posted on corporate websites, and those dissemi-
nated on the Internet.2 Many positions are filled by personal contacts and are
not publicized. Nevertheless, we think that the C&EN numbers give a good
indication of the overall trend in the job market for computational chemists.

Figure 1 shows the number of jobs advertised each year from 1983
through 2001, which spans most of modern era of computational chemistry.
For purposes of constructing Figure 1, job openings were put into the follow-
ing categories: tenure-track academic positions, nontenured academic staff
positions, academic postdoctoral research positions, positions in industry
(other than at software and hardware companies), positions at software or
hardware companies, industrial postdoctoral positions, and positions in gov-
ernment laboratories. About three-quarters of the jobs required a Ph.D.
degree, and many employers preferred postdoctoral experience. All the jobs
included in Figure 1 required a chemistry degree, rather than a computer
science or life science degree, for example.

Looking at the whole period 1983–2001 plotted in Figure 1, three major
features are noteworthy. First, looking at the top curve, which is the sum of all
categories each year, we see an expansion in the total number of jobs for com-
putational chemists. Second is the interruption of growth in 1992–1994. And
third is the high rate of job creation in recent years. We elaborate on these
points.
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Figure 1 Annual number of jobs for scientists in the field of computational chemistry
that were advertised in Chemical and Engineering News for the years 1983–2001.
The positions available are categorized as to whether they were for government
laboratories, academia (nontenured staff, tenure-track professorial, or postdoctoral
appointments), industrial research laboratories (permanent or postdoctoral appoint-
ments), software companies, or hardware companies. Having a separate category for
hardware companies in our compilations stemmed from when these companies were
more numerous in the 1980s, and they were hiring computational chemists primarily
for marketing purposes. However, more recently as the hardware companies have
had to consolidate, they have done little or no additional hiring. The data for software
vendors include some postdoctoral-type positions primarily in the years 1988–1990.
In a few cases, jobs advertised near the end of one year were also advertised early in
the following year; in these situations the positions are counted in both years. In
cases of advertisements for an unspecified number of open positions, an estimate
was made. Therefore, the data are approximate, but representative and
consistent.
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Inspection of the contributory curves shows that the main area of job
growth has been in industry. This growth has been at pharmaceutical and bio-
technology companies principally, but also some jobs have been created at
agrochemical, chemical, petroleum, lubricant, polymer, explosives, flavorings,
photographic film, glass and ceramic companies.

The first industrial jobs for computational chemists opened in the early
1960s when such scientists were usually called theoretical chemists or physical
chemists.3 Those early pioneers not only had to prove themselves, they had to
prove a whole new approach to answering questions in science, that is, com-
putationally. Human nature being what it is, traditional (experimental)
chemists reacted in different ways to computational chemistry: some were
curious (some of whom even tried their own hand at calculations but often
found the early technology—computer punch cards—too bothersome),
some were disinterested, and some felt their prerogatives and perquisites
were threatened. At the pharmaceutical companies, many of the medicinal
chemists (who far outnumbered the computational chemists) were skeptical,
if not resentful, of the upstarts.4 Because of finite resources, one more person
hired as a physical (or analytical) chemist often mean one less organic chemist
would be hired.

At pharmaceutical companies in the 1960s through 1980s, each organic
chemist could crank out the synthesis of about 50 new compounds per year.
The odds of one of these compounds exhibiting all the attributes to become a
pharmaceutical product were extremely small (traditionally asserted as
approximately 1 in 10,000). No one would have considered organic chemistry
a failure because of so many syntheses leading to dead ends. Yet some of the
organic chemists of that era would declare computational chemistry totally
useless after just one case where a calculated prediction turned out to be inac-
curate. Antagonists of an approach are more likely to remember one failed
prediction than the cases where the approach gave a useful result.

The obstacles were gradually overcome. The early ‘‘successes’’ were
small indeed. To find a simple correlation between experimental results and
calculated properties for a few molecules was once a special accomplishment.
To correctly predict the biological activity of a proposed structure was even
rarer.

Thanks mainly to improved methods and advances in computer technol-
ogy, but aided by hard work, persistence, adaptability, optimism, and
patience, computational chemists became able to answer research questions
better and faster. Computers became easier to use, quicker, and capable of
handling larger molecules. One of the aspects that experimentalists had a par-
ticular trouble accepting was the need for computational chemists to use sim-
plified models of the structures they computed. Computational chemists could
readily understand that replacing computationally irrelevant side chains with
hydrogens would have no material effect on the outcome of the calculations
of, say, the electronic structure of the core of the molecule. However,
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experimentalists thought that any simplified model could not possibly repre-
sent properties of a molecule that they had made in the laboratory. More
powerful computers meant that models closer to the experimentalists’ concept
of the molecules could be computed in a reasonable time. The computational
chemists in industry steadily justified their existence and prevailed in demon-
strating the value of their approach.

