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Preface

Ed Koch, former mayor of New York City, was fond of saying ‘‘How am
I doing?’’ That’s a question we asked ourselves recently. We have published
over 100 chapters in this book series to date, and although we are confident
that the material has been used heavily by the computational chemistry com-
munity at large, we have not been able to address Koch’s question in a quan-
tifiable way (other than from sales records). We can now answer the question
of how we’re doing; we’re doing very well.

One indicator that can be used to assess the value of a book or journal is
the impact factor of the Institute for Scientific Information Inc. (ISI). In a Sci-
Bytes listing, journals were ranked by impact (http://in-cites.com/research/
2002/august 19 2002-2.html). Three rankings were presented; they are tabu-
lated below:

Rank 2001 1997–2001 1981–2001

1 Chemical Reviews Chemical Reviews Chemical Reviews
2 Accounts of Chemical

Research
Accounts of Chemical

Research
Accounts of Chemical

Research
3 Chemical Society

Reviews
Chemical Society

Reviews
Chemical Society

Reviews
4 Angewandte Chemie

International Edition
Journal of the American

Chemical Society
Journal of the American

Chemical Society
5 Journal of the American

Chemical Society
Angewandte Chemie

International Edition
in English

Journal of Comput-
ational Chemistry

6 Topics in Current
Chemistry

Topics in Current
Chemistry

Topics in Current
Chemistry

7 Chemistry—a European
Journal

Chemische Berichte-
Recueil

Chemistry International

8 Journal of Physical and
Chemical Reference
Data

Chemistry—a European
Journal

Journal of the Chemical
Society, Chemical
Communications

9 Journal of Combinator-
ial Chemistry

Reviews in Comput-
ational Chemistry

Marine Chemistry

10 Reviews in Comput-
ational Chemistry

Chemical Research in
Toxicology

Reviews of Chemical
Intermediates

v



In this table the citation impact of journals in a given field (in this case listed by
Sci-Bytes as ‘‘general’’) are compared over three different time spans. The left-
most column ranks journals according to their ‘‘impact factors,’’ as enumer-
ated in the current edition of the ISI Journal Citation Reports. The 2001
impact factor was calculated by taking the number of all current citations to
source items published in a journal over the previous 2 years and dividing it by
the number of articles published in the journal during the same period. This is
simply a ratio between citations and citable items published. The next two col-
umns show impact over longer timespans of 5 and 21 years. These results were
based on figures from the ISI Journal Performance Indicators. To generate the
citations-per-paper impact scores, the total number of citations to a journal’s
published papers were divided by the total number of papers published in that
particular journal.

Reviews in Computational Chemistry is ranked highly in the category of
‘‘general’’ journals, now making it among the top 10. We are pleased that the
quality of the chapters has been high and that the community values these
chapters enough to cite them as frequently as they have been.

Our goal over the years has been to provide tutorial-like reviews
covering all aspects of computational chemistry. In this, our nineteenth
volume, we present four chapters covering a range of topics that have as a
theme macroscopic modeling. In Chapter 1, Professors Robert Q. Topper
and David L. Freeman provide a short tutorial on Monte Carlo simulation
techniques with their students Denise Bergin and Keirnan R. LaMarche. The
emphasis of this tutorial is on calculating thermodynamic properties of sys-
tems at the atomic level. They begin their tutorial with the Metropolis method,
the generalized Metropolis algorithm, and the Barker–Watts algorithm for
molecular rotations. They provide insights along the way about random-num-
ber generation and practical matters concerning equilibration, error estima-
tion, and heat capacities. Then they introduce the problem we all encounter:
the inability to reach every possible state on the potential surface from every
possible initial state. This, in turn, leads to quasiergodicity. Quasiergodic sys-
tems are insidious in that they usually appear to be ergodic. The authors point
out this pitfall and in the next section of their tutorial describe methods avail-
able for overcoming quasiergodicity. Magnifying step sizes in a Metropolis
walk (mag-walking), using the Shew–Mills subspace sampling method or the
related ‘‘jump between wells’’ method of Still, can help overcome the ergodic
problem, as can implementing umbrella sampling strategies and histogram
methods. Another class of generally applicable Monte Carlo (MC) methods
used to address quasiergodicity allows Metropolis walkers at different tem-
peratures to exchange configurations with one another. J-walking, parallel
tempering, and the use of Tsallis statistics are introduced and described. The
authors end their tutorial by describing another class of methods used to
remove sampling difficulties that is based on multicanonical ensembles.
Throughout the chapter the strengths and weaknesses of methods used for
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Monte Carlo simulations are delineated and pitfalls to avoid them are
highlighted.

In Chapter 2, Professors David E. Smith and Tony Haymet provide
a tutorial on computing hydrophobicity. The authors promulgate the opinion
that one must seek to explain the set of verifiable experimental observations to
fully understand hydrophobicity. Accordingly, rather than covering everything
on this topic that has appeared in the literature, the authors treat only methods
for which full details have been published. They begin their tutorial by
explaining the basic simulation methods needed and point out, surprisingly,
that hydrophobicity is relatively insensitive to the water potential used. An
emphasis is placed on particle insertion methods, free-energy perturbation
(FEP), and thermodynamic integration (TI) strategies. The authors explain
that entropies of hydration and association are considered to be one of the pri-
mary signatures of hydrophobicity. Hydrophobic hydration is described in the
next section of their review. Details about hydration structure, hydration free
energy, entropy, and heat capacity are brought into sharp focus. The chapter
ends with a description of computational techniques used to compute hydro-
phobic interactions, specifically, solvent-induced interactions between non-
polar solutes in water. A clear, concise exposé describing what is right and
what is not right in the extant literature is presented in this chapter.

In Chapter 3, Lipeng Sun and Bill Hase review techniques for carrying
out classical trajectory simulations within the Born–Oppenheimer (BO)
approximation. They begin their chapter with a review of the basic theory
in which equations of motion for the atoms involved in a chemical reaction
are defined on a potential energy surface. Traditionally, this surface has
been defined analytically, but with the increasing speed and computational
power now available, it has become possible to use electronic structure theory
directly in carrying out classical trajectory simulations with the equations of
motion. Sun and Hase review the theoretical basis of the BO direct dynamics
approach. This is followed by a discussion of integration techniques for the
classical equations of motion and of algorithms for choosing initial conditions
for ensembles of trajectories. They continue with a critique of the adequacy
of classical mechanics in describing chemical processes that are, in reality,
quantum-mechanical in nature. The importance of possible quantum effects
is discussed. They conclude their chapter by giving several examples of appli-
cation of the BO direct dynamics method of actual problems: cyclopropane
stereomutation, Cl� þ CH3Cl barrier dynamics, OH� þ CH3F exit channel
dynamics, and, finally, protonated glycine surface-induced dissociation.

The final chapter thoroughly discusses the theoretical underpinnings of
the widely used Poisson–Boltzmann (PB) equation. During the 1990s there
was a dramatic increase in the use of the PB equation that can be attributed
to advances in computers, needs in biological chemistry, and a renewed inter-
est in colloidal systems. Many computational chemists use the PB equation
routinely in their research. But in spite of this usage, they are often completely
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unaware of the theoretical underpinnings associated with the method.
Dr. Gene Lamm presents us with a complete tutorial on the PB equation
that covers and even extends the basic theoretical background. This chapter
is not meant for the novice molecular modeler as are most chapters in this ser-
ies, but instead it is directed toward the seasoned professional. The tutorial is
divided into four parts, the first of which is a brief history of the PB equation
and its derivation. In the second part the PB equation is applied to several
model systems for which exact or approximate analytical solutions can be
found. The author brings together in this, the largest part of the chapter,
many examples for planar and curved systems scattered throughout the litera-
ture to demonstrate for the reader a coherence of purpose and application
within the field. In the third part of the tutorial, numerical methods commonly
used in applying the PB equation to systems more complicated than one-
dimensional representations are provided. Most readers of this book series
will be interested in this section of the chapter and are encouraged to skip
to this section once they read about the Gouy–Chapman model. Here a brief
description of finite-difference/finite element PB algorithms used in popular
programs such as UHBD, DelPhi, APBS, and MEAD are explained. The fourth
and final part of the chapter introduces topics of more advanced nature. This
chapter sets the groundwork for a forthcoming chapter we intend to publish in
a subsequent volume that will have as its focus the many uses and applications
of the PB equation.

We invite our readers to visit the Reviews in Computational Chemistry
Website at http://chem.iupui.edu/rcc/rcc/html. It includes the author and sub-
ject indexes, color graphics, errata, and other materials supplementing the
chapters. We are delighted to report that the Google search engine (http://
www.google.com/) ranks our Website among the top hits in a search on the
term ‘‘computational chemistry.’’ This search engine is becoming popular
because it ranks hits in terms of their relevance and frequency of visits. Google
also is very fast and appears to provide a quite complete and up-to-date picture
of what information is available on the World Wide Web.

We are also pleased to note that our publisher plans to make our most
recent volumes available in an online form through Wiley Interscience. Please
check the Web (http://www.interscience.wiley.com/onlinebooks) or contact
reference@wiley.com for the latest information. For readers who appreciate
the permanence and convenience of bound books, these will, of course, continue.

We thank the authors of this and previous volumes for their excellent
chapters.

Kenny B. Lipkowitz and Raima Larter
Indianapolis, Indiana
Thomas R. Cundari

Denton, Texas
January 2003
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Jan Almlöf and Odd Gropen,* Relativistic Effects in Chemistry.

Donald B. Chesnut, The Ab Initio Computation of Nuclear Magnetic
Resonance Chemical Shielding.

Volume 9 (1996)

James R. Damewood Jr., Peptide Mimetic Design with the Aid of Computa-
tional Chemistry.

T. P. Straatsma, Free Energy by Molecular Simulation.

Robert J. Woods, The Application of Molecular Modeling Techniques to the
Determination of Oligosaccharide Solution Conformations.

Ingrid Pettersson and Tommy Liljefors, Molecular Mechanics Calculated
Conformational Energies of Organic Molecules: A Comparison of Force
Fields.

Gustavo A. Arteca, Molecular Shape Descriptors.

Volume 10 (1997)

Richard Judson,y Genetic Algorithms and Their Use in Chemistry.

Eric C. Martin, David C. Spellmeyer, Roger E. Critchlow Jr., and Jeffrey M.
Blaney, Does Combinatorial Chemistry Obviate Computer-Aided Drug
Design?

Robert Q. Topper, Visualizing Molecular Phase Space: Nonstatistical Effects
in Reaction Dynamics.

Raima Larter and Kenneth Showalter, Computational Studies in Nonlinear
Dynamics.

Stephen J. Smith and Brian T. Sutcliffe, The Development of Computational
Chemistry in the United Kingdom.

*Address: Institute of Mathematical and Physical Sciences, University of Tromsø, N-9037
Tromsø, Norway (Electronic mail: oddg@chem.uit.no).
yCurrent address: Genaissance Pharmaceuticals, Five Science Park, New Haven, Connecti-
cut 06511 (Electronic mail: r.judson@genaissance.com).

xx Contributors to Previous Volumes



Volume 11 (1997)

Mark A. Murcko, Recent Advances in Ligand Design Methods.

David E. Clark,* Christopher W. Murray, and Jin Li, Current Issues in
De Novo Molecular Design.

Tudor I. Opreay and Chris L. Waller, Theoretical and Practical Aspects of
Three-Dimensional Quantitative Structure–Activity Relationships.

Giovanni Greco, Ettore Novellino, and Yvonne Connolly Martin, Approaches
to Three-Dimensional Quantitative Structure–Activity Relationships.

Pierre-Alain Carrupt, Bernard Testa, and Patrick Gaillard, Computational
Approaches to Lipophilicity: Methods and Applications.

Ganesan Ravishanker, Pascal Auffinger, David R. Langley, Bhyravabhotla
Jayaram, Matthew A. Young, and David L. Beveridge, Treatment of Counter-
ions in Computer Simulations of DNA.

Donald B. Boyd, Appendix: Compendium of Software and Internet Tools for
Computational Chemistry.

Volume 12 (1998)

Hagai Meirovitch,z Calculation of the Free Energy and the Entropy of
Macromolecular Systems by Computer Simulation.

Ramzi Kutteh and T. P. Straatsma, Molecular Dynamics with General
Holonomic Constraints and Application to Internal Coordinate Constraints.

John C. Shelley} and Daniel R. Bérard, Computer Simulation of Water
Physisorption at Metal–Water Interfaces.

*Current address: Computer-Aided Drug Design, Argenta Discovery Ltd., c/o Aventis
Pharma Ltd., Rainham Road South, Dagenham, Essex, RM10 7XS, United Kingdom
(Electronic mail: david.clark@argentadiscovery.com).
yCurrent address: Office of Biocomputing, University of New Mexico School of
Medicine, 915 Camino de Salud NE, Albuquerque, New Mexico 87131 (Electronic mail:
toprea@salud.unm.edu).
zCurrent address: Department of Molecular Genetics & Biochemistry, School of Medicine,
University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (Electronic mail: hagaim@pitt.
edu).
}Current address: Schrödinger, Inc., 1500 S.W. First Avenue, Suite 1180, Portland, Oregon
97201 (Electronic mail: jshelley@schrodinger.com).

Contributors to Previous Volumes xxi



Donald W. Brenner, Olga A. Shenderova, and Denis A. Areshkin, Quantum-
Based Analytic Interatomic Forces and Materials Simulation.

Henry A. Kurtz and Douglas S. Dudis, Quantum Mechanical Methods for
Predicting Nonlinear Optical Properties.

Chung F. Wong,* Tom Thacher, and Herschel Rabitz, Sensitivity Analysis in
Biomolecular Simulation.

Paul Verwer and Frank J. J. Leusen, Computer Simulation to Predict Possible
Crystal Polymorphs.

Jean-Louis Rivail and Bernard Maigret, Computational Chemistry in France:
A Historical Survey.

Volume 13 (1999)

Thomas Bally and Weston Thatcher Borden, Calculations on Open-Shell
Molecules: A Beginner’s Guide.

Neil R. Kestner and Jaime E. Combariza, Basis Set Superposition Errors:
Theory and Practice.

James B. Anderson, Quantum Monte Carlo: Atoms, Molecules, Clusters,
Liquids, and Solids.

Anders Wallqvisty and Raymond D. Mountain, Molecular Models of Water:
Derivation and Description.

James M. Briggs and Jan Antosiewicz, Simulation of pH-Dependent Proper-
ties of Proteins Using Mesoscopic Models.

Harold E. Helson, Structure Diagram Generation.

Volume 14 (2000)

Michelle Miller Francl and Lisa Emily Chirlian, The Pluses and Minuses of
Mapping Atomic Charges to Electrostatic Potentials.

*Current addrress: Howard Hughes Medical Institute, School of Medicine, University of
California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0365 (Electronic
mail: c4wong@ucsd.edu).
yCurrent address: National Cancer Institute, P.O. Box B, Frederick, Maryland 21702
(Electronic mail: wallqvist@ncifcrt.gov).

xxii Contributors to Previous Volumes



T. Daniel Crawford* and Henry F. Schaefer III, An Introduction to Coupled
Cluster Theory for Computational Chemists.

Bastiaan van de Graaf, Swie Lan Njo, and Konstantin S. Smirnov, Introduc-
tion to Zeolite Modeling.

Sarah L. Price, Toward More Accurate Model Intermolecular Potentials for
Organic Molecules.

Christopher J. Mundy,y Sundaram Balasubramanian, Ken Bagchi, Mark
E. Tuckerman, Glenn J. Martyna, and Michael L. Klein, Nonequilibrium
Molecular Dynamics.

Donald B. Boyd and Kenny B. Lipkowitz, History of the Gordon Research
Conferences on Computational Chemistry.

Mehran Jalaie and Kenny B. Lipkowitz, Appendix: Published Force Field
Parameters for Molecular Mechanics, Molecular Dynamics, and Monte Carlo
Simulations.

Volume 15 (2000)

F. Matthias Bickelhaupt and Evert Jan Baerends, Kohn–Sham Density Func-
tional Theory: Predicting and Understanding Chemistry.

Michael A. Robb, Marco Garavelli, Massimo Olivucci, and Fernando
Bernardi, A Computational Strategy for Organic Photochemistry.

Larry A. Curtiss, Paul C. Redfern, and David J. Frurip, Theoretical Methods
for Computing Enthalpies of Formation of Gaseous Compounds.

Russell J. Boyd, The Development of Computational Chemistry in Canada.

Volume 16 (2000)

Richard A. Lewis, Stephen D. Pickett, and David E. Clark, Computer-Aided
Molecular Diversity Analysis and Combinatorial Library Design.

Keith L. Peterson, Artificial Neural Networks and Their Use in Chemistry.

*Current address: Department of Chemistry, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia 24061-0212 (Electronic mail: crawdad@vt.edu).
yCurrent address: Computational Materials Science, L-371, Lawrence Livermore National
Laboratory, Livermore, California 94550 (Electronic mail: mundy2@llnl.gov).

Contributors to Previous Volumes xxiii
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CHAPTER 1

Computational Techniques and
Strategies for Monte Carlo
Thermodynamic Calculations, with
Applications to Nanoclusters

Robert Q. Topper,* David L. Freeman,{ Denise Bergin,*

and Keirnan R. LaMarche*

*Department of Chemistry, The Cooper Union for the
Advancement of Science and Art, 51 Astor Place, New York,
New York 10003,** and {Department of Chemistry, University
of Rhode Island, Kingston, Rhode Island 02881
**Present address: Department of Chemistry, Medical Technology,
andPhysics,MonmouthUniversity,WestLongBranch, NewJersey

INTRODUCTION

This chapter is written for the reader who would like to learn how
Monte Carlo methods1 are used to calculate thermodynamic properties of sys-
tems at the atomic level, or to determine which advanced Monte Carlo meth-
ods might work best in their particular application. There are a number of
excellent books and review articles on Monte Carlo methods, which are gen-
erally focused on condensed phases, biomolecules or electronic structure the-
ory.2–13 The purpose of this chapter is to explain and illustrate some of the
special techniques that we and our colleagues have found to be particularly
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well suited for simulations of nanodimensional atomic and molecular clusters.
We want to help scientists and engineers who are doing their first work in this
area to get off on the right foot, and also provide a pedagogical chapter for
those who are doing experimental work. By including examples of simulations
of some simple, yet representative systems, we provide the reader with some
data for direct comparison when writing their own code from scratch.

Although a number of Monte Carlo methods in current use will be
reviewed, this chapter is not meant to be comprehensive in scope. Monte Carlo
is a remarkably flexible class of numerical methods. So many versions of the
basic algorithms have arisen that we believe a comprehensive review would be
of limited pedagogical value. Instead, we intend to provide our readers with
enough information and background to allow them to navigate successfully
through the many different Monte Carlo techniques in the literature. This
should help our readers use existing Monte Carlo codes knowledgably, adapt
existing codes to their own purposes, or even write their own programs. We
also provide a few general recommendations and guidelines for those who are
just getting started with Monte Carlo methods in teaching or in research.

This chapter has been written with the goal of describing methods that
are generally useful. However, many of our discussions focus on applications
to atomic and molecular clusters (nanodimensional aggregates of a finite num-
ber of atoms and/or molecules).14 We do this for two reasons:

1. A great deal of our own research has focused on such systems,15 par-
ticularly the phase transitions and other structural transformations induced by
changes in a cluster’s temperature and size, keeping an eye on how various
properties approach their bulk limits. The precise determination of thermody-
namic properties (such as the heat capacity) of a cluster type as a function of
temperature and size presents challenges that must be addressed when using
Monte Carlo methods to study virtually any system. For example, analogous
structural transitions can also occur in phenomena as disparate as the dena-
turation of proteins.16,17 The modeling of these transitions presents similar
computational challenges to those encountered in cluster studies.

2. Although cluster systems can present some unique challenges, their
study is unencumbered by many of the technical issues regarding periodic
boundary conditions that arise when solids, liquids, surface adsorbates, and
solvated biomolecules and polymers are studied. These issues are addressed
well elsewhere,7,11,12 and can be thoroughly appreciated and mastered once
a general background in Monte Carlo methods is obtained from this chapter.

It should be noted that ‘‘Monte Carlo’’ is a term used in many fields of
science, engineering, statistics, and mathematics to mean entirely different
things. The one (and only) thing that all Monte Carlo methods have in com-
mon is that they all use random numbers to help calculate something. What we
mean by ‘‘Monte Carlo’’ in this chapter is the use of random-walk processes
to draw samples from a desired probability function, thereby allowing one to
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calculate integrals of the form
Ð

dqf ðqÞ rðqÞ. The quantity rðqÞ is a normalized
probability density function that spans the space of a many-dimensional
variable q, and f(q) is a function whose average is of thermodynamic impor-
tance and interest. This integral, as well as all other integrals in this chapter,
should be understood to be a definite integral that spans the entire domain of
q. Finally, we note that the inclusion of quantum effects through path-integral
Monte Carlo methods is not discussed in this chapter. The reader interested in
including quantum effects in Monte Carlo thermodynamic calculations is
referred elsewhere.15,18–22

METROPOLIS MONTE CARLO

Monte Carlo simulations are widely used in the fields of chemistry, biol-
ogy, physics, and engineering in order to determine the structural and thermo-
dynamic properties of complex systems at the atomic level. Thermodynamic
averages of molecular properties can be determined from Monte Carlo meth-
ods, as can minimum-energy structures. Let hf i represent the average value
of some coordinate-dependent property f(x), with x representing the 3N
Cartesian coordinates needed to locate all of the N atoms. In the canonical
ensemble (fixed N, V and T, with V the volume and T the absolute tempera-
ture), averages of molecular properties are given by an average of f ðxÞ over the
Boltzmann distribution

hf i ¼
Ð

dx f ðxÞ exp �bUðxÞ½ �Ð
dx exp �bUðxÞ½ � ½1�

where U(x) is the potential energy of the system, b ¼ 1=kBT, and kB is the
Boltzmann constant.23 If one can compute the thermodynamic average of
f ðxÞ it is then possible to calculate various thermodynamic properties. In
the canonical ensemble it is most common to calculate E, the internal energy,
and CV, the constant-volume heat capacity (although other properties can be
calculated as well). For example, if we average U(x) over all possible config-
urations according to Eq. [1], then E and CV are given by

E ¼ 3NkBT

2
þ Uh i ½2�

CV ¼ 3NkB

2
þ

U2
� �

� Uh i2

kBT2ð Þ ½3�

The first term in each equation represents the contribution of kinetic energy,
which is analytically integrable. In the harmonic (low-temperature) limit, E
given by Eq. [2] will be a linear function of temperature and CV from Eq. [3]
will be constant, in accordance with the Equipartition Theorem.10 For a small
cluster of, say, 6 atoms, the integrals implicit in the calculation of Eqs. [1]
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and [2] are already of such high dimension that they cannot be effectively com-
puted using Simpson’s rule or other basic quadrature methods.2,24,25,26 For
larger clusters, liquids, polymers or biological molecules the dimensionality
is obviously much higher, and one typically resorts to either Monte Carlo,
molecular dynamics, or other related algorithms.

To calculate the desired thermodynamic averages, it is necessary to have
some method available for computation of the potential energy, either expli-
citly (in the form of a function representing the interaction potential as in
molecular mechanics) or implicitly (in the form of direct quantum-mechanical
calculations). Throughout this chapter we shall assume that U is known or can
be computed as needed, although this computation is typically the most com-
putationally expensive part of the procedure (because U may need to be com-
puted many, many times). For this reason, all possible measures should be
taken to assure the maximum efficiency of the method used in the computation
of U.

Also, it should be noted that constraining potentials (which keep the
cluster components from straying too far from a cluster’s center of mass)
are sometimes used.27 At finite temperature, clusters have finite vapor pres-
sures, and particular cluster sizes are typically unstable to evaporation. Intro-
ducing a constraining potential enables one to define clusters of desired sizes.
Because the constraining potential is artificial, the dependence of calculated
thermodynamic properties on the form and the radius of the constraining
potential must be investigated on a case-by-case basis. Rather than diverting
the discussion from our main focus (Monte Carlo methods), we refer the
interested reader elsewhere for more details and references on the use of con-
straining potentials.15,19

Random-Number Generation: A Few Notes

Because generalized Metropolis Monte Carlo methods are based on
‘‘random’’ sampling from probability distribution functions, it is necessary
to use a high-quality random-number generator algorithm to obtain reliable
results. A review of such methods is beyond the scope of this chapter,24,28

but a few general considerations merit discussion.
Random-number generators do not actually produce random numbers.

Rather, they use an integer ‘‘seed’’ to initialize a particular ‘‘pseudorandom’’
sequence of real numbers that, taken as a group, have properties that leave
them nearly indistinguishable from truly random numbers. These are conventi-
onally floating-point numbers, distributed uniformly on the interval (0,1). If
there is a correlation between seeds, a correlation may be introduced between
the pseudorandom numbers produced by a particular generator. Thus, the
generator should ideally be initialized only once (at the beginning of the ran-
dom walk), and not re-initialized during the course of the walk. The seed
should be supplied either by the user or generated arbitrarily by the program
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using, say, the number of seconds since midnight (or some other arcane for-
mula). One should be cautious about using the ‘‘built-in’’ random-number
generator functions that come with a compiler for Monte Carlo integration
work because some of them are known to be of very poor quality.26 The
reader should always be sure to consult the appropriate literature and obtain
(and test) a high-quality random-number generator before attempting to write
and debug a Monte Carlo program.

The Generalized Metropolis Monte Carlo Algorithm

The Metropolis Monte Carlo (MMC) algorithm is the single most widely
used method for computing thermodynamic averages. It was originally devel-
oped by Metropolis et al. and used by them to simulate the freezing transition
for a two-dimensional hard-sphere fluid.1 However, Monte Carlo methods can
be used to estimate the values of multidimensional integrals in whatever con-
text they may arise.29,30 Although Metropolis et al. did not present their algo-
rithm as a general-utility method for numerical integration, it soon became
apparent that it could be generalized and applied to a variety of situations.
The core of the MMC algorithm is the way in which it draws samples from
a desired probability distribution function. The basic strategies used in
MMC can be generalized so as to apply to many kinds of probability functions
and in combination with many kinds of sampling strategies. Some authors
refer to the generalized MMC algorithm simply as ‘‘Metropolis sampling,’’31

while others have referred to it as the M(RT)2 method6 in honor of the five
authors of the original paper (Metropolis, the Rosenbluths, and the Tellers).1

We choose to call this the generalized Metropolis Monte Carlo (gMMC) meth-
od, and we will always use the term MMC to refer strictly to the combination
of methods originally presented by Metropolis et al.1

In the literature of numerical analysis, gMMC is classified as an impor-
tance sampling technique.6,24 Importance sampling methods generate config-
urations that are distributed according to a desired probability function rather
than simply picking them at random from a uniform distribution. The prob-
ability function is chosen so as to obtain improved convergence of the proper-
ties of interest. gMMC is a special type of importance sampling method which
asymptotically (i.e., in the limit that the number of configurations becomes
large) generates states of a system according to the desired probability distri-
bution.6,9 This probability function is usually (but not always6) the actual
probability distribution function for the physical system of interest. Nearly
all statistical-mechanical applications of Monte Carlo techniques require the
use of importance sampling, whether gMMC or another method is used (alter-
natively, ‘‘stratified sampling’’ is sometimes an effective approach22,32).
gMMC is certainly the most widely used importance sampling method.

In the gMMC algorithm successive configurations of the system are
generated to build up a special kind of random walk called a Markov
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chain.29,33,34 The random walk visits successive configurations, where each
configuration’s location depends on the configuration immediately preceding
it in the chain. The gMMC algorithm establishes how this can be done so as
to asymptotically generate a distribution of configurations corresponding to
the probability density function of interest, which we denote as rðqÞ.

We define Kðqi ! qjÞ to be the conditional probability that a configura-
tion at qi will be brought to qj in the next step of the random walk. This con-
ditional probability is sometimes called the ‘‘transition rate.’’ The probability
of moving from q to q0 (where q and q0 are arbitrarily chosen configurations
somewhere in the available domain) is therefore given by Pðq ! q0Þ:

Pðq ! q0Þ ¼ Kðq ! q0Þ rðqÞ ½4�

For the system to evolve toward a unique limiting distribution, we must place
a constraint on Pðq ! q0Þ. The gMMC algorithm achieves the desired limiting
behavior by requiring that, on the average, a point is just as likely to move
from q to q0 as it is to move in the reverse direction, namely, that
Pðq ! q0Þ ¼ Pðq0 ! qÞ. This likelihood can be achieved only if the walk is
ergodic (an ergodic walk eventually visits all configurations when started
from any given configuration) and if it is aperiodic (a situation in which no
single number of steps will generate a return to the initial configuration).
This latter requirement is known as the ‘‘detailed balance’’ or the ‘‘micro-
scopic reversibility’’ condition:

Kðq ! q0Þ rðqÞ ¼ Kðq0 ! qÞ rðq0Þ ½5�

Satisfying the detailed balance condition ensures that the configurations
generated by the gMMC algorithm will asymptotically be distributed accord-
ing to rðqÞ.

The transition rate may be written as a product of a trial probability �
and an acceptance probability A

Kðqi ! qjÞ ¼ �ðqi ! qjÞAðqi ! qjÞ ½6�

where � can be taken to be any normalized distribution that asymptotically
spans the space of all possible configurations, and A is constructed so that
Eq. [5] is satisfied for a particular choice of �. The wonderful flexibility
with which � can be chosen is one of the reasons so many Monte Carlo meth-
ods are found in the literature. For example, Metropolis et al. used a uniform
distribution of points about xi to define the trial probability (we describe this
in greater detail in the next section),1 but a Gaussian distribution of points can
also be used profitably in certain situations.20 Many other distributions are
possible and even desirable in different contexts.
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From the detailed balance condition, it is straightforward to show that
the ratio of acceptance probabilities, given by r, is

r ¼
Aðqi ! qjÞ
Aðqj ! qiÞ

¼
�ðqj ! qiÞ rðqjÞ
�ðqi ! qjÞ rðqiÞ

½7�

where r � 0. From this, it can be seen that a rejection method can be used to
effectively define the acceptance probability, A:

Aðqi ! qjÞ ¼ minð1; rÞ ½8�

Equation [8] is the heart of the gMMC algorithm.
In their original paper, Metropolis et al. considered systems represented

within the canonical ensemble, for which the density is given by

rðqjÞ ¼
exp �bUðqjÞ

h i
JðqÞ

ZðN;V;TÞ ½9�

where Z(N;V;T) is the configuration integral, given by

ZðN;V;TÞ ¼
ð

dq exp �bUðqÞ½ � JðqÞ ½10�

and J(q) is the determinant of the Jacobian matrix defining a canonical trans-
formation from Cartesian coordinates x to arbitrary coordinates q (J(q) ¼ 1 if
Cartesian coordinates are used in the walk).35 J(q) must generally be included
because all of the statistical-mechanical integrations are performed in
Cartesian coordinates x, in which the kinetic energy matrix is diagonal, and
not in the arbitrary coordinates q.36 The ratio then becomes

r ¼
� ðqj ! qiÞ
� ðqi ! qjÞ

expf�b�Ug
JðqjÞ
JðqiÞ

½11�

where �U ¼ UðqjÞ � UðqiÞ. If Cartesian coordinates x are used in the walk,
then J ¼ 1 and we need not evaluate the Jacobian at each step to determine
the acceptance probability. Metropolis et al. further chose the trial probability
to be uniform so that the ratio of the trial probabilities � cancel in the numera-
tor and denominator of Eq. (11). Then the acceptance probability is simply
given by

Aðxi ! xjÞ ¼ min 1; exp �b�Uf gf g ½12�

The implementation of this method is described in detail in the following
section.
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Metropolis Monte Carlo: The ‘‘Classic’’ Algorithm

Having established the preceding important framework, we now turn to
the particulars of the original Metropolis Monte Carlo algorithm for sampling
configurations from the canonical ensemble. As alluded to in the previous sec-
tion, it is often most convenient to work in Cartesian coordinates for MMC
calculations (with some exceptions discussed later). In this case, Eqs. [6]–[12]
reduce to the algorithm described by the flowchart in Figure 1. First, an initial
configuration of the system is established. The initial configuration can be gen-
erated randomly, although it is sometimes advantageous to start from an
energy-minimized structure,37 a crystalline lattice structure, or a structure
obtained from experiment.

Next, a ‘‘trial move’’ is made to generate a new trial configuration,
according to a rule that we call a ‘‘move strategy.’’ The simple move strategy
introduced by Metropolis et al.1 is still the most widely used method. One

Figure 1 Flowchart of the ‘‘classic’’ Metropolis Monte Carlo algorithm for sampling
in the canonical ensemble.1 Note that samples of the property function f ðxÞ are always
accumulated for averaging purposes, irrespective of whether a move is accepted or
rejected.
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preselects a maximum stepsize L and randomly moves each particle within
a cube of length L centered on the atom’s original position (see Figure 2).
This procedure defines the Metropolis transition probability, �M. For a one-
dimensional system moving along a single coordinate x:

�M ¼ 1

L
;

�L

2
< x <

L

2
¼ 0 elsewhere ½13�

The parameter L may have an optimum value for the particular type of atom
of interest, as well as for the temperature and other variables studied. If L is
too small, most moves will be accepted and a very large number of attempts
will be required to move very far from the initial configuration. However, if L
is too big very few trial moves will be accepted and again, the walker will
require many steps to move away from the starting point. For this reason
one generally chooses L so that between 30% and 70% of the moves are
accepted (50% is a happy medium).6,7 Each atom can be moved in sequence,

Figure 2 Single-particle Metropolis moves from the original MMC algorithm1 and
molecular rotation Barker–Watts moves41 for generation of a trial Monte Carlo move.
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or an atom can be chosen randomly for each trial move, at the discretion of
the programmer.

As noted previously, the Metropolis move strategy of ‘‘single-particle
moves’’ is still the most widely used in the literature. The use of single-particle
moves is often considered as being part and parcel of the Metropolis
Monte Carlo method. However, a number of other move strategies in the
canonical ensemble are possible, some of which are outlined later in this chap-
ter. Metropolis Monte Carlo simulations in other ensembles require the use of
other move strategies. For example, in the isothermal–isobaric ensemble (con-
stant N,P,T), the volume and the configurations are perturbed.7,13,38,39 In the
grand canonical ensemble (constant chemical potential, V, and T) the number
of particles N fluctuates, so a move may include randomly deleting or adding a
particle.11,13,39 The use of the Gibbs ensemble for phase equilibrium studies
involves perturbations of volumes and configurations within each phase,
as well as the transfer of particles between phases.10,13,39,40 In all of these
situations, suitable move strategies must be employed to ensure that detailed
balance is satisfied for all variables involved.

Regardless how it is generated, the trial configuration does not automa-
tically become the second step in the Markov chain. Within the canonical
ensemble if the potential energy of the trial configuration is less than or
equal to the potential energy of the previous configuration, that is, if
�U � Uðx0Þ � UðxÞ � 0, the trial configuration is then ‘‘accepted.’’ However,
if �U > 0 the trial move may still be conditionally accepted. A random num-
ber � between 0 and 1 is chosen and compared to expð�b�UÞ. If � is less than
or equal to expð�b�UÞ the trial move is accepted; otherwise, the trial config-
uration fails the ‘‘Boltzmann test,’’ the move is ‘‘rejected,’’ and the original
configuration becomes the second step in the Markov chain (see Figure 1).
The procedure is then repeated many times until equilibration is achieved
(equilibration is defined in a later section). After equilibration, the procedure
continues as before, but now the values of U and U2 (and any other properties
of interest, represented by f in Figure 1) are accumulated for each of the
remaining n steps in the chain. Let n represent the number of samples used
in computing the averages of U and U2. The number of samples is chosen
to be sufficiently large for convergence of hUin and hU2in, the n-point averages
of U and U2, to their true values hUi and hU2i. In the case of U,

hUi ¼ lim
n!1

hUin ½14�

where

hUin � 1

n

Xn

j¼1

UðxjÞ ½15�
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Similar formulas hold for hU2i and hU2in. It is important to emphasize that
configurations are not excluded for averaging purposes simply because they
have been most recently accepted or rejected. Both accepted and rejected
configurations must be included in the average, or the potential energies will
not be Boltzmann-distributed.

The Barker–Watts Algorithm for Molecular Rotations

The simplest way to generate trial configurations is to use single-particle
moves, that is, to change the Cartesian coordinates of individual atoms
according to the original MMC procedure presented by Metropolis et al. des-
cribed in the preceding section.1 For atomic clusters and liquids, this may be
sufficient. However, single-particle moves alone are inefficient for molecular
cluster systems, specifically clusters consisting of some finite number of mole-
cules. For such systems it can be useful to also carry out Metropolis moves of
each molecule’s center of mass and to rotate each molecule within a cluster so
as to efficiently generate all possible relative orientations. The Barker–Watts
algorithm presented below is an example of such a ‘‘generalized Metropolis
Monte Carlo’’ method. It is not limited to cluster systems, but is appropriate
for any system for which rotational moves can be useful. Barker and Watts
originally developed it for use in simulations of liquid water.41

In the Barker–Watts algorithm, a particular molecule is chosen either
at random or systematically. One of the three Cartesian axes is selected at
random and the molecule is rigidly rotated about the axis by a randomly
chosen angle �y where [��yMAX ��y��yMAX], as shown in Figure 2.
The Cartesian coordinates of each atom within the molecule after the trial
move ðx0; y0; z0Þ are calculated from �y and the coordinates of that atom in
the current configuration ðx; y; zÞ. For a rotation about the x axis, for example,
the new coordinates would be given by

x0

y0

z0

0
@

1
A ¼

1 0 0
0 cos�y sin�y
0 � sin�y cos�y

0
@

1
A x

y
z

0
@

1
A ½16�

with a similar expression for rotation about the y axis or the z axis. The new
configuration’s potential energy is calculated, and the move is accepted or
rejected according to the Boltzmann probability. The transition probability
is uniform in the chosen coordinate system for each trial move, in the same
spirit as the original MMC algorithm.

Equilibration: Why Wait?

As a practical matter, one cannot immediately start accumulating U and
U2 for the computation of averages. The MMC algorithm does not instantly
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sample configurations according to the Boltzmann distribution; the sampling is
only guaranteed to be correct in the asymptotic limit of large n. It is therefore
always necessary to allow the Markov walk to go through a large number of
steps before beginning to accumulate samples to estimate U and U2. This pro-
cedure is known as the ‘‘equilibration’’ of the walker.6,7,10 The walker should
undergo a sufficiently large number of iterations for there to be no ‘‘memory’’
of the system’s initial configuration. The index value j ¼ 1 in Eq. [15] refers to
the first configuration after the system has equilibrated by cycling through neq

steps; only states sampled after equilibration should be included in the aver-
age. neq is often referred to as the ‘‘equilibration period.’’

One way to estimate neq is to calculate the running averages of U and U2

to make running estimates of E and CV ; these quantities are then plotted
against m, the subtotal of all steps taken (m < n) at a few representative tem-
peratures to determine when asymptotic, slowly varying behavior is attained.7

Since E is given by Eq. [3], the running average of U may be plotted instead of
E if desired. The running average of U is given by hUim

hUim � 1

m

Xm

j¼1

UðxjÞ ½17�

with a similar formula for hU2im. These averages can then be used to form the
running estimate of CV . Alternatively, some authors have advocated the use of
crystalline order parameters for this purpose in fluid simulations (but this is
not generally practical for cluster simulations).12 An example of a running-
average equilibration study is shown in Figure 3 for a one-dimensional
Lennard-Jones oscillator. The Lennard-Jones potential is given by

UðrÞ ¼ 4e
s
r

� 12
� s

r

� 6
� �

½18�

where r is the interparticle distance (varied uniformly during the walk accord-
ing to Eq. [13]) and e and s are constants chosen appropriately to represent a
particular system of interest (here we have chosen e/kB ¼ 124 K and s¼
0.3418 nm, which would be appropriate for liquid argon7). Very low tempera-
tures were considered and all calculations were initiated near the potential
energy minimum, so it was not necessary to reject moves resulting in large
interatomic separations. An imposed cutoff radius would be needed if higher
temperatures were studied.15,19

In these plots the thermodynamic quantities go through some initial tran-
sient behavior, and then eventually settle down into small-amplitude oscilla-
tions. At this very low temperature both U and CV settle down rapidly and
they do so on similar ‘‘timescales.’’ Typically, the running averages of U
and CV will not converge simultaneously. In fact CV will usually be the slower
of the two to converge, since its fluctuations arise from fluctuations of the
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potential energy (see Eq. [3]). By looking at these plots at representative
temperatures, one chooses a conservative (but affordable) value of neq, for
instance, 15,000 in the present example.

Note that if a different choice of initial conditions is used (e.g., starting
from a lattice configuration rather than from a random one), neq might need to
be adjusted (up or down). It is advisable to do a new equilibration study each
time one substantially alters the way things are done, or when the system’s
properties become significantly different (e.g., when one moves substantially
above or below a melting transition).

Error Estimation

It is expected that in the limit of large n, hUin will approach hUi, that
hU2in will approach hU2i, and that both E and CV will converge to their cor-
rect values. But what are the uncertainties in the calculated values of E and
CV? Because the Metropolis method is intrinsically based on the sampling of
configurations from a probability distribution function, appropriate statistical
error analysis methods can be applied. This fact alone is an improvement on
most other numerical integration techniques, which typically lack such strict
error bounds.

Figure 3 Cumulative values of hUi=kB (dashed line) and CV=kB (solid line) for a Monte
Carlo simulation of the one-dimensional Lennard-Jones oscillator (see text) at T ¼ 1 K.
Note that although CV typically takes longer to equilibrate than does hUi, there is
no significant difference between the two for this simple system at this very low
temperature.
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A significant correlation exists between successive configurations in the
Markov walk.42 In fact, some successive configurations are identical to one
another (this happens when the walker rejects an uphill energy move). Because
the configurations are correlated, the potential energies (and squared potential
energies) that result from the sequence are likewise correlated. In practice, this
makes the error analysis somewhat more complicated than it would otherwise
be if the configurations were completely uncorrelated. Unfortunately, it is
rarely possible to efficiently generate configurations in an uncorrelated man-
ner; to do that, we would be restricted to potential energy functions for which
the Boltzmann probability function is analytically integrable, with an integral
that is analytically invertible.5 Very few distribution functions have this prop-
erty even in one dimension, although the Gaussian distribution function is one
such exception.43

Fortunately, because there is so much randomness in the MMC algo-
rithm, a configuration (A) spaced by neq iterations from another configuration
(B) will have virtually no correlation with B. Even after equilibration there is a
definite correlation length, which we can define qualitatively as the number of
iterations required for the algorithm to ‘‘forget’’ where it was originally. We
can take advantage of this to determine the errors of our estimates of E and
CV. It is worth noting that most of the following discussion can also be applied
to ‘‘molecular dynamics’’ calculations, as well as virtually all algorithms
used in molecular simulation work to calculate thermodynamic averages.

If the n samples were statistically independent of one another (which
they are not), we could simply estimate sU, the error in hUin, by using meth-
ods we all learned in our undergraduate laboratory courses.44 Here we find
that sU is not given by the standard error formula

sU 6¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hU2in � hUi2

n

n � 1

s
½19�

and so one must work a little harder to assess the error. The following ap-
proach is effective for estimating the error. If Eq. [19] were an equality, sU

would give the error at the 67% confidence level; multiplying sU by 2 would
give a 95% confidence interval (there would be a 95% probability that hUi lies
between hUin � 2sU and hUin þ 2sU ). If the samples were uncorrelated, these
error bars would be guaranteed to be accurate descriptors of the confidence
interval in the limit of large n. A similar formula would hold for hU2i.

However, in the case of a Markov process the variance is only the first
(and largest) term in a series of terms, which must be added together. For a
general property f, sf is given by

sf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h f 2i � h f i2

n � 1

s
þ covariance terms due to the

correlations between f values

� �
½20�
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where n is the number of steps after equilibration. These covariance terms
typically converge slowly; details for treating these kinds of problems can be
found elsewhere.45–48 Another commonly used method is ‘‘blocking.’’7,12,49

For definiteness, let n ¼ 1,000,000 samples. We divide these samples into
NB ¼ 100 blocks of s ¼ 10,000 samples each, with the first 10,000 samples
in block 1, the second 10,000 samples in block 2, and so forth. Within the
lth block we form estimates of hUi [hUiflg

s ], and hU2i [hU2iflg
s ]. A list of 100

‘‘block averages’’ for each property is thus established. The 100 block averages
of each property are statistically independent of one another if s is sub-
stantially greater than the correlation length. This in turn means they can be
analyzed as if they were 100 statistically independent objects. Considering the
uncertainty in hUin, we therefore have

sU ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var hUiflg

s

h i
NB � 1

vuut
½21�

where

Var hUiflg
s

h i
¼ 1

NB

XNB

l¼1

hUiflg
s � hUin

h i2
½22�

with similar formulas defining sU2 . Note that sU decreases asymptotically as
the inverse square root of the number of samples (even though only the num-
ber of blocks is explicit), and that 2sU defines the 95% confidence interval for
hUin. For published work we generally recommend that the 95% confidence
level be reported. Since the thermodynamic energy E is given by Eq. [2] (which
is linear in hUi ), Eqs. [21] and [22] also happen to give directly the error in E.

It should be noted that in practice the parameters s and NB must gener-
ally be determined empirically by trial and error, until convergence of the error
estimate is achieved at a single temperature. This is usually straightforward in
practice, and the prior determination of the equilibration period makes this
task considerably easier to achieve because the correlation length is likely to
be less than or equal to the equilibration period.

Similar equations and considerations hold for the average of the squared
potential energy, but the propagation of the error through Eq. [3] is some-
what more involved. It is simplest to compute NB values of ðCVÞf‘gs , the heat
capacity within each block, using Eq. [3], and then using Eq. [23] to obtain the
standard error in CV from the variance of the block heat capacities:

sCV
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðCVÞf‘gs

h i
NB � 1

vuut
½23�
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In Table 1 we show how the error in the average potential energy and the error
in CV (at the 95% confidence level) depend upon the number of blocks in a
sample of fixed size (500,000 samples after 20,000 equilibration cycles) for
the one-dimensional Lennard-Jones oscillator at 1 K. As noted previously,

Table 1 Convergence of Approximate 95% Confidence Level Error Estimates of a
Metropolis Monte Carlo Estimate of hUi and CV with Respect to the Number of Blocks
Used for the One-Dimensional Lennard-Jones Oscillator at T ¼ 1 Ka,b

NB hUi/kB (K) 2sU/abs(hUi) CV/kB 2sCV
=CV

2 �123.4958 3:3636 � 10�5 1. 0044 0.0072
4 — 4:2259 � 10�5 — 0.0109
5 — 1:8810 � 10�5 — 0.0055
8 — 3:5502 � 10�5 — 0.0118

10 — 3:3166 � 10�5 — 0.0102
16 — 2:9819 � 10�5 — 0.0106
20 — 2:8031 � 10�5 — 0.0088
25 — 2:6449 � 10�5 — 0.0093
32 — 2:6552 � 10�5 — 0.0093
40 — 2:3754 � 10�5 — 0.0076
50 — 2:2375 � 10�5 — 0.0083
80 — 2:5355 � 10�5 — 0.0087

aSee Eq. [18] and accompanying text.
bAll calculations given are for a single Metropolis Monte Carlo calculation in which 20,000

equilibration cycles were followed by 500,000 data collection cycles. The stepsize was 0.01 nm,
which produced an acceptance ratio of approximately 50%.

Table 2 Average Potential Energy, Heat Capacity, and Fractional 95% Confidence
Level Statistical Errors for the One-Dimensional Lennard-Jones Oscillatora,b

TðKÞ hUi=kBðKÞ 2sU/abs(hUi) CV /kB 2sCV
=CV

0.1 �123:9499 5 � 10�6 0.999 0.01
0.5 �123:7495 2 � 10�5 1.002 0.01
1.0 �123:4938 4 � 10�5 1.008 0.01
1.5 �123:2367 5 � 10�5 1.020 0.01
2.0 �122:9741 9 � 10�5 1.022 0.02
2.5 �122:7207 8 � 10�5 1.027 0.01
3.0 �122:4455 2 � 10�4 1.043 0.02
3.5 �122:1789 2 � 10�4 1.048 0.02
4.0 �121:6182 3 � 10�4 1.053 0.02
4.5 �121:6182 3 � 10�4 1.063 0.02
5.0 �121:3596 3 � 10�4 1.060 0.02
5.5 �121:0521 4 � 10�4 1.076 0.02
6.0 �120:7361 5 � 10�4 1.100 0.03
6.5 �120:4725 5 � 10�4 1.104 0.03

aSee Eq. [18] and accompanying text.
bAll calculations given are for Metropolis Monte Carlo calculations in which 20,000

equilibration cycles were followed by 500,000 data collection cycles. The stepsize was 0.01 nm,
which produced an acceptance ratio of approximately 50%. Ten blocks were used to estimate the
statistical errors.
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the relative error in CV is significantly larger than the error in E for the same
value of n. This is because the heat capacity represents the mean-squared
fluctuations of the energy, and its error is proportional to the root mean
square (RMS) fluctuations of the energy’s fluctuations. In some cases the
blocking technique may fail to effectively ‘‘break’’ the correlations; in such
a situation other methods may be employed to estimate the covariance
directly.44–48

It is important to emphasize that different thermodynamic properties
generally converge at different rates. Those rates also generally depend on
the temperature and can be quite strong functions of temperature in certain
cases (for example, when phase transitions are possible). Table 2 shows how
the error in E and the error in CV vary with temperature for the Lennard-Jones
oscillator. For this simple system the temperature dependence of the error is
weak, but the trend of gradual increases in the error is evident. Also note
that the average potential energy is approximately a linear function of tem-
perature at low temperatures with a slope equal to kB/2 (Figure 4), and that
the reduced heat capacity CV=kB approaches 1.0 as the temperature
approaches zero (Figure 5), both in agreement with the Equipartition
Theorem.10

Figure 4 hUi=kB as a function of temperature (diamonds) for the one-dimensional
Lennard-Jones oscillator (see text). The Equipartition Theorem requires that the slope
approach the harmonic limit (¼ 1

2) as the temperature approaches zero (solid line).
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QUASI-ERGODICITY: AN INSIDIOUS PROBLEM

While the methods discussed thus far are sufficiently powerful to allow
the simulation of many complex phenomena, there are circumstances where
their direct implementation must be modified for efficient sampling. In many
important cases the direct application of the preceding strategies with a (neces-
sarily) finite set of points can give misleading or incorrect results.

In Monte Carlo computations of thermodynamic properties, it is often
desirable that the sampling be ergodic.50 In the present context, we define
an ergodic random walk as one that can eventually reach every possible state
from every possible initial state. A simulation that samples ergodically is typi-
cally characterized by low asymptotic variance and by rapid convergence.
However, for systems for which there are wells in the potential energy surface
that are separated by high barriers, sampling that is confined to a subset of the
wells becomes problematic. This type of sampling is termed quasi-ergodic
sampling.15,51 When a system is quasi-ergodic it usually appears to be ergodic,
exhibiting low asymptotic variance and rapid convergence, thus making quasi-
ergodicity particularly difficult to detect. This problem is not unique to Monte
Carlo methods, but is also a feature of molecular dynamics calculations and
virtually all other molecular simulation methods.

Figure 5 CV=kB as a function of temperature for the one-dimensional Lennard-Jones
oscillator (see text). The Equipartition Theorem requires that the ratio of the heat
capacity to kB approach the harmonic limit (¼ 1) as the temperature approaches zero
(solid line).
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Cluster melting simulations are situations in which special effort must be
taken to ensure ergodic sampling. The melting transitions typically occur over
a range of temperatures, and clusters can often coexist in solid-like and liquid-
like forms (or in several solidlike forms) within this range. The large energy
barriers characteristic of ‘‘magic number clusters’’ lead to quasi-ergodic
sampling.15

To illustrate the kinds of problems to which we refer, we make use of a
classical double-well potential that has proved to be useful52 for the study of
quasi-ergodicity:

UðxÞ ¼ 3x4

2a þ 1
þ 4ða � 1Þx3

2a þ 1
� 6ax2

2a þ 1
þ 1 ½24�

This potential has a minimum of zero energy at x ¼ 1, a second minimum of
variable energy at x ¼ �a and a barrier of unit height separating the minima at
x ¼ 0. For 0 � a � 1 it is useful to define the relative well depth by

g ¼ Uð0Þ � Uð�aÞ
Uð0Þ � Uð1Þ ¼ a3 a þ 2

2a þ 1
½25�

For the case g ¼ 0:9 (a ¼ 0.961261), U(x) is shown in Figure 6. This model
potential has many features generic to molecular potential surfaces, in particular

Figure 6 Asymmetric
double-well potential
UðxÞ with g ¼ 0:9 (see
Eqs. [24,25]).
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the multiple minima separated by energy barriers. In general we might not
know the locations and depths of the minima nor the heights or locations of
the barriers that separate the minima on a potential surface. In thinking
about the potential shown in Figure 6 it is helpful to imagine what happens
in a simulation if the actual structure of the potential surface is not known
in advance.

In a Metropolis Monte Carlo calculation, the simulation must be
initiated at some configuration. We imagine the result of some random process
initiating the walk in the highest-energy well (on the left side in Figure 6). At
the lowest temperatures a finite Monte Carlo walk may never leave this well.
Thermodynamic properties calculated from such a walk would appear reason-
able with the statistical fluctuations in the computed values falling, as
expected, with the number of points included. However, such computed ther-
modynamic properties would reflect contributions only from the left well and
thereby be incorrect having ignored the contributions from the lower energy
potential minimum. At somewhat higher simulation temperatures, a finite
Metropolis Monte Carlo walk may visit both wells, hopping between the wells
infrequently. The infrequency implies contributions from the two wells may
not be properly weighted, and the resulting calculated thermodynamic prop-
erty may still be incorrect. Contrary to the situation at low temperatures, the
fluctuations of calculated properties at intermediate temperatures may not
decrease properly with increasing Monte Carlo points, a behavior that is indi-
cative of a problem in attaining an ergodic result. At sufficiently high tempera-
tures, a Metropolis Monte Carlo walk can be expected to execute transitions
over the barrier with sufficient frequency that a correct and well-behaved
result follows.

We illustrate the behavior discussed in the previous paragraph with a
simulation of the heat capacity associated with an assembly of one-dimen-
sional particles subject to the potential energy expressed in Eq. [24]. We
choose to examine the heat capacity because, as a fluctuation quantity, it is
particularly sensitive to sampling errors. In Figure 7 we present the computed
heat capacity of the double-well potential as a function of temperature. The
solid dark line represents the exact results obtained from one-dimensional
numerical quadrature. The dotted line with error bars marked ‘‘Metropolis’’
represents MMC data. The MMC calculations were initiated from the left-
most (highest-energy) well represented in Figure 6, and the simulation consists
of 108 Metropolis Monte Carlo points. The Metropolis box size for the simu-
lation was chosen so that approximately 50% of the attempted Metropolis
moves are accepted. At the lowest temperatures both the exact and simulated
results agree with the value anticipated from the Equipartition Theorem.
However, the exact result rises at low temperatures owing to fluctuations
between the two potential wells. The simulated MMC results remain flat because
at low temperatures hops between the wells are not observed for a finite set of
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Monte Carlo points. As the temperature is increased beyond the heat capacity
maximum in the exact result, the MMC simulated points begin to rise but they
are in poor agreement with the exact data. Additionally, the calculated error
bars increase, but are artificially large in this calculation and do not accurately
reflect the true asymptotic fluctuations of the heat capacity. Finally, at the
highest calculated temperatures, both the Metropolis Monte Carlo and exact
data are in agreement.

Several methods have been developed to remove such difficulties from
MMC simulations. One obvious but not very useful method is to include
more Metropolis Monte Carlo points. In the limit of an infinite simulation

Figure 7 CV as a function of T for the asymmetric double-well potential shown in
Figure 6. The ‘‘exact’’ result (solid line) is obtained by direct integration of the
Boltzmann average. ‘‘Metropolis’’ Monte Carlo results (dotted line) are seen to be in
sharp disagreement with the exact result until temperatures are sampled that are well
above the transition temperature for motion between the two potential energy wells.
Parallel tempering Monte Carlo results (dashed line) are in all cases within the 95%
confidence interval of the exact result.
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adding more points is guaranteed to work, but in many cases this is imprac-
tical. Another approach, which does work for the present one-dimensional
example problem, is to simply extend the original Metropolis scheme. In the
Metropolis method one usually chooses a single maximum displacement for
each Monte Carlo attempted move (the Metropolis step size). As in the exam-
ple displayed in Figure 7, the step size is selected so that approximately 50% of
the attempted moves are accepted. A simple modification to this procedure is
to include two stepsizes. The first, used for most moves, has a size chosen to
meet the usual 50% criterion. The second maximum stepsize is chosen to be
two units of distance in length (the distance between the two minima in
Figure 6). By using this magnified stepsize for a portion of the moves, the bar-
rier between the wells is overcome even at low temperatures. It is not difficult
to verify that the occasional inclusion of a magnified stepsize, which we call
‘‘mag-walking,’’ satisfies detailed balance.52

Mag-walking is sufficiently simple that it can be useful for some many-
particle applications where the locations of the barriers between the minima
are known in advance. Unfortunately this simple extension, based on two
(or more) maximum stepsizes, fails for many important applications of Monte
Carlo to interacting many-particle systems. For many-body applications the
potential minima are generally separated not just by a distance but also by
one or more curvilinear directions. To move from one potential well to
another in a many-particle application, specifying the distance between the
wells is insufficient. Because the locations of the wells are seldom known in
advance, more sophisticated approaches are usually necessary.

From the previous discussion, we see that the problem of adequately
sampling a potential energy surface can often be solved with a strategy having
two distinct parts. The first part concerns locating the relevant potential minima
in the energy surface along with the transition state barriers that separate those
minima. The second part concerns the development of a strategy to sample the
important minima with the correct statistics. Simulation methods based on
this two-part separation strategy have limited utility in cluster studies because
the number of minima on a potential surface grows extremely rapidly with the
size of the system studied (at a rate believed to be exponential). For example, a
cluster of 13 atoms interacting via Lennard-Jones forces is known to have
more than 1500 minima,53 while nanodimensional Lennard-Jones clusters
containing 147 atoms are believed to have about 1060 minima.54 It is clearly
impossible to enumerate all the minima for the latter cluster, even if a practical
procedure were available to sample all such minima. Of course, we are really
concerned with only those minima that are actually accessible with a reason-
able probability at a given temperature, but the number of such minima can
also be unreasonably large. The most successful approaches to proper sam-
pling of complex potential surfaces involve methods that solve both parts in
a single step.
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OVERCOMING QUASI-ERGODICITY

Mag-Walking

As mentioned previously, the simplest method for addressing quasi-
ergodicity is to occasionally magnify the stepsize in a Metropolis walk.52

A probability Pm is specified, and a magnified stepsize is used if Pm is greater
than or equal to a random number x. The probability that a magnified move is
accepted is the same as that for a regular move. For example, if Pm is chosen to
be 0.1 then magnified steps are possible 10% of the time.

This very simple method has a chance of being effective only when the
magnified stepsize corresponds to a displacement that is known to carry a
molecule from one conformation to another. For example, we have found
mag-walking to be useful in certain contexts when applied to Barker–Watts
rotational moves; �yMAX may be equal to one radian for a regular rotational
step, and p radians for a magnified step. We have used this method successfully
in simulations of order–disorder transitions in solid ammonium chloride,55

and in some preliminary investigations of cationic ammonium chloride
clusters.56 However, because one does not usually know a priori what kind
of displacement will tend to generate new conformers, mag-walking is of
limited utility.

Subspace Sampling

The subspace sampling method developed by Shew and Mills uses tran-
sitions among subspaces of the configuration space to overcome quasi-
ergodicity.57 Configuration space is divided into subspaces based on the poten-
tial energy surface. For example, for a double-well potential each well would
be a subspace defined by the location of the local maximum separating the two
wells (subspaces A and B hereafter). A transfer probability PAB is specified and
a transfer of the system from configuration i in subspace A to configuration j
in subspace B is attempted if PAB is greater than a random number x. The
transfer is accepted by the probability A(qi,A ! qj,B),

Aðqi;A ! qj;BÞ ¼ c
VB

V
if Uðqi;AÞ < Uðqj;BÞ

¼ c
VB

V
exp½�bðUðqi;AÞ � Uðqj;BÞÞ� if Uðqi;AÞ > Uðqj;BÞ ½26�

where V is the total volume, VB is the volume occupied by subspace B and c is
an empirically chosen constant. As in mag-walking, the subspace sampling
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method requires prior knowledge of the potential energy surface to divide
configuration space into subspaces. Moreover, the determination of each
subspace’s volume is only possible when definite rectilinear or spherical
boundaries can be drawn which separate and enclose all the subspaces (in
which case the volume calculations are trivial). Identifying definite boundaries
that correctly separate the relevant subspaces can be challenging. Subspace
sampling is therefore generally practical only for low-dimensional systems.

Jump Between Wells Method

The jump between wells (JBW) method developed by Senderowitz, Guar-
nieri, and Still58 involves repeated sampling from known low energy confor-
mers to generate a Markov chain. Each trial move is based on the
transformation of one low-energy conformer to another and subsequent per-
turbation of the selected conformer. This method has been shown to work
well for relatively small organic molecules, but because it requires knowledge
of all low energy conformers, it may not be practical for larger molecules. This
limitation applies especially to atomic and molecular clusters, since the loca-
tion of all low energy conformers may itself be a significant computational
challenge.

Atom-Exchange Method

The atom-exchange method was developed by Tsai, Abraham, and
Pound59 to speed barrier crossing in binary (two types of atoms) alloy cluster
simulations. During the Metropolis walk two different types of atoms are
periodically chosen, and their positions are exchanged. The exchange is
accepted or rejected by the standard Metropolis acceptance probability. The
utility of this method is naturally limited to systems of this particular type,
namely, binary atomic clusters and liquids.

Histogram Methods

The single histogram method17,60 involves constructing a histogram of
energies h(U) that are obtained at an elevated sampling temperature Ts,
with Ts > T. For continuous systems a large number of bins should be set
up to discretize the energy. Because the probability distribution function is
known, it can be used to calculate ensemble averages at any temperature T

hf i ¼

P
U

f ðUÞ hðUÞ exp½�Uðb� bsÞ�P
U

hðUÞ exp½�Uðb� bsÞ�
½27�
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where bs is 1/kBTs. It is not necessary to actually save the histogram of energies
if the summations are carried out over configurations instead of energies:61

hf i ¼

P
i

f ðxiÞ= exp �bsUðxiÞ½ �f gð Þ exp ½�bUðxiÞ�P
i

1= exp �bsUðxiÞ½ �f gð Þ exp ½�bUðxiÞ�
½28�

In addition to improving the simulation efficiency, the single-histogram
method is designed to alleviate quasi-ergodicity by increasing the effective
sampling temperature. The square of the error is proportional to the number
of entries in the histogram, so the accuracy is greatest where h(U) is largest and
the error is greatest at the wings of the histogram.62 Thus the limitation of this
method is that it may not be accurate for temperatures far below the sampling
temperature Ts, whereas Ts must be much higher than T for many cases to
overcome quasi-ergodicity.

The accuracy of the histogram method can be improved and its limita-
tions largely overcome by combining multiple histograms with overlapping
temperature ranges.60,63 The density is estimated from a linear combination
of the estimates from multiple histograms hi(U) measured at temperatures
Ti. The weight assigned to each estimate is optimized to reduce error through
an iterative procedure. The simulated annealing–optimal histogram method
takes a different approach wherein simulations at various temperatures are
used to generate optimized sampling of energy bins.17 A more detailed discus-
sion is beyond the scope of this chapter.

Umbrella Sampling

Umbrella sampling is a technique that facilitates barrier crossing by
introducing an artificial bias potential, called the ‘‘umbrella potential.’’4 The
umbrella potential optimally biases the sampling toward important regions of
configuration space that might otherwise be rarely visited. The probability
distribution of the physical system can then be extracted from the probability
distribution of the unphysical system. The probability distributions are often
analyzed along a ‘‘reaction coordinate’’ �, which can be one- or multidimen-
sional and is expressed as a function of the coordinates of the system.64 The
reaction coordinate is often taken to be a distance or angle, or a linear combi-
nation of distances or angles.

A modified potential energy function Umod ¼ U þ Euð�Þ is constructed,
where U is the true potential energy of the system and Euð�Þ is the umbrella
sampling potential [note that � ¼ �ðqÞ in general]. The Boltzmann average of
any property f can be computed by using Umod ¼ U þ Eu in place of U in the
Metropolis algorithm and calculating the average as

hf i ¼
f exp bEuð Þh iUmod

exp bEuð Þh iUmod

½29�
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where hBiUmod
is the average of B taken using the modified potential function in

a Markov walk where moves are accepted or rejected with probability

min 1; e�b�Umod
� �

The efficiency of the method depends on the choice of umbrella potential. The
limitation of the umbrella sampling method is that the umbrella potential must
be appropriately chosen for each system of interest. There are many methods
of calculating an appropriate umbrella potential depending on the goals of the
simulation.65 A number of procedures have been developed to automatically
and iteratively calculate an umbrella potential for certain types of situa-
tions.66–70 We will also see in a later section that umbrella sampling is used
within the multicanonical ensemble. Finally, Valleau has recently reviewed
the thermodynamic-scaling Monte Carlo method, which uses umbrella sam-
pling to guide a system between thermodynamic states.71

J-WALKING, PARALLEL TEMPERING,
AND RELATED METHODS

There is a class of generally applicable Monte Carlo methods that have
been developed to address the problem of quasi-ergodicity. These methods
involve allowing Metropolis walkers at different temperatures to either
‘‘jump’’ to one another or exchange configurations with one another. These
methods generally result in greatly improved sampling, and they are based
on two key concepts: (1) at temperatures that are sufficiently high to overcome
the barriers between basins on the potential surface, Metropolis Monte Carlo
methods are free of serious sampling problems; and (2) the particle density at
high (but not infinite) temperatures has a form that reflects the structure of the
underlying potential energy surface. Figure 8 illustrates this latter point.

The heavy solid line in Figure 8 represents the double-well potential,
redrawn from Figure 6. The light solid line in Figure 8 is the particle density
exp½�bUðxÞ� for b ¼ 1 and the dashed line is the particle density for b ¼ 5.
The low temperature particle density (b ¼ 5) is nearly zero in the barrier
region near x ¼ 0, signaling difficulties in accessing both potential wells in a
Metropolis Monte Carlo calculation. At higher temperatures (b ¼ 1) there is
significant particle density in the barrier region, and Metropolis Monte Carlo
simulations at such temperatures do not suffer from the sampling problems
discussed here. Furthermore, the particle density for b ¼ 1 reflects the struc-
ture of the underlying potential energy surface. The maxima in the particle
density are located at the same places as the potential energy minima, with
the deeper well associated with the largest particle density. It is desirable to
exploit the information contained in the particle density at high temperatures,
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which is easily generated from a Metropolis calculation, to enable an ergodic
simulation at low temperatures where the problems are more serious.

J-Walking

The first method to have been developed using the concepts discussed in
the previous paragraph is called J-walking, or alternatively, jump-walking.52

In the J-walking method a Metropolis calculation is performed at a tempera-
ture sufficiently high to avoid ergodic sampling problems. A Monte Carlo
walk is then performed at a low temperature that periodically makes moves
to the configurations determined by the high-temperature walk. The configura-
tions can be taken from either a walk carried out simultaneously (often called
tandem J-walking) or configurations that have been stored from a previous
high-temperature walk. In the low temperature simulation, where achieving
ergodic sampling is problematic, moves are made periodically to the configura-
tions from the high-temperature walk (see Figure 9). Attempts to jump to these

Figure 8 Boltzmann particle densities exp½�bUðxÞ� at b ¼ 1 (light, solid line) and b ¼ 5
(dashed line) for the asymmetric double-well potential U(x) with g ¼ 0:9, which is
also shown (dark, solid line; see Figure 6).
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high-temperature configurations are accepted or rejected in a fashion that
satisfies the detailed balance relation given in Eq. [5]. Recall that the transition
rate may be written as a product of a trial probability � and an acceptance
probability A

Kðxi ! xjÞ ¼ �ðxi ! xjÞAðxi ! xjÞ ½30�

where � can be taken to be any normalized distribution and A is constructed
so that Eq. [30] is satisfied. For example, in Metropolis Monte Carlo the trial
probability is usually taken to be a uniform distribution of points about the
starting point of width L, as discussed previously. In J-walking the trial prob-
ability is taken to be that of the high-temperature configurations, which for
classical canonical simulations takes the form

�ðxi ! xjÞ ¼ Z�1
J exp½�bJUðxiÞ� ½31�

Figure 9 Schematic illustration of J-walking. A Monte Carlo walk at temperature T
occasionally ‘‘jumps’’ to a configuration selected (not necessarily sequentially) from
a configuration generated by a Monte Carlo walk at a higher temperature T 0.
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where ZJ is a normalization factor, bJ ¼ 1=kBTJ and TJ is the temperature
used to generate the high-temperature configurations. An acceptance prob-
ability ensuring satisfaction of detailed balance is given by

Aðxi ! xjÞ ¼ min 1;
rðxjÞ�ðxj ! xiÞ
rðxiÞ�ðxi ! xjÞ

� �
½32�

which, for jumps to the high-temperature configurations in a classical canoni-
cal simulation, takes the form

Aðxi ! xjÞ ¼ min 1; expð��b�UÞð Þ ½33�

where �b ¼ b� bJ and �U ¼ UðxjÞ � UðxiÞ. Again, b ¼ 1=kBT, where T is
the temperature of interest (associated with the low-temperature walk) and
bJ is the inverse temperature used to generate the high-temperature external
distribution.

The barriers that separate potential wells and make sampling difficult at
low temperatures are overcome by jumping periodically to the high-tempera-
ture configurations. In this J-walking procedure detailed balance is satisfied to
the extent that the configurations in the high-temperature walk are an exact
representation of the actual high-temperature probability function (Eq. [31]).
Such an exact representation of the actual probability function is possible only
in the limit of an infinite external distribution, or when jumps to the tandem
distribution are taken after an infinite number of steps. Systematic errors are
difficult to remove in the tandem method, so most published applications have
used external distributions. In practice a large (but necessarily finite) high-
temperature distribution is generated. In the low-temperature simulation
most Monte Carlo moves are generated using the Metropolis method with
moves to the external high-temperature distribution at some prescribed
frequency. In most applications these jump attempts are made about 10%
of the simulation time, although higher jump attempt rates have been shown
to be optimal in some cases.72 To ensure that the distribution is sufficiently
large (so as to be an accurate representation of the true high-temperature
probability function), the distribution size must be larger than the number
of jumps attempted in a simulation.

When using finite high-temperature external distributions, another issue
arises when applying Eq. [33], because this equation assumes the exact prob-
ability is used. This issue is the origin of tandem J-walking problems. When
generating the external high-temperature distribution using the Metropolis
method, it is important to not store every configuration from that Metropolis
walk. As noted previously, configurations generated using a Metropolis walk
are correlated,6 and the correlations can introduce systematic errors when
moves are accepted and rejected on the basis of the criterion of Eq. [33]. To
avoid these systematic errors it is necessary to store configurations from a
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high-temperature Metropolis walk only after a sufficient number of Monte
Carlo steps have been taken to break the correlations.

There is a final issue in J-walking that occurs in related simulation meth-
ods as well. If the difference in temperature between that used to generate the
jumping distribution TJ and the temperature of interest T is sufficiently large,
the probability that an attempted jump is accepted can become vanishingly
small. When (effectively) no attempted jumps are accepted, the J-walking algo-
rithm is equivalent to a Metropolis walk. Rather than jumping from tempera-
ture T to the distribution generated at temperature TJ, a series of temperatures
are chosen between T and TJ, and configurations are stored at each of the ser-
ies of temperatures to circumvent this problem. The temperatures are chosen
to be sufficiently close to each other so that jump attempts between adjacent
temperatures are accepted with reasonable probability (e.g., at least 10%).
J-walking between adjacent temperatures is used to ensure ergodic distribu-
tions at each temperature.

To decrease the size of the external distributions needed in J-walking, an
alternative method known as ‘‘smart walking’’ has been developed.73 In smart
walking, the energy of each high-temperature configuration is minimized
before a jump is attempted. However, smart walking does not satisfy detailed
balance.74 A new technique called ‘‘smart darting’’ has recently been devel-
oped that modifies the smart-walking procedure by including the use of
‘‘darts,’’ which are displacement vectors connecting the minimum-energy con-
figurations.74 Smart darting satisfies detailed balance, and it has been applied
successfully to calculations of an 8-atom Lennard-Jones cluster and also for
the alanine dipeptide.

While J-walking has proved to be useful for many applications,75–82 the
need for a series of large external distributions limits its application to many-
body systems having modest numbers of particles. The needed configurations
for J-walking can require a prohibitively large portion of both computer mem-
ory and disk space. In the next section we describe another approach that
obviates the need for external distributions.

Parallel Tempering

Like J-walking, parallel tempering83–90 addresses sampling problems by
using information about the underlying potential surface obtained from a
high-temperature walk where sampling is not problematic to ensure proper
sampling by a lower-temperature simulation. While high-temperature config-
urations are fed to a low-temperature walk in J-walking, parallel tempering
uses configurations that are exchanged between the high- and low-temperature
walkers (see Figure 10).

To understand the basis of parallel tempering, we let

r2ðx; x0Þ ¼ F�1 exp �bUðxÞ½ � exp½�bJUðx0Þ� ½34�
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be the joint probability density that the low-temperature walker is at config-
uration x and the high-temperature walker is at configuration x0. The detailed
balance condition for exchanging configurations between the two walkers is
given by

r2ðx; x0ÞKðx ! x0; x0 ! xÞ ¼ r2ðx0; xÞKðx0 ! x; x ! x0Þ ½35�

By solving for the ratio of the conditional transition probabilities

Kðx ! x0; x0 ! xÞ
Kðx0 ! x; x ! x0Þ ¼ expf�ðb� bJÞ Uðx0Þ � UðxÞ½ �g ½36�

it is evident that if exchanges are accepted with the same probability as
the acceptance criterion used in J-walking (see Eq. [33]), detailed balance is
satisfied.

Figure 10 Schematic illustration of parallel tempering. Two Monte Carlo walks at
two different temperatures (T and T 0 with T 0 > T ) are executed in parallel, and
occasionally the two walks exchange configurations with one another.
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Like the Metropolis method, and unlike J-walking (which satisfies
detailed balance only in the limit that the external distributions required are
of infinite size), the parallel tempering approach satisfies detailed balance
once the random walk has reached the asymptotic limit. Consequently, no
external distributions are required, and parallel tempering can be organized
in the same simple fashion as tandem J-walking. The simple organization
implies that parallel tempering can be applied to large scale problems.

We illustrate an application of the parallel tempering method again using
the double-well potential represented in Eq. [24]. The data have been gener-
ated using 28 temperatures roughly equally spaced between T ¼ 0:002 and
T ¼ 0:2 in reduced units. Including a series of temperatures in the simulation
ensures adequate acceptance of exchange attempts between adjacent tempera-
tures. As in a J-walking simulation, if the gaps in temperature between adja-
cent temperatures are too large, exchanges can be accepted too infrequently
for parallel tempering to provide an improvement over Metropolis simula-
tions. Each temperature point plotted in Figure 7 is the result of 107 equilibra-
tion moves followed by 108 Monte Carlo points with the accumulation of
data. Both the equilibration and Metropolis moves with the accumulation of
data used box sizes satisfying the usual 50% acceptance criterion, and parallel
tempering exchanges were attempted with a 10% probability. The parallel
tempering data in Figure 7, displayed with the dashed line that is labeled
‘‘parallel tempering,’’ are essentially indistinguishable from the exact results.
Results using the J-walking method would be essentially identical to the
parallel tempering data, but the J-walking results require significantly more
effort to obtain.

Jumping to Tsallis Distributions

Both J-walking and parallel tempering depend on: (1) a set of configura-
tions generated ergodically at a high temperature and (2) attempted moves to
those configurations in a manner that satisfies detailed balance. The use of
temperature as a parameter to generate ergodic configurations is not required.
Instead, jumping approaches can be developed that use configurations gener-
ated in any fashion that are simultaneously ergodic and overcome energy
barriers in the potential surface. Tsallis statistics91 have been used to generate
such ergodic configurations. Tsallis distributions are based on the probability
function

rqðxÞ ¼ N�1
q 1 � ð1 � qÞbUðxÞ½ � 1=ð1�qÞ ½37�

where q is a parameter whose value is optimized for the system of interest. Nq

is a normalization defined so that

Nq ¼
ð

dx 1 � ð1 � qÞbUðxÞ½ � 1=ð1�qÞ ½38�
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The Tsallis probability distribution is equivalent to the classical Boltz-
mann distribution in the limit q ! 1. As shown numerically elsewhere,92 for
q > 1 the Tsallis distribution broadens, overcoming energy barriers, and like
high-temperature Boltzmann particle densities, the Tsallis distribution has
maxima at the coordinates of potential minima. The Tsallis distribution can
be used like high-temperature Boltzmann distributions if Tsallis configurations
are accepted or rejected with probability

min 1; e�b�U
rqðxÞ
rqðx0Þ

" #q( )

Successful applications of jumps to Tsallis distributions have included cluster
systems.92

Applications to Microcanonical Simulations

Monte Carlo methods can also be applied to systems in the microcano-
nical ensemble,7,10 and the techniques just described can be extended to this
ensemble as well. For a cluster of N atoms with the same mass m, microcano-
nical averages of observables are obtained by calculating statistical expecta-
tions using the density function

rEðxÞ ¼
2pm=h2
� �

3N=2 1= N! �ð3N=2Þ½ �f g
�ðEÞ � E � UðxÞ½ � E � UðxÞ½ � ð3N=2Þ�1

½39�

where �ðyÞ is the gamma function, �ðyÞ is the Heaviside (step) function and
�(E) is the classical density of states93

�ðEÞ ¼ 1

h3NN!

