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Preface

Toward the end of the twentieth century, a series of well-planned and
visionary conferences, along with successful developments in both scientific
achievement and policy making, led to a 1988 memorandum of interagency
cooperation that provided the foundation for an NIH-DOE collaboration
to achieve the goals of the U.S. Human Genome Project (HGP) (Major
Events in the U.S. Human Genome Project and Related Projects: http://
www.ornl.gov/sci/techresources/Human_Genome/project/timeline.shtml).
What followed was a momentous confluence of talent, ego, finances, and hard
work dedicated to determining all genes, now estimated at 20,000–25,000 in
number, from all three billion base pairs in the human genome. It was a project
of epic proportion; tens of organizations, hundreds of laboratories, and thou-
sands of workers eventually achieved that goal and reported their work, for-
mally, by concurrent publications in mid-February of 2001 (free online
publications can be found at http://www.nature.com/genomics/index.html
and http://www.sciencemag.org/content/vol291/issue5507/). The HGP was
completed in 2003.

As the frenetic pace of genomics quickened near the turn of the century,
most of us not involved in that fray were cognizant that another, more valu-
able prize, the human proteome, was being targeted even as concrete was
being poured for buildings to house new departments, institutes, and compa-
nies dedicated to genomic research. Of the major classes of biological mole-
cules, proteins have had the scientific spotlight focused on them in the past,
and they will continue to enjoy that spotlight shine for the foreseeable future.
The significance of proteins, from the perspective of basic science where
curiosity-driven exploration takes place to industry where economic engines
drive advances in medicine, is unrivaled and is a focus of this, the twenty-sec-
ond volume of Reviews in Computational Chemistry.

One project that will advance our understanding of the proteome is the
Protein Structure Initiative (PSI: http://www.nigms.nih.gov/psi/). Its goal is
‘‘. . . to make the three-dimensional atomic-level structures of most proteins
easily obtainable from knowledge of their corresponding DNA sequences.’’
Here, high-throughput protein structure generation is taking place on an
unprecedented scale to achieve a systematic sampling of major protein
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families. How can one distill all of these data into something that is useful?
One way is to rely on classification, one of the most basic activities in all scien-
tific disciplines. It is easier to think about a few groups that share something in
common than it is to think about each individual, and since the first scientific
classification by Aristotle in the fourth century B.C., through the binomial sys-
tem of nomenclature by Linnaeus in the eighteenth century, and continuing to
the classification of protein structure/function in modern structural biology, it
is clear that the wealth of information available, especially from genome
sequencing projects, is best studied through classification in its broadest sense.

In Chapter 1, Professor Patrice Koehl focuses on the little recognized,
albeit significant, topic of protein structure classification. In this tutorial, the
author first describes proteins and then surveys their different levels of organi-
zation, from their primary structure (sequence) through their quaternary struc-
ture in cells. Protein building blocks, structure hierarchy, types of proteins,
and protein domains are defined and explained for the beginner. Links to
online resources related to protein structure and function are provided. The
crux of this tutorial is on protein structure comparison and classification.
Described in detail are computational methods needed for automatically
detecting domains in protein structures, techniques for finding optimal align-
ment between those domains, and new developments that rely on the topology
of the domain rather than on its structure. This is followed by a review of pro-
tein structure classification. Proteins are first divided into discrete, globular
domains that are then further classified at the levels of class, folds, superfami-
lies, and then families. After reviewing the terms that define a classification,
the three main protein structure classifications, SCOP, CATH, and the
DALI Domain Dictionary, are then described and compared. Resources and
links to these and other methods are given. The ability to organize the existing,
voluminous data related to protein structure and function in a way that evolu-
tionary relationships can be uncovered, and to detect remote homologues in
the rapidly developing area of structural biology, is emphasized in this chapter.
The author provides tables of resources related to protein structure and web-
sites containing publicly available services and/or programs for domain assign-
ment and structure alignment. Also provided are databases of protein
structural domains and resources for protein sequence/protein structure classi-
fication. In the burgeoning field of structural biology exemplified by the PSI,
these techniques and tools are necessary for advancement and the author pro-
vides a complete tutorial/review of the techniques and methodologies needed
for protein structure classification.

Given that elegant advances are being made in automated protein struc-
ture classification and even with the soon-to-be-initiated production stage of
the PSI (called PSI-2), the difficulties inherent in protein crystallization imply
that not all possible protein structures will be known in the near future.
Accordingly, there is a need to predict at atomic resolution the three-
dimensional (3-D) shape of novel ‘‘designer’’ proteins and proteins whose
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sequence is known, but for which no crystal structure is available. The follow-
ing two chapters on the topics of homology modeling and simulations of pro-
tein folding address the history, the needs, and the many advances that have
been made in determining structures of proteins computationally.

In Chapter 2, Drs. Emilio Esposito, Dror Tobi, and Jeffry Madura pro-
vide a tutorial on the topic of comparative protein modeling, a.k.a., homology
modeling. Although many proteins from similar families have similar func-
tions, it is common to find instances where proteins with similar structures
have different functions. The authors describe in this chapter how to first con-
struct a protein structure and then how to validate its quality as a model. The
first step in homology modeling is to search for known, related sequences and
structures by using, for example, the Protein Data Bank (PDB), or the Expert
Protein Analysis System (ExPaSy) website, which contains useful databases
like SWISS-PROT, PROSITE, ENZYME, and SWISS-MODEL. Details about
these databases along with pitfalls to avoid when using them are provided. The
next step, which is most critical in a comparative modeling study, is sequence
alignment. Both global, coarse-grained alignment strategies and local, fine-
grained alignment strategies are described. The basics of alignment are given
for the novice modeler, insights about sequence preparation are passed on to
the reader, and common alignment tools like BLAST, Clustal (and their pro-
geny), T-Coffee, and Divide-and-Conquer are described. The differences
between progressive and fragment-based methodologies are highlighted, and
a description about how one scores the final alignment to select the best model
is given. The next two steps in homology modeling involve template selection
and improving alignments. Methods like threading and uses of hydropathy
plots are described before a tutorial is presented on how to actually construct
a protein model. The difference between finding the best model versus a con-
sensus model is highlighted, as is the need for satisfying spatial constraints.
Segment match modeling, multiple template methods, hidden Markov model-
ing, and other techniques are identified and explained for the novice. The
penultimate step of refining the protein structures using, e.g., databases like
Side-Chains with Rotamer Library (SCWRL) or by implementing atomistic
simulation methods like simulated annealing is then described. Finally, the
authors inform us about how to evaluate the validity of the derived protein
structures using PROCHECK, Verify3D, ProSa, and PROVE in addition to
existing tools from the realm of spectroscopy such as found in the OLERADO
suite of applications. For each step of the homology modeling process, they
provide a working example to illustrate some problems and pitfalls a novice
could encounter, and they provide tables of key websites containing databases
and computational resources needed for homology modeling.

In a 1992 publication entitled ‘‘One Thousand Families for the Molecu-
lar Biologist,’’ (Nature, 1992: 357, 543), Cyrus Leventhal estimated that for
the native state of a single domain protein, approximately 1000 different
shapes or folds exist in nature. Although that assertion may be true, the
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most recent assessment of protein fold space by Hou, Sims, Zhang, and Kim
(Proceedings of the National Academy of Sciences, 2003; 100(5): 2386, avail-
able online for free at http://www.pnas.org/content/vol102/issue10/) confirms
the notion that the ‘‘protein fold space’’ is not homogeneous but is, instead,
populated in a highly nonuniform manner. Using one domain structure from
each of the 498 SCOP folds, a pair-wise structural alignment was carried out
by those authors leading to a 498 � 498 matrix of similarity scores. Then,
using distance–geometry concepts, a distance matrix was generated that was
thereafter transformed into a metric matrix, the eigenvalues of which are
orthogonal axes passing through the geometric centroid of the points repre-
senting the folds. The three dominant eigenvalues are shown in Figure 1 and
reveal several interesting features of protein fold space, the most important of
which is that the a, b, and a/b folds are clustered around three separate axes,
whereas the a þ b folds lie approximately on a plane formed by two of those
axes.

The take-home message from this assessment is that proteins with vary-
ing numbers and patterns of amino acids adopt similar 3-D shapes; the empti-
ness of protein fold space is most likely attributable to the finding that many
protein shapes are architecturally unstable. Even with this knowledge, it is still

Figure 1 The 3-D representation illustrates the clustering of structures along separate
axes and highlights obvious voids in protein fold space. (Reproduced with permission
from PNAS, 2003; 100(5): 2386.)
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not possible to predict, either quickly or accurately, the shape of a folded pro-
tein given only the sequence of its constituent amino acids. Understanding the
factors that contribute to folding rates and thermodynamic stability is thus
crucial for delineating the folding process.

In Chapter 3, Professor Joan-Emma Shea, Ms. Miriam Friedel, and Dr.
Andrij Baumketner present a tutorial on protein folding simulations, the aim
of which is not only directed toward helping a modeler predict a protein’s
shape but also toward revealing, for the novice, the theoretical underpinnings
of why and how that shape exists, especially when compared with other hetero-
polymers that do not fold into a well-defined ground-state structure. The
authors begin by examining the Levinthal paradox, which states that if a pro-
tein had to search randomly through all of its possible conformational states to
reach the native state, the folding time would be prohibitively long—on the
order of the lifetime of the universe for moderately sized systems. They then
introduce energy landscape theory, whose foundation is built on the concept
of frustration in spin glass systems, along with earlier models that explain the
folding process, including diffusion–collision, hydrophobic collapse, and
nucleation models. The thermodynamics and kinetics of folding is then pre-
sented, and connections with experimental observations are made. Most of
the tutorial/review covers general simulation techniques. The authors begin
with the coarse-grained modeling techniques of lattice and off-lattice models,
the former of which are typically performed with Monte Carlo searches with
simplified representations of the constituent amino acids required to remain on
a lattice, whereas the latter are performed with Langevan and discontinuous
molecular dynamics methods in which the simplified amino acid components
are allowed to move in continuous space. The history, methodology, advan-
tages, and disadvantages of these techniques are presented in a straightforward
way for the beginning modeler. This introduction is followed by a discourse on
fully atomistic models. After a brief introduction about force fields and their
uses, the authors describe the stochastic difference equation (SDE) method,
caution the reader about relying too heavily on the principle of microscopic
reversibility (so that one is not tempted to use unfolding trajectories to infer
the folding mechanism), and describe importance sampling to generate free
energy surfaces for folding. This part of their tutorial ends with a description
of replica-exchange as an increasingly attractive and tractable means to study
the thermodynamics of folding. The final portion of the chapter focuses on the
transition state ensemble (TSE) for folding. Transition state and two-state
kinetics are introduced. Methods for identifying the TSE including reaction
coordinate-based methods, nonreaction coordinate-based methods, and j-
value analysis are introduced briefly, explained in a cogent manner, and
then reviewed thoroughly. Ongoing developments in this area of protein
science are described, and future directions for advancements are identified.

In Chapter 4, Marco Saraniti, Dr. Shela Aboud, and Robert Eisenberg
introduce the mathematics and biophysics of simulating ion transport through
biological channels. Understanding how ion channels work has become a hot
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and very controversial area of research in the past three years in part because
of the limitations of discerning molecular motions from X-ray crystallographic
studies—a situation in which simulation can help clarify many controversies.
This chapter is an introduction to the numerical techniques used for such
simulations. The authors begin by first describing the types of proteins
involved, providing as specific examples Gramicidin A and Porins. They
then describe the membrane consisting of its amphiphilic lipid molecules
and attendant molecules like steroids, provide insights about how best to treat
the aqueous environment, and finally they demonstrate how all of these con-
stituents must be assembled to represent the full system being modeled.
Because ensemble and time averages are being computed for comparison
with experiment, the authors then focus on the time scales and space scales
involved and emphasize that one hallmark of this type of protein modeling
is that measurable quantities of direct biological interest evolve in time up to
12 orders of magnitude, from femtoseconds to milliseconds. The electrostatic
treatments used in computing the long-range interactions is then described in
an easy-to-follow tutorial that covers the fast multipole method (FMM),
Ewald summation methods, solving Poissons’s equation in real space, finite
difference iterative schemes, and the uses of multigrid methods. Error reduc-
tion in classic iterative methods is presented, and a minitutorial on multigrid
basics is given for the novice. A description of how one treats the short-range
forces and boundary conditions is then presented before the authors describe
particle-based simulation strategies. Both implicit and explicit treatments of
solvent are covered. In the former treatment, the Langevin formalism with
its temporal discretization and the associated integration schemes needed for
such Brownian dynamics simulations are described. In the latter treatment, the
water models used in Newtonian dynamics are described. Because these par-
ticle-based simulation methods are limited to small spatial scales and short
time periods, the authors then devote an entire section of their tutorial to
flux-based, (i.e., electrodiffusive) methods, in which current densities flowing
through the system can be treated on biologically relevant time and size scales.
The Nernst–Planck equation is described in detail, and then the Poisson–
Nernst–Planck (PNP) method is introduced; the novice is guided, step-by-
step, through the processes needed for a successful simulation, with simple
illustrations and easy-to-follow equations. Flux-based methods belong to the
family of continuum theories of electrolytes that are based on the mean field
approximation. The advantages, disadvantages, assumptions, and approxima-
tions of these continuum methods are given in a straightforward way by the
authors along with insights about what one can do and cannot do with such
computational techniques. The hierarchy of simulation schemes needed to
obviate problems with scales of time and space are presented clearly in this
tutorial/review.

The final chapter of this volume covers the topic of wavelet transforms, a
general technique that can be used in protein-related research as well as for a
multitude of other needs in computational chemistry, informatics, engineering,
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and biology. In Chapter 5, Professors Curt Breneman and Mark Embrechts
review the topic of wavelets in chemistry and chemical informatics with their
students C. Matthew Sundling, Nagamani Sukumar, and Hongmei Zhang.
Unlike traditional signal processing methods, the wavelet transform offers
simultaneous localization of information in both frequency and time (or prop-
erty) domains and is well suited to processing data containing complex and
irregular property distributions or waveforms into simple, yet meaningful
components. The method developed quickly in the 1990s with many applica-
tions in spectroscopy, chemometrics, quantum chemistry, and more recently
chemoinformatics. This pedagogically driven review begins with an introduc-
tion to wavelets. The Fourier transform, continuous- and short-time Fourier
transforms, are described with simple mathematics as are the wavelet trans-
form, the continuous-, discrete-, and wavelet packet transforms. The chapter
is replete with illustrations describing the concepts and the mathematics asso-
ciated with each technique. After this tutorial the authors provide examples
of wavelet applications in chemistry with an emphasis on smoothing and
denoising, signal feature isolation, signal compression, and quantum chemis-
try. Their chapter ends with a survey of how wavelets are used in classification,
regression, and QSAR/QSPR. The authors provide a simple tutorial for the
novice molecular modeler and create a compelling rationale for why wavelets
are so useful to computational scientists in chemistry and informatics.

We are delighted to report that the Institute for Scientific information,
Inc. (ISI) rates the Reviews in Computational Chemistry book series in the top
10 in the category of ‘‘general’’ journals and periodicals. The reason for these
accomplishments rests firmly on the shoulders of the authors whom we have
contacted to provide the pedagogically driven reviews that have made this
ongoing book series so popular. To those authors we are especially grateful.

We are also glad to note that our publisher has plans to make our most
recent volumes available in an online form through Wiley InterScience. Please
check the Web (http://www.interscience.wiley.com/onlinebooks) or contact
reference@wiley.com for the latest information. For readers who appreciate
the permanence and convenience of bound books, these will, of course,
continue.

We thank the authors of this and previous volumes for their excellent
chapters.

Kenny B. Lipkowitz
Washington

Valerie J. Gillet
Sheffield

Thomas R. Cundari
Denton

July 2005
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CHAPTER 1

Protein Structure Classification

Patrice Koehl

Department of Computer Science and Genome Center, University
of California, Davis, California

INTRODUCTION

The molecular basis of life rests on the activity of large biological macro-
molecules, including nucleic acids (DNA and RNA), carbohydrates, lipids, and
proteins. Although each plays an essential role in life, there is something spe-
cial about proteins, as they are the lead performers of cellular functions. As a
response, structural molecular biology has emerged as a new line of experi-
mental research focused on revealing the structure of these bio-molecules.
This branch of biology has recently experienced a major uplift through the
development of high-throughput structural studies aimed at developing a com-
prehensive view of the protein structure universe. Although these studies are
generating a wealth of information that are stored into protein structure data-
bases, the key to their success lies in our ability to organize and analyze the
information contained in those databases, and to integrate that information
with other efforts aimed at solving the mysteries behind cell functions. In
this survey, the first step behind any such organization scheme, namely the
classification of protein structures, is described. The properties of protein
structures, with special attention to their geometry, are reviewed. Computer
methods for the automatic comparison and classification of these structures
are then reviewed along with the existing classifications of protein structures
and their applications in biology, with a special focus on computational
biology. The chapter concludes the review with a discussion of the future of
these classifications.
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Classification and Biology

Classification is a broad term that simply means putting things into
classes. Any organizational scheme is a classification: Objects can be sorted
with respect to size, color, origin, and so on. Classification is one of the
most basic activities in any discipline of science, because it is easier to think
about a few groups that have something in common than it is to think about
each individual of a whole population. Scientific classification in biology
started with Aristotle, in the fourth century B.C. He divided all livings things
into two groups: animal and plant. Animals were divided into two groups:
those with blood and those without (at least no red blood), whereas plants
were divided into three groups based on their shapes. Aristotle was the first
in a long line of biologists who classified organisms in an arbitrary, although
logical way, to convey scientific information. Among these biologists is the
Swedish naturalist Carolus Linnaeus from the eighteenth century who set for-
mal rules for a two-name system called the binomial system of nomenclature,
which is still used today. With the publication of ‘On the Origin of Species’ by
Darwin, the purpose of classification changed. Darwin argued that classifica-
tion should reflect the history of life. In other words, species should be related
based on a shared history. Systematic classifications were introduced accord-
ingly, the aims of which are to reveal the phylogeny, i.e., the hierarchical struc-
ture by which every life-form is related to every other life-form. The recent
advances in genetics and biochemistry, the wealth of information coming
from genome sequencing projects, and the tools of bio-informatics are playing
an essential role in the development of these new classification schemes, by
feeding to the classifiers and taxonomists more and more data on the evolu-
tionary relationships between species. Note that the genetic information
used for classification is not limited to the sequence of the genes, but it also
takes into account the products of these genes, and their contributions to
the mechanisms of life. Because function is related to shape, protein structure
classification will thus play a significant role in our understanding of the orga-
nization of life. Paraphrasing Jacques Monod1, in the protein lies the secret of
life.

The Biomolecular Revolution

All living organisms can be described as arrangements of cells, the smal-
lest self-sustainable units capable of carrying functions important for life. Cells
can be divided into organelles, which are themselves assemblies of bio-
molecules.Thesebio-moleculesareusuallypolymers composedof smaller subunits
whose atomic structures are known from standard chemistry. There are many
remarkable aspects to this hierarchy, one of them being that it is ubiquitous to
all life forms, from unicellular organisms to complex multicellular species.
Unraveling the secrets behind this hierarchy has become one of the major
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challenges for scientists in the twentieth and now twenty-first centuries. Although
early research from the physics and chemistry communities has provided sig-
nificant insight into the nature of atoms and their arrangements in small che-
mical systems, the focus is now on understanding the structure and function of
bio-molecules. These usually large molecules serve as storage for the genetic
information (the nucleic acids) and as key actors of cellular functions (the pro-
teins). Biochemistry, one field in which these bio-molecules are studied, is cur-
rently experiencing a major revolution. In hope of deciphering the rules that
define cellular functions, large-scale experimental projects are now being per-
formed as collaborative efforts involving many laboratories in many countries
to provide maps of the genetic information of different organisms (the genome
projects), to derive as much structural information as possible on the products
of the corresponding genes (the structural genomics projects), and to relate
these genes to the function of their products, which is usually deduced from
their structure (the functional genomics projects). The success of these projects
is completely changing the landscape of research in biology. As of October
2004, more than 220 whole genomes have been fully sequenced and pub-
lished, which corresponds to a database of over a million gene sequences,2

and more than a thousand other genomes are currently being sequenced.
The need to store these data efficiently and to analyze their contents has led
to the emergence of a collaborative effort between researchers in computer
science and biology. This new discipline is referred to as bio-informatics. In
parallel, the repository of bio-molecular structures3,4 contains more than
27,600 entries of proteins and nucleic acids. The same need to organize and
analyze the structural information contained in this database is leading to
the emergence of another partnership between computer science and biology,
namely the discipline of bio-geometry. The combined efforts of researchers in
bio-informatics and bio-geometry are expected to provide a comprehensive
picture of the protein sequence and structure spaces, and their connection to
cellular functions. Note that the emergence of these two disciplines is often
viewed as a consequence of a paradigm shift in molecular biology,5 because
the classic approach of hypothesis-driven research in biochemistry is being
replaced with a data-driven discovery approach. In reality the two approaches
coexist, and both benefit from these computer-based disciplines.

Outline
Given the introduction to classification in biology and an update on the

progress of research in structural biology, we can now examine protein struc-
ture classification, the topic of this chapter. The next section describes proteins
and surveys their different levels of organization, from their primary sequence
to their quaternary structure in cells. The following section surveys automatic
methods for comparing protein structures and their application to classifica-
tion. Then the existing protein structure classifications are described, focusing
on the Structural Classification of Proteins (SCOP)6; the Class, Architecture,
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Topology, and Homologous (CATH) superfamilies classification7; and the
domain classification based on the Distance ALIgnment (DALI) algorithm.8

Finally, the tutorial concludes with a discussion of the future of protein
structure classifications.

BASIC PRINCIPLES OF PROTEIN STRUCTURE

Although all bio-molecules play an important role in life, there is some-
thing special about proteins, which are the products of the information con-
tained in the genes. A finding that has crystallized over the last few decades
is that geometric reasoning plays a major role in our attempt to understand
the activities of these molecules. In this section, the basic principles that govern
the shapes of protein structures are briefly reviewed. More information on
protein structures can be found in protein biochemistry textbooks, such as
those of Schulz and Schirmer,9 Cantor and Schimmel,10 Branden and Tooze,11

and Creighton.12 The reader is also referred to the excellent review by
Taylor et al.13

Visualization

The need for visualizing bio-molecules is based on our early understand-
ing that their shape determines their function. Early crystallographers who stu-
died proteins could not rely (as it is common nowadays) on computers and
computer graphics programs for representation and analysis. They had devel-
oped a large array of finely crafted physical models that allowed them to repre-
sent these molecules. Those models, usually made out of painted wood,
plastic, rubber, or metal, were designed to highlight different properties of
the molecule under study. In space-filling models, such as those of Corey–
Pauling–Koltun (CPK),14,15 atoms are represented as spheres, whose radii
are the atoms’ van der Waals radii. They provide a volumetric representation
of the bio-molecules and are useful to detect cavities and pockets that are
potential active sites. In skeletal models, chemical bonds are represented by
rods, whose junctions define the position of the atoms. Those models were
used for example by Kendrew et al. in their studies of myoglobin.16 Such
models are useful to chemists because they help highlight the chemical reactivity
of the bio-molecule under study and, consequently, its potential activity. With
the introduction of computer graphics to structural biology, the principles of
these models have been translated into software such that molecules as well as
some of their properties can now be visualized on a computer display. Figure 1
shows examples of computer visualizations of myoglobin, including space-filling
and skeletal representations. Many computer programs are now available that
allow one to visualize bio-molecules. Cited here are MOLSCRIPT17 and
VMD,18 which have generated most of the figures of this chapter.
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Protein Building Blocks

Proteins are heteropolymer chains of amino acids often referred to as
residues. There are 20 naturally occurring amino acids that make up proteins.
With the exception of proline, amino acids have a common structure, which is
shown in Figure 2a. Naturally occurring amino acids that are incorporated
into proteins are, for the most part, the levorotary (L) isomer. Substituents
on the alpha carbon, called side chains, range in size from a single hydrogen
atom to large aromatic rings. Those substituents can be charged, or they may
include only nonpolar saturated hydrocarbons19 (see Table 1 and Figure 2b).
Nonpolar amino acids do not have a concentration of electric charges and
are usually not soluble in water. Polar amino acids carry local concentration
of charges and are either globally neutral, negatively charged (acidic), or posi-
tively charged (basic). Acidic and basic amino acids are classically referred to
as electron acceptors and electron donors, respectively, which can associate to
form salt bridges in proteins. Amino acids in solution are mainly dipolar ions:
The amino group NH2 accepts a proton to become NHþ

3 , and the carboxyl
group COOH donates a proton and becomes COO�.

Protein Structure Hierarchy

Condensation between the -NHþ
3 and the -COO� groups of two amino

acids generates a peptide bond and results in the formation of a dipeptide.

(a) (b) (c)

Figure 1 Visualizing protein structures. Myoglobin is a small protein very common in
muscle cells, where it serves as oxygen storage. The structure of sperm whale myoglobin
using three different types of visualization is depicted without the heme group. The
coordinates are taken from the PDB file 1mbd. (a) Cartoon. This representation, also
referred to as ‘‘ribbon’’ diagram, provides a high-level view of the local organization of
the protein in secondary structures, shown as idealized helices. (b) Skeletal model. This
representation uses lines to represent bonds; atoms are located at their endpoints where
the lines meet. (c) Space-filling diagram. Atoms are represented as balls centered at the
atoms, with radii equal to the van der Waals radii of the atoms. This representation
shows the tight packing of the protein structure. Each of the representations is
complementary to the others. Figure drawn using MOLSCRIPT.17
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(b) Amino Acid Side-chains:

(a) Geometry of an Amino Acid

Figure 2 The twenty natural amino acids that make up proteins. (a) Each amino acid
has a main-chain (N, Ca, C, and O) on which is attached a side-chain schematically
represented as R. Amino acids in proteins are attached through planar peptide bonds,
connecting atom C of the current residue to atom N of the following residue. For the
sake of simplicity, the hydrogens are omitted. (b) Classification of the amino acid side-
chains R is according to their chemical properties. Glycine (Gly) is omitted, as its side-
chain is a single H atom.
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Protein chains correspond to an extension of this chemistry, which results in
long chains of many amino acids bonded together. The order in which amino
acids appear defines the sequence or primary structure of the protein. In its
native environment, the polypeptide chain adopts a unique three-dimensional
shape, which is referred to as the tertiary or native structure of the protein.20

The amino acid backbones are connected in sequence forming the protein
main-chain, which frequently adopts canonical local shapes or secondary
structures, mostly a-helices and b-strands (see Figure 3). a-helices form a
right-handed helix with 3.6 amino acids per turn, whereas the b-strands
form an approximately planar layout of the backbone. Helices often pack
together to form a hydrophobic core, whereas b-strands pair together to
form parallel or antiparallel b-sheets. In addition to these two types of second-
ary structures, a wide variety of other commonly occurring substructures,
which are referred to as super-secondary structures. More information about
these substructures can be found in the work of Efimov.21–24

Three Types of Proteins

Protein structures come in a large range of sizes and shapes. They can be
divided into three major groups: fibrous proteins, membrane proteins, and
globular proteins.

Fibrous proteins are elongated molecules in which the secondary struc-
ture is the dominant structure. Because they are insoluble in water, they play a
structural or supportive role in the body and are involved in movement (such
as in muscle and ciliary proteins). Fibrous proteins often (but not always) have
regular repeating structures. Keratin, for example, which is found in hair and
nails, is a helix of helices and has a seven-residue repeating structure. Silk, on
the other hand, is composed only of b-sheets, with alternating layers of gly-
cines and alanines and serines. In collagen, the major protein component of
connective tissue, every third residue is a glycine and many others are prolines.

Membrane proteins are restricted to the phospholipid bilayer membrane
that surrounds the cell and many of its organelles. These proteins cover a large

Table 1 Classification of the 20 Amino Acids Based on Their Interaction With Water19

Classification Amino Acid

Nonpolar glycine (G)a, alanine (A), valine (V), leucine (L), isoleucine (I),
proline (P), methionine (M), phenylalanine (F), tryptophan
(W)

Polar serine (S), threonine (T), asparagine (N), glutamine (Q),
cysteine (C), tyrosine (Y)

Acidic (polar) aspartic acid (D), glutamic acid (E)
Basic (polar) lysine (K), arginine (R), histidine (H)

a The one-letter code of each amino acid is given in parentheses.
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range of sizes and shapes, from globular proteins anchored in the membrane
by means of a tail to proteins that are fully embedded in the membrane. Their
function is usually to ensure transport of ions and small molecules like nutri-
ents through the membrane. The structures of fully embedded membrane pro-
teins can be placed into two major categories: the all helical structures, such as
bacteriorhodopsin, and the all beta structures, such as porins (see Figure 4). As
of October 2004, there are 158 structures of membrane proteins in the Protein
Data Bank (PDB), out of which 86 are unique.

Globular proteins have a nonrepetitive sequence. They range in size from
100 to several hundred residues and adopt a unique compact structure. In
globular proteins, nonpolar amino acid side chains have a tendency to cluster
together to form the interior, hydrophobic core of the proteins, whereas the

N

C
N

CN

C

N N

C C

α-helix
antiparallel
β-sheet

parallel
β-sheet

(a) (b) (c)

Figure 3 The three most common secondary structure elements (SSE) found in proteins.
(a) The regular a-helix is a right-handed helix, in which all residues adopt similar
conformations. The a-helix is characterized by hydrogen bonds between the oxygen O
of residue i, and the polar backbone hydrogen HN (bound to N) of residue i þ 4. Note
that all C ¼ O and N-HN bonds are parallel to the main axis of the helix. (b) An
antiparallel b-sheet. Two strands (stretches of extended backbone segments) are running
in an antiparallel geometry. The atoms HN and O of residue i in the first strand
hydrogen bond with the atoms O and HN of residue j in the opposite strand,
respectively, whereas residues i þ 1 and j þ 1 face outward. (c) A parallel b-sheet. The
two strands are parallel, and the atoms HN and O of residue i in the first strand
hydrogen bond with the O of residue j and the HN of residue j þ 2, respectively. The
same alternating pattern of residues involved in hydrogen bonds with the opposite
strand, and facing outward is observed in parallel and antiparallel b-sheets. A strand can
therefore be involved in two different sheets. For simplicity, side-chains and nonpolar
hydrogens are ignored. The protein backbone is shown with balls and sticks, and
hydrogen bonds are shown as discontinuous lines. Figure drawn using MOLSCRIPT.17
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hydrophilic polar amino acid side chains remain accessible to the solvent on
the exterior of the ‘‘glob.’’ In the tertiary structure, b-strands are usually
paired in parallel or antiparallel arrangements to form b-sheets. On average,
a protein main-chain consists of about 25% of residues in a-helix formation
and 25% of residues in b-strands, with the rest of the residues adopting less-
regular structural arrangements.25

Geometry of Globular Proteins

From the seminal work of Anfinsen,26 we know that the sequence fully
determines the three-dimensional structure of a protein, which itself defines its
function. Although the key to the decoding of information contained in genes
was found more than 50 years ago (the genetic code), we have not yet rigor-
ously defined the rules relating a protein sequence to its structure.27,28

Ongoing work in the area of predicting protein structure based on sequence
is the topic of Chapter 3 by Shea et al.29 Our knowledge of protein structure
comes from years of experimental studies, primarily using X-ray crystallogra-
phy or nuclear magnetic resonance (NMR) spectroscopy. The first protein
structures to be solved were those of myoglobin and hemoglobin.16,30 There
are now over 27,700 protein structures in the PDB database3,4 (see http://
www.rcsb.org). It is to be noted that this number overestimates the actual
number of different structures available because the PDB is redundant; i.e.,
it contains several copies of the same proteins, with minor mutations in the
sequence and no changes in the structure.

Because only two types of secondary structures (a and b) exist, proteins
can be divided into three main structural classes.31 These are mainly a pro-
teins,32 mainly b proteins,33–35 and mixed a–b proteins.36 A fourth class
includes proteins with little or no secondary structures at all that are stabilized
by metal ions and/or disulphide bridges. A significant effort has been made by

(a) Bacteriorhodopsin (b) Porin

Figure 4 Two examples of membrane proteins. (a) Bacteriorhodopsin is mainly an
a-protein containing seven helices. It is a membrane protein serving as an ion pump and
is found in bacteria that can survive in high salt concentrations. (b) Porin is a b-barrel.
Porins work as channels in cell membranes, which let small metabolites such as ions and
amino acids in and out of the cell. Figure drawn using MOLSCRIPT.17
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scientists to a folding class to proteins automatically; these efforts will be
reviewed in the next section. There has also been significant work on predict-
ing a protein folding class based on its sequence, the details of which can be
found in Refs. 37–44.

The a class, the smallest of the three major classes, is dominated by small
proteins, many of which form a simple bundle of a helices packed together to
form a hydrophobic core. A common motif in the mainly a class is the four
helix bundle structure, which is depicted in Figure 5. The most extensively stu-
died a structure is the globin fold, which has been found in a large group of
related proteins, including myoglobin and hemoglobin. This structure includes
eight helices that wrap around the core to form a pocket where a heme group
is bound.16

The b class contains the parallel and antiparallel b structures. The b
strands are usually arranged in two b sheets that pack against each other
and form a distorted barrel structure. Three major types of b barrels
exist, the up-and-down barrels, the Greek key barrels,45 and the jelly roll
barrels (see Figure 6). Most known antiparallel b structures, including the

Nter

(a)

NC

(c)

Nter

(b)

NC

(d)

Figure 5 Two different topologies of four-helix bundles. A bundle is an array of
a-helices, each oriented roughly along the same (bundle) axis. (a) and (c) show a four
helical, up-and-down bundle with a left-handed twist, observed in hemerythrin from a
sipunculid worm. (b) and (d) show a four helix bundle with a right handed twist, observed
in a fragment of the dimerization domain of a liver transcription factor. (a) and (b) are
cartoon representations of the proteins obtained with MOLSCRIPT,17 whereas (c) and
(d) show the schematic topologies produced by TOPS (http://www.tops.leed.ac.uk/).
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immunoglobulins, have barrels that include at least one Greek key motif. The
two other motifs are observed in proteins of diverse function, where functional
diversity is obtained by differences in the loop regions connecting the b
strands. b structures are often characterized by the number of b-sheets
in the structure and the number and direction of the strands in the sheet. It
leads to a rigid classification scheme,46 which is sensitive to the definition of
hydrogen bonds and b-strands.

The a–b protein class is the largest of the three classes. It is subdivided
into proteins having an alternating arrangement of a helices and b strands

N

C

N

C

N

C

C

N

NC

NC

(a) (b) (c)

(d) (e) (f)

Figure 6 Three common sandwich topologies of beta proteins: a meander (a and d)
observed in a glycoprotein from chicken, a Greek key (b and e) observed in and
a-amylase (PDB code 1bli), and a jelly roll (c and f) observed in a gene activator protein
from E. Coli (PDB code 1g6n). A meander (or up-and-down) is a simple topology in
which any two consecutive strands are adjacent and antiparallel. A Greek key motif is a
topology of a small number of b-sheet strands in which some inter-strand connection
exist between b-sheets. The jelly roll topology is a variant of the Greek key topology
with both ends crossed by two inter-strand connections. a, b, and c are cartoon rep-
resentations of the proteins obtained with MOLSCRIPT,17 while d, e and f show the
schematic topologies produced by TOPS (http://www.tops.leed.ac.uk/).
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along the sequence and those with more segregated secondary structures. The
former subclass is divided into two groups: one with a central core of (often
eight) parallel b strands arranged as a barrel surrounded by a helices, and a
second group consisting of an open, twisted parallel or mixed b sheet, with
a helices on both sides (see Figure 7). A particularly striking example of a
b–a barrel is seen in the eight-fold b–a barrel (ba)8 that was found originally
in the triose phosphate isomerase of chicken,47 and is often referred to as the
TIM-barrel (for a complete analysis, see Refs. 48–55). Many proteins adopting
a TIM barrel structure have completely different amino acid sequences and
different biological functions. The open a/b-sheet structures vary considerably
in size, number of b strands, and their strand order.

Protein Domains

Large proteins do not contain a single large hydrophobic core, probably
because of limitations in their folding kinetics and stability. Large proteins are
organized into ‘‘units’’ with sizes around 200–300 residues, which are referred
to as domains.56–58 Single compact units of more than 500 amino acids are
rare. For a detailed analysis of domains in proteins, see Ref. 59. There are
five different working definitions of protein domains: (1) regions that display

N C

(a)

N C

(b)

Figure 7 Topology (a) and cartoon representation (b) of the TIM barrel. The protein
chain alternates between b and a secondary structure type, giving rise to a barrel b-sheet
in the center surrounded by a large ring of a-helix on the outside. This structure, first
seen in the triose phosphate isomerase of chicken, has been observed in many unrelated
proteins since then. The topology is drawn using TOPS (http://www.tops.leed.ac.uk/),
and the cartoon is generated using MOLSCRIPT.17
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a significant level of sequence similarity; (2) the minimal part of a protein that
is capable of performing a function; (3) a region of a protein with an experi-
mentally assigned function; (4) a region of a structure that recurs in different
contexts in different proteins; and (5) a compact, spatially distinct unit of pro-
tein structure. As more structures of proteins are solved, contradictions in
these definitions appear. Some domains are compact, whereas others are
clearly not globular. Some are too small to form a stable domain and thus
lack a hydrophobic core. Currently, we are in the awkward situation in which
the concept of a structural domain is well accepted, yet its definition is ambig-
uous;60 this will be discussed in detail in the next section.

Resources on Protein Structures

Many resources related to protein structure and function exist; the Web
addresses of these services are compiled in Table 2. Almost all experimental

Table 2 Resources on Protein Structures

Scheme Description Web Address

PDB Repository of protein structures http://www.rcsb.org/
PDB at a

Glance
Interface to PDB http://cmm.info.nih.gov/modeling/

pdb_at_a_glance.html
Molecules

to Go
Interactive interface to the PDB http://molbio.info.nih.gov/cgi-bin/

pdb/
MSD EBI interface to the PDB, with

integration to EBI resources
http://www.ebi.ac.uk/msd/

PDBSum Summaries and structural
analyses of PDB files

http://www.ebi.ac.uk/thornton-srv/
databases/pdbsum

Biotech
Validation
Suite

Suite of programs that
generates a quality control
on protein structures

http://biotech.ebi.ac.uk:8400/

NRL_3D Sequence-structure databases http://laguerre.psc.edu/general/soft-
ware/packages/nrl_3d/

Entrez NCBI databases http://www.ncbi.nlm.nih/gov/Data-
base/index.html

SRS Sequence Retrieval Services
(includes structural information)

http://srs.embl-heidelberg.de:8000/
srs5/

DSSP Database of secondary structures
of proteins (available through
SRS)

http://srs.embl-heidelberg.de:8000/
srs5/

TOPS Generates a cartoon of
the topology of a protein

http://www.tops.leeds.ac.uk/

PISCES Protein sequence culling server:
generates subsets of PDB
based on users’ criteria

http://dunbrack.fccc.edu/PIS-
CES.php/

ASTRAL Databases and tools for
analyzing protein structure;
derived from SCOP

http://astral.berkeley.edu/
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protein structures publicly available today are stored in the PDB,3 a database
maintained through the RCSB consortium,4 and available on the Web at
http://www.rcsb.org/. Many services have been developed to supplement the
PDB to ease access to the information it contains. For example, the services
‘‘PDB at a glance’’ and ‘‘Molecules to Go’’ were designed as easy-to-use inter-
faces with simple search engines. The MSD relational database is derived from
the PDB and has the aim of providing a knowledge discovery and data mining
environment for biological structure data. PDBSum61,62 and the Biotech Vali-
dation Suite are services that allow a user to check the quality of a protein
structure. NRL, Entrez, and SRS are integrated services that regroup the
PDB with other databases containing information about proteins. For exam-
ple, SRS includes DSSP,63 a database of secondary structures of proteins.
PISCES64 and ASTRAL65–67 can generate subsets of the PDB database, based
on the user’s criteria.

PROTEIN STRUCTURE COMPARISON

Any attempts to study a large collection of objects usually start with clas-
sifying them according to a given measure of similarity. Protein structure simi-
larity is most often detected and quantified by a protein structure alignment
program, which is applied to the different domains of the proteins considered.
In this section, existing techniques for automatically detecting domains in pro-
tein structures are reviewed along with techniques for finding the optimal
alignment between two structural domains. The section concludes with a brief
description of new techniques for comparing protein structural domains that
do not rely on a structural alignment, but instead rely on a direct comparison
of the topology of the domains.

Automatic Identification of Protein Structural Domain

Decomposition of multidomain protein structures into individual
domains has traditionally been done manually. Because the rate of protein
structure determination has increased drastically in the past few years, this
manual process has now become a bottleneck in maintaining and updating
protein structure classifications; there is a need for automation. Automatic
decomposition of proteins into structural domains can be traced back to the
work of Rossman and Liljas in 1974,68 who used Ca-Ca distance maps.
They suggested that a domain has, internally, many short residue–residue dis-
tances, but few short distances with the rest of the protein. Their analysis of
the distance plots, however, required human intervention. Crippen20 general-
ized this concept using hierarchical cluster analysis to locate protein fragment–
fragment contacts. His procedure generates a tree of protein fragments, from a
small, locally compact region of the complete protein. Several methods have
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been proposed subsequently that follows this concept of identifying domains
based on a difference between intradomain and interdomain properties. Some
of these methods follow up on the work of Rossman and Liljas and compare
intradomain and interdomain distances,69–72 whereas others evaluate contact
surface area between domains,73,74 the ‘‘compactness’’ of the domains,56,75,76

or their dynamics.77 Recursive algorithms have been developed to find the cut-
ting points that delineate domains in a protein chain. These algorithms either
scan the chain to find single cuts such that the two resulting fragments verify a
given protein domain definition based on one of the properties enumerated above
or look directly for multiple cuts (see, for example, Ref. 71). The problem of deli-
neating protein domains has also been formulated as an eigenvalue problem on
the Ca-Ca distance matrix,77 as well as a network flow problem.78,79

These methods take the approach in which a predefined domain defini-
tion is imposed on the structural data. In the language of systems analysis,
such methods are referred to as "top-down" approaches, and the inherent pro-
blem in their applications is the difficulty in recognizing when the data fit or do
not fit the model. An alternative approach is to reverse the direction and let the
model emerge from the data, in what is often referred to as a ‘‘bottom-up’’
approach. Taylor80 recently developed a ‘‘bottom-up’’ approach to identify
domains in protein, using an Ising model, in which the structural elements
of the model change state according to a function of the state of the neighbors.
His procedure works as follows. Each residue in the protein chain is assigned a
numeric label, usually the sequential residue number. If a residue i with label si

is surrounded by neighbors with, on average, a higher label, its label increases;
otherwise it decreases. This procedure is iterated until the system reaches equi-
librium. Special care is taken to ensure (1) that the protein chain does not pass
between domains too frequently; (2) that secondary structures, in particular,
b-sheets are not broken; and (3) that small domains are either ignored or
avoided. Swindells developed an alternative ‘‘bottom-up’’ approach, in which
he first identifies core regions in the protein,81 which are then extended to
define the different domains in the proteins.82

Most existing methods for identifying protein domains include a refine-
ment scheme to assess the quality of the domains that have been identified.
Domain quality is computed according to accessible surface area, hydrophobic
moment profile, size, compactness, number of protein segments involved,79

and presence of intact b sheets.80

The diversity of definitions for protein structural domains is a serious
issue for the generation of protein structure classifications. Many programs
have been developed to delineate domains automatically in multidomain pro-
teins. Table 3 lists the programs that are currently accessible on the Web,
either as a Web service or for download. Although the results of these pro-
grams agree in most cases, discrepancies still prevent consistent assignments
of protein domains.60 The absence of quality control in the results of protein
domain assignment programs has led researchers to use a combination of
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automatic and manual methods. For example, CATH7 defines domains in
multidomain proteins based on a consensus of three automatic programs,
namely PUU,77 DOMAK,83 and Detective.82 When all three programs agree
on an assignment, the corresponding domains are included in CATH. In cases
of disagreement, the domains are assigned manually, either from visual inspec-
tion or from information available in the literature or on the Web. Several
structural domain databases are available on the Web to assist manual assign-
ments of domains (see Table 4).

The Rigid-Body Transformation Problem

Definition
Before one attempts to classify protein structures, it is important to eval-

uate structure similarities. Many ways exist in which protein structures can be
compared, that will be reviewed below. Most of these approaches proceed in
two steps: (1) find the transformation that provides the optimal superposition
between the two structures, and (2) define the similarity score as the distance
between the two structures after superposition. This section describes how to
obtain the optimal transformation for step (1).

We begin with the (relatively) easy problem of comparing two protein
structures with the same number of atoms and a known correspondence table
between these atoms (for a review, see Ref. 84). This problem is often solved
when comparing two possible models for the structure of a protein. Because it
is such a common problem, and because there still exists some confusion about

Table 3 Websites for Publicly Available Services or Programs for Protein Domain
Assignment

Program Web Access

DIAL http://www.ncbs.res.in/�faculty/mini/ddbase/dial.html
DomainParser http://compbio.ornl.gov/structure/domainparser
DOMAK http://www.compbio.dundee.ac.uk/Software/Domak/domak.html
PDP http://123d.ncifcrf.gov/pdp.html

Table 4 Databases of Protein Structural Domains

Database Web Access Method

3Dee http://www.compbio.dundee.ac.uk/3Dee DOMAK
Authors http://www.bmm.icnet.uk/�domains/test/

dom-rr.html
Domains identified

in the literature
DALI http://www.ebi.ac.uk/dali/domain/3.1beta DALI Domain

Definition
DDBASE http://www.ncbs.res.in/�faculty/mini/ddbase/

ddbase.html
DIAL
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how it can be solved,85 a full mathematical description of the problem, as well
as a proof for one of its closed form solutions is given.

The problem of comparing two different models of a protein can be for-
malized as: given two sets of points A ¼ (a1, a2, . . . , an) and B ¼ (b1,b2, . . . bm)
in three dimensional space and assuming that they have the same cardinality,
i.e., n ¼ m, and that the element ai corresponds to the element bi, find the opti-
mal rigid body transformation Gopt between the two sets that minimizes a
given distance metric D over all possible rigid body transformation G, as in
Eq. [1]:

min
G

DðA � GðBÞÞf g ½1


When comparing two proteins, the sets of points can include the Ca only, all
backbone atoms, or all atoms of the proteins. Different metrics have been used
in the literature to determine the geometric similarity between sets of points.
For protein superposition, the most common metric is the coordinate root
mean square deviation (cRMS), which is defined as follows:

DðA;BÞ ¼ cRMSðA;BÞ ¼ kA � Bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðai � biÞ2

s
½2


A rigid body transformation is a transformation that does not produce changes
in the size, shape, or topology of an object. Mathematically, it can be defined
as a mapping G: <3 ! <3 that satisfies the properties:

kGðxÞ � GðyÞk ¼ kx � yk for all points x and y ½3


and

Gðx ^ yÞ ¼ GðxÞ ^ GðyÞ for all vectors x and y ½4


where ^ is the cross-product.
Equation [3] states that distances are conserved, whereas Eq. [4] says

that internal reflection is not allowed. Rotations and translations are two
examples of rigid body transformation, and in fact, a general rigid body trans-
formation can be expressed as a combination of a rotation R and a translation
T. The transformation problem can then be restated as finding the optimal
rotation R and optimal translation T such that kA � RB � T k is a minimum.

A Closed-Form Solution Based on Singular Value Decomposition
Many algorithms exist in the literature that solve the rigid transposition

problem, coming from various fields including computer vision and image pro-
cessing, robotics, astronomy, and computational biology. Those algorithms
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differ with respect to the representation of the transformation and the minimi-
zation procedure. Some algorithms are based on closed-form solutions,
whereas others use iterative solutions. For detailed descriptions of these algo-
rithms, including comparison of their performances, the reader is referred to
the surveys of Sabata and Aggarwal,86 Ferrari and Guerra,87 and Eggert et
al.88 Here a focus is placed on the representation typically used in computa-
tional biology. It is based on the singular-value decomposition (SVD)89 of a
correlation matrix C between the two sets of points.90–93 This method seems
to have been first derived by Schonenman in the context of factor analysis.94

Other approaches include solutions based on a power decomposition of C95 or
on a representation of rotations with quaternions.96–98 These methods have
been shown to be equivalent.88,98

Using the definition of the metric given in Eq. [2], the rigid transforma-
tion problem can be restated as finding the rotation Rmin and the translation
Tmin such that

e ¼ 1

n

Xn

i¼1

ai � Rbi � Tð Þ2 ½5


is minimum.
Considering variations with respect to T first, we find that for an extremum

of e,

qe
qT

¼ � 2

n

Xn

i¼1

ðai � Rbi � TÞ ¼ 0 ½6


so that

Tmin ¼ 1

n

Xn

i¼1

ai � Rmin
1

n

Xn

i¼1

bi

 !
¼ mA � RminmB ½7


where mA and mB are the centers of mass of A and B, respectively.
Note that if the two sets of points are shifted such that their centers of

mass coincide at the origin, Tmin ¼ 0. Let xi ¼ ai � mA and yi ¼ bi � mB be the
coordinates of the shifted points, and let X ¼ [x1, x2, . . . , xn] and Y ¼ [y1, y2,
. . . yn] be the 3 � n matrices representing the two sets of points A and B, after
shifting. The rigid-body transformation problem can then be restated as find-
ing the optimal rotation matrix Rmin such that

e ¼ 1

n
kX � RY k2 ½8


is minimum.
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Let C be the correlation matrix of X and Y:

C ¼ XYT ! Cij ¼
Xn

k¼1

xikyjk; i; j ¼ 1; 2; 3 ½9


and UDVT be an SVD89 of C (UUT ¼ VVT ¼ I, D ¼ diag(di), d1�d2�d3�0).
The minimum value of e with respect to R is then

emin ¼ 1

n

�
kXk2 þ kYk2�2 d1 þ d2 þ ld3ð Þ

�
½10


where l¼ sign(det(C)). The optimal rotation is given by

Rmin ¼ U
1 0 0
0 1 0
0 0 l

0
@

1
AVT ½11


when rank(C) �2.
This result was first formulated by Schonemann,94 later refined by Arun

et al.,93 Horn et al.,95 and Umeyama.99 Here the proof of Umeyama is given.
Finding a rotation matrix R that minimizes e can be rewritten as finding a
matrix R that minimizes the objective function O defined as

O ¼ kX � RY k2 þ tr L RTR � I
� � þ g detðRÞ � 1ð Þ ½12


where g is a Lagrange multiplier and L is a symmetric matrix of Lagrange mul-
tipliers. The second and third term of O represent the conditions for R to be an
orthogonal and proper rotation matrix, respectively. Partial differentiations of
O with respect to R, L, and g lead to the following system of equations:99

qO

qR
¼ �2XYT þ 2RYYT þ 2RL þ gR ¼ 0 ½13


qO

qL
¼ RTR � I ¼ 0 ½14


qO

qg
¼ detðRÞ � 1 ¼ 0 ½15


From Eq. [13],

RM ¼ XYT ¼ C ½16


Protein Structure Comparison 19



where C is the covariance matrix defined in Eq. [9] and M is a symmetric
3 � 3 matrix defined by

M ¼ YYT þ L þ g

2
I ½17


Transposing Eq. [16], we obtain

MRT ¼ CT ½18


and multiplying each side of [16] with each side of [18], Eq. [19] is obtained,
as RTR ¼ I (Eq. [14]):

M2 ¼ CTC ¼ VD2VT ½19


Because M and M2 are commutative (MM2 ¼ M2M), both can be reduced to
diagonal form by the same orthogonal matrix. Thus,

M ¼ VDSVT ½20


where S ¼ diag(si), si ¼ 1 or �1.
From Eq. [20],

detðMÞ ¼ det VDSVT
�  ¼ detðDÞdetðSÞ ½21


and from Eq. [16]

detðMÞ ¼ detðRTÞdetðCÞ ¼ detðCÞ ½22


as det(R) ¼ det(RT) ¼ 1 (Eq. [15]).
Thus,

detðDÞdetðSÞ ¼ detðCÞ ½23


Singular values are non-negative, det(D) ¼ d1d2d3 � 0; hence, det(S) must be
equal to 1 if det(C) > 0 and �1 if det(C) < 0.

From the properties of norm and trace of a matrix, we get

e¼ 1

n
tr ðX�RYÞðX�RYÞT
� �

¼ 1

n
tr XXT
� þ tr ðRYÞðRYÞT

� �
�2tr XYTRT

� � �

¼ 1

n

�
kXk2 þ kRYk2 � 2tr XYTRT

� �¼ 1

n
kXk2 þ kYk2 � 2trðMÞ

�� ½24
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Substituting Eq. [20] into Eq. [24], we have

e ¼ 1

n

�
kXk2 þ kY k2 � 2tr VDSVT

� �

¼ 1

n
k Xk2 þ kY k2 � 2tr DSð Þ

� �

¼ 1

n

�
kXk2 þ kY k2 � 2ðd1s1 þ d2s2 þ d3s3Þ

�
½25


Thus, the minimum value of e is achieved when s1 ¼ s2 ¼ s3 ¼ 1 if det(C) > 0,
and s1 ¼ s2 ¼ 1, s3 ¼�1 if det(C) < 0.

Next, we determine a rotation matrix R achieving the above minimum
value. When rank(C) ¼ 3, M is nonsingular and its inverse is given by

M�1 ¼ ðVDSVTÞ�1 ¼ VSD�1VT ¼ VD�1SVT ½26


and

Rmin ¼ CM�1 ¼ UDVTVD�1SVT ¼ USVT ½27


which completes the proof for Eq. [10]. Note that this expression for Rmin is
also valid when rank(C) ¼ 2 (see Ref. 99).

Weighted Superposition of Sets of Points
It is not always proper to assign the same importance to all points of A

and B. Thus, variants of the rigid-body transformation problem have been
developed in which each point i is given a weight oi. Examples of weighting
schemes include (1) considering the mass of the atoms included in the super-
position, (2) giving different weights to atoms of the backbone of the protein
compared with atoms of the side chains, and (3) giving greater weights to
atoms belonging to secondary structures of the protein. Solving the weighted
variant of the rigid-body transformation problem amounts to finding the opti-
mal translation T and optimal rotation R such that Eq. [28] is a minimum.

e0 ¼ 1

n

Xn

i¼1

oi ai � Rbi � Tð Þ2 ½28


Considering variations with respect to T first, we find that for an extremum
of e0,

qe0

qT
¼ � 2

n

Xn

i¼1

oiðai � Rbi � TÞ ¼ 0 ½29
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so that

Tmin ¼ 1

�

Xn

i¼1

oiai � Rmin
1

�

Xn

i¼1

oibi

 !
¼ m0A � Rminm0B ½30


where � is the sum of the weights (� ¼Pn
i¼1 oi), and m0A and m0B are the

weighted centers of mass of A and B, respectively.
Note again that if the two sets of points are shifted such that their

weighted barycenters coincide at the origin, Tmin ¼ 0. Let x0
i ¼

ffiffiffiffiffi
oi

p
ai � m0A
� 

and y0i ¼
ffiffiffiffiffi
oi

p
bi � m0B
� 

be the weighted coordinates of the shifted points,
and let X0 ¼ [x0

1, x0
2, . . . , x0

n] and Y0 ¼ [y01, y02, . . . y0n] be the 3 � n matrices
representing the two weighted sets of points A and B, after shifting. The rigid-
body transformation problem can then be restated as finding the optimal
rotation matrix Rmin such that

e0 ¼ 1

n
kX0 � RY 0k2 ½31


is minimum.
Equation [31] is equivalent to Eq. [8], and the same algorithm is used to

solve it.

A General Algorithm for Point Set Superposition
The general procedure for superposing two protein structures, when the

equivalent atoms are known, can then be summarized as follows:

1. Set input points A ¼ (a1, a2, . . . an) for protein 1, B ¼ (b1, b2, . . ., bn) for
protein 2, and weights (o1, o2, . . ., on).

2. Compute weighted centers of mass of A and B:

m0A ¼
Pn
i¼1

oiai

Pn
i¼1

oi

; m0B ¼
Pn
i¼1

oibi

Pn
i¼1

oi

3. Generate the weighted covariance matrix:

C0
ij ¼

Xn

k¼1

ok aki � m0Ai

� �
bkj � m0Aj


; i ¼ 1; 2; 3; j ¼ 1; 2; 3

4. Compute the SVD of C0: C0 ¼ UDVT and l¼ sign(det(C0)), noting that
D ¼ diag(d1,d2,d3) with d1 � d2 � d3 � 0.
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5. Define optimal rotation Rmin ¼ USVT, with S ¼ diag(1,1,l), and optimal
translation

Tmin ¼ m0A � Rmin m0B

6. Compute the cRMS between the two structures:

cRMS ¼
ffiffiffiffi
e0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

oi ai � m0A
� 2 þ

Xn

i¼1

oi bi � m0B
� 2 � 2

�
d1 þ d2 þ ld3

 !vuut

This algorithm does not take into account the possibility of ‘‘noise’’ in the
coordinates of the points. For proteins, the coordinates of atoms are approx-
imations to a ‘‘true’’ position: Proteins are flexible, with fluctuation about a
mean position. Moreover, the physical experiments that provide information
on the coordinates (usually X-ray crystallography and NMR spectroscopy)
have a degree of experimental uncertainty. When superposing two models
for the structure of one protein, the cRMS value is therefore a combination
of the actual fluctuation between the two models and of the noise level con-
tained in the two models. Noise is even more important for the superposition
of two proteins of different lengths.

Protein Structure Superposition

An Ambiguous Problem
The problem of finding an optimal alignment between two proteins is

more complex than just solving the rigid-body transformation problem,
because the correspondence, i.e., the list of equivalent residues in the two pro-
teins, is often not known. Indeed, the correspondence is part of the desired
output, along with the optimal transformation of the position of one protein
with respect to the other. The protein structure alignment problem can be sta-
ted as finding the maximal substructures of the two proteins that exhibit the
highest degree of similarity.

A ‘‘substructure’’ of protein A is a subset of its points, arranged by order
of appearance in A. We denote the substructure defined by P ¼ (p1, p2, . . ., pk),
where 1 � p1 < p2 . . . < pk � n, by A(P) ¼ (ap1, ap2, . . ., apk). The length |A(P)|
of A(P) is the number of points it contains, which in this case is k. A ‘‘gap’’ in
A(P) is two consecutive indices pi, piþ 1 such that pi þ 1< piþ 1.

Given two sets of points A ¼ (a1, a2, . . ., an) and B ¼ (b1,b2,. . .bm) in
three-dimensional (3-D) space, the protein superposition problem is to find
the optimal subsets A(P) and B(Q) with |A(P)| ¼ |B(Q)|, and the optimal
rigid-body transformation Gopt between the two subsets A(P) and B(Q) that
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minimizes a given distance metric D over all possible rigid-body transforma-
tion G, i.e.,

min
G

DðAðPÞ � GðBðQÞÞÞf g ½32


The two subsets A(P) and B(Q) define a ‘‘correspondence,’’ and p ¼ |A(P)| ¼
|B(Q)| is called the correspondence length. Once the optimal correspondence is
defined, it is easy to find the optimal rotation and translation using the rigid-
body transformation algorithm described earlier. The concept of ‘‘optimal cor-
respondence,’’ however, requires more explanation. It is clear that p ¼ 1
defines a trivial solution to the protein superposition problem: Any point of
A can be aligned with any point of B, with a cRMS of 0. In practice, we are
interested in finding the largest possible value for p under the condition that
A(P) and B(Q) remain ‘‘similar.’’

A fast, reliable, and convergent method for protein structural alignment
is not yet available although significant progress toward this goal has been
made over the past decade.100 Recent developments have focused on both
the search algorithm and the definition of the target function to be minimized,
which in turn provides a quantitative measure of the ‘‘similarity’’ between two
structures. The most direct approach for comparing two protein structures is
to move the set of points representing one structure as a rigid body over the set
of points of the other structure and look for equivalent residues. It can be
achieved only for relatively similar structures and will fail to detect local simi-
larities of structures sharing common substructures. To avoid this problem,
the structures can be decomposed into fragments [usually secondary structure
elements (SSEs)], but this can lead to situations in which the global alignment
is missed. Accordingly, recent work has focused on combining the local and
global criteria in a hierarchical and heuristic approach. These methods pro-
ceed by first defining a list of equivalent positions in the two structures,
from which a structural alignment can be derived. This initial equivalence
set is defined by various methods, including dynamic programming,101,102

comparing distance matrices,8,103–105 fragment matching,106,107 geometric
hashing,108–113 maximal common subgraph detection,114–116 and local geome-
try matching.117 Optimization of this equivalence set has been performed with
dynamic programming,102,118–120 Monte Carlo algorithms or simulated
annealing,8 a genetic algorithm,121 incremental combinatorial extension of
the optimal path,122,123 and mean-field approaches.124,125 Excellent reviews
of these and other methods can be found in Refs. 13, 100, 126, and 127.
Many groups involved in developing algorithms for protein structure align-
ment have generously made their programs available for use over the Internet
and the World Wide Web. In some cases, the program is accessible for down-
load, either as an executable or as a full source package (Table 5). These are
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Table 5 Websites for Publicly Available Protein Structure Alignment Services
and Programs

Web Access
Program Web Access (Interface) (Program Download) Method

CE http://cl.sdsc.edu ftp://ftp.sdsc.edu/pub/
sdsc/biology/CE/src

Extension of the
optimal path

DALILIGHT http://www2.ebi.ac.uk/
dali

http://ekhidna.biocenter.-
helsinki.fi:8080/dali/
DaliLite/index.html

Distance matrix
alignment

DEJAVU http://portray.bmc.uu.se/
cgi-bin/dejavu/scripts/
dejavu.pl

Compare SSEa

FATCAT http://fatcat.burnham.org/
fatcatpair.html

Flexible structure
alignment
based on frag-
ments

FoldMiner http://dlb4.stanford.edu/
FoldMiner/

Structure-data-
base compari-
son based on
motif search

K2 and
K2SA

http://zlab.bu.edu/k2 Genetic algorithm
(K2) or Simu-
lated annealing
(K2SA)

LOCK2 http://motif.stanford.edu/
lock2/

Hierarchical pro-
tein structure
superposition

LSQRMS http://www.molmo-
vdb.org/align/

STRUCTAL-
based program

MATRAS http://biunit.aist-
nara.ac.jp/matras/

Markov transition
model of evolu-
tion

PRIDE http://hydra.icgeb.trieste.
it/pride/

Probabilistic
approach based
on CA-CA
distance matrix

PRISM None http://honiglab.cpmc.
columbia.edu/

SSE alignment
followed by
iterative
refinement of
the equivalence
list

PROSUP http://lore.came.sbg.
ac.at:8080/CAME/
CAME_EXTERN/
PROSUP

Hierarchical
alignment

SARF2 http://123d.ncifcrf.gov/
sarf2.html

http://123d.ncifcrf.gov/
sarf2.html

Alignment of
backbone
fragments
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wonderful tools, and the reader is encouraged to test several of these sites.
Many of these services have been tested on large datasets with known simila-
rities.127–129 Those comparison studies do not identify a clear ‘‘winner,’’ i.e., a
technique that is significantly better than another; apparently an approach that
combines existing algorithms performs better than any individual technique
alone.129 The different definitions given to the similarities of two structures
are reviewed below, and two methods for protein structure alignment are
described, one based on distance matrices (DALI),8,130 and one based on
dynamic programming and comparison of structures in coordinate space
(STRUCTAL).118,119 Recent progress in developing a closed-form protein
structure alignment algorithm is then described.

Scoring Functions for Protein Structure Superposition
Because the concept of ‘‘optimal’’ correspondence is ambiguous, the pro-

tein structure superposition problem is not uniquely defined. Instead, finding
the best superposition of two proteins corresponds to a family of optimization
problems, which are specified by the weight given to the similarity (preferably
a small deviation between the two subsets), and the correspondence length
(preferably large).

Various measures of similarity between two sets of points exist. In
the section on rigid-body transformation, the cRMS value, which measures

SHEBA http://rex.nci.nih.gov/
RESEARCH/basic/lmb/
mms/sheba.html

http://rex.nci.nih.gov/
RESEARCH/basic/
lmb/mms/SHEBA-
download.html

Hierarchical
alignment
including
profiles

SSAP http://www.biochem.ucl.
ac.uk/cgi-bin/cath/
GetSsapRasmol.pl

Double dynamic
program

SSM http://www.ebi.ac.uk/
msd-srv/ssm/

http://www.ebi.ac.uk/
msd-srv/ssm/cgi-bin/
ssmdcenter

Secondary
Structure
Matching

TOPS http://balabio.dcs.gla.
ac.uk/tops/versus.html

http://www.tops.leeds.
ac.uk/

Alignment of sim-
plified represen-
tations of
proteins

TOPSCAN http://www.bioinf.
org.uk/topscan

Fast alignment
based on SSE
matching

VAST http://www.ncbi.nlm.
nih.gov/Structure/VAST/
vastsearch.html

Vector alignment

aSSE: secondary structure elements

Table 5 ðContinuedÞ
Web Access

Program Web Access (Interface) (Program Download) Method
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the root mean square deviation between the coordinates of the points
of the two sets, was described. For a given correspondence length, the
cRMS can be minimized with a closed-form algorithm (see above). When
both the cRMS and the correspondence length must be optimized, no
closed-form solutions are known. Approximate solutions that are usually
based on heuristics do not minimize the cRMS directly, as a consequence of
being very sensitive to outliers (the definition of cRMS, given in Eq. [2], shows
that it is a sum of the Euclidian distances between the points of the two
structures; if a few of these points are far apart, they will have a significant
impact on the value of cRMS). An example of a solution to this outlier
problem was given by Levitt et al.118,119 who introduced a scoring function
with a Lorentzian shape:

STðP;QÞ ¼ max
R;T

Xp

i¼1

20

1 þ kapi � Rbqi � T k2
� 10GP;Q ½33


The summation extends over the length of the correspondence between A(P)
and B(Q), GP,Q is the total number of gaps in A(P) and B(Q), and R and T are
the optimal rotation and translation that maximize the score (as opposed to
reaching a minimum for cRMS, as seen in Eq. [1]).

An alternative measure of protein structure similarity is the distance root
mean squared deviation (dRMS) that compares corresponding internal dis-
tances in the two sets of points:

dRMS ¼ 2

pðp � 1Þ
Xp�1

i¼1

Xp

j¼iþ1

M kai � aj k; kbi � bj k
� " #1=2

½34


where p is the cardinality of the two sets.
There is no consensus in the scientific community on the definition of the

metric M that should be used to compare the two internal distances ||ai� aj||
and ||bi� bj||. When comparing two pairs of atoms between two structures,
Taylor and Orengo101 defined a distance or similarity score in the form e/(Dþ f ),
where D is the difference between the two intramolecular distances and e
and f are arbitrarily defined constant values. Holm and Sander8 defined a simi-
larity score as ðe � ½D=hDi
Þexpð�½hDi=f 
2Þ, where hDi is the average of the
two intramolecular distances. Rossmann and Argos131 and Russell and Bar-
ton132 used a score defined as expð�½D=e
2Þexpð�½S=e
2Þ, where S takes
into account local neighbors for each pair of atoms. Currently, no clear
evidence exists as to which score performs best.

All scoring functions use geometry for the comparison and ignore simi-
larities in the environment of the residues. Suyama et al.133 proposed another
approach in which they ignored the 3-D geometry altogether and compared
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structures on the basis of their 3-D profiles134 alone, using dynamic program-
ming. These profiles include information on solvent accessibility, hydrogen
bonds, local secondary structure states, and side-chain packing. Although
this method can align two-domain proteins with different relative orientations
of the two domains, it often generates inaccurate alignments.133 Jung and
Lee135 improved on this method by iteratively refining the initial profile align-
ment with dynamic programming and 3-D superposition. Their method,
which they call SHEBA, was found to be fast and as reliable as other alignment
techniques (although it was only tested on a small number of protein pairs).
Kawabata and Nishikawa136 derived a novel scoring scheme for generating
structural alignments based on the Markov transition model of evolution.
The similarity score between two structures i and j is defined as log(P(ji)/
P(i)), where P(ji) is the probability that structure j changes to structure i during
evolution and P(i) is the probability that structure i appears by chance. The
probabilities are estimated with a Markov transition model that is equivalent
to the Dayhoff’s substitution model for amino acids. Three types of scores were
considered: (1) a score based on accessibility to solvent; (2) a residue-residue
distance score; and (3) an SSE score.

Superposition Based on Internal Distance Matrices: DALI
Associated with every protein chain A of n atoms is an n � n real sym-

metric matrix D, where D(i, j) is the Euclidian distance between atoms i and j
of A. This matrix is the ‘‘internal distances matrix’’ of A, also called the dis-
tance map of A. The two representations of a protein (by the coordinates of its
atoms and by its internal distances matrix) are closely related. Calculating the
distance matrix from the coordinates is easy and takes quadratic time in n.
Conversely, it is known that the atomic coordinates of a protein can be recov-
ered from the distances matrix, using the method of distance geometry.137,138

The recovered atomic coordinates are the original ones, modulo a rigid trans-
formation (and possibly a mirror transformation). This equivalence between
coordinates and internal distances has led to two different measures of protein
similarities, each based on one of the two representations. The use of the inter-
nal distances to compare protein structures has a major advantage of by pas-
sing the need to find an optimal rigid transformation that superposes the two
structures. As a consequence, most algorithms have been developed that com-
pare the internal distances matrix to align protein structures, the most popular
being the Distance ALIgnment algorithm (DALI), which is briefly described
below.

Holm and Sander8 developed a two-stage procedure in DALI that uses
simulated annealing to build an alignment of similar hexapeptide backbone
fragments between two proteins.

In the first stage, the two protein structures to be compared are divided
into overlapping hexapeptides. A contact map, which contains all internal
distances, is generated for each hexapeptide. Although residues in the proteins
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belong to several overlapping hexapeptides, they are assigned to the hexapep-
tide with the closest contacts to other fragments. Contact maps of the two pro-
teins are matched by comparing their internal distances, using an ‘‘elastic’’
score of the form ðe � ½D=hDi
Þexpð�½hDi=f 
2Þ, where D is the difference
between the two distances to be compared, hDi is the average distance,
and e and f are parameters. This score is less sensitive to distortion for
long-range distances. For the sake of efficiency, only hexapeptide pairs having
a similar backbone conformation are compared. Hexapeptides whose contact
maps match above a given threshold are stored in lists of fragment
equivalences.

In the second stage, an optimization protocol, based on simulated
annealing, explores different concatenations of the equivalent hexapeptide
pairs. Similarity is assessed by comparing all distances between the aligned
substructures. Each step of this second stage consists of addition, replacement,
or deletion of residue equivalences (in units of hexapeptides). Because hexa-
peptides can overlap, each step results in the addition of one to six residues.
Once all candidate hexapeptide pairs have been tested, the alignment is
processed to remove fragments with a negative contribution to the overall
similarity score.

This two-stage method, implemented in DALI,130 has been used to com-
pare representatives from all nonhomologous (in sequence) families in the pro-
tein data bank.3,4 More details are given in the DALI Domain Classification
below.

Superposition Based on cRMS: STRUCTAL
The internal distances matrix is invariant under rigid and mirror trans-

formations of the protein. Although this lead to a simplification of the protein
structure superposition problem because algorithms that compare proteins
based on internal distances do not need to find the optimal rigid transforma-
tion, mirror transformation may introduce errors because mirror images (such
as a right-handed helix versus a left-handed helix) will not be detected as being
different. Consequently, in addition to the approaches based on the internal
distances matrix, methods have been concurrently developed to solve the pro-
tein structure alignment problem using coordinates to measure the similarity
between proteins. These methods are based on heuristic algorithms that opti-
mize simultaneously the correspondence between the two proteins and the
rigid transformation. An example is the algorithm developed by Subbiah
et al. and implemented in the program STRUCTAL.118

STRUCTAL starts with an arbitrary equivalence of atoms between the
two proteins A and B. This equivalence defines a list of corresponding residues
(represented by their Ca atoms) that are superimposed with the optimal rigid-
body transformation. Once the two proteins are superimposed, the program
computes a structure alignment matrix SA. SA(i,j) measures the similarity
between residue i of protein A and residue j of protein B, based on a function
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of the distance d between Cai and Caj, after optimal superposition. This func-
tion is defined such that

SAði; jÞ ¼ 20

1 þ dðCai;CajÞ2=5
½35


It is simple to compute, and it has the important properties of being positive
and of decreasing monotonically with increasing distances. A new alignment is
then determined by searching the distance matrix for the alignment with the
best score. Dynamic programming rapidly [O(n2) operations] finds the opti-
mum for the given structure alignment matrix and for a given gap penalty.
In STRUCTAL, the gap penalty is set constant, equal to 10. The new align-
ment leads, in turn, to a new set of equivalencies between the proteins; this
set is then used to re-superimpose the two proteins in three dimensions giving
rise to a new structure alignment matrix. The procedure is iterated until the
alignment matrix does not change with additional iterations.

