

DEVELOPING CHEMICAL
INFORMATION SYSTEMS
AN OBJECT-ORIENTED APPROACH
USING ENTERPRISE JAVA

Fan Li
Merck & Company, Inc.
Rahway, New Jersey

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page iii

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page vi

DEVELOPING CHEMICAL
INFORMATION SYSTEMS

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page i

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page ii

DEVELOPING CHEMICAL
INFORMATION SYSTEMS
AN OBJECT-ORIENTED APPROACH
USING ENTERPRISE JAVA

Fan Li
Merck & Company, Inc.
Rahway, New Jersey

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page iii

Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN-13: 978-0-471-75157-1
ISBN-10: 0-471-75157-X

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page iv

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

For Yingduo, Melodee, and Michael

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page v

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page vi

PREFACE

Although I have published several scientific articles throughout my academic
career spanning 15 years, this is my first book. I consider it both an opportu-
nity to share my experience of developing chemical information systems for
the pharmaceutical industry and an opportunity for me to learn. Therefore, I
do not expect this book to be perfect. I welcome feedback from the readers so
that I can improve on the material for my next book.

Hundreds of books are in the marketplace about object-oriented analysis,
design, and programming. A handful of books are about cheminformatics.
But no book exists about how to apply object technology to the cheminfor-
matics domain. This book is an attempt to fill that gap.

For a long time, chemical information systems have been considered spe-
cial and have been dominated by a few vendor proprietary solutions. The costs
for development and support of these systems are extremely high. I strongly
believe that era is over. More and more cheminformatics software vendors
provide open APIs for their proprietary implementations or develop their soft-
ware using open technologies altogether, which offers tremendous opportu-
nity for organizations to acquire or develop their cheminformatics solutions at
a much reduced cost and with increased productivity. There is no need to rely
on a single vendor to provide end-to-end solutions. This book shows how to
apply the software industry’s best practices, principles, and patterns while
effectively integrating vendor tools to solve chemical informatics problems.

Chemical information systems are complex. This book does not cover
every aspect of them. However, it uses a chemical registration system as an
example of how to use an object-oriented approach to develop systems in the
cheminformatics domain.

This book assumes the reader has basic knowledge of object-oriented
analysis, design and programming, UML, Java, and concepts of chemical
registration and searching.

FAN LI

Edison, New Jersey
fan_li_1129@yahoo.com

vii

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page vii

ORGANIZATION OF THE BOOK

Chapter 1 gives an introduction to the book: some historical background, the
purpose of the book, and some basic information on chemical information
systems.

Chapters 2–8 provide some general information and guidance for devel-
oping enterprise chemical information systems using object technology and
the agile iterative process. I firmly believe that both object-oriented analysis
and design principles and the agile iterative process are important to the suc-
cess of any software development projects. The combination of the two helps
a team to do the right things and to do the things right.

Chapters 9–15 use the chemical registration system as a case study to
illustrate how to develop chemical information systems using the object-ori-
ented approach and the Java technology. Chapter 9 presents an example of
capturing functional requirements using a use case specification document.
Other chapters talk about the implementations of each layer of the chemical
registration system. Many analysis and design techniques are presented in
great detail, and there are many code examples and UML diagrams in these
chapters.

Chapter 16 summarizes the key points of the whole book.

viii PREFACE

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page viii

ix

ACKNOWLEDGMENTS

During my career at Merck, I received support from many people. I would
first like to thank the management team of Merck Research Information
Services for Basic Research: Dr. Ingrid Akerblom, Dr. Allan Ferguson, Dr.
Gary Mallow, and Dr. Sanjoy Ray who supported my idea of writing this
book. Without their encouragement, this book would have not been possible.

Special thanks to the Merck Chemical Informatics Application Engineering
Team: Rachel Zhao, Arik Itkis, Xiping Long, LiMiao Chang, Sean Morley,
Vaniambadi Venkatesan, Jarek Pluta, Irene Fishman, Jeanette Cabardo, and
Dr. Hank Owens, without whom much of my research at Merck would not
have been possible. A lot of information in the book is inspired by their work.
I also thank Dr. Christopher Culberson of Molecular Systems of Merck
Research Laboratories, who helped tremendously during the development of
the Merck compound registration system.

Also, I thank my other colleagues at Merck: John Simon, Dr. Yao Wang,
Dr. Annie Samuel, Dr. Jay Mehta, James Goggin, Andrew Ferguson, and
Marianne Malloy. They were all part of the Merck Chemical Registration
System Project Team, and many of them shared invaluable knowledge about
compound data management with me.