ð
dx dp d E � Hðx; pÞ½ � ½40�

where p is the linear momentum vector, H the classical Hamiltonian, and d½y�
the Dirac delta function.35 For example, the average kinetic energy K of a
system can be obtained from the expression

hKi ¼
Ð

dx�ðE � UÞ ðE � UÞð3N=2Þ�1ðE � UÞÐ
dx�ðE � UÞ ðE � UÞð3N=2Þ�1

¼ hðE � UÞi ½41�

Either parallel tempering94,95 or J-walking82 in the microcanonical ensemble
consists of taking configurations from a walk at high energy Eh, rather than
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from a high temperature. Exchanges or jumps are accepted or rejected with
probability

min 1;
rEðx0ÞrEh

ðxÞ
rEðxÞrEh

ðx0Þ

( )

Microcanonical parallel tempering has been extended to the molecular
dynamics ensemble by introducing the appropriate center of mass and angular
momentum constraints, the details of which can be found elsewhere.94

MULTICANONICAL ENSEMBLE /
ENTROPY SAMPLING

Another class of methods that has been used to remove sampling diffi-
culties is based on what is often called the multicanonical ensemble.96 These
methods have also been called ‘‘entropy sampling’’ methods,97 for reasons that
are made clear below.98 It is easiest to understand the multicanonical methods
by considering the full classical canonical coordinate–momentum distribution

rðx; pÞ ¼ M�1 exp �bHðx; pÞ½ � ½42�

where M is a normalization factor. The canonical density can also be ex-
pressed as a function of the total energy E rather than the coordinates and
momenta

rðb;EÞ ¼ M�1�ðEÞ exp �bE½ � ½43�

As is discussed in many elementary treatments of statistical mechanics, �ðEÞ is
a rapidly increasing function of the energy.99 Owing to the decay of the expo-
nential factor in Eq. [42], rðb;EÞ is a sharp Gaussian distribution, and is
peaked about the mean energy associated with the inverse temperature b.

For a Metropolis walk using Eq. [42] the energy of each configuration
generated can be tabulated to generate �ðEÞ. The sorting of configurations
into energy bins is the basis of histogram sampling methods,17,60,100,101 which
(as mentioned previously) are beyond the scope of this chapter. Accurate esti-
mates of �ðEÞ can be achieved only for energies about the average energy of the
temperature used to generate the density of states. Consequently, to generate
�ðEÞ accurately, calculations must be performed at a series of temperatures.
The normalization for each energy distribution so generated must be chosen
carefully such that the distributions created for each temperature match.
The subtleties associated with this procedure are also beyond the scope of
this chapter; for the purposes of this section, we only remark that �ðEÞ can
be constructed using a canonical Boltzmann Monte Carlo walk.17
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Earlier we made clear that Monte Carlo walks can become trapped in
regions of space owing to energy barriers that separate the disconnected con-
figurations. In multicanonical methods the energy barriers are overcome by
performing a walk in a space with a uniform energy distribution. The energy
distribution is defined by the relation

rMðEÞ ¼ M�1�ðEÞwðEÞ ¼ �kk ½44�

where �kk is a constant. We then sample with respect to the distribution

wðEÞ ¼ k
�ðEÞ ½45�

where k ¼ �kkM. It is of interest to write

ln wðEÞ ¼ ln k� kB

kB
ln�ðEÞ

wðEÞ ¼ K exp �kB ln�ðEÞ½ �
½46�

where K is a constant. Using the standard microcanonical expression for the
entropy S ¼ kB ln �,99 w becomes

wðEÞ ¼ K exp½�SðEÞ� ½47�

Because of expression Eq. [47], multicanonical sampling is often called
‘‘entropy sampling.’’

To calculate canonical averages of an observable f ðx; pÞ using the
entropy distribution (Eq. [47]), we can implement umbrella sampling methods

hf i ¼
Ð

dx dp f ðx; pÞ expð�bHÞÐ
dx dp expð�bHÞ ½48�

¼
f ðx; pÞ expð�bHÞ

w

D E
S

expð�bHÞ
w

D E
S

½49�

where the subscript S below each average in Eq. [49] implies sampling with
respect to the distribution w.

J-walking ideas have also been used in multicanonical approaches102 as
an alternative to calculating expectation values using Eq. [49]. In the multi-
canonical J-walking approach, periodic jumps are made to the distribution
of configurations associated with the entropy distribution w rather than peri-
odic jumps to a set of high-temperature ergodic configurations. To satisfy
detailed balance, such jumps are accepted with probability

min 1;
exp �bH x0; p0ð Þ½ �w Hðx; pÞ½ �
exp �bHðx; pÞ½ �w H x0; p0ð Þ½ �

" #
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From an operational point of view, an important issue when using multi-
canonical methods is the generation of the multicanonical weight w. Because
w is not in general known analytically, w must be generated numerically.
Some of the most successful methods for generating w are based on iterative
methods, the discussion of which can be found elsewhere.103 These iterative
procedures suffer from oscillatory convergence characteristics, but these
convergence problems have been solved using other J-walking based appro-
aches.104 In practice, the generated multicanonical weights are accurately
described at intermediate energies but often provide poor representations at
low energies. Consequently, multicanonical methods can be deficient for
systems having important low temperature structures that are difficult to
access.88

CONCLUSIONS

As you perhaps may have noticed, many Monte Carlo methods can be
found in the literature. We have not described all of the Monte Carlo methods
developed to date. Indeed, new methods are being developed every day, and
methods better than those that now exist can be expected to appear in the
future. Nonetheless we can make a few definite recommendations to the
readers interested in writing their own Monte Carlo programs (especially
for studying atomic and molecular clusters) based on existing methodology.

First, it is often useful to study a simple potential such as that given in
Eq. [29], and use it as a minimal proving ground for testing and implementa-
tion of new Monte Carlo algorithms. Such potentials contain some (but not
all) of the features of more realistic and complex problems. However, some
methods will work well for an asymmetric double-well potential but fail
when applied to more complex systems. We therefore warn the reader: let
the buyer of a ‘‘foolproof’’ Monte Carlo algorithm beware!

Second, it is advisable to carry out ordinary Metropolis Monte Carlo cal-
culations using Metropolis sampling1 (with Barker–Watts rotational sampling41

and center-of-mass moves in addition to single-particle moves if the cluster
contains molecules) as a function of temperature before moving to more com-
plex methods. This will help identify the temperature range of greatest impor-
tance and indicate how high the temperature must be for quasi-ergodic
sampling problems to be avoided. This information can then be used in parallel
tempering, J-walking, and other calculations.

Parallel tempering works, and works well in a wide variety of contexts
(although the reader should be warned that we are even now finding particu-
larly nasty examples where even parallel tempering converges at an unaccep-
tably slow rate). In our experience, parallel tempering is much simpler to
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implement than many of the alternatives. Thus, our final recommendation is
that parallel tempering is strongly recommended whenever quasi-ergodicity
problems are possible. Parallel tempering can be extremely useful in Monte
Carlo studies of atomic and molecular clusters. It also can be used to excellent
effect in molecular dynamics simulations, and thus it constitutes an extremely
general and powerful technique. We are hopeful that the reader who uses this
chapter as a starting point to develop new and improved Monte Carlo meth-
ods will find the work as rewarding and interesting as we have.
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INTRODUCTION

We provide here a tutorial on how to compute hydrophobicity.
Hydrophobicity, which in literal Greek translation means water hating or
loathing, is often the ‘‘concept of last resort’’ when trying to explain complex
association and assembly phenomena in biology and biophysics.1 We are fond
of speculating on the SI unit of such hate or loathing.2

Many papers claim to discuss hydrophobicity. Regrettably, many present
comparisons with neither laboratory experiments nor with computer experi-
ments. The days of such papers having any value are—in our opinion—far
in the past. We argue that a respect for the experimental data is essential,
that one must seek to explain the set of verifiable experimental observations
in order to fully understand hydrophobicity. This rigorous, thermodynamic,
factual, and experimental approach to hydrophobicity is the antithesis of the
‘‘opinions’’ so clearly and insightfully summarized a decade ago by Blokzijl
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and Engberts.3 A number of recent, important, advanced reviews in the same
vein now exist.4,5

This chapter summarizes the methods used to calculate hydrophobicity
on a computer. It is important to state here what the chapter does and does not
do. It treats only methods for which full details have been published in the lit-
erature. It treats work that is therefore refutable by appealing directly to real
experiments or, for certain simplified models, to computer experiments of
known or knowable accuracy. To make a manageable chapter covering com-
putational approaches for which all details have been published, we omit those
concepts that have been summarized in clear and elegant fashion,5 like the
‘‘maximal entropy’’ method of Hummer and co-workers.6,7

Our approach to ‘‘computing hydrophobicity’’ is to work from experi-
mental data and move toward simplified explanations, omitting models and
theories that have already been disproved by experiment. This approach is illu-
strated with the elegant experiment of Hare and Sorensen,8,9 who for the first
time put a solid experimental foundation under the otherwise obtuse expres-
sion ‘‘the degree of hydrogen bonding’’ in pure liquid water. These authors
presented Raman spectroscopic measurements on the OH stretch region of
pure water (2900–3800 cm�1) covering the remarkable range of temperatures
from �33 to þ80�C. They provided an unambiguous interpretation (albeit one
not without controversy) of the behavior of two Raman peaks that grow and
decay as a function of temperature change. Their data are reproduced in
Figure 1. They associated these two peaks with (perhaps collective) ‘‘intact’’
and ‘‘broken’’ hydrogen bonds, which leads naturally to a simplified ‘‘two
state’’ description of the degree of hydrogen-bonding in water and supercooled
water. The parameters extracted from their measurements were shown by
Silverstein, Haymet, and Dill10 10 years later to be consistent with the inde-
pendently measured heat capacity of water, whereas six or seven other differ-
ent experimental definitions of the degree of H bonding were inconsistent with
the thermodynamic data. This experimental data with a seemingly oversimpli-
fied model thus yielded a neat and easy-to-explain connection between the
concepts of hydrogen-bonding and hydrophobicity!

Additional experimental data of direct relevance to this chapter are the
many thermodynamic measurements of gas solubility. An extensive set of
experimental measurements below water’s normal boiling point have been
compiled and reviewed by Wilhelm, Battino, and Wilcock.11 Solubility data
at higher temperatures are available from a more recent article by Fernández
Prini and Crovetto.12 Gas solubilities are often tabulated in terms of the
Ostwald solubility coefficient

L ¼ rl
2

rg
2

½1�

where rl
2 and rg

2 are the gas density in the liquid and vapor phases, respec-
tively. The nonideal portion of the free energy of solvation, also called the
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excess chemical potential (mex), is directly related to L via

mex ¼ �RT ln L ½2�

Plots of mex versus temperature for neon and methane gases in water are dis-
played in Figure 2. The solubility of these gases in water is very small, as indi-
cated by the large positive values of mex. The positive slope and negative
curvature of each plot reveal a large negative entropy and a large positive
heat capacity of solvation, respectively. Near room temperature, the low solu-
bility of nonpolar gases is due entirely to this unfavorable entropy of hydra-
tion. As the temperature increases, however, the heat capacity leads to a
reversal in the role of entropy and enthalpy. The entropy and heat capacity
of hydration together provide clear thermodynamic signatures for hydropho-
bicity. Understanding the origin of these signatures has been a primary goal of

Figure 1 Raman data in the OH stretch region of water at temperatures ranging from
�33 to þ80�C (from Hare and Sorensen8). Data for scattered light with vertical and
horizontal polarization are displayed in (a) and (b), respectively, and are normalized
using a method described by the authors.
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hydrophobicity research for decades and constitutes a main focus of what
follows in this tutorial.

The chapter contains three main sections. In the first, we present a
detailed but not exhaustive survey of simulation methods for the calculation
of free energy, entropy, and heat capacity. This is followed by a section that
discusses results from several hydrophobic hydration and hydrophobic inter-
action simulations. These applications are then used in the last section of this
chapter to illustrate the simulation methods and to highlight several important
conceptual developments in the theory of hydrophobicity.

SIMULATION METHODS

Molecular dynamics (MD) and Monte Carlo (MC) simulation techni-
ques have been used now for decades to characterize aqueous solutions. The
most basic elements that underlie these techniques, such as numerical integra-
tion algorithms and the Metropolis method, are discussed thoroughly else-
where,13,14 so they are not included here. Our intention here is to survey
methods used for determining the thermodynamic and structural quantities
most closely tied to hydrophobicity.
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Figure 2 Excess chemical potentials (mex) for methane and neon gases plotted as a
function of temperature (data taken from Ref. 11). The positive slope and negative
curvature of each function indicate a negative entropy and a positive heat capacity of
hydration, respectively.
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One might anticipate that quantitative aspects of hydrophobicity would
be sensitive to details of the water model used in a simulation. This may seem
troubling given the dozens of popular water models discussed in the literature.
However, there is little evidence that subtle changes in water interaction
potentials have any qualitative effect on the nature of hydrophobicity, as illu-
strated by the finding that a two-dimensional model for water reproduces all
the thermodynamic signatures usually associated with hydrophobicity.15

Accordingly, water model details are omitted from the ensuing discussion.
Most of the applications discussed below involve atomic solutes with

either hard-sphere (HS) or Lennard-Jones (LJ) solute–water interaction poten-
tials. The potential energy of a HS is infinite if the solute–oxygen distance is
less than the sum of the solute and water HS radii and zero otherwise. An
effective HS radius is assigned to water in some reasonable fashion.16 The
solute–water LJ interaction has the form

ULJðrÞ ¼ 4E
s
r

� �12
� s

r

� �6
� �

½3�

where s and E are size and well-depth parameters, respectively. The Weeks–
Chandler–Andersen17 (WCA) interaction potential provides a useful represen-
tation of the repulsive part of the LJ function, and is given by

UWCAðrÞ ¼ ULJðrÞ þ E r < 21=6s ½4�
UWCAðrÞ ¼ 0 r 
 21=6s ½5�

A plot of the LJ and WCA potentials is displayed in Figure 3. Simple solutions
modeled with these solute-water potentials capture a wide range of hydropho-
bic behavior without the complications inherent in biochemical systems.

Statistical Mechanics and Thermodynamics

Computer simulations of hydrophobicity usually involve the measure-
ment of thermodynamic properties because the most basic signatures of hydro-
phobic phenomena are thermodynamic in nature. In this section, we briefly
review the relationships between the classical partition function and various
thermodynamic quantities. These relationships provide the basis for most of
the simulation methods described subsequently.

A system of N particles under thermodynamic constraints of constant
volume and temperature is described by the canonical ensemble partition
function Q. In the classical limit for a three-dimensional system Q is given by

Q ¼ 1

N!h3N

ð
drNdpN exp½�bHðrN; pNÞ� ½6�
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where HðrN; pNÞ is the N-particle Hamiltonian. The variable b equals 1=kBT,
where kB is the Boltzmann constant. Separating out the momentum terms
yields the ‘‘configurational’’ partition function, ZN, with

ZN ¼
ð

drN exp½�bUðrNÞ� ½7�

The configurational energy of the system UðrNÞ is calculated directly from the
assumed interaction potentials and the particle positions in a computer simu-
lation. The Helmholtz free energy A, energy E, and entropy S are given in
terms of Q by

A ¼ �kBT ln Q ½8�

and

E ¼ kBT2 q ln Q

qT

� �
N;V

½9�

and

S ¼ kBT
q ln Q

qT

� �
N;V

þ kB ln Q ½10�
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Figure 3 Plot of the LJ and WCA interaction potentials. The LJ potential energy crosses
zero at r ¼ s and has a minimum energy of �E. The WCA potential has the same
shape as the repulsive part of the LJ potential, but is shifted up in energy by E.
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Simulations are commonly used to determine the excess parts of these thermo-
dynamic variables. The excess Helmholtz free energy is given in terms of ZN as

Aex ¼ �kBT ln
ZN

VN
½11�

Similar expressions are easily derived for for Sex and Eex.
Generally, a full evaluation of the partition function for a system is

impossible. Computer simulations rely instead on calculating averages,
expressed in terms of the configurational partition function as

Xh i ¼ 1

ZN

ð
drNXðrNÞ exp½�bUðrNÞ� ½12�

where X is any observable quantity.
Expressions similar to those given above may be derived easily from

partition functions in other ensembles.13,14 The choice of ensemble is very
important in calculations of hydration entropy, enthalpy, and heat capacity,
as discussed below. Many other quantities, including all free energies, are
ensemble invariant, with the choice of ensemble affecting only system size
dependence. For simplicity, the discussion here is therefore limited to the cano-
nical ensemble except in such cases where a true ensemble dependence exists.

Particle Insertion Methods

The test particle method of Widom18,19 and related particle insertion
schemes reviewed recently by Kofke and Cummings20 have been used exten-
sively to investigate the hydration of small nonpolar molecules. Widom’s
approach to this problem involves performing NVT-ensemble simulations of
pure water. A variety of solution properties may be investigated by measuring
the energy of solute molecules randomly inserted into the pure solvent. These
‘‘test particles’’ probe the system but do not affect the solvent trajectories. The
excess chemical potential of a solute molecule is thus calculated as

mex ¼ �kBT ln e�b�� 	
N

½13�

where the test particle energy � is the change in the total energy on addition of
the test particle. The brackets indicate an average over pure solvent configura-
tions, each containing N molecules.

The derivation of this relationship from the canonical ensemble partition
function is straightforward. It is given here to illustrate the type of partition
function manipulations commonly used in developing simulation expressions
for thermodynamic quantities. The excess chemical potential is defined as the
Helmholtz free energy difference between two ðN þ 1Þ-particle systems, one
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with a full solute particle and the second with a noninteracting, ideal-gas
solute particle:

mex ¼ ANþ1 � ANþid ¼ Aex
Nþ1 � Aex

N ½14�

The second equality follows since the ideal parts of each system’s partition
function are equivalent. Substituting Eq. [11] into this expression and rearran-
ging yields

mex ¼ �kBT ln
ZNþ1

VZN
½15�

Evaluating the ratio using Eqs. [7] and [12] gives

mex ¼ �kBT ln

Ð
drs e�b�ðrsÞ
� 	

V
½16�

where rs is the solute particle position. Widom’s formula follows directly by
noting that, for a spatially homogeneous system, e�b�ðrsÞ

� 	
does not depend

on rs. The integral in the numerator therefore yields a volume term that cancels
the V in the denominator.

While formally exact, Widom’s formula is of practical use only for small
solutes up to around the size of methane or xenon. This limitation exists
because the value of e�b�

� 	
is dominated by relatively few low-energy inser-

tions where there is little or no overlap between the solute and solvent mole-
cules. Sampling of these low energy states requires the spontaneous formation
of solute-sized cavities in the solvent, an event that is common for very small
solutes but becomes exceedingly rare as solute size increases.

In addition to solute excess chemical potentials, test particle methods
may be used to determine a variety of solution properties via Eq. [17]:

Ah isolution¼
Ae�b�
� 	

N

e�b�h iN

½17�

where A is the value of an observable quantity. The averages on the right-hand
side are again taken over pure solvent configurations. Among its many uses,
this expression may be used to calculate solute–solvent21 and solute–
solute19,22 radial distribution functions, with the latter requiring the simulta-
neous insertion of pairs of test particles. This is discussed further in the section
on potential of mean force calculations.

Alternative test particle expressions for use in NPT- and NVE-ensemble
simulations have also been derived, with relevant expressions given in Frenkel
and Smit.14 Local density fluctuations play an important role in generating sol-
vent configurations that are favorable for solute insertion. When the length
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scale of density fluctuations is large relative to the simulation box length,
either due to small system size or being in the vicinity of a critical point, a con-
stant pressure approach is required. The NVE-ensemble expression is useful
for conventional (microcanonical) MD simulations.

For hard-sphere solutes, the test particle energy � has only two possible
values, infinity or zero, depending on whether the solute overlaps with a sol-
vent molecule. In this case, Eq. [13] becomes

mex ¼ �kBT ln p0 ½18�

where p0 is the probability that there are no solvent molecules within the over-
lap distance of the test particle. The probability of insertion of a hard-sphere
solute is equivalent to the probability of finding a spontaneously formed cavity
of the appropriate size in the pure solvent. Analysis of cavity statistics in
liquids or near solutes provides a simple yet powerful approach for analysis
of hydrophobicity.23–25 The information theory (IT) of hydrophobicity,
reviewed by Pratt,5 provides a means for predicting the value of p0 for larger
solutes.

A key strength of the test particle approach is that quantities may be
evaluated simultaneously for a wide range of solutes from a single pure water
simulation. This is particularly useful for evaluation of theoretical models of
hydrophobic hydration as a function of either solute size or the strength of
solute–solvent attractions. Nevertheless, the test particle approach is severely
limited in its applicable size range. Treatment of larger solutes requires
use of thermodynamic integration or free-energy perturbation methods, of
which the test particle approach is a special case. These methods are discussed
below. The overlapping distribution method20,26,27 is closely related to
Widom’s test particle method. The approach involves two simulations, one
of pure water as before and one with a single solute particle present. It is
easy to show that the chemical potential may be determined not only by the
insertion formula in Eq. [13] but also by a deletion formula

mex ¼ kBT ln eb�
� 	

Nþ1
½19�

where the N þ 1 subscript indicates that the average is calculated from the
solute–water system. As before, � is the difference in energy between the sys-
tems with and without the solute molecule included, although it is now calcu-
lated via a deletion process. Equation [19] is of little direct value in calculating
the chemical potential since pure solvent configurations are improperly
sampled in the N þ 1 molecule simulation.20 Nevertheless, the information
contained in the simulation may be used effectively as follows. Probability
distribution functions pNð�Þ and pNþ1ð�Þ for the solute particle energy are
calculated from the N and N þ 1 molecule simulations, respectively. The
information contained in pNð�Þ may be used to determine mex using
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Eq. [13]. These two functions have different ranges but are similar in form
in regions of equal �, where the phase spaces of the two systems overlap. It
can be shown that the excess chemical potential is related to these distribution
functions by

mex ¼ ln½pNþ1ð�Þ� þ �� ln½pNð�Þ� ½20�

This approach may yield a result for mex that is superior to the simple test
particle result if the overlap in the two distribution functions is significant.
Contrarily, if the distributions do not overlap significantly, it is difficult to
extract a reliable result from either the test particle or overlapping distribution
formulae, and an alternative approach like thermodynamic integration or the
staged insertion method is favored.

Particle insertion methods may also be used in spatially inhomogeneous
systems. In this case, the spatial variation in the excess chemical potential is
directly related to the potential of mean force for the solute molecule. The cal-
culation is more computationally intensive because the test particle insertion
energy � must be determined as a function of its position. The potential of
mean force, wðrÞ, is then given by

wðrÞ ¼ �kBT lnhe�b�ðrÞiN ½21�

where N now refers to all particles in the system except the test particles. A
similar expression gives the potential of mean force for a hard sphere or cavity:

wðrÞ ¼ �kBT ln p0ðrÞ ½22�

These equations may provide a fruitful approach for analyzing the spatial
variation of hydrophobicity in complicated biological systems.

Perturbation Methods

The test particle method is a special case of a more general free-energy
perturbation (FEP) technique. The free-energy difference between a reference
state (0) and a perturbed state (1) is given by

�A ¼ A1 � A0 ¼ �kBT ln e�b�U
� 	

0
½23�

where �U ¼ U1 � U0 and the 0 subscript indicates that the average is taken
over the unperturbed system configurations. The expression is exact, but sta-
tistically reliable results are obtained only for relatively small perturbations.
Widom’s test particle expression is recovered when the reference and per-
turbed states differ only by the absence and presence of a solute molecule,
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respectively. The derivation of this expression is therefore similar to that given
for Eq. [13]. The difference between states 0 and 1 in Eq. [23] may take on a
wide variety of forms, including movement along simple or complex structural
coordinates, simple or complex reaction coordinates, or creation/annihilation/
mutation coordinates.28 The method is also applicable to calculation of poten-
tials of mean force between nonpolar solutes and between nonpolar solutes
and interfaces. When particle insertion methods fail due to large solute size,
an efficient alternative is the staged insertion method in which the overall
insertion process is broken into multiple steps, with the perturbation method
used to determine the free-energy change for each step.20 The path between
initial and final states is specified using a coupling parameter l, with the choice
of l path impacting simulation efficiency. A common rule of thumb has been
to follow a path with roughly equal free-energy change in each step. This led
Pearlman and Kollman to develop a ‘‘dynamically modified windows’’ method
in which the l stepsize is adjusted as the simulation proceeds.29 More recently,
Lu and Kofke have argued that the optimal path is essentially one with equal
entropy differences in each stage rather than free-energy differences.30 Unfor-
tunately, entropy changes are difficult or impossible to assess a priori.

Reversing the roles of the reference and perturbed states in Eq. [23]
yields an alternative expression:

�A ¼ A1 � A0 ¼ kBT ln eb�U
� 	

1
½24�

The symmetry of these two equations implies that the calculation of free-
energy differences can be done in both ‘‘forward’’ and ‘‘reverse’’ directions.
However, while the two expressions are both exact, they are not equally reli-
able. Phase space considerations indicate that free-energy perturbation meth-
ods are best applied in the direction of decreasing entropy.30–32 In other
words, the accessible regions of phase space for the perturbed system should
lie completely within the accessible regions of phase space for the reference
system. This principle calls into question the common practice of averaging
results from forward and reverse free-energy simulations. In the event of
significant hysteresis, the results obtained in the direction of decreasing
entropy are more reliable.

Thermodynamic Integration

Thermodynamic integration (TI) provides another related method for
determining free energy differences in simulations.14,28 The approach involves
calculation of a free energy difference through integration,

�A ¼ A1 � A0 ¼
ð1

0

qAðlÞ
ql

� �
N;V;T

dl ½25�
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where l is a coupling parameter defined such that when l ¼ 0 the system is in
its desired initial state and when l ¼ 1 the system is in its desired final state. As
with the perturbation methods, free-energy differences may be calculated
along a wide variety of coordinates. Substituting Eq. [8] into the integrand
and evaluating the partial derivative yields

qAðlÞ
ql

� �
N;V;T

¼
Ð

drNðqUðrN; lÞ=qlÞ exp½�bUðrN; lÞ�Ð
drN exp½�bUðrN; lÞ� ½26�

¼ qUðlÞ
ql

� �
l

½27�

The TI approach therefore consists of performing a series of simulations with
l varying from 0 to 1, with qUðlÞ=ql evaluated for each value of l. The inte-
gration in Eq. [25] is then performed numerically to yield the desired free-
energy difference. As with FEP calculations, some care is required in choosing
an appropriate l path. Both TI and multistep FEP calculations can be
performed simultaneously as l is varied from 0 to 1, and often yield nearly
equivalent results. The TI method is illustrated through a calculation of the
methane-methane potential of mean force in water, displayed in Figure 4.
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Figure 4 Mean force (a) and potential of mean force (b) between two methane
molecules in water, from Smith and Haymet.45 The potential of mean force is calculated
by thermodynamic integration (TI) of the mean force and also from the free-energy
perturbation (FEP) method. TI and FEP quantities were calculated simultaneously from
the same simulations, with nearly identical results. Maxima and minima in the potential
of mean force correspond to separations where the mean force is zero.

54 Computing Hydrophobicity



The coupling parameter in this calculation is proportional to the solute–solute
distance. The top graph shows the mean force between the methane molecules,
equivalent to the average in Eq. [27]. Integration of the mean force as in
Eq. [25] yields the potential of mean force, �AðrÞ. Results for an FEP calcula-
tion are also displayed in the figure with nearly exact agreement observed
between the TI and FEP calculations.

The ‘‘slow growth’’ method developed by Straatsma, Berendsen, and
Postma33 is an interesting variant of the TI method. In slow growth, l is varied
continuously with each step during the simulation. The free-energy change is
still evaluated by numerical integration of Eq. [34], but the average in the inte-
grand is now ‘‘evaluated’’ over a single simulation step. The method should be
reliable as long as the variation of l is slow relative to the system relaxation
time, such that a quasiequilibrium is constantly maintained. A lack of hyster-
esis in forward and reverse slow-growth calculations is used to evaluate this
condition.

Free Energy and Structure

A simple and effective approach to determining free energies of hydro-
phobic interactions makes use of the relationship

�AðrÞ ¼ �kBT ln gðrÞ ½28�

where gðrÞ is the solute–solute radial distribution function. Radial distribution
functions are routinely calculated during the course of most computer simula-
tions, so this method is particularly convenient to implement. The disadvan-
tage is that the method is computationally tractable only for � 1 mol/L
solute concentrations, well above the experimental solubilities of nonpolar
solutes. Nevertheless, qualitative aspects of hydrophobicity are probably not
sensitive to solute concentrations in this range, and this approach has been
commonly used in hydrophobicity investigations.34–36

The relationship in Eq. [28] can be used for a single solute pair if simula-
tions are performed using the umbrella sampling technique.37 In this method,
the solute–solute distance is constrained to lie within a small window, allow-
ing for the efficient calculation of gðrÞ over that restricted distance range. The
effect of the constraint is subtracted from the calculated wðrÞ after the fact.
Results from several overlapping windows may be combined to yield the
full potential of mean force.

Entropy and Energy

Entropies of hydration and association are considered to be one of the
primary signatures of hydrophobicity. The goal of many simulations is there-
fore the decomposition of calculated free energies into their entropic and
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energetic (or enthalpic) parts. This process is much more demanding compu-
tationally than free-energy calculations, but has become feasible since the early
1990s. Several complementary approaches to the free-energy decomposition
have been developed, each involving calculation of either the energy or the
entropy, with the other being determined from Eq. [29]:

�A ¼ �E � T�S ½29�

Results of entropy and energy calculations are strongly ensemble-
dependent,38–40 a fact not always appreciated in the literature. In particular,
it can be shown readily that the difference between the constant-pressure
solvation energy ð�EÞP and the constant volume solvation energy ð�EÞV is
given by

�Eð ÞP� �Eð ÞV¼ �V
Ta
k

� P

� �
½30�

where �V is the partial molar volume of the solute, a is the thermal expansion
coefficient, and k is the isothermal compressibility. The term on the right-hand
side of this expression is generally significant even if �ðPVÞ (the difference
between the energy and enthalpy) is negligible.41,42

The simplest approach to free-energy decomposition involves calculating
the energy difference directly:

�E ¼ U1h i1� U0h i0 ½31�

This method is plagued by large uncertainties in calculated configurational
energies that grow with system size. Nevertheless, it has been used success-
fully, most recently by Durell and Wallqvist to investigate the hydrophobic
hydration of krypton.43

The energy change can also be evaluated using a perturbation expression
for �E:21,44,45

�E ¼ U1 expð�b�UÞh i0

expð�b�UÞh i0

� U0h i0 ½32�

Fluctuations in the configurational energy calculated using this method are
again wide and grow with system size, but are correlated in each separate
average. The resulting cancellation in noise may lead to an improvement in the
efficiency of the method when compared to Eq. [31]. In test particle investiga-
tions of hydrophobic hydration, Eq. [32] is sometimes written in an alternative
form in order to reveal the magnitude of the solvent reorganization energy:

�E ¼ �U expð�b�UÞh i0

expð�b�UÞh i0

þ dUww expð�b�UÞh i0

expð�b�UÞh i0

½33�
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Here dUww ¼ U0 � Uh i0 is the instantaneous deviation of solvent energy from
its average value. The first term in this expression gives the average solute–
solvent energy, and is sometimes incorrectly equated with the full solvation
energy, �E. The second term yields the solvent reorganization energy, and
is related directly to the classic iceberg hypothesis discussed in the hydropho-
bic hydration section below. While the first term may be calculated precisely,
the second term’s uncertainty is large and grows with system size.

It is possible to derive a formula for the entropy that is analogous to the
previously described TI expression for the free energy:44,45

�T�S ¼ 1

kBT

ð1

0

dl UðlÞ qUðlÞ
ql

� �
l
� UðlÞh i qUðlÞ

ql

� �
l

� �
½34�

This expression allows for a free-energy decomposition from a single-free
energy simulation, and it gives results essentially equivalent to those obtained
from Eq. [32], including divergence with system size.

All of the methods for free energy decomposition described above suffer
from the similar drawback of large statistical uncertainty that grows with
system size. An alternative approach that avoids this problem begins with
the entropy relationship:

q�A

qT

� �
N;V

¼ ��S ½35�

The partial derivative may be evaluated numerically from the values of the free
energies calculated at two or more temperatures. This finite-difference
approach has the disadvantage of requiring multiple simulations but can
be quite efficient if a large spread in temperatures is used. Care must be taken
in cases where there is substantial curvature in the temperature dependence of
the free energy, specifically when the heat capacity is large. This situation is
common when treating hydrophobic effects, but can be dealt with effectively
by using an algorithm that brackets the desired temperature:

��S ¼ �AðT þ�TÞ ��AðT ��TÞ
2�T

½36�

Values of �T in the range of 10–50 K are reasonable, limited by the conver-
gence of �A at low temperature. More recently, it has become common to cal-
culate free energies at many points over wide temperature ranges.15,46–49 In
this case, evaluation of entropy may be performed by first fitting the free
energy to a function and then evaluating the derivative in Eq. [35] analytically.

The value of the entropy calculated from the finite-difference expression
depends on how the system’s volume varies with temperature. To facilitate
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comparison with experiment, the volume is usually adjusted either to keep the
pressure constant, or to track the liquid density along the liquid–vapor coex-
istence curve. These two strategies yield nearly identical results below the nor-
mal boiling point. In contrast Eqs. [32] and [34] give dramatically different
results, a consequence of imposing a constant volume constraint. The finite-
difference approach is therefore preferred when comparison with experimen-
tal entropies is being made.

Heat Capacity

Explaining heat capacities associated with hydrophobic hydration or
hydrophobic interactions is essential to validating any model of hydrophobi-
city. One approach to calculating heat capacities takes advantage of the rela-
tionship between free energy and heat capacity:

�CV ¼ �T
q2�A

qT2

 !
V;N

¼ T
q�S

qT

� �
V;N

½37�

The second derivative in this expression may be evaluated by taking analytical
derivatives of a function fit to temperature-dependent free-energy data or,
through a finite difference algorithm, as in Eq. [38]:

�CV ¼ �T
�AðT þ�TÞ � 2�AðTÞ þ�AðT ��TÞ

�T2
½38�

While these expressions are simple, determination of heat capacities is so
computationally intensive that very few such calculations have been reported
to date.

HYDROPHOBIC HYDRATION

The origin of hydrophobicity, in even the most complicated biological
systems, is due to the unique solvation properties of water. As a result, simula-
tions of hydrophobic hydration are arguably among the most important com-
putational investigations related to hydrophobicity. The systems studied to
date have often been simple, such as noble gases in water, but in spite of
this simplicity the observed behavior is surprisingly rich and complex.

Several key issues have been addressed in these published simulations,
but the one receiving most attention involves the structural origin of the
entropy of hydrophobic hydration. The classic perspective on this issue, origin-
ally put forth by Frank and Evans as the ‘‘iceberg’’ hypothesis,50 involves an
ordering of water molecules in the hydration shell of the nonpolar solute.
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While still widely accepted in some form, this perspective has been criticized
(often in favor of a view that water’s small size determines its unique beha-
vior).51,52 More recently, simulations have been used to probe issues related
to the heat capacity of solvation. A large heat capacity leads to enthalpy-
dominated hydration thermodynamics at high temperatures and also to a
high-temperature convergence of solvation entropies for various-sized solutes.

This section includes a survey of several representative investigations of
the hydrophobic hydration of simple atomic solutes and methane, with
methane modeled as a spherical solute. A thorough review of early work in
this area has been presented by Blokzijl and Engberts,3 but more recent
reviews are also available.5,53 We present these studies in order of increasing
complexity of the calculations, beginning with simple structural results,
followed by calculations of hydration free energy, entropy, and energy
(enthalpy), and ending with heat capacity. The section concludes with a brief
survey of simulation results for water ‘‘mimics’’—spherically symmetric sol-
vents designed to reproduce water’s density and molecular size but without
hydrogen bonding and the associated orientational structure.

Structure

Much of the early work on hydrophobic hydration of atomic solutes
involved hydration structure. Results of many investigations are surprisingly
similar given the wide range of interaction potentials used. Around small
solutes, water is remarkably adept at maintaining its hydrogen bond network
by orienting its O��H bonds in a direction tangential to the surface of the
solute.21,54–58 This tangential orientation is revealed by the overlap of the first
peaks in solute-oxygen and solute-hydrogen radial distribution functions and
in orientational correlation functions for first shell waters. Further analysis
of the solvation structure has, in some instances, revealed a resemblance to
clathrate–hydrate cage structures, a picture consistent with the ‘‘iceberg’’
hypothesis.50 Several studies have also indicated that hydrogen bond strengths
are increased slightly in the first hydration shell of nonpolar solutes. Dynami-
cal studies indicate that both translational and rotational mobility of water
molecules in the first solvation shell are reduced somewhat compared to
bulk water values, but those studies still clearly reveal liquid rather than solid
like behavior.59 In this sense the ‘‘iceberg’’ term for the solvation shell is mis-
leading and is no longer widely used.

In contrast to its behavior around small solutes, water is unable to main-
tain a complete hydrogen bonding network around large solutes or near
hydrophobic interfaces. Two investigations of the transition region between
small solutes and interfaces have been reported recently.49,60 Using the two-
dimensional ‘‘Mercedes Benz’’ (MB) model of water, Southall and Dill
observed that at low temperatures water molecules around a small solute
are moderately effective at maintaining the three hydrogen bonds typical of
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the bulk 2D structure. Orientational correlation functions indicate that the
water’s hydrogen bonding arms typically straddle the small solute. As the
solute size is increased, however, the extent of hydrogen bonding in the first
solvation shell is reduced gradually. For a flat nonpolar interface, a nearly
complete sacrifice of one hydrogen bond was observed for MB water mole-
cules next to the surface. These features are clearly displayed in Figure 5, taken
from a recent review by Southall, Dill, and Haymet.53

Ashbaugh and Paulaitis recently reported a thorough analysis of the
hydration structure around large solutes comprised of frozen clusters of
‘‘methane’’ spheres.60 Their analysis was given in terms of proximal radial

Figure 5 Solute size dependence of hydrophobicity for the 2D MB model (from Southall
and Dill53): (a) transfer thermodynamics and experimental surface tension of water
(inset box); (b) angular orientations of first-shell waters; (c) histograms of the numbers
of hydrogen bonds among first-shell waters; (d) the most probable structure of a water
adjacent to a hydrophobic solute for a series of solutes. Solute size increases to the right
for the first three columns, with the fourth column corresponding to a nonpolar
interface.
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distribution functions (RDFs) in which each solvent atom is assigned only to
its nearest-neighbor solute sphere. Perhaps surprisingly, solute–oxygen proxi-
mal RDFs change only slightly with solute cluster size, while solute-hydrogen
proximal RDFs broaden and shift outward somewhat, indicative of a breakage
of water structure around the larger solutes.

Hydration Free Energy

There exist numerous calculations of hydration free energies of atomic
solutes at room temperature, only a few of which are referenced
here.21,25,46,48,56,61,62 Good qualitative agreement is found among most calcu-
lations on similar solutes regardless of the water model or the free-energy
method used. The test particle method is the most popular approach for treat-
ing small solutes, although multistep FEP and TI methods have also been used
(for larger particles, these latter methods are required).

Jorgensen, Blake, and Buckner61 reported a staged FEP calculation of the
hydration free energy of methane, which was treated as a Lennard-Jones (LJ)
sphere. The size (s) and well depth (E) LJ parameters were each scaled linearly
with the coupling parameter lambda:

sðlÞ ¼ ls ½39�

and

EðlÞ ¼ lE ½40�

Simulations were run at 11 values of l ranging from 0 to 1 with a 0.1 stepsize.
Incremental free-energy changes were calculated in both the forward and
reverse directions. Their results are displayed in Figure 6, where the free energy
change is noted to be nonlinear with respect to l, rising steeply near l ¼ 1.
Additional calculations (not shown) were therefore performed at l ¼ 0:85
and l ¼ 0:95 to improve the statistical uncertainty. With these additional
points, the average of forward and reverse direction results yielded a ‘‘best
value’’ of 2.27 � 0.3 kcal/mol for the hydration free energy, in good agreement
with the experimental value of 1.93 kcal/mol.38 Recall that results for particle
insertion are often superior to those for particle deletion and that averaging of
forward and reverse results may therefore not be justified.31,32

Arthur and Haymet’s calculation of the hydration free energy of methane
illustrates how various simulation pathways are possible in the staged FEP
approach.62 In their work, l was used to scale the full methane–water inter-
action potential rather than the size and well-depth parameters separately.
Results displayed in Figure 7 show a very different l dependence for the
free energy compared to the results of Figure 6, yet the final answer (1.92 �
0.72 kcal/mol) is still in good agreement with the experimental value. Their
calculation was performed only in the more reliable insertion direction.

Hydrophobic Hydration 61



0.0 0.2 0.4 0.6 0.8 1.0

3
Forward

Reverse

Average
2

1

0

−1

∆G
 (

kc
al

/m
ol

)

λ

Figure 6 Free energy of particle insertion for methane calculated using a staged FEP
method; the free-energy change is shown for both the forward (l ¼ 0 ! 1) and reverse
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Figure 7 The free energy of solvation of methane calculated using the staged insertion
method of Kofke and Cummings.20 Each point represents the cumulative free energy
calculated from all stages up to the value of the coupling parameter l. Taken from
Arthur and Haymet.62
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Durell and Wallqvist recently evaluated krypton hydration free energies
using the TI method.43 Particle creation or annihilation using the TI approach
requires some care so as to avoid a divergent integrand in Eq. [27].63 For the
LJ potential, the exponent on l must be 
4 for the integrand to be bounded.
Durell and Wallqvist calculated mex along four different paths, three of which
were polynomial paths suggested by Resat and Mezei,64 while the fourth
involved a separation-shifted path proposed by Zacharias, Straatsma, and
McCammon.65 Each path yields a unique l dependence of the integrand
in Eq. [27]. Nevertheless, the integrals in each of the four cases give nearly
identical mex values (1.0–1.1 kcal/mol) and uncertainties (�0:6–0:7 kcal/
mol), with the calculated chemical potentials all being somewhat lower than
the experimental value of 1.68 kcal/mol. While the choice of TI path is impor-
tant, particularly near l ¼ 0, a variety of paths can provide comparable and
reliable free energies.

Interpretation of solvation free energies for different gases, along the
noble gas series for example, is complicated by the simultaneous variation
of both size and well depth parameters. Some recent studies have therefore
attempted to establish trends in solvation free energy in which these two prop-
erties are isolated. For example, Arthur and Haymet62 used the TI method to
create a three-dimensional free-energy surface for a LJ solute in their central
force model 1 (CF1) over a size range of 0–5 Å and a well-depth range of
0.1–0.5 kcal/mol. That surface is displayed in Figure 8. It was found that
the free energy increases sharply with s for values greater than �3 Å, while
the variation with E is smaller and essentially linear.

In a related study, Garde et al. used a test-particle approach to perform a
systematic comparison of hydration free energies for nine different LJ particles
along with their WCA and HS equivalents.48 Their results indicate that the
attractive part of the LJ solute–water potential is very well modeled as a per-
turbation of the WCA result. The excess chemical potential was calculated

Figure 8 Hydration free energy as a function of solute–water size [s/Å] and well depth
[E/(kcal mol�1)] parameters (taken from Arthur and Haymet62).
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using the test particle method as a function of temperature for four LJ solutes
differing only in their E parameters. These values were compared with excess
chemical potentials estimated from

mex
LJ � mex

WCA þ Uatth iWCA ½41�

where the last term is the average solute-water energy of attraction for the LJ
particle calculated from the WCA simulation. Specifically, we obtain

UattðrÞ ¼ ULJðrÞ � UWCAðrÞ ½42�

Agreement between mex
LJ calculated from the test particle method and from

Eq. [41] was nearly exact. Garde et al. also found that the contribution of
the attractive part of the solute–water interaction energy to mex is reasonably
well represented by even a very crude model and that this contribution shows
little temperature dependence. These observations suggest that purely repul-
sive models capture many of the essential features of hydrophobicity for small
solute molecules. Note, however, that this conclusion does not hold for large
solutes or for interfaces.60,66

Wallqvist and Berne used an FEP method to determine hydration free
energies for hard-sphere cavities as a function of both size and shape.67

They observed a nearly linear relationship between solute surface area and
hydration free energy for both spherical and ellipsoidal cavities. The hydration
free energy also exhibited a significant dependence on solute curvature.67

Hydration Entropy and Energy

In their study of krypton hydration, Durell and Wallqvist also reported a
calculation of the enthalpy of hydration evaluated by the direct method of Eq.
[31].43 Both constant volume and constant pressure enthalpies were deter-
mined by varying the volume of the krypton solution. Their results are dis-
played in Table 1. The enthalpy of hydration in the constant volume case
(�6:3 � 1:3 kcal/mol) is significantly more exothermic than in the constant
pressure case (�3:4 � 1:3 kcal/mol). The latter number agrees very well
with the experimental value of �3:3 kcal/mol, also obtained at constant pres-
sure. The calculated enthalpies of solvation were decomposed into solute–
water and water–water (solvent reorganization) terms. The solute-water con-
tribution is comparable and favorable (�5:4 kcal/mol) in both the constant
volume and constant pressure calculations. The solvent reorganization term,
in contrast, shows a large ensemble dependence. In the constant-pressure
case, the solvent reorganization term has a value of þ2:0 � 1:3 kcal/mol.
The overall favorable enthalpy of hydration of krypton at constant pressure
therefore results from the solute–water attractions rather than from a

64 Computing Hydrophobicity



stabilization of the hydrogen bond network. This is in apparent conflict with
solvent ordering predicted by the ‘‘iceberg’’ hypothesis.

Tomás-Oliveira and Wodak used a test particle approach and Eq. [32] to
investigate the free energy, energy, and enthalpy of solvation of small cavities
as a function of size in both water and hexane.68 The test particle approach
allows for determination of thermodynamic quantities as a function of cavity
size from a single simulation. Their results illustrate the importance of solva-
tion entropy when determining solvation free energies near room temperature.

Several studies of the temperature dependence of hydration free energies
or (equivalently) solubilities have been reported.15,46–49,56 Entropies and
enthalpies of hydration can, of course, be extracted from these data using
methods described above. The earliest study by Swope and Andersen,56 albeit
restricted in scope due to limited computational resources, still revealed the
expected trends for Ar, Kr, and Xe solutes. In particular, the solubility
decreased with temperature near room temperature and showed a positive
curvature in a plot of solubility versus T. This behavior was not reproduced
for He nor for Ne.

The more recent study by Guillot and Guissani46 successfully reproduced
experimental solubility data for the noble gases (Ne through Xe) and for
methane along the saturation curve with temperatures ranging between
room temperature and the critical point for the water model they used. In
addition, they observed solvation free-energy maxima for all solutes at
�400 K. The finite difference method therefore yields hydration entropies
near zero at this temperature, in good agreement with experimental predic-
tions. Guillot and Guissani also decomposed their calculated values of mex

into entropic and energetic terms using Eq. [32]. The constant-volume values
of �T�S are large and positive for all temperatures, in contrast to the finite-
difference result. This illustrates very clearly the ensemble dependence of the

Table 1 Solvation Thermodynamics for Krypton in TIPS3P Water and an LJ Mimic,
at T ¼ 300 Ka;b

�G �H �S
(kcal/mol) (kcal/mol) (cal/mol �K)

TIPS3P water
Constant V 1.1 (0.6) �6:3 ð1:3Þ �25 ð5Þ
Constant P 1.1 (0.6) �3:4 ð1:3Þ �15 ð5Þ

LJ water
Constant V �0:2 ð0:4Þ �6:4 ð0:5Þ �21 ð3Þ
Constant P �0:2 ð0:4Þ �3:4 ð0:5Þ �10 ð3Þ
aAll simulations were performed at constant volume, with the constant P and constant V labels

referring to the change in system volume on addition of the solute.
bValues in parentheses are the statistical uncertainty (2s).
Source: From Durell and Wallqvist.43
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hydration entropy, and it reinforces the conclusion that proper interpretation
of hydration entropies requires considerable care.69

Garde et al. used a test particle approach to determine the temperature
dependence of mex for hard spheres with sizes comparable to Ne, Ar, methane,
and Xe.70 Results were compared to information theory predictions and used
to locate an entropy convergence temperature of �400 K. Silverstein, Haymet
and Dill studied hydration thermodynamics of a small nonpolar solute in two-
dimensional MB water as a function of temperature. The computational
advantages of the two-dimensional model are most dramatically evident in
this study. The calculated hydration free energies were decomposed to yield
precise entropy and enthalpy contributions that in turn were used to generate
a temperature-dependent heat capacity of hydration. The enthalpy and entro-
py terms are fully consistent with the behavior of three-dimensional models.
The heat capacity of solvation is large, as expected in hydrophobic hydration,
and shows a temperature dependence that is qualitatively consistent with a
Muller’s two-state model71 for hydrogen bonding in water.10 This model’s
profound prediction of a turnover in the heat capacity of solvation in super-
cooled water has yet to be tested either experimentally or in three-dimensional
water model simulations.

Southall and Dill identified an interesting solute size dependence for
hydration thermodynamics in the 2D MB water model,49 illustrated in
Figure 5. For small solutes at low temperature the hydration free energy is
unfavorable due to a large, negative entropy of hydration, as expected. As
the solute size is increased, however, the entropy and energy contributions
to the free energy both increase, leading to a change in sign of both terms.
For larger solutes, the unfavorable hydration free energy is dominated by an
unfavorable energy term. The thermodynamic changes with solute size corre-
late well with the structural changes discussed above. It is unclear whether the
behavior of the 2D MB model is general, however. For example, Wallqvist and
Berne calculated the free energy and entropy of hydration of spherical cavities
and found that both the free energy and the entropy of hydration increase
steadily with cavity radius.72

Hydration Heat Capacity

As noted in the Simulation Methods section, calculation of heat capacity
is computationally demanding and there are few examples of such investiga-
tions in the literature. Silverstein, Haymet and Dill10 determined the heat
capacity of solvation of a nonpolar solute in the 2D MB water model using
Eq. [37]. Their results are presented in Figure 9. The heat capacity is positive
and decreases with temperature at higher temperatures, an observation that is
in qualitative agreement with experimental hydration heat capacities. The
turnover in the heat capacity at low temperatures has not yet been confirmed
experimentally because such measurements have not been performed much
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below room temperature. Heat capacity calculations will certainly become
more common as computational resources continue to increase.

Water Mimics

Several publications have reported direct comparisons of the solvation
properties of water with atomic liquids that have been designed to reproduce
the density and molecular size of water.24,25,43 The rationale behind some of
these investigations is to test the hypothesis that the unfavorable entropy of
hydration has its origin in the hydrogen bonding structure of water around
nonpolar solutes. If atomic liquids with no hydrogen bonding capability can
mimic water’s solvation properties, credibility is given to the competing ‘‘small
size’’ hypothesis put forth by Lee.52 Madan and Lee (ML) measured cavity
formation free energies as a function of cavity radius in water and in two LJ
solvents.25 Calculated free energies were nearly equal in water and in its clo-
sest LJ mimic (s ¼ 2:8), suggesting that hydrogen bonding plays only a small
role in solvation free energies. Durell and Wallqvist subsequently published a
similar comparison using a LJ model that, unlike the ML study, also matched
the pressure of water at 300 K.43 They calculated the free energy, enthalpy,
and entropy of solvation for krypton in both LJ and water solvents (see
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Figure 9 Constant pressure excess heat capacity of solvation as a function of reduced
temperature (T�, defined in Ref. 15) for a nonpolar solute in 2D MB water. Simulation
data (symbols) are from Silverstein, Haymet, and Dill,15 while the solid line is the result
of an information theory approximation as given by Arthur and Haymet.82 Taken
from Arthur and Haymet.82
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Table 1). The computed solvation free energy is 1.3 kcal/mol smaller in the LJ
solvent, a difference traced to entropic contributions to the free energy.
Solvation is entropically unfavorable in both solvents, but more so in water.
These results are consistent with water hydrogen bonding playing an impor-
tant, but not exclusive, role in hydrophobicity.

While these results are interesting, comparison between water and its
mimics is of limited use for investigating the full range of hydrophobic effects.
Any spherically symmetric water mimic should be effective in reproducing
water properties only near the thermodynamic state point for which it is para-
meterized. Pratt and co-workers showed that many features of hydrophobicity
are linked closely to the equation of state for water.5 From this perspective, it
is not surprising that simple solvents designed to mimic water at a particular
state point behave similarly to water regardless of the presence or absence of
hydrogen bonding. Such solvents will, however, generally fail to reproduce the
water equation of state over a wide range of conditions.

HYDROPHOBIC INTERACTIONS

The term ‘‘hydrophobic interaction’’ refers to the solvent-induced inter-
action between nonpolar solutes in water. While experimental information on
hydrophobic hydration is readily available, comparable information is nearly
nonexistent for hydrophobic interactions, particularly for simple systems
where interpretation of data would be unambiguous. This is due to the very
low solubility of nonpolar solutes in water. Computational investigations
have therefore been used extensively to investigate the nature of hydrophobic
interactions. Early calculations in this area dealt primarily with the free energy
of association, or potential of mean force (PMF), between pairs of nonpolar
solutes in water, and have been reviewed by Blokzijl and Engberts.3 More
recent calculations have included evaluations of the entropy and heat capacity
of association.

As discussed in the methods section, computational techniques used to
study hydrophobic interactions are similar to those used for hydrophobic
hydration. Most commonly, TI and FEP methods have been adapted to yield
a PMF by equating the coupling parameter l or the perturbation coordinate,
respectively, to the radial distance between two solute particles. The applica-
tion of a test particle approach or of Eq. [28] is also possible. Methods for
decomposition of the free energy of association into its entropic and energetic
(enthalpic) parts are equivalent to those discussed above, as are techniques for
determining the heat capacity.

Models of hydrophobic hydration including the ‘‘iceberg’’ hypothesis
and its more modern variants have led to several qualitative predictions for
pairwise hydrophobic interactions. The first and simplest prediction based
on free-energy arguments is that nonpolar solutes should tend to associate
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together in water, thus reducing the total solvent accessible surface area.
Furthermore, if the negative entropy of hydration for nonpolar solutes is asso-
ciated with solvent ordering, then the reduction in surface area on association
should be accompanied by an increase in the entropy. This yields an entropic
driving force for pairwise solute association. Similar arguments suggest that
the heat capacity of association should be negative.

Free Energy of Association

A surprising result that emerged from the earlier work on hydrophobic
interactions is that there is little or no tendency for nonpolar solute association
at low concentration. For example, simulation results led Watanabe and
Andersen to discuss the ‘‘hydrophobic repulsion’’ between krypton atoms in
water.73 Calculated PMFs have typically supported a similar conclusion
(discussed below). Aggregation of methane in water was observed to occur
at higher concentrations,74 suggesting that there may be cooperative aspects
to the solute aggregation process. This conflicts, however, with results from
Shimizu and Chan who explicitly observed anticooperativity in three-body
hydrophobic interactions.75

Smith and Haymet reported a calculation of the free energy, energy, and
entropy of association for methane in water.45 Their free-energy results
(displayed in Figure 10) were calculated using the TI method and are typical
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Figure 10 Methane–methane potential of mean force (PMF) using data from Smith
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of PMFs reported in the literature. There is a clear contact pair minimum at
�4 Å, a subtle solvent separated minimum at �7 Å, with a significant barrier
in between. The solvent-induced contribution to the PMF, generated by sub-
tracting the direct methane–methane interaction from the PMF, is also dis-
played in the figure. Solvent effects stabilize the contact pair minimum but
they are destabilizing in the barrier region. The overall solvent-induced contri-
bution to methane association may be calculated from the second osmotic
virial coefficient

B2 ¼ �2p
ð1

0

expð�bwðrÞÞ � 1½ �r2dr ½43�

where wðrÞ is the potential of mean force and b ¼ 1=kBT. Numerical integra-
tion of the PMF in Figure 10 gives a value for B2 of �44 Å3 compared with a
value of �65 Å3 calculated for the direct methane–methane interaction. This
comparison indicates that the solvent makes a net repulsive contribution to the
PMF even though the contact methane pair at �4 Å is stabilized relative to the
direct interaction. Lüdemann et al. obtained similar results at 300 K for a
somewhat different methane model.76

Nonpolar solute PMFs have also been calculated using test particle meth-
ods. Forsman and Jönsson calculated PMFs for neon and for various hard-
sphere solutes in water by a method where pairs of test particles were inserted
into a pure water system.22 It is unclear whether this method is computationally
feasible for larger solutes. Shimizu and Chan used both FEP and test particle
methods to calculate methane–methane PMFs.77 Their test particle method
involved simulations of an aqueous system containing one explicit solute
atom. The test particle insertion free energies were calculated as a function
of distance from the explicit solute. Good agreement for the two independent
approaches was reported. The advantage of the test particle method is most
evident from their subsequent study of many-body effects in hydrophobic
interactions where a broad range of three-body configurations were studied
simultaneously by inserting test particles near a dimer of fixed geometry.75

Entropy and Energy of Association

Numerous studies have been designed to reveal the entropy and energy
of hydrophobic interactions. The simplest approach used in these studies is to
investigate the temperature dependence of aggregation in finite-concentration
solutions. Skipper reported the first such calculation on methane solutions.34

He observed that aggregation became more favorable as T was increased,
indicating that the process is endothermic. Interpretation of this type of study
is obfuscated by the contribution of many-body solute–solute effects, however.
Smith and co-workers reported the first calculations of the entropy and the
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energy of pairwise hydrophobic interactions.44,45 Their calculations were per-
formed using the direct (Eq. [31]), TI (Eq. [34]), and finite-difference (Eq. [36])
methods, all giving comparable results; the finite-difference approach was
slightly more efficient. The computed free energy [�AðrÞ, presented as the cav-
ity PMF], energy [�EðrÞ], and entropy [�T�SðrÞ] of association are displayed
in Figure 11. For clarity, the direct methane-methane interaction has been sub-
tracted from the free energy and energy. The entropy of association was found
to be strongly attractive at short separations, in agreement with the qualitative
predictions discussed above. The energy of association was slightly repulsive in
the same region.

The calculations by Skipper and by Smith and co-workers were all per-
formed under conditions of constant volume, but the question as to their
applicability under a constant-pressure constraint has been raised. Dang
calculated the temperature dependence of methane-methane PMFs at both
constant volume and constant pressure.78 At constant volume, the PMF
showed a contact pair stabilization as the temperature was increased from
300 to 330 K, in agreement with the results of Smith and co-workers. Raising
the temperature at constant pressure led to little change in the PMF, implying
that the constant pressure entropy of association is small. Rick and Berne per-
formed a similar calculation at constant pressure using the umbrella sampling
technique.79 Their results contradicted Dang’s, indicating an entropic driving
force for association 3 times larger than found in constant volume simulations.
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More recent constant pressure simulations77,36 generally agree with results
from Smith and co-workers, however, suggesting that pressure effects do not
change the qualitative conclusions from entropy of association calculations.

Heat Capacity of Association

Calculations of the heat capacity of association for nonpolar solutes in
water have been published. The earliest study, by Lüdemann and co-workers,
does not explicitly report heat capacities of association but gives instead
temperature-dependent entropies and enthalpies of association from which
qualitative heat capacities can be extracted.76 They performed a series of con-
stant volume simulations of the methane–methane PMF at temperatures ran-
ging from 250 to 500 K. A finite-difference approach was then used to
determine the entropic and energetic contributions to the free energy. Results
near room temperature are in good agreement with those from Smith and co-
workers discussed above. As the temperature was increased, the favorable
entropy of association disappeared and was replaced by an energetic attrac-
tion. The results indicate that the constant volume heat capacity of association
is negative, in agreement with the qualitative prediction given above.

Subsequent simulations by Rick80 and by Shimizu and Chan77,81

attempted to evaluate the constant-pressure heat capacity of association,
with conflicting results. Rick used a finite-difference method with PMF simu-
lations of methane in water to evaluate the entropy and heat capacity of asso-
ciation at three temperatures ranging within 283–313 K. The heat capacity of
association was found to be very large and negative for all solute pair separa-
tions within 7 Å. Shimizu and Chan also used a finite-difference approach to
determine the entropy and heat capacities of association from PMFs at tem-
peratures of 278–388 K. Their entropies of association were in qualitative
agreement with several other calculations including Rick’s. In contrast to
Rick, however, they observed a small, positive heat capacity of association
for the contact pair around 4 Å separation, and a larger, positive heat capacity
in the barrier region around 6 Å. A positive heat capacity of association is
interesting because it disagrees qualitatively with solvent accessible surface
area predictions. It is to be noted that the temperature range for these two
studies is somewhat different; the apparent conflict, while possibly related to
the difficulty of heat capacity calculations, might also indicate a temperature
dependent heat capacity.

Pressure Dependence of Hydrophobic Interactions

Pressure-induced denaturation of proteins and related problems are pos-
sibly linked to hydrophobicity. As a result, there has been considerable interest
in studying the pressure dependence of hydrophobic interactions, highlighted
by two studies. The first, by Rick, involved calculation of the pairwise
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methane–methane PMF in water at pressures ranging from 1 atm to 7 kbar.80

He observed that increasing the pressure stabilizes the solvent separated
methane pair while having relatively little effect on the contact pair. In addi-
tion, he observed a significant pressure dependence on the entropy of associa-
tion, with the favorable entropy of association at 1 atm pressure essentially
eliminated at 7 kbar. Ghosh and co-workers investigated an aqueous methane
solution with pressures ranging from 1 to 8000 atm.36 Their system consisted
of 10 methane and 508 water molecules. PMFs were calculated using Eq. [28],
and their results were in good agreement with Rick’s despite the potential pro-
blems arising from possible many-body solute effects. The solvent separated
methane pair was stabilized significantly with increasing pressure, and there
was an associated increase in the barrier height between contact and solvent
separated configurations. Increasing the pressure was also found to reduce the
magnitude of the entropic driving force for association. In a previous study,
Ghosh and co-workers showed that increasing the pressure has a dramatic
effect on solute aggregation for large (s ¼ 5 Å) solutes.35 At low pressures, the
solutes clearly formed an aggregate, but at high pressures the solutes did not
aggregate but instead preferred solvent separated configurations. This finding
has possible implications for the mechanism of protein denaturation at high
pressures.

OUTLOOK

Our tutorial review of ‘‘computing hydrophobicity’’ is now completed.
At the time of writing, debate over the origins of hydrophobicity continues
in the literature, some in the absence of experimental data (i.e., lacking rele-
vance). As the power of computers continues to expand, it is highly likely that
the molecule-level understanding of hydrophobicity and the simple concepts
needed to explain it will be developed via computer simulations. Applications
of these simulations to combinations of hydrophobicity and hydrophilic
effects, so important in biology, will also increase dramatically in the near
future.
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Lipeng Sun and William L. Hase

Department of Chemistry and Department of Computer Science,
Wayne State University, Detroit, Michigan 48202

INTRODUCTION

Classical Trajectory Simulations

Since the early 1960s1,2 classical trajectory simulations, with Monte
Carlo sampling of initial conditions, have been widely used to study the uni-
molecular and intramolecular dynamics of molecules and clusters; reactive and
nonreactive collisions between atoms, molecules, and clusters; and the
collisions of these species with surfaces.3,4 For a classical trajectory study of
a system, the motions of the atoms for the system under study are determined
by numerically integrating the system’s classical equations of motion. These
equations are usually expressed in either Hamilton’s form5

qH

qqi
¼ � dpi

dt
and

qH

qpi
¼ dqi

dt
½1�

where H, the sum of the system’s kinetic T(p;q) and potential V(q) energies, is
the system’s Hamiltonian

H ¼ Tðp; qÞ þ VðqÞ ½2�
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or Newton’s form5

mi
d2qi

dt2
¼ � qVðqÞ

qqi
½3�

For the most general case (see section on integrating classical equations of
motion), T depends on both the momenta p and coordinates q.6 The index i
in the equations above is the number of coordinates or conjugate momenta for
the Hamiltonian. If Cartesian coordinates are used, this number is 3N, where
N is the number of atoms.

An ensemble of trajectories is calculated in a trajectory simulation, with
each trajectory in the ensemble specified by the system’s initial set of momenta
p and coordinates q. The initial ensemble of p and q is chosen to represent the
experiment under investigation or chosen so that a particular dynamical attri-
bute of the system may be studied. Distribution functions are usually sampled
randomly in choosing the ensemble of initial conditions and the methodology
of sampling is often called Monte Carlo sampling. Procedures for choosing tra-
jectory initial conditions to represent unimolecular and bimolecular reactions,
and gas–surface collisions are described in the section on trajectory initial
conditions.

In addition to choosing initial conditions for the ensemble of trajectories,
a trajectory computer program requires a potential energy function V(q) for
the system under study, an algorithm for numerically integrating the classical
equations of motion (i.e., either Hamilton’s or Newton’s form), and proce-
dures for transforming a trajectory’s final values for momenta and coordinates
into properties that may be compared with experiment. These properties
include vibrational, rotational, and relative translational energies of the pro-
ducts of a chemical reaction, the lifetime of a vibrationally excited molecule,
and energies in a molecule’s vibrational modes versus time. The above compo-
nents for a classical trajectory simulation are incorporated in the general che-
mical dynamics computer program VENUS.7 A flowchart of the components
of a trajectory computer program is given in Figure 1.

Traditional Approach: Analytic Potential Energy Surfaces

The traditional approach for performing classical trajectory simulations
is to represent V(q) by either an empirical analytic function, with adjustable
parameters, or as an analytic function fit in total or in part to ab initio poten-
tial energies. A widely used empirical potential is the London–Eyring–Polanyi–
Sato function for triatomic systems.8 Since the number of independent coordi-
nates is 3N � 6 for a nonlinear system with N atoms, to fit V(q) with potential
energies for each internal coordinate at NP different positions, a total of
(NP)3N � 6 ab initio points are required. Thus, only for reactive systems with
a small number of atoms is it practical to derive V(q) completely from
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high-level ab initio calculations. Potential energy functions derived in this
manner include those for H þ H2 ! H2 þ H,9 F þ H2 ! HF þ H,10

O þ H2 ! HO2 ! H þ O2,11 and HCO ! H þ CO.12

An approach often used for large polyatomic systems is to derive, from
ab initio calculations, an analytic potential energy function for the few degrees
of freedom thought to be most critical for the dynamics, and use empirical

Figure 1 Flowchart for a classical trajectory computer program, in which an ensemble
of trajectories is calculated in a parallel/distributed environment. The potential
energy function may be analytic (MM), quantum-mechanical (QM), or a QMþMM
or QM/MM combination.
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analytic potential energy terms for the remaining degrees of freedom.13 This
latter empirical potential is usually fit to experimental data such as force con-
stants, equilibrium geometries, and bond energies. A representative analytic
potential energy function of this form is the one developed for SN2 nucleo-
philic substitution reactions of the general type14

X� þ CH3Y ! XCH3 þ Y� ½4�

and applied to the specific reactions Cl� þ CH3Cl,14 Cl� þ CH3Br,15 and
F� þ CH3Cl.16 The general form of the potential is illustrated here for
Cl� þ CH3Cl. The potential is a model chosen to represent global properties
of the potential energy surface (PES) and then refined by fitting ab initio and
experimental data. A potential energy contour diagram in terms of the two
C��Cl distances is shown in Figure 2.

Two particularly important coordinates for the Cla
� þ CH3Clb !

ClaCH3 þ Clb
� potential energy function are the Cla��C and C��Clb bond

distances denoted by ra and rb, respectively. The terms ga ¼ ra � rb and
gb ¼ rb � ra measure the extent of reaction. They also conveniently reflect
the symmetry of the reactions; that is, ga is þ1 for reactants, 0 for the

Figure 2 Cl� þ CH3Cl potential contour plot in terms of the two C��Cl distances. The
remaining coordinates are set to optimized values as a function of ga ¼ ra � rb. Solid
contour lines are at 3-kcal/mol intervals; dashed contour lines are at 15-kcal/mol
intervals. (From Ref. 14.)
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transition state, and �1 for products. A general model analytic function for a
symmetric SN2 reaction, Cl�a þ CH3Clb, may be written as

Vtotal ¼ VClðra; gaÞ½1 � SLRðgaÞ� þ VClðrb; gbÞ½1 � SLRðgbÞ�
þ Vfðra; gaÞ½1 � SLRðgaÞ� þ Vfðrb; gbÞ½1 � SLRðgbÞ�
þ VClCl½1 � SLRðgaÞ�½1 � SLRðgbÞ� þ VyðgaÞ
þ VHC þ Va

LRSLRðgaÞ þ Vb
LRSLRðgbÞ þ DMC þ Dc ½5�

where the interaction of Cl� with CH3Cl is divided into two regions: the long-
range (electrostatic) region outside the cluster area where ga (or gb) is greater
than the value of g for the cluster denoted by gc and the short-range (bond-
forming) region where ga (or gb) < gc. The long-range potential terms are given
by Va

LR and Vb
LR. For large separations, these terms approach the ion-dipole

potential. The [Cl��CH3��Cl]� short-range interaction is described by the
VCl Morse terms for the Cla��C and C��Clb stretches, the Cla��CH3 and
CH3��Clb angular deformation terms are denoted by Vf, and the Cl��Cl
interaction term by VClCl. The HCH bending potential of the CH3 moiety is
given by Vy. VHC represents the potential for the three HC stretches. DMC is
the ClC bond energy for CH3Cl (methyl chloride), and Dc is the ClC bond
energy for cluster.

The long-range potential terms are smoothly connected to the short-
range potential terms by the SLR switching functions. For small ga, SLR(ga)
approaches zero, effectively turning off Va

LR and turning on the short-range
potential functions for Cla. However, for large ga where SLR(ga) ¼ 1.0 and
SLR(gb) ¼ 0, the total potential function becomes

Vtotal ¼ VClðrb; gbÞ þ Vfðrb; gbÞ þ VyðgaÞ þ VHC þ Va
LR þ DMC þ Dc ½6�

Here, the potential function contains terms for the short-range CH3��Clb inter-
actions, long-range Cl�a þ CH3Clb interactions, Vy, and VHC.

When ga and gb are both less than gc, the VClCl term is completely turned
on, since both SLR terms equal zero. For this region, the potential becomes

Vtotal ¼ VClðra; gaÞ þ VClðrb; gbÞ þ Vfðra; gaÞ þ Vfðrb; gbÞ
þ VClCl þ VyðgaÞ þ VHC þ DMC þ Dc ½7�

In the intermediate range where Cl�a is approaching methyl chloride and
SLR(ga) is changing from 1.0 to 0.0, all terms in the potential function contri-
bute except for Vb

LR.
The function in Eq. (5) is also used for Cl� þ CH3Br and F� þ CH3Cl,

except the CH3Clb moiety is replaced by CH3Br for the former and F� replaces
Cl�a for the latter. These two potential functions are unsymmetric with respect
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to both the reactant and product asymptotic limits and the strongly interacting
central barrier and ion–dipole complex regions.

The abovementioned approach for representing PESs, for large poly-
atomics, has several ambiguities and difficulties. For many reactions there
may be considerable uncertainty in identifying the coordinates most critical
for the dynamics and for which an ab initio potential is required. Furthermore,
sufficient experimental information is usually lacking to uniquely parameterize
the potential for the remaining ‘‘noncritical’’ coordinates. Instead, a ‘‘realistic’’
potential for these coordinates is constructed by combining terms such as
Morse functions and valence force field potentials, which span the complete
coordinate space, but only require a small number of parameters. There are
also uncertainties in representing the potential energy couplings between
the critical and noncritical coordinates, and it is hoped that the important
couplings for the reaction dynamics are retained in the ab initio potential
for the assumed critical degrees of freedom.

Direct Dynamics Simulations

With the increased speed of computers it has become possible to use elec-
tronic structure theory directly in classical trajectory simulations, without the
need for an empirical or analytic potential energy function or having to distin-
guish between critical and noncritical degrees of freedom. The trajectories are
integrated ‘‘on the fly’’ with the potential energy V(q) and its derivatives qV/qqi

obtained directly from electronic structure theory. This approach was first
used by Wang and Karplus17 in 1973 to study the 1CH2 þ H2 ! CH4 reac-
tion. With direct dynamics, the ‘‘unadulterated’’ classical dynamics is obtained
for a particular electronic structure theory. Thus, there is no uncertainty in
testing different electronic structure theory methods when comparing the
dynamics with experiment, nor is there a need to fit potential energy points
for the electronic structure theory to an analytic potential energy function.

Two approaches have been advanced for performing direct dynamics
simulations on a potential energy surface for a single electronic state.18 The
Born–Oppenheimer (BO) direct dynamics approach is considered here. It
bears a close resemblance to traditional classical trajectory simulations and
electronic structure calculations. At each step of the trajectory integration
the potential energy V(q) and gradient qV(q)/qqi are obtained by optimizing
the electronic wavefunction.

For the second approach, called Car–Parrinello (CP) direct dynamics,19

the electronic wavefunction and nuclear motion are propagated simulta-
neously. When applying this method within the framework of density func-
tional theory (DFT), the wavefunction is propagated by using fictitious
electronic degrees of freedom with arbitrary masses. In ab initio and semiem-
pirical electronic structure theories, the wavefunction is expanded in a set of
basis functions and then as a superposition of zeroth-order electronic state
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wavefunctions to treat electron correlation. The CP method is applied by pro-
pagating the resulting expansion coefficients. A drawback of the CP method
is that, unless the CP wavefunction is reoptimized at each integration step,
energy may flow from the nuclear coordinates to the fictitious electronic
degrees of freedom, thereby leading to CP dynamics that may occur on multi-
ple BO potential energy surfaces.

The remainder of this chapter is organized as follows. Born–Oppen-
heimer direct dynamics is reviewed in the next (second major) section.
Approaches for integrating the classical equations of motion are outlined in
the third major section (on integrating classical equations of motion). Algo-
rithms for choosing initial conditions for ensembles of trajectories representing
unimolecular and bimolecular reactions are reviewed in the fourth major
section. The adequacy of classical mechanics for describing the dynamics of
chemical processes, and the possible importance of quantum effects, is re-
viewed in the fifth major section. The final section surveys several applications
of direct dynamics.

BORN–OPPENHEIMER DIRECT DYNAMICS

As discussed above, in Born–Oppenheimer (BO) direct dynamics the
potential energy V(q) and derivatives qV/qqi for each step of the trajectory
integration are obtained by optimizing the electronic wavefunction. For a
Born–Oppenheimer electronic structure theory calculation the electronic
energy Ee(q) is determined variationally from

EeðqÞ ¼
ceðqÞHeðqÞceðqÞh i

ceðqÞceðqÞh i ½8�

Adjustable parameters in the electronic wavefunction ce(q) are varied to mini-
mize Ee(q) for the set of coordinates q. The potential energy for the system is
given by

VðqÞ ¼ EeðqÞ þ VNNðqÞ ½9�

where VNN(q) is the nuclear–nuclear repulsion energy. It is straightforward to
show that the derivative qVNN(q)/qqi is analytic and, depending on the electro-
nic structure theory and computer program used for the simulations, the deri-
vative qEe(q)/qqi may be determined directly as Ee(q) is calculated without the
need for a finite difference. The gradient qV/qqi needed to integrate the classi-
cal equations, in Eqs. [1] and [3], is the sum of qEe(q)/qqi and qVNN(q)/qqi.

Direct dynamics was first applied by Wang and Karplus17 in a study of
the 1CH2 þ H2 ! CH4 reaction. The CNDO semiempirical electronic struc-
ture theory was used for this calculation. Two years later, Warshel and
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Karplus20 employed this level of theory to study the photoisomerization of
2-butene. The first ab initio direct dynamics study is that by Leforestier21

for the H� þ CH4 !CH4 þ H� SN2 nucleophilic substitution reaction.
Because the electronic energy Ee(q) in Eq. [8] and its derivatives must be

calculated at each integration step of a classical trajectory, a direct dynamics
simulation is usually very computationally intense. A standard numerical inte-
gration time step is �t ¼ 10�16 s. Thus, if a trajectory is integrated for 10�12 s,
104 evaluations of Eq. (8) are required for each trajectory. An ensemble for a
trajectory simulation may be as small as 100 events, but even with such a small
ensemble 106 electronic structure calculations are required. Because of such
computational demands, it is of interest to determine the lowest level of elec-
tronic structure theory and smallest basis set that gives an adequate represen-
tation for the system under study. In the following parts of this section,
semiempirical and ab initio electronic structure theories and mixed electronic
structure theory (quantum mechanical) and molecular mechanical (i.e.
QM/MM)22 approaches for performing direct dynamics are surveyed.

Semiempirical Electronic Structure Theory

The compute time required for a Hartree-Fock calculation scales as the
fourth power of the number of basis functions,23 which arises from the large
number of two-electron integrals that must be calculated. In the semiempirical
method, the computational cost is decreased by reducing the number of these
integrals.24 This is accomplished in part by explicitly considering only the
valence electrons and representing them by a minimal basis set. The computa-
tional effort is further reduced by neglecting the products of all basis functions
on different atoms. To compensate for these approximations, the remaining
integrals are made into parameters, and their values are assigned on the basis
of calculation or experimental data.

The above approximations form the basis for the neglect of diatomic dif-
ferential overlap (NDDO) model, which has been used in BO direct dynamics
simulations. The MNDO,25 AM1,26 PM3,27 and MNDO/d28 methods are
parameterizations of the NDDO model. As discussed above, these semiempi-
rical methods require parameters for electron integrals. In the MNDO frame-
work, the parameters are monoatomic and include one-electron integrals
(Uss and Upp), two-electron one-center integrals (Gss, Gsp, Gpp, Gp2, and
Hsp), core–core repulsion range parameters (a), Slater orbital exponents
(zs and zp), and resonance integral multipliers (bs and bp). These terms are
described in detail elsewhere.29 The parameters were optimized in the
MNDO method25 to reproduce observed heats of formation, dipole moments,
ionization potentials, and molecular geometries. As this method was unable to
correctly describe hydrogen bonding, two to four spherical Gaussian terms
were added for each atom in order to correct for the excessive repulsions at
van der Waals distances. In this improved model, called AM1,26 these terms
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act as van der Waals attraction and dispersion operators, and therefore mimic
long-range correlation effects. For these MNDO and AM1 methods, para-
meters were derived for one element at a time while keeping the parameters
for the remaining atoms constant. In contrast for PM3,27 a more recently
derived NDDO model, all the parameters are treated as adjustable which
were derived simultaneously for many elements in order to reproduce large
amounts of experimental data. The functional form for PM3 is the same as
for AM1, except that only two Gaussians are assigned to each atom.