Because this structural alignment procedure is based on dynamic pro-
gramming and is iterative, the results depend on the initial equivalence
assigned. To account for this potential problem, STRUCTAL starts with five
different equivalences. The first three equivalences are simple, corresponding
to aligning the chain beginnings, the chain ends, and the chain midpoints of
the two structures, respectively, without allowing any gaps. The fourth choice
maximizes the sequence identity of pairs of residues considered equivalent,
whereas the fifth choice is based on the similarity of the Ca torsion angles
between the two chains. After repeating the iterative scheme to find the opti-
mal equivalence and superposition for each of the five initial sets of equiva-
lences, the optimal alignment is chosen as the one with the highest score.
Extensive studies have shown that not one of the five initial sets works better
than another in converging to the highest score.119

An Approximate Polynomial Time Algorithm
A prevailing sentiment among scientists developing algorithms for pro-

tein structure alignment is that structure comparison requires exponential
computer resources, and so development should focus on heuristic
approaches. Consequently, there are no guarantees of finding an optimal align-
ment with respect to any scoring function with any of the existing methods. In
addition, if one of these methods fails to find a satisfactory alignment, it can-
not be ruled out that a good alignment exists. There is one interesting, albeit
theoretical, exception to this. Kolodny and Linial139 have developed a polyno-
mial-time algorithm that optimizes simultaneously the correspondence and the
rigid transformation leading to a structural alignment. The computation cost
of their algorithm is of the order O(n10), and as such, it is not practical to
implement. This algorithm, however, is not heuristic: it guarantees finding
e-approximations to all solutions of the protein superposition problem, where
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these solutions correspond to maxima of the STRUCTAL score ST defined in
Eq. [35].

For an alignment algorithm to be polynomial, the following conditions
must hold:

1. Given a rigid transformation, it should be possible to find an optimal
correspondence in polynomial time.

2. The number of rigid transformations under consideration must be bounded
by a polynomial.

The STRUCTAL score ST is amenable to dynamic programming and
therefore can be used to find an optimal correspondence in time and space
requirements of order O(n2), for any given rigid transformation r. The score
of this optimal correspondence is denoted as STopt(r). It validates condition 1.
The validity of condition 2 is derived from a lemma given by Kolodny and
Linial, which states that for all e, a finite set G ¼ G(e) of rigid transformation
exists, such that for every choice of a rigid transformation r, a transformation
rG in G(e) exists such that kSToptðrÞ � SToptðrGÞk < e, and cardinal(G) ¼ |G|
is polynomial in n.

This lemma suggests the following algorithm for the structural alignment
problem. For a given value of e, build G(e), the discrete sampling of the space
of rigid transformation, and evaluate STopt over all rigid transformations in
G(e). The e-optimal structure alignments of the two proteins are guaranteed
to be within e of the maxima found in the exhaustive search over G(e). A
major advantage of this exhaustive algorithm is that if it fails to find a good
alignment, no good alignment exists. Because the size of G(e) is of the order
Oðn10=e6Þ, the computing time required by this algorithm is still prohibitive.
As such, the contribution of Kolodny and Linial should be viewed as mostly
theoretical, rather than as practical, but it does provide insights about the
complexity of protein structure alignments.

cRMS: An Ambiguous Measure of Similarity

The root mean square deviations (cRMS or dRMS) remain the measures
of choice by structural biologists to describe the similarity between two pro-
teins, even though most algorithms for protein structure alignments use scor-
ing schemes that differ significantly from simply taking into account
interatomic distances (see above). Both cRMS and dRMS are based on the
L2-norm (i.e., the Euclidian norm), and as such, they suffer from the same
drawback as the residual w2 in least-squares minimization in which the pre-
sence of outliers introduces a bias in the search for an optimal fit and the final
measure of the quality of the fit may be artificially poor because of the sole
presence of those outliers. Another problem of relying on RMS deviations is
that it does not always satisfy the triangular inequality. More precisely, the
triangular inequality is satisfied when the correspondences between the
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proteins always involve the same points.140 Generally by varying correspon-
dences, it is easy to find a situation in which the triangular inequality is not
satisfied. Consider, for example, two proteins A and B that are dissimilar,
and the two-domain protein C, whose subdomains C1 and C2 are very similar
to A and B, respectively. In this example, the RMS deviations between A and C
and between B and C are low, but the RMS deviation between A and B is large,
violating the triangular inequality that states that RMS(A, B) � RMS(A,
C) þ RMS(C, B). As a consequence of these limitations, RMS is a useful mea-
sure of structural similarity for only closely related proteins.141 Several other
measures have therefore been proposed to circumvent these problems. The
STRUCTAL score S2 (Eq. [34]) was shown to be a more reliable indicator
of structure similarity than RMS because it depends on the best-fitting pairs
of atoms (thereby removing the weights of outliers). In contrast, RMS gives
equal weight to all pairs of atoms. Lesk142 recently proposed replacing the
L2-norm in the RMS definition by the L norm, also called the Chebyshev
norm, to yield the new score:

S ¼ max
i2 1;N½ 


kxðiÞ � yðiÞkf g ½36


S reports the worst-fitting pair of atoms (after optimal superposition of the two
structures) and, as such, is even more sensitive to outliers than is the RMS.
Yang and Honig120 defined a new protein structure similarity measure, the
protein structural distance (PSD). PSD combines a secondary structural align-
ment score and the RMS deviation of topologically equivalent residue pairs. It
thus incorporates the resolution power of both RMS for closely related struc-
tures and the secondary structure score for proteins that can be very different.
By analyzing the PSD scores obtained from more than one and a half million
pairs of proteins, Yang and Honig120 proposed that a continuum of protein
conformation space exists, conflicting with existing ideology in structural clas-
sification databases such as SCOP (Structural Classification Of Proteins6) and
CATH (Class, Architecture, Topology and Homologous Superfamilies7).
May143 assessed 37 different protein structure similarity measures for their
ability to generate accurate clusters in a hierarchical classification of 24 pro-
tein families. It was found that the sum of ranks of distances at aligned
positions was a better measure of similarity than the direct sum of distances and
that RMS computed over the subset of core-aligned positions performs better
than normal RMS computed over all-aligned positions. Variations in the hier-
archical classification of protein structures brings into question the validity not
only of the measure used for the clustering, but also of the hierarchical cluster-
ing. The difficulty associated with defining a similarity score for protein struc-
tures reflects the fact that most questions related to structure comparison do
not have a unique answer144–146 and brings to the fore that the problem is ill
posed, requiring additional information to provide a well-defined solution. As
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an example, consider fold recognition applications, where predictors focus on
the well-conserved core region of the protein and pay less attention to the loop
geometry. In such cases, it makes sense to define a similarity score that includes
only atoms in the core.

Having a quantitative measure of protein structure similarities is essen-
tial when assessing the quality of protein structure predictions, such as those
generated for the Critical Assessment of techniques for protein Structure Pre-
diction (CASP) project, organized in the form of a meeting held in alternating
years at Asilomar, California. For the special case of comparing a predicted
structure with its experimental counterpart, the equivalence list is known
because the two sequences are identical, which thus reduces the complexity
of the problem. On the other hand, each structure prediction may omit differ-
ent residues depending on how the prediction algorithm works and different
parts of the predicted structure may omit geometries of variable quality.
Hubbard147 avoided the problem by generating many superpositions and
by calculating the best RMS for each set of equivalent residues (not necessarily
contiguous), to provide an RMS/coverage graph, which evaluated predictions
at CASP3. The RMS/coverage plot can also be interpreted as defining the num-
ber of equivalent residues for a given RMS value.

Differential Geometry and Protein Structure Comparison

The inherent problems of RMS as a measure of protein structure simila-
rities, and the difficulties encountered by the existing heuristic algorithms
whose aim is to solve the protein structure superposition problem, have led
to the development of a new approach for comparing protein structure, based
on differential geometry and the concept of protein shape descriptors. A tutor-
ial on molecular shape descriptors can be found in a previous volume of this
series.148 The idea behind this approach is simple: Represent the protein struc-
ture with a vector of geometric properties (GPs) such that the comparison of
two protein structures is performed by comparing their GP vectors, usually
with a Euclidian metric. Once the GP vectors have been computed, structure
comparison with this scheme becomes instantaneous, and it can then be per-
formed over entire databases. The success of this approach depends on the
quality of the geometric properties included in GP and on their ability to
uniquely capture the geometric properties of the protein. Because there is a
growing interest to define such protein shape descriptors, two descriptors
derived from knot theory, the writhe and the radius of curvature of a polygo-
nal curve, are reviewed here.

The Writhe of a Protein Chain
The writhe of a polygonal curve is the signed average crossing number of

the curve, where the average is taken over the observer’s positions, located in
all space directions.
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Consider a polygonal curve A defined by N line segments i. The writhe of
A is computed according to

WrðAÞ ¼ I1;2ðAÞ ¼
X

0<i1<i2<N

Wði1; i2Þ ½37


with

Wði1; i2Þ ¼ 1

2p

ði1þ1

t1¼i1

ði2þ1

t2¼i2

wðt1; t2Þdt1 dt2 ½38


where Wði1; i2Þ is the contribution to the writhe of line segments i1 and i2.
Wði1; i2Þ is the probability of seeing the line segments cross when viewed
from an arbitrary direction, multiplied by the sign of the crossing. Computa-
tion of W(i1,i2) is described in Figure 8. Similarly, the unsigned average num-
ber of crossing, usually referred to as the average crossing number, is given by

I 1;2j jðAÞ ¼
X

0<i1<i2<N

Wði1; i2Þj j ½39


A whole family of structural measures can be envisaged with Wði1; i2Þ and
|Wði1; i2Þ| as building blocks,149 such as

Ið1;3Þ 2;4j j ¼
X

0<i1<i2<i3<i4<N

Wði1; i3Þ Wði2; i4Þj j ½40


and

Ið1;4Þ;ð2;6Þ;ð3;5Þ ¼
X

0<i1<i2<i3<i4<i5<i6<N

W i1; i4ð ÞW i2; i6ð ÞW i3; i5ð Þ ½41


i1

i2

d1

d2

d3

d4

d1 d2
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d4

4 3
21
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P

Figure 8 Computing Wði1; i2Þ, the writhe of two segments i1 and i2. (Left panel) The
endpoints of the segments i1 and i2 are connected by 4 vectors d1, d2, d3, and d4 that
generate a parallelogram P of directions (center panel). The area A of the projection of P
on the surface of the unit sphere is the segment-segment writhe Wði1; i2Þ. A is computed
as: A ¼ (a1 þ a2 þ a3 þ a4) � 2p (right panel).
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These measures are inspired by Vassiliev knot invariants.150 They form a nat-
ural progression of curve descriptors, much as moments of inertia and their
correlations define solids.

The writhe and the average crossing number have been used extensively
to characterize DNA molecules and more specifically supercoiled
DNAs.151,152 They have also been used to describe proteins. Levitt153 has
used writhe to distinguish different chain threading. Arteca et al. used the
writhe as a protein shape descriptor.154–158 Rogen and Bohr149 have used
the writhe, the average crossing number, and their higher order correlations
to define a feature vector that characterizes protein structures. More recently,
Rogen and Fain159 have compared protein structures with feature vectors in
<30 similar to those defined by Rogen and Bohr, using a pseudo-metric, which
is the Euclidian distance between the feature vectors. That pseudo-metric is the
scaled Gauss metric (SGM) (this name was chosen as the writhe of a contin-
uous curve and is usually computed with a Gauss integral160). Rogen and
Fain159 show that SGM performs extremely well as a protein structure classi-
fier, using both CATH and SCOP as test sets. Because both CATH and SCOP
include all protein chains in the PDB, they are highly redundant and cannot be
considered as discriminative benchmarks. Despite this reservation, the results
of Rogen and Fain provide a new way to compare and classify protein struc-
tures, using geometric protein shape descriptors.

Protein Chain Thickness and Generalized Radius of Curvature
Any smooth, nonintersecting curve can be thickened to a smooth, non-

intersecting tube of constant radius centered on the curve. If the curve is a
straight line, there is no upper bound for the radius, but for any other curve,
there is a critical radius above which the tube ceases to be smooth or shows
self-contact. This critical radius is referred to as the thickness of the curve,
and it is used as a shape descriptor in knot theory. Because the geometry
of DNA and protein molecules is characterized by the geometry of their back-
bone chain, it is natural to check whether thickness could be used as a
shape descriptor for these molecules. Gonzalez and Maddocks161 introduced
the concept of generalized radius of curvature and used it to characterize the
geometry of DNA molecules. Their definition of generalized radius of curva-
ture is based on the fact that any three noncollinear points x, y, z in 3-D space
define a unique circle whose radius is given by

rðx; y; zÞ ¼ x � yj j x � zj j y � zj j
4Aðx; y; zÞ ½42


where Aðx; y; zÞ is the area of the triangle with vertices at x, y and z and jx � yj
is the Euclidian distance between x and y. Let us consider a discrete curve C,
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defined by n nodes (c1, c2, . . . cn). Gonzalez and Maddocks define the general-
ized radius of curvature of C at ci by

rCðciÞ ¼ min
1�j;k�n
i 6¼j 6¼k6¼i

rðci; cj; ckÞ ½43


rC(ci) is the radius of the smallest circle passing by ci and two other distinct
nodes of C. rC(ci) should be distinguished from the local radius of curvature
r defined at ci by r(ci) ¼ r(ci�1,ci,ciþ1). The thickness �(C) of the discrete
curve C is related to the generalized radius of curvature by

� Cð Þ ¼ min
1�i�n

rCðciÞ ½44


In other words, �(C) is the radius of the smallest circle passing by three points
of C.

Figure 9 illustrates the ‘‘thickness’’ of a small globular protein. The con-
cepts of thickness and generalized radius of curvature have been used to
characterize the geometry of DNA.151,152 They have also been used as
a ‘‘potential’’ that captures the geometry of a protein,162–166 which was
used, for example, in protein structure prediction computer experiments.167

Thickness and generalized radius of curvature have not yet been used for
protein structure comparison, but it is expected that they would prove useful
for detecting protein structure similarities, especially when combined with
other features such as writhe.

Upcoming Challenges for Protein Structure Comparison

The most difficult application of protein structure comparison comes in
classifying known protein structures into different clusters corresponding to
fold families. The role of such classifications is to organize structure databases
such as the PDB, in hopes of detecting similarities at the structure level that

(a) (b)

Figure 9 Thickness of a protein. (a) The structure of the B1 immunoglobulin-binding
domain of streptococcal protein G is visualized as a thin tube. (b) View of the same tube
inflated to its ‘‘thickness’’ (i.e., to a radius above which the tube ceases to be smooth, or
shows self contact). Note that no free space exists between consecutive turns of the
helices. Figure 9a drawn with MOLSCRIPT17 and 9b with VMD.18
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cannot be detected at the sequence level, and more generally, to detect evolu-
tionary relationships between proteins. The existing protein structure classifi-
cation schemes are reviewed in the next section. Multiple challenges must be
overcome by a protein structure comparison program in this application. First,
it must deal with different levels of structural similarities, it must identify simi-
larities even when those similarities form a small proportion of the proteins
being compared, and it must handle insertions of arbitrary size as well as per-
mutations of substructures. Second, it must deal with the fact there may be
more than one acceptable solution for the structural alignment of two pro-
teins. These multiple, equivalent solutions (in terms of cRMS and length of
the equivalence) may all be viable from a biological perspective,145 and there-
fore cannot be ignored. Third, the size of most protein structure databases has
grown exponentially in the recent years, and the growth rate is expected to
continue as the structural genomics projects enter their productive phases. A
need exists for fast techniques to compare and classify these structures, faster
than the existing techniques that are too time consuming to be of use.

None of the existing methods, including those described in length above,
propose solutions to meet these challenges. Heuristic methods were developed
for the sake of efficiency; yet no guarantee exists that they can find the optimal
superposition. Also, some of these heuristic methods cannot detect alternative,
equally acceptable solutions. The approximate solution developed by Kolodny
and Linial139 resolves some of these issues in the sense that it can detect all
maximal solutions with an e of the optimal solutions, but its computing cost
(of the order of Oðn10=e6Þ where n is the size of the proteins considered) makes
it unsuitable for large-scale comparisons. There is a need to develop faster,
more robust, and exhaustive approaches to solving the myriad of problems
associated with protein structure comparison. This field in fact remains an
active area of development in structural biology, but solutions may come
from interdisciplinary research groups. The problem of comparing two protein
structures can be reformalized as the problem of comparing two sets of points
in 3-D space. As such, it can be seen as a problem of computational geometry,
and it is expected that collaboration between structural biologists well versed
in deciphering protein structures and computer scientists who focus on
geometric problems could provide the synergy required for significant progress.
The recent advances in the application of differential geometry to protein
structure (see the sections on writhe and curve thickness above) are signs
that these collaborative efforts are working.

PROTEIN STRUCTURE CLASSIFICATION

Perutz et al.30 showed in 1960 that myoglobin and hemoglobin, the first
two protein structures to be solved at atomic resolution using X-ray crystallo-
graphy, have similar structures even though their sequences differ. These two
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proteins are functionally similar, as they are involved with the storage and the
transport of oxygen, respectively. Since then, there has been a continued inter-
est in finding structural similarities between proteins, in the hope of revealing
shared functionality that could not be detected by sequence information alone.
A logical consequence of this interest is the development of systems for classi-
fication of protein structures that identify and group proteins sharing the same
structure so as to reveal evolutionary relationships. Classifying protein struc-
tures has now become essential because of the volume of structural data avail-
able (see Figure 10). In parallel with the development of protein structure
classification methods are the developments for many classifications of protein
sequences described in length in Ref. 168. Table 6 lists some resources avail-
able for sequence classification.

All current structural classification methods are based on the same
scheme: Protein structures are first divided into discrete, globular domains,
which are then classified at the levels of (1) ‘‘class,’’ (2) ‘‘folds,’’ (3) ‘‘superfa-
milies,’’ and (4) ‘‘families.’’ The differences among existing schemes come
from the methods that define the domains and the procedures that classify.
After reviewing the terms that define a classification, the three main protein
structure classifications available, SCOP, CATH, and the DALI Domain
Dictionary (DDD), will be described. Links to these databases and related
services are listed in Table 7.

The first complication associated with structure classification involves
the fact that protein structures are often composed of distinct globular
domains. Because these domains can function individually, with distinct func-
tional roles, proteins are usually separated into domains before classification.
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Figure 10 Statistics on the PDB. The number of structures (proteins and nucleic acids)
available in the Protein Data Bank (PDB)3,4 is plotted against time, starting from 1973
when the PDB was created.
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How to identify and delineate these domains is still an open problem as dis-
cussed above. It is important to realize that the existing algorithms for domain
identification do not always agree; the corresponding discrepancies in domain
definition translate into differences between structural classifications that do
not share the same definition.

Table 6 Resources for Classification of Protein Sequences

Scheme Description Web Access

PFam Domain-level classification
of protein sequences

http://www.sanger.ac.uk/Software/Pfam/

PRINTS Fingerprints information on

protein sequences

http://www.bioinf.man.ac.uk/dbbrowser/

PRINTS/

PROSITE Sequence motif definition http://www.expasy.org/prosite/
TIGRFAMS Protein family database http://www.tigr.org/TIGRFAMs/

PRODOM Protein domain database http://protein.toulouse.inra.fr/prodom.html

BLOCKS Multiple-alignment blocks http://blocks.fhcrc.org/
eMOTIF Protein motif database, derived

from PRINT and BLOCKS

http://motif.stanford.edu/emotif/

CluSTr Clusters of related proteins http://www.ebi.ac.uk/clustr/

COGS Clusters of orthologous groups http://www.ncbi.nlm.nih.gov/COG/
ProtoMap Hierarchical classification of

protein sequences

http://protomap.cornell.edu

TRIBES Protein family databases http://maine.ebi.ac.uk:8000/services/tribes/

PIR international Protein sequence databases http://pir.georgetown.edu/
SYSTERS Protein family database http://systers.molgen.mpg.de/

SMART Small motif database http://smart.embl-heidelberg.de/

UniProt Catalog of information on
proteins

http://www.expasy.uniprot.org/

InterPro Databases of protein

families and domains

http://www.ebi.ac.uk/interpro/

Table 7 Resources for Protein Structure Classifications

Scheme Description Web Access

SCOP Structural Classification

of Protein: manual

http://scop.mrc-lmb.cam.ac.uk/scop/

index.html

CATH Class, Architecture,

Topology, Homology:
semiautomatic

classification of proteins

http://www.biochem.ucl.ac.uk/bsm/cath

DALI Fold

Classification

Automatic classification

of DALI domain using Dali.
Supersedes FSSP

http://www.bioinfo.biocenter.helsin-

ki.fi:8080/dali/index.html

ASTRAL Databases and tools for

analyzing protein structure;

derived from SCOP

http://astral.berkeley.edu/

HOMSTRAD Aligned 3-D structures

of homologous proteins

http://www-cryst.bioc.cam.ac.uk/data/align
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Once proteins are divided into domains; the domains are then classified
hierarchically. At the top of the classification we usually find the ‘‘class’’ of a
protein domain, which is generally determined from its overall composition in
secondary structure elements. Three main classes of protein domains exist:
mainly a domains, mainly b domains, and mixed a� b domains (the domains
in the a� b class are sometimes subdivided into domains with alternating a/b
secondary structures and domains with mixed aþ b secondary structures). In
each class, domains are clustered into ‘‘folds’’ according to their topology. A
fold is determined from the number, arrangement, and connectivity of the
domain’s secondary structure elements. The folds are subdivided into ‘‘super-
families.’’ A superfamily contains protein domains with similar functions,
which suggests a common ancestry, often in the absence of detectable sequence
similarity. Sequence information defines ‘‘families,’’ i.e., subclasses of superfa-
milies that regroup domains whose sequences are similar.

Classification schemes are designated as being curated and automatic. A
curated classification is one that is based mainly on human expertise, some-
times guided by computer analyses, to identify similarities between protein
structures for organization into groups. An automated classification relies
exclusively on the results of a computer procedure to identify the similarities,
which are subsequently processed automatically to generate the groups. One
advantage of curation is the typically high quality of the clustering results; the
disadvantage is that curation is difficult to scale to high volumes of data. Con-
versely, automatic procedures are fully reproducible and scalable, but they
may inaccurately assign similarity. The three most common protein structure
classifications illustrate these differences: SCOP is almost completely manually
derived, the DALI domain dictionary is based on a fully automated procedure,
and CATH is intermediate between these two classification, using automated
procedures complemented with human interventions.

The Structure Classification of Proteins (SCOP)

SCOP6 is a repository that organizes protein structures hierarchically to
reflect both structural and evolutionary relatedness. SCOP has been con-
structed manually, from the delineation of the domains in multidomain pro-
teins to the organization of the levels of the hierarchy. It relies on visual
inspection and comparison of protein structures, with the assistance of some
automatic computer tools to make the task manageable and to help provide
consistency and generality. Since its creation in 1994, SCOP has been updated
regularly, with an average frequency of two releases a year. The latest update
of SCOP, 1.65, was built from the 20,619 PDB entries (54,745 domains) avail-
able on August 1, 2003 and was released in December 2003. Statistics on the
growth of SCOP are given in Figure 11.

SCOP is a hierarchic classification with four major levels: classes, folds,
superfamilies, and families. As recognized by the authors of SCOP, the exact
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positions of boundaries separating these levels are subjective; where any
doubts of similarity existed, they have chosen to create new divisions at the
family and superfamily levels.

At the top of the SCOP hierarchy are 11 different classes: alpha, beta,
alpha and beta (a/b), alpha plus beta (aþ b), multidomain proteins, mem-
brane and cell-surface proteins, small proteins, coiled coil proteins, low-
resolution protein structures, peptides, and designed proteins. Note that only
the first seven classes are true classes. The remaining ones serve as place holders
for protein domains that cannot (yet) be classified among the major classes and
are maintained in SCOP for the sake of completeness and compatibility with
the PDB.

In each SCOP class, proteins are clustered into groups based on their
structure similarity. Each cluster is referred to by SCOP as a fold. Proteins
share a common fold if they have the same major secondary structures in
the same arrangement and with the same topological connections. Proteins
with the same fold may differ at the level of their peripheral elements, which
can include secondary structures and turn regions. Note that these peripheral
elements can represent up to 50% of the structure. Proteins catalogued
together in the same fold may have no common evolutionary origin.

SCOP superfamilies identify probable common evolutionary origin. Pro-
teins whose sequences have low similarities, but that share the same fold and
have similar functions, suggest that a common evolutionary origin is probable.
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Figure 11 Statistics of the SCOP classification of proteins. The numbers of folds,
superfamilies, and families in SCOP are plotted against ‘‘time’’, where time is the
timestamp of the PDB used to generate the update of SCOP.
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Proteins clustered together into families are clearly evolutionary related.
The sequences of two proteins of the same family often have a residue identity
greater than 30%. In some cases, a high sequence identity is not needed to
affirm common origin; many globins, for example, form a family, even though
some members of that family have a sequence identity of only 15%.

The CATH Classification

CATH7 is a protein structure classification in which protein domains are
clustered at four major levels: class (C), architecture (A), topology (T), and
homologous superfamily (H), each of which are described below. CATH
uses a semiautomatic classification procedure that filters out nonprotein, mod-
els, and ‘‘Ca-only’’ structures from the PDB. Only crystal structures solved to
resolution better than 3.0 Å are considered, together with all NMR structures.
The latest update of CATH, v2.5.1, was released January 28, 2004 and
includes 48,391 domains.

Multidomain proteins are subdivided into individual domains with a
consensus procedure based on three algorithms for domain recognition:
DETECTIVE,82 PUU,77 and DOMAK.77 When all three algorithms generate
the same result on a multidomain protein, the common solution delineates the
domains of that protein. This consensus procedure resulted in 53% of the
proteins included in the CATH release 2.5.1 to be subdivided into domains auto-
matically. The remaining structures were assigned domains manually, using one
of the assignments made by the automatic procedure, an assignment obtained
from the literature, or based on a new assignment defined by visual inspection.

CATH includes four classes (C): alpha, beta, alpha and beta, and few
secondary structure (FSS). The alpha–beta class includes both alternating
alpha/beta structures and alpha þ beta structures, originally defined by Levitt
and Chothia.31 The class of a protein domain is determined according to its
secondary structure composition and packing. Ninety percent of the protein
domains were automatically assigned to their class in CATH 2.5.1, using
the method developed by Michie et al.169,170 The remaining 10% of domains
were assigned to a class by visual inspection.

The architecture (A) level included in CATH describes the overall shape
of the domain structures, as determined by the orientation of their secondary
structures, ignoring their connectivity. It is assigned manually. This level has
no equivalent in SCOP.

Domains are grouped into topologies (T), or fold families, according to
their overall shape and the connectivity of their secondary structures. This is
done with the structural alignment program SSAP.101 Proteins belonging to the
same class are compared systematically with SSAP, and the corresponding scores
are stored in a two-dimensional matrix. Structure pairs that have a sufficiently
high SSAP score (>70) are merged into fold families, using single linkage cluster-
ing (for a brief description of this clustering technique, see the Appendix).
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The Homologous Superfamily level, or H level, groups together protein
domains thought to share a common ancestor. This level is equivalent to the
superfamily level defined in SCOP. CATH also includes a Sequence Families
level (S-level) that is equivalent to the family level of SCOP.

The DALI Domain Dictionary (DDD)

The DDD, also called the DALI domain classification, is derived from a
fully automated method of defining and classifying domains.171,172 DALI
domains are defined by a version of the PUU algorithm77 that has been
updated to consider the recurrence of putative domains.173 When comparing
two protein structures, DALI computes a similarity measure, or S score. The
mean and standard deviations of the S scores obtained over all pairs of pro-
teins are evaluated. Shifting the S scores by their mean and rescaling by the
standard deviation yield the statistically meaningful Z-scores.

The program DALI was used initially to create the Families of Structu-
rally Similar Proteins (FSSP) database.174 In FSSP, pair-wise structural com-
parisons are made between proteins of a representative set, in which no two
proteins have greater than 25% sequence identity. For each member of the
representative set, a file is created that contains all pair-wise structural matches
with a Z-score greater than 2.0. The same procedure generates a complete
classification of all protein domains in the PDB90 database, the DDD.172

PDB90 is a representative subset of the PDB, where no two chains share
more than 90% sequence identity. An average linkage hierarchical clustering
technique (see the Appendix) generates a fold tree covering the PDB90 data-
base. The pair-wise structural alignments are divided with Z-score cutoffs of 2,
4, 8, 16, 32, and 64, creating a six-character index for each domain. The first
level (Z > 2) is used as an operational definition of folds. Lower levels should
not be confused with the superfamily and family levels of CATH and SCOP, as
they are not based on direct functional or evolutionary relationships. Both
FSSP and the DDD are continuously updated; this is possible as they are
both derived from a fully automated procedure.

Comparing SCOP, CATH, and DDD

SCOP, CATH, and DDD agree on most of their classifications, despite
differences in the classification methods they have implemented, and in the
rules of protein structure and taxonomy they are based on. Hadley and
Jones175 were the first to publish a detailed comparison of the fold classifica-
tions produced by SCOP, CATH, and FSSP. They showed that the three clas-
sification systems tend to agree in most cases, and that the discrepancies and
inconsistencies are accounted for by a small number of problems. Among
these, the domain assignment plays a crucial role. As mentioned, the separa-
tion of proteins into domains is a difficult and often subjective process. Many
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protein structures are assigned different numbers of chains in SCOP, CATH,
and FSSP. An obvious domain problem that results is the exclusion of one part
of a protein. Hadley and Jones175 reported the case of papain, a cysteine pro-
teinase from papaya, which was treated as a single domain by SCOP, leaving
the catalytic cysteine, histidine, and asparagines together to form the active
site, while CATH split the protein into two domains, separating the cysteine
from the asparagine and histidine, and rendering each domain effectively func-
tionless. Note that this difference between SCOP and CATH has been cor-
rected since Hadley and Jones published their study, and papain is now
treated as a single domain in CATH. Another discrepancy between the struc-
tural classifications originates from the ‘‘fold overlap’’ problem, where a fold
within one classification encompasses more than one fold within another clas-
sification. When a domain is classified in CATH as a three-layer (aba) sand-
wich Rossmann fold, there are several SCOP folds to which it could belong.
Although the structures are geometrically similar, SCOP can separate them to
reflect an evolutionary distinction. This ‘‘fold overlap’’ problem is observed,
for example, for the protein 1phr, and the chain A of the proteins 1gar and
1lfa, corresponding to a phosphotyrosine protein phosphatase, a formyltrans-
ferase, and an integrin, respectively. All three structures contain a three-layer
sandwich Rossmann fold and are consequently regrouped in the same
Topology in CATH (topology index 3.40.50), while they are representatives
of their fold class in SCOP (classes c.44, c.65, and c.62, respectively).

Despite these discrepancies, Hadley and Jones175 recognized the merits
of all three classifications and concluded that no one method is distinctly
superior to another. They characterize SCOP as a valuable resource for
detailed evolutionary information, CATH as a source of geometric informa-
tion, and FSSP as a raw source of information, which is continually updated.

Divergences in protein structure classifications have triggered the search
for a consensus description of the protein structure space. Day et al.176

recently repeated the comparative study of SCOP, CATH, and DDD pre-
viously done by Hadley and Jones, using updated versions of the classifica-
tions. Although Day et al. find significant levels of agreement between the
three classifications, they highlight disparities whose origins are similar to
those found earlier by Hadley and Jones. To remove these disparities, they
introduced the concept of consensus folds. Day et al. start from a nonredun-
dant subset of protein domains. To be considered in the analysis, the authors
insisted that 80% of the sequence of a domain in SCOP must be present in a
DALI domain definition, 80% of the DALI domain must be present in the
SCOP definition, and so on for the other pair-wise combinations of the classi-
fication systems. Redundant domains were considered as those having >95%
sequence identity to a previously counted domain. Each domain in the
nonredundant subset was assigned a fold identifier, which corresponds to its
classification in SCOP, CATH, and DDD. Domains were then clustered on
the basis of their fold identifiers, and the corresponding clusters were referred
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to as metafolds. The nonredundant set contained 5720 domains, clustered into
1130 metafolds. About half of these domains are described by one of the top
30 metafolds. These metafolds represent the consensus information contained
in SCOP, CATH, and DDD, and as such define a consensus view of the protein
fold space.

CONCLUSIONS

Proteins are key molecules in all cellular functions. Nature has exten-
sively explored their sequences and structures to build the library of functions
needed for the diversity of life, taking into account all external constraints and
the corresponding adaptation. The wealth of information encoded in the pro-
tein sequences and structures therefore provides the clues needed to unravel the
mysteries of life and its evolution and adaptation over time. Understanding
this diversity has become a key topic in recent genetics and molecular biology
studies, catalyzed by the development of numerous genomics and structural
genomics projects. More than 220 whole genomes have been sequenced and
published on the World Wide Web, and more than 1200 are currently under
study, which corresponds to databases in excess of one million nonredundant
protein sequences. In parallel, the Protein Data Bank contains structural data on
more than 27,000 proteins. The challenge now is to organize these data in a
way that evolutionary relationships between proteins can be uncovered and
used to understand better protein function. The past few years have seen an
explosion of techniques in ‘‘bio-informatics’’ for organizing and analyzing
protein sequence families. Although such approaches can detect homologous
proteins, they usually fail to detect remote homologues, i.e., pairs of proteins
that have similar structure and function, but that lack easily detectable
sequence similarity. Because protein structures are more highly conserved
than are protein sequences, there is a growing interest in studying evolution
based on an understanding of the protein structure space. The first steps com-
mon to the analysis of any large set of data are to group together data points
that are similar, and then to identify connections between those elementary
groups. These steps are usually performed with classification techniques. In the
case of protein structures, this has led to the construction and maintenance of
protein structure classifications, which have been reviewed in this tutorial.

Reliable protein structure superposition remains a bottleneck when car-
rying out a protein structure classification. Comparing and grouping proteins
require a definition of the similarity of two structures. Similarity in structural
alignment is geometric and captured by the cRMS deviation of the aligned
atoms. Other properties of structural alignments that are likely to be
significant are the number of positions matched and the number and length
of gaps. Good alignments match more positions, have fewer gaps, and are
more similar than do poor alignments. Because these properties of alignments

Conclusions 45



are not independent (shortening the alignment or introducing many gaps can
lower the cRMS), researchers have devised alignment scores that attempt to
balance their influences. Several measures of similarity have consequently
been developed.143 Perhaps the most significant recent improvements in this
area have been in the protocols for assessing the statistical significance of these
measures.119,177 These statistical measures of similarity are now being used in
structure comparison algorithms. Ideally, they should detect reliably distant
relatives and be fast enough to scan large databases of representative protein
structures. Existing methods have been designed to satisfy one or the other,
but not both of these two criteria simultaneously (see the section on protein
structure superposition). A need exists for a fast, reliable protein structure
superposition program.

Critical to the classification of proteins is the definition of domains. It has
long been hypothesized that domains are the important evolutionary units. It
is supported by recent analyses of the available genome data, which suggest
that at least 60% of the genes are multidomain proteins.178–180 Domain dupli-
cations and recombination are thought to have occurred extensively in nature.
Protein structure classifications are consequently domain based. Automatic
recognition of domains in multidomain proteins can be difficult, although
many promising approaches have been developed (see the section on protein
domain above). These methods do not always agree with their domain assign-
ments, which in turn leads to discrepancies between the existing protein struc-
ture classifications.175,176

The three major protein structure classifications are SCOP, CATH, and
DDD. SCOP is derived manually and is recognized as a valuable resource of
detailed evolutionary information. CATH provides useful geometric informa-
tion. It also introduces the concept of ‘‘architecture,’’ which reveals broad fea-
tures of the protein structure space. CATH relies on partial automation and as
such is subject to inaccuracies introduced by fixed thresholds. The DDD is a
fully automatic classification continually updated. It is not as popular as SCOP
and CATH, probably because its automatic levels are not as intuitive and
require more input from the users to be interpreted.

Protein structure classifications need to be linked with the other genome
databases under constructions. Currently, SCOP, CATH, and DDD are valu-
able resources used mostly for benchmarking of methods and for structural
studies. Their impact on biology will be far greater when they are integrated
with sequence and function information to present a cohesive picture of the
different protein spaces.
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APPENDIX: HIERARCHICAL CLUSTERING

The aim of clustering is to group a collection of objects (or observations)
into subsets of ‘‘clusters,’’ such that those objects within each cluster are more
similar to one another than objects assigned to other clusters. Two main
elements exist in any clustering technique: the definition of similarity or
dissimilarity between objects, and the algorithm that partitions the data into
clusters. Here it is assumed that the similarity is known and encoded into a
distance d between the objects. There are two major types of algorithm for
portioning objects: k-means clustering and hierarchical clustering.

In hierarchical clustering, the data are regrouped into clusters through a
series of partitioning events. Each partition can run from a single cluster con-
taining all n objects to n clusters each containing a single object. Hierarchical
clustering techniques are subdivided into two groups: agglomerative methods
that fuse the objects into groups and divisive methods that separate the objects
successively into finer groupings. Here the focus is on agglomerative methods,
because they are used for generating protein structure classifications.

An agglomerative hierarchical clustering technique involves creating a
series of partitions of the n data, Pn, Pn � 1,. . ., P1, such that Pn consists of n
clusters each containing a single object, and P1 consists of a single group
containing all n objects. At each stage, the procedure joins together the two
nearest clusters. Differences between methods are from different ways of defining
the distance between clusters. The four main agglomerative hierarchical clus-
tering techniques are as follows:

- Single linkage clustering: The distance between two clusters A and B
is defined as the distance between the closest pair of objects, where
only pairs consisting of one object from each cluster are considered:

DðA;BÞ ¼ min dða; bÞ; ða; bÞ E A � Bf g ½A:1


- Complete linkage clustering: The distance between two clusters A
and B is defined as the distance between the most distant pair of
objects, one from each cluster:

DðA;BÞ ¼ max dða; bÞ; ða; bÞ E A � Bf g ½A:2


- Average linkage clustering: The distance between two clusters A and
B is defined as the average of distances between all pairs of objects,
where each pair is composed of one object from each cluster:

DðA;BÞ ¼

P
aEA

P
bEB

dða; bÞ
NANB

½A:3


where NA and NB are the sizes of A and B, respectively.
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- Average group linkage: The distance between two clusters A and B is
defined as the average of distances between all pairs of objects
included in the union of A and B:

DðA;BÞ ¼ Average dða; bÞ; ða;bÞ E A [ Bð Þ2
n o

½A:4


There is no answer to the question about which of these techniques performs
best. Clustering is an exploratory data analysis procedure; the choice of which
technique to be used for clustering often comes from a very good understanding
of the objects to be clustered. A tutorial on clustering methods used in computa-
tional chemistry has appeared in this series and should be consulted.181
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INTRODUCTION

Comparative modeling, also known as homology modeling, is a reliable
computational tool to predict the three-dimensional (3-D) structure of proteins
whose structures are unknown. The relationship between the sequence and the
structure of a protein is well established; every protein with a known 3-D
structure may thus serve as a template that can predict the structure of a pro-
tein whose structure is not known if they share sequence similarity. The term
‘‘homology’’ refers to the evolutionary relationship between two or more pro-
teins having the same ancestor in an evolution tree regardless of their sequence
similarity (which can be very low). Therefore, the term ‘‘comparative model-
ing’’ is more accurate than is the term ‘‘homology modeling’’ for the purposes

Reviews in Computational Chemistry, Volume 22
edited by Kenny B. Lipkowitz, Thomas R. Cundari, and Valerie J. Gillet

Copyright � 2006 Wiley-VCH, John Wiley & Sons, Inc.

57



of predicting 3-D shape and function as there need not be an ancestral similar-
ity between the unknown protein and the known template.1 Comparative
modeling includes the fundamentals of homology modeling in addition to
the construction of protein models from templates possessing the same or simi-
lar structure (but that may have different biological functions). Proteins from
similar families often have similar functions; yet there are many instances in
which proteins have similar structure but different functions.2 This chapter
describes the steps needed to construct a protein model beginning from an
initial search for similar sequences and ending with an evaluation of the final
model.

The first comparative (homology) modeling article was published by
Browne et al.3 who derived the 3-D structure of bovine a-lactalbumin
(BCLA) based on hen’s egg-white lysozyme. Using methodologies similar to
those used today, the primary structures, i.e., the sequences, of the target (a-
lactalbumin) and suitable templates (sperm whale myoglobin (SWM), horse
hemoglobin a and b (HBA) and (HBB), and hen’s egg-white lysozyme) were
aligned. The best template (hen’s egg-white lysozyme) was then selected based
on its sequence similarity and the configuration of its disulfide bridges. The
enzymes of interest (template and target) have similar tertiary structures, but
they have different biological functions. Construction of the target model
(a-lactalbumin) began with a mechanical wire model of lysozyme and was
completed with techniques defined by Blake et al.4 The wire lysozyme model
was transformed (based on the alignment) into a-lactalbumin with a method
similar to the segment matching method (SMM) of Levitt5 that will be des-
cribed later in this chapter. Identical residues between template and target
were retained. Residues of the target differing from those of the template
had their side chains modified with minimal conformational change. The
backbone was adjusted to accommodate changes in length where deletions
existed. In this historic publication, residues were removed from loop regions
of the lysozyme template to preserve the structure and location of a-helices.
The derived protein model had hydrophobic residues that were replaced
with other hydrophobic residues3 that were complementary with respect to
spatially neighboring residues.3 Browne et al. cautioned that their proposed
3-D structure of a-lactalbumin might not be correct. Their work foreshadowed
our current practice of using an existing protein as a template for predicting
another protein’s tertiary structure, and they noted that this method has more
potential for success than relying on just ‘‘chemical information alone.’’3 The
work of Browne et al.3 is viewed by many as laying the groundwork for other
comparative protein modeling methodologies. Comparative modeling involves
the alignment of target and template sequences and then using the template
structure as a framework for the construction of a structurally and/or func-
tionally related protein. The concepts of locating templates, carrying out align-
ments, and accounting for missing amino acids (deletions) are new to novice
modelers and will be described here.
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The fields of comparative and homology modeling share a common
background and terminology. The most common terms used by researchers
in both fields refer to the protein being modeled (the target) and the protein
structure(s) that construct the 3-D model [the template(s)]. In this chapter,
the term ‘‘protein’’ includes enzymes and other biological receptor macromo-
lecules of interest. A typical protein modeling endeavor consists of four main
steps: (1) finding the templates, (2) aligning the target to the template, (3) con-
structing the protein model, and (4) evaluating the derived model as discussed
in the review by Marti-Renom et al.6 In this chapter, for the sake of pedagogy,
steps 1 and 3 are further divided. Finding the template is partitioned into two
stages: finding related sequences and 3-D structures and selecting a template.
Likewise, constructing the protein model is divided into two separate steps:
building the protein models and refining the model’s structure. Construction
of a 3-D model of a protein thus consists of six main steps: (1) Find the known
sequences and 3-D structures that are related to the target protein of interest,
(2) align the target and template amino acid residues, (3) select the templates
and adjust the alignments, (4) construct, (5) refine, and (6) evaluate the model.
Figure 1 shows the interconnectedness of these steps. The most difficult steps
to carry out are 2 and 6, the alignment of the amino acid residues and the

Figure 1 Flow chart of a typical comparative protein modeling study. The solid lines
represent the flow of constructing a comparative protein model. The dotted lines
indicate the steps where parameters (template, alignment, construction environment, or
refinement method) can be modified to improve the quality of the protein model. For
example, after evaluating a protein model, modelers often discuss the quality of the
alignment. Instead of realigning the target sequence to the template, the alignment is
‘‘tweaked’’ (improved slightly) to position a gap into a loop region. After the tweaking,
new protein models are constructed, refined, and again evaluated. The ‘‘new’’ protein
model is considered correct, and the final model is ready for exploration.
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evaluation of the final model. It does not imply that the other steps are trivial,
however. Many aspects of comparative modeling can be automated, but
building and evaluating the ‘‘best’’ models involve significant user interven-
tion. The steps described here are similar in concept to those outlined in the
MODELLER user manual that is available on the Internet.7

Comparative modeling can be considered to be one of the many end-
points for the discipline of bioinformatics where information gathered and
analyzed on the relationship between amino acid sequences, distant (and not
so distant) evolutionary relationships, and protein function and structure are
paramount. For more information on bio-informatics, the reader should con-
sult the books by Mount,8 Tisdall,9,10 Gibas and Jambeck,11 Attwood and
Parry-Smith,12 and the two-volume set on bio-informatics and drug discovery
by Lengauer et al.13,14 The concept that proteins with similar sequences should
possess similar structures is the basis for building protein models of distantly
related proteins. Following the six steps depicted in Figure 1 does not ensure
that a correct model will be constructed; rather it ensures only that a statisti-
cally sound model has been created. Throughout this chapter we shall present
several different methods for each step of the protein modeling process (Figure
1) along with background information about each method discussed, which
thus enables you to understand the processes and theory of the methods.

Three basic comparative modeling scenarios6 can be envisioned depend-
ing on the similarity (percent identity) of the protein sequence being modeled
(target) compared with the protein structure(s) being used as the reference
structure (template): (1) very similar (>60% identical sequences), (2) moder-
ately similar (between 30% and 60% identical sequences), and (3) dissimilar
(<30% identical sequences). The methodologies discussed here are applicable
to all categories, albeit to a varying degree.

This chapter introduces comparative modeling in the same sequence that
one would use in constructing a protein model. In the next section, the steps
that construct a protein model by comparative and homology modeling are out-
lined. The methods and applications are discussed in sufficient detail to allow a
novice to become knowledgeable in rudimentary homology modeling. Several
examples are presented and discussed in each step of the Anatomy section.
Those researchers with a new interest in protein modeling but who lack a basic
understanding of biochemistry are encouraged to read the primers on protein
structure by Branden and Tooze,2 Petsko and Ringe,15 Creighton,16 and Nelson
et al.,17 whereas those researchers interested in additional comparative protein
modeling resources are directed to Current Protocols in Bioinformatics.18,19

ANATOMY OF A COMPARATIVE MODEL

The process of determining the best alignment and how to construct,
refine, and evaluate protein models is less than a precise science and more
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of an art. This review provides information about each of the logical steps
involved in comparative modeling. We also provide different methods of
accomplishing the same goal for each step in addition to background informa-
tion about the methods implemented.

When discussing the construction of protein models with other scientists
and when reading the literature, the topic of ab initio protein folding will be
mentioned. The prediction of a protein’s tertiary structure can be done with
either comparative modeling methods (the focus of this chapter) or ab initio
methods. Details of the ab initio protein cannot be discussed adequately
here, so the reader is directed to reviews by Harden et al.20 and Bonneau
and Baker.21 Also, the tutorial in this volume of Reviews in Computational
Chemistry by Shea et al.22 describes many of the ab initio methods for predict-
ing protein structure from sequence information and should be consulted.
Some methods used in ab initio folding are the same as those used in compara-
tive modeling. The main difference is the use of a template by comparative
modeling compared with first principles methods by ab initio protein folding
to construct a protein model.

As mentioned, the construction of a protein model can be accomplished
in six steps. Here we discuss each of those steps and explain several methodol-
ogies (applications) available for each. The most noticeable theme about a
comparative modeling study is that some steps allow for many ways to com-
plete the same task. For each step, only the most common methods will be dis-
cussed along with their advantages and disadvantages.

STEP 1: SEARCHING FOR RELATED SEQUENCES
AND STRUCTURES

The first step toward constructing a model of the desired protein is
acquiring the amino acid residue sequence (the primary structure) and then
finding related sequences and solved 3-D structures of pertinent proteins.
This step is where bio-informatics and computational biology/chemistry are
intimately linked. Using an organism’s genome, it is possible to determine
the amino acid sequences of all proteins expressed by that organism. The large
amount of experimental data being generated on a daily basis is great for
science, but without repositories and databases, there is no efficient way to
sort and search for meaningful information.

It is estimated that the amount of genomic data collected and analyzed
doubles yearly.23 Without suitable databases, it would be difficult to use the
results of genome sequencing. The journal Nucleic Acids Research24 publishes
an annual database issue25 with reviews covering all databases freely available
(the exception being for databases that provide limited access for those who
choose not to register). Those databases provide annotation-based searches
with the option (links to other websites) to perform sequence similarity
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searches. A problem is that it is not uncommon for a protein to have more than
one accepted name; typically a protein’s name changes from when it is first
discovered and later in time when more is learned about its true origin and
function. Additionally, some proteins have more than one domain (a well-
defined structural unit of a continuous peptide chain that might have a sepa-
rate function from the rest of the protein) and an annotated search has the pos-
sibility of returning these proteins as a possible match. The results obtained
from an annotated database should be examined carefully to ensure that the
desired protein and related proteins have been found. Chapter 1 by Koehl pro-
vides an in-depth tutorial on protein structure classification and provides
related information on such databases.26

Expert Protein Analysis System (ExPASy)

For the scientist interested in biological research, the ExPASy website27 is
the best place to start for the retrieval of a protein’s sequence and related
sequences. The ExPASy website not only stores and provides access to this
data, but it also provides a seamless way of moving from one area of interest
to another. The ExPASy website is located at the Swiss Institute of Bioinfor-
matics and houses four regularly updated databases focusing on proteins and
proteomics, along with other protein-related databases and analysis tools. An
initial search with ExPASy can lead to many other database sites, so the ori-
ginal search can be used as a ‘‘jumping off point’’ to find additional informa-
tion about the system of interest. The ExPASy databases include Swiss-Prot
and TrEMBL28 (part of the Universal Protein29 (UniProt) resource), PRO-
SITE,30 ENZYME,31 and SWISS-MODEL Repository,32 which are four areas
containing a wealth of information.

Swiss-Prot and TrEMBL28 are the initial databases one would use to find
information regarding the protein’s sequence. Depending on the level of refine-
ment and information provided for each sequence, data are deposited into
either Swiss-Prot or TrEMBL. Because of the large number of sequences
that are now determined from genomics alone, all sequences are first deposited
into TrEMBL. Once the correct nomenclature, links to relevant databases, and
significant comments are added, and after unnecessary information has been
removed, the sequence is added to the Swiss-Prot database. The initial search
for a sequence is typically performed on the information contained in these
two databases.

The PROSITE database30 is used to determine the domain and the family
of the protein sequences that, in turn, are based on biologically significant
sites, patterns, and profiles.27 This database is similar to the HOMologous
STRucture Alignment Database33,34 (HOMSTRAD) and the Protein family35

(Pfam) database, both of which contain domain and family information for
proteins. HOMSTRAD uses sequence and structure to group proteins into
domains and families. Pfam classifies protein domains and families, based
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on their primary structure, using information from the Swiss-Prot and
TrEMBL databases. The myriad of different proteins can be grouped into spe-
cific domains and families based on their sequence and structure because it is
likely they come from a common ancestor (protein). These databases exploit
the conservation of tertiary structure and key amino acid residues, which
makes it possible to predict the domain and family of new proteins.

The ExPASy website provides a researcher with the ability to find
enzymes related to the enzyme of interest by searching with the Enzyme Com-
mittee (EC) number. The EC number is based on the recommendation of the
Nomenclature Committee of the International Union of Biochemistry and
Molecular Biology31 (IUBMB). The information retrieved by the ExPASy
ENZYME search includes the recommended name, alternative names (if
any), catalytic activity, cofactors (if any), human genetic diseases (if any),
and cross-references. The EC number consists of four segments (A.B.C.D).
The first segment (A) notates the class of enzyme, the second segment (A.B)
denotes the type of enzymatic reaction, the third segment (A.B.C) further
defines the type of enzymatic reaction, and the fourth segment (A.B.C.D) is
the classification of the enzymatic reaction. The importance of the EC number
is not obvious at first, but invoking the concept that structure and function are
related for proteins and enzymes makes it possible to find related enzymes
based on function quickly.

The SWISS-MODEL repository32 component of ExPASy contains com-
parative models of proteins without a known 3-D structure. It is comparable
with the theoretical protein model section of the Protein Data Bank36 (PDB).
In contrast to the PDB, the contents of the SWISS-MODEL repository are con-
structed with a fully automated system. The repository is continuously
updated with protein models based on new or modified sequences using new
templates. The parameters used to construct the models and the resulting mod-
els are available for examination. The database contains general information
about the model, the alignment, the validation report, and the modeling log.
The general information provides the name of the model, the residue range,
the template, the sequence identity, and the alignment E-values (the E-value
score is reported by a Basic Local Alignment Search Tool37,38 (BLAST) search
that is discussed in a later section). The alignment of the target to the template
is also provided, which illustrates conserved and similar residues in addition to
the secondary structure of the target and template protein structures. The
validation of the protein model is performed with two methods that evaluate
individual amino acid residues. The first method, Atomic Non-Linear Environ-
ment Assessment39 (ANOLEA), calculates the atomic mean force potential of
the proposed protein model and the nonlocal energy profile. The second
method calculates the force field energies of the individual amino acid residues
with GROMOS96.40

The results of these tests are displayed as bar graphs, where positive
values indicate misaligned or misfolded regions and negative values indicate

Step 1: Searching for Related Sequences and Structures 63



segments that are energetically favorable (Figure 2). The protein models are
output in PDB36 and DeepView41 project formats. The DeepView project
file gives the user the ability to modify the initial alignment to construct
new models. The modeling log contains information about the template (struc-
ture information and reference), the alignment (also available is the output
from the selection of the template structure), the iterative refinement of the
loops, and the evaluation of the final model.

The protein models provided by the SWISS-MODEL repository can be
considered to be good starting points for the construction of a 3-D model
but cannot be considered to be the final structure for one main reason—the
alignment. The proposed structure from SWISS-MODEL is not the result of
aligning sequences from many similar proteins to aid in the discovery of con-
served amino acid residues. This shortcoming should not deter the modeler
from using this repository. Instead, the results should be used only as a starting
point for the construction of the protein model of interest. Another section of
SWISS-MODEL42 provides the ability to construct protein models based on a
user-defined target sequence and templates. Protein models constructed with
SWISS-MODEL42 allow for varying degrees of user interaction and provide

Figure 2 ANOLEA and GROMOS analysis of the California Quail Lysozyme C
(P00699) protein model constructed by SWISS-MODEL.32 For both analysis methods,
negative values are preferred and indicate structurally sound models.

64 Comparative Protein Modeling



the ability to construct the models with multiple templates (up to five template
structures). Multiple template modeling43–48 is discussed later.

BLAST and PSI-BLAST

The Basic Local Alignment Search Tool37,38 (BLAST) is a search method
for analyzing the sequence of interest and for locating potentially similar pro-
tein sequences. In the chain of events discussed here, the BLAST search takes
the user-supplied sequence or the sequence from a repository and searches for
similar sequences and structures. Performing a BLAST search is a combination
of searching for similar structures and sequences and sequence alignment. The
BLAST program has evolved and been incorporated into websites and differ-
ent genomic tools, thus becoming a benchmark on which other search tools
are compared.

BLAST has been a staple for database searches and alignments of nucleo-
tide and protein sequences since its introduction. Using a heuristic search
methodology, a database of sequences is scanned and compared by BLAST
with short segments of the target sequence. When one or more possible
sequences with a short segment corresponding to the segment of interest are
found, these short segments serve as the origin for the alignment process.
The probability of expecting a false positive (nonrelated sequence) is calcu-
lated. This value (termed the expected value) is simply a numeric indicator
of the statistical significance of the target’s alignment to a given sequence
found in the database being searched and will be discussed later. In this sec-
tion, the uses of BLAST, as it relates to proteins, is discussed along with an
overview of its methodologies.

BLAST searches are flexible in their ability to locate various types of
sequences. The National Center for Biotechnology Information49 (NCBI)
has an extensive BLAST server50 capable of searching nucleotide, protein,
and translated sequences, along with sequences relating to gene expression,
immunoglobulin, vector contamination, and genomes of specific species, to
note a few. The protein sequence alignment provides several different data-
bases to search with different methodologies. The NCBI-BLAST service cur-
rently maintains seven protein databases providing the ability to initiate
searches ranging from being broad in scope to being highly focused. The
most general database is the Non-Redundant (NR) database that contains
the sequences of proteins from the PDB,36 Swiss-Prot,28,29,51 Protein Informa-
tion Resource52 (PIR), Protein Research Foundation53 (PRF), and those trans-
lated from GenBank.54 In the NR database, repeated sequences are removed to
obviate multiple results from the same sequence to reduce search times. There
is a supplemental nonredundant database that draws from the same sources as
does the full nonredundant database. It contains only entries that have been
released in the past 30 days, thus providing a quick way to search for new
additions. Three lesser known sequence databases are available: the NCBI
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reference sequence project, proteins registered in the patent division of Gen-
Bank,54 and, sequences translated from environmental samples (uncultured
bacteria from soil and marine samples).55 The sequences translated from the
environmental samples are not included in the previously mentioned NCBI
NR database. Although the NR database contains a large body of information,
it can search only the current nonupdated Swiss-Prot28,29,51 or the PDB36

sequence databases. The sequence database of most interest to those construct-
ing protein models is the PDB because it provides the most likely template can-
didates. Just as there are different types of sequence databases, tuned versions
of BLAST also exist. At the NCBI, there are several BLAST methods for locat-
ing homologous proteins. The preferred method of searching for homologous
proteins is the basic BLAST search. It employs the methodologies outlined in
the original BLAST paper.37 Where searches are based on local regions of simi-
larity, and, in cases involving similarity across the entire sequence, a global
alignment can be done. The other BLAST search methods are more restrictive
but can be more useful. The most sensitive of these ‘‘narrow parameter’’
search methods is Position-Specific Iterated (PSI)-BLAST,38 which is adept at
locating distantly related proteins. PSI-BLAST is an iterative process that starts
with the results of a basic BLAST search and uses that alignment to construct a
position-specific scoring matrix (PSSM) from the sequences with E-values (the
probability that the corresponding sequence is a false positive, which is dis-
cussed in detail later) better than the user-defined inclusion tolerance. The abil-
ity to include or to exclude sequences obtained from a search is possible but
requires user intervention before construction of the next profile. A profile is a
numerical representation of the sequences that includes information about its
physical attributes. A PSSM is a profile; it is the probability of a specific amino
acid residue occupying its position in the sequences based on related
sequences. The nth PSSM (also known as a profile) evaluates the alignment
of the nþ1th search iteration. Unique sequences (compared with the previous
searches) with E-values better than the inclusion threshold are grouped into
the PSSM sequences and a new profile (PSSM) is constructed. This iterative
process continues until searches return no additional sequences based on the
inclusion threshold or by user intervention. The PSSM that is created is porta-
ble between sequence databases when searching for related sequences. The
Pattern-Hit Initiated (PHI)-BLAST is another narrow parameter search pro-
gram that uses (1) a user-defined amino acid residue pattern and (2) the
sequence containing the residue pattern of interest. The PHI-BLAST search
locates sequences having the pattern of interest, (i.e., they are similar in the
region of the pattern) but that might not have any homology with the original
sequence. BLAST can be used to search for short, nearly exact sequence
matches for small peptides (typically 15 residues or less) when seeking a spe-
cific residue pattern. To search for a conserved domain, one can use the reverse
position-specific (RPS)-BLAST method that is based on PSI-BLAST. It does not
require iterative searches; instead, RPS-BLAST searches the conserved domain
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database (CDD) of predetermined PSSMs to find conserved domains rather
than generating the PSSM as a way of refining the search results. The NCBI’s
CDD is a collection of PSSMs based on sequence alignments contained in the
following databases: Simple Modular Architecture Research Tool56,57

(SMART), Pfam,58 Clusters of Orthologous Groups of proteins59,60 (COG),
and Library of Ancient Domains (LOAD). The RPS-BLAST search is also a
quick way to discover the biological function of the protein being studied.
The final protein BLAST implementation of interest is the Conserved Domain
Architecture Retrieval Tool (CDART). Working in conjunction with RPS-
BLAST, CDART aids in the retrieval of proteins containing one or more
domains in common with the sequence of interest. The RPS-BLAST and the
CDART search methods are more sensitive than is the standard BLAST search.
The many different search methods and parameters can be at times over-
whelming. However, the wide range of search strategies now available pro-
vides a better understanding of the protein from the perspective of general
homology to specific regions or domains. Several Web servers are available
to perform BLAST searches. Our choice to focus on the BLAST servers at
the NCBI for this chapter is due to the large number of features available to
the modeler to assist in protein sequence similarity searches.

The mechanics of a BLAST search involves three steps: (1) assemble a list
of probable sequences, (2) search those probable sequences for similarities,
and (3) attempt to extend the regions of similarity. The list of probable
sequences is, initially, all sequences in the selected database. The initial set
of protein structures is thus constructed by scanning the entire database for
sequences that are similar to the protein sequence of interest. The initial
scan uses a short segment of amino acid residues from the target (typically
three residues) along with a similarity matrix to exclude sequences that are
not likely to be similar based on a preset threshold. The subset of sequences
is examined for specific short segments. When a segment is found, an attempt
is made to extend it in one direction until the maximal segment pair (MSP) score
is less than the score for a shorter segment. Calculated heuristically, the MSP is a
measure of local similarity between any two sequences. The MSP is defined as
the best scoring pair of equal length residue segments between two sequences
(which can be of any length). The segment pair is considered optimally aligned
if increasing or decreasing the length of the segment cannot improve the MSP
score. The sequences are then ranked based on similarity.

Improvements to BLAST have focused on three key areas, including a
more stringent criterion for the extension of similarities, use of gapped align-
ments, and implementation of the PSI-BLAST method discussed.38 One can
achieve an increase in speed and number of possible sequences with BLAST
by implementing the ‘‘two-hit’’ search method.38 Here, a short segment
from the target sequence is initially used to scan the database. If a match is
found, the sequence is scanned again for a second short segment within a spe-
cific distance of the first segment. Provided that the first and second segments
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do not overlap, and they are within the required distance constraint, the
sequence becomes a candidate for extension. Initially, single hits are located.
An extension is only allowed when an associated second hit is found. Adding
a gap to an alignment can be done when the normalized score of a high-
scoring segment pair, from an extension of the two-hit method, is at a preset
minimum value. The newly gapped alignment is retained if its expected value
is significant.

The expected value (typically reported as E-value or e-value) assigned to
each returned protein sequence is the probability of that protein being a false
positive (a protein sequence that is considered to be related, and yet is not).
The E-value is a gradient-type, relative-value scale based on the size of the
database being searched. E-values assigned to sequences between zero and
one have a low probability of being found by chance and are considered to
be significant with respect to the query sequence. Contrarily, sequences with
E-values greater than one (there is no maximum E-value) might be closely
related to the target protein, but they are more likely to be chance occurrences.
The E-value is a quick way to determine the probability of a good match
between the target sequence and those in the database being searched. The
threshold value mentioned earlier specifies the maximum number of significant
sequences that will be returned. Increasing the threshold value will increase the
number of divergent sequences returned.

BLAST is an invaluable tool for sequence and template searches and for
basic sequence alignments. The BLAST search method is ubiquitous, and a
‘‘Quick BlastP Search’’38 button is available at the top of Swiss-Prot sequence
entries. This button will initiate a standard protein–protein BLAST search
(commonly denoted as blastp) for related protein sequences. The diverse set
of tools available range from very basic sequence searches and domain classi-
fication to searching for very specific residue segments. An adaptation of the
original BLAST methodology, the Washington University (WU)-BLAST,61

developed and maintained by Warren Gish, is purported to improve sensitivity
and speed.

Protein Data Bank (PDB)

The PDB36 is the repository for solved 3-D structures of proteins, pepti-
des, viruses, protein-nucleic acid complexes, nucleic acids, and carbohydrates.
Most structures deposited in the PDB are based on X-ray crystallography
(approximately 80%) with the remaining structures solved using nuclear
magnetic resonance (NMR) techniques. The PDB no longer stores theoretical
protein models in the main archive, but it does accept them for storage in
a separate theoretical model section where they are neither annotated nor
validated. The PDB staff members annotate and validate the submitted
3-D structures to ensure the information provided to the public is correct.
The structures archived at the PDB are provided in two formats, PDB and
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macromolecular Crystallographic Information File62,63 (mmCIF), both of
which contain the same information. Any structure obtained from the PDB
contains information about the source of the protein structure, chains
(sequences) that compose the structure, cofactors and prosthetic groups with
chemical formulas, component names, qualitative descriptions of the protein’s
and crystal’s characteristics, article reference(s), and the Cartesian coordi-
nates.36 With the exception of the resolution of the structure (if determined
using X-ray crystallography), this basic information is typically the most
important when considering the selection of a template structure. Other infor-
mation regarding the conditions and the methods for solving the protein struc-
ture is also included. This information includes the methods and conditions
that crystallize the protein (temperature, pH, solvents, and salts), the occu-
pancy and temperature factor for each atom, unit cell dimensions and space
group assignment, diffraction data collection methods, and the refinement
data (specifically the method of refinement, R-factor, and resolution limits).
NMR-based protein structures are occasionally used for a template, and it is
important to realize that these structures are dynamic in contrast to X-ray
structures, which are derived from a rigid lattice. The NMR structures con-
tained in the PDB have information about the number of models in the ensem-
ble and if one of them should be considered to be a representative structure or
an energy minimized average structure. These NMR-derived structures also
include information similar to the crystallographically derived structures. Spe-
cifically, information regarding the experimental conditions and parameters
(methods, magnetic field strength, probe head, and sample tube) are given
along with information about the NMR experiments conducted and the
restraints used to solve the protein structure. All of this information is important
to the modeler to determine whether the structure is suitable as a template.

Several methods exist for searching the PDB depending on what is
known about the system of interest. These search methods include PDB ID,
QuickSearch, SearchLite, SearchFields, Search Status, and Iterative Search,
each of which will be briefly discussed. The searches are case insensitive
(HUMAN LYSOZYME is the same as human lysozyme or Human Lysozyme),
and results can contain one or multiple structures. As noted, the PDB is an
archive, and the amount of information about one particular structure may
not be as in-depth as for other similar structures based on methods and
information available at time of deposit. The PDB is currently updating the
information of older submissions to ensure a uniform dataset between
all entries. All structures deposited to the PDB are catalogued by a four-
character identification name designated at the time of deposit. Using this
PDB ID code is the simplest way to find the protein structure of interest. If
the unique identifier is not known, another search method can be employed.
The QuickSearch method allows for a text search of the structure files and
webpages containing information related to the search query. The SearchLite
method searches the PDB for the word (or phrase) as entered (QuickSearch
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also uses this method). Entering ‘‘human lysozyme,’’ for example, would initi-
ate a search for the phrase ‘‘human lysozyme.’’ Structures (or webpages) with
human and lysozyme occurring separately will not be returned. However, a
Boolean search using the key words ‘‘and,’’ ‘‘not,’’ and ‘‘or’’ can be invoked
to locate specific structures or a group of structures. To perform a search for
structures with both human and lysozyme in the entry, for instance, the query
would need to be ‘‘human and lysozyme.’’ The SearchLite method can search
for a portion of a word, allows the removal of structures with the same
sequence, and searches for the structure under consideration. The SearchFields
option is the most robust of the four search methods available, which allows
for the addition of search fields, thus permitting the user to fine-tune searches.
The basic fields are PDB ID, text searches, chain type (protein, enzyme, glyco-
protein, carbohydrate, DNA, RNA, and DNA/RNA hybrid), and so on. Fields
available to refine the initial search include general information (author, EC num-
ber, ligands and prosthetic groups, and the source of the protein), sequence and
secondary structure features (FASTA, short sequence patterns, and secondary
structure content), and experimental crystallographic information (resolution,
space group, unit cell dimensions, and refinement parameters). The Status
Search is unique because of the search fields available. In addition to the com-
mon fields like PDB ID, author, and title or name of the structure, additional
search fields related to the status of the to-be-released structures, the sequence
availability, and the release and deposit dates are provided. The search results
from QuickSearch, SearchLite, and SearchFields can be further refined by
iterative searches or by removing structures with similar sequences.

Sequence Alignment and Modeling System With Hidden
Markov Models

The Sequence Alignment and Modeling64–66 (SAM)-T02 system is a
suite of applications that provides, among other things, a sequence alignment
of the target to all possible templates, predictions of the target’s secondary
structure, a list of the most probable templates and their alignment to the tar-
get, and a 3-D model. It is important to note that SAM-T02 is a comparative
modeling server and the underlying program that constructs the protein mod-
els is UNDERTAKER.65 Here we focus on SAM’s ability to locate similar
sequences and possible templates. SAM searches can detect evolutionarily dis-
tant proteins (providing results similar to those of a BLAST search) with the
addition of a predicted secondary structure (to improve alignments) and a list-
ing of possible fragments that can be used for the construction of a target
model using either Segment Match Modeling5,67 or Multiple Template Mod-
eling43–48 (both methods are discussed later). There are six steps involved
when using SAM-T02 to build a protein model: (1) Find sequences similar
to the target via iterative searches, (2) predict the secondary structure with
an artificial neural network, (3) use two-track hidden Markov models1,68–71
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(HMM, discussed later) to find probable templates for threading (fold-
recognition, discussed later), (4) align the target with the templates, (5) construct
a fragment library for the target with FRAGFINDER, and (6) build a 3-D
model of the target through fragment packing and threading (fold-recognition
alignments) with UNDERTAKER.65 SAM-T02 provides the user with the
ability to improve the alignment of a sequence and the selection of a template,
both of which are important in constructing a quality protein model.

Homologous sequences can be located by using four rounds of
WU-BLAST61 with increasing threshold values (0.01, 1.0, 10, and 400).64 An
artificial neural network is used by SAM-T02 to predict the secondary structure.
These results are presented in one of five secondary structure notations (alpha-
bets). The neural networks that are used can predict the secondary structure
occurring at each residue’s position in the sequence based on the target’s
HMM.64 A probability distribution for the likelihood of each type of second-
ary structure for each residue is given. The prediction of secondary structure is
presented in the STRIDE73,74 notation, two variations of the Definition of
Secondary Structure of Proteins72 (DSSP), the standard EBGHSTL and the
expanded STR, which incorporates six different b-sheet classifications
(Table 1),66 and an 11-state notation representing the torsion angles of four
consecutive Ca atoms66 (the results of the Ca are not currently provided on
the SAM-T02 Web server, but they are reported when using the downloadable
version). The DSSP method is a standardized method of defining secondary
structure of a solved protein structure based on hydrogen bonding and geome-
trical features; the PDB uses DSSP for secondary structure determination of
deposited protein structures. It should be noted that these methods do NOT
predict secondary structure. STRIDE assigns secondary structure to a protein

Table 1 Secondary Structure Notation

Secondary Structure Notation

Secondary Structure DSSP72 STRIDE73,74 STR66

a Helices a helix H H H
3/10 helix G G G
p helix I I H

b Sheets Extended (") E E E
""" E E P
#"# E E A
#"" E E M
"" E E Q
"# E E Z

Undefined Isolated b-bridge B B or b B
H-bonded turn T T T
Bend S – S
Coil – C –
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structure based on hydrogen bonding energy and backbone torsional angles.
The STR method expands the extended b-sheet notation (E) used by DSSP
and STRIDE into six types of b-sheets depending on the neighbors of the
b-strand of interest. For STR, the E notation indicates a b-strand that has
no corresponding neighbors. In cases in which a b-strand has two neighbors,
the direction (the carboxyl group of a residue is considered the leading end of a
peptide) of the neighbors is incorporated into the type of b-sheet secondary
structure. The parallel designation P is when both neighboring residues travel
in the same direction as the residue of interest ("""), A signifies two anti-
parallel neighboring residues (#"#), and M denotes one antiparallel and one
parallel neighboring residue (#""). When b-strands are the edge of the defined
secondary structure, they only have one neighbor that can be parallel ("") Q or
antiparallel ("#), Z. Additionally, for the Critical Assessment of Techniques
for Protein Structure Prediction75 (CASP) assessment, the secondary structure
is returned in the reduced helix, sheet, and coil notation. Templates are located
by SAM-T02 by using the single two-track target HMM together with the STR
secondary structure predictions. Twenty-five different alignments of the target
to each template are devised with various alignment preferences and different
target- and template-based HMMs. Next, the fragment library is constructed
with the two-track HMM based on the STR secondary structure prediction.
The fragment search seeks the best six gapless fragments (with a length of
nine residues) for each residue position in the target sequence. The reliability
of the fragment library depends on the validity of the HMMs used in the sec-
ondary structure prediction; probable but incorrect predictions will initiate
poor fragment selection. The fragment library, the alignments, and a generic
fragment library are all used to construct a 3-D representation of the target
protein using multiple-template and threading methodologies. The generic
fragment library is composed of one-, two-, three-, and four-residue fragments
collected from a training set of 448 monomeric protein chains.65 The align-
ments and the corresponding fragments provide an initial model that is sub-
jected to many iterations of genetic algorithm-based minimization and
energy function evaluation. Unlike typical multiple-template methods (dis-
cussed later), noncontiguous backbones are welcomed and allow the user to
gather multiple-segment information from the threading and fold-recognition
alignments. These features of SAM-T02 allow one to sample from many dif-
ferent alignments and combine parts of various alignments, which is advanta-
geous when working with distant target-template relationships. When the
target and template(s) are similar, it is beneficial to select the best alignment,
thus focusing the search. In contrast, for distant relationships, the mixing of
different alignments can be useful for locating suitable segments. The SAM-
T02 server is constantly evolving in an attempt to provide the most compre-
hensive and best protein structure predictions. Some of the SAM-T02 methods
discussed here are not available on the developer’s website and require the
download and installation of the SAM-T02 application on a local computer.
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The SAM-T02 method relies heavily on the HMM1,68–71 method,
whereas the transmembrane (TM)HMM secondary prediction method71,76,77

(parameterized for G protein-coupled receptor and transmembrane proteins)
uses HMMs to predict only the secondary structure. A HMM is a statistical
modeling method used in the alignment of multiple amino acid sequences and
other bio-informatics applications in addition to protein secondary structure
predictions. It is similar to evolutionary programs78 in its ability to be plied
into the tool needed for the job; yet it closely resembles an artificial neural net-
work79 (ANN) that is typically used for constructing quantitative structure-
activity relationship (QSAR) models. HMMs can be trained to predict the
secondary structure for specific families of proteins. The HMM’s similarity
to ANNs comes from its need to be trained on a training set of data.