Enlightened management at companies was necessary in fostering a
collaborative environment wherein the computational chemists would be
accepted as integral partners in the research projects. Then computer-based
ideas, as well as traditionally generated design ideas, could be tested in the
iterative process of molecular design. Another key factor in convincing the
organic chemists to get on board with molecular modeling was education.
Thanks to hands-on training, in some instances pushed by enlightened man-
agement, experimentalists learned to do some of the calculations themselves
and thus felt less threatened by a computational approach. Also the experi-
mentalists learned that certain calculations were difficult enough that they
should trust computational chemistry experts to do them. Despite the field
being about 40 years old, clearly defined successes of using computational
chemistry to aid drug discovery have become prevalent only in the last ten years.5

It should not be thought that difficulties were encountered solely in
industry. Similar hurdles were, and still are, faced by some computational
chemists trying to expand their presence on the faculties of colleges and
universities. A lingering, negative attitude, which seems incongruent with
this modern Information Age, is that computer modeling is either not ‘‘real’’
or not ‘‘real science’’. By definition, a model is an approximation to reality,
but this does not mean that the results of modeling are useless. Ample evidence
exists that computer modeling can and does lead to effective advances in
science. In fact, in the so-called real world (industry), modeling is every day
proving itself an efficacious partner in research and development.

This evolution to an acceptance of a computational approach to scienti-
fic research is an example of the famous observation of the Nobel Laureate
physicist Max Planck (1858–1947) as expressed in 1936,6 ‘‘An important
scientific innovation rarely makes its way by gradually winning over and
converting its opponents . . . . What does happen is that its opponents
gradually die out and that the growing generation is familiarized with the
idea from the beginning.’’ This statement might be amended to point out
that the naysayers merely needed to retire.

Returning to Figure 1, the job market for computational chemists is not
immune to macroeconomic and political factors. In terms of the overall United
States economy, the 1970s were characterized by dreary stagflation (no
growth accompanied by rapid inflation) due to poor government policies
originating in the mid-1960s. Greatly improved government policies in the early
1980s led to a remarkable economic revitalization which was accompanied
by a rapidly increasing demand for computational chemists. The number of

Hiring Trends 297



computational chemists employed in industry was doubling about every five
years.7 The government policies of the 1980s provided a basis for the econom-
ic growth of the 1990s, when even more jobs for computational chemists were
created. For the most part, the bursting of the ‘‘dot com’’ bubble at the turn of
the century had little impact on computational chemists because their jobs
were chiefly in companies with established business models. In contrast to
what happened with other high technology businesses, plenty of venture capi-
tal continued to flow into businesses with biomedical objectives, so that more
computational chemists were needed for the start-up pharmaceutical and
biotechnology companies.

It is worth considering what caused the negative period 1992–1994
apparent in Figure 1, so that history might not repeat itself. There are three
underlying facts. First, by the early 1990s the pharmaceutical industry was
becoming the largest employer of computational chemists. Second, there
was a mild economic slowdown, which reduced spending on research and
development (R&D) across all industries in the United States, thus shifting
the balance in the supply/demand equation for scientific talent. Third, the
high profitability and self-supporting character of the pharmaceutical compa-
nies allowed them to invest more in R&D than did most other industries.

In the early 1990s, the profitability of the pharmaceutical industry in the
United States came under threat from two sources. One was that the rapid
transformation of health care delivery in the United States to a system based
on health maintenance organizations (HMOs) and pharmacy benefits manage-
ment (PBM) companies. At pharmaceutical manufacturers, it was feared that
the HMOs and PBMs would have more clout to negotiate lower prices
charged for prescription drugs. Initial indications were that this fear was
justified. The other threat to profitability would have affected the entire health
care industry and came from a proposed government plan that was being
debated in 1992 and 1993. Under the plan, not only were pharmaceutical
companies affected, but also hospitals and physicians. The high profitability
of this whole industry was an irresistible target for some politicians who
wanted to ‘‘reform’’ it. The scheme was not to nationalize the businesses,
but rather to leave them under private ownership, but with prices effectively
controlled by new government bureaucracies. Such a plan was reminiscence of
what some governments in Europe imposed on their private industries in the
1930s. As expected, prudent pharmaceutical company executives became
more cautious about investing in science for future growth. As recorded
on the pages of C&EN and in the general press at the time, thousands
of jobs at pharmaceutical companies were cut. Fortunately, computational
chemists fared better than other pharmaceutical scientists and employees
in these restructurings (down-sizings). By retaining the computational
chemists, company managers were dramatically acknowledging the value of
computational techniques in drug discovery. Additionally, computational
chemists were a relatively small percentage of a company’s employment
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totals and tended to be younger on average than the other employees. The pro-
posed government takeover plan was defeated in the United States Congress,
and subsequent experience dealing with the HMOs and PBMs did not turn out
to have as large an impact as the pharmaceutical companies originally feared.
Confidence in the future was restored, and investment in R&D could takeoff.