The principal parameterization of the MNDO, AM1, and PM3 models is
for s and p functions. Though they have parameters for some metals, these are
often based on very limited experimental data and, thus, may be very unreli-
able. Thiel and co-workers28,30 have developed MNDO/d,30 which more accu-
rately represents metals. With s, p, and d functions, MNDO/d typically
employs 15 parameters per atom. MNDO/d is one of the MNDO methods
in the computer program package MNDO97.28 OM1 and OM2 methods,
which go beyond MNDO methods by employing orthogonalization correc-
tions, are also included in MNDO97.

The above NDDO models may be viewed as functionals with parameters
for fitting a potential energy surface. This approach was first suggested by
Gonzalez-Lafont, Truong, and Truhlar31 as a means to represent reaction
path properties for a specific reaction. This has been called the NDDO-SRP
approach, where SRP denotes specific reaction parameters. NDDO-SRP
potentials have been derived by either varying only a subset of the previously
fitted NDDO parameters or refitting all of the parameters. An example of the
former is the original work by Gonzalez-Lafont, Truong, and Truhlar.31 Here
an AM1-SRP potential was derived for the Cl� þ CH3Cl SN2 reaction by mod-
ifying the one-center, one-electron energies Ux

pp, for the p-orbitals, on atom X
with X ¼ C and Cl. The remaining AM1 parameters were used without change.
The UCl

pp parameter for Cl was readjusted to make the calculated electron affi-
nity for Cl agree with the experimental value. The UC

pp parameter for C was
adjusted to fit the classical barrier height at the [Cl-- -CH3---Cl]� saddle point.

The strategy of refitting all the NDDO parameters was used to represent
the H2CO ! H2 þ CO potential energy surface.32 Eight semiempirical models
were derived by introducing SRPs into the AM1 and PM3 Hamiltonians to
improve the fit to selected ab initio and experimental properties. Five were
obtained by fitting to points distributed over the HF/6-31G** surface for
the reaction and a sixth by only fitting to data at the HF/6-31G** stationary
points. The HF/6-31G** level of theory was used in an ab initio direct
dynamics study of the H2 þ CO product energy distributions in H2CO disso-
ciation,33 and these models were constructed to ascertain if they would give
the same product energy distribution as the ab initio surface. The final two
models were obtained by fitting to experimental data and CCSD(T) results,34

since calculations at this level of theory are in excellent agreement with experi-
ment. The revised semiempirical parameters are given in Reference 32.
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Semiempirical models have also been modified to more accurately repre-
sent a potential energy surface (PES) by using SRPs and including additional
analytic potential energy functions. This approach was used to develop an
accurate PES for trimethylene and its geometric and structural isomerization
pathways.35 The SRPs involved changing original resonance integrals Hmn,
for atomic orbitals m; n located on different atoms, to H0

mn ¼ bmnHmn, where
bmn depends only on m and n. These bmn parameters were determined for the
resonance integrals between H atoms of trimethylene and the terminal C
atoms, and for the resonance integrals between the terminal C atoms, by fitting
experimental and CASSCF potential energy surface properties.

Semiempirical electronic structure theory will continue to be important
in direct dynamics simulations. The compute time for an NDDO method
scales according to N2, which makes these methods attractive for large mole-
cular systems. Since integrals are parameterized in the semiempirical methods,
they are much faster than ab initio approaches. For example, the relative com-
pute time required to calculate a single energy for protonated glycine is
1 : 11 : 20 at the AM1, B3LYP/6-31G* and MP2/6-31G* levels of theory.
The semiempirical methods may be used in QM/MM models (see discussion
below) to represent very large molecular systems. An example of such a direct
dynamics study is the O(3P) reaction with an n-hexylthiolate self-assembled
monolayer (SAM).36

Ab Initio Electronic Structure Theory

A variety of ab initio methods have been used in Born–Oppenheimer
direct dynamics simulations. Since ab initio methods require substantial com-
pute time, a balance must be found in choosing a method that is computation-
ally tractable and also provides meaningful results. In the Hartree–Fock model
each electron sees only the average field of the other electrons. In reality, the
electrons must explicitly avoid each other because of their mutual Coulombic
repulsion; hence their motions are correlated. The difference between the
Hartree–Fock energy and the exact energy is called the correlation energy.
The Hartree–Fock wavefunction can be improved by taking a linear combina-
tion of Slater determinants, yielding a configuration interaction (CI) wavefunc-
tion:37

� ¼ a0�0 þ
X

ia

aa
i �

a
i þ

X
i< j;a< b

aab
ij �

ab
ij þ    ½10�

where �a
i ;�

ab
ij ; . . . are Slater determinants in which occupied spin orbitals

fi;fj; . . . in the reference determinant �0 are replaced by unoccupied or vir-
tual spin orbitals fa;fb; . . . (i.e., determinants that are singly excited, doubly
excited, etc.). In a standard CI calculation �0 is first determined by a Hartree-
Fock calculation. The coefficients aa

i ; a
ab
ij . . . for the excited Slater determinants
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are then determined variationally. In the multiconfiguration self-consistent
field (MCSCF) method,38,39 a variational calculation is performed by simulta-
neously minimizing the energy with respect to the coefficients cni for the mole-
cular orbitals, and the aa

i ; a
ab
ij ; . . . coefficients, Eq. [10]. An approach for

selecting the necessary configurations in the MCSCF method is the complete
active space (multiconfiguration) self-consistent field (CASSCF) method,40–42

in which the molecular orbitals are partitioned into active and inactive spaces.
A full CI is performed in the active space with the MCSCF optimization. The
molecular orbitals for the active space usually are chosen as some of the high-
est occupied orbitals and some of the lowest unoccupied orbitals, while in the
inactive space, the molecular orbitals are chosen in the way that they are either
doubly occupied or empty.

Although the CI energy is variational, it is not size-consistent; that is, ECI

for X and Y at large separation is not the sum of the ECI for X and ECI for Y
computed individually. This is often a severe problem in computing reaction
energies, and it is thus desirable to have a CI-like method that is size-consis-
tent. This role is filled by the coupled-cluster (CC)43 method and the quadratic
configuration interaction (QCI) approach.44 The MCSCF method is size con-
sistent. Instead of choosing the HF wavefunction as the reference in the CI
method, the MCSCF wavefunction can also be chosen as the reference.
This method is defined as the multireference configuration interaction
(MRCI) method.45,46 The MRCI method is not size-consistent.

The coefficients aa
i ; a

ab
ij ; . . . in Eq. [10] can also be determined by pertur-

bation theory. A convenient zeroth-order Hamiltonian operator ĤH0 is the Fock
operator, since the Hartree–Fock wavefunction is an eigenfunction of the Fock
operator, as are excited configurations derived from it by replacing occupied
orbitals with virtual orbitals. This choice of ĤH0 yields Møller–Plesset (MP)
perturbation theory,47,48 in which the correlated motion of the electrons is
the perturbation. A calculation of this type is referred to as MP2, MP3, or
MP4 if it is performed through second, third, or fourth order, respectively.
The MPn methods are size-consistent.

The relative compute times required for different ab initio methods are
compared in Table 1 for the Cl� þ CH3Cl SN2 reaction.49 This comparison
illustrates the utility of the MP2 method. Though it gives more accurate struc-
tures and energies than does HF, the MP2 calculations do not require appre-
ciably more compute time; that is, only approximately a factor of 3 more is
needed for Cl� þ CH3Cl. At the present time, a very high-level electronic
structure theory such as CCSD(T) is not feasible for direct dynamics. Multi-
configuration ab initio methods are practical for direct dynamics simulations,
as illustrated by the use of CASSCF in a recent study of the unimolecular
dynamics of the cyclopropyl radical.50

In contrast to the wavefunction approach for electronic structure calcu-
lations, described above, the density functional theory (DFT) is based on the
Hohenberg-Kohn theorem51 that the complete ground-state properties of the

Born–Oppenheimer Direct Dynamics 89



system are determined by the electronic density. However, the universal energy
density functional EðrÞ is not known and approximate models for EðrÞ must
be used. Kohn and Sham52 proposed that the functional for a system of elec-
trons can be written as:

EKS½r� ¼ TS½r� þ Ees½r� þ Exc½r� ½11�

where the terms on the right-hand side are the kinetic energy of non interacting
electrons, the electrostatic energy, and the so-called exchange-correlation
energy, respectively. For practical purposes further approximations such as
local density approximation (LDA)53 and gradient corrected or generalized
gradient approximations (GGA)54–57 models are proposed for treating the
exchange-correlation term in the above equation. Widely used formulas
such as SVWN,53 B88,54 B3/ACM,55 BLYP,54,56 and PW9157 are examples
of these models.

Due to the delocalized nature of quantum mechanical particles, the
abovementioned quantum-mechanical calculations are highly computationally
demanding. To apply quantum mechanical calculations to very large molecu-
lar systems linear scaling methods have been developed. The key point to
achieving linear scaling is the localization of the electronic degrees of freedom.
By dividing the system into subsystems determined by local Hamiltonians58–60

or by using localized orbitals,61,62 the OðN3Þ computational effort for diago-
nalizing Kohn–Sham/Fock matrices can be reduced to OðNÞ. The time-
consuming evaluation of exchange and Coulomb integrals are approximated
by using either a hierarchical approach,63 fast multipole moment (FMM)

Table 1 D3h and Cs Barrier Properties for Cl� þ CH3Cl and CPU Time for Direct Dynamics at
Different Levels of Electronic Structure Theorya

D3h Barrier Cs Barrier
——————————— ————————————— Relative

Theory Energyb C��Cl C��H Energyc C��Cl Cl��C��Cl CPU Time

HF/3-21þG* 2.06 2.40 1.06 54.70 2.70 92.8 1.00
HF/6-31G* 3.57 2.38 1.06 56.34 2.73 95.2 1.14
HF/6-31G** 3.42 2.38 1.06 55.30 2.75 96.8 1.49
HF/6-31þG* 6.59 2.39 1.06 57.78 2.79 98.6 1.59
HF/6-311þþG** 6.91 2.39 1.06 56.78 2.81 101.2 8.52
MP2/6-31G* 4.54 2.31 1.07 55.56 2.42 85.1 3.05
MP2/6-31G** 4.52 2.30 1.07 55.04 2.41 85.4 4.24
MP2/6-31þG* 7.66 2.32 1.07 56.68 2.44 84.2 4.58
MP2/6-311þþG** 7.96 2.30 1.07 56.01 2.40 84.7 23.14
CCSD(T)/367cGTOs 3.16 2.31 1.07

a Energies are in kcal/mol, distances in angstroms, and angles in degrees. The relative direct
dynamics CPU time is for calculations using one processor on a SGI/MIPS R10000 workstation.

b The classical potential energy barrier. Including harmonic zero-point energies lowers the
barrier by 0.3–0.5 kcal/mol.

c The classical potential energy barrier. Including harmonic zero-point energies lowers the
barrier by �1–2 kcal/mol.
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method,64,65 or recursive bisection method (RBM).66,67 A detailed description
of various linear scaling methods for large system calculations can be found in
the review article by Yang.68 Because a large number of energy and gradient
evaluations are required for each classical trajectory, the importance of linear
scaling in Born–Oppenheimer direct dynamics simulations is obvious.

QM þ MM and QM/MM Methods

Many chemical reactions proceed in the condensed phase and involve a
large number of atoms. It is not possible to directly simulate such a system
with the current computational power. Instead, simplified theoretical models
are designed to simulate these reactions. A model system is usually chosen to
include at least several thousand atoms in order to correctly represent the phy-
sical and chemical properties of the real system. Quantum mechanics provides
the exact molecular properties at the microscopic level. However, accurate
ab initio methods can only treat mid-sized systems (i.e., �100 atoms). Semi-
empirical and DFT methods can extend the system size under study up �1000
atoms, but that is still not big enough even for simplified model systems. Mole-
cular dynamics or Monte Carlo classical trajectory simulations have been
successfully used to study large systems of �106 atoms.69 However, their
applications are limited to the use of molecular mechanical force fields that
do not correctly describe bond cleavage or chemical reaction. Therefore, it
is natural to develop methods that combine quantum and molecular
mechanics potentials to simulate complex reaction systems. QM þ MM and
QM/MM methods, in which atoms that are most important to reactions are
treated by quantum mechanics (QM) and the rest by molecular mechanics
(MM), have proven to be powerful tools for modeling large systems. The
QM/MM approach was first developed by Warshel and Karplus.22 Since the
early 1980s there has been a rapid development in the QM/MM and
QM þ MM methods and these methods have been used to simulate reactions
in solution70 and in enzymes.71 There are several excellent reviews on the
QM/MM method.72,73 In the following, we give only a brief description of
the method.72–75

When using a point mass model for the nuclei and electrons, and ignor-
ing spin–orbit coupling, the full Hamiltonian operator with nuclei and electro-
nic degrees of freedom can be written as

ĤH ¼ � �h2
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where i,j and a; b are indexes for electrons and nuclei, respectively. Making the
Born–Oppenheimer approximation, the second term in this equation is
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ignored. The electronic Hamiltonian is then

ĤH ¼ � �h2
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For convenience the last term in Eq. [13], which is the nuclear repulsion VNN,
is also included in the electronic Hamiltonian operator. This is because, for
each nuclear configuration, this term is a constant and does not affect the
electronic wavefunction.

By partitioning the system into QM and MM parts, as shown in Figure 3,
the above Hamiltonian operator can be expressed as

ĤH ¼ ĤHQM þ ĤHQM=MM þ ĤHMM ½14�

ĤHQM takes the same form as Eq. [13] except that the indexes are only for QM
atoms. The total energy of the system is

E ¼ h�jĤHQM þ ĤHQM=MMj�i þ EMM ½15�

where � is the normalized wavefunction, which is a function of electronic
coordinates r, QM nuclear coordinates RQM and MM nuclear coordinates
RMM. Using the Born–Oppenheimer approximation, the potential energy sur-
face is obtained by integrating the first term on the right hand side of Eq. [15]
over all the nuclear configurations of RQM and RMM.

ĤHQM/MM depends on the QM/MM model. If the QM/MM interaction
force field is represented by only long-range point charges qM and Lennard-
Jones potentials in the MM part, then it can be written as

ĤHQM=MM ¼ �
X qMe

riM
þ
XZaqMe2

RaM
þ
X aaM

R12
aM

� baM

R6
aM

� �
½16�

Figure 3 Partition of the QM/MM
system.
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Furthermore, if there is no charge interaction between the QM and MM parts,
then the above QM/MM Hamilton operator is solely determined by nuclear
coordinates, so that

E ¼ h�jĤHQMj�i þ EQM=MM þ EMM ½17�

This is called the QM þ MM model.
The integrals in Eqs. [15] and [17] are evaluated by solving the time-

independent Schrödinger equation. Depending on the system size and accuracy
requirement, ab initio, DFT or semiempirical methods can be used to solve the
Schrödinger equation and determine the system’s potential energy surface. The
quantum mechanical methods are described in the previous two sections and
are not repeated in this section. The direct dynamics calculation is performed
with this potential energy surface.

With the current development of quantum chemistry, it is routine
to evaluate Eq. [17] for the QM þ MM model and the application of
QM þMM direct dynamics is described in the section on trajectory initial
conditions. However, in many situations the QM/MM boundary must cut
through a chemical bond in a molecule. In such a case, the total electronic
Hamiltonian cannot be divided as for the QM þ MM model. Different
approaches have been developed to treat QM/MM interactions when the
boundary cuts through a chemical bond. Gao et al.76 identified a criterion
for treating a covalent bond at the QM/MM boundary. In general, a reason-
able boundary method should be able to mimic the real physical properties of
the model system as closely as possible. The obtained properties such as vibra-
tional frequencies, energies, and electronegativities, etc. should be comparable
to experiment or accurate ab initio calculations.

A straightforward boundary method involves the ‘‘link atom.’’74,77 In
order to saturate the valence of the QM atoms at the boundary, an unphysical
atom is added to each of the boundary QM atoms. Typically a hydrogen atom
is chosen as the link atom, since the broken bond is usually a s bond, such as a
C��C bond in enzymes. These link atoms can be invisible to MM atoms; that
is, there are no interactions between the link atoms and MM atoms and con-
straints may be included to keep the hydrogen atom lying along the direction
of the covalent bond. Allowing the link atom to move freely will change the
actual dynamics and the QM/MM interaction forces, while adding constraints
to the link atom is unphysical and omits forces between the MM and QM
regions. The net effect is that the QM fragment does not experience the actual
electrostatic environment. An approach to overcome the problem has been
proposed by Eichinger et al.78 They transformed the force exerted on the
link H atom to the C atom by the scaled-position link atom method (SPLAM),
to mimic the real C��C force field between the QM and MM boundary. Instead
of using hydrogen as the link atom, there are other approaches that use halo-
gen like atoms to saturate the valence of the QM part.79

Born–Oppenheimer Direct Dynamics 93



In order to overcome the defects arising from adding unphysical link
atoms to the system, efforts have been made to search for better approaches.
In the spirit of the hybrid orbital approach suggested by Warshel and Levitt,80

Rivail et al.81–83 proposed a local self-consistent field (LSCF) approach, in
which a frozen hybrid orbital was used to saturate the free valence at the
QM/MM boundary. The local frozen density orbitals were obtained by opti-
mizing other smaller model systems and were assumed to be transferable to
larger systems. The LSCF method has been implemented with semiempirical,
ab initio, and DFT methods.81,83,84 Gao et al.76,85 developed a generalized
(semiempirical) hybrid orbital (GHO) approach. In their method, the local
bond orbitals are made more transferable by optimizing the semiempirical
parameters of the boundary atoms. The difference between LSCF and GHO
is the partition at the QM/MM boundary. In LSCF the boundary atom is a
QM atom with the hybrid local bond orbital pointing toward the MM
atom, while the boundary in the GHO approach is treated as both a QM
and MM atom. In addition to the hybrid orbital approach, Zhang, Lee, and
Yang86 developed a pseudobond method. Instead of using a hydrogen atom to
saturate the free valence of a s bond, the boundary MM atom was replaced by
a pseudobond with its effective core potential optimized to mimic the real
QM/MM boundary interaction. Zhang, Lee, and Yang86 tested their approach
by constructing the pseudobond for a carbon boundary atom. Other similar
approaches can be found in papers by Antes and Thiel87,88 and Bersuker
et al.89 Gordon and co-workers90 have developed the effective fragment
potential (EFP) method for developing QM/MM potential models. The
method describes solvation as well as QM/MM links across covalent bonds.

Even though the above methods have been successfully applied to some
large-scale simulations, additional general theoretical developments are still
needed. When the QM/MM boundary bisects the chemical bond, none of
the above methods can treat the boundary exactly. Introducing link atoms
or predetermined MOs does not reflect the real QM/MM interaction poten-
tials. Unphysical flow of energy between the QM and MM parts may occur
at the QM and MM boundary and the effect of such dynamics is not predict-
able. However, as an approximate method to simulate large chemical systems,
the QM/MM and QM þ MM approaches can provide valuable information
such as energies, structures, reaction rates, and chemical dynamics.

INTEGRATING THE CLASSICAL
EQUATIONS OF MOTION

As discussed above in the chapter introduction, either Newton’s or
Hamiltonian’s equations may be numerically integrated for direct dynamics
simulations. There is also a choice of coordinate representation, such as
Cartesian, internal,6 or instantaneous normal modes.91,92 Though potential
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energy functions are easily conceptualized in internal coordinates, it is efficient
only for small molecular systems to integrate the classical equations of motion
in these coordinates. This is because, in internal coordinates, the kinetic energy
depends on the coordinates as well as the momenta, and the representation of
the kinetic energy is very complex.6 Thus, either Cartesian or instantaneous
normal-mode coordinates are commonly used to integrate the classical equa-
tions of motion. Procedures for these numerical integrations have been
recently surveyed,18,93 and only cursory descriptions are given here.

Cartesian Coordinates

A number of different algorithms (for example the Gear and Adams-
Moulton methods)18,93 are commonly used to integrate Hamilton’s equations
of motion, Eq. [1], in Cartesian coordinates. These are predictor-corrector
algorithms requiring two evaluations of the gradient terms qV=qqi during
each numerical integration step. The integration accuracy of these algorithms
is usually at fourth order or higher.

Symplectic integrators are often used to integrate the classical equations
of motion.94 Unlike the above numerical methods, symplectic integrators
preserve certain dynamical properties such as the phase-space volume,
which the exact trajectories are known to exhibit. The Verlet algorithm95 is
a symplectic integration scheme and is widely used to integrate Newton’s
equations of motion. Verlet’s algorithm for positions is obtained by writing
the Taylor series from t forward to t þ�t, and then the Taylor series from
t backward to t ��t, and then adding the expressions. The resulting
algorithm is

qiðt þ�tÞ ¼ 2qiðtÞ � qiðt ��tÞ � 1

mi

qV

qqi

� �
�t2 ½18�

The velocities _qqi are not needed to compute the trajectories, but they are useful
for calculating the kinetic energy and may be obtained from

_qqiðtÞ ¼
qiðt þ�tÞ � qiðt ��tÞ

2�t
½19�

Symplectic methods typically give good energy conservation for long time inte-
gration of large systems, and are superior to predictor–corrector nonsymplec-
tic schemes that yield a continuous drift in energy. However, symplectic
integration typically leads to fluctuations in the energy, which, although small
in comparison to the long-term drift observed for nonsymplectic integrators,
are large compared to short-term drift. Thus, nonsymplectic algorithms are
favored when integrating small systems for short times.
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Instantaneous Normal-Mode Coordinates

Classical trajectories may also be calculated using instantaneous normal-
mode coordinates.96,97 The potential in a small region, defined by the trust
radius around a point q0 on the potential energy surface, can be expressed as

V ¼ V0 þ G�q þ 1
2�~qqF�q ½20�

where V0, G, and F are the potential, gradient and force constants at q0, and
�q ¼ q � q0 are the Cartesian displacements. Introducing normal mode co-
ordinates leads to separability of the equations of motions so that

€QQi ¼ �gi � o2
i Qi ½21�

for each normal mode i. Qi are the normal-mode displacements and, together
with the normal mode momenta Pi are integrated according to
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where P0
i is the momentum at t ¼ 0. It is, therefore, a simple procedure to inte-

grate the normal modes once the gradient and force constants are known. The
Cartesian coordinates and momenta are obtained from the standard transfor-
mation from normal to Cartesian coordinates.6

Since the harmonic approximation is, in general, valid for only a small
region around q0 (i.e., the trust radius is small), the integration efficiency is
limited by the small step size required to maintain a reasonable accuracy.96

The efficiency of this technique was improved by introducing a corrector
step into the integration scheme.98 A further enhancement in the algorithm
is obtained by not determining the force constant matrix F at each step, and
only accurately updating it after multiple integration steps. The matrix is
approximated at the intermediate steps.99
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TRAJECTORY INITIAL CONDITIONS

Procedures for selecting initial values of coordinates and momenta for an
ensemble of trajectories has been described in detail in recent chapters entitled
‘‘Monte Carlo Sampling for Classical Trajectory Simulations’’100 and ‘‘Classi-
cal Trajectory Simulations: Initial Conditions.’’101 In this section a brief
review is given of methods for selecting initial conditions for trajectory simu-
lations of unimolecular and bimolecular reactions and gas–surface collisions.

Unimolecular Reactions

In a unimolecular reaction a reactant is excited above its unimolecular
threshold E0 so that it may decompose to product(s):

A* ! productðsÞ ½23�

where the (*) denotes vibrational–rotational excitation. A question of funda-
mental interest in unimolecular rate theory is whether the unimolecular disso-
ciation is random during the complete unimolecular decomposition from t ¼ 0
to 1.102 This will be the case if A* is initially excited with a microcanonical
ensemble and if the intramolecular dynamics of A* is ergodic103 within the
timescale of the unimolecular reaction, so that the initial microcanonical
ensemble is maintained during the decomposition. To prepare a microcanoni-
cal ensemble, points are chosen randomly on the energy shell defined by
E ¼ Hðp; qÞ, so that there is an initial uniform sampling of A*’s phase space.
Each of these randomly chosen points gives a set of values for the momenta
and coordinates.

The unimolecular rate constant kðEÞ, for a microcanonical ensemble
of reactant states, is identical with the Rice–Ramsperger–Kassel–Marcus
(RRKM) rate constant.104 If Nð0Þ is the number of reactant molecules excited
at t ¼ 0 in accord with a microcanonical ensemble, the RRKM rate constant is
then defined by

� dNðtÞ
dt

¼ kðEÞNðtÞ ½24�

evaluated at t ¼ 0. If a microcanonical ensemble is maintained as the reactant
decomposes, at any time during the decomposition kðEÞ is given by Eq. [24].
As a result of the fixed time-independent rate constant kðEÞ, NðtÞ decays expo-
nentially;

NðtÞ ¼ Nð0Þe�kðEÞt ½25�

The fundamental assumption of RRKM theory is that the classical motion of
the reactant is sufficiently chaotic to maintain the microcanonical ensemble of
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states as the reactant decomposes.102 This assumption is often referred to as
one of a rapid intramolecular vibrational (energy) redistribution (IVR).105

A quantity of more utility than NðtÞ, for analyzing the classical dynamics
of a microcanonical ensemble, is the lifetime distribution PðtÞ, which is defined
by104

PðtÞ ¼ � 1

Nð0Þ
dNðtÞ

dt
½26�

According to the above RRKM model

PðtÞ ¼ kðEÞe�kðEÞt ½27�

so that both the intercept and slope of a plot of ln PðtÞ versus t gives the
RRKM rate constant kðEÞ. However, if there are classical ‘‘bottlenecks’’ in
an excited molecule’s phase space restricting IVR, the unimolecular dissocia-
tion will not be random as assumed by RRKM theory and PðtÞ will not con-
form to Eq. [27].102 Such dynamics, for a molecule initially energized in
accord with a microcanonical ensemble, is called intrinsic non-RRKM beha-
vior.102 There is much interest in identifying molecules whose unimolecular
dynamics is intrinsically non-RRKM.

In the following parts of this section, the selection of two different types
of initial conditions for a unimolecular reactant are described. Selecting a
microcanonical ensemble of states is described first. These initial conditions
are never realized in an actual experiment, but are important for identifying
intrinsic non-RRKM behavior and studying a molecule’s intramolecular
dynamics. The last procedure described is the selection of initial conditions
for the nonrandom excitation of initial states for a molecule, as occurs in
actual experiments.

Classical Microcanonical Ensemble
Exact sampling Classical exact microcanonical sampling for a system

with n degrees of freedom is equivalent to choosing a uniform distribution
of points in the 2n-dimensional molecular phase space bounded by hypersur-
faces of constant energy H and H þ dH.1 An efficient method consists of
choosing all the coordinates and momenta except one that is determined
from total energy conservation. However, the remaining variable, for instance,
pn, is not sampled uniformly between H and H þ dH. The proper weighting
for selecting pn is chosen from the following transformation for the volume
element dq and dp:

dq1    dqndp1    dpn ¼ dq1    dqndp1    dpn�1dH
qH

qpn

����
����
�1

½28�
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This equation is correct for any coordinate system representations, since dp dq
is independent of the coordinate system.106 The relative weighting factor for
selecting pn is then

PðpnÞ /
qH

qpn

����
����
�1

½29�

which is pnj j�1 for a Hamiltonian with a diagonal kinetic energy term. The
sampled points are then selected using rejection techniques, such as the
von Neumann technique.107 If a coordinate qn was chosen from energy con-
servation instead of a momentum, its relative probability would naturally be

PðqnÞ /
qH

qqn

����
����
�1

½30�

Algorithms have been developed for speeding up the uniform sampling of
phase-space points. For example, the efficient microcanonical sampling (EMS)
series of schemes108 exploits the possibility of sampling independently the spa-
tial coordinates and momenta, simply by weighting the sampled geometries by
their associated momentum space density in the overall procedure. The latter
density only depends on the total available kinetic energy, found by subtract-
ing out the potential energy of the given geometry from the total energy:

rðE; qÞ / ½E � VðqÞ�ð3N�2Þ=2 ½31�

The sampling scheme described above will give a distribution of angular
momentum j for the molecule and for the projection of j on any axis, for
instance, the symmetry axis z for a symmetric top. To select angular momen-
tum, as well as energy in the sampling scheme above, an initial condition is
only accepted if j and its projection jz are each in narrow intervals; i.e. j to
j þ�j and jz to jz þ�jz.

108 Overall translation may be excluded from the
initial conditions.108

Sampling with the Normal-Mode/Rigid-Rotor Hamiltonian An ap-
proximate microcanonical ensemble may be sampled by representing the ener-
gized molecule as a symmetric-top rigid rotor with 3N-6 normal modes. The
Hamiltonian for the molecule is then the sum of the energies for separable
harmonic oscillators and a rigid rotor and is given by

H ¼ E ¼ Er þ Ev ½32�

Ev ¼
X3N�6

i¼1

Ei ¼
X3N�6

i¼1

P2
i þ o2

i Q2
i

2
½33�

Er ¼
Jð J þ 1Þ�h2

2Ix
þ K2�h2ð1=Iz � 1=IxÞ

2
½34�
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where the Pi and Qi are normal-mode momenta and coordinates and J and K
are rotational quantum numbers. To form a microcanonical ensemble, ran-
dom values for the Pi and Qi are chosen so that there is a uniform distribution
in the classical phase space of HðP;QÞ.106 It has been shown109 that to accom-
plish this, the energies for the normal modes are selected according to

Ei ¼ Ev �
Xi�1

j¼1

Ej

 !
ð1 � R

1=ðn�iÞ
i Þ

 !
½35�

where Ri is a freshly generated random number between 0 and 1. Random
values for the Qi and Pi are then chosen by giving each normal mode a random
phase.110 The normal-mode coordinates vary versus time according to
Qi ¼ Ai cosðoitÞ and Pi ¼ �ðoiAiÞ sinðoitÞ, where Ai ¼ ð2EiÞ1=2=oi is the
amplitude and the relationship between oi and the vibration frequency vi is
oi ¼ 2 p vi. Since each time has equal probability during a vibrational period,
random Qi and Pi are given by

Qi ¼
ð2E

1=2
i Þ
oi

" #
cosð2pRiÞ ½36�

Pi ¼ �ð2EiÞ1=2 sinð2pRiÞ ½37�

(The Ri in Eqs. [36] and [37] are different than those used to generate Ei in
Eq. [35].) It is useful to note that the probability of a value of Qi is inversely
proportional to the number of Qi within the time interval dt: probability
(Qi) / dQi=dtj j�1¼ Pij j�1.

Given the rotational quantum numbers J and K in Eq. [34], the compo-
nents of the angular momentum are found from

j 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jð J þ 1Þ

p
�h ½38�

j 0
z ¼ K�h ½39�

j 0
x ¼ ð j 0 � j 0

z Þ
1=2 sin 2pR ½40�

j 0
y ¼ ð j 02 � j 02

z Þ cos 2pR ½41�

where R is a random number. Here, specific values of j and jz are chosen, with
jx and jy chosen randomly. One may also fix j, but choose jz randomly as well
as jx and jy. For this case the initial conditions will not have a well-defined
projection of j on the symmetry axis and, thus, K is not fixed.

The following steps are carried out to transform the normal-mode
coordinates Q and P, and angular momentum j 0 ¼ j 0

x þ j 0
y þ j 0

z to Cartesian
coordinates and momenta used in the numerical integrations:110,111
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1. The Q and P are transferred to Cartesian coordinates q and momenta p for
N atoms using the normal-mode eigenvector L:6

q ¼ q0 þ M�1=2LQ ½42�

p ¼ M1=2LP ½43�

where q0 is a matrix of the equilibrium coordinates and M is a diagonal
matrix whose elements are the atomic masses. Since normal modes are
approximate for finite displacements,6 a spurious angular momentum js,
arises following this transformation.110,111

2. The spurious angular momentum is found from

js ¼
XN
i¼1

ri � mi _rri ½44�

where mi is the mass of the ith atom and ri its position vector. The desired
angular momentum j0 is added to the molecule by forming the vector

j ¼ j0 � js ½45�

and adding the rotational velocity o� ri to each of the atoms, where

o ¼ I�1j ½46�

and I�1 is the inverse of the inertia tensor.5

3. The actual internal energy E for the Cartesian coordinates and momenta
chosen from steps 1 and 2 is calculated using the correct Hamiltonian and
compared with the intended energy Eo. If they do not agree within some
acceptance criterion, the Cartesian coordinates and momenta are scaled
according to

q0
i ¼ qo

i þ ðqi � qo
i Þ

Eo

E

� �1=2

½47�

p0
i ¼ pi

Eo

E

� �1=2

½48�

Any spurious center of mass translational energy is subtracted from the
molecule, and the procedure loops back to step 2.

This sampling, with the normal-mode/rigid-rotor Hamiltonian, provides
an exact microcanonical ensemble for this Hamiltonian, but an approximate
microcanonical ensemble for the actual anharmonic and reactive Hamiltonian
with vibrational–rotational coupling.

Orthant sampling Orthant sampling102 works in the classical phase
space of the molecular Hamiltonian H(p;q). For a microcanonical ensemble,
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each phase-space point in the volume element dpdq has equal probability.106

The classical density of states is then proportional to the surface integral of the
phase space shell with H(p;q) ¼ E and is given by105

rðEÞ ¼
ð

H¼E

. . .

ð
dp dq

hn
½49�

where h is Planck’s constant. Thus, preparing a microcanonical ensemble
involves choosing points at random on the energy shell.

In orthant sampling an initial condition for a microcanical ensemble is
chosen by projecting a random unit vector of dimension 2n, with components
xi, onto the E ¼ H(p,q) energy shell:

1 ¼
X2n

i¼1

x2
i ½50�

For the normal-mode Hamiltonian in Eq. [32], orthant sampling is exact, as is
the microcanonical normal-mode sampling algorithm presented above.
Orthant sampling gives an approximate microcanonical102 ensemble for the
Hamiltonian of an actual molecule. The sampling is performed in the Carte-
sian coordinate system and the steps are as follows:

1. The semiaxes for the Cartesian coordinates and momenta are found at fixed
H(q;p) � V0 ¼ E0, where E0 is the intended energy and V0 is the minimum
potential energy. This is done by varying the coordinates and momenta to
find their maximum and minimum values, q�

i and qþ
i and p�

i ¼�pþ
i . For

each degree of freedom the magnitudes of the minimum and maximum
values of the momentum are the same.

2. To obtain the correct relationship between the average initial potential �VV
and the kinetic �TT energies, either p�

i or pþ
i (chosen randomly) for each

degree of freedom is scaled by a parameter pscale. The �VV and �TT may be
determined from a trajectory integrated for a long period of time.
Harmonic systems obey the Virial theorem �VV ¼ �TT, but this is not
necessarily the case for anharmonic systems.

3. The initial momenta and coordinates are then chosen from

pi ¼ xiðp�
i ; p

þ
i Þpscale ½51�

qi ¼ q0
i þ x3nþi ðq�

i ; q
þ
i Þ � q0

i

� �
½52�

where the xi are components of the 2n dimensional random unit vector,
Eq. [50]. Any center-of-mass translation is subtracted from the atoms of the
molecule.

The remaining steps for orthant sampling are the same as steps 2 and 3
described above for microcanonical normal-mode sampling.
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Representing Experimental Nonrandom Sampling
The random sampling procedures described above pertain to preparing a

classical microcanonical ensemble of states. Simulating the dynamics of the
ensemble is important for comparing with classical RRKM theory. However,
to compare with experiment, initial conditions must be chosen to represent the
nonrandom excitation of the molecule’s states by the experimental process. In
addition, to compare to experiment a classical state must be sampled that is an
analog of the quantum-mechanical state prepared by the experiment. Here,
procedures are described for sampling initial conditions for unimolecular reac-
tants prepared by three different experimental procedures: chemical activa-
tion, S1 ! S0 conversion, and local-mode excitation.

Chemical Activation In chemical activation, the unimolecular reactant
is excited by the exothermicity of a chemical reaction, as for

F þ C2H4 ! C2H4F* ! H þ C2H3F ½53�

Here, the nonrandom excitation of C2H4F* is described by the dynamics of
the F þ C2H4 bimolecular reaction. To simulate chemical activation, proper
initial conditions must be chosen for the reactants and for their relative prop-
erties. The procedure for choosing initial conditions for the reactant’s relative
properties is given below in the discussion of bimolecular reactions. The quasi-
classical method may be used to select initial conditions for molecular reac-
tants. The energy for a symmetric-top polyatomic molecule in a specific
vibrational–rotational state may be approximated by the harmonic oscilla-
tor/rigid rotor model

E ¼
X3N�6

i¼1

Ei þ Er ¼
X3N�6

i¼1

ni þ 1
2

� �
hni þ Erð J;KÞ ½54�

where ni and ni are the quantum numbers and vibrational frequencies for
the normal modes of vibration and Er is the rotational energy. The Ei for
the normal modes and the rotational quantum numbers J and K are trans-
formed to Cartesian coordinates and momenta as described above in equations
[32]–[48].

For many chemical reactions, the reactants are not in specific vibra-
tional–rotational states and instead have a temperature T, so that the vibra-
tional and rotational energies for a reactant must be chosen from their
quantum Boltzmann distributions. The resulting probability that normal
mode i in ni exists is given by

PðniÞ ¼
exp �ðniþ1=2Þhni

kT

h i
Qi

½55�

where Qi is the normal mode’s partition function. This probability distribution
may be sampled by the von Neumann rejection method. The angular
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momentum j for the molecule and its projection of jz onto the z axis are
sampled from their classical Boltzmann distributions112

Pð jzÞ ¼ exp � j2z
2IzkT

� �
0 � jz � 1 ½56�

Pð jÞ ¼ j exp � j2

2IzkT

� �
jz � j � 1 ½57�

The rejection method is used to sample jz from P(jz), whereas j is sampled by
the CDF formula112

j ¼ ½ j2z � 2IxkT lnð1 � RiÞ�1=2 ½58�

The components jx and jy of j are found from Eqs. [40] and [41].
S1 ! S0 Internal Conversion Absorption of electromagnetic radiation

is another means of preparing vibrationally excited molecules. A widely
used approach involves initial electronic excitation by absorption of one
photon of visible or ultraviolet radiation. After this excitation, many mole-
cules undergo a rapid internal conversion to the ground electronic S0 state,
a process that converts the energy of the absorbed photon into vibrational
energy. Such an energization scheme is depicted in Figure 4, where the
complete excitation/decomposition mechanism is

ðS0Þ þ hn ! ðS1Þ ! ðS0Þ*

The energy distribution of the unexcited ground-state molecule affects
the energy distribution of the vibrationally excited ground-state molecule. If
the unexcited reactant is vibrationally–rotationally cold, the energy of the
excited reactant is simply that of the photon hn. On the other hand, if the
unexcited reactant has a thermal distribution of energies PTðEÞ the energy
of the excited reactant is expected to be well approximated by hn plus the dis-
tribution PTðEÞ. The average energy of the excited reactant is then hnþ hEiT ,
where hEiT is the average energy of the unexcited reactant.

The S0 ! S1 internal conversion step excites S0 nonrandomly.113 A
microcanonical ensemble of states is not prepared, although S0 may relax to
this ensemble after efficient and complete IVR. Thus, to accurately simulate
the intramolecular and unimolecular dynamics of the excited S0 molecule, it
is necessary to choose correct initial conditions for S0. The specific vibrational
excitations on S0 have probabilities proportional to Aij

�� ��2, where i is the initial
vibrational level on S1 and j is the vibrational level on S0.114 The Aij term
includes a Franck–Condon factor so that only certain types of S0 mode excita-
tions have high probabilities and therefore the excitation of S0 may be highly
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mode specific. If unexcited S0 is vibrationally–rotationally cold so that it does
not have a high density of states and if the excitation source has a high resolu-
tion, it may be possible to excite an individual vibrational–rotational state of
S1. This highly selective initial excitation of S0 will enhance the mode specifi-
city of the S1 !S0 transitions.

Nonrandom sampling of initial conditions for S0, following S1 ! S0

internal conversion, has been performed for chloroacetylene (H��C������C��Cl).115

The rejection method may be used to sample the different Aij

�� ��2 transitions
according to their relative probabilities.

Local-Mode Excitation In local-mode sampling an individual local
mode such as a CH bond in benzene is excited.116 This type of trajectory
calculation has been performed to determine the population of a local-mode
state jvi versus time, from which the absorption linewidth of the overtone state
may be determined.117 Good agreement has been found with both experimen-
tal and quantum-mechanically calculated overtone line-widths for benzene118

and linear alkanes.119

The first step in local-mode sampling, to calculate an absorption
linewidth, is to choose Cartesian coordinates and momenta, which correspond
to the zero-point energy (i.e., vi ¼ 0) in the molecule. The step is the same as

Figure 4 Preparation of a vibrationally excited ground-state molecule (S0)* by internal
conversion from a vibrational level of S1.
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described above for normal-mode sampling. Since the normal-mode zero-point
energy is added with random phases, the kinetic and potential energies differ
for each bond in the molecule after this step. Similarly, the energy in a parti-
cular bond will vary after this step between initial conditions. A particular
bond is then excited to a local mode state jvi by adding more energy to the
bond so that the Einstein–Brillouin–Keller (EBK)120 semiclassical quantization
condition þ

pr dr ¼ v þ 1
2Þh

�
½59�

is realized for a bond energy Er of

Er ¼
p2

r

2m
þ VðrÞ ½60�

where pr is the bond’s radial momentum, VðrÞ the potential energy, and m the
reduced mass for the two atoms constituting the bond. If VðrÞ is a Morse func-
tion,121 Ev eaquals

Ev ¼ ðnþ 1
2Þhne � ðv þ 1

2Þ
2hnexe ½61�

where ne is the harmonic frequency and xe the anharmonic correction. The
energy is added by either extending or compressing (chosen randomly) the
bond.

Bimolecular Reactions

In principle the cross section for the reaction between A and B to form
products:

A þ B ! products

may be measured as functions of the A þ B relative velocity vrel and the
vibrational–rotational energy levels of A and B.122 These reaction cross
sections may then be averaged over the Boltzmann distributions for the vrel

and the A and B vibrational–rotational levels to obtain the thermal rate con-
stant k(T). Here, the procedure is described for choosing initial conditions for
a collision between an atom B and polyatomic molecule A to calculate their
reaction cross section. Sampling of initial conditions for atom þ diatom and
polyatom þ polyatom collisions have been recently described.100

For reaction between an atom B and polyatomic molecule A the reactive
cross section may be expressed as sr ¼ srðvrel, nA, JA, KA), where nA are the
molecule’s vibrational quantum numbers and JA and KA its rotational

106 B–O Direct Dynamics Classical Trajectory Simulations



quantum numbers. If specific values of nA and KA are not selected and, instead,
there is a distribution of values, for example, the Boltzmann distribution
specified by temperature TA, the reactive cross section becomes

srðvrel;TAÞ ¼
X
nA

X
JA

srðvrel; nA; JAÞPðnA;TAÞPðJA;KA;TAÞ ½62�

where P(nA;TA) and P(JA,KA;TA) are the normalized Boltzmann distributions
for nA and JA, KA at temperature TA. Multiplying either of the above men-
tioned cross sections sr ðvrel; nA; JAÞ or srðvrel;TAÞ by vrel gives the bimolecular
rate constants for a fixed relative velocity:

kðvrel;TAÞ ¼ vrelsrðvrel;TAÞ ½63�

Integrating the rate constant in Eq. [63] over the Boltzmann relative velocity
distribution Pðvrel;TÞ for temperature T ¼ TA gives the thermal bimolecular
rate constant:

kðTÞ ¼
ð1

0

vrelsrelðvrel;TÞPðvrel;TÞdvrel ½64�

The classical-mechanical expression for the reaction cross section is

sr ¼
ðbmax

0

PrðbÞ2pb db ½65�

where b is the collision impact parameter, bmax is the largest impact parameter
that leads to reaction, and PrðbÞ is the probability of the reaction as a function
of the impact parameter. One may determine sr for Eq. [65] by integrating
over PrðbÞ or from the average PrðbÞ, which is given by

hPrðbÞi ¼
Ð bmax

0 PrðbÞ2pb dbÐ bmax

0 2pb db

¼
Ð bmax

0 PrðbÞ2pb db

pb2
max

½66�

Comparison of Eqs. [65] and [66] shows that

sr ¼ hPrðbÞipb2
max ½67�
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The average reaction probability hPrðbÞi is evaluated from trajectories with b
chosen randomly according to the distribution function

PðbÞdb ¼ 2pb db

pb2
max

½68�

Random values of b between 0 and bmax may be sampled with the CDF

Ri ¼
ðbmax

0

PðbÞdb ½69�

to give

b ¼ ðRiÞ1=2bmax ½70�

With b chosen randomly between 0 and bmax, the average reaction probability
is hPrðbÞi ¼ Nr=N, where N is the total number of trajectories and Nr the
number of trajectories that are reactive. Thus, the reaction cross section is

sr ¼
Nr

N
pb2

max ½71�

The preceding presentation describes how the collision impact parameter
is sampled to calculate reaction cross sections. Rate constants as a function of
either the reactant relative translational energy Erel or temperature are then
determined from the reactive cross sections. In the following, Monte Carlo
sampling of the reactant’s Cartesian coordinates and momenta is described
for atom þ polyatom collisions. Initial energies are chosen for the polyatomic,
which correspond to quantum-mechanical vibrational–rotational energy
levels. This is the quasiclassical model.4

For collisions of an atom B with a polyatomic molecule A, the reactive
cross section may be determined as a function of relative velocity vrel, and
either the vibrational and rotational quantum numbers nA, JA, and KA or tem-
perature TA of A. For the latter the quantum numbers are chosen from their
thermal Boltzmann distributions [i.e., Eqs. [38], [39], [55]–[58]]. These two
different samplings of A’s vibrational–rotational states give the cross sections
sr ¼ srðvrel; nA; JA;KAÞ and sr ¼ srðvrel;TAÞ, Eq. [62], respectively. To
choose random initial conditions for an ensemble of A þ B collisions the
vibrational and rotational quantum numbers of A are first transformed to
Cartesian coordinates and momenta as described above (in Eqs. [32]–[48])
and [59]. The following steps are then performed to choose random initial
conditions for the A þ B collision:
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1. The preceding Cartesian coordinates and velocities selected for the
polyatomic A are randomly rotated though Euler’s angles123 to give a
random orientation:

q ¼ ROTðy;f; wÞq0 _qq ¼ ROTðy;f; wÞ _qq0 ½72�

where q0 is a vector of the Cartesian coordinates selected above and
ROTðy;f; wÞ is the Euler rotation matrix.123 The angles y;f; w are chosen
randomly according to

cos y ¼ 2R1 � 1 f ¼ 2pR2 w ¼ 2pR3 ½73�

where R1, R2, and R3 are three different random numbers.
2. Since A has a random orientation in a space-fixed coordinate frame, the B

atom may be placed in the y; z plane without loss of generality. The x; y; z
coordinates of B are then

x ¼ 0 y ¼ b z ¼ ðs2 � b2Þ1=2 ½74�

where s is the initial separation between B and the A center of mass, and b
is the impact parameter.

3. The A þ B relative velocity vrel is now added along the z axis with the
restraint that the A þ B center of mass remain at rest. The space-fixed
Cartesian momenta are then

P ¼ Mð _qq � _qqrelÞ ½75�

The elements of the relative velocity _qqrel are zero for the x and y
components and equal ½mA=ðmA þ mBÞ�vrel for the z component of atom B
and equal to �½mB=ðmA þ mBÞ�vrel for each atom of A.

In selecting initial conditions for bimolecular reactions, it is important
that the coordinates and momenta for the atoms have random classical phases
as given, for example, by Eqs. [36] and [37]. If this is done the trajectory
results will be independent of the initial separation between the reactants.124

Exciting the Transition State

Direct dynamics simulations based on a high level of electronic structure
theory, may be performed to study chemical events that occur in a short time.
Thus, though a large amount of compute time is required for each integration
step, only a small number of integration steps are required. High-level direct
dynamics is practical for simulating the exit-channel dynamics of a chemical
reaction from the transition state to products, since this is usually a direct
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short time process. If the populations of the vibrational–rotational levels at the
transition state are known, initial conditions for the trajectories may be chosen
in accord with these populations and the trajectories then integrated to the
product asymptotic limit to determine product properties such as vibrational,
rotational, and relative translational energies. An assumption that may be
made, regarding the populations of the transition state’s vibrational–
rotational levels, is that of transition state theory (see discussion below).

If the populations of the transition state’s vibrational–rotational levels
are assumed to be those of transition state theory, the trajectories may be
used to test the fundamental assumption of transition state theory. Both micro-
canonical and canonical variational transition state theory are based on the
assumption that trajectories cross the transition state (TS) only once in form-
ing product(s) or reactant(s).125,126 The correction k to the transition-state
theory rate constant is determined by initializing trajectories at the TS and
sampling their coordinates and momenta from the appropriate statistical
distributions.127–129 The value for k is the number of trajectories that form
product(s) divided by the number of crossings of the TS in the reactant(s) !
product(s) direction. Transition state theory (TST) assumes this ratio is unity.

Canonical TST assumes there is a Boltzmann distribution of the energy
levels at the TS.70,71 The canonical TST rate constant is given by

kðTÞ ¼ kT

h

Q 6¼

Q
e�E0=kT ½76�

where Q 6¼ and Q are the partition functions for the transition state and reac-
tants, respectively, and E0 is the potential energy difference between the TS
and reactants. The normal-mode/rigid-rotor quasiclassical model may be
used to sample the energy levels at the TS and calculate the correction k for
canonical TST. The energies for the vibrational and rotational modes are
sampled from Eqs. [38]–[41] and [55]–[58]. The reaction coordinate transla-
tional energy E6¼

t is treated classically and values for E6¼
t are selected in accord

with the distribution function

PðE 6¼
t Þ ¼

expð�E6¼
t =kTÞ

kT
½77�

which may be sampled by the cumulative distribution function

E6¼
t ¼ �kT lnð1 � RÞ ½78�

The reaction coordinate momentum is P 6¼
t ¼ 2ðE6¼

t Þ1=2. The procedure for
transforming the normal-mode energies, rotational angular momentum, and
reaction coordinate momentum into Cartesian coordinates and momenta is
the same as described above (in the Eqs. [32]–[48]).
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As described (above in the section on unimolecular reactions), RRKM
theory assumes that a microcanonical ensemble of states exists during the
complete unimolecular decomposition of a molecule from t ¼ 0 to 1. Thus,
RRKM theory is the same as microcanonical transition state theory, which
assumes that all vibrational–rotational levels for the degrees of freedom ortho-
gonal to the reaction coordinate have equal probabilities of being popu-
lated130,131 (see Figure 5). Whether the levels are actually populated in this
manner at the TS depends on the validity of rapid intramolecular vibrational
(energy) redistribution (IVR), which maintains the microcanonical ensemble
of states for the decomposing molecule. If IVR is efficient so that RRKM
theory is valid, it is expected that the TS levels may be selected with equal
probability as assumed by microcanonical TST. The quasiclassical normal-
mode/rigid-rotor model, discussed above, may be used to choose Cartesian
coordinates and momenta for these energy levels. Assuming a symmetric top
system, the TS energy E 6¼ is written as

E 6¼ ¼ E6¼
nJK þ E6¼

t ½79�

where the reaction coordinate translational energy is given by E6¼
t ¼ ðP 6¼

t Þ2=2.
The first step is to randomly select one of the TS energy levels.132 The remain-
ing energy E6¼ � E6¼

nJK is placed in the reaction coordinate translation. The
normal-mode coordinates and momenta and the reaction coordinate momen-
tum are transformed to Cartesian coordinates and momenta as described in
the section on normal-mode/rigid-rotor Hamiltonian sampling.

Figure 5 Depiction of vibrational/rotational levels at the transition state for a
unimolecular reaction. According to RRKM theory, each level has an equal probability
of being populated.
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The procedure described above is for sampling a statistical microcanoni-
cal distribution at the TS. However, if the unimolecular decomposition of the
molecule is non-statistical and not in accord with RRKM theory, a statistical
population of the TS’s energy levels is not expected. For such a situation it may
be impossible to identify how the TS levels are populated and, thus, simulate
the experiment. One approach would be to vary the population of the TS
levels until the direct dynamics and experimental product energy distributions
agree. However, such an approach assumes the level of electronic structure
theory used in the simulation is sufficiently accurate. With recent experimental
advances in laser spectroscopy and dynamics,133,134 it may become possible to
excite specific vibrational levels at the transition state. It would be straightfor-
ward to simulate such experiments.

Gas–Surface Collisions

To simulate collisions between a gaseous molecule and a surface, Carte-
sian coordinates and momenta are first chosen from the energies for the mole-
cule and surface following procedures described above. The distribution of
energies for a surface at temperature Ts may be chosen by either calculating
the normal modes of vibration for the surface and then sampling their
Boltzmann distributions to form a canonical ensemble or performing a classi-
cal molecular dynamics or Monte Carlo simulation to prepare a classical cano-
nical ensemble for the surface. The procedures for these latter two simulation
techniques are well-documented,135–137 and they may be applied to very large
surface models. However, calculating the normal modes of vibration is prac-
tical only for small surface models. Either classical or quantum sampling may
be used to select initial conditions from the Boltzmann distributions for the
normal modes. From classical statistical mechanics,106 the normalized prob-
ability that a normal mode of the surface has energy Ei is given by Eq. [77]
with Ei replacing E6¼

t . This probability distribution may be efficiently sampled
by the cumulative distribution function in Eq. [78]. For quasiclassical normal-
mode sampling, the energies for the normal modes are sampled from their
quantum Boltzmann energy distributions (i.e., Eq. [55]). For both the classical
and quasiclassical sampling of the normal-mode Boltzmann distributions, the
total surface energy for the initial condition is

P
Ei.

Quasiclassical normal-mode sampling may be used to choose initial con-
ditions for the gaseous molecule, which may have a fixed vibrational–
rotational energy specified by the quantum numbers n; J;K or a Boltzmann
distribution given by Eqs. [55]–[57]. The procedure for transforming the nor-
mal-mode energy of the solid and the normal-mode/rigid rotor energy of the
molecule to Cartesian coordinates and momenta is described (in Eqs. [32]–
[48]). A random orientation of the gaseous molecule is chosen by randomly
rotating its axes through Euler’s angles (Eq. [72]).

112 B–O Direct Dynamics Classical Trajectory Simulations



To calculate a reactive cross section or rate constant for gaseous
molecule–surface collisions, the five coordinates b, y, f1, f2, and d, shown
in Figure 6, are used to define the position of the center of mass of the gaseous
molecule and the orientation of its velocity vector with respect to an aiming
point on the surface plane.138,139 The two coordinates, b and f1, are used
to choose an aiming point on the surface plane. The distance from the surface
reactive site b (i.e., the impact parameter) is chosen randomly from between 0
and bmax using Eq. [70]. The angle f1 is chosen from a uniform distribution
between 0 and 2p. The angle y between the incoming projectile’s velocity vec-
tor and the surface plane is chosen randomly between 0 and ymax. For y larger
than ymax, there are no reactive trajectories. Since the probability of y is
proportional to sin y, y may be chosen randomly from its CDF, which gives

y ¼ cos�1½1 � Rð1 � cos ymaxÞ� ½80�

where R is a fresh random number. The angle f2, for the gaseous molecule is
chosen randomly between 0 and 2p. A sufficiently large initial separation d is
chosen so that there is no interaction between the gaseous molecule and the
surface.

The reaction cross section for a fixed velocity v of the gaseous molecule,
a surface temperature Ts, and a molecular temperature T is given by

sðv;Ts;TÞ ¼ 1
2 pbmaxð1 � cos ymaxÞPrðv;Ts;TÞ ½81�

where Prðv;Ts;TÞ is the reaction probability with b, y, f1, and f2 chosen ran-
domly as described above. The factor of 1

2 accounts for only one-half of the

Figure 6 Definition of the coordinates
used for sampling trajectory initial condi-
tions to calculate the rate constant for a
gas–surface reaction (from Ref. 139).
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gaseous molecules in a thermal distribution moving toward the surface. If
the velocity of the gaseous molecule is chosen randomly from its Maxwell–
Boltzmann distribution,100 one determines the rate constant

kðT;TsÞ ¼
1

2

8kT

m

� �1=2

pb2
maxð1 � cos ymaxÞPrðT;TsÞ ½82�

where m is the mass of the gaseous molecule.
The text above describes the selection of initial conditions when calculat-

ing the rate constant for reaction with an isolated site on the surface. For simu-
lating other gas–surface events, such as energy transfer to the surface140 or to
the projectile,141 initial conditions must be chosen so that the projectile is
aimed at a random point on the surface. This is accomplished in the initial
conditions, by randomly sampling the points in a unit cell on the surface.140

IMPORTANCE OF QUANTUM EFFECTS

Quantum dynamics simulations have allowed detailed comparisons
between classical–quantum results for molecular systems.142 Although there
are important limitations in classical trajectory simulations, since they do
not include quantum effects such as tunneling and interferences and they allow
the unphysical flow and pooling of zero-point energy, there is often quite good
agreement between the classical and quantal results.142

Bimolecular Reactions

Classical mechanics often gives accurate results for direct bimolecular
reactions, even for those that involve significant hydrogen motion as for
H þ H2 and F þ H2 reactions. The agreement between classical and quantum
dynamics for these two reactions is striking.143 The differences between their
classical and quantum dynamics arises in part from resonances in the quantum
dynamics, which gives more structure in the quantum cross section versus
reactant translational energy than found in the classical simulations. For the
F þ H2 reaction there is a substantial centrifugal barrier arising from the
collision’s orbital angular momentum. The quantum system can tunnel
through this barrier, while the classical system cannot. A comparison between
classical and quantum calculations of the differential cross section (DCS) for
the H þ D2 ! HD þ D reaction is given in Figure 7.143

Polyatomic molecules have large zero-point energies and in classical
mechanics simulations of bimolecular reactions this energy may be accessible
for surmounting the potential energy barrier for reaction.144 In the absence of
quantum-mechanical tunneling, the threshold for a bimolecular reaction is the
vibrationally adiabatic barrier145–147 with zero-point energy in the vibrational
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modes orthogonal to the reaction coordinate. In a classical-mechanical simu-
lation, the zero-point energy of a polyatomic reactant may transfer to reaction
coordinate translational motion allowing reaction to occur for energies lower
than the vibrationally adiabatic barrier.144,147 For some reactions, such as
H þ C2H4 ! C2H5,144 this unphysical effect mimics quantum mechanical
tunneling and may give rise to classical low-temperature rate constants in
agreement with the quantal prediction. For other reactions, with negligible
tunneling probabilities, the effect of this flow of zero-point energy is to give
low temperature classical rate constants much larger than the quantum values.
Coupling between reaction coordinate motion and vibrational degrees of free-
dom may be particularly important for bimolecular reactions that proceed
through a prereaction potential energy well. The dynamics of such reactive
systems is discussed in the next section.

Intramolecular Dynamics and Unimolecular Reactions

Classical dynamics tends to be more accurate for direct short-time dyna-
mical processes, such as the H þ H2 and F þ H2 reactions, than for processes
requiring longer times.142 The latter may occur if there are potential wells on
the potential energy surface giving rise to reaction intermediates. At long times

Figure 7 Selected state-resolved DCSs in the CM system for the H þ D2 ðv ¼ 0;
j ¼ 0Þ ! HDðv0; j0Þ þ D reaction. Solid circles with error bars: experimental results at
collision energy of 1.28 eV. Solid line: QM calculations at collision energy of 1.29 eV.
Dashed line: QCT calculations at collision energy 1.29 eV. (From Ref. 143.)
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zero-point energy may flow between vibrational modes of the molecule giving
rise to unphysical results.148 This problem is exemplified by unimolecular dis-
sociation reactions, which are in accord with RRKM theory.149 If tunneling is
unimportant, the quantum threshold for reaction is the classical potential
energy at the transition state (TS) plus the TS’s zero-point energy. In contrast,
since classical mechanics is unaware of zero-point energy, the classical thresh-
old is just the classical potential energy barrier. For large molecules with large
zero-point energies, this difference in thresholds can give orders of magnitude
difference in the quantal and classical RRKM rate constants.149 However, the
difference in the thresholds is much less for small molecules and their quantal
and classical RRKM rate constants are in much better agreement.

Classical mechanics often gives results in excellent agreement with
experiment and quantum mechanics for the initial intramolecular and unimo-
lecular dynamics of a non-randomly excited molecule. Two examples of this
property are the unimolecular dynamics of the Cl�-- -CH3Cl ion–dipole com-
plex formed by Cl� þ CH3Cl association150 and the intramolecular relaxation
of the n ¼ 3 C��H local-mode overtone state of benzene.151 Cl� þ CH3Cl asso-
ciation excites the three intermolecular modes of the Cl�---CH3Cl complex
(i.e., the Cl�- --C stretch and degenerate Cl�-- -(CH3)��Cl bend) and the initial
unimolecular rate constant for the initial decomposition of this complex is in
excellent agreement with experient.152 At longer times energy transfers
nonstatistically to the CH3Cl intramolecular vibrational modes. The ability
of classical mechanics to quantitatively describe this long-time energy transfer
is uncertain. However, the classical phase space structures giving rise to this
nonstatistical energy transfer are expected to be analogues of the quantum
dynamics153,154 and to provide means to interpret the quantum dynamics.

The initial classical and quantum dynamics of the n ¼ 3 overtone state of
benzene are similar.151 The classical mechanical population of the n ¼ 3 state
decays exponentially with time giving rise to an adsorption bandwidth of 85
cm�1, nearly identical to the quantum mechanical result155 (see Figure 8).
However, in the quantum dynamics there are long-time recurrences in the
population of the n ¼ 3 overtone state giving rise to structures in the n ¼ 3
adsorption band, which agree with experiment.156 These recurrences arise
from nonstatistical couplings associated with the n ¼ 3 intramolecular
dynamics and, as described above for the Cl�-- -CH3Cl system, there should
be signatures of these dynamics in benzene’s classical phase-space structure.
At this time it is uncertain whether a classical mechanics simulation may be
constructed to reproduce the long-time quantum dynamics of the benzene
n ¼ 3 overtone state.

Summary

The accuracy of classical mechanics for simulating classical reaction
dynamics may be summarized by considering reaction [53]. At energies in
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excess of the potential energy barrier for F þ C2H4 ! C2H4F* association,
classical mechanics is expected to give an accurate cross section for this pro-
cess. However, at energies near and below the potential barrier, the classical
cross section may be too large as a result of an enhancement of the reaction
rate by the unphysical flow of C2H4 zero-point energy to the F þ C2H4 reac-
tion coordinate. Once the C2H4F* intermediate is formed there are strong
couplings between the intermediate’s vibrational modes157 and it loses any
memory of its zero-point energy. As a result, the threshold for
C2H4F* ! C2H3F þ H dissociation is the classical barrier, which is substan-
tially lower than the vibrationally adiabatic barrier with zero-point energy
in the modes orthogonal to the reaction coordinate. Thus, the classical uni-
molecular rate constant for C2H4F* decomposition will be substantially larger
than the quantum value and only begins to approach this value at high
energies.

Since classical mechanics allows C2H4F* dissociation to occur without
zero-point energy in the TS’s vibrational modes, the energy distribution of
the C2H3F þ H products is expected to agree with experiment only at the
high-energy limit. If it is correct to assume the unimolecular decomposition

Figure 8 Comparison of quantum (—) and quasiclassical survival probabilities for the
n ¼ 3 benzene overtone state (from Ref. 155).
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of C2H4F* is statistical and in accord with RRKM theory, the product energy
distribution may be calculated by initializing the trajectories at the TS with
quasiclassical sampling and with an equal population of each energy level as
assumed by RRKM theory; see the section on TS excitation (above). The tra-
jectories may then be integrated to determine the energy distribution in the
product asymptotic limit.158

The above description assumes that an intermediate is formed with sta-
tistical classical dynamics and pooling of zero-point energy. If the dynamics of
the intermediate is nonstatistical (i.e. as for Cl�- --CH3Cl150), the intermed-
iate’s lifetime and product energy distribution may agree with experiment. A
discussion of the applicability of classical mechanics for studying the central
barrier dynamics of the [Cl-- -CH3---Cl]� moiety is given below.

APPLICATIONS OF BORN–OPPENHEIMER
DIRECT DYNAMICS

An incomplete list of applications of Born–Oppenheimer direct dynamics
is given in Table 2. This compilation illustrates the applicability of this simu-
lation technique to a broad range of chemical systems. Here we briefly describe
four gas-phase direct dynamics studies of the Hase research group: (1) the
structural and geometrical isomerization of trimethylene; (2) the central bar-
rier dynamics of the Cl� þ CH3Cl SN2 reaction; (3) the exit-channel dynamics
of the OH� þ CH3F ! CH3OH þ F� SN2 reaction; and (4) the surface-
induced dissociation of protonated glycine (gly-Hþ).

Cyclopropane Stereomutation

Interest in the decomposition of cyclopropanes and the role of the tri-
methylene biradical in the decay mechanism has spanned more than three
decades and has been fueled by two experiments that give apparently irrecon-
cilable results.179,180 Experiments of S,S-trans-cyclopropane-1,2-d2 at 695 K
indicate that isomerization via double-terminal rotation (i.e., con- and disro-
tation of the terminal methylene groups) is at least 6 times more prevalent than
isomerization via single-terminal rotation.179 Similar experiments with chiral
cyclopropanes-[1-13C]1,2,3-d3 at 680 K yield single and double terminal
isomerization rates that are virtually identical.180

A kinetic scheme that includes the role of the trimethylene biradical
intermediate is required to obtain the relative rates of single- and double-
terminal rotations from the experimental observables (i.e., the rate loss of
optical activity and the rate of trans ! cis isomerization). Understanding the
dynamics of the biradical is thus of pivotal importance. Doubleday has deter-
mined an accurate PES for trimethylene from a high level CASSCF ab initio
calculation.181 Trimethylene has a very shallow potential energy minimum
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and lies �60 kcal/mol above the cyclopropane minimum (see Figure 9). It med-
iates both the geometric and structural isomerizations of cyclopropane, which
result in cyclization and propene formation. The latter process has a barrier of
�7 kcal/mol with respect to the trimethylene potential energy minimum.
Cyclopropane may decompose to form trimethylene via three different path-
ways: conrotation (CON) and disrotation (DIS) paths in which both terminal
methylenes rotate and a cis–trans (CT) path with a single methylene rotation.

Semiempirical direct dynamics was used to study trimethylene’s unimo-
lecular dynamics and the thermal stereomutation of cyclopropane.182–184 The
semiempirical model used in these simulations is AM1 with specific reaction
parameters (SRPs; see discussion of semiempirical electronic structure theory
in the section on BO direct dynamics) chosen to fit the CASSCF PES.181 In
choosing the SRPs, the AM1 barrier for propene formation was lowered by

Table 2 Applications of Born–Oppenheimer Direct Dynamics Simulations

Chemical System Level of theory Reference

CID and SID of N-protonated glycine AM1 211
1,2,6-Heptatriene rearrangement reaction CASSCF(8,8)/6-31G(d) 159

and AM1-SRP
OH� þ CH3F SN2 reaction MP2/6-31þG(d) 206
Cyclopropyl radical ring opening CASSCF(3,3)/6-31G(d) 50
Carbene formation from 3H-diazirine or CASSCF(8,7)/6-31G(d) 160

diazomethane
Vinylcyclopropane–cyclopentene AM1-SRP 161,162

rearrangement
HF elimination of 1,1-difluoroethylene AM1-SRP 163
H2 elimination of 2,5-dihydrofuran PM3-SRP 164
Oxidation of a single-wall carbon nanotube AM1 165
Methodology development — 166
CO production from CH3 þ O or CD3 þ O B3LYP/6-31G(d) 167
Cl� þ CH3Cl SN2 reaction MP2/6-31G(d) 200
HF elimination from vinyl fluoride AM1-SRP 168
F�(H2O) þ CH3Cl SN2 reaction HF/3-21þG(d) 169
Ionization of H2 clusters UHF/311G(p) 170
Electron capture by H3Oþ HF/6-311G(d,p) 171
Methanethiol cation decomposition AM1 172
O(3P)þC2H4S(1A1)!SO(3
�) C2H4(1Ag) B3LYP/6-31þG(d) 173
Spin-forbidden dehydrogenation of HF/6-31G(d,p) 174

methoxy cation
Dynamics of hydrogen and muonium atoms PM3 175

trapped in a diamond crystal
Cl� þ CH3Cl SN2 reaction HF/3-21þG(d) 49
F þ C2H4 ! C2H3F þ H UHF/6-31G(d) 158
Trimethylene decomposition in argon bath AM1-SRP 176
Methodology development — 177
F� þ CH3Cl SN2 reaction HF/3-21G(d) 178
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increasing the resonance integrals involving the central hydrogens and
terminal carbons, and the energies and geometries of cyclization saddle points
were adjusted by scaling the resonance integrals involving both terminal
carbons. In addition, the resulting energy differences between trimethylene
and the cyclopropane and propene products was corrected by introducing
Morse-type energy terms in the product regions of the PES.182

To simulate the high-pressure thermal unimolecular decomposition of
cyclopropane and its stereomutation, it was assumed that RRKM theory is
valid for cyclopropane’s unimolecular dynamics, so that Boltzmann distribu-
tions of reacting molecules could be sampled at the CON6¼, DIS 6¼, and CT 6¼

transition states for cyclopropane ! trimethylene decomposition.183 Each tra-
jectory was integrated forward and backward in time until either propene or
an isomer of cyclopropane was formed. In this way, the product distribution
was obtained by following each cyclopropane isomerization until it completed
its journey through the trimethylene biradical region of the PES. To compare
with experiment179,180 the trajectories were further analyzed to determine
whether cyclization followed single rotation versus double rotation of tri-
methylene’s terminal methylenes, that is a ratio k1/k12 of single/double
rotation rate constants.

Figure 9 Minimum potential energy along the cyclopropane $ propene reaction path;
the curve linking the stationary points merely serves to illustrate connectivity (from
Ref. 183).
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The trajectory simulation shows that the unimolecular dynamics of tri-
methylene is not statistical and non-RRKM.183,184 If the dynamics were statis-
tical, the ratio of the geometric and isomerization products would depend only
on the trimethylene energy and not on which TS is excited (i.e., CON 6¼, DIS 6¼,
or CT 6¼) nor how energy is distributed between the degrees of freedom at TS.
The trajectory dynamics do not support such a model. For example, initializ-
ing the trajectories at the conrotatory TS leads to a strong preference for
cyclization through the CON 6¼ TS.184 In addition, the ratios of cyclization
and propene products are strongly influenced by which modes are excited
at each TS. The trimethylene unimolecular dynamics is strongly non-
RRKM.183,184

The dynamics of the classical trajectories support a mechanistic conti-
nuum for trimethylene decomposition encompassing concerted and noncon-
certed processes in which nonstatistical effects are paramount.183 Most
double rotation trajectories undergo a single set of 180� rotations and cyclize
immediately with an average lifetime of 130 fs. These trajectories could hardly
be more direct and it seems appropriate to call them ‘‘concerted’’. On the
other hand, the 430 fs average lifetime for the products formed by an overall
single methylene rotation is a time scale that accommodates multiple
rotations and is more typical of an intermediate. Finally, the k12/k1 ratio of
2.9–3.5 determined from the trajectories is intermediate of the experimental
values of 1.0 � 0.2180 and 5–50,179 and is similar to the value of 4.7 reported
by Hrovat et al.185 from a trajectory simulation on an analytic PES. This tra-
jectory study also exhibits substantial nonstatistical dynamics for trimethylene.

Additional work needs to be done to develop a theoretical model to
represent the trimethylene kinetics. The dynamics in the trimethylene region
of the potential energy surface is neither statistical nor direct, and instead con-
tains both these elements. Future work on the kinetics of cyclopropane stereo-
mutation will include developing a theoretical model for trimethylene’s
dynamics, assessing the accuracy of assuming RRKM dynamics for cyclopro-
pane, and determining a more accurate PES for trimethylene.

Cl� þ CH3Cl Central-Barrier Dynamics

Bimolecular nucleophilic substitution (SN2) reactions of the type

X� þ CH3Y ! XCH3 þ Y� ½83�

are of central importance in gas-phase ion chemistry186,187 and organic reac-
tion mechanisms.188 In a classic set of experiments, Moylan and Brauman189

demonstrated that the kinetics of these reactions could be explained by a
Walden inversion mechanism with a double-well potential arising from
X�-- -CH3Y and XCH3---Y� ion–dipole complexes and a [X---CH3---Y]�

central barrier.
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Given the prominence of statistical theories in chemical reaction
dynamics and kinetics, it was natural to use these theories in modeling studies
of SN2 reactions.186–189 However, more recent detailed examinations of SN2
reactions of the type in reaction [83] have discovered a range of important
nonstatistical attributes,186,187,190 arising from weak couplings between the
X�-- -CH3Y intermolecular modes and CH3Y intramolecular modes. A
particularly important feature of this work has been a close relationship
between computational,186,190 experimental,191–195 and theoretical stu-
dies.186,187,190,196 The computational studies include quantum-dynamical197,198

and full-dimensional trajectory calculations.186,190

A potentially very significant finding from the trajectory studies is the
trapping of trajectories in the central-barrier region of the potential energy sur-
face, with concomitant recrossings of the barrier.186,190 The former suggests
that vibrational states prepared in the central-barrier region may be suffi-
ciently long-lived to resolve their spectra,134 while the latter indicates that
crossing the central barrier may not be a rate-controlling step, as assumed
by statistical theories for many SN2 reactions.186–189 To illustrate, the
Cl� þ CH3Cl SN2 reaction has a central barrier with an energy higher than
that of the reactants.192 Transition state theory (TST) assumes crossing this
barrier is rate controlling and the rate constant may be determined from the
barrier’s free energy. However, if barrier recrossing is significant, TST is an
invalid model for interpreting the Cl� þ CH3Cl rate constant.186,190

These initial trajectory studies utilized an analytical potential energy
surface fit to experimental data and HF/6-31G* calculations.14 Though this
level of theory correctly represents many properties of SN2 potential energy
surface,14–16 it gives X��C and Y��C bond lengths at the central barrier
that are �0.05–0.1 Å too long.190 This difference has been discussed in the
literature197–199 and it has been suggested that a HF analytic potential energy
function may give dynamics different from those obtained from a potential
energy function calculated at higher and more accurate levels of electronic
structure theory.199 In a recent study200 reviewed here, direct dynamics at the
MP2/6-31G* level of theory was used to simulate the Cl� þ CH3Cl central-
barrier dynamics. This theory gives a structure and vibrational frequencies
for the [Cl---CH3---Cl]� central barrier in excellent agreement with the values
for the much higher CCSD(T) theory;201 the Cl��C bond lengths of the two
theories agree within 0.005 Å and the symmetric Cl��C and C��H stretches dif-
fer by only 6 and 65 cm�1, respectively. The MP2 classical potential energy
barrier, without zero-point energy, is 4.54 kcal/mol with respect to the reac-
tants. The CCSD(T) value for this barrier is 3.16 kcal/mol, and the HF/6-31G*
value, used to derive the analytic potential energy function for the earlier
study, is 3.57 kcal/mol.

This MP2 direct dynamics trajectory study was performed with the
VENUS96/GAUSSIAN98 package of programs,7,202 which includes an effi-
cient predictor–corrector integration algorithm98 and Hessian updating.99 A
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total of 10 trajectories were calculated by sampling 300 K Boltzmann energy
distributions at the central barrier for the reaction coordinate, the eleven
orthogonal normal modes of vibration, and the three external rotation degrees
of freedom. Quasiclassical sampling (discussed above in the section on exciting
the transition state) which includes zero-point energy, was used for the vibra-
tions. Each of these trajectories was integrated for 3 ps in both the forward
and backward directions off the barrier.

A most striking feature of the direct dynamics trajectories is that they are
significantly different from those assumed by RRKM theory, and instead, quite
similar to those found in the previous trajectory study.203 None of the 20
3 ps backward and forward integrations off the central barrier formed
Cl� þ CH3Cl products, while RRKM theory predicts that 50% (i.e., 10) of
these integrations should have formed products. Many of the trajectories exhi-
bit a regular type motion, with well-identified frequencies for the Cl��C
stretching motions and have extensive recrossing of the central barrier. A tra-
jectory with very regular motion is shown in Figure 10. There are two cross-
ings of the central barrier for the trajectories and, after 3 ps of motion in both
forward and backward directions off the central barrier, the trajectory starts
and ends in the same Cl�-- -CH3Cl complex.

Transition state theory assumes that each crossing of the central barrier
leads to reaction. A total of 29 central-barrier crossings occurred for the

Figure 10 Representative trajectory with regular motion following excitation at the
[Cl- - -CH3-- -Cl]� central barrier. The trajectory is initiated at time zero and integrated
for 3 ps in both the forward and backward dirtections. The top line is R1, and the
bottom line is R2.
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10 trajectories. However, since no SN2 reactions occurred, it is not possible to
determine a definitive correction to TST. An estimate of this correction may be
made by assuming that each trajectory that started in one Cl�---CH3Cl com-
plex and ended in the other will ultimately be a reaction event. With this
assumption the TST correction factor is 0.2, which is similar to the 0.1 correc-
tion factor estimated from the previous trajectory study,203 based on an ana-
lytic potential energy function. This latter value is an upper limit,203 as is the
former value, since none of the trajectories reached the Cl�- --CH3Cl asymp-
tote and more recrossings of the central barrier are expected before this
asymptote is reached for both the backward and forward integrations of the
trajectories.

It should be noted that one of the limitations of classical trajectory simu-
lations is that they do not constrain zero-point energy motions and, thus,
allow a vibrational mode’s energy to fall below the zero-point level during
the course of the trajectory (see the section on importance of quantum effects).
Although the internal modes are constrained to have at least zero-point energy
in the initial conditions, this constraint is not imposed during the classical
trajectory. Transfer of energy between the vibrational modes and the reaction
coordinate could lead to enhanced recrossing that would not be seen in a more
accurate quantum-mechanical study. However, since quantum dynamics is
often more regular than classical dynamics,142 it is also possible that quantum
dynamics may have more recrossings. Comparisons of classical and quantum
central-barrier dynamics for Cl� þ CH3Cl reduced-dimensionality models, for
which quantum dynamics are feasible, would be of particular interest.