HMMs are considered the most sensitive method of detecting sequence
similarities and are constructed from a series of states (known observations).
An HMM is a profile, but it is more complex because of its use of advanced
topology. The HMM works by progressing through a series of states, which
produces a result when a given state is reached, or by moving from state to
state,80 similar to a finite state machine. When using an HMM for the predic-
tion of protein secondary structure, the probable secondary structure type is
output as the HMM moves from state to state. The secondary structure is
selected based on an ‘‘emission probability’’ table (similar to a profile) with
the added probability of moving from state to state. The HMM method differs
from profile-based methods of predicting secondary structure because of how
it assigns gap penalties. The gap (or insertion) penalty is the same in a profile-
based method, whereas the penalty can be varied depending on whether the
region is highly conserved or varied in an HMM method.81

HMMs have also been used search a database of protein sequences and
for the alignment of multiple sequences. The SAM-T0265 system is a second-
ary structure prediction server using HMMs to predict the secondary structure
of protein sequences. The predicted secondary structure of bovine a-lactalbu-
min as predicted by the SAM-T02 server is presented in Figure 3 in the STR,
DSSP-EBGHSTL, STRIDE-EBGHTL, and DSSP-EHL2 secondary structure
notations, respectively. The predicted secondary structure can be used in con-
junction with or aid in the alignment of the target to the template amino acid
residue sequence.

Threading

The selection of a template typically follows BLAST-type searches and
sequence alignments. The template selection is based on the similarity of
sequences but neglects the possibility that templates with a similar structure
may have differing protein functions. Threading provides a way to account
for the possibility that functionally different proteins share similar structures.
Instead of matching the target sequence to all possible sequences (with or
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without a known 3-D structure), threading (1) creates pseudo-protein models
based on solved protein structures, (2) calculates an energy value for that
pseudo-model using an empirical energy function, and (3) ranks the align-
ments based on that energy. The lowest energy value for the pseudo-model
is considered the most probable template. The threading concept is depicted
in Figure 4. The pseudo-protein model is not a complete protein model. In a
pseudo-protein model, the known protein structures are used as a scaffold
on which the target sequence is placed; the residues, however, are simply
points in space, and the model resembles a folded strand of beads. The energy
function is a knowledge-based, pairwise potential that is parameterized from
known protein structures. The energy of each pseudo-model is the sum of

Figure 3 SAM-T02 results for the secondary structure prediction of bovine
a-lactalbumin. The predicted secondary structure of proteins by SAM-T02 is reported
using four different secondary structure evaluation methods. The relative size of the
letters corresponds to the reliability of the predicted secondary structure. For bovine
a-lactalbumin, it leads to residues with only one type of predicted secondary structure
(specifically, large C’s or H’s) or residues with several secondary structure types
(specifically, T’s, S’s, C’s, and X’s). The brackets under the residues signify the type of
expected secondary structure given the predictions. The predicted secondary structure is
reported in the STR (a), DSSP-EBGHSTL (b), STRIDE-EBGHTL (c), and DSSP-EHL2
(d) formats. Analysis of the results indicates the predicted secondary structure is similar
to that of chicken lysozyme or human a-lactalbumin.
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Figure 3 (Continued)
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residue interactions. The main differences between most existing threading
methodologies lie in the construction of the empirical energy function and
how the knowledge base is devised.

Using threading methods, many possible configurations can be exam-
ined. Then, a Z-score function quickly evaluates each possible configuration.
The Z-score is a normalized value that indicates the standard deviation for a
specific data point (pseudo-model) compared with the mean of the dataset.
The drawback of using a simple scoring function like the Z-score is its
low resolution (i.e., that the predicted structure will not be able to match
the known X-ray structure). It in turn leads to indecision when trying to deter-
mine which of the top-ranked pseudo-structures is the best template to use.
The underlying principle of a threading scoring function is that the native
sequence threaded onto its own scaffold will result in a lower energy than if
it is threaded onto any other scaffold. It is thus beneficial to the modeler to
have a database containing several known 3-D structures from each
protein family to provide a variation of pseudo-structures. This way, by
threading the target sequence onto all possible templates, the lowest energy
pairing should be the most likely template to select. Supplementing threading
methods with information about secondary structure, solvent exposure, or
residue burial can improve the final alignment, especially when gaps are
considered.

Figure 3 (Continued)
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Figure 4 Template searching via threading. The sequence of interest is ‘‘threaded’’ onto
a possible template one residue at a time in (a). The incremental addition of the residues
to the template creates many possible models (pseudo-protein models) for that target-
sequence combination. Each model is evaluated, and the best pseudo-protein models for
the grouping (alignment and energetic information) are stored. Once the pseudo-protein
models are created for all possible templates, the proposed alignment and templates are
ranked and selected based on a combination of Z-scores, energetics, number of aligned
residues, and percent identity and/or similarity. (b) illustrates the stepwise process of
threading the target sequence i) to several possible templates, ii) thus creating several
pseudo-protein models iii) that will be evaluated and ranked.
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The power of threading exploits the fact that proteins with different
functions can possess similar structures even though they may have little to
no sequence identity or similarity. THREADER82–84 and Learning, Observing,
and Outputting Protein Patterns85–87 (LOOPP) rely on similar strategies, yet
they use different energy and scoring functions to generate probable align-
ments with feasible templates. To illustrate the similarities and differences of
these methods, we now compare and contrast them.

THREADER
Like other threading methods, THREADER uses solved protein struc-

tures as a scaffold on which to place the target protein’s sequence. Secondary
structure information (from secondary structure predictions, NMR, circular-
dichroism, or other experimental methods) about the target sequence is used
to force the alignment between the predicted secondary structure of the target
with that of the actual secondary structure of the known proteins. Because
energetic functions cannot differentiate between properly and incorrectly
folded protein structures, THREADER uses a set of knowledge-based poten-
tials to indicate misfolded proteins. The potentials used by THREADER are
derived from statistical data compiled from known protein structures, and
the pairwise pseudo-energy is computed using the method of Sippl.88 In an
iterative process, as each residue is placed onto the scaffold, a knowledge-
based potential determines the worthiness of the pseudo-protein (target–
template alignment). The interaction energy terms are divided into three
groups based on overall topography of the protein. The short-range potential
terms assess the probability of secondary structure on a local scale, as, for
example, predicting whether a segment is an a-helix. The medium- and
long-range terms (different than those described by Sippl88) assess the ener-
getics of local secondary structural motifs and protein packing, respectively.
Interactions exceeding 10 Å are handled by a potential function that assesses
the amount of solvation associated with an individual residue (based on an
approximate solvent-accessible surface area) as the target residue is incorpo-
rated into the template. The potentials used to evaluate the overall structure
are also divided, based on the type of secondary structure of the template.
Because the loops of a protein are often the least conserved and most
solvent-exposed, they are evaluated with only the solvation potential.
THREADER gives the user statistical data and the pseudo-energy of the
best alignment in addition to other proposed alignments between the target
and the template.

Learning, Observing and Outputting Protein Patterns (LOOPP)
LOOPP85–87 is similar in philosophy and strategy to THREADER, but it

differs in its implementation of an empirical energy function and its scoring
method. The most notable aspect of LOOPP is its extensive parameterization
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that is based on structures from the PDB36 and a database of close to 5 million
decoy structures85 that were created with MONSSTER.89 Three novel imple-
mentations of common protocols (pairwise contact model, gap penalties, and
Z-scores) differentiate LOOPP from other threading methodologies.

The creation of a new pairwise interaction model (empirical energy func-
tion) was envisioned by the authors of LOOPP as the key to devising a truly
novel threading algorithm. Two main types of empirical energy functions
exist: (1) those that use pairwise residue contact energies for residues within
a specified distance of one another and (2) those based on the environment
of an amino acid residue at a point in the structural lattice (this feature is
also referred to as a profile). The energy of the total system is calculated the
same way for both kinds of functions and is just the summation of the indivi-
dual energy values. The authors of LOOPP also developed the Threading
Onion Model86 (THOM) algorithm, which incorporates both a pairwise inter-
action and an environment term into the empirical energy function. The first
rendition of THOM (THOM1) focused on an individual residue and deter-
mined (1) the number of neighboring residues in the scaffold (based on a cutoff
distance) and (2) the type of residue at the point of interest. The empirical
energy value is calculated for each residue threaded onto the scaffold and
then summed to give the total energy of the system. THOM2 improved the
environment term of THOM1 by accounting for the contact between struc-
tural sites (pairwise interactions). THOM2 uses a two-degrees-of-separation
parameter for the residue of interest. THOM2 was selected as the empirical
energy function in LOOPP instead of THOM1 because of its ability to better
predict the environment of an individual amino acid residue, thus bringing it
closer to being a pairwise interaction model. The improvement of the environ-
ment term permits users to thread models (with gaps) that are considered to be
the optimal alignment. The authors of LOOPP devised a simple method for
assessing a penalty for the insertion of, and extension of, a gap. LOOPP
uses default penalty values that the user can modify. A gap is parameterized
like the other amino acid residues, thereby removing any bias regarding its
insertion. The ‘‘gap residue’’ parameters were optimized with the values deter-
mined for the 20 native amino acid residues. The rankings of the threaded
structures in LOOPP are based on a double Z-score (global and local Z-scores)
plus the value of the empirical energy function. The global and local align-
ments are used to calculate the double Z-score value. The global alignment
is closely related to the overall length of the target sequence as related
to the template scaffold and is affected by differences between the target
and the template. The local Z-score measures the fitness of the alignment
between the template sequence compared with the defined secondary structure
of the scaffold. The combination of a dual-layer empirical energy function and
Z-score analysis provides LOOPP with the ability to select templates and provide
informative alignments accurately. The use of a double Z-score filter aids in
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retaining more correctly predicted alignments and templates than when using
a single Z-score, and it does so while reducing the number of false-positive
templates.

The databases (repositories, archives, sequence retrieval systems) dis-
cussed in this section are a small sampling of those databases currently avail-
able. These resources were discussed only in a cursory manner, highlighting
their content, the search methods available, and their importance in the search
for sequences and structures. The primary function of the PDB is to validate,
annotate, and archive the solved 3-D structure of macromolecules for the
scientific community. The search features available are not as broad as those
of ExPASy (neither is the amount of data housed), but the search tools pro-
vided in the PDB are robust for the information contained in that database.
It is easy to see why specialized proteomic databases are needed; the myriad
of information is growing rapidly, and the ability of a few large database cen-
ters to manage all that data is becoming unrealistic.23 The use of threading to
aid in the selection of possible templates and for target-template alignments is
a powerful methodology. The results obtained from THREADER and LOOPP
(or other threading methods) are excellent starting points for locating a group
of likely templates or to provide additional information for an already estab-
lished alignment. Threading brings to light relationships and information that
might have otherwise been overlooked because of evolutionary distance and
differences in the function of the systems being used as templates.

Example: Finding Related Sequences and 3-D Structures

The example presented here involves the construction of a protein model
for bovine a-lactalbumin, a revisit of the original comparative protein model
study of Browne et al.3 described in the Introduction of this chapter. It is not
an attempt to reproduce or refute any of their results but instead is a simple
example for novices to the field of comparative modeling. The first step is to
find related sequences and structures. It should be noted that there are several
solved 3-D structures of BCLA. It might cause some problems when searching
for related templates; yet the structure of lysozyme (used in the Browne et al.
study) is also available as a possible template. An ExPASy search for ‘‘bovine
lactalbumin’’ on www.ExPASy.org provides a wealth of information including
links to the solved 3-D structures and the primary sequence (ExPASy access
code P00711). a-lactalbumin is 142 residues in length with the signal sequence
being the first 19 residues. A PDB ‘‘bovine lactalbumin’’ search on
www.rcsb.org returns no hits, but when shortened to ‘‘lactalbumin’’ provides
22 structures from various sources including human, bovine, and goat. Resub-
mission of the PDB search using ‘‘bovine and lactalbumin’’ returns 16 struc-
tures for BCLA. The 16 structures returned by the PDB includes the three
structures noted in the ExPASy report with 13 additional structures that are
either not from bovine (Bos taurus) or were combinations of bovine and
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another species a-lactalbumin. The complete bovine a-lactalbumin sequence
(142 residues) was submitted for a BLAST search on the NCBI website. The
initial BLAST search of the nonredundant database resulted in many hits,
whereas a BLAST search of the PDB database gave 44 a-lactalbumin struc-
tures. Additionally, a ‘‘Quick BlastP Search’’38 was initiated from the ExPASy
entry, and the 100 most likely sequences were returned.

Aside from selecting the template based solely on sequence identity, we
also conducted a threading experiment to see whether other likely templates
exist. Three THREADER84 searches were conducted. The first search focused
on the genomic sequence (BCLA with the signal prepeptide), and the second
involved the domain sequence. We did this to illustrate the differences one
would encounter when aligning the genomic and domain versions of a pro-
tein’s sequence. The third THREADER search used an augmented library
that included template information for human a-lactalbumin (1b9o36,90),
BCLA (1hfz36,91), and horse hemoglobin a and b (1g0b36,92). The goal of
this search was to demonstrate THREADER’s ability to select and rank pro-
tein structures that we thought would be good templates. The results of our
searches are presented in Tables 2–5. The templates were ranked based on
their combined energy Z-score (primary sequence or the primary sequence
with the predicted secondary structure as determined by PSI-PRED93,94).
The pseudo-protein models were also ranked with the Threading Expert.

The initial THREADER results for the BCLA sequence were not promis-
ing; the largest Z-scores value was 3.28 for the domain sequence and 3.68 for
the genomic search. The Z-scores in THREADER are partitioned into regions
of significance that indicate the likeliness of a template being the correct
template. Z-scores greater than 4.0 are considered to be ‘‘very significant,’’
and scores between 4.0 and 3.5 are deemed ‘‘significant.’’ Proposed templates
that score between 2.7 and 3.5 are thought of as being ‘‘borderline significant,’’
Z-scores ranging between 2.0 and 2.7 require another means of confirmation,

Table 2 THREADER Template Selections Using the Genomic a-Lactalbumin Sequence{

Primary Secondary Threading Expert

Rank Template Z-Score Template Z-Score Template Score

1 1akq 3.68 1udm 4.68 1baq 0.8164
2 1m7e 3.23 1s9u 3.74 1s9u 0.8093
3 1dbw 3.08 1tiq 3.44 3lzt 0.7926
4 2uag 3.00 1a4i 3.35 1gni 0.7891
5 1npu 2.87 1k2y 3.33 1jsc 0.7580

{Template searches in THREADER were performed with the primary sequence and the primary
sequence with the predicted secondary structure as determined by PSI-PRED.93,94 The results of a
THREADER template search aided by the predicted secondary structure information can then be
analyzed with the Threading Expert. The top five templates based on Z-Score (Primary and
Secondary) and overall Score (Threading Expert) are presented. The original THREADER library
was used.
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those with a score less than 2.0 are considered to be improbable templates, and
Z-scores of �9.99 are an indication that a significant portion of the
target sequence has not been aligned to a template. The Threading Expert is dis-
tributed with THREADER. It is used to analyze the output of a secondary struc-
ture-aided template search, and it provides a single numerical value that
corresponds to the probability of the pseudo-model being the correct template.
The core of Threading Expert is a neural network that is trained on correctly
threaded matches (versus incorrectly threaded matches).95 The results in Table
2 indicated that the most likely template is the apoflavodoxin-riboflavin com-
plex from Desulfovibrio vulgaris (PDB ID: 1akq36,96) with a Z-score of 3.68
and having 128 aligned residues. This is troubling as it was expected that
the top 20 possible templates for the genomic search would include one
of the solved 3-D structures of BLCA or one of the proposed templates from
the study of Browne et al. For the genomic search, THREADER did not find

Table 3 THREADER Template Selections Using the Domain a-Lactalbumin Sequence{

Primary Secondary Threading Expert

Rank Template Z-Score Template Z-Score Template Score

1 1m4j 3.28 1udm 4.19 3lzt 0.9099
2 1ep3 3.08 1chm 4.05 1cof 0.8573
3 1ft9 2.73 3lzt 3.11 1v6f 0.8180
4 1rlj 2.70 1k0r 3.08 1khy 0.7996
5 1a8y 2.68 1axj 3.00 1ukx 0.7718

{The signaling portion of BCLA was removed, and the original THREADER library was
searched again. The template searches in THREADER were performed with the primary sequence
and the primary sequence with the predicted secondary structure as determined by PSI-PRED.93,94

The results of a THREADER template search aided by the predicted secondary structure
information can then be analyzed with the Threading Expert. The top five templates based on Z-
Score (Primary and Secondary) and overall Score (Threading Expert) are presented. The original
THREADER library was used.

Table 4 THREADER Template Selections Seeded With Probable Templates{

Primary Secondary Threading Expert

Rank Template Z-Score Template Z-Score Template Score

1 1m4j 3.28 1udm 4.19 1hfz 0.9125
2 1ep3 3.08 1chm 4.04 3lzt 0.9099
3 1ft9 2.72 3lzt 3.10 1b9o 0.9012
4 1rlj 2.70 1k0r 3.07 1cof 0.8573
5 1a8y 2.67 1axj 3.00 1v6f 0.1810

{The addition of several templates that are known matches for BCLA were added to the library
of possible templates. The additional protein structures are HCLA (1b9o36,90), BCLA (1hfz36,91),
and HBA and HBB (1g0b36,92). The template library was again searched against the domain
sequence of BCLA.
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any of the solved 3-D bovine a-lactalbumin structures, and the template struc-
tures corresponding to chicken lysozyme (CLYC, PDB ID: 3lzt36,97) and sperm
whale myoglobin (SWM, PDB ID: 1a6m36,92) in Table 2 were initially pre-
dicted to be poor templates. Using the primary genomic sequence of BLCA
(includes signaling portion), CLYC (3lzt in Table 5) was ranked 190 with a
Z-score of 1.62 and 121 aligned residues, whereas SWM (1a6m in Table 5)
was ranked 267 with a Z-score of 1.44 and 119 aligned residues. Adding
the predicted secondary structure, which was determined by PSI-PRED,93,94

improved CLYC’s ranking and Z-score to 12 and 2.80, respectively, with
121 aligned residues while reducing SWM’s ranking and Z-score to 1174
and 0.39, respectively, with 129 aligned residues (see Table 5). Analysis of
the secondary structure aided search with Threading Expert ranked CLYC
in Table 5 as the third most likely template with a probability of 0.7926.
Searching for probable templates with the primary-domain sequence of
BLCA yielded slightly better results for CLYC (rank: 62, Z-score: 2.07,
number of aligned residues: 121) and SWM (rank: 1396, Z-score: 0.31, num-
ber of aligned residues: 106). The probability of CLYC (rank: 3, Z-score: 3.11,
number of aligned residues: 121) being a viable template improved, whereas
SWM’s values (rank: 1776, Z-score: �0.06, number of aligned residues: 121)
declined again with the inclusion of the predicted secondary structure. The
CLYC template was ranked first in Table 5 by the Threading Expert with a
probability of 0.9099. These results were not considered to be conclusive
because, on examination of the database, it was discovered that it did not

Table 5 Proposed Bovine a-Lactalbumin Templates{

Primary Secondary Threading Expert

Template Rank Z-Score Aligned Rank Z-Score Aligned Rank Score

Genomic BLCA Sequence

3lzt 190 1.62 121 12 2.80 121 3 0.7926
1a6m 267 1.44 119 1174 0.39 129 133 0.4881

Domain BLCA Sequence

3lzt 62 2.07 121 3 3.11 121 1 0.9099
1a6m 1396 0.31 106 1776 �0.06 121 181 0.4382

Domain BLCA Sequence with Modified THREADER Fold Library

1hfz 21 2.37 121 9 2.83 121 1 0.9125
1b9o 27 2.31 123 21 2.48 121 3 0.8573
3lzt 63 2.07 121 3 3.10 121 2 0.9012
1a6m 1416 0.30 106 1778 �0.06 121 183 0.4382
1g0bA 2422 �0.47 108 3111 �1.70 108 1972 0.1307
1g0bB 2477 �0.52 108 2276 �0.43 99 1951 0.1330
{The THREADER and Threading Expert results for the proposed templates for BLCA are

presented for the various sequences and fold libraries used. Threading searches using only the
primary sequence initially did not provide good results (original folds library); yet the inclusion of
known similar folds improved slightly the overall results.
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contain any a-lactalbumin structures. It prompted us to add human a-lac-
talbumin (HLCA, PDB ID: 1b9o36,90), bovine a-lactalbumin (BLCA, PDB ID:
1hfz36,91), and horse hemoglobin a and b (HBA, PDB ID: 1g0bA36,92 and
HBB, PDB ID: 1g0bB36,92) to THREADER’s fold library. The modified tem-
plate library was again searched with the domain sequence of BCLA yielding
significantly better results (see Tables 4 and 5). Although the top five proposed
templates remained the same when using the modified and the original fold
library for domain-based sequences (primary and predicted secondary struc-
ture), the modified fold library had a profound effect on the results. The tem-
plates of CLYC, BLCA, and HLCA were ranked 3rd, 9th, and 21st overall
with the inclusion of the secondary structure (see Table 5), and the Threading
Expert ranked them 2nd, 1st, and 3rd respectively (see Table 5). These results
indicate that CLYC and HLCA are viable templates for BLCA and
that THREADER and the Threading Expert could select BLCA as the correct
fold.

STEP 2: SEQUENCE ALIGNMENT

The alignment of amino acid residues is the most critical step in a com-
parative modeling study.6 The ability to determine the best alignment of dis-
tantly similar sequences depends on several factors, including the number of
sequences bridging the evolutionary distance between the target and tem-
plate,98 the similarity matrices, and the method used to align the sequences.
Without a proper alignment, the models constructed will have little use and
are potentially more harmful than not having a valid model at all. The use
of multiple sequences in an alignment reduces the probability of chance occur-
rences in similarity, while increasing the chance of a correct alignment.

The goal in this part of the comparative modeling study is to align the
amino acid residues of the target protein with those of related proteins (not
necessarily possible templates) and proposed template(s) proteins by aligning
conserved and physicochemically similar residues throughout the set of pro-
teins. The alignment of the collected protein sequences is carried out without
indicating which sequence(s) constitute the proposed template(s). Thus, the
sequences are aligned based on evolutionary history and not to the proposed
template. Some programs provide the option to delay the alignment (or rea-
lignment) of user-specified sequences, which thus allow one to align the target
or template sequence to the already aligned sequences. The ability to delay the
alignment of specific protein sequences is beneficial when working with pro-
teins that are not closely related, thus reducing the probability of inappropri-
ate insertions (gaps). In addition to the mechanism used to construct the
alignment, i.e., the program and the methodology that are used, the para-
meters (evolutionary matrixes) that are used to align the sequences are also
of importance and are discussed here. The programs and the methodologies
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discussed here are only a sampling of the most common methods that are
incorporated into websites.

In Figure 5, we see that the a-lactalbumins and the lysozyme structures
possess a similar 3-D fold (overall shape) with each other as do the hemoglo-
bins and the myoglobin. The hen’s egg white lysozyme (CLYC, PDB ID:
3lzt36,97), horse hemoglobin a and b (HBA, PDB ID: 1g0bA36,92 and HBB,
PDB ID: 1g0bB36,92), and sperm whale myoglobin (SWM, PDB ID:
1a6m36,100) were initially considered as templates by Browne et al.3 in their
attempt to construct a protein model of BCLA. Since their landmark paper,
the 3-D structure of human and bovine a-lactalbumin (HLCA, PDB ID:
1b9o36,90 and BLCA, PDB ID: 1hzf,36,91 respectively) have been solved (as
have other a-lactalbumin, lysozyme, hemoglobin, and myglobin protein struc-
tures). Although the 3-D structure of the a-lactalbumins and lysozyme are
similar (as are those of the hemoglobins and myoglobin), these proteins
have different functions. The function of a-lactalbumin is to modify the sub-
strate specificity of galactosyltransferase. It allows glucose to serve as a sub-
strate, which thus enables lactose synthase to synthesize lactose.
Parenthetically, BCLA is the cause of the human allergic reaction to cow’s
milk (lactose intolerance). Lysozyme’s function is to initiate the breakdown
of bacterial cell walls by catalyzing the hydrolysis of polysaccharides, which

Figure 5 Structures of closely and distantly related proteins. Protein images created
with UCSF Chimera.99
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thus enhances the activity of immunoagents. The hemoglobins transport oxy-
gen from the lung to tissue. Myoglobin assists the transport of oxygen within
the muscles and acts as an oxygen reservoir.

Most sequence alignment methods are automated, but some are per-
formed manually. Both the automated and the manual alignment of multiple
chains is a challenging problem because of the myriad of alignment possibili-
ties. The number of combinations for alignment is determined by raising the
number of sequences by the number of amino acid residues of the longest
sequence (Equation [1]).

Number of Combinations ¼ Number of Sequencesð ÞNumber of Residues ½1�

The alignment of two sequences with 150 residues thus has more than
1:42 � 1045 possible configurations, as an example.

The goal of automated alignment methods is to align multiple protein
sequences correctly with minimal user input. Although the alignment para-
meters are selected by the user, they are typically the well-established similar-
ity matrices101–104 described here that are based on evolutionary trends.
Similarity matrices are mathematical representations describing the probabil-
ity of a specific amino acid residue mutating to a different residue type. The
alignment programs discussed in this section differ from one another by the
methods they use to align the sequences. Very similar (closely related)
sequences can be quickly and aptly aligned. However, as the sequences become
more distantly related based on evolution, the ability of the alignment methods
deteriorates.

There are two general types of sequence alignment methodologies, global
and local. Global alignments, a coarse-grain methodology, optimize the align-
ment between two or more sequences over their entire length. A global alignment
starts at the first residue position and continues in a stepwise fashion to
the last residue position. During global alignments, regions of the sequences
lacking appreciable similarity are aligned to continue the search for similar
regions in an attempt to align as much of the sequences as possible (quantity
over quality). In contrast, local alignment, a fine-grain method, aligns regions
with significant similarity first, which thus creates one or more regions of opti-
mally aligned residues within the sequence alignment. The alignment of
sequences is based on short, homologous segments (disregarding divergent
regions) that decrease the number of possible alignments by focusing on the
regions that are conserved over evolutionary time (quality over quantity).
When searching databases of sequences, local alignments are typically used
to locate regions of similarity between both closely and distantly related pro-
teins, as in a BLAST search. The distantly related regions can be structural
features (motifs or folds) or binding sites; the distantly related structural
similarities are based on the configuration of several secondary structure
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elements (within a region of the sequence) and the connections between them
(loops). Both methods provide plausible alignments, but they focus on differ-
ent aspects of the sequences.

Sequence alignment algorithms (methodologies) can be classified as
being progressive (Figure 6) or fragment-based (Figure 7).105 Progressive align-
ment uses iterative methods to align pairs of protein sequences or groups of
sequences. The alignment is typically directed by a rooted Neighbor-Joining
(NJ) tree (based on an unrooted NJ tree) using sequence weights to score
the proposed alignments.98 A fragment-based alignment method divides a pro-
tein sequence into segments (between highly conserved amino acid residues),
aligns these local regions, and then aligns the connecting portions to produce
an optimal alignment.

Preparing the Sequences

Before one aligns protein sequences, it is prudent to inspect the target
and template sequences because one often finds the sequence of the template
structure to be different from that obtained by ExPASy.27 These differences

Figure 6 Progressive alignment scheme. Based on the guide tree (left-hand side of the
figure), the first step is to align the sheep and bovine sequences. The second step is to
align the human sequence to the previously aligned sheep and bovine sequences causing
a gap to be inserted (indicated by an oval). In step 3, the donkey and horse sequences are
aligned to each other. The final step is the alignment of the two groups of sequences to
each other, resulting in the insertion of more gaps. The oval indicates the insertion of a
gap to previously aligned sequences that was caused by the addition of new sequences.
Image adapted from Leach.1
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originate from mutagenesis studies or errors in the expression of proteins used
to obtain 3-D structures. The Sequence to Coordinates (S2C) website106 is a
database allowing one to enter the PDB code of a desired template protein.
The differences between the sequence of the 3-D structure and the accepted
amino acid sequence are returned in a plain text format containing additional

Figure 7 Fragment alignment scheme. The first step is to divide each protein sequence
approximately in half, and the second step is to again divide the half sequences into
quarters. The small sequence segments are then aligned to each other at the same time.
Once the small segments are aligned, they are reconstituted into their original sequences.
The instantaneous alignment of the short segments to each other removes the problem of
greediness.98 Image adapted from Stoye.105
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information. At the end of the file is the mutation record, which indicates the
type and location of the mutated amino acid residue present in the PDB file
and the correct amino acid residue according to the ExPASy protein sequence
record. The additional information includes the SEQRES (the amino acid resi-
dues of the protein) and ATOM (the atomic coordinates portion of the PDB
file) three-letter residue codes, the ATOM residue number, and the secondary
structure based on the PDB file along with the STRIDE73 method used for
determining that secondary structure. Other useful information includes the
method that was used for determining the 3-D structure, the structure’s reso-
lution, R-factor (how well the refined X-ray structure matches the experimen-
tal data), B-factor (a measure of isotropic variance), and the sequence file
identifier that was compared with the PDB file.107

The method that scores (evaluates) the quality of the alignment of two
sequences considers the number of gaps that were introduced into the
sequences to aid the alignment; more gaps generally lower the overall align-
ment score. It is for this reason that one should know what segments of the
sequence are responsible for a specific function. Having knowledge of the
domain of the sequence (the bioactive portion of the complete amino acid
sequence that excludes the pre- and proprotein portion of the sequence) is
thus useful, especially if aligning distantly related sequences. Regions of the
sequence that are precursors (used for signaling) and domains (chains) can
be found in the Features section of a Swiss-Prot28,51 entry. The Features sec-
tion also includes information about mutated residues and the corresponding
reference(s). Structural information about disulfide bonding, metal ion binding
(and its purpose), secondary structure (known or predicted), and ligand bind-
ing sites are also provided.

When a protein’s sequence is determined from the gene sequence of the
ribosome, all of that protein’s amino acid residues are included. This sequence
is called the preproprotein (prepeptide), and most proteins are synthesized and
transported from the cell in this form. Typically the protein is synthesized by
the ribosome as a preproprotein. The prepeptide portion is for signaling, and
the propeptide portion keeps the protein biologically dormant. The signaling
segment is removed as the proprotein is moved into ‘‘storage’’ for use at a later
time. When the active form of the protein is needed, it is removed from storage
and the propeptide is cleaved. The propeptide segment occurs either at the
beginning or the end of a protein’s sequence. Databases containing the solved
3-D structures of proteins typically do not contain the pre- and propeptide seg-
ments because preproproteins and proproteins usually exist naturally in only
small quantities.16 It is imperative, therefore, that the alignment includes only
the relevant portions of the sequences that best mimic the final, bioactive
sequence of the protein of interest. Including pre- and propeptide segments
can lead to incorrectly determined alignments and structures, which results
in a useless protein model. The tools provided in Swiss-Prot can help the
modeler determine what segments are important.
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Alignment Basics

Although alignment programs differ in the methods actually used to
align the sequences and how they score the final alignment, they share several
common features, including gap penalties, similarity matrices, and alignment
scores. Gap penalties reduce the quality (score) of an alignment when frequent
‘‘breaks’’ in the sequence are created. Similarity matrices indicate the probabil-
ity of an amino acid residue’s propensity to mutation over many generations
(evolutionary distance). Alignment scores assess which of the many possible
alignments is optimal.

Even though the alignment score is the last thing to be calculated, we dis-
cuss it first to explain why gap penalties and similarity matrices are important.
Alignment scores are not universal; they can vary depending on the alignment
method used and the gap penalty values implemented. A perfect multiple
sequence alignment sometimes requires the introduction of gaps into the pro-
tein sequences during the alignment phase. Adding a gap (or two) ensures that
the same or similar type (physicochemical, polar, charged, or shape) of amino
acid residue is aligned, which in turn increases the score of an alignment. A
gap penalty is assessed each time a gap is initiated or extended, and different
penalty values can be assessed for starting a gap versus extending an existing
gap.

The pairwise alignment of a target sequence to a single template
is usually a straightforward task to accomplish. When several templates are
needed for the modeling of a protein, the task becomes nontrivial because a
multiple sequence alignment is required. When the target-template(s) sequence
identity is above 40%, satisfactory results can be obtained with automatic
sequence alignment methods,108 but, when below 40% with respect to the glo-
bal alignment, gaps and ambiguities are introduced. Because the 3-D, tertiary
structure of homologous proteins is more conserved in evolution than is the
corresponding primary structure,109 a good strategy is to include 3-D structur-
al information in the alignment process.110 When superimposing the template
structures, it is easy to distinguish regions of high and low conservation.
Regions of high conservation are commonly referred to as structurally con-
served regions (SCRs) and correspond to secondary structural elements such
as a-helices and b-strands, whereas regions of low structural conservation
are called structurally variable regions (SVRs) that are associated with loops
or random coil regions. The optimal alignment reflects sequence conservation
at the SCR and variability at the SVR, and several computational strategies
exist that can improve a multiple sequence alignment.

A structure-based alignment of multiple templates is more accurate than
sequence-based alignments because of the emphasis placed on aligning defined
secondary structure regions (a-helices and b-sheets). The structural alignment
highlights evolutionarily conserved residues that are part of defined secondary
structures, which thus provides a template sequence with additional secondary
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structure information. Additionally, if a large evolutionary distance exists
between the target sequence and the templates, including sequences with
different degrees of divergence, forming a bridge between the templates and
the target can improve the alignment.98 Only sequences that can be aligned
to the templates reliably should be added. The same can be done with the tar-
get sequence. Sequences that share sufficient homology with the target
sequence are multiply aligned. A profile (a numerical representation of the
sequence that encodes information about its physical features) is calculated
for each alignment, and the two profiles are then aligned with each other.6

Careful examination of the obtained alignment followed by manual editing
is usually needed to obtain a reasonable level of accuracy, especially if the
target-template sequence identity is low. Placement of gaps should be avoided
in secondary structure elements, in buried regions, or between residues that are
far apart in space.6

Similarity Matrices

Aligning sequences by hand is a time-consuming and tedious procedure,
so automated methods are the best way to align sequences in a fast and con-
sistent manner. A method is needed to align the sequences based on their iden-
tity, physicochemical properties, or substitutions observed in nature, or based
on residues with similar genetic codons. Similarity matrices determine the
probability of mutation for a specific amino acid residue type. They are thus
useful in the alignment of protein sequences. The similarity (scoring) matrices
are of dimension 20 � 20 (amino acid residue versus amino acid residue).
Upon diagonalization, similarity scores are determined between all amino
acid residues. Amino acid residues with high physicochemical similarity, and
that are commonly mutated because of genetic malfunctions or that are sub-
stituted across species, are given higher mutation probability scores. Each
similarity matrix contains a set of values that are proportional to the probabil-
ity of amino acid i having been mutated to amino acid j for a given evolution-
ary distance. Three common scoring matrices exist: Point-Accepted Mutation
per 100 amino acid residues101–103 (PAM) matrices, BLOck SUbstitution
Matrix104 (BLOSUM) matrices, and Gonnet111,112 matrices. The PAM
matrices are based on mutations observed from global alignments of closely
related sequences that include both conserved and nonconserved regions. In
contrast the BLOSUM matrices are based on blocks of local similarities and
are the recommended matrix type for BLAST searches.

The PAM matrices,101–103 which were developed by Dayhoff et al., are
based on the probability of an amino acid residue mutating to another amino
acid residue. The original PAM matrix was derived using a small group of clo-
sely related sequences and tracking the amino acid residue substitutions.1 Each
evolutionary PAM matrix is determined by multiplying the original PAM
matrix by itself n � 1 times, where n is the number of desired evolutionary
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cycles. The basic premise of a PAM matrix is that the amino acid residue in
column i will mutate to the amino acid residue in row j after the number of
evolutionary cycles. The original One Point Accepted Mutation (PAM1)
defines a unit of evolution corresponding to 1-point mutation for every 100
residues; a single PAM cycle is equivalent to approximately 1% of the residues
mutating in a given sequence. The PAM family of matrices was developed by
extension of PAM1. A typical example of a PAM matrix is PAM250 (Figure
8), which denotes that the matrix is based on the probability of an amino acid
residue mutating to a specific amino acid residue after 250 point-accepted
mutations. Because mutations can occur many times at the same site over evo-
lutionary time, the PAM250 matrix corresponds to approximately 20% of the
original residue types remaining at their initial location.1 Positive values indi-
cate that mutation to the corresponding amino acid residue type is likely,
whereas negative values indicate that a mutation is improbable. An important
issue to be aware of is that the amino acid residue of interest can mutate and
then return to its original state, or it may not mutate at all. The similarity of
the sequences to be aligned dictates which PAM matrices should be used;
sequences that are very similar in composition should use PAM matrices
with low numbers, whereas sequences that are related over large evolutionary
distance should use PAM matrices with a large value. Figure 9 provides insight
into the probability of specific amino acid residue types mutating in the PAM
methodology.

By examining the PAM20 matrix we see that there is a small probability
(1) that a mutation to or from tyrosine (Y) to a phenylalanine (F) will happen,
but almost no chance (�19) of tryptophan (W) mutating to glutamic acid (E).
It is reasonable to expect that a conversion between a tyrosine and phenylala-

Figure 8 Depicted is a common representation of a PAM similarity matrix after 250
PAM cycles. BLOSUM and Gonnet similarity matrices are also represented in this
manner.
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nine will occur because the only difference between the two amino acid resi-
dues is a hydroxide group in the para position of the benzene ring (Figure 10).
In the PAM100 matrix, the probability of mutation is increased for all resi-
dues, whereas the likelihood of remaining the same residue type is reduced.
Specifically, the probability of mutating to a tyrosine from a phenylalanine
is increased (from 1 to 4), as is the probability of tryptophan’s mutation to
glutamic acid (from �19 to �9). After more PAM cycles, the PAM300 simi-
larity matrix shows that the probability of a tyrosine–phenylalanine mutation
has again increased (from 4 to 9), as has the probability of mutating from

Figure 9 These similarity matrices represent 20, 100, and 300 PAM evolutions. A
positive value indicates that a mutation can happen, and a negative value signifies that
mutation is unlikely. The larger the numerical value, the more likely the mutation will or
will not occur.
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tryptophan to glutamic acid (from �9 to �8). Through the evolution of the
PAM matrices, the probability of phenylalanine mutating to tryptophan (or
vise- versa) improves (�6 to �1 to 1).

BLOSUM104 matrices were constructed in a similar fashion to the PAM
similarity matrices, but from a more diverse set of sequences. It is from this

Figure 9 (Continued)

Figure 10 Amino acid residues. The obvious structural similarities between tyrosine
and phenylalanine make it is easy to imagine the possible interconversion (mutation)
between these two residues. The dissimilar structural features between tryptophan and
glutamic acid illustrate the improbability of mutation.
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standpoint that BLOSUM similarity matrices are considered more robust for
the purposes of aligning amino acid sequences, especially those with low simi-
larity scores (distantly related sequences).113 The Gonnet112 similarity
matrices were developed around the same time as were the BLOSUM matrices
and used the entire protein sequence database available in 1992. The Gonnet
similarity matrix was constructed using the Needleman–Wunsch algorithm,114

with indexing and reorganizing the amino acid sequences using a Patricia
tree111 on a small cluster of computers.

Thealignment programs discussed below use similarity matrices—selecting
the correct matrix for the desired set of sequences is important. The Gonnet
similarity matrices are the preferred similarity matrices to use when aligning
amino acid sequences because of the robust methods used in their develop-
ment. Complicating the selection of the optimal similarity matrix is not know-
ing the amount of dissimilarity between the sequences to be aligned.

Clustal

A popular sequence alignment program is Clustal.98,115,116 It is fre-
quently used because of its ability to align large numbers of sequences of
varying similarity quickly and accurately, not to mention its portability to
numerous computer platforms.115,116 The most recent version of Clustal is
ClustalX,115,116 which is an upgraded version of ClustalW98 with a graphical
user interface. Clustal is an iterative, progressive alignment method. Three
steps are carried out in a Clustal alignment. First, each sequence is aligned
to all other sequences in the alignment set (one at a time) to determine a dis-
tance matrix (pairwise alignments). Second, a guide tree is constructed based
on the distance matrix. Third, the sequences are progressively aligned, based
on the branching order in the guide tree. Figure 11 has three different repre-
sentations of the same guide (phylogenetic) tree for the evolutionary relation-
ship between several different species’ lysozyme enzyme.

In the first step, the initial pairwise alignments can be performed using a
fast but approximate method or by using a slower but more accurate method.
The fast method finds the best alignment of two sequences based on a score
that is determined by the number of identical residues (between the two
sequences) minus a fixed penalty for every gap added. The slow method
uses dynamic programming to align the sequences. It implements gap penalties
for inserting a gap or extending a gap during the alignment process in addition
to scoring the alignment. The score (percent identity) for both alignment meth-
ods is based on the number of most accurately aligned residues divided by the
number of amino acid residues in the sequence (positions occupied with gaps
are not included). Dividing the percent identity values by 100 and subtracting
from 1.0, the distance matrix values (number of differences per residue) are
thus calculated with no correction for multiple substitutions. After the initial
alignments are prepared, a guide tree is constructed.

Step 2: Sequence Alignment 95



In the second step, a guide tree is used to aid in the final alignment of
multiple sequences and is calculated from the distance matrix constructed in
the first step. The guide tree is constructed by initially building an unrooted
neighbor-joining tree (Figure 11) whose branches are proportional in length
to the estimated evolutionary divergence of each sequence from the others.
The assignment of a weight to each sequence is possible from the tree. The
sequence weights are based on their distance from the root. In the case of
sequences that share a portion of a branch (a common branch between several
sequences), the weight of a single sequence can also be calculated (we use here
human lysozyme as an example). The weighted value of such a sequence is the

Figure 11 The evolutionary relationship between several species’ lysozyme enzyme are
displayed using three different guide tree (phylogenetic) representations. Progressive
alignment methods use guide trees to aid in the alignment order of the sequences. The
most related sequences are aligned first. Next, the second-most related sequence is
aligned to the first two. This process continues until all sequences are aligned. These are
unrooted phylogenetic trees representing the same information. The branches of trees (a)
and (c) are proportional to the evolutionary distance, whereas the branch lengths in (b)
are not. The guide tree relationship is based on values obtained from ClustalX,115 and
the images were created with PHYLIP.117
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sum of the length of the branches divided by the number of sequences sharing
a specific branch. It is easiest to determine the weighted value by working from
the tip of the branch to the root (Figure 12). For human lysozyme, it is accom-
plished by adding 0.089 to a third of the branch value shared with bovine and
sheep (0.099/3) plus a tenth of the branch value (0.050/10) for the main
branch. The weighting value for human lysozyme is then 0.127, and the total
of all weighted values of all sequences in the guide tree equals 1. Further exam-
ination of the guide tree shows that some sequences do not have values, which
indicates that their branch length is less than 0.001. Once the sequences are

Figure 12 Guide tree with evolutionary distances. The values correspond to the branch
length and thus the evolutionary distance (relationship) between the different proteins.
The guide tree relationship is based on values obtained from ClustalX,115 and the images
were created with PHYLIP.117
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weighted, they are normalized with the heaviest sequence being assigned a
value of 1.0. The closely related sequences are assigned lower weighting values
than are the divergent sequences because the former contain analogous
information (similar protein sequences). All protein sequences are weighted
the same when a normal (nonweighted) progressive alignment algorithm is
used.

The third step is progressive alignment. This is a series of steps that aligns
sequences pairwise to an ever-increasing group of sequences based on the
guide tree constructed in the second step. The process of aligning the sequence
starts at the tips of the branches and works toward the root. Sequences that
share a common branch are aligned to each other first. Inserted gaps and
extension of existing gaps permitted in previous alignment steps are retained
and fixed. Progressive alignments are improved by weighting the sequences
with normalized values based on the evolutionary (guide) tree. The weights
are proportional to the number of closely related sequences that each protein
sequence has; sequences that are closely related to many other protein
sequences (redundant information) have a lower weight assigned compared
with dissimilar sequences. The weights are used to determine the alignment
order. Closely related sequences are aligned first to reduce the likelihood of
following false trends that might be initiated by evolutionary-distant
sequences. By delaying the alignment of the divergent sequences (i.e., those
sequences with 40% or less identity) until all similar sequences have been
aligned, one might locate the correct placement of gaps and be able to align
the weakly conserved residues.

Another method of improving progressive alignments is to vary the gap
opening and gap extension penalties. Using a strategy that is similar to how the
sequences are weighted based on their similarity, the gap-opening penalty
(GOP) is increased when aligning closely related sequences but reduced for dis-
tantly related sequences. The gap-extending penalty (GEP) is related to the dif-
ference in length between the sequences being aligned. Sequences with a large
difference in length are assigned a larger GEP (to prevent large gaps in a short
sequence) than those GEPs for sequences of similar length. In addition to
imposing GOPs and GEPs, the gap penalty assessed in Clustal is position spe-
cific. Before sequence alignment, a GOP table is constructed for each pair of
sequences to bias the initial GOP based on position. The gap penalties are
implemented in a hierarchical fashion. To promote the insertion of a gap
where gaps already exist, the GOP and GEP values are reduced and other
gap penalty rules are waived. The GOP is increased for gap initiations within
eight residues of an existing gap to discourage formation of adjacent gaps. Gap
formation in hydrophilic regions (corresponding to loop or coil regions) is not
heavily penalized when compared with opening or extending gaps in other
regions. A hydrophilic region is considered to be a polypeptide segment con-
taining five or more hydrophilic amino acid residues (D, E, G, K, N, Q, P, R,
or S)98 in a row. For such cases, the penalty for a gap insertion is reduced by
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one third. The GOP for a nonhydrophilic region is subject to a predetermined
set of values that are based on the probability of a gap occurrence adjacent to a
particular residue. These probabilities are based on the alignments to known
structures.98

Tree-Based Consistency Objective Function for Alignment
Evaluation (T-Coffee)

T-Coffee118 is an attempt to rectify a common problem in progressive-
alignment (heuristic) methods in which errors committed in the first alignment
cannot be corrected as other sequences are added to the alignment. T-Coffee
like the other progressive methods can suffer from ‘‘greediness.’’ Greediness
refers to the inability of the alignment method to correct errors (addition or
extension of a gap) made in the alignment process. The alignment of new
sequences (information) might indicate previous errors in the alignment.98

For example, in the alignment of six sequences, the alignment of the fifth
sequence to the four previously aligned sequences indicates an improved align-
ment with the removal of a gap; yet the alignment of the sequences cannot be
corrected to reflect the improvement. T-Coffee aims to reduce the probability
of misalignment by using knowledge about all sequences at the beginning of
the alignment process; more specifically, it uses the order of the sequences
from the guide (phylogenetic) tree. There are five steps involved in a T-Coffee
alignment: (1) Generate a primary alignment library, (2) derive the primary
library weights, (3) combine the libraries, (4) extend the libraries, and (5) per-
form a progressive alignment.

The initial step of a T-Coffee multiple sequence alignment is to create a
library by the pairwise alignment of all sequences of interest to determine
their local and global alignments. The global alignments are determined using
ClustalW98 (version 1.75 with default parameters) to provide the ‘‘full-
length,’’ or slow alignment, as described earlier. The local alignments are per-
formed using the Lalign119 algorithm of FASTA.120,121 It gives the 10 best
nonintersecting local alignments that are stored in a library as pairwise residue
matches. The pairwise residue matches are considered to be a constraint, but
each match does not possess the same importance (weight) because some
alignments (or segments of the alignments) are considered to be more correct
than others. The second step involves calculation of the primary library
weights using the aligned residues. The third step is to combine the local
and global alignment results into a single, composite library. Weights are
assigned to each pair of aligned residues in the combined library based on
how often the pair of residues align with residues from the other sequences.
The fourth step shapes the weighted constraints to fit a multiple alignment
using library extension (a heuristic method). For any pair of residues in the
library, a final weight is constructed that adequately illustrates a portion of
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the information from the entire library, which is library extension.118 Using
the information gathered, step 5 proceeds using a progressive alignment
strategy. The use of a phylogenetic tree (like those derived in ClustalW) is
used to determine the sequence pairing for the multiple sequence alignment.
The initial sequence alignment is the one with the most closely related
sequences as noted by the phylogenetic tree. T-Coffee offers a method to create
multiple sequence alignments using information from all possible sequence
alignments along with an optimization method to derive the best multiple
sequence alignment.

Divide-and-Conquer Alignment (DCA)

This method differs from the other alignment methods by aligning the
sequences simultaneously. The DCA105,122,123 method uses the multiple
sequence alignment124,125 (MSA) methodology. DCA is a data modifier that
can use any method of multiple sequence alignment. It is an approximate
alignment solution method that uses an unbiased starting point. In addition
to developing a robust alignment method, the authors of DCA also were con-
cerned with developing a method that is not computationally demanding.

Sequence alignment with DCA involves three main steps: (1) Divide the
sequences into smaller fragments, (2) align the divided sequence segments, and
(3) reconstruct the individual aligned sequences. The most difficult part of the
three steps is the first, splitting the sequences. The division (slicing) of the
sequences reduces the search space for locating the optimal alignment by redu-
cing the number of possible configurations. The sequences are initially sliced at
their (approximate) mid-points, and further division of those fragments is
done in a similar way until the lengths of the subsequences reaches a prede-
fined length. The authors of DCA suggest segment lengths between 40 and
100 amino acid residues for the alignment of several sequences and segment
lengths of 20 to 40 residues for large sets of sequences (alignment of 5 or
more sequences). The division of the sequences into smaller segments results
in several small alignment problems with a finite number of possibilities
instead of one alignment problem with an intractable solution. The second
step is the alignment of the divided sequence segments using MSA, which
thus adds to the strength of the DCA method. The gap penalty for an align-
ment in DCA is additive, and the same penalty is assigned to the alignment
for gaps occurring at the beginning, the end, or in between amino acid resi-
dues. The final step is to recombine the segments to form their original pro-
teins preserving the sequences’ alignment and inserted gaps. DCA uses
information about all sequences during the alignment process in contrast to
the progressive alignment methods, which look at only a small subset of the
sequences.
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The DCA method of sequence alignment differs from progressive align-
ment methods such as Clustal because it does not use guide trees to determine
the alignment order of the sequences. Instead short segments from all
sequences are aligned at once providing a way to compare and align all
sequences at the same time.

The sequence alignment methods discussed are just a sampling of the
available methods. The overall goal of automated methodologies is to create
alignments that are difficult to improve on using human intuition. Some meth-
ods can align closely related sequences accurately, but when the alignment
involves distantly related sequences (less than 40% similarity), the alignment
becomes problematic. The importance of the sequence alignment cannot be
stressed enough; it is considered to be the most important step6 in a compara-
tive protein modeling study.

Two schools of thought exist for the alignment of a target to a template.
The first is to use multiple sequences covering an evolutionary range, and the
second is to use only a single template sequence. Researchers in the multiple
sequence school recommend using sequences from different species with
varying similarity (sequences with 40% similarity to each other). The con-
struction of an optimal alignment using multiple sequences relies on the
conservation of some important residues and the mutation of other important
residues through evolution of the species. Typically, but not always, a residue
mutates to another residue with a similar structure, function, or physicochem-
ical property over time. All sequences are initially aligned with each other in a
pairwise fashion to determine the final order in which they will be aligned, as
discussed. The target-template alignment school views the introduction of
additional sequences as a possible source of error for the alignment. It is
thought that the additional sequences provide the possibility of a chance cor-
relation being found for the initial or subsequent alignments. A plethora of
sequence alignment results in a given study does not ensure that the optimum
alignment has been found; thus, the opportunity exists for misaligned
sequences. These nonoptimal alignments are often the result of the automated
alignment method’s lack of knowledge about the protein’s tertiary structure
and other information regarding the system of interest. These misalignments
are easily corrected; methods used to improve the alignments are discussed
in the next section.

Example: Aligning Sequences

The original bovine a-lactalbumin protein model was constructed before
the availability of efficient sequence alignment programs and computational
protein modeling applications. Instead of searching for similar sequences
and structures using BLAST (because it did not exist), Browne et al.3 consid-
ered only four different solved protein structures as templates. To explore the
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relationship between these four templates and bovine a-lactalbumin, we
compiled a small group of sequences for each template. The proteins within
each group were aligned to each other and to bovine a-lactalbumin with Clus-
talX98,115 and T-Coffee.118 The default ClustalW parameters including the
Gonnet similarity matrix111 were employed for all alignments (no parameter
options are available for the T-Coffee method). The purpose of these
template-specific alignments is to determine which of the templates is most
similar to the lactalbumin target. Comparing our results from the alignment
of multiple sequences of a small group of template structures with the target
sequence, one finds (Table 6) comparable or better results (based on sequence
identity and similarity) than for the alignment of the target to a single,
proposed template sequence or to the pairwise alignment of template and
target.

The authors of T-Coffee boast that it is more accurate than ClustalW for
aligning sequences with less than 30% sequence identity albeit requiring more
time. The overall improvements gained by T-Coffee compared with ClustalW
are not significant in this case. The percent identity and similarity for the horse
hemoglobins and the sperm whale myoglobin is very low. Accordingly, protein
models constructed from any of these templates would result in terribly
misleading structures. The percent identity and similarity between bovine

Table 6 The Percentage of Sequence Identity and Sequence Similarity (numbers in
parentheses) Between Bovine a-Lactalbumin and the Template of Interest

aTemplate bFour cFive
CLUSTAL X Alignments Group Templates Templates dPairwise

Horse Hemoglobin a 12 (28) 7 (25) 7 (26) 11 (28)
Horse Hemoglobin b 14 (30) 9 (26) 10 (27) 14 (30)
Hen’s Egg White Lysozyme 35 (54) 37 (56) 36 (54) 37 (56)
Sperm Whale Myoglobin 13 (25) 6 (17) 6 (18) 12 (24)
eHuman a-Lactalbumin 73 (87) – 73 (87) 73 (87)

T-Coffee Alignments

Horse Hemoglobin a 10 (26) 10 (22) 6 (22) 10 (27)
Horse Hemoglobin b 13 (27) 12 (24) 12 (28) 14 (33)
Hen’s Egg White Lysozyme 33 (53) 35 (54) 35 (54) 35 (54)
Sperm Whale Myoglobin 13 (26) 8 (20) 7 (20) 13 (26)
eHuman a-Lactalbumin 73 (87) – 73 (87) 73 (87)

aThe Template Group consists of the sequence for a specific protein from several different
species.

bThe Four Templates alignments consists of the four templates considered by Browne et al.
cThe Five Templates alignments consists of the four templates considered by Browne et al. plus

the sequence of the human a-lactalbumin.
dPairwise alignments are the alignment between bovine a-lactalbumin and the proposed

template.
eHuman a-lactalbumin was not included in the alignment of the initially considered templates to

preserve continuity between the results discussed here and those of Browne et al.
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a-lactalbumin and the egg white lysozyme are marginally acceptable, so a
template could be selected. In this case, the ability to improve on the work
of Browne et al. is possible; the construction of bovine a-lactalbumin from
human a-lactalbumin is possible given its greater sequence identity to bovine
a-lactalbumin (73% identity and 87% similarity). Several alignments from
Table 6 are presented in Figure 13.

Figure 13 Bovine a-lactalbumin alignment to related sequences and possible
templates. The alignments presented here range from the multiple alignment of
sequences for the same protein (a-lactalbumin) from different species (a), to the
multiple alignment of the target protein (sequence) to a collection of the same protein
from different species of a probable template based on the work of Browne et al. (b)
and considered templates (c), to a pairwise alignment of the target sequence (bovine a-
lactalbumin) and a template (human a-lactalbumin) (d). The similarity of residues in a
column is based on the work of Zvelebil et al.,126 which calculates the residue
similarity. Conserved residues have black backgrounds and white text, highly
conserved residues have gray backgrounds and black text, and reasonably conserved
residues have gray backgrounds and white text. The signal portions of the protein
sequences are denoted with filled triangles. Images were created with JalView127 and
ALSCRIPT.128
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STEP 3: SELECTING TEMPLATES AND IMPROVING
ALIGNMENTS

Seasoned professionals who work in the area of comparative modeling
know that the order of business for step 3 is to first improve the alignment
and then to select the template. This step of comparative modeling is a process
in which the sequence of interest (the target) and the other sequences and
structures (template) are aligned optimally. Once the sequences and structures
are aligned, the best template(s) can be selected based on its evolutionary dis-
tance as determined by a polygenic tree (as discussed briefly). The condensa-
tion of these two steps into a united event draws attention to the fact that both
steps can be considered to be small components of the overall process, but they
can influence the outcome of the protein model dramatically. Combining these
two steps might be considered to be an inconsistency with respect to the
importance of each individual step, but by doing so, it allows for the smooth
pedagogical transition from aligning the sequences and structures to the con-
struction of the protein model.

Selecting Templates

When selecting the template structure for a protein model, it is important
to consider the ‘‘quality’’ of the 3-D structure. It is done by considering the
resolution, R-factor, and the anisotropy, B-factor. The R-factor and B-factor
provide information about the refinement quality and variation (movement) of
individual amino acid residues (and atoms), respectively. The resolution of a

Figure 13 (Continued)
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structure quantifies the lowest resolvable separation between two carbon
atoms;107 it is the ability to state that an atom occupies its specified portion
of 3-D space (plus or minus the resolution value). The R-factor (the residual
index) of a structure is the value that relates how well the refined structure
matches the experimental results (electron density maps) and should not be
considered as the ‘‘Holy Grail’’ for ‘‘correctness of fit.’’107 The B-factor is a
thermal measure of uncertainty (extent of electron density smearing) for the
structure and is assigned to each atom and can be calculated for each amino
acid residue. The largest thermal motions are typically observed in side chains
and loops. It is not uncommon for several published X-ray versions of the
same amino acid residue to be at different locations because of large B-factors.
Atoms with B-factors greater than 50 Å2 are considered to be imperfectly defined
atoms, whereas those with B-factors less than 15 Å2 are considered to be correctly
defined;129 varying levels of positional certainty exists between these two values.
Atoms with B-factors approaching 100 Å2 should be viewed as incorrect.

Selecting which template should be used for a protein model is, at times,
trivial, especially if only a couple of related 3-D structures are available. In
other cases, however, several protein structures are available from which to
select (that are a similar evolutionary distance from the target sequence) and
are either point mutations or have varying quality in crystallographic para-
meters, which thus makes the selection of a template difficult.

The automated alignment of sequences is desirable but is considered by
many researchers to be inadequate because of the techniques implemented in
the alignment methods. Some alignment methods discussed in the previous
section were designed to eliminate the need for user intervention. However,
even the best alignment of several protein sequences by automated methods
does not guarantee a correct protein model will be generated because only
the primary structure of the proteins is being considered with no knowledge
of the secondary and the tertiary structure. The goal of aligning amino acid
residue sequences is to match similar sections of amino acids (based either
on amino acid residue properties or projected secondary structure features)
with the anticipation that these regions will have matched structural features,
such as secondary structures and catalytic residues. Without using scientific
intuition, the automated processes could place a gap in the middle of an a-
helix or b-sheet, something that does not happen in nature. Gaps are more sui-
tably placed in regions of the template sequence lacking secondary structure
such as in polypeptide loop (random coil) regions.

By using a hydropathy index (the probability of an amino acid residue
being in a hydrophobic environment based on its neighboring residues in the
primary structure) along with a predicted secondary structure, the target protein,
in conjunction with the known secondary structure of the template structure,
can be used to aid in the sequence alignment. The concept behind using hydro-
pathy plots and a predicted secondary structure is to aid the alignment of the
protein sequences. These topics are discussed later. Although the hydropathy
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plots and secondary structure predictions rely on experimentally derived data,
the predicted secondary structure could be correct or it could be completely
wrong with respect to the actual secondary structure of the target protein.
Moreover, the results can vary slightly or differ greatly when comparing the
different methodologies; results that seem to be promising could be in fact
very misleading. Sequences can be aligned manually using programs such as
GeneDoc130 or JalView127 or aligned automatically with ClustalX115,116 or
JalView.127 Screen images from these programs are shown in Figure 14. These
programs display the alignment of multiple sequences and provide statistical
information about the alignment. ClustalX does not allow one to manipulate
individual amino acid residues. Instead it allows the user to evaluate the align-
ment and to select a segment of residues or several sequences to be realigned
with the initial sequence alignment. In addition to providing numerical values
to assist in the alignment, these programs display various shading methods
based on physicochemical properties, conserved residues, identity to a specific
sequence, and the overall property of the residues. The methods examined in
this section are useful for improving the target-to-template sequence align-
ment. They can gather information about related sequences that do not have
solved tertiary structure, and they provide a useful knowledge base built on a
consensus of those acquired data.

Selecting the template (a known 3-D structure) for a comparative model
is the most important step in the process of comparative (homology) modeling
because selection of a wrong fold (protein motif) can lead to a wrong model
more than can an incorrect alignment (this is not suggesting that sequence
alignment is unimportant). The selection of the template should be based on
a closely related protein within the same family as the target. Unfortunately,
many proteins that one would like to model do not have templates that are
closely related. In this scenario, the search for a suitable template must begin
by seeking distantly related structures.

Improving Sequence Alignments With Primary
and Secondary Structure Analysis

The primary structure of a protein contains information of use to homol-
ogy modelers. A primary structure analysis can be used to predict a-helical or

b
Figure 14 Graphical sequence alignment programs. The ability to visualize the
alignment of protein sequences and to manually adjust the alignment is important.
GeneDoc (a) provides the ability to align sequences manually and provides statistical
information regarding the alignment. ClustalX (b) provides the same functionality as
ClustalW, but with the aid of a graphical interface. JalView (c) can be considered an
improved version of ClustalX, providing various alignment methods (via the Web). In
addition to aiding in the alignment of sequences, these three programs provide the
ability to color-code alignments based on various properties, provide alignment
statistics, and import and export files of various formats.
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b-strands and coiled coil regions in proteins. A primary structure analysis can
also reveal regions rich in proline, glutamic acid, serine, and threonine (PEST
regions); locate protein sequence repeats; predict the percentage of buried
versus accessible residues; and provide information about the system’s isoelec-
tric point. Significantly, the information stored in the primary structure is use-
ful for determining the location of hydrophobic and hydrophilic regions of the
protein. By using the amino acid residue sequence, a set of predetermined
hydropathy values (a residue’s affinity for water), and a window region, a
hydropathic profile for a given protein can be determined. Hydropathy plots
can be used to determine whether a protein contains any transmembrane
regions or to locate regions (segments) of the protein that are buried (in a
hydrophobic environment). The ability to predict the secondary structure of
a protein helps the modeler to predict the 3-D (tertiary) structure of the protein
of interest. Knowing what segments of the primary structure will form a spe-
cific secondary structure also helps the researcher classify the type of protein
being studied. The prediction of a secondary structure makes use of the pro-
tein’s sequence and is accomplished with either a database131 to compare the
sequence of interest with those with known structures or by an a priori predic-
tion method.70,71 The more common of the two approaches is to use a data-
base to predict the secondary structure.

Hydropathy Plots
Hydropathy plots are used to predict buried and exposed regions of a

protein. Use of these plots was first demonstrated by Rose132 and Rose and
Roy.133 Hydropathy plots are based on Chothia’s134 observation that hydro-
phobic residues (amino acid residues with hydrophobic sidechains) tend to be
buried when the protein exists in its native conformation. More than one set of
hydropathy values is available. The best known hydropathy indexing metho-
dology is that of Kyte and Doolittle.135

Calculating the hydropathy profile for a protein sequence is accom-
plished by determining the hydropathy score for each residue in a boxed
region as one progressively moves down the biopolymer. The boxed region
starts at the amino end of the sequence and moves toward the carboxyl termi-
nus. The box size is of fixed dimension and is user determined. Kyte and
Doolittle determined that an optimal box length is 7 to 11 residues.135 Centering
the box on the residue of interest and summing the hydropathy indices of all
residues contained in the box provides a hydropathy score for that centered
residue. This value is the hydropathy score of only the center residue even
though it accounts for neighbor residues. Examples of hydropathy plots are
depicted in Figure 15. Other parameters one can adjust include weighting
the residues at the box edges, which invokes a weight variation for the model
and normalizes the hydropathy indices.

There are two methods of varying the weight of the residues: linear or
exponential. The default method of performing a hydropathy plot assumes
that each residue is equally important, which thus produces a weight of 100%.
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Figure 15 Examples of hydropathy plots. In (a), the hydropathy plots of bovine and
human a-lactalbumin are very similar, whereas the hydropathy plot of chicken lysozyme
differs but follows the general contours of the a-lactalbumin hydropathy profile. In (b),
there is a general trend among the hydropathy profiles for horse hemoglobin a and b and
sperm whale myoglobin. This is expected based on their similar structural features (all
a-helical structure). Hydropathy plot (c) illustrates the approximate location of the
seven transmembrane a-helices of bovine rhodopsin (I–VII), a transmembrane protein,
and its intermembrane eighth a-helix (VIII). Hydropathy plots are best suited for
providing insight into the physicochemical similarities between proteins and have the
ability to elucidate the hydrophobic environment of a segment of residues. These
hydropathy plots were constructing using the Kyte and Doolittle135 hydropathy
parameters and a residue window containing 11 residues, with edge residues retaining
75% of their original value compared with the center residue; the residues between the
edge and center residues were linearly scaled (5% increments).



Regardless of the weighting method used or the weight assigned to the edge
residues, the residue of interest always retains its full weight (100%). The resi-
dues at the edge of the box are assigned an edge value of 10% when the linear
weight variation method is implemented. Thus, when the box size is set to 7
residues and the edge residues have a weight of 10%, the center residue (resi-
due 4) retains its full weight, residues 3 and 5 retain 70%, residues 2 and 6
retain 40%, and residues 1 and 7 retain 10% of their original hydropathy
indices.

Pattern and Motif-Based Secondary Structure Prediction
The use of pattern and motif-based methods to predict a protein’s sec-

ondary structure involves matching the primary sequence of the protein of
interest with solved 3-D protein structures. The computer programs that
accomplish it are similar to the sequence alignment methods discussed, in
which the sequence is read into the program and then compared with entries
in a database. The database contains common structural motifs found in
primary sequences. These prediction methods are therefore sensitive to
the structures that constitute the database. Several well-known (and lesser
known) methods for predicting the secondary structure of proteins have the
ability to predict the secondary structure correctly 70% of the time.136,137

The pattern and motif-based secondary structure prediction methods are
a delicate balance between accuracy and robustness, and like artificial neural
networks,79 they can suffer from overgeneralizations. Well-known pattern and
motif-based secondary structure prediction methods include PSIPRED,93,94

GenTHREADER,138 PREDATOR,73,137,139 PROF,140 MEMSAT,141,142 and
PHD.143

If more than one template was discovered during the template search
stage, it is necessary to select the most suitable template (or templates) for
the system at hand. A global pairwise alignment is the prime measure of the
template quality. The template quality increases with the overall sequence
similarity but is reduced with an increase in the number and length of gaps.
For situations in which there is a small difference in the evolutionary distance
between different templates, selecting ‘‘the most homologous template’’ is
usually the best choice. For other situations, selecting several (two to five) tem-
plates to build an optimal 3-D model might be a viable option. For a multiple
sequence alignment of the target with the templates, one can first create a phy-
logenetic tree144,145 and then divide the sequences into subfamilies to help
select the most suitable template. Other factors one might need to take into
consideration when selecting templates include the resolution of the structure
and the reliability of the template structure(s). The structure of a protein
depends on the state in which it exists. These states may correspond to an
opened or closed conformation, existing with or without a bound ligand, or
being in a complex with another protein. The choice of the template thus
depends on the state of the system one wishes to model.
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Example: Aligning the Target to the Selected Template

Selection of a suitable template is very important; the better the sequence
identity (and similarity), the better the protein model. Here we selected hen’s
egg white lysozyme as the template in contrast to the other candidates
explored by Browne et al.,3 Perutz,146 and Perutz et al.147,148 Our selection
of this template is based on its sequence similarity and percent identity with
the target. In addition to selecting lysozyme as a template, we also selected
human a-lactalbumin as a template because of its high sequence identity
with the target. (Table 6)

There are times when the alignment of the target sequence to the
template requires additional adjustment to move a gap into a loop region.
Aligning bovine to human a-lactalbumin in this example was straightforward
and did not involve any gaps, so no alignment improvements were needed. The
alignment of bovine a-lactalbumin to hen’s egg white (chicken) lysozyme was
more complicated, however, requiring slight improvement manually (using
GeneDoc130) to preserve the trailing a-helical endcaps in helices 1 and 5.
The improvement was made to the initial T-Coffee118 alignment of bovine
a-lactalbumin to hen’s egg white lysozyme. Figure 16 illustrates the problems
associated with a gap being located close to the beginning or the end of an a-
helix. The original sequence alignment is presented in (a), where the gaps of
interest are denoted with open arrows (æ and �). The improved alignment
is shown in (b), where one of the gaps was moved toward the center of the
loops. Examination of the protein structures (template, T-Coffee model, and
improved model) provides a visualization of the deleterious behavior caused
by gaps placed near helices (and therefore other defined secondary structures
of a template). The image (c) is an overlay of the three models with magnified
views of the helical endcaps shown in (d) and (e). Notice the distortion
imparted to the helices in the model created with the T-Coffee alignment. It
is therefore imperative to place gaps in loop regions where they will have little
influence on the defined secondary structure regions.

STEP 4: CONSTRUCTING PROTEIN MODELS

Three main families of algorithms exist for building the protein model.
These families include (1) programs that use spatial restraints from the tem-
plate structure(s) as a guide to build the target model,149–152 (2) programs
that fit short peptide segments of the target to the conserved main-chain
atom positions of a structurally related template,5,67 and (3) programs that
overlay several templates from the same structural class (family) and use the
best aligned segments of the target-to-template fit to construct a protein
model.43–48,153 In this section of the chapter, the methodology employed by several
of the more common protein structure construction methods are described.
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Figure 16 Improved alignment between bovine a-lactalbumin to hen egg white
lysozyme. This small change in the location of gaps (alignments a and b) is important
when trying to conserve the 3-D structure between the template and the to-be-built
target models. The gaps of interest are indicated with open arrows (æ and �). The initial
alignment (a) was determined via T-Coffee, and the original gap locations were placed at
the residue immediately after the a-helix termination site. The best location for gap
placement is in loop regions, toward the center of the loop, because of the low sequence
similarity of loops. The improved alignment (b) was obtained using GeneDoc. The
‘‘tweaking’’ or slight manual adjustment of the alignments resulted in an increase of
sequence identity (35% to 36%) and sequence similarity (54% to 55%). This small gain
in each score is very important. An overlay of the chicken lysozyme template, T-Coffee
model, and the improved model is shown in (c). The regions of interest are Helices 1 and
5, which are illustrated as ribbon structures and enlarged in (d) and (e), respectively.
Had the bovine a-lactalbumin models been created without user intervention, Helix 1
(d) would have extended beyond that of the template. The opposite is observed in (e),
where Helix 5 of the T-Coffee model would have terminated prematurely compared
with the template. Alignment images were created with JalView127 and ALSCRIPT.128

Protein structure images were created with UCSF Chimera.99



These programs include Satisfaction of Spatial Restraints6,152,154 (SSR) as
implemented in MODELLER,155 Segment Match Modeling5,67 (SMM) as
implemented in MOE,156 and the Multiple Template Method43–48 (MTM)
as implemented in 3D-JIGSAW48,157,158 and in 3D-PSSM.159–161 The SSR
program of Šali and Blundell7,152 constructs a 3-D protein model by using spa-
tial restraints that are based on distances, angles, dihedral angles, pairs of dihe-
dral angles, and other spatial features. It uses specific or pseudo-atoms derived
from the template’s structure. In contrast, is the SMM method of Levitt,5

which searches a database of known protein structures to find similar
sequences (related to the target) and structure (related to the template). The
MTM method of Bates et al.48,157,162 uses several templates and selects the
segments with the best alignments for construction of the protein model. It
is possible to use any combination of these methods to select templates, gen-
erate alignments, and refine or validate structures. The SSR, SMM, and MTM
methods are described in more detail below.

Satisfaction of Spatial Restraints

MODELLER6,152,155,163 is a comparative (homology) modeling package
that uses Satisfaction of Spatial Restraints (SSR), a program that derives
distance and dihedral angle restraints in the form of probability density
functions from template proteins. MODELLER consists of a suite of applica-
tions that searches for and aligns a template structure(s) to the target sequence
before constructing and refining the protein model. The spatial restraints
methodology assumes that geometrical features, such as distances or angles,
are conserved when comparing equivalent positions in homologous proteins.
Therefore, constraints derived from the template(s) proteins can be used as a
guide for the construction of the target model.149,151,152,164 Havel and
Snow149 and later Srinivasan et al.164 used distance-geometry techniques to
create an ensemble of target structures that are consistent with lower and
upper bound geometric constraints derived from the template(s).

Implementing the spatial restraints method consists of two main steps as
described by Šali et al.165 and Šali and Blundell.152 The first step is to derive
the spatial restraints based on the alignment. The second step involves con-
struction of the 3-D protein model by fulfilling the spatial restraints of step
1. The first step relies on the pairwise alignment of the target sequence to
the template structure. The alignment process of MODELLER is not
unique and can be performed by other software. Using the alignment of the
target to the template, the 3-D characteristics of the template are then pro-
jected onto the target sequence. The 3-D structure of the template together
with its features that have been projected onto the target sequence comprise
a knowledge base that is then used to construct the protein model. The rules
used by SSR to construct a 3-D protein model are based on probability density
functions (pdfs). The pdfs are a mathematical way of expressing the probability

Step 4: Constructing Protein Models 113



of a certain physical (structural) feature occurring and are referred to as a
restraint. The pdfs have the ability to take any form, but they must be nonzero
and integrate to 1 over the full range of likely values for x.152 The probability
of existence for a structural feature (also called an event) is the result of

p x1 � x � x2ð Þ ¼
ðx2

x1

p xð Þdx ¼ 1 ½2�

where x is an event that will take place between x1 and x2 (structure feature)
and p is the probability. Each restraint (pdf) provides a distribution with upper
and lower bounds for a given structural feature occurring as opposed to a
mean value. Constructing a feature pdf from individual-basis pdfs is the first
step in creating a molecular probability function. Features are properties
linked to a single component (residue) of a protein or the association of prop-
erties between two or more components. Components can be singular, such as
the percent sequence identity for a protein as a whole, or they can be pairwise
such as the atomic distances between two residues as examples. Features can
be defined as any measurement related to a set of specific atoms or residues, or,
for that matter, even the entire protein. The feature pdf is a combination of all
structural information that a specific structural feature can assess. The basis
pdfs come from the template structure(s) and are joined into a single feature
pdf using the alignment information. When using multiple templates, those
same basis pdfs are weighted; the weighting is proportional to the difference of
the average residue value and the specific residue of the template that has been
aligned to the target residue.152 The ‘‘final feature pdf’’ is constructed by
multiplying the feature pdf by the van der Waals restraint. The feature pdfs are
independent of each other, so the molecular pdf is a product of the individual
feature pdfs.