Figure 2 shows the combined annual investments in R&D of large phar-
maceutical companies in the United States.8 The slowdown in 1992–1994 is
evident. The pharmaceutical industry did not reduce its investment in science,
but did temper the rate of increase in 1993 and 1994. Although the inflection
in the curve may seem small, comparison with Figure 1 indicates that between
100 and 200 fewer jobs were created for computational chemists as a result.

We can glean other information from Figure 1. The little peak in 1985
and the modest one around 1989–1990 resulted from hiring at software com-
panies catering to the pharmaceutical industry. A lucrative market developed
for computational chemistry software9 written to meet the needs of the
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Figure 2 Sum of annual R&D spending by six large pharmaceutical companies in the
United States: Pfizer, Merck, Eli Lilly, Bristol-Myers Squibb, American Home Products
(renamed Wyeth in 2002), and Schering-Plough. These companies are listed in
descending order of the total amount of their profit spent on R&D. In terms of R&D
investment in 2000 as of percentage of sales that year, the order of the companies
changes to: Eli Lilly (19%), Pfizer (15%), Schering-Plough (14%), American Home
Products (13%), Bristol-Myers Squibb (11%), and Merck (6%). On average, these
companies spent almost 12% of their 2000 sales on R&D. Data from Ref. 8.
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pharmaceutical industry. Some programs were for molecular modeling and
others for management of databases of molecular structures. Although some
pharmaceutical companies developed software internally, most companies
found it more efficient to buy supported software. As seen in Figure 1, the soft-
ware vendors essentially stopped hiring during the 1992–1994 downturn, but
since 1995 the number of advertised jobs at these companies has been at a
fairly steady pace.

The modest peak at 1988 in Figure 1 was due in part to hiring by indus-
try. And most of the growth since 1995 has been in industrial jobs. The rising
demand for computational chemists reached a new high in 2000 when about
three-quarters of the demand came from industry, principally pharmaceutical
and biotechnology. In 2001, hiring by industry slowed a bit, which was offset
by an increase in advertised academic positions. A few of the latter were for
tenure-track faculty, but most of them were only postdoctoral positions,
which tend to be short lived.

Figure 3 compares the number of academic and industrial positions
advertised in C&EN. The academic curve combines tenure-track, staff, and
postdoctoral data from Figure 1. The industrial curve combines data for the
industry, software, and hardware categories of Figure 1. The number of aca-
demic job openings has remained fairly steady, with a small peak in the late
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Figure 3 Comparison of the total number of jobs and the total number of academic jobs
for scientists in the field of computational chemistry advertised in C&EN.
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1980s and a larger one about ten years later (1998). The last few years have
been good for individuals wanting to stay in academia. Generally, academic
hiring rises when funding from government and industry increases or when
retiring or deceased faculty are being replaced.

Figure 4 shows the running sums for academic and industrial positions
advertised in C&EN. The curves are based on the data in Figure 3. It can be
seen that the academia and industry curves essentially coincided in the early
1980s. In the late 1980s, the accumulated number of advertisements from
industry pulled ahead of the academic ones, but the two curves still paralleled
each other in the early 1990s. After 1995, the industry curve accelerated even
further ahead. Almost 1300 jobs for computational chemists were advertised
in C&EN from 1983 through 2001. On the one hand, it should be realized
that not all these jobs advertised in C&EN were new. Work forces have
become increasingly fluid. As with other scientists, some computational chem-
ists change jobs every few years. This turnover necessitates further job adver-
tisements to be placed. On the other hand, as we mentioned, not all positions
that have been created and filled since 1983 were advertised in C&EN. We do
not have an accurate way to estimate the total number of individuals finding
jobs as computational chemists since 1983, but it is certainly much greater
than 1300. By way of comparison, the Computers in Chemistry (COMP)
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Figure 4 Running summations of the number of industrial jobs and the number of
academic jobs for scientists in the field of computational chemistry advertised in C&EN.
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division of the ACS had about 2600 members as of 2001, and this probably
represents less than half the total number of computational chemists in the
United States.10

An overall indication of where computational chemists have found
employment is given in Figure 5. The pie chart shows the percentage of jobs
in each of the categories of Figure 1. The three largest categories are industry
(46%), academic postdoctoral positions (17%), and software companies
(13%). A loose comparison can be made to some data from the American
Chemical Society. ACS surveys in 1999 and 2000 showed where new chemis-
try graduates were finding positions and covered all disciplines of chemistry.11

About 60% of newly graduated chemists in the ACS surveys found jobs in
industry; of these, a third (20%) went into the pharmaceutical industry. The
ACS found similar percentages for both B.S.- and Ph.D.-level chemists doing
so. Roughly 7% of the new chemistry graduates went into the biotechnology
industry according to the ACS sampling. From these data, it appears, not sur-
prisingly, that a higher percentage of computational chemists go into the phar-
maceutical industry than do chemists in general.