Experimental investigations of the non-RRKM and non-TST dynamics,
predicted for the Cl� þ CH3Cl system by the MP2/6-31G* direct dynamics
simulations, are important. A significant amount of barrier recrossing will
make the experimental SN2 thermal rate constant smaller than that predicted
by a TST calculation based on an accurate central-barrier energy and struc-
ture. Additional experimental measurements of this rate constant, including
its temperature dependence, would be very helpful. Barrier recrossing
dynamics could also be probed by investigating the central-barrier region
with femtochemistry133 and/or a time-dependent spectroscopic technique.134

If a wavepacket remains localized in the central-barrier region, it may then
be possible to resolve its vibrational dynamics and spectrum. A direct probe
of non-RRKM dynamics for the Cl�---CH3Cl complex would involve measur-
ing the lifetimes of its resonance states.197,198

OH� þ CH3F Exit-Channel Dynamics

Ab initio electronic structure calculations for the reaction

OH� þ CH3F ! CH3OH þ F� ½84�
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show a PES with a double well.204 However, instead of having a postreaction
potential energy well with the traditional SN2 structure of the halide ion bound
to the backside of the CH3 moiety, there is a global minimum with the halide
bound to CH3OH via a hydrogen bond; that is, CH3OH---F�, with a deep
well with respect to the CH3OH þ F� reaction products.

MP2 and the much higher-level CCSD(T) energies for the stationary
points on the PES are in very good agreement.204 The CCSD(T) and MP2 ener-
gies for the largest basis sets-6-311þþG(2df,2pd) and aug-cc-pVTZ-predict a
central barrier with an energy �3 kcal/mol less than that of the reactants, a
reaction exothermicity of �20 kcal/mol and a CH3OH---F� potential mini-
mum �30 kcal/mol below the product asymptotic limit. The latter well depth
is in excellent agreement with the 298 K F� þ CH3OH association enthalpy of
30 � 1 kcal/mol.205 Experimental energies are not available for the other sta-
tionary points. The MP2/6-31þG* method was used to perform the direct
dynamics simulation.206 This level of theory gives relative energies for the
[HO---CH3---F]�, CH3OH---F�, and CH3OH þ F� stationary points within
3 kcal/mol of the values obtained with the highest levels of theory.

The complete intrinsic reaction coordinate (IRC), connecting the reac-
tants and products was calculated with the MP2/6-31þG* theory, by initializ-
ing the IRC calculations at the central barrier and near the reactant and
product asymptotic limits. Energies and geometries along the IRC are shown
in Figure 11. The initial IRC, from the central barrier toward products,
involves F� dissociation along an approximate O��C��F collinear axis. At s
of about 5 amu1/2-Bohr the IRC enters a flat region, that is apparently a

Figure 11 Potential energy along the IRC for OH� þ CH3F ! CH3OH þ F�, where s is
the distance along the IRC (from Ref. 206).
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remnant of a backside potential energy minimum which is ‘‘lost’’ by the pre-
sence of the much deeper CH3OH---F� hydrogen-bonded minimum. At s of
approximately 12 amu1/2-Bohr the IRC leaves the flat region and starts its
descent into the CH3OH---F� minimum.

The MP2/6-31þG* direct dynamics simulations was performed with the
VENUS7 and the GAUSSIAN98202 program packages. Trajectories were
initiated at the central barrier, with conditions chosen from a 300 K Boltz-
mann distribution for reaction coordinate translation, the 14 vibrational
degrees of freedom, and the 3 external rotations (see the section on TS excita-
tion, above). Quasiclassical sampling, which includes zero-point energy, was
used to choose initial conditions for the trajectories. The trajectories were
integrated with a Hessian-based predictor–corrector algorithm,98 which
includes updating of the Hessian matrix.99 The trajectory was terminated after
3 ps of motion or when the F� and CH3OH product separation exceeded 17 Å.
The relative energy and angular momentum were conserved to within
0.01 kcal/mol and 10�8 �h, respectively.

Sixty-four trajectories were initiated at the [OH---CH3---F]� central
barrier with the sign of the reaction coordinate momentum chosen randomly,
directed toward either reactants or products. Of these trajectories, 33 formed a
reaction intermediate in the OH�---CH3F pre-reaction potential energy well.
Two reaction pathways were identified for the remaining 31 trajectories. One
follows the IRC and the system becomes trapped in the deep CH3OH---F�

potential energy well and forms a reaction intermediate. Four of the trajec-
tories are of this type, one of which forms the CH3OH þ F� reaction products
during the 3 ps of the trajectory integration. The remaining 27 trajectories fol-
low the second pathway, which is a direct dissociation with departure of the
F� ion approximately along the O��C---F� collinear axis. These two pathways
are depicted in Figure 12 for two of the trajectories calculated in this study.
Only a small fraction (�10%) of the trajectories actually follow the IRC reac-
tion path. The vast majority of the trajectories follow the non-IRC direct
dissociation path, for which �1 ps is required for the system to move from
the central barrier to the F� and CH3OH products separated by 17 Å.

The origin of the propensity for the direct reaction path is seen from a
PES diagram in which potential energy is plotted versus the C---F� distance
and the O��C---F� angle.206 The release of potential energy to the asymmetric
O��C---F� stretch motion of the reaction coordinate, as the system moves off
the central barrier, tends to propel F� from CH3OH with the O��C---F� angle
maintained at nearly 180�. The PES is rather flat for bending of the O��C---F�

angle, and there is only a very weak force to pull the reactive system from the
direct dissociation reaction path into the CH3OH---F� potential energy well
with a C��O---F� angle of 102.8�. In the language of IVR, there is very weak
coupling between CH3OH þ F� relative translation and O��C---F� bending
and other vibrational degrees of freedom of the reactive system. As the system
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moves off the central barrier, it moves directly to products without forming an
intermediate trapped in the CH3OH---F� potential energy well.

These simulations show how the efficiency of intramolecular vibrational
(energy) redistribution (IVR) and formation of a statistical reaction intermedi-
ate are intimately linked to the hierarchy of timescales for intramolecular
motions and structural transitions on the PES. Inefficient formation of the
CH3OH---F� reaction intermediate arises from rapid separation of the
CH3OH þ F� products in comparison to the longer timescale for C��O---F�

bending to form the intermediate.

Figure 12 The two pathways for motion from the [HO-- -CH3-- -F]� central barrier to
the CH3OH þ F� products. Most of the trajectories follow the direct dissociation path.
A small amount, �10%, form the CH3OH---F� hydrogen-bonded intermediate and
follow a direct path (from Ref. 206).
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Protonated Glycine Surface-Induced Dissociation

Surface-induced dissociation (SID)207 is an important experimental tool
for determining structural properties of ions and energetic and mechanistic
information concerning their dissociation pathways. In SID the ion is ener-
gized by collision with a surface. If electronic excitation is unimportant, the
collision translational energy Ei is partitioned between the final translational
energy Ef, and transfer to the internal vibrational/rotational modes of the ion
�Eint and the vibrations of the surface �Esurf:

Ei ¼ Ef þ�Eint þ�Esurf ½85�

Peptide ion fragmentation has been studied by SID.208 Glycine is the sim-
plest amino acid and the fragmentation pathways for its protonated form have
been extensively studied both theoretically209 and experimentally.210 Three
major fragmentation pathways have been proposed and are shown in
Figure 13. The first involves intramolecular proton transfer from the NH3

group to the OH group, resulting in loss of water and formation of iminium
ion (NH2CHþ

2 ) and CO. For the second pathway there is proton transfer from
the NH3 group to the carbonyl oxygen, resulting in the loss of dihydroxy-
carbene, C(OH)2. Formic acid (HCOOH) is formed in the third pathway.

Figure 13 Dissociation pathways for N-protonated glycine (from Ref. 211).
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A direct dynamics classical trajectory simulation study has been per-
formed to study energy transfer to N-protonated glycine, (gly-H)þ, and its
fragmentation, when it collides with the diamond f111g surface.211 In the
simulation the AM1 semiempirical electron structure theory is used to re-
present the (gly-H)þ intramolecular potential. To examine the accuracy of
the AM1 model, its reaction pathways and energetics for (gly-H)þ fragmenta-
tion were compared with those determined previously from experiment209 and
ab initio calculations.209,212 A summary of the AM1 and ab initio barriers for
the (gly-H)þ fragmentation reaction is given in Table 3. In addition to the bar-
riers for paths 1–3 in Figure 13, barriers are also given for the formation of
CO2 and H2 as reaction products. The transition state structures for the dif-
ferent reaction pathways are given in Reference 211. Except for the C(OH)2

formation channel, the AM1 and ab initio barriers are in agreement. Also, the
AM1 barrier for path 1 to form CO þ H2O is in good agreement with the
value of 44 kcal/mol deduced from experiment.210 The relative amount of
the product channel NH2CHþ

2 þ C(OH)2 in the simulations may be too large,
since the AM1 barrier for this channel is �1eV too low as compared to the
barrier found at higher levels of theory. However, the effect of this inaccurate
barrier on the SID dynamics may be mediated by the high translational energy
of the projectile (gly-H)þ.

The potential energy function used for the (gly-H)þ /diamond f111g sys-
tem is given by

V ¼ Vpeptide þ Vsurface þ Vpeptide;surface ½86�

where Vpeptide is the (gly-H)þ intramolecular potential, Vsurface is the potential
for the diamond surface, and Vpeptide,surface represents the (gly-H)þ/diamond
intermolecular potential. As described above, the AM1 semiempirical electro-
nic structure theory model is used for the (gly-H)þ intramolecular potential.
The remaining potentials are analytic functions.213,214 The potential energy

Table 3 Enthalpy Barriers for (Gly-H)þ Dissociationa

Products B3LYPb QCISD(T)c MP2b AM1d

NH2CHþ
2 þ CO þ H2 41.4 35.6 38.5 40.3

NH2CHþ
2 þ C(OH)2 57.2 51.5 63.1 27.2

NH2CHþ
2 þ HCOOH 88.5 85.0 92.9 99.5

NH3CHþ
3 þ CO2 74.0 78.4 77.5 78.2

NH2CHCOOHþ þ H2 80.0e — — 86.8
a The barriers are for 300 K. The ab initio calculations are from Ref. 209, except for the last

reaction.
b Calculations with 6-31þG* basis.
c Calculations with 6-31þG** basis.
d From Ref. 211.
e Calculations with the 6-31þþG* basis from Ref. 212.
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function for the diamond f111g model consists of harmonic stretches and
bends, with force constants chosen to fit the diamond phonon spectrum.213

The (gly-H)þ/diamond intermolecular potential is modeled by a sum of two-
body potentials between the atoms of the peptide and the atoms of diamond.
The two-body potential is given by

VXY ¼ AXY expð�BXYrijÞ þ
CXY

r6
ij

½87�

where X corresponds to Ar or the C and H atoms of the diamond and Y cor-
responds to H, C, O, and N atoms of the peptide. To determine the parameters
for the two-body potentials, ab initio potential energy curves were calcu-
lated214 using CH4, as a model for the C and H atoms of the diamond
f111g and CH4, NH3, NH4

þ, H2CO, and H2O as models for the different
types of atoms and functional groups comprising peptides. The ab initio
calculations were carried out at the MP2/6-311þG(2df,2pd) level of theory
with the frozen-core approximation.214 Following the discussion in the section
on BO direct dynamics, the potential in Eq. [86] is a QMþMM model.

The classical trajectory simulations were carried out with VENUS inter-
faced with the semiempirical electronic structure theory computer program
MOPAC. To simulate experimental conditions for (gly-H)þ þ diamond colli-
sions, the center of a beam of (gly-H)þ ion projectiles is aimed at the center of
the surface, with fixed incident angle yi and fixed initial translational energy,
Ei. The radius of the beam was chosen so that the beam overlapped a unit area
on the surface. For each trajectory, the projectile was randomly placed in the
cross section of this beam and then randomly rotated about its center of mass
so that it had an initial random orientation with respect to the surface. The
azimuthal angle, w, between the beam and a fixed plane perpendicular to
the surface, was sampled randomly between 0 and 2p. Such a random sam-
pling of w simulates collisions with different domains of growth on the dia-
mond surface.

The initial conditions for the vibrational modes of the (gly-H)þ were
chosen via the quasiclassical normal-mode method,100 with the energy for
each normal mode of vibration selected from the mode’s 300 K harmonic
oscillator Boltzmann distribution. A 300 K rotational energy of RT/2 was
added to each principal axis of rotation of the projectile. Initial conditions
for the diamond surface were chosen by first equilibrating the surface to a
300 K Boltzmann distribution with 2 ps of molecular dynamics and scaling
the atomic velocities.135–137 The structure and atomic velocities obtained
from this equilibration process are then used as the initial conditions for an
equilibration run at the beginning of each trajectory.

One hundred trajectories were calculated to simulate the fragmentation
dynamics of (gly-H)þ energized by collision with the diamond f111g surface at
Ei ¼ 70 eV and yi ¼ 45�. Each trajectory was integrated for 1.5 ps or until
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(gly-H)þ fragmentation occurred. The energy transfer probabilities to Ef, Eint,
and Esurf, [i.e., Eq. [85]], for these trajectories with the AM1 potential are sta-
tistically the same as those found with AMBER potential for (gly-H)þ.214 For
AMBER, the average percent energy transfer to Ef, Eint, and Esurf are 11, 37,
and 52, respectively. For the simulations with AM1, these percents are 12, 38,
and 50. These results show that, to simulate energy transfer in (gly-H)þ SID,
the harmonic AMBER and anharmonic reactive AM1 potentials give the same
result.

For 42 of the 100 trajectories, (gly-H)þ fragmented. The fragmentation
products are listed in Table 4, and, of the many product channels, the predo-
minant ones are NH3CHþ þ HCOOH, NH2CHþ

2 þ H2O þ CO, NH2CHþ
2 þ

C(OH)2, NHCH2 þ H2 þ COOHþ, and NH3 þ CH2COOHþ. Thus paths 1
and 2 in Figure 13 are important and formic acid is also formed, but not by
path 3. The iminium ion NH2CH2

þ is formed in 12 of the trajectories and its
isomer NH3CHþ in 4. One H2 or two H2 molecules are products in 14 of the
trajectories and NH3 a product in 8. An important component of the dissocia-
tion dynamics is shattering fragmentation, in which (gly-H)þ dissociates as it
either impacts or strongly interacts with the surface. Twenty-three of the dis-
sociations, �55%, occurred by shattering and their dynamics are discussed in
more detail below. Animations of the trajectories are available at the Website
http://www.octopus.chem.wayne.edu/hase.

Table 4 Products of (Gly-H)þ þ Diamond SIDa

Products Numberb

No reaction 58
NH3CHþ

3 þ CO2 1
NH3CHþ

2 þ COOH 3(1)
NH3CHþ þ HCOOH 4(4)
NH2CHþ

2 þ C(OH)2 7(3)
NH2CHþ

2 þ HCOOH 1(1)
NH2CHþ

2 þ H2O þ CO 3
NH2CHþ

2 þ H2 þ CO2 1(1)
NHCH2 þ H2 þ COOHþ 6(5)
NHCHþ þ 2H2 þ CO2 1(1)
NCH þ 2H2 þ COOHþ 1(1)
NCH þ H2 þ H2O þ COHþ 1(1)
NH3 þ CH2COOHþ 7(1)
NH2 þ CHþ

3 þ CO2 1
NH3CHCOþ þ H2O 1
NH2CHCOOHþ þ H2 1(1)
NH2CHOþ þ H2 þ COH 1(1)
NCC(OH)þ2 þ 2H2 1(1)
NCCHOHþ þ H2 þ H2O 1(1)

a The collision energy and angle are 70 eV and 45�. Of the
100 trajectories, each of 1.5 ps, 42 fragmented to products.

b The number of the fragmentations, which are shattering,
are given in parentheses.
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1. HCOOH formation. Formic acid is formed only by shattering. For
the four trajectories with NH3CHþ as a product, (gly-H)þ is properly oriented
as it impacts the surface, so that one of the H atoms of CH2 is ‘‘driven’’
into the carbonyl C atom and the products are formed. For the trajectory
forming NH2CH2

þ, the dynamics discribed above is the same except
NH3CHþ ! NH2CH2

þ H-atom transfer also occurs.
2. H2 formation. For H2 formation, shattering dominates, with 13 of

the 14 trajectories dissociating this way via four different mechanisms. For 8
of the shattering trajectories, an H2 molecule is ejected from NH3 as this end
of (gly-H)þ hits the diamond surface. For another 3 of the shattering trajec-
tories, this H2 elimination step occurs during the collision and then later

Figure 14 Height of the (gly-H)þ center of mass from the top carbon layer of the
diamond surface (- - -), the C��C distance (....), and the distance between the transferring
H atom and the carbonyl O atom (—) versus time for the six trajectories that form
NH2CH2

þ þ C(OH)2, by H-atom transfer to the carbonyl O atom. Three of the
dissociations occur by shattering (from Ref. 211).
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another H2 eliminates from CH2. For the two trajectories forming
NH2CHCOOHþ and NH2CHO þ COHþ as products, the H2 elimination is
four-centered, as proposed previously209 with one hydrogen coming from
nitrogen and the other from carbon. For the one dissociation not occurring
by shattering, (gly-H)þ first fragments to NH3CH2

þ and COOH and later
the ion dissociates into NHCHþ

2 and H2.
3. C(OH)2 formation. Seven of the trajectories form the products

NH2CH2
þ and C(OH)2, three of which occur by shattering. For these seven

trajectories, the NH3 moiety of (gly-H)þ collides with the surface and six of
them transfer a H atom from NH3 to the carbonyl oxygen during the collision.
The distances of the (gly-H)þ center of mass from the diamond surface, the
C��C distance, and the distance between the transferring H atom and the car-
bonyl oxygen are plotted in Figure 14 for these 6 trajectories. Three of the dis-
sociations occur by shattering, for which the C��C bond breaks as the collision
promotes transfer of the H atom. For the trajectory not shown in Figure 14,
the reaction is nonshattering and the H atom first transfers to the carbonyl
carbon.

4. NH3 formation. The product NH3 is formed in eight, �20%, of the
trajectories. For seven, the other product is CH2COOHþ, while for one trajec-
tory this species undergoes further dissociation to CHþ

3 and CO. For the single
shattering trajectory, the N��C bond ruptured on impact. The primary
mechanism, for NH3 formation, is delayed dissociation, with excitation of
(gly-H)þ by collision with the surface and then energy accumulation in the
N��C bond by intramolecular vibrational energy distribution.

These simulations suggest that the collisional activation of protonated amino
acids and peptides may directly ‘‘drive’’ the ion to a dissociation transition
state structure, resulting in nonstatistical fragmentation dynamics. To consider
the generality of this proposition, it will be important to study additional
amino acids and larger peptides in the future. It is also important to compare
the current AM1 direct dynamics with direct dynamics simulations at higher
levels of theory, such as B3LYP and MP2.

CONCLUDING REMARKS

In this chapter, direct dynamics classical trajectory simulations are
described for modeling electronic adiabatic reactions that occur on a single
Born–Oppenheimer electronic potential energy surface. In concluding, we
note that it is possible to extend these simulations to electronically nonadia-
batic classical dynamics and to electronically adiabatic semiclassical direct
dynamics. Incorporating transitions between electronic states in classical tra-
jectory simulations was first proposed by Tully and Preston in their trajectory
surface hopping (TSH) model.215–217 In the TSH approach a ‘‘hopping seam’’
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is defined and when trajectories evolve into this region the trajectory may be
‘‘switched’’ onto a different electronic state according to the transition prob-
ability obtained from solving the electronic Shrödinger equation in the strong
coupling region of the two electronic states. This approach has been extended
by introducing the fewest switching algorithms in selecting the hopping trajec-
tories. In the same spirit of trajectory hopping, Blais and Truhlar218 proposed
that the trajectory does not hop and stays on its current electronic potential
surface if the transition probability is less than 0.5. There are different variants
of the TSH method and references can be found in the review by Hack and
Truhlar.219

Martı́nez and co-workers have developed the ab initio multiple spawning
(AIMS) method,220,221 for which the system’s wavefunction is represented by a
linear combination of the product of the nuclei and electronic wavefunctions
for the different electronic states. The time-dependent nuclear wavefunctions
are approximated by a summation of weighted Gaussians. At each integration
step, the propagation of the momenta and coordinates for the nuclei is gov-
erned by the classical equations of motion, while the electronic Hamiltonian
for the system is solved quantum-mechanically. When the nonadiabatic transi-
tion region is entered, new wavefunctions for the nuclei are created, that is,
‘‘spawned’’ onto the excited electronic states. The spawned wavefunctions
also have the probability for the transition back to their ‘‘parent’’ electronic
state. Therefore, instead of switching the classical trajectories as employed
in the trajectory surface hopping method by Tully, the AIMS method expands
the wavefunctions of nuclei. By allowing the wavefunctions to spawn on a
single electronic state, the method may also be used to include the tunneling
effect.222 Under limiting conditions, this method attains the exact quantum or
classical limits. A comprehensive description of the method can be found in the
review by Martı́nez and co-workers.220

For some dynamical problems semiclassical wavepacket direct dynamics
simulations are possible.223 A nuclear coordinate wavepacket may be localized
in some region of space at a particular time, and it is necessary only to know
the potential energy surface in this region to determine the wavepacket’s
quantum-mechanical motion for a small timestep �t. Such a situation allows
one to use Heller’s Gaussian wavepacket dynamics (GWD) algorithm to
propagate a multidimensional wavepacket.224 GWD requires at most (thawed
Gaussian approximation) the gradient and second derivative of the potential
at the current nuclear configuration,225 both of which are easily obtained
directly from an electronic structure computer program. In some situations
the width of the wavepacket may be very small and it may be possible to
use the frozen Gaussian approximation,226 which requires only the gradient
of the potential.

The general Gaussian wavefunction for a N-dimensional system at time t
with spatial coordinates q is

fðq; tÞ ¼ expfi½ðq � qtÞ  At  ðq � qtÞ þ ptðq � qtÞ þ gt�g ½88�
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where At is a N � N complex symmetric matrix, qt and pt are real N-dimen-
sional vectors specifying the position and momenta of the center of the wave-
packet, and gt is a complex phase normalization factor. In the direct dynamics
GWD algorithm, electronic structure information is used to determine the time
evolution of the center of the wavepacket. The GWD algorithm remains accu-
rate as long as the wavepacket retains its localized structure. For a general
nonquadratic, anharmonic potential, the wavepacket will eventually spread
until it no longer has a quadratic form as assumed by Eq. [88]. The time
required for this spreading will, of course, depend on the actual potential
and the GWD algorithm has been applied successfully for a variety of applica-
tions.223 In particular, absorption and emission spectra may be determined
from a time-dependent formalism224 by simulating the motion of a wavepacket
on the electronic excited state potential (absorption) or the ground-state
potential (emission). It has been found that GWD dynamics gives sufficient
structure in the spectra to compare with experiment.223–226

Ohrn and co-workers have developed a direct dynamics approach which
incorporates both the electrons and nuclei dynamics (END).227 The complete
electron-nuclear coupling terms are retained in the calculation and, as a result,
the dynamics is not constrained to a single Born–Oppenheimer potential
energy surface; i.e., electronic non-adiabaticity is explicitly included. A com-
plication in this approach is the computational demand in propagating an elec-
tronic wavefunction which is an accurate representation of the ground
electronic state as well as multiple excited electronic states. This approach
will become more widely used as computation becomes more powerful. In
its initial development,227 Deumens et al. used END and treated the dynamics
of the nuclei purely classical as in the above classical direct dynamics. More
recently, a semiclassical description of the nuclear motion has been implemen-
ted by incorporating Heller’s224–226 Gaussian wave packet dynamics.228
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9. L. Bañares and M. J. D’Mello, Chem. Phys. Lett., 277, 465 (1997). Quantum Mechanical Rate
Constants for the DþH2!HDþH Reaction on the BKMP2 Potential Energy Surface;
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CHAPTER 4

The Poisson–Boltzmann Equation

Gene Lamm

Department of Chemistry, University of Louisville, Louisville,
Kentucky 40292

INTRODUCTION

State of the Field

The classic papers of Gouy1,2 and Debye and Hückel3–5 dealt with the
statistical mechanics of relatively simple models of strong electrolyte solutions:
the former papers concerned the distribution of point ions near a charged
planar surface, which is now referred to as the electric double layer, while the
latter dealt with the distribution of an isotropic and neutral system of charged
hard spheres. Both studies were instrumental in providing convincing proof of
the validity of Arrhenius’ theory of the existence of completely dissociated ions
in solution proposed some 30 years earlier, despite Arrhenius’ own beliefs.6

Later improvements and reformulations7–11 by Chapman, Stern, Grahame,
Onsager and Kirkwood increased the significance and usefulness of their ideas.
This however does not explain the increasing fascination with the Poisson–
Boltzmann equation since the mid/late 1920s, with an almost exponential
surge of interest since the early 1990s. This appeal can be attributed to three
things: the succinct analytical and physical description on which the method is
based, the ease with which it may be extended, both analytically and numeri-
cally, to more complex systems, and, most importantly, the breadth and depth
of the phenomena to which the equation applies.

Most applications of the Poisson–Boltzmann (PB) equation can be placed
into one of two areas: investigations of the chemical physics of ionic or
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colloidal solutions and calculations of the electrostatic energy of large biomo-
lecules. Those involving the former are concerned with the statistical mechan-
ical and thermodynamic description of polyelectrolyte solutions with recent
biophysical applications involving, for example, the estimation of the persis-
tence length of DNA, the determination of forces between membranes, and
the calculation of the electrostatic potential near charge-regulated micelles
and inside cylindrical micropores. A number of articles reviewing this field
have appeared over the years.12–24 For the most part these reviews describe
advances in our understanding of electrolyte and colloidal solutions and the
electric double layer, with the Poisson–Boltzmann equation serving as a bench-
mark against which other theories are measured.

When a system becomes too complicated for analytical techniques to
provide useful solutions, numerical procedures are invoked. For example,
researchers in the second area use general-purpose PB programs to map out
the electrostatic potential in and around large protein, membrane and nucleic
acid assemblies. This potential map aids our understanding of biomolecular
function by predicting free energy and pKa changes as a function of macro-
molecular and environmental changes.25–35 To be sure, large-scale applica-
tions of the PB equation first appeared around the early 1980s, but, with a
few notable exceptions, the computational enhancements offered by general-
purpose programs available today are relatively modest as most algorithms use
a brute-force approach to the problem. Recently, however, this has begun to
change. Of significance is the extension of PB theory beyond the relatively sim-
ple calculations of ion concentrations to include the prediction of protein pKa

values and solvation energies as well as new methods using Poisson–Boltz-
mann data as input into more detailed molecular dynamics or quantum-
mechanical calculations. Still, the two important areas of research mentioned
above operate somewhat independently of one another.

The number of publications in which the PB equation has been used has
climbed steadily. As seen in Figure 1, the increase from 1970 to 1990 is modest
but clear, however a sudden, almost exponential jump occurred in 1990 that
now appears to be leveling off. This leap in interest in the PB equation coin-
cides with significant advances in three initially unrelated areas: computers,
biotechnology, and renewed studies of basic colloidal systems. Fast and cheap
computational power prompted the development of general-purpose programs
for applying the PB equation to biological complexes. The need for these pro-
grams was driven by the almost assembly-line determination of high-resolu-
tion structures of biomolecules whose functions could be explained to a
large extent by their electrostatic nature. Today, with the mapping of the
human and other genomes proceeding apace and with the proteomics era
beginning, the supply of polyelectrolyte systems in need of systematic studies
appears endless. Computers have also aided the study of simpler electrolyte
systems with Monte Carlo and molecular dynamics simulations providing
baseline calculations to test the accuracy of standard Poisson–Boltzmann
approaches, highlighting the need for improvements.
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While this tutorial primarily emphasizes application of the PB equation
to systems of biophysical interest such as proteins, nucleic acids, and mem-
branes, its foundation and development are firmly entrenched in the study
of colloidal solutions.36 Two additional areas in which the PB equation plays
major roles and that have purposely been neglected from this study are dusty
plasmas37 and Schottky junctions,38 contributors of about two dozen articles
per year to the field (and that have not been included in Fig. 1). The appear-
ance of an article such as this one usually indicates that a field has reached a
certain level of maturity, such as, for example, the area of computational
quantum mechanics. However, the increase in the number of publications
related to the basic tenets of the PB equation and the independent directions
in which different areas are moving suggest that this is a field with significant
growth ahead. Somewhat surprisingly, despite the large number of publica-
tions relating the analytical solution of the PB equation to physical properties
of colloidal and biological systems, no elementary survey has yet appeared that
brings together and discusses the wide range of these results. The present
tutorial attempts to remedy this situation.

Overview of the Chapter

This review is organized into four parts. We begin with a brief history
of the Poisson–Boltzmann equation followed by an abbreviated derivation.
In the second part the PB equation is applied to several model systems whose

Figure 1 Approximate number of publications per year in which the Gouy–Chapman,
Debye–Hückel, or Poisson–Boltzmann equation was used.
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symmetry allows reduction to a single dimension and for which exact or
approximate analytical solutions can be found. This rather extensive, and by
far largest, part allows us to bring together many examples for planar and
curved systems that are scattered throughout the literature with the aim of
demonstrating a coherence of purpose and application within the field. This
is aided by the introduction of a simple method, based on the ‘‘nonlinear
Debye–Hückel’’ solution, by which approximate potentials for planar and
curved one- and two-particle systems may be found. Numerous figures are
given in this part of the chapter to illustrate and compare the analytical results
among different approximations and different systems. While recent applica-
tions of PB theory to large biophysical systems tend to involve the ready appli-
cation of one of the general-purpose programs, more physical insight can often
be gained by working through simplified one-dimensional PB models before-
hand, and it is usually the case that numerical methods must be used where
limitations of analytical approaches become unduly noticeable. It is also
true that the one-dimensional PB equation gives a remarkably accurate
description of a wide range of experimental data for many colloidal and bio-
logical systems. A major reason for the success of the PB approach is the ease
with which the electrolyte properties of planar membranes, cylindrical DNA
models and spherical micelles may be calculated, analytically as well as
numerically. It is hoped that the results presented here will be of use to anyone
who desires a quick estimation of the electrostatic effects of charged surfaces
immersed in an electrolyte. Those readers with a more immediate interest in
large-scale numerical calculations are encouraged to skip ahead to the third
part of this tutorial after reviewing the discussion of the Gouy–Chapman model.

In the third part of this chapter we review numerical methods commonly
used in applying the PB equation to more complicated systems than simpler
one-dimensional representations. Because two major articles covering most
aspects of the numerical solution of the PB equation have recently
appeared,34,39 only an overview of the numerical work is presented, emphasiz-
ing those aspects of primary importance or those that have been given less
coverage elsewhere. Included is a brief description of finite-difference/finite-
element PB algorithms similar to those used in popular programs such as
UHBD,34,40,41 DelPhi,42,43 MEAD,29 and APBS;44-47 alternative approaches
such as the boundary element method are also discussed. An introduction to
some of the more popular large-scale applications of the PB method is
presented, which includes (1) the calculation of the binding energy of two
molecules, (2) the calculation of the free energy of macromolecular solvation,
(3) the determination of protein pKa values, and (4) mixed-method procedures
in which the PB solution is used in conjunction with other techniques, such as
Monte Carlo, molecular dynamics, and Brownian dynamics, to enhance and
extend its usefulness.

The fourth and final part introduces topics that are slightly more
advanced than those considered in the first two parts. It allows the avid
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student or more mature reader to view the field in a broader context. We begin
with a discussion of the major assumptions implicit in using the standard
Poisson–Boltzmann equation and then elaborate on two of the most com-
monly used approximations: assumption of a bulk electrolyte and the linear-
ization of the PB equation. This is followed by brief descriptions of several of
the more popular alternative approaches including modified PB equations,
counterion condensation theory, and the Monte Carlo method. The review
concludes with a few final remarks as well as a table summarizing the analy-
tical solutions presented in the second part.

In keeping with the intent of this series, this tutorial is both an introduc-
tion to the field as well as a review of past work. In this regard the references,
which are quite numerous, fall into three categories. The first of these are text-
books which generally provide only the briefest of overviews of the Poisson–
Boltzmann equation, partly because many of the useful results consist of snip-
pets of information here and there and partly because much of this material
has only recently (as of 2003) been published. If several textbooks are cited
simultaneously it is usually to indicate that any reference will suffice as most
presentations follow pretty much the same path, with more specialized texts
the exceptions.36,48,49 The second category of references contains those that
appear during a derivation. For these the cited works serve either as the basis
for the development, offer an alternative method of approach, or provide an
important clarifying point. Finally, we have those references citing work that
goes beyond the discussion presented here by way of either complication or
application. Most of these are listed under the ‘‘Related. . .Calculations’’ sec-
tions for the appropriate system geometry and constitute the bulk of the refer-
ence review, although a large number also appear following derivations if
deemed immediately relevant.

A Brief History

The earliest known solution to what is now called the Poisson–
Boltzmann equation appears to be due to Liouville who, while investigating
surfaces of constant curvature, showed that the solution to the differential
equation

d2 log l
du dv

� l
2 a2

¼ 0 ½1�

is given by

lðu; vÞ ¼ 4 a2 ejðuÞþcðvÞ

1 � ejðuÞþcðvÞ½ �2
djðuÞ

du

dcðvÞ
dv

½2�

where jðuÞ and cðvÞ are arbitrary functions.50,51 (Letting u ¼ v ¼ x be a coor-
dinate variable and lðxÞ represent the local charge density for a system of ions
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of charge q, which in turn is related to the local electrostatic potential qcðxÞ
through Boltzmann’s equation, that is, lðxÞ � exp½qcðxÞ=kBT�, Eq. [1] is seen
to reduce to the Poisson–Boltzmann equation as expressed by Eq. [7].)

The first derivation of the PB equation in the context of electrolyte solu-
tions is due to Gouy, who considered a system of ions in the presence of a sur-
face of fixed charge density.1,2 By balancing the electrostatic force of ions
toward or away from the surface against their osmotic pressure, he obtained
a set of simultaneous equations relating the concentration of all ions in solu-
tion to the surface charge density. His analysis showed that there would be a
‘‘condensation des ions d’un signe’’ at the charged surface. These ions, whose
charge is opposite in sign to that of the surface, are called counterions; ions of
the same sign as the surface are coions. In 1917 Gouy applied the theory to an
investigation of electrocapillaries.52 About the same time, and independently
of Gouy, Chapman followed a more modern approach to the problem.7

Beginning with Poisson’s equation for the potential at a given distance from
a charged surface, Chapman performed a first integration to find the total
charge on a unit surface in an electrolyte solution and a second integration
to obtain the total work in charging the surface. The results of Gouy and
Chapman gave the unsettling prediction that as the surface charge increased,
so would the number of (point) counterions in its immediate neighborhood,
without end. This difficulty was resolved by Stern, who, in introducing a finite
ion size, imposed a distance (or plane) of closest approach of ions to the
surface.8 While Stern also mentioned that specific absorption of ions on the
surface might occur, he did not consider this case explicitly and so did not
separate the double layer into what are now called the inner (adsorbed) and
outer (nonadsorbed) Helmholtz layers. This was later done by Grahame in
his classic review of the electric double layer.9

Independent of Gouy and roughly concurrently, Milner developed a the-
ory of electrolyte solutions in which an equal number of cations and anions,
interacting via a Coulomb potential, were distributed according to Boltz-
mann’s distribution.53 A treatment of the osmotic pressure in such a system
was presented a year later.54 While essentially equivalent to the result obtained
by Debye and Hückel 10 years later, Milner developed his theory directly from
the Coulomb potential rather than from Poisson’s equation. Thus, his method
of solution bypassed the ease of presentation and insight to be gained in deal-
ing with a differential equation. This had to wait until Debye and Hückel, who
were aware of Milner’s results, published their celebrated work in two papers
in 1923, the first presenting their famous solution and dealing with freezing-
point depression and osmotic pressure of electrolyte solutions, and the second
treating ionic conductivity. Almost coincident with the first paper (February
1923), Debye, as sole author, submitted a brief treatment of osmotic pressure
using kinetic theory, the Brownian motion result of Einstein and the ideas
that he and Hückel had developed.55 Numerous papers were published by
Debye and Hückel over the next 5 years, either jointly or with other authors,
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extending the theory. In 1927 Fowler presented a more detailed analysis of the
Debye–Hückel derivation in which he addressed two primary concerns.56 The
first dealt with the use of a constant dielectric coefficient but conceded that any
improvement would be difficult. The second concern was with the implicit
neglect of a fluctuation term involving the potential energy. However, Fowler’s
method was later shown to be overly restrictive by Onsager10 and again by
Kirkwood.11

The publication in 1948 of a monograph by Verwey and Overbeek36

detailing work done by them and others during World War II on the applica-
tion of the PB equation, and, in particular, the Gouy–Chapman version of it,
to the study of colloids has proved to be as important as the initial publications
by Gouy and Chapman and Debye and Hückel. This study laid the foundation
for the modern study of colloids and has served as the primary guidepost for
most of the work described here. Today, the PB equation, and in particular the
Debye–Hückel (DH) linearized approximation, forms the foundation for mod-
ern descriptions of electrolyte and colloid theory. New theories are compared
with and often derived from the nonlinear Poisson–Boltzmann equation and in
the appropriate limits reduce to the DH result. As has been shown by modern
statistical methods, the Debye–Hückel theory of electrolyte solutions is analo-
gous to the lowest-order harmonic approximation in potential theory.57

The Poisson–Boltzmann Equation

The derivation of the Poisson–Boltzmann (PB) equation and its variants
are well-known and available in many textbooks.36,48,49,58–62 Over seventy
years of hindsight has shown us that, despite the relative simplicity of the
approach, most of the physics and chemistry of polyelectrolyte solutions are
well described by the Poisson–Boltzmann equation. To go beyond the PB
equation, however, is not as simple as one might think. We therefore include
a discussion of the assumptions behind the equation and attempts at improv-
ing it in the final part of this review.

Consider a system containing known amounts of ions (fixed as well as
mobile) in a solvent treated as a structureless but locally varying dielectric con-
tinuum at a given temperature. These ions may be of varying size and charge
and subject to any specified short-range, long-range, and external forces. To
determine the equilibrium distribution of ions, one generally starts from either
the differential or integral form of Maxwell’s law describing the variation of the
electrostatic potential throughout the system.63 For a spatially varying dielec-
tric continuum, the differential form defining the potential is more convenient:

r 
 eðrÞ 
 r�ccðrÞ ¼ �4p�rrðrÞ ½3�

where eðrÞ is the value of the local dielectric coefficient at position r, �ccðrÞ is
the mean electrostatic potential, and �rrðrÞ is the mean charge density. The
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electrostatic Poisson equation [3] is then ‘‘closed’’ by assuming that the mobile
component of the mean charge density is determined through application of
the Boltzmann expression

�rrPBðrÞ ¼ �rrfixedðrÞ þ �rrmobileðrÞ

¼
XN
n¼1

qndðr � rnÞ þ
XI

i¼0

e0zinie
�be0zi

�ccðrÞR
Vi

e�be0zi
�ccðrÞdt

�
XN
n¼1

qndðr � rnÞ þ
XI

i¼0

e0zic
R
i e�be0zi

�ccðrÞ ½4�

where the two summations correspond to N fixed (or source) and I mobile ions
in the system, e0 is the proton charge, zi and ni denote the valence and number
of ions of species i; b ¼ 1=kBT defines the temperature, cR

i � ciðRÞ denotes the
concentration of species i at some outer boundary R where the potential
vanishes (which may be at infinity), and dðr � rnÞ is the Kronecker delta func-
tion, which vanishes everywhere except at the positions rn of the fixed charges
(where it is then unity). It is convenient to denote ions of species i ¼ 0 as those
ions required for electroneutrality in the absence of added salt (e.g., those initi-
ally bound to a polyelectrolyte that are released on solvation).

The integral in the denominator of the second term is taken over the sys-
tem volume Vi accessible to species i and ensures the proper normalization of
the number of ions for a system with a finite volume. When this integral is
included, Eqs. [3] and [4] constitute what we refer to as the full Poisson–
Boltzmann equation. For systems with a bulk electrolyte, the number of ions
is considered infinite so the Boltzmann expression for mobile ions as written in
the third line of Eq. [4] is used and the concentration at the outer boundary cR

i

is replaced by a bulk concentration cB
i . Also, since ions of species 0 are finite in

number (compared to bulk species), they are then neglected from the sum-
mation.

The well-known Debye–Hückel equation results from expanding the
Boltzmann expression for the mobile ions in Eq. [4] in terms of the (small)
potential, that is, using ex  1 þ x þ x2=2 þ 
 
 
, where x ¼ �be0zi

�ccð r Þ, and
keeping only the first two terms:

�rrDHð r Þ ¼
XN
n¼1

qndðr � rnÞ þ
XI

i¼0

e0zic
R
i 1 � be0zi

�ccð r Þ
� �

½5�

(This limit of weak coupling between the charged surface and the electrolyte
environment also obtains in the absence of electrolyte, that is, in the Coulomb
limit, and one which is most easily found by letting z ! 0.) Using this result in
Eq. [3] gives a linear second-order differential equation for the mean potential,
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which is much easier to solve than the nonlinear PB equation. If a bulk elec-
trolyte solution is assumed, then cR

i ! cB
i (with cB

0 neglected as discussed
above) and the first term of the second summation vanishes due to electro-
neutrality of the dissolved electrolyte:

XI

i¼1

zic
B
i ¼ 0 ½6�

[In some publications the ‘‘Debye–Hückel equation’’ is used only in reference
to the spherically symmetric bulk electrolyte solution, with the term ‘‘linear
Poisson–Boltzmann’’ (or LPB) equation referring to the result of linearizing
the Poisson-Boltzmann equation, whatever its application. We follow more
common usage and use the two terms interchangeably; thus ‘‘DH’’ ¼ ‘‘LPB’’
in our notation.]

Equations [3] and either [4] or [5] are solved subject to appropriate
boundary conditions to obtain the ion distributions through the system.
Two boundary conditions (BCs) are required and most often these are chosen
from among the following:

BC1. Fixed potential on a surface (Dirichlet condition)
BC2. Fixed charge density (or electric field) on a surface (this includes the

electroneutrality condition) (Neumann condition)
BC3. A mixed condition coupling the charge density and potential on a

surface (Cauchy condition)
BC4. Finiteness of the potential or field within a specific region or at infinity

(one of conditions BC1–BC3 applied at one surface with the other
surface removed to infinity)

In addition to these conditions, the continuity of the potential throughout the
system requires that further relationships involving the potential and/or elec-
tric field at boundaries between regions need to be applied.

ANALYTICAL SOLUTIONS TO THE POISSON–
BOLTZMANN EQUATION

Equations [3] and [4] subject to two appropriate boundary conditions
constitute the Poisson–Boltzmann equation. A number of important, and at
one time misunderstood, assumptions have been used in its ‘‘derivation.’’
These are discussed in the last part of this review. Here we apply the PB equa-
tion or its DH approximation to three model systems for which analytical
solutions are readily found. While only a handful of systems possess (exact)
analytical solutions, there exists at least one such solution for each of the three
common one-dimensional geometries (planar, cylindrical, and spherical) and
a wide range of approximate analytical solutions can be found.
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Besides serving to demonstrate the physical principles involved in apply-
ing the PB equation as well as checks for the numerical solution of more com-
plicated geometries, these three systems are also excellent models for systems
of extreme biophysical importance, modeling flat-cell membranes, extended
polyelectrolytes such as DNA, and spherical micelles. For each geometry, we
will solve the PB equation and discuss the resulting potential profile. For those
cases in which both nonlinear PB as well as linear DH solutions exist, the simi-
larities and differences (particularly near the interface) are emphasized.

Because of its biological relevance, we are concerned solely with surfaces
having a fixed charge density. Solutions for these cases are somewhat more
difficult to obtain than for those with a fixed surface potential. There are
many biological systems in which a mixed boundary (case BC3, listed above)
is important whereby the surface charge is regulated by the potential. For
example, proteins possess ionizable sites whose charge depends strongly on
the local potential. Changes in this potential can lead to protonation or depro-
tonation of these sites, which, in turn, can affect both the conformation of the
protein as well as its recognition by a binding partner. Coupling this ionization
process to potential changes due to a particular binding candidate (such as
DNA) is a natural way to enhance recognition specificity during binding while
maintaining conformational integrity in its absence. The solution for these
more complex systems is usually obtained numerically and is not considered
here explicitly, although numerous references to charge regulation studies
are cited. In most cases, the following PB and DH solutions for surfaces
with a fixed charge density may be applied to surfaces held at a fixed potential
by inserting the value of this potential into the derived potential profiles.

A number of new approximate, but accurate, analytical results are also
presented here; the most significant ones are (1) the extension of Gouy–
Chapman theory to mixed electrolyte solutions whereby an effective counterion
valence is introduced, (2) two approximate potential profiles for curved surfaces
(one of them new) are generalized to include the presence of mixed electrolytes,
(3) the apparent surface charge density for curved surfaces for which the
Debye–Hückel potential asymptotically matches the Poisson–Boltzmann
profile, and (4) a unified treatment of two interacting charged surfaces.

Planar Geometry: The Membrane Model

The simplest polyelectrolyte model of biological relevance is that of a
single semiinfinite impenetrable charged plane in equilibrium with a bulk elec-
trolyte solution of known composition. The charged plane also serves as an
introduction to the properties of the electric double layer. We simplify the
representation of a membrane by assuming that (1) the membrane is impene-
trable to ions, (2) the surface charge is uniformly distributed and constant,
(3) the electrolyte is modeled as hard-sphere ions of specific size, and (4) the sol-
vent is a structureless continuum described by a uniform dielectric coefficient
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(the restricted primitive model electrolyte). While any of the above assump-
tions can be relaxed to provide a more realistic treatment, the essential features
of the physical phenomena displayed by membranes and other large poly-
electrolyte surfaces are described by this simple model due to Gouy,
Chapman, Stern, and Grahame. Although our analytical solutions to the PB
equation usually assume that the surface charge is spread uniformly on a
smooth surface, we use the term polyelectrolyte, instead of a more appropriate
but less descriptive term such as macroion. Summaries and more detailed
accounts of the PB equation applied to charged planar surfaces may
be found in texts or review articles on electrochemistry, colloids, or mem-
branes.36,48,49,64–72

General Equations
For our first analytical solution of the PB equation, we consider a semi-

infinite (in the y and z directions) charged plane at x ¼ a in the presence of a
point ion electrolyte solution (x > a; Figure 2). (As discussed at the end of this
section, this model also describes a surface at x ¼ 0 with primitive model elec-
trolyte ions of equal radius a, but it is common practice to absorb the ion
radius into the position of the charged surface.) Equations [3] and [4] yield
the Poisson–Boltzmann equation for this system

d2�ccðxÞ
dx2

¼ � 4pe0

e0

XI

i¼0

cR
i zie

�be0zi
�ccðxÞ ½7�

where e0 is the bulk dielectric coefficient of the solvent and zi and cR
i are the

valence and reference concentration of ion species i (e.g., 0, 1 ¼ Naþ,
2 ¼ Mg2þ and 3 ¼ Cl�). R is some reference position at which the outer
boundary conditions are determined and that may be assumed to be infinity
if the plane is in contact with a bulk electrolyte solution. For an impenetrable
plane with fixed surface charge density, the charged surface is more conveni-
ently introduced through a boundary condition on the electric field (an inho-
mogeneous Neumann condition) determined by applying Gauss’ law, rather
than as a charge (or source) distribution at x ¼ a

d�ccðxÞ
dx

����
x¼a

¼ � 4psa

e0
½8�

for constant surface density sa. The second boundary condition follows either
from the assumed electroneutrality of a finite system (R < 1) or from the
finiteness of the electric field far from the surface (R ! 1), both assumptions
giving

d�ccðxÞ
dx

����
R

¼ 0 ½9�
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An additional condition on the solution that is often used is to fix the gauge or
reference value of the electrostatic potential by �ccðRÞ ¼ 0. That this choice is
only one of convenience and not necessity (two boundary conditions suffice in
determining the solution to a second-order differential equation) is easily seen
by adding a constant to the potential in Eq. [7] and absorbing the leftover fac-
tor into the reference concentration cR.

Figure 2 Illustration of a negatively charged biomolecular surface with charge density s
in the presence of a mixed electrolyte. The surface may represent that of a colloidal
or biophysical particle such as a membrane (plane), polynucleic acid (cylinder), or
micelle (sphere) where the distance of closest approach of ions is designated x ¼ a. In the
solution of the Gouy–Chapman equation, and of the Poisson–Boltzmann equation in
general, the charged surface is usually displaced from its actual position (relative to the
solvent) to the plane of closest approach of nonadsorbed ions, also called the outer
Helmholtz plane.
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It is convenient to define three characteristic lengths of the system. The
first is a property of the solvent and is called the Bjerrum length:

LB ¼ be2
0=e0 ½10�

For water at 298 K, e0 ¼ 78:5 gives LB ¼ 7.14 Å. The second length that we
introduce is the Gouy–Chapman length68

lGC ¼ e0

2pLB saj j ½11�

which is a property of the surface (and solvent through LB). The final charac-
teristic length is the well-known Debye length RD and is given by the inverse of
the (bulk) Debye screening constant

RD � 1

kD
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pLBA0

PI
i¼1

cB
i z2

i

s ½12�

and is a property of the electrolyte. In Eq. [12] we have explicitly inserted the
conversion factor A0 ¼ 6:022 � 10�4M�1Å�3 for concentrations given in
molarity and lengths in angstroms. In terms of the ionic strength I of the
electrolyte, Eq. [12] reads: kDðÅ�1Þ ¼ 0:33

ffiffiffiffiffiffiffiffiffiffiffi
IðMÞ

p
: Rouzina and Bloomfield

have used these three lengths to investigate the similarities between competi-
tive mono- and divalent counterion binding to planar and cylindrical charged
surfaces.73,74

If we now introduce the reduced or scaled potential (in units of kBT /e0 ¼
25 mV at 298 K)

fðxÞ ¼ be0
�ccðxÞ ½13�

Eqs. [7]–[9] take the form

f00ðxÞ ¼ �4pLBA0

XI

i¼0

cR
i zie

�zifðxÞ ½14�

and

f0ðaÞ ¼ �2Sa

lGC
; Sa ¼ sgnðsaÞ

f0ðRÞ ¼ 0; fðRÞ ¼ 0;

½15�

where Sa is the sign of the surface charge and single or double primes indicate
first- or second-order differentiation with respect to the distance coordinate.
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Multiplying Eq. [14] by f0ðxÞ and integrating from x to R gives the first
integral

½f0ðxÞ�2 ¼ 8pLBA0

XI

i¼0

cR
i ½e�zifðxÞ � 1� ½16�

which can be rearranged to reduce the solution to quadrature (i.e., in terms of
an integral)

ðf
fa

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼0

cR
i ðe�zif � 1Þ

s ¼ �Sa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pLBA0

p
ðx � aÞ ½17�

where fa is the surface potential. A more convenient form of Eq. [17] for finite
systems (R < 1) is

ðf
0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼0

cR
i ðe�zif � 1Þ

s ¼ Sa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pLBA0

p
ðR � xÞ ½18�

Equation [16] can be rearranged to read75,76

� ½f0ðxÞ�2

8pLB
þ A0

XI

i¼0

cR
i ½e�zifðxÞ � 1� ¼ 0 ½19�

Equation [19] expresses the condition of equilibrium as a balance between the
electrostatic pressure on ions, where the first term is simply the Maxwell elec-
tric field stress tensor,77 and the osmotic pressure with respect to bulk, given
by the second term.78 Only in special cases can the integral in Eq. [17] be eval-
uated analytically.2,79–81 Several analytical approximations to the planar PB
equation for asymmetric electrolytes have been suggested.82–84 We now pre-
sent three examples possessing exact analytical solutions beginning with the
classic Gouy–Chapman solution.

Bulk Model: z : z Electrolyte
The prototypical example is that of a charged plane in contact with

a bulk z : z symmetric electrolyte (z > 0), in which case we let R ! 1
and cR

0 ! 0, so Eq. [14] becomes

zf00ðxÞ ¼ k2
D sinh zfðxÞ½ � ½20�
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where we have simplified the result by introducing the Debye–Hückel screen-
ing constant of Eq. [12]. The solution to this equation is most immediately
found by evaluating the integral in Eq. [17]:

ðf
fa

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cB½coshðzfÞ � 1�

p ¼ 1

2
ffiffiffiffiffi
cB

p
ðf
fa

df
sinhðzf=2Þ

¼ 1ffiffiffiffiffiffiffiffiffi
cBz2

p ln
tanhðzf=4Þ
tanhðzfa=4Þ

� �
½21�

where cB now denotes the bulk electrolyte concentration. Inserting this into
the left-hand side of Eq. [17], identifying the screening constant, and denoting
the potential by fPBðxÞ (which, because of its monotonicity, has the same sign
as the surface value fa) gives

tanh
zfPBðxÞ

4
¼ tanh

zfa

4

� �
e�kDðx�aÞ ½22�

this is then inverted to yield the standard Gouy–Chapman potential:

zfPBðxÞ ¼ �2 ln
1 � tanhðzfa=4Þ e�kDðx�aÞ

1 þ tanhðzfa=4Þ e�kDðx�aÞ

� �
½23�

The ion concentrations for valence � z are found from Eq. [23] using the
Boltzmann expression c�ðxÞ ¼ cB exp½�zfðxÞ�:

c�
PB
ðxÞ ¼ cB 1 � tanhðzfa=4Þ e�kDðx�aÞ

1 � tanhðzfa=4Þ e�kDðx�aÞ

� ��2

½24�

Equation [23] gives the solution in terms of the surface potential. For
application to biophysical macromolecules, an expression involving the sur-
face charge density is usually preferable to one involving the surface potential.
The relation between the two can be found from Eqs. [15] and [16]:

z

kDlGC
¼ Sa sinh

zfa

2
½25�

This important result relating the surface charge density to the surface poten-
tial is often referred to as Grahame’s equation.67 A little manipulation allows
us to express the potential [23] in the ‘‘simpler’’ form

zfPBðxÞ ¼ �2 Sa ln tanh
kDðx � a þ dDGCÞ

2

� �
½26�
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where, for convenience, we have defined the Debye–Gouy–Chapman length

dDGC ¼ k�1
D sinh�1 kDlGC

z
½27�

with sinh�1ðwÞ ¼ lnðw þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 1

p
Þ: Because most biological systems have

low salt concentrations near a highly charged surface, implying that the
Debye length is much larger than the Gouy–Chapman length ðkDlGC � 1Þ,
the Debye–Gouy–Chapman length usually approaches the Gouy–Chapman
length (per counterion charge). The potential profiles corresponding to two
systems with identical ionic strengths but different surface charge densities
are self-similar in that they differ only in a spatial shift given by the difference
in their dDGC values. Equation [26] may also be obtained directly by noting
that zfðxÞ ¼ �2 ln tanhðg1x þ g2Þð Þ is the general solution to Eq. [20].

Evaluating Eq. [26] at x ¼ a yields the surface potential, which is simply

zfa ¼ �2 Sa ln tanh
kDdDGC

2

��
½28�

The surface potential is shown in Figure 3 as a function of surface charge den-
sity for two concentrations of mono- and divalent symmetric electrolytes. The

Figure 3 The Gouy–Chapman and Debye–Hückel surface potentials fa (Eqs. [25] and
[32], respectively) for a positively charged plane with a surface charge density sa (in
e0/Å2) in symmetric mono- and divalent electrolytes at concentrations of 0.01 M (solid
lines) and 0.1 M (dashed lines); Debye–Hückel potentials are given by straight lines.
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electrostatic (Helmholtz) free energy per unit area of the system is easily
obtained from Eq. [28] by charging the surface:36,85,86

e0bAel

Area
¼
ðsa

0

faðsÞds

¼ safa �
ðfa

0

sðfÞdf
½29�

where the second line follows from the first by an integration by parts; the
choice of integrals to use is determined by whether the surface charge density
or potential is the independent variable. The free energy of a double layer sys-
tem can also be dissected into energetic (U), entropic (T DS), and chemical
components, where for systems with surfaces held at constant charge density
(such as those considered here) the chemical component due to adsorption
or desorption of ions is omitted, as in Eq. [29].86 Using Eqs. [11] and [25],
the second line in Eq. [29] gives

bAel

Area
¼ kD

2pLBz2
zfa sinh

zfa

2

� �
� 2 cosh

zfa

2

� �
þ 2

 �

¼ kD

pLBz2
p lnðp þ qÞ þ 1 � q½ �; p � z

kDlGC
; q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ p2

p
½30�

The electrostatic free energy can be used to investigate bending rigidity87 and
electrostatic pressure48 of planar membranes. Most calculations are performed
at a specific temperature and at known ion concentrations; hence the
Helmholtz free energy is the appropriate quantity to use. Experiments, how-
ever, are performed at constant temperature and pressure and thus measure
the Gibbs free energy. Because condensed phases are almost incompressible,
the difference between the two free energies is small and this distinction is
usually ignored.86

For a small surface potential or charge density, Eqs. [11] and [25] pro-
vide a linear relationship between them

sa

e0
¼ kDfa

4pLB
½31�

and Eq. [22] reduces the potential profile to a simple screened exponential:

fðxÞ ¼ fðaÞ e�kDðx�aÞ ¼ 2 Sa

kDlGC
e�kDðx�aÞ ½32�

Equation [32] can also be derived by initially linearizing Eq. [14]. This is
known as the Debye–Hückel potential and is valid for low surface charge
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density or high ionic strength (either restriction leads to a small surface poten-
tial). The surface potential implicit in Eq. [32] is also shown in Figure 3 and
compared with the Gouy–Chapman potential from Eq. [25]. It is seen that the
GC surface potential approaches the linear DH dependence for small charge
densities.

In the opposite limit of large surface potential we have jfaj � 1 ðkDlGC �
1, giving dDGC  lGC=zÞ so that near the surface Eq. [26] gives

zfnearðxÞ  �2 Sa ln
kDðx � a þ lGC=zÞ

2
½33�

with surface ion concentrations

ciðxÞ  cB
i

kDðx � a þ lGC=zÞ
2

� ��2

½34�

where � indicates coions and counterions, respectively. For a large surface
potential far from the surface, kDðx � aÞ � 1 and Eq. [26] becomes

zfasympðxÞ  �2 Sa ln
1 � e�kDðx�aþlGC=zÞ

1 þ e�kDðx�aþlGC=zÞ

����
����  4 Sa e�kDðx�aþlGC=zÞ ½35�

The decay is again determined by the Debye screening constant, but the high
surface potential (or charge density) has little effect on the asymptotic poten-
tial profile. Thus, experimental data on a highly charged system, which depend
on the (linear) properties of the tail of the potential, are only weakly dependent
on the (nonlinear) properties at the surface and extrapolation of asymptotic
properties to a highly charged surface is extremely unreliable.

Before we discuss the above results, we note that for a spatially depen-
dent dielectric coefficient, a good approximation can be found by simply repla-
cing the exponential terms in Eq. [22] or [23] with

e�kDðx�aÞ ! exp �kD

ðx

a

ffiffiffiffiffiffiffiffiffi
eðxÞ
e0

s
dx

 !
½36�

and lGC by ðea=e0ÞlGC in Eq. [25] to get the surface potential.88

Discussion of the Gouy–Chapman (GC) Solution
In Figure 4 the GC potential profile of Eq. [26] is compared to the

Debye–Hückel (Eq. [32]) and apparent Debye–Hückel (Eq. [93], discussed
later) potentials for two monovalent salt concentrations (0.01 and 0.1 M)
for a surface with charge density s¼ 0.01 e0/Å2. (The value for the surface
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charge density chosen here and below is typical of biopolyelectrolytes: for B-
DNA, jsaj � 0.01 e0/Å2, for planar membranes, jsaj � 0.015 e0/Å2, and for
spherical micelles, jsaj � 0.01�0.02 e0/Å2.) Despite the complicated appear-
ance of Eq. [26], the monotonic decay of the Gouy–Chapman potential
away from the surface is a typical feature of one-dimensional solutions of
the Poisson–Boltzmann equation. The relative simplicity of the PB potential
profile might lead one to assume incorrectly that analytical solutions to the
equation could be found readily (the rub lies in the nonlinearity, and to
some extent the degree of nonlinearity, of the equation). Small changes in initi-
al or boundary conditions or in system properties lead to large changes in the
potential. Many standard analytical and numerical techniques also fail
because the most physically meaningful solutions require that the derivative
of the potential, rather than the potential itself, be specified at the charged sur-
face. While exact analytical solutions for most models of biophysically inter-
esting systems are not forthcoming, approximate (yet accurate) analytical
expressions can be derived; several of these are presented later in the tutorial.

The region next to a charged surface in the presence of an electrolyte is
called the electric double layer, a term describing what was originally thought
to be two separate positively and negatively charged layers. Now it simply

Figure 4 A comparison of the Gouy–Chapman (Eq. [26]), Debye–Hückel (Eq. [32] or
Eq. [89]), and apparent Debye–Hückel (Eq. [93]) potentials for a planar surface with
charge density sa ¼ 0:01 e0/Å2 in a monovalent electrolyte of concentrations 0.01 and
0.1 M; also shown are the Debye–Hückel profiles that match the Gouy–Chapman
solution at the surface (circles).

Analytical Solutions to the Poisson–Boltzmann Equation 165



refers to that part of the electrolyte solution that has properties distinct from
those of the bulk solution (e.g., clustering of like ions, orientation of solvent
molecules, etc.). Because the double layer blends continuously into the bulk
(over a distance of several Debye lengths), the adjective diffuse is often
applied. The charged surface attracts predominantly counterions with these
ions serving to partially neutralize or renormalize the surface charge, as seen
by more distant ions, leading to an apparent lowering of the surface charge
density (or potential). Thus the long range Coulomb attraction or repulsion
between two charged components (ions and/or surfaces) becomes a much
shorter ranged local force when an electrolyte is present. This allows infinite
systems to be treated as finite, or, finite systems to be extended to infinity, as
convenience dictates. This exponential-like screening is common to all geome-
tries and is a fundamental property of (poly)electrolyte systems. For systems
with either low surface charge density or high ionic strength, resulting in a
small potential throughout the system, the exact exponential screening of
the DH profile is approached; for other systems, the exponential decay is
approached only at much larger distances from the surface. The faster decay
of the GC potential compared to the DH profile seen in Figure 4 implies a nar-
rower but more concentrated double layer for the GC potential; this is the
nonlinear aspect of GC theory. The DH potential clearly overestimates
the actual potential, even at relatively large distances from the surface where
the potential is small, but improves at higher electrolyte concentrations.
Choosing an apparent or effective surface charge density such that the DH
form of the potential reproduces the asymptotic decay rate of the GC potential
gives the apparent DH (ADH) profile shown in Figure 4 (derived below as
Eq. [93]). We also show the Debye–Hückel profiles that match the Gouy–
Chapman potentials at the surface. The matched DH profile lies above the
GC profile for both electrolyte concentrations emphasizing that the decay
rate of the GC profile is faster than that based on the bulk Debye screening
constant.

Equation [23] represents the GC solution for point ions. A key develop-
ment in the theory of electrolytes was the introduction of a finite distance of
closest approach of ions to a charged surface by Stern8 and further elaborated
upon by Grahame.9 The layer of ions directly adsorbed onto the surface con-
stitutes the inner Helmholtz layer; those ions that make contact but do not
adsorb define the abovementioned distance of closest approach and constitute
the outer Helmholtz or Stern layer. These modifications still admit an analy-
tical solution to the GC equation: Laplace’s equation is solved in the Stern
layer with the (linear) potential and (constant) field matched at the polyelec-
trolyte surface and to the outer GC solution.49 The adsorbed ions serve to
reduce the charge density of the surface. Identification of the inner and outer
Helmholtz layers has been particularly helpful in improving agreement
between GC theory and electrochemical data. If we assign a common radius
a to all electrolyte ions, then the identification of the interface at x ¼ a actually
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corresponds to the outer Helmholtz layer for a charged plane at x ¼ 0. The
surface charge density should then take into account any charge reduction
due to adsorbed ions.

Figure 5 displays the counter- and coion correlation functions
(equivalent to the concentration profile per bulk concentration) according to
the Gouy–Chapman, Debye–Hückel, and apparent Debye–Hückel solutions
(Eqs. [23], [32], and [93]) for a bulk symmetric electrolyte at 0.1 M near a
planar surface with charge density jsaj ¼ 0.01 e0/Å2. Far from the surface,
where the potential is small, the correlation functions approach unity and
the amounts of counter- and coions are equal; close to the surface the number
of counterions increases and the number of coions decreases as a result of the
electrostatic attraction to and repulsion from the surface, respectively. The
apparent DH counterion correlation function is, as can be seen, a marked
improvement over the standard DH result.

The preceding comments concerning the potential and ion profiles for
the Gouy–Chapman and Debye–Hückel equations apply equally well to other
nonsymmetric and/or mixed electrolytes and geometries, as will be seen in
many of the figures which follow. Therefore, rather than repeat the comments
above for each of these systems, we simply show the additional potential pro-
files to illustrate differences between systems and approximations as well as to
provide numerical data for those wishing to check their results. We have lim-
ited the treatment so far to a symmetric electrolyte as originally discussed by

Figure 5 The correlation functions for monovalent counter- and coions according to the
Gouy–Chapman, Debye–Hückel, and apparent Debye–Hückel solutions (Eqs. [24],
[83], and [93], respectively) for a 0.1 M symmetric electrolyte near a plane with charge
density sa ¼ 0:01 e0/Å2.
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Gouy. Although Gouy also presented analytical solutions for asymmetric 1 : 2
and 2 : 1 electrolytes,2 they are less relevant biologically than the simple 1 : 1
case. However, since in most biological systems some amount of divalent
cation is usually present, the mixed electrolyte cases of 1 : 1–2 : 1 and 1 : 1–
2 : 2 are also important, and we consider them in detail below.

Bulk Model: 1 : 1–2 : 1 Electrolyte
For a negatively charged plane (at x ¼ a) in the presence of a bulk 1 : 1–

2 : 1 electrolyte (e.g., a mixture of NaCl and MgCl2), the integral in Eq. [17]
can be evaluated (species i: 1 ¼ Naþ, 2 ¼ Mg2þ, 3 ¼ Cl�) as follows89,90

ðf
fa

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i¼1
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i ðe�zif � 1Þ
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1 þ 3cB
2

q ðf
fa

d�

sinhð�=2Þ; � ¼ W þ 1 ½37�

where a1 ¼ cB
2=ðcB

1 þ 3cB
2 Þ: The final integral in Eq. [37] is identical to that in

Eq. [21] and yields the solution

�ðxÞ ¼ �2 ln
1 � tanhð�a=4Þ e�kDðx�aÞ

1 þ tanhð�a=4Þ e�kDðx�aÞ

� �
; �a � �PBðaÞ ½38�

where the Debye screening constant is k2
D ¼ 8pLBA0ðc1 þ 3c2Þ and the PB

potential profile is given by

fPBðxÞ ¼ ln
exp½�ðxÞ� � a1

1 � a1

� �
½39�

The relation between the surface potential and charge density (i.e., Grahame’s
equation and the analog of Eq. [25]) is readily found by applying the boundary
condition of Eq. [15] to solution [38]:

1

kDlGC
¼ Sa sinhð�a=2Þ

1 � ae��a

¼ Sa sinh
fa

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a1 þ a1e�fa

p
½40�

where lGC is the Gouy–Chapman length of Eq. [11] and Sa is the sign of the
surface charge density. The surface potential as a function of positive and
negative surface charge densities obtained from Eq. [40] is shown in Figure 6
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(as solid lines) for several concentrations of a mixture of 1 : 1 and 2 : 1 electro-
lytes. Also shown in the figure (as circles) is the surface potential for a mixture
of symmetric 1 : 1 and 2 : 2 electrolytes according to Eq. [48]. The asymmetry
in the surface potential with respect to the sign of the surface charge for the
1 : 1–2 : 1 electrolyte is evident when compared to that of the 1 : 1–2 : 2 elec-
trolyte. Also, for negative surfaces, the difference between having mono- ver-
sus divalent anions is negligible as evidenced by the agreement between the
curves for the two systems. In Figure 7 we display the potential profile of
Eq. [39] for a negatively charged plane in a mixed 1 : 1–2 : 1 electrolyte.
Also shown are the high charge density GC, effective-valence GC, and appar-
ent DH approximations (Eqs. [57], [70] and [93], respectively), discussed
below following Eqs. [41], [72] and [93].

For low surface charge densities, Eqs. [38]–[40] give the DH potential of
Eq. [32]. In the more interesting limit of high surface charge density, the poten-
tial near the surface is

fnearðxÞ  �2 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a1

p
kDðx � a þ lGCÞ=2

h i
; Sa > 0

 ln
ffiffiffiffiffi
a1

p
kDðx � a þ lGC=2Þ½ �; Sa < 0 ½41�

where it is assumed that a1 > 0; for a1 ¼ 0, Eq. [33] obtains. Surface ion con-
centrations (similar to those of Eq. [34]) are readily obtained from these

Figure 6 The Gouy–Chapman surface potential for positively and negatively charged
planes with a surface charge density sa (in e0/Å2) in asymmetric (solid line; Eq. [40])
and symmetric (circles; Eq. [48]) mixed electrolytes for different mono- and divalent
cation concentrations (c1 and c2 in M).
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results. The appropriate curve (dotted–dashed line) in Figure 7 shows that the
high charge density approximation of Eq. [41] agrees fairly well near the sur-
face and provides a reasonable estimate of the surface potential. While Eqs.
[41] assume a planar surface, the expressions are also valid for curved surfaces
in the limit that the local surface curvature Rc is large compared to the Debye
length: kDRc � 1. Far from the surface, the potential decays as

fasympðxÞ 
4

1 � a1
e�kDðx�aþlGCÞ; Sa > 0

 �4

1 þ ffiffiffiffiffi
a1

p� �2
e�kDðx�aþlGC=2Þ; Sa < 0 ½42�

Systems with a negative surface charge density have more biochemical rele-
vance, but equations for the positive case are shown to illustrate the asymme-
try in the solution due to inclusion of a 2 : 1 electrolyte. Note that in Eqs. [41]
and [42], the Gouy–Chapman length appears with a factor representing the
largest counterion valence at the surface, as indicated explicitly in the z : z elec-
trolyte case of Eq. [35].

Figure 7 The Gouy–Chapman potential profile for a negatively charged plane with a
surface charge density sa ¼ �0:01 e0/Å2 in a mixed asymmetric 1 : 1–2 : 1 electrolyte
(solid line; Eq. [39]) for mono- and divalent salt concentrations c1 ¼ 0:1 M and
c2 ¼ 0:02 M, respectively. The exact GC profile (circles) is compared with three
approximate profiles based on the effective-valence approximation (solid line; Eq. [70]),
the high charge density approximation (dotted–dashed line; Eq. [57]), and the apparent
(dotted line; Eq. [93]) and actual (dashed line; Eq. [89]) DH approximations.
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A simple and accurate approximation of Eq. [39] is easily derived.
Because the limiting case of a1 ¼ 0 reduces to the symmetric z : z electrolyte
case, an expression based on the Gouy–Chapman solution [26] would seem
appropriate. Introducing an effective counterion valence ze ð>0Þ gives the
approximate solution

zefPBðxÞ  �2 Sa ln tanh
kDðx � a þ dDGCÞ

2

� �
½43�

where application of the boundary condition at x ¼ a requires that the Debye–
Gouy–Chapman length obeys

dDGC ¼ k�1
D sinh�1 kDlGC

ze
½44�

The actual Debye screening constant must be retained to give the correct decay
at large distances from the surface. We determine the effective valence by
requiring that the approximate solution give the correct surface potential
and, after a little algebra, find that ze satisfies

sinh zefa=2ð Þ
ze sinh fa=2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a1 þ a1e�fa

p
½45�

where fa is given by Eq. [40].

Bulk Model: 1 : 1–2 : 2 Electrolyte
As with the 1 : 1–2 : 1 electrolyte case presented above, we can also

obtain the solution for a charged plane in the presence of a 1 : 1–2 : 2 mixed
electrolyte. Although this case is not as biologically relevant, its solution will
be helpful in deriving an analytical approximation for the potential profile of a
moderately charged plane in a general monovalent–divalent mixed electrolyte.
With cB

1 and cB
2 denoting bulk concentrations of the 1 : 1 and 2 : 2 electrolytes,

respectively, the integral in Eq. [17] for this case gives

ðf
fa

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cB

1 ðef þ e�f � 2Þ þ cB
2 ðe2f þ e�2f � 2Þ

q
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cB

1 þ 4cB
2

q ðf
fa

df

sinhðf=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2 sinh2ðf=2Þ

q
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cB

1 þ 4cB
2

q ðw

wa

dw

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2w2 þ ða2 þ 1Þw þ 1

p ; w ¼ sinh2ðfÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cB

1 þ 4cB
2

q ln
sinhðf=2Þ

coshðf=2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2 sinh2ðf=2Þ

q
2
64

3
75
f

fa

½46�
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where a2 ¼ 4cB
2=ðcB

1 þ 4cB
2 Þ: The potential profile therefore satisfies

sinh fðxÞ=2ð Þ

cosh fðxÞ=2ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2 sinh2 fðxÞ=2ð Þ

q
¼ sinhðfa=2Þ

coshðfa=2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2 sinh2ðfa=2Þ

q e�kdðx�aÞ ½47�

where the Debye screening constant is k2
D ¼ 8pLBA0ðc1 þ 4c2Þ. A different set

of substitutions in Eqs. [46] can provide an explicit expression for the poten-
tial,91 but Eq. [47] better serves our purposes. The surface potential is readily
found from boundary condition [15]:

1

kDlGC
¼ Sa sinh

fa

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2 sinh2 fa=2

q
½48�

This can be solved to give

fa ¼ 2 Sa sinh�1

ffiffiffi
2

p
=kDlGCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ a2ð2=kDlGCÞ2
q

þ 1

� �1=2

2
6664

3
7775 ½49�

For the limiting cases of a2 ¼ 0 and 1, Eqs. [47] and [49] reduce to the sym-
metric z : z electrolyte cases of z ¼ 1 and 2, respectively, given by Eqs. [22] and
[25]. In Figure 6, the surface potential according to Eq. [48] (circles) is com-
pared with that for the asymmetric mixed electrolyte case of Eq. [40] (solid
lines) for several different electrolyte compositions. The symmetry of the
former with respect to surface sign contrasts clearly with the asymmetry of
the latter. Also, as noted above, the effect of mono- versus divalent anions
for the second electrolyte is negligible for negatively charged surfaces at the
concentrations studied.

In a manner similar to the 1 : 1–2 : 1 electrolyte case, a good approxima-
tion to the potential profile of Eq. [47] can be found. As previously, we assume
an approximate solution of the Gouy–Chapman form

zefPBðxÞ  �2 Sa ln tanh
kDðx � a þ dDGCÞ

2

��
½50�

where the Debye–Gouy–Chapman length is again used to satisfy the boundary
condition ðze >0Þ

dDGC ¼ k�1
D sinh�1 kDlGC

ze
½51�

172 The Poisson–Boltzmann Equation



The effective valence ze is now given by

sinh zefa=2ð Þ
ze sinh fa=2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2 sinh2 fa

2

r
½52�

where fa is given by Eq. [49].

Bulk Model: Highly Charged Surface
For the case of a highly charged surface, an approximate analytical

expression for the potential profile near the surface can be found by consider-
ing only the contribution to the charge density of the highest valence counter-
ion. Denoting its concentration by cc, valence by zc ¼ �Sajzcj, and screening
constant by k2

c ¼ 4pLBA0ccz
2
c , the Poisson–Boltzmann equation [14] becomes

y00ðxÞ ¼ k2
c eyðxÞ ½53�

where yðxÞ ¼ �zcfðxÞ > 0: The general solution to Eq. [53] is

yðxÞ ¼ �2 ln
kcffiffiffi
2

p
g1

 !
cosðg1x þ g2Þ

" #
½54�

where constants g1 and g2 are determined from the boundary conditions. The
potential near the surface can be obtained from Eq. [54] in either of two ways:
(1) we can apply boundary conditions (typically on the field) at the surface and
at some finite distance R, and let R go to infinity, or (2) we can take the small-x
limit. We could also just ‘‘guess’’ the solution

ynearðxÞ ¼ �2 ln
kcffiffiffi

2
p x þ gð Þ
 �

½55�

which can be verified by substitution to obey Eq. [53]. Equation [55] gives the
potential profile near the surface if we apply boundary condition [15], which
then provides the final result

zcj jfnearðxÞ  �2 Sa ln

"
kcffiffiffi

2
p
 

x � a þ lGC

jzcj

!#
½56�

Equation [56] is readily shown to reduce to Eqs. [33] and [41] for those cases
and can also be obtained by integrating Eq. [17] and applying Eq. [15].

While Eq. [56] describing the potential is useful in predicting its value
near a highly charged surface, this result can be extended to give an approx-
imate description everywhere. The assumption of retaining only the contribution
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to the charge density of the highest-valence counterion implies that terms cor-
responding to lower-valence counterions and, in particular, coions are negligi-
ble. We may then add a ‘‘negligible’’ term to the right-hand side of Eq. [53]
describing ‘‘dummy’’ coions of valence �zc and concentration cc (which
may, in fact, exist). The resulting solution is then obviously given by the
Gouy–Chapman profile [26] for a zc : zc electrolyte with the Debye screening
constant kD replaced by

ffiffiffi
2

p
kc:

zcj jfPBðxÞ  �2 Sa ln tanh
kcðx � a þ dDGCÞffiffiffi

2
p

� �
½57�

where

dDGC ¼
ffiffiffi
2

p
kc

�  �1
sinh�1

ffiffiffi
2

p
kclGC

zcj j ½58�

Equation [57 is an improvement on the limiting result given by Eq. [56] both
near the surface and asymptotically and for all values of lGC. A similar ana-
lysis can also be applied to highly charged cylindrical and spherical geometries
for which approximate but accurate z : z potential profiles are derived later.