When developing a molecular pdf, one must first determine the spatial
restraints constituting a specific knowledge base of probability density func-
tions. The spatial restraints are based on various structural relationships of
the template and on the aligned target sequence. The pdfs provide a frame-
work for assigning bond lengths, bond angles, and dihedral angles needed in
the construction of protein models. The pdfs can be derived theoretically or
empirically (from a collection of protein structures); in some ways, the pdf
construction is similar to deriving a molecular force field where the bond
lengths, bond angles, and dihedral angles are gathered and their average values
and their associated standard deviations are determined. These stereochemical
restraints are defined in the pdfs of SSR using classical molecular mechanics
methods for the bond lengths, bond angles, and dihedral angles. The van
der Waals repulsion term is modeled using its pdf term. The pdf for disulfide
bonds is a generalization of the conformation of disulfide bridges as defined by
Thornton166 who analyzed disulfide bonds in solved, high-resolution X-ray
structures. Unlike the theoretical pdfs that are known and are based on a myriad
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of experimentally and theoretically determined molecular structures, empirical
pdfs are derived solely from the structures of templates that have been aligned
to the target sequence. Empirical pdfs are classified into three categories: (1)
pdfs of individual amino acid residues, (2) pdfs for the overall protein, and
(3) pdfs that account for the influence of the protein on an individual amino
acid residue. The pdfs of independent amino acid residues take into considera-
tion the type of residue involved (20 standard amino acids), secondary structure
classification, the side-chain dihedral angle and its classification, the fractional
solvent accessibility of the residue (of either the side chain, main chain, or
entire residue), and the average B-factor (uncertainty) for side-chain atoms.
These three general classes of pdfs are the building blocks on which the SSR
methodology is built, and they are referred to as basis pdfs. The basis pdfs are
converted to feature pdfs (the structural features of the template) to create the
molecular pdfs, which are used to construct 3-D models of the target protein.

The next step in the SSR method is to build a model of the target protein
by optimizing the molecular pdf. Optimization of the molecular pdf should
provide a protein model with the most probable feature pdfs. The optimiza-
tion of a molecular pdf is not solved in one step. Instead it is solved using
the variable target function method167 (VTFM) that breaks the molecular
pdf into small and easy-to-solve segments. The VTFM then builds on these
small segments until the complete molecular pdf is reconstructed. The
VTFM initially starts to optimize the molecular pdf by using consecutive local
restraints. It then adds intermediate restraints and ends with the addition of
long-range restraints. The VTFM starts by determining the optimal conforma-
tion for one residue. The next step (and successive steps) uses the optimal con-
formation of the preceding step as its starting point. Successive conjugate
gradient optimizations are performed by VTFM as each new residue is added.
As the molecular pdf is refined and portions of the target protein model prove
difficult to optimize, the restraints of the individual-basis pdfs are reduced by
increasing the standard deviations (i.e., by allowing for less-than-optimal
stereochemical configurations). To create an ensemble of target protein mod-
els, one starts the modeling of individual structures with different initial resi-
dues to provide different target conformations. Any violations in the target
model that occur can be refined through the energy minimization function
(molecular mechanics) in MODELLER, which employs a version of the
CHARMM force field.168 This geometry optimization persuades the protein
model to conform to accepted stereochemical principles.

Segment Match Modeling

An assessment of different tertiary protein structures reveals that pro-
teins with different biological functions often have different structural motifs.
When dividing the protein structure into smaller segments, however, it is
apparent that all proteins have similar substructures. Jones and Thirup67
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developed this similarity concept when they solved the X-ray crystal structure
of retinal binding protein, in which the authors noted a common similarity of
turns between b-strands. Using short segments of three previously solved
proteins, Jones and Thirup constructed a 3-D model of retinal binding protein.
The short segments they used were based on the Ca carbons of known X-ray
structures. The model they constructed from fragments had a root-
mean-squared deviation (RMSD) of 0.95 Å (based on main-chain atoms)
when compared with the experimentally refined coordinates of the retinal
binding protein. This method was ground breaking in the arena of solving
X-ray crystal structures, but it was time consuming and susceptible to bias
because the fragments were overlaid onto the electron density maps manually.

The Segment Matching Modelling (SMM) algorithm developed by
Levitt5 automated both the search and the alignment of transferable protein
fragments, thus removing bias and errors that could be attributed to human
decisions. The SMM method was originally devised first to construct many
protein models without user or database bias and second to provide an ensem-
ble of credible protein models. Through randomization and averaging, the bias
associated with intensive user input was removed. With SMM, the starting
location for target protein building is selected randomly. A predetermined
number of models is constructed and then averaged. The averaging provides
information about the variance between the models; a small variance indicates
regions of highly conserved structure (a-helices and b-sheets), and a large
variance indicates variable regions (loops).

To construct protein models with SMM requires little change from the
established steps of solving a protein’s structure from X-ray scattering data.
These steps are as follows: (1) Construct the database of segments, (2) build
the target models, (3) randomize the construction of the models and construct
the final model through averaging, and (4) minimize the energy of the final
model. Step 2 actually consists of five individual steps, as we will discuss.
The database of segments is composed of well-defined (low-resolution) protein
structures and does not include duplicates or protein structures with minor
modifications. A good selection of high-quality segments provides the modeler
with a good chance of creating a sound protein model. As will be discussed,
the intra-Ca distances match potential segments from the database to the tem-
plate; these distances are calculated for all segments in the database. The
‘‘distance’’ described here is the number of amino acid residues separating
the two Ca atoms; the range is from 2 to 19 residues.

Protein modeling with SMM needs the target’s amino acid sequence and
a template on which the protein model is based. It also needs an alignment of
the target to the template (like other comparative modeling techniques). The
process of constructing protein models with SMM proceeds in five steps: (1)
Select a segment of the target protein to model, (2) construct a list of possible
segments from the database that match the 3-D structure of the template, (3)
sort the list of possible segments, (4) select the best segment, and (5) incorpo-
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rate the coordinates from the best segments into the target protein structure.
The first step involves a random selection of an amino acid residue. It is
assigned to be the center residue of a segment consisting of an odd number
of residues. When part of the template structure is missing (specifically three
or more successive residues), as is the case when inserting amino acid residues,
those segments are deferred in the modeling until the preceding, trailing, or
both residues have been included. The hierarchy of missing atom reconstruc-
tion is to construct the missing main-chain atoms first and then to add side-
chain atoms, as would be expected.

The second step of constructing a target structure is to compile a list of
possible structural segments from the database of known protein structures
that are based on sequence composition of the target and structure of the tem-
plate. The segment searching consists of two subprocesses: constructing the
main-chain and then appending the side chains. For construction of the back-
bone, it is not mandatory to have exactly the same amino acid residue type as
in the target sequence at each segment’s position. However, for modeling the
sidechains, the specific amino acid residue is required, and the side chain of the
residue should be positioned in a suitable conformation that is determined by
the steric constraints of the environment (the currently modeled residues). The
segment selected from the database for that initial target sequence must have
parameters comparable with the template. The main-chain (backbone) confor-
mation matching is based on the work of Jones and Thirup,67 where segment
conformation is based on intrachain Ca distances instead of direct Cartesian
coordinate comparisons. Advantages and disadvantages exist when using the
Ca distances for matching segments from a database to the template. The main
benefit is that the matching is quick. However, it does not take into considera-
tion the orientation (location in 3-D space) of the template’s segment nor does
it account for the chirality of the segment.5 It is possible to find two segments
with the same intra-Ca distances that are mirror images, which thus leads to
two very different backbone conformations. It is possible to determine an
approximate conformation of a polypeptide with Ca atoms, because Ca atoms
do not dictate the conformation of small peptides.5

The third step of target construction checks the fit of the segments
selected from the database to the target structure by calculating the RMSD
and a van der Waals energy (the sum of the standard 6–12 Lennard–Jones
interaction between atoms within 6 Å of each other) to evaluate steric interac-
tions. The van der Waals’ energy calculation includes different sets of atoms
depending on the type of structure being evaluated. All atoms from the target
structure are included except those in the first and last residues of the segment.
When including atoms from the database segments into the van der Waals’
energy calculations, two different sets of atoms are included; during the
construction of the main-chain, only the Ca atoms of the segment need
be included, whereas for modeling sidechains, all main-chain atoms and the
entire residue of interest must be included. Calculating the RMSD and the
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van der Waals interaction energy for each database segment being compared
with the template is a time-consuming proposition, so this is reserved only for
segments having the lowest inter-Ca distance deviation (the top segment can-
didates). The atoms used in the RMSD or the van der Waals’ energetic calcu-
lations depend on the feature being modeled. As the target protein model is
being constructed, the initially copied amino acid residues are unlikely to inter-
act with each other. But as the number of residues increases, so does the like-
lihood of steric hindrance between adjacent side chains. As each top-ranked
segment is fitted to the model, the RMSD and van der Waals’ energy are cal-
culated. The segment one would be inclined to include in the protein model is
the one with the lowest RMSD or van der Waals interaction energy.

Selecting the best segment based on these two measurements can bias the
segment selection, however. Instead, in the fourth step, the segment to be
incorporated into the model is selected probabilistically from a subset of the
low pseudo-energy group. A pseudo-energy is calculated for a small subset of
segments from the database (usually those with promising inter-Ca distances
when compared with the templates). The pseudo-energy is the sum of the
RMSD value and one tenth the van der Waals’ interaction energy for a specific
segment. The fifth and final step of constructing a target structure is to copy
the coordinates of the selected database segment and overlay them onto the
template structure. To construct target residues where no template is available,
the backbone is built in a way that the gap is grown together rather than from
one end or the other. As the 3-D structure of the target protein grows, the
added amino acid residues of the target structure can be used as reference
points to construct the neighboring residue. The newly appended residues
are then considered to be known and are then used for the selection and inser-
tion of other residues. These five steps are repeated until the protein model is
fully constructed.

Multiple Template Method

Both SSR and SMM usually rely on a single template structure to con-
struct a protein model. In contrast, the Multiple Template Method43–48

(MTM) employs several solved X-ray structures to construct a protein model
of the target sequence. The multiple template concept is similar to using multi-
ple sequences when devising the best alignment. With MTM, instead of using a
single template, several protein structures from the same family are aligned
(based on sequences and coordinates) and the template regions that are opti-
mally aligned to the target sequence are used to construct the target protein
model (Figure 17). Superposition of homologous protein structures reveals
structural elements that are closely conserved. These structurally conserved
regions (SCRs) are usually composed of secondary structural elements, the
active site, and other essential structural residues. In between these conserved
regions are structurally variable regions (SVRs), which may differ significantly
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in terms of their shape and composition even between members of the same
family.46 The variable regions are usually exposed loops at the surface of a
protein.45 The MTM methodology is similar to that of SMM in the search
for and designation of specific regions (that are optimal) for the construction
of the protein model from previously solved protein structures.

The multiple template methodology was developed independently by
Chothia et al.43 and by Blundell et al.44 It is currently implemented in several
comparative protein modeling packages including 3D-JIGSAW,48,157,158

SAM-T02,64–66 3D-PSSM,159–161 SWISS-MODEL,42 MODELLER,7 and
MOE,156 to name a few. The MTM requires significantly more user input
than methods using a single template because of the need to select the regions
(secondary structure) of greatest homology. We now explore the multiple tem-
plate method 3D-JIGSAW for constructing the final protein model.

3D-JIGSAW

3D-JIGSAW48,157,158 uses five steps to create a homology model: (1)
selection and alignment of the templates (based on sequence and coordinates),
(2) selection of the template segments, (3) creation of the backbone (frame-
work, scaffold), (4) addition of the side chains, and (5) refinement and evalua-
tion of the target protein model. 3D-JIGSAW is based on the database search
of protein fragments developed by Jones and Thirup.67 The decision about
when to or when not to use multiple templates to construct a protein model
is not simple and depends on the sequence identity between the target and tem-
plates as well as between the templates. Bates and Sternberg48 delineate rules
for when it is not prudent to construct protein models from multiple tem-
plates. They indicate that it is reasonable to use multiple templates when the

Figure 17 The ability to construct a target sequence from multiple templates is
beneficial when several templates are available and when specific regions correspond to
specific segments of the target protein. Three templates to construct the target protein
are illustrated here. The initial template (AAAA) can be used to construct the N-
terminus portion of the target protein, the second template (BBBB) for the middle, and
the third template (CCCC) for the C-terminus. The three templates must be aligned with
each other before constructing the target protein, thus providing the correct overall fold.
The possibility of distorted stereochemistry at the merger points exists, but these
imperfections can be removed via energy minimization.
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sequence identity between the target and templates is 40%, and the tem-
plates are very similar, but it is a bad idea to use multiple templates when
the sequence identity between the target and templates is <40% and the tem-
plates are significantly different from each other. What these rules imply is that
use of multiple templates that are similar or distant from each other will not
yield better target models. If the templates are too similar, a single template
should be used because the variation in secondary structure between the tem-
plates is smaller than that expected in creating the model. For templates that
are too unrelated, it is advised to use the template that has the greatest
sequence identity to the target sequence to reduce the modeling error. To con-
struct good target protein models with multiple templates, it is best to have
good homology between the templates and target sequences, while maintain-
ing moderate similarities between the templates. This process ensures that the
protein model is constructed from an ensemble of sequences having a greater
homology to the target sequence than among themselves.

The initial set of sequences is selected as described earlier by carrying out
BLAST searches. Those sequences are then aligned using one of the above-
mentioned multiple sequence alignment methods. For example, the PDB36

can be searched for known structures to generate the initial set of sequences,
and those structures can then be aligned in 3-D space via a superposition meth-
od. The crux of MTM is that it selects structures having a significant sequence
similarity (identity) with the target sequence rather than using an individual
template that is based on the best sequence identity. The structures selected
are usually part of the same structural family (class) as the target protein.
The template alignments with the target are done by using the known second-
ary structure of the templates. We already pointed out that the secondary
structure of a protein is better conserved than are the loop regions. As a result,
MTM focuses on the secondary structure of the templates; i.e., the alignment
of the templates is defined by their secondary structure. The percent sequence
identity between the target and the templates’ secondary structure regions are
then ranked to draw attention to the highly homologous segments. The
selected portions of the templates thus constitute the core of the protein model.
At this stage, the loops connecting those core structures are absent. Before the
loops are considered, the SCRs that construct the secondary structure regions
of the protein backbone are identified and a scaffold is built by averaging over
the Ca coordinates of those templates.169 The loops are then constructed to
connect the secondary structures, which is done by using structural informa-
tion from the original set of templates in conjunction with protein segments
from a database. That information is then used in database searches to locate
loop segments having similar connectivity structures and sequence identities.
The fragments exhibiting the best structural compatibility with the secondary
structure-to-loop transition are selected.170 A quick energy refinement method
can then be used to remove imperfections of the backbone. Once the scaffold
has been constructed, the side chains are added (using rotamer searches that
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will be described later). The side chains are added sequentially. First the
corresponding atoms of the template side chain and the side chain to be added
to the target are used as a base. Any missing atoms are added next using
knowledge-based rules, or an entirely new side chain is selected from a rota-
mer library.171 Constructing a protein model in this manner may not be a
straightforward task to accomplish because the residues involved in the con-
nection of different segments may contain large van der Waal’s repulsion ener-
gies that require adjustment of main-chain torsion angles (followed by a short
energy minimization without any restrained atoms).

The multiple template method software can also be used for aligning
amino acid residues based on secondary structure or for selecting the best tem-
plate. We describe MTM here in the section on model building rather than in
the section on alignment because of its collection of methods that are used to
construct a protein model. The true power of MTM lies in its ability to use
several protein structures within the same fold (class or family) to construct
a protein model having a similar structure. It is important when constructing
protein models for proteins with similar structure but with different function.
The MTM is also effective when the overall sequence identity between the tar-
get and the templates is low [even though some specific regions (secondary
structures) may have noticeably significant sequence identity]. The MTM
can also be invoked in MODELLER155 and MOE156 for protein model
construction.

Overall Protein Model Construction Methods

Two philosophically different methods are commonly used to construct
the target molecule’s 3-D structure. One method is to use the best model, and
the other is to use a consensus model. In the best model method, a series of
intermediate protein models are constructed and the best one is selected to
be the starting point for refinement (as the name implies). The consensus model
uses intermediate structures to construct an average model, and that average
model is used as the starting point for the refinement of the structure (as will be
discussed in the NMRClust section). The number of intermediate protein
models and the extent of energy minimization for the final protein model is
user definable.

Template modeling is performed after the target sequence has been
aligned with one or more template sequences. At this stage, the 3-D structure
of the target sequence is still unknown by the modeler with any degree of cer-
tainty. For any given series of proteins, one can generally find two distinctly
different types of secondary structure: defined and random. The first type of
structure (defined) corresponds to conserved regions in which residue segments
have maximum similarity or identity. These sequences are often found in the
interior of the protein and have a defined secondary structure. The second type of
structure involves variable regions, i.e., those parts of the protein ensemble
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having a large variation in either the number or the arrangement of residues.
These regions are often polypeptide loops that connect existing secondary
structures. After aligning the sequences, there are three main steps to be car-
ried out in the consensus method of homology modeling. First, the backbone
of the structurally conserved regions is constructed. Then, the loops are added
to this core structure. Finally, the side chains are added, the protein is geome-
try optimized, and that final structure is then validated. The major factor
determining the quality of the constructed models depends more on the tem-
plate selection and the target-template(s) alignment than on the manner in
which the protein model is actually constructed. When used correctly, the dif-
ferent methods result in protein models of comparable accuracy.6

The three protein model constructing methodologies discussed in this sec-
tion use different conceptual means to construct a protein model. The refine-
ment methodologies inherent to these methods were not discussed. In the
section, Step 5: Refinement of Protein Models, the refinement of the raw output
of these methods (the protein model) to further reduce steric clashes is described.

Example: Constructing a Protein Model

The construction of several bovine a-lactalbumin protein models from
human a-lactalbumin, chicken lysozyme, horse hemoglobin b, and sperm
whale myoglobin templates was done using MODELLER.155 Setting up
MODELLER for constructing the protein models is a challenge; converting
the sequence alignment format into files that MODELLER can understand
is at times difficult because it lacks a graphical interface. The alignment of
the sequence is saved (or provided) from the alignment program of choice.
Usually the alignment is available in the Clustal alignment format (having
an ALN suffix), which is the de facto file format for alignment programs
because of Clustal’s ubiquitous nature. The Clustal alignment format can be
written and read by many different sequence alignment programs. The align-
ment file was then imported into GeneDoc130 for alignment improvement, as
discussed earlier. The improved alignment was then exported as a PIR file and
converted into MODELLER-compatible files using PERL scripts172 provided
by the Biomedical Initiative Group at the Pittsburgh Supercomputing Center.
The sequence of the template in the alignment file must match the sequence of
the PDB file, and the use of the S2C106 website was a quick and easy way to
accomplish this. Occasionally an amino acid residue will occupy more than
one conformation in a solved crystal structure, so it is imperative to ensure
that only one conformer is included in the template PDB file before modeling
the protein. MODELLER requires three basic files: (1) the alignment file,
(2) the template PDB file, and (3) the MODELLER input file. The first and
third files are simple data files containing information about the target and
template(s) sequence alignment and the atomic coordinates of the template
(Figure 18). The MODELLER input file (commonly referred to as a TOP
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Figure 18 MODELLER uses these files to construct protein models. The ClustalX
alignment file (a) is imported into GeneDoc (and the alignment modified if needed) and
exported as a PIR file for conversion into the MODELLER alignment file format.
Beneath the aligned amino acid residues are ‘‘*’’, ‘‘:’’, ‘‘.’’, or a blank indicating the
amount of similarity between the aligned residues. The ‘‘*’’ identifies conserved
residues, ‘‘:’’ denotes high physicochemical similarity between the aligned residues, ‘‘.’’
signifies a low physicochemical similarity, and a blank indicates no similarity. The
standard MODELLER alignment file for the creation of bovine a-lactalbumin protein
model from human a-lactalbumin is in (b). The template is denoted with structure-
X:1b9o, and the target sequence is sequence:blca. The end of the sequences are signified
with *, and the template sequence must match that of the template PDB file. Two
versions of MODELLER input files are presented in (c) and (d). The model creation file
in (c) is the old format (from MODELLER7v77) and is referred to as a TOP file. The new
version of the model creation file (d) is from MODELLER8v0,155 based on the Python
scripting language.

Step 4: Constructing Protein Models 123



file) contains information that directs the protein building process. It should be
noted that as of version 8.0 of MODELLER, the TOP scripting language has
been replaced with Python scripts to direct the protein modeling. This input
file contains information such as the location of the template and alignment
files, the number of models to construct and how to refine them, along with
additional instructions. MODELLER can refine the protein structure, but its
ability to do so is not as robust as when using standard molecular dynamics
programs like AMBER,173,174 CHARMM,175,176 Tinker,177 GROMOS,40 or
NAMD,178 which will be discussed later. Most users of MODELLER thus
use it only as a protein model creator, and they then refine the target structure
with more sophisticated programs designed for this task. The selection of the
‘‘best protein model’’ for refinement is usually done with software that one
could call ‘‘protein model evaluators.’’ The programs Protein Structure Analy-
sis179 (ProSa) and Verify3D180,181 (discussed later) are examples of such soft-
ware. In our example, 50 protein models were created from each template.
Then, using Verify3D, the best model was selected and compared with its
respective template.

STEP 5: REFINEMENT OF PROTEIN MODELS

Once the proposed protein structure has been constructed, it usually
needs to be refined. For models developed from very similar templates (greater
than 85% similarity), the need to refine the structures will likely be minimal,
however. The creation and refinement of a protein model is considered by
expert modelers to be a single process, but here, for simplicity, we treat

Figure 18 (Continued)
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each as a separate step. A protein with all of its amino acid residues in the opti-
mal conformation is considered a global minimum energy conformation
(GMEC). Protein structures solved using crystallographic data are typically
close to the GMEC. In contrast, target protein structures often are not at
the GMEC, especially if the target and template sequences are dissimilar. It
is for this reason that rotamer searches, energy minimizations, and molecular
dynamics techniques are used to refine protein models. Rotamer searches and
energy minimizations via molecular mechanics are methods that reduce steric
hindrance of amino acid residue side chains. Molecular dynamics involves
kinetic and potential energies so one can explore side-chain movement (for
sampling of conformers), secondary structure fluctuation, and regions of the
protein that might exhibit movement. This movement of protein regions is
most commonly observed in loop (non-structured) regions and is possible in
hinged proteins. Using a rotamer search for side-chain geometries before
and after the molecular dynamics simulations can help locate the GMEC.

In this section, we describe four commonly used refinement methods.
The first method is Side Chains with Rotamer Library (SCWRL) developed
by Canutescu et al.182 The goal of SCWRL is to predict the most plausible con-
formation of the amino acid residue side chains. The energy refinement meth-
ods of molecular mechanics (MM), molecular dynamics (MD), and molecular
dynamics with simulated annealing (MD-SA) are related by the fact that they
all use force fields. The MM method is a simple energy minimization of the
protein model’s atomic positions. The MM method is often used to remove
repulsive contacts between amino acid residues of the protein model. The MD
method is used to simulate how the protein model will interact with itself and
its environment (either in water or in a biological membrane). The MD-SA
method is a simulated annealing technique where kinetic energy is progressively
removed from a MD simulation to find minimum energy conformations; as
such, it can be used as a tool for conformational analysis. Because of the gen-
eral nature and procedural style of this section, an example will not be
presented.

Side-Chains with Rotamer Library (SCWRL)

In addition to predicting the backbone conformation correctly, one also
needs to predict the conformation of the attached amino acid residue side
chains. The rotational conformations of these side chains are referred to as
rotamers. The side-chain orientation of amino acid residues typically occupy
one of several discrete conformations.183–186 The maximum number of
possible rotamers for a protein is

Number of Protein Structures ¼
Yall residues types

i¼1

Number of RotamersNumber of Residues
� �

i

½3�
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The number of possible rotamer configurations for a small peptide of 10 amino
acid residues is approximately 1.5 million structures. This value is for the
same backbone configuration and was derived by setting the number of rota-
mers for each residue to be four. Locating all possible rotamers for a small
protein (100 amino acid residues) becomes an intractable problem. The
need exists, however, to correctly and quickly predict the orientation and con-
formation of an amino acid residue in the target protein model, and it is for
this reason that SCWRL was developed. Other methods and side-chain confor-
mational libraries exist for doing this including the methods of Koehl and
Delarue,187 Lovell et al.,188 and Xiang and Honig.189,190 The different confor-
mations for each amino acid residue are already known from a stored dataset
of conformers, but their interaction with each other is not. In a side-chain
search, only the side chains of the amino acid residues are moved to predefined
conformations. Although SCWRL could be viewed as a model building tool
because it constructs the most probable orientation of side chains for the target
structure, it could also be considered to be a refinement method because it
adjusts the location of the side chains to provide an energetically better protein
model. In this discussion, SCWRL is viewed as a refinement method. SCWRL
consists of two components: the rotamer library and the search method.

The rotamer library191 used by SCWRL is backbone-dependent. Such
libraries are considered to be more accurate than a backbone-independent
rotamer library. A backbone-dependent rotamer library is more robust
because the side-chain conformations are based on the protein’s backbone
dihedral angles (� and �).191–194 Both the secondary structure and the
sequence composition are used by SCWRL to determine the most likely con-
formation of a residue’s side chain. Contrarily, the backbone-independent
rotamer libraries do not take a secondary structure into consideration for
determining the orientation of the side chains. Eight steps are done by SCWRL
to determine the best (most likely) side-chain conformation: (1) Read the initi-
al structure, (2) determine probable rotamers, (3) define disulfide bridges, (4)
perform a dead-end elimination (described below), (5) construct a residue
graph, (6) determine the rotamer clusters, (7) find the most probable side-
chain conformers, and (8) output the final structure.

The first step is to read the backbone coordinates of the protein model
and compute the � and � dihedral angles. This step also allows for an alter-
native (new) sequence to be read-in, which in turn signifies which amino acid
residues to omit in a rotamer search (typically those that are conserved), and
ensures that a complete chain is being explored (no gaps). The second step is to
generate all possible rotational isomers (rotamers) at each amino acid residue
position. It is not necessary to replace all side chains with ensembles of rota-
mers; sometimes it is desirable to leave the original Cartesian coordinates for
conserved residues or for those known to form metal ion complexes. These
residues with preassigned geometries are treated as steric boundaries in the
search for the other side chains conformations. An ensemble of allowed
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conformers is constructed for each residue from the possible rotamers. The
ensemble starts with the most likely rotamer and is expanded by adding the next
most likely rotamer until the sum of the probabilities for that set of rotamers
is at least 90% (based on the summation of the individual rotamer’s probabil-
ity) for each residue. To determine if any amino acid residues have the ability
to interact with their immediate neighbors one residue away, the Cb distances
between those residues are calculated along with the greatest distance between
any side-chain atom and its corresponding Cb atom.182 In the third step,
SCWRL determines which of the cysteine amino acid residues participates in
disulfide bonds. Those side chains are then held fixed during the conformation
search. SCWRL3.0 determines disulfide bridges based on an empirical scoring
function that evaluates all cysteine pairings in a given protein structure. The
empirical function uses the distance between the proposed bonded sulfurs,
bond and dihedral angles, and the total ‘‘self-energy’’ for the two cysteine resi-
dues that might form the disulfide bridge.182 The self-energy term consists of
three parts: (1) a backbone energy term (derived from backbone-dependent
rotamer probabilities based on � and �), (2) a fixed side-chain energy term
(interaction energy between the fixed side chain and any other unfixed side
chain), and (3) the articulation point rotamers’ interaction energy (the energy
of the biconnected component, which will be discussed, that is composed of
the self-energies of the other rotamers, the interaction energy of these rotamers
interacting with other rotamers, and the interaction energy between the rota-
mer of interest and the articulation point). A disulfide bond is considered to
exist between two cysteines if the score is greater than a predetermined value.

The fourth step performed by SCWRL determines which side chains are
eligible for rotamer searches. A dead-end elimination (DEE) with the ‘‘Gold-
stein criterion’’195 is an efficient method of reducing the many possible confor-
mers. A DEE is an algorithm that can correctly determine the next step using
only the information of the current state. It focuses on the pairwise interac-
tions between subsystems,195 such as side-chain interactions, and separates
the interactions between subsystems into their individual components of the
energy potential function. It enables DEEs to identify and eliminate rotamers
that are not solutions to the GMEC in an iterative process.196 The DEE
method is a common way of reducing the combinatorial conformer problem
and has been implemented in several rotamer search programs.182,196–198 The
Goldstein criterion for rotamer selection considers two rotamers for the same
amino acid residue. One rotamer is preferred over the other if it has a lower
interaction energy with the surrounding residues’ rotamers even if the other
rotamer has a high probability as found in the library.195 When many possible
rotamers exist for a single residue, they are discarded beginning with the high
interaction energy rotamers and working downward in terms of energy. At
completion of the DEE step, residues with one rotamer remaining from the
list of possibilities are held fixed for the remainder of the rotamer search.
The efficiency of the Goldstein criterion comes from the significant reduction
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in the number of possible conformers that must be computed at a later time
with, say, a force field.

After the DEE step, all amino acid residues having two or more possible
rotamers are noted (set ‘‘active’’) and a graph is constructed with each of those
residues as a vertex. The interaction energy between pairs of ‘‘active’’ amino
acid residues is then calculated. Once an interaction (i.e., a pairwise energy
value between two residues not equal to zero) is determined, an edge of the
graph (link) between the two residues is constructed and the search is halted.
Although an active residue may have more than one rotamer, only one of the
several possible rotamers on one active residue needs to have an interaction
with another possible rotamer of a different active residue to construct a
link between the two vertices of the graph. A connection graph is thus con-
structed as the fifth step of the process. The sixth step is to carry out a
depth-first search number (DFN) to resolve the set of biconnected components
and to locate the articulation point of the graph.182 A biconnected component
is an amino acid residue that is connected to (interacts with) other residues in
the graph, and the articulation point is a residue that connects together two or
more clusters of amino acid residues, as illustrated in panel (a) of Figure 19. It

Figure 19 The active side chains are shown in (a). How the side chains are divided into
biconnected components is illustrated in (b). Each side chain is numbered with a DFN
(circle) and a low number (square next to corresponding residue). A difference between
the DFN and the low number indicates the existence of an articulation point for the
group of active sidechains. This image was adapted from Canutescu et al.182
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does not necessarily mean that a residue connected to other residues in a
cluster is an articulation point; it is possible for the residues of a cluster to
form ring-like structures. The DFN uses the amino acid residues and their
connection information to construct a tree (a graph, also known as a residue
map) of the amino acid residues in each cluster. The tree is then divided into
biconnected components using the DFN numbers and low numbers.182 The
‘‘low number’’ is assigned to each residue and corresponds to the lowest
DFN number that can be reached from a specific amino acid residue based
on a path constructed of descendants and a maximum of one back edge (pro-
posed connections between residues that were not explored during the depth-
first search). The residues are first explored going down the tree until an
endpoint is reached. The search then goes up the tree visiting the residues
connected to the already investigated articulation points. The goal of step 6
is to locate a set of active amino acid residue clusters for the final rotamer
search.

The seventh and penultimate step used by SCWRL determines which
rotamer is most probable for each of the active residues and, accordingly,
which should be used in the construction of the GMEC. The best conforma-
tion is determined by using a branch-and-bound backtracking method,182

based on energetics. It provides a quick and reliable way to determine the
most probable conformations of residue sidechains for a biopolymer with
many different possibilities. The branch-and-bound method makes decisions
based on the energetics of residues above and below the energy of the rotamer
being considered.182 Backtracking further optimizes the search by evaluating
the number of possible rotamers that exist and the energy of each rotameric
state for each residue. For each group of amino acid residues, the residue(s)
with the fewest number of rotamers are ranked highest (placed at the
root of the tree). Residues containing the greatest number of rotamers are
ranked lowest (placed at the bottom of the tree). The concept of ranking
the residues based on the number of rotamers and then building a tree to
organize them is illustrated in Figure 20. When different residues possess the
same number of rotamers, they are ranked from low to high based on their
self-energy.182

The search for each cluster’s GMEC begins by dividing the cluster of
amino acid residues into biconnected components that are connected by
articulation points (illustrated in Figure 21). The clusters with one articulation
point are explored initially. Our discussion here is for clusters with only one
articulation point, but the concept can be expanded to accommodate those
with two or more articulation points. Each plausible rotameric state for the
articulation point is generated, as are the corresponding rotamer states of
the remaining residues in the cluster, thus providing multiple conformations
for the same cluster. This allows for the construction of multiple low-energy
conformations (number of possible rotameric states of the articulation point)
of the same cluster based on the different rotameric configurations of the
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articulation point. The low-energy conformation of all possible rotamers is
found using the branch-and-bound backtracking method. The most energeti-
cally favorable conformers of the cluster (based on the rotamer conformations
of the articulation point) are stored, and the articulation point is converted
into a ‘‘superrotamer’’182 containing rotamer energies for the residues

Figure 20 The backtracking trees presented here represent the interaction of four amino
acid residues. In (a) the top of the tree is the first residue side chain that possess two
possible rotameric states, thus two branches. Residue 2 is on the next level and has three
rotamers. The third residue has five possible rotamers, and Residue 4 has two possible
rotamer states. The tree in (a) is not efficient because of the number of rotamer options
for Residue 3. The same set of residues are evaluated in (b), but the order in which they
are examined is changed. Residue 1 is still first, but that is now followed by Residue 4,
then Residue 2, and finally Residue 3. Residues having the fewest possible rotamers are
evaluated first, thus increasing the speed of the search for the GMEC. A total of 60
possible side-chain interactions exist in this example with the most favorable denoted
with a circle [1, 2, 5, 1]. The arrows denote the path of the most favorable rotamer
combination. This image was adapted from Canutescu et al.182

c
Figure 21 Stepwise solution of a cluster of residues via biconnected components. The
GMEC of these side chains is determined through the solution of the individual clusters
(biconnected components). The active side chain residues (nodes) are represented as
circles, and the side chain’s interaction with another side chain(s) is represented as a
solid line (edges). As each cluster is solved, it is represented as a superresidue; the
residues comprising it are contained in parentheses. The stepwise solving of the cluster
starts with the initial set of active side chains that have been divided into biconnected
components (denoted as letters within boxes). The collapse of component A creates a
superresidue195 (Step 1) and is followed by the solving of components E (Step 2), D
(Step 3). Determination of the GMEC is complete when component B is solved (Step 4).
Articulation points are residues that connect groups of active side chains together and
are denoted with *. Amino acid residues Phe20 and His26 are first-order articulation
points, and Tyr33 is a second-order articulation point. This image was adapted from
Canutescu et al.182
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comprising the cluster. Each superrotamer can be thought of as a library of
possible side chain orientations based on the possible conformers of the articu-
lation point. Thus, if the articulation point has three possible conformations,
only three low-energy conformations of the cluster are constructed and stored
in the superrotamer. At this point, one might ask: ‘‘If the lowest energy con-
formation of the cluster is found, what happens when that rotamer is not the
best choice for the adjoining set of residues?’’ To avoid that problem, it is not
until the very last cluster is solved that the most appropriate set of rotamers is
selected. This methodology does not require every possible conformation of
the active rotamers be explored; instead, only combinations of the low-energy
states for each cluster are constructed and the GMEC is selected from among
these predetermined combinations of conformational states for further
analysis.

The final step done by SCWRL is to output the protein model with the
most probable side-chain conformations. Included in the output are the resi-
dues that were considered to be disulfide bridges, the composition of the rota-
mer clusters, and a list of the fixed side chains. The use of graph theory in
SCWRL is a novel method of solving a combinatorial conformational problem
through the segmentation of the amino acid residues into clusters. By identify-
ing the residues that join (articulation point) groups of residues interacting
with each other, a divide-and-conquer strategy can be used to solve the
GMEC problem. Residues that do not need to partake in the GMEC search
are held fixed (i.e., they are omitted from the search to reduce the number
of possible conformers). Solving the interaction of amino acid residues in
the unique clusters using this reduced set of conformational states enhances
computing times significantly.

Energy Minimization

MM is a quick method of removing repulsive contacts between side
chains by allowing the side chains to relax to low-energy geometries. Energy
minimization of a protein model can be especially useful if the model (target) is
closely related to the template structure from which it is cast. Protein models
destined for molecular docking simulations or binding site comparisons are
often energy minimized to ‘‘relax’’ the amino acid residue side chains (and pos-
sibly backbone) before such investigations. Energy minimization is done with
the backbone of the protein fixed in space to prevent it from ‘‘losing’’ its sec-
ondary structure. The energy minimization produces a local minimum energy
structure, not necessarily the global minimum. Energy minimization using
MM is comparable with MD with the temperature of the system set to zero
Kelvin. It is at the discretion of the investigator to carry out energy minimiza-
tions for relaxation of the amino acid side chains given the speed and reliabil-
ity of rotamer searches.
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Molecular Dynamics

Any of the popular MD programs such as AMBER,173,174

CHARMM,175,176 Tinker,177 GROMOS,40 and NAMD178 can be used for
refinement. The material discussed in this section of the chapter is a simple
overview of MD; for more in-depth information on MD methodology and
analysis, one is directed to the books by Frenkel and Smit,199 Field,200 and
Allen and Tildesley.201 Although the information provided here about MD
simulations is basic and generic, it is applicable to any of the aforementioned
MD packages. An MD simulation involves three distinct parts: (1) warm-up
and equilibrium, (2) sampling the trajectory during a ‘‘production’’ run time
period, and (3) analysis of the results. The equilibrium period is essential when
preparing the protein for the production portion of the MD simulation. Vali-
dating and analyzing the results from the MD simulations provides a way of
ensuring that the MD simulations are statistically sound; van Gunsteren and
Mark202 provide a complete review of the processes for analyzing and validat-
ing a MD simulation.

The refinement of a protein model with molecular dynamics should be
carried out in the medium that best mimics the original environment of the
protein being modeled. If the protein being studied is found in the cytoplasm
of a cell, the protein is then solvated in a box of explicit water molecules, but
if the protein is membrane bound, the environment should mimic the cell
wall (water–lipid–water). Performing the MD simulation in a vacuum is a
computationally inexpensive way to perform MD, but it will not provide
the same quality results as will a simulation using explicit solvent. Although
an MD simulation in vacuo is not recommended, the use of an implicit
solvent treatment might be acceptable in some instances. The refinement meth-
odology described here is for a protein solvated in a box of explicit water
molecules.

When preparing for the equilibrium phase of the simulation, it is impera-
tive to ensure that the ionizable amino acid residues are in their correct proto-
nation state, the amide and carboxyl ends are capped with suitable
termination groups, and the stereochemistry of the residues is correct (PRO-
CHECK203 can be used to determine this, as will be discussed). The system
is placed into a box of equilibrated water molecules that is large enough to
accommodate the long-range cutoff values selected by the user. Different types
of water molecules have been developed and parameterized, including, among
others, SPC/E,204 TIP3P,205 TIP4P,205,206 and TIP4P-Ew.207 Because the over-
all charge of a protein is usually not zero, counterions must be added to bal-
ance the charge of the system. The locations of the counterions can be
determined by constructing a Coulombic potential grid (usually with 1.0 Å
grid spacing) around the protein model. The counterions most frequently
used are sodium ions (Naþ) and chloride ions (Cl�). The counterions are placed
at the grid points with the greatest electrostatic potential. After the protein has
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been constructed, made charge neutral, and placed in a suitable solvent
environment, it is advisable to energy minimize the structure with the same
molecular force field being used in the MD simulation to eliminate bad con-
tacts. This energy minimization is needed to avoid the possibility of an
unstable MD simulation. An effective and efficient method of accomplishing
this is to use a dual-step, sequential-minimization process. The dual-step pro-
cess refers to the minimization of the solvent (waters and counterions) around
a fixed protein structure that in turn is followed by the minimization of the
entire system. The sequential-minimization combines a steepest descent energy
minimizer to rapidly remove bad contacts followed by a conjugate gradient
minimizer to find the locally optimized structure. During the minimization
of the system (protein model, water molecules, and counterions) in the second
portion of the dual-step minimization, the geometry restraints on the protein
model, if they exist, should be released in a step-wise fashion to prevent sud-
den changes in the structure of the protein that might originate from bad inter-
actions. After the structure has been energy minimized, it is advisable to check
the structure of the protein for any obvious irregularities.

Because simple energy minimizations correspond to a zero Kelvin
temperature, it is necessary to heat the system to the temperature of the protein
being simulated (usually 300 K). The heating process, in which kinetic energy
is added over several integration timesteps, often requires that a weak restraint
be placed on the protein for the first 20 to 40 ps. Using the Langevin tempera-
ture equilibration method208 to increase and hold the temperature of the
system at 300 K is advisable rather than using the Berendsen external heat-
bath method.209 Volume parameters are changed during this process to main-
tain a constant pressure at 300 K with no restraints imposed on the target
protein model for the duration of the 100-ps equilibrium period. The length
of a typical MD simulation is hundreds of picoseconds, but it is not uncom-
mon to now see nanosecond time lengths because of advances in both hard-
ware and software. It is advisable to constrain covalent bonds between
hydrogen and heavy atoms (removing the high-frequency oscillation from
the system), which enables one to increase the time step for the numerical
integration process from 1 to 2 fs without detriment to the MD trajectory.
To be extra cautious (in addition to reducing the restraints on the protein
slowly), it is advisable to increase the integration step size from 0.5 fs to 2 fs
(in 0.5-fs steps) over the equilibrium time period to prevent drastic energy
changes in the system; this precaution is only needed if the system is extremely
heterogeneous. A final equilibrium simulation is conducted with the same
parameters as for the first 100 ps but with all constraints on the protein model
removed.

At this point, it is necessary to analyze the simulations to ensure that the
system is truly at equilibrium. Equilibrium in this case is when the energy, tem-
perature, pressure, volume, and density are constant values over a given time
period as is the RMSD of the protein backbone compared with the initial
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structure. Plotting these parameters (as in Figure 22) versus time allows one to
determine visually whether the system is at equilibrium. The potential, kinetic,
and total energy terms are interrelated and should be examined. The kinetic
energy should maintain a constant value after the heating stage if the thermo-
stat is working correctly and a plot of the ‘‘temperature’’ versus time should
show a near-constant value fluctuating about 300 K. It is common to see the
potential and total energies rise during the heating phase, and then plateau in
their values while the protein’s geometric constraints are maintained but then
decrease slightly to a constant value after the protein and solvent restraints are
removed. After the equilibration, it is expected that the pressure will stabilize
to a mean value of 1 atmosphere, but still oscillate about this mean value dur-
ing the remainder of the simulation. Likewise, as the constraints are removed,
plots of the RMSD of protein backbone motion should increase and then oscil-
late around a constant value; it is acceptable to have the RMSD value increase
and then fluctuate between 1 and 2 Å, (as seen in panel F of Figure 22). The
parameters being used to gauge whether equilibrium has been reached will
eventually arrive at a stable albeit oscillating value, and these constant values
are indicative that equilibrium has been achieved and that the production stage
of the MD simulation can begin.

MD production runs are just a continuation of the MD equilibrium and
continue up to several nanoseconds. The results from the production runs can
be used for docking studies or to determine changes in the secondary or ter-
tiary structure of the target protein. Protein models refined with MD simula-
tions consist of a library of structures with similar backbone geometry, but
with different side-chain rotamers. These different structures are especially
useful for molecular docking studies when the conformation of the protein
and the orientation of the side chains are unknown.

Molecular Dynamics with Simulated Annealing

Simulated annealing is an optimization method.210 It works by heating a
system to ensure that many energy states are sampled and then slowly cools
the system to ensure that the low-energy structures are found. The system is
typically reheated several times, and low-energy conformations are retained
for further analysis. Simulated annealing with MD (MD-SA) differs from a
simple energy minimization that finds only the minimum that is nearest to
its starting point on a potential energy surface.

MD-SA is an effective method for constructing low-energy conforma-
tions of the target protein’s side chains, as well as for finding alternative sec-
ondary and tertiary structures. The simulated annealing protocol removes heat
from the system at a slow, controlled rate to ensure that the side chains and
other structural features are in energetically favorable positions. Similar to the
MD simulation above, there are no hard-and-fast rules for setting up and con-
ducting a MD-SA simulation; the best cooling schedule is tailored for each
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system. The system is heated to a high temperature, usually between 500 and
800 K. During the heating stage, the backbone structure is restrained to pre-
vent denaturing (unraveling) during the MD simulation. After a short duration
at the elevated temperature, the system is slowly cooled before it is completely
quenched. The temperature is usually reduced linearly from the initial unrea-
listic high temperature to approximately 100 K, with increasingly more strin-
gent coupling of the system to the heat bath as the cooling progresses; this
stage of the simulation is longest in duration. The final stage is to reduce the
temperature of the system to 0 K. This step is done quickly, with tight heat
bath coupling and restraints placed on the biopolymer backbone. The final
MD steps are similar to a MM energy minimization because the system is
approaching 0 K. MD-SA is a quick method to determine several probable
side chain conformers and is a good way to sample geometrically feasible
shapes of the variable regions of secondary and tertiary structures. The omis-
sion of explicit solvent molecules in the MD-SA method is a shortcoming, but
it is a necessity because including explicit solvent molecules would be too com-
putationally expensive. Moreover, the kinetic energy pumped into a fully sol-
vated system would be most likely channeled into unproductive solvent
rotational/translational motions rather than protein motions that we wish
to sample. For these reasons, explicit treatment of solvent is not common in
MD-SA refinement of target protein structures.

Both the SCWRL method of determining the most favorable side chain
conformation and the MD simulations to explore structure movement are
methods that enable the protein model to be refined. The next step in homol-
ogy modeling is to select the best protein model. When selecting which rendi-
tion of a protein model to use, one should not rely on the energy of the refined
structure alone because the lowest energy form of a protein structure may not
correspond to that of the real system.211 Selecting the best protein model is
aided by the methods discussed in the next section. These methods can also
be used to select protein models for further refinement using MD and then
reimplemented to ensure that the model is still statistically sound.

b
Figure 22 The six plots presented here represent the changes in (a) energy, (b) pressure,
(c) density, (d) volume, (e) temperature, and (f) RMSD of chicken lysozyme (3lzt36,97) in
a truncated octahedron of TIP3P water molecules for a duration of 520 ps. The system is
considered to be at equilibrium because the kinetic, potential, and total energy of the
system (a) remains constant over time. The pressure of the system (b) fluctuates wildly;
yet the average remains at approximately 1 atm (white line). The density (c) and volume
(d) of the system are not recorded until after 20 ps because of the constraints placed on
the system, and they equilibrate at approximately 40 ps. The temperature (e) is constant
but fluctuates at 300 K. The RMSD (f) has two different measurements shown. The line
fluctuating around 1 Å is the RMSD of the protein structure to illustrate how well its
structure is being preserved. The other line illustrates the difference between the initial
location of the protein and its location in the truncated octahedron during the
simulation. It is expected that the protein will travel during the simulation.
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STEP 6: EVALUATING PROTEIN MODELS

Constructing and refining a protein model does not ensure a valid 3-D
structure; the construction of the initial 3-D protein model as described in
this chapter is a rough process, and the final structures can be structurally
(geometrically) improper and energetically flawed.1 Structurally and energeti-
cally flawed models often contain unusual phi and psi (� and �) angles (based
on Ramachandran plots212 and statistical data) causing atoms to clash. Even
after a successful energy minimization and the reorientation of incorrect dihe-
dral angles, the final minimized structure still might be unsuitable. How can
one determine if there are imperfections in the model 3-D protein structure?
Several noteworthy methods exist for checking this including PRO-
CHECK,203,213 Verify3D,180,181 ERRAT,214 Protein Volume Evaluation129

(PROVE), and Protein Structure analysis179 (ProSa). In addition to statistical
and physical property checks provided by these programs, a visual inspection
(using programs such as VMD,215 UCSF Chimera,99 or the OLDERADO web-
server216) of superposed protein models determined via NMRCLUST153 can
help locate regions of model variability. We reiterate that although energetic
checks can be performed, there is the possibility of the ‘‘incorrectly folded’’
protein structure having a lower potential energy than that of the ‘‘correctly
folded’’ protein structure.211 Many of the methods to be discussed here
were developed for the analysis of experimentally determined 3-D protein
structures without using energy as a criterion. The primary motive for devel-
oping these protein structure analysis methods was to provide scientists with
an objective inspection of the quality of experimentally determined protein
structures. The protein models constructed in a comparative modeling study
can be considered newly solved 3-D protein structures, and they are amend-
able to analysis by these methods.

PROCHECK

PROCHECK203,213 performs statistical checks and indicates regions of a
protein structure that might require modification because of nonoptimal
stereochemistry, which includes planarity, dihedral angles, chirality, nonbonded
interactions, mainchain hydrogen bonds, disulfide bonds, and stereochemical
assignments. PROCHECK does this using a residue-by-residue analysis. The
checking of stereochemical assignments is based on ideal bond lengths and
angles contained in the Engh and Huber217 molecular force field that was
constructed from small molecules of the Cambridge Structural Database.218

PROCHECK provides detailed tables of residue–residue interactions high-
lighting bad inter-residue contacts and improper bond and torsion angles.
The most noticeable output from PROCHECK is its Ramachandran plot212

(Figure 23). PROCHECK also provides various graphical representations of
Ramachandran plots based on residue type. Other plots that can be created
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include Chi1 versus Chi2 (w1 versus w2) plots, plots of backbone dihedral
angles, side chain dihedral angles, residue properties, backbone bond length
distributions, backbone bond angle distributions, RMSD from planarity,
and other types of plots. In addition to the statistical stereochemical analysis,
PROCHECK includes the ability to rate the quality of the protein structure
using geometry factors (G-factors).219 The G-factor provides a method of
determining the ‘‘normality’’ of the stereochemical properties for each residue.
The definition of ‘‘normal’’ is based on the analysis of 163 nonhomologous
protein structures (sequence homology between any two proteins <35%)
solved via X-ray crystallography. The compiled protein structures have a

Figure 23 Ramachandran plot for chicken lysozyme created with PROCHECK. The
Ramachandran plots are divided into four regions based on the conformation of an
amino acid residue’s � and � angles. The most favored regions (conformations) are
labeled with A (core a-helix), B (core b-sheet), and L (core left-handed a-helix). The
additionally allowed regions are labeled with a (allowed a-helix), b (allowed b-sheet), l
(allowed left-handed a-helix), and p (allowed epsilon a-helix); the generously allowed
regions are labeled with �a (generously allowed a-helix), �b (generously allowed b-
sheet), �l (generously allowed left-handed a-helix), and �p (generously allowed epsilon
a-helix); disallowed regions are white. Glycine residues are indicated as triangles (m)
because they lack a side chain, which in turn provides them with access to more
conformations than other amino acid residues. The overall G-factor score for the
chicken lysozyme X-ray structure (3ltz36,97) is 0.02, which indicates that the protein is in
stereochemical agreement with prescribed values.
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resolution of 2.0 Å or better, an R-factor of 20% or less, and atoms with a zero
occupancy value were not included in constructing the definition of ‘‘normal’’
stereochemical properties for residues. The G-factor score comprises log-odd
probabilities (therefore unitless) from two classes of protein stereochemistry:
torsional angles (��� and w1�w2 distribution, w1 only, w3 and w4 torsion
angles, and the � torsion angle) and backbone covalent geometries (bond
lengths and angles). When analyzing G-factor scores from PROCHECK,
protein models with an overall values less than �1.0 are in need of additional
analysis to determine the stereochemical deficiencies, whereas protein models
with overall G-factor values greater than �0.5 are considered ideal.

Verify3D

Verify3D180,181 scores the 3-D structure of a protein with probability
tables. It assesses the probability that each amino acid residue would occupy
in the 3-D structure rather than using the primary structure. Verify3D first
converts the tertiary structure into a table, placing the amino acid residues
in the rows of the table. The environment of each residue is placed in the
first column, and the next 20 columns contain the 3-D to 1-D statistical
preferences181 or probability of each amino acid residue occupying that posi-
tion in the 3-D structure of the protein. The last two columns of the table con-
sist of the penalty score for opening and extending gaps in the sequence,
respectively. The similarity between the most likely 3-D profile and the actual
protein structure is plotted (an average of the statistical preferences based on a
box size of 21 adjacent residues) versus the sequence number. The higher the
overall 3-D to 1-D score, the more sound the model is considered to be.

There are 18 possible environments that an amino acid residue side chain
can occupy. The side chains are classified as being buried, partially buried, or
solvent exposed based on their solvent-accessible surface areas.180 The buried
and partially buried side chains are further catalogued depending on the envir-
onment in which they reside. The buried side chains are divided into three
classes, and the partially buried side chains are separated into two classes
based on increasing degrees of environmental polarity. The solvent-exposed
side chains cannot be subdivided based on environmental polarity because
solvent-exposed residues are assumed to experience the same polar environ-
ment. The six side chain environments are further classified but not described
here. The tables used by Verify3D are similar to mutation tables in PAM,101–103

BLOSUM,104 and the Gonnet111 mutation/similarity matrices and provide a
connection between the tertiary structure of a protein and its primary
sequence. If a 3-D structure to 1-D sequence average score smaller than zero
is obtained for an individual residue (based on a window size of 21 residues),
the structure of that residue is considered to be poor. The box size of 21 resi-
dues allows for smoothing of local errors and fluctuations.181 The Verify3D
method is highly effective in analyzing comparative protein models because
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it compares the model with its amino acid sequence instead of basing the qual-
ity of the model on an energy function, such as MM or MD, that might also be
used in the construction of the model.181 There are two acceptable methods
for selecting the most likely protein model. The first is to choose the protein
model having the greatest average individual amino acid residue score. The
other method is to select the protein model with a 3-D to 1-D plot that is simi-
lar to the 3-D to 1-D plot of the template protein. Verify3D can also be
employed to evaluate the alignment scheme that constructs a protein model.
It is done by constructing different models based on varying target-template
sequence alignments and then comparing the Verify3D results.181

ERRAT

ERRAT evaluates the nonbonded distances of carbon–carbon (CC),
carbon–nitrogen (CN), carbon–oxygen (CO), nitrogen–nitrogen (NN), nitro-
gen–oxygen (NO), and oxygen–oxygen (OO) atoms (sulfur atoms are consid-
ered to be oxygen atoms for simplicity). Colovos and Yeates214 determined
that these six distance-related interactions occur in all protein structures,
and the authors devised this method originally to assess protein structures
derived from ambiguous electron density maps from X-ray studies. ERRAT
can locate regions of a protein model that are randomly distributed because
of errors in backbone connectivity, alignment, and misplacement of side
chains.214 The average and standard deviation of each type of atom–atom dis-
tance, based on known protein structures, is used to evaluate the quality of the
protein model.

ERRAT contains a database of acceptable nonbonded atom–atom dis-
tances. It classifies the atom–atom distances in a proposed structure
and then does a statistical evaluation of those atom–atom distance interac-
tions. The parameters used to construct the database were derived from
known protein structures of varying fold classifications. The known structures
used for the database were required to have a maximum resolution of 2.5 Å,
an R-factor less than 25%, be monomeric or homo-oligomeric, be native
structures, and contain peptide bond dihedral angles �15� from ideal values
based on the secondary structure. A total of 96 solved X-ray protein structures
from the PDB36 were used as the dataset of correct protein structures. The six
types of atom–atom distances were restricted to be atoms from different amino
acid residues or to be atoms that interact with each other with a through-space
distance no greater than 3.5 Å.214 The average and standard deviation of each
atom–atom distance interaction fraction (the fraction of specific atom–atom pair-
wise distances in a protein structure), as illustrated in Eq. [4]214 for CC dis-
tances

f ðCCÞ ¼ nCC

nCC þ nCN þ nCO þ nNN þ nNO þ nOO
½4�
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is calculated and used as a reference to compare nine residue length segments
of the protein of interest with values from the database. The distances of the
atoms in the four flanking residues on each side of the nine-residue-wide win-
dow are measured from the center residue of that window. At least one of the
atoms participating in the atom–atom distance calculations must be in the
nine-residue window, and only a limited number of distances is calculated
for segments that are near structural gaps or loops that exhibit great structural
flexibility to remove them from biasing the statistics. One can determine if an
amino acid residue (the center residue of the nine-residue window) is in the
correct orientation based on the probability of nonbonded interactions experi-
enced by the atoms of that residue. Inclusion of all six atom–atom distances
provides the best results. For each amino acid residue, the six nonbonded
distances are put into vector form and the probability is calculated as a
Gaussian error function. Amino acid residues are considered erroneous
when they deviate by 95% or more from their statistically determined non-
bonded distances.

The ERRAT method is grounded in the concept that atoms of a protein
are not placed randomly throughout the structure. Instead, there are well-
defined specific distances between the atoms based on energetic and geometric
limitations of the biopolymer. The ERRAT approach is unique compared with
the other methods that have been developed to validate whether amino acid
residue orientations are correct in a protein that has been built and refined.
ERRAT locates residues that do not fit the norm of high-quality crystal
structures. Although this method can detect errors as small as 1.5 Å in the
backbone configuration, it was originally intended for the analysis of experi-
mentally determined structures that have been correctly refined.214 It is from
this standpoint that ERRAT is best served as a prerefinement method for
detecting regions of the protein model containing questionable geometries. It
is important to remember that ERRAT identifies flawed amino acid residues;
the 95% confidence level is the certainty that a particular residue is imperfect,
not that the orientation is correct.

Protein Structure Analysis (ProSa)

The ProSa88,179,220,221 program uses potentials of mean force (the
change in potential energy of a system caused by the variation of a specific
coordinate) to locate regions of the protein structure that may contain impro-
per or unsuitable geometries. The 3-D structure of a protein in solution is sta-
bilized through a myriad of forces. The information contained in these forces
is extracted from a collection of known structures using Boltzmann’s princi-
ple88 and catalogued as a potential of mean force (PMF). A PMF contains
all force components typically found in the interaction between atoms plus
the effects of the immediate environment (solvent) on the atomic interactions.
ProSa derives the PMFs by monitoring the Ca to Ca and the Cb to Cb
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interactions. This quick method of assessing protein structures allows the user
to evaluate the Ca trace (or backbone) of a proposed protein structure, which
in turn provides a fast way to appraise the quality of a proposed model before
carrying out a time-consuming refinement. In ProSa, the energy of a protein
structure is the sum of all pairwise Ca to Ca and Cb to Cb residue interactions
between amino acid residues at i and j in the protein sequence (eij corresponds
to one measured interaction energy). The sum of all residue pair interactions is
the total pair interaction energy (E) obtained by using Eq. [5]:179

E ¼ 1

2

X
ij

eij ½5�

The individual energies eij of the protein depend on its conformation and
sequence. The total energy E, therefore, also depends on its conformation and
sequence. If the proposed protein model structure is close to the native confor-
mation (and sequence alignment), the energy for that model should be the low-
est value when compared with other possible but less viable structures. There
are limits on the interaction energy being calculated between residues; the clo-
sest interactions cannot be less than 4 Å, and the longest interactions cannot be
more than 15 Å away. This interaction shell prevents close-contact interac-
tions from being included in the interaction energy, while excluding long-
range interactions that are inherent to larger proteins that might cause imper-
fections in the interaction energy function. Additionally, the 15 Å cutoff
reduces computational costs similar to the method of long-range interaction
cutoffs in MD simulations. ProSa uses an energy function derived from PMF
information based on pairwise atomic distances gathered from a database of
1353 high-resolution X-ray protein structures.221 Although the database con-
sists only of soluble globular proteins, ProSa can determine correctly whether
proteins from a hydrophobic environment are folded correctly (examples:
membrane-bound receptors, integral proteins, and virus coat proteins).179

The energies of the protein structure are converted in ProSa into a
Z-score (Eq. [6]179). The best protein model has the lowest Z-score when com-
pared with all other protein structures. The Z-score is composed of three com-
ponents: the knowledge-based energy of sequence S in a specific conformation
C (ES,C), the average energy of the sequence in all conformations of a database
(ES), and the standard deviation (sS) associated with the average energy of the
sequence:221

ZS;C ¼ ES;C � ES

� �
sS

½6�

Comparing the Z-score of the database with that of a modeled target protein
provides a method of determining the viability of the target model. The energy
of the modeled target protein is ES,X, where X is the observed structure of the
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target protein. When the target protein occupies the correct conformation
then, ES;X < ES;C and correspondingly ZS;X < ZS;C, when the conformation
X 6¼ C.221

ProSa is not a method for determining close contacts or incorrect stereo-
chemistry. Instead, it is a method for determining whether a 3-D structure is
viable. Accordingly, ProSa can quickly screen protein models and determine
their merit.172 In addition, ProSa can be used as a method for assessing the
suitability of proposed alignments. Given the speed that protein models can
be constructed, ProSa is a viable method for determining which alignment
is best. In the current releases of ProSa (ProSa 2003), only the Cb atomic
distance potentials are used because they create better potentials than do the
Ca distances.179,220,221 Wiederstein and Sippl indicate that the specific
structural properties of a protein are affected more by the side chains than
by the backbone; thus, the use of Cb atoms produces a more realistic energy
potential.221

Protein Volume Evaluation (PROVE)

The PROVE129 method uses the computed volume of individual atoms
as a means of evaluating the viability of a protein model. The method was
developed initially for checking protein structures that were derived from
X-ray crystallography. Because the computed volume is subject to bond
lengths, bond angles, and nonbonded interactions, all of those features are
optimized during structure refinement. To compute the amino acid residue
volume from individual atoms requires knowing the atomic volumes (thus
radii) for all atoms in a protein. It is difficult to compile a list of this nature,
however, because not all atoms of the same element in a protein are bonded in
the same manner; atomic radii depend on the amino acid residue type. The
radii of atoms composing cofactors, ligands, and prosthetic groups are difficult
to ascertain because of the myriad of possible atom combinations. Even with-
out the different types of non-amino-acid residues to contend with, deriving
acceptable atomic volumes can be difficult. A set of 64 high-quality protein
structures solved via X-ray crystallography were used by the creators of
PROVE to derive atomic volumes. The classic Voronoi method222 without
parameters [as in Surface Volume223 (SurVol)] was used to calculate the atom-
ic radii. Each atomic volume was calculated based on the polyhedron repre-
senting the atom type and bonding configuration. Averaged values were
determined for all elements contained in the 64 reference structures. Those
atoms were divided into subtypes based on their position in the amino acid
residue. The amino acid residue volumes are the summation of the individual
atom volumes for each residue. Only buried atoms are computed with
PROVE; thus, the derived atomic volumes are based on completely buried resi-
dues. Interestingly, only 6% of the residues from the 64 reference structures
were buried.129
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PROVE compares the atomic volumes of a protein model with standard
atomic volume values derived from the set of 64 protein structures. Using the
same Voronoi methods, the atomic volumes of the protein model under con-
sideration are computed and compared with the ‘‘normal’’ atomic volumes.
The difference between the standardized volumes and the protein model being
studied is reported as two different types of Z-scores. The first Z-score
involves a comparison between individual atom types as defined in Eq. [7]:129

Zi ¼
Vk

i � V
k

h i
sk

½7�

In this equation, the volume of the individual atom (i) is Vk
i and k indicates the

atom type. The mean volume of that atom type is V
k
, and sk is the standard

deviation of that atom type.129 When an atom has a larger than average
volume, it has a positive Z-score. The opposite is true for a smaller than aver-
age atom that would have a negative Z-score; the ideal Z-score is zero. The
second Z-score, called the ZRMSD, involves the comparison of volumes for
all atoms or for groups of atoms (in residues). The ZRMSD is calculated as in
Eq. [8]:129

ZRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Zscorei½ �2

N

vuuut
½8�

where N is the number of atoms and Z-scorei is the individual atom Z-score
calculated in Eq. 7. The ZRMSD value is a gauge of deviation for a set of atoms
(usually residues) compared with the norm. Again, the Z-score and ZRMSD are
only calculated for buried protein atoms.

Deviations of atomic volumes do not indicate directly that a defective
protein exists because deviations in atomic volumes can be attributed to other
physical phenomena. It is for this reason that the authors of PROVE correlated
the atom volume deviations with crystallographic qualities of the protein
X-ray structure including the resolution (lowest resolvable separation between
two carbon atoms), the R-factor (measure of how well the refined structure
agrees with the experimental model/electron density maps/raw data), and
B-factors (isotropic temperature factor).107 A test set of 900 protein structures
was constructed, each containing a minimum of 100 buried atoms. The reso-
lution of the protein structures ranged from 1.0 to 3.9 Å. The authors found
that for high-resolution structures (1.0 to 1.6 Å), the average ZRMSD was
approximately 1.0.129 When poorer quality crystal structures were considered,
the ZRMSD increased. The correlation coefficient for a plot of ZRMSD versus
experimental resolution was 0.89 for all protein structures in the test set
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and 0.98 for the structures with resolution values between 1.5 and 3.0 Å. The
R-factor indicates how well the X-ray structure matches experimental scatter-
ing data. The correlation between the ZRMSD and the R-factor was 76%; this
lower value was expected because the R-factor is more of an ‘‘agreement’’ fac-
tor than it is a gauge of model quality.129 The correlation between the ZRMSD

and the B-factor values is 97%. The authors did note that no correlation exists
between the B-factor and the Z-score.

Using PROVE as a protein model evaluator is beneficial because it pro-
vides an alternative method of assessing the validity of proposed structures. As
demonstrated by the developers of PROVE, it can predict which structures
(and regions of structures) are defective based on resolution, B-factors, and
to a lesser extent R-factors, all experimentally derived values that gauge the
quality of a structure determined through X-ray crystallography.

Model Clustering Analysis

When building a protein model, it is common to construct many (25 or
greater) initial structures and select either the best model or create an averaged
structure from that collection (discussed earlier). NMRCLUST,153

NMRCORE,224 and OLDERADO216 are programs that were initially devel-
oped for use by scientists solving protein structures by NMR spectroscopy.
These programs aid in the superposition and clustering of protein structures.
OLDERADO is a combination of the NMRCLUST and NMRCORE methods.
The methodologies employed in OLDERADO are discussed below as separate
entities devoted to a common task.

The OLDERADO Web server216 provides a graphical user interface for
NMRCLUST and NMRCORE that allows scientists to upload an ensemble of
protein structures for analysis. NMRCLUST and NMRCORE examine the
ensemble of protein models; first the core atoms are determined, next the
domains (regions of similar structure) are defined based on the core atoms,
and finally the models are sorted into subfamilies based on conformation.
The NMRCORE program examines the variance of the atoms in the ensemble;
those with low variance are considered to be in the same domain. The ‘‘core’’
structure of the protein model is not an average of all structures in the ensemble.
Instead, the core structure consists of the structural variance of the ensemble.
The core is determined from atoms in the backbone that survive a triage based
on a dihedral angle order analysis and a penalty function.216,224 The variances
in the pairwise distance of core atoms are then clustered to define domains,
which are sections of the protein structure void of flexibility. The traditional
definition of a domain is a distinct structural unit of a protein that may have
an independent function and may fold into separate compact units. The term
domain, as used by OLDERADO, means a rigid section of the protein
structure. NMRCLUST performs the pairwise superposition of all protein
models in the ensemble. It aligns the structures based on the domains
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determined by NMRCORE and then calculates the RMSD of coordinates for
each pair. An RMSD matrix is constructed and used in conjunction with a
penalty function to cluster the individual models into subfamilies. A major
advantage of the OLDERADO suite of applications is that it requires no
user intervention.

Aligning protein models based on domains is useful, especially when
ensembles of possible target protein structures are collected after model con-
struction or models that have been extracted from MD simulations. Those
models containing domains separated by a flexible linker benefit the most
from the domain-based pairwise alignment. The superposition of individual
domains versus superpositioning the complete protein structure is more intui-
tive to a scientist, and it provides a realistic representation of the target mod-
els’ core. To illustrate the importance of the pairwise alignment using domains
instead of using all atoms in the models, we consider a protein sampled from a
MD trajectory with two distinct domains connected by a flexible segment
(linkage). During construction of the protein models, the linkage is treated
as a loop. That loop has many different conformations dictating the relation-
ship between the two domains. The angle between the domains can vary from
45� to 180� depending on which loop conformation is selected from the MD
ensemble. Constructing an average structure from an ensemble of the sampled
structures thus yields a ‘‘blurry’’ image of the actual protein that does not
accurately portray the ‘‘true’’ averaged structure. The resulting structure will
instead misrepresent the movement of the two domain regions by using poorly
defined structural regions. To avoid this problem, it is better to align domains
and use the information from those superpositioned structures to determine
the most representative structure of the target protein and then add the flexible
connection loop afterward.

OLDERADO clusters the structures of proteins derived from MD simu-
lations into subfamilies based on the conformations of loops and the move-
ment of different protein regions. This clustering is used to select the most
representative model from the ensemble of target models constructed.
NMRCLUST and NMRCORE can be used individually, but by combining
their power and comparing their results with a database of experimentally
determined protein family folds, OLDERADO provides additional informa-
tion about the quality of the final protein model(s). We reiterate that OLDER-
ADO does not construct an average structure, but instead it selects the most
representative structure from an ensemble of structures. Clusters of conforma-
tionally similar models are created, and the core atoms of protein domains are
selected automatically without intervention from the modeler.

The methodologies discussed here differ in how they evaluate both the
overall quality and the validity of a protein structure. PROCHECK does this
by assessing stereochemistry, Verify3D evaluates the probability of a side
chain occupying a specific region, ERRAT assesses the distribution of
nonbonded atom–atom interactions for key atoms, ProSa uses PMFs, PROVE
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evaluates the quality of a protein structure based on computed volumes, and
OLDERADO selects the most representative structure of a collection of struc-
tures that have been clustered by superposition of their domains. Presented
with these tools for protein model analysis, the immediate question for a
novice is which one to use. Regrettably, the best answer to that question is
to use them all. One should compare the results from these tools and, where
there is disagreement, inspect the data for a consensus at problematic regions
and areas where their results differ to make decisions about what to do next.
Examining a protein model with programs that rely on the same type of assess-
ment methodology can lead to a false sense of security, so using another meth-
od that assesses a model differently is advised. By using several different
methods, one can often locate problematic regions that might have otherwise
been overlooked. These protein model analysis methods are quick and require
little user input; they also possess the ability to run concurrently and have the
output condensed into a concise, summary form.

Example: Evaluating Protein Models

The evaluation of protein models is crucial to the selection of the most
probable/correct model. Because the programs discussed in this final step use
different methodologies, it is not realistic to expect all of them to identify the
same set of top models. The results provided in this worked example are for
the best and worst BLCA protein models based on the evaluation methods
rankings. PROCHECK,203 Verify3D,180,181 and ProSa88,179,220,221 evaluations
were performed on the 50 BLCA protein models constructed earlier from the
HLCA, CLYC, HBB, and SWM templates. To highlight the dramatic differ-
ences between the models created, these models were not refined. One of the
most widely known protein evaluation methods is PROCHECK and its widely
recognizable Ramachandran plot. In addition to the plot of � and � angles is
a complete summary of the individual residue’s interactions. Ramachandran
plots (and the resulting data from a PROCHECK protein evaluation)
are a quick way to determine whether the protein model is sound. In
Figure 24, we present PROCHECK evaluations of the best and worst models
of BLCA that have been constructed from four templates (HLCA, CLYC,
HBB, and SWM). The HLCA-based models are presented in (a) of Figure 24.
The best model has no residues violating optimal angle conformations,
whereas the worst model has only one residue (LYS 16) outside of acceptable
values. The best and worst CLYC-based models are shown in (b) of Figure 24;
they have three and five residues, respectively, disobeying prescribed stereo-
chemical values. The best and worst HBB-based models in (c) of Figure 24
have 1 and 12 residues outside of the optimal angle values, respectively. The
best and worst SWM-based models in (d) of Figure 24 have five and nine resi-
dues, respectively, violating good stereochemical angles. The overall G-factor
values and the graphical representation of the backbone angles allows the
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modeler to quickly find regions of the protein structure that need alignment
adjustment or additional refinement to correct poor stereochemical properties.
We reiterate that PROCHECK evaluates only the soundness of a protein struc-
ture; it does not evaluate residue environment, so PROCHECK cannot distin-
guish between a correctly and an incorrectly folded protein model.