In the United States, pharmaceutical companies are the largest employer
of industrial chemists, not just computational chemists.12 If the pharmaceutical
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Figure 5 Pie chart showing the accumulated total distribution of positions advertised in
C&EN during the period 1983–2001 for scientists with computational chemistry
expertise.
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industry suddenly had to shrink because of economic or political adversity, it
would affect not only computational chemists, but chemists in general and
many kinds of biologists. What happens in this industry would also impact
the software vendors that develop and maintain programs for use in molecular
design and data management, and it would even affect the universities produ-
cing new scientists and performing research. A healthy pharmaceutical indus-
try means a robust job market for computational chemists.

The worldwide market for pharmaceuticals is highly competitive and
fragmented. No pharmaceutical company serves more than about 11% of
the total worldwide market for prescription drugs, and most serve a much
smaller percentage. The expiration of patent coverage on a major product
can be a major blow to a company’s ability to invest in science. Historically,
it has been an exceptionally strong and confident pharmaceutical company
that could withstand a patent expiration of a blockbuster drug without resort-
ing to a merger or acquisition. Generic drug manufacturers can rapidly take
away the market for a molecule of a research-based company when its patent
expires. But the generic manufacturers employ relatively few scientists and no
computational chemists to our knowledge. Looking forward, in the next few
years, generics could eat away about a quarter of the recent corporate sales of
several large pharmaceutical companies, and a few such companies could lose
as much as almost half their sales! Thus, scientists at these research-based
companies are not necessarily secure in their jobs, although in the short run
they are desperately needed to help keep the discovery pipeline from drying
out and in the long run will be rewarded if their discovery efforts succeed.

Job insecurity also exists at small companies. At a small pharmaceutical
or biotechnology company that is still working to develop its first product,
having adequate cash on hand to meet periodic expenses (cash flow) can be
a serious problem. The jobs of computational chemists at such company can
be in jeopardy if available cash must be devoted to meet current expenses
instead of being used for a long-term project such as drug discovery.

SKILLS IN DEMAND

Further information can be uncovered by looking at the job descriptions
in the C&EN advertisements for computational chemists. The chart in Figure 6
lists the types of expertise specified in the advertisements during 2001 and
shows the number of advertisements requesting a given expertise. The data
are for advertisements appearing in the last complete year for which there is
data (2001). Some advertisements were terse, but most advertisements called
for several types of expertise, and each of these has been counted for construct-
ing Figure 6. Job advertisements are often created by human resource people
who may not be scientifically trained and thus may not fully understand the
subtleties of the wording given them by the scientific managers. Hence,
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Figure 6 Number of advertisements in C&EN in the year 2001 that specified the skills
desired for job openings. The total number of advertisements was almost 160.
(a) Frequently mentioned skills. (b) Less frequently requested skills. QSAR and QSPR
are acronyms for quantitative structure–activity/property relationships. SBDD and
SBLD refer to structure-based drug/ligand design. CADD, CALD, and CAMD refer to
computer-aided (or -assisted) drug/ligand/molecular design. ADME stands for adsorp-
tion, distribution, metabolism, and excretion/elimination. Of MDL software, ISIS was

(continued)
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mentioned most frequently. Knowledge of UNIX is mentioned much more frequently
than the operating systems of personal computers (PCs), principally Windows. MO
refers to doing molecular orbital calculations. MSI abbreviates Molecular Simulations
Inc., which was renamed Accelrys Inc. during 2001. QM/MM stands for quantum
mechanics/molecular mechanics approaches, whereby the reaction center of a
large molecular system is treated quantum mechanically, while the remainder
of the molecular system is modeled by molecular mechanics.
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different job advertisements use different terms for very similar kinds of exper-
tise. To better represent the data, we have combined closely related terms as
shown in Figure 6.

The most general term ‘‘computational chemistry’’ appears in the great-
est number of advertisements. However, this term (or computational chemist)
is not used in all advertisements. In fact, these terms appear in only about 40%
of them.

The second most sought-after expertise is in programming. Cþþ was the
most frequently mentioned programming language; C, FORTRAN, Perl, and
Java were among others often mentioned. Knowing how to program not only
guarantees intimate familiarity with computers, but also gives a computational
chemist extra flexibility in how to attack research problems; preconceived
algorithms can be customized and totally new algorithms can be created.
Despite the demand for programming skills, many companies use commer-
cially available computational chemistry/molecular modeling software. Com-
pany managers commonly reason that commercial software can be learned on
the job if a person is not already experienced in its use.

The expertise ranked third in Figure 6 is a relatively new job description:
informatics and cheminformatics (informatics as applied to chemical prob-
lems). The job description of a cheminformatician is still in a state of flux.
Just like ‘‘computational chemist’’ and ‘‘molecular modeler’’ are used inter-
changeably by some employers, ‘‘cheminformatician’’ apparently is coming
to be used synonymously with the other terms, or at least with an overlapping
meaning. Advertisements for informatics scientists often specify skill in pro-
gramming.

The fourth most sought-after expertise is in quantitative structure–
activity relationships (QSAR). Once regarded by some scientists as somewhat
passé, QSAR has become a hot area because its techniques are applicable to
drug discovery, molecular design, and design of combinatorial libraries of
compounds. Of all the methods of computational chemistry, QSAR is partic-
ularly adept at handling the large volume of data generated by modern drug
discovery strategies.