The assumption of considering only the highest-valence counterions pro-
vides an estimate of when Eq. [57] adequately represents the potential profile
near the surface. To be specific, we consider the surface to be negatively
charged and the electrolyte to be a mixture of mono- and divalent cationic
salts (e.g., NaCl and MgCl2). Retention of only divalent cations (of concentra-
tion c2) and neglect of monovalent cations (of concentration c1) implies that,
at the surface

2c2e�2fa � c1e�fa ½59�

If we assume that the left-hand term is an order of magnitude larger than the
right, then we have the condition

faj j > 1:6 � ln
c2

c1
½60�

or, using Eqs. [11] and [56]

ffiffiffiffiffi
c2

p
>

0:018 c1

jsaj
½61�

for concentrations in molar units (M) and the surface charge density in e0/Å2.
For a typical surface charge density of 0.015 e0/Å2 in a 0.1 M monovalent salt,
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Eq. [61] gives a divalent salt concentration of c2 > 0.015 M for Eq. [56] to be
applicable. As surface potentials near biopolyelectrolytes are typically larger
than a few kBT/ e0 for physiological concentrations of salt, Eq. [60] is usually
satisfied.

Bulk Model: Moderately Charged Surface
For a moderately charged surface in the presence of a bulk mixed elec-

trolyte containing both monovalent and divalent counterions, both counterion
types must be considered; the simplification used above for a highly charged
surface is not applicable. If the stoichiometry of the electrolyte solution coin-
cides with either of the two cases treated above, 1 : 1–2 : 1 or 1 : 1–2 : 2, then
the effective-valence profiles corresponding to those cases, Eqs. [43]–[45] or
Eqs. [50]–[52], respectively, or indeed the exact profiles, may be used.
However, the great similarity in the effective-valence profiles, a similarity
that is not apparent in the exact analytical description, suggests that it might
be possible to obtain a single approximate analytical solution that describes
both.

We begin by noting that the difference in the two effective-valence pro-
files lies on the right-hand side of Eqs. [45] and [52], a difference that can be
traced back to the equations used for obtaining the surface potential: Eqs. [40]
and [48], respectively. A solution based on the 1 : 1–2 : 2 case is preferred
because the surface potential can be obtained analytically by direct inversion,
without recourse to an iterative procedure. The difference in the potential
dependence of the right-hand side of Eqs. [45] and [52] is usually negligible;
for negative potentials (when this case has divalent counterions), we can put

e�f � 1  e�f � 1 þ ðef � 1Þ ¼ 4 sinh2 f
2

½62�

and the term in parentheses in the middle expression of Eq. [62] is generally
either small, if fj j � 1, or much less that the term before it, if fj j � 1. If we
also make the identification

4a1 ¼ a2 ¼ 2
k2

kD

� �2

½63�

where k2 indicates the Debye screening constant due only to divalent counter-
ions, then the expressions for both potential profiles become identical, with
Eq. [49] giving the surface potential and Eq. [52] giving the effective valence.
Collecting expressions, our approximation to the potential profile is then

fPBðxÞ ¼
�2Sa

ze
ln tanh

kDðx � a þ dDGCÞ
2

� �
½64�
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where the Debye–Gouy–Chapman length is ðze >0Þ

dDGC ¼ k�1
D sinh�1 kDlGC

ze
½65�

and ion concentrations are given by

ciðrÞ ¼ cB
i tanh

kDðx � a þ dDGCÞ
2

� �2ziSa
ze

½66�

The effective counterion valence ze obeys

sinh zefa=2ð Þ
ze sinh fa=2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2

k2

kD

� �
sinh

fa

2

� � �2
s

½67�

where the solution falls within the limits

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3ðk2=kDÞ2

q
� ze � 2, and the

surface potential is given by

fa ¼ 2 Sa sinh�1

ffiffiffi
2

p
=kDlGCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 8ðk2=k2
DlGCÞ2

q
þ 1

� �1=2

2
6664

3
7775 ½68�

As a final, ‘‘bare-bones’’ approximation, we note that the potential is not
extremely sensitive to the effective valence and that any reasonable value of
the valence that falls between the above limits can be used. We suggest the
simple approximation

ze ¼ 1 þ
ffiffiffi
2

p
k2

kD
½69�

which reduces properly for symmetric mono- and divalent salts, is close to the
actual value for surface potentials in the range 2–5 kBT=e0, and works well
outside this range for asymmetric 1 : 1–2 : 1 salt provided c(1 : 1) > c(2 : 1).
As this expression is independent of the surface potential, the potential profile
now reduces to

fPBðxÞ ¼
�2 Sa

ze
ln tanh

kDðx � a þ dDGCÞ
2

� �
½70�

where

dDGC ¼ k�1
D sinh�1 kDlGC

ze
½71�

Expression [69] for the effective valence is extremely useful in that it allows
standard formulas based on symmetric electrolytes to be (approximately)
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extended to asymmetric or mixed-salt electrolytes. In later sections we will
derive approximations to the potential profile for one or two curved charged
surfaces, specifically for cylinders and spheres, in the presence of a z : z electro-
lyte; these results can then be applied to general electrolytes by introducing an
effective valence into those expressions. The surface potential implied by the
profile of Eq. [70] is

fa ¼ 2 Sa

ze
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ze

kDlGC

� �2
s

þ ze

kDlGC

2
4

3
5 ½72�

and represents an approximation to Eq. [67] or [68]. The approximate electro-
static free energies of the double layer follow immediately from Eqs. [30] with
ze substituted for z. For a 1 : 1–2 : 2 electrolyte, Eq. [70] is surprisingly accu-
rate; for a 1 : 1–2 : 1 electrolyte, the largest error in the potential (typically a
few percent and much less than the 25% error common to PB predictions
involving divalent cations) occurs at the surface and decreases with increasing
surface charge. The primary source of this error is in the use of Eq. [62] and not
Eq. [69]. The effective-valence profile of Eq. [70] (solid line) is compared with
the exact profile of Eq. [39] (circles) in Figure 7 and is seen to give excellent
agreement throughout.

Cell Model: No Added Salt
As a final example of the planar PB equation, consider a finite system

bounded by two parallel identically charged planes separated by a distance
2R with the electrolyte solution between them consisting of a single neutraliz-
ing species of counterions of valence z0. For a neutral system, the field must
vanish midway between the planes, and it is convenient to choose the potential
to vanish there as well. Applying boundary conditions at the planar surface
and at R amounts to invoking a ‘‘cell model’’ of the system.92 While the
term ‘‘cell model’’ is more often applied to the cylindrical and spherical cases,
and is discussed at greater length below, it is also applied to the planar case. In
this case the integral in Eq. [18] can be evaluated to give the PB cell (PBC)
model potential profile

z0fPBCðxÞ ¼ ln cos2 kRðR � xÞffiffiffi
2

p
� �

½73�

where the screening constant

kR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pLBA0

XI

i¼0

cR
i z2

i

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pLBA0cR

0 z2
0

q
½74�
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is found by solving the transcendental equation obtained by applying the
boundary condition on the potential at the interface:

z0f
0ðaÞ ¼ �2z0Sa

lGC
¼

ffiffiffi
2

p
kR tan

kRRffiffiffi
2

p ½75�

Figure 8 compares the PB cell model potential profile obtained from
Eq. [73] with the bulk PB profile of Eq. [26] for a negatively charged plane
ðsa ¼ �0:01e0=

2Þ in the presence of monovalent counterions (the bulk mod-
el also contains monovalent coions). The cell model profile is seen to decrease
in magnitude from its surface value to zero at the cell boundary (R ¼ 166 for
a monovalent counterion concentration of 0.1 M) and rise to its surface value
in the next cell. The bulk PB potential falls toward zero and vanishes at infi-
nity, indicative of its boundary conditions. To see why the bulk model poten-
tial decays faster than that of the cell model, consider Figure 9, in which the
concentration profile of Naþ in the cell model (dashed line) is shown to the left
(A) of a barrier impermeable to ions (indicated by the vertical dotted line at
x ¼ R). To the right of this barrier (B) is a bulk solution of 0.1 M NaCl,
with the Naþ concentration also shown by a dashed line. Removing the barrier
extends the range of the electrostatic potential, which initially vanished at R,
to infinity, thus causing sodium ions to flow down the potential well toward

Å

Å

Figure 8 The PB and DH cell (solid lines; Eqs. [73] and [87], respectively) and bulk
model (dashed lines; Eqs. [26] and [89], respectively) potential profiles for a negatively
charged plane of charge density sa ¼ �0:01 e0/Å2 in the presence of 0.1 M counterions;
the cell model for this system has R ¼ 166 Å.
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the charged surface, removing the discontinuity in the ion concentration at the
initial cell boundary. An increase in the number of counterions in side A causes
the potential to decay more rapidly. In related work, the planar cell model
with no added salt has been used to investigate the attraction of planar mem-
branes,93–95 and Zara et al. have numerically investigated the added salt case
for various concentrations of mixed mono- and divalent salt, comparing the
results with Monte Carlo simulations.96 Briscoe and Attard have maximized
the contrained entropy to derive free-energy expressions within the no-
added-salt planar PB cell model for the case of charge regulated surfaces,
which includes the more common conditions of constant surface charge den-
sity and constant surface potential.97 Their work emphasizes the difference
between high-salt, bulk model PB solutions and those describing low-salt,
cell model solutions, as Figure 8 illustrates.

Cell Model: Debye–Hückel Screening Constant
Before considering a planar geometry, we derive a general expression for

the Debye screening constant within the one-dimensional DH cell model. In

Figure 9 The PB concentration profiles corresponding to the cell and bulk models of
Figure 8. Initially there is an ion-impenetrable barrier (vertical dotted line) between the
cell system to the left (side A), in which the counterion concentration is 0.1 M, and the
bulk model to the right (side B), which contains a solution of 0.1 M monovalent salt
(NaCl). The initial state concentration of Naþ is indicated by the dashed line. Removing
the barrier establishes an equilibrium in which the sodium ion distribution is given by
the solid line, indicating that sodium ions moved from the bulk side to the cell side.
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d dimensions, the radial Debye–Hückel equation is obtained by expanding
the exponential on the right-hand side of Eq. [14] and keeping only the first
two terms (this assumes that the surface potential will be small: faj � 1j ),
yielding

1

rd�1

d

dr
rd�1 dfDHðrÞ

dr

 �
¼ k2

RfDHðrÞ � 4pLBA0

XI

i¼0

cR
i zi ½76�

subject to the boundary conditions of Eq. [15]; the first expression of Eq. [74]
defines kR. The general solution to Eq. [76] can be written as

fDHðrÞ ¼ fHðrÞ þ C ½77�

where the first term is the homogeneous solution. Use of Eqs. [76], [77] and
the gauge condition fDHðRÞ ¼ 0 gives

C ¼
PI

i¼0 cR
i ziPI

i¼0 cR
i z2

i

¼ �fHðRÞ ½78�

Starting from the DH expression for the radial concentration of ions

ciðrÞ ¼ cR
i ½1 � zifDHðrÞ� ½79�

and integrating over the radial coordinate from a to R, we find

ðR

a

ciðrÞrd�1dr ¼ �cciVd ¼ cR
i Vd � zi

ðR

a

fDHðrÞrd�1dr

 �
½80�

where �cci is the average concentration in the cell of ion species i and
Vd ¼ ðRd � adÞ=d. Integrating Eq. [76] over the radial coordinate and using
the boundary conditions gives

fDHðkRÞh i �
RR

a fDHðrÞrd�1drRR
a rd�1dr

¼ 4pLBsadad�1

e0k2
RðRd � aaÞ

� fHðkRRÞ ½81�

where the dependence on kR has been explicitly indicated. Finally, solving
Eq. [80] for cR

i , multiplying by z2
i , summing over ion species, and using

Eq. [81] gives the general result for the cell boundary screening constant

k2
R ¼

XI

i¼0

4pLBA0�cciz
2
i

1 � zi fDHðkRÞh i  k2
D 1 þ fDHðkRÞh i

PI
i¼0 �cciz

3
iPI

i¼0 �cciz2
i

( )
½82�
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where the approximation assumes that the correction to kD is small. For
monovalent salts, the sum in the numerator of the right-hand expression in
Eq. [82] reduces to c0, so the correction is generally small. Equation [82]
applies only to what might be called the strict cell model, which is generally
used for cylindrical geometries. For a planar system, an approximate cell
model is more often considered whereby the two confining surfaces are
assumed to be in contact with a bulk electrolyte; the screening constant in
this case is equated to the bulk value. Such a system models two large but finite
surfaces whose separation is much smaller than the surface dimension.

The use of Eq. [79] in the derivation of Eq. [82] prompts the following
comments concerning the Debye–Hückel equation in general. While lineariza-
tion of the nonlinear PB equation restricts the validity of the DH solution to
small surface potentials, the DH result is sometimes used in circumstances
when this restriction does not hold. Most often the exponential decay form
for the potential is ‘‘borrowed’’ and the surface charge density and/or Debye
constant changed to provide a good fit to experimental data. In some cases,
however, this presents difficulties in interpretation. For example, consider
the ion concentrations corresponding to Eq. [79]. This expression is fine for
counterions where zifa < 0, but resulting coion concentrations are meaningful
only for small potentials. To sidestep this problem, ion concentrations within
the linear DH approximation are sometimes determined from the nonlinear
Boltzmann expression and referred to as the DHX approximation:98

cDHX
i ðrÞ ¼ cR

i exp½�zifDHðrÞ� ½83�

which is everywhere positive. The difficulty with this expression is that the DH
equation tends to overestimate considerably the surface potential of highly
charged systems with the result being that surface concentrations predicted
by Eq. [83] are unduly high. While the DHX approximation violates electro-
neutrality, this in itself is not the cause of any numerical inaccuracies, as
Ruff99 has shown by comparing Eq. [83] to the electroneutral alternative
for a bulk z : z electrolyte ðz > 0Þ

cðrÞ ¼ cB exp½� sinh�1 zfDHðrÞð Þ�

¼ cB zfDHðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zfDHðrÞð Þ2þ1

q ��1

½84�

where the upper/lower (�/þ) sign is chosen for counterions/coions, respec-
tively. The generalization of the first-order expansion of Eq. [84] provides
the simpler relations:

ciðrÞ ¼ cR
i 1 � zifDHðrÞ½ � counterions

ciðrÞ ¼
cR

i

1 þ zifDHðrÞ
coions ½85�
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In addition to always giving a positive coion concentration, and, for small
potentials, at the same level of accuracy as Eq. [79], Eqs. [84] and [85] give
the product of the anion/cation concentrations for z : z salts as unity, as it is
with the nonlinear PB equation. (Of course, use of Eq. [85] violates electroneu-
trality.)

Cell and Bulk Models: Debye–Hückel Potential
We now solve Eq. [76] for the planar case ðd ¼ 1Þ. The homogeneous

solution is

fHðxÞ ¼ Ae�kRx þ BekRx ½86�

where A and B are determined from the boundary conditions. The final result
for the Debye–Hückel cell (DHC) model potential profile is

fDHCðxÞ ¼
2Sa

kRlGC

cosh½kRðR � xÞ� � 1

sinh½kRðR � aÞ� ½87�

where Eq. [82] gives

k2
R ¼

XI

i¼0

4pLBA0�cciz
2
i

1 � 2Sazi

kRlGC
1 � kRðR�aÞ

sinh½kRðR�aÞ�

�  ½88�

Ion concentrations can be obtained from Eq. [85]. When the distance 2R
between two planes becomes infinitely large, we recover the standard (bulk)
DH solution from Eq. [87]:

fDHðxÞ ¼ fDHðaÞ e�kDðx�aÞ ¼ 2 Sa

kDlGC
e�kDðx�aÞ ½89�

in agreement with Eq. [32]. This bulk solution has already been compared
with the Gouy–Chapman solution of Eq. [26] for a monovalent electrolyte
at two concentrations (0.01 M and 0.1 M) in Figure 4, where we saw that
the DH potential overestimates the actual potential. Figure 8 displays the
DH cell model surface potential obtained from Eq. [87] for a negatively
charged plane in the presence of monovalent counterions and compares it to
the corresponding bulk DH potential (Eq. [89]) as well as the cell model and
bulk PB potentials (Eqs. [73] and [26]). As in the bulk case noted previously,
the cell model DH potential considerably overestimates the actual potential for
large surface charge densities.

Bulk Model: Apparent Debye–Hückel Surface Charge Density
For kDðx � aÞ � 1, the right-hand side of Eq. [22] giving the PB poten-

tial for a z : z electrolyte becomes small, implying that the left-hand side does
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as well. Thus we expand the left-hand side and keep the lowest-order term
(tanh w  w; jwj � 1):

zfPBðxÞ ¼ 4 tanh
zfa

4

� �
e�kDðx�aÞ ðfor large xÞ ½90�

Comparison of Eqs. [89] and [90] shows that asymptotically the z : z PB solu-
tion behaves like the DH solution but with an ‘‘apparent’’ surface potential
given by

zfADHðaÞ ¼ 4 tanh
zfPBðaÞ

4
½91�

Inserting expressions for the surface potential from Eqs. [89] and [28] into
Eq. [91] along with the definition of the Debye–Gouy–Chapman length in
Eq. [27], we obtain the following relationship between apparent and actual
Gouy–Chapman lengths:

kDlAGC

z
¼ 1

2

kDlGC

z
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDlGC

z

� �2

þ1

s0
@

1
A ½92�

The apparent Debye–Hückel (ADH) potential written in terms of the apparent
Gouy–Chapman length is

fADHðxÞ ¼
2 Sa

kDlAGC
e�kDðx�aÞ ½93�

The adjectives ‘‘reduced,’’ ‘‘effective,’’ and ‘‘renormalized’’ have also
been used to describe the surface potential of Eq. [91] and concomitant surface
charge density; we will use the term ‘‘apparent’’ since its usefulness lies in how
Debye–Hückel-like the actual potential appears at large distances from the
surface and then in extrapolating the potential back to the surface via
Eq. [91].24 We also choose to avoid any confusion with the ‘‘effective’’ valence
introduced earlier. It is important to understand that the apparent charge
density has meaning only with respect to an assumed DH solution; it is
the actual charge density that should be used in the boundary conditions for
the nonlinear Poisson–Boltzmann equation. We also point out that alternative
definitions of the apparent charge density are possible, for example, one based
on matching DH and PB osmotic pressures at the cell boundary. The lucid
review by Levin is particularly recommended.100

In Figure 4 this apparent DH potential is compared with the Gouy–
Chapman and actual Debye–Hückel potentials for a monovalent electrolyte
at two concentrations near a charged plane. The ADH solution does much
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better than the DH solution over the entire range and gives a much better,
albeit significantly low, estimate of the potential at the surface. The counter-
and coion correlation functions for these cases are compared in Figure 5, mir-
roring the results of Figure 4. In Figure 7, the ADH profile of Eq. [93] (dotted
line) for a mixed asymmetric electrolyte, in which an effective valence based
on Eq. [69] has been used in Eq. [92], is compared with the PB profile of
Eq. [39] (solid line). The long-range agreement between the two profiles is
evident.

Using Eq. [11] we can convert Eq. [92] into a relationship between
apparent and actual surface charge densities:101,102

sADH ¼ 2saffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsa=s0Þ2 þ 1

q
þ 1

½94�

where we have defined a planar reference density s0 � e0kD=ð2pLBzÞ ¼
e0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A0cB=pLB

p
. Thus, far from the charged plane, the z : z PB solution

behaves like the DH solution but in response to an apparent charged density
that is smaller than the actual one. Note that for high surface charge densities
ð saj j � s0Þ, Eq. [94] reduces to sADH  2Sas0, independent of surface pro-
perties and consistent with the analysis of Eq. [35]. We will discuss the planar
surface charge density of Eq. [94] later in this tutorial after we have derived its
extension to charged cylindrical and spherical surfaces.

We can use Eq. [94] to obtain a condition under which the Debye–Hückel
equation may be reliably applied to a planar system. As the ratio of the appar-
ent charge density to the actual charge density approaches unity, the ADH
surface potential approaches the PB (and DH) value. If we solve Eq. [94]
for the ratio sa=s0 and, using Eqs. [27] and [11], insert this into the value
of the surface potential given by Eq. [28], we obtain the expressions

sa

s0
¼ 2Sa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sADH=sa

p
sADH=sa

zfa ¼ 4Sa ln
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sADH=sa

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sADH=sa

p
 ! ½95�

Figure 10 displays both functions in Eq. [95] - the ratio sa=s0 (solid line, top
frame) and the surface potential (solid line, bottom frame) as a function of the
ratio sADH=sa. (We assume that the surface potential is positive, although this
does not affect the analysis.) As sADH approaches sa, the ADH potential
approaches the PB potential, implying that the DH equation gives an increas-
ingly more accurate description of the system. Let us assume that we are satis-
fied with the DH representation if we are within a tolerance limit of
sADH=sa > 0:95, that is, the apparent charge density is less than 5% smaller
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than the actual charge density. According to Eqs. [95] and Figure 10, we
have zfa < 1, indicating that for surface potentials less than kBT=e0, the
Debye–Hückel equation is pretty good; we also see that this occurs when
sa < s0=2. The frequently assumed condition zfa � 1 is therefore much
too strict. Thus, assuming that 95% tolerance is adequate, the reliability
condition for using the planar ADH profile is the upper bound

saj j < s0

2
½96�

(Also presented in Figure 10 are results for curved surfaces, discussed later
following Eq. [326].)

By comparing the actual charge density to the apparent charge density in
Eq. [94], we can define the fraction of surface charge neutralized by counter-
ions, fneut, according to the apparent Debye–Hückel solution, as

fneut ¼ 1 � sADH

sa
¼ 1 � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsa=s0Þ2 þ 1

q
þ 1

½97�

Much more work has been done investigating the relationship between coun-
terion condensation phenomena and the PB equation for charged cylinders

Figure 10 The surface charge density ratio sa=s0 (top frame) and the surface potential
(bottom frame) as a function of the sADH=sa tolerance limit for planar (solid lines;
Eq. [95]) and curved surfaces (dashed lines; numerical inversion of Eq. [322]) for
kDCa ¼ 2; 3; 5.
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than for planes, so we postpone discussion until later (e.g., see Eqs. [265]–
[269] and Figs. 29 and 30).

For planar surfaces in a mixed electrolyte solution, the effective-valence
solution of Eqs. [69]–[72] can be used to write the generalization of Eqs. [92]
and [94]. In both cases we simply substitute expression [69] for the valence z.
The apparent surface charge density is useful since experimental data often
describe only the asymptotic environment of a polyelectrolyte. Fitting these
data by assuming that the standard Debye–Hückel expression applies may
lead to poorer results when extrapolated to the surface; more reasonable
results can be obtained by basing this extrapolation instead on the apparent
surface charge density. For example, as shown in the following section, the
ADH potential can be used to give a quantitative description of the electro-
static interaction energy between two charged plates provided their separation
distance is such that Eq. [93] is applicable.

Bulk Model: Two Parallel Charged Surfaces
The case of two charged planar surfaces in equilibrium with a bulk elec-

trolyte is of special interest in biophysics as it represents a model for the inter-
action of two cellular membranes. Also, the experimental attraction between
mica surfaces has been attributed to van der Waals and hydration forces, ion
correlations and density fluctuations.48,49,67 Although it has been shown that
the force between any two like-charged particles or surfaces solely within PB
theory is necessarily repulsive,48,75,103–106 the Poisson–Boltzmann equation
still serves as the starting point for most investigations into charged surface
interactions, including the classic DLVO theory of colloidal stability, identified
by the initials of its originators: Derjaguin, Landau, Verwey, and Over-
beek.36,48,49,67 Analytical solutions for the interaction of two charged planar
surfaces are available only within Debye–Hückel theory or for the artificial
case of no added salt.93,94 For a single surface, the potential profile and free
energy describe the system and are relatively easy to calculate or approximate.
For two interacting surfaces it is the force (or pressure) between them that is
most often desired. While an adequate approximation to the potential profile
can be found simply by adding the individual Gouy–Chapman profiles
together (if the surfaces are at least a few Debye lengths apart), this gives
no coupling between the individual double layers and the force between the
surfaces is zero. The approximations developed below are presented more
from a qualitative than a quantitative point of view. The primary purpose for
presenting them is to provide some insight into the interaction of two double
layers, although for certain systems they should have some practical utility as
well.

For two equally charged planar surfaces immersed in a bulk electro-
lyte and situated in the y–z plane at positions x ¼ �R, we solve PB
equation [14] in the region between the surfaces according to the boundary
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conditions

f0ð�RÞ ¼ � 2SR

lGC
; SR ¼ sgnðsRÞ

f0ð0Þ ¼ 0

½98�

where the normal to each surface is directed into the solution, that is, toward
the other surface. In place of Eqs. [16] and [17], we have

f0ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pLBA0

XI

i¼1

cB
i ½e�zifðxÞ � e�zif0 �

vuut ½99�

which gives ðf
f0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼1 cB

i ðe�zif � e�zif0Þ
q ¼ �SR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pLBA0

p
x ½100�

For the standard example of a z : z electrolyte, Eq. [100] becomes

ðf
f0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðzfÞ � coshðzf0Þ

p ¼ � SR

ffiffiffi
2

p
kDx

z
½101�

which can be converted into an incomplete elliptic integral of the first
kind.36,103,107–110 The solution for a mixed 1 : 1–2 : 1 salt was obtained by
Ninham and Parsegian111 and that for dissimilarly charged planes held under
either constant potential or constant charge density has been discussed else-
where.112–114 The more general and interesting case of charge-regulating sur-
faces, in which mixed boundary condition BC3 is used, has been the subject of
numerous investigations.115–121 McBroom and McQuarrie have treated the
case with different size counter- and coions.122 Burak and Andelman have
incorporated a correction term into the PB equation that accounts for effects
due to solvent packing at the surface123 and Bostrom, Williams and Ninham
have shown the importance of including dispersion forces.124,125

First, we find the interaction energy between two (unequal) surfaces
within the Debye–Hückel approximation. To simplify the notation, consider
two surfaces at x ¼ �R with charges densities sð�RÞ � s� in equilibrium
with a bulk electrolyte. (For the remainder of this section, convenience and
correspondence with previous work requires that we work with charge densi-
ties instead of Gouy–Chapman lengths.) We solve the DH equation in the
region between the surfaces

f00
DHðxÞ ¼ k2

DfDHðxÞ; jxj � R ½102�
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subject to the boundary conditions

f0ð�RÞ ¼ �4pLBs�
e0

½103�

Assuming a general solution of the form

fDHðxÞ ¼ A�e�kDx þ AþekDx ½104�

and imposition of the boundary conditions leads to a pair of simultaneous
linear equations for coefficients A� and Aþ. Solving these equations gives the
DH potential

fDHðxÞ ¼
4pLB

e0kD

s� cosh½kDðR � xÞ� þ sþ cosh½kDðR þ xÞ�
sinhð2kDRÞ ½105�

with the surface potential

fDHð�RÞ ¼ 4pLB

e0kD

s� coshð2kDRÞ þ s�
sinhð2kDRÞ ½106�

Having found the electrostatic potential, we can now obtain the interac-
tion potential per unit area from the electrostatic free energy of charging both
surfaces relative to charging the surfaces at infinite separation:

Vð2RÞ ¼ Aelð2RÞ � Aelð1Þ ½107�

The electrostatic free energy per unit area is found from Eq. [29]

bAelð2RÞ
Area

¼ s�fð�RÞ þ sþfðRÞ
2e0

¼ 2pLB

e2
0kD

ðs2
� þ s2

þÞ coshð2kDRÞ þ 2s�sþ

sinhð2kDRÞ ½108�

with the reference free energy

bAelð1Þ
Area

¼ 2pLB

e2
0kD

ðs2
� þ s2

þÞ ½109�

With Eqs. [107]–[109] we have the potential per unit area between the sur-
faces in the low potential limit:75,113

bVð2RÞ
Area

¼ 4pLB

e2
0kD

e�2kDR 2s�sþ þ ðs2
� þ s2

þÞe�2kDR
� �

1 � e�4kDR
½110�
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Equation [110] shows that the leading term in the potential displays an expo-
nential dependence on surface separation, a result that will appear for other
geometries as well. This exponential term combined with a short-range
van der Waals attractive term forms the basis for DLVO theory and has con-
siderable experimental support.36,48,49,67 The (longitudinal) pressure, or force
per unit area, between the surfaces can be obtained from Eq. [110] by differ-
entiating the potential with respect to the surface separation 2R:75

bPðRÞ ¼ �b
dVð2RÞ
dð2RÞ

¼ 8pLB

e2
0

e�2kDR s�sþð1 þ e�4kDRÞ þ ðs2
� þ s2

þÞe�2kDR
� �

1 � e�4kDRð Þ2 ½111�

If analytical evaluation of the electrostatic free energy is not possible, an alter-
native route to the pressure is to add the electric field stress tensor to the osmo-
tic pressure as in Eq. [19] and evaluate their sum (for a bulk z : z electrolyte)75

bPðxÞ ¼ � ½f0ðxÞ�2

8pLB
þ k2

D

4pLbz2
cosh zfðxÞð Þ � 1½ �

¼ k2
D

2pLbz2
sinh2 zfðxÞ

2

� �
� ½f0ðxÞ�2

8pLB
½112�

at one of the surfaces. For our DH case, Eq. [112] simplifies at either boundary
to

bPð�RÞ ¼ k2
D

8pLb
fð�RÞ½ �2� 2pLB

e2
0

s2
� ½113�

and use of Eq. [106] reproduces Eq. [111].
The exponential term in the denominator of Eq. [110] implies that the

energy required to bring the two charged planes together is infinite. In reality,
as two charged surfaces approach one another, the initially bound counterions
will be adsorbed back on the surfaces. The appropriate boundary condition on
each surface is then one of charge regulation rather than constant surface
charge density (or constant surface potential)67 and a different analytical solu-
tion follows. At such close distance, however, other factors such as discrete
solvent and ion size also come into play. Under the present assumptions
ðkDR > 1Þ, this term and that within parentheses in the numerator in
Eq. [110] make relatively small contributions, thus showing that the potential
decreases approximately exponentially with increasing surface separation. The
potential is then what one would expect for a single charged plane in the DH-
determined electrostatic field of a second surface a distance 2R away (a factor
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of 2 accounts for the mutual interaction of the surfaces). Note, however, that
the restriction is not on the magnitude of the surface potential but on the
potential midway between the surfaces; that is, R must be sufficiently large
such that the separate potentials effectively add, as implied by the previous
statement. This near additivity was noticed by Verwey and Overbeek36 and
explored by Levine and coworkers who termed it the ‘‘linear superposition
approximation.’’126–128 To reiterate what was stated above, use of apparent
surface densities reduces the potentials considerably from their Debye–Hückel
values (see Figs. 4 and 7) and allows the above estimation of the interaction
energy to be used over a much wider separation range. For surfaces with a
fixed potential, the effect of ion movement on the electric potential must be
taken into account by including the chemical contribution to the free energy.36

Parsegian and Gingell considered the Debye–Hückel case of two surfaces
having different surface charge densities or potentials,75 and Richmond has
discussed systems with arbitrary surface charge densities.113

Before displaying the DH potential profile of Eq. [105], let us consider
the same system using the PB equation for a bulk z : z electrolyte. In place
of Eq. [102] we now want to solve

zf00ðxÞ ¼ k2
D sinh zfðxÞ½ �; jxj � R ½114�

subject to Eq. [103]. As mentioned above, even for like surfaces no analytical
solution for this coupled Gouy–Chapman system is available except in terms
of elliptic integrals. The simplest approximation is to assume that the effect of
the surfaces is additive

faddðxÞ ¼ A�f�ðxÞ þ AþfþðxÞ ½115�

where we have defined

zf�ðxÞ
4

¼ tanh�1 2ŝs�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ŝs2

� þ 1
q

þ 1
e�kDðR�xÞ

0
B@

1
CA ½116�

with the scaled charge densities

ŝs� � s�
2s0

; s0 � kDe0

2pLBz
½117�

and where each term in Eq. [115] is the individual Gouy–Chapman solution
[22] for the appropriate surface (Eqs. [11] and [25] were also used). Determin-
ing the coefficients by applying the boundary conditions [103] and retaining
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only the lowest-order terms in expð�kDRÞ gives

A� ¼ 1 þ 2ŝsþ=ŝs�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ŝs2

þ þ 1
p

þ 1
e�2kDR; Aþ ¼ 1 þ 2ŝs�=ŝsþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ŝs2
� þ 1

p
þ 1

e�2kDR ½118�

For small charge density and to lowest order in expð�kDRÞ, these coefficients
reduce Eq. [115] to the DH potential of Eq. [105]. While this looks promising,
coupling the surfaces by letting A� differ from unity does not significantly
improve the potential, nor does it allow for a convenient analytical expression
for the pressure. However, the additive GC potential is much better than the
DH potential of Eq. [105], as can be seen in Figure 11 (a more detailed discus-
sion is presented below). Approximating the pressure by using the potential of
Eq. [115] with A� ¼ 1, we find that Eq. [112] gives

bPðxÞ ¼ 2k2
D

pLBz2
sinh

zf�ðxÞ
2

sinh
zfþðxÞ

2
cosh2 z f�ðxÞ þ fþðxÞ

� �
4

½119�

The pressure clearly vanishes if the contribution from either surface vanishes,
but since Eq. [115] is not the exact solution of PB equation for two surfaces,
this expression is not independent of the position x. This can be seen in

Figure 11 The potential profiles according to the DH (dashed line; Eq. [105]), additive
Gouy–Chapman (dotted line; Eq. [115]), and approximate PB (solid line; Eqs. [121]
and [125]) expressions are compared with the exact solution (dotted–dashed line; finite-
difference method, Eq. [389]) for two charged surfaces with charge densities s ¼ 0:001
e0/Å2 placed 40 Å apart in a 1 : 1 electrolyte at concentrations of 0.01, 0.05, and 0.1 M.
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Figure 12, where a comparison with other results (see below) is presented. For
like-charged surfaces, the pressure at the midplane simplifies to

bPð0Þ ¼ k2
D

2pLBz2
sinh2 zfð0Þð Þ ¼ 8k2

D

pLBz2

2ŝsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ŝs2 þ 1

p
þ 1

� �2

e�2kDR ½120�

to lowest order in expð�kDRÞ; this expression is shown below to be correct.
We now improve upon the results above.

A similar but better approach to finding an approximate solution to the
coupled Gouy–Chapman problem is to compare the single-surface DH solu-
tion (Eq. [89]) with Eq. [104] for two surfaces, which suggests that the two-
surface Gouy–Chapman solution might be generalized by putting DH solution
[104] inside the tanh�1 function:

zfðxÞ
4

¼ tanh�1½uðxÞ� ¼ tanh�1 A�e�kDx þ AþekDxð Þ ½121�

where coefficients A� are found by applying boundary conditions [103]. Use
of the tanh�1 substitution allows a first-order linearization of the z : z PB
equation and will be discussed at length in a later section. Equation [121]

Figure 12 The pressure between two like-charged surfaces for the system shown in
Figure 11 with a 0.01 M 1 : 1 electrolyte according to the DH (dashed line; Eq. [111]),
additive Gouy–Chapman (dotted lines; Eq. [119]), approximate PB (solid line;
Eq. [129]), and exact (finite-difference) solutions (circle–dashed line; Eqs. [112] and
[389]); one- and two-term approximate PB results are indicated by dotted–dashed lines.
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clearly works if the potential is everywhere small since in this case we may
replace tanh½zfðxÞ=4� by zfðxÞ=4 and the Debye–Hückel solution of
Eq. [105] is obtained. This solution is also expected to be good in the region
between the surfaces if the potential there (but not necessarily at the surfaces)
is small since now the apparent Debye–Hückel solution holds. The assumption
of potential additivity has been used numerous times since Bell, Levine and
McCartney applied the ‘‘linear superposition approximation’’ to the calcula-
tion of the interaction of two charged spheres.128 The distinction here is that
by applying it within the tanh�1 function and applying standard PB boundary
conditions (which here are constant surface charge density conditions), we
extend the applicability of the potential to smaller plane (or, later, particle)
separations and obtain correct expressions for apparent charge densities with-
in the DH approximation at larger separations. This procedure, which we call
the ‘‘nonlinear Debye–Hückel approximation,’’ is developed more formally in
a later section and subsequently applied to interacting cylinders and spheres. It
is introduced here to demonstrate its utility with regard to the special case
of charged planes. Using ½uðxÞ�2 � ½u0ðxÞ�2 ¼ 4 A�Aþ, the approximation
potential of Eq. [121] can be shown to satisfy the differential equation

zf00ðxÞ ¼ k2
D sinh½zfðxÞ� � 4k2

DA�Aþ sinh½zfðxÞ� þ 2 sinh
zfðxÞ

2

� �
½122�

The solution will therefore be adequate if jA�Aþj < 0:01, say. Since the pro-
duct jA�Aþj will be found to behave as expð�2kDRÞ, the leading order term
for large kDR of Eq. [121] can be identified as the asymptotic solution for the
interaction of two planar surfaces. Further analysis must await explicit expres-
sions for coefficients A�.

Applying boundary conditions [103] to Eq. [121] and using Eqs. [117]
leads to the simultaneous equations

ŝs� ¼ A�ekDR � Aþe�kDR

1 � A�ekDR þ Aþe�kDRð Þ2
½123�

and

ŝsþ ¼ �A�e�kDR þ AþekDR

1 � A�e�kDR þ AþekDRð Þ2
½124�

While solving these two equations numerically is trivial, an exact analytical
solution in the general case involves the cumbersome task of writing down
the roots of two quartic equations. However, for several special cases the
solution reduces to two easily solved quadratic equations: R ! �1;
ŝsþ ¼ �ŝs� and ŝs� ¼ 0. Since we already know that the exact solution to
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Eqs. [123] and [124] will not give the exact potential profile for the problem at
hand (the assumed form of Eq. [121] is not exact), we will be content with an
approximation that reduces to the exact solution for the quadratic cases pre-
sented above. A little algebra verifies that the following expression satisfies
these requirements:

A� ¼ 2ðŝs� þ ŝsþe�2kDRÞe�kDRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ŝs� þ 2ŝsþe�2kDR þ ŝs�e�4kDRð Þ2þð1 � e�4kDRÞ2

q
þ 1 � e�4kDR

½125�

where Aþ is found by switching ŝs� $ ŝsþ. (Coefficient Aþ is only approximate
for ŝs� ¼ 0, but the error in the potential is small.) Using this expression in the
error condition jA�Aþj < 0:01 gives a rough range of kDR for which the pre-
dicted potential is close to the actual one:

kDR > ln
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jŝs�ŝsþj

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jŝs�j þ 1Þð2jŝsþj þ 1Þ

p
 !

 ln
20save

2save þ 1

� �
½126�

Here the approximate formula holds for surfaces with nearly equal (in magni-
tude) charge densities and save ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jŝs�ŝsþj

p
. The approximate relationship in

Eq. [126] is plotted in Figure 13 and shows that the potential profile of
Eq. [121] is good for all surfaces separated by at least four Debye lengths.

Figure 13 The scaled separation distance 2kDR as a function of the scaled average
surface charge density save (Eq. [126]) for which the approximate two-surface potential
profile (Eqs. [121] and [125]) is a good solution to the PB equation.
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For two highly charged surfaces with s ¼ 0:01 e0=
2

in a 0.1 M 1 : 1
electrolyte ðkD ¼ 0:1

�1Þ, we have save ¼ 2:16 giving 2R > 40 ; for
s ¼ 0:001 e0=

2
we have 2R > 20 or two Debye lengths. At separations

much smaller than this, the assumptions of a continuum solvent and point
ions are called into question.

In Figure 11, the potential profiles for the DH (Eq. [105]), additive
Gouy–Chapman (Eq. [115] with A� ¼ 1), approximate PB (Eqs. [121] and
[125]) and exact (Eq. [389], below) cases are compared for two surfaces
with charge densities s ¼ 0:001 e0=

2
placed 40 Å apart in a 1 : 1 electrolyte

at concentrations of 0.01, 0.05, and 0.1 M (Debye lengths of 30, 14, and 10 Å,
respectively). For the separation distance chosen, the approximate PB profile
should be good for the latter two electrolyte concentrations according to
Eq. [126], in agreement with what is shown. The DH potential lies above
the exact potential in all cases and is particularly poor for the lowest concen-
tration. For this case, although the additive GC potential does better than the
approximate PB potential, it must be noted that the GC expression predicts
zero pressure between the surfaces. The profiles for the same system as
Figure 11 but with two oppositely charged surfaces ðs ¼ �0:001 e0=

2Þ are
shown in Figure 14. For the lowest concentration (0.01 M), the additive GC
model shows the worst agreement, while the DH profile shows (fortuitously)
the best. The approximate PB profile is best for 0.05 M and 0.1 M electrolytes,
consistent with the range given by Eq. [126]. For higher charge densities, the
analysis still holds, albeit for larger separations.

Å

Å Å

Å Å

Å

Å

Figure 14 The same potential profile comparison as Figure 11 except for two oppositely
charged surfaces with charge densities sð�RÞ ¼ 0:001 e0/Å2 and sðRÞ ¼ �0:001 e0/Å2.
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For small surface charge densities, Eq. [125] reduces to

A� ¼ ŝs� þ ŝsþe�2kDR

1 � e�4kDR
1 � ŝs� þ 2ŝsþe�2kDR þ ŝs�e�4kDR

1 � e�4kDR

� �2

þ 
 
 

" #

e�kDR

½127�

where inserting the low-order term into Eq. [121] gives the DH profile of
Eq. [105]. For large surface separations, we let R ! 1 in Eq. [125] to get
the asymptotic (i.e., large R) expansion

A� ¼ 2ŝs�e�kDRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ŝs2

� þ 1
p

þ 1
þ 3 � 4ŝs2

� þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ŝs2

� þ 1
p

 !
ŝsþ
2ŝs2

�
e�3kDR þ 
 
 
 ½128�

For low charge densities, these two terms reduce to the DH prefactor (without
the denominator) of Eq. [127]. We therefore find that not only does the lead-
ing term of the coefficients give the correct limiting behavior, but the second-
order term does as well. We will thus include it in our analysis of the pressure
below, but with the understanding that its specific form will not necessarily
match the corresponding term in the exact asymptotic expansion of the correct
solution. For large surface separations, the first term of Eq. [128], when com-
bined with Eqs. [11] and [25], reduces Eq. [121] to either the Gouy–Chapman
potential of Eq. [22] for a single surface for x � �R or to the sum of separate
ADH potentials (Eq. [93]) where apparent charge densities result from the
tanh�1 function chosen for the form of the approximate solution and imposi-
tion of the boundary condition. [One can devise an approximate third-order
expression that reduces correctly to the DH potential and accounts for the
infinite repulsion of like surfaces as kDR ! 0 by dividing the two terms of
Eq. [128] by 1 � f ðŝs�Þ expð�4kDRÞ, where f ðŝs�Þ is the prefactor of
ŝsþ expð�3kDRÞ, but f ðŝs�Þ is generally too large—it is unity in the DH
approximation. The same problem occurs if the next-order term in Eq. [128]
is used; in this case, f ðsÞ depends on both surface charge densities, which is
undoubtedly true.]

The approximate PB profile of Eq. [121] with Eq. [125] is too compli-
cated to allow analytical evaluation of the electrostatic free energy from
Eq. [29] (or Eq. [395], below) but calculation of the pressure from Eq. [122]
is straightforward. Multiplying Eq. [122] by f0ðxÞ, integrating from one
surface (say, R) to infinity and substituting in Eq. [121], we find

bPðRÞ ¼ 8k2
D

pLBz2
A�ðRÞAþðRÞ ½129�

where we have indicated an explicit dependence of the coefficients of Eq. [125]
on R. The prefactor in Eq. [129] can be simplified to 64A0c, where c is the
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concentration of electrolyte in M and A0 ¼ 6:022 � 10�4M�1 Å
�3

. Combining
this with the error condition on the approximation shows that the profile and
pressure are good provided the pressure between the surfaces is small:
jbPðRÞj < 0:64 A0c. The pressure is obviously symmetric in the individual sur-
face charge densities, as it must be, and independent of position since we have
used Eq. [122] instead of Eq. [114] (or equivalently Eq. [112]). Because our
approximate solution holds for surfaces at least a few Debye lengths apart
(unless the charge densities are so small that the Debye–Hückel approximation
applies), we will consider only the asymptotic form of the coefficients, as given
by Eqs. [128]. This gives the following asymptotic form of the pressure

bPðRÞ ¼ 8k2
D

pLBz2
ŝs�ŝsþe�2kDR þ ŝs2

�ð1 � 3ŝs2
þÞð1 � ŝs2

þÞ
ð1 � ŝs2

�Þð1 þ ŝs2
þÞ

þ ŝs2
þð1 � 3ŝs2

�Þð1 � ŝs2
�Þ

ð1 � ŝs2
þÞð1 þ ŝs2

�Þ

� �
e�4kDR

 �
½130�

where

ŝs� � 2ŝs�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ŝs2

� þ 1
q

þ 1
½131�

are the scaled apparent Debye–Hückel surface densities. The first term is seen
to be identical to that of the Debye–Hückel pressure of Eq. [111] with appar-
ent charge densities of Eq. [94] replacing actual charge densities at large sur-
face separations and, for like surfaces, agrees with the previous approximation
of Eq. [120]. The second term, however, matches the DH term only for small
charge densities, so a simple generalization of the DH pressure obtained by
inserting apparent charge densities for actual ones fails beyond the first term.

To make the discussion more explicit, consider Figures 12 and 15, in
which the pressure according to the DH (Eq. [111]), additive GC (Eq. [119])
and approximate PB (Eqs. [129] and [130]) expressions are compared with
finite-difference values (Eqs. [112] and [389]) for the same systems as
Figures 11 and 14. Only data for the 0.01 M electrolyte case with oppositely
charged surfaces is shown; agreement is better for the 0.05 M and 0.1 M cases.
Focusing first on the data for a 0.01 M electrolyte with like-charged surfaces
(Fig. 12), the exact values are shown by the circle–dashed line. The standard
DH results (dashed line) give much too high a pressure as expected. Using
apparent charge densities in place of actual ones gives the dashed curve
marked ‘‘ADH’’ which lies closer to the exact data. The additive GC pressure
evaluated either at a surface (‘‘GCR’’) or the dividing plane (‘‘GC0’’) is better
than the DH or ADH pressure but still fails at relatively large separations. The
approximate PB pressure shows good agreement except for very small separa-
tions and is much better than either the DH or GC pressures. Retaining only
the first term of the approximate PB pressure in Eq. [130] produces dotted
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curve 1 just below the solid line corresponding to Eq. [129]; retaining two
terms in Eq. [130] produces dotted curve 2 just above the solid line. Thus,
even the first term of an asymptotic expansion [130] is remarkably accurate.
(These remarks also apply to the use of one- and two-term approximations for
the coefficients in the potential.) Both the PB and DH pressures are good for
oppositely charged surfaces. This is because the double layers of oppositely
charged surfaces tend to self-neutralize and hence decrease the magnitude of
the potential between the surfaces below the corresponding like-surface values
(of Figs. 11 and 14). Thus, conclusions drawn by Parsegian and Gingell using
DH theory on the restrictions on the ratio of the charge densities for attraction
and repulsion between unlike surfaces are not likely to be significantly affected
by the nonlinear PB results derived here.75

The range of pressures that are valid according to Eq. [126] is shown in
Figure 15 by the arrows for the like-charged 0.05 M and 0.1 M cases
(R > 18 and R > 10:6 ). It is seen that the range is overly restrictive
and is more appropriate for the validity of the DH pressure; the restriction
on the pressure ðjbPðRÞj < 0:64 A0cÞ is a better measure of the approximate
PB range. A final comment needs to be made concerning our treatment
only of surfaces held at constant charge density. Modifying the boundary
conditions to address surfaces at constant potential is straightforward and
should also extend the range of applicability since the case of constant
charge density provides an upper bound to the charge-regulated case, which,

Å Å

Figure 15 The pressure between two charged surfaces for the same systems as shown in
Figures 11 and 14 according to the DH (dashed line; Eq. [111]), approximate PB (solid
line; Eq. [129]) and exact (finite-difference) solutions (circle–dashed line; Eqs. [112] and
[389]). Only the 0.01 M electrolyte case for oppositely charged surfaces is shown.
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in turn, lies above the constant potential case.120 Behrens and Borkovec have
suggested a method by which the fixed charge density and fixed surface poten-
tial results can be used to estimate the pressure between charge-regulated
surfaces.120

Having obtained the pressure (force per unit area), we may now work
backward using the first of Eqs. [111] to find the potential per unit area via
quadrature:

bVð2RÞ
Area

¼ 2b
ð1

R

PðR�ÞdR�

¼ 16k2
D

pLBz2

ð1
R

A�ðR�ÞAþðR�ÞdR� ½132�

While the integral in Eq. [132] is easily evaluated numerically using Eq. [125]
for the coefficients, the asymptotic form [128] should be almost as accurate
and provides an analytical expression for the interaction potential:

bVð2RÞ
Area

¼ 4kD

pLBz2


2ŝs�ŝsþe�2kDR

þ ŝs2
�ð1 � 3ŝs2

þÞð1 � ŝs2
þÞ
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�Þð1 þ ŝs2

þÞ
þ ŝs2

þð1 � 3ŝs2
�Þð1 � ŝs2

�Þ
ð1 � ŝs2

þÞð1 þ ŝs2
�Þ

� �
e�4kDR

�
½133�

The first term in Eq. [133] is also what one would find from classical electro-
statics for the energy of a plane with charge density ŝs� in the presence of the
Debye–Hückel potential due to a second plane with charge density ŝsþ at a dis-
tance 2R. The electrostatic free energy is now found from the interaction
potential and Eq. [107]

Aelð2RÞ ¼ Vð2RÞ þ Aelðs�Þ þ AelðsþÞ ½134�

where all quantities are per unit area and the single-surface free energies
Aelðs�Þ are given by (see Eq. [30])

bAelðs�Þ
Area

¼ kD

pLBz2
p lnðp þ qÞ þ 1 � q½ �; p � 2ŝs�; q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ p2

p
½135�

As with the case of a single surface immersed in a mixed electrolyte, one may
apply these expressions to two surfaces in a bulk mixed electrolyte by using the
effective valence of Eq. [69] but with the proviso that Eq. [69] was derived
based on the analytical solutions for single surfaces.

Related Planar Calculations
The above-derived analytical solutions are based on a number of simpli-

fying assumptions that are required in order to obtain simple expressions for
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the potential profile. Some of these assumptions have to do with the derivation
of the Poisson–Boltzmann equation in general and will be discussed later, but
other assumptions are made merely for analytical simplicity; the most relevant
are (1) all ions have the same radius a, (2) the charge surface is perfectly pla-
nar, and (3) the surface charge is distributed uniformly. Counterions of differ-
ent size may be treated by introducing a different Stern layer for each ion and
solving the Poisson–Boltzmann equation within each region, matching the
potential and its slope at each boundary.81,129 Alternatively, competition
between mono- and divalent counterions130 may be studied by assuming
that divalent counterions condense onto the surface while monovalent ions
remain solvated.131 Borukhov, Andelman and Orland have derived a modified
Gouy–Chapman equation that accounts for steric packing of large counterions
at highly charged surfaces.132,133 If the average surface curvature is planar but
with an undulating height to describe surface roughness, the Debye–Hückel
equation may be used to determine the effect of roughness on the potential
profile and the electrostatic free energy.134 One effect of surface roughness
is to give the appearance of local variations in the surface charge density.135

In addition to adding surface roughness, a more accurate model of mem-
branes would be to replace the constant surface charge density assumption
with an array of discrete surface charges. Close to the surface (within a Debye
length), the electrostatic potential due to discrete charges may deviate consid-
erably from that based on a constant surface charge density.136–140 It may also
be necessary to account for charge regulation whereby the magnitude of the
surface potential affects the degree of dissociation of charged surface groups.
The boundary condition appropriate under these circumstances is the mixed
condition BC3.111,141,142 The GC model applied to one side of a charged sur-
face may also be extended to treat both sides of a planar bilayer system.143–145

This leads naturally to the case of ion-penetrable membranes in which some or
all species may diffuse across a uniformly charged surface.146–153

In other work on planar interactions, Trizac and Hansen have used the
DH cell model to study the free-energy and counterion/coion distributions for
square platelets.154,155 Ettelaie and Buscall119 and Ohshima156 have obtained
an analytical solution for the interaction of two charged surfaces using the
Poisson–Boltzmann equation when the surfaces are close, and Chan has
devised a simple algorithm for a system in an asymmetric electrolyte.157

Curved Surfaces: Cylinders and Spheres

The analytical solution to the Gouy–Chapman equation has proved to be
particularly useful in understanding the behavior of ions at charged planar sur-
faces. Although most biological surfaces are not planar, they can be treated as
such if both the Debye length and the distance from the surface are much smal-
ler than the local radius of curvature. Unfortunately, two especially relevant
biological systems, micelles and extended lengths of DNA, rarely behave as
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planar surfaces. To understand clearly how the surface curvature of charged
spheres and cylinders alter predictions of the Gouy-Chapman equation, an
analytical solution to the PB equation for these geometries is needed. Some
qualitative insight can be obtained by solving the Debye–Hückel equation
for these systems, but a detailed investigation requires knowledge of the non-
linear potential. While no exact analytical solution to the (one-dimensional)
cylindrical and spherical PB equations has been found, two accurate approx-
imate expressions for a z : z electrolyte can be derived: one based on a pertur-
bation expansion of the planar GC solution and a second obtained by
‘‘nonlinearizing’’ the Debye–Hückel potential.

Bulk Model: Perturbed Gouy–Chapman Approximation
Initial work on solving the PB equation for curved surfaces in the pre-

sence of an electrolyte primarily dealt with matching ‘‘inner’’ and ‘‘outer’’
region solutions158,159 or by defining upper and lower bounds.160–164 Despite
the lack of ‘‘clean’’ analyticity, these approaches give accurate results for a
wide range of system parameters such as radius of curvature and electrolyte
concentration. An alternative asymptotic expansion procedure has been
applied more often since it provides a single expression for the PB potential
and its range of applicability includes model representations of DNA. In this
method the planar Gouy–Chapman solution is used as a first-order approxi-
mation to systems with a slightly curved boundary.165–171

Consider now the one-dimensional bulk PB equation (in d dimensions)
that corresponds to the Debye–Hückel equation [76]:165,166

f00
PBðrÞ þ

d � 1

r
f0

PBðrÞ ¼ CðfPBÞ � �4pLBA0

XI

i¼1

cB
i zie

�zifPBðrÞ ½136�

Designating the known planar ðd ¼ 1Þ solution to Eq. [136] (e.g., Eq. [26]) by
f0ðrÞ, we can express an approximate first-order solution for d > 1 as a per-
turbation expansion in 1=r

fPBðrÞ ¼ f0ðrÞ þ
f1ðrÞ

r
½137�

where the first-order correction f1ðrÞ is subject to the conditions

f1ðaÞ ¼ 0 and f1ð1Þ ¼ 0 ½138�

Inserting this assumed solution into Eq. [136] and retaining terms of order
lower than 1=r, we find

f00
1ðrÞ ¼

dCðf0Þ
df0

f1ðrÞ � ðd � 1Þf0
0ðrÞ ½139�
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where the assumption that f1ðrÞ=kDr is small compared to f0ðrÞ allows the
approximation

CðfPBÞ � Cðf0Þ ¼ Cðf0 þ f1=rÞ � Cðf0Þ

 dCðf0Þ
df0

f1

r
½140�

We note that for the spherical case of d ¼ 3, the only approximation in
Eq. [139] is use of Eq. [140]. Thus, the solution developed below will be
‘‘almost exact’’ for a sphere, numerically as well as analytically, and we will
see that the asymptotic form of the solution exactly matches the spherical
Debye–Hückel potential. For the cylindrical case, however, Eq. [139] can be
justified only on numerical grounds since the asymptotic solution should
behave as a sum of modified Bessel functions.172 To put Eq. [139] into a
form more amenable to solution, we temporarily change variables from r to
f0 and introduce the following substitutions

D0ðf0Þ � k�2
D

dCðf0Þ
df0

; E0ðf0Þ � k�1
D f0

0ðrÞ

d

dr
¼ kDE0ðf0Þ

d

df0

f1ðrÞ ¼ k�1
D E0ðf0Þf ðf0Þ

½141�

to find

E2
0

d2f ðf0Þ
df2

0

þ 3E0E0
0

df ðf0Þ
df0

þ E0E00
0 þ E02

0

� �
f ðf0Þ ¼ D0f ðf0Þ � ðd � 1Þ ½142�

Specializing to a z : z electrolyte, we have Cðf0Þ ¼ k2
D sinhðzf0Þ=z and

D0ðf0Þ ¼ coshðzf0Þ;

E0ðf0Þ ¼ �2 z�1 sinh
zf0

2

½143�

so that Eq. [142] becomes

sinh2ðyÞ d2f ðyÞ
dy2

þ 3 sinhðyÞ coshðyÞ df ðyÞ
dy

þ ðd � 1Þ ¼ 0 ½144�
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where we have introduced yðrÞ ¼ zf0ðrÞ=2. Equation [144] is a first-order
linear differential equation in f 0ðyÞ and has the solution

f 0ðyÞ ¼ c1ecðyÞ � ðd � 1ÞecðyÞ
ð

e�cðyÞcsch2ðyÞdy

cðyÞ ¼ �3

ð
cothðyÞdy

½145�

where c1 is an integration constant. After performing the integrations in
Eq. [145], followed by a second integration to get f ðyÞ, we have

f ðyÞ ¼ �ðc1=2Þ ln tanh
y

2

�  h i
þ coshðyÞ

sinh2ðyÞ

 !
þ d � 1

2

� �
coth2ðyÞ þ c2 ½146�

where c2 is a second integration constant. To evaluate c1 and c2, we apply con-
ditions [138]; this gives c1 ¼ d � 1 and, after some algebra, the following
expression for the potential:

fPBðrÞ ¼ f0ðrÞ þ
2a

zkDCar

uðrÞ
1 � ½uðrÞ�2

 !
2 ln uðrÞ=uað Þ � ½uðrÞ�2 þ u2

a

h i
½147�

where

uðrÞ � tanh
zf0ðrÞ

4
; ua ¼ uðaÞ ½148�

f0ðrÞ is given by Eq. [23] or [26], and we have introduced the radius of
curvature Ca (which defines either the radius of a sphere or the diameter
of a cylinder). We have used the identity 2 coshðyÞ½coshðyÞ � 1� ¼
½coshðyÞ � 1�2 þ sinh2ðyÞ.

The surface potential is found using a generalization of Grahame’s equa-
tion [25] obtained by applying Eq. [15]:

z Sa

kDlGC
¼ sinh

zfa

2

� �
þ 2

kDCa
tanh

zfa

4

� �
½149�

Additional expressions for the surface potential correct up to second- and
higher-orders in kDCa for cylinders171,173 and spheres168,171,173 have also
been derived and detailed discussions of the error in truncating the asymptotic
expansion have been given.168,173,174 Ohshima has obtained a relation similar
to Eq. [149] but more complicated and specifically for cylinders.175 Equation
[149] is accurate if the correction term (the second) is small compared to the
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first; for small surface potentials, we have kDCa � 1, while for large surface
potentials, kDCa > 1 suffices. For charged spheres (owing to the cancellation
of terms in arriving at Eq. [139]), the latter condition is quite good even for
moderate surface potentials. Using Eq. [149] in Eq. [29], we have the electro-
static component of the free energy for a curved surface:

bAel

Area
¼ kD

pLBz2
ya sinhðyaÞ þ

2

kDCa
tanh

ya

2

� �
þ 1 � coshðyaÞ �

4

kDCa
ln cosh

ya

2

�  �
½150�

where ya � zfa=2. Defining as before p � z=kDlGC and q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ p2

p
¼

coshðyaÞ, where the latter equality holds to first-order in 1=kDCa since
coshðyÞ is an even function of y, Eq. [150] reduces to

bAel

Area
¼ kD

pLBz2
p lnðp þ qÞ þ 1 � q � 2

kDCa
ln

q þ 1

2

� � �
½151�

Higher-order corrections to Eq. [151] have also been derived168,171,174 and
used to investigate the elasticity of curved membranes171 and the adsorption
of monovalent ions in thin, curved double layers.174

Inserting Eq. [26] for the planar solution into Eq. [147] gives the final
result for the potential profile in the presence of a slightly curved charged sur-
face with a bulk z : z electrolyte:

zfPGCðrÞ ¼ �2 Sa ln tanh
kDðr � a þ dDGCÞ

2

� �

þ Saa

2kDCar

exp �2kDdDGCð Þ � exp �2kDðr � a þ dDGCÞð Þ � 2kDðr � aÞ
sinh kDðr � a þ dDGCÞð Þ

½152�

with the value at the surface given by

zfa ¼ �2 Sa ln tanh
kDdDGC

2

� �
½153�

Because the Gouy–Chapman potential was used as the low-order term in a
perturbative expansion, Eq. [152] will be referred to as the perturbed
Gouy–Chapman (PGC) solution for a curved surface. [Loeb, Overbeek and
Wiersma refer to approximations using the Gouy–Chapman solution as a
reference as ‘‘flat-plate’’ approximations.176 While both the PGC and the non-
linear Debye–Hückel (NLDH) approximation of the following section are
exact for flat plates, their range of applicability is quite different. In fact, the
NLDH solution also becomes good for surfaces with vanishingly small radii of
curvature. We thus apply more distinctive names to reflect this.]
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The PGC expression for the Debye-Gouy-Chapman length follows from
Eqs. [149] and [153]:

sinhðkDdDGCÞ ¼
kDlGC

z
1 þ 1

kDCa
1 � e�2kDdDGC
� � �

½154�

Thus, for a fixed surface charge density, a sphere of radius 20 Å and a cylinder
of radius 10 Å have the same surface potential according to Eq. [154]. This
was observed numerically by Guéron and Weisbuch in their PB investigation
comparing counterion condensation around a sphere and a cylinder.177 Con-
sidering the non-planar term on the right-hand side of Eq. [154] to be a cor-
rection, which will often suffice, we can replace dDGC in it by the planar value
given in Eq. [27] to obtain the approximate expression

kDdDGC  sinh�1 kDlGCð1 þ f Þ
z

� �
½155�

where f represents the correction due to surface curvature

f ¼ 2

kDCa 1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ z=kDlGCð Þ2

q� � ½156�

The range of accuracy given in Eq. [155] is found by requiring that f be small.
Equations [152]–[155] represent a good approximation to the actual potential
profile provided the correction terms to the planar solution are small.

Equation [154] will be a good approximation to the actual surface
potential, provided the term accounting for surface curvature is small; this
implies pLBzCa saj j � 1. Combining this with the restriction that f also be
small ðkDCa > 1Þ gives a rough indication of the conditions under which
Eq. [152], when used with Eq. [155], is reliable:

kDCa >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

s0

sa

����
����

s
; s0 � e0kD

2pLBz
½157�

Although Eq. [157] has not been derived on strict mathematical grounds,
we will find that it is, in fact, a good measure of reliability. In Figure 16 we
give the minimum values of the radius of curvature as a function of surface
charge density for several z : z electrolyte concentrations for which the PGC
potential profile of Eqs. [152] and [155] is accurate to within a few percent.
Equation [157] will be consulted periodically to verify the range of applicabil-
ity of results based on Eq. [152].
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An alternative error estimate describing the entire potential profile can be
found by multiplying both sides of Eq. [136] by rd�1 and integrating from the
charged boundary to infinity. The left-hand side reduces to the electrostatic
field at the surface and the right-hand side gives the total integrated ion den-
sity, that is, the total charge. For the exact solution this expression is simply a
reflection of Gauss’ law; for an approximate solution, there is some deviation.
We may thus define an error value by

Error ¼ s0

2sa

����
����
ð1

Xa

x=Xað Þd�1 sinh½zfðxÞ�dx � 1 ½158�

where we have specialized to a z : z electrolyte and introduced the scaled
variables x ¼ kDr;Xa ¼ kDa, and sa=s0j j ¼ z=kDlGC. For a planar surface,
Eq. [158] can be evaluated analytically to give Error ¼ 0; any deviation
from zero is a measure of the accumulated difference between the approximate
potential and the exact potential. Figures 17 and 18 show Error for a charged
cylinder and sphere, respectively, as a function of kDa for several values of
sa=s0 for the approximate (Eqs. [152] and [155]) and exact (Eqs. [152] and
[154]) PGC potential. The maximum value chosen for kDað¼ 3Þ corresponds

Figure 16 The minimum radius of curvature (in Å) for which the potential profile given
by Eq. [152] may be considered reliable is shown as a function of the surface charge
density (in e0/Å2) for several concentrations of mono- and divalent z : z electrolytes
according to Eq. [157]; the electrolyte valence and concentrations for each curve are
listed at the right.
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Figure 17 The error in the PGC solution of Eq. [152] according to Eq. [158] for a
cylinder as a function of the scaled radius kDa for several values of the scaled surface
charge density sa=s0; curves obtained using the exact (Eq. [154]) and approximate
(Eq. [155]) Debye–Gouy–Chapman lengths are grouped by arrows.

Figure 18 The error in the PGC solution of Eq. [152] according to Eq. [158] for a sphere
as a function of the scaled radius kDa for several values of the scaled surface charge
density sa=s0; curves obtained using the exact (Eq. [154]) and approximate (Eq. [155])
Debye–Gouy–Chapman lengths are grouped by arrows.
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to a cylinder of radius 30 Å in a 0.1 M monovalent salt or a 15 Å cylinder in
mixed 1:1-2:1 salts of 0.1 M each. The maximum range on sa=s0 ð¼ 8Þ cor-
responds to the same salt conditions for a surface with charge density
sa ¼ 0:02e0=

2
. The data for the approximate and exact PGC potentials

are grouped by double-ended arrows; multiplication by 100 would indicate
the error on a percentage scale, with 5% ðError <0:05Þ being good agreement
between the approximate and exact potentials. For the same parameter values,
the error for each potential for a cylinder is less than that for a sphere in part
because a cylinder is more ‘‘planelike’’ than a sphere. Figure 17 shows that a
5% error for the approximate PGC potential obtains for kDa > 1; the error for
the exact potential is only �2% or less. For kDa < 1, the error in the approx-
imate potential grows without bound owing to the inappropriateness of repla-
cing Eq. [154] with Eq. [155]. The exact potential does better for cylinders
with small radius (or low ionic strength) but the error in this region increases
dramatically for low surface charge densities. The picture for charged spheres,
shown in Figure 18, offers the same analysis, but at larger radii ðkDa >2Þ. The
relatively slow improvement toward larger kDa values is indicative of solutions
based on an asymptotic expansion.

Bulk Model: Nonlinearizing the Debye–Hückel Solution
The preceding perturbation solution to the PB equation for curved

surfaces, although exact up to the specified power of the expansion parameter
1=kDr, becomes increasingly unreliable as this parameter approaches unity. It
is also difficult to extend to many-particle systems, so an alternative method of
solution is desirable. As shown above for a charged plane, the Debye–Hückel
solution can be obtained in one of two ways: by solving the linear DH equa-
tion or by linearizing the PB solution. We might therefore ask: Since we can’t
find an exact solution to the nonlinear PB equation for a curved surface, might
we be able to find a useful approximation by ‘‘nonlinearizing’’ the easily
obtainable linear solution? We would also want the approximation to reduce
to the exact planar solution in the appropriate limit. A clue to our approach is
to be found by noticing that the decay dependence on the right-hand side of
the Gouy–Chapman solution (Eq. [22]) is identical to that of the DH potential
(Eq. [32]). Thus, taking the tanh�1 of both sides of Eq. [22] (to obtain the PB
potential) performs a ‘‘nonlinearization’’ of the linear solution and is analo-
gous to the approach used previously for two interacting charged planes
(e.g., Eq. [121]). We expect that this nonlinearization, while exact in the limit
of a charged plane or small surface charge density, will only approximate the
effect for a general curved surface. This justification is merely the other side of
the coin presented earlier, that is, use of the tanh�1 function performs a partial
linearization of the z : z PB equation.

While some progress can be made for a general electrolyte, we expedite
matters by starting with Eq. [136] for a z : z salt and rely on an effective
valence for other cases. We first consider the PB equation for an isolated

Å
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charged particle in contact with a bulk electrolyte:

f00
PBðrÞ þ

d � 1

r
f0

PBðrÞ ¼ z�1k2
D sinh½zfPBðrÞ� ½159�

subject to the usual conditions

f0
PBðaÞ ¼

�2Sa

lGC
; f0

PBð1Þ ¼ 0 ½160�

We assume a solution of the form

zfPBðrÞ
4

¼ tanh�1½uðrÞ� ½161�

which, when put into Eq. [159], gives

u00ðrÞ þ d � 1

r
u0ðrÞ ¼ k2

DuðrÞ þ 2uðrÞ
1 � ½uðrÞ�2

k2
D½uðrÞ�

2 � ½u0ðrÞ�2
�  

½162�

subject to

u0ðaÞ
1 � ½uðaÞ�2

¼ �zSa

2lGC
; u0ð1Þ ¼ 0 ½163�

Noticing that the terms in Eq. [162] linear in u(r) correspond exactly to the
DH equation, we further specify that the solution takes the form

uðrÞ ¼ u0ðrÞ þ vðrÞ ½164�

where u0(r) and v(r) obey

u00
0ðrÞ þ

d � 1

r
u0

0ðrÞ ¼ k2
Du0ðrÞ

u0
0ðaÞ

1 � ½u0ðaÞ�2
¼ �zSa

2lGC
; u0

0ð1Þ ¼ 0
½165�

and

v00ðrÞ þ d � 1

r
v0ðrÞ ¼ k2

DvðrÞ þ 2uðrÞ
1 � ½uðrÞ�2

k2
D½uðrÞ�

2 � ½u0ðrÞ�2
�  

v0ðaÞ ¼ � 2u0ðaÞ þ vðaÞð Þu0
0ðaÞvðaÞ

1 � ½u0ðaÞ�2
; v0ð1Þ ¼ 0

½166�
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So far we have made no approximations. Because of the presence of the
Debye–Hückel solution within the argument of the tanh�1 function and the
comments made at the beginning of this section, we refer to this method as
the nonlinear Debye–Hückel (NLDH) approach. The DH equation [165] sub-
ject to its nonstandard boundary condition (that is, the presence of the
denominator) is relatively easy to solve for a wide variety of systems. Equation
[166], however, is more difficult. Under what conditions can we simply neglect
v(r) compared to u0(r)? For one-dimensional single-particle systems, Eq. [165]
shows that u0ðrÞ � expð�kDrÞ and then Eq. [166] implies vðrÞ � expð�3kDrÞ.
Thus for kDr large enough, we may consider v(r) to be small, and we see that
our solution essentially represents an asymptotic expansion, where u0(r) is the
first term. But it is more than this for two reasons, the first being that for a
single charged plane, kDuðrÞ ¼ u0ðrÞ, where the second term on the right-
hand side of Eq. [166] vanishes identically, thus yielding the solution
vðrÞ ¼ 0. This implies that the resulting solution of Eq. [165] inserted into
Eq. [161] is valid for all r and not just asymptotically. (This is verified by car-
rying out the calculation.) The second reason our solution is useful is that for
small surface potentials or charge densities, neglecting all terms of order [u(r)]2

reduces Eq. [165] and its boundary condition to the standard DH result, and
Eq. [166] again gives vðrÞ  0; we thus recover the radial Debye–Hückel
potential in d dimensions for all r. The presence of curvature effects in the
low-order solution distinguishes this approach from that of the PGC approx-
imation presented previously.

In the following section we present a particularly simple approximation
to Eq. [162] that bypasses the need for v(r). However, for those cases in which
greater accuracy is required, Eq. [166] could be solved for v(r). One might
think it possible to ignore the denominator of the second term in Eq. [166]
and/or replace u(r) by u0(r), further simplifying the equation, but this proce-
dure will lead to considerable error since any errors in obtaining v(r) are mag-
nified through the (nonlinear) tanh�1 function of Eq. [161]. We note that the
above procedure is not based on a perturbative expansion in which v(r) is
assumed to be much less than some zeroth-order solution ðu0ðrÞ, fDHðrÞ or
the planar GC solution) at the outset. Doing so, typically by introducing an
expansion parameter e and collecting terms, as was implicit in the PGC pro-
cedure of the previous section, would remove higher-order terms from inside
the tanh�1 function, resulting in some degree of linearization. It is particularly
important to retain nonlinearity in the boundary condition. We will show in
the following section that because of this u0(r) is actually the generalization of
the planar ADH potential given in Eq. [93]. The nonlinear boundary condition
does not complicate the solution but does increase considerably the accuracy
of the final potential, as can be seen by comparing the DH and ADH potentials
for a charged plane in Figure 4. One might argue that, since this NLDH solu-
tion is not based on a perturbative method, neglect of v(r) may lead to large
errors in the potential near the particle surface. This is, of course, true but for
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many systems, particularly those involving more than a single polyelectrolyte,
thermodynamic properties are determined by asymptotic features of the
potential and these are well reproduced by u0(r). Finally, although we have
specified typical single-particle bulk electrolyte boundary conditions in
Eq. [165], the NLDH can be used with other boundary conditions. A number
of two-particle systems are treated within the NLDH approach in later
sections.

Bulk Model: Single-Particle NLDH Potential
One of the most important yet simplest systems is that of a single-

charged surface immersed in a bulk z : z electrolyte because it serves as a refer-
ence model for colloidal and biomolecular systems. In this section we will
obtain a general expression for the asymptotic form of the Poisson–Boltzmann
potential for a radially-symmetric particle (a cylinder or sphere) and show that
it reduces to that for a plane in the limit of large particle radius. We then show
how the asymptotic result can be modified slightly to correct the value of the
potential at the particle surface.

Returning to Eq. [165], let us write the general solution to the radial d-
dimensional Debye–Hückel equation as

u0ðrÞ ¼ AwðrÞ ½167�

where w(r) denotes the radial component e�kDr, K0ðkDrÞ or e�kDr=r, for d ¼ 1,
2 or 3, respectively. [It is not necessary to explicitly know wðrÞ at this point,
only that it satisfies the appropriate DH equation.] The boundary condition at
r ¼ a can be written as

A w0ðaÞj j
1 � A2½wðaÞ�2

¼ zSa

2lGC
½168�

which is solved to give the coefficient

A ¼ zSaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½zwðaÞ�2 þ ½w0ðaÞlGC�2

q
þ w0ðaÞj jlGC

½169�

Comparison with the standard Debye–Hückel solution obtained by neglecting
the denominator on the left-hand side of Eq. [168]:

fDHðrÞ ¼
2Sa

lGC

wðrÞ
w0ðaÞ

����
���� ½170�
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shows that the u0ðrÞ may be written in the form of the DH solution by repla-
cing lGC with a curvature-dependent apparent Gouy–Chapman length

lAGC ¼ 1

2
lGC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

GC þ zwðaÞ
w0ðaÞ

� �2
s0

@
1
A ½171�

and thus represents the generalization of the planar ADH potential of
Eq. [93].176 Using Eq. [11], we collect the additional curvature factor da

into the reference density s0 and express Eqs. [171] in terms of charge densi-
ties and the DH potential:

sADH ¼ 2saffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsa=s0Þ2 þ 1

q
þ 1

s0 ¼ e0kD

2pLBzda
; da ¼ kDfDHðaÞ

f0
DHðaÞ

����
����

½172�

so that Eq. [167] now gives the equivalent expressions

u0ðrÞ ¼
z

4
fADHðrÞ ¼

zsADH

4sa
fDHðrÞ ¼

sADH

2s0

fDHðrÞ
fDHðaÞ

½173�

We note that, as with fDHðrÞ, fADHðrÞ does not depend on the electrolyte
valence. With vðrÞ  0, the NLDH solution to the single-surface radial
d-dimensional PB equation is simply

zfNLDHðrÞ
4

¼ tanh�1 zfADHðrÞ
4

½174�

Far from the surface the ADH potential is small, and only the first term in the
series expansion of tanh�1 need be retained. The NLDH potential then reduces
to the Debye–Hückel solution but with a reduced charge density given by
Eq. [172]. It is convenient to write Eq. [174] in an alternative form equivalent
to Eq. [22] for a charged plane:

zfNLDHðrÞ
4

¼ tanh�1 tanh
zfa

4

� �
f ðrÞ

 �
; f ðrÞ ¼ fDHðrÞ

fDHðaÞ
½175�

where the actual surface potential is related to the Debye–Hückel surface
potential by

sinh
zfa

2
¼ z

2
fDHðaÞ ½176�
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Having laid the groundwork for the NLDH approach, we now improve
on this result but in a way that avoids having to deal with the equation for v(r).
We recall that the ADH potential does not depend explicitly on the electrolyte
valence and see, from Eq. [174], that for large distances from the surface the
valence cancels; the electrolyte valence is thus a factor only near the surface,
much as v(r) is. This suggests that we might be able to multiply the valence by
a parameter chosen in such a way as to optimize the potential at the surface.
This is most easily done by introducing a parameter � into Eq. [175]:

fNLDHðrÞ ¼
4

�z
tanh�1 uðrÞð Þ

¼ 4

�z
tanh�1 tanh

�zfa

4

� �
f ðrÞ

� �
½177�

Note that this expression for the solution essentially replaces the valence z (or
effective valence if Eq. [69] used for asymmetric or mixed salts) by a ‘‘new
effective valence’’ �z, where � takes surface curvature into account. Inserting
fNLDHðrÞ into Eq. [159] gives

k2
D½uðrÞ�

2

1 � ½uðrÞ�2
þ 2uðrÞ u0ðrÞ

1 � ½uðrÞ�2

 !2

¼ k2
D

4
sinh½zfNLDHðrÞ� ½178�

Because the presence of nonintegral � does not allow simplification of the
right-hand side of Eq. [178] in terms of u(r) as was done in Eq. [162], it is sim-
pler to work with fðrÞ than u(r). We ‘‘minimize’’ the error in our solution by
choosing � such that Eq. [178] vanishes at the surface. The result is

1 þ 2

d2
a

sinh2 �zfa

4
¼ � sinhðzfaÞ

2 sinhð�zfa=2Þ ½179�

which may be rewritten in the more symmetric form

1 þ ð2=d2
aÞ sinh2ð�zfa=4Þ

1 þ 2 sinh2ð�zfa=4Þ
¼ � sinhðzfaÞ

sinhð�zfaÞ
½180�

where da is easily seen to be a function only of kDa and less than one for finite
a, while � is bounded between a small positive value (given by Eq. [182]) and
unity, approaching the latter for high surface potentials. If the value of the sur-
face potential is known, Eq. [180] immediately provides �. Here we generally
assume that the charge density is known. We thus follow the procedure used in
the planar system (Eq. [25]) whereby the boundary condition at the surface
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leads to Grahame’s equation relating the surface potential to the charge den-
sity, which in this case can be expressed as

sinh
�zfa

2
¼ �z

2
fDHðaÞ ½181�

Equations [180] and [181] are solved simultaneously to give parameter � and
the surface potential, which formally completes the one-particle NLDH
solution.