Figure 24 Best and worst bovine a-lactalbumin models based on PROCHECK analysis.
Residues that deviate from good stereochemical conformation are denoted with their
residue name and number printed above the � and � angle marker. The overall G-factor
value is an indicator of a protein’s stereochemical correctness and is provided for each
BLCA model. The best models are on the left, and the worst models are on the right in
each example. Panel (a) is human a-lactalbumin-based BLCA; panel (b) is chicken
lysozyme-based BLCA; panel (c) is horse hemoglobin b-based BLCA; panel (d) is sperm
whale myoglobin-based BLCA.
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The graphical results for the best and the worst BLCA models evaluated
with Verify3D180,181 are provided in Figure 25. Verify3D is a knowledge-
based evaluation method that compares the residue’s type, secondary struc-
ture, and environment with an empirical value. When the Verify3D plots for
the best and the worst models are compared with the template structure,
regions with significantly different residue composition (based on physico-
chemical properties) and structure are easily found. It is most notable for
the BLCA models created from HBB and SWM, which are all a-helical in nat-
ure compared with the a-helical/b-sheet structure of the HLCA and CLYC

Figure 24 (Continued)
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templates. Additionally, the best and worst BLCA models created from the
HLCA and CLYC templates have similar average, minimum, and maximum
Verify3D values [(a) and (b) of Figure 25]. Additionally, in (c) and (d) of Fig-
ure 25, the Verify3D results of constructing a protein model from dissimilar
templates are presented. The BLCA models constructed from HBB and
SWM have Verify3D profiles of significantly lower quality than the template
structures, and lower overall averages than the BLCA models constructed
from HLCA or CLYC (Table 7). The Verify3D profiles possess a similar
shape and values to the templates HLCA and CLYC, which indicates that

Figure 25 Verify3D plots of X-ray protein structures compared with protein models.
The solid lines represent the Verify3D results for the X-ray structure for each protein.
The dashed lines are the best, and the dotted lines are the worst BLCA models. A positive
Verify3D score for individual residues indicates a favorable residue-structure-environ-
ment. The best and worst BLCA models are compared with its template structure (a)
HLCA, (b) CLYC, (c) HBB, and (d) SWM.
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good-quality BLCA models were created, whereas BLCA models created from
HBB and SWM have poor Verify3D profiles compared with their respective
templates.

ProSa88,179,220,221 is an energy based protein structure evaluation meth-
od. The best and the worst BLCA models were evaluated and plotted for com-
parison with their respective template (Figure 26). The energy of the protein
models increases for each of the templates and indicates that the best models
were constructed from the HLCA template. One finds little differences
between the best and worst models of BLCA and the template of human a-
lactalbumin (HLCA) (Figure 26a). A comparison of the BLCA models versus
the chicken lysozyme (CLYC) template (Figure 26b) shows a deviation
between the models and the template, but the best and worst models are
similar. There is a similarity in the overall pattern of the ProSa energy profiles
for HLCA and CLYC (models and templates—solid line) and a model of
bovine a-lactalbumin (BLCA—dashed line). The BLCA models based on horse

Table 7 Summary of BLCA Models for Each Template

PROCHECK Verify3D ProSa

Overall
Template Rank Model G-Factor Model Min Ave Max Model Energy

HLCA 1 34 �0.21 42 0.16 0.451 0.66 12 �131.17
2 28 �0.23 41 0.20 0.438 0.66 32 �129.02
3 47 �0.25 46 0.12 0.436 0.69 41 �128.88
4 4 �0.25 17 0.18 0.435 0.63 34 �127.20
5 27 �0.26 4 0.16 0.423 0.58 40 �127.07

50 32 �0.53 8 0.12 0.348 0.54 11 �114.58

CLYC 1 34 �0.34 48 0.19 0.460 0.64 9 �116.26
2 42 �0.35 14 0.23 0.458 0.67 32 �115.18
3 46 �0.36 36 0.17 0.451 0.66 8 �114.97
4 40 �0.36 39 0.24 0.447 0.61 25 �113.51
5 29 �0.36 11 0.24 0.446 0.63 24 �112.23

50 30 �0.61 31 0.11 0.344 0.62 13 �95.44

HBB 1 42 �0.39 50 �0.01 0.133 0.31 1 9.54
2 12 �0.42 26 �0.10 0.116 0.31 2 11.11
3 16 �0.46 20 �0.03 0.113 0.34 20 12.47
4 18 �0.48 29 �0.06 0.112 0.33 24 13.91
5 10 �0.48 43 �0.10 0.108 0.35 12 14.92

50 20 �0.77 33 �0.21 �0.003 0.21 35 50.09

SWM 1 42 �0.20 39 �0.04 0.201 0.34 31 �0.48
2 31 �0.26 45 �0.02 0.178 0.35 24 2.44
3 30 �0.31 49 0.04 0.176 0.33 23 3.79
4 37 �0.32 47 0.02 0.152 0.34 40 4.44
5 27 �0.32 43 0.01 0.148 0.32 35 4.50

50 28 �0.56 9 �0.47 �0.036 0.22 5 28.01
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hemoglobin b (Figure 26c) and sperm whale myoglobin (Figure 26d) are the
worst models whereas the best BLCA models were created from HLCA.

The results of the protein evaluation methods we used to assess the 200
BLCA models in this worked example are summarized in Table 7. The top five
and fiftieth BLCA protein models are presented to illustrate the variance
between the models created from the same template. A trend that should be
noted is the range between the best and worst models for each template.
The range between the best and worst BLCA models (based on Verify3D
and ProSa evaluations) created with HLCA or CLYC is small compared
with models created with HBB or SWM. This small value originates from
the alignment of the target (BLCA) to the templates. Better alignments (relat-
ing to sequence identity and similarity, and the number and location of gaps)
give better models. The small difference is also connected to the similarity of
the template’s fold to that of the target protein. Here, the use of templates ran-
ging from very similar (73% sequence identity for BLCA to HLCA) to very
dissimilar (13% sequence identity for BLCA to SWM), in both sequence
identity and 3-D structure (fold), exacerbated the effects of good and poor
alignments and overall protein topology. Finally, models created from differ-
ent templates can be compared directly because they contain the same residues
(type and number) in different conformations.

Figure 26 ProSa evaluation of target protein models and their templates. The energy
plots are for each of the four BLCA templates and their corresponding best and worst
models. The energy profile of the X-ray structure (template) is the solid line, the best
BLCA protein model is the dashed line, and the dotted line represents the worst of the 50
BLCA models. Panel (a) is human a-lactalbumin-based BLCA; panel (b) is chicken
lysozyme-based BLCA; panel (c) is horse hemoglobin b-based BLCA; panel (d) is sperm
whale myoglobin-based BLCA.
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CONCLUSIONS

Comparative modeling uses structural, physicochemical, and functional
similarities of proteins to construct the 3-D structure of an unknown protein
by using the known structure of another protein(s) as a template. The first step
in the construction of a protein model using comparative protein modeling is
to find proteins (both sequences and known structures) that are related to the
target sequence. The target sequence is then aligned with the related protein
sequences (templates included) in a manner to exploit evolutionarily conserved
residues and similar structural features. Remember that the alignment of the
sequences is a crucial step in comparative modeling, and great care should
be taken to include pertinent sequences and templates in the alignment.
Many methods exist for aligning sequences. The alignment of the target
sequence to the template impacts directly and significantly on the quality and
validity of the final protein model. Using a single alignment method is reliable
in some cases, but using alignment methods that implement different similarity
matrices is better. Once the sequences are aligned and the best template(s) is
selected, the target-template alignment will likely need tweaking to move gaps
into nonstructural features regions, to ensure that catalytic residues in the tar-
get sequence are aligned to their corresponding residues in the template struc-
ture, and to preserve structurally conserved regions. With the alignments
finalized, the target protein models can then be constructed and refined. Pro-
tein model creation depends on the programs available and the number of tem-
plates required to obtain the best protein model. The refinement of those
models can be as minimal as performing a side chain rotamer search to deter-
mine the GMEC, or it can be as involved as carrying out an MD simulation.
After refinement, the protein models are evaluated so that the best one(s) can
be selected for use in other endeavors. By using several different protein eva-
luation methods, one can identify a final structure when there is consensus
about quality. This ‘‘brute force’’ method of examining the protein structures
might be viewed as extreme and time consuming, but by using such a vastly
different array of assessment methods, the modeler is ensured that a valid,
high-quality target protein structure has been created.

The following questions are basic in nature, but they should be addressed
by the modeler about the final protein model(s) constructed:

1. What is the sequence identity and sequence similarity between the target
and the template?

2. What is the evolutionary distance between the target and the template?
3. If the difference between the target and template exceeds 15%, are there

additional sequences bridging the target and template sequences?
4. Are certain residues conserved throughout the sequences and have they

been aligned?

154 Comparative Protein Modeling



5. Do gaps in aligned sequences correspond to regions of random secondary
structure?

6. Was the largest variability in sequence identity and sequence similarity
between the target and template in the loop regions?

7. Do the secondary structure predictions for the target sequence correspond
to the template’s secondary structure?

8. If MD was performed on the protein model, are there regions of change in
secondary or tertiary structure?

9. Was the largest movement of tertiary structure for the target’s structure in
loop regions?

10. Can a consensus be inferred about the protein models or specific regions
when comparing the results of various evaluation methods?

11. How does the protein model compare with the template protein structure?

Answers to these questions can help you derive a meaningful comparative pro-
tein model.

Before one constructs a homology model, it is advantageous to determine
what will be the end use of the 3-D model. If the purpose of deriving the pro-
tein model is to obtain a general view of the protein’s fold, a low-resolution
prediction is adequate. If the 3-D structure is to be used in drug design, a struc-
ture with little attention given to the loops and side chains could produce a
structure that is not only poor, but also misleading.

There are no shortcuts in the comparative modeling process, and atten-
tion to detail is paramount. As one becomes more familiar with the field of
comparative modeling, one will also become accustomed to specific tools for
each step of the target modeling process. Also, as stated, there are many meth-
ods for each comparative modeling step. In this chapter, we describe only a
few of the mainstream methods and programs. As time progresses, the pro-
grams discussed in this chapter may be replaced with others that are faster
and more accurate, but the overall process of constructing a protein model
via comparative modeling will remain constant.
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100. J. Vojtechovský, K. Chu, J. Berendzen, R. M. Sweet, and I. Schlichting, Biophysical J., 77,
2153 (1999). Crystal Structures of Myoglobin-Ligand Complexes at Near-Atomic
Resolution.

101. M. O. Dayhoff and R. V. Eck, in Atlas of Protein Sequence and Structure, Vol. 3, M. O.
Dayhoff, Ed., National Biomedical Research Foundation, Washington, D.C., 1968,
pp. 33–41. A Model of Evolutionary Change in Proteins.

102. M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt, in Atlas of Protein Sequence and Structure,
Vol. 5, Suppl. 3, M. O. Dayhoff, Ed., National Biomedical Research Foundation,
Washington, D.C., 1978, pp. 345–358. A Model of Evolutionary Change in Proteins.

103. M. O. Dayhoff, W. C. Barker, and L. T. Hunt, in Methods in Enzymology, Vol. 91, C. H. W.
Hirs and S. N. Timasheff, Eds., Academic Press, New York, 1983, pp. 524–545. Establishing
Homologies in Protein Sequences.

104. S. Henikoff and J. G. Henikoff, Proceedings of the National Academy of Science USA, 89,
10915 (1992). Amino Acid Substitution Matrices from Protein Blocks.

105. J. Stoye, Gene, 211, GC45 (1998). Multiple Sequence Alignment with the Divide-and-
Conquer Method.

106. S2C: A database correlating sequence and atomic coordinate numbering in the Protein Data
Bank, Guoli Wang, Jonathan W. Arthur, and Roland L. Dunbrack, Jr., 2002. Available:
http://dunbrack.fccc.edu/Guoli/s2c/.

107. G. H. Stout and L. H. Jensen, X-Ray Structure Determination: A Practical Guide, Second
Edition, John Wiley & Sons, Inc., New York, 1989.

108. M. A. S. Saqi, R. B. Russell, and M. J. E. Sternberg, Protein Engineer., 11, 627 (1998).
Misleading Local Sequence Alignments: Implications for Comparative Protein Modeling.

109. M. Bajaj and T. L. Blundell, Annu. Rev. Biophys. Bioengineer., 13, 453 (1984). Evolution and
the Tertiary Structure of Proteins.

110. A. J. Jennings, C. M. Edge, and M. J. E. Sternberg, Protein Engineering Design and Selection,
14, 227 (2001). An Approach to Improving Multiple Alignments of Protein Sequences Using
Predicted Secondary Structure.

111. G. H. Gonnet, Handbook of Algorithms and Data Structures: In Pascal and C, Second
Edition, Addison-Wesley Publishing Company, Wokingham, United Kingdom, 1991.

112. G. H. Gonnet, M. A. Cohen, and S. A. Benner, Science, 256, 1443 (1992). Exhaustive
Matching of the Entire Protein Sequence Database.

113. S. Henikoff and J. G. Henikoff, PROTEINS: Structure, Function, and Genetics, 17, 49
(1993). Performance Evaluation of Amino Acid Substitution Matrices.

114. S. B. Needleman and C. D. Wunsch, J. Mol. Biol., 48, 443 (1970). A General Method
Applicable to the Search for Similarities in the Amino Acid Sequences of Two Proteins.

115. J. Thompson, T. Gibson, F. Plewniak, F. Jeanmougin, and D. Higgins, Nucleic Acids
Res., 25, 4876 (1997). The CLUSTAL_X Windows Interface: Flexible Strategies for
Multiple Sequence Alignment Aided by Quality Analysis Tools.

116. F. Jeanmougin, J. D. Thompson, M. Gouy, D. G. Higgins, and T. J. Gibson, Trends Biochem.
Sci., 23, 403 (1998). Multiple Sequence Alignment with Clustal X.

117. PHYLIP (Phylogeny Inference Package), 3.6, Distributed by Joseph Felenstein. Department of
Genome Sciences, University of Washington, Seattle, 2004. Available: http://evolution.
genetics.washington.edu/phylip.html.

118. C. Notredame, D. G. Higgins, and J. Heringa, J. Mol. Biol., 302, 205 (2000). T-Coffee: A
Novel Method for Fast and Accurate Multiple Sequence Alignment. Available: http://
www.ch.embnet.org/software/TCoffee.html.

119. X. Huang and W. Miller, Adv. Appl. Math., 12, 337 (1991). A Time-Efficient, Linear-Space Local
Similarity Algorithm. Available: http://fasta.bioch.virginia.edu/fasta_www/lalign.htm.

120. W. R. Pearson and D. J. Lipman, Proceedings of the National Academy of Science USA, 85,
2444 (1988). Improved Tools for Biological Sequence Comparison. Available: http://
www.ebi.ac.uk/fasta33/.

References 161



121. W. R. Pearson, in Methods in Enzymology, Vol. 183, R. F. Doolittle, Ed., Academic Press, San
Diego, California, 1990, pp. 63–98. Rapid and Sensitive Sequence Comparison with FASTP
and FASTA.
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Model.

149. T. F. Havel and M. E. Snow, J. Mol. Biol., 217, 1 (1991). A New Method for Building Protein
Conformations from Sequence Alignments with Homologues of Known Structure.

150. N. Srinivasan and T. L. Blundell, Protein Engineer., 6, 501 (1993). An Evaluation of the
Performance of an Automated Procedure for Comparative Modeling of Protein Tertiary
Structure.

151. S. M. Brocklehurst and R. N. Perham, Protein Sci., 2, 626 (1993). Prediction of the Three-
dimensional Structures of the Biotinylated Domain from Yeast Pyruvate Carboxylase and of
the Lipoylated H-protein from the Pea Leaf Glycine Cleavage System: A New Automated
Method for the Prediction of Protein Tertiary Structure.
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180. J. U. Bowie, R. Lüthy, and D. Eisenberg, Science, 253, 164 (1991). A Method to Identify
Protein Sequences That Fold into a Known Three-Dimensional Structure. The Verify3D
server http://www.doe-mbi.ucla.edu/Services/Verify_3D/.
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INTRODUCTION

Proteins are the fundamental building blocks of life. They play an essen-
tial role in a wide variety of ways from antibodies fighting infection, to
enzymes catalyzing biochemical reactions, to the structural collagen in our
bones. Synthesized on the ribosome as linear chain of amino acids, a protein
must quickly and spontaneously find a unique three-dimensional structure
known as the native state to perform its function. The process by which a pro-
tein goes from this unstructured chain to its native state is known as protein
folding, and it is arguably one of the most critical processes in biology.

The native state of a single-domain protein is its tertiary structure, and it
is estimated that approximately 1000 different shapes or folds exist in nature.1

The native state generally adopts a globular three-dimensional shape, stabi-
lized by both covalent (peptide bonds, disulfide bridges) and noncovalent
(electrostatic, hydrophobic and hydrogen bonds) interactions. Local structures
within the native fold are known as secondary structures, with common motifs
including alpha helices and beta sheets. The classic experiments of Anfinsen
et al.2–4 suggested a ‘‘Thermodynamic Hypothesis’’ for folding, in which the
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native state of the protein corresponds to its thermodynamically most stable
configuration. Their in vitro studies demonstrated that a completely denatured
(unfolded) protein will refold spontaneously to its biologically active three-
dimensional conformation if placed in a native-like environment. This finding
implies that all information needed by a protein to find its native state is found
in its sequence. Even so, the ability of scientists to predict a protein’s structure
from its amino acid sequence remains elusive.

Although having the ability to predict a protein’s structure from its
sequence (and subsequently, to design proteins with a specific structure and
function) is of primary interest to scientists and engineers, understanding the
nature of the folding process is equally important. As alluded to, two require-
ments must be met for a protein to fold. First, the native state of a protein must
be thermodynamically stable at biologically relevant temperatures. Its lowest
energy state must be the native one, and if perturbed, the protein must be able
to refold easily. Second, the protein must fold on the order of milliseconds to
seconds at temperatures where it is thermodynamically stable. Understanding
the factors that contribute to folding rates and thermodynamic stability are
critical for understanding the protein folding process.

In 1968, Cyrus Levinthal noted that if a protein had to search randomly
through all of its possible conformations, its folding time would be on the
order of the age of the universe.5 His argument, which has subsequently
become known as Levinthal’s paradox, is as follows. Suppose that the confor-
mational space of a protein is composed of four distinct f� angles for each
peptide bond. For a modest size 100-residue protein, this is 4100, or approxi-
mately 1060, possible conformations. If the protein can convert from one con-
formation to the next in a mere 10�12 seconds (a reasonable estimate), it
would still take 1048 seconds for the protein to fold, longer than the current
age of the universe. Thus, Levinthal proposed that each protein must follow a
specific pathway to its native state, going through the same sequence of con-
formational changes in the same order, each and every time it folds.

Levinthal’s paradox remained a stumbling block for ‘‘protein folders’’
until the late 1980s, when a new view of protein folding began to emerge
called the energy landscape perspective. First quantified by Bryngelson and
Wolynes,6,7 energy landscape theory postulates that not every conformation
of a protein is of equal statistical weight and that as a protein folds, it is mak-
ing its way down a funnel-shaped free energy landscape, with its native state at
the bottom of that funnel. As the protein folds, it has a bias to find conforma-
tions of lower free energy; thus, it need not take the same path to its native
state each time. Energy landscape theory is a statistical description of protein
folding and was developed using tools from polymer physics, replica methods,
and so on.8 Furthermore, this theory can explain both kinetic and thermody-
namic aspects of protein folding. We will discuss more specifics about energy
landscape theory in the following section of this tutorial, but we also refer
readers to an excellent review by Dill et al.9 that more closely examines
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differences between energy landscape theory and the ‘‘sequential micropath
view’’ postulated by Levinthal.

In conjunction with energy landscape theory and independent of it,
researchers have proposed models to explain the specifics of the folding pro-
cess including the diffusion-collision (or framework), hydrophobic collapse,
classical nucleation, and nucleation condensation models. One of the earliest
of these models, which appeared before the development of energy landscape
theory, is the framework (or diffusion collision) model.10–12 This model pos-
tulates that local elements of native secondary structure (such as an alpha helix
or beta sheet) would form first, independent of a protein’s tertiary structure.
These secondary structure elements, also called microdomains, would diffuse
until they collided, stuck together, and caused the tertiary structure of the pro-
tein to form. The hydrophobic collapse model9,13,14 postulates that proteins
first collapse around their hydrophobic residues and then rearrange to form
specific secondary structures. This process is presumably driven by native-
like tertiary interactions, which implies that secondary and tertiary structural
elements do not necessarily form independent of each other. The classic
nucleation model postulates that some secondary structural elements form
first, with nucleation seeded by only a few residues. Formation of protein
structure subsequently propagates out from this nucleus.15,16 A related but
slightly different protein folding model is the nucleation condensation
mechanism.17 This model postulates the formation of a weak local nucleation
site that is stabilized by long-range interactions, which thus effectively creates
an extended nucleus. Nucleation and overall structure formation occur con-
currently, which leads to a highly cooperative folding process.

Computer simulations are well suited for investigating the diversity of
folding scenarios allowed by energy landscape theory, as well as for testing
the predictions of the folding models discussed above. Simulations have pro-
vided enormous insight into the folding process18 over the past two decades,
and as computers continue to improve, the detail with which we can study the
folding process will also improve. We now provide a brief introduction to the
different types of computer simulations, providing more detail in the section
on protein models.

Three main types of computer simulations exist that are commonly used
to study protein folding: lattice models, off-lattice minimalist models, and fully
atomic simulations. In lattice models, each amino acid is modeled as a single
entity, often called a bead, and those beads constituting the protein are con-
fined to move on a lattice via the Metropolis Monte Carlo method.19 Because
these models are so simplistic, they can be studied in exhaustive detail and
have provided insight into the physics behind the protein folding mechanism.
Although lattice models have proved useful for studying protein folding, they
are inherently unrealistic because beads do not model well the complexity of
amino acids and Monte Carlo simulations do not provide realistic kinetic
information about folding. Off-lattice models, although still relatively simplistic,
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offer a slightly more realistic picture of the folding process. In these models,
amino acids can be modeled by a single bead (representing the alpha carbon
in the protein backbone) or by multiple beads (in an attempt to represent
j–c angles). The proteins in these models are not confined to move on a lat-
tice, but instead they can move freely in space. Their dynamics are derived by
integrating Newton’s equations of motion to recover more realistic dynamics,
and both thermodynamic and kinetic information can be obtained from this
method.

Fully atomistic simulations are the most realistic of the three simulation
methods. They include a fully detailed description of the amino acids compris-
ing the protein, and they are thus much more true to life than the other models.
In addition, solvent molecules may be added explicitly or implicitly to the
simulation. Because of this extreme detail, a simulation of a small protein
may require the treatment of thousands of atoms. Fully atomic simulations
are thus extremely computationally expensive, and only short time scales
can be explored. As computational power continues to increase, so do the
time scales accessible with this method. Nevertheless, fully atomic simulations
still cannot capture kinetic information; they are, however, useful in under-
standing important local interactions that drive protein folding.

We have gained a tremendous amount of knowledge about protein fold-
ing through a combination of theoretical, computational, and experimental
approaches throughout the past four decades. Still, many aspects of this pro-
cess remain that need to be explored further. In this chapter, we will focus pri-
marily on the theoretical and computational techniques used to study the
protein folding problem, as well as the results from these studies. We will
begin with a discussion of the theoretical framework of protein folding, focus-
ing on energy landscape theory, and then placing a particular emphasis on the
thermodynamics and kinetics of folding. From there, we will continue with a
discussion of simulation models and techniques, as well as more advanced
folding topics that are used to describe the nature of the transition state ensem-
ble for folding. Finally, we will comment on our outlook on the field and
promising future directions in our concluding remarks.

THEORETICAL FRAMEWORK

Energy Landscape Theory

Much of our modern understanding of protein folding is based on the
study of the underlying ‘‘energy landscape’’ for folding. This energy landscape
framework offers an alternative view to the older sequential folding frame-
work and accounts for both the thermodynamic and the kinetic requirements
for folding. Its statistical mechanical treatment emphasizes the many config-
urations available to the protein and allows for the existence of multiple
pathways for folding.
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The theoretical basis for the energy landscape framework stems from
work on spin glass systems. These magnetic systems, studied extensively by
Derrida et al., consist of randomly arranged spins that can interact both ferro-
magnetically and anti-ferromagnetically.20–22 Because of these competing
interactions, not all spin orientations can be satisfied mutually, resulting in
what is known as ‘‘frustration.’’23 A consequence of this frustration is an
underlying ‘‘rough’’ energy landscape characterized by deep energy minima
separated by high barriers. This type of landscape shows a characteristic phase
transition at the glass transition temperature Tg, the temperature at which the
system finds itself trapped in a given low-energy state.24 A similar energy land-
scape exists for random heteropolymers (RHPs), which are polymers whose
sequence consists of a random letter code of amino acids. A one-dimensional
rough energy landscape is represented in Figure 1a. RHP systems do not have
a well-defined ground state, and their many low-energy (but structurally
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Figure 1 One-dimensional representation of (a) a rough energy landscape that is typical
of frustrated sequences. The landscape is characterized by numerous low-energy minima
separated by high-energy barriers. The energetic bias dE to the global minimum is of the
same magnitude as the roughness of the surface �E ðdE � �EÞ. (b) A funneled energy
landscape of a foldable sequence. Here dE � �E and the native state is both
thermodynamically and kinetically accessible.
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dissimilar) conformations can interconvert only by overcoming large energy
barriers. There are two sources of frustration in RHP systems. The first source
is ‘‘energetic,’’ which results from unfavorable interactions between different
amino acids caused, for instance, by a nonspecific collapse of the chain
induced by the hydrophobic effect. The second source of frustration is ‘‘topo-
logical,’’ originating from the constraints associated with polymeric chain con-
nectivity.25 Approximating the energy states as random independent energies,
Bryngelson and Wolynes applied the random energy model (REM), first intro-
duced by Derrida et al. in the context of spin glasses,26,27 to describe the
energy landscape of RHP.6,7 The REM is exactly solvable for RHP when
energy levels are both random and uncorrelated. An alternative, yet equiva-
lent, statistical mechanical treatment for RHP is based on mean-field replica
methods. It was developed independently by Garel and Orland28 and Shakh-
novich and Gutin29 at the same time as the development of the REM method.
RHPs, like their spin glass analogs, undergo a phase transition as the tempera-
ture is lowered. This ‘‘freezing’’ transition occurs at a temperature Tg, where
the system runs out of entropy (the so-called ‘‘entropy crisis’’) and becomes
trapped in one of the low-energy states.

Proteins differ from RHP by possessing a unique stable ground-state con-
formation, accessible on biological time scales. Rough energy surfaces are not
compatible with protein folding, because such surfaces do not satisfy either
kinetic or thermodynamic criteria for folding. Consider the energy landscape
in Figure 1a. A slight perturbation (temperature or pH change, for instance)
can cause the lowest energy state to rise in energy, leading to a new, structu-
rally different state with lower energy. Proteins are only biologically active in a
given state, in which, for example, the binding site is capable of interacting
with a ligand. This conformation must be immutable to environmental fluc-
tuations and correspond to the global energy minimum. The rough energy
landscape does not satisfy these requirements. From a kinetic standpoint,
the rough surface also falls short of rationalizing protein folding: Folding
times on such surfaces are governed by the rate of escape from the deep energy
traps, a timescale comparable with the random search time of Levinthal’s
paradox.

Protein sequences have evolved to minimize unfavorable interactions
leading to frustrated, rough surfaces.8 A viable energy landscape that accounts
for kinetic and thermodynamic aspects of folding can be achieved through a
‘‘funneled’’ surface, with a global energy minimum corresponding to the
native state that is well separated from the other local energy minima on the
surface.30 An energy surface is characterized by three elements: the ruggedness
of the surface given by the fluctuations in energy �E, the stability of the
ground state dE, and the configurational entropy So. An energy surface is
multidimensional, but it is represented for simplicity in one-dimension in
Figure 1b. Folding is initiated at the top of the funnel, with the protein existing
in an unfolded state. The configurational entropy (the width of the funnel) is
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large, reflecting the numerous possible unfolded conformations available to
the protein. As folding proceeds, the protein descends the funnel, getting
trapped transiently in the many local free energy minima (on the order of
kBT) riddling the surface. These minima correspond to the latent frustration
of the surface. Because a part of the protein’s frustration is ‘‘topological’’
and hence cannot be removed, even an ideally designed sequence with no con-
flicting energetic interactions will retain some frustration.31–33 The large
energy gap dE separating collapsed states from the lowest energy folded state
provides a driving force (energetic bias) toward that native state. The funneled
landscape allows for a multiplicity of folding routes, and it accounts for both
the thermodynamic (single ground state) and the kinetic requirements (folding
on biological timescales) for folding. Analytical studies were performed by
Wolynes et al. who treated the simplest energy landscape for a protein.
They assumed (1) that the unfavorable (non-native) contacts possess random
energy contributions and can hence be treated as RHP using REM and (2)
that, on average, the total energy of the protein decreases as favorable (native)
contacts are formed.6 These assumptions lead to an overall bias toward the
native state and form the basis for the ‘‘principle of minimum frustration’’
for proteins. Two main transition temperatures are associated with folding
on a funneled surface: the folding temperature Tf at which the global energy
minimum (the folded state) becomes stable and the glass transition tempera-
ture Tg. Analytical studies have demonstrated that well-designed protein
sequences possess a large energy bias dE compared with the roughness of
the surface �E, or said equivalently, they have a large Tf/Tg ratio.

6 The rough
energy landscape in Figure 1a is an extreme case in which dE � �E, which
corresponds to a nonfoldable scenario.

Thermodynamics and Kinetics of Folding: Two-State
and Multistate Folders

Energy landscapes provide a microscopic description for folding and are
best probed by single molecule experiments, in which the folding of a single
protein chain is monitored from the unfolded state to the folded state.34–36

Such experiments are still in their infancy, however, and most protein folding
experiments to date are performed in the ‘‘bulk’’ and provide averaged macro-
scopic, rather than microscopic, information on folding. Bulk experiments
consider thermodynamic (macro) states, such as the native, intermediate,
and unfolded states, which consist of a collection or ‘‘ensemble’’ of single-
chain conformations (microstates).37,38 A macroscopic description of
folding involves projecting the total free energy F(Q) of the protein system
as a function of one (or more) reaction coordinate Q, as opposed to the micro-
scopic description in which only the free energy of a single-chain E(Q) is
considered. The macroscopic and microscopic energies are related by
F(Q)¼ E(Q)� TSo(Q), where So is the configurational entropy.37 We note
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that the solvent-averaged microscopic energy E is in reality a free energy
because it contains entropic contributions from the solvent molecules.

The thermodynamics and kinetics of folding obtained from bulk experi-
ments can be singularly simple despite the structural complexity of proteins
and their large number of degrees of freedom. The averaged data obtained
from these experiments can be reconciled in terms of reaction models, similar
to those used in chemical kinetics of small molecules.39 These models range
from two-state models in which only the unfolded and folded states are popu-
lated, to more complex multistate models in which one or more intermediate
states are present. A two-state model seems to be the rule rather than the
exception for describing the folding of single-domain proteins with fewer
than 100 amino acids. For larger proteins, multistate models are used because
they show multistate folding behavior.40

The free energy of a two-state folder as a function of a reaction coordi-
nate for different temperatures is given schematically in Figure 2. Folding is
cooperative, and the free energy is characterized by two minima, correspond-
ing to the unfolded and folded states, separated by a small barrier originating
from the incomplete cancellation of the competing (favorable) energetic and
(unfavorable) entropic contributions to folding. The two minima are equal
at the folding temperature Tf, with the folded and unfolded states populated
to the same extent. Structures residing at the top of the barrier correspond to
the transition state ensemble. At temperatures below Tf, the native state
becomes more populated, whereas at temperatures above Tf, the unfolded
state dominates. A caveat of this type of reaction model is that ‘‘the’’ reaction
coordinate for folding is assumed to be known. In particular, transition state
structures can only be identified from the free energy profiles if such a reaction
coordinate is known and identifying this reaction coordinate (if it even exists)
is problematic because of the thousands of degrees of freedom associated
with the protein system. The nature of the transition state ensemble and the
shortcomings of reaction-based models of folding will be discussed in the
section ‘‘Advanced Topics: The Transition State Ensemble for Folding.’’

The thermodynamic and kinetic differences between two- and multistate
folders are illustrated in Figure 3. For simplicity, a three-state model with a
single intermediate (I) is considered in this example. Experimentally, two-state
thermodynamics can be inferred from both spectroscopic data and calori-
metric melting curves.41 A signature of ‘‘all-or-none’’ transitions between
the unfolded and the folded states is the equivalence between calorimetrically
determined enthalpies �Hcal and van’t Hoff derived enthalpies �Hvh:
�Hcal ¼ �Hvh. Processes involving intermediates show �Hcal > �Hvh. A sec-
ond thermodynamic signature is the existence of identical transition curves
(plots of unfolded population as a function of temperature) that are obtained
by using different spectroscopic probes. For instance, far ultra violet circular
dichroism (UVCD) spectra (a measure of secondary structure) should match
near-UVCD spectra (a probe of tertiary structure). Near- and far-UVCD spectra
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that do not change in concert indicate the presence of an intermediate state.
From a kinetic standpoint, two-state folders display single exponential
kinetics, consistent with a rate process involving the crossing of a single domi-
nant barrier. Multistate folders, on the other hand, possess free energy profiles
with additional minima corresponding to the intermediate states and thus have
nonexponential folding kinetics. The kinetics of folding is typically probed
experimentally using a stopped-flow apparatus. One first unfolds the protein
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Figure 2 Free energy surfaces for a two-state folder as a function of a reaction
coordinate q, which is plotted at different temperatures. The folded (F) and denatured
(D) states are separated by a free energy barrier located at qy. (a) Above the folding
transition temperature ðT > TfÞ, the entropic contribution of the free energy dominates
and the unfolded state is favored. (b) At the folding transition temperature (T¼ Tf), both
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using a denaturant (typically urea or guanidinium chloride) and then dilutes
the denaturant and monitors the refolding process using a spectroscopic signal
(fluorescence, absorbance, etc.) that can distinguish the folded from the
unfolded state. Data from these experiments are used to generate plots of
the observed folding rate ðkobs ¼ kf þ kuÞ as a function of denaturant concen-
tration. These plots are known as chevron plots because they are V-shaped,
with ‘‘arms’’ corresponding to the folding rate kf (at low denaturant concen-
tration) and unfolding rate ku (at high denaturant concentration). These
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178 Simulations of Protein Folding



plots are linear for two-state folders but show a curve (or ‘‘roll over’’) when
intermediates are present. Note that the absence of thermodynamic and kinetic
signatures corresponding to intermediates does not preclude their existence;
two-state behavior can be observed when high-energy intermediates are
present.

In the next section, we present a tutorial on simplified and fully atomic
simulation methodologies that can be used to investigate the features of energy
landscapes as well as to reveal the nature of the thermodynamics and kinetics
of folding.

PROTEIN MODELS

Introduction and General Simulation Techniques

As the computational resources available to the scientific community
have improved, so too has our ability to use computational methods as a
means for testing theories and for providing a link between theory and experi-
ment. Protein folding is one field in particular where simulation has allowed
access to information not available through experimentation. Simulations
have been particularly useful with respect to testing the predictions of energy
landscape theory. As mentioned in the Introduction to this chapter, three main
types of models and techniques are commonly used by the protein folding
community: lattice protein models via Monte Carlo simulations; off-lattice
protein models with dynamics such as Langevin, Monte Carlo, and discontin-
uous molecular dynamics (DMD) methods; and atomically detailed simulation
models that use both implicit and explicit solvent and that implement a variety
of dynamics schemes. We now discuss these methods in more detail, beginning
with lattice models and working our way up in complexity of computational
methodology.

Although different simulation techniques are appropriate for different
models and lines of inquiry, common concerns originate with respect to all
of them. One concern of paramount importance is assessing the quality of
the data that have been collected. For simulations to appropriately capture
protein behavior at a particular temperature (or for a particular dielectric con-
stant, solvent, or other parameter), they must sample available protein confor-
mations adequately. To ensure that the conformations being sampled are
representative of a particular parameter set, sampling must be performed
over periods of time that allow the system to relax to thermodynamic equili-
brium. Determining this equilibrium can be difficult, particularly if sampling is
performed at or near a transition temperature.

One way of determining thermodynamic equilibrium is through the
calculation of protein relaxation times. By choosing an appropriate variable
to monitor folding progress (examples of which may be Rg, the radius of
gyration, or Q, the number of native contacts formed) and monitoring its
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autocorrelation function, one can determine the relevant relaxation time. In
discrete form, the non-normalized autocorrelation function of a variable A
is given by

CAAðtÞ ¼ hAðtÞAð0Þi ¼ 1

tmax

Xtmax

t0¼1

Aðt0ÞAðt0 þ tÞ ½1�

If A is saved at equally spaced time steps throughout the simulation, then
CAA(t) can be calculated at any one of these points, labeled t. As t increases,
CAA(t) should decay to 0 at trel, because the value of A at long times should be
uncorrelated with its initial value. To collect data for a system in thermody-
namic equilibrium, the total simulation time must be 10 to 100 times longer
than trel. For a more complete discussion of this topic, as well as a good
general discussion of block analysis, an alternative method for determining
equilibrium sampling, we refer the reader to the classic book by Allen and
Tildesley.42

Another concern common to all simulation techniques is the problem of
‘‘trapping’’ in local energy minima. Because proteins are complex biomole-
cules, they often have energy landscapes with many local energy minima par-
ticularly at low temperatures. Using standard simulation techniques, proteins
often become trapped in these non-native state minima. Several techniques
that have been developed to address this problem are known as generalized
ensemble methods. These methods typically weight each state with a specific
non-Boltzmann weighting factor (that is often difficult to determine). Because
the probability for a protein to surmount the barrier between two local energy
minima is exponential in 1/T, many high energy states are virtually inaccessi-
ble. By introducing a non-Boltzmann weighting factor, those states become
accessible to the protein, which can then sample them and thus escape from
energetic traps. Examples of generalized methods include multicanonical sam-
pling, which is a random walk in energy space;43 simulated tempering, a ran-
dom walk in temperature space;44,45 1/k sampling, a random walk in entropy
space;46 J-walking;47 use of the Tsallis ensemble;48–50 the Wang Landau
method;51 and replica exchange (also known as parallel tempering).52–54 An
excellent review of generalized ensemble methods has been written by
Mitsutake et al.55

After thermodynamic sampling at several temperatures has been
obtained, the data from these simulations can be used to approximate a den-
sity of states for the system of interest. Once the density of states is known,
other thermodynamic quantities may be calculated. Although it is possible
to thoroughly sample a range of conformations at each temperature, the den-
sity of states that can be extracted from a single temperature is limited mostly
to those energy levels having a high probability of being sampled. To obtain
a more suitable density of states over a broad energy range, the weighted
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histogram analysis method (WHAM) was proposed. First developed by
Ferrenberg and Swendsen56,57 and subsequently formalized for biomolecules
by Kumar et al.,58 WHAM provides a means for combining the data obtained
at many different temperatures and generating a density of states that is more
accurate than any one distribution obtained from just a single simulation at
one temperature. It also allows for the calculation of thermodynamic quanti-
ties at temperatures other than those that were simulated.

Although our discussion has thus far centered on thermodynamic ana-
lyses, several issues originate with respect to kinetics. To calculate average
folding times accurately, hundreds of simulations must be run at any given
temperature. Although it is feasible for lattice and simple off-lattice models,
fully atomic simulations cannot yet access time scales relevant to folding
kinetics in a single simulation, which renders accurate folding time calcula-
tions impossible. Ergodicity is another concern, particularly for lattice-based
simulation methods. The accessibility of any given state, starting from any
other state, is not guaranteed for a given Monte Carlo move set. Additionally,
folding times determined by lattice Monte Carlo simulations are dependent on
the move set chosen. For molecular dynamics simulations, ergodicity is less of
an issue, because the proteins are not required to move on a lattice. Even so,
quantities like average folding times at high temperatures, or the fraction of
unfolded proteins at a given temperature, depend on how long the simulation
is allowed to run. Some of these issues will be discussed with respect to specific
models below.

Coarse-Grained Protein Models

A goal of using simple computational models is to answer general ques-
tions about protein folding such as: What are the forces that drive the folding
process? What makes proteins fundamentally different from random hetero-
polymers that lack a unique ground state? How do differences in energy land-
scapes translate to differences in folding? These questions are uniquely suited
for a class of protein models called ‘‘simple exact’’ models9,59–61 that use a
reduced representation of amino acids and that are typically implemented to
model short sequences (<40 residues). For very short sequences, one can enu-
merate completely all conformational states of a polypeptide. This in turn
allows for the computation of an exact partition function and thus the deriva-
tion of relevant thermodynamic quantities. Simple exact models also have
been used successfully to test the assumptions of analytical models, and they
do not require approximations or assumptions beyond those inherent in the
simple exact model. Additionally, many concepts gleaned from these simple
exact models can be applied to more realistic protein models. Because we can-
not discuss all simple exact models in detail here, we will focus on a few key
models and the results derived from them and refer the reader to numerous
references that discuss more thoroughly these and other models.
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Lattice Models
Lattice models were first used to study proteins by G�oo et al.62,63 who

used a hypothetical potential energy function that included only attractive
contacts between two residues when those residues are in the native conforma-
tion. This potential is not realistic because it ‘‘forces’’ residues into the native
conformation, nor is it a simple exact model; yet it provided initial insight into
computationally appropriate ways to study protein folding. Additionally,
the notion of ‘‘turning off’’ attractive interactions for non-native contacts is
one that has elucidated many aspects of energy landscape theory, and G�oo-
type models are often used and referred to today.64,65

One of the earlier successful ‘‘simple exact’’ heteropolymer models is the
HP model in both two and three dimensions.66 This model has been studied at
length by Chan and Dill.67–71 The results of these studies have general applic-
ability vis-a-vis understanding energy landscape theory and are still relevant
when applied to more complicated theoretical models or experimental results.
In the HP model, each amino acid is represented as a single bead that is either
hydrophobic (H) or hydrophilic (P). Each bead is located on a lattice site, with
the bonds connecting them represented as straight lines between nearest neigh-
bors on the lattice. No lattice site may have more than one bead, which pre-
serves excluded volume. A favorable contact free energy e (where e < 0) exists
between HH pairs that are nearest neighbors on the lattice but not adjacent in
the amino acid sequence. All other pair-wise combinations (HP, PP) contribute
zero to the free energy of the peptide, so that the total energy for a given con-
formation is he, where h is the number of HH contacts.

By using a simple two-dimensional model, one can explore both the con-
formational and the sequence spaces for a polymer of a given length. So, one
can ask for a given HP sequence: What is the total number of conformations
available to that peptide? Conversely, given a peptide of length n, one can ask
the following: What are the possible combinations of HP sequences? For a par-
ticular sequence of length n, one can define g(h) as the density of states for a
particular number of HH contacts, and

�0ðnÞ ¼
Xh¼hN

h¼0

gðhÞ ½2�

as the total number of distinguishable states for that polymer. Here hN is the
number of HH contacts in the native state, which is designated as the most
compact state that maximizes the number of HH contacts for a given
sequence. For low enough n (usually n � 22), g(h) can be counted exactly
for all h, and the partition function,

Q ¼
XhN
h¼0

gðhÞe�eh=kT ½3�
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can be computed. From Q, other relevant thermodynamic quantities can be
determined. By comparing these quantities for different HP sequences of the
same length, one can get a sense of how sequence impacts the thermodynamics
of folding.

Several important thermodynamic results were obtained from analysis of
the HP model. It was shown, for example, that as chain length increases, g(h)
for low-energy compact states becomes independent of chain length, regard-
less of sequence.72 Instead of a random search through conformational space,
proteins search through a reduced number of compact states with low energy
to find the native state. Thus, even though the total number of protein confor-
mations increases with chain length, the ability of a protein to find its native
state is not diminished.

Specific heat curves for a variety of HP sequences (where Cv ¼ qU
qT

� �
V
) are

shown in Figure 4 which depicts an example of both the sequence-dependent
thermodynamics of the HP model and the rich thermodynamic behavior that
can originate from such a simple model. Sequence (iii), which has a sharp peak
in its specific heat curve (Figure 4b) and a sigmoidal distribution of its frac-
tional native population (Figure 4a), is an example of a sequence with a gap
between its native state and the ensemble of misfolded compact states. It has a
well-defined hydrophobic core and a two-state folding behavior; at its folding
temperature, only the unfolded and native states are significantly populated
and there are no intermediates in the folding process. Sequence (i) has a signif-
icant number of hydrophobic residues on the outside of the protein. It under-
goes a more gradual shift in its fractional native population and has a
relatively broad specific heat curve with two small peaks; this example of a
sequence does not fold in an all-or-nothing transition. Sequence (ii) has a
more intermediate behavior.

To explore the kinetics of a polymer with the HP model, an appropriate
set of moves on the lattice (move set) is critical, given the concerns mentioned
earlier. In their study of the HP model, Chan and Dill71 used the two different
move sets shown in Figure 5a and b. For each move set, they constructed the
appropriate adjacency matrix; two conformations are considered adjacent if
one can be transformed into the other by a single move in the move set.
Although they found that the kinetics of folding is strongly dependent on
both sequence and move set, several universal features of folding were uncov-
ered. First, chains can fold through multiple paths, some of which include sig-
nificant kinetic traps. Second, proteins tend to get stuck in collapsed, low-
energy, non-native conformations, and they must overcome energetic barriers
by unfolding or rearranging to get to the native state. Third, the sequences that
fold fastest are those with an energy gap between their native state and the
conformation with the next highest energy level. These results are consistent
with other work, particularly that of Shakhnovich et al.73,74 In their early
work on lattice models with two types of beads, Shakhnovich et al. used a
sequence annealing procedure to determine the lowest energy sequence (with
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a fixed ratio of amino acids) for a given structure. Using these selected
sequences, they could draw conclusions about the folding of designed versus
random sequences.

In addition to the HP model, several other low-resolution protein models
have been developed to provide insight into the nature of protein folding. The
AB model, used in the studies mentioned by Shakhnovich et al. and studied
extensively by Socci and Onuchic,60,75 is similar in spirit to the HP model.
The AB model is a three-dimensional lattice protein with 27 monomers.
Each monomer is either of type A or type B, and the interaction energy
between two nearest-neighbor, nonbonded monomers is E‘ for an AA or BB
pair, and Eu for an AB pair, where E‘ < Eu < 0. In this scheme, like contacts
are favored over unlike contacts, and there is an overall driving energy toward
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Figure 4 Three different two-dimensional HP sequences (panel c) and their correspond-
ing specific heat (panel b) and fractional native state population (panel a) curves.
(Adapted from Dill et al.9)
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collapse, because any contact is favored over no contact. The total energy of a
given conformation is thus E ¼ N‘E‘ þNuEu, where N‘ and Nu are the num-
ber of like and unlike contacts, respectively. It is not feasible to enumerate all
conformations available to this 27 monomer lattice protein. However, all

Figure 5 Examples of lattice move sets. Shown (a) and (b) are the two different move
sets used in the simulations performed by Chan and Dill.71 The double-ended arrows
represent adjacent conformations, and the single-ended arrows indicate the residues
being moved. In move set (a) only one residue is moved per Monte Carlo step; the
selected residue may be (i) moved diagonally as indicated (three bead flip), or (ii) an end
residue may be pivoted about its neighbor (end flip). In move set (b), two or more
residues may be moved in a single Monte Carlo step. In (i), the residues undergo a
crankshaft move, whereas (ii) is a rigid rotation. (c), a Monte Carlo move set used by
Socci and Onuchic.75 The black circles indicate the current position of the residues on
the lattice, with the gray residues representing their future positions. The corner move,
like the three bead flip employed by Chan and Dill, moves a single residue on the corner
of the lattice to a diagonally adjacent position. The end move rotates an end residue
around its neighbor to one of three possible adjacent locations, and the crankshaft move
flips two residues by 90 degrees. This move set also demonstrates the three-dimensional
generalization of some elements in the move sets used by Chan and Dill.
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maximally compact conformations, where the protein resides on a 3� 3� 3
lattice, can be counted.

The move set used for both thermodynamic sampling and dynamics (the
use of the word dynamics here should be taken cautiously) of the AB model is
similar to that employed for the HP model. The move set includes corner, end,
and crankshaft moves as indicated in Figure 5c. To ‘‘advance’’ from one con-
formation to the next, a monomer is chosen at random, and, depending on its
location on the lattice, either a corner, an end, or a crankshaft move is
attempted. If the attempted move puts the monomer on an already occupied
site, that move is rejected to preserve excluded volume, and a new monomer is
chosen. Once a monomer has been selected and the move deemed possible, the
energy of that new conformation is calculated. If the new conformer’s energy
is lower than that of the previous conformation, the move is accepted. If the
energy is higher, it is accepted with the usual Boltzmann probability:

P ¼ exp½�ðEnew � EoldÞ=T� ½4�

Here, Boltzmann’s constant is set equal to 1. Regardless of whether a move
is accepted or rejected, one unit of time (one Monte Carlo step) is considered
to have passed. This probabilistic acceptance criterion is known as the
Metropolis Monte Carlo algorithm.19 Although no connection exists between
physically relevant time scales and Monte Carlo time steps, Monte Carlo simu-
lations can estimate the relative time scales of protein folding versus simula-
tion time, as well as the time needed to reach equilibrium at a given
temperature. Keep in mind, however, that any time scale extracted from a
Monte Carlo simulation depends on the move set used. Even so, useful infor-
mation can be extracted from such a simulation, such as relative transition
times for two different sequences.

In their analysis of six different 27-residue AB sequences, Socci and
Onuchic could reveal a variety of thermodynamic and kinetic behaviors.
They examined both the compaction time (number of steps to reach a col-
lapsed state with 25 of 28 native contacts formed) and the folding time
(time from a random, unfolded to native state) for all six sequences at various
temperatures. They found that the compaction time is sequence independent,
whereas the folding time is highly dependent on sequence. From their analysis
of compaction and folding times, Socci and Onuchic could conclude that the
proteins they studied exhibit a two-phase folding mechanism. First, the protein
would collapse to a low-energy compact state in a time that is roughly
sequence independent. Second, that stage was followed by one where the
protein searches for its minimum energy state from these low-energy collapsed
states, a process that is highly sequence dependent. Another result from this
work is that proteins that folded the fastest had low native state energies
and high folding temperatures. Those sequences with Tf below the glass transi-
tion temperature Tg did not reach their native state quickly at Tf, a temperature
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at which they are thermodynamically stable. Additionally, Tg was found to be
sequence independent. Thus, even with a model as simple as the AB model, a
key prediction of energy landscape theory was tested and verified. More spe-
cifically, proteins that fold on a biologically relevant time scale must have
Tg< Tf; otherwise, the protein can become trapped on a rugged energy land-
scape. Socci and Onuchic used WHAM to do a thermodynamic analysis. They
could look at quantities such as the heat capacity CV and the probability dis-
tribution of the energy P(E) for several sequences at a variety of temperatures.
They found that the collapse transition is second order-like in nature, with the
folding transition being more abrupt and first order-like. Those sequences that
folded fastest and were most stable in their folded states had sharper and more
distinct thermodynamic transitions. Not coincidentally, these sequences
lacked energetic frustration in their native states; that is, all energetic contacts
made were favorable contacts.

The lattice models mentioned above were among the first to test the pre-
dictions of energy landscape theory as well as to show that many important
features in protein folding could be captured by simple physical principles.
In other studies, lattice models have been extended to include side-chain ele-
ments,61,76,77 side-chain-only models,78–80 and diamond, body-centered cubic
(bcc) and face-centered cubic (fcc) lattices. These models, while maintaining
their simplicity and computational tractability, are much more realistic than
those discussed above, and will likely provide further insight into the inter-
actions that drive protein folding. For an excellent review on reduced protein
models, we refer the reader to Kolinski and Skolnick and the extensive refer-
ences therein.81

Off-Lattice Models
Off-lattice minimalist models are similar to the lattice models in that

they generally use a simplified amino acid representation. Rather than being
confined to a lattice, the protein is free to move in continuous space. As
with lattice models, many different off-lattice models have been studied.
Some are meant to be reduced models of specific proteins,31,33,82 whereas
others are meant to capture a specific secondary structure motif, such as an
a-helix, a b-sheet, or an a–b sandwich (see citations in Ref. 81). As before,
we will focus on a few representative models and provide appropriate refer-
ences about the others.

One of the first off-lattice minimalist models was developed by Honeycutt
and Thirumalai (HT) in 1990 to model a b-barrel motif.83 It models each
amino acid as a single bead like those previously described, but it incorporates
much more realistic energetic interactions by accounting for both nearest- and
non-nearest-neighbor forces as well as for bond and torsion angles. The HT
model includes three different types of residues: hydrophobic (B), hydrophilic
(L), and neutral (N). Consider the sequence for this 46-residue protein:
B9N3(LB)4N3B9N3(LB)4L. Its Hamiltonian is as follows.

Protein Models 187



Interactions between residues separated by three or more bonds in the
sequence are dependent on residue type. For two hydrophobic residues, the
energy between them is given by a Lennard–Jones potential:

4eh
s
rij

� �12

� s
rij

� �6
" #

½5�

where s is the diameter of each residue and rij is the distance between the two
residues in consideration. An LL or BL interaction has the following form:

4eL
s
rij

� �12

þ s
rij

� �6
" #

½6�

and the interaction of an N residue with any other type of residue is given by
4ehðsrijÞ

12. Note that eL ¼ 2
3 eh. To find the total interaction, we sum over all

pairs of residues that are separated by three or more bonds. To model the tor-
sion and bond angles, the following functions are used:

X
bond
angles

1

2
kyðy� y0Þ2 þ

X
torsion
angles

ðAð1þ cosjÞ þ Bð1þ cos 3jÞÞ ½7�

with adjustable parameters A and B set by the type of residues involved in the
interaction. The bonds between nearest-neighbor residues are kept fixed. The
native state of the HT model is shown in Figure 6a.

The dynamics scheme used for the HT model is different from those pre-
viously discussed. Here, Langevin dynamics is used. The Langevin equation
for a single particle with position xi is given by

m€xxi ¼ FðxðtÞÞ � gviðtÞ þ �ðtÞ ½8�

and includes three terms on the right-hand side. The first term is the force on
the residue caused by all other residues [hence the notation FðxðtÞÞ to indicate
that F does not depend solely on xi]. The second term is a damping function to
systematically model solvent viscosity. The third term models random noise,
such as the thermal kicks on the protein from the solvent. The magnitude of
�ðtÞ is related to the damping term through the fluctuation dissipation theo-
rem, where h�ðtÞi ¼ 0,

h� tÞ�ðt0Þi ¼ cdðt � t0Þð ½9�

and c ¼ 2gkBT. Each residue of the protein is subject to the constraints of the
Langevin equation, and the equations of motion are integrated with the velo-
city form of the Verlet algorithm.84

188 Simulations of Protein Folding



The original studies using the HT model83–85 focused on exploring the
nature of its native state and probing the kinetics of folding. Honeycutt and
Thirumalai found that many low-energy conformers are populated under fold-
ing conditions. The protein was observed to fold rapidly to one of these com-
pact intermediate states, but the time scale for the protein to find its true native
state could be extremely long. Their results indicate that it is possible for the
rate-limiting step in protein folding to occur late in the folding process. In this
case, the rate-limiting step is caused by a local rearrangement of contacts with-
in the protein, rather than by large-scale fluctuations. Folding was observed to
be nonexponential, further confirming a noncooperative folding mechanism.
Subsequent studies using this model86 revealed a three-state folding mechan-
ism involving collapse from the unfolded state to a compact misfolded state,
followed by a transition to the native state. In a later study, Guo and Brooks87

probed the thermodynamics of protein folding with the HT model in even
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Figure 6 (a) The native state of the HT model. Hydrophobic residues are black,
hydrophilic residues are gray, and neutral residues are white. (b) Specific heat (Cv) curve
and plots of the average fraction of native contacts (Q) and total number of contacts (C)
as a function of temperature for the original HT model. (c) Same curves as in (b) for the
minimally frustrated G�oo-model. The original HT model shows a nonspecific transition,
whereas the minimally frustrated model displays the signatures of a two-state folder.
Adapted From Nymeyer et al. (Ref. 64).
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more detail. Using WHAM,58 they identified two relevant thermodynamic
transition temperatures for the folding process: the collapse temperature Ty,
and the folding temperature Tf. At Ty, the protein collapses from an extended
state to a compact but non-native low-energy structure, and at Tf, it goes from
this collapsed state to the native state.

The kinetic and thermodynamic results obtained from the HT model are
indicative of a rugged energy landscape. This landscape comes from the non-
specific character of the hydrophobic interactions, which lead to the formation
of compact, albeit incorrectly formed structures. Onuchic, Brooks, and co-
workers32,64,88 developed less frustrated versions of the HT model by introdu-
cing specificity into the hydrophobic interactions. Nymeyer et al.64 constructed
a G�oo-like version of the HT model by identifying all native contacts (defined as
contacts in the native state within a distance of 1.167s), and then turning off
the attractive part of the Lennard–Jones interaction for all but those contacts.
The result is a model in which only the native contacts are favored. The
authors compared the specific heat and fraction of native contacts formed
for both the original HT model and their new, nonfrustrated model. The ori-
ginal model has a broad specific heat curve (Figure 6b), whereas the G�oo-like
Nymeyer model has a narrowly peaked specific heat curve (Figure 6c), indicat-
ing a sharp transition. Furthermore, plots of the average fraction of native con-
tacts and the total number of contacts as a function of temperature change in a
concerted manner in the G�oo-like model, which implies concomitant folding
and collapse ðTf ¼ TyÞ. In contrast to the original model, folding with the
G�oo-like Nymeyer model was observed to be single exponential at temperatures
below Tf , another signature of a two-state cooperative folding mechanism.
Nymeyer et al. estimated the glass transition temperature for these two models
and found that the Tf /Tg ratio was about 0.9 for the original model and near 8
for their G�oo-like model, which is consistent with criteria for frustrated and
unfrustrated proteins, respectively, as given by energy landscape theory.

The HT model was one of the first successful off-lattice models, and
many others have been developed since then. Models are now being used
with two or more atoms per residue,89–93 with all-atom G�oo-models (G�oo- inter-
actions with atomically detailed protein model),94,95 and with the addition of
charge87 and solvation effects.96–99 These models are being systematically
improved to better capture realistic protein interactions, while remaining
simple enough for large-scale, long-time simulations to uncover the underlying
physics behind protein folding.

Fully Atomic Simulations

The most thorough representation of folding would involve describing
both the protein and its environment in explicit atomic detail. This level of
detail comes at a significant computational cost, with typical simulations
consisting of hundreds of protein atoms and thousands of water molecules.
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Systems of this size prohibit the use of a computational approach based solely
on quantum mechanics, a method that can only provide an exact solution for
systems with limited number of electrons. To study the dynamics of proteins,
an approximate solution to the Schrödinger equations, such as the one given
by molecular dynamics using force fields, is required. This type of molecular
dynamics is based on three approximations:

1. The Born–Oppenheimer approximation that allows decoupling of the
motions of the electrons and the nuclei.

2. A treatment of the nuclei as classic particles moving on a potential energy
surface (PES). Trajectories of the nuclei on the PES are obtained by
numerically solving Newton’s equations of motion: Fi ¼ �riU ¼ d2ri

dt2
,

where Fi is the force acting on particle i, U is the potential energy, r is the
particle position, and t is time. Several schemes can be used to numerically
integrate Newton’s equations of motion, including the Verlet and Leap-
Frog algorithms.100

3. An approximation of the potential energy surface by a potential energy
function (PEF) describing the physical interactions between the particles.
The PEF permits the calculation of the potential energy and interatomic
forces as a function of the coordinates of the system. In the case of proteins,
the PEF are atom-based rather than nuclei-based.

A typical PEF used in biomolecular simulations consists of bonded and
nonbonded interaction terms:

UðRÞ ¼ UbdðRÞ þUnonbdðRÞ ½10�

with the bonded contribution UbdðRÞ consisting typically of bond length, bond
angle, and torsion terms:

UbdðRÞ ¼
X
bonds

kb

�
bðRÞ � beq

�2
þ
X
angles

ky
�
yðRÞ � yeq

�2

þ
X

dihedrals

kf
h
1þ cos

�
nfðRÞ � g

�i
½11�

where b, y, and f are the bond lengths, bond angles, and dihedral angles,
respectively, and kb, ky, and kf are the associated force constants. The sub-
script ‘‘eq’’ denotes equilibrium values. The value n in the torsional term cor-
responds to the periodicity and g to the phase. The nonbonded term UnonbdðRÞ
consists typically of van der Waals (Lennard–Jones term) and electrostatic
components:

UnonbdðRÞ ¼
X

nonbonded
atom pairs i;j

eij
Rmin;ij

rij

� �12

� Rmin;ij

rij
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" #

þ qiqj
eDrij

 !
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where eij is the well depth and Rmin;ij is the distance between atoms i and j at
which the Lennard–Jones interaction is at a minimum. The terms qi and qj cor-
respond to the charges of atoms i and j, rij to the distance between the atoms,
and eD to the dielectric constant. The various parameters in the PEF are
obtained from experiments and quantum mechanical calculations. Force fields
that are common in biomolecular simulations such as CHARMM,101

AMBER,102,103 OPLS,104 and GROMOS105 consist of the PEF and their cor-
responding parameters. Accuracy in force field parameterization is important
for obtaining realistic trajectories and energies from simulations.

As mentioned, a serious computational obstacle associated with fully
atomic, solvated simulations involves the many particles needed to represent
the system. United atom models, in which the hydrogen atoms of the protein
are considered to be part of the heavy atoms to which they are bound, reduces
the size of the system, but true, atomic-level detail is lost. The real bottleneck
in simulation time is not the solute but instead the thousands of water mole-
cules needed to properly solvate the protein. Most computer time is spent
calculating water molecules’ interactions with one another, whereas the
dynamics of the protein are really the elements of interest to most researchers.
The presence of water molecules greatly increases the size of the system, and it
requires averaging over long times to obtain meaningful simulation results for
the protein. Early simulations on protein folding attempted to reduce the com-
putational burden associated with water molecules by performing the simula-
tions in a vacuum. As one might expect, it provided a misleading picture of
folding because electrostatic terms are overemphasized without a polar solvent
and the critical hydrophobic effect is neglected. More recent, although still
crude approaches, involve using distance-dependent dielectrics in an attempt
to treat the solvent. A more sophisticated ‘‘implicit solvent’’ model common
in folding simulations is the generalized Born (GB) model, based on an
approximation of the Poisson–Boltzmann equations.106 When coupled with
a solvent-accessible surface area (SASA) term, the GB/SASA models provide
a satisfactory description of both electrostatic and hydrophobic effects, at a
much reduced computational cost when compared with using explicit water
molecules.107,108

Another computational limitation associated with molecular dynamics
simulations on fully atomic systems is the need to use small time steps when
integrating Newton’s equations of motion. To maintain an accurate and stable
simulation, the time step must be smaller than the fastest motions of the sys-
tem, which in this case involve vibrations of the heavy atoms—hydrogen
atoms’ bonds (X-H stretch). Integration time steps of 1 fs (2 fs if algorithms
such as SHAKE109 are used to fix the X-H bonds) are commonly employed,
which means that one million integration time steps are required to generate
a single nanosecond trajectory. As a result of this limitation, most folding
simulations have been restricted to nanosecond time scales. Sampling of con-
formational space is hence limited and studying the kinetics of folding, which
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occurs on times scales of microseconds to minutes, becomes prohibitively
costly. An example of a long-time, fully atomic molecular dynamics simulation
on a protein in explicit solvent is the 1-ms simulation performed by Duan and
Kollman on the villin headpiece, a 36-residue helical protein with an estimated
folding time of 10–100 ms.110,111 Folding was initiated from an unfolded con-
formation and reached a metastable, compact state bearing some similarity to
the experimentally determined native state within 4 months of simulation time
on a CRAY supercomputer with 256 processors. Although being a computa-
tional ‘‘tour de force,’’ a single simulation of this type cannot provide the sta-
tistics needed to evaluate folding kinetics and thermodynamics; methods other
than such simple ‘‘brute force’’ techniques are required to gain insight into the
folding process.

We review below several methods aimed at overcoming the computa-
tional obstacles associated with protein folding simulations. Because these
methods have been applied to many protein systems, too numerous to be dis-
cussed in detail in this review, we focus instead on a few specific proteins that
have been studied by more than one method. Of particular interest is the fold-
ing of Fragment B of Protein A (Figure 7). This protein has served as a model
system for theoretical studies involving both minimalist31,82 and fully atomic
protein models.112–116 Recent experiments by Sato et al.117 have put these
simulations to the test, with the conclusion that although simulations have
been able to identify some main elements of this protein’s folding, none of
them have been able to provide a picture completely consistent with experi-
ment. It highlights the limitations associated with force fields, water mole-
cules, simulation issues (sampling, etc.), and so on, which are facts that
must be kept in mind when drawing conclusions from simulation data. The
following salient experimental results exist for protein A. First, folding is
‘‘two-state’’ and occurs on the time scale of milliseconds, with Helix III forming

Figure 7 Ribbon diagram of fragment B of protein A.
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early in the folding process and being the most stable structural element in iso-
lation.118,119 Second, based on protein engineering experiments by Sato
et al.,117 folding seems to follow a nucleation-condensation mechanism with
a transition state for folding in which Helix III (the most stable as a fragment)
is poorly formed, particularly in the C-terminal region. Third, folding seems to
be initiated around a well-structured Helix II, with partial formation of the
Helix II–Helix III turn and with little structure in the Helix I–Helix II turn
region. We will return to these experimental observations throughout much
of the chapter.

Stochastic Difference Equation (SDE) Method
Elber et al. introduced a method, based on a functional formulation of

classical mechanics, that allows for large time steps by using an integration
scheme with respect to path length rather than time.120 Their SDE generates
trajectories for long-time processes, such as protein folding, that are inacces-
sible using classical molecular dynamics methods. Rather than solving
Newton’s equations of motion, the action is optimized, with the goal of finding
a trajectory that makes the action S stationary. The action is given by

S ¼
ðYf

Yu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE�UÞ

p
dl ½13�

where Yu and Yf are the mass-weighted coordinates of the unfolded and folded
states, E is the total energy, U is the potential energy, and dl is the mass-
weighted length element of the system. The associated equations of motion are

d2Y

dl2
¼ �ðrU � ðrU:eÞeÞ

2ðE�UÞ ½14�

where e is the unit vector. In discretized form, the action is given by
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Trajectories are obtained by minimizing the gradient norm:

T ¼
X
i

qS=qYi

�li;iþ1

� �2

�li;iþ1 þ l
X
i

ð�li;iþ1 � h�liÞ2 ½16�

which yields the exact classic trajectory for small steps. The last term in
Eq. [16] is a penalty function ensuring that all points are spread out along
the trajectory evenly.
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The SDE method has been applied to the folding of two proteins, the
46-residue helical fragment B of protein A116 and the large 104-residue
Cytochrome C.121 Both proteins were modeled in atomic detail using the
AMBER/OPLS united atom force field103,104 and with an implicit GB/SA
solvent model.122 The SDE method does not yield equilibrium-free energy
surfaces for folding. It does, however, allow for a study of the direct sequence
of events connecting an unfolded conformation to the folded state.

We focus here on Protein A, in which the following folding mechanism
emerges from the SDE simulations. First, the unfolded state consists of an
extended conformation with a few contacts present in Helix III near the
C-terminus. Second, compaction of the protein is accompanied by formation
of the secondary structure. Finally, tertiary contacts form concurrently with
the remaining secondary structural elements. Folding is observed to obey
neither the ‘‘hydrophobic collapse’’ model nor a model in which substantial
secondary structure forms early on. The folding process is depicted in Figure 8
and presented as plots of (�RT ln{P(Rg, Nhb)}) as a function of the radius
of gyration Rg and the number of native hydrogen bonds Nhb. P(Rg, Nhb) is
the joint probability of the radius of gyration and the number of native
hydrogen bonds averaged over 130 trajectories.

Protein Unfolding
The millisecond time scales associated with protein folding under native

conditions and protein unfolding under mild denaturing conditions prohibit
their study with a straightforward molecular dynamics approach. Using an ele-
vated temperature (400 K and greater) would accelerate reaction rates by sev-
eral orders of magnitude, from milliseconds to nanoseconds. It is tempting to
use unfolding trajectories to infer the folding mechanism. However, caution
must be used when making such inferences. The principle of microscopic
reversibility, which implies that unfolding mechanisms are the reverse of fold-
ing mechanisms, applies only under equilibrium conditions and is not expected
to hold when extreme perturbations are applied to the system. Simulations
performed on simplified lattice and off-lattice models have shown that unfold-
ing pathways obtained under harsh denaturation conditions are quantitatively
different from folding pathways generated under native conditions.18,123

Nonetheless, unfolding pathways often appear qualitatively to be the reverse
of folding pathways, as the secondary elements that form last also tend to be
the first to be disrupted. Unfolding simulations are likely to be most useful
when studying the folding of proteins with highly polarized folding mechan-
isms, such as for the SH3 protein domain124 and CI2.125–127

Levitt et al. used high-temperature (498 K) simulations to study the
unfolding of fragment B of protein A using the ENCAD force field128 and
with an explicit treatment of solvent. Their simulations indicate that the
protein adopts a compact denatured state within a few nanoseconds, with
Helix III being the last element to unfold. Daggett et al. infer that Helix III
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Figure 8 Sequence of folding events from plots of (�RT ln{P(Rg, Nhb)}) as a function of
the Rg radius of gyration and the Nhb number of native hydrogen bonds at different
times along the trajectory. P(Rg, Nhb) is the joint probability of the radius of gyration
and the number of native hydrogen bonds that in this case have been averaged over 130
trajectories. (a)–(c), correspond to the early stages of folding and show a small increase
in the number of hydrogen bonds with gradual compaction of the protein. It is followed
in time (d) a large change that occurs in both Rg and Nhb, indicating collapse with
formation of secondary structure. The final stages of folding (e) involve further
formation of hydrogen bonds with little change in Rg. Adapted from Ghosh et al.116
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is the most stable structural element and likely the first to form on the folding
pathway. Helix III acts as a ‘‘scaffold’’ around which the other two helices
form. The transition state is found to be compact, with 63% of native contacts
formed. Helix III is the most structured element of the transition state, with
Helices I and II structured to a lesser extent. The unfolding trajectories of
this protein, as well as those of a 46-residue fragment, are shown in Figure 9.
A discussion of the method used to determine transition states from unfolding
simulations is given in the section ‘‘Advanced Topics: The Transition State
Ensemble for Folding.’’

Importance Sampling Molecular Dynamics
An elegant means to generate free energy surfaces for folding was devel-

oped by Brooks et al.18,112 The method involves denaturing simulations and
the use of hierarchical clustering algorithms to identify representative confor-
mations spanning the folded to the unfolded states. These conformations serve
as initial conditions for importance sampling, which is performed under
refolding conditions with a harmonic biasing potential along a reaction coor-
dinate (typically a continuous analog of the number of native contacts). Data
for the sampling runs are then combined with a constant temperature version
of the WHAM algorithm, which yields the density of states as a function of
temperature and reaction coordinates. The free energy surface (potential of
mean force) is obtained from the density of states. The method is efficient
because each initial condition is independent of others. The method remains

Figure 9 Unfolding simulations of the full-length protein (from two runs labeled B1 and
B2) as well as a 46-residue fragment (from two runs labeled Bfrag1 and Bfrag2). The
full-length protein and the fragment unfold in a similar manner, with Helix III losing
structure last. Adapted from Alonso and Daggett.114
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costly in terms of time as sufficient sampling must be generated to create a con-
nected net between the initial conditions (see Figure 10). The importance
sampling methodology was first applied to the helical fragment B of protein
A and subsequently to several other proteins, including the mostly b-sheet pro-
teins G129 and src-SH3.18,130–132 Simulations were performed with the
CHARMM force field101 and with explicit TIP3P water molecules. Free
energy surfaces were generated as a function of the radius of gyration,
the number of native contacts, and the number of hydrogen bonds. These
simulations identified different characteristics of the free energy surfaces for
helical and b-sheet proteins. Helical proteins were observed to have a surface
with a diagonal shape, which is consistent with concomitant collapse and
folding, whereas b-sheet proteins showed a more ‘‘L-shaped’’ profile, indica-
tive of an initial collapse before folding. The simulations also revealed the cri-
tical role of water in the final stages of folding. The free energy surfaces of
both protein G and SH3 have a compact, near-native solvated basin separated
by a small energy barrier from the native basin. In the case of protein G, this
solvated basin corresponds to structures in which water molecules intercalate
between misregistered b-sheets. These water molecules serve as ‘‘lubricants’’
that facilitate proper alignment of the sheets. In the case of SH3, the solvated
basin consists of conformations with water residing between the two hydro-
phobic sheets constituting the hydrophobic core of the protein. The final fold-
ing event for SH3 involves the expulsion of water molecules to form a ‘‘dry’’
core.130,131

The free energy surfaces generated for fragment B of protein A portray
the following picture for folding. Folding is initiated at the Helix I–Helix II
turn, which is followed by formation of stable secondary helical structures

H2
H3

H1

UNFOLDED

Q

NATIVE

Figure 10 Sampling scheme in the importance sampling method. Each ellipse represents
a conformation used in biased sampling. The lines indicate the connected network
created through sampling. Adapted from Guo et al.113 with protein structures from
Alonso and Daggett.114
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in Helices I and II. The final folding step involves formation of Helix III, which
becomes stable only when making contact with Helices I and II. The transition
state, which is determined from the barrier on the free energy surface (plotted
as a function of the radius of gyration and the number of native contacts), is
compact, with 30% of all native state contacts present and 50–70% of the
native state hydrogen bonds formed. Hydrogen bonds in Helix II have the
highest probability of forming, whereas those in Helix III are less probable.
Transition state structures resemble an expanded form of the native structure,
with overall correct topology. The free energy surface for protein A is repre-
sented as a function of the radius of gyration and the number of native
contacts in Figure 11.