POSTSCRIPT

I made a career change after I finished this book. I am now working at Goldman
Sachs as a Technical Lead. This book was in the production phase when I
joined Goldman Sachs. I am grateful to Allen Hom and Johnathan Lewis,
managing directors at Goldman Sachs, for their support. Thanks to Sue Su,
who helped me to establish contact with Wiley. Also, I thank the editorial and
production team at Wiley: Dr. Darla Henderson, Senior Editor, Rebekah Amos,
Editorial Assistant, and Kris Parrish, Production Editor.

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page ix

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page x

xi

CONTENTS

1. Introduction 1

2. Software Development Principles: High–Low
Open–Closed Principles 6

3. Introduction to the Object-Oriented Approach
and Its Benefits 12

4. Build Versus Buy 23

5. The Agile and Iterative Development Process 26

6. UML Modeling 34

7. Deployment Architecture 38

8. Software Architecture 43

9. A Case Study: Develop a Chemical Registration
System (CRS) 49

10. A Chemical Informatics Domain Analysis
Object Model 61

11. Presentation Layer 65

12. Business Layer 69

13. Entity Dictionary 147

14. Chemistry Intelligence API 168

15. Data Persistence Layer 186

16. Put Everything Together 204

Bibliography 207

Index 209

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page xi

JWUS_Dcis_FM.qxd 10/9/2006 3:20 PM Page xii

1

CHAPTER 1

Introduction

1.1 BACKGROUND

In 1999, I was asked by my manager to lead an application development team
to lay out a strategic plan for the next generation of chemical information
systems for Merck Research Laboratories. Back then, Java technology was
entering its fifth anniversary, and the J2EE 1.0 specification was just launched
by Sun Microsystems. However, almost all chemical information systems
used by chemical, pharmaceutical, agricultural, and biotech companies were
developed using vendor proprietary technologies such as MDL ISIS, which is
the de facto industry standard. Although many people recognized that the cost
of licensing, developing, and maintaining these legacy systems was high, an
alternative to those systems was unclear. I have to admit that there was proba-
bly no viable alternative at all back then.

Since its inception 30 years ago, object-oriented technology has been
successfully applied in software development in many industries for many
years. However, it is a new beast even now in the chemical informatics
domain. Many chemistry software vendors have been slow in reacting to
technology evolution. As a user or developer, not many technological choices
are available. As an employer, it is difficult and costly to find and recruit
developers who have experience in those vender proprietary development
platforms. There is also a fear factor in many organizations; moving away
from existing technologies to new ones, no matter how promising they may
be, is risky. This risk is true even though many of the limitations of the exist-
ing technologies justify the changes: performance and flexibility are low,
whereas development, maintenance, and licensing costs are high.

From the middle to late 1990s, the situation changed when major chem-
istry software vendors started migrating their chemical information databases
from proprietary formats to Oracle-based relational databases. Another posi-
tive move was that these vendors also started releasing chemical structure

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch001.qxd 10/12/2006 7:16 PM Page 1

data cartridges using the Oracle® Extensibility Framework. These prod-
ucts included Accelrys® Accord for Oracle, CambridgeSoft® Oracle
Cartridge, Daylight® DayCart, Tripos® Auspyx for Oracle, and MDL®

MDLDirect. These changes were caused at least in part by the competition
among these vendors. These cartridges enable people to use direct SQL to
query and update chemical databases, something that could only be done
using vendor proprietary programming interfaces in the past. Software
developers in the chemical informatics field now have the opportunity to
use open, industry standards and more interesting technologies to do their
work (like it or not, having fun is one of the biggest factors of software
development productivity).

Having programmed in Java since its inception, I was a firm believer that
Enterprise Java could be one alternative to vendor proprietary technologies. I
proved to my managers that I was right when we finally released the first
compound registration system using J2EE at Merck in 2003.

Chemical information systems are complex because they process chemical
structures–a very special and complex sort of data. Indexing and querying
chemical structure data require special techniques, and a handful of software
vendors that have the domain expertise have come up with data storage and
query solutions. The complexity also deterred many organizations from
developing customized chemical information systems in-house. Instead, they
hire outside consultants to implement these systems on their behalf. Many
software developers in these consulting firms are not professional software
devolopers by training but ended up becoming programmers for one reason
or another. I remember during the technology boom in the 1990’s, many
“seasonal” programmers wanted to find IT jobs. Many of them did so simply
because they were tired of what they were doing and believed IT jobs were
easy and less stressful. People were under the impression that one could
become a good programmer by just attending a two-week programming
training course and learning how to write a “Hello World” program––a gross
misperception. Software development projects are challenging and costly.
They require special skills and disciplined practices, or they may fail badly.

The advantage for chemists in developing chemical information systems is
obvious: they know the domain subject e.g., chemistry and what the systems
are supposed to do very well. The disadvantage is that they do not necessarily
know what it takes to develop enterprise strength software systems. There are
certain people who know both very well, but it is not always the case. The con-
sequence is