Fifth in rank in Figure 6 is ‘‘molecular modeling’’. This is another general
term with multiple meanings and can imply manipulating three-dimensional
(3D) structures of molecules on a computer screen, molecular mechanics, and
even QSAR and quantum chemistry, which are other ways to model chemical
structures.

Ranking sixth is a general skill: the ability to communicate in speaking
and writing. This skill is indispensable for most jobs, not just those in compu-
tational chemistry. Not too much further down the list in Figure 6 are ‘‘ability
to work in a team environment’’ and ‘‘interpersonal skills’’. These general
skills reflect how well a person can get along with co-workers and manage-
ment. The ability to collaborate effectively with experimentalists is important
for computational chemists because calculations without connection to
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experimental data are difficult to justify. Collaborations between experimen-
talists and computational chemists can prove synergistic. At pharmaceutical
companies, computational chemists must be able to interact with pharmacol-
ogists and other biologists, and especially with medicinal chemists. The latter
interaction is indeed sensitive and crucial. Medicinal chemists and computa-
tional chemists share the objective of designing biologically effective com-
pounds, but only medicinal chemists are equipped to synthesize a new
design. In industry, computational chemists must get along with the synthetic
chemists in order to have real impact. Management support of the computa-
tional chemists is also needed. Depending on management policy, the medic-
inal chemists and computational chemists could be forced into a situation
where they are competing with each other for credit on a discovery of a worth-
while design.13 Will certain members of a collaborative team have primacy in
taking credit for new intellectual property generated? Will some members of
the team be regarded as merely service providers? A team environment with
shared credit for discoveries obviously facilitates collaboration, but good
interpersonal skills are necessary regardless.

Ranked seventh and eighth are ‘‘structure-based drug (ligand) design’’
(SBDD/SBLD) and ‘‘computer-aided drug (ligand/molecular) design’’ (CADD/
CALD/CAMD), respectively. The advertisements for a skill in SBDD/SBLD
signify modeling of ligands when the 3D structure of a target receptor molecule
is known. In Figure 6, we included only those SBDD/SBLD advertisements
calling for chemists to do molecular modeling, not those advertisements for
crystallographers to solve the structure of receptors. CADD/CALD/CAMD
are terms that entail not only the molecular modeling aspect of SBDD, but
also imply using techniques for the design of ligands even when the 3D struc-
tures of target receptors are unknown.

Not surprisingly, the highest ranking computer operating system men-
tioned in the advertisements is UNIX. This is the operating system currently
used on most workstations. Next in the list of skills is protein homology
modeling, which is relevant to drug discovery because if the 3D structure of
a receptor molecule is not known experimentally, then the next best thing
to do is to create a 3D structure by sequence alignment and molecular model-
ing techniques.

Continuing down the list of skills in the left-hand panel of Figure 6, we
have ‘‘drug discovery’’, another general term indicating the overall goal of the
employment opportunity. Library design refers to a rational approach to com-
binatorial chemistry (which involves combining a large number of reagents to
produce an array of products). The modeling of pharmacophores (the mini-
mum structural features required of a drug molecule for eliciting a biological
response) and docking and scoring are both interwoven with CALD and SBLD.
ADME refers to prediction of the adsorption, distribution, metabolism, and ex-
cretion/elimination behavior of compounds administered to a test animal and/
or the human body. ADME modeling is a relatively recent area of focus;
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pharmaceutical companies have learned that QSAR techniques can help in
research areas besides the discovery of ligands. Medicinal chemists have
tended to synthesize compounds based on (1) their area of synthetic expertise
(and interest) and (2) maximizing potency against a therapeutic target. How-
ever, single-minded pursuit of these two factors too often can result in com-
pounds that lack the other properties required of a good candidate
pharmaceutical product. But such shortcomings may not become apparent
until after much further — and expensive — research. On the other hand, if
predictions can be made about the potential for a compound to have good
ADME properties and to be clean toxicologically, then much time and money
can be saved.

Slightly over fifteen C&EN job advertisements in 2001 requested what
we label as ‘‘working knowledge of databases’’. This encompasses database
creation, database management, and database mining. It is not surprising
that the Oracle and Molecular Design Ltd. (MDL) database management sys-
tems are explicitly mentioned in some advertisements covered in Figure 6.
Oracle software is for handling general data, whereas MDL software is speci-
fically for handling molecular structures. Slightly under fifteen C&EN job
advertisements asked for people familiar with ‘‘commercial software’’, mean-
ing computational chemistry/molecular modeling programs, but without men-
tioning any specific program. Of C&EN job advertisements explicitly
mentioning a program, the most frequently stated was the small-molecule
molecular modeling package SYBYL and other software of Tripos Inc. SYBYL
is also equipped for 3D-QSAR analyses, another widely used approach for
relating bioactivity of a set of molecules to the properties those molecules ex-
hibit in the space around them.14

Quantum chemistry, a traditional core area of computational chemistry,
was requested in fewer than ten of the C&EN advertisements. Perhaps not sur-
prisingly, most of the jobs requiring an interest in theoretical chemistry or
quantum mechanics were in academia. Likewise molecular simulations,
another favorite and important field in academia, is not a skill in exceptionally
high demand in industry.