Enhanced Sampling Methods: Replica Exchange Molecular Dynamics
Conventional molecular dynamics methodology applied to biological

molecules tends to result in an incomplete sampling of conformational space.
It leads to a distorted statistical picture of the conformational ensembles popu-
lated under a given set of conditions and to incorrect conclusions regarding
both folding mechanisms and protein conformational preferences. Several
enhanced sampling schemes have been developed recently to remedy this sam-
pling problem by facilitating escape from local energy minima.55,133 One of
the most promising methods is the replica exchange (REX) algorithm, which
was introduced initially in the context of spin glasses.54 Details of the REX
formulation for molecular dynamics can be found in the seminal paper by
Sugita and Okamoto.134 In this scheme, several identical copies, or ‘‘replicas,’’
of the original system are simulated, in parallel, for a given number of MD
steps at different temperatures. Two replicas i and j adjacent in temperatures

Figure 11 Free energy surface as a function of the radius of gyration and the number of
native contacts for protein A from an importance sampling molecular dynamic
simulation. Adapted from Guo et al.113
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Ti and Tj, with energies Ei and Ej, are swapped periodically with the pro-
bability:

pij ¼ 1 for � � 0
expð��Þ for � > 0



½17�

where � � ½ðbi � bjÞðEj � EiÞ� and b ¼ 1=kBT.
Because the escape time from local energy minima decreases significantly

at elevated temperatures, the REX method enables both enhanced equilibra-
tion and sampling by treating the temperature as a dynamical variable. In
addition to leading to a more thorough exploration of conformational space,
the algorithm also ensures that the conformations sampled at a given tempera-
ture in the REX simulations belong to the canonical statistical ensemble. It
allows for application of ensemble reweighting techniques58 to extract equili-
brium thermodynamic functions, including, for instance, the mean potential
energy as a function of temperature.

REX has emerged as an increasingly attractive and tractable means to
study the thermodynamics of folding of peptides and small proteins in the
last few years.135–137 We focus here on the replica exchange molecular
dynamics (REMD) investigations of the folding of fragment B of protein A
done by Garcia and Onuchic115 who used the AMBER force field102 with
explicit solvent molecules. The enhanced sampling protocol allowed for the
generation of free energy surfaces at temperatures above and below the folding
transition temperature. The free energies were decomposed into their enthalpic
and entropic contributions, both of which were observed to change in a
‘‘downhill’’ manner with an increasing number of native contacts Q. The
incomplete cancellation of enthalpy and entropy led to a barrier in the free
energy surface between the unfolded and the folded states. Folding was
observed to be an overall two-state process, in agreement with experimental
findings. Interestingly, the folded basin at low temperature consists of two
basins separated by a very small barrier. Those two minima correspond to a
folded state with a hydrated core and to fully desolvated folded conforma-
tions, which highlights the role of water desolvation in the final stages of pro-
tein folding. The free energy profiles for folding under native conditions and at
the transition temperature are represented in Figure 12 as a function of the
root-mean-squared deviation (RMSD) and the number of native contacts Q.
The simulations reveal a folding mechanism involving an interplay between
secondary structure formation, desolvation, and formation of the hydrophobic
core. The unfolded state is found to be compact, with Helix III forming early.
The transition state shows significant structure in Helix I, with tertiary inter-
actions between Helices I–II and Helices II–III and to a lesser extent between
Helices I–III. Helix I seems to be unstable in the absence of interactions with the
other two helices. Despite forming early in the unfolded state, Helix III does not
interact fully with the other helices until the later stages of folding. The overall
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folding landscape is found to be funneled, with a certain overlaying frustration
evident from the presence of non-native contacts in the folding simulations.

The simulation methods presented in this section demonstrate the range
of approaches developed to tackle the computational challenges associated
with simulations of folding processes. Despite limitations intrinsic to each
method, along with force field and water model shortcomings, these simula-
tions have been able to provide insight into folding at a level of detail not
accessible to experiments.

ADVANCED TOPICS: THE TRANSITION STATE
ENSEMBLE FOR FOLDING

In this section on advanced folding topics, we provide a broad overview
of computational approaches used to determine the transition state ensemble
(TSE) for folding. Comprehensive reviews are available elsewhere on closely
related topics, such as experimental characterization of the transition
states138,139 and free energy landscape approaches to the transition states.38

Three groups of methods used to determine protein transition states for
two-state folders will be covered. The first group involves approaches that use
one- or multidimensional reaction coordinates for folding to locate transition
states. The second group uses rigorous theoretical approaches that do not rely
on the introduction of any specific reaction coordinate.65,140–142 The third
group of methods uses information from experimentally measured f-values
(parameters that quantify the relative changes in folding rates and stability
of the native state of a protein induced by point mutations) as input to recon-
struct the transition state structures.143–145

Figure 12 Free energy surfaces for protein A computed with REMD simulations. (a)
shows the surface as a function of RMSD and the number of native contacts below the
folding transition temperature. The native state shows two basins corresponding to a
hydrated nearly folded state and to the ‘‘dry’’ folded state. (b) shows the surface as a
function of RMSD and the number of native contacts at the folding transition
temperature. The unfolded and folded states are equally populated at this temperature.
Taken with permission from Garcia and Onuchic.115
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Transition State and Two-State Kinetics

Most small, single-domain proteins display thermodynamic and kinetic
signatures of two-state folders. The simplicity of this folding scenario, in
which only unfolded (U) and native (N) states are populated to any significant
degree, led to the development of kinetic models analogous to those first intro-
duced in the context of chemical rate processes.

We begin by reviewing models for chemical reactions of small molecules
and then extend this formalism to folding reactions. The description of a rate
process in terms of reaction models is based on two premises: (1) the existence
of thermodynamically stable reactant and product states that can interconvert
and (2) the existence of a unique reaction coordinate that can distinguish
between these two states. A typical potential energy surface UðqÞ for a two-
state rate process involving the conversion between a reactant A and its pro-
duct B is given in Figure 13. States A and B are the only thermodynamically
stable states in this reaction and appear as minima on the energy surface, sepa-
rated by a barrier. Transitions between states A and B can be described fully by
the dynamics of a one-dimensional reaction coordinate q. The time for a tran-
sition to occur is dominated by the time required to overcome the energy bar-
rier located at qy, with a descent into the other energy minimum occurring on a
much faster time scale. According to transition state theory (TST),146 the
ensemble kinetics of the reaction schematically represented in Figure 13 is
single-exponential with the reaction rate k ¼ 1/t given by an expression:

k ¼ kT exp ��U=kBTð Þ ½18�

q†

Figure 13 A typical one-dimensional potential energy surface for a chemical reaction.
Two stable states corresponding to the reactantsA and the products B are separated by a
barrier. The transition between the two states is described by a reaction coordinate q
that takes on different values for the reactants and products. The rate-limiting step
corresponds to reaching the conformation located at the top of the barrier qy, which is
the transition state. Depending on the nature of the underlying dynamical process,
the rate of the reaction can be predicted accurately by one transition state theory or the
Kramers formalism.146 In protein folding, the reactants A are associated with the
unfolded state and the products B are taken to be the folded native state. The reaction
coordinate typically remains unspecified.65
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where�U ¼ UðqyÞ �UðqAÞ is the barrier that must be overcome in the A ! B
direction of the reaction, kB is Boltzmann’s constant, T is the temperature, and
kT is the transmission coefficient (i.e., the time required for barrierless transi-
tion). A similar expression for the transition time can be obtained under cer-
tain conditions using a Kramer’s type approach.7 Because the rate-limiting step
in the reaction is reaching the state qy located at the top of the barrier (the
transition state), an accurate characterization of this state is key to describing
reaction kinetics.

An extension of the reaction-rate formalism to protein folding is not
straightforward, and requires more than a simple assignment of the unfolded
state to the reactants and the folded state to the products. The main stumbling
blocks are the protein’s many degrees of freedom and the intrinsic difficulty in
determining which dynamical variable is a suitable reaction coordinate for fold-
ing. In contrast to the simple one-dimensional case considered in our previous
example, one needs to make a critical distinction between order parameters
used to identify thermodynamically stable reactants and products and reaction
coordinates that can be used to predict the transition time between these two
states. Indeed, not all good order parameters serve as equally good reaction
coordinates.148 Modeling a protein folding reaction requires knowledge of
both a reaction coordinate and its dimensionality. Another fundamental differ-
ence between small molecule reactions and protein folding is that the latter
requires a statistical description. As mentioned, above protein folding thermo-
dynamics and kinetics are described in terms of ensembles rather than single
microstates. The transition state is hence a TSE, consisting of a collection of
conformations that can be structurally diverse.

In the case of a one-dimensional process (Figure 13), knowledge of the
reaction coordinate allows one to unambiguously assign the transition state as
the state at the top of the energy barrier. For reactions taking place in higher
dimensions, no straightforward relationship exists between reaction coordi-
nate and transition state. In principle, a proper reaction coordinate for a
complex biomolecular reaction exists when the dynamics of a single, primary
degree of freedom occurs on a much slower time scale than the dynamics of its
secondary degrees of freedom. The secondary degrees of freedom can then be
accounted for implicitly, through statistical averaging, projection onto the pri-
mary variable, and introduction of a friction term to model their dynamics.
The resulting reduction of configuration space simplifies the problem greatly,
and the TSE can be predicted accurately from a one-dimensional reaction
coordinate. The problem with this approach is that for most biomolecular
reactions, one does not know a priori if a one-dimensional reaction coordinate
exists. Recent simulations using on-lattice149 and off-lattice147 protein systems
lead to conflicting results regarding whether such a reaction coordinate can
truly be found. More recent work151 on continuous protein models indicates
that initial guesses for reaction coordinates can be improved through rotations
in the phase space of available order parameters. This work shows that the
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one-dimensional formalism of chemical kinetics can lead to a quantitatively
accurate description of folding kinetics and thermodynamics when a carefully
selected reaction coordinate is used. Several successful applications of the one-
dimensional approximation for the reaction coordinate of folding have been
reviewed recently by Kubelka et al.150 Although a one-dimensional reaction
coordinate may be a suitable approximation for the folding reaction, the
true dimensionality of the folding reaction coordinate is unknown and a gen-
eral treatment of folding must account for its possible multidimensionality.

The theoretical foundation for defining a transition state in multidimen-
sional space is based on the concept of a stochastic separatrix. The stochastic
separatrix is defined as the locus of structures having equal probabilities of
reaching the products (native state) and reactants (denatured state). This
idea was first introduced in the context of condensed-phase chemical reac-
tions152 and later applied to the protein folding problem by Du et al.,65

who introduced the commitment probability function Pfold. Pfold is defined
as the probability for a protein configuration to reach the native state before
reaching the unfolded state. It is a kinetic parameter with a specific value for a
given protein conformation, which enables identification of a particular struc-
ture’s location in the multidimensional configurational space. The transition
state is defined as the ensemble of conformations with Pfold 	 1=2. For contin-
uous protein models, the commitment probability is evaluated by folding
simulations, with hundreds of simulations launched for each initial structure.
The fraction of runs that reach the native state before reaching the unfolded
state is taken to be Pfold. This quantity is costly to compute numerically
because an exhaustive sampling of the entire configuration space with subse-
quent evaluation of Pfold is required to determine the TSE accurately. Because
of this high computational cost, exact computations of TSE have been limited
to simplified lattice proteins65,123,153 and to small peptides in vacuum.148 The
Pfold method most frequently tests the quality of putative reaction coordi-
nates.94,148,154–157 Note that just because a TSE can be determined from the
set of conformations with Pfold	 1/2, one is not guaranteed that a true one-
dimensional reaction coordinate for folding has been identified. Furthermore,
because the Pfold method is not based on geometrical parameters for folding, it
is difficult to extract a physically meaningful reaction coordinate from the
TSE, even if such a coordinate does indeed exist.

Methods for Identifying the TSE

In this section we describe the computational methods available for
extracting transition state conformations through computer simulations.
Three classes of methods are discussed: (1) those relying on the introduction
of one or more reaction coordinates, (2) rigorous methods not linked to any
specific reaction coordinate, and (3) methods based on the protein engineering
f-value formalism.
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Reaction Coordinate-Based Methods
Reaction coordinate-based methods identify TSE structures as those con-

formations residing at the top of the free energy barrier projected onto a given
reaction coordinate q (see Figure 13).65 Several different reaction coordinates
have been introduced to extract TSE conformations from simula-
tions,31,124,158,159 with the most common coordinate being the number of
native contacts Q.59 A serious concern with reaction coordinate-based
approaches is that the putative reaction coordinate may be a poor descriptor
of the folding process. Although Q seems to be a suitable reaction coordinate
for G�oo-type models, it is often an inadequate reaction coordinate for proteins
with a higher degree of frustration160 such as the Ca-Cb model of the C-src
SH3 domain157 and in a model three-helix bundle recently studied by
Baumketner et al.151 In a simulation of chymotrypsin inhibitor 2 (CI2),161

Q failed to distinguish between pre- and post-transition conformations.
Identifying a simple geometric parameter that will act as a good reaction
coordinate65 is a nontrivial task. The failure of any given reaction coordinate
to properly identify the TSE seems to be the rule rather than the exception.
When an inadequate reaction coordinate is used, the ensemble of conforma-
tions at the top of the free energy barrier will include non-TSE conformations
in addition to true TSE structures as illustrated in Figure 14. Equally
worrisome is that members of the true TSE that do not have q ¼ qy will not
be identified from free energy surfaces projected onto a poor reaction coordi-
nate q, and that at best only part of the TSE can be obtained from reaction
coordinate-based methods.

An improvement over methods that use a one-dimensional reaction coor-
dinate for locating transition states is to expand the space of relevant reaction
coordinates into multiple dimensions. An example of such an approach is the
conformational clustering method of Li and Daggett125 in which the TSE is
determined on the basis of structural changes that occur as the protein
unfolds.162 Structural fluctuations are categorized as being local or large scale,
and transition state structures are defined as the ensemble of structures

pre- and
post-
transition
state

Figure 14 Overlap of the TSE determined on the basis of a nonideal reaction coordinate
q with the true TSE. The reaction coordinate-based TSE contains both pretransition
state (Pfold< 0.5) and post-transition state (Pfold> 0.5) conformations and omits some
true TSE conformations (Pfold¼ 0.5).
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populated immediately before the onset of a large structural change. To deter-
mine the TSE, unfolding trajectories are projected onto a two-dimensional
space constructed from the RMSD among all conformations recorded in the
simulation (see schematic depiction in Figure 15). Thermodynamically stable
states correspond to the regions of highest residence in this projection. The
major macroscopic states N, U, and (possibly) I are identified, and those con-
formations found immediately after the trajectory leaves the native state basin
are selected as transition states. It is equivalent to identifying the transition
state conformations as the least-visited states in the two-dimensional space
defined by the chosen reaction coordinates (here RMSDs). It should be noted
that this method is not rigorous unless the folding reaction is two-dimensional
and the selected RMSDs constitute the correct reaction coordinates of folding.
Extensive numerical tests have been performed to validate the use of the meth-
od. The method has been shown to adequately locate transition state struc-
tures in certain instances. In particular, the putative transition state
structures determined by this method were found to have commitment prob-
abilities Pfold close to one half in simulations of chymotrypsin inhibitor 2
(CI2).163 In other words, for this protein, the method could indeed locate tran-
sition state structures correctly.

A potential limitation of Li and Daggett’s method125 for identifying fold-
ing transition state structures is its reliance on unfolding simulations. In gen-
eral, one can expect that the unfolding process, which occurs under conditions
where the protein is unstable, follows different kinetic pathways than for fold-
ing, which occurs under physiological conditions. Consequently, folding

RMSD2

RMSD1

Figure 15 Identifying the transition state conformations from unfolding simulations
under denaturing conditions. Trajectories are projected onto the two-dimensional space
spanned by two RMSD components and analyzed to determine regions of highest
residence. RMSD1 and RMSD2 are defined such that the geometrical distance in 2D
space between structures i and j closely matches the actual RMSD between these
structures. The regions of highest residence are associated with the thermodynamically
stable states N and U and possibly intermediates I. Transition states in this method125

correspond to the conformations found immediately after the protein leaves the native
state basin in a trajectory.
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and unfolding transition states are not necessarily the same. The free energy
landscape theory of protein folding predicts that the TSE is influenced by
environmental factors such as the temperature or the concentration of dena-
turant. Using Monte Carlo simulations of a lattice protein model, Dinner
and Karplus123 observed (in accordance with energy landscape theory) that
the unfolding TSE depends on the degree of denaturation. In addition, folding
and unfolding TSEs, determined using the more rigorous Pfold formalism,65

were different. The transition state for unfolding at a temperature above the
melting temperature seemed in that latter study to be more structured than the
transition state for folding below the melting temperature. In view of this
finding, it is imperative to delineate accurately the conditions under which
unfolding simulations can be used to map out folding TSEs.

Nonreaction Coordinate-Based Methods
The method developed by Thirumalai and coworkers141,164,165 is a rig-

orous method that does not use reaction coordinates to locate transition state
structures. This method attempts to detect a folding nucleus through folding
simulations. Nucleation is a kinetic phenomenon satisfying the following
requirements: (1) The folding nucleus consists of some minimal number
of stable native contacts in which stability is determined by the probability
of breaking a contact (native or otherwise) over some specified amount of
time. (2) The formation of the nucleus is the rate-limiting step of the folding
reaction and is followed by a rapid assembly of the native state.

The numerical implementation of this method involves first generating
many (typically 100 or more) folding trajectories at temperatures where the
native state is stable. Each trajectory is characterized by a first passage time
ti that is determined using the structural overlap parameter wðtÞ as a measure
of nativeness of the protein. The trajectories are then analyzed in terms of their
probability for forming native contacts. A contact q, formed at some time
before ti, is taken to be stable if it remains unbroken before the native confor-
mation is reached. A histogram of stable contacts (contact map) originating at
some time during the simulation for a typical trajectory i is shown in Figure 16.
The periods of time when stable contacts are formed are indicated by thick
lines. It is clear from the plot that (1) most contacts do not form until very
late in the folding process (time d 
 ti in Figure 16) and (2) rapid assembly of
the native state is triggered by the formation of a minimal set of native
contacts. These two observations form the conceptual basis of Thirumalai’s
method for identifying folding nuclei. The numerical implementation of this
method introduces a variable d (scaled time) for defining the moments in
time at which folding nuclei are formed. For a fixed d, a function PNðqÞ, cor-
responding to the probability that contact q is formed at time d 
 ti and
remains stable until the first passage time ti, is constructed by averaging
over all recorded trajectories. In general, the PNðqÞ for various contacts are
insignificant until relatively high d values (between 0.8 and 0.9) are reached.
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A minimal set of native contacts with the highest formation probability is
designated as a critical nucleus for each studied trajectory i. Because this
assignment of critical contacts is dependent on the specific values of d used
for evaluating PNðqÞ, a numerical procedure is introduced for computing
dTS that unambiguously defines transition state structures. This procedure
examines a test function PðdÞ obtained from PNðqÞ by averaging over all native
contacts q. The derivative of PðdÞ with respect to d is taken, and dTS is identi-
fied as the time when a rapid growth in dPðdÞ/dd occurs. It is assumed that
each trajectory crosses the transition state at time dTS 
 ti. Conformations
belonging to this state are identified by clustering all conformations recorded
at times ½dTS 
 ti; ti�.

Using lattice models of proteins, Klimov and Thirumalai tested the accu-
racy of their method for identifying transition state conformations154 by com-
puting a commitment probability Pfold for each putative transition state
conformation they located. For states generated from dTS ¼ 0:9, an average
Pfold � 0.56 was observed for one sequence studied, which leads the authors
to conclude that their method of generating the transition state is equivalent
(numerically) to the stochastic separatrix approach. This claim should be
viewed with caution, however. To unambiguously determine whether these
conformations belong to the TSE, an examination of both the mean values
of Pfold as well as their distributions for the given set of conformations is
needed. Indeed, cases in which a significant population of pretransition state
(Pfold< 0.5) and post-transition state (Pfold>0.5) conformations are present
(with an average Pfold close to 0.5) have been reported.166

Although rigorous in nature, Thirumalai’s method is numerically costly
even for the simplest G�oo model, because it requires a significant number of
folding trajectories to be generated. Because of this limitation, the method
has not been used extensively. Systems studied to date include an off-lattice
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Figure 16 A typical time evolution of native contacts plotted for a given trajectory i
versus first passage time ti. Thick lines indicate periods of time when stable native
contacts are formed. Stability means that once formed, a contact q remains intact until
the native state is reached. A critical nucleus is searched for in conformations recorded at
times ½d 
 ti; ti� (see the text for a more detailed explanation of how d is chosen).
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b-barrel protein model,141 a Ca-model of the terminal b-hairpin of the GB1
protein,167 and lattice models.154,164 An important conclusion derived from
this set of studies is that multiple folding nuclei exist that enable folding via
parallel pathways.

A second rigorous nonreaction coordinate method for identifying the
transition state was developed by Dokholyan et al.142 In contrast to the meth-
od of Guo and Thirumalai,141 where explicit folding simulations are run from
an ensemble of initial states, this method starts by generating a single, lengthy,
constant-temperature trajectory under thermodynamic conditions in which the
native state is stable. Multiple folding/unfolding events are observed and ana-
lyzed from this simulation.

A subset of folding/unfolding trajectories passing through a putative
transition state are selected from the equilibrated trajectory. The putative tran-
sition state is identified on the basis of some trial reaction coordinate, such as
the potential energy (that trial reaction coordinate is not used at any other
point in the analysis). When searching for the critical nucleus, it is assumed
that equilibrium fluctuations in the system can be divided into local and global
types. Local fluctuations do not lead to a change of the thermodynamically stable
(folded or unfolded) states, whereas global fluctuations correspond to the actual
folding or unfolding of the protein from a denatured or native initial states.

Under native conditions, large local unfolding fluctuations will include
the critical nucleus, whereas large local folding fluctuations will include the
folding nucleus under denaturing conditions. Depending on the initial and
final states of the simulation (U or N), the trajectories are separated into
four classes: UU corresponds to pathways that start from the unfolded state
(U) and never fold, NN to those that start from the native state (N) but never
unfold, NU to those that start as folded proteins and end in unfolded states,
and UN to the trajectory class for which folding is observed (see Figure 17).
These classes of conformations behave differently with respect to the

Figure 17 Sample folding pathways that pass (or may pass) through the transition state.
The pathways are divided into four classes: UU are those paths that start from the
unfolded state (U) and never fold, NN are those that start from the native state (N) but
never unfold, NU are those that start as folded proteins and end as unfolded, and UN are
those for which folding is observed. The frequency of contact formation is monitored.
Contacts for which the difference between NN and UU classes is a maximum constitute
the CN.
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frequency of contact formation. NN trajectories are more likely to contain a
critical nucleus than are trajectories for the UU states. A critical nucleus (if it
exists) begins to form in UN pathways and breaks apart in the NU trajectories.
Thus, the frequency of observing nucleation contacts for the UN and NU
classes will lie in between the frequency of appearance for NN and UU classes.
The difference in probability of contact formation for NN versus UU trajec-
tories is used to locate the critical nucleus. The frequency of contact formation
fUU is computed for all contacts over UU trajectories and subtracted from a
similar function for the NN ensemble. Depending on the relative population
of contacts, it is expected that this differential function fNN � fUU will take on
values from some finite-range interval with well-defined boundaries
ðfNN � fUUÞmin and ðfNN � fUUÞmax. It is indeed the case for the Ca–Cb-based
G�oo model of the C-Src SH3-domain protein studied by Shakhnovich
et al.,142,157 where the largest difference ðfNN � fUUÞmax ¼ 0:2. Native contacts
with the maximal differential appearance frequency are taken to define those
conformations for which the critical nucleus is formed. For the SH3 protein,
only five specific contacts contributed to ðfNN � fUUÞmax. Proof that those five
contacts belong to the critical nucleus was provided by simulations in which
each of those contacts were fixed in order. In contrast to the bimodal energy
distributions obtained in control simulations with a fixed random contact, the
simulations with a fixed nucleation contact produced unimodal energy distri-
butions, which indicates that the protein was never able to unfold, as it could
not cross the barrier separating folded and unfolded states. This observation
highlights the important role of a critical nucleus in the folding process.

An alternative definition of the transition state (not based on the commit-
ment probability) was recently introduced by Hummer140 who quantifies the
difference between equilibrium distribution functions and the distribution
functions obtained over transition paths (TP). Two regions corresponding to
the reactants A and products B are defined in the entire configuration space. A
path in this space is assumed to be reactive (transition path) if it starts from A
and reaches B without returning to A. A conditional probability P(TPjx) of
being on a transition path, given that the system is at point x of the configura-
tion space, is introduced. This probability is related to the equilibrium distri-
bution PeqðxÞ and the conditional distribution PðxjTPÞ of x over transition
paths by Eq. [19]:

PðTPjxÞ ¼ PðxjTPÞPðTPÞ
PeqðxÞ ½19�

Here PðTPÞ denotes the probability of the trajectory being on a transition
path. PðTPÞ is a multiplication factor that does not depend on x and reflects
the fraction of time spent by a protein on transition paths over a long
equilibrium trajectory in which multiple transitions have occurred. The transi-
tion state structures are defined as those points in the configuration space
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corresponding to the maximum of PðTPjxÞ; transition states maximize the prob-
ability that folding paths passing through them are reactive. Note that Eq. [19]
combines information from both equilibrium and transition path sampling.

For the case in which the configuration space is one-dimensional,
Eq. [19] can be solved analytically using Langevin dynamics in the high-friction
(diffusive) limit. It can be shown in this simple case that

PðTPjxÞ ¼ 2PfoldðxÞ½1� PfoldðxÞ� ½20�

where PfoldðxÞ is the usual commitment probability for point x (probability to
reach products B in the general case). Because PðTPjxÞ is quadratic in Pfold, it
reaches its maximum value of 1/2 when PfoldðxÞ ¼ 1/2. Recalling that Eq. [20]
delineates the region in configuration space where points have equal probabil-
ity of reaching either state A or state B, it becomes clear that in the one-dimen-
sional case, the Hummer approach to identifying the TSE is equivalent to the
method based on the stochastic separatrix idea described. The analytical
expression for PðTPjxÞ can be extended into multidimensional spaces using
a shooting algorithm of transition path sampling.168 Although slightly more
complicated than in the one-dimensional case, the expression is based solely
on commitment probabilities Pfold and thus predicts that points belonging to
the stochastic separatrix will maximize PðTPjxÞ.

A generalization of the Hummer method that is useful for protein folding
problems results when the entire configuration space is projected onto a
selected low-dimensional (reaction) coordinate q. In this case, all equations
derived above remain the same, with the distributions now pertaining to a sub-
set of configuration space given by the condition q ¼ qðxÞ. For example, the
equilibrium distribution featured in the denominator of Eq. [19] is written as

PeqðqÞ ¼
ð
d½q� qðxÞ�PeqðxÞdx ½21�

It follows from Eq. [19] that PðTPjqÞ is large when qðxÞ is visited frequently in
the transition paths and only rarely visited in equilibrium. The condition of
being visited infrequently in equilibrium delineates the region of least probable
points in configuration space. It corresponds to the free energy barrier. It thus
follows that an appropriately defined reaction coordinate q should have a
sharply peaked PðTPjqÞ.

The definition of transition states proposed by Hummer140 allows for
numerical implementations in computer simulations. PðTPjqÞ can be deter-
mined conveniently by launching (‘‘shooting’’) trajectories from the phase
points x on the surface qðxÞ ¼ q,

PðTPjqÞ 	 # accepted shooting moves at q

# attempted shooting moves at q
jPeqðqÞ ½22�
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where x is drawn from the equilibrium distribution PeqðqÞ � PeqðxÞd
ðq� qðxÞÞ. Alternatively, Eq. [19] can be used directly. Distributions PeqðqÞ
and PðqjTPÞ can be determined from generalized-ensemble techniques (such
as multicanonical43 or umbrella sampling169) and transition-path sampling
methods,168,170 respectively. Another option for computing these distributions
would be to use a long and sufficiently equilibrated trajectory. The relative
merits of these numerical methods have yet to be established, and no protein
system has thus far been studied using Hummer’s method.140

Determination of Transition States Based on /-Value Analysis
f-value analysis is a protein engineering technique introduced by Fersht

et al.171 to determine transition state structures through site-directed mutagen-
esis. A f-value reflects the extent to which the transition state is destabilized
by a mutation. It is defined as

fT ¼ ��Gy

��G0
½23�

where

��Gy ¼ ��Gy
mut ���Gy

wt ½24�

is the change in the height of the folding free energy barrier and
�Gy ¼ Gy �GU, and Gy and GU are the free energy of the transition and
the unfolded state, respectively. The subscript T in Eq. [23] reflects the thermo-
dynamic nature of this definition of f, in contrast to a kinetic definition that
we will introduce later in the text. The subscripts mut and wt in Eq. [24]
denote the mutant and wild-type proteins. ��G0 ¼ GN �GU reflects the
change in the protein’s stability after a point mutation has been made. GN

is the free energy of the folded native state, and Gu is the free energy of the
unfolded state. Figure 18 illustrates all terms involved in Eq. [23]. The free
energy barrier �Gy cannot be measured experimentally in a direct way. How-
ever, for two-state folders (which possess single exponential kinetics),
�Gy ¼ Gy �GU is related to the folding rate through

k ¼ kT exp ��Gy=kBT
� � ½25�

where kB is Boltzmann’s constant, T is the temperature, and kT is the transmis-
sion coefficient that denotes the time required for a barrierless folding transi-
tion. Microscopic expressions for kT depend on the theoretical description
being employed. Several transition state theories, as well as Kramers’ model
of diffusive dynamics, suggest that the relationship given in Eq. [25] is the
functional dependence of the folding rate on the free energy barrier.146
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When the influence of mutations on the transmission coefficient are negligible,
Eqs. [23] and [25] lead to the Eq. [26], which can be used experimentally to
compute f-values:

fk ¼ �kBT ln kmut=kwtð Þ
��G0

½26�

In Eq. [26], kmut and kwt are the folding rates of the mutant and wild-type pro-
teins, respectively. The experimental f-values bear the subscript k to denote
their kinetic nature and to distinguish them from the thermodynamics fT

values. f-values measure the extent of structure in the TSE. Values close to
0 indicate that the mutation has little effect on the kinetics of folding
ðkmut 	 kwtÞ and that the mutated residue lacks structure in the TSE. f-values
close to 1 correspond to mutations that affect folding rates (and hence the free
energy barrier for folding) dramatically and have mutated residues that experi-
ence a native-like environment in the TSE. We emphasize that Eq. [26] is valid
only when the protein displays single exponential kinetics and when the pre-
exponential factor in Eq. [25] is invariant to protein mutation. We note that it
is possible to devise protein models having exponential folding kinetics but
with a folding rate that is not described by Eq. [25]. Examples of such systems
are proteins with low free energy barriers, where folding is described by a full
Kramers’ expression7 but not by its approximate form.172 Given these caveats,
it is desirable to investigate in greater depth the conditions under which the
kinetic fK and thermodynamic fT values are equivalent. Understanding these
conditions is especially important because it can help determine when f-value
analysis can be used to characterize protein transition states.

Lattice simulations by Onuchic et al.172 reveal that the relationship
between thermodynamic and kinetic f-values depends strongly on the

mutant

wt

†

†

N Uq

G(q)

Figure 18 The various free energy terms involved in f-value analysis.171 The free energy
as a function of a reaction coordinate q is plotted for the wild-type (wt) (solid line) and a
mutated protein (dashed line). Mutations can affect both the stability of the native state
�G0 ¼ GN �GU and the height of the folding free energy barrier�Gy ¼ Gy �GU. The
relative change in these quantities ��Gy=��G0 upon mutation is the f-value.
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frustration of the protein model. For unfrustrated models, a near-perfect match
between fk and fT parameters exists, whereas frustrated sequences display a
poor correlation between fk and fT . A similar conclusion about the role of
frustration in determining the validity of Eq. [26] was reached by Shea
et al.32 It was shown that large amounts of frustration lead to a clear deteriora-
tion of the agreement between the thermodynamic and the kinetic f-values
using simulations of an off-lattice protein model. Moreover, it was found
that sequences containing moderate amounts of energetic frustration may still
possess two-state folding kinetics. Despite this apparent two-state behavior,
the correlation between fk and fT was found to be poor for these sequences.
Nonexponential kinetics, a signature of excessive amounts of frustration in a
protein, rules out the use of f-values for determining TSE structures.

f-values can be evaluated numerically in several ways. fk-values are
determined from Eq. [23] by running kinetic simulations (of the wild-type
and mutated proteins) and determining the respective folding times/
rates.32,167,172 Free energy differences ��G0 are estimated using a folding
order parameter that can distinguish between the denatured and the folded
states (this parameter need not be a successful reaction coordinate). Thermo-
dynamic fT-values are determined numerically by reexpressing Eq. [23] as
follows:31,33,157

f ¼ loghe�b�Eiy � loghe�b�EiU
loghe�b�EiN � loghe�b�EiU

½27�

The free energy differences are not estimated directly. Instead, an averaging
of the difference in potential energy between the mutant and the wild-type
proteins is performed, which requires only one trajectory of the wild-type
protein.31,33,157

f-values can be estimated by Eq. [28] provided that entropic effects of
the mutations are negligible and the internal energy of a protein is approxi-
mately proportional to the number of native contacts formed (as is the case
for G�oo models):157

f ¼ hNiy � hNiU
hNiN � hNiU

½28�

The quantity hNiL denotes the ensemble average number of native contacts in
a macroscopic state L (with L corresponding to the unfolded U, folded N or
transition y states). A simplification of Eq. [28] results when the fraction of
native contacts in the unfolded state can be neglected:

f ¼ hNiy
hNiN

½29�
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The class of proteins for which Eq. [29] holds true are those possessing transi-
tion states that are very close, structurally, to the native state.173 In addition to
point mutations, computer simulations allow one to introduce perturbations
by modifying/canceling native contacts. An analog of Eq. [29] for such pertur-
bations is Eq. [30]:32,172

f ¼ Py
ij � PU

ij

PN
ij � PU

ij

½30�

where PN
ij , P

U
ij and Py

ij denote the probability of formation for the ‘‘mutated’’
contact ij in the native (N), unfolded (U), and transition (y) states, respectively.
Figure 19 summarizes the variety of methods available for computing f-values
in computer simulations.

−kT log

∆∆G0

∆∆G†

∆∆G0

km

kwφ

φ

φ

φ

=

=

=

=

=

Reduced frustration

log <e−       >† −log <e−       >U
β  β

log <e−       >N −log <e−       >U
β β

Entropic effects of mutations are neglected. Every
contact contributes same amount of potential energy

P†
ij − PU

ij    <N>† − <N>U

PN
ij − PU

ij    <N>N − <N>U
;

Transition state
is structurally
close to the
native state

< N >†

< N >U

∆E ∆E

∆E∆E

Figure 19 Numerical methods available for the evaluation of f. The expressions rely on
specific approximations, as discussed in detail in the main body of the text. Here �E is
the energy difference between the mutated and the wild-type protein, PL

ij is the
probability of contact formation for the ij pair in state L, and hNiL is the ensemble
average number of native contacts in state L (unfolded, native, or transition). The
remaining terms have been introduced in the previous figures.
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Equation [29] serves as the basis for a numerical method of computing
TSEs developed by Vendruscolo et al.143 The method builds on the observa-
tion that transition state structures are intrinsically unstable; they are located
at the top of the folding free energy barrier and are thus rarely visited in simu-
lations. To enable a more ready determination of transition state conforma-
tions in simulations, Vendruscolo et al.143 proposed to increase their
statistical weight by imposing a biasing or restraining potential that forces
sampling of the conformational space around the TS region. A straightforward
way to accomplish this is to identify variables that describe the TSE uniquely
and then to impose a potential that has a minimum around the TS values of
those variables. Figure 20 illustrates the effect on the free energy profiles when
such external potentials are introduced. Under these conditions, the free
energy barrier is transformed into a free energy minimum.174 Vendruscolo
et al.143 proposed that f-values be used as the parameter that defines a transi-
tion state. Equation [29], introduced by Li and Daggett in their early evalua-
tions of the TSE,125 is employed to estimate f-values from simulations. The
quadratic form in f that enforces sampling of the TSE is employed as the
restraining potential:

Eminð�Þ ¼ hNiN
Nf

X
i

½fexp
i � fMD

i ð�Þ�2 ½31�

Here fexp
i denotes the set of f-values available from experiment, Nf is the

total number of those values, and the molecular dynamics fMD
i ð�Þ is taken

from Eq. [29] for a given conformation �. Even though this method enforces

Restrained potential

UN

U

Reaction coordinate

Figure 20 The method of Vendruscolo et al.143 recognizes the fact that transition state
structures are difficult to observe because they are located at the top of the folding free
energy barrier and are thus rarely visited in simulations. To increase the statistical
weight of these structures, a biasing potential is introduced that has a minimum in the TS
region and drives the system away from both native and unfolded states. As a result, the
free energy profile undergoes a transformation from a bimodal shape with populated
native and denatured states to a unimodal shape where mostly TS structures are present.
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sampling of conformations with f-values close to those determined experi-
mentally, Eq. [31] cannot reproduce most characteristics of the TSE structures
reliably. For instance, the degree of compactness of the TSE, as measured by
the radius of gyration, was found to be largely underestimated when simula-
tions are run using Eq. [31] alone.143 To better control sampling of TS struc-
tures, an additional potential term is thus introduced:

Elð�Þ ¼ lEminð�Þ þ ð1� lÞEGoð�Þ ½32�

EGoð�Þ is taken to be a G�oo-type potential, which is designed to drive the pro-
tein toward its native state. The relative importance of the two terms Emin and
EGo is controlled by the adjustable parameter l. This parameter is fine-tuned
to ensure that exposure of the TS structures to the surrounding water mole-
cules matches that measured in experiment. Using Monte Carlo simulations
of a Ca-based model, it was found that l ¼ 0:85 can properly reproduce
the experimentally observed degree of solvent exposure for the TSE of
acylphos-phatase.145

By design, the restraining potential (Eq. [31]) ensures that all fMD
i ð�Þ

sampled in a simulation are distributed sharply around the experimental
values fexp

i . It should be noted, however, that experiments provide informa-
tion about average values of f only and not about their distributions. A variety
of different distributions in f can produce the same average, simple examples
of which include unimodal and bimodal distributions. It is unknown, a priori,
what type of f distributions are appropriate for a given protein; using Eq. [31]
may thus introduce distortions into the computed TSE by enforcing a unimo-
dal distribution of f. This serious drawback of the original Vendruscolo method
has been corrected.144 The main modification concerns the way in which
MD-derived f-values are evaluated. Rather than computing fMD

i from
Eq. [31] for a given conformation �, several identical yet independent copies
(replicas) of the original system are run in parallel, and fMD

i is estimated as an
ensemble average over these replicas. The advantage of this improved ensem-
ble Monte Carlo method is that the type of f-distribution is not assigned arbi-
trarily. Instead, the protein is free to pick the one that is dictated by its
topology and specifics of its sequence. The most important outcome of this
improvement is that the restraining potential does not limit the number of cri-
tical nuclei that comprise the transition state.143

An extension of the Vendruscolo method involves computer simulations
and experimental measurements that are carried out in an iterative manner to
make more efficient use of the information encoded in f-values.145 To map
out the transition state, protein engineering is usually performed on all resi-
dues that are amenable to conservative mutations. The iterative method pro-
posed by Paci et al. eliminates most of this labor-intensive and time-consuming
process by reducing the number of mutations that need to be performed
experimentally. The method is based on the premise that the critical nucleus
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(CN), which represents the entire TSE as an ‘‘average’’ structure, is defined by
only a few residues. Performing ensemble Monte Carlo simulations using the
f-values of the CN residues ensures that the f-values of residues not belonging
to the CN are still represented correctly. Hence, it is sufficient to determine the
f-values of the critical residues alone to reconstruct accurately the TSE. An
iterative procedure is introduced to determine which residues comprise the
CN. The procedure is initiated with a guess of the CN and the measurement
of the f-values for that presumed nucleus. In the first step of the iterative pro-
cess (step A), computer simulations are run using the measured f-values and
the corresponding TSE is generated. f-values are then computed (via simula-
tion) for this putative ensemble and analyzed in terms of their variation. A resi-
due belonging to the CN should have a simulated f-value distributed narrowly
around unity. Contrarily, residues not included in the restraining potential will
show a wide distribution of f-values. By monitoring the width of the com-
puted f-distribution, other residues can be identified that need to be included
in the experiment, thus improving on the initial guess of the TSE determined.
In this next step of the procedure (step B), residues displaying the greatest
variation in f are chosen for further experimental measurement. The newly
obtained experimental f-values are thus used as input for the Monte Carlo
simulations, in which the procedure returns to step A with a larger set of resi-
dues. The iterations between steps A and B are continued until the convergence
of f-values at two consecutive iterative steps is observed, or until there are no
remaining residues whose f-values can be measured. For a fibronectin type III
domain protein,145 the method showed that f-values for only 30 residues
needed to be measured to identify the structure of the TSE successfully (only
one third of the total number of residues of the protein). Significantly, only
three theory/experiment iterations were needed to achieve convergence in
the properties of the TSE, demonstrating the efficiency of this technique.

To conclude this section, we provide a short list of examples validating
f-value measurements as a useful tool for examining protein transition state
structures. For each citation, we include the numerical method that uses these
measurements to reconstruct transition state structures in computer simula-
tions. Li and Daggett125 found for the CI2 protein that the f-values of its
TS conformations obtained using the clustering analysis are in good agreement
with those measured experimentally. Later work for the same protein
showed156,163 that the TSE conformations derived on the basis of experimen-
tal f-values exhibit Pfold� 1/2. A similar result was obtained in the kinetics
simulations of Gsponer and Caflisch158 for the src SH3 domain. Their simula-
tions were started from putative TS conformations constructed using the f-
value approach, and they found that trajectories had equal chances to fold
or to unfold. Good agreement between computed and measured f-values
was also observed for the AcP protein.143 It seems that the f-value method
of identifying the TSE is applicable to a wide class of proteins. We note a fail-
ure in the case of protein G,166 however, where conformations predicted to
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belong to the TSE had average Pfold close to the desired 1/2 but were distrib-
uted bimodally.

CONCLUSIONS AND FUTURE DIRECTIONS

We have presented an overview of simulation methodologies currently
used to study the thermodynamics and kinetics of protein folding. Modern
approaches range from very simplified lattice models, to more sophisticated
off-lattice models, to atomically detailed, solvated systems. Taken together,
the coarse-grained and detailed descriptions of proteins can provide a compre-
hensive picture of folding and augment and guide experimental studies.

This review has focused on the folding of small, two-state folders in idea-
lized, dilute environments (in vitro folding). In everyday life, however, proteins
fold in the more complex cellular environment and they often do not behave as
simple two-state folders. Recent experimental advances175,176 offer new
insights into how in vivo environment affects folding, but we still lack a the-
oretical grasp of the complications that originate within the cell. Crowding in
the cell, sequence mutations, and changes in pH or temperature can cause the
folding process to go astray and lead to improperly folded entities. A particu-
larly deleterious result is the self-assembly of misfolded structures into large,
insoluble fibrillar aggregates. These aggregates are often lethal to the cell
because of the resulting deficit of functional proteins or induced toxicity
from both small soluble oligomers and larger fibrils.175 Several seemingly
unrelated diseases, including type II diabetes,177 Creutzfeld-Jacob,178 and
Alzheimer’s disease,179 and certain forms of cancer, come from the misfolding
of specific proteins. The cell has evolved several defense mechanisms to protect
itself from protein misfolding, crowding, and aggregation. Chaperone-
mediated folding is one of the most important, yet most poorly understood,
of these mechanisms.180 Chaperones are macromolecules, often proteins them-
selves, that recognize incorrectly folded proteins, assist folding, and in some
cases can even reverse aggregation.

One theoretical challenge in the next decade will be to model protein
folding in a cellular environment and develop a sound, theoretical framework
for in vivo folding. Progress is already being made in this direction, with simu-
lations on the effects of crowding,181 the process of aggregation,182–188 and
the mechanism of chaperone-assisted folding189–196 underway in several
research groups.
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INTRODUCTION

Ion channels are proteins embedded in the lipid membrane of biological
cells. They interact in a complex way with their environment and are respon-
sible for finely regulating the flux of ionic charge across the membrane. For
instance, the generation and transmission of potentials in nerves and muscles,
as well as the hormone release from endocrine cells, are believed to be mechan-
isms governed by the transport of ionic charge through these protein ‘‘gates.’’1

Since the demonstration in 19762 of a reliable experimental metho-
dology for the detection of currents flowing through individual ion channels,
several refinements of the experimental setup have been successfully applied to
a variety of membrane and cell configurations, both in vivo and in vitro.3 The
extraordinary progress of those experimental techniques triggered an increas-
ing theoretical effort aimed at the understanding of the role of ion channels in
the physiology of complex biological systems, and, more generally, their influ-
ence on the electrical equilibrium between the cells and their environment.
Besides the purely theoretical aspect, important pharmacological advances
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have arisen from improved knowledge of ion channels.4 Furthermore, from an
engineering viewpoint, ion channels are being envisioned as a key component
in a new generation of biosensors that integrate the selectivity and extreme
sensitivity of ion channels with the processing capabilities of modern
microelectronics.5–7

The appeal of the many possible applications of ion channels is only one
part of the complete story. The interest of the computer modeling community
has also been triggered by several concomitant events: (1) the availability of
reliable protein structural data, (2) the capability of producing mutants by
reprogramming the genetic sequence of bacteria, (3) the availability of repro-
ducible experimental data on the electrophysiology of individual channels, and
(4) the availability of adequate computational machinery (hardware and soft-
ware) for the realistic modeling and simulation of ion channels in their envir-
onment. All these contributions occurred more or less simultaneously during
the last decade, and produced a rather unusual synergy among experimental-
ists, theoreticians, and computational scientists who combined their efforts in
order to relate the structure of ion channels to their function.

A peculiar aspect of the research on ion channels is that it frequently
involves researchers working in traditionally different disciplines. The solid-
state electronics community, for example, is well aware of the fact that tradi-
tional scaling – i.e., the reduction of the feature-size of transistors needed to
increase the performance of integrated circuits8 – will soon be inadequate
to satisfy the requirements of emerging technologies.9 A natural solution is
to increase the complexity rather than the speed of the basic components,
and much can be learned from ion channels, which are extremely specialized
and miniaturized low power devices. Transistors are definitely faster than ion
channels, but the advantage due to their operational speed is compensated by
the complexity of the operations performed by ion channels. It appears clear
that the full understanding of ion channel properties will allow for either the
modification of their design for novel applications, or for manufacturing ana-
logous structures capable of emulating their functionality.

This chapter is intended to be an introduction to the numerical techni-
ques used for the simulation of charge transport through ion channels. The
complexity and the size of the systems to be simulated will be stressed through-
out the entire chapter, as well as the potential for the practical applications of
ion channels in several fields. We firmly believe that the computer simulation
of ion channels is not just a ‘‘large scale’’ problem that will be progressively
solved as computer performance naturally evolves. High performance comput-
ing is only one component of the solution, and much work is needed for devis-
ing and integrating adequate physical models and algorithmic approaches.
Therefore, ion channel simulation is a good example of the assertion that
‘‘computers do not solve problems, people do.’’10

In addition to the introduction, this chapter consists of four main sec-
tions and some concluding remarks. First, a description of the computational
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methods used to model the electrostatic framework of ion channels is given,
including a discussion of the boundary conditions traditionally used. A rather
detailed description of efficient algorithms for the solution of Poisson’s equa-
tion in real space is supplied for representing the long-range electrostatics of
ion channel systems. This approach has been identified as a possible improve-
ment of the force-field models used in particle-based simulation (molecular
and Brownian dynamics),11,12 but its popularity is low because it has been lim-
ited to simple test problems. The two following sections are devoted to the var-
ious models of ionic charge transport through the channels. In particular, a
classification of continuum and particle-based methods is provided, and a dis-
cussion of their modeling capabilities is presented. The need for a hierarchy of
numerical approaches needed to model the behavior of the systems of interest
at different time and space scales is discussed in the penultimate section. The
last section is devoted to problems that are still open, and to the future direc-
tion of research on the numerical simulation of biological ion channels. For
reasons of space, this chapter focuses mainly on the numerical methods used
to directly model charge transport in biological ion channels. However, it
should be noted that a great deal of information on these systems and their
properties is obtained with other techniques such as quantum chemistry (or
structural ab initio) methods and by stochastic sampling approaches for the
analysis of trajectories in the phase-space (Monte Carlo methods).

The remaining part of the introduction will be devoted to the description
of the simulative environment required to model the operation of ion channels.

System Components

Ion channels interact strongly with their environment. From a micro-
scopic viewpoint, these proteins cross the lipid bilayer that forms the cell mem-
brane, and are exposed to the electrochemically different environments found
inside and outside the cell. They are designed to react in a highly specialized
way to specific stimuli – mechanical, chemical, or electrical – and to express
their function by regulating the ionic flux across the cell membrane. For this
reason, any simulative approach meant to model ion channels must account in
some way for the combined behavior of the protein channel, the membrane,
and the aqueous solution containing the ionic species of interest. Additionally,
a way to represent a specific stimulus must be devised, in order to model the
transient behavior of the channels as a function of the ‘‘external’’ perturbation.

The Protein
Because of the highly specialized functions they perform, ion channels are

classified into different families. These families are based upon the ions those
channels selectively allow to flow into and out of the cell. This functional clas-
sification1 has been adopted as a result of the early electrophysiologic experi-
ments on ion channels, and its success is due to the strict relation between the
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structure of the channels and their function. It should be noted that several
channels that allow the diffusive flow of non-ionized substances across the
membrane exist, an example of which is the mechano-sensitive channels reg-
ulating the bacterial cytoplasmic pressure by responding to membrane ten-
sion.13 Most of the basic models discussed in this chapter apply to these
diffusive channels as well.

Most of the membrane proteins contain a-helices and b-sheets connected
in structures of varying complexity. Within a specific structure, some helices
cross the membrane from one side to the other, while other segments of the
protein are confined in a more limited region. The amino-acid sequences are
structured in such a way that one or more pores are formed inside the protein,
that are large enough to allow for ionic flow. The protein structure is flexible
and, in many cases, the functionality of ion channels is achieved by structural
changes occurring in specific locations of the amino acid sequence.

From the functional viewpoint, we will discuss mainly the operations of
ion channels in relation to the following three properties: permeation, which is
the property of allowing ions to cross the strong dielectric barrier due to the
cell membrane; selectivity, which is the capability of discriminating between
the ionic species flowing through the channel structure; and gating, which is
the capability of modulating the flux through the channel in response to an
external stimulus. It is important to note that gating occurs on a time scale
several orders of magnitude longer than the typical transit time of one ion
though the channel pore. This is a critical aspect of these systems that must
be accounted for in the simulation: The crucial physics occurs on distances
measured in a few angstroms and starts on a femtosecond time scale, while
the resulting physiological functionality is expressed in milliseconds and on
distances measured in microns. The ability to relate the ultrafast microscopic
processes occurring in channel proteins to their slow physiological expression
is the challenge of ion channels simulation.

The structural features of some channels will be presented briefly in the
remaining part of this introduction. This discussion is not meant to offer a
classification of ion channels, but rather some key features of notable struc-
tures that are used as examples in this chapter. The three channels we now
describe are: Gramicidin A, potassium channels and finally porins.

Gramicidin A. Gramicidin A (gA) is a small 15-residue antibiotic peptide
formed as a dimer in a head-to-head (HH) or a double-helical (DH)
conformation.14 Because of its simplicity and reduced dimensions, the gA
structure has been studied extensively and simulated as a model for
ion channels,15–19 and has emerged as a benchmark for simulation
approaches.20–24 The structure exposes its hydrophobic sidechains to the
lipid membrane that embeds the protein. The molecular structure of gA has
been known for three decades,25 and has been recently resolved with NMR
spectroscopy.26,27 The relation of the structure seen spectroscopically to that
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in membranes which conducts ions is being investigated.28 Figure 1 shows the
gA backbone structure perpendicular to the pore and a top view along the
backbone structure showing the hydrophobic sidechains for the (a) DH29

and (b) HH30 conformations. The interaction of the protein with the lipid
bilayer (hydrophobic matching) has been modeled quantitatively31,32 and
measured experimentally,33 as has its properties of water transport.14,34

Concerning gating, characteristically fast (sub-millisecond) closure events,
called flickers, have been attributed to either conformational changes (lateral
shifts of the monomers35) triggered by the breaking of the hydrogen bonds
joining the dimer in the HH configuration, or by undulations of the bilayer
that modify the conductive state of the protein.36 Novel experimental
techniques, such as patch-clamp fluorescence microscopy,37 are being
devised for detailed observation of the conformational changes of this
simple structure. From a charge transport viewpoint, gA selects monovalent
cations and its conductivity depends on both the membrane conformation
and the ionic concentration surrounding it.38

Figure 1 Atomic structure of a (a) double-helical (1mic.pdb29) and (b) head-to-head
(1mag.pdb30) conformation of Gramicidin A. The pictures to the left show the backbone
representation perpendicular to the pore. The pictures to the right show a view parallel
to the channel that includes the hydrophobic sidechains. The pictures were generated
with VMD.39
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Potassium Channels. Potassium channels, or K-channels are present in nearly
all cells,1 and play a key role in stabilizing the membrane potential in excitable
cells. They are therefore crucial for the electrical functionality of the nervous
system. They are characterized by an extreme selectivity (their permeability for
Kþ is thousands of times larger than that of the smaller Naþ ions), and by a
high diffusivity (comparable to bulk water). The molecular structure of several
K-channels has been disclosed by means of X-ray spectroscopy. In particular,
a 3.2 Å resolution mapping of the pH-dependent bacterial KcsA channel
was performed by Doyle et al.,40 and a higher resolution (2.0 Å) structure
has been subsequently disclosed by the same group.41 The structure of the
ligand-gated MthK channel, which opens in response to intracellular Ca2þ42

has also been determined, and the structure of the voltage-gated43 KvAP
channel has been published recently.44 Together with accurate structural
data, several hypotheses about the functionality of these ion channels have
been formulated.

The three K-channels listed above are tetrameric assemblies with sub-
units sharing the same signature amino acid sequence TXGYGD of the selec-
tivity filter. Also common is the topology of the ionic permeation channel,
composed of two transmembrane helices (inner and outer helix) per sub-
unit. The two transmembrane helices are joined by a pore sequence con-
structed with a shorter pore helix plus the selectivity filter segment.

The KcsA channel is characterized by this simple transmembrane archi-
tecture (see Ref. 40, and the left side of Fig. 2), and its activation has been
attributed to pH-dependent translations and rotations of the two transmem-
brane helices.45 Because of its relative simplicity, KcsA has been simulated
extensively with a variety of approaches, and, like gA, it too can be considered
a benchmark system for simulation codes.38

Figure 2 Two sub-units of the KcsA (left) and MthK (right) potassium channels
embedded in an explicit POPC lipid bilayer. The atoms lining the selectivity filter are
represented as spheres to show the individual ‘‘cages’’ which represent the binding sites
of Kþ ions. The KcsA and MthK structures are obtained from the protein database codes
1bl8.pdb40 and 1lnq.pdb,42 respectively.
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The MthK channel has an additional large gating ring below the
membrane-spanning pore (right side of Fig. 2, the gating ring is not included).
The gating ring is responsible for converting the free energy of intracellular
Ca2þ into mechanical work that pulls apart the helices of the transmembrane
pore and opens it to allow potassium permeation.42 Finally, the sequence of
the voltage-dependent KvAP channel shows six transmembrane helices: the
same two hydrophobic segments of KcsA and MthK (segments S5 and S6)
and four additional helices (S1–S4) that constitute the voltage-activated
gate. A section of S3 (S3b) and S4 define a mobile ‘‘voltage-sensor paddle.’’44

Recent experiments46 suggested that, due to the presence of charged amino
acids in S4, the channel undergoes a dramatic conformational change in the
presence of an adequate transmembrane voltage: the ‘‘paddle’’ rotates more
or less rigidly and crosses most of the lipid membrane pulling open the pore
made by the helices S5 and S6. This interpretation of the gating mechanism of
MthK is currently under intense investigation (see, for example, Ref. 47).

The permeation path of K-channels shows a very irregular (but highly
functional) profile:38 a hydrated ion moves (outward) initially through the
intracellular gate made by the tips of the inner helices, enters a large central
cavity (that probably favors monovalent cations over intracellular polyvalent
cations48) filled with tens of water molecules, and then crosses the extremely
narrow (angstrom size) selectivity filter where its solvation is at least partially
due to carbonyl oxygen atoms rather than water.41 A potassium ion therefore
changes its hydration configuration during the journey, and travels an electro-
statically irregular pathway to exit the cell. K-channels are engineered in such
a way that this process is extremely fast and highly K-selective.

Porins. Porins are the first channels for which an atomic crystal structure was
available.1 These proteins function as ion channels with high conductivity and
relatively low selectivity.38 Because of the availability of experimental data,49

porins have been used extensively to build and test simulation methods for ion
channels. Many mutants of the bacterial trimer OmpF have been synthesized
and modeled.50 The permeation process has been simulated with different
molecular dynamics approaches.51,52 OmpF is a relatively large polypeptide
made of three monomers composed of 340 amino acid each. The monomer
is a hollow b-barrel structure formed by 16 antiparallel b-strands. The
structure has eight loops (L1-L8) that form the water-filled pore. Loop L3
folds inside the barrel and generates a structural constriction that reduces
the lumen of the pore to a diameter of approximately 6 Å. A top view of
the three monomers of OmpF (protein database code 2omf.pdb53) is shown
in Fig. 3 (right), where the L3 loops are represented by the large shaded
cylinders. The OmpF crystal structure embedded in an explicit lipid
membrane is also shown on the left side of Fig. 3. The charge distribution
in the proximity of the constriction and all over the length of the pore,
plays a crucial role in the permeation properties of OmpF. Furthermore, the
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close proximity of negative and positive charges within the constriction zone
generates an intense electric field that interacts with ions and determines the
channel conductivity. The ionization state of the residues in the pore
changes with the pH of the solution, suggesting that OmpF may function as
a pH-gated channel in some conditions. The role of the conformational
changes due to molecular flexibility (particularly for the L3 loop) is still an
open question for the understanding of the functionality of OmpF.

The electrical properties of OmpF have been measured for long times,
both with patch-clamp techniques and on planar lipid membranes.49 A high-
resolution electrostatic mapping of the trimer was obtained with atomic probe
microscopy,54 while a systematic electrostatic modeling of the pore lumen has
been recently performed by two groups50,51 who did not limit their study to
the wild protein, but comparatively analyzed several mutants. The electro-
static landscape of OmpF is a typical example of how the balance between
strong interactions finely tunes the properties of a channel. Ionic trajectories
have been simulated both with Brownian and molecular dynamics simulation
codes,52 and the role of ion-ion interaction within the pore has been stressed as
being important.

The Membrane
The cell membrane is made of amphipathic molecules consisting of

one polar, hydrophilic head and one (or two) nonpolar, hydrophobic tails.55

In an aqueous environment the lipid molecules spontaneously aggregate into
conformations that minimize the interaction between water molecules and the
hydrophobic tails of the lipids. One configuration that is energetically favor-
able is that where the lipid bilayer,56 composed of two parallel sheets of lipid
molecules, is oriented in such a way that the molecular heads are in contact
with the aqueous solution and the tails are inside the membrane thickness.
Under conditions of normal cell function, the lipid is an extremely stable
two-dimensional structure that rapidly reassembles itself if disturbed or broken.

Figure 3 The OmpF porin channel (left) embedded in an explicit POPC membrane, and
(right) the corresponding top view of the OmpF. The L3 loop in the constriction zone of
the three monomers is represented by the large shaded cylinder. The structure has been
obtained from the protein database (2ompf.pdb)53 and the plot has been rendered with
VMD.39
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The three main classes of lipids present in cell membranes are phospho-
lipids, glycolipids and cholesterol.57 Phospholipids are the most abundant of
the biological membrane lipids and are assembled from fatty acids, alcohol
and phosphate. The hydrophilic head is composed of an alcohol (such as cho-
line) joined through a phosphate to either glycerol or sphingosine. Fatty acid
hydrocarbon chains are attached to the lipid molecule through the glycerol or
sphingosine and constitute the hydrophobic tails. The phospholipids based on
glycerol are called phosphoglycerides while those based on sphingosine are
called sphingolipids. The phosphatidylcholine (POPC) molecule, shown in
Fig. 4 is the most common phosphoglyceride in biological cells,57 and is char-
acterized by a choline molecule attached to the phosphate at the hydrophilic
head. Additionally, one of the hydrocarbon tails is fully saturated while the
other contains several unsaturated bonds, creating the tail kinks shown in
Fig. 4. The fluidity, or lateral diffusion of lipid molecules within the bilayer,
depends on the length and saturation of the hydrocarbon tails. A cross section
of a lipid bilayer formed with POPC molecules is shown in Fig. 5. Long hydro-
carbon chains increase the ‘‘drag’’ on a lipid while unsaturated bonds improve
the lipid mobility due to the reduction of the overall packing density. The
phospholipid sphingomyelin is distinguished from POPC by a long hydrocar-
bon chain of sphingosine which substitutes for one of the fatty acids in the
hydrophobic tails.

Figure 4 The head group of the lipid molecule phosphatidylcholine is composed by a
choline, a phosphate and a glycerol, while the hydrophobic tails are formed from two
fatty acid chains. The atomic coordinates of the lipid molecule are from the work of
Tieleman et al.,58 and the plot is rendered with VMD.39

Figure 5 Cross section of a membrane composed of phosphatydylcholine molecules.
The graphic rendering has been obtained with VMD.39
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The second class of lipids are glycolipids. They are structurally similar to
sphingomyelin except they contain sugar residues, such as glucose or galac-
tose, instead of the phosphate-alcohol group in the hydrophilic head. The
sugar residues in glycolipids are always oriented on the extracellular side of
the membrane and form part of the carbohydrate coating that surrounds
most animal cells.

Cholesterol is a steroid that has a different structure than either phospho-
lipids or glycolipids. The body is constructed primarily of four hydrocarbon
rings. The polar head is formed by a hydroxyl group attached at one end while
a long saturated hydorphobic hydrocarbon tail is attached to the other end of
the ring system. The steroid rings form a rigid planar structure that reduces the
fluidity of the plasma membrane. In animal cells, cholesterol molecules are
located between the phospholipids, filling the spaces from the kinked unsatu-
rated bonds of the hydrocarbon tails thus making the lipid more rigid.

The precise composition of the lipid membrane in biological cells is
inherently complex, and varies depending on both the species and type of
cell. In addition, the local distribution of the lipid molecules within a single
bilayer can be highly disordered, and, the two corresponding monolayers
are generally asymmetric.55 The inclusion of transmembrane structures, such
as ion channel proteins and polymers, further complicates the picture. The
extremely heterogeneous nature of the bilayer combined with the flexibility
and polarizability of the lipid molecules makes the study of membranes in
real biological systems a formidable task, both from the experimental and
the computational viewpoint.

Because of the fluctuations of the flexible biological membranes, the
structural characterization of lipid bilayers is an arduous task when atomic
details are sought.59 Indeed, structural information about the membrane thick-
nesses, such as the hydrophobic thickness and head group separation, as well
as the lipid density, are very difficult to quantify. This results in a large uncer-
tainty in the experimentally determined structural parameters of lipid bilayers
found in the literature. For example, values of the average area per phospho-
lipid molecule measured in a single lipid system can vary by nearly 30 Å2.59

The simulation of lipid bilayers provides a method for probing micro-
scopic details of the lipid system, and relates those details to the macroscopic
behavior observed experimentally.56,60 The molecular dynamics approach is
the most popular choice for membrane simulation, because it provides infor-
mation about the spatial and temporal evolution of both single species phos-
pholipid membranes,61,62 and multi-lipid systems.63–65 For example,
molecular dynamics allowed for the characterization of phospholipid bilayers
in terms of their interaction with water, and revealed that the orientation of
the water molecules compensated for the fluctuations in the lipid head group,
resulting in an almost constant membrane dipole potential.61,66

Although molecular dynamics is arguably the most accurate simulation
technique, the characteristic relaxation times of the lipid system are generally

238 An Introduction to Numerical Methods



orders of magnitude larger than the time that is needed to obtain statistically
significant results.62,67 Also, the space scale over which the lipids self-organize
can exceed the size of the computational domain that can be realistically simu-
lated with extant molecular dynamics techniques.

The Aqueous Environment
Aqueous solutions under biologically relevant conditions are composed

primarily of water molecules; water therefore plays a primary role in many
chemical and physical processes.68 Water is a highly polar molecule due to
its bent configuration. A spatial separation exists between the internal positive
and negative charges in the electrically neutral molecule, giving rise to a
strong, permanent electric polarization field.69 Furthermore, the separation
between internal charges makes it possible for the oxygen atom of one water
molecule to bond electrostatically to the hydrogen atoms in neighboring
molecules. This hydrogen bonding facilitates the formation of relatively large
domains of water molecules into lattice-type structures69 analogous to crystal-
line ice. This cluster configuration of liquid water is not static and domains are
continually formed and disassociated.

Ions in aqueous solution alter the structure of water in such a way that
the water molecules will orient themselves around the charged ions with the
appropriate polar side of the water pointing toward the ion, and creating
one or more hydration shells. The water in the hydration shell now behaves
differently than the bulk water in the sense that its dynamics is correlated
with the ionic motion.

Aqueous solutions confined in regions of molecular dimensions, such as
the narrow pores of ion channels, exhibit different properties than bulk ionic
solutions, and one way to characterize the microscopic properties of ion chan-
nels is to identify these differences.38 Confinement in small regions restricts the
translational and rotational motion of the water molecules, and creates a
greater degree of order. Simulations revealed a consequently strong decrease
of the diffusion coefficient in small water-filled cavities. In addition to the
effects of the physical confinement, a significant electrostatic interaction is
also present between the water molecules and the cavity walls. In the case
of porin channels, for example, the internal transverse electric field is so
high that the cavity region is no longer a linear dielectric medium.38 Polar
groups in the pore lining interact with the water molecules in the hydration
shell of ions as they traverse the pore, and this interaction may play a direct
role in the selectivity properties of protein channels.38,70

Although not rigorously correct, the approximation of water as a struc-
tureless homogeneous continuum dielectric medium is used by many simula-
tive methodologies. Both Brownian dynamics (see the section entitled Implicit
Solvation: Brownian Dynamics) and electrodiffusive approaches (see the sec-
tion on Flux-Based Simulation) include the water in the electrostatic picture as
a continuous dielectric background with polarizability appropriately tuned
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inside the channel pore. These ‘‘implicit water’’ models are able to reproduce
activity coefficients for a variety of bulk systems71–73 as well as the conductiv-
ity behavior of ions through channels.22 Obviously, care must be taken when
applying these techniques to model ion transport in channels where individual
water molecules play a crucial role,23 such as within the extremely narrow
selectivity filter of potassium channels.

Representing the Full System
The definition of the system to be simulated, as well as the choice of the

details in its representation, are crucial for the simulation of ionic transport in
protein channel systems. Several components, including the channel itself, can
be represented implicitly, that is through some macroscopic properties repre-
sentative of their effects on the simulative landscape, or explicitly, that is with
a microscopic, atomic-scale, resolution that is governed by fundamental laws.
The model used for the computational representation depends on the specific
questions to be addressed.74

For instance, an implicit membrane model greatly reduces the computa-
tional burden, and is appropriate in many cases because the lipid-protein inter-
action is often only important for protein stability and insertion.75 In addition,
the time scale of the charge transport process across the membrane is usually
much longer than the time scale of the lipid fluctuations, so the motion of the
charge is influenced primarily by the membrane through its dielectric rather
than dynamics properties. Within the implicit bilayer representation, the mem-
brane is treated as an impermeable slab of either a homogeneous dielectric
material, or as a slab with a low dielectric constant in the region of the non-
polar tails and a higher effective dielectric constant in the region where the
charged head groups of the lipids reside.53,76

When the interaction between membrane and protein channels becomes
significant at the atomic level, an explicit representation of the molecules
forming the lipid bilayer and protein channels must be built and modeled in
such a way that the mechanical, chemical, and electrostatic properties of the
system are modeled with appropriate detail. Two basics techniques generally
have been used to build the computer representation of a channel/membrane
system with atomic resolution. One approach consists of seeding the bilayer by
placing individual pre- equilibrated lipid molecules in appropriately chosen loca-
tions around the protein structure;52,77 the membrane is then grown by attach-
ing other lipid molecules to those previously connected to the channel. The
second technique consists of generating a protein-shaped cavity in the center
of a previously equilibrated lipid bilayer and inserting the transmembrane
protein channel into the cavity.

In both approaches a series of equilibration steps based on energy mini-
mization78 is used to obtain the final configuration of the lipid/protein system.
In the latter case, the process does not affect the initial lipid configuration sig-
nificantly outside the cavity region, and the final configuration of the lipid/
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protein system will be very close to the equilibrium structure, thus making it
an attractive computational choice.

Several methods to generate a cavity in a lipid bilayer exist. The simplest
approach is to remove a cylindrical section of lipid molecules79 and insert the
protein channel into that void. Because lipids are removed in molecular units,
the boundary region between the lipid tails and the cylindrical hole tends to be
rough. Therefore, many equilibration steps may be required after the protein is
inserted, resulting in an unacceptably slow convergence, or in a possibly
wrong, unstable, or metastable configuration. An improved approach consists
of using a weak cylindrical repulsive force80 to slowly create the cavity, rather
than removing the lipids located inside the region of the cavity. This approach
has the benefit of creating a smoother surface at the boundary of the lipid/
protein interface. However, the techniques based on approximating the protein
molecular surface with a cylinder can result in a difficult equilibration process
when non-cylindrical proteins are inserted into the cavity. To address this pro-
blem, an arbitrary shaped cavity is obtained by superimposing an atom-size
three dimensional grid over the system built by imposing the protein on the
lipid patch.79 All lipid molecules that intersect grid cells containing protein
atoms are then removed. Energy minimization steps are subsequently used
to further refine the position of the lipids’ atoms. Alternatively, a smooth
membrane/protein interface with arbitrary geometry can be obtained by apply-
ing a weak radial force to create the cavity. In this case, the van der Waals sur-
face81 of the protein is generated and superimposed on a preequilibrated lipid
patch.82 The lipid atoms inside the van der Waals surface experience an out-
ward radial force, that pushes them out of the cavity. This process is repeated
until the hole exactly matches the outer van der Waals surface of the protein.

Time and Space Scale

After choosing an adequate model for each different component of the
system and integrating them into a final atomistic model that will be simu-
lated, an important issue is the selection of a discretization scheme to imple-
ment the computer representation of the ion channel and its environment.
Within the framework of a computer experiment,83 the adjective realistic is
strictly related to the phenomena one wants to study, and to the resolution
required to reproduce those phenomena. The basic idea for modeling many-
body systems is to build a set of rules that apply to each component and let
the system evolve dynamically. Ensemble and time averages are then computed
to obtain observables that are compared with experiment to validate the mod-
el. A characteristic of ion channel systems is that the measurable quantities
of direct biological interest evolve in times up to 12 orders of magnitude larger
than the smallest atomic or molecular relaxation times (milliseconds versus
femtoseconds). In comparison, solid state many-body systems collectively
relax in a faster fashion, and the difference between the microscopic
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(simulated) and macroscopic (measured) dynamics is four or five order of
magnitudes. Extremely slow events, such as charge carrier recombination in
semiconductor crystals, also exist in solid state systems, but they can be
accounted for in a relatively easy way.

The atomistic representation of a fully hydrated membrane/channel sys-
tem requires an extremely large number of atoms distributed irregularly on a
large computational domain. As an example, consider a K-channel embedded
in a POPC membrane as depicted in Fig. 2. The diameter of the selectivity filter
in the protein is a few angstroms, and the ionic transit inside the channel
occurs in about a microsecond. The selectivity itself is a process that depends
on the electrodynamic reaction of the atoms forming the selectivity filter to the
electrical and polarization fields due to ions and water inside the filter itself.
Given the extremely small distances between the charged components of the
system, one expects an extremely rapid relaxation (about ten femtoseconds)
that changes the dielectric environment inside the filter. So one needs to
simulate the system for at least a few nanoseconds with a resolution of a
few femtoseconds in order to observe the transit of one individual ion across
the selectivity filter.

Analogously, the channel functionality depends on structural character-
istics that extend over a large distance. The interaction of the channel with the
membrane is sometimes crucial, both from the structural and electrostatic
viewpoint. Furthermore, the structural changes involved in gating are the
result of, or are involved directly in, the interaction of the outer protein
segments with the membrane. All these facts necessitate the representation
of a relatively large system that has to be resolved with angstrom-size
accuracy.

Because of the problems related to simulating a large system for a long
time with an extremely high resolution, a crucial issue is related to the number
of atoms or groups of atoms needed to represent such a system. Indeed, if a
brute-force atom-based method is used, the number of individual particles
to be simulated is extremely large. In principle, the atomistic representation
of a whole protein and of a sufficiently large patch of membrane requires
the modeling of at least tens of thousands of particles subjected to a con-
strained non-local dynamics. Solvation effects must also be accounted for to
correctly model both the ion dynamics and the structural properties of the
whole system. Biological solutions are typically 0.2 Molar salt but approxima-
tively 55 Molar water. This implies the need for a water model and, conse-
quently, the dramatic increase of the size of the system being simulated.

Experiments

As previouslymentioned, a decisive contribution to the understanding of ion
channels has been supplied from experiments. The electrical activity of indivi-
dual channels is measured both in vivo and in vitro under various conditions.3
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While the description of the experimental setup for channels recording is
beyond the scope of this chapter, an important aspect concerning the relevance
of the experiments done on channels and their connection with computer
modeling should be stressed. Current experiments are not limited to the ‘‘sim-
ple’’ observation and characterization of natural channels, but allow for the
study of man-made, designed proteins. This capability of building mutant
channels by substituting amino acids into the sequence of the natural (or
wild) proteins is important for the functional characterization of ion channels,
and for the realization of novel macromolecules with specific tunable proper-
ties. The need for a strict integration of computational structural chemistry
with protein engineering is clear, as well as the need for efficient and reliable
computational tools that can direct the experimental work and, at the same
time, be validated by it.

ELECTROSTATICS

The channel-membrane-solution system is characterized by an inhomo-
geneous charge distribution that conditionally allows mobile ions to cross the
strong dielectric barrier84 imposed by the membrane. Therefore, an accurate
representation of the electrostatic forces acting on each component is needed
to understand the influence of the system’s structural properties on its function.