An approximate value for � may be obtained by expanding Eq. [180] in
powers of the surface potential and, up to second order in fa, we find

�2
a ¼ 4d2

a

3 þ d2
a

½182�

which is useful when taking the DH or point-particle limit ðkDa ! 0Þ. A better
approximation based on the large surface potential expansion

lim
faj j!1

� ¼ 1 þ lnðd2
aÞ

z faj j  1 þ lnðdaÞ
ln z fDHðaÞj jð Þ ½183�

where the second equality follows from Eq. [181], is given by

�2 ¼ �2
a þ ð1 � �2

a Þ exp
2 lnðd2

aÞ
z faj j

 !
 �2

a þ ð1 � �2
a Þ exp

1 � lnðd2
aÞ

1 þ ln z fDHðaÞj jð Þ

 !

½184�

These expressions may be used in conjunction with the following limits for
curvature function da: for small surface curvature

lim
kDa!0

da ¼
�kDa lnðkDaÞ ðapproximate for a cylinderÞ
kDa

1 þ kDa
ðexact for a sphereÞ

(
½185�

and for large surface curvature

lim
kDa!1

da ¼
2kDa

2kDa þ 1
ðapproximate for a cylinderÞ

kDa
kDa þ 1

ðexact for a sphereÞ

8<
: ½186�

To summarize the NLDH procedure up to this point, the approximate
analytical solution to PB equation [159] subject to conditions [160] is given
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by Eq. [177], where f ðrÞ is the normalized Debye–Hückel solution; the surface
potential and parameter � are found from Eqs. [180] and [181]. For a charged
plane, the DH solution shows that f ðrÞ ¼ exp½�kDðr � aÞ� so that da ¼ 1 and,
from Eq. [180], � ¼ 1, as required. The form chosen for the approximate solu-
tion, Eq. [177], is correct in two limits: for all fawhen � � 1 and for all � when
fa � 1. We thus expect our solution to be more accurate for smaller surface
potentials than larger as � deviates from unity, which also implies that the
solution would be accurate at moderate to long distances from the surface.
One advantage of the NLDH solution over the PGC solution of the previous
section is that we are not limited by the magnitude of the radius of curvature,
that is, the cylinder or sphere radius may be small compared to the Debye
length. A second advantage is its ability to treat more than a single surface.
Finally, the NLDH approximation naturally leads to the asymptotic ADH
potential for curved surfaces, as we now show.

The result of introducing parameter � is to retain the expressions of
Eq. [173]

u0ðrÞ ¼
z

4
fADHðrÞ ¼

zsADH

4sa
fDHðrÞ ½187�

but modify the apparent Gouy–Chapman length

lAGC ¼ 1

2
lGC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

GC þ �zda

kD

� �2
s0

@
1
A ½188�

and apparent charge density

sADH ¼ 2saffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsa=s0Þ2 þ 1

q
þ 1

; s0 ¼ e0kD

2pLB�zda
½189�

where once again we group the new parameter � in s0. As with the two-plane
solution, the appearance of an apparent charge density is a natural conse-
quence of using the tanh�1 function in our approximate solution coupled
with the charge density boundary condition. Equation [189] has the limits

lim
jsaj�s0

sADH ¼ sa 1 � sa

2s0

� �2
 !

½190�

and

lim
jsaj�s0

sADH ¼ 2Sas0 1 þ lnðdaÞ
lnðs0=2jsajÞ

� s0

jsaj

� �
½191�
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where Eq. [183] has been used. Equation [185] or [186] may be used in these
expressions for cases of small or large surface curvature. As with the ADH pla-
nar solution and Eq. [97], Eq. [189] allows us to define the fraction of surface
charge neutralized by counterions as

fneut ¼ 1 � sADH

sa
¼ 1 � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsa=s0Þ2 þ 1

q
þ 1

½192�

with the limits

lim
jsaj�s0

fneut ¼
sa

2s0

� �2

lim
jsaj�s0

fneut ¼ 1 � 2s0

jsaj

½193�

The fraction of surface charge neutralized according to Eq. [192] corresponds
to what one would find by fitting the asymptotic form of the potential to the
standard Debye–Hückel form and comparing it to the standard DH solution.
Of course, to do this, one must know the actual surface charge density as well
as the particle radius for a cylinder or sphere, properties that cannot be sepa-
rately determined from the potential alone (Gauss’ law); it is generally
assumed, as we do here, that these properties are known. Equation [192]
clearly predicts that at least some surface charge will be neutralized under
all conditions for charged planes, cylinders, and spheres and thus is at odds
with the interpretation by Le Bret and Zimm178 based on the no-added-salt
cylinder cell model. A more detailed analysis is presented below in connection
with specific geometries.

For small (or even moderate) surface potentials such that � can be
approximated by Eq. [182], we can use Eq. [181] to find the electrostatic
free energy of the charged surface according to Eq. [29]. Since the approximate
solution [177] has the same form as the Gouy–Chapman solution for a plane
and da, and hence �a, is independent of the surface potential, the evaluation of
the free energy follows that leading to the planar result of Eq. [30] in all
details, and we can immediately write

bAel

Area
¼ kD

pLB�2
a z2da

½ p lnð p þ qÞ þ 1 � q�; p � �azda

kDlGC
; q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ p2

p
½194�

To proceed further, specific expressions for da must be given, which requires
that the DH equation be solved for the geometry of interest; these will be given
below in the appropriate sections. We simply note that an expression for da
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that is exact for a sphere (and a plane) and asymptotically correct (in kDCa) for
a cylinder is (see Eqs. [252] and [300])

da ¼ kDCa

kDCa þ 1
; Cd ¼ 2a=ðd � 1Þ ½195�

Use of Eq. [195] implies that a sphere of radius 20 Å and a cylinder of radius
10 Å at a given surface charge density will have the same surface potential (if �
can be approximated by the low-potential formula [182]). This observation
agrees with the PGC approximation of the previous section. Equations [194]
and [195] can be used to find the approximate electrostatic free energy of a
convex body (i.e., positive local radius of curvature) by integrating the free
energy per area over the surface. For simple shapes (rod, disk), the free energy
can be written as an analytic sum of the free energies for each type of geo-
metric surface (plane, cylinder or sphere).

Figures 19 and 20 display the error according to Eq. [158] for the
approximate (Eqs. [177], [181] and [182]) and exact (Eqs. [177], [180] and
[181]) NLDH potentials. (The analytical NLDH solution for a charged cylin-
der or charged sphere is displayed in later sections.) An analysis similar to the
PGC potential of Figures 17 and 18 applies here with the exact NLDH error
being about twice that of the exact PGC error at large kDa. The unbounded
error for the approximate NLDH potential for a cylinder at small kDa

Figure 19 The error in the NLDH solution of Eq. [177] according to Eq. [158] for a
cylinder as a function of the scaled radius kDa for several values of the scaled surface
charge density sa=s0; curves obtained using exact (Eq. [180]) and approximate (Eq.
[182]) values for � are grouped by arrows.
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(Figure 19) is due to the replacement of Bessel functions with their asymptotic
expressions (see text below). One important distinction between the exact PGC
and NLDH potentials is that the NLDH potential is more accurate for surfaces
with small radii of curvature. For cylinders, the (exact) NLDH error is lower
than the (exact) PGC error for roughly kDa < 1; for spheres, the NLDH error
is lower for kDa < 1:5-3, depending on the surface charge density. In general,
the approximate NLDH potential is adequate only for spherical systems with
kDa < 0:03–0.05 unless the sphere has a low charge density.

We note that the NLDH approximation is similar to, and in a sense a
special case of, that of Martynov,179–181 who assumed a solution in terms of
a series expansion involving the potential at the outset. After several approx-
imations in which the series solution is resummed, he arrives at an expression
that is equivalent to Eq. [177] for the spherical case. We also note that his
expression for � (actually his 4=

ffiffiffiffiffiffi
3B

p
) involves exponential integrals but can

be well approximated by the much simpler formula �2  2=ð3=da � 1Þ, which,
when used with Eq. [195], is easily shown to agree with Eq. [182] to lowest
order in Ca. His higher-order approximations, which we could designate an
‘‘extended NLDH approximation,’’ go beyond the solution developed here
but also lose some of the analytical simplicity. There is also a superficial simi-
larity of our ADH profile with the linearized PB potentials of Fogolari et al.182

and Bocquet, Trizac and Aubony.183,184 Finally, we mention that Wang et al.

Figure 20 The error in the NLDH solution of Eq. [177] according to Eq. [158] for a
sphere as a function of the scaled radius kDa for several values of the scaled surface
charge density sa=s0; curves obtained using exact (Eq. [180]) and approximate
(Eq. [182]) values for � are grouped by arrows.
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have presented a simple and elegant functional iterative method for analyti-
cally nonlinearizing the spherical DH solution.185

Bulk Model: Two-Particle NLDH Potential
Now that we have obtained single-particle NLDH potentials, we extend

the treatment by generalizing the plane–plane interaction discussed previously
to any two, possibly dissimilar, charged particles of simple geometry (planes,
cylinders, or spheres), oriented as depicted in Figure 21; for planes and
spheres, the coordinate system is cylindrically symmetric. We let R be the
separation vector between the centers of the two particles (from 1 to 2)
with s1 and a1 denoting the surface charge density and radius, respectively,
of one of the particles (a plane is treated as the limiting case of infinite radius);
H0 ¼ R � a1 � a2 is the closest distance between the surfaces. In this (r, x)
coordinate system, r defines the perpendicular distance from R and x is the
distance projected along R with respect to the origin at a point O situated
between the particle centers (at H0/2 or R/2, depending on whether the
potential or pressure is being calculated). In this section we will first obtain
an approximate solution for the two-particle potential and then use it to
find the pressure on the dividing plane, again explicitly considering only a z : z
electrolyte.

Figure 21 Diagram defining the parameters used to calculate the interaction of two
charged particles (planes, cylinders, or spheres) of radii a1 and a2; a plane is treated by
the limiting case of infinite radius. The dividing plane at H0=2 ðor R=zÞ used to evaluate
the potential (or pressure) is indicated by the dotted vertical line placed at the origin
of the 2D cylindrical (r; x) coordinate system; any point r on this plane lies an equal
distance from the respective particle centers. R is the distance between particle centers,
H0 is the closest distance between surfaces (the separation distance) and H denotes the
distance between any two points on the particles that lie the same distance r above the
inter-center axis (and in the plane of the paper).
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From Eqs. [121] and [175] we assume a potential of the form

zfðrÞ=4 ¼ tanh�1½uðrÞ�

¼ tanh�1½A1f1ðr1Þ þ A2f2ðr2Þ� ½196�

where

f1ðr1Þ ¼
f1ðr1Þ
f1ða1Þ

; f2ðr2Þ ¼
f2ðr2Þ
f2ða2Þ

½197�

are the individual DH potentials scaled to the values at the surface. At this
point we need not explicitly give the DH solutions—this will be done in later
sections—but f ðrÞ is in fact w(r)/w(a), where w(r) for the appropriate particle
geometry is given immediately following Eq. [167]. To determine coefficients
A1 and A2 it is simplest if the origin of the coordinate system is placed halfway
between the particle surfaces at H0=2. From Figure 21 we have

r2
1 ¼ ðh1 þ xÞ2 þ r2; h1 ¼ a1 þ

H0

2

qr1

qr
¼ r

r1
;

qr1

qx
¼ h1 þ x

r1

½198�

with similar expressions for r2. Although complete boundary conditions would
have angular contributions, we apply them only at the point on each surface
closest to the other particle, that is, along R (r ¼ 0) with x ¼ �H0/2. This
great simplification corresponds to considering only the lowest-order term in
an angular expansion of the potential and thus correctly describes the leading
order term in the solution. For interacting cylinders and interacting spheres,
McQuarrie and co-workers have shown that for separation distances of a
few Debye lengths, this approximation is entirely adequate.186,187 For separa-
tions large compared to the particle radii, the potential will not vary greatly
across each surface, while for separations small compared to the particle radii,
the interaction should approach that of two planes (for which there is no angu-
lar dependence); in both cases the correct boundary condition is being applied.
Applying the boundary conditions

f0 �H0

2

� �
¼ �4pLBs1

e0

f0 H0

2

� �
¼ 4pLBs2

e0

½199�
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to the potential of Eq. [196] leads to the coupled equations

ŝs1 ¼ A1 � ðe2d1=d2ÞA2

1 � ðA1 þ g2A2Þ2

ŝs2 ¼ �ðe1d2=d1ÞA1 þ A2

1 � ðg1A1 þ A2Þ2

½200�

where several variable assignments have been made (those with index 2 follow
by symmetry):

ŝs1 ¼ s1

2s01
; s01 ¼ e0kD

2pLBzd1

g1 ¼ f1ðH0 þ a1Þ; d1 ¼ �kD

f 01ða1Þ
; e1 ¼ f 01ðH0 þ a1Þ

f 01ða1Þ

½201�

Note that g, d, and e all range between zero and one; also, g and e decrease
exponentially as the surface separation H0 increases. As with Eqs. [123] and
[124] for the planar case, Eqs. [200] can be solved exactly for two particles of
identical (A1 ¼ A2) or opposite (A1 ¼ �A2) charge density or for one
uncharged particle (A2 ¼ 0) so we need only generalize our solution for two
planes (Eq. [125])

A1 ¼ 2ðŝs1 þ e1ŝs2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðð1 þ e1g2d2=d1Þŝs1 þ ðe1 þ g2d1=d2Þŝs2Þ2 þ ð1 � e1e2Þ2

q
þ ð1 � e1e2Þ

½202�

where A2 is found by switching indices 1 $ 2. Equation [202] provides the
low charge density expansion

A1 ¼ ŝs1 þ e1ŝs2

ð1 � e1e2Þ
1 � ð1 þ e1g2d2=d1Þŝs1 þ ðe1 þ g2d1=d2Þŝs2

ð1 � e1e2Þ2

 !2

þ 
 
 


2
4

3
5
½203�

where the first term is the Debye–Hückel limit, and the large-separation
expansion

A1 ¼ ŝs1 þ
ð1 � ŝs2

1Þŝs2

ð1 þ ŝs2
1Þð1 � ŝs2

2Þ
ðð1 � ŝs2

1Þe1 � ð2ŝs2
1d1=d2Þg2Þ þ 
 
 
 ½204�
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where the scaled apparent charge density ŝs1 is defined as

ŝs1 ¼ 2ŝs1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ŝs2

1 þ 1
q

þ 1
½205�

Setting g ¼ 1 and d ¼ e ¼ expð�kDH0Þ in Eqs. [203] and [204] reproduces the
planar expression of Eqs. [127] and [128]. Equation [204] shows that the lead-
ing term in the coefficient is independent of particle separation and weakly
dependent on particle radius (through d). Equation [205] agrees with
Eq. [189] for � ¼ 1; we can improve the potential by including separate � values
in s01 and s02 based on the individual particle potentials and letting z ! �avez
on the left-hand side of Eq. [196], where, for example, �ave is determined by:

�ave ¼
ffiffiffiffiffiffiffiffiffi
�1�2

p
½206�

but this can be introduced later by inspection (see Eqs. [282], [332] and [377]).
Equation [196] with the coefficients of Eq. [202], or the limits given by Eqs.
[203] and [204], constitutes the two-particle potential within the NLDH
approximation.

As a prelude to finding the two-particle interaction potential, we now
turn to the evaluation of the pressure on the dividing plane, which, for conve-
nience, we place midway between the particle centers at R/2. The pressure at
rðr; xÞ is given by128,188

bPðR; r; xÞ ¼ k2
D

2pLBz2
sinh2 zfðR; r; xÞ

2

� �
þ 1

8pLB

� qfðR; r; xÞ
qr

� �2
"

� qfðR; r; xÞ
qx

� �2
#

½207�

For a planar system, the potential is independent of r and Eq. [207] reduces to
Eq. [112]. Substitution of u(r) according to Eq. [196] gives the following
expression for the pressure at the dividing plane (x ¼ 0):

bPðR; r; 0Þ ¼ 2

pLBz2

k2
Du2 þ ðqu=qrÞ2 � ðqu=qxÞ2

ð1 � u2Þ2

" #
x¼0

½208�

Use of Eqs. [198] with r1 ¼ r2 ¼ r (hence our choice of origin) gives

bPðR; rÞ ¼ 2

pLBz2ð1 � u2Þ2

/
k2

DðA1ðRÞf1ðrÞ þ A2ðRÞf2ðrÞÞ2 þ ðA1ðRÞf 01ðrÞ

þ A2ðRÞf 02ðrÞÞ
2�2

R

2r

� �2

ðA1ðRÞf 01ðrÞÞ
2 þ ðA2ðRÞf 02ðrÞÞ

2
h i0

½209�
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where the dependence of the coefficients on the separation distance R has been
explicitly indicated. With the function substitution f1ðrÞ ¼ f2ðrÞ ¼ exp½�kD

ðr � aÞ�, application of the appropriate limits (a1 ¼ a2 ¼ a ! 1 with
r � a ¼ constant), and ignoring the higher-order term in the denominator,
Eq. [209] reduces to the pressure between two charged planes given by
Eq. [130]. The pressure is used to find the force and, from the force, the inter-
action potential between the two charged particles. Evaluation of the force
requires knowledge of the particle geometry, so this is treated later in the
appropriate sections.

Bulk Model: Upper/Lower-Bound Variational Solution
The NLDH approximation of the previous section assumes a relatively

simple form for the approximate potential profile. It is based on the Gouy-
Chapman solution for a plane and the Debye–Hückel solution for a curved
surface, with a single-variable parameter introduced to allow the approximate
solution to satisfy the differential equation at the surface. One problem
with this solution is that it is difficult to improve upon unless one follows
Martynov179 and develops a solution based on a series expansion in powers
of the potential. An alternative method is to introduce more parameters and
require them to satisfy some variational principle. We demonstrate this
more simply by retaining the one-parameter solution of Eq. [177] but deter-
mine � using the calculus of variations189 instead of through Eq. [179]. Upper
and lower variational bounds for a general set of differential equations, includ-
ing the Poisson–Boltzmann equation, have been derived by Arthurs and co-
workers;190–192 we rely on the last reference in which a change in notation
from the previous two has been introduced. We also note that Olivares and
McQuarrie used the same variational method in obtaining their solution to
the PB equation for a sphere.193 We first introduce the upper-bound problem,
which is applicable to a wide variety of systems, followed by a simultaneous
consideration of the upper and lower bounds.

Consider the bulk model PB equation for a 1 : 1–2 : a electrolyte, where
a ¼ 1 or 2:

f00ðxÞ þ d � 1

x
f0ðxÞ ¼ c1 sinhðfÞ þ c2ðeaf � e�2fÞ

c1 þ ð2 þ aÞc2
½210�

where x ¼ kDr is the scaled distance and the solution is subject to the usual
boundary conditions

f0ðkDaÞ ¼ �2Sa

kDlGC
; f0ð1Þ ¼ 0 ½211�

The results that follow are readily generalizable to any electrolyte, but a 1 : 1–
2 : a salt is sufficiently variable for most purposes. The upper-bound variational

Analytical Solutions to the Poisson–Boltzmann Equation 223



integral for this problem can be written as192,193

JðZÞ ¼
ð1
kDa

�zz2

2
ðf0ðZ; xÞÞ2 þ

c1 coshðfðZ; xÞÞ þ c2 e�2fðZ;xÞ þ 2
a eafðZ;xÞ

� �
c1 þ ð2 þ aÞc2

� 1

" #

� x

kDa

� �d�1

dx � 2�zz2

kDlGC
fðZ; kDaÞ ½212�

where we have defined

�zz2 � c1 þ ð2 þ aÞc2

c1 þ ð2 þ aÞc2=2a
½213�

and Z is chosen such that J0ðZÞ ¼ 0. Arthurs192 treats only the case of Dirichlet
boundary conditions but Neumann conditions, which result in the second term
in Eq. [212], may be obtained from his results and were in fact used by
Olivares and McQuarrie.193 To find an approximate solution to Eq. [210],
we use the form of Eq. [177] but replace �z by the variational parameter Z
since it is not necessary here to separate out the valence

fðZ; xÞ ¼ 4

Z
tanh�1½tanhðZfðZ; kDaÞ=4Þf ðxÞ� ½214�

where f ðxÞ ¼ fDHðxÞ=fDHðkDaÞ and the surface potential is determined by the
boundary condition at the surface:

fðZ; kDaÞ ¼ 2

Z
sinh�1 ZfDHðkDaÞ

2
½215�

From Eq. [214] we find

f0ðZ; xÞ ¼ 2

ZdðxÞ

� �
sinhðZfðZ; xÞ=2Þ; dðxÞ � f ðxÞ

f 0ðxÞ

����
���� ½216�

The Poisson–Boltzmann equation with our form for the solution will not allow
the analytical solution to J0ðZÞ ¼ 0, but Z is readily found via computer by
inserting Eqs. [214]–[216] into Eq. [212], with f(x) determined for the appro-
priate geometry, and using a root solver. An illustrative example will be given
below.

If the functional dependence of the charge density on the potential is sim-
ple enough to allow inversion, then a lower bound integral can also be
obtained,192,193 often putting strict limits on the variable parameter. The gen-
eral electrolyte of Eq. [210] is too complicated for this approach, but if we
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restrict ourselves to a symmetric z : z electrolyte or, better yet, use the effective
valence of Eq. [69] to approximate the charge density of a 1 : 1–2 : a electro-
lyte by a sinh function and set

ze ¼ 1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4c2

c1 þ ð2 þ aÞc2

s
½217�

then we replace Eq. [210] by

r2fðxÞ ¼ f00ðxÞ þ d � 1

x
f0ðxÞ ¼ z�1

e sinhðzefðxÞÞ ½218�

We can then write an expression for the lower bound integral. Olivares and
McQuarrie193 give such an integral obtained from Arthurs,192 but rather
than individually minimizing and maximizing the upper and lower bound inte-
grals, we minimize the difference between the two.193 Performing an integra-
tion by parts on the upper-bound integral JðZÞ and combining this with the
lower bound integral GðZÞ, we rearrange to get

Hð�Þ � 1
2j Jð�Þ � Gð�Þj ¼

ð1
kDa

jhð�; xÞj x

kDa

� �d�1

dx ½219�

where � is now the variational parameter (since ze is considered fixed) and the
function in the integrand is given by

hð�; xÞ ¼ sinh
ze

2
ðfð�; xÞ � �ð�; xÞÞ

h i
sinh

ze

2
ðfð�; xÞ þ �ð�; xÞÞ

h i

� z2
e

2
ðfð�; xÞ � �ð�; xÞÞr2fð�; xÞ ½220�

with

�ðg; xÞ ¼ z�1
e sinh�1ðzer2fðg; xÞÞ ½221�

and

fðg; xÞ ¼ 4

gze
tanh�1 tanh

gze fðg; kDaÞ
4

� �
f ðxÞ

 �
½222�

[Inversion of the charge density is the necessary step in defining �ð�; xÞ.] This
form for Hð�Þ converges much faster than evaluating JðZÞ and GðZÞ sepa-
rately, and this particular factorization (which also reduces errors in the
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evaluation of the integrand) shows that if fð�; xÞ is the exact solution to Eq.
[218], then fð�; xÞ ¼ fðxÞ ¼ �ð�; xÞ and hð�; xÞ vanishes identically. For
fð�; xÞ given by Eq. [214], after some algebra, we find

r2fð�; xÞ ¼ 2

�ze

� �
sinh

�zefð�; xÞ
2

� �
1 þ 2

ðdðxÞÞ2
sinh2 �zefðg; xÞ

4

" #
½223�

As with the upper-bound integral of Eq. [212], we find � such that H0ð�Þ ¼ 0.
We now treat a specific example. Consider a charged sphere of radius

20 Å in a bulk 1 : 1–2 : 1 electrolyte (a ¼ 1 in Eq. [210]) with salt concentra-
tions c1 ¼ 0:1 M and c2 ¼ 0:02 M (kD ¼ 0:132 Å�1 and ze ¼ 1:707) and
surface charge density sa ¼ �0:01 e0/Å2. With dðxÞ ¼ x=ðx þ 1Þ, minimizing
the upper-bound integral [212] gives the parameter ZJ ¼ 1:467; minimizing
the upper/lower integral [219] gives �H ¼ 0:854 or ZH ¼ �Hze ¼ 1:458, and
use of Eqs. [180] and [181] gives � ¼ 0:858 or Z ¼ 1:464. The resulting poten-
tials are practically indistinguishable from each other and from the exact result
(as will be shown in Fig. 34 later in this chapter). As a note, the upper and
lower bound integrals contributing to Eq. [219] give ZJ ¼ 0:844 and
ZG ¼ 0:855, showing that, as is often the case, the closer bound is also the
more difficult to obtain. Although we have treated a charged sphere in a
bulk electrolyte as an example, the expressions apply to charged planes
(d ¼ 1) and cylinders (d ¼ 2) and the cell model as well. One can also improve
on the solution above by adding more variational parameters.

Prior to the work of Olivares and McQuarrie,193 Brenner and Roberts194

used the variational principle to obtain a simple yet accurate expression for the
PB potential around a charged sphere. More recently, Reiner and Radke, in a
clear and thorough analysis, applied the method to the calculation of the free
energy of single- and double-plate systems.195

Cylindrical Geometry: The Polymer Model

One of the most fruitful applications of the PB equation is in the descrip-
tion of long cylindrical polyelectrolytes, of which DNA is the prototypical
example.12,196,197 The same simplifications used in the planar case with a uni-
form and constant surface charge density and a restricted primitive model of
the electrolyte are assumed here.

General Equations
We now consider the case of an infinitely long cylinder of fixed radius a

(which also includes a common electrolyte ion radius) and surface charge
density sa surrounded by an electrolyte solution. The corresponding one-
dimensional PB equation and boundary conditions, in a cylindrical coordinate
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system whose origin lies on the axis of the cylinder with coordinate r perpen-
dicular to this axis, are

1

r

d

dr
r
dfðrÞ

dr

 �
¼ �4pLBA0

XI

i¼0

cR
i zie

�zifðrÞ ½224�

and

f0ðaÞ ¼ �4pLBsa

e0
¼ �2Sa

lGC

f0ðRÞ ¼ 0; fðRÞ ¼ 0

½225�

While at first sight Eq. [224] looks relatively benign, it is actually a nonlinear
integrodifferential equation since the concentration of ions at the reference
position R involves an integral over the potential profile (see Eq. [4]) and
must be determined self-consistently with the potential. The system we are
modeling is that of a given concentration of cylindrical polyelectrolytes such
as DNA. Although any real molecule is finite in length and has irregularly
spaced charges, we can represent it as an infinite cylinder with a uniform sur-
face charge density if the Debye length is both shorter than the cylinder length
and longer than the individual charge spacing. In this case ions at the center of
the molecule can be considered unaffected by end effects and discrete surface
charges appear to be smeared out. For a 0.1 M monovalent salt solution, the
Debye length at 298 K is about 10 Å; since the linear charge spacing of B-form
DNA is about 1.7 Å, the simplified model applies to molecules �20 base pairs
or larger. These same considerations also pertain to the planar membrane case
but were not explicitly discussed earlier.

For applications to DNA or other linear polyelectrolytes, two particular
points not always emphasized when dealing with planar system must be
mentioned. For concentrations of DNA such that the intermolecular sepa-
ration is on the order of a few Debye lengths or less, we imagine that each
molecule acts independently of every other molecule and lies at the center
of a cylindrical region mirroring its shape of radius R to be determined
(Figure 22). The second point concerns the fact that an individual unsolvated
DNA molecule must be electrically neutral. Upon solvation initially bound
counterions are released into solution from ionizable sites; for DNA and other
biomolecules, the sodium salt is often assumed so that initially bound counter-
ions (species 0 in Eq. [224]) are usually thought of as being sodium ions. Now,
let b be the average axial distance between ionizable sites. We then only need
to consider ions in a slice of the cylindrical region that is of height b since by
symmetry what happens in this slice is repeated in all other slices. Thus the
system has been reduced to a cylindrical disk of height b and radius R in which
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lies a single ionization site of valence Qs. The surface charge density of this
disk is

sa ¼ e0Qs

2pab
ð226Þ

DNA and linear polyelectrolyte concentrations usually refer to the concentra-
tion of the ionizable sites (for DNA these are the phosphate groups) along the
backbone. Denoting this concentration by Cs, the volume of our cylindrical
disk is just 1/Cs:

C�1
s ¼ pA0bR2 ½227�

This equation gives the radius of our slice in terms of the ionizable site spacing
and polyelectrolyte concentration. Note that there is no ‘‘correction’’ for the
finite size of the cylinder (i.e., R2 � a2) since the total volume of all slices must

Figure 22 A diagram of the cylindrical cell model in which an infinite cylinder of radius
a has a surface charge density sa ¼ e0Qs=ð2pabÞ, where charged sites of valence Qs are
spaced a distance b apart along the cylindrical axis; the concentration of charged sites
defines a cell with radius R and volume pbR2 within which each cylinder determines the
ionic distribution. The Poisson–Boltzmann cell model potential fPBC is subject to
conditions on its derivative at the cylinder surface (r ¼ a) and at the cell boundary
(r ¼ R) and is typically assigned the gauge fPBCðRÞ ¼ 0; ions beyond the cell radius are
considered as belonging to the neighboring cell. In the Debye–Hückel cell model, the DH
equation is solved subject to the same boundary conditions and gauge.
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equal the volume accessible to the entire molecule. This cylindrical slice is
termed the cell and is sometimes called a Wigner–Seitz cell198 in reference to
its close relation to crystal cells; this model of our system is called the Poisson–
Boltzmann cell model.92 The two boundary conditions in Eq. [30] define the
electric field at the cylinder surface due to the surface charge density and at the
cell boundary due to electroneutrality of the system; the third condition is
the potential gauge.

Before solving Eq. [224], we need to specify the concentration of initially
bound counterions (added salt concentrations are assumed known). While the
definition of the cell model assigns one initially bound counterion to the cell,
the magnitude of the charge of the ionizable site is not required to be (although
it often is) equal to that of the counterion. With Qs and z0 denoting the site
and counterion valences, respectively, the number of counterions n0 that neu-
tralize Ns sites is

n0 ¼ �QsNs

z0
½228�

The average counterion concentration is found by converting the numbers n0

and Ns to concentrations keeping in mind that the volume accessible to the site
(1/Cs) is larger than that accessible to the counterion:

�cc0 ¼ � Qs

z0

� �
1 � a2

R2

�
Cs

�
ð229Þ

While we have implicitly assumed that counterions are represented as point
charges, any finite radius may simply be incorporated into the cylinder radius
a, which then describes the distance of closest approach to the cylindrical axis.

Equation [224] for no added salt can be solved in a manner similar to
that for the planar case,12,178,199–202 but to offer another perspective we
choose an alternative procedure. As both boundary conditions of Eq. [225]
involve the field, rather than the potential, let us introduce a variable related
to the field

xðrÞ ¼ r

2

dfðrÞ
dr

; f½xðrÞ� ¼ �2

ðR

r

xðrÞ
r

dr ½230�

which is subject to the boundary conditions (Sa ¼ �1, as for DNA)

xðaÞ ¼ �2pLBasa

e0
¼ a

lGC
¼ LB

b

xðRÞ ¼ 0

½231�
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Using this in Eq. [224] gives the integrodifferential equation for x(r):

dxðrÞ
dr

¼ �2pLBA0r
XI

i¼0

cR
i zie

�zif½xðrÞ� ½232�

We now differentiate both sides of Eq. [232] and rearrange to get the differ-
ential equation

rx00ðrÞ ¼ x0ðrÞ � 2�zz½xðrÞ�xðrÞx0ðrÞ ½233�

where we have defined the quantity

�zz½xðrÞ� ¼

PI
i¼0

cR
i z2

i e�zif½xðrÞ�

PI
i¼0

cR
i zie�zif½xðrÞ�

½234�

To see the physical meaning of x(r), integrate both sides of Eq. [232]

xðrÞ ¼ 2pLBA0

XI

i¼0

cR
i zi

ðR

r

e�zifðrÞr dr

¼ 2pbxae
�1
0

ðR

r

rðrÞr dr

¼ xa½1 � QðrÞ� ½235�

where Q(r) is the amount of total ionic charge (per surface site charge)
between the cylinder surface and r. Since xa is proportional to the linear sur-
face charge density, x(r) is the effective linear charge density of the total charge
(including the surface charge) enclosed by a cylinder of radius r. x(r) plays a
major role in the counterion condensation theory of Manning, and we thus
refer to it as the radial Manning parameter (RMP). Manning’s theory is dis-
cussed briefly below.

Cell Model: No Added Salt
At this point, although Eq. [233] is exact, an analytical solution for the

RMP can be obtained only for no added salt, in which case the summations in
Eq. [234] reduce to single terms giving �zzðrÞ ¼ z0 (independent of r). Restricting
our system to no added salt, Eq. [233] can be integrated twice [using
rx00 ¼ ðrx0Þ0 � x0� to give

ðx
0

dx

z0x
2 � 2x� Rx0ðRÞ

¼ ln
R

r
½236�
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where the constant of integration from the first integral is easily found by
inspection of Eq. [232]

x0ðRÞ ¼ �2pLBA0RcR
0 z0 ½237�

The final integral in Eq. [236] is standard

ð
dx

ax2 þ 2bx þ c
¼ 1

d
tan�1 ax þ b

d

� �
½238�

where we are restricted to

d2 � ac � b2 > 0 ½239�

For d ¼ 0, we need only take the limit d ! 0 in Eq. [238]; for d2 < 0 (the low
surface charge density case), we put d ! id and by analytic continuation
obtain the tanh�1 function. The form of the integral chosen is appropriate
for highly charged cylindrical polyelectrolytes such as DNA. We then have
the solution for the RMP within the PB cell model with no added salt

z0xPBCðrÞ � 1 ¼ d
d tan½d lnðR=rÞ� � 1

tan½d lnðR=rÞ� þ d
½240�

where d contains the integration constant and, using Eq. [74], is explicitly
given by

d2 þ 1 ¼ 2pLBA0R2cR
0 z2

0 ¼ 1
2 ðkRRÞ2 ½241�

Equation [240] is easily seen to obey the correct boundary condition at r ¼ R.
Recalling that cR

0 and hence kR are initially unknown, they can be determined
from Eq. [241] by using the remaining boundary condition in Eq. [240] for
xðaÞ ¼ xa at the cylinder surface. This condition leads to the transcendental
equation fixing d:

tan½d lnðR=aÞ� ¼ z0xad

d2 þ 1 � z0xa

½242�

With d now given by Eq. [242], Eq. [240] represents the completed solution
for x(r) as a function of distance from the cylinder surface.

Before we obtain the potential, we notice that for systems with a linear
charge density such that xa > 1 (DNA and most other biopolyelectrolytes fall
into this category), there is a specific distance at which xðrÞ ¼ 1. This distance
we denote by RM (the Manning radius) and is found from Eq. [240]:178

RM ¼ R exp½�d�1 arctanðd�1Þ� ½243�
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We can now express our solution [240] a little more succinctly as

z0xPBCðrÞ ¼ d tan d ln
RM

r

� �
þ 1 ½244�

This form is readily integrated to yield the potential

z0fPBCðrÞ ¼ 2 ln
r cosðd lnðr=RMÞÞ

R cosðd lnðR=RMÞÞ

 �
½245�

Using Eq. [245] for the potential, one can verify that Eq. [241] is satisfied by
cR

0 where

cR
0 ¼ n0

2pbA0

ÐR
a e�z0fðrÞr dr

½246�

with n0 ¼ 1=z0 (i.e., z0 counterions per DNA site; see Eq. [228]). The rele-
vance in determining the concentration of counterions at the cell boundary
is seen by finding the osmotic pressure of our system of cylindrical charged
rods in an electrolyte solution. Using Eq. [241], the osmotic pressure is found
to be78,92,203

p ¼ b�1
XI

i¼0

cR
i ¼ d2 þ 1

2pbLBA0R2z2
0

½247�

Note that since the polyelectrolyte attracts counterions to its surface, thus
reducing their concentration at the cell boundary, the osmotic pressure of
the solution in the presence of a polyelectrolyte will be less than that in its
absence.

The Poisson–Boltzmann RMP and potential profiles given by Eqs. [244]
and [245] are displayed in Figure 23. Note that no special feature appears in
the RMP near xðRMÞ ¼ 1. Manning’s counterion condensation (CC) theory is
discussed in some detail later, but we reveal here that it essentially describes
counterions near a charged surface as a two-state system. Those ions within
the Manning radius are considered condensed or less mobile than ions further
out that are representative of the bulk electrolyte. The absence of any immedi-
ate connection between CC and PB theories (other than certain mathematical
properties for the cylindrical model178,204,205) along with the belief that CC
theory does have a physical basis suggests that the PB equation is somewhat
limited in its description of counterion behavior at a charged surface. Compar-
isons between MC simulations and PB theory of hard sphere ionic solutions
bear this out. One difficulty is in defining what constitutes a condensed coun-
terion, whether the model used is a cell model or a bulk model. Within
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Manning’s theory, one often uses the Manning radius but other definitions are
possible,12,206,207 and a measure of condensation was suggested earlier in con-
nection with the NLDH approximation (e.g., Eqs. [265]–[269]). It has also
been found useful to consider counterions at a potential more negative than
�kBT=e0 as being condensed in the CC sense, thus allowing at least an indirect
comparison between CC and PB (and MC) predictions and experiment.208,209

For the system considered, the potential in the lower frame of Figure 23 equals
�kBT=e0 at 25.8 Å, in approximate agreement with a Manning radius of 29.6
Å. Also shown for comparison are the bulk PB, bulk and cell DH, and no-
electrolyte potential profiles. No exact solution exists for the bulk model
cylindrical PB equation so a numerical finite-difference method (to be discussed
later; see Eq. [389]) was used to obtain the potential. The DH equations for
the RMP and potential in the cell and bulk models are derived below (Eqs.
[256] and [259]), but it is interesting to point out that despite having the
same surface and cell values, the PB and DH RMP profiles are quite different.

Figure 23 The radial Manning parameter xðrÞ (top frame, cell model only; Eq. [244])
and potential fðrÞ (bottom frame; Eq. [245]) in the PB cell and bulk models for a
charged cylinder of radius a ¼ 10 Å and surface charge density sa ¼ �0:094 e0/Å2

(corresponding to an average charge spacing of b ¼ 1:69 Å as in B-DNA). A site
concentration (corresponding to a phosphate concentration in DNA) of 0.1 M has been
chosen, giving a Manning radius of RM ¼ 29:6 Å and a cell radius of R ¼ 56 Å. The PB
cell model potential profile (solid lines) is compared to the bulk PB (dotted–dashed line;
Eq. [389]), DH cell model (dashed lines; Eq. [256]), DH bulk model (dotted line; Eq.
[259]), and no-ion (circles; Eq. [362]) values.

Analytical Solutions to the Poisson–Boltzmann Equation 233



The potential can be obtained from the x(r) profile through a simple integra-
tion (Eq. [230]). The difference in x(r)/r between the DH and PB values is also
shown in Figure 23 (top frame, dotted line) with most of the difference occur-
ring within one Debye length of the surface (k�1

D ¼ 13:6 Å). Of particular rele-
vance to biophysical systems is the competition between mono- and divalent
counterions at the cylindrical surface,210 the discussion of which we defer until
later, and that between monovalent counterions with different radii.202 Also,
Deserno and Holm have compared molecular dynamics simulations with the
prediction of PB cell model theory for the calculation of osmotic coefficients
and the quantification of counterion condensation.211

Cell Model: Added Salt
If the ionic strength of added salt is much smaller than that of initially

bound counterions, that is, if

XI

i¼1

�cciz
2
i � �cc0z2

0 ½248�

then the added salt is not expected to substantially change the potential
from the no-added-salt case.78 Under these circumstances, Eq. [245] can be
used for the potential, with ion concentrations given by

ciðrÞ ¼ cR
i expð�zifPBCðrÞÞ ½249�

Ion concentrations at the cell boundary are found from the analogue of
Eq. [246] with the osmotic pressure p given by the middle expression in
Eq. [247]. Unfortunately, no exact analytical solution has been found for
the important case of the cylindrical cell model with larger amounts of added
salt, but good approximations are available.212

Bulk Model: Highly Charged Cylinder
For a highly charged cylinder in the presence of a general bulk electro-

lyte, an analytical approximation to the potential profile can be obtained by
using the z : z result of Eq. [152] and applying the argument leading to
Eq. [57] for a highly charged plane. This leads to Eqs. [147] and [149] or
Eqs. [152] and [154] with z replaced by |zc|, the highest counterion valence,
and kD replaced by

ffiffiffi
2

p
kc. The PGC potential at the cylinder surface,

Eq. [153], reduces to

jzcjfhighðaÞ  �2 Sa ln tanh
kclGCffiffiffi

2
p

jzcj
1 þ lGC

jzcja

� � !" #
½250�
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Provided that the curvature correction term is small, this result is valid for sym-
metric salts and for mixed-salt divalent counterion concentrations satisfying

ffiffiffiffiffi
c2

p
>

1:64a c1

2jxaj � 1
½251�

in which a is the cylinder radius in Å, and concentrations are in M. For double-
stranded B-DNA in a solution of 0.1 M monovalent salt, Eq. [251] gives
c2 > 0:05 M. The values given by Eq. [250] start to deviate from the exact
values when the predicted surface potential drops to less than �3–4 kBT=e0

in magnitude. A definition of ‘‘high surface charge density’’ would depend
on the concentration as well as stoichiometry of the electrolyte (e.g.,
jsaj � s0), but for DNA, where the surface charge density is about �0.01
e0/Å2 (s0 ¼ 0:002 e0/Å2 for 0.1 M monovalent salt), approximation [250] is
quite good. Values of the surface potential according to Eq. [250] is shown in
Figure 24 (squares) for sa between �0:003 e0=Å2 and �0:008 e0=Å2 in 0.1 M
monovalent salt.

Figure 24 The surface potential of a negatively charged sphere of radius 20 Å (or
cylinder of radius 10 Å) in 0.01 and 0.1 M 1 : 1 electrolytes (kDCa ¼ 0:7 and 2.0,
respectively) as a function of surface charge density obtained from the PGC solution of
Eq. [153] based on the Debye–Gouy–Chapman length of Eq. [154] (solid lines) and Eq.
[155] (dashed lines) as well as from the NLDH expression of Eq. [181] in which exact
(dotted lines; Eq. [180]) and approximate (dotted–dashed lines; Eq. [182]) values for
parameter � were used. The exact potential values obtained using a finite-difference
method (Eq. [389]) are shown as circles; values from Eq. [250] are shown as squares.
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Bulk Model: Moderately Charged Cylinder
An approximate potential profile for a moderately charged cylinder in

the presence of a mixed electrolyte can be found by using the effective-valence
planar solution of Eq. [69] in either the PGC approximation of Eq. [152] or
the NLDH approximation of Eq. [177]. Application of Eq. [152] is straight-
forward, but the NLDH potential of Eqs. [177]–[181] still requires develop-
ment in terms of the cylindrical geometry. The solution to DH equation
[165] for d ¼ 2 subject to conditions [160] is given in terms of Bessel functions
and is derived in the following section. This solution is given by Eq. [259]
below and leads to

fDHðaÞ ¼
2Sada

kDlGC

f ðrÞ ¼ K0ðkDrÞ
K0ðkDaÞ 

e�kDðr�aÞffiffiffiffiffiffiffi
r=a

p
da ¼ K0ðkDaÞ

K1ðkDaÞ 
2kDa

2kDa þ 1

½252�

where the right-hand equalities obtain for kDa � 1. The NLDH solution [177]
is then

fNLDHðrÞ ¼
4

�z
tanh�1 tanh

�zfa

4

� �
K0ðkDrÞ
K0ðkDaÞ

 �

¼ 4

�z
tanh�1 sADH

2s0

K0ðkDrÞ
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 4

�z
tanh�1 sADH

2s0

e�kDðr�aÞffiffiffiffiffiffiffi
r=a

p
" #
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where � and fa are determined from Eqs. [180] and [181] (or approximately
from Eqs. [182] and [181]) and sADH and s0 are given by Eq. [189]. The
approximate electrostatic free energy is given by Eq. [194].

Figure 24 displays the PGC and NLDH surface potentials as a function
of charge density for a negatively charged cylinder of radius 10 Å (and a sphere
of radius 20 Å) in a 1 : 1 electrolyte at 0.1 M and 0.01 M; the exact (finite-
difference approach of Eq. [389]) results are also shown. According to
Eq. [157], the PGC values are valid if Ca > 8 Å for 0.1 M and Ca > 14 Å
for 0.01 M, for jsaj ¼ 0:02 e0/Å2, which is consistent with the data. Other
potentials shown were calculated using the exact results of Eq. [389] and
the NLDH values of Eq. [177] (using Eq. [181] with � given by either
Eq. [180] or [182]; only data for a sphere are shown). The predicted surface
potentials using the value of � according to Eqs. [180] and [181] (dotted lines)
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are slightly above the exact profile, and although the agreement is good, it is
not as good as that found using the PGC results of Eq. [153] (solid or dashed
lines). The potentials using the small-potential expression for � (Eq. [182]) are
good up to jfaj � 4kBT:

Similar data are shown in Figure 25 for a cylinder of radius 3 Å (and a
sphere of radius 6 Å). It is seen that in this case the difference between the
cylinder (triangles) and sphere (circles) data is clearly noticeable and that
the PGC potential predicted from Eqs. [153] and [154] lies in between, yet fit-
ting neither well for the 0.01 M salt, indicative of the much smaller kDCa value
(0.2) in this case. Improving the potential by including terms up to second
order in kDCa would help considerably. The potential utilizing the first-order
approximation of Eq. [155] (dashed line) for the Debye–Gouy–Chapman
length does well for the 0.1 M salt, falling just below the cylinder data, but
it does less well for 0.01 M, although the general trend of the data is followed.
Both the PGC and NLDH potential predictions improve considerably for
0.1 M electrolyte and the NLDH results using the exact � (for which both
the cylinder and sphere potentials are shown as dotted lines) are in fact better
than the (first-order in kDCa) PGC potential. (Equation [184] gives results only
slightly different from those using the exact � for these systems.)

Figure 26 displays the potential profile for a charged cylinder of radius
10 Å according to the exact (Eq. [389]), PGC (Eq. [152]), and NLDH
(Eq. [177]) solutions for a mixed 1 : 1–2 : 1 electrolyte using the effective-
valence approximation of Eq. [69] for the latter two. The DH (Eq. [259]),

Figure 25 The same conditions as in Figure 24 except for a sphere radius of 6 Å
(or cylinder radius of 3 Å); 0.1 M (0.01 M) electrolyte is the upper (lower) set of curves.
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ADH//PGC (Eq. [366]), and ADH//NLDH (Eqs. [187]) profiles are also shown
for comparison. For the two surface charge densities considered (�0.002 e0/Å2

and �0.01 e0/Å2), the PGC profile agrees very well with the exact (finite-
difference) solution. The NLDH profile was determined using the simple
approximation of Eq. [182] for �; use of Eq. [180] gives values intermediate
between those shown and the PGC values and is necessary for more highly
charged systems. Thus, the much simpler NLDH expression also works quite
well. The ADH profiles are discussed below.

Cell and Bulk Models: Debye–Hückel Potential
Taking the weak-field limit of Eq. [224] results in the cylindrical version

of Eq. [76]:

1

r

d

dr
r
dfðrÞ

dr

 �
¼ k2

RfðrÞ � 4pLBA0

XI

i¼0

cR
i zi ½254�

Figure 26 Various potential profiles as a function of distance from the surface
for a charged cylinder of radius 10 Å with surface charge densities of �0:002 e0/Å2

and �0:01 e0/Å2 in a mixed 1 : 1–2 : 1 electrolyte with concentration of 0.1–0.02 M.
Exact PB (circles; according to Eq. [389]) and DH (triangles; Eq. [259]) solutions are
compared with the PGC (solid lines; Eqs. [152] and [155]) and NLDH (dashed lines;
Eq. [253] with approximate �adasymp values) solutions and their ADH//PCG (dotted
lines; Eq. [366]) and ADH//NLDH (dotted–dashed lines; Eq. [261] with either
exact �da or approximate �adasymp values) potentials.
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Analogous to the planar case, the solution to Eq. [254] is given by Eq. [77],
and the homogeneous solutions corresponding to Eq. [86] are

fHðrÞ ¼ AK0ðkRrÞ þ BI0ðkRrÞ ½255�

where K0 and I0 denote modified Bessel functions of the second kind.213 Using
the properties of the Bessel functions, the solution subject to the boundary
conditions in Eq. [255] is readily shown to be

xDHCðrÞ ¼
rxa

aDðkRÞ
½I1ðkRRÞK1ðkRrÞ � K1ðkRRÞI1ðkRrÞ�

fDHCðrÞ ¼
�2xa

kRaDðkRÞ
½I1ðkRRÞK0ðkRrÞ þ K1ðkRRÞI0ðkRrÞ � ðkRRÞ�1�

½256�

where

DðkRÞ ¼ I1ðkRRÞK1ðkRaÞ � K1ðkRRÞI1ðkRaÞ ½257�

and xa ¼ LB=b. Use of the Wronskian verifies that fðRÞ ¼ 0. From Eq. [256],
the value of fHðRÞ can be identified as the negative of the constant term
(Eq. [78]), so Eq. [82] for kR becomes

k2
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4pLBA0�cciz
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aRDðkRÞ
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In the limit of low polyelectrolyte concentration, we let R ! 1 in Eq. [256] to
find

xDHðrÞ ¼
rxa

a

K1ðkDrÞ
K1ðkDaÞ

fDHðrÞ ¼
�2xa

kDa

K0ðkDrÞ
K1ðkDaÞ

½259�

This potential is compared to the exact PB potential in Figure 26. For
kDa � 1, these results reduce to the asymptotic expressions

xDHðrÞ ¼ xa

ffiffiffi
r

a

r
e�kDðr�aÞ

fDHðrÞ ¼
�2xa

kD
ffiffiffiffiffi
ar

p e�kDðr�aÞ
½260�
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The exact and asymptotic solutions apply to a single polyelectrolyte cylinder
immersed in a bulk electrolyte with screening constant kD determined by
Eq. [12]. The cell (Eq. [256]) and bulk (Eq. [259]) model DH potentials are
compared with the corresponding PB potentials in Figure 23.

Bulk Model: Apparent DH Linear Charge Density and
Counterion Condensation
The identification of an apparent surface charge density may also be

interpreted as support for the concept of counterion condensation within PB
theory in the sense that altering the amount of bulk electrolyte does little to
affect ionic properties near the surface, thus implying some sort of two-state
model for ions. As mentioned earlier and discussed again in its own section
near the end of this chapter, the counterion condensation theory of Man-
ning214 has provided simple, yet elegant, explanations for a wide variety of
physical phenomena involving linear polyelectrolytes. A continuing issue is
the extent to which the Poisson–Boltzmann theory supports the hypothesis
of counterion condensation. In this section we restrict the generalized expres-
sions for the apparent Debye–Hückel charge density and potential to a cylind-
rical geometry and view it in light of counterion condensation.

The apparent Debye–Hückel potential for a cylinder within the NLDH
approximation is determined from Eqs. [188], [187], and [252]. We then have

fADHðrÞ ¼
2Sa

kDlAGC

K0ðkDrÞ
K1ðkDaÞ ½261�

where the apparent Gouy–Chapman length is given by

lAGC ¼ 1

2
lGC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

GC þ �zK0ðkDaÞ
kDK1ðkDaÞ

� �2
s0

@
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and � is found using Eqs. [180] and [181]; the apparent charge density is given
by Eq. [189] with da ¼ K0ðkDaÞ=K1ðkDaÞ. If kDa � 1, asymptotic expressions
for the Bessel functions may be introduced and, for low surface charge density,
Eq. [182] may be used for �. It is important to emphasize that Eqs. [261] and
[262] accurately describe the asymptotic Debye–Hückel tail of the potential
even under circumstances when the NLDH approximation fails, provided,
of course, that the charge density of the surface is known (and not charge-
regulated). Reliance on the validity of the NLDH approximation is only
necessary if one wishes to use the apparent Gouy–Chapman length (which
determines � through Eq. [262]) to determine the potential at or near the sur-
face from Eq. [181] [fDHðaÞ is found from Eq. [261]]. In analogy with
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Eqs. [189]–[191], Eq. [262] may be rewritten in terms of apparent and actual
linear charge densities:

xADH ¼ 2xaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð xa=x0Þ2 þ 1

q
þ 1

; x0 ¼ kDa

�zda
½263�

with the low and high charge density limits

lim
jxaj�x0

xADH ¼ xa 1 � xa

2x0

� �2
" #

;

lim
jxaj�x0

xADH ¼ 2Sax0 1 þ lnðdaÞ
lnðx0=2jxajÞ

� x0

jxaj

� � ½264�

The perturbed Gouy–Chapman potential of Eq. [152] can also be used to
obtain an (approximate) ADH potential. This procedure requires integrating
the asymptotic spherical potential derived from Eq. [152] along a line charge
and is discussed in a later section on the additivity of the spherical DH solu-
tion; the result is given by Eq. [366]. In light of the asymptotically exact ADH
potential obtained from the NLDH approximation, that based on the PGC
potential is only necessary if one wishes to predict the surface potential
from the apparent charge density, which requires that the PGC potential be
accurate. This is elaborated on below in connection with charged spheres.

The apparent DH profiles based on the PGC and NLDH solutions to the
Poisson–Boltzmann equation are shown in Figure 26 for a charged cylinder of
radius 10 Å for two surface charge densities (�0.002 and �0.01 e0/Å2) and
compared with the exact (Eq. [389]), DH (Eq. [259]), and nonlinear approx-
imations (Eqs. [152] and [253]). Both approximations (PGC and NLDH) also
give good ADH potentials, particularly in comparison to the actual DH pro-
file. The best fit asymptotically for distances greater than 10 Å from the surface
is that of the ‘‘accurate’’ ADH//NLDH profile (indicated by �da in Fig. 26).
The ‘‘simple’’ ADH//NLDH profile (indicated by �adasymp) obtained by using
�a of Eq. [182] and the asymptotic expansion in Eq. [252] for �a is almost as
good and closely matches the ADH//PGC profile. This supports the well-
reasoned contention that for the ADH profile one may use the low-potential
approximation for � as well as the asymptotic expansion for da. Although not
particularly noticeable in the figure, the ADH//PGC profile lies below (is
more negative than) the exact curve for a wide range of intermediate distances
(5–15 Å). This stems from assuming that the apparent surface charge density
for a cylinder can be obtained by integrating the ADH potential for a sphere
along a line charge.

In Figure 27 the apparent linear charge density as a function of the actual
linear charge density is shown for the NLDH (Eq. [263]) and PGC (Eq. [365])
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approximations for a 10-Å-radius cylinder in the presence of a mixed 1 : 1–
2 : 1 mixed electrolyte with concentrations of 0.1 M and 0.02 M, respectively.
The NLDH high and low charge density limits of Eqs. [264] are also shown
and the effective-valence approximation of Eq. [69] was used in all cases. The
exact NLDH curve, designated by � to indicate that Eq. [180] was used, has
the limiting value x1 ¼ 2:06 and falls about 10% below the curve calculated
using the surface potential approximation of Eq. [182]; the exact value for da

from Eq. [252] was used in both cases, although here the asymptotic value also
gives good results. The result of this 10% difference is the 10% difference seen
in the NLDH surface potentials of Figure 26. The PGC curve follows the
approximate NLDH data closely. Note the dramatic reduction in the apparent
linear charge density for actual charge densities greater than the limiting value
(x1 ¼ 2:06 and 2.53 for the NLDH and PGC approximations, respectively).
This implies that system properties near the surface, such as the potential or
ion concentration, are well screened from being accurately observed asympto-
tically. Thus, the difficulty in obtaining an accurate fit to the asymptotic poten-
tial results in considerable uncertainty in predicted surface potentials or other
surface properties and this extrapolation becomes increasingly more difficult

Figure 27 The apparent linear charge density as a function of actual linear charge
density for a cylinder of radius 10 Å in a mixed 1 : 1–2 : 1 electrolyte with concentration
0.1–0.02 M within the NLDH (dashed lines; Eq. [263] with the exact � or approximate
�a values) and PGC (solid lines; Eq. [365] with exact and approximate dDGC values)
approximations. The NLDH low and high charge density approximations (Eqs. [264])
are shown by dotted lines; the infinite-charge density limit is shown by the horizontal
dotted–dashed line.
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as the surface charge density is increased. The extraction of an apparent linear
charge density from experimental data was pioneered by Stigter, who also
gives tables of correction factors that have been widely used.215–219 Stigter’s
numerical procedure, although similar in spirit to the analytical approach
adopted here, is based on a line charge model while the ADH//NLDH method
retains a finite cylinder radius.

The fact that the apparent linear charge density is lower than the actual
charge density can be seen as confirmation that PB theory does predict some
sort of counterion condensation. We mention that because the ADH method
results from a (linear) DH interpretation of the (nonlinear) PB equation, it also
has a (rather tenuous) mathematical connection to Manning’s counterion con-
densation theory, which also makes use of the DH solution.214 From either
Eq. [192] or Eq. [263], the fraction of linear charge density neutralized can
be written as (ignoring a contribution from �)

fneut ¼ 1 � xADH

xa

¼ 1 � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzxaK0ðkDaÞ=½kDaK1ðkDaÞ�Þ2 þ 1

q
þ 1

½265�

which is a function of kDa. To see that this might be a promising result, for
xa=x0 � 1, we have

lim
jxaj�x0

fneut ¼ 1 � 2kDaK1ðkDaÞ
zxaK0ðkDaÞ ½266�

Manning’s counterion condensation theory,214 developed for a line charge in a
dilute electrolyte (kDa � 0), predicts

fM ¼ 1 � 1

zxa

½267�

which agrees with Eq. [266] for the relatively small value kDa � 0:17 and that
corresponds to a cylinder of 10 Å radius (DNA) in a 2.6 mM 1 : 1 electrolyte.
To see how sensitive the neutralized fraction is to changes in kDa, in Figure 28
we plot Eq. [265] as a function of the linear charge density (actually zxa) for
several values of kDa and compare it with Manning’s formula. We see that
despite some discrepancies, the form of the curves roughly follows Manning’s
result and for large linear charge density and small kDa Eq. [265] does quite
well; for large values of kDa, Eq. [267] is not expected to hold.214 Also, we
note that the neutralized fraction is relatively insensitive to ionic strength
for high linear charge density: for zxa ¼ 4, a 100-fold increase in electrolyte
concentration (from kDa ¼ 0:01 to 0.1) results in only a 10% decrease in fneut.

Given the neutralization fraction, one can then find the radius that
encloses the appropriate number of neutralizing counterions. Stated another
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way, at what radius is the PB electric field such that the apparent charge den-
sity is sADH? In a two-state model, counterions within this radius are consid-
ered condensed while those outside are free. One would normally introduce a
distance- or potential-dependent, two-state model specifically to determine the
fraction of neutralized charge, not the other way around, but we do so to see
how consistent the PB equation (or at least the NLDH approximation) is with
the assumption of a two-state distance-dependent model. By applying Gauss’
law for the d-dimensional radial PB equation, we find

fneut ¼
Ð r
a rðrÞrd�1drÐ1

a rðrÞrd�1dr
¼ rd�1f0

PBðrÞ
ad�1f0

PBðaÞ
½268�

This leads to the following expression for the ‘‘condensation radius’’ rc
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a

�  d�1 f0
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Figure 28 A plot of the ADH//NLDH fraction of surface charge neutralized by a bulk
1 : 1 electrolyte according to Eq. [265] for a charged cylinder as a function of the linear
charge density zxa for several values of the variable kDa given at right. The prediction
of Manning’s counterion condensation theory (fM) for a line charge is shown by the
dashed line.
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Equation [269] can be solved analytically for rc only for a charged plane. In
Figure 29 we compare the condensation radius kDrc as a function of the scaled
surface charge density sa/s0 for planar, cylindrical, and spherical systems. We
have explicitly included the geometric factor da so that the abscissa corre-
sponds to identical surface charge densities for the three systems. Little differ-
ence is seen between the cylinder and sphere curves, which predict noticeably,
although perhaps not significantly, larger condensation radii than for a plane
with the same charge density. The important feature of all three systems is the
limiting value of the condensation radius at higher charge densities demon-
strating that there is at least the semiquantitative suggestion that PB theory
supports a distance-dependent two-state model of counterion condensation.
To see how well a potential-dependent model is supported, the value of the
NLDH potential at the condensation radius is shown in Figure 30 as a func-
tion of the scaled charge density for the same systems as shown in Figure 29. A
limiting value of the potential is apparent as all curves are very much closer.
Also shown in Figures 29 and 30 are the cylinder curves for a 100-fold
decrease in electrolyte concentration (kDa ¼ 0:1 vs. 1 previously).

Bulk Model: Two Charged Cylinders
Solutions containing linear colloidal particles, such as DNA segments or

tobacco mosaic virus, are systems which may be modeled by interacting
cylindrical polyelectrolytes.220 We may apply the results derived earlier for

Figure 29 The scaled condensation radius determined from Eq. [269] as a function of
the scaled surface charge density sa=s0 for a plane (solid line), cylinder (dashed lines;
kDa ¼ 1 and kDa ¼ 0:1) and sphere (dotted line; kDa ¼ 2).
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two charged particles by specializing them to charged cylinders. We first con-
sider the cylinders to be parallel, as shown in Figure 21, and use the expres-
sions given in Eqs. [196], [197], [201], [202], and [209]. To adopt these
equations to the situation of two interacting cylinders, we use the Debye–
Hückel solution [259] to assign

f1ðrÞ ¼
K0ðkDrÞ
K0ðkDa1Þ

; g1 ¼ K0ðkDðH0 þ a1ÞÞ
K0ðkDa1Þ

d1 ¼ K0ðkDa1Þ
K1ðkDa1Þ

; e1 ¼ K1ðkDðH0 þ a1ÞÞ
K1ðkDa1Þ

½271�

The force per unit length between the particles is found by integrating the pres-
sure over lengthwise strips of width dr in the dividing plane:

FðRÞ
Length

¼
ð1

0

PðR; r; 0Þdr ¼ R

2

ð1
0

P R;
R

2
coshðyÞ

� �
coshðyÞdy ½272�

where the right-hand integral follows from making the variable substitution

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2

� �2

�r2

s
¼ R

2
sinhðyÞ ½273�

Figure 30 The NLDH potential at the condensation radius for the systems of Figure 29.

246 The Poisson–Boltzmann Equation



To obtain the force from the pressure, we ignore the term in the denominator
of Eq. [209] and use Eqs. [271] to find

bFðRÞ ¼ k2
DR

pLBz2

A1ðRÞ
K0ðkDa1Þ

þ A2ðRÞ
K0ðkDa2Þ

� �2ð1
0

K2
0

kDR

2
cosh y

� �

þ K2
1

kDR

2
cosh y

� ��
cosh y dy� 2k2

DR

pLBz2

A1ðRÞ
K0ðkDa1Þ

� �2
"

þ
�

A2ðRÞ
K0ðkDa2Þ

�2
# ð1

0

K2
1

kDR

2
cosh y

� �
sech y dy ½274�

The first integral can be evaluated with the help of the identities221,222

KmðxÞKnðxÞ ¼ 2

ð1
0

Km�nð2x cosh yÞ cosh½ðm� nÞy�dy ½275�

and

KmðxÞ ¼
ð1

0

e�x cosh y coshðm yÞdy ½276�

to give

ð1
0

K2
0

kDR

2
cosh y

� �
þ K2

1

kDR

2
cosh y

� � �
cosh y dy ¼ 2p

kDR
K1ðkDRÞ ½277�

The second integral is

ð1
0

K2
1

kDR

2
cosh y

� �
sech y dy ¼ p

kDR
K1ðkDRÞ ½278�

Written as expressions of a single variable, Eqs. [277] and [278] are easily
verified numerically. Use of these results yields the force per unit length:

bFðRÞ
Length

¼ 4A1ðRÞA2ðRÞK1ðkDaRÞ
LBz2K0ðkDa1ÞK0ðkDa2Þ

½279�

For large kDR, the coefficients are independent of separation distance H0 and
only weakly dependent on the cylinder radii (through geometric factor d), an
observation noted previously by Brenner and McQuarrie.186 Keeping only
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the first term in the asymptotic expansion of the coefficients (Eq. [204]) gives

bFðRÞ
Length

¼ 4ŝs1ŝs2K1ðkDRÞ
LBz2K0ðkDa1ÞK0ðkDa2Þ

½280�

where ŝs1 is the scaled apparent charge density of Eq. [205] (including the geo-
metric factor d1 of Eq. [271]). Equation [280] agrees exactly with the expres-
sion derived by Brenner and Parsegian223 but has the advantage of assigning a
specific value to their ‘‘effective charge’’ (our apparent charge density). Equa-
tion [280] also reduces to the results of Brenner and McQuarrie186 in the limit
of large kDR by simply using the asymptotic expression for the Bessel function.
Integration of the force according to

VðRÞ ¼
ð1

R

FðR�ÞdR� ½281�

provides the interaction potential per unit length (including the � parameters):

bVðRÞ
Length

¼ 4ŝs1ŝs2K0ðkDRÞ
LB�1�2z2K0ðkDa1ÞK0ðkDa2Þ

½282�

Brenner and McQuarrie have combined the asymptotic form of the potential
with an attractive van der Waals term and calculated the total interaction
energy as a function of ionic strength and pH for identical interacting cylin-
ders.220 We have kept only the leading term in the asymptotic expansion of
the interaction energy based on the coefficients of Eq. [204]. (Retention of
the next-order term is discussed in a later section on interacting spheres in
an analysis that applies here as well; see the paragraph following Eq. [353].)

We now obtain the total interaction energy for two skewed but
nontouching cylinders.223 With R representing the distance of closest
approach and j the crossing angle between the cylinders (see Fig. 31), the dis-
tance between closest segments is

R*2 ¼ R2 þ ‘2 sin2 j ½283�

Integrating the interaction potential along one cylinder length gives the total
interaction potential between cylinders:

bVðRÞ ¼ 2

ð1
0

bVðR*Þ
Length

 �
d‘

¼ 2

sinj

ð1
0

bVðR*Þ=Lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R*2 � R2

p R*dR*

¼ 2R

sinj

ð1
0

bVðR cosh yÞ=Length� cosh y dy½ ½284�

248 The Poisson–Boltzmann Equation



where we have used the substitution R� ¼ R cosh y. Inserting Eq. [282] and
using Eq. [275] gives (with � included in s0 as well)

bVðRÞ ¼ 4pŝs1ŝs2e�kDR

LB�1�2z2K0ðkDa1ÞK0ðkDa2Þ sinj
½285�

In the low-charge-density Debye–Hückel limit, the scaled apparent charge
density ŝs1 (and ŝs2) reduces to the scaled charge density ŝs1 of Eq. [201].

Cell Model: Capillaries and Nanopores
Turning the no-added-salt cylindrical cell model inside-out and applying

the charged surface boundary condition at R with a zero field condition at
a ¼ 0 gives a model for capillaries and nanopores in which the (inside) charged
cylindrical wall is neutralized by counterions.224–227 Of course, at some point
in a complete description of the model the length L of the cylinder must be
made finite to allow entry and exit of ions, but if the cylinder is long enough
(kDL > 3, say), then end effects are negligible near the middle and need not
concern us here. Because Eq. [245] gives the potential profile within the cylin-
der cell for a < r < R, most of the work in finding the solution for a ¼ 0 has
already been done. The potential inside a charged cylinder clearly has the form
of Eq. [245] but with d and RM being two constants of integration that need to
be determined anew based on the different boundary conditions. Replacing R
with a in Eq. [245] satisfies the gauge condition fðaÞ ¼ 0, where we will

Figure 31 Diagram defining the parameters
used to calculate the interaction of two
charged, skewed cylinders of charge density
s1;s2 and radii a1; a2. The cylinders make an
angle j with respect to one another, where R is
the closest interaxial distance; R* defines the
interaxial distance between segments d‘.
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take the limit a ! 0 later. The first constant d may be determined in a number
of ways. The quickest is to temporarily replace R with a Eq. [241] and then set
a ¼ 0; this implies that d ¼ �i. With this substitution in Eq. [245] and letting
g ¼ 1=RM be the second integration constant, we have

z0fPBCðrÞ ¼ lim
a!0

ln
r cosh lnðgrÞð Þ
a coshðlnðgaÞÞ

 �2

¼ 2 lnð1 þ g2r2Þ ½286�

Following this same procedure, but with variable d, also shows that d ¼ �i if
the potential is to remain finite at r ¼ 0. We now find g by applying the bound-
ary condition on the electric field at r ¼ R but first note that electroneutrality
requires that the average counterion concentration be related to the surface
charge density by

z0sR

e0
¼ �A0c0z2

0R

2
� �k2

DR

8pLB
½287�

where we have introduced the ‘‘average’’ Debye screening constant kD. The
boundary condition at R can now be written as

z0f
0
PBCðRÞ ¼ 4g2r

ð1 þ g2r2Þ

����
r¼R

¼ �k2
DR

2
½288�

which determines g. From Eq. [286] the counterion concentration is

cPBCðrÞ
c0

¼
e�z0fðrÞ

ÐR
0 r drÐR

0 e�z0fðrÞr dr
¼ ð1 þ g2R2Þ

ð1 þ g2r2Þ2
½289�

Equations [286]–[289] represent the PB solution for a cylindrical capillary
without added salt. The case of added salt is more interesting but has no ana-
lytical solution. For a capillary in equilibrium with a bulk electrolyte, setting
the potential to zero at the center of the capillary would not be appropriate;
for this system it would be necessary to consider the finiteness of the capillary.
The potential should then vanish far from capillary where the ion distribution
is the same as bulk.

The Debye–Hückel solution for a cylindrical capillary follows along lines
similar to those of the previous section except that we again extract the solu-
tion valid at r ¼ 0. For this system, Eq. [258], which gives the Debye constant
k0 at the position of the potential gauge (r ¼ 0), simplifies to

2k0I1ðk0RÞ ¼ k2
DR ½290�
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where Eq. [287] defines kD. Equation [290] shows that for a small capillary
radius or low surface charge density ðkDR < 0:5Þ k0 � kD. The DH potential,
its derivative and counterion concentration are then

z0fDHCðrÞ ¼
�Rk2

D

2k0

I0ðk0rÞ � 1

I1ðk0RÞ

z0f
0
DHCðrÞ ¼

�Rk2
D

2

I1ðk0rÞ
I1ðk0RÞ

cDHCðrÞ
c0

¼ k2
0

k2
D

ð1 � z0fDHCðrÞÞ

½291�

These expressions are readily generalized to the case when added salt is present
(only Eq. [290] changes).

In Figure 32 we compare the electrostatic potential (lower frame) and
field (upper frame) calculated according to the PB (Eqs. [286] and [288], solid
lines) and DH (Eq. [291], dashed lines) equations for a charged capillary of
radius 20 Å with a surface charge density of s ¼ �0:01 e0/Å2 for monovalent
counterions (z0 ¼ 1) and no added salt; also shown are the DH values given in
Eq. [291] using the average Debye constant kD in place of k0 (dotted lines).
As usual, the DH potential considerably overestimates the magnitude of the

Figure 32 The PB (solid lines) and DH (dashed lines) potential and field profiles as a
function of the distance from the center of a charged capillary of radius 20 Å with
surface charge density sa ¼ �0:01 e0/Å2 in the absence of added salt (only counterions
are present) according to Eqs. [286], [288], and [291]; the effect of using an average
Debye screening constant in the DH expressions is shown by dotted lines.
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surface potential, while use of the average Debye constant for the DH poten-
tial and field would seem to offer a considerable improvement. However, com-
parison of the counterion concentrations in Figure 33 shows that although this
gives some agreement in the value of the counterion concentration at the sur-
face, the value in the center of the capillary is much too high in comparison to
the PB result. For the system considered we have k0R ¼ 3:3 with the average
Debye constant being determined from Eq. [290].

Related Cylindrical Calculations
While the above solutions assume a constant surface potential or con-

stant charge density, a cylinder with a regulated charge, that is, one in which
the surface charge density is dependent upon the surface potential (boundary
condition BC3 applies), is also of interest. Rice and Whitehead used the DH
equation to determine corrections to classical electrokinetic flow within a
cylindrical capillary228 and Levine et al. have extended this to higher surface
potentials using the PB equation.229 Brenner and McQuarrie have presented a
similar self-consistent calculation within the Debye–Hückel approximation.230

Bentz has derived an approximate analytical expression for the potential
between charged concentric cylindrical surfaces for a general electrolyte.231

Martynov and Avdeev have applied their ‘‘extended NLDH approximation’’
(our terminology) to capillaries.180 Several investigators232–237 have compared
Monte Carlo and PB predictions of ion distributions and Donnan exclusion

Figure 33 The PB (solid line) and DH (dashed line) concentration profiles for the same
conditions as in Figure 32 according to Eqs. [289] and [291]; the approximate DH
concentration profile using an average screening constant is shown by the dotted line.
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coefficients inside cylindrical pores. Martinez et al.238 and van Keulen and
Smit239 have developed variational expressions for the potential profile in
cylindrical micropores. Rice and Horne give an analytical solution to the
DH equation inside a capillary of finite height.240,241 Sharif, Tabatabaian
and Bowen have studied multivalent counterion effects between charged
spheres inside charged cylindrical pores.242 Gil Montoro and Abascal have
looked at the effect of helical charge symmetry on the PB potential243,244

and Ouroushev has derived a solution to the PB equation for a set of line
charges distributed on the surface of a finite cylinder,245 both investigations
approximating the discrete charge effects of a more realistic model of DNA.
Nishio and Minakata have relaxed the common assumption of equal-size
counterions in looking at competition between mono- and divalent ions.246

Mokady, Mestel and Winlove have studied fluid flow through a layer com-
posed of periodically spaced charged cylinders.247

We have assumed above that the charged cylinder is infinite and straight;
neither of these assumptions apply exactly to biomolecules such as DNA.
Thus, Stigter and Dill have used the Debye–Hückel equation to investigate
end effects between finite-charged rods, comparing data on the second virial
coefficient with experiment.219 Allison has characterized the end effects of
finite-length cylinders using the PB approach248 and Nyquist, Ha and Liu
have combined an extended DH theory with a two-state counterion descrip-
tion to investigate counterion condensation around finite-length cylinders.249

Many investigations into the bending of long cylinders rely on the DH equa-
tion and begin with the solution for a charged sphere (this approach is dis-
cussed in a later section on additivity of the Debye–Hückel solution).
However, progress has been made in solving the PB equation for a slightly
curved cylinder.250–254 Bowen and co-workers have developed two alternative
iterative algorithms, one based on the differential Debye–Hückel equation255

and the other using the integral nonlinear PB equation,256 to investigate elec-
troviscous flow in charged capillaries in the presence of added monovalent
salt. Trizac and Hansen have published several studies in which the DH and
PB cell models with and without added salt were used to determine the ther-
modynamic properties of finite cylindrical disks.154,155,257–260

The most common application of the cylindrical PB equation (by far) is
to investigate the thermodynamic properties of polyelectrolyte such as
DNA.58,78,196,197,202,261–263 Within the PB cell model, the counterion concen-
tration at the outer boundary gives the osmotic pressure, which is a measure of
the electrostatic repulsion between neighboring biomolecules. This pressure
can also be experimentally determined.264–266 The Donnan coefficient, on
the other hand, is strongly influenced by conditions at the macromolecular sur-
face and can be used to provide key insight into the nature of polyelectrolyte–
counterion interaction.197,267–270 This interaction is important because of the
salt-induced conformational changes DNA undergoes.271–273 The nature of
this behavior is believed to arise from the partial collapse, or condensation,
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of the counterion cloud around the polyelectrolyte, thus weakening the
phosphate–phosphate repulsion enough to allow for changes in the internal
structure of DNA. This counterion condensation has thus been the focus of
much work.202,204,207,214,274–285 Within a hybrid PB-DH cell model, Löwen
has defined an apparent linear charge density by integrating the density profile
and finds a relationship between apparent and actual densities that is similar in
form to our bulk NLDH approximation.286 Of particular interest in this regard
is the competition between mono- and divalent counterions.73,74,209,287–294

Divalent counterions play a crucial role in the conformation of both single-
and double-stranded nucleic acids295–305 and may also be a key feature in
DNA–protein recognition involving endonucleases.306–312 Guéron, Demaret
and Filoche have used a planar approximation to study the change in free
energy for the B–Z transition in DNA.313 Their work could easily be extended
using either the PGC or NLDH approximation applied to a cylinder model
of DNA.

Sparnaay has applied the Derjaguin approximation (which we discuss
below in connection with two interacting spheres) to two parallel and to
two crossed cylinders.314 In an investigation of interacting parallel cylinders
with different radii, Harries has numerically solved the PB equation in bi-
cylindrical coordinates to obtain the force per unit length and the free energy
as a function of separation distance.315 Kuo and Hsu have used a perturbation
approach to derive PB expressions for the free energy, entropy, and surface
excess of coions of interacting cylinders or spheres in a general electrolyte.316

Spherical Geometry: The Micelle Model

The final system we consider in this tutorial is that of a spherical charged
polyelectrolyte which serves as a model for a colloidal particle, micelle, or
globular protein.22 The primary characteristic that differs between modeling
a micelle and a protein at this level of representation is the much greater sur-
face charge density associated with a micelle. A secondary, but still important,
consideration, is the pKa values of the protein ionization sites, which might
require use of boundary condition BC3 instead of BC2 as assumed below.230

General Equations
In a spherical coordinate system whose origin is at the center of a

charged sphere of radius a (including a common electrolyte ion radius) and
total charge Qae0, the cell model PB equation and boundary conditions are

1

r2

d

dr
r2 dfðrÞ

dr

 �
¼ �4pLBA0

XI

i¼0

cR
i zie

�zifðrÞ ½292�
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and

f0ðaÞ ¼ �LBQa

a2
¼ �2Sa

lGC

f0ðRÞ ¼ 0; fðRÞ ¼ 0

½293�

While no exact analytical solution to Eq. [292] is available, approximate non-
linear expressions corresponding to the PGC and NLDH solutions as well as
the weak-field Debye-Hückel solution are given below.