As seen in Figure 6, industry currently has the most need for experts in
informatics, QSAR, and CALD. There is thus a disconnect between the types
of expertise the universities are teaching and the types of expertise needed in
commerce. It appears that some university administrators are continuing to
think as they did in the 1960s and 1970s rather than keeping up with the evol-
ving nature of computational chemistry. We will leave it to the reader to con-
template what obligations university administrators and faculty have when
professors take new graduate students to work in an area of research of inter-
est to the professor, but for which there are poor job prospects. Or is it totally
the responsibility of the students to look after their own interests? In any case,
it is valuable for the students to learn to gather information, to think, to ask
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the right questions, to create, to solve problems, and to communicate, whether
they stay in science or become stockbrokers.

Structural biology and computational biology are sometimes used as
buzzwords for the specialties of X-ray crystallography and computational
chemistry, respectively, when the subject of study are biomolecules. But the
terms can also be used to mean molecular modeling. We counted only those
job advertisements where it was clear that the main set of skills being sought
were those of a computational chemist. Given the proclivity of people to
invent new buzzwords, it is not inconceivable that a hybrid of ‘‘genomics’’
and a synonym for ‘‘computational chemist’’ will be appear in future job
advertisements. Likewise, ‘‘computational proteomics’’ will probably gain
currency. We list bioinformatics as a category in Figure 6; these come from
advertisements that wanted a person with computational chemistry skills
plus knowledge of bioinformatics. Since all the jobs corresponding to Figure 6
are for individuals with chemistry degrees, we did not count advertisements
for bioinformatics specialists with only life science degrees, i.e., those with a
molecular biology orientation.

We do not need to elaborate on every skill listed in Figure 6. The low
ranking of some topics may result from human resource people or non-
technically trained managers not understanding the relationships of the
skills. For example, molecular mechanics is the basis of much of ligand and
pharmacophore modeling, as well as conformational analysis, and often in
the course of modeling, it is necessary to generate reliable new force field
parameters. Yet molecular mechanics was not a skill often requested in the
job advertisements.

Students training for a career in computational chemistry should realize
that the skills being called for in one year may be different from those in use
four or five years later. Practicing computational chemists come from many
backgrounds, including experimental ones. Regardless of what students con-
centrate on in their advanced education, be it quantum mechanics, or molecu-
lar simulations, or something else, it would be severely limiting to address
every research problem they encounter in their career by only one approach.
A complete computational chemist should be versatile enough to be able to use
a variety of methodologies. Then each research problem can be attacked with
the most appropriate tools, and the range of problems that can be tackled
will be much wider. As with other scientists, computational chemists must
be willing to learn new things and work in new directions.

The walls between traditional disciplines are becoming more porous.
Increasingly, chemists need to know biology, and biologists need to know
chemistry. Likewise mathematics has long been of value to physical chemists.
Now computer science is important to chemists and biologists. A solid
grounding in chemistry, physics, biology, mathematics, statistics, and compu-
ter science can help prepare the computational chemist for tomorrow. The
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ability to communicate in the language of collaborating experimentalists is
also vital. For example, if a computational chemist will be working with med-
icinal chemists, then a good proficiency in the terminology of organic chemis-
try will prove to be a clear advantage. Likewise, a computational chemist may
need to learn the language of biologists or materials scientists.

THE BROADER CONTEXT

For the edification of our readers, we next briefly present some other
data showing the broader scientific R&D environment in the United States.
From an international perspective, the United States spends far more on
R&D than do other countries.15 In Figure 7, we plot the annual amount of
money spent on R&D by a set of large and medium-sized chemical companies
in the United States. Comparable data for the major pharmaceutical companies
was shown in Figure 2. Combining the R&D investments at both chemical and
pharmaceutical companies gives the top curve in Figure 7. As far as computa-
tional chemists are concerned, important conclusions can be drawn from the
figure. First, there has been no growth in investing in R&D at the chemical
companies. In fact, after correcting the data for inflation, chemical companies
were spending less on R&D at the end of the 1990s than they were at the
beginning. The total curve shows a steady increase only because pharmaceu-
tical companies invest so much in R&D.

At the bottom of Figure 7 is another important curve worth noting.
Government spending in chemistry research is small and not growing. This
curve shows the total amount of taxpayer dollars that all the federal agencies
are directing to support the discipline of chemistry. Again, after correcting for
inflation, the amount the government is directing toward chemistry has
declined over the last ten years. The main driver for increasing R&D invest-
ment in the United States has been private enterprise16 seeking new molecules
that will increase the health and longevity or improve the quality of life of
people.