The force fields used by scientists for simulations have been developed
with distinct traditions, each appropriate for its own use. In computational
chemistry, interest has been in bulk properties of solutions and proteins, in
the thermodynamic limit in which boundary conditions do not appear expli-
citly and where equilibrium (i.e., zero flux of all species) is present. The ther-
modynamic limit of computational chemistry implies a spatial uniformity of
bulk properties that can be analyzed with periodic boundary conditions85 if
the period is longer than the spatial inhomogeneities of the bulk solution.86

Contrarily, in computational electronics, the interest has focused on elec-
tron devices, which exchange charge with their environment through geome-
trically and electrically complex boundaries and where internal dielectric
discontinuities exist. Simulations are usually performed by varying the applied
bias in order to reproduce transient nonequilibrium conditions and to obtain a
record of the response of the simulated devices.

Given the substantial differences between the systems being simulated,
the force-fields traditionally used by researchers in computational electronics
and in chemistry are necessarily different. In particular, short-range coulombic
interactions are either neglected in electron device simulations, or they are
treated with a stochastic approach87 rather than deterministically. The same
considerations apply for finite size effects.

The highly inhomogeneous charge distribution of ion channel systems
makes them closer to electron devices than to bulk homogeneous systems.
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This analogy encouraged us to develop the discussion in this tutorial from the
viewpoints of both computational electronics and chemistry. The idea here is
not to compare the two traditions of computational science, but instead to
approach the modeling problem with an interdisciplinary attitude.

Given the complex dynamic properties of the ion channel system, many
studies have been performed to examine whether or not any reduced represen-
tation could be used to account for some key properties. These attempts have
been performed both by theoreticians and experimentalists by simulating and
measuring properties of simplified systems. From the modeling viewpoint, the
evolution of the work of Jordan,88–91 among others, shows how experimen-
tally obtained structural information has been included into an increasingly
complex electrostatic picture as that data became available. Also, the impor-
tance of the charge distribution within protein channels is highlighted by the
recent work of Varma and Jakobsson,50 who conducted a systematic study of
the ionization states within the lumen of a large porin in order to assess the
charge assignment protocols used in the simulation code. Due to the small
dimension of ion channels, charges of ions and protein residues are concen-
trated in small areas. The effects of this ‘‘crowded charge’’ configuration gen-
erate extremely localized electric fields that have a significant effect on the
polarization state of the system, and perhaps on the molecular structure of
the ion channel itself. An example of the effects of closely packed ions in a
small region representing a calcium channel can be found in the work of
Nonner et al.92,93 and validated by the equilibrium Monte Carlo simulations
of Boda et al.94–96

An adequate treatment of the electrostatic properties of the systems of
interest is crucial for the understanding of the dynamic properties of ion chan-
nels. We now consider the most common methodologies used to implement
accurate and efficient electrostatic force-field schemes.

Three efficient approaches for electrostatic modeling of inhomogeneous
systems are the fast multipole method (FMM)97–99 the Ewald summation
method,100 and the Particle–Particle–Particle-Mesh (P3M) method.83 Concep-
tually, these three approaches are very similar101 because they all consist of
writing the total force acting on a charged particle i as the sum of a long-range
and a short-range component:

~FFi ¼ ~FFlr
i þ ~FFsr

i ½1�

The difference between the three methods is primarily in the calculation of the
long-range force ~FFlr

i . The FMM utilizes a multipole expansion to calculate the
long-range force from particles that are far from particle i, while the short-
range force is computed through the direct summation of the Coulomb force
from particles omitted from the long-range calculation. Within the Ewald
method, both the short-range and long-range components are calculated
exactly from analytic expressions, where the short-range component is
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calculated in real space and the long-range contribution is calculated in
reciprocal space. The P3M formalism accounts for the short-range interactions
by directly summing the coulombic particle-particle force in a small volume,
while the long-range interaction is determined using the numerical solution of
Poisson’s equation on a discrete grid over the whole computational domain.
Within both the Ewald and P3M approaches, an overlap between the long-
range and short-range domain exists and must be accounted for. This is
discussed further in the section ‘‘Short-Range Interactions’’.

It is worth mentioning that in the original work of Hockney and
Eastwood83 on the P3M approach, the solution of Poisson’s equation is calculated
in the reciprocal space with Green’s functions. In this chapter, an iterative
method to calculate the solution of Poisson’s equation in real space is
discussed. This approach is not commonly adopted for the particle-based
simulation of liquid systems. The rather laborious implementation of robust
three-dimensional Poisson solvers is probably one of the reasons for the lack
of popularity of this approach, which we advocate nevertheless. For this rea-
son, a section of this tutorial is devoted to the discussion of fast iterative meth-
ods for the solution of Poisson’s equation in position space.

A detailed description of the components of the force ~FFi in Eq. [1] is
given in the following sections, for the three different approaches.

Long-Range Interaction

This section is devoted to a discussion of the implementation of the long-
range component within the FMM, Ewald summation and P3M methods.

Multipole Expansion
The FMM97–99 is based on a multipole series expansion of the long-range

potential. The algorithm performance scales linearly with the number of par-
ticles,97 making FMM one of the most efficient approaches available for large
systems.

As in the P3M and Ewald summation methods, within the multipole
method formalism the force is separated into a long- and short-range interac-
tion, and the short-range component is resolved through a direct summation
over the particle-particle interaction. The long-range component of the force
on a generic particle i is computed as

~FFlr
i ¼ �qi

~rr�lrð~rriÞ ½2�

where the long-range potential �lrð~rriÞ is computed by a pair-wise summation
of the charged particles excluded from the direct short-range calculation.

Given a set of point charges fjg, located inside a sphere of radius R
centered about some origin, the long-range Coulomb potential at position ~rri
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located outside the sphere (i.e. j~rrij > R) can be written in spherical coordinates
as,

�lrð~rriÞ ¼ 1

4pE0E

Xlmax

l¼0

Xl

m¼�l

1

2l þ 1

Mlm

rlþ1
i

Ylmðyi;fiÞ ½3�

where the moments of the expansion are given by

Mlm ¼
X

j

qjr
l
jY

�
lmðyj;fjÞ ½4�

and Ylm and Y�
lm are spherical harmonics.102 A cutoff distance lmax has been

introduced in Eq. [3] resulting in an error of order Oðr=RÞlmaxþ1.97 Although
the multipole expansion is generally written in spherical coordinates,
Cartesian coordinates have also been used for the computation of the
potential energy function.103,104 The representation in spherical coordinates
is argued to produce a more efficient implementation than the Cartesian
representation.105,106

Within the ‘‘cellular’’ version of the multipole method, the computa-
tional domain is discretized into a set of rectangular grid cells and the
moments of the multipole expansion are computed and stored at each cell.
The multipole expansion is only valid for particles that are separated by at
least one grid cell,103 therefore the long-range part of the potential at a posi-
tion~rri is calculated by summing the contributions from all the non-neighboring
cells. An improvement of this approach is based on a hierarchy of grids with
different cell sizes107 that allows for the consolidation of cells into progressively
larger groups as the distance between the position ~rri and the cells increase.
This coarsening scheme allows for the reduction of the total number of distant
cells used in the calculation, and is based on the assumption that the distant
charge distribution interacts less intensely than the close one.105 The accuracy
of the calculation remains constant if the ratio between the cell size and the
distance is kept constant.106

The FMM typically makes use of a local Taylor expansion to further
improve the algorithmic efficiency.97 The difference between the multipole
expansion calculated in two different points laying in the same grid cell is
assumed to be very small, thus justifying the use of a Taylor series expansion
of the potential about the center of the grid cell. The coefficients of the Taylor
expansion for each grid cell are calculated once and then evaluated for the
position of each individual particle within a given grid cell.

The treatment of boundary conditions can be incorporated in the FMM
scheme easily. Periodic boundary conditions as well as Dirichlet, Neumann,
and mixed conditions98 can be accounted for. The FMM approach has been
shown to be more efficient than the Ewald summation method (see the next
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section), but it results in code that is only faster than P3M methods for non-
physically high numbers of particles.108 Finally, it is worth noting that the
FMM is applicable to all problems involving an r�n pair-wise potential.98

Ewald Summation
The Ewald summation method was originally developed as an efficient

way to calculate the long-range interactions in ionic crystals,100 and it has
become one of the most common methods for modeling electrostatic properties
in periodic structures,109 particularly for molecular dynamics simulations.110

The electrostatic potential energy in a charged system can be written as
the summation of all pair-wise coulombic interactions between charges. In a
periodic array, it also includes the interaction with the infinite number of replica
charges generated by the periodic repetition of the simulated system. The series
of coulombic terms converges very slowly, and the solution depends on the
order of the summation; i.e., the series is conditionally convergent.

The Ewald formalism is based on a decomposition of the conditionally
convergent series into two sums that individually have superior convergence
properties. The method involves the addition of an appropriately shaped
charge distribution to each charged particle having the same magnitude as
the particle but of opposite sign. This charge distribution effectively screens
the interactions with neighboring charges, which results in a series that is lim-
ited to a short-range domain that in turn makes the resulting summation con-
verge rapidly. To counteract the effects of the artificial charge distribution, a
second charge distribution with the same magnitude and same sign as the ori-
ginal point charge is also included for each point charge. If this new charge
distribution is smooth, the second summation that accounts for it can be Fourier-
transformed and solved efficiently in reciprocal space. From the physical
viewpoint, this second summation recovers the long-range interactions that
were screened out by introducing the first artificial charge distribution. The
two series can then be combined to recover the potential energy caused by
the original point charges.

The traditional Ewald summation approach is generally presented in
terms of the potential energy of the system. However, the force acting on a
given particle is the quantity used by computational approaches, such as mole-
cular dynamics and Brownian dynamics. Therefore, the derivation of the
forces (instead of the potential energies) is required, and how these forces
are determined is described below.

The exact representation of the long-range component of the force is
calculated in the reciprocal space using the Fourier transform. In three-
dimensions, the Fourier transform pairs are given by

f ð~rrÞ ¼ V�1
X
~kk

~ff ð~kkÞei~kk~rr ½5�
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and

~ff ð~kkÞ ¼
ð

V

f ð~rrÞe�i~kk~rrd~rr ½6�

where V ¼ Lx � Ly � Lz is the three-dimensional unit cell in real space, and
the components of the vector ~kk in the reciprocal space are restricted to the
values kx ¼ 2pl

Lx
, ky ¼ 2pm

Ly
, and kz ¼ 2pn

Lz
, where l, m, and n are integers.

The force acting on a charge distribution i can be written as

~FFlr
i ¼ �

ð
qiSðj~rr �~rrijÞ ~rr�ð~rrÞd~rr ½7�

where~rri is the position of the center of the distribution and S is the shape of the
distribution.102 This integral representation is defined over one real space unit
cell, and an extra sum is made over each additional structure to include multi-
ple periodic cells. Within the Ewald approach, the added charge distribution is
generally (but not always) modeled with a Gaussian function:108

SðrÞ ¼ a2

p

� �3=2

e�a2r2 ½8�

where a determines the width of the charge distribution and the Fourier trans-
form of the Gaussian charge distribution is

Sðj~kk �~kkjjÞ ¼ a2Vffiffiffiffiffiffi
8p

p ei~kk~rrj e�k2=4a2 ½9�

The use of a Gaussian distribution is not required, and other functions have
been used in the Ewald summation method.111 For the sake of simplicity,
the following derivation is limited to the use of Eq. [8].

The potential can be written in terms of the charge distribution by first
applying the Fourier transform to Poisson’s equation:

k2 ~��ð~kkÞ ¼ � ~rrð~kkÞ
EE0

½10�

where the total charge density is given by all remaining charges in the series:

~rrð~kkÞ ¼
X
j 6¼i

qj
~SSðj~kk �~kkjjÞ ½11�
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The potential in real space is then written as

�ð~rrÞ ¼ � 1

VEE0

X
~kk 6¼0

~rrð~kkÞ
k2

ei~kk~rr ½12�

¼ � 1

VEE0

X
~kk 6¼0

X
j6¼i

qj

k2
~SSðj~kk �~kkjjÞei~kk~rr ½13�

By substituting the equations for the potential into Eq. [7] and integrating over
~rr, one has

~FFlr
i ¼ qi

EE0V

X
j 6¼i

qj

X
~kk 6¼0

i~kk

k2
Sðj �~kk þ~kkijÞSðj~kk �~kkjjÞ ½14�

the real part of which gives the final expression for the long-range component
of the force:

~FFlr
i ¼ 4pqi

EE0V

X
j6¼i

qj

X
~kk 6¼0

~kk

k2
e�k2=4a2

sinð~kk ~rrijÞ ½15�

where~rrij ¼~rri �~rrj.
The conventional Ewald summation method works well for simulations

of small periodic systems, but the computation can become prohibitively
expensive112 when large systems are involved, in which the particle number
exceeds 104. Several numerical techniques have been used to enhance the per-
formance of the traditional Ewald method with mixed results. For example,
look-up tables and polynomial approximations101 have been suggested. The
algorithmic performance can also be optimized through the parameter
a,113,114 which determines both the extension of the short-range interaction
and the allowable cutoff of the summation over the reciprocal space vec-
tors.108 Calculating the reciprocal sum is often the most efficient component
of the algorithm and a can be chosen to minimize the portion of the summa-
tion performed over real space.113,115 Once the optimal value of a is deter-
mined, the performance of the approach can be significantly improved by
implementing fast Fourier transform (FFT) algorithms to solve the summation
in reciprocal space. The version of the Ewald summation based on these pro-
cedures is called the particle-mesh Ewald (PME) method.112,116 The reciprocal
sum is then defined on a discretization grid by using a piece-wise interpolation
scheme to assign the charge density to grid points used to evaluate the force
(or potential) with FFT.
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Poisson Solver in Real Space
Another possible approach for the computation of the long-range force~FFlr

i

consists of assigning the charge density to the points of a generally inhomoge-
neous finite-difference grid, solving Poisson’s equation,102 and differentiating
the potential:

~FFlrð~rrpÞ ¼ �q ~rr�ð~rrpÞ ½16�

where ~FFlrð~rrpÞ and �ð~rrpÞ represent the force and the electrostatic potential,
respectively, at the grid point p located at ~rrp. This component of the force
also accounts for external boundary conditions, dielectric discontinuities,
and fixed charges. The force ~FFlr

i on the ion i at the specific position~rri is then
computed by an appropriate interpolation scheme.

To solve Poisson’s equation on a grid, a charge assignment scheme must
be devised that builds a charge distribution from the ionic coordinates.
Furthermore, once the electrostatic field has been computed on the grid
(from the solution of Poisson’s equation), the force must be interpolated in
each ion location in a way that is consistent with the original charge assign-
ment scheme. In other words, a geometric shape is assigned to each ionic
charge though a space-dependent weighting function Wð~rrÞ,83 and the geome-
trical relation between the charge shape and the discretization grid is
accounted for in all transformations used to transfer quantities (i.e., charge
and force) to and from the mesh centered at~rrp.

The generalized algorithm to accomplish this follows the treatment of
Hockney:83

1. Assign charges:

rð~rrpÞ ¼ 1

Vp

XNp

i

qiWð~rri �~rrpÞ ½17�

2. Solve Poisson’s equation:

~rr  Er
~rr�ð~rrpÞ ¼ � rð~rrpÞ

E0
½18�

3. Calculate electric field:

~EEð~rrpÞ ¼ � ~rr�ð~rrpÞ ½19�

4. Interpolate force:

~FFlr
i ¼

XNp

p

qiWð~rri �~rrpÞ~EEð~rrpÞ ½20�
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where Vp and Np are the volume of the grid and the number of particles in
the grid, respectively. It should be noted that the same function Wð~rrÞ must
be used both for the charge assignment and for the force interpolation, because
the use of a mixed scheme can result in a nonphysical self-force of the particle
upon itself. The three most common charge assignment schemes are called the
nearest-grid point (NGP), the cloud-in-cell (CIC) and the triangular-shaped
cloud (TSC) schemes,83 and represent the particle as a point charge, a uni-
formly charged sphere, and a sphere with a linearly decreasing density, respec-
tively. The choice of the weighting function depends on the properties of the
system. Once a shape has been chosen for the charge, the corresponding
weighting function is determined by the following integral:

Wð~rr �~rrpÞ ¼
ð

Vp

Sð~rr 0 �~rrÞd~rr 0 ½21�

where the function Sð~rrÞ represents the shape of the charge ‘‘cloud’’ associated
with the particle. In one dimension, the weighting functions computed from
Eq. [21] are given for the three charge shapes by the following relations:

WNGPðxÞ ¼
1 x

H

�� �� � 1
2

0 else

(
½22�

WCICðxÞ ¼
1 � x

H

�� �� x
H

�� �� � 1

0 else

(
½23�

WTSCðxÞ ¼
3
4 � x

H

�� ��2 x
H

�� �� � 1
2

1
2

3
2 � x

H

�� ��� 	2 1
2 � x

H

�� �� � 3
2

0 else

8>><
>>: ½24�

where H is the mesh size. For the three-dimensional case, the weighting
function is obtained as follows:

Wð~rrÞ ¼ WðxÞWðyÞWðzÞ ½25�

In agreement with the work of Hockney,83 the TSC weighting function is
usually the optimal compromise between accuracy and computational perfor-
mance for the systems discussed in this chapter.

Using a Poisson solver for the long-range interaction results in two main
advantages: (1) the possibility of imposing boundary conditions through exter-
nally applied potentials, and (2) the ability to simulate systems with arbitrary
ionic concentrations at the boundaries.
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Finite-Difference Iterative Schemes
A numerical method is said to be direct when it finds a solution within a

given precision and, with a given accuracy, in an initially known number of
operations. The time required to solve a differential equation is then well known
a priori, and it is independent of the initial or boundary conditions of the pro-
blem. Iterative methods, on the other hand, are based on a sequence of
approximations to the required solution, starting from an initial guess that
converges to the solution. The number of operations, and the time required
by these latter methods, are initially unknown because they depend on the
initial guess and may vary dramatically as a function of the parameters of
the problem.

The self-consistent nature of the simulation approaches described in this
chapter requires frequent solutions of Poisson’s equation; the potential profiles
from one step to the next are very similar to each other because the changes in
the charge distribution between two consecutive solutions are very small (but
very important for the particle dynamics). The current potential profile
can thus generally be used as a good initial guess for the next solution,
which makes iterative methods a natural choice within the framework of
self-consistent simulation programs. In addition, memory issues117 (other
than pure performance) make the choice of iterative methods appealing in
the field of ion channel simulations.

We now present and discuss the basic steps in standard stationary linear
iterative methods118 needed to compute the electrical forces. The current dis-
cussion concentrates on the general representation of the two-dimensional
Poisson’s equation for simplicity

r2� ¼ f ðx; yÞ ½26�

Employing finite differencing on a set of grid points defining the discrete grid
denoted by �n, this elliptic differential equation is transformed into an alge-
braic matrix equation of the form

Au ¼ f ½27�

where the vector u denotes the solution, the matrix A represents the Laplace
operator, and f is a generic forcing function.

Within the iterative framework, a sequence of approximations
v0; v1; . . . ; vn; . . . to u is constructed that converges to u.118 Let vi be the
approximation to u after the ith iteration. Because the exact solution u of
Eq. [27] is unknown, one may define the residual,

ri ¼ f � Avi ½28�
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as a computable measure of the deviation of vi from u. Next, the algebraic
error ei of the approximation vi is defined by

ei ¼ u � vi ½29�

Subtracting Eq. [28] from Eq. [27] and rearranging terms, it is easily shown
that ei obeys the so-called residual equation,

Aei ¼ ri ½30�

Iterative methods can be interpreted as applying a relaxation operator to vi to
obtain a better approximation viþ1 by reducing of the error ei related to vi. In
this way, the sequence of approximations v0; v1; . . . ; vn; . . . is ‘‘relaxed’’ to the
solution u.

The expansion of the matrix equation (Eq. [27]) gives the following
relation:

uk ¼
�Pn

j¼1
j 6¼k

akjuj þ bk

akk
; k ¼ 1; 2; . . . n; akk 6¼ 0 ½31�

In Jacobi’s method,119 the sequence v0; v1; . . . ; vn; . . . is then computed by

v
ðiþ1Þ
k ¼

�Pn
j¼1
j 6¼k

akjv
ðiÞ
j þ bk

akk
; k ¼ 1; 2; . . . n; akk 6¼ 0 ½32�

It should be noted that one does not use the improved values until after a
complete iteration, within this method. In the closely related Gauß–Seidel
method,118 the values are used as soon as they are computed. One then has

v
ðiþ1Þ
k ¼

�Pk�1

j¼1

akjv
ðiþ1Þ
j � Pn

j¼kþ1

akjv
ðiÞ
j þ bk

akk
; k ¼ 1; 2; . . . n; akk 6¼ 0 ½33�

Note that here only one approximation for each vk needs to be stored at a
time. Proofs and discussions about the convergence properties of iterative
methods can be found in Young118 and Dahlquist and Björck.119

It is often possible to obtain a substantial improvement of the conver-
gence rate by a simple modification of the Gaub–Seidel method. Note that fol-
lowing the definition of the residual given in Eq. [28], Eq. [33] can be written
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as v
ðiþ1Þ
k ¼ v

ðiÞ
k þ r

ðiÞ
k , where r

ðiÞ
k is the current residual of the kth equation:

r
ðiÞ
k ¼

�Pk�1

j¼1

akjv
ðiþ1Þ
j �Pn

j¼k

akjv
ðiÞ
j þ bk

akk
; k ¼ 1; 2; . . . n; akk 6¼ 0 ½34�

The iterative method

v
ðiþ1Þ
k ¼ v

ðiÞ
k þ or

ðiÞ
k ½35�

is then the so-called successive overrelaxation (SOR) method. Here o, the
relaxation parameter, should be chosen so that the rate of convergence is max-
imized. For o ¼ 1, the SOR approach reduces to the Gauß–Seidel method. The
SOR method has been shown to converge only for 0 < o < 2.119

The rate of convergence of SOR is often higher than when using the
Gauß–Seidel method, and the additional computational load associated with
SOR is negligible. However, the value of o depends on the grid spacing, the
geometrical shape of the domain, and the type of boundary conditions
imposed on it.120 Efforts have been undertaken to find an approach that pre-
determines the optimal value of o as a function of the discretization
scheme.121,122 Some improvements in the convergence rate have also been
obtained by modifying the processing order of the grid points.83,123 Despite
this modification, the performance of the SOR approach is inadequate for
the implementation of real-space Poisson solvers for the simulation of systems
discretized on many grid points such as the ones described in this chapter.

The Multi Grid Method
In the previous section, we discussed the basic theory of the classic itera-

tive solution to elliptic problems. The multigrid method allows for a dramatic
performance improvement of standard iterative approaches such as the SOR
method. The basic principles of its operations are briefly introduced in the fol-
lowing section.

Error Reduction in Classic Iterative Methods. Iterative methods for the
solution of large sparse systems of equations have been presented here.
These methods produce, by iteration, a sequence of approximations to the
required solution, which converge to the solution. This process progressively
reduces the error related to each approximation. A given approximation is
then accepted as the solution when the deviation from the previous
approximation (or some norm of it) is smaller than a predefined threshold.
Therefore, an analysis of the error expressed in Eq. [30] as a function of the
iteration number (or of the required computer time, because the number of
operations per iteration is constant) can provide a useful indication of the
solver performance.
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The absolute value of the maximum relative error is plotted versus the
CPU time for an SOR solver in Figure 6. The slope of the curve gives an indi-
cation of the performance of the solver: The initial error reduction is very fast,
as confirmed by the steep slope of the curve in the upper left corner of the plot.
As the error becomes smaller, the slope is less pronounced, which shows a dra-
matic degradation of the performance. The values of the error that are usually
acceptable in particle-based simulations lie in this low-performance region,
i.e., typically in the range ½10�5; 10�7�. The reason for the performance degra-
dation shown in Figure 6 can be understood easily through a spectral analysis
of the error before and after a relaxation sweep.

Figure 7 shows, in the upper plots, a schematic representation of the
error before (left) and after (right) a single iteration on a unidimensional
domain. In the lower plots, the corresponding Fourier components of the error
are depicted; in this simplified picture, only two Fourier components are
shown. Application of one relaxation sweep affects only the high-frequency
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Figure 6 Error reduction rate of the successive overrelaxation method. The smaller
slope of the curve for small values of the relative error indicates the poor performance of
solvers based on this method.
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Figure 7 Schematic representation of the relative error of an iterative method after a
relaxation sweep. The lower plots show that the low-frequency Fourier component of
the error is less reduced than the high-frequency one.
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component, which is much more reduced in amplitude than is the low-
frequency, long-wavelength component. Thus, the two-slope curve shown in
Figure 6 can be explained as follows: The relaxation operator of the iterative
method is efficient in reducing only some Fourier components of the error. Its
error reduction rate slows because the remaining components (the ones with
long wavelengths) are not reduced as efficiently. This difference in the error
reduction is from the grid spacing: Those components of the error with a
wavelength comparable with the grid spacing are reduced more efficiently
by the relaxation operator.

Multigrid Basics. The basic idea of the multigrid approach is to simultaneously
employ different length scales to efficiently reduce the error. Specifically, one
solves Eq. [30] exactly on a grid �n�1 that is coarser than the initial given grid
�n. The resulting value of ei is an approximation that is used to correct the
previous approximation vi that has been determined on the original grid �n:

viþ1 ¼ vi � ei ½36�

The advantage of this approach can be understood by considering the Fourier
expansion of the error ei shown in Figure 7. The long-wavelength components
of ei are only slightly reduced on the fine grid because their spatial extent
exceeds the range of the relaxation operator. The use of a coarser grid renders
those components to have an effectively shorter wavelength and thus makes
those long-wavelength components ‘‘visible’’ to the relaxation operator. It
improves the convergence of the solver dramatically, as compared with a
single-grid-based relaxation scheme, such as the SOR.

The simplest version of the multigrid algorithm is the so-called two-grid
iteration employing only two grid levels. In the ith iteration, the procedure
starts from the approximation vi of u in Eq. [27], and the following five steps
are performed:

1. Smooth vi on the grid �n by applying some suitable relaxation scheme,
called presmoothing.

2. Compute the residual according to Eq. [28] and transfer it to the coarser
grid �n�1. This step is called restriction.

3. Solve Eq. [30] exactly on the grid �n�1.
4. Interpolate the resulting ei to the finer grid �n. This step is called

prolongation. Subsequently, calculate viþ1 from Eq. [36].
5. Smooth viþ1 on the grid �n by applying some relaxation method, called

postsmoothing.

It is possible to extend the two-grid algorithm to a sequence of grids that
are increasingly coarse, because Eq. [30], applied on the grid �n�1, has the
same form as Eq. [27] on �n. It is achieved by recursively applying the
complete algorithm (steps 1 through 5) at step 3. The recursion scheme is
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stopped when the coarsest grid �0 is reached. At that grid level, Eq. [30] is
solved exactly. Because this grid usually contains only a few points, it can
be done easily. This multiscale algorithm defines one complete multigrid itera-
tion (labeled by the superscript i). The whole procedure is then repeated until
the required convergence threshold is reached.

This discussion of the multigrid iteration refers to a cyclic structure
called the V-cycle (see Figure 8). More generally, one may define the multigrid
iteration as the recursive application of g two-grid cycles at any grid level, the
V-cycle being characterized by g ¼ 1. The case g ¼ 2 is called W-cycle. It is
possible to use any number g of two-grid cycles at each level, obtaining better
convergence at the cost of increased complexity of the algorithm. A special
cycle, the so-called F-cycle, is also shown in Figure 8. It is important because
its structure often optimizes the tradeoff between pure performance and com-
plexity. The F-cycle on �i is recursively defined as follows:124 Its coarse grid
part consists of an F-cycle on �i�1, followed by a V-cycle on �i�1. An F-cycle
on the coarsest grid �0 is just a V-cycle.

Finally, it should be noted that the multigrid method can be used as
either an iterative process or as a direct solver (the so-called full multigrid
or nested iteration method125).

Algorithmic details on the multigrid method can be found in the excel-
lent works of Hackbusch125 and Brandt.126,127 It should be noted that the mul-
tigrid approach can be easily applied to adaptive non-tensor-product
grids,126,127 allowing for variable resolution in regions of the computational
domain where the charge concentration is high. A discretization scheme based
on adaptive grids can result in a further increase in performance when simu-
lating highly inhomogeneous systems such as biological membranes or
complex proteins.

The SOR method for solving Poisson’s equation in ion-channel applica-
tions is not advocated here because of its slower convergence compared
with the multigrid approach and because of its inefficiency for large problems
(Figure 9). It is recognized, however, that the extreme simplicity of the SOR

S

S

S

S

E

V-Cycle

S S

EE

S S S S S S

E

S S S

E

W-Cycle

SS S

EE

S S S S

S S

S

S

E

F-Cycle

SΩ3

Ω2

Ω1

Ω0

Figure 8 Standard multigrid structure for a V-, W-, and F-cycle. In this figure, the
number of grid levels is four, the circles represent a Smoothing operation or an Exact
solution, and the arrows indicate prolongation (upward) and restriction (downward)
operations. �0 represents the coarsest and �3 the finest grid.
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algorithm makes it an attractive choice. A typical SOR solver can be imple-
mented with a few tens of lines of code, whereas our three-dimensional
multigrid solver is several thousand lines long.

Short-Range Interaction

The short-range force is written as the sum of three terms:

~FFsr
i ¼~FFC

i þ~FFW
i þ ~RRi ½37�

where ~FFC
i is the coulombic force from all particles within a predefined short-

range domain,~FFW
i represents the effects of the van der Waals forces, and ~RRi is a

‘‘reference force’’83 that corrects the double counting of charges caused by the
overlap between the short-range and long-range domains occurring in both the
Ewald and the P3M methods. No overlap exists within the FMM formalism,
so the reference force is null in such a scheme. The forces in Eq. [37] are
expressed as follows:

~FFC
i ¼

X�i

j 6¼i

qiqj

4pErE0j~rri �~rrjj2
r̂rij ½38�

~FFW
i ¼

P�i

j6¼i

24Eij

j~rri�~rrjj 2 si j
j~rri�~rrjj
� �12

� sij

j~rri�~rrjj
� �6

� �
r̂rij Lennard�Jones

P�i

j6¼i

bijjqiqjj
4pEj~rri�~rrjjðpþ1Þ

siþsj

j~rri�~rrjj
� �p

r̂rij inverse power

8>>>><
>>>>:

½39�

~RRi ¼ �
X�i

j 6¼i

qiqj

4pErE0

ðð
Sð~rr1ÞSð~rr2 �~rrijÞ ð~rr1 �~rr2Þ

j~rr1 �~rr2j3
d~rr1d~rr2 ½40�
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Figure 9 Comparison of the CPU time required to solve Poisson’s equation with the
multigrid and SOR method. The computational domain consists of a 65 � 65 � 65
homogeneous mesh.
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where �i is the domain of the short-range interaction (see below), Er is the rela-
tive dielectric constant, E0 is the permittivity of vacuum, q is the charge, and~rrij

is the distance between ions.
The van der Waals force ~FFW

i is often modeled with the Lennard–Jones
function or by an inverse power relation.128 The former is based on the two
fitting parameters sij and Eij, representing, respectively, the maximum attrac-
tion distance and the strength of the interaction.129 For ions of different spe-
cies, the Lennard–Jones parameters are typically calculated by combining the
values of the individual species:129

sij ¼ 1

2
ðsi þ sjÞ and Eij ¼ ffiffiffiffiffiffiffi

EiEj
p ½41�

In the expression of the inverse power law, bij is an adjustable parameter, si

is the radius of the ith particle, and p is a hardness parameter that also repre-
sents the interaction strength. A comparison of the interionic potential profile
for the two different pair potential schemes in an aqueous KCl solution is
shown in Figure 10. The parameters used for the short-range potentials are
taken from Im et al.130 for the Lennard–Jones function and from Hockney83

for the inverse power relation.
The final component of the particle–particle force is the reference force

~RRi, which depends on the shape S of the ionic charge. As stated, within the
P3M approach, the particle–particle portion of the force is calculated for
ions within the relatively small spherical region �i. The role of the reference
force is to correct for the overlap between �i and the entire system over which
the mesh force ~FFlr

i is calculated. In other words, the sources of the electrostatic
force acting on a given charged particle are classified as ‘‘far sources’’ (includ-
ing boundary conditions) that are accounted for efficiently by the solver for the
long-range interaction, and ‘‘close sources’’ generating forces that are not
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resolved by the solver and must be computed by the more CPU-expensive
particle–particle scheme. The domain �i defines the high-resolution region
around a given ion. For obvious reasons, the computation of the long-range
interactions cannot be obtained by subtracting the charges within �i, it would
indeed require a full solution for each particle at each iteration; so the effect of
those sources is subtracted from the potential distribution after the solution
has been obtained. This correction is accomplished by the reference force.

Clearly, the size of the region �i should be chosen as small as possible
based on performance considerations. The key aspect that limits the minimum
size of �i is the size of the ionic charge used for the charge assignment scheme
(see ‘‘Poisson Solver in Real Space’’). As stated, the charge distribution is com-
puted by assigning a ‘‘cloud’’ of charge to each ion. The cloud has a specific
geometric shape and a predefined charge density. When calculating the total
force on a given ion i, all charged particles j 6¼ i whose charge cloud is over-
lapping with that of i are considered ‘‘close sources’’ of the electrostatic force,
and must be included in the domain �i.

For example, if the chosen ionic electrostatic shape S is a sphere with a
uniformly decreasing charge density, the corresponding weighting scheme is
the TSC:83

SðrÞ ¼
3
pr4

c
ðrc � rÞ rc � r

0 else

�
½42�

where rc is the radius of the spherical charge cloud. In this case, the natural
choice for the minimum cutoff radius that defines the short-range region �i

is twice rc. The reference force is then found analytically by substituting the
shape function SðrÞ into Eq. [40]:

RðrÞ ¼ qiqj

4pErE0

4
35r2

c
ð224� � 224�3 þ 70�4 þ 48�5 � 21�6Þ 0 � � � 1

4
35r2

c
ð12=�2 � 224 þ 896� � 840�2 þ 224�3

þ70�4 � 48�5 � 7�6Þ 1 � � � 2
1
r2 else

8>>><
>>>:

½43�

where � ¼ r=rc. To reduce the computational burden, the reference force is
tabulated as a function of the distance between ion pairs as suggested by
Hockney83 and subsequently by Wordelman131 during initialization.

The components of the force between an anion and a cation inside the
short-range domain (2rc ¼ 2 nm) are shown in Figure 11 as a function of
the interionic separation. The two ions are placed in a 500-mM KCl solution,
with no external bias. As expected, the reference force and mesh force have the
same amplitude and therefore will cancel within the short-range domain.

Within the Ewald approach, the charge distribution is defined as a
Gaussian function (see Eq. [8]), and the sum of the direct Coulomb force
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and reference force can be written as an analytic expression. The final expres-
sion for the short-range interaction is then

~FFsr
i ¼ ~FFW

i þ qi

4pEE0

X
j6¼i

qj erfc½aj~rrijj� þ 2affiffiffi
p

p j~rrijje�a2r2
ij

� �
~rrij

j~rri �~rrjj3
½44�

Boundary Conditions

Once the significant components of the system have been chosen, a com-
putational domain is then defined to enclose them. The geometry of the simu-
lation box must define a volume that realistically encloses the physics of the
system, with boundary conditions mimicking the effects of the larger, real sys-
tem being modeled. Within the ion channel framework, only a small fraction
of the cellular lipid membrane is simulated; thus, the dimension of the compu-
tational domain is minimized to reduce the computational burden. Conse-
quently, the boundary conditions must be chosen carefully so that unwanted
computational artifacts are not introduced into the simulation results.

The most popular, and somehow elegant, choice is to impose periodic
boundary conditions on a parallelepiped-shaped domain. This approach is
adequate for simulating bulk systems because it ensures continuity of the ionic
flux and of the force field at the boundaries. It is also compatible with the algo-
rithm that accounts for long-range electrostatic interactions in the Ewald sum-
mation method. However, the periodic boundary approach also has
drawbacks that are sometimes difficult to address. The main problem involves
the charge distribution within the computational domain. The source of this
problem is from the highly inhomogeneous ion charge distribution that gener-
ates far-reaching electric fields. When a periodic boundary ‘‘cuts’’ the field dis-
tribution, significant perturbations are generated in the forces that drive the
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Figure 11 Components of the force inside the short-range domain calculated between
two ions of opposite charge in a 500-mM solution of KCl with no bias.

Electrostatics 261



dynamics of the system; care must be taken in choosing the size of the periodic
box. To validate the results obtained with periodic boundaries, Yang et al.
suggest running the same simulation on computational domains of different
size; that way the presence of size-dependent artifacts can be deleted and
then excluded.132 Furthermore, periodic boundaries make it extremely diffi-
cult to simulate systems with inhomogeneous charge distributions at the
boundary, such as those systems with different dielectric coefficients in differ-
ent regions or with different solutions on either side of the membrane. Also,
the common experimental practice of applying external potentials across the
solution is difficult to reproduce in a periodic system.

The use of nonperiodic boundary conditions is also complicated, espe-
cially by the necessity for having a mechanism that effectively and realistically
recirculates mobile components (ions and sometimes water molecules)
that escape from the computational domain. The injection scheme is
trivial in periodic systems, but it is not at all obvious133 for nonperiodic
systems.

Two main types of electrostatic boundary conditions are used in nonper-
iodic systems. The Dirichlet boundary condition fixes the value of the electro-
static potential, whereas the Neumann method sets the value of the normal
component of the electric field.83 One approach employed to regulate the
injection of ions in nonperiodic systems is to use reservoirs of particles and
a simple stochastic boundary that maintains a given concentration value in
the entire system.134 Ions are recycled from one side of the domain to the other
whenever there is an imbalance caused by a conduction event. It has been
shown that the simple stochastic boundary method of constant injection gives
very similar fluctuations in the particle number of regions of the computa-
tional domain far from the injecting boundaries.134 This approach is simple
and efficient, but it has the drawback of not being able to handle concentration
gradients. Rather than maintaining the concentration in the entire domain,
another approach consists of simply fixing the concentration in the Dirichlet
boundary cells, and injecting particles to sustain this concentration. That way,
the concentrations at different boundaries can be different.

A third approach130 is to inject particles based on a grand canonical
ensemble distribution. At each predetermined molecular dynamics time step,
the probability to create or destroy a particle is calculated and a random num-
ber is used to determine whether the update is accepted (the probability for
both the creation and the destruction of a particle must be equal to ensure
reversibility). The probability function depends on the excess chemical poten-
tial and must be calculated in a way that is consistent with the microscopic
model used to describe the system. In the work of Im et al.,130 a primitive
water model is used, and the chemical potential is determined through an ana-
lytic solution to the Ornstein–Zernike equation using the hypernetted chain as
a closure relation.72 This method is very accurate from the physical viewpoint,
but it has a poorer CPU performance compared with simpler schemes based on
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constant injection rates because of the continuous calculation of the chemical
potential.

PARTICLE-BASED SIMULATION

A key component of particle-based simulation methods involves the cou-
pling of the dynamics of the charge carriers (ions) with the field of forces gen-
erated by the external boundary conditions as well as by the internal electrostatic
interactions between the components of the system. This self-consistent
coupling approach has been successfully employed for more than three decades
in plasma simulations.135 The adjective self-consistent refers to the fact that the
forces caused by the electrostatic interactions within the components of the
system depend strictly on the spatial configuration of the components and
must be updated continuously as the dynamics of the system evolves.

Self-consistency is achieved by periodically ‘‘freezing’’ the dynamics and
by updating the spatial force distribution. The dynamics is then resumed in the
‘‘updated’’ field of forces, which is assumed to be constant for a time �t that,
in the cases of interest, is usually on the order of a femtosecond. At the end of
�t, a new field is computed from the new charge distribution.

The need for self-consistency between charge and force distributions is
caused by the spatial inhomogeneities of the systems under scrutiny. The
long-range nature of the electrostatic interaction makes the relation between
ionic concentration and field distribution highly nonlinear.136,137 Significant
differences in methodology for implementing the potential functions in simu-
lation programs138 exist. Figure 12 depicts the flowchart of a typical particle-
based algorithm. The self-consistent aspect of the approach is enforced within
the main iteration cycle, where the field of force and the ionic dynamics are
continuously coupled during the simulation.

The following section is devoted to two popular approaches for particle-
based simulations of ionic charge transport in transmembrane proteins. The
name used for the family of approaches to be discussed has its origin in the
fact that at least some components of the system are represented as computer
‘‘particles’’ and their trajectories are tracked in phase-space. Although mobile
ions in solution are always modeled as particles, their dynamics can be
Brownian or Newtonian based on the representation of the water solvent.
When the effects of water on the system dynamics are modeled through
macroscopic quantities such as the diffusion coefficient or the dielectric con-
stant rather than by treating each atom (or collection of atoms) as a unique
particle that exerts its influence on the system, we say that the solvent is trea-
ted implicitly; i.e., we are implying in some way that the water is there influ-
encing the system’s dynamics. Alternatively, the solvent model is defined as
being ‘‘explicit’’ if the water molecules are represented as separate entities,
each obeying the laws of physics and thus influencing the system’s dynamics.

Particle-Based Simulation 263



Implicit Solvent: Brownian Dynamics

When the solvent is treated as a continuous dielectric background that
interacts stochastically with the mobile ions, the ionic trajectories can be mod-
eled with the Langevin formalism.139,140 In particular, the strict or full Lange-
vin equation can be used, which assumes Markovian random forces and
neglects correlations (both spatially and temporally) of the ionic motion:

mi
d~vviðtÞ

dt
¼ �mig~vviðtÞ þ~FFið~rriðtÞÞ þ~BBiðtÞ ½45�

where mi is the reduced mass of the ith ion,~vviðtÞ is its velocity at time t, g is the
friction coefficient (i.e., the inverse of the ionic velocity relaxation time), ~FFi is
the force on ion i caused by all other particles in the system and boundary con-
ditions (including internal dielectric discontinuities), and ~BBi is a fluctuating
force that mimics the molecular bombardment of water on the ion and is mod-
eled with a Markovian random variable. The fluctuating force can, therefore,
be written explicitly as

~BBðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gmkBT

p
_ww ½46�

where a Gaussian white noise term is given by _ww.
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Figure 12 Flowchart of the self-consistent, particle-based algorithm.
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The Langevin equation is discretized temporally by a set of equally
spaced time intervals. At predetermined times, the ion dynamics is frozen,
and the spatial distribution of the force is calculated from the vector sum of
all its components, including both the long-range and the short-range contri-
butions. The components of the force are then kept constant, while the
dynamics resumes under the effect of the updated field distribution. Self-
consistency between the force field and the ionic motion in the phase space
is obtained by iterating this procedure for a desired amount of simulation
time. The choice of the spatial and temporal discretization schemes plays a
crucial role in computational performance and model accuracy.

The integration scheme used for Eq. [45] is chosen based on fulfilling two
requirements: maintaining energy stability and allowing for large time steps.
The latter requirement is related to the need to investigate system properties
for the typically long biological time scales, which can be on the order of
microseconds or more. Using long time steps reduces the number of operations
for each unit of simulated time, thus increasing the performance of the simula-
tion code. Counteracting this is the requirement that the time step must be
small compared with the mean time between particle collisions. An excessively
coarse time discretization would not account for rapid variations in the short-
range force, and it does not correctly account for its coulombic singularity. A
large time step typically results in a spurious heating of the particle ensemble
that then becomes energetically unstable.83

Two common implemented integration schemes for the Langevin equa-
tion are the standard first-order Euler scheme and the Verlet-like method of
van Gunsteren and Berendsen.141 The latter is a third-order model that reduces
to the Verlet algorithm142 when the friction coefficient in the Langevin
equation is zero (see section on Explicit Solvent below). This approach by
van Gunsteren and Berendsen allows for a larger time step as compared
with the Euler method. Both schemes are discussed in the following sections,
and a comparison is offered.

Particle Tracking: Euler Integration
The first-order Euler integration scheme reduces the Langevin equation to

~vviðt þ�tÞ ¼~vviðtÞ ��t g~vviðtÞ �
~FFi

mi
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gkBT

mi�t

s
~NNð0; 1Þ

" #
½47�

where �t is the integration time step and ~NNð0; 1Þ is a three-dimensional
Gaussian random variable with zero mean and a variance of 1. The spatial
trajectories are calculated with Newtonian mechanics. To represent the
fluctuating force as a stationary Markovian, Gaussian process, the time-step
duration �t must be much smaller than the reciprocal of the friction
coefficient g in the Langevin equation (Eq. [45]).141 It results in a fine (and
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computationally expensive) time discretization when ionic solutions are
simulated.

Particle Tracking: Verlet-like Integration
The need for carrying out impractically short time steps was addressed

by van Gunsteren and Berendsen141 who accounted for the evolution of the
fluctuating force during the integration time step. In their method, the force
on the ith particle at time tnþ1 is first expanded in a power series about the
previous time tn

Fiðtnþ1Þ � FiðtnÞ þ _FFiðtnÞðtnþ1 � tnÞ ½48�

where _FF denotes the time derivative. The power series expansion is then sub-
stituted into Eq. [45] and the resulting solution of the Langevin equation is

viðtnþ1Þ ¼ viðtnÞe�g�t þ ðmigÞ�1FiðtnÞð1 � e�g�tÞ
þ ðmig2Þ�1 _FFiðtnÞðg�t � ð1 � e�g�tÞÞ

þ ðmiÞ�1e�g�t

ðt

tn

e�gðt0�tnÞBiðt0Þdt0 ½49�

where �t ¼ tnþ1 � tn is the integration time step. Note that the fluctuating
force BiðtÞ is retained inside the integral. The ion’s position is calculated
with the expression

xiðtnþ1Þ ¼ 2xiðtnÞ � xiðtn�1Þe�g�t

þ
ðtnþ�t

tn

viðt0Þdt0 þ e�g�t

ðtn

tn��t

viðt0Þdt0 ½50�

and, finally, the updated particle position is written as

xiðtnþ1Þ ¼ xiðtnÞ½1 þ e�g�t� � xiðtn�1Þe�g�t

þ ðmigÞ�1FiðtnÞð�tÞ½1 � e�g�t�
þ ðmig2Þ�1 _FFiðtnÞð�tÞ½0:5g�tð1 þ e�g�tÞ�
� ½1 � e�g�t� þ Xn

i ð0;�tÞ þ e�g�t�Xn
i ð0;��tÞ ½51�

where

Xn
i ð0;�tÞ ¼ ðmigÞ�1

ðtnþ�t

tn

½1 � e�gðtnþ�t�t0Þ�Biðt0Þdt0 ½52�
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Equation [52] is also a Markovian stochastic process with zero mean and var-
iance �t. The quantity Xn

i ð0;��tÞ is correlated with Xn�1
i ð0;�tÞ through a

bivariate Gaussian distribution. In the zero limit of the friction coefficient,
this set of equations corresponds to the trajectories obtained with the Verlet
algorithm.141

The set of trajectories resulting from the Verlet-like integration scheme
as compared with the Euler scheme is not limited by the velocity relaxation
time, and consequently a longer time step can be used. Figure 13 shows a
plot of the steady-state average ionic energy versus time-step interval for a
150-mM KCl solution simulated for 1 ns in the absence of an external electric
field. The Euler and Verlet-like algorithms give similar results for time steps
below approximately 10 fs, but larger time steps result in a greater energy drift
for the Euler integration scheme.

Explicit Solvent: Molecular Dynamics

The molecular dynamics approach allows for the simulation of the system
components individually with atomic resolution. Broadly speaking, an appro-
priately constrained Newtonian dynamics is used to capture the evolution of
particles representing individual ions, atoms, or groups of atoms in the force
field generated by electrostatic and van der Waals interactions together with
boundary conditions. One difference between molecular dynamics and Brow-
nian dynamics is the way the solvent is modeled: Water molecules are typically
treated explicitly within the molecular dynamics framework.

The role of water in ion permeation through narrow channels was
stressed previously; a model that accounts for the dynamics of the ionic solva-
tion state is needed for a full understanding of channel functionality. Further-
more, the atomic resolution of molecular dynamics includes sufficient
information to (in principle) treat polarization effects with highly accurate,
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Figure 13 Steady-state energy of an ensemble of anions and cations in a 150-mM
solution of KCl as a function of time step, for both the Euler and the Verlet-like
integration schemes.
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microscopic resolution. It is definitely an advantage of molecular dynamics
over Brownian dynamics, which tracks the individual ionic trajectories on
the atomic scale, but uses blurred-out collective properties such as the dielec-
tric constant or the friction coefficient to express the interaction of the ions
with their environment. Unfortunately, the computational burden associated
with molecular dynamics simulations of ion channels is such that only rela-
tively small systems can be simulated for times that are too short to produce
statistically relevant estimates of macroscopic observables such as the ionic
current flowing through an open channel.11,143 Although it is obvious that
the macroscopic parameters ‘‘friction coefficient’’ and dielectric coefficient
will not capture the atomic detail important for ion movement or permeation
in Brownian dynamics, it is not obvious that simulations of ion channels will
reproduce the bulk properties of friction or dielectric response with explicit
molecular dynamics methods until the simulations are actually performed
and the results compared with the experiment. Calibration of equilibrium sys-
tems with atomic detail form the basis of equilibrium molecular dynamics and
Monte Carlo simulations of ionic solutions.95,96

Many models are used to include the microscopic effects of water mole-
cules on biological systems, and most of them are based on parameterized
force field schemes that are tuned to reproduce some bulk macroscopic proper-
ties of the solvent. For a given system, the choice of a specific water model is
based on the usual tradeoff between accuracy and computational complexity.
Furthermore, even if a particular model fits a type of data better than another—
for example, dielectric constant better than density versus temperature—the
choice of which model to use is not obvious.

Water models used in ion channel simulations must reproduce, among
other things, the solvent structural properties measured by the radial distribu-
tion function (RDF), mass transport characteristics like the diffusion coeffi-
cient, and the macroscopic polarization behavior, such as the dielectric
constant. These models should also account for the local interactions of the
water with molecules in the protein structure. It is especially important
because polarization effects may play a role in the ion permeation process.
It should also be noted that the bulk ionic concentrations of biologically rele-
vant systems are relatively low, so usually a large number of solvent molecules
must be simulated to ensure the presence of a statistically relevant number of
ions within the simulation domain. Indeed, ions in concentrations of 10�6 M
often control biological reactions of great importance: Biochemistry textbooks
pay much attention to the cofactors or coenzymes that control life’s metabo-
lism. The effects of these cofactors depend heavily on concentration. Thus,
simulations must be able to estimate accurately the activity (i.e., effective con-
centration) of such trace ions if they are important in the system being studied.
Consequently, the greatest number of atoms in molecular dynamics simula-
tions is usually those of the water molecules, adding the computational
efficiency as a final stringent requirement for implementing a particular solvent
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model. It is difficult to calculate more than a few nanoseconds of simulation
time in ion channel simulations, and in fact only Crozier et al.,144,145 to the
best of the author’s knowledge, has been able to compute ion trajectories
for a microsecond.

Rigid, fixed-charge water models are widely used in molecular dynamics
simulations.146 Their popularity is from their algorithmic simplicity and from
their ability to reproduce many thermodynamic properties that match experi-
ment. Within these models, point charges combined with empirical potentials
are used to model the electrostatic interaction of the water molecule147 with its
environment. The charges are placed at specific sites within the molecular
volume,147 and the effective potentials are tuned to reproduce the average
(bulk) effects of polarization.

Among these approaches, 3-, 4-, and 5-site models have been implemen-
ted, with different geometric configurations. Within the simple 3-site model,
the positions of three charges are set to the sites of the hydrogen and oxygen
atoms, whereas the negative charge is moved from the oxygen site toward the
hydrogens along the bisector of the hydrogen–oxygen–hydrogen angle146 in
the 4-site representation. For the 5-site model, discrete charges are located
at the positions of the hydrogen atoms, and an additional lone pair is oriented
tetrahedrally around the oxygen. The number of operations in the molecular
dynamics algorithms scales with the square of the number of interaction sites,
thus explaining the popularity of the 3- and 4-site water models.

The family of 3- and 4-site models include the simple point charge model
(SPC) and the transferable intermolecular potential functions (TIPS). The SPC
is a basic 3-site model148 with parameters adjusted to reproduce the energy
and pressure of liquid water under ambient conditions. Parameters are further
optimized to fit structural properties, specifically the second peak of the RDF
of the oxygen atoms. The TIPS started as a 3-site liquid-phase model that was
later extended to a 4-site (TIP4P) configuration149 to reproduce the second
peak structure149 of the oxygen RDF. The TIPS- and SPC-based models are
considered to be the most efficient because they require the lowest number
of interaction calculations while providing accurate estimates of the intermo-
lecular energy and density.144 An extended version of the SPC fixed-charge
water model was developed, which included the polarization through a
mean-field description of the induced moments (SPC/E150). This model pro-
vides a more accurate RDF and an improvement in the calculated diffusion
coefficient as compared with the standard SPC model. The parameters used
in this approach are still empirical, and they are adjusted to fit known physical
properties. The inclusion of a realistic self-consistent description of polariza-
tion in water models is currently an important research topic.

The integration schemes used for Newtonian dynamics are simpler than
that employed in the Brownian dynamics simulation based on Langevin’s
equation (see the section ‘‘Implicit Solvent: Brownian Dynamics’’). A popular
choice11 for Newtonian molecular dynamics is the Verlet integration scheme
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that conserves volume in phase space and is therefore symplectic.151 To reduce
the number of computations per unit of simulated time, much work has been
devoted to integration schemes with variable time resolution.152,153 The idea
behind these multiple time step methods is that a lower time resolution is
required for assessing the long-range components of the force field, which
translates into computing the long-range forces less frequently than the
short-range forces.154

Calculation of Free Energy
Despite the limitations discussed, molecular dynamics simulations sup-

ply invaluable insight into channel functionality because (1) they allow for a
microscopic analysis of the structural fluctuations of the channel-membrane
system,52,155 and (2) they allow for a mapping of the energetics of the ion per-
meation process in terms of the potential of mean force,156 which represents
the free energy content of the system as a function of a reaction coordinate.157

The free energy landscape associated with ions in the proximity of a channel
can then be used as input for faster and less detailed simulation tools, such as
the Brownian dynamics approach.158 Analogously, the ion diffusion coeffi-
cient within the channel can be extracted from molecular dynamics calcula-
tions159,160 and used with electrodiffusive continuum models (see the next
section on Flux-Based Simulation).

Indeed, all ingredients for a complete thermodynamic characterization of
the system are available in molecular dynamics simulations: atomic resolution,
protein flexibility, membrane fluctuations, explicit solvent, and ionic motion.
Because the free energy profile controls ion conduction,161 along with none-
quilibrium parameters like the diffusion coefficient, one can expect to fully
understand the permeation (and selectivity) processes from it. Furthermore,
because one can explore the energetics of molecular configurations in response
to external stimuli, free energy calculations can in principle supply informa-
tion about gating mechanisms or, at least, could be used to confirm hypotheses
derived from indirect experimental observations.

The task of computing free energy from molecular dynamics trajectories
can be difficult because of the (non)statistical relevance of the trajectories and
the inaccuracy of the force field (discussed in the next section). Extracting sta-
tistically homogeneous data from raw molecular dynamics simulations of ion
channels is arduous. The highly inhomogeneous charge distribution generates
a bumpy electrostatic landscape for the ions’ dynamics. Consequently, regions
of the conduction path that are needed for permeation are rarely visited by
ionic trajectories.143 Fortunately, much work has been done to enhance the
statistical relevance of low-occupancy regions, and several numerical techni-
ques have emerged as being highly effective in sampling those regions. For
example, the addition of an artificial restraint on the ionic trajectories artifi-
cially biases them toward more sparsely populated regions, increasing the
accuracy of the free energy profile. The effects of this external perturbing
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potential are then processed out of the calculated results, giving a statistically
enhanced free energy profile. This technique, called umbrella sampling,162 can
be used simultaneously on different regions of the same reaction coordinate, or
on a multidimensional reaction space (see Chapter 9 in Becker et al.163). This
process allows one to obtain an accurate free energy profile by means of
loosely coupled simulations that can be run concurrently on separate compu-
ters. Umbrella sampling has been used to study the multi-ion free energy pro-
file of the selectivity channel of KcsA,156 where the existence of binding sites
on the extracellular side of the channel were predicted. These predictions were
subsequently confirmed by high-definition experimental observations.41

The Force Field
If the ionic trajectories can be statistically enhanced by using appropriate

computational techniques like umbrella sampling, it is imperative that we also
increase the accuracy of the forces being computed in particle-based simula-
tions. State-of-the-art simulation packages use the force field decomposition
discussed in the section on electrostatics (see Eq. [1]), where either the long-
range component of the force is neglected or is included in the Ewald
approach. Therefore, most simulations including long-range electrostatic
interactions are performed with periodic boundary conditions that bypass
the problem of injecting and expelling ions and water molecules into and
out of the computational domain. As stressed, periodic boundary conditions
involve several limitations that are particularly serious for ion channel simula-
tions. For example, electrostatic boundary conditions can be applied by acting
on the electric field rather than on the electrostatic potential (which is unphy-
sically discontinuous, when not null, at the periodic boundary). It does not
constitute a problem from a theoretical standpoint, but it implies a representa-
tion of the simulated system that differs from reality, where potentials are
applied across the system by using reversible electrodes. These limitations
can be addressed by solving Poisson’s equation in real space11 and by devising
an appropriate injection/ejection mechanism that mimics the effects of distant
electrodes on the small domain being simulated.164

Calculating the short-range component of the force field is crucial for an
accurate particle-based simulation of ion channels. It is not possible to fully
understand the permeation mechanism, especially in narrow channels, without
a correct representation of the short-range interactions between the ions and
the protein. The need for an accurate representation of short-range interac-
tions is evident in KcsA, where (1) the solvation state of the ions changes dur-
ing their transit through the channel, and (2) the narrow part of the channel
(the selectivity filter) that is lined by backbone carbonyl oxygens, is being tra-
versed by a single line of ions alternating with water molecules. The effective
process of selecting and moving ions through such a narrow lumen is the result
of competing microscopic interactions138,155 that must be accounted for pre-
cisely. The main problem is related to the force field parameters used to
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compute the short-range components, as, for example in the Lennard–Jones
potential or in the inverse power relations, as well as the other contributions
like bond lengthening, angular deformations, and bond rotational barriers,
which are included in the potential energy functions used to describe the mole-
cules under study. Force field parametrization is usually performed in a way
that accounts for the average effects of the atomic polarization field, and it
involves a redistribution of the electric charge. In other words, the simulated
particles (ions and atoms or groups of atoms in the protein and in the mem-
brane) are assigned effective properties such as charge, size, and hardness,
which normally depend on their position within the system. These force field
parameters165 are optimized in such a way that the simulation reproduces
some desired bulk properties of the solution. The idea of the parameterization
is to include the effects of the true many-body polar interactions in a simple
pair-wise additive fashion, so that the many-body effects can be embedded
implicitly in the equations for the short-range force. This approach is efficient
from a computational viewpoint, but it involves a few problems. First, the
parametrization is not unique.138 Second, the effects of the real polarization
fields are assumed to be fixed rather than consistently evolving with the charge
distribution. Finally, the effects of polarization on the molecular flexibility are
necessarily neglected. It is safe to assume that in narrow pores, the polarization
field plays some role in the structural properties of the protein, and it plays a
crucial role in the ion–water and ion–protein interactions. One can try to
address the problem by treating the polarization field macroscopically, i.e.,
by computing an effective position-dependent dielectric tensor at equili-
brium,143 and then use this dielectric tensor in Brownian dynamics or in an
appropriately modified parametrization of molecular dynamics. This
approach, however, neglects the transient dynamics of the polarization fields
that may assist permeation and selectivity in ultra-narrow channels.

The induced point dipole (PD) model and the fluctuating charge (FQ)
model are two approaches used to include polarization explicitly in a self-
consistent fashion in molecular dynamics simulations.166,167 Both methods
define the total interaction potential as a sum of pair-wise interactions (of
all fixed and mobile charges) and an additional polarization term based on
the induced electrostatic moments. Within the PD approach, the polarization
term is included by ‘‘inducing’’ a PD at appropriate charge sites. This dipole
depends on all other charges and all other dipoles in the system. Therefore, the
total dipole distribution must be computed as a collective (i.e. many-body)
property of the system. It can be achieved by an iterative procedure that mini-
mizes the polarization energy,166 or by treating each dipole as a dynamic vari-
able governed by a set of equations of motion. The polarizable-SPC (PSPC)
model is based on this extended Lagrangian formalism, as an example.

With the FQ approach, the polarization term can also be included in the
model by changing the amplitude of the charges in response to the electric
field. Here, a Lagrangian method is also applied to solve the set of equations
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of motion describing the charge dynamics. In this case, the equations are
derived for the fluctuating charge system using an electronegativity equaliza-
tion scheme.166 In terms of computational resources, the FQ approach is only
slightly more demanding than are the nonpolarized charge models, making it
attractive. The polarized version of the TIP4P model (TIP4P-FQ) produces
RDFs that are in excellent agreement with experimental values.166

Molecular dynamics simulations of ionic motion in hydrated ion chan-
nels have been performed for more than two decades.15,168,169 Much work
has been done to include explicit polarizability in molecular dynamics simula-
tions166,167,170–172 and to obtain models of water146,147,173–175 that can
account precisely for the local solvation properties of ions and ion chan-
nels.16,148,176 A more detailed discussion of these approaches cannot be
included in this chapter for reasons of space, so the reader is referred to the
references indicated above.

FLUX-BASED SIMULATION

It should be clear by now that a microscopic representation of the system
components can provide invaluable information for the molecular modeler
that relates the structure of ion channels to their function. A major problem
with such microscopic, atomistic, particle-based approaches is the inability
to perform large-scale simulation in time and space. Even optimistic guesses
about the evolution of computer hardware and software place the time frame
for modeling all components of a realistically large system, of, say, a few cubic
microns and for a few milliseconds, to be decades from now.

Because we want to predict and explain the complex physiological beha-
vior of ion channels on a large scale, one can argue that all information
obtained with particle-based approaches is not actually needed. The same
issue originated more than a decade ago when algorithms were ranked for
their ability to simulate semiconductor devices. State-of-the-art simulation of
an individual transistor still takes hours of CPU time for picoseconds of simu-
lated time, whereas key mechanisms like the trap-assisted recombination of
charge carriers in the floating body of a silicon on insulator MOSFET have
characteristic times of the order of hundreds of microseconds. Furthermore,
even if the full characterization of an individual device could be achieved in
a reasonable time, what about simulating a whole circuit where thousands
of such devices are nonlinearly coupled? Algorithmic efficiency together
with faster computing machines are not realistic solutions to such massive
and complex problems.

It is our opinion (and probably the most important message that we try
to convey in this chapter) that any approach for simulating complex, many-
body systems must be based on a hierarchy of consistently related models
(see the next section). Each model employed must be validated individually
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by comparison (direct or indirect) with experimental data, and the range of
validity for each model must be defined as clearly as possible. Knowing in
which cases we can safely apply a theory then makes that theory practical.

With this background we devote this section to approaches based on
continuum ionic charge distributions rather than limiting this tutorial to the
discussion of particle-based simulation methods. These electrodiffusive
approaches are called here flux-based because they model the flux of charges,
i.e., the current densities, flowing through the system. Electrostatic and van der
Waals interactions are accounted for implicitly by a mean field approach
where their effects are included as averages over the many instantaneous
configurations that the particle-based approaches would otherwise model
individually. The main assumption made with the flux-based approaches is
therefore that the ion channel behavior can be explained by their mean structural
properties rather than by the instantaneous microscopic dynamics of the system.

Nernst–Planck Equation

One continuum model for electrodiffusion of ions between regions of
different concentration is based on the combination of Fick’s law177 that
describes the diffusion of ions along a concentration gradient and Kohl-
rausch’s law that describes the drift of ions along a potential gradient. Nernst
and Planck combined these two laws to obtain the electrodiffusive equation,
now known as the Nernst-Planck equation, and which can be written in the
Stratonovich form178,179 as

d

d~rr
Dð~rrÞ rcð~rrÞ þ q

kBT
r�ð~rrÞcð~rrÞ

� �� �
¼ 0 ½53�

Here D is the diffusion coefficient, c is the ionic concentration, and � is the
electrostatic potential caused by the charges within the system and the external
boundary conditions. The absolute temperature of the solution is T, whereas kB

is Boltzmann’s constant and q is the ionic charge. Integrating Eq. [53] once gives

Dð~rrÞ rcð~rrÞ � 1

kBT
~FFð~rrÞcð~rrÞ

� �
¼ �~JJ ½54�

where~JJ is the constant steady-state current density vector and ~FFð~rrÞ is the force
as calculated through the gradient of the electrostatic potential. Both the
concentration c and the force field ~FF are space-dependent unknowns in the
problem, so two additional equations are coupled to Eq. [54] to obtain ~JJ:
the continuity equation

1

q
r ~JJ ¼ � qc

qt
þ G ½55�
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and Poisson’s equation (Eq.[18]). The quantity G in Eq.[55] represents the
mechanisms of charge generation and recombination occurring within the sys-
tem. In the following discussion, it is assumed to be null for the sake of sim-
plicity. For a one-dimensional domain starting at x ¼ 0 and ending at x ¼ L,
the solution to Eq. [54] can be written as180

~JJ ¼ cð0Þe�ð0Þ=kBT � cðLÞe�ðLÞ=kBTÐ L
0 e�ðxÞ=kBT dx

DðxÞ
½56�

The set of three coupled equations (Eq.[18], Eq. [54], and Eq.[55]) is then
solved numerically with an iterative procedure that will be discussed in a sub-
sequent section.

The remainder of this section is devoted to the derivation of Eq.[54].
Besides the mathematics we also define the range of applicability of simula-
tions based on the Nernst–Planck equation. The starting point for deriving the
Nernst–Planck equation is Langevin’s equation (Eq. [45]). A solution of this
stochastic differential equation can be obtained by finding the probability
that the solution in phase space is~rr;~vv at time t, starting from an initial condi-
tion~rr0;~vv0 at time t ¼ 0. This probability is described by the probability density
function pð~rr;~vv; tÞ. The basic idea is to find the phase-space probability density
function that is a solution to the appropriate partial differential equation,
rather than to track the individual Brownian trajectories in phase space.
This last point is important, because it defines the difference between particle-
based and flux-based simulation strategies.

The derivation of a differential equation for pð~rr;~vv; tÞ is performed by first
defining the diffusion process as an independent Markov process to write a
Chapman–Kolmogorov equation in phase space:

pð~rr þ~vv�t;~vv; t þ�tÞ ¼
ð

pð~rr;~vv ��~vv;�tÞ
ð~rr;~vv ��~vv; �~vvÞdð�~vvÞ ½57�

In Eq. [57], �t is a time interval chosen to satisfy two criteria: (1) During �t
the position and velocity do not change appreciably, and (2) the stochastic
term in Langevin’s equation must undergo many fluctuations. Equation [57]
states the Markovian nature of pð~rr;~vv; tÞ.

Applying a Taylor expansion to each of the individual terms in Eq. [57]
results in the generalization of the Fokker-Planck equation181 for the evolution
of pð~rr;~vv; tÞ in phase-space:

qp

qt
þ~vv  rrp þ

~FF

m
 rvp ¼ grv  ðp~vvÞ þ g

kBT

m
r2

vp ½58�
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It should be noted that the left-hand side of Eq. [58] is identical to that of
the reduced Liouville equation.181 Indeed, several theories have been devel-
oped that obtain Eq. [58] from the reduced Liouville equation.181,182 Follow-
ing the standard Smoluchowski expansion178 of the full time-dependent
Fokker–Planck equation, it can be shown that, for large g, the following model
is obtained for the probability density at steady state:

d

d~rr

1

g
kBT

m
rpð~rrÞ þ q

m
r�ð~rrÞpð~rrÞ
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¼ 0 ½59�

Note that the dependence of p on the velocity has been dropped because of the
overdamping hypothesis (i.e. large g), and pð~rrÞ � limt!1 pð~rr; tÞ, which is a
consequence of the steady state hypothesis. Equation [59] is clearly written
in the Stratonovich form (see Eq. [53]).

The probability distribution functions in Eq. [59] applied to the trajec-
tories of particles flowing into and out of a system provides a justification
for using the Nernst–Planck equation (Eq. [54]): The net ionic directional
fluxes can be expressed in terms of differences between the probability fluxes,
normalized to the concentration at the sides of the region of interest.180 That
ionic fluxes and differences in probability fluxes are related thus supplies a
connection between the solution of the Nernst–Planck equation (Eq. [54])
and the Smoluchowski equation (Eq. [59]), and it provides a direct justifica-
tion for using Eq. [54] for the study of ions subjected to Brownian dynamics
in solution.

Continuing along these lines, we also observe that the Liouville equation
is used to obtain the Boltzmann transport equation derived initially within the
kinetic theory of gases:

qf

qt
þ~vv  rrf þ

~FF

m
 rvf ¼ qf

qt

� �
coll

½60�

where f ð~rr;~vv; tÞ is the phase-space point density, or distribution function, of the
particles. The right-hand term of Eq. [60] represents the time rate of change of
f ð~rr;~vv; tÞ from collisions that particles undergo within the system.

We now conclude with a derivation of the basic transport equations
starting from the Boltzmann equation rather than from the Fokker–Planck
equation. We already noted that both the Fokker–Planck and the Boltzmann
equations are related to the Liouville equation and that our goal is to
obtain equations for the charge distribution and the current density (Eqs. [55]
and [54]) using an appropriate representation of the collisional term in the left-
hand side of Eq. [60]). The method described here is the well-known method
of moments. It consists of multiplying the Boltzmann equation by a power of
the velocity, and by integrating over the velocity. For the moment of order zero
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(i.e., the zeroth power of the velocity), one uses a constant, which, in this case
is the elemental charge q, to obtain

1

q
r  ðqc~vvÞ ¼ � qc

qt
þ G ½61�

where G is the integral of the collisional term:

G ¼ �
ð

df

dt

� �
coll

d~vv ½62�

Based on the assumption that collisions change the ionic velocity but not their
position, G is simply reduced to a charge generation-recombination term that
will be neglected in processes involving transport. By recalling that ~JJ ¼ qc~vv,
one realizes that Eq. [61] is the continuity equation previously written
(see Eq. [55]).

The moment of order one is obtained by multiplying the Boltzmann
equation by ~vv and integrating over the velocity space. The result is given by

q
qt

ðc~vvÞ þ~vvrr  ðc~vvÞ þ ðc~vv  rrÞ~vv þ 1

m
rr  ðckBT̂TÞ þ

~FF

m
c ¼ q~vv

qt

� �
coll

½63�

where T̂T is the temperature tensor. Equation [63] is simplified considerably by
assuming that the concentration c is not a function of time (steady-state
assumption). It is accomplished by neglecting the convection term ~vvr  ðc~vvÞ,
by representing the tensor T̂T with the scalar T, and finally, by assuming that
the evolution of the velocity is a sequence of stationary states. Furthermore,
assuming that the fluctuations of the velocity generate small deviations from
equilibrium, one can apply a relaxation time approximation183 to the colli-
sional term

q~vv
qt

� �
coll

� ~vvg ½64�

These assumptions allow us to write Eq. [63] as

Dð~rrÞ rcð~rrÞ � 1

kBT
~FFð~rrÞcð~rrÞ

� �
¼ �~JJ ½65�

which is the Nernst–Planck equation, where the diffusion coefficient is
expressed as D ¼ kBT

g .
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Because Boltzmann’s equation is a conservation relation in phase space,
its moments represent conservation laws in position space~rr. In particular, the
moment of order zero, Eq. [61], is the charge conservation law, whereas
Eq. [65] represents current conservation. The next moment is obtained by
multiplying Eq. [60] by mv2=2 and integrating over the velocity space. The
resulting equation is an energy conservation relation that accounts for heat
flow within the system. Inspired by the literature on semiconductor modeling
and simulation,184 Chen et al. solved the system for the first three moments of
Boltzmann’s equation within the ion channel framework,185 proposing the
inclusion of kinetic energy exchange between the different components of
the system.

The PNP Method

This section describes the numerical techniques used for solving the set of
differential equations that model the electrodiffusion of ions in solution. The
method has historically been called the Poisson–Nernst–Planck (PNP) method
because it is based on the coupling of the Poisson equation with the Nernst–
Planck equation. The basic equations used in the PNP method include the
Poisson equation (Eq. [18]), the charge continuity equation (Eq. [55]), and
the current density of the Nernst–Planck equation (Eq. [54]).

Poisson’s equation is usually simplified by assuming the dielectric con-
stant to be stepwise constant in the position space. It should be noted that
this approximation does not preclude the possibility of having dielectric inter-
faces within the computational domain; what is assumed here is that the
dielectric constant changes abruptly at the interface of different materials.
This assumption is completely natural when Poisson’s equation is solved on
a discrete grid by a finite differences scheme.

Equations [18], [54], and [55] constitute a system of three equations
with three unknowns, and this system is solved numerically on one-, two-
or three-dimensional domains. For the sake of simplicity, we will discuss
the one-dimensional case (the equations are easily extended to three-
dimensional). Although finite element methods have been used extensively
for the solution of Eqs. [18], and [55] in solid state electronics, flux-based
approaches for the simulation of ion channels rely primarily on finite differ-
ence schemes.