Bulk Model: Grahame’s Equation
In many cases it is unnecessary to obtain the entire potential profile for a

system because the surface potential often suffices to describe the quantity of
interest. In modeling catalytic hydrolysis near a micellar surface, the hydrolysis
rate is related to the surface potential;317,318 when investigating globular pro-
tein function the surface potential describes the pKa of ionizable sites on the
surface.25,26 As shown previously, to determine the electrostatic free energy of
a charged surface in an electrolyte requires knowing only the surface potential
as a function of the charge density, or vice versa (Eq. [29]).36 Several investi-
gators have therefore derived approximate relationships between the surface
charge density and the surface potential, known as Grahame’s equation,67

thus obviating the need for solving the PB equation explicitly. Abraham-
Shrauner used a perturbation expansion of the nonlinear PB equation for a
uniformly charged sphere of radius a in a 1 : 1 electrolyte to obtain the follow-
ing expression for the surface potential:167

fa  2 ln
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkDlGCÞ2 þ 1

q
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0
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kDlGCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkDlGCÞ2 þ 1

q � 1

0
B@

1
CA ½294�

where kDa � 1. For a ! 1, Eq. [294] clearly reduces to the planar result of
Eq. [25] for a monovalent electrolyte. A number of people have derived the
(inverse) first- and second-order results, respectively, for a charged sphere
(of sign Sa) in a 1 : 1 electrolyte:168,171,319
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 Sa sinh

fa

2
þ 2

kDa
tanh

fa

4

� �
½295�

and

1

kDlGC
 Sa sinh

fa

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2

kDa cosh2ðfa=4Þ
þ 8 lnðcoshðfa=4ÞÞ
ðkDaÞ2 sinh2ðfa=2Þ

s
½296�

Analytical Solutions to the Poisson–Boltzmann Equation 255



Equation [149], or equivalently Eq. [153], is a generalization of Eq. [295] to
include cylinders and, with the use of an effective valence (Eq. [69]), to systems
in an asymmetric or mixed electrolyte. Figures 24 and 25 display
Grahame’s equation within the PGC approximation for a negatively charged
sphere of radius in a 1 : 1 electrolyte according to Eq. [153]. Similar expres-
sions have also been derived for a charged sphere in a z : z or 2 : 1 electro-
lyte168,320 and Zhou has obtained a second-order relation for a general
electrolyte.321 Ohshima has derived approximate expressions for Grahame’s
equation for a spheroid within the Debye–Hückel approximation322 and for
a charged sphere in the absence of added salt within the PB cell model (coun-
terions only).323 Finally, we note that Eqs. [180] and [181], when specified for
a spherical geometry, provides a relationship between the surface potential
and charge density within the NLDH approximation. For low surface poten-
tials, Eq. [182] may be used for parameter �, which then leads to the general-
ization of Eq. [25]:

z
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where da ¼ kDa=ðkDa þ 1Þ. This result is easily inverted to give an expression
for the surface potential in terms of the charge density. Figures 24 and 25
display the surface potential for a charged sphere as a function of charge den-
sity according to Eq. [297] as well as that obtained by using the exact expres-
sion [180] for �.

Bulk Model: Highly Charged Sphere
The analytical approximation for the potential profile near a highly

charged surface obtained earlier, given by Eqs. [147] and [149] or Eqs. [152]
and [154], is applicable to a spherical micelle with zc again representing the
highest counterion valence and kc the screening constant. The potential at the
surface, Eq. [153], then becomes

jzcjfhigh ðaÞ  �2 Sa ln tanh
kclGCffiffiffi

2
p

jzcj
1 þ 2lGC

jzcja

� � !" #
½298�

Provided that the curvature correction term is small, this result is valid for sym-
metric salts and for mixed-salt divalent counterion concentrations satisfying

ffiffiffiffiffi
c2

p
>

0:82 ac1

3:6 Qa=a � 1
½299�

in which a is the sphere radius in Å (angstroms), Qae0 is the micellar charge,
and concentrations are in M (molar units). For a spherical micelle of radius

256 The Poisson–Boltzmann Equation



20 Å and charge 60 e0 in a solution of 0.1 M monovalent salt, Eq. [299] gives
c2 > 0:06 M.

Bulk Model: Moderately Charged Sphere
As with the moderately charged cylinder, an approximate potential

profile for a moderately charged sphere in the presence of a mixed electrolyte
can be found by using the effective-valence planar solution of Eq. [69] in either
the asymptotic approximation of Eq. [147] or the NLDH approximation of
Eq. [177]. For the latter we need the DH solution to Eq. [165] for d ¼ 3
subject to boundary conditions [160]. The result is given by Eq. [307] and
provides

fDHðaÞ ¼
2Sada

kDlGC

f ðrÞ ¼ a

r
e�kDðr�aÞ

da ¼ kDa

kDa þ 1

½300�

This then gives the NLDH potential

fNLDHðrÞ ¼
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where � and fa are determined from Eqs. [180] and [181] and sADH and s0

are given by Eq. [189]. The approximate electrostatic free energy is given by
Eq. [194]. Note that the NLDH potential is similar to an expression obtained
by Levine:324

fLevineðrÞ ¼
4a
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tanh�1 tanh

zfa

4

� �
e�kDðr�aÞ

� �
½302�

which is a lower bound for a z : z electrolyte. The PGC and NLDH surface
potentials as functions of surface charge density for a sphere are compared
in Figures 24 and 25 and were discussed above in connection with the moder-
ately charged cylinder.

Figure 34 displays the potential profile for a charged sphere of radius
20 Å according to the exact (Eq. [389]), PGC (Eq. [152]), and NLDH (Eq.
[301]) solutions for a mixed 1 : 1–2 : 1 electrolyte (0.1–0.02 M) using the effec-
tive-valence approximation of Eq. [69] for the latter two. The DH (Eq. [259]),
ADH//PGC (Eq. [366]), simple ADH//NLDH (Eqs. [308] and [182]), and
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Levine (Eq. [302]) profiles are also shown for comparison. For the two surface
charge densities (�0.002 e0/Å2 and �0.01 e0/Å2), the PGC and NLDH (not
shown but following the PGC curve) profiles agree very well with the exact
solution. As with the cylindrical case shown in Figure 26, the simple NLDH
expression (using Eq. [182] instead of Eq. [180]) also works very well, although
it predicts a surface potential about 5% too large (the accurate NLDH and
PGC surface potentials are too large by �1%). This overall agreement of
the spherical case mirrors closely that found for the cylinder since both systems
have an equivalent radius of curvature and the charge densities investigated
were the same; indeed, the potential profiles for the two systems are almost
identical. The ADH potentials are discussed below, but note that the exact
DH potential is satisfactory only for the smaller charge density but agrees
quite well in that case. Finally, condition [157] for the two charge densities
(and using an effective valence) imposes restrictions on the radius of the sphere
under which the results are reliable: a > 18 Å and a > 8 Å, respectively, in
agreement with the observed accuracy.

Figure 34 Various potential profiles as a function of distance from the surface for a
charged sphere of radius 20 Å with surface charge densities of �0:002 e0/Å2 and �0:01
e0/Å2 in a mixed 1 : 1–2 : 1 electrolyte with concentration 0.1–0.02 M. Exact PB (circles;
according to Eq. [389]), DH (triangles; Eq. [307]), and Levine (stars; Eq. [302])
solutions are compared with the PGC (solid lines; Eqs. [152]) and NLDH (dashed lines;
Eqs. [253] with approximate �a values) solutions and their ADH//PCG (dotted lines;
Eq. [315]) and ADH//NLDH (dotted–dashed lines; Eq. [308] with either exact � or
approximate �a values) potentials.
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Cell and Bulk Models: Debye–Hückel Potential
The homogeneous solution to the weak-field limit of Eq. [292] (or

equivalently Eq. [76] with d ¼ 3) can be written as

fHðrÞ ¼ A
e�kRr

r
þ B

ekRr

r
½303�

The explicit form of Eq. [303] subject to the boundary conditions of Eq. [293]
gives the Debye–Hückel cell model solution

fDHCðrÞ ¼
LBQa

DðkRÞ
ð1 � kRRÞekRðR�rÞ � ð1 þ kRRÞe�kRðR�rÞ

r
þ 2kR

 �
½304�

where

DðkRÞ ¼ ð1 þ kRaÞð1 � kRRÞekRðR�aÞ � ð1 � kRaÞð1 þ kRRÞe�kRðR�aÞ ½305�

With the value of fHðRÞ identified from Eq. [304], Eq. [82] for kR becomes

k2
R ¼

XI

i¼0

4pLBA0�cciz
2
i

1 � ziLBQa

k2
R

3
R3�a3 þ

2k3
R

DðkRÞ

h i ½306�

For low-polyelectrolyte concentrations, R ! 1 and Eqs. [304] and
[305] give the standard bulk Debye–Hückel solution for the potential near
an ion of radius a

fDHðrÞ ¼
LBQae�kDðr�aÞ

ð1 þ kDaÞr ¼ 2 Saa
2e�kDðr�aÞ

ð1 þ kDaÞlGCr
½307�

which is the original Debye–Hückel expression.61

Bulk Model: Apparent Debye–Hückel Charge and
Surface Charge Density
Equation [93] gives the Debye–Hückel potential, based on an apparent

surface charge density, which matches the nonlinear Gouy–Chapman solution
far from a charged planar surface. The ADH//NLDH potential for a sphere is
easily found from Eqs. [188], [187], and [300]:

fADHðrÞ ¼
2Sada

kDlAGC

e�kDðr�aÞ

r=a
; da ¼ kDa

kDa þ 1
½308�
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where

lAGC ¼ 1

2
lGC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

GC þ �zda

kD

� �2
s0

@
1
A ½309�

and � is found using Eqs. [180] and [181]; for low surface charge density,
Eq. [182] may be used for �. As was pointed out for the charged cylinder,
the ADH potential based on the NLDH approximation for a sphere is the cor-
rect asymptotic description of the PB potential, even for systems for which the
NLDH approximation is poor. The limitation of the NLDH approximation
lies in ‘‘inverting’’ the apparent Gouy–Chapman length to obtain the surface
potential based on Eq. [181]:

fa ¼ 2Sa

�z
sinh�1 2�z

kDlAGC

� �
½310�

where � is determined by Eq. [309] (lGC is assumed to be known). For systems
to which the NLDH approximation applies (see Fig. 20), Eq. [310] can be used
to estimate the surface potential given the asymptotic potential tail.

For a sphere with charge Qae0, the apparent charge for which the Debye–
Hückel potential asymptotically fits the Poisson–Boltzmann profile is simply

Qa ¼ 2a2

LBlGC
; QADH ¼ 2a2

LBlAGC
½311�

The usefulness in identifying an apparent charge for micelles was recognized
early on by Langmuir.107 This can be viewed as the spherical extension of
Manning’s cylindrical counterion condensation theory214 whereby counter-
ions reduce the apparent surface charge to a level and within a region where
the linear DH equation may be applied.282 Expressing Eq. [309] in terms of
apparent and actual charges (in units of e0), we find

QADH ¼ 2Qaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQa=Q0Þ2 þ 1

q
þ 1

; Q0 � 2kDa2

LB�zda
½312�

with the low and high charge limits

lim
jQaj�Q0

QADH ¼ Qa 1 � Qa

2Q0

� �2
" #

lim
jQaj�Q0

QADH ¼ 2SaQ0 1 þ lnðdaÞ
lnðQ0=2jQajÞ

� Q0

jQaj

� � ½313�
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The perturbed Gouy–Chapman expression of Eq. [152] may also be used
to derive an apparent Debye–Hückel potential similar to Eq. [308]. Using the
approximate solution for a z : z electrolyte given by either Eqs. [147] and [149]
or Eqs. [152] and [154], we can obtain an apparent DH potential far from a
slightly curved charged surface. The two leading terms in the asymptotic
expansion of Eq. [152] are

fðrÞ ¼ 3 � d

2
þ a

2kDCar
ðe�2kDdDGC þ 2kDaÞ

� �
4Sa

z
e�kDðr�aþdDGCÞ ½314�

For the cylindrical case (d ¼ 2), the radial dependence of the leading term in
Eq. [314] does not agree with the Debye–Hückel potential of Eq. [260]. (See,
however, the discussion leading to Eq. [366].) For the spherical case (d ¼ 3,
Ca ¼ a), the radial dependence of the leading term does agree with the
Debye–Hückel expression [307], which allows us to extend the earlier planar
results for an apparent surface charge density to a sphere. This gives an appar-
ent Debye–Hückel potential for a charged sphere in a z : z electrolyte within
the PGC approximation

fADHðrÞ ¼ wðw2 þ 2kDaÞ 2Sae�kDðr�aÞ

zkDr
½315�

where Eq. [153] gives

w � e�kDdDGC ¼ tanh
zfa

4

����
���� ½316�

In terms of the Gouy–Chapman length, Eq. [155] yields

w�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ kDlGCð1 þ f Þ

z

� �2
s

þ kDlGCð1 þ f Þ
z

½317�

where f is given by Eq. [156] with d ¼ 3; Eq. [154] gives the exact result for
the Debye–Gouy–Chapman length and hence w. For jzfaj � 4kDa, Eq. [315]
reduces to the standard Debye–Hückel result of Eq. [307]. Comparison of
Eq. [315] with Eq. [307] allows identification of the apparent PGC charge

QADH ¼ 2ð1 þ kDaÞ
LBzkD

wðw2 þ 2kDaÞ ½318�

where low and high charge limits within the PGC approximation may be
obtained from Eqs. [324] below.
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The ADH//NLDH and ADH//PGC profiles for a charged sphere are
shown in Figure 34, where the good agreement between the general NLDH
and PGC potentials has already been discussed. As with the cylindrical case
of Figure 26, both methods give equally good ADH potentials with the PGC
profile again bracketed by those of the simple NLDH (indicated by �a) and
accurate NLDH (indicated by �) profiles. However, the accurate ADH//
NLDH profile is again a slightly better fit to the exact curve for distances
greater than 10 Å from the surface.

Figure 35 displays the apparent charge as a function of the actual charge
within the NLDH and PGC approximations (Eqs. [312] and [318], respec-
tively) for a sphere of radius 20 Å under the same electrolyte conditions as
Figure 26, including use of an effective valence; the PGC low and high charge
limits (obtained from Eqs. [324]) are also shown. The analysis is similar to
Figure 27 for the cylindrical case discussed earlier with the exact (�) and
approximate (�a) NLDH curves bracketing the PGC values and with the
NLDH limiting value (23.8) falling below the PGC value shown (28.0).
Groot325 and Chen and Lu326 have observed this relationship between appar-
ent and actual charges by numerically solving the PB equation or by perform-
ing Monte Carlo simulations.

Figure 35 The apparent charge density as a function of actual linear charge density for a
sphere of radius 20 Å in a mixed 1 : 1–2 : 1 electrolyte with concentration 0.1–0.02 M
within the NLDH (dashed lines; Eq. [312] with the exact � or approximate �a values)
and PGC (solid lines; Eq. [365] with exact and approximate dDGC values) approxima-
tions. The PGC low and high charge density approximations (obtained from Eqs. [324])
are shown by dotted lines; the infinite-charge density limit is shown by the horizontal
dotted–dashed line.
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Equation [192] or [312] gives the fraction of neutralized surface charge
within the ADH//NLDH approximation

fneut ¼ 1 � QADH

Qa
¼ 1 � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zQaLB=½2að1 þ kDaÞ�ð Þ2þ1

q
þ 1

½319�

Unlike the cylindrical case of Eq. [265], this expression is not a function of kDa
alone. We have plotted this fraction in Figure 36 for two values of the
Debye constant (0.01 and 0.1 Å�1) and for two different sphere radii (10
and 20 Å). For micelles of radius 20 Å, there is a noticeable difference between
kD ¼ 0:01 and 0.1 Å�1 in the rate at which the limiting fraction plateau is
reached. The condensation radius determined from Eq. [269] and the corre-
sponding potential as a function of the scaled charge density are displayed
in Figures 29 and 30, respectively, and compared with those for the plane
and cylinder. Comments follow those given earlier for a charged cylinder.

Bulk Model: Reliability of the ADH//PGC Approximation
While the NLDH approximation is not particularly amenable to

improvement, the PGC approximation, which is based on a perturbation
expansion, is. It is therefore possible and useful to delineate an approximate
range of reliability of the ADH//PGC potential, something that is easier to

Figure 36 A plot of the ADH//NLDH fraction of surface charge neutralized by a bulk
1 : 1 electrolyte according to Eq. [319] for a charged sphere as a function of the surface
charge Qa for two values of the Debye constant kD (0.01 and 0.1 Å�1) and for two
different sphere radii a (10 and 20 Å) as listed at right.
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do than with the ADH//NLDH potential, thus providing some insight into the
applicability of both approximations and of the DH-PB relationship as well.

The apparent Gouy–Chapman length for which the Debye–Hückel
potential asymptotically matches the PB profile, subject to the accuracy of
Eq. [152], as shown for a sphere in Figure 18, is

lAGC ¼ zkDaCa

wðw2 þ 2kDaÞð1 þ kDaÞ ½320�

where the radius of curvature has been appropriately inserted into the numera-
tor. Although the dimension of the space is partly accounted for by explicitly
including Ca, the explicit form of Eq. [320] is correct only for the spherical
case, as mentioned above in the discussion following Eq. [140]. We would
like to generalize Eq. [320] to the cylindrical case in a way that retains the ana-
lytical form of the expression (since we have no other obvious alternative) but
in a way that better accounts for the change in the dimensionality of the space.
(That Eq. [320] does poorly when applied to a charged cylinder of radius a is
easily seen numerically.) It was noted in connection with Eq. [154] that the
surface potential obtained from Eq. [152] is dependent on Ca rather than on
a, a fact noted by Guéron and Weisbuch.177 If we explain this observation by
reasoning that the apparent Gouy–Chapman length, or equivalently the sur-
face charge density, is actually a measure of the curvature of a surface within
the context of the dimensionality of space, then the radius a of the sphere in
Eq. [320] should be replaced by the radius of curvature Ca. This replacement is
also justified by the fact that the resulting expression correctly reduces to the
apparent Gouy–Chapman length for a plane (Ca ! 1; Eq. [92]) as well as for
a sphere. We thus have

lAGC ¼ zkDC2
a

wðw2 þ 2kDCaÞð1 þ kDCaÞ
½321�

We will see that this generalization works well for charged cylinders. To esti-
mate the surface potential from the apparent Gouy–Chapman length within
the PGC approximation, we simply solve Eq. [321] for w and use Eq. [316].

The apparent PGC surface charge density is obtained from the analog of
Eq. [11], so we have

sADH ¼ Sas0
wðw2 þ 2kDCaÞð1 þ kDCaÞ

ðkDCaÞ2
; s0 ¼ e0kD

2pLBz
½322�

where Eq. [317] becomes

w�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ð1 þ f Þs0

sa

� �2
s

þ ð1 þ f Þ s0

jsaj
; f ¼ ð2=kDCaÞ

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðsa=s0Þ2

q ½323�
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It is useful to give the following expansions obtained by combining Eqs. [11],
[321], and [322]:

lim
jsaj�s0

sADH ¼ sa 1 þ ð2 � kDCaÞð1 þ 2kDCaÞ
8ð1 þ kDCaÞ2

sa

s0

� �2
" #

lim
jsaj�s0

sADH ¼ Sas0
ð1 þ kDCaÞð1 þ 2kDCaÞ

ðkDCaÞ2
1 � 3 þ 2kDCa

1 þ 2kDCa

s0

saj j

� � � ½324�

Equations [322]–[324] within the PGC approximation are analogous to
Eqs. [189]–[191] within the NLDH approximation. The reliability of the
PGC expressions is determined by condition [157], which we now write as
a lower ‘‘bound’’ on the surface charge density:

jsaj >
2ps0

ðkDCaÞ2
½325�

Use of the word ‘‘bound’’ is not intended here to indicate a strict bound in the
mathematical sense, but rather to delineate an approximate range of condi-
tions under which use of an ADH-based charge density is valid for a given spe-
cified tolerance (see discussion below). As always, for a mixed electrolyte, z in
Eqs. [322]–[325] should be replaced by the effective valence of Eq. [69].

The condition of applying the ADH//PGC potential to a curved surface
can be found by analyzing Eq. [322] in a manner similar to that done earlier in
connection with the planar expression of Eq. [94] and that resulted in Eq. [96].
Analytical inversion of Eq. [322] to obtain sa/s0 is not possible, but for
kDCa > 5, one has the approximate relations

sa

s0
¼ 2Sa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sADH=sa

p
sADH=sa

1 þ 2

kDCa

� �

zfa ¼ 2Sa ln
sa

s0

����
����þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ sa

s0

� �2
s0

@
1
A ½326�

(The second of Eqs. [326] is exact but becomes approximate when used with
the first. Also, for kDCa < 5, Eq. [326] yields a ‘‘bound,’’ as determined below,
that is slightly too strict.) Figure 10 displays the numerical inversion of
Eqs. [322] for several values of the product kDCa (2, 3, and 5) as well as
the planar limit given by Eq. [95]. While there is a relatively weak dependence
on kDCa for kDCa > 2, the presence of surface curvature relaxes the planar
condition [96] (by a factor of <3) and the magnitude of the surface potential
(by a factor of <2) for which the DH equation is valid (i.e., according to the
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choice for sADH/sa). For a tolerance of sADH/sa ¼ 0:95, Eqs. [326] give the
following (approximate) upper bound on the surface charge density for which
the ADH//PGC equation is reliable:

jsaj < s0
1

2
þ 1

kDCa

� �
½327�

The upper (Eq. [327]) and lower (Eq. [325]) bounds coalesce at kDCa ¼ 2:7,
so for any value greater than this, the Debye–Hückel profile will be accurate
everywhere. According to Eq. [326], the surface potential at coalescence is
jzfaj ¼ 1:6 kBT/e0. The upper and lower bounds of Eqs. [325] and [327],
along with the surface potential predicted by Eq. [326], are shown in Figure 37
as a function of kDCa assuming a 95% tolerance limit. We display only the
bound curves for kDCa > 1 since the potential on which our asymptotic solu-
tion is based is valid only in this domain. The region in which the ADH//PGC
solution applies lies below the upper bound and is confined to surface potentials
less than �1.6 kBT/e0, a value slightly more restrictive than that (2.2 kBT/e0)
found by Lampert and Crandall327 using a more analytical approach. The
potential of Eq. [315] is valid asymptotically in the region greater than the
lower-bound curve. These delineations on the figure are only approximate,
but they serve to point out that there exists a wide range of conditions for

Figure 37 The upper (dotted line, Eq. [327]) and lower (solid line, Eq. [325]) bounds of
the ratio sa=s0j j defining regions of applicability of the DH and ADH//PGC potential
profiles as a function of kDCa assuming a 95% tolerance level; the surface potential
according to Eq. [326] is shown by the dotted–dashed line.
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which the apparent DH potential gives a good description of the asymptotic
potential while the linear DH potential fails. Returning to Figure 34, for this
system s0 ¼ 0:0017 e0/Å2 and kDCa ¼ 2:6, so according to Eqs. [325] and
[327] (or Fig. 37), the ADH//PGC potential for the low charge density curve
(jsaj ¼ 0:002 e0/Å2) should be accurate everywhere, and the data demonstrate
this. In Figure 35, Eq. [327] gives the reliable range for the ADH//PGC
potential to be jQaj < 8, which agrees very well with the linear region of
the curves.

Figure 38 shows the ratio of the apparent charge density to the actual
charge density (Eq. [322]) for which the ADH//PGC potential of Eq. [315]
asymptotically matches the (approximate) Poisson–Boltzmann profile
Eq. [152] as a function of the actual charge density on the sphere scaled to
the quantity s0. Solid lines indicate use of an approximate Debye–Gouy–
Chapman length according to Eq. [155], while circles indicate use of the
‘‘exact’’ value given by Eq. [154] (with an effective valence). (By ‘‘exact,’’
we mean the solution of Eq. [154], which, of course is not the exact solution
to the PB equation, but rather a very good approximation.) Consider first the

Figure 38 The ratio sADH=sa of Eqs. [322] and [323] for the Debye–Hückel potential of
Eq. [315] that asymptotically matches the PB profile given by Eq. [152] as a function of
the ratio sa=s0j j, where sa is the surface charge density and s0 is defined by Eq. [322];
values of kDCa for each curve are given at right with the planar surface indicated by the
dotted line. Reliability bounds according to Eqs. [325] and [327] are indicated by
arrows. To get a feel for the variable ranges, a mixed 1 : 1–2 : 1 electrolyte with
concentration 0.1–0.02 M has kD ¼ 0:132 Å�1 and s0 ¼ 0:0017 e0/Å2; for this case, the
ordinate ranges from sa ¼ 0 to 0.017 e0/Å2 and the curvature radii at the right
correspond to spheres of radius a ¼ 8; 15; 38 and 123 Å (or cylinders of diameter a).
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exact curves (circles): for kDCa ¼ 1 and 2, the lower and upper bounds [325]
and [327] are indicated in the figure and show the range of reliability of the
ADH//PGC solution. As discussed above, the ranges coalesce for kDCa > 2:7
so the entire curve is accurate. For the approximate curves (solid lines), bound
[327] fails since jsa=s0jð¼ z=kDlGCÞ is small and the approximation used in
going from Eq. [154] to Eq. [155] is not valid. This explains why the approx-
imate curve for kDCa ¼ 1 indicates an apparent charge density larger than the
actual density. However, the lower bound of Eq. [325] is still valid, and the
close agreement with the exact curves in the region supports this.

In Figure 39 we present the same results as shown in Figure 38 but as a
function of the product kDCa. The lower bound reliability regions for the exact
curves (circles) according to Eq. [325], which also roughly match those for the
approximate curves (solid lines), are shown by arrows. The upper bound
regions of Eq. [327] are not indicated since as kDCa approaches unity, data
based on Eq. [152] become invalid.

Bulk Model: Two Charged Spheres in the NLDH and
Derjaguin/mHHF Approximations
In this section we adapt our earlier results on the interaction of two par-

ticles to the treatment of two interacting charged spheres. This system was

Figure 39 The ratio sADH=sa in Eq. [322] and [323] for the Debye–Hückel potential
of Eq. [315], which asymptotically matches the PB profile given by Eq. [152] as a
function of kDCa; values of the ratio sa=s0j j are given at right. Reliability bounds
according to Eqs. [325] are indicated by arrows. For a mixed 1 : 1–2 : 1 electrolyte
with concentration 0.1–0.02 M, kD ¼ 0:132 Å�1, and sa ¼ 0:0017 e0/Å2; for this case,
the ordinate ranges from a ¼ 8 to 123 Å, where a is the sphere radius (or cylinder
diameter), and the surface charge density at the right corresponds to
sa ¼ 0:0017; 0:003; 0:009, and 0.017 e0/Å2.
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used initially to investigate the stability of colloidal solutions,36 but it also
serves as a model for interacting biomolecules such as proteins and micelles.
The standard method is that due originally to Derjaguin328 and later modified
by Hogg, Healy, and Furstenau112 (HHF) and is applicable to low charge den-
sity (or potential) spheres nearly in contact. In the opposite limit at which the
spheres are separated by several Debye lengths, one can use the procedure of
Bell, Levine and McCartney128 called the ‘‘linear superposition approxima-
tion,’’ of which the NLDH method presented is a generalization. The ranges
of validity for which the Derjaguin and linear superposition approximations
hold were compared by Glendinning and Russel for constant potential and
constant charge density boundary conditions.329 The interaction potential
obtained in these two distinct limits were combined by Sader, Carnie and
Chan330 to provide a single analytical approximation over the entire separa-
tion range. We begin by specializing the two-particle NLDH approximation to
two spheres.

Figure 21 represents the interaction of two charged particles. The appro-
priate equations for the NLDH potential and pressure were derived previously
and are given by Eqs. [196], [197], [201], [202], and [209]. The development
here is similar to that used previously for two interacting cylinders. To imple-
ment the general expressions to treat two interacting spheres, we use the
Debye–Hückel solution [307] to put

f1ðrÞ ¼
e�kDðr�a1Þ

r=a1
; g1 ¼ a1e�kDH0

H0 þ a1

d1 ¼ kDa1

1 þ kDa1
; e1 ¼ a1

H0 þ a1

� �2 1 þ kDðH0 þ a1Þ
1 þ kDa1

� �
e�kDH0

½328�

Cylindrical symmetry allows the force between the spheres to be found by inte-
grating the pressure over rings of width dr in a dividing plane placed midway
between the sphere centers

FðRÞ ¼ 2p
ð1

0

PðR; r; 0Þrdr ¼ 2p
ð1

R=2

PðR; rÞr dr ½329�

where the right-hand integral follows from changing the integration variable
to r. To obtain the force using the pressure, we ignore the term in the denomi-
nator of Eq. [209] and use Eqs. [328] to get

bFðRÞ¼ 4k2
D

LBz2
ðA1ðRÞa1e�kDa1 þ A2ðRÞa2e�kDa2 Þ2

ð1
R=2

2

r
þ 2

kDr2
þ 1

k2
Dr3

� �
e�2kDrdr

� 2k2
DR2

LBz2
½ðA1ðRÞa1e�kDa1 Þ2þðA2ðRÞa2e�kDa2Þ2�

ð1
R=2

1

r3
þ 2

kDr4
þ 1

k2
Dr5

� �
e�2kDrdr

½330�
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The integrals can be evaluated to give

bFðRÞ ¼ 16a1a2ekDða1þa2Þ

LBz2

A1ðRÞA2ðRÞð1 þ kDRÞ
R2

e�kDR ½331�

As observed for two interacting cylinders, for large kDR, the coefficients are
independent of separation distance and approximately independent of the
sphere radii.331 Force curves predicted by Eq. [331] are in good agreement
with those obtained by Ledbetter, Croxton and McQuarrie who solved the
PB equation numerically.331 Finally, we integrate the force according to
Eq. [281] and, as for the planar and cylindrical cases, analytical evaluation
of the integral requires that we restrict ourselves to separations of at least
two to three Debye lengths. Using Eq. [204], the leading terms in the interac-
tion potential between two charged spheres are found to be

bVPBðRÞ ¼ 8a1a2e�kDH0

LB�1�2z2R

2ŝs1ŝs2 þ ð1�ŝs2
2
Þŝs2

1

ð1þŝs2
2
Þð1�ŝs2

1
Þ ð1 � ŝs2

2Þe2 � 2ŝs2
2
d2

d1

�  
g1

�  
þ ð1�ŝs2

1
Þ̂ss2

2

ð1þŝs2
1
Þð1�ŝs2

2
Þ ð1 � ŝs2

1Þe1 � 2ŝs2
1
d1

d2

�  
g2

�  
2
64

3
75 ½332�

where e and g vary as exp(�kDH0). As done previously for two interacting
cylinders, we have introduced the � parameters of Eq. [206] (and in the defini-
tion of s0 as well) that are useful for taking the kDa ! 0 limit. This potential
in the low-charge-density (DH) limit is

bVDHðRÞ ¼ 8a1a2

LB�1�2z2R
ð2ŝs1ŝs2 þ ŝs2

1e2 þ ŝs2
2e1Þe�kDH0 ½333�

Equations [332] and [333] represent the leading terms in an asymptotic
expansion of the interaction potential and as such become increasingly inaccu-
rate as the separation distance between the spheres decreases. To evaluate the
potential in the opposite limit in which the spheres are almost touching, we
combine Eqs. [281] and [329] and change the order of integration to write

VðRÞ ¼ 2p
ð1

0

ð1
R

PðR�; r; 0ÞdR�
 �

r dr ½334�

Note that the term in brackets represents the interaction potential per unit area
as determined by the pressure due to two charged rings of radius r and width
dr at the dividing plane. The inner integral in Eq. [334] can be evaluated by
following the generalization of Derjaguin’s method328 by Hogg, Healy, and
Fuerstenau.112 For values of r less than the radius of the smaller sphere
(¼ amin), this pressure and the resulting interaction potential can be approxi-
mated by that due to two opposing and parallel planar rings if the spheres are
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sufficiently close; what ‘‘sufficiently close’’ means will be determined below.
Thus, in place of the bracketed term we can insert the interaction potential
per unit area between two planes with charge densities s1 and s2 separated
by a distance

HðR; rÞ ¼ R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � r2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � r2

q
for r � amin ½335�

This allows us to write Eq. [334] as

VHHFðRÞ ¼ 2p
ðamin

0

Vpl½s1;s2;HðR; rÞ�r dr ½336�

where the planar interaction potential Vpl is given by Eq. [110]. Equation
[335] may be inverted analytically for [r(H)]2

½rðHÞ�2 ¼ ð2a1 þ H0 � HÞð2a2 þ H0 � HÞð2a1 þ 2a2 þ H0 � HÞðH � H0Þ
4ða1 þ a2 þ H0 � HÞ2

½337�

which lets us write Eq. [336] as

VHHFðRÞ ¼ p
2

ðHmax

H0

Vplðs1;s2;HÞ R � H � ða2
1 � a2

2Þ
2

ðR � HÞ3

 !
dH;

Hmax ¼ R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � a2
2

�� ��q
½338�

Clearly, Eq. [338] represents an approximation to the actual interaction
energy since (1) the rings become progressively less parallel as r and hence
H increases, (2) this ignores contributions from that part of the larger sphere
beyond the smaller sphere radius as well as those from the backsides of both
spheres, and (3) there are pressure contributions on the dividing plane beyond
amin not considered at all. These concerns are minimized if the system meets
two conditions:332 (1) the closest spacing between spheres is much less than
the smaller radius, and (2) the thickness of both spherical double layers is
small:

H0

amin
� 1 � kDamin ½339�

The first condition guarantees that most field lines contributing to the interac-
tion are parallel, satisfying point (1), while the second condition implies that
the interaction falls off quickly with curvature, satisfying point (2). The second
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condition also allows us to extend the upper integration limit from Hmax to
infinity since there are then no significant contributions beyond this value,
thus rendering point (3) moot. Although we apply the Derjaguin approxima-
tion only to spheres in this chapter, it is equally applicable to any two curved
surfaces provided a1 and a2 are interpreted as the radii of curvature of the sur-
faces at their points of closest approach.332 We noted earlier that Sparnaay has
obtained expressions for the interaction for two parallel and for two crossed
cylinders within the Derjaguin approximation for low and moderate surface
potentials.314

Consider the interaction potential according to Eq. [338] for two spheres
of equal radius a:

VðH0 þ 2aÞ ¼ p
2

ð2a

0

Vplðs1;s2;H
�Þð2a � H�ÞdH�; H� ¼ H � H0 ½340�

Let us first compare the potential between two identical spheres to that
between two planes. We see below that the distance dependence of the leading
term in the potential between two spheres is the same as that between two
planes, exp(�kDH), so the ratio of potentials is approximately

VspðH�Þ
Vplð0Þ

¼
Ð 2a
0 e�kDH� ð2a � H�ÞdH�Ð 2a

0 ð2aÞdH�
¼ 2kDa þ e�2kDa � 1

ð2kDaÞ2
< 1 ½341�

For small kDa, the limit is one-half; for large kDa, the ratio is smaller:
1/(2kDa). Thus, even in the limit of large sphere radii, the potential will not
approach that for a plane. A second point concerns the common practice of
simplifying the integral by setting H� ¼ 0 in Eq. [340] (or H ¼ H0 in
Eq. [338]). This leads to the ratio

Vspð0Þ
VspðH�Þ ¼

2kDað1 � e�2kDaÞ
2kDa þ e�2kDa � 1

> 1 ½342�

with limit 2 for small kDa and 1 þ 1=ð2kDaÞ for large kDa; hence, the simpli-
fication leads to an overestimation of the potential. Instead of setting H� ¼ 0,
one could put H� 

Ð
e�kDHH dH=

Ð
e�kDHdH ¼ 1=kD to correct for this. In a

similar vein, Overbeek333 reasoned that the largest contribution to the integral
Eq. [338] occurs within a Debye length of each sphere: H� ¼ H � H0  2=kD.
Thus, he suggested

R � H  a1 þ a2 �
2

kD
½343�
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and simplified the interaction energy between two spheres to

VHHFðH0Þ ¼
p
2

Fða1; a2; kDÞ
ð1

H0

Vpl½s1;s2;H�dH ½344�

where

Fða1; a2;kDÞ ¼ a1 þ a2 �
2

kD
� ða2

1 � a2
2Þ

2

ða1 þ a2 � 2=kDÞ3
½345�

Expanding F in terms of large kDa according to the right-hand inequality of
Eq. [339] (the assumption of a thin double layer), we find

Fða1; a2; kDÞ 
4a1a2

a1 þ a2
1 � 2ða2

1 � a1a2 þ a2
2Þ

a1a2ða1 þ a2ÞkD
� 
 
 


� �
½346�

The lowest-order term agrees with that derived by HHF,112 and the next-order
term, on putting a1 ¼ a2 ¼ amin, matches Overbeek’s correction.333 All in all,
the curvature of the spheres has been taken into account in a relatively minor,
but not insignificant, way through the integration over r (or H).

For the Debye–Hückel case consistent with large charge radii and low
charge densities, we use Eq. [110] for the planar interaction potential and inte-
grate Eq. [344] to find334,335

bVHHFðH0Þ ¼
p2LB

e2
0k

2
D

Fða1; a2; kDÞ 2s1s2 ln
1 þ e�kDH0

1 � e�kDH0

� �
� ðs2

1 þ s2
2Þ ln 1 � e�2kDH0

� � �
½347�

This result may be written in terms of surface potentials using Eq. [31] but it
must be remembered that the final expression will not agree with derivations
in which the constancy of the surface potential was used as a boundary con-
dition,112,333 owing to neglect of the chemical free energy in Eq. [108] for the
electrostatic free energy of a charged plane. For like spheres (a1 ¼ a2 ¼ a,
s1 ¼ s2 ¼ s), Eq. [347] gives

bVHHFðH0Þ  � 8p2LBas2

e2
0k

2
D

lnð1 � e�kDH0Þ ½348�

Note that the distance decay for large separations of Eq. [348] is that of a
screened exponential function rather than the faster (and correct) decay of
a screened Coulomb. Our derivation is clearly limited to small kDH0; for large
separations the effect of surface curvature becomes apparent as nonparallel
deviations of the field lines for two spheres leads to a faster decay than does
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that for two planes. Papadopoulos and Cheh336 proposed a method for includ-
ing the effects of surface curvature by defining the distance H between rings
based on a connecting circular arc rather than a straight line, thus mapping
the surface of each sphere onto the dividing plane by essentially following
the electric field lines. Sader, Carnie, and Chan330 have extended the above-
mentioned near-planar DH results by modifying earlier work by Bell, Levine,
and McCartney128 and obtained an expression for the interaction potential
that reduces properly for both small and large values of kDH0. Their modified
HHF result consists of simply replacing Eq. [346] with

Fða1; a2; kDÞ 
4a1a2

H0 þ a1 þ a2
� 4a1a2

R
½349�

Their result has also been derived independently by Ohshima by expanding the
potential for the two-sphere Debye–Hückel equation in terms of Bessel func-
tions centered on each sphere.337–339 While the addition of H0 in the denomi-
nator has its origin in an integration over the sphere surfaces,36 its absence in
our expression for F can be shown to be consistent with conditions [339] as
follows. These conditions require that the interaction between the spheres
approximates that between two planes. Because the total width of two planes’
double layers is about two Debye lengths, we put H0 � 2kD in Eq. [343] to
write R � H � a1 þ a2 � H0. Furthermore, because one of our conditions is
H0 � amin, we first let R � H � ða1 þ a2Þ=½1 þ H0=ða1 þ a2Þ� � ða1 þ a2Þ2=
R and then relax the condition that H0 be small; the result is essentially
Eq. [349]. Thus, the modification by Sader, Carnie and Chan330 not only
allows Derjaguin theory to be applied at larger separations, but at short
separations it corrects for the overestimation noted above. A slightly more
obtuse version of this argument has been given by Haoping, Jun, and
Blum.340 Finally, we can extend the DH potential to higher charge densities
by inserting scaled apparent charge densities, giving a final modified HHF
(mHHF) expression

bVmHHFðH0Þ ¼
4a1a2

LB�1�2z2R
2ŝs1ŝs2 ln

1 þ e�kDH0

1 � e�kDH0

� �
� ðŝs2

1 þ ŝs2
2Þ lnð1 � e�2kDH0Þ

 �
½350�

where

ŝs1 ¼ s1=s01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1=s01Þ2 þ 1

q
þ 1

; s01 ¼ kDe0

2pLB�1zd1
½351�

Comparing this expression with the NLDH low-charge-density limit of
Eq. [333] suggests that the low-order asymptotic NLDH result of Eq. [332]
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may be extended to smaller separations by writing330

bVPBðRÞ  8a1a2ŝs1ŝs2

LB�1�2z2R
ln

1 þ e�kDH0

1 � e�kDH0

� �
; R ¼ H0 þ a1 þ a2; kDamin �> 3

½352�
For kDamin < 3, Eq. [332] or [333] should be used. The electrostatic free
energy may now be found from Eqs. [352] and [107]:

AelðRÞ ¼ VðRÞ þ Aelðs1Þ þ Aelðs2Þ ½353�

where the single-sphere free energies Ael(s1,2) are found by adapting either
Eq. [151] or [194] to the spherical case. Note that in the limit z ! 0,
Eq. [194] properly reduces to the Coulomb self energy of a charged sphere.

The curvature factors d1 and d2 contained in ŝs1 and ŝ2 in Eq. [352] result
from applying the boundary conditions at the surface of each sphere. Those
factors correspond to the same factors appearing in the standard DH solution
for an isolated sphere (e.g., Eq. [307]). They do not appear in the mHHF solu-
tion where both a planar solution and planar boundary conditions are used
(the d ! 1 limit). Equation [352] agrees with both the small-separation
mHHF result and the large-separation PB limit. It is, however, correct only
in the appropriate limits because one would expect the ln term in Eq. [352]
to contain charge-dependent factors of order ŝs2, which disappear in the DH
limit, and curvature-dependent factors involving d, which disappear in the
mHHF limit. (See also the discussion following Eq. [128].) In fact, had
we used the planar asymptotic PB potential of Eq. [133] in the mHHF proce-
dure (which is of dubious validity in view of the requirement of small sphere
separations), the low-order result would be identical to that of Eq. [332] with
d1 ¼ d2 ¼ 1. Unfortunately, the correctness of the next-order term in Eq. [332]
is questionable, owing in part to retention of just the leading term in the force
(Eq. [331]). The mHHF/PB procedure just mentioned would yield a term half
as large as that in Eq. [332]. These two approaches, the asymptotic PB deriva-
tion versus that of mHHF, work in distinct regions of separation with the
next-order term attempting to extend applicability of the result into the region
of the other method. Although the asymptotic expression accounts for surface
curvature (via d), something that the mHHF approach lacks, and reproduces
the correct second-order DH term for the planar case, terms of order
exp(�2kDH0)/R2 and higher (resulting from an exponential integral function)
have been neglected in Eq. [332] and the angular dependence of the boundary
conditions ignored. In most cases, it is expected that higher-order terms are of
little consequence, particularly since their contribution to the pressure between
two charged planes is small, as pointed out in regard to discussion of Figure 12.

As a purely illustrative example, the interaction potential between two
spheres with radii (a1, a2) ¼ (20 Å, 10 Å) and charge density (s1, s2) ¼
(0.01 e0/Å2, 0.001 e0/Å2) in a 0.1 M 1 : 1 electrolyte as a function of the
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surface–surface separation distance H0 is shown in Figure 40 for the following
expressions: HHF (Eqs. [347] and [345] without the Overbeek correction),
mHHF (Eqs. [347] and [349]), mHHF with apparent Debye–Hückel charge
densities (Eq. [350]), lowest-order PB (first asymptotic term in Eq. [332]),
and extended PB (Eq. [352]). The HHF and mHHF data approach each other
for close separations but at larger separations the HHF expression gives a sig-
nificantly larger potential than the mHHF result. The difference between the
mHHF and mHHF/ADH potentials is due to the use of apparent charge den-
sities in the latter, and the improved agreement with the PB results at larger
separations is noticeable. However, the HHF and mHHF potentials are signif-
icantly larger than the PB potentials, essentially mirroring the discrepancy
observed between DH and PB potentials for isolated spheres (Fig. 34). The dif-
ference between the mHHF/ADH and PB-extended potentials is due solely to
the inclusion of curvature factors (d) which become unity within the HHF/
mHHF conditions of Eq. [339]. Finally, the modification introduced into the
PB potential of Eq. [352], which corrects the potential for nearly touching
spheres, raises the potential above the unmodified value for separations within
�2–3 Å. Since this modification has no significant effect elsewhere, and, as it

Figure 40 The interaction potential for two spheres with radii 20 and 10 Å and charge
densities of 0.01 and 0.001 e0/Å2, respectively, in a 0.1 M 1 : 1 electrolyte as a function
of surface separation according to the HHF (solid line; Eqs. [347] and [345] without the
Overbeek correction), mHHF (long dashed line; Eqs. [347] and [349]), mHHF with
apparent charge densities (short dashed line; Eq. [350]), lowest-order asymptotic PB
(dotted-dashed line; first term in Eq. [332]), and extended PB (dotted line; Eq. [352])
expressions.
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forces the potential for touching spheres to become infinite, it seems particu-
larly useful,341 although its specific form is somewhat suspect, as noted above.
Moreover, despite the ‘‘PB’’ designation, Eq. [352] is essentially an extended
Debye–Hückel result, modifying the Derjaguin expression through the inclu-
sion of apparent charge density, curvature, and long-range corrections. Com-
bined with short-range van der Waals–like terms, Eq. [352] could therefore be
used in an additive fashion for the interaction potential for low concentrations
of like-charged spheres immersed in a bulk electrolyte. For mixtures of oppo-
sitely charged spheres, cancellation of terms, and higher concentrations will
tend to emphasize any errors incurred by the additivity assumption so results
are likely to be only qualitatively useful.342 In related work, Glendinning and
Russel329 and Carnie, Chan, and Stankovich341 have solved the two-sphere PB
equation numerically under constant surface potential and constant charge
density conditions in their thorough investigations of the accuracy of the Der-
jaguin, HHF and superposition (asymptotic) approximations.

Bulk Model: Dressed-Ion Theory
Consider the potential of mean force between one ion (labeled j with

valence zj and radius aj) and another (labeled k):61

bwjk ¼ zkfjðrjkÞ ¼
LBzjzke�kDðrjk�ajÞ

ð1 þ kDajÞrjk
½354�

This result displays an inherent asymmetry in the way in which the two ions
are treated. To better see this, we group together the properties specific to ion j
in order to express the potential of mean force in a form identical to the point
solution

bwjk ¼
LBz�j zke�kDrjk

rjk
½355�

where we have defined the ‘‘dressed’’ valence of ion a by

z�j ¼ zje
kDaj

1 þ kDaj
½356�

This shows that although the jth ion is treated with a finite radius, all others
are considered as point ions. The ‘‘obvious’’ remedy, which can also be justi-
fied on statistical mechanical grounds according to ‘‘dressed-ion theory’’
(DIT),343–345 is to replace Eq. [355] with the symmetric relation

bwjk ¼
LBz�j z�ke�kDrjk

rjk
½357�
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where now all ions are represented by their apparent charges given by the ana-
log of Eq. [356]. To be consistent, the Debye screening constant in Eq. [357]
should be replaced by one determined by these dressed valences. The appro-
priate relationship is actually343–345

k2
DIT ¼ 4pLBA0

XI

i¼1

cB
i ziz

�
i ½358�

which can be shown to lead to a self-consistent equation for kDIT in terms of
the Debye screening constant and a common ion radius a:

k2
DIT

k2
D

¼ ekDITa

1 þ kDITa
½359�

For particles of different radii, Eqs. [357] and [358] still hold but with kDIT

determined self-consistently from346

k2
DIT ¼ 4pLBA0

XI

i¼ 1

cB
i z2

i ekDITai

1 þ kDITai
½360�

The DIT potential near an ion with radius a is thus given by

fDITðrÞ ¼
2 Saa2e�kDITðr�aÞ

lGCð1 þ kDITaÞr ½361�

where kDIT is determined from Eq. [360], and represents a slight improvement
over the DH expression [307] for ions of finite size.

Bulk Model: Debye–Hückel Additivity
The point charge Debye–Hückel solution given by Eq. [307] has utility

beyond a description of the interaction of two charges in an electrolyte solu-
tion. This is demonstrated by the following examples. Equation [307] (with
a ¼ 0) represents the Green function for the modified Helmholtz equation,189

which we have been referring to as the Debye–Hückel equation, and so it can
also be used to obtain the potential for more extended charge distribu-
tions.189,347 In this section we treat three problems on the basis of the additiv-
ity of the DH solution: the potential due to a charged cylinder, the potential
due to a charged arc of finite length, and the persistence length of a charged
cylinder.

An Infinite Charged Cylinder Consider first an infinite, straight-line
charge in a bulk dielectric extended along the z axis. The potential at a radial
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distance r is related to the integral obtained by integrating the point charge
Coulomb solution along the cylindrical axis:

fðrÞ ¼ LB

ð
dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p �

ð
dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ z2
p

 �

¼ x
ð1
�1

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p �
ð1
�1

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
 �

¼ 2x ln
r

R
½362�

where x is the (unitless) linear charge density. Now treat the same line charge
in a bulk electrolyte solution by replacing the Coulomb point charge potential
with the point charge DH solution of Eq. [307]:

fðrÞ ¼ x
ð1
�1

e�kD

ffiffiffiffiffiffiffiffiffi
r2þz2

p
dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p ½363�

The variable substitution z ¼ r sinh y leads to

fðrÞ ¼ 2x
ð1

0

ekDr cosh ydy ¼ 2xK0ðkDrÞ ½364�

where Eq. [276] has been used; this result is just the Debye–Hückel potential
due to a line charge, as given by Eq. [259] in the limit of vanishing cylinder
radius a. To extend Eq. [364] to a cylinder of finite radius, we note that the
solution to the Debye–Hückel equation involves two constants of integration:
one multiplicative and one additive. We determine the multiplicative constant
(x) from the boundary condition at the cylinder surface; the (zero) additive
constant is determined by requiring that the potential vanish asymptotically.
This again gives Eq. [259] but for a nonzero cylinder radius.

To obtain the apparent DH potential within the PGC approximation
that asymptotically matches the cylindrical PB profile, we simply replace xa

in Eq. [259] with an apparent linear charge density xADH obtained from
Eq. [322]:

xADH ¼ 2pLBasADH

e0
½365�

The ADH//PGC potential is then simply

fADHðrÞ ¼
2 xADH

kDa

K0ðkDrÞ
K1ðkDaÞ ½366�

We note that this apparent potential should not be expected to agree perfectly
with the asymptotic cylindrical PB potential due to the approximations
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involved in solving Eq. [315] and, more importantly, because the additivity of
nonlinear spherical corrections will not reproduce exact nonlinear cylindrical
behavior. The reliability limit on the linear charge density is, from Eq. [325],
equivalent to the lower bound:

jxaj >
p

2zkDa
½367�

In cases where Eq. [367] fails to hold, the inequality can be inverted to provide
a distance r ¼ p=j2zkDxaj beyond which the ADH potential would be expected
to be a good approximation to the actual PB profile. The apparent linear
charge density of Eqs. [322] and [365] can be combined with the asymptotic
DH potential of Eq. [366] to give the electrostatic interaction energy per unit
length between two charged cylinders.348 In Figure 26, the surface charge
densities studied (�0:002 e0/Å2 and �0:01 e0/Å2) correspond to linear charge
densities of jxaj ¼ 0:9 and 4.5, respectively. The reliability of the asymptotic fit
according to Eq. [367] is assured for both since jxaj > 0:7, while the upper-
bound condition [327] implies that the ADH//PGC equation is justified for
jxaj < 0:8. The latter range defines the linear region of the curves (as it did
for the spherical case shown in Fig. 35). The joining of the upper and lower
bounds occurs because, as with the charged sphere, we have kDCa ¼ 2:6
(see Fig. 37 ).

As shown here, the DH potential for an extended charge distribution can
be obtained by integrating over a point charge representation of the extended
distribution and applying the appropriate boundary conditions.348–352 The
DH solution can then be modified to provide an approximate nonlinear result
by introducing apparent charges or charge densities, a procedure that can be
applied to existing analytical expressions such as those describing the interac-
tion of two charged cylinders348 or disks.260 This ‘‘first-order approximation’’
to the PB solution, which is often quite accurate, can also serve as a useful
guess in general-purpose programs. In simulations of supercoiled DNA, the
polyelectrolyte is often modeled as a linear array of charged beads in which
the spherical DH potential with modified charges is combined with a contact
or excluded volume term.353–356 Most of these investigations determine the
modified charges by a fitting procedure that in essence reproduces the apparent
charge densities of the NLDH approximation. The ADH potential can also be
used in Monte Carlo or molecular dynamics simulations to model the interac-
tion between charged polymer segments in an electrolyte353,357–360 and in the
interaction between a long polymer and a charged spherical macroion.361

A Finite Arc of Charge As a second example of using the point ion DH
solution as a Green function, consider a finite, curved line (arc) of charge of
length L and radius of curvature C, as shown in Fig. 41. With appropriately
chosen parameters, this models a small piece of extended, but slightly curved,

280 The Poisson–Boltzmann Equation



DNA. Choosing r as the perpendicular distance from the center and in the
plane of the arc and integrating over the length of charge using Eq. [307],
with r defined as positive for the concave side (to the right in Fig. 41) and nega-
tive for the convex side (to the left), we obtain the following integral for the
potential

fðrÞ ¼ 4xADHC

ðL=2C

0

exp �kD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4CjC � rj sin2 y

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4CjC � rj sin2 y

q dy ½368�

after inserting the apparent linear charge density for the actual charge density.
For a straight-line charge we take the limit C ! 1 in Eq. [368]. In the absence
of ions (kD ! 0), Eq. [368] expresses the Coulomb potential of a charged arc
as an elliptic integral of the first kind. Figure 42 shows the ratio of the DH
potential of Eq. [368] for a finite, straight (C ¼ 1) line charge to that of the
infinite line charge of Eq. [364] for several different lengths (L ¼ 5, 10, 20,
50 Å) as a function of the perpendicular distance from the center of the line
charge; a Debye length of RD ¼ 7:6 Å was chosen to mimic typical electrolyte
conditions (0.1 M monovalent and 0.02 M divalent salts). As seen in the fig-
ure, a line charge of 50 Å in length is essentially indistinguishable from an infi-
nite line charge since end effects are screened by the salt. A simple condition
on when end (or boundary) effects may be ignored is given below (see the
discussion following Eq. [434]) and is very nearly satisfied in this case

Figure 41 Diagram indicating a line
arc of charge of length L with linear
charge density x with a radius of
curvature C whose center is placed
at the origin; r is the perpendicular
distance from the center of the arc
and is positive to the right (or
concave) side and negative to the
left, s indicates a point on the arc
measured from the origin along the
arc, and y is the angle between a
vector from r to the origin and one
from r to a point s on the arc.
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(kDL=2 ¼ 3:3). The influence of end effects is much more obvious for smaller
line segments.

The effect of a curved arc is shown in Figure 43 where the same ratio as
in Figure 42 is plotted. In this case the line segment is fixed at a length of
L ¼ 50 Å but the radius of curvature of the charged segment is varied
(C ¼ 20, 50, 100 Å). Potential ratios as a function of the distance from the
arc center to the concave (þ) and convex (�) side are shown. The potential
on the convex side of the arc (to the left in Fig. 41) shows a simple monotonic
decrease as a function of distance from the arc relative to the infinite DH line
charge potential. The potential on the concave side (to the right in Fig. 41) is
more interesting. For the relatively high curvature radius of C ¼ 20 Å, the
potential relative to the infinite line charge value goes through a maximum
as the distance approaches the radius of curvature, falling off quickly as the
point is passed; this is true as well for the straighter arcs with C ¼ 50 Å and
100 Å. These maxima, however, do not show up in a plot of the potential since
the infinite DH potential falls off faster than the rise in the ratio. The infinite
line potential for a linear charge density corresponding to the double-stranded
B-form DNA (x ¼ 4:2) is also displayed in the figure (dotted–dashed line) and

Figure 42 The ratio of the Debye–Hückel potential due to a finite straight line charge
(Eq. [368], C ¼ 1) to that of an infinite line charge (Eq. [364]) as a function of the
perpendicular distance (in Å) from the center of the finite line charge for several different
lengths (L ¼ 5; 10; 20; 50 Å) listed at the right; a Debye screening constant of
kD ¼ 0:132 Å�1 was used, corresponding to 0.1 M monovalent salt and 0.02 M
divalent salt.
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shows that, for distances from the surface greater than 30 Å, the potential of
the charged arc is negligible. Equation [368], with the appropriate limits and
distance restrictions, also applies to a circular ring of charge modeling a bac-
terial plasmid of DNA. Note, however, that we have treated only a line of
charge and in reality a cylinder of finite radius, if only due to the Stern layer,
should be used. One can then approximate the nonlinear PB solution by repla-
cing the actual linear charge density x by the ADH charge density given by
Eq. [263] or [365]. This potential is also shown in Figure 43, where the appar-
ent charge density is 2.36.

Persistence Length of a Finite Line Charge As a final example using the
additivity of the DH potential, consider again the finite curved arc of charge in
Figure 41. One property of biophysical interest is the flexibility of a snippet of
DNA. Although we are treating the molecule as a line of charge (roughly based
on Gauss’ law), we can imagine this line to follow the axis of a charged

Figure 43 The ratio of the Debye–Hückel potential due to a charged arc (Eq. [368],
L ¼ 50 Å) to that of an infinite line charge (Eq. [364]) as a function of the perpendicular
distance (in Å) from the center of the arc for several different radii of curvature
(C ¼ 20; 50; 100 Å) listed at the right. The plus and minus signs on the curvature radii
indicate whether the distance is measured to the concave (þ) or convex (�) side of the
arc. For comparison the Debye–Hückel potential for an infinite line charge with linear
charge density x ¼ 4:2 corresponding to double-stranded B-DNA is shown along with
the corresponding ADH//NLDH potential for a 10 Å radius cylinder (dotted–dashed
lines); a Debye screening constant of kD ¼ 0:132 Å�1 was used, corresponding to 0.1 M
monovalent salt and 0.02 M divalent salt.
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cylinder of radius �10 Å. One would expect the low-energy state of this cylin-
der to be straight, with the potential energy costs of bending due to the
mechanical analogies of flexion and torsion and with the inclusion of electro-
static repulsion between charged line segments. Let s be a coordinate measur-
ing the distance from the center of the arc along the contour and u(s) be a unit
vector tangent to the arc at s. Because a straight line corresponds to a constant
value of u(s), or u0ðsÞ ¼ 0 and hence u 
 u0 ¼ 0, an expansion of the bending
energy (in units of kBT) in uðsÞ must be quadratic in u0ðsÞ. Thus we write362

Ubend ¼ P

2

ðL=2

�L=2

quðsÞ
qs

� �2

ds þ 
 
 


¼ PL

2C2
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 ½369�

where P is the persistence length and C ¼ ju0ðsÞj�1 is the (constant) radius of
curvature. The persistence length is a measure of the stiffness of a cylinder; for
double-stranded DNA, experimental data give P � 500 Å.363 The total persis-
tence length can be expressed as the sum of mechanical and electrostatic per-
sistence lengths (P ¼ Pm þ Pe);

364 here we estimate the (static) coulombic
contribution based on a Debye–Hückel interaction between charged line seg-
ments. The electrostatic energy of a charged arc is given by63

bWel �
1

2

ð
rðxÞfðxÞdx ¼ xADH

2

ðL=2

�L=2

fðC; sÞds ½370�

again using the apparent linear charge density. The factor of 1
2 corrects for

double counting and the same expression can also be obtained through a char-
ging procedure.365 Calculating the change in electrostatic energy on bending
and setting this equal to the bending energy of Eq. [369] gives the formula
for the electrostatic persistence length:

Pe ¼
xADH

L
lim

C!1
C2

ðL=2

�L=2

fðC; sÞ � fð1; sÞð Þds

" #
½371�

For a cylinder of finite radius, fðC; sÞ denotes the average potential over the
surface at constant s.366,367 If no analytical expression for the potential is
available, the persistence length must be determined from Eq. [371] numeri-
cally.368 We calculate the potential at any point s along the arc due to the
remainder of the arc by integrating the Debye–Hückel potential for a point
charge:

fðC; sÞ ¼ xADH

LB

ðL=2

�L=2

exp �2kDC sin js0�sj
2C

�  h i
2C sin js0�sj

2C

�  ds0 ½372�
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Inserting this potential into Eq. [371], expanding in inverse powers of C, and
evaluating the integrals gives the electrostatic persistence length of a charged
rod (of negligible radius):364,369

Pe ¼
x2

ADH

4k2
DLB

1 � 8

3kDL
þ e�kDL

3kDL
ð8 þ 5kDL þ k2

DL2Þ
 �

½373�

For most systems with high ionic strength, which are also the conditions under
which the Debye–Hückel potential is applicable, the limiting value for long
rods holds:364,370

lim
kDL!1

Pe ¼
x2

ADH

4k2
DLB

½374�

Nguyen and Shklovskii have compared Monte Carlo calculations of the persis-
tence length of long polyelectrolytes in ionic solution and found that the the-
ory described above works well.371

In Figure 44, the ratio of the electrostatic persistence length for a finite
line charge (Eq. [373]) to that of an infinite line charge (Eq. [374]) is shown as a
function of the Debye screening constant for several values of the line length L.

Figure 44 The ratio of the electrostatic persistence length of a finite line of charge
(Eq. [373]) to that of an infinite line charge (Eq. [374]) as a function of the Debye
screening constant kD (in Å�1); the curves correspond to difference values of the length
of the line (L ¼ 100; 200; 500; 1000 Å).
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The decrease in the persistence length for shorter line segments is obvious
and more pronounced for lower ionic strengths where end effects are larger.
Figure 45 displays the electrostatic persistence length for a charged line with
linear charge density x ¼ 4:2 of different lengths as a function of the Debye
screening constant according to Eq. [373]. The persistence length of an infinite
line charge is shown by the solid line and corresponds to the prefactor in
Eq. [373], or equivalently by Eq. [374]. The end effects due to a finite line
charge, while particularly noticeable for L ¼ 100 Å, as shown in Figure 44,
are not important for the common ionic strength range corresponding to
kD > 0:1 Å�1. In typical biological systems, electrostatic persistence lengths
of �50 Å for DNA are found to represent a small, but nonnegligible, con-
tribution to an overall persistence length of �500 Å. Again, as with the pre-
vious example, the actual linear charge density x can be replaced by the ADH
value given by Eq. [263] or [365] to approximate the nonlinear PB result.

Numerically, the evaluation of the electrostatic energy of a collection of
charges immersed in a high ionic strength solution (so that the Debye–Hückel
approximation applies) is a relatively straightforward sum of all the pairwise
interactions.349 Unfortunately, this OðN2Þ approach may become computa-
tionally unwieldy when applied to specific large biophysical systems such as
supercoiled DNA. To reduce the problem to OðNÞ, Fenley et al. have devised

Figure 45 The electrostatic persistence length (in Å) of a finite line of charge (Eq. [373])
with linear charge density x ¼ 4:2 (B-DNA) as a function of the Debye screening
constant kD (in Å�1); the curves correspond to different values of the length of the
line (L ¼ 100; 200; 500;1 Å).
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a fast adaptive multipole algorithm for treating such systems.372–374 Also, Sun
and Walz have described a boundary element method for calculating the elec-
trostatic interaction between two arbitrarily rough charged surfaces or parti-
cles subject to Debye–Hückel interactions.375 Edwards and co-workers have
used the DH solution as a Green function in obtaining the electrostatic poten-
tial for a model of double-stranded B-DNA in which the phosphate charges of
each strand are helically wrapped along a cylinder.376,377 Beard and Schlick
have developed a procedure for asymptotically reproducing nonlinear PB
potential distributions by fitting apparent Debye–Hückel charges378 and repre-
sents the numerical generalization of relating apparent and actual charge
densities given by Eq. [312] or [318]. Tsao has used DH additivity to study
the interaction of an arbitrary distribution of fixed charges with a linearly
regulated charged plate.379

Related Spherical Calculations
In a very early application of the DH equation to a system with biophy-

sical significance, Kirkwood represented a molecule as a collection of point
charges embedded in a dielectric sphere surrounded by mobile electrolyte
ions and then calculated the electrostatic energy of the molecule by summing
over the DH contribution of each embedded charge.380 That work prompted
Lenhoff to apply the DH equation to obtain the potential inside and outside
a rippled sphere with a charge at its center.381 Alexander et al.,382 Gisler
et al.,383 and Stevens et al.384 have investigated the relationship between the
apparent charge and added salt concentration. In extensions of Kirkwood’s
approach, Phillies385 and McClurg and Zukoski386 have used the DH equation
to analytically estimate the electrostatic energy for two interacting arbitrary
distributions of point charges. Reiner and Radke have investigated the effect
of charge regulation at the surface of spherical particles on the interaction
energy.387 Several studies by Hsu and Kuo on the double layer of ion-
penetrable membranes apply to spherical particles.146–149 Hsu and Liu have
obtained series solutions for a charged spheroidal surface assuming the
Debye–Hückel equation in the presence of an electrolyte with a mixed bound-
ary condition (BC3)388 and assuming the Poisson–Boltzmann equation in the
presence of a z : z electrolyte with either a fixed surface potential or charge
density.389 Yoon has presented an elegant iterative integral equation approach
for solving the spherical PB equation.390

Evans and Ninham have compared the electrostatic free energy of sphe-
rical micelles calculated using Eq. [151] with experiment and found good
agreement.170 Knott and Ford have solved the DH equation for a system of
charged spherical macroions in the presence of point counterions but with
no added salt.391 Zydney392 has used the DH equation to investigate the elec-
trophoretic motion of a charged sphere inside a charged spherical cavity, and
Tsao and Sheng393 have investigated the electrostatic free energy for a similar
system. Lopez-Garcia, Horno and Grosse have solved the PB equation inside a
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spherical cavity for a general electrolyte.394 Yuet and Blankschtein have used
the PB equation to derive approximate potentials for the inner and outer sur-
faces of charged spherical vesicles in a z : z electrolyte,395 and von Grünberg
has solved the PB equation in the ‘‘eccentric cell model’’ in which a macroion
is placed off-center in a spherical cell containing point counterions.396 Neto et
al. have used the spherical PB equation to estimate the pKa of monoprotonic
acid as a function of ionic strength.397

Hsu and co-workers have investigated the interaction between ion-
penetrable spheres,398,399 ion-penetrable spheroids,400 and charge-regulated
spheres401 within the Debye–Hückel approximation. Ohshima has also stu-
died ion-penetrable spheres337 as well as the effect of including polarization
terms on induced surface charges for interacting DH spheres.402 Lopez-Garcia,
Grosse and Horno have solved the PB equation for a spherical charge-
permeable membrane surrounding an impermeable charged core.403 Numerical
calculations of the two-sphere PB equation are usually performed in bispherical
coordinates.347 In early work, Hoskin404 and later McCartney and Levine405

and Ledbetter, Croxton and McQuarrie331 investigated the interaction of
identical spheres, while more recently Ring406 and Stankovich and Carnie407

studied nonidentical spheres. Others408–410 have presented numerical proce-
dures applicable to interacting spheres with different radii and surface poten-
tials, and Sengupta and Papadopoulos have numerically solved the PB
equation for a sphere within a spherical cavity.411 If only the interaction force
and/or interaction potential are needed, and not the PB potential, boundary-
based methods can be more efficient. Stankovich and Carnie have used the
boundary Galerkin method to study the effect of nonuniform surface poten-
tials on interacting DH spheres and, in particular, the torque involved, a ques-
tion of considerable relevance to the mutual docking of macromolecules.412

Mixed-Geometry Studies

More complicated than studies of like–like particle interactions are
investigations of the interaction between particles with dissimilar geometries.
These have several purposes: to compare results with simpler systems in order
to determine what physical principles guide both, to discover differences
between the two that might illustrate new phenomena, and to serve as substi-
tutes for interactions among even more complex biological systems. The forces
involved in complicated biological systems can now be measured with atomic
force microscopy and used to decipher the nature of polyelectrolyte interac-
tions.413–419

Bulk Model: Sphere–Plane Interactions
The Gouy–Chapman equation treating the interaction between point

electrolyte ions and a charged planar surface is inherently a mean-field
approach. If we let one of the counterions assume a finite radius much larger
than its neighbors, we now have a three-body interaction involving the
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surface, the finite charged sphere, and the electrolyte. This system not only
mimics biological interactions involving extended bodies such as proteins
near a cell membrane but also can be used to investigate the approximations
assumed by the mean-field approach. While much of the work in this area is of
a statistical-mechanical nature and outside the range of this review, some of it
has led to modified versions of standard Poisson–Boltzmann theory,420 relying
on Monte Carlo calculations to test and compare suggested theories, as dis-
cussed briefly in a later section.

Following the derivation of the sphere–sphere interaction, we sketch that
for a sphere interacting with a charged plane. Putting the dividing plane at
H0/2, where H0 is the closest sphere–plane distance, and with the charged
plane situated at x ¼ 0, we assume a potential of the form

fPBðrÞ ¼
4

z
tanh�1 A1e�kDx þ A2

e�kDðr2�aÞ

r2=a

 �
½375�

As in the sphere–sphere case, we may obtain the coefficients from the general
expression of Eq. [202] or, more simply, proceed from the sphere–sphere case
and set g1 ¼ 1 and d1 ¼ e1 ¼ expð�kDH0Þ. This gives the leading term of the
force

bFðH0Þ ¼
16kDa

LBz2
A1ðH0ÞA2ðH0Þe�kDH0 ½376�

where the leading term of the interaction potential is

bVPBðH0Þ ¼
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8>>><
>>>:
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where ŝs1 (for d1 ¼ �1 ¼ 1) and ŝs2 are given by Eq. [205] and we have used the
small-separation extension suggested by the corresponding HHF solution for
large kDa (found by letting a1 ! 1 in Eq. [347]).

Sphere–plane interactions are often treated as a special case of sphere–
sphere interactions in which the radius of one sphere is allowed to approach
infinity with image charges induced in the planar dielectric boundary being a
primary concern. Ohshima has extended sphere–sphere studies to look at the
interaction of spheres with an ion-penetrable membrane within the Debye–
Hückel approximation.337,421 Carnie and co-workers have used both DH
and PB sphere–plane calculations to test the validity of the Derjaguin/HHF
approximation for these systems.407,422 Stahlberg, Appelgren and Jönsson
have performed a detailed analysis of sphere–plane interactions within the
DH approximation to assess the importance of neglect of ion correlation in
Gouy–Chapman theory.423 Jönsson and Stahlberg have also applied Derjaguin
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theory to model ion-exchange chromatography of proteins.424 Grant and
Saville used a boundary element method to investigate the Debye–Hückel
interaction between a nonuniformly charged sphere and a plane.425 Bhatta-
charjee and Elimelech have extended Derjaguin’s analytical ideas to propose
a surface element integration algorithm for calculating the interaction between
particles of arbitrary shape and a charged plane.426 Hsu and Liu have pro-
posed a numerical boundary integral procedure that can be applied to any
type of interacting geometries and explicitly considered sphere–sphere,
sphere–plane, sphere–planar slit, sphere–spherical pore, and sphere–cylindrical
pore systems.427,428 Von Grünberg and Mbamala have used the PB cylindrical
cell model to confine a charged sphere near a dielectric boundary and com-
pared the results with Monte Carlo calculations.429 More recently, sphere-
plane investigations have been extended to systems with two or more spheres.
Within the DH approximation, Goulding and Hansen have derived an effec-
tive pair potential between two charged spheres in the presence of a neutral or
charged wall,430,431 and Sader and Chan have considered the interaction of
two spheres confined between two parallel charged plates.432

Bulk Model: Other Mixed-Geometry Interactions
In the tutorial presented in this chapter, we have given expressions for

the interaction potential between two planes (Eq. [133]), two cylinders
(Eq. [285]), and two spheres (Eq. [352]) as well as that between a plane and
a sphere (Eq. [347]). The two remaining cases, those for a plane and a cylinder
and for a sphere and a cylinder, are easily found by following the same proce-
dure involving the NLDH approximation used in the cases described above.

In related work, Mark, Kaplan and Williams Jr. calculated the interac-
tion energy between an ion-penetrable sphere and an ion-penetrable rod with-
in the DH approximation.433 Gu used the Derjaguin/HHF approach to find
the interaction potential for sphere–plate and sphere–cylinder systems.434

Hsu and Kao calculated the free energy for a spheroidal particle within a sphe-
rical cavity.435 Ospeck and Fraden solved the PB equation numerically for two
parallel like-charged cylinders confined between two parallel charged
plates.436 Schiessel studied the bending of charged flexible planes due to near-
by charged cylindrical macroions,437 and Menes, Gronbech-Jensen, and Pincus
have used the Debye–Hückel equation to calculate the interaction between
two charged cylinders adsorbed onto a surface.352

NUMERICAL SOLUTIONS TO THE
POISSON–BOLTZMANN EQUATION

One-Dimensional Geometries

For more general applications involving electrolyte ions of various
charges and sizes or for mixed boundary conditions in which the surface
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potential and charge density are coupled, the one-dimensional PB equation
must be solved numerically. The method of choice is usually the Runge–Kutta
procedure,438 but a simple finite-element approach is discussed later. For a
fixed surface potential, one guesses an initial slope (field), typically based on
a known nonlinear or Debye–Hückel solution, and steps out to some predeter-
mined distance from the surface that can be considered to represent the bulk
electrolyte solution (i.e., several Debye lengths). If the potential diverges
before this distance is reached or if the potential changes sign (the solution
must be monotonic for a single surface), one starts again with a slightly differ-
ent guess for the initial slope. For most biopolyelectrolytes the surface charge
density is known, so the abovementioned procedure is still followed but with
an initial guess for the surface potential and iterated until convergence. Under
some circumstances, neither the surface charge density nor the surface poten-
tial are known, only a coupled relation. A procedure similar to the above
would be used in conjunction with this relation.230

Finite-Difference/Finite-Element Algorithms

While simple one-dimensional models often suffice for qualitative and
sometimes semiquantitative prediction, more accurate results require that an
all-atom model of the polyelectrolyte be used. One might also want to use
more realistic representations of the electrolyte ions and solvent by including
(at least) finite ion radii and a spatially dependent dielectric coefficient. Mod-
ern computational approaches to solving the PB equation, which have been
summarized by Beck39 and to which the reader is referred for more detail,
can incorporate all of these imporvements. Most general-purpose programs
constructed to solve the Poisson–Boltzmann equation for an arbitrary poly-
electrolyte are based on a discrete representation of Eqs. [3] and [4]. Whether
the method is termed finite-difference or finite-element basically depends on
the particular technique used to solve the discretized equations and the inter-
pretation as to whether the equations are solved ‘‘at points’’ or ‘‘within
elements,’’ a distinction that can be traced to using either a differential or
an integral (i.e., variational) equation.39 Finite-difference methods usually
write the discretized (differential) equation in terms of matrices and use linear
algebra algorithms for convergence, a procedure that takes advantage of mul-
tilevel grids with constant (usually cubic) spacing.34,41,43,439–442 Since iteration
in finite-difference algorithms necessarily involves only nearest-neighbor grid-
points, long-range deviations, and particularly oscillations, from the final solu-
tion tend to persist. The method around this convergence problem is to
alternate iterations between coarse and fine grids. A disadvantage to fixed spa-
cing, multigrid finite-difference methods is that a very large number of grid-
points are required to accurately discretize the region where most of the
‘‘action’’ takes place, that is, at the biomolecular surface.
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Finite-element approaches, often based on Galerkin’s method of finding
an extremum of a variational integral, can take advantage of nonuniform,
adaptive meshes that conform to physical boundaries and have long been pop-
ular in hydrodynamic and structural engineering applications.443–449 Unfortu-
nately, the use of variable grid spacing tends to lead to large meshes without
the advantage of multilevel convergence optimization. This situation led natu-
rally to a combination of the two methods: adaptive finite-element gridding
within a multilevel approach that can take advantage of the most recent devel-
opments in parallel computing.44,45,446 This technique has been used to obtain
the solution of the Debye–Hückel equation for several extremely large biomo-
lecular systems (up to one million atoms).46,47

As with the analytical solutions presented above, we consider in detail
the PB cell model and take the bulk model limit at the end. We begin the deri-
vation of the finite-element PB algorithm by writing the mobile charge density
of Eq. [4] as an explicit functional of the potential:

rmobile fðrÞ½ � ¼ e0A0

XI

i¼ 0

cR
i zie

�zifðrÞþ�gðrÞ ½378�

For further reference below, we have also included any nonelectrostatic con-
tributions to the potential of mean force in the form of an activity coefficient:
�gðrÞ ¼ gðrÞ � gðRÞ. Using Eq. [378] with Eq. [3] gives

r 
 ZðrÞ 
 rfðrÞ ¼ � 4pLBe�1
0 ½rfixedðrÞ þ rmobile½fðrÞ�� ½379�

where ZðrÞ ¼ eðrÞ=e0 is the ratio of the local dielectric coefficient to a reference
value.

Discretization
To solve Eq. [379] for a general polyelectrolyte–electrolyte system, we

discretize the system into a grid consisting of either a lattice of points or a
set of small volume elements. It is assumed that any nonmobile system charges
are contained within the grid and are not external to it; this condition may
be relaxed as illustrated in the one-dimensional version of the algorithm
presented below. Any method of subdivision may be used, resulting, for
example, in either an array of periodically spaced points41,43 or a higher
density of Voronoi polyhedral elements near the polyelectrolyte
surface.39,44,45,445,446,450–452 Each lattice point or finite element in the system
must be assigned to represent either part of the polyelectrolyte or its ionic
environment. To account for a finite distance of closest approach to the poly-
electrolyte surface by ions of varying size, a rolling-sphere algorithm may be
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used to lay down successive layers of environmental points or elements, keep-
ing track of which layers are accessible by which ions.453,454

Initialization
After the system has been discretized, an initial assignment of charges,

dielectric coefficient, and potential for each grid position must be made. In an
all-atom representation, the polyelectrolyte is represented by a collection of fixed
point charges within a region of constant, but possibly spatially dependent,
dielectric coefficient from which mobile electrolyte ions in the environment
are excluded. The polyelectrolyte charge is usually mapped, on an atom-by-
atom basis, onto the grid using the van der Waals radius of each atom.455

Dielectric coefficients in the range 4–20 are often chosen for grid elements par-
titioning the polyelectrolyte,456 while the bulk water value of 78–80 is used for
the ionic environment, although the best method for assigning dielectric coef-
ficients to the interior of a biomolecule is still being debated,34,457–461 and,
indeed, an accurate procedure for all cases may not be possible.462–464 An
initial guess for the potential at each grid position is made. Basing this guess
on additivity of the point charge Debye–Hückel solution is a convenient and
qualitative one that is often used. (Results presented in this tutorial suggest
using the apparent DH potential instead.) For grid positions labeled by index
j and fixed polyelectrolyte charges by index n, Eq. [307] gives

finitðr jÞ ¼ LB

XN
n¼1

qne�kDjr j�r nj

Zjjr j � r nj
½380�

where one could substitute apparent charges for the actual charges.