In Figure 8, we plot the total number of chemistry graduates in the United
States. The three curves show the number of individuals earning degrees at the
B.S., M.S., and Ph.D. levels.17 The number of individuals obtaining their first
chemistry degree has fluctuated widely with time, but the number of advanced
degrees granted has shown remarkably little variation for the last 15 years.
There was a slight increase in the number of Ph.D. degrees granted in the early
1990s, reaching a high-water mark in 1994. By comparing Figures 7 and 8, it
can be seen that there is little relationship between the amount of R&D money
available each year and the number of students being produced by educational
institutions. Paradoxically, if there is any correlation at all, it is a rough inverse
one, with Ph.D. production decreasing when R&D funding is increasing.
Remembering the supply/demand equation, we note that the recent decline
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in Ph.D. production in the face of rising R&D investments bodes well for those
individuals presently seeking jobs as well as for pay increases as companies
compete for available scientific talent.

In Figure 9, the number of patents awarded in the United States are
plotted by year.18 Two of the curves show the number of patents in chemistry
and the other two trace the number of patents in biotechnology. Of each pair
of curves, one corresponds to the total number of patents granted, and the
other gives the number granted to United States companies. Hence the ‘‘total’’
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curves has folded in the number of patents granted to educational institutions,
nonprofit organizations, individuals, and foreign entities. By comparing
Figures 7 and 9, it can be seen that an increase in the amount of R&D spend-
ing each year has not led to a proportionate increase in the number of innova-
tions recorded as patentable discoveries. Thus, each patentable invention is
costing much more now than ten years ago. One might expect a lag between
when R&D money is invested (or when new graduates are hired) and when
patentable discoveries are made. Instead, the correlation appears to be
weak, except perhaps for the dip in the number of patents in 1995, which
one could speculate as arising from the slowing of R&D investments in
1993–1994 or perhaps from scientists in general being distracted by concerns
over the security of their jobs. However, the last year for which we have data,
2000, was a great one as far as R&D spending and job stability were con-
cerned, but difficult in terms of generating patentable discoveries. Certainly,
pressure to maximize productivity will increase on scientists in the years
ahead, even though the pressure is already at an extremely high level.

We do not have data on the number of patents that include the names of
computational chemists as discoverers or co-discoverers. Until about ten years
ago, a widespread practice at the pharmaceutical companies was to routinely
exclude computational chemists from patents. This exclusion stemmed in part
from the hegemony of the organic chemists and partly from the legal reasoning
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that although computational chemists may have conceived a novel molecular
design, but they did not reduce the idea to practice. The synthetic (medicinal)
chemists reduced the ideas to practice, so they were often recognized as the
sole inventors on any resulting patents. Fortunately, this practice of excluding
computational chemists started to die away about ten years ago, and more and
more computational chemists are being recognized for their contributions.

In the 1980s, the United States Patent & Trademark Office started treat-
ing software for computational chemistry as patentable inventions. One of the
earliest such patents, or at least the earliest that generated some debate,
described an algorithm for conformational analysis.19 Prior to this patent,
there were three main types of software: (1) freely distributed, (2) commer-
cially available, and (3) closely held (by the developers). If this third type
were in industry, it would be called treating the technology as a trade secret.
In academia, there have been a number of cases of a quantum chemistry pro-
gram used in only the laboratory where it was written because the developers
wanted to maintain a competitive advantage. Prior to 1989, the concept of
obtaining patents in the realm of scientific software was relatively foreign to

.
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most researchers in computational chemistry. Many scientists did not welcome
the possibility that patents might interfere with the free flow of scientific pro-
gress and exchange of technology. However, software patents are becoming
more common.

How large is the job market for chemists in the United States? The
National Science Foundation (NSF) has compiled data on the number of
chemists employed in the chemical industry in general and the number
employed in the pharmaceutical industry specifically. The former number
has ranged from 80,000 to 90,000, and the latter from 35,000 to 50,000.
However, these data are difficult to analyze because the definitions and stan-
dards used by the government have changed over the years.

In the United States, annual reports of corporations commonly give the
number of employees. But these simple employment numbers can be mislead-
ing because so many companies nowadays use contract workers. The actual
number of workers coming to work everyday at a company site may be
much higher than reported. The practice of outsourcing is done to reduce over-
head expenses because the contract workers usually are paid less and receive
fewer benefits than regular employees at those companies. When the trend of
using contract workers began in the early 1990s, it was mainly for low-skill
jobs, but as the trend accelerated even scientific positions were filled with
people hired through contract companies. What seems particularly ugsome
are the cases where full-time, long-term contract workers are used to work
at the same site and perform comparable tasks as the full-time regular work-
ers, but receive different pay and benefits. Conversely, if a computational
chemist chooses part-time work, temporary work, or the freedom to work
at home, then a differential in pay and benefits for the contract researchers
makes sense.