The system of Eqs. [18], [54], and [55] is usually solved iteratively, with
each iteration defined by the successive solution of the three equations. An
initial guess is first supplied for the force field ~FF in Eq. [54], which is then
solved on a discrete grid to provide the components of the current density~JJ.
The divergence of~JJ is then computed with the steady-state continuity equation
(Eq. [55]) to obtain the charge distribution that, in turn, is used in the forcing
function of Poisson’s equation. From the gradient of the computed potential,
one derives a new (better) approximation to the force ~FF that is used to start
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another iteration. The iterative process is repeated until the difference between
the results of two successive iterations reaches a predefined threshold value.
This process ensures self-consistency among the spatial distributions of the
charge, current, and potential.

The numerical method for solving of the PNP system in one dimension is
normally based on the discretization scheme in Figure 14. A grid is initially
defined on which the values of potential and charge distributions are com-
puted (filled circles in Figure 14), whereas the components of the current den-
sity vector are computed on points located halfway between those grid-points
(empty circles). Because methods for solving Poisson’s equation were already
discussed, the remaining part of this discussion will focus on the solution of
the continuity equation. For a discretization scheme as in Figure 14, one can
write a first-order finite difference equation for the continuity equation:

qc

qt
¼ 1

q
r ~JJ ¼ 1

q

Jiþ1=2 � Ji�1=2
aiþai�1

2

" #
¼ 0 ½66�

where Jiþ1=2 ¼ Jxðxiþ1=2Þ, a represents the mesh spacing, and the system is
assumed to be in steady state. The values of the current can be obtained by
finite difference equations obtained from Eq. [54]:

Jiþ1=2 ¼ Diþ1=2
ciþ1 � ci

ai
� ciþ1=2

Diþ1=2

kBT
Fiþ1=2 ½67a�

Ji�1=2 ¼ Di�1=2
ci � ci�1

ai � 1
� ci�1=2

Di�1=2

kBT
Fi�1=2 ½67b�

where the values of any function at the midpoint locations (empty circles in
Figure 14) are obtained through linear interpolation. The currents from
Eqs. [67a] and [67b] can then be used in Eq. [66] to obtain a difference
equation that expresses the concentration c as a function of the force F. In
two- and three-dimensional domains, the difference equations are normally
solved by using a standard iterative method.

ii-1 i-1/2 i+1/2 i+1

ai-1 ai

Figure 14 Discretization scheme used for the solution of the PNP equations. Values
of the current density are computed at the points designated by empty circles; the
potential and charge density values are computed at points corresponding to the filled
circles.
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This solution scheme for the PNP method is attractive for its simplicity,
but it leads to substantial errors in those regions where large concentration
gradients exist. Within this approach, the lack of robustness is traced to the
assumption that the ion concentration varies linearly between adjacent grid
cells (see Eq. [67]). The discretization of the gradient operator in the current
density equation results in negative values for the concentration when the
difference of potential between adjacent cells exceeds 2kBT=q V.186 An effective
solution to this problem has been suggested by Sharfetter and Gummel,187,188

who demonstrated that the discretization errors can be substantially reduced
by including a nonlinear exponential variation of ion concentration between
grid points. In this case, Eqs. [67a] and [67b] are rewritten as

Jiþ1=2 ¼ �qFiþ1=2

Diþ1=2

kBT ciþ1

1 � exp½F1þ1=2

q ai�
þ

Diþ1=2

kBT ci

1 � exp½�F1þ1=2

q ai�

2
4

3
5 ½68a�

Ji�1=2 ¼ �qFi�1=2

Di�1=2

kBT ci

1 � exp
� F1�1=2

q ai�1

�þ
Di�1=2

kBT ci�1

1 � exp
� �F1�1=2

q ai�1

�
2
4

3
5 ½68b�

Again, the current from Eqs. [68a] and [68b] can be used to obtain a difference
scheme for the concentration via the continuity equation. The method of
Sharfetter and Gummel is slightly slower than the linearized approach, but
it is more accurate and is remarkably more robust in the presence of high con-
centration gradients. Furthermore, it produces positive-definite matrices and
hence can be implemented by using overrelaxation techniques,119 which
have a relatively fast rate of convergence. Multigrid methods125 have also
been used successfully for solving PNP-like equations (see Molenaar189 and
references therein). Finally, it should be noted that the approach suggested
by Eisenberg et al.180 (which is also based on the iterative solution of the con-
tinuity equation, the analytical solution of the Nernst–Planck equation
(Eq. [56]), and Poisson’s equation (Eq. [18])) is mathematically equivalent
to the Gummel iteration once it has been discretized on a finite difference grid.

The evolution of the numerical approaches used for solving the PNP
equations has paralleled the evolution of computing hardware. The numerical
solution to the PNP equations evolved over the time period of a couple of dec-
ades beginning with the simulation of extremely simplified structures84,190 to
fully three-dimensional models,22,191,192 and with the implementation of
sophisticated variants of the algorithmic schemes to increase robustness and
performance.20 Even finite element tetrahedral discretization schemes have
been employed successfully to selectively increase the resolution in regions
inside the channels.21 An important aspect of the numerical procedures
described is the need for full self-consistency between the force field and the
charge distribution in space. It is obtained by coupling a Poisson solver to
the Nernst–Planck solver1,193 within the iteration scheme described.

280 An Introduction to Numerical Methods



The PNP approach, together with the Poisson–Boltzmann194,195 method,
belong to the family of continuum theories of electrolytes196 that are based on
the mean field approximation. Because the PNP approach is based on contin-
uous fluxes rather than on individual trajectories, average concentrations are
employed and the ions are assumed to move in average electric fields.1 Conse-
quently, a key role is played by macroscopic parameters such as the diffusion
coefficient and the dielectric constant. Recall that the term ‘‘macroscopic’’ is
being used here to represent the collective behavior of a large group of micro-
scopic components of the system, i.e., atoms within molecules and ions in solu-
tion. The PNP theory has been developed as a model for large systems, e.g.,
those with feature-sizes larger than the Debye length, and its applicability in
modeling ionic permeation within channels only a few angstroms across has
been questioned.197,198 Similar concerns have been expressed with respect to
the Poisson–Boltzmann method.199 It should be noted, however, that the rele-
vant Debye length in either method is that within the channel (or active site)
and not that within the bulk. The concentration of ions is typically 10–50
times higher inside a channel than in bulk, and consequently, the Debye length
is extremely small there.

From a physical viewpoint, the use of a fixed diffusion coefficient corre-
sponds to assuming that the ionic energy relaxation time is independent of the
local electric field. The same approximation is applicable to the friction coeffi-
cient g in Langevin’s equation. Generally speaking, ion channels are not ohmic
machines, at least during the transient conditions typical of gating. Because of
the steady-state assumption, the PNP method is not suitable for the study of
fast transients or situations in which the ionic energy is different from the
energy of the surrounding system. Nonetheless, because it can supply valuable
information for the study of the steady-state ohmic regime, assuming a con-
stant diffusivity has been a popular choice by scientists studying ion channels.
Alternatively, and similarly to what is done for the simulation of semiconduc-
tor devices, a space-dependent diffusivity for a specific channel configuration
can be obtained with particle-based simulation (usually molecular dynamics)
and used in the PNP equations.160

Solving the PNP equations is more complicated when including the
effects of polarization. Defining a dielectric ‘‘constant’’ within a small channel
presents huge conceptual difficulties. From a microscopic viewpoint, the
dynamics of one ion (or more) within the channel is being described as a purely
many-body problem, meaning that the presence of even one ion modifies sig-
nificantly the polarization field felt by the ion and, possibly, even the structural
conformation of the channel protein. It is reasonable to conclude that the
polarization plays a role in the conduction properties (including selectivity)
of very narrow channels and possibly even wider channels. The interaction
of ions with dielectric surfaces is definitely a local phenomenon related to
the particle character of the ions. However, continuum theories represent
ions as a smooth charge distribution rather than as point-like charges, and
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modeling effects of the dielectric interfaces on such distributed charge is thus
particularly arduous. A typical example is the problem of ‘‘overshielding’’
shown by PNP simulations of narrow channels. The continuous nature of
PNP results in the formation of a spurious countercharge in the channel that
is already populated by a given ionic species. This flow of countercharge repre-
sents counterions that would not normally enter the channel because of their
interaction with the image charges generated at the channel dielectric surface.
This spurious and nonrealistic effect, in contrast, is not produced by particle-
based Brownian dynamics simulations because the finite size of ions is
included in Brownian dynamics. The spurious countercharge modifies the elec-
trostatic landscape, and consequently, a remarkable discrepancy is found in
the ionic concentrations when comparing results obtained with Brownian
dynamics.198 Several adjustments to the PNP theory have been proposed to
alleviate this problem, either via the inclusion of a term that accounts for
the induced image charges as a surface charge in Poisson’s equation200 or,
by correcting the free energy of the system with a potential of mean force181

obtained from molecular dynamics simulations.160 These extended theories
offer better agreement with results from particle-based approaches,201 at least
for single-channel occupancy and in very narrow channels.

In conclusion, flux-based approaches are appealing because of their low
computational costs and because of their ability to predict quantities that are
directly observable, such as currents flowing through open channels. Their uti-
lity for the study of small channels has been questioned, especially because of
the argued inability to account for molecular flexibility. Therefore, much the-
oretical work is needed to extend and generalize the flux-based simulation
approaches to better account for more realistic configurations, keeping in
mind their basic limitations. Several researchers rightly stressed the need for
validating flux-based simulation with microscopic particle-based models. Ana-
logously, particle-based models must also be validated on the largest scales for
which they are used, in the hierarchy of models (see below).

HIERARCHICAL SIMULATION SCHEMES

Several approaches for the simulation of ionic charge transport in protein
channels have been presented in the previous sections. It should be clear from
this discussion that none of the mentioned methods can supply a complete and
self-contained description of the full functionality of ion channels starting
from purely structural information. For this reason, methods based on a hier-
archy of simulative approaches,202,203 rather than on a specific method, are
becoming more and more popular.

The concept of using atomistic molecular dynamics simulations for
extracting parameters to be used in less-precise but faster Brownian dynamics
simulators, or electrodiffusive solvers, has been discussed. This methodology
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can be applied extensively, and it can entail molecular mechanics techniques
for the full preparation of the protein structure, continuum techniques for its
electrostatic characterization, and molecular dynamics for the extraction of
diffusion or energy profiles for use in Brownian dynamics.204 This ‘‘sequen-
tial’’ approach has been used with excellent results in other fields, and it is
well established in computational biophysics.205 A further step in the direction
of hierarchical modeling is to use different approaches simultaneously and to
analyze the (sometimes different) results by keeping in mind strengths and
weaknesses of the simulative methodologies. This ‘‘parallel’’ or comparative
strategy has a certain degree of subjectivity that can be minimized if a rigorous
attitude is adopted by the modeler throughout the study when interpreting the
results51 and by calibrating the methods.

Furthermore, because of the limitations in the size of the systems that can
be simulated with high-resolution, all-atom techniques, the integration of dif-
ferent approaches into the same simulation procedure is necessary in the fore-
seeable future. For example, using a molecular dynamics simulation engine in
a relatively small region of the system under study and including a larger
domain where the solvent can be treated implicitly, say with Brownian
dynamics, will allow for extending the size of the simulated system and to
reduce artifacts originating from close boundaries. Of course, the correct
treatment of the interface that ‘‘bridges’’ two regions simulated with different
computational and philosophical approaches is not trivial and solving such
problems has not yet been accomplished.

FUTURE DIRECTIONS AND CONCLUDING
REMARKS

The recent development of high-resolution experimental techniques
allows for the structural analysis of protein channels with unprecedented
detail. However, the fundamental problem of relating the structure of ion
channels to their function is a formidable task. This chapter describes some
of the most popular simulation approaches used to model channel systems.
Particle-based approaches such as Brownian and molecular dynamics will con-
tinue to play a major role in the study of protein channels and in validating the
results obtained with the extremely fast continuum models. Research in the
area of atomistic simulations will focus mainly on the force-field schemes
used in the ionic dynamics simulation engines. In particular, polar interactions
between the various components of the system need to be computed with algo-
rithms that are more accurate than those currently used. The effects of the
local polarization fields need to be accounted for explicitly and, at the same
time, efficiently. Continuum models will remain attractive for their efficiency
in depicting the electrostatic landscape of protein channels. Both Poisson–
Boltzmann and Poisson–Nernst–Plank solvers will continue to be used to
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extract qualitative information about the macroscopic behavior of ion chan-
nels. Their quantitative predictions will become better valued once the range
of applicability of the theory is validated by particle-based approaches. These
improvements will help scientists address how the functional properties of ion
channels depend on the instantaneous structural fluctuations and to what
extent a mean conformational characteristic is sufficient to describe these
amazingly complex systems.

The idea of integrating different approaches into a hierarchical simula-
tion strategy is promising. It can be accomplished either through a ‘‘sequen-
tial’’ approach, in which the results obtained with one method are used to
calibrate a faster but less accurate one, or through a ‘‘concurrent’’ technique,
in which several simulation tools are integrated or ‘‘bridged’’ within the same
algorithm in a way that provides different levels of accuracy in different
regions of the computational domain.
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68. G. Hummer, L. R. Pratt, and A. E. Garćia, J. Phys. Chem. A, 102(41), 7885 (1998). Molecular
Theories and Simulation of Ions and Polar Molecules in Water.

69. J. Bockris and A. K. N. Reddy, Modern Electrochemistry, Second Edition, Vol. I, Ionics,
Plenum Press, New York, 1998.

70. S. C. Li, M. Hoyles, S. Kuyucak, and S.-H. Chung, Biophys. J., 74(1), 37 (1998). Brownian
Dynamics Study of Ion Transport in the Vestibule of Membrane Channels.

71. J.-P. Simonin, L. Blum, and P. Turq, J. Phys. Chem., 100(18), 7704 (1996). Real Ionic
Solutions in the Mean Spherical Approximation. 1. Simple Salts in the Primitive Model.

72. J. M. G. Barthel, H. Krienke, and W. Kunz, in Topics in Physical Chemistry, Vol. 5, Springer,
New York, 1998. Physical Chemistry of Electrolyte Solutions.

73. S. Durand-Vidal, J.-P. Simonin, and P. Turq, Electrolytes at Interfaces, Kluwer, Norwell,
Massachusetts, 2000.

74. W. Im, M. Feig, and C. L. Brooks, III, Biophys. J., 85(5), 2900 (2003). An Implicit Membrane
Generalized Born Theory for the Study of Structure, Stability, and Interactions of Membrane
Proteins.

75. D. P. Tieleman, L. R. Forrest, M. S. P. Sansom, and H. J. C. Berendsen, Biochemistry, 37,
17554 (1998). Lipid Properties and the Orientation of Aromatic Residues in OmpF,
Influenza M2, and Alamethicin Systems: Molecular Dynamics Systems.

76. T. Schirmer and P. Phale, J. Mol. Biol., 294, 1159 (1999). Brownian Dynamics Simulation of
Ion Flow Through Porin Channels.

77. T. B. Wolf and B. Roux, Protein: Struct., Funct. and Genet., 24(1), 92 (1996). Structure,
Energetics, and Dynamics of Lipid-Protein Interactions: A Molecular Dynamics Study of
Gramicidin A Channel in a DMPC Bilayer.

78. T. P. Lybrand, in Reviews in Computational Chemistry, Vol. 1, K. B. Lipkowitz and D. B.
Boyd, Eds., VHC Publishers, New York, 1990, pp. 295–320. Computer Simulation of
Biomolecular Systems Using Molecular Dynamics and Free Energy Perturbation
Methods.

References 287



79. D. P. Tieleman and H. J. C. Berendsen, Biophys. J., 74(6), 2786 (1998). A Molecular
Dynamics Study of the Pores Formed by Escherichia coli OmpF Porin in a Fully Hydrated
Palmitoyloleoylphosphatidylcholine Bilayer.

80. L. D. Shen, D. Bassolino, and T. Stouch, Biochemistry, 73, 3 (1997). Transmembrane Helix
Structure, Dynamics, and Interactions: Multi-Nanosecond Molecular Dynamics Simula-
tions.

81. P. G. Mezey, in Reviews in Computational Chemistry, Vol. 1, K. B. Lipkowitz and D. B. Boyd,
Eds., VHC Publishers, New York, 1990, pp. 265–294. Molecular Surfaces.

82. J. D. Faraldo-Gomez, G. R. Smith, and M. S. P. Sansom, Eur. Biophys. J., 31, 217 (2002).
Setting Up and Optimisation of Membrane Protein Simulations.

83. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Adam Hilger,
Bristol, United Kingdom, 1988.

84. D. G. Levitt, Biophys. J., 48(1), 19 (1985). Strong Electrolyte Continuum Theory Solution for
Equilibrium Profiles, Diffusion Limitation, and Conductance in Charged Ion Channels.

85. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford,
United Kingdom, 1987.

86. Y. Georgalis, A. M. Kierzek, and W. Sa, J. Phys. Chem. B, 104, 3405 (2000). Cluster
Formation in Aqueous Electrolyte Solutions Observed by Dynamic Light Scattering.

87. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Equations,
Springer-Verlag, NewYork, 1989.

88. P. C. Jordan, Biophys. J., 39(2), 157 (1982). Electrostatic Modeling of Ion Pores. I. Energy
Barriers and Electric Field Profiles.

89. P. C. Jordan, Biophys. J., 41(2), 189 (1983). Electrostatic Modeling of Ion Pores. II. Effects
Attributable to the Membrane Dipole Potential.

90. M. Cai and P. C. Jordan, Biophys. J., 57(4), 883 (1990). How Does Vestibule Surface Charge
Affect Ion Conduction and Toxin Binding in a Sodium Channel?

91. G. V. Miloshevsky and P. C. Jordan, Biophys. J., 86(2), 825 (2004). Anion Pathway and
Potential Energy Profiles along Curvilinear Bacterial ClC Cl� Pores: Electrostatic Effects of
Charged Residues.

92. W. Nonner, D. P. Chen, and B. Eisenberg, Biophys. J., 74(5), 2327 (1998). Anomalous Mole
Fraction Effect, Electrostatics, and Binding in Ionic Channels.

93. W. Nonner, L. Catacuzzeno, and B. Eisenberg, Biophys. J., 79(4), 1976 (2000). Binding and
Selectivity in L-Type Calcium Channels: A Mean Spherical Approximation.

94. D. Boda, D. D. Busath, D. Henderson, and S. Sokolowski, J. Phys. Chem. B, 104(37), 8903
(2000). Monte Carlo Simulations of the Mechanism for Channel Selectivity: The Competi-
tion between Volume Exclusion and Charge Neutrality.

95. D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisenberg, Phys. Rev. E, 69, 046702
(2004). Computing Induced Charges in Inhomogeneous Dielectric Media: Application in a
Monte Carlo Simulation of Complex Ionic Systems.

96. D. Boda, D. Henderson, and D. D. Busath, J. Phys. Chem. B, 105(47), 11574 (2001). Monte
Carlo Study of the Effect of Ion and Channel Size on the Selectivity of a Model Calcium
Channel.

97. L. Greengard, Science, 265(5174), 909 (1994). Fast Algorithms for Classical Physics.

98. L. Greengard and V. Rokhlin, J. Comput. Phys., 135, 280 (1997). A Fast Algorithm for
Particle Simulations.

99. F. S. Lee and A. Warshel, J. Chem. Phys., 97(5), 3100 (1992). A Local Field Method for Fast
Evaluation of Long-Range Electrostatic Interactions in Molecular Simulations.

100. P. Ewald, Ann. Phys., 64, 253 (1921). Die Berechnung Optischer und Elektrostatischer
Gitterpotentiale.

101. M. Deserno and C. Holm, J. Chem. Phys., 109(18), 7678 (1998). How to Mesh Up Ewald
Sums. I. A Theoretical and Numerical Comparison of Various Particle Mesh Routines.

288 An Introduction to Numerical Methods



102. J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley & Sons, New York, 1975.

103. H.-Q. Ding, N. Karasawa, and W. A. Goddard, III, J. Chem. Phys., 97(6), 4309 (1992).
Atomic Level Simulations on a Million Particles: The Cell Mulipole Method for Coulomb
and London Nonbonded Interactions.

104. J. Shimada, H. Kaneko, and T. Takada, J. Comput. Chem., 15(1), 29 (1994). Performance of
Fast Mulipole Methods for Calculating Electrostatic Interactions in Biomacromolecular
Simulations.

105. C. A. White and M. Head-Gordon, J. Chem. Phys., 101(8), 6593 (1994). Derivation and
Efficient Implementation of the Fast Mulitpole Method.

106. T. Schlick, in Interdisciplinary Applied Mathematics, Vol. 21, Springer, New York, 2000.
Molecular Modeling and Simulation: An Interdisciplinary Guide.

107. A. W. Appel, SIAM J. Sci. Stat. Comput., 6(1), 85 (1985). An Efficient Program for Many-
Body Problems.

108. E. L. Pollock and J. Glosli, Comput. Phys. Commun., 95, 93 (1996). Comments on P3M,
FMM, and the Ewald Method for Large Periodic Coulombic Systems.

109. A. R. Leach, Molecular: Modelling Principles and Applications, Second Edition, Prentice-
Hall, Harlow, United Kingdom, 2001.

110. P. Crozier, R. L. Rowley, D. Henderson, and D. Boda, Chem. Phys. Lett., 325(5-6), 675
(2000). A Corrected 3D Ewald Calculation of the Low Effective Temperature Properties of
the Electrochemical Interface.

111. D. M. Heyes, J. Chem. Phys., 74(3), 1924 (1981). Electrostatic Potentials and Fields in Infinite
Point Charge Lattices.

112. T. A. Darden, D. York, and L. Pedersen, J. Chem. Phys., 98(12), 10089 (1993). Particle Mesh
Ewald: An Nlog(N) Method for Ewald Sums in Large Systems.

113. A. Y. Toukmaji and J. A. Board, Comput. Phys. Commun., 95, 73 (1996). Ewald Summation
Techniques in Perspective: A Survey.

114. N. Karasawa and W. A. Goddard, III, J. Phys. Chem., 93, 7320 (1989). Acceleration of
Convergence for Lattice Sums.

115. G. Rajagopal and R. M. L. J. Needs, J. Comput. Phys., 115, 399 (1994). An Optimized Ewald
Method for Long-Ranged Potentials.

116. U. Essmann, L. Perera, M. L. Berkowitz, T. A. Darden, H. Lee, and L. Pedersen, J. Chem.
Phys., 103(19), 8577 (1995). A Smooth Particle Mesh Ewald Method.

117. C. Pommerell and W. Fichtner, SIAM J. Sci. Stat. Comput., 15(2), 460 (1994). Memory
Aspects and Performance of Iterative Solvers.

118. D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York,
1971.

119. G. Dahlquist and Å. Björck, Numerical Methods, Prentice–Hall, Englewood Cliffs,
New Jersey, 1974.

120. P. J. Roache, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque,
New Mexico, 1976.
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178. C. W. Gardiner, in Springer Series in Synergetics, Vol. 13, Springer, New York, 1983.
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences.

179. P. E. Kloeden and E. Platen, in Applications of Mathematics, Corrected Third Edition,
Springer-Verlag, 1999. Numerical Solution of Stochastic Differential Equations.

180. R. S. Eisenberg, M. M. Klosek, and Z. Schuss, J. Chem. Phys., 102(4), 1767 (1995). Diffusion
as a Chemical Reaction: Stochastic Trajectories Between Fixed Concentrations.

181. D. A. McQuarrie, Statistical Mechanics, University Science Books, Sausalito, California, 2000.

182. S. A. Rice and P. Gray, in Monographs in Statistical Physics and Thermodynamics, Vol. 8,
Wiley Interscience, New York, 1965. The Statistical Mechanics of Simple Liquids.

183. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt–Sauders International Editions,
Tokyo, 1981.

184. G. Baccarani and M. Wordeman, Solid-State Electron., 28, 407 (1985). An Investigation of
Steady State Velocity Overshoot Effects in Si and GaAs Devices.

185. D. P. Chen, R. S. Eisenberg, T. W. Jerome, and C. Shu, Biophys. J., 69, 2304 (1995).
Hydrodynamic Model of Temperature Change in Open Ionic Channels.

186. C. M. Snowden, Introduction to Semiconductor Device Modelling, World Scientific Publish-
ing, Singapore, 1986.

187. H. K. Gummel, IEEE Trans. Elect. Dev., ED-11, 455 (1964). A Self-Consistent Iterative
Scheme for One-Dimensional Steady State Transistor Calculations.

188. D. L. Sharfetter and H. K. Gummel, IEEE Trans. Elect. Dev., ED-16(1), 64 (1969). Large-
Signal Analysis of a Silicon Read Diode Oscillator.

189. J. Molenaar, Multigrid Methods for Semiconductor Device Simulation Technical Report CWI
TRACT 100, Center for Mathematics and Computer Science, Amsterdam, the Netherlands,
1993.

190. D. G. Levitt, Biophys. J., 52(3), 455 (1987). Exact Continuum Solution for a Channel that Can
be Occupied by Two Ions.

191. A. E. Cardenas, R. D. Coalson, and M. G. Kurnikova, Biophys. J., 79(1), 80 (2000). Three-
Dimensional Poisson-Nernst-Planck Theory Studies: Influence of Membrane Electrostatics
on Gramicidin A Channel Conductance.

192. T. van der Straaten, S. Varma, S. W. Chiu, J. Tang, N. Aluru, R. S. Eisenberg, U. Ravaioli, and
E. Jakobsson, in M. Laudon and B. Romanowicz, Eds., Proceedings of the Second Inter-
national Conference on Computational Nanoscience and Nanotechnology – ICCN2002,
San Juan, Puerto Rico (2002) pp. 60–63.

193. R. S. Eisenberg, J. Membr. Biol., 150, 1 (1996). Computing the Field in Protein and Channels.

292 An Introduction to Numerical Methods



194. B. Honig and A. Nichols, Science, 268, 1144 (1995). Classical Electrostatics in Biology and
Chemistry.

195. G. Lamm, in Reviews in Computational Chemistry, Vol. 19, K. B. Lipkowitz, R. Larter, and
T. R. Cundari, Eds., wiley-VHC Publishers, New York, 2003, pp. 147–365. The Poisson-
Boltzmann Equation.

196. T. Weiss, Cellular Biophysics, Vol. 1-2, MIT Press, Cambridge, Massachusetts, 1996.

197. B. Corry, S. Kuyucak, and S.-H. Chung, J. Gen. Physiol., 114, 597 (1999). Test of Poisson-
Nernst-Plank Theory in Ion Channels.

198. B. Corry, S. Kuyucak, and S.-H. Chung, Biophys. J., 78(5), 2364 (2000). Tests of Continuum
Theories as Models of Ion Channels. II. Poisson-Nernst-Planck Theory versus Brownian
Dynamics.

199. G. Moy, B. Corry, S. Kuyucak, and S.-H. Chung, Biophys. J., 78(5), 2349 (2000). Tests of
Continuum Theories as Models of Ion Channels. I. Poisson-Boltzmann Theory versus
Brownian Dynamics.

200. B. Nadler, U. Hollerbach, and R. S. Eisenberg, Phys. Rev. E, 68, 021905 (2003). Dielectric
Boundary Force and Its Crucial Role in Gramicidin.

201. B. Corry, S. Kuyucak, and S.-H. Chung, Biophys. J., 84(6), 3594 (2003). Dielectric Self-
Energy in Poisson-Boltzmann and Poisson-Nernst-Planck Models of Ion Channels.

202. R. S. Eisenberg, Proceedings of the Biophysical Society Meeting, Washington, DC (1993).
From Structure to Permeation in Open Ionic Channels.

203. R. S. Eisenberg, in Advanced Series in Physical Chemistry, Vol. 7, New Developments and
Theoretical Studies of Proteins. World Scientific, London, 1996, pp. 269–358. Atomic
Biology, Electrostatics, and Ionic Channels.

204. R. J. Mashl, Y. Tang, J. Schnitzer, and E. Jakobsson, Biophys. J., 81(5), 2473 (2001).
Hierarchical Approach to Predicting Permeation in Ion Channels.

205. M. F. Schumaker, R. Pomes, and B. Roux, Biophys. J., 79(6), 2840 (2000). A Combined
Molecular Dynamics and Diffusion Model of Single Proton Conduction through
Gramicidin.

References 293





CHAPTER 5

Wavelets in Chemistry
and Cheminformatics

C. Matthew Sundling,� Nagamani Sukumar,� Hongmei

Zhang,� Mark J. Embrechts,{ and Curt M. Breneman�y

�Department of Chemistry and Chemical Biology, Center for
Biotechnology and Interdisciplinary Studies, Rensselaer
Polytechnic Institute, Troy, New York
{Department of Decision Science and Engineering Systems,
Rensselaer Polytechnic Institute, Troy, New York

PREFACE

Wavelet transform methods developed quickly during the 1990s and
have since become widely used in various fields of science and engineering,
including many important applications in chemistry. The ability of wavelet
methods to rapidly dissect signals into meaningful components makes them
invaluable tools for data analysis and information compression. Unlike tradi-
tional signal processing methods, the wavelet transform offers simultaneous
localization of information in both frequency and time or property domains.
It makes the wavelet transform powerful in its ability to succinctly distill the
details of complex and irregular property distributions or waveforms into
meaningful and simple components. Consequently, wavelet transform meth-
ods are well suited to processing experimental data collected throughout the
various areas of chemistry as well as to leading to new types of computation-
ally generated molecular property descriptors. The diverse utility of wavelets
has caused an explosion of application papers covering many areas of chemical
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analysis, most of which land squarely in the realm of chemometrics or
chemical spectroscopy, but significant applications in quantum chemistry, and
recently, cheminformatics and computational chemistry, show how wavelets
can be applied in any situation where data analysis is needed. Wavelet trans-
form methods are a proven technology in signal cleaning and signal feature
isolation and have provided chemists with better methods for analyzing and
understanding their experimental data—by distilling chemical information
from raw experimental or computational data. This chapter is a pedagogically
driven overview of basic wavelet transformation methods and their applica-
tions in chemistry and cheminformatics.

INTRODUCTION TO WAVELETS

We provide here a brief introduction to the concept of wavelets, inten-
tionally glossing over much technical and mathematical detail in favor of con-
veying a simple and conceptual perspective of wavelet techniques. For a
thorough introduction to the theory and history of the wavelet transform,
readers should examine the pertinent literature.1–8 Other discussions of wave-
lets and their applications in chemistry may be found in Refs. 9–17. The pre-
decessor of the wavelet transform (WT) is the Fourier transform (FT), which
has a successful history of analyzing chemical spectra. In this section, we dis-
cuss the fundamentals of the Fourier transform to illustrate the advantages and
disadvantages of this technique relative to wavelets and to show how the
wavelet transform picks up where the Fourier transform leaves off. We also
show that the wavelet transform acts as a ‘‘mathematical microscope’’ to
reveal and focus on spectral features that are buried in the original signal
but that are ignored by the Fourier transform. Wavelets thus allow for a thor-
ough examination of the character of a signal, including high-frequency noise,
asymmetric broad regions, short-term spikes, and other features of interest.

Throughout this chapter we will describe how wavelets can be used to
analyze, clean, and encode molecular information in a dense and usable for-
mat, and we will show how wavelets provide a useful and stable means for
representing molecular electronic property distributions for use in quantitative
structure-activity relationship/quantitative structure-property relationship
(QSAR/QSPR) modeling. Before that, however, some history of their place
in signal analysis is appropriate.

Like the FT, the WT converts a signal from its normal time- or property-
domain representation into another representation—in wavelet space—which
reveals the frequency content of the original signal. A wavelet space represen-
tation not only separates frequency components, but unlike the FT, also gives
their exact position and identifies their effective domain. It allows WT meth-
ods to separate, isolate, and analyze the individual components of a signal.
The FTs and WTs are useful when analyzing many different types of chemistry
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data, regardless of the domain to which they belong. Even though many
important chemical ‘‘signals’’ exist within a variety of domains, we will dis-
cuss these methods in terms of time-domain signals, as well as their resulting
frequency-domain and wavelet-domain transforms.

Fourier Transform

A time-domain signal contains a relationship between temporal informa-
tion and amplitude information, but it gives no explicit frequency information.
The key assumption in Fourier analysis is that a signal can be considered
a composite of sinusoidal components, each having a specific frequency.
The individual components are convoluted together in the original signal
and are therefore generally immune to interpretation by direct inspection. FT converts
the signal from a time domain into a frequency domain, giving us access to
frequency and amplitude information, as illustrated in Figure 1. FT is a rever-
sible process and gives two entirely different perspectives of the same data.
However, we cannot get both the time-domain and frequency-domain infor-
mation simultaneously, which is often critical for a variety of data analyses.

Continuous Fourier Transform

The continuous Fourier transform (CFT) of a real or complex continuous
function is defined as

f̂f oð Þ ¼
ðþ1

�1
f tð Þe�iotdt ½1�

Figure 1 This illustration shows a signal converted from the time domain to the
frequency domain using a Fourier transform technique. The fast Fourier transformation
(FFT) is a discrete and computationally efficient version of the general Fourier
transformation.
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and the inverse transform is defined as

f tð Þ ¼ 1

2p

ðþ1

�1
f̂f oð Þeþiotdo ½2�

where

e�iot ¼ cosot þ i sinot ½3�
In Eqs. [1–3], function f tð Þ is a continuous time-domain function that is trans-
formed into the frequency-domain function f̂f oð Þ.1,4 Because our basis func-
tions are sinusoidal, as defined by Eq. [3] and illustrated in Figure 2, a
single component with frequency o will affect the entire domain of the signal
f tð Þ equally. It makes the FT not entirely suitable for analyzing nonstationary
(nonperiodic) functions (as depicted in Figure 3). Isolation of a given fre-
quency component to a finite time region is necessary when dealing with
localized signal features (such as a sharp spike) that are, by nature, nonstationary.
The Fourier basis function entirely lacks the ability to distinguish or isolate
time-domain information.

Short-Time Fourier Transformation

Given the limitations of the FT, some approximations are needed to han-
dle nonstationary signals. The discrete FT (DFT) and the short-time FT (STFT,
a.k.a. the Gabor transform) are two alternative transformation methods that
address this issue.1,3–5,9,18 In the mid-20th century, Jean Ville pointed out that

Figure 2 Illustrated are four example pairs of sinusoidal Fourier basis functions that
constitute a portion of a Fourier series. Each pair of functions a and b has the same
frequency but is 90� out of phase. They combine to give a series of terms of infinite
domain, at particular frequencies, but of arbitrary phases.
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two basic approaches to time-frequency analysis exist, but both attempt the
same thing: to create a pseudo-stationary signal from a nonstationary one.1

One approach filters different frequency bands and then splits these bands into
pieces and analyzes their energy content. The other approach splits the signal into
equal length sections in the time domain and then examines these pieces indivi-
dually for their frequency content. The DFT uses angular sampling to isolate
frequency bands, whereas STFT uses windowed-time frequency analysis.

In STFT, a nonstationary signal is divided into small windows in an
attempt to achieve a locally stationary signal, as depicted in Figure 4. Each

Figure 3 A nonstationary signal (solid line) is fitted with an FT basis function (dashed
line). The basis function is fitted well against a single signal peak, but outside of the
immediate region of the peak, the signal approximation suffers. It illustrates the ability
of a Fourier basis function to isolate frequency information but not time-domain
information.

Figure 4 (a)–(c) The windowing of a nonstationary signal (solid line) in STFT analysis
gives some locality of time information to the FT (dashed line is Fourier basis function).
Even so, this method still suffers from a tradeoff of knowledge between time-domain
and frequency-domain information.
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window is analyzed with a normal FT to obtain the local frequency composi-
tion of a signal. The window length selection is crucial because it ensures that
the local signal is sufficiently stationary. Selection of the STFT window width
involves a tradeoff; however, narrowing the time window improves time/loca-
tion resolution but reduces clarity of the frequency information. Naturally, the
STFT becomes an FT if the window length is taken as infinity. Although
the STFT procedure manages to garner some signal position information via
the location of the windows, it is still fundamentally hindered by the stationary
nature of the sinusoidal basis of the FT method. A transformation method that
uses basis functions that are simultaneously localized in both the time and
frequency domains would neatly avoid this tradeoff. The WT procedure
does exactly this.

Wavelet Transform

The WT provides an entirely new perspective on traditional signal
processing techniques (i.e., FT methods) for breaking up a signal into its
component parts. Literally, the term ‘‘wavelet’’ means little wave. More
specifically, a wavelet is a function that satisfies the following two conditions:
(1) It has a small concentrated finite burst of energy in the time domain, and
(2) it exhibits oscillation in time.2 The Daubechies 6 wavelet, illustrated in
Figure 5, clearly exhibits these characteristics. The first condition makes the
wavelet ‘‘little’’ in the sense that it is well localized in the time domain. The
second condition makes it periodic, giving it some wave-like character.

Given a particular wavelet function (a particular basis function), the
wavelet transform operates in a manner similar to the FT by using its
basis function to convert a signal from one domain to another. The WT

Figure 5 An example of a Daubechies wavelet (Daubechies 6) that illustrates the two
interesting wavelet properties: localized in time and oscillation.
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deconstructs a signal by using dilated (scaled) and translated (shifted) versions
of the basis function. The attraction of WT techniques over FT techniques is
that they localize information effectively in both the time and the frequency
domains simultaneously.6,9 Because of this, the WT is an ideal tool for analyz-
ing nonstationary signals, such as spectra or molecular property distributions.

WT methods can be categorized into two main classes: (1) continuous WT
(CWTs) and (2) discrete wavelet transforms (DWTs). Each is discussed below.

Continuous Wavelet Transform

The CWT is defined as

CWT f xð Þ½ � ¼
ðþ1

�1
f xð Þ��

a;b xð Þdx ½4�

and the inverse transform is defined as

f xð Þ ¼ 1

C

ðþ1

0

ðþ1

�1
CWT f xð Þ½ ��a;b xð Þ dadb

a2
½5�

where

�a;b xð Þ ¼ 1ffiffiffiffiffiffijajp c
x� b

a

� �
; a; b 2;R; a 6¼ 0 ½6�

C ¼
ðþ1

0

ĉc� oð Þĉc oð Þ
o

do ½7�

�a;b xð Þ is a dilated and translated version of the ‘‘mother wavelet’’ c xð Þ,
where a is the scale, b is the translation, 1=

ffiffiffiffiffiffijajp
is a normalization term,

and * symbolizes complex conjugation. Equation [7] is the admissibility con-
dition that gives C as a positive real number if the mother wavelet satisfies cer-
tain conditions (e.g., the integral of the mother wavelet equals zero).1,3–5,9,11,18

There is no restriction on the choice of a and b in the CWT (other than a 6¼ 0),
which means that the choice of �a;b xð Þ is continuous in the time-scale domain.
The wavelet can be positioned anywhere and scaled to any value for optimal
fitting of the signal f xð Þ. The admissibility condition requires that only wave-
lets of certain character are capable of the reverse wavelet transform as
described by Eq. [5]. It does not restrict the wavelets capable of the forward
wavelet transform. In fact, many useful wavelet applications use wavelets that
make the reverse transform impossible.

Although the FT separates the signal into a series of sine waves of differ-
ent frequencies, the WT decomposes the signal into wavelets—dilated and
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translated versions of the ‘‘mother’’ wavelet. Compared with a smooth and
infinite sinusoidal wave function, the wavelet function is irregular in shape
and compactly supported (i.e., has a limited domain where the function is non-
zero). These properties make wavelets an ideal tool for analyzing nonstation-
ary signals of finite length or duration; their irregular shape enables them to
characterize signals with discontinuities or sharp changes, and their compact
support enables them to represent signals with temporal or regional features.
Figure 6 depicts how wavelets can fit and decompose a signal. By a variety of
large and small dilations, the wavelets can be fit into the various kinks,
shoulders, arcs, and spikes of a given signal. Scaling analysis allows us to pro-
cess signals at different scales and resolution, elegantly revealing aspects of the
signal that would be masked by the regularity of a sinusoidal wave. In fact,
whereas the STFT attempts to force sinusoidal functions onto a time-localized
section of the signal, wavelets scale naturally to represent a variety of different
regions within a given signal.

The CWT is compactly described by Eqs. [4] and [6], but this definition
allows for infinitely redundant transformations.4,19 There is no limit to the
number of dilated and translated wavelets (�a;b xð Þ, where a and b are real
numbers) used in the transform. This unrestricted and unguided use of wave-
lets to convert a signal into wavelet space often prevents the use of an inverse
wavelet transformation because of violations of the conditions required by
Eq. [7]. Even though these transforms are redundant and nonreversible, they
still reveal information about the character of a particular signal.

Techniques exist for reducing the redundancy in the CWT. These techni-
ques isolate the dilated and translated wavelets to form the signal’s ‘‘skeleton.’’
The skeleton wavelets consist of important features found in the original
signal, called ridges, which are the defining curves of the waveform. By focusing

Figure 6 Shown here are (a)–(c) three wavelet ‘‘windows’’ over a nonstationary signal
that illustrate a partial wavelet scaling analysis and how wavelets simultaneously
identify component frequency and position information within the signal. The CWT
performs an exhaustive fitting of the different features of the signal at different scales
and positions of the wavelet function.
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and restricting the wavelets to only these critical features, redundancy is
removed. Such a small set of independent wavelets make these CWT adapta-
tions practical, informative, and manageable.6,19,20 Additionally, placing spe-
cific restraints on the selection of wavelet basis and on the dilation values (i.e.,
the a values) eliminates all redundancy in the transforms and gives rise to a fast
and useful transformation method—the DWT.

Discrete Wavelet Transform

The main differences between the DWT and the CWT are specific
requirements for the mother wavelets and the allowable dilation and transla-
tion values. Explicitly, Eq. [4] becomes

DWT f xð Þ½ � ¼
ðþ1

�1
f xð Þ��

a;b xð Þdx ; a ¼ 2i; i 2 N; b 2 N ½8�

where the dilation variable a is restricted to powers of two (i.e.,
a ¼ 2i; i 2 0; 1; 2; . . .f g), and our translation variable b is a whole number
(i.e., b 2 0; 1; 2; . . .f g). These values are called dyadic dilations and transla-
tions. In principle, the CWT, with no restriction applied to the choice of these
two coordinates, maps the entire ‘‘wavelet space’’ [i.e., the a; bð Þ plane]. The
DWT confines us to specific nonredundant regions of the wavelet space.

Rather than having a continuum of wavelet dilations as in the CWT, the
discrete wavelet transform uses discrete dilations that can be thought of as fil-
ters of different scales. These act as cutoff frequencies to divide the signal into
different frequency bands.21 Wavelets are actually a pair of filters, called the
wavelet and the scaling function, as depicted in Figure 7. To separate each

Figure 7 Each wavelet basis is actually a pair of functions: the wavelet and its scaling
function. These are the two functions of the Daubechies 6 wavelet.
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frequency band, the wavelet is used to isolate the information pertaining to
that band, and the scaling function separates out everything else. This process
is part of a method called multiresolution analysis.7

Multiresolution analysis3,4,7,19 is the most common DWT method, and it
involves a hierarchy of low- and high-pass filters to successively separate the
finer details from the remainder of a signal. The term ‘‘DWT’’ is often used to
refer specifically to multiresolution analysis as implemented by the pyramid
algorithm. Within the pyramid algorithm, the original signal is decomposed
successively into components of lower frequency, whereas the high-frequency
components are not analyzed further, as illustrated in Figure 8.7 The analysis
begins with two complementary filters, one low pass and one high pass, to
separate the high-frequency details from the rest of the signal. Then, with
each transformation step, increasingly coarse information is separated from
the remaining portion of the signal (see Figure 9). The maximum number of
dilations/separations that can be performed is determined by the input size of
the data being analyzed.

Figure 8 Overview of the DWT and multiresolution analysis scheme known as the
pyramid algorithm.7 The original signal is separated into low-frequency and high-
frequency components, which comprise the signal approximation and detail informa-
tion, respectively. Each level decomposes the approximation information further,
making each level of detail (di) a separate frequency band.
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Specifically, given a signal represented by a series of 2N values, the signal
is divided into N discrete levels of detail. The transformation turns the original
signal into a set of 2N wavelet coefficients, which reflect the individual contri-
butions of their associated scaled wavelet. The original signal is really a com-
bination of the dilated and translated wavelets as prescribed by the wavelet
coefficients.

The restrictions placed on the mother wavelets for multiresolution ana-
lysis do not limit the variety of shapes that can be used as mother wavelets;
different researchers have proposed several different wavelet functions, each
with benefits and drawbacks.3 The wavelet shape tradeoff is between how
compactly it can be localized in space and its level of smoothness. For exam-
ple, the Haar wavelet, which is the simplest wavelet and was identified almost
100 years ago,22 is well localized in space, but it has an ‘‘unnatural’’ square-
wave oscillation (see Figure 10). Many related wavelets exist, collectively
referred to as wavelet families;6 some of these families include the Meyer
wavelet, Coiflet wavelet, spline wavelet, orthogonal wavelet, symmlet wavelet,
and local cosine basis. Figure 10 depicts several of these wavelets and

Figure 9 This series illustrates multiresolution analysis, separating out the high-
frequency information at each level of transformation in the pyramid algorithm
(illustrated in Figure 8). Note that the approximation (ai) signal in higher level iterations
contain much less detailed information, because this has been removed and encoded into
wavelet detail coefficients at each DWT deconstruction step. To reconstruct the original
signal, the inverse DWT needs the wavelet coefficients of a given approximation level i
(ai) and all detail information leading to that level (d1-i).
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illustrates some of their features. Depending on the shape of the original signal
and how it is being analyzed, some wavelet functions will outperform others.
Wavelet selection is, consequently, an important facet of wavelet analysis. For
example, a wavelet basis with sharp, narrow peaks may be better suited to
transform and characterize a particularly disjointed signal, whereas a simple,
gentle wavelet may be more appropriate for a smoother signal. Selecting an
optimal wavelet adapted to a particular type of signal allows for finer, more
economical separation of signal features. In a general sense, an optimal wave-
let basis function would concentrate the signal features to a small number of
large-valued wavelet coefficients. This leads to interesting and useful applica-
tions of the wavelet transform, such as signal compression and feature isola-
tion, both of which are important in various chemical applications and are
examined further in the following sections.15

Figure 10 Some families of wavelets used for multiresolution analysis: (a) Haar, (b)
Daubechies 2, (c) Symmlet 8, and (d) Coiflet.
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Wavelet Packet Transform

The wavelet packet transform (WPT) is a generalized version of the
pyramid algorithm8,23 in which the signal is successively separated into the
low-pass information and ‘‘the rest’’ of the signal. In contrast to the pyramid
algorithm used in DWT, both the low-pass and the high-pass information are
iteratively transformed in WPT, creating a complete tree as compared with the
single branch enumerated by the pyramid algorithm. Comparing Figures 11
and 8 illustrates this difference. As mentioned, optimal wavelet function selec-
tion is important for obtaining an efficient representation of the signal in
wavelet space. The wavelet packet transform takes this notion of efficiency
even further by offering the flexibility of choosing the final signal representa-
tion, which is also known as the ‘‘signal basis.’’24 With the full hierarchy eval-
uated, we have a choice of combining different levels of high-pass and low-
pass filtering, so we can select a signal representation that is most suited to
our needs.

Selection of the ‘‘best’’ basis or representation from the WPT hierarchy
means choosing a combination of orthogonal, nonredundant coefficients from

Figure 11 Illustrated here is the WPT. The pyramid algorithm enumerates a single
branch (see Figure 8), whereas the WPT enumerates the complete tree of iterative
decompositions. At each level, both the approximation and the detail information are
separated into low-frequency and high-frequency components.

Introduction to Wavelets 307



the different scale levels of the WPT. An entropy-based algorithm developed
by Coifman and Wickerhauser24 provides a quantitative criterion for selecting
a basis for signal representation at the lowest information cost. Although the
pyramid algorithm blindly follows a single branch of the WPT tree and only
computes a single combination of the many possible bases (see Figure 12), the
WPT procedure affords the flexibility of choosing the optimal signal represen-
tation for any application.

Wavelets vs. Fourier Transforms: A Summary

The ability of WTs to resolve a signal into its component features makes
it useable for many practical applications. The FT, while revealing the fre-
quency characteristics of a signal, is limited by the assumption that all signals
are stationary (periodic). It, in turn, provides no resolution in the time domain.
The power of the wavelet transform is in its ability to succinctly distill the details
of complex and irregular signals into meaningful and simple components—in
essence, to encode both the time (or any domain) and the frequency information
simultaneously.

Figure 12 The signal representation or basis of the (a) pyramid algorithm and
two examples (b, c) of selected representations from the entire hierarchy computed
by the WPT are shown. The WPT allows for optimal signal basis selection by
enumerating the complete decomposition tree, so that all signal representations can be
evaluated.
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APPLICATION OF WAVELETS IN CHEMISTRY

Smoothing and Denoising

Experimental data always contain noise from various sources, and it
must be isolated, understood, and usually removed before effective data ana-
lysis can proceed. The goal of smoothing and denoising techniques is to sepa-
rate useful from useless information. These techniques can be tailored to
remove the noise from spectra, improve the signal-to-noise ratio in analytical
images, improve resolution of peaks by removing background signals, and give
clarity and focus to numerous types of data with different kinds of problems.
Although popular cleaning techniques such as Savitzky–Golay smoothing and
Fourier filtering25–28 could be employed for these tasks, the WT-based signal
cleaning techniques have grown in popularity because of their efficacy and uti-
lity in handling noise.

In general terms, smoothing and denoising are used to isolate and
remove noise or background signals and to resolve features and peak shapes.29

Smoothing and denoising are different, albeit related: smoothing is the process
of removing the high-frequency components of a signal, regardless of their
amplitude, and denoising is the process of removing low-amplitude compo-
nents, regardless of their frequency.25 All types of signal noise exist in experi-
mental data, the most common of which can be found in the high-frequency
range, especially when considering either time-based data or spectral data.
Background signals, another type of noise, are often found in the low-
frequency range. Although knowing the location (frequency and position) of
noise in a signal is important, it is also important to understand the type or
character of the noise. Heteroscedastic noise, or noise of changing variance,
must be diagnosed and is usually handled differently from the more common
homoscedastic noise. The treatment of heteroscedastic noise is a challenging
problem for any signal smoothing technique, including WT methods. An
example of heteroscedasticity is when the variance of noise increases as the
overall signal strength increases.

Wavelet transform methods, particularly multiresolution analysis
(MRA) methods, decompose a signal into frequency bands. That separation
allows for the targeting of frequencies of particular interest or, in the case
of noise, disinterest to the researcher. A signal may be considered to be a com-
bination of component wavelets, so reducing the contribution of ‘‘noise wavelets’’
will result in a clean, smooth signal. The algorithm for smoothing a signal
(see Figure 13) consists of four steps: (1) transform the signal, (2) isolate the
wavelet coefficients corresponding to the high-frequency components,
(3) ‘‘zero-out’’ or reduce these coefficients, and (4) apply a reverse wavelet
transform to the signal. The final smooth signal will have the original
features of interest without the high-frequency noise. Figure 13 illustrates
the smoothing routine using the pyramid algorithm, but the routine is easily
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modified for use with the WPT, often yielding better results.23 WPT not only
separates the signal into frequency bands for noise isolation, but it also gives
the optimal basis for signal representation. It means our signal is represented
by the most sparse, compact basis of wavelet coefficients, focusing the signal
features into a few large wavelet coefficients. It allows for confident and loca-
lized modification of frequency band information, with improved noise sup-
pression and minimal cross-band effects when removing small wavelet
coefficients.

The denoising algorithm is similar to the smoothing algorithm, except
that in step 3, the small-amplitude coefficients are targeted for removal regard-
less of frequency (illustrated in Figure 14); this is sometimes referred to as
wavelet thresholding.29 WT denoising methods can retain the interesting
and often subtle features normally destroyed by other aggressive smoothing
techniques, including maintaining edge sharpness and peak shapes.30 Donoho
formalized the process of denoising and showed that if all wavelet coefficients
are moved toward zero by proportional amounts, the resulting signal will then
be similar to the original signal.31 This approach virtually eliminates the small
wavelet coefficients (and their encoded noise information), while retaining the
important wavelets that contribute most to the shape of the original signal.
Although variations exist of basic smoothing and denoising methods tailored
to specific types of noise,32 the core concept of wavelet smoothing and denois-
ing techniques remains the same.

Figure 13 WT-based smoothing has four steps: (1) Transform the signal, (2) isolate the
wavelet coefficients corresponding to the high-frequency components, (3) ‘‘zero-out’’ or
reduce these coefficients, and (4) apply a reverseWT to the signal. Compare this with the
denoising routine illustrated in Figure 14.
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Variations of the wavelet smoothing and denoising routines described
above have been thoroughly investigated and tested by Mittermayr et al.
against more traditional methods, such as Savitzky–Golay smoothing and
Fourier filtering.27 Other investigators were rigorous in their evaluation of
WT smoothing techniques; they used the best alternative smoothing techni-
ques available and evaluated optimally selected mother wavelets tailored to
different types of data.25,26,28,33 Their analysis showed good results for wave-
let denoising, outperforming the more traditional techniques on a variety of
experimental data. There is an extensive list of publications within the chem-
istry literature, which are reviewed in Refs. 9–10, where WT cleaning of data
has improved data analysis. In all cases, the goal of smoothing or denoising a
signal was to simplify and clarify experimental data. Other examples of
wavelet-based smoothing and denoising may be found in a multitude of
applications including chromatography,17,26,34,35 infrared spectroscopy (with
and without heteroscedastic noise),33,36–38 ultraviolet-visible spectroscopy,39

mass spectrometry,30,40–43 voltammetry,39,44–46 capillary electrophoresis,28

molecular superposition methods,47 and photoacoustic spectroscopy.48

Heteroscedastic backgrounds can confound signals in a way that simple
wavelet thresholding routines become ineffective at removing their influences.
The changing variance of this noise allows the noise to move from one

Figure 14 WT-based denoising has four steps: (1) Transform the signal, (2) isolate the
small-amplitude wavelet coefficients corresponding to the noise components, (3) ‘‘zero-
out’’ or reduce these coefficients, and (4) apply a reverse WT to the signal. Compare this
with the smoothing routine illustrated in Figure 13. The isolation of small-amplitude
coefficients in step 2 was achieved by using a progressive reduction hard-thresholding
approach, which reduces the elimination threshold for each lower frequency
band.
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frequency band to another. Simple wavelet thresholding of the DWT is not
sufficient for handling noise that moves between frequency bands, but WPT
methods allow for intelligent isolation of the background. WPT denoising
techniques were used to remove heteroscedastic noise from near-infrared spec-
tra38 and from GC/MS spectra;43 in both cases, the resolution of overlapping
peaks having low signal-to-noise ratio was improved. Although the CWT can
isolate the heteroscedastic noise, it is a cumbersome approach and is not often
implemented in practice.38

Signal Feature Isolation

Feature isolation is a general form of signal analysis. It concerns the
broader problem of understanding and quantifying a signal and its component
features rather than removing one particular type of feature from a signal (e.g.,
noise). These features often include the location and size of sharp spikes, cri-
tical points, smooth regions, discontinuities, and frequency composition.49–54

Multiresolution analysis (MRA) techniques, which include the DWT and
WPT methods, effectively divide a signal into frequency bands using wavelet
functions of known position, which give the precise locations of all signal fea-
tures in wavelet space. Knowing the locations of specific components of the
signal allows them to be analyzed, enhanced, cleaned, or removed. MRA
methods have the additional advantage of giving an orthogonal representation
of the original signal, which allows for local modifications or ‘‘feature
selection’’ without introducing the global changes that could otherwise affect
the signal. Both the smoothing and the denoising routines are examples of this
application.

Although MRA methods are useful in many applications, the CWT is
often more accurate for signal characterization. The CWT does not enjoy
the benefit of orthogonality, but it is not restricted in its placement of wavelet
functions during the transform. The CWT can use optimally dilated and trans-
lated wavelets to represent every crevice and region of a signal to locate fea-
tures of interest precisely. This allows the CWT to recognize, with great
precision, where important signal shape features occur, such as peaks, kinks,
smooth regions, and edges. For example, signal critical points can be located,
dramatic changes in frequency content can be identified, and the behavior of
the derivative of a curve can be characterized. The penalty for not having an
orthogonal representation of the signal is that CWT-based methods cannot
manipulate signals as conveniently as can MRA methods: Nonetheless the
redundant signal representation inherent in CWT methods increases the preci-
sion and resolution of the signal analysis. In general, MRA methods are used
to clean, change, or clarify a signal, whereas CWT methods are used to per-
form precise and thorough signal diagnostics.

WT-based methods for signal isolation and analysis have improved
significantly the deconstruction, quantitative analysis, and cleaning of many
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types of experimental data55,56 ranging from chromatography,57–64 infrared
spectroscopy,65–72 ultraviolet-visible spectroscopy,67 mass spectrometry,73

x-ray absorption,74,75 nuclear magnetic resonance,76–80 to other studies.81,82

Other interesting applications use methods of wavelet-based image
fusion52,83–87 to combine data obtained from different sources for better ana-
lysis and enhanced information extraction.88–90

Signal Compression

The purpose of data compression is to reduce storage space and to con-
centrate signal information. The central concept of wavelet compression is to
represent data in an optimal manner, so that only a small number of wavelet
coefficients are needed to capture most of the original signal.

Many specific compression routines using the WT exist, but all are simi-
lar in that they move a signal from a higher dimensional space to a lower
dimensional subspace. Compression takes advantage of the WT because it
inherently focuses the main features and overall shape of a signal into a rela-
tively small number of wavelet coefficients. Data compression using the WPT8

starts by separating a signal into its frequency bands using multiresolution
analysis. The best signal basis is then selected such that it minimizes the
number of wavelet coefficients, which best represents the original signal.
The best-basis selection can be achieved with a variety of optimizing functions.
Normally an information entropy metric is used to guide the selection of a
maximally representing but minimum-length basis.91 Compression is achieved
when fewer variables or data values are required to represent the original sig-
nal. The selection of the best basis is usually optimized for each signal, but
there is an advantage to selecting the best basis for a set of signals simulta-
neously,8,92 especially when creating a library of similar data, such as chemical
spectra or molecular property information.

Data compression is a useful, if not novel, application of wavelets in
chemistry. It has found great use in spectral compression and storage and
stands as an important application for data archiving. WPT-based data com-
pression is useful for archiving infrared spectral libraries,93 specifically when a
large amount of experimental data must be quickly and accurately processed
and stored. Infrared spectra contain sharp peaks and features, making them
well suited for compression by unsupervised DWT with basic wavelet-
thresholding techniques. It is basically a denoising approach to compression,
in that removing the noise coefficients saves storage space.94

A second approach to data compression is to compress infrared spectra
with a construct called a wavelet neural network (WNN).95 The WNN
approach stores large amounts of infrared data for fast archiving of spectral
data. It is achieved by modifying the machine learning technique of artificial
neural networks (ANNs)96 to capture the shape of infrared spectra using
wavelet basis functions. The WNN approach is similar to another approach
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used to store ultraviolet visible spectral information that is presented in
Ref. [93]. Although the ANN approaches are very effective for storing spectral
data, it is limited to operating on an expected type of data (i.e., infrared spec-
tra), and it is not a general compression approach for any free form signal,
image, or otherwise.

Quantum Chemistry

WT methods are flexible, robust, and particularly useful for representing
complex and intricate functions, making them an interesting alternative to
other, more common basis sets for representing molecular wave functions.
Quantum chemical applications typically involve the computational evalua-
tion of many-electron molecular wave functions (or electron density distribu-
tions), through approximate solutions of the Schrödinger equation. Semi-
empirical and ab initio quantum mechanical methods are commonly used to
compute electronic structure and molecular properties derived from the
wave function, as well as spectroscopic97 properties originating from transi-
tions between energy levels.98–100

The electronic wave functions of molecules vary much more dramatically
near atomic nuclei than in the interatomic spaces.101 It makes the computa-
tional cost of maintaining high-resolution wave functions near the nuclei
much higher than when representing valence regions further away from any
nuclei. In traditional ab initio approaches for representing electronic struc-
ture, a molecular wave function is expanded in a series of basis functions, typi-
cally as a linear combination of Gaussian functions. Because the expansions
are uniform, adjusting the approximation to give improved resolution near
atom centers requires a dramatic increase in the number of terms through
the introduction of double- and triple-zeta basis sets.102 An alternative
approach for increasing local resolution in highly nonlinear wave functions
is to use specialized basis sets that depend explicitly on their locations relative
to nuclear positions. The spatially localized property of wavelets can be useful
for creating a consistent basis function for electronic distribution calcula-
tions.103,104 Wavelets can characterize the highly nonlinear wave functions
encountered in quantum chemistry because they can adjust to fit widely vary-
ing nonstationary functions.105 Wavelets have also helped to create well-
behaved and consistent descriptions of the properties of electron density dis-
tributions.106

Iyengar and Frisch107 have demonstrated the fundamental equivalence
between the wavelet theory of multiresolution analysis and the translation
and dilation operations on the primitive Cartesian Gaussian basis functions
used in electronic structure theory:

wRl;m;n rð Þ ¼ x� Rxð Þl y� Ry

� �m
z� Rzð Þne�aðr�RÞ2 ; l;m; n 2 N ½9�
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where

R ¼ Rx;Ry;Rz

� � ½10�

The positive integers l, m, and n determine the orbital angular momentum of
the basis function, and R is the Gaussian center. Thus, the Gaussian basis func-
tion w has a translation property represented by its dependence on the position
of atom center R as well as a dilatory property, wherein for any given value of
l, m, n, and R, the exponent a may have multiple values; the primitive Gaus-
sians with smaller a being simply dilated versions of the original—see Eq. [6]
and Figure 6. These authors have shown that primitive Gaussians are, in fact,
multiwavelets with nonintegral scale factors. The Gaussian multiwavelet basis
is nonorthogonal on account of these nonintegral scale factors, giving rise to
different levels of basis set completeness at different molecular geometries.
Hence, the quality of a Gaussian basis set changes as the nuclei move—a
well-known artifact of ab initio quantum chemistry known as the basis set
superposition error (BSSE).108 This analysis provides new ways to ascertain
and control the quality of a basis set during ab initio molecular dynamics.

Modisette et al.109 have illustrated how wavelets can improve both reso-
lution andaccuracyover traditional ab initiomethods.A three-dimensionwavelet
analysis was used for electronic structure calculations by Cho et al.97 They took
advantage of the stable nature of the WT to provide a systematically improva-
ble and tractable description of electronic wave functions, thereby overcoming
some limitations of conventional basis set expansions. It was demonstrated by
computing the 1-s states for all naturally occurring nuclei in the periodic table
from hydrogen to uranium, as well as their interaction energies with the
hydrogen molecule ion. Another study investigated position and momentum
information from solutions of the Hartree–Fock equation and found
wavelet-based analysis provided more information concerning the oscillatory
nature of a time-dependent wave function than did traditional FT
approaches.110 These authors found that wavelets were valuable for improv-
ing current methods for total energy calculations.111 Wavelets have also been
used to improve empirical force field representations for studying the behavior
of biological macromolecules.112

Harrison, et al. have reported an efficient, accurate multiresolution sol-
ver for the Kohn–Sham113 and Hartree–Fock114,115 self-consistent field meth-
ods for general polyatomic molecules. The Hartree–Fock exchange is a
nonlocal operator, whose evaluation has been a computational bottleneck
for electronic structure calculations, scaling as O N3�4

� �
for small molecules

and no better than O N2logN
� �

for larger systems. Although earlier applica-
tions of wavelets and multiresolution analysis to quantum chemistry employed
single-component smooth wavelets, these authors used sparse multiwavelet
bases and localized molecular orbitals to attain near-linear scaling in electronic
structure computations.
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Classification, Regression, and QSAR/QSPR

Understanding the relationship between the structure of a molecule and
its physicochemical properties is vital for compound development and prop-
erty optimization efforts. It is especially true for the expensive task of screen-
ing molecular databases for specific biological activities and developing new
therapeutic lead compounds. Modern methods of rational drug design depend
heavily on the use of computer models to better understand the relationships
between compound structures and pharmacokinetic and biochemical beha-
vior. The technique of QSAR modeling developed from this need and seeks
correlations between molecular structure and observable molecular properties.
There is a logical disconnect in the way molecules need to be represented to be
understandable to chemists, and the way they must be represented for machine
learning applications. To appropriately represent molecules for numerical ana-
lysis, the important features of each compound must be summarized by a con-
cise set of descriptors.116–118 The existing body of QSAR literature attests to
the effectiveness of this technique.119 Although the term ‘‘QSAR’’ is normally
associated with models developed to explain the properties of small drug-like
molecules, it is often used to describe the broader field of QSPR modeling that
is used in chemometrics, cheminformatics, and analytical chemistry.

Quantifying the relationship between a molecule and its properties is an
important step toward understanding and predicting behavior, whether the
models refer to experimental spectra, sensor responses, or a set of molecular
descriptors. Classification and regression are two main types of modeling
approaches frequently used in QSAR/QSPR analysis: Classification entails
assigning data to a discrete category, or clustering it into similar classes,
whereas regression forms a continuous model that estimates the magnitude
of molecular responses. Both approaches use machine learning methods taken
from the fields of statistics and computer science, and both seek to refine raw
data into an understandable form. It usually means that a simplification of the
raw data is required to reveal important discriminatory features within the
data.

Data refinement is important because it solves two problems that are fre-
quently encountered while building QSPR models. The first problem is the
‘‘curse of dimensionality,’’ and the second is ‘‘data variance’’ within the raw
data. These problems are observed while building two common types of QSPR
models that appear in chemometrics: pattern recognition of spectroscopic and
chromatographic data. The first problem—the ‘‘curse of dimensionality’’ often
originates when the number of features or dimensions used as input to a model
greatly exceeds the number of cases or data points available for model devel-
opment. Raw, continuous spectral data consist of many variables,120 the use of
which can result in a dimensionality problem, particularly when using high-
capacity modeling methods such as ANNs. It means that the quality and
importance of each variable is reduced dramatically, which in turn can affect
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modeling adversely.121 The many variables or dimensions can inundate a com-
plex mathematical model with features, allowing the model to locate spurious,
even false relationships between a molecule and a molecular property.122 The
second problem with using raw data is ‘‘data variance,’’ which means that the
model can suffer from unstable conditions such as changing noise variance or
shifting relative peak positions.123 It also originates as the classic problem of
data alignment observed in both two-dimensional and three-dimensional
molecular QSAR modeling. Such variability between related signals can render
the data incomprehensible to classification schemes and regression methods. In
general, models tend to increase in complexity with irrelevant sources of var-
iance and noise,124 making them less general, less robust, and less accurate. An
example where data variance harms pattern recognition is observed with infra-
red spectra: When taking spectra from two different spectrophotometers, the
precise peak position or signal-to-noise ratio may be sufficiently different to
confound pattern recognition routines—even when the infrared spectra are
of good quality. Instead of using such raw data directly, preprocessing is
often required to convert the data to a more useable form for effective model
building.

WT methods offer effective ways to address the two main problems of
capturing the information contained within raw data. First, they facilitate fea-
ture/dimension reduction by converting raw data into a more succinct repre-
sentation in wavelet space. The wavelets isolate and concentrate the shape and
character of the raw signal into a relatively small number of wavelet coeffi-
cients. Using the wavelet coefficients as the data features (descriptors) affords
data representation with a dramatic reduction in the number of vari-
ables.122,125,126 Second, the use of feature isolation and extraction methods
removes variance and error from the raw data giving standardized and consis-
tent data representations.127 These methods often include basic signal smooth-
ing and denoising, but more complicated data cleaning, such as removal of the
variance in peak positions, is possible as well.128 The removal of unnecessary
information from the raw data further concentrates the desired chemical infor-
mation in the remaining variables used to represent the signal. What remains is
a highly compact, consistent, and standardized representation of the important
discriminatory features within the original signal. Using wavelet coefficients
directly in QSAR/QSPR modeling provides a set of low-dimensional, informa-
tion-rich descriptors that capture the shape and character of the raw data dis-
tribution129 and help to build more parsimonious models.124

Wavelet coefficient descriptors (WCDs)130,131 exemplify how the WT
enhances the quality of current descriptor technology and enables the develop-
ment of improved models. WCDs are an adaptation of the transferable atom
equivalent (TAE) descriptors developed by Breneman and Rhem.132 TAE
descriptors are derived by quantifying the distributions of multiple electronic
properties computed on electronic van der Waals surfaces, which are defined
as the 0.002-e-au�3 isosurfaces (Figure 15). TAE descriptors encode the
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distributions of electron density-based molecular properties such as electronic
kinetic energy densities,133 local average ionization potential,134 electrostatic
potential,135–138 Fukui functions,139–142 electron density gradients, and elec-
tron density Laplacian,133 in addition to the density. The term ‘‘TAE descrip-
tor’’ refers to a set of histograms with fixed-width bins that characterize
surface property distributions (for one example, see Figure 16). Although
the TAE descriptors are capable of generating high-quality models, they are
nonorthogonal, in that histogram representations of property distributions
contain correlated information from the same property. WCDs redefine and
simplify TAE descriptor data into a stable, orthogonal representation.

Using multiresolution analysis, each property distribution is transformed
into wavelet space, separating the data into frequency bands. Because the low-
frequency features of the property density distributions contain most of the
chemical information, a significant compression of the distributions is
achieved by retaining only the wavelet coefficients in the very lowest frequency
bands. These few wavelets are sufficient to describe the overall shape and char-
acter of the property distributions (see Figure 16) without carrying redundant
information about their features. WCD descriptors have been shown to
improve QSAR modeling because they are inherently an orthogonal represen-
tation that separate and isolate features of each surface property distribution.

Figure 15 The HIVrt tivirapine, with its electronic van der Waals surface encoded with
three electron density-derived properties and their respective property distributions.
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This aspect of WCDs ensures the resulting models to be more robust, minimiz-
ing the risk of finding spurious relationships within the set of descriptors,
thereby improving overall model parsimony, and leading to greater generaliz-
ability than when using numerous, nonorthogonal descriptors.

A demonstration of the performance of WCDs in a pharmaceutical set-
ting can be illustrated by the development of a genetic algorithm/partial least-
squares (GA/PLS)143–145 model of HIV reverse-transcriptase (HIVrt) inhibi-
tion.146 In this example, a set of 64 molecules with assay (EC50) values was
used to train and evaluate a QSAR model using either TAE or WCD descrip-
tors. Because the electronic surface properties being represented by each meth-
od are the same, this example serves to compare the benefits of the wavelet
representation over the TAE surface histogram representation of these proper-
ties. The results shown in Figure 17 are taken from the cross-validated GA/PLS
model predictions. It is significant to note that the number of descriptors
required to produce the TAE-based model was nearly twice that of the
WCD model. With its smaller number of features, the WCD-based model
would be expected to be more stable and robust. It was, in fact, demonstrated
during the process of model building, where WCD-based models were found

Figure 16 WCDs are generated as illustrated for each electron density-derived property.
The property distribution is deconstructed using the DWT (pyramid algorithm),
allowing the isolation of the lowest frequency and coarsest approximation coefficients
(a7 and d7). These few coefficients are sufficient to reconstruct most of the original signal
(via the inverse DWT) and contain the vital molecular property information needed for
modeling. The WCDs replace the original TAE histogram descriptors and are
orthogonal, consistent, and representative.
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to be less sensitive to GA/PLS tuning parameters than models built using TAE
descriptors.

Other chemistry-related modeling applications have also observed
improvement through the use of wavelet coefficient representations of molecu-
lar or spectral properties. An extensive list of examples of this phenomenon is
available in the literature. For instance, WT methods were shown to improve
spectral classification models,147 ANN-based chromatography methods148

and flame ionization data.149 Although other descriptor-based methods of
representing infrared spectral features have been used with some success in
this application,150–152 WT methods were found to be superior for building
classification or QSAR regression models. Pattern recognition and regression
using wavelet coefficients were also found to improve other infrared spectral
analysis studies.122,125,126,128,153 Because of their ability to concentrate chemi-
cal information and reduce unwanted features, a rich literature is developing
around the use of wavelets as descriptors of chemical data.

Examples of the improvement possible in classification and regression
analysis on experimental data using WT methods can be found in several
areas: Finite impulse response (FIR) models built on impulse response
improved dramatically, for example, when the signals were significantly
downsampled by converting data with WTs.154 Classifications by ANN of
HPLC data of trace organic impurities155 and thermally modulated sensor sig-
nals for various gas types156 were improved dramatically by WT preprocessing
over previous approaches.157 The WNN95 has been used for predicting reten-
tion times in programmed-temperature gas chromatography (PTGC)158 and to
build more generalizable models for predicting association constant values

Figure 17 Comparison of HIVrt EC50 model parsimony using TAE and WCD
descriptors. In each case, cross-validated GA/PLS models were constructed for a set of
64 HIVrt inhibitors using five PLS dimensions. The TAE model required 13 descriptors,
whereas the WCD model needed only seven descriptors for similar performance.
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(Ka) for benzene derivatives.159 An interesting application of WT methods to
improve the ANN classification of chromatography data is presented in the
work of Yiyu, et al.,160 where the WT was used to decompose the chromato-
graphy data and fractal analysis was used to analyze the wavelet components.
The ANN categorized the compound using the ‘‘chromatographic fingerprint’’
or fractal dimension of the wavelet coefficients. Other studies that used WT
methods to generate data descriptors giving enhanced modeling results are
found in Refs. 120, and 161–163.

SUMMARY

We have illustrated the utility of WTs throughout this chapter, for clean-
ing, smoothing, and denoising data, as well as the benefits of their direct use as
molecular property descriptors. It is clear from the examples cited that this
versatile technology can identify and quantify important features within spec-
tra or property distributions of chemical interest for use in both classification
and regression models, to achieve near-linear scaling in electronic structure
calculations and serve to control the quality of a basis set in ab initio molecular
dynamics simulations. The evolution of wavelets in chemistry parallels the
development of ever more sophisticated computational methods and hardware
performance. In a relatively short period of time, wavelet methods have grown
in importance from a noise filter and baseline correction tool to a fundamental
component of modern data analysis, computational chemistry, and knowledge
discovery.
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Sjölander, K., 159
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