Iteration
Differential equation [379] can be converted into an integral representa-

tion by integrating over the jth volume element (with volume vj) to get

ð
vj

dS 
 ZðrÞ 
 rfðrÞ ¼ � 4pLBe�1
0 vj½rfixedðrjÞ þ rmobile½fðrÞ�� ½381�

The surface integral in Eq. [381] has contributions from only those grid posi-
tions k(j) sharing a common boundary with element j. Denoting fðrjÞ by fj,
jrj � rkj by rjk, the common surface area between elements j and k by Sjk, and
an average dielectric coefficient (to be defined later) by Zjk, Eq. [381] can be
written

X
kðjÞ

ZjkSjkðfk � fjÞ
rjk

¼ �4pLBe�1
0 vj rfixedðrjÞ þ rmobile½fj�

�  
½382�
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Solving Eq. [382] for fj gives the discretized version of the full Poisson–
Boltzmann equation (Eqs. [378] and [379]) applicable to non-Cartesian grids:

fj ¼
4pLBvje

�1
0 ðrfixedðrjÞ þ rmobile½fj�Þ þ

P
kð jÞ

ZjkSjkfk

rjkP
kð jÞ

ZjkSjk

rjk

½383�

Initial versions of the general-purpose PB programs treated only the Debye–
Hückel equation,40,42,43,465,466 but shortly thereafter algorithms for solving
the nonlinear PB equation in a bulk 1 : 1 electrolyte were developed.41,467

While this limits the representation of the mobile charge distribution to a
sinh(j) term, use of an effective valence according to Eq. [69] allows more
general electrolytes to be treated (or at least approximated) within these pro-
grams. Some later releases now allow inclusion of a mixed 2 : 1 salt.468 The
development of Eq. [383] contains an inherent inaccuracy due to the self-
energy of the fixed charge distribution, which approaches infinity as a
gridpoint approaches a fixed charge. However, Zhou et al. have shown how
a minor modification in the derivation of Eq. [383] can be used to remove this
self energy, thus improving the accuracy of the method.469 Finally, we point
out that these programs assume a bulk electrolyte so that concentrations enter-
ing into the mobile charge densities are bulk concentrations; cell model calcu-
lations, in which ion concentrations at the outer cell boundary must either be
known or continually updated (which is equivalent to setting the potential
gauge), may not be accurate without explicitly modifying the code.

Using an initial guess for the potentials such as that given by Eq. [380],
we can iterate Eq. [383] until convergence based on some appropriate criter-
ion; the average of the potential at positions closest to the polyelectrolyte sur-
face would be one such choice. For the cell model, the ion concentrations at
the outer boundary cR

i in Eq. [383] must be updated during each iteration. This
is done by calculating the concentration of each species i at each position j
according to

ciðrjÞ ¼
nie

�zifj

A0

P
k vke�zifk

½384�

where the summation in the denominator ‘‘renormalizes’’ the initially assigned
concentrations (in the numerator) to the correct number of ions. The three
terms in the numerator of Eq. [383] propagate information about fixed poly-
electrolyte charges, mobile electrolyte charges in the environment, and the
gauge condition on the potential, respectively. Since each grid position is desig-
nated as either polyelectrolyte or environment, only one term of the first two
applies in any given element.
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The finite difference approach of direct iteration of Eq. [383] was first
used by Warwicker and Watson to study the electrostatic potential inside
the active site of the enzyme phosphoglycerate mutase.465 Shortly thereafter,
Pack and co-workers applied the method to study the relationship between
counterion distributions and different conformations of double-stranded
DNA.453,470–473 Convergence in this standard approach can be accelerated
in one of two ways: (1) by updating the potential array immediately
(Gauss–Seidel iteration), rather than storing the potential values and updating
the array only after the entire space has been iterated ( Jacobi iteration); and
(2) by estimating the potential change during an iteration based on previous
changes (successive overrelaxation).39,438 Unfortunately, the convergence
rate for direct iteration increases as the number of gridpoints and so is imprac-
tical for all except the simplest systems. It is, however, one of the easiest meth-
ods to program and for one-dimensional systems is entirely adequate (see
discussion below). More recent finite-difference techniques for solving the
PB equation take advantage of modern multigrid methods in which the PB
equation is first solved on a fine grid, then solved on a coarser grid, and finally
the coarse-grid solution is used to improve the fine-grid solution.39,438 This
technique is particularly amenable to treatment using a cubic grid.474 Combin-
ing the multigrid method with a coarse/fine-grid predictor–corrector scheme
based on the conjugate gradient method provides a robust and efficient algo-
rithm for solving the nonlinear PB equation under a variety of conditions.
Similar routines have also been introduced into newer finite-element
approaches.44–46,446

Variable-Solvent Dielectric Coefficient
In Eq. [383] the average dielectric coefficient between two neighboring

elements is often taken as the inverse of the arithmetic mean of the inverses:475

Zjk ¼
ZjZk

aZj þ ð1 � aÞZk

½385�

for an element boundary offset by a fraction a with respect to the element cen-
ters, implying that adjacent elements act as capacitors in series. Other methods
of mapping the dielectric coefficient have also been presented.476,477 If one
wants to include solvent dielectric changes due to the electric field of the poly-
electrolyte and/or local ion concentration, the approach of Lamm and Pack478

can be used (see also Warwicker466). On the basis of Booth’s work,479,480 the
field-dependent dielectric coefficient can be written as88

Zj ¼ 0:023 þ ð1 � 0:023ÞLð2:26f0
jÞ ½386�

where f0
j indicates the reduced electric field strength at the jth grid element (in

units of Å�1), and LðxÞ ¼ 3½cothðxÞ � 1=x�=x. A larger effect on the solvent
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dielectric coefficient is due to local ion concentrations, which, for sodium
cations, can be calculated from88

Zj ¼
1 � yj þ 3yjZcat=2

1 þ yj=2
½387�

where

yj ¼
cNaðrjÞ

cNaðrjÞ þ cmax
½388�

Zcat � 0:051, and cmax � 11:2 M is the maximum concentration for sodium
ions modeled as 1.4-Å spheres and solvated by 4.6 water molecules. Equation
[387] is a special case, for Zcat � 1, of Maxwell’s formula for a heterogeneous
mixture of dielectric spheres;481 Maxwell’s result was later extended by
Rayleigh,482 who sometimes gets the credit.483,484 If magnesium counterions
are also present, then cmax � 9:2 M for this contribution, with the two sepa-
rate Naþ and Mg2þ Z values multiplied together to give the total decrement.
The anion (i.e., coion) contribution can also be calculated, but near a posi-
tively charged surface it is generally small enough to be neglected. If both
Eqs. [386] and [387] are used, they can be multiplied together to yield the
combined effect. (It is actually more legitimate to replace the bulk factor repre-
sented by unity in Eq. [386] by the value obtained in Eq. [387], but the effect is
small.) One can also include a small geometric contribution that takes into
account the restricted rotational motion of water molecules in contact with
a surface.88 Except for narrow cavities, this effect is much smaller than those
due to a local electric field and to ions.

The effect of a variable local dielectric coefficient based on Eqs. [385]–
[388] is shown in Figures 46–48. In Figure 46, the self-consistently determined
dielectric coefficient profiles for a charged plane, cylinder, and sphere of sur-
face charge density sa ¼ �0:01 e0/Å2 in the presence of a bulk 0.05 M mono-
valent electrolyte are shown. In all cases the bulk dielectric value is reached
within about three water layers of the surface (�5 Å) but the dielectric decre-
ment close to the surface is large. The effect is more pronounced for a charged
plane owing to a higher electric field and greater ion concentration at the sur-
face. The standard PB (constant e) potential profiles as well as those obtained
by including a variable dielectric coefficient for these same systems are shown
in Figure 47. It is seen that little difference exists between the two profiles (in
all cases, the value of the surface potential for the variable dielectric coefficient
case is slightly more negative). The reason for this is seen in the resulting con-
centration profiles shown in Figure 48. For the charged plane, the inclusion of
a variable dielectric coefficient leads to a considerable increase in the surface
counterion concentration, which in turn reduces the potential to near its stan-
dard PB value. Thus, if one is interested only in the surface potential, the effect
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Figure 46 The dielectric coefficient profiles calculated from Eqs. [385]–[388] for a
plane (solid line), cylinder of radius 10 Å (dashed line), and sphere of radius 20 Å
(dotted line) with a surface charge density of sa ¼ �0:01 e0/Å2 in the presence of a bulk
0.05 M 1 : 1 electrolyte.

Figure 47 The potential profiles for the systems of Figure 46 with (circles) and without
(no circles) the local dielectric coefficient correction.
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of a variable dielectric coefficient is not large;466 however, if one requires a mea-
sure of surface counterion concentrations, then the effect can be quite noticeable.

One-Dimensional Finite-Difference Algorithm
As a simple example, we repeat the steps leading to Eq. [383] but with

three changes: (1) we treat the radial d-dimensional PB equation, (2) we con-
sider the cell model with the derivative of the potential specified at the bound-
aries, and (3) there are no fixed charges. Dividing the region a < R into N
equal segments with a gridpoint placed at the center of each segment, we
obtain three equations:

f1 ¼ �Z1f
0
aad�1�þ Z12ðr1 þ�=2Þd�1f2 þ 4pLBe�1

0 r½f1�r d�1
1 �2

Z12ðr1 þ�=2Þd�1

fj ¼
Zj�1;jðrj ��=2Þd�1fj�1 þ Zj;jþ1ðrj þ�=2Þd�1fjþ1 þ 4pLBe�1

0 r½fj�r d�1
j �2

Zj�1;jðrj ��=2Þd�1 þ Zj;jþ1ðrj þ�=2Þd�1

fN ¼
ZNf

0
RRd�1�þ ZN�1;NðrN ��=2Þd�1fN�1 þ 4pLBe�1

0 r½fN�r d�1
N �2

ZN�1;NðrN ��=2Þd�1

½389�

Figure 48 The cation concentration profiles for the systems of Figure 46 with (circles)
and without (no circles) the local dielectric coefficient correction.
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where

� ¼ R � a

N
; r½fj� ¼ e0A0

XI

i¼ 0

cR
i zie

�zifjþ�gj

Zj;jþ1 ¼
2ZjZjþ1

Zj þ Zjþ1

; cR
i ¼ nie

�zifN

A0�
PN
j¼ 1

rd�1
j e�zifj

½390�

and f0
a;f

0
R are known potential derivatives (electrostatic fields) at the cell

boundaries. Although a fixed stepsize has been found sufficient for all exam-
ples in this tutorial, one could easily incorporate a variable stepsize into
Eq. [389] based on the known exponential decay of the potential,485 and
one might speed up the algorithm somewhat by introducing an iterative
scheme based on the linearized solution.486 For most biological systems, the
potential (and hence Zj and rj) can be initialized using Eq. [57] for the planar
case or Eq. [152] for the cylindrical (d ¼ 2) and spherical (d ¼ 3) cases, where
z ¼ ze is the effective valence. For the cell model, ion concentrations cR

i at the
outer boundary must be updated. For a single biomolecule in a bulk electro-
lyte, these concentrations are replaced by bulk ion concentrations cB

i and an
outer-boundary distance R is chosen sufficiently far from the inner boundary
at a such that the field at R is negligible. As discussed below (see Eq. [434]), it
is sufficient to choose R such that kDðR � aÞ > 5.

The one-dimensional algorithm of Eq. [389] has been used throughout
this tutorial to obtain ‘‘exact’’ data for comparison with approximate results.
We illustrate its utility here in a different way. In Figure 49, the potential
(lower frame) and counterion concentration (upper frame) for a spherical
micelle of radius a ¼ 20 Å and surface charge density sa ¼ �0:01 e0=Å2 in
the presence of a 0.1 M 1 : 1 electrolyte are shown by the solid lines. We
can model a vesicle with an ion-penetrable membrane by (1) extending the
system to r ¼ 0, (2) removing the field boundary condition at r ¼ a (now
f0ð0Þ ¼ 0 by symmetry), and (3) adding a source term to the mobile charge
density in Eq. [389]

r½fj� ¼ e0A0

XI

i¼0

cR
i zie

�zifjþ�gj þ e0Qadðrj � aÞ
ð4pad�1�2Þ

where Qa ¼ �50:265 (corresponding to the charge density presented above).
The resulting potential and counterion concentration are shown in Figure 49
by the dashed lines where extrema occur at the position of the (infinitely thin)
membrane layer. A membrane of finite width can be treated by defining a
region of lower dielectric constant inside the position of the source charge.487

If the system is once again restricted to the r > a and the zero-field condition
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f0ðaÞ ¼ 0 is imposed (still in the presence of the charge at r ¼ a), we numeri-
cally recover the original (solid line) case, thus showing the equivalence of a
field boundary condition and a source charge term, as implied by Gauss’ law.

Cubic Grid–Bulk Model Finite-Difference Algorithm
The algorithm used in most general-purpose programs assumes a cubic

grid and treats a single polyelectrolyte in a bulk electrolyte solution. In this
case, Eq. [383] simplifies to

fj ¼

P
kðjÞ

Zjkfk þ 4pLBs2ðrfixedðrjÞ þ rmobile½fj�ÞP
kðjÞ

Zjk

½391�

for cubic elements of dimensions s � s � s. This method has the advantages of
not requiring the intermediate calculation of ion concentrations at the bound-
ary and allowing a simple and computationally efficient refocusing procedure
to be implemented. As a useful exercise, the PB equation can be solved analy-
tically on a cubic grid in terms of Fourier series with the series coefficients
determined by the boundary conditions on the grid.488

Figure 49 The potential (lower frame) and counterion concentration (upper frame)
profiles for a spherical micelle of radius a ¼ 20 Å and surface charge density sa ¼ �0:01
e0/Å2 in the presence of a 0.1 M 1 : 1 electrolyte. The solid lines show data for a solid
(ion-impenetrable) sphere, and the dashed lines show data for an ion-penetrable sphere.
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Alternative General-Purpose Methods

Closely related to the finite-element approach is the boundary element
method.374,489–506 In this procedure the surface of a macromolecule, which
serves to partition space into two regions with different dielectric coefficients,
is divided into small surface elements, typically using triangulation. The elec-
trostatic potential at any point in space is then written as an integral of the
induced charge density on the surface with the charge density obtained by sol-
ving a system of linear equations. The advantage of this method is that discre-
tization of the surface involves far fewer points than does discretization of
space. Although the boundary element approach is usually restricted to a sin-
gle surface and generalization of the method to a spatially variable dielectric
coefficient is likely to be difficult, the method is well suited for investigating
the hydration of biomolecules.491,495,497–499,507

A number of algorithms have been devised for solving the PB equation by
introducing a fictitious time and, through correspondence with the diffusion
equation, finding a solution by simulating a stochastic process. Ettelaie has
used a random walk method to solve the linearized PB equation508 and Hwang
and Mascagni have suggested an improved version of the method.509 In a simi-
lar vein, Zaloj and Agmon have applied a Brownian dynamics algorithm to
obtain a solution510 and Alvarez-Ramirez, Martinez and Diaz-Herrera, view-
ing the problem as one of reaction–diffusion, have extended this type of treat-
ment to the nonlinear PB equation.511

Large-Scale Applications

In the second section of this chapter, a survey of representative calcula-
tions pertinent to the particular one-dimensional system (planar, cylindrical,
or spherical) was presented. We now do the same for several topics of research
in which the systems studied are too complex to categorize as one-
dimensional, thus requiring that the calculations be performed using one of
the general-purpose algorithms discussed above. Historically, initial applica-
tions were aimed at accurately determining the electrostatic potential map
around a macromolecule and, in conjunction with this, the ion distributions.
Following this, free-energy calculations, which rely on the potential in a more
complicated way than ion concentrations, were performed. Presently, free
energies are, in turn, used to obtain binding energies and solvation energies
of large macromolecules and to determine the pKa values of ionizable sites
on proteins. Also, Poisson–Boltzmann calculations are being coupled with
other techniques such as Brownian dynamics, Monte Carlo and molecular
dynamics simulations, or quantum mechanics in an effort to reach beyond
‘‘simple’’ equilibrium electrostatics of biomolecules.
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Binding Energy
In addition to standard applications involving the calculation of electro-

static potentials and ion distributions around a single macromolecule, the
finite-difference/finite-element (FDFE) approach to solving the PB equation
can be used to determine the free energy of a single macromolecule or, more
importantly, the binding free energy of two molecules by subtracting out the
individual energies from the total. Traditionally, the free energy of a macro-
molecule was determined through a charging mechanism such as that implied
by Eq. [29], but this method is too computationally time-consuming for
FDFE approaches. Overbeek derived an expression for the total free energy
that avoids the charging process, thus making it more suitable for com-
putations.86,494,512 Considering separately the energetic, entropic and
chemical terms, he showed that (in our notation) the total Helmholtz free
energy can be written as

bAtot ¼ � 1

4pLB

ð
V

ZðrÞ
2

ðrfÞ2 þ
ðf

0

ðr2f�Þdf�
� �

dt ½392�

where the outer integral is over the system volume and ZðrÞ ¼ eðrÞ=e0 is the
ratio of the local dielectric coefficient to the reference value used in defining
LB (and kD). The first term of the volume integrand in Eq. [392] represents
the energy density of the electric field (the Maxwell stress tensor77), while
the second term gives the osmotic contribution to the free energy.78 As noted
previously, for systems in which the charged surfaces are held at constant
charge density, the chemical component of the free energy is omitted. Remov-
ing this contribution from Eq. [392], we can express the electrostatic compo-
nent of the free energy as

bAel ¼
1

4pLB

ð
V

ZðrÞ
2

ðrfÞ2 þ f ðrZðrÞrfÞ �
ðf

0

ðrZðrÞrf�Þdf�
� �

dt

¼ 1

4pLB

ð
V

1

2
f ðrZðrÞrfÞ �

ðf
0

ðrZðrÞrf�Þdf�
� �

dt

þ 1

8pLB

ð
S

ZðrÞfrf dS ½393�

where the surface integral is over the system boundaries. For a bulk z : z elec-
trolyte with fixed charges, we obtain

zrZðrÞrf ¼ k2
D sinhðzfÞ ½394�
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so the second of Eqs. [393] becomes

bAel ¼
1

4pLB

ð
V

2pLB

e0
rfixedfðrÞ þ k2

D

2z2
½zfðrÞ sinhðzfðrÞÞ þ 2



�2 coshðzfðrÞÞ�
�
dtþ 1

8pLB

ð
S

ZðrÞfrf dS ½395�

where the integrals can be evaluated numerically by obtaining the potential at
each gridpoint and summing the integrands.86 Note that the variable dielectric
coefficient appears explicitly only in the surface integral. Also, for an isolated
macromolecule in the absence of boundaries or external fields, the surface inte-
gral vanishes, while for a system with no fixed (source) charges, the first term
in the volume integral vanishes. Within linear DH theory without source
charges or dielectric variation, only the surface integrand is nonzero, leading
to bAel ¼ safa=2 for a planar surface and in agreement with Eq. [29]. To
check Eq. [395] for PB theory, we apply it to a planar surface represented as
a source charge (in place of boundary conditions) by using the Gouy–Chapman
solution of Eq. [22] to make the substitutions

ð
dt ! Area

ð1
a

dx

rfixed ¼ sadðx � aÞ ¼ kDe0

2pLBz
sinh

zfa

2

� �
dðx � aÞ

sinh
zfðxÞ

2
dx ¼ �z

2kD
f0ðxÞdx ¼ �z

2kD
df

½396�

Using two hyperbolic identities, Eq. [395] is readily integrated to yield the free
energy per unit area

bAel

Area
¼ kD

pLBz2

� �
z

2
fa sinh

zfa

2
þ 1 � cosh

zfa

2

� �
½397�

a result identical to Eq. [30]. We may also represent the surface as a boundary
condition rather than as a source charge:

1

8pLB

ð
S

frfdS ¼ � 1

2e0

ð1
a

fsdS ¼ fasa

2e0
¼ kD

4pLBz
fa sinh

zfa

2
½398�

which leads to the same result, as it must. Equation [393] is easily evaluated
for other electrolytes but for most purposes, particularly if an effective valence
is used for z, Eq. [397] will suffice.

The free energy expression of Eq. [393] can also be justified (although
not strictly derived) using the upper bound variational integral of Eq. [212].
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For a z : z electrolyte (c2 ¼ 0) in the absence of a surface charge density con-
dition but in the presence of fixed charges and treating the potential as vari-
able, we have

J½f� ¼
ð

z2

2
ðf0Þ2 þ coshðzfÞ � 1 � zrfixedf

 �
dt ½399�

where the integration is over the system volume. J½f� is now considered a func-
tional of the electrostatic potential, which is found subject to the integral being
an extremum; the resulting potential is easily shown to satisfy the appropriate
Poisson–Boltzmann equation.195 Because the system free energy is also an
extremum (actually the free energy is a minimum, while J½f� yields a maxi-
mum 195,513), Sharp and Honig identified a Poisson–Boltzmann free energy
by incorporating additive and multiplicative constants into Eq. [399].494,514

The electrostatic free energy of binding for two macromolecules A and B
can be found simply by using Eq. [393] for the separated and bound sys-
tems:30,35

�Gel ¼ GelðA þ BÞ � GelðAÞ � GelðBÞ ½400�

where we have switched to the common practice of referring to Gibbs free
energies. This method is illustrated at the bottom of Figure 50. A more accu-
rate approach can be used if the dielectric coefficients throughout the solvent

Figure 50 Diagram illustrating the thermodynamic cycle for the determination of the
binding energy of two macromolecules using the numerical solution to the Poisson–
Boltzmann equation.
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(e0) and within each macromolecule (eM) can be treated as uniform (but dif-
ferent). In this case we resort to a thermodynamic cycle indicated by steps I, II,
and III in the figure. In step I the PB approach is used to separately calculate
the free energies for molecules A and B going from a solvent with dielectric
constant e0 and Debye constant kD to a solvent with dielectric constant eM

and no electrolyte ions. In step II, since dielectric and ionic boundaries have
been removed, one can evaluate the interaction energy between A and B in
a uniform dielectric constant eM as a straightforward sum of Coulombic terms.
In step III, the AB complex is now solvated with water and ions in a single PB
calculation analogous to the reverse of step I. The choice for eM is crucial as
the free energy for steps I and III are particularly sensitive to this. The thermo-
dynamic cycle has the advantage that PB-induced errors such as discretization
tend to cancel when the free energies from steps I and III are combined. How-
ever, as with all PB-based calculations, the solvent is treated as a continuum so
the effect of individual solvent molecules, whether due to reorganization at or
expulsion from the A–B interface, is neglected. This may be particularly
important for interactions involving highly charged macromolecules such as
nucleic acids or micelles whose strong electric fields polarize water in their first
solvation shell.

A sampling of the diverse investigations based on calculating the PB
free energy are the arabinose and sulfate binding proteins,515 subtilisin–
chymotrypsin inhibitor and chymotrypsin–ovomucoid docking,516 DAPI-DNA
and lcI repressor–DNA complexes,517–520 the B–Z transition of DNA,521

drug-induced DNA unwinding,522 conformational analysis of DNA frag-
ments,523,524 electron transfer reorganization in proteins,525 heat capacity of
DNA–ligand complexes,526 binding of HIV-1 reverse transcriptase inhibi-
tors,527 Mg2þ–nucleic acid binding,528,529 hydration of neuraminidase inhibi-
tors,530 and cyclic urea–HIV protease binding.531 A general review of binding
has been presented by Gilson et al.33

Solvation Energy
The calculation of macromolecular solvation energy can be traced back

to a simple expression by Born for the electrostatic contribution from a single
charge. In the absence of electrolyte, the surface potential of a charge of radius
a and valence Qa in water is fa ¼ LBQa=a. From standard electrostatics, or
from Eq. [29], the energy of the ion is then bWwater ¼ LBQ2

a=2a, and its energy
in water with respect to its energy in vacuum is therefore b�Gel ¼
bWwater � bWvacuum. This gives Born’s formula for the solvation energy of
an ion:532

b�GBorn ¼ �L1Q2
a

2a
1 � 1

e0

� �
; L1 � be2

0 ½401�

This result has been extended to a variable dielectric coefficient by Bucher533,534

and Ehrenson.535 In the presence of a point-ion electrolyte, the Debye–
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Hückel solution [307] gives the surface potential fDHðaÞ ¼ LBQa=ð1 þ kDaÞa,
leading to the solvation energy

b�GDH ¼ �L1Q2
a

2a
1 � 1

e0ð1 þ kDaÞ

� �
½402�

This result is readily extended to electrolyte ions of finite radius b by solving
Laplace’s equation in the region between a and a þ b (which contains no ions)
subject to Eq. [402] holding at a þ b.25,380 If we also use either the NLDH or
PGC-ADH approximation (Eq. [312] or [318], respectively), we obtain an
expression that also partially corrects for nonlinear (i.e., PB) effects:

b�GKirkwood�ADH ¼ �L1Q2
a

2a
1 � Qa

e0QADH

1 þ kDb

1 þ kDða þ bÞ

 �
½403�

Alternatively, one may use the full NLDH or PGC free-energy expression
(Eq. [194] or [151]) when the DH or ADH approximation is not appropriate.

The expressions above give the solvation energy of a single ion. To apply
them to a collection of charges, we could sum over all the individual (Born)
and pairwise contributions to the free energy, but we would be restricted to
charges that are far enough apart to be treated as individually solvated. This
poses a problem for macromolecules in which the charge distribution is not
confined to individual spherical centers. We must then resort to use of a gen-
eral Poisson–Boltzmann program to calculate the difference in free energies
between the solvated and gas phases of the macroion based on Eq. [393].
An alternative to the PB procedure would be a generalized Born (GB) model
in which empirically determined ‘‘effective Born radii’’ are used within the
simple analytical descriptions given above to provide a computationally fast
yet reasonably reliable means for estimating the hydration energy of ions
and molecules.536–540 One could also use a combination of PB and GB
methods.541

In addition to the electrostatic contribution to the free energy, there are
also components from van der Waals and hydrogen bonding interactions with
the solvent as well as the energy necessary to create the solvent cavity occupied
by the macromolecule. These free-energy terms are often estimated on the
basis of molecular surface area:536,542

�GvdWþ cavity ¼
X
atoms

siSAi ½404�

where SAi is the surface area exposed to the solvent and si is an empirical
‘‘atomic solvation parameter’’ (typically 5–7 cal mol�1 Å�2) for the ith
atom.543
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pKa Calculations
The one-dimensional analytical results derived in earlier sections

assumed a constant and known surface charge density. While this condition
often holds for strongly charged surfaces like membranes and cylindrical
representations of double-stranded DNA, this is not the case for many systems
such as weakly charged proteins, and proteins are the most common systems
investigated with PB techniques. Many amino acid side chains possess atoms or
groups whose charge depends strongly on the local electrostatic potential.
These atoms or groups change their charge by donating or accepting electrons
or protons with a solvent molecule (water). Alteration of the local charge on
the surface of a protein can be a critical component in the recognition ener-
getics between the protein and a ligand, another protein, or a segment of
DNA,544,545 both in the pairing of salt bridges as well as in inducing required
conformational changes. Single strands of nucleic acids also have bases in
which an atom (typically a nitrogen) can act as a proton acceptor and thus
change the charge of the strand. This process allows a single strand to form
hydrogen bonds with one side of a double-stranded segment in a mechanism
known as Hoogsteen pairing.546 It is thus important to be able to predict the
specific charges of ionizable groups of biomolecules as a function of molecular
conformation and environmental conditions. An excellent review34 of the
calculation of biomolecular pKa changes and other pH-dependent properties
has recently (as of 2003) been published, so only the salient features of pKa

calculations are presented here.
If macromolecules were to possess only a single titratable site, protona-

tion would be akin to ‘‘simple’’ ligand binding, and the free-energy change on
protonation could be calculated from Eq. [400]. However, the presence of
multiple, often hundreds, of simultaneously protonating and deprotonating
sites changes the nature of the problem. The classic work in this field is that
of Tanford and Kirkwood25,26 in which a protein is modeled as a dielectric
sphere with embedded titratable sites.380 Since analytical restrictions do not
allow generalization of this method to arbitrary shapes, Bashford, Karplus
and others have developed a computational procedure based on the numerical
solution to the Poisson–Boltzmann equation that is applicable to all-atom
models of macromolecules.27–29,34,547–550 Their method is diagrammed in
Figure 51 as a thermodynamic cycle where the desired free-energy step for
deprotonation of a particular site in a protein, which is proportional to the
pKa value of that site (in the protein), is at the bottom. (The reverse step gives
the free energy for protonation.) A titratable site consists of those charges
that change values when one of the charges undergoes protonation, which
may be a single charge or a group of charges depending on the chemistry
involved or the approximation used. Identification of titratable sites assumes
that all charges within a site may be uniquely defined as belonging to that par-
ticular site, that is, the value of the charge changes only when its site is proton-
ated. To calculate the pKa for a site, a ‘‘model compound’’ is identified in
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which this site Q as well as other non-titratable charges qnt appear and for
which the pKa in solution is known:

2:3 pKmodel ¼ b�GelðQH ! Q0 j siteÞ ½405�

where QH and Q0 denote the titratable charge (or charges) of the site when
protonated and unprotonated, respectively, and we have ignored the free
energy of the proton disappearing into the solvent bath. Were one to choose
the gas-phase pKa for the model compound, the free energy of transferring a
proton from the gas phase into solution would also have to be taken into
account; note as well that no particular distinction need be made between
acidic or basic sites. Other background protein charges not part of the site
under consideration are designated qb. We now assume that the local electro-
static potential is small and that we can apply Debye–Hückel theory. (At this
point, due to the intimate relationship the following expressions have with
programming code, the reader is offered a warning: Proceed with caution—
notation ahead.)

Figure 51 Diagram illustrating the thermodynamic cycle for the determination of the
pKa of protonation sites on a macromolecule using the numerical solution to the
Poisson–Boltzmann equation.
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Referring to Figure 51, the electrostatic free energy for state A is found
by starting with all titrating charges Q set to zero and charging them to their
protonated values QH in the presence of other nontitratable charges qnt and qb:

bGA
elðQH j site þ proteinÞ ¼ 1

2

Xtitrating

i

QH
i fpðQH j riÞ

þ
Xnontitrating

j

qnt
j ½fpðQH j rjÞ � fpð0 j rjÞ�

þ
Xbackground

k

qb
k½fpðQH j rkÞ � fpð0 j rkÞ� ½406�

The notation fpðQH j riÞ indicates the value of the potential in the protein (vs.
that in the model compound) at position ri when the set of titrating charges are
held at their value QH; this can be calculated using a standard PB program.
The first term in Eq. [406] follows from the integral expression for the self-
energy of a charge distribution63 represented by delta functions, the second
and third terms give the change in energy of a set of charges (qnt þ qb,
which are sometimes grouped together) when an external set (Q0 ! QH) is
charged, and assumption of the validity of the linear PB equation implies addi-
tivity of all energy terms. It will not be necessary to explicitly determine the
uncharged potential values fð0 j riÞ since these terms will be seen to cancel.
Similarly, the free energies of the other three states in Figure 51 are
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The thermodynamic cycle of Figure 51 gives

2:3 pKintr ¼ 2:3 pKmodel þ b�GelðQH j site þ protein ! siteÞ
þ b�GelðQ0 j site ! site þ proteinÞ ½408�

where

�GelðQH j site þ protein ! siteÞ ¼ GB
elðQH j siteÞ � GA

elðQH j site þ proteinÞ
�GelðQ0 j site ! site þ ProteinÞ ¼ GD

el ðQ0 j site þ proteinÞ � GC
elðQ0 j siteÞ

½409�

Inserting Eqs. [406] and [407] into Eq. [409] and thence into Eq. [408] and
regrouping gives the intrinsic (see below) pKa for the titratable protein site
under consideration:

2:3 pKintr � �b�Gintr

¼ 2:3 pKmodel � bð��GBorn þ��GbackÞ ½410�

where we have identified the free-energy change contributions

b��GBorn ¼ 1

2
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i
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i ½fpðQH j riÞ � fmðQH j riÞ�

� 1
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Xtitrating
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Q0
i ½fpðQ0 j riÞ � fmðQ0 j riÞ� ½411�

and

b��Gback ¼
Xnontitrating

j

qnt
j ½fpðQH j rjÞ � fpðQ0 j rjÞ�

�
Xnontitrating

j

qnt
j ½fmðQH j rjÞ � fmðQ0 j rjÞ�

�
Xbackground

k

qb
k½fpðQH j rkÞ � fpðQ0 j rkÞ� ½412�

Equation [411] represents the free energy or pKa change due to (partially) sol-
vating the model compound in the protein, while Eq. [412] represents the
change effected by nontitrating and background charges on protonation of
the site. Each summation in Eqs. [411] and [412] is evaluated using the two
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potential maps, protonated and unprotonated, calculated with the same grid
and placement of model compound charges to minimize errors.

Equation [410] gives the equilibrium constant for the reaction

siteH Ð
Kintr

site þ H; Kintr ¼
½site�½H�
½siteH� ½413�

The probability of the site being protonated is

hxi ¼ ½siteH�
½site� þ ½siteH� ¼

e2:3ðpKintr�pHÞ

1 þ e2:3ðpKintr�pHÞ ½414�

where Eq. [413] has been used, and the average site charge is

hQi ¼ Q0 þ hxi ½415�

Equation [414] solved for pKintr (actually pKa for a single site) gives the stan-
dard Henderson–Hasselbach titration curve.34,551

In the discussion above we considered only a single titratable site. To
extend the procedure to multiple sites first requires that the pKa be calculated
for each site according to Eqs. [410]–[412]. The pKa of a site determined while
all other sites are unprotonated is called the intrinsic pKa of the site.25 We
now define a protonation vector x ¼ fx1; x2; . . . ; xNg for N sites where each
xm is either 1 or 0 depending on whether the site is protonated; x thus spans
a space of 2N vectors and xn denotes one of them. The charge on site m corre-
sponding to state n is then

Qn
m ¼ Q0

m þ xn
m ½416�

which, for sites in which protonation changes the value of multiple charges,
can be linearly apportioned among the site atoms:

Qn
m;i ¼ Q0

m;i þ xn
mðQH

m;i � Q0
m;iÞ ½417�

The average protonation state for site m is found by performing a thermody-
namic average over all 2N possible vectors

hxmi ¼
P2N

n¼1 xn
m exp 2:3

Psites
n xn

npKintr;n � pH
�  h i

P2N
n¼1 exp 2:3

Psites
n xn

npKintr;n � pH
�  h i ½418�
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which represents the generalization of Eq. [414], and the average charge of site
m is then

hQmi ¼ Q0
m þ hxmi ½419�

To go beyond the Tanford–Kirkwood model, we must take into
account the interaction of one site with other sites as they are mutually proto-
nated. One straightforward, although computationally tedious, method is
to insert the average charges obtained from Eq. [419], or its extension to
Eq. [417], back into the Poisson–Boltzmann equation and iterate the process
until self-consistency. This mean-field approach results in a set of partial
charges for the protonation vector, incorrectly implying that each site is par-
tially protonated. An improvement would be to use the pKintr values from the
first iteration to fix the charges of certain sites at their protonated or unproto-
nated values if hxmi for these sites is, say, greater than 0.95 or less than 0.05,
respectively, as in the reduced site model27 (see below).

An alternative and popular mean-field approach was proposed by
Tanford and Roxby.552 They first considered the interaction energy between
two protonated sites m and n as the difference in free energy between protonat-
ing site m while site n is protonated and protonating site m while site n is unpro-
tonated

Wm n ¼
Xtitrating

i

ðQH
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m;iÞfp;nðQH j riÞ �
Xtitrating

i

ðQH
m;i � Q0

m;iÞfp;nðQ0 j riÞ

¼
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i

ðQH
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m;iÞ½fp;nðQH j riÞ � fp;nðQ0 j riÞ� ½420�

where Wmm is defined to be zero. With this interaction energy included, the
average protonation state of site m becomes

hxmi ¼
P2N

n¼1 xn
m exp 2:3
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n xn

n pKintr;n � pH
�  

� 1
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where the far-right summation in each exponential term is the free-energy con-
tribution due to the interaction among protonated sites. Titration of the entire
molecule is described by a summation of hxmi over all sites. For a small number
of titratable sites, all protonation states can be explicitly, although perhaps
tediously, enumerated and all interaction energies determined.27,553 For
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regularly repeating structures like triple-stranded DNA, periodic approxima-
tions may be used.554 For most cases, however, an approximation to the
sum over states is necessary. Tanford and Roxby assumed that the shift in
the pKa of a particular site from its intrinsic value is approximately equal to
the sum of all interaction energies with other sites, assuming that those sites
have a charge based on their average protonation state [419]:552

2:3 pKm ¼ 2:3 pKintr;m � b
Xsites

n

hQmiWm nhQni ½422�

This strategy decouples interacting sites and the sum over protonation states is
avoided with the result that Eq. [421] is replaced by Eq. [414]:

hxmi ¼
e2:3ðpKm�pHÞ

1 þ e2:3ðpKm�pHÞ ½423�

Equations [422] and [423] are then solved to self-consistency. The Tanford–
Roxby approach works well provided that sites with similar pKa values do not
interact strongly.28 We emphasize that the preceding expressions are valid
only within linear PB theory. The extension to the nonlinear case means
that the free energy expressions of Eqs. [406], [407], and [420], obtained by
charging the site of interest, must be found instead from a nonlinear formula
such as Eq. [393]. As mentioned elsewhere in this chapter, it is also important
to assign a ‘‘reasonable’’ value to the internal protein dielectric coefficient.
Unfortunately the particular value depends in part on what system property
is being calculated.462 Although a value of ep � 2–4 is physically reasonable
on the basis of the high-frequency coefficient for organic compounds, values in
the 10–20 range often work better (but see Warwicker459). It appears that a
higher dielectric coefficient accounts in part for some assumptions implicit
in the usual PB approach, such as rigidity of protein side chains, single-site
charge assignments,456,457 and simplified solvent dielectric modeling.34,555,556

An intermediate approach that lies between the Tanford–Roxby mean-
field approximation, and explicit enumeration of all protonation states was
introduced by Bashford and Karplus27 and is called the ‘‘reduced-site approx-
imation.’’ After an initial iteration, this method selects sites that are likely to
remain fully protonated or unprotonated at the pH of interest and fixes them
as such, as described above. This generally removes a large number of proto-
nation states from consideration, reducing the total to a manageable number
that can then be treated explicitly. Alternative and similar approaches are those
of Gilson,31 Yang et al.,32 and Karshikoff,557 who partition site–site interac-
tions into exact and mean-field categories based on distance or energy. An
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alternative technique is to use a Monte Carlo algorithm to energetically sample
different protonation states.34,558–560

The importance of accurately determining pKa values of titratable sites
of proteins is supported by the large number of studies pertaining to their
calculation. In addition to method development31,32,439,456–458,548,561–567and
review articles,34,549,550 some of the systems most recently studied are noted
here: a-chymotrypsin,558 bacteriorhodopsin,29,566 myoglobin,31,566,568–570

ribonuclease T1,571 ribonuclease A,458,561 protein G,572 BPTI, 561,563 lyso-
zyme,31,439,559,561–563,566 calbindin,563,566 third-domain ovomucoid,563,565

calcium binding protein,564 b-lactamase,573 papain and caricain,574 and
b-lactoglobulin.575 The next important step after the reliable determination
of pKa is to apply the method to macromolecule stability and conformational
change and some work in this area has begun.34,547,576–579

Mixed-Method Procedures
The electrostatic free energy, while important, is only one component in

the total free energy of a system. As two molecules approach one another, the
long-range electrostatic interaction energy increases, causing forces that
induce shifts in the positions of individual atoms relative to those at infinite
separation. This situtation cannot be handled by electrostatics alone since
covalent bonding potentials now come into play. The computational treat-
ment of covalent interactions actually has a longer history than the relatively
recent development of Poisson–Boltzmann techniques. Monte Carlo and mole-
cular dynamics (MD) methods for treating molecular systems classically, that
is, according to Newtonian mechanics, in a sense began with the introduction
of the Metropolis Monte Carlo algorithm (discussed in greater detail
below)580 in the early 1950s and has continued with the development of the
molecular force field.581 Biophysical investigations using molecular dynamics
simulations have proliferated even more than those in which PB calculations
are performed. However, these explicit ball-and-stick methods all have one
serious limitation: an operationally efficient treatment of the solvent. Treating
the solvent on the same footing as the biomolecule makes it difficult to handle
large systems effectively because most of the computational power is then
spent handling the dynamics of the solvent rather than the biomolecule.
Explicit solvent also makes it difficult to obtain good free-energy estimates,
although much work is presently being done in this area. The way around
this problem is essentially to invoke McMillan–Mayer theory and average
over the solvent degrees of freedom.60,582 That is, treat the solvent, and
its ions, as a dielectric continuum with the Poisson–Boltzmann equation solved
according to boundary conditions set up by the biomolecule, which, in
turn, obeys classical Newtonian mechanics in response to the PB-determined
electrostatic field. (Strictly speaking, hydrophobic forces are not exactly
the purview of PB theory and one is certainly not limited to classical
mechanics.)
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The simplest marriage between PB theory and the classical force-field
approach is illustrated by the works of Caflisch and Karplus, in which struc-
tures from several MD trajectories of barnase were used in PB calculations to
determine the electrostatic interaction energy between various groups,583 and
that of Archontis, Simonson and Karplus, who compared the binding of aspar-
tate and asparagine to aspartyl-tRNA synthetase.584 Other studies are those of
Cheatham et al., on the stability of DNA duplexes;585 Srinivasan et al., on the
stability of RNA hairpins;586 Reyes and Kollman,587 on RNA–protein bind-
ing; Cubero et al.,588 on triple-stranded DNA formation; and Tsui and
Case,589 on trivalent cobalt binding to RNA.

A more entwined relationship is to couple the PB electrostatic potential
to a molecular dynamics simulation by periodically updating the potential dur-
ing the course of a trajectory. In a relatively early work, Sharp used this
approach to investigate solvent-induced conformational changes of alanine
dipeptide, the prototypical ‘‘protein’’ often studied during method develop-
ment.590 Later articles are those by Niedermeier and Schulten,591 on BPTI,
Gilson et al.,592 on dichloroethane and alanine dipeptide; and Grychuk,593

on lysozyme and ovomucoid third domain. In 1995, Tironi et al. proposed a
novel method, somewhat akin to the original Tanford–Kirkwood model, in
which the Debye–Hückel equation is solved analytically within a sphere
encompassing a system of point charges (representing a protein) and used to
provide the reaction field component to a standard molecular dynamics force
field.594 Similar to these combined MD-PB studies are the Monte Carlo–based
docking schemes in which PB-calculated electrostatic energies are fed into a
Metropolis Monte Carlo algorithm that samples the internal molecular
degrees of freedom. Zacharias et al. used this procedure to evaluate how l
repressor binds to DNA,595 and Caflisch, Fischer and Karplus studied the
interaction of a tetrapeptide with FK506 binding protein.596 PB theory may
also be coupled to MD simulations by using the results of pKa calculations
to determine when protonation of charged sites occurs during folding, as
would occur, for example, during the formation of triple helical nucleic acid
structures.553

Progress has also been made in the area of incorporating PB potential
calculations into quantum-mechanical structure calculations. This work is
similar to the way in which (other) polarized continuum models have been
included but with the advantage of including irregular dielectric boundaries
and ionic strength effects. Chen et al. have used a PB-DFT (density function
theory) approach,597 and Wilson, Schaldach and Bourcier have proposed a
Green function/MP2 procedure598 to study the effect of solvation on the inter-
nal geometries of several small molecules. Gogonea and Merz have developed
a combined semiempirical-PB linear scaling algorithm to calculate the solva-
tion free energies and charge transfer of a wide range of molecules,599–602

and Park and Goddard have used HF plus PB calculations to investigate the
conformational surface of short polypeptides.603,604
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Finally, we mention efforts to extend the usefulness of the Poisson–Boltz-
mann equation into the time domain. This is at its most natural in coupling the
PB-determined electrostatic potential to a Brownian dynamics algorithm
whereby one molecule, immersed in a dielectric continuum, diffuses in the
electrostatic field of a second. Diffusion is simulated by numerically propagat-
ing the molecule according to the Smoluchowski equation, typically using the
Ermak–McCammon algorithm,605 and using the PB equation to update the
electrostatic potential map due to the relative motion of the two molecules.606

The technique is typically used to calculate time-dependent rate coefficients for
diffusion-controlled bimolecular association and reaction,607–609 such as the
binding of superoxide to superoxide dismutase606 and the barnase–barstar610

and Fab-antigen complexes.611 The review by Gabdouline and Wade is parti-
cularly recommended.612

BEYOND THE POISSON–BOLTZMANN EQUATION

In this section we present in more detail the key assumptions behind the
use of the Poisson–Boltzmann equation and discuss some of the ways in which
these assumptions have been relaxed. We also give brief introductions to
several of the popular alternative approaches to standard PB theory.

Assumptions of the Poisson–Boltzmann Equation

The simplicity of the Poisson–Boltzmann approach to electrolyte solu-
tions belies several approximations used in the derivation of Eqs. [3] and
[4]. The first of two parts of the derivation begins with Maxwell’s equation
for the electric displacement DðrÞ:

r 
 DðrÞ ¼ �4prðrÞ ½424�

where rðrÞ is the local (not mean) charge density. One then performs a spatial
averaging over a macroscopically sized volume element of the system centered
at r to determine the local electric polarization (i.e., the local dipole moment
density).63 It is also assumed that the polarization is linearly related to the
local electric field, which is assumed to be small and constant over the volume
element.613 If this volume element contains polar molecules with rotational
degrees of freedom, then a further canonical averaging over the temperature-
dependent orientation between these molecules and the local electric field is
necessary. If the solvent is water, then the averaging needs to include at
most three solvation layers around a central water molecule.478 This proce-
dure results in the macroscopic Maxwell equation [3] but with the adjective
‘‘mean’’ not yet applied to the potential and charge density.
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The second part of the derivation requires that a particular ion (i.e., a
single fixed or mobile charge) be chosen and its position fixed.3,59–61 The dis-
tribution of ions of type i at position r with respect to the chosen ion is

ciðrÞ ¼ cR
i e�b½wiðrÞ�wiðRÞ� ½425�

where wiðrÞ is the potential of mean force relative to that at some position R
(typically either the outer cell boundary or in the bulk). The leading term in the
potential of mean force is expected to be the mean electrostatic potential:

bwiðrÞ ¼ zifðrÞ þ giðrÞ ½426�

where all other contributions are contained in gi(R) that can be related to an
activity coefficient.60 Neglecting this latter term, which in general is not
known exactly, removing the contribution of the chosen ion from the electro-
static potential energy of the system, and canonically averaging over the coor-
dinates of all other mobile ions gives the Poisson–Boltzmann result of Eq. [4].
One inconsistency that results from truncating Eq. [426] after the first term is
that the symmetry condition for two ions i and j is no longer obeyed

zifjðriÞ 6¼ zjfiðrjÞ ½427�

where the subscript on f indicates which ion has been specifically chosen.
While this lack of symmetry is sometimes a cause of concern when dealing
with standard electrolyte solutions where one would want to treat all ions
on an equivalent basis, a system in which a large central polyelectrolyte is sur-
rounded by many much smaller counter- and coions is already highly asym-
metric, so the lack of symmetry among the smaller ions is a minor problem.

We mention that to lowest order and at the same level of approximation,
the dielectric coefficient in Eq. [3] does not enter into the canonical averaging
if it is determined (in a self-consistent manner) by the local mean electric field
and thus is already an averaged quantity. We also note that the canonical aver-
age over mobile ions occurs over a volume much larger than that used in deter-
mining e(r) so the use of a local dielectric coefficient determined by a locally
constant electric field retains some validity. Maeda and Oosawa have shown
that the mean-field Boltzmann approximation applies in the presence of a vari-
able dielectric coefficient.614 If one is concerned about performing spatial
averages over regions too small to be accurately characterized by a continuum
model, one can then adopt the point of view that one is really performing time
averages, as suggested by Fowler and others.615–617

Debye and Hückel were concerned with treating a system of hard-sphere
cations and anions of identical size and opposite charge in an isotropic envir-
onment without explicit boundaries. By linearizing the charge density with

Beyond the Poisson–Boltzmann Equation 317



respect to the mean potential, an analytical solution for finite ions could be
obtained. An additional benefit is that symmetry condition [427] is obeyed
by their solution. Today most applications of the PB equation involve mobile
ions in the presence of a fixed polyelectrolyte (colloid, protein, micelle, nucleic
acid, or membrane) so we are concerned primarily with the accurate descrip-
tion of the electric double layer near a colloid or biomolecule that is large com-
pared to the solvated salt ions. The ionic radial distribution function used in
expressing the charge density in terms of the mean potential describes the
interaction of (point) mobile ions only with the polyelectrolyte (which neces-
sarily becomes the fixed charge in the standard derivation of the PB equation),
not with one another; the former are treated as continuous interpenetrating
charge densities. Membranes may be viewed as a spherical macroion in the
limits of infinite radius and zero concentration.

Having outlined the derivation of the Poisson–Boltzmann equation, we
now turn to a discussion of the main assumptions used, under which circum-
stances they become invalid, and how these problems might be remedied. A
comprehensive treatment of the PB equation in which most of the approxima-
tions are addressed in a detailed manner was given by Bell and Levine.420 In
their work they derived a modified PB equation which provided corrections for
most of the deficiencies in the original theory. Their results have been further
extended by Outhwaite and co-workers in an attempt to place the PB equation
on par with other more elaborate theories. We discuss here only the general-
ities of the basic DH assumptions; for specific details the reader is referred to
the Bell–Levine paper420 and others cited below.

Uniqueness of the Solution
Garrett and Poladian15 demonstrate the uniqueness of the nonlinear PB

equation for the case of a constant dielectric coefficient. The extension for a
variable (and positive) dielectric coefficient is readily shown by a suitable mod-
ification of Green’s theorem based on Eq. [3]. However, care must be taken in
the numerical solution of some modified PB theories as nonuniqueness has
been observed.618

Continuum Solvent
The main tenet of the McMillan–Mayer theory of nonelectrolytes is that

if one is interested in the equilibrium properties of a dilute solution of solute
molecules in which their mutual interaction is through short-range forces, then
specific interactions between the solute and solvent can be ‘‘removed’’ by inte-
grating over the solvent degrees of freedom.60,582,617,619 In this continuum sol-
vent picture there is a direct correspondence between the thermodynamic
equations describing this system and that of an imperfect gas. For example,
the pressure of an imperfect gas translates into the osmotic pressure of the
solvated system. The theory can be extended to electrolyte solutions provided
the long-range interaction between ions falls off faster than the Coulomb
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interaction. For finite (nonzero) concentrations of ions, the interaction
between two charges falls off exponentially with distance (the Debye–Hückel
solution) so McMillan–Mayer theory can be applied. The great success of the
Poisson–Boltzmann approach reflects this. Unfortunately, the increasingly
popular application of the method to large biomolecular polyelectrolytes
also has the inherent side effect of pointing out inadequacies when invoking
the McMillan–Mayer approximation. Investigations of highly or multiply
charged systems such as nucleic acids, lipid membranes, and proteins in which
ions are necessarily clustered near charged surfaces highlight the need for bet-
ter representations of specific solvent-mediated ion–surface interactions. This
is particularly important when distinct polyelectrolyte regions are involved, as
in DNA–protein recognition, protein–membrane interactions, or protein fold-
ing. One way to treat such systems is to include only part of the solvation shell
explicitly in an all-atom representation of the polyelectrolyte.620 In fact, the
treatment of ion solvation based on the Poisson–Boltzmann equation is one
of the more promising areas of development and is discussed in more detail
below. By incorporating an empirical parameter into classic DH theory that
apparently accounts for some of the structural changes in the solvent induced
by an ion, Pailthorpe, Mitchel and Ninham reproduced a wide range of activ-
ity coefficient data.621 Kralg-Iglic and co-workers have derived particularly
simple expressions for the free energy of planar and cylindrical double layers
that incorporates the excluded volume effect due to ion-displaced solvent
molecules.622,623 Burak and Andelman123,624 have addressed discrete solvent
effects by adding a nonlocal hydration–correction term to the standard PB
mean-field energy expression.

Small Local Electric Field and Constant Dielectric Coefficient
It was realized early on that solvated ions tend to orient the individual

molecules of a polar solvent such as water,10,56,625,626 leading to a decrease
in the dielectric coefficient relative to the bulk value. Poisson’s equation can
still be applied if an isotropic dielectric coefficient representing an average
of spatially varying values is used provided the average local field is not so
large such that dielectric saturation occurs.626 The standard derivation of
the dielectric coefficient from Maxwell’s laws assumes that the local polariza-
tion is linearly related to the electric field.613 While this condition holds for
most systems in which highly charged surfaces and hence large electric fields
are absent, this is not the case near highly charged polyelectrolyte surfaces nor
for highly concentrated ionic solutions. Several exact higher-order extensions
of the Kirkwood–Fröhlich approach for pure solutions have been devel-
oped,627 while the approximations of Booth479 and Grahame79,628 apply in
the limit of complete saturation. Conway, Desnoyers and Smith have used
the PB and Booth equations to investigate the local dielectric coefficient near
charged spheres and cylinders,629 and Gur, Ravina and Babchin630 and Maeda
and Oosawa614,631 have approximated the Booth–Grahame formula to treat
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dielectric saturation near a planar charged surface. Bahe has shown that polar-
ization created by the dielectric coefficient gradient near an ion leads to a
repulsive force between ions.632 Bucher533,534 and Ehrenson535 have extended
classical Born theory to study the effect of a variable dielectric coefficient on
the hydration of ions.

Chernenko has investigated the effect of a counterion-induced dielectric
decrement on the solution of the Gouy–Chapman equation.21,633–635 Sansom
et al. have studied the effect of a local dielectric coefficient in an ion channel
pore (in the absence of ions),636 and others have analyzed cylindrical models of
DNA.637–639 Kozak and co-workers 640–642 and Frahm and Diekmann643 have
investigated how this effect alters the solution of the spherically symmetric PB
equation and the subsequent calculation of thermodynamic properties of elec-
trolytes. Because inclusion of a local dielectric coefficient increases the surface
concentration of ions near an all-atom model of DNA by about 15%, the
effect can be significant.88 A more extensive treatment of a local dielectric
coefficient has been given by Bell and Levine420 in their derivation of a modified
PB equation. Finally, in an interesting example of reverse engineering, Vasilyev
has shown how the PB method can be used to obtain distance-dependent
dielectric functions applicable in molecular dynamics simulations.644

Point Mobile Ions
In addition to neglecting ion correlation, using the mean electrostatic

potential results in the replacement of discrete mobile ions with a continuous,
smeared-out charge density, subsuming any description of finite ion size. This
limitation is felt in two ways: in ionic interactions with any polyelectrolyte sur-
face and in the interaction of mobile ions among themselves. Surface interac-
tions may partly be taken into account by introducing a distance of closest
approach to the surface for each ion type. Although somewhat crude in
appearance, calculations show that this simple modification yields results
that are quantitatively in agreement with more sophisticated approaches, as
the original finite-ion-size extension by Debye and Hückel demonstrates.

The second limitation mentioned above concerns the representation of
specific ion–ion interactions, which should include at least a hard-sphere com-
ponent to the interaction potential as well as having the Coulomb potential,
with the latter based on two continuous charge distributions. The presence
of a hard sphere interion potential would limit the maximum local ion concen-
tration to that of close packing. The effect of this hard-sphere interaction is
independent of charge and can be accounted for approximately by introducing
a hard-sphere-based activity coefficient into Eq. [426] for the potential of
mean force. The (log of the) activity coefficient at position r for ion species i
with a hard-sphere radius ai is60,645

ghs
i ðrÞ ¼ � 4p

3
A0

XI

j¼1

ðai þ ajÞ3 cjðrÞ ½428�
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and can be included in a general-purpose algorithm via the exponential term in
Eq. [378]. The obvious effect of including an activity coefficient to account for
hard-sphere repulsion is to further reduce the already low correlation-free ion
concentrations at the surface of polyelectrolytes. Thus, without accounting for
the effect of ion correlation discussed in the following section, it is better to
ignore the hard-sphere activity coefficient correction.646 Another effect of
the close packing of finite-size ions, and one that depends strongly on the
specific ion sizes, charges and concentrations, is a region of charge reversal
observed in Monte Carlo simulations and also in more detailed statistical-
mechanical studies.647–649 This packing effect shows up as an oscillation in
the potential profile in contrast to the strictly monotonic potential of the
standard PB equation.

Use of the Mean Electrostatic Potential
The replacement of the potential of mean force with the mean

electrostatic potential by Debye and Hückel (and implicit in the Gouy–
Chapman approach) has caused the greatest amount of concern for those
applying the PB equation. Fowler severely criticized use of the PB
equation on this basis, but his investigation was soon shown to be overly
restrictive.10,11,56 Still, the effect of neglecting ion–ion correlation, which
this mean-field approximation implies, is a continual source of study.
Hence there have been published numerous comparisons between PB
theory and more detailed statistical-mechanical theories or calculations
that do include correlation. While the size of the effect depends on the
particular system studied, calculations on the cylindrical and all-atom
models of DNA show that PB calculations tend to underestimate ion con-
centrations at the surface by 15–25% for mono- or divalent ions, respec-
tively.178,209,650–652

In addition to neglecting ion correlation, using the mean electrostatic
potential has the undesirable consequence that the (nonlinear) PB equation
no longer satisfies a reciprocity condition that use of the potential of mean
force would obey.61 Linearization of the equation by Debye and Hückel
regained this condition. These considerations led Outhwaite653–655 and
others656,657 to propose modifications of the PB equation to treat these prob-
lems. Within this modified Poisson–Boltzmann (MPB) theory, the effect of ion
correlation is expressed in terms of a fluctuation potential for which a first-
order (local) expression, written as an activity coefficient, can be derived.658

Their result for bulk hard-sphere electrolyte ions of valence zi and common
radius a gives the formula659,660

ghs�fluc
i ðrÞ ¼ dðrÞ þ z2

i LBkðrÞ
2½1 þ 2akðrÞ� þ

3 þ 2akðrÞ
1 þ 2akðrÞ

 �
zimðrÞ

6
½429�
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where we have defined the local (i.e., position-dependent) variables

dðrÞ ¼ � 4p
3
ð2aÞ3A0

XI

i¼1

ciðrÞ

kðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pLBA0

XI

i¼1

ciðrÞz2
i

vuut

mðrÞ ¼ 4pLBA0ð2aÞ2
XI

i¼1

ciðrÞzi

½430�

The first term in Eq. [429] is the hard-sphere exclusion volume term, which
decreases the counterion concentration at the surface; the second and third
terms respectively represent the fluctuation potential and increase the surface
concentration of ions. These terms can be included as an activity coefficient in a
general-purpose algorithm through the exponential term in Eq. [378]. For ion
distances �r closer to the surface than three ion radii, Bratko and Vlachy658

multiply the ion concentrations in Eqs. [430] by an excluded volume correc-
tion factor BðrÞ ¼ ð�r þ aÞ=4a; for distances �r < a, ion concentrations are,
of course, zero because of hard-sphere exclusion.

If the activity corrections of Eq. [429] are relatively small, we may cal-
culate the uncorrected PB potential f0ðrÞ, for example, according to Eq. [26]
for a planar surface or Eq. [152] for a curved one, determine the uncorrected
concentrations from it according to

cuncorr
i ðrÞ ¼ cB

i e�zif0ðrÞ ½431�

and use these concentrations in Eqs. [429] and [430] to obtain corrected con-
centrations:

ccorr
i ðrÞ ¼ cB

i e�zif0ðrÞ�ghs�fluc
i ðrÞ ½432�

If the activity terms are relatively large, the PB equation must be solved
numerically with the activity terms determined self-consistently. For accurate
calculations, one often resorts to an evaluation of thermodynamic properties
using Monte Carlo techniques.661–663

Figure 52 compares the counterion concentration profile for a bulk 0.05
M 1 : 1 electrolyte with 1- or 2-Å hard-sphere ions near a charged cylinder of
radius 10 Å with surface charge density sa ¼ �0:01 e0=

2
. Surface concentra-

tions obtained from Metropolis Monte Carlo simulations (circles) are seen to
be about 15% larger than those predicted by the PB equation without includ-
ing activity corrections. Using the hard-sphere activities of Eqs. [429] and
[430] results in much better agreement for 1-Å ions; the improvement for
2-Å ions is less impressive but still noticeable. Similar results for a bulk 0.05

Å
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M 2 : 2 electrolyte are seen in Figure 53, except that the error at the surface is
much larger (�25%).

Other Neglected Effects
We consider the above assumptions to be the most significant. In addi-

tion to these, we list a few more, some of which are discussed by Bell and
Levine:420

1. Polarization of the electronic charge distribution around an ion including
its hydration shell near a polyelectrolyte surface,

2. The presence of an ion that creates a correlation hole in the double layer,
3. Discrete solvent effects,
4. Compressibility of the solvent near a polyelectrolyte surface,
5. Discrete surface charges.

Common Approximations to the
Poisson–Boltzmann Equation

The two most common approximations used in applying the PB equation
are the assumption of a bulk electrolyte and linearization of the equation.

Figure 52 A comparison of cation concentration profiles for a bulk 0.05 M 1 : 1
electrolyte with 1 and 2-Å radius hard-sphere ions in the presence of a charged cylinder
of radius 10 Å with surface charge density sa ¼ �0:01 e0/Å2 calculated according to the
PB equation (Eq. [389]) without activity corrections (dashed line), the PB equation with
MPB activity corrections of Eqs. [429] and [430] (solid line), and Metropolis Monte
Carlo simulations (filled circles �1 Å; open circles �2 Å).
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Together these essentially replace the Poisson–Boltzmann cell model with the
Debye–Hückel bulk model, allowing many more systems to be treated analy-
tically, although not necessarily accurately, and providing considerable insight
into the physical characteristics of electrolyte solutions.

The Bulk Model
The most commonly used simplification when applying the PB equation

to a polyelectrolyte is to assume that the solvent environment of the macroion
extends to infinity. Doing so allows one to ignore any counterions initially
bound to the polyelectrolyte (c0 ! 0) and to replace concentrations at the
outer boundary by bulk concentrations ðcR

i ! cB
i Þ. This simplification

increases the rate at which the iterative solution to the PB equation converges
since ion normalization is no longer a constraint. It is readily shown that the
condition under which a finite system may be treated as infinite is664

z2
0cB

0 �
XI

i¼0

z2
i cB

i ½433�

For a system in which R defines the distance to the closest outer boundary
enclosing a single central polyelectrolyte, and if the dielectric coefficient is con-
stant or increases toward some bulk value eB at R, Eq. [433] can be recast into
the more expressive form

kDR � 1 ½434�

Figure 53 The cation concentration profile comparison as shown in Figure 52 except for
a 0.05 M 2 : 2 electrolyte.
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Because kD describes the length scale over which the potential decays away
from the polyelectrolyte, Eq. [434] essentially says that if the potential distal
from the polyelectrolyte falls to zero before the outer boundary is reached, this
boundary may then be removed to infinity without affecting the solution to the
PB equation. In practice, the restriction kDR > 5 seems sufficient for invoking
an infinite model of a finite system containing mono- and divalent ions.664

Linearization of the Equation
The second most frequent simplification of the PB equation is lineariza-

tion of the charge density with respect to the potential. The resulting Debye–
Hückel equation may also be applied independently of, though usually in con-
junction with, the preceding approximation of Eq. [433]. If the dielectric coef-
ficient of the environment is constant, analytical solutions under a wide variety
of boundary conditions may be obtained for systems with sufficient symmetry,
as shown above. The obvious condition under which linearization is valid is
that where the quadratic term in the expansion of the exponential is small
compared to the linear term, that is,

zifaj j � 1 ½435�

for all ion species in the system. For most applications, however, Eq. [435] is
overly restrictive and, as shown previously, values of zfaj j near unity admit
accurate Debye–Hückel solutions (e.g., see Fig. 37). The calculation of ther-
modynamic properties usually requires the evaluation of a free-energy integral.
Thus, Eq. [435] may fail to hold over a relatively small region of the system,
yet the Debye–Hückel result would be accurate. Whether a less restrictive con-
dition than Eq. [435] applies obviously depends on the quantity being calcu-
lated and how sensitive this quantity is to regions where the potential is large.
The DH equation has also been shown to give the exact limiting law for the
activity coefficient for solutions with low electrolyte concentrations,61 thus
placing it on a firmer foundation than the nonlinear PB equation. Despite
this, under circumstances in which Eq. [435] fails to hold, the PB equation pro-
vides better agreement with more accurate calculations than the DH equation.

Alternatives to the Poisson–Boltzmann Equation

The usefulness in applying the Poisson–Boltzmann equation to a wide
range of physical, chemical, and biological situations has led to numerous
detailed studies of its range of applicability as well as ways to extend it.
Most investigations into its deficiencies begin with the simple systems treated
by Gouy and Chapman and Debye and Hückel. To determine the extent of
error introduced by describing the statistical mechanics of hard-sphere models
using the PB equation, results (e.g., ion distributions, osmotic pressure) are
compared with those derived from more detailed calculations.665,666 The mod-
els considered are termed the primitive model (PM), in which electrolyte ions
are treated as hard spheres and the solvent is a constant dielectric continuum,
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and the restricted primitive model (RPM), in which all ions have the same
radius and cations and anions have equal but opposite charge (as in the
Debye–Hückel model). Some of the more promising avenues of research
are highlighted below. As an extensive discussion of these works is beyond
the scope of this review, the original papers should be consulted for specific details.

Modified Poisson–Boltzmann Theories
Kirkwood11 gave the first detailed derivation of the nonlinear PB equa-

tion, including corrections due to correlation (fluctuation) and finite ion size.
These were elaborated on by Levine, culminating in a paper with Bell420 deal-
ing with the electric double layer near a polyelectrolyte surface. The leading
terms in the Bell–Levine treatment were kept and some restrictions and
approximations were applied to obtain a modified Poisson–Boltzmann
(MPB) equation in the form of an integrodifference/differential equa-
tion618,667,668 that took into account the fluctuation potential of Kirkwood.
Later work included several expressions for Kirkwood’s finite-size volume
effect,669,670 the extension to ions of different size,660 symmetrization of the
radial distribution function,653 671,672 the extension to systems with cylindrical
shape,673 and multiple component mixtures.655,674–677 Modified PB theory has
also been used to help interpret neutron structure factors in polyamine–DNA
interactions. The theory is presently the most comprehensive extension of the
standard PB equation and compares favorably with more time-consuming
Monte Carlo and hypernetted chain (HNC) calculations.618,669,670,678,679

The simplification used by Bratko and Vlachy658,680,681 for the fluctuation
term (Eqs. [429] and [430]) is applicable to general PB treatments in the
same manner that the hard-sphere volume effect was introduced.645

Gavryushov and Zielenkiewicz have applied MPB theory to investigate ionic
correlation682 and local dielectric coefficients near models of DNA.639 Tomac
and Graslund have combined Kirkwood’s corrections with the multigrid meth-
od of UHBD to gauge the importance of fluctuation corrections on mono- and
divalent ions near a large spherical macroion.683

When investigating the critical behavior of electrolyte solutions, Fisher
and Levin281,684–687 derived a generalized Debye–Hückel equation that incor-
porated the ideas of Bjerrum688 concerning ion association. A later modifica-
tion by Lee and Fisher689,690 replaced the Debye screening factor defined in
Eq. [12] with one determined by the local charge density. In an earlier but
related investigation, Attard691 showed that the Stillinger-Lovett second-
moment condition,692–694 which is disobeyed by the normal analytical
finite-ion DH solution, can be satisfied if the Debye screening factor of Eq.
[12] is replaced by

k ¼ kDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðkDdÞ2=2 þ ðkDdÞ3=6

q ½436�

for ions of diameter d.
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Borukhov, Andelman and Orland132,133 have included the finite-ion-size
contribution to the entropic term of the free energy and derived a modified
Gouy–Chapman equation. Analytical results for a planar surface of charge
density s0 have been presented for 1 : z and z : z electrolytes. For ions of dia-
meter d, a measure of the size of excluded volume effects can be described by
the single parameter

& ¼ 2pLBd3s2
0

e2
0

½437�

Integral Equation and Field–Theoretic Approaches
In addition to theories based on the direct analytical extension of the PB

or DH equation, PB results are often compared with statistical-mechanical
approaches based on integral equation or density functional methods. We
mention only a few of the most recent theoretical developments. Among the
more popular are the mean spherical approximation (MSA) and the hyper-
netted chain (HNC) equation.61,695,696 Kjellander and Marc̆elja have devel-
oped an anisotropic HNC approximation that treats the double layer near a
flat charged surface as a series of discrete layers.697–699 Attard, Mitchell and
Ninham have used a Debye–Hückel closure for the direct correlation function
to obtain an analytical extension (in terms of elliptic integrals) to the PB equa-
tion for the planar double layer.101,700 Both of these approaches, which do not
include finite volume corrections, treat the fluctuation potential in a manner
similar to the MPB theory of Outhwaite.

Kjellander and Marc̆elja701 have also used their results to show that the
traditional PB approach can describe ion distributions quite well if an appar-
ent rather than actual surface charge is used.102,646,702 This prompted
Kjellander and co-workers to propose the dressed-ion theory (DIT) model, dis-
cussed briefly above, in which each primitive model ion is represented as a bare
ion ‘‘dressed’’ in part of its surrounding ion cloud.343–346,703–705

Netz and co-workers treat electrolyte systems within a field-theoretic
framework that reduces to the Debye–Hückel description at the Gaussian level
of approximation.57,706–709 Of particular interest is the application of the
model to ions of valence z0 (with no added salt) near a planar surface of
charge density sa where the size of correlation effects can be described by a
single parameter:708

� ¼ 2pz3L2
Bsa

e0
½438�

Moreira and Netz have also obtained the weak- and strong-coupling limits of
the counterion charge density profile as a function of the distance x from the
surface710

rðxÞ ¼ 2pLBz0e�1
0 s2

a

ð1 þ x=lGCÞ2
; � � 1 ðweak couplingÞ ½439�
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and
rðxÞ ¼ 2pLBz0e�1

0 s2
ae�x=lGC ; � � 1 ðstrong couplingÞ ½440�

where lGC is the Gouy–Chapman length of Eq. [11].
Without elaboration, we mention that one of the most promising ave-

nues of work is in the application of density functional methods to electrolyte
solutions.711–716

The Metropolis Monte Carlo Method
The most popular alternative to the PB equation in evaluating thermody-

namic properties of electrolyte solutions is the Metropolis Monte Carlo (MMC)
method.580,717 Numerous reviews of this and similar techniques have
appeared,663 so we present only a short list comparing the primary advantages
and disadvantages of the Poisson–Boltzmann and Monte Carlo methods:

 PB advantages

Analytical approximations can be developed

Physical insight can guide and/or result from the solution

Computationally fast for large systems

Variable dielectric coefficient can be included

 MC advantages

Easily programmed

Applicable to most systems and potentials

Solvent molecules can be treated explicitly

Finite ion size and correlation effects are included

While the Poisson–Boltzmann and Monte Carlo approaches are usually
considered as alternative methods with their own advantages and disadvan-
tages as listed above, we briefly point out one procedure that combines
the advantages of both. Consider, as an example, the use of the MC method
to determine the ion distribution around a negatively charged micelle. If the
solvent is represented by a structureless continuum (i.e., McMillan–Mayer the-
ory is invoked), the resulting cation distribution will appear similar to, but not
identical with, that obtained from the corresponding PB calculation. If the PB
calculation is based on the same constant solvent dielectric coefficient assumed
in the MC calculation, then the MC distribution will be somewhat higher at
the surface (�15% for monovalent cations and �25% for divalent cations; see
Figs. 52 and 53) owing to inclusion of correlation effects.208,209,718–720 If
explicit solvent molecules are included in the MC calculation, two additional
effects are automatically included: oscillations in the cation distribution due to
structured ion solvation and a spatially variable dielectric coefficient caused by
local solvent polarization. While accurate MC calculations require that
explicit solvent molecules be included, this will increase the size of a system
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consisting of only a hundred or fewer cations to one that also contains many
thousands of additional water molecules. The resulting increase in computa-
tion time can drastically limit the applicability of the procedure. If the effect
of solvent-induced oscillations in the ion correlation function with respect to the
micellar surface can be ignored, the PB method can be used to provide a cor-
rection to the original (continuum solvent) MC calculation that takes into
account the local variation in the dielectric coefficient to approximately first order.

Let fBðrÞ denote the potential obtained from a standard PB calculation
assuming a constant bulk dielectric coefficient and fvarðrÞ denote that obtained
by assuming a variable dielectric coefficient (i.e., Eqs. [385]–[388]). Now let
VBðrÞ be the MC potential (a sum of Lennard-Jones and electrostatic terms)
that a cation in the system would experience in a bulk dielectric continuum.
The approximate effect of including a variable dielectric coefficient in the
Monte Carlo simulation can be found by replacing the bulk MC potential
VBðrÞ with the ‘‘PB-corrected’’ potential VBðrÞ þ fvarðrÞ � fBðrÞ. Of course
the resulting ion distribution will not be self-consistent with the assumed
(PB-derived) dielectric coefficient map, but it will be a noticeable improvement
on the original MC distribution using a bulk dielectric.

Counterion Condensation Theory
Application of the PB equation to a charged cylinder was found particu-

larly useful in describing the thermodynamic properties of polymers which dis-
sociate upon solvation into an extended polyelectrolyte and many small ions.
Intermolecular forces, including electrostatic repulsion between ionized sites
on the surface of the polymer, stretch the molecule along its axis, leading to
remarkable colligative properties.78,196,206,261 An observation by Onsager
concerning the divergence of the phase integral for an infinite line charge
prompted Manning to propose a model of cylindrical polyelectrolytes that suc-
cinctly and quantitatively accounts for many of the observed thermodynamic
properties of these molecules.214,279,280,721,722 Expressing the total free energy
of a line charge with its counterions as the sum of a Debye–Hückel-like elec-
trostatic term and an entropic mixing component and minimizing the result
led Manning to his counterion condensation (CC) theory. It says, in essence,
that given a cylindrical polyelectrolyte with linear charge density e0=b in the
presence of counterions of valence z, then if the ‘‘Manning parameter’’
x ¼ LB=b times the valence is greater than unity, enough counterions will
‘‘condense’’ on the line charge to effectively reduce this product to unity.

The success of Manning’s simple two-state model in predicting many
of the properties of cylindrical polyelectrolytes like DNA (x � 4) has spawned
a mini-industry in investigating counterion condensation phenomena within
the context of the PB equation.177,178,205,208,209,218,276,685,723–735 More
recent work with Manning’s theory has dealt with applying the analytical
and numerical736 versions of the theory to finite,737 multiple,738–740 or
bent741,742 polyelectrolytes, helical charge distributions,743 polarization
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effects,744 and a potential of mean force for counter- and coions.745 Recently,
an alternative view of counterion condensation theory has been presented that
includes the effect of dielectric saturation.746 With Manning’s two-state
theory747 being an overestimation of the nonlinearity involved in the interac-
tion of counterions at a highly charged surface,748,749 Poisson–Boltzmann the-
ory is an underestimation of the effect. Monte Carlo and molecular
dynamics750 simulations, subject to the assumptions involved in using a
two-particle potential and the inclusion or neglect of the solvent, appear to
most accurately describe the complex and subtle interactions among the
various species involved.

CONCLUDING REMARKS

The aim of the tutorial review presented in this chapter is to serve as a
useful introduction to the varied methods of solution and application of the
Poisson–Boltzmann equation and in so doing relate a little of its relevance
to modern colloidal and biophysical research. It is somewhat easier to detail
the importance of some biochemical reaction to our health or the knowledge
gained in understanding an aspect of colloidal behavior than in demonstrating
the immediate usefulness of a specific equation, but progress in science
requires moving from the concrete to the abstract and back again. As men-
tioned in the introduction, the increasing interest in the Poisson–Boltzmann
equation lies in its applications—in the wide range of physical phenomena it
helps us describe—and finding an adequate solution, either analytically or
numerically, for the problem at hand is the first and often most difficult step.
Most textbooks on statistical mechanics tend to give the Poisson–Boltzmann
equation short shrift so obtaining its solution is often an exercise akin to
reinventing the wheel. It is hoped that this review will fill a much-needed gap by
serving three purposes: as a compendium of solutions, as an introduction to
present-day numerical techniques, and as a guide to some of the literature.

Because the large array of analytical results presented in the second part
of this review may at first seem daunting, and perhaps confusing, they are sum-
marized in Table 1 for easier reference. The unifying thread we have woven
through the fabric of this tutorial is the NLDH approximation, which, despite
its faults, guides us from the Gouy–Chapman potential for a plane, through
the asymptotic PB solution for cylinders and spheres, to the apparent
Debye–Hückel potential for a particle, with its suggestion of counterion con-
densation and its additivity property, and back via two-particle interactions.
Because the focus of most calculations has been on determining the electro-
static potential and free energy with the interaction potential or binding energy
important for two-particle systems, we have discussed their relationships only
sparingly with respect to the interpretation of experimental data. It is difficult
to observe forces and potentials directly, particularly at the colloidal and
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biochemical level, so connections must be made with more easily obtained
properties such as osmotic pressure, Donnan or activity coefficients, and elec-
trokinetic or diffusion data. Several articles are available that describe how
this is done, and some of these have been cited above, but with the recent surge
of interest in the PB equation, perhaps a more timely review of this material is
also in order, particularly in light of the work discussed here.
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