SALARIES

Limited data are available on the salaries that computational chemists
earn. The ACS conducts an annual survey of a sampling of their membership.20

The ACS is the world’s largest scientific society with more than 163,000
members. Of these, almost 10,000 domestic members respond to the survey;
a different random sample is used each year. The ACS reports the data in terms
of type of employer, work function, discipline (the major traditional ones, but
not computational chemistry), degree level, years of experience, age, and the
other orthodox ways of looking at certain groups identified by gender, race,
and ethnicity.

Plotted in Figure 10 are starting salaries as reported in the ACS survey.21

The salaries of Ph.D.-level chemists increased gradually until 1993, then
paused, suffered a fairly large dip in 1996, before finally taking off again in
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the late 1990s. In the last few years, competition among the pharmaceutical
companies for the best talent was so fierce that some chemists were being
offered signing bonuses, albeit not as large as those awarded sports stars.
Similarly, competition between the elite and would-be elite universities for
the best academic talent shows up as start-up grants and other perquisites.
For chemists whose highest degree was at the B.S. and M.S. degree, there
was a decline in starting salaries in the most recent year (2001) for which there
is data.

Figure 11 shows the trend in median salaries spanning across the popu-
lation of chemists in the survey regardless of years of experience, discipline,
and type of employers.20 Growth in salaries at the bachelor’s, master’s, and
doctorate levels has been fairly steady, except for a mild moderation of salary
increases in the mid-1990s. The salaries of BS-level chemists paused and actu-
ally declined slightly in 1996. Overall, salaries have been increasing faster than
the cost of living in the United States, so the relative economic status of
chemists is improving.
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The only ACS salary data that deals directly with computational chem-
ists is a category the ACS describes as chemists in industry with a work func-
tion of ‘‘computers’’; the typical Ph.D. in this category earned $84,000 in
2001.20 Of the various industrial functions, only chemists in analytical services
were paid less than computational chemists; Ph.D. analytical chemists received
$83,000 in 2001. For all Ph.D. industrial chemists performing basic research,
the median salary in 2001 was $89,500. Ph.D. chemists performing a manage-
ment function in industry were paid more, of course, $110,000 in 2001. Com-
paring these numbers, the pay for computational chemists appears to be
slightly lower than their colleagues in other disciplines. We can only speculate
whether this disparity in pay comes from the old hierarchical structure of com-
panies, whereby some disciplines are better represented in management than
are other disciplines, or whether the disparity is just a question of supply
and demand. The ACS survey did not generate a sufficient number of
responses from B.S.- and M.S.-level industrial chemists working with ‘‘compu-
ters’’ to compute a statistically meaningful number for them.

The ACS survey also showed that in 2001 the typical Ph.D. chemist
(across all disciplines) earned $90,200 in industry, $84,800 in govern-
ment, and $63,000 in academia. Full professors of chemistry earned a very

.
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respectable $115,000 (for 12 months) at Ph.D.-granting universities in 2001. It
would thus be incorrect to think that all academic salaries are lower than those
in industry. The elite professors are reaping the rewards of capitalism whereby
people are paid based on supply and demand, rather than on need.

Beyond the United States, salaries for computational chemists are gener-
ally lower. In countries with markets that are more controlled and less
entrepreneurial, workers pay for greater job security with lower income. In
the United States, individuals are compensated more because they take greater
risk and personal responsibility for their own needs.

CONCLUSIONS

The pioneering scientists of the 1960s and 1970s created the discipline of
computational chemistry and opened up new career paths for thousands of
younger scientists. Computational chemists play an important role in advan-
cing scientific discoveries in collaboration with experimentalists. Computa-
tional chemists have enjoyed seeing their techniques used to help solve
research problems in analytical, biological, environmental, geological, inor-
ganic, materials, medicinal, organic, physical, and polymer chemistry, as
well as in branches of biology, biophysics, and physics. Although there are
new vistas in many research directions, most of the jobs for computational
chemists have been and are still in the area of drug discovery. If society
continues to value innovative medicines, free enterprise and free people will
seek to discover new and better products, and scientists with computational
chemistry expertise will find a place on the research teams of these companies.

Finally, it should be emphasized that not everyone entering the compu-
tational chemistry job market will immediately and easily find a secure, high-
paying job. Every employer wants to assemble the strongest possible team of
scientists (and other employees). Common sense tells us that any employer,
whether in industry, academia, or government, will hire only the best
candidates from any given pool of job applicants.
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Grüber, C., 254
Grueneberg, S., 77
Gschwend, D. A., 76, 81
Gubbins, K. E., 137

Author Index 325



Gund, P., 318
Guenoche, A., 35
Guha, S., 36
Guida, W. C., 76, 86
Guillot, B., 144
Guissani, Y., 144
Gunasekera, A., 85
Gunopulos, D., 38
Guo, H., 145
Guy, R., 78

Ha, S., 85
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Wöhler, Friedrich, viii
World Drug Index (WDI), 65, 67, 86

X-ray crystallography, 308

Zeil, W., 274
Zeitschrift für Naturforschung, 266
Zeolites, 106
ZUSE computers, 260, 261, 262, 266, 271
Zwitterionic state, 126

350 Subject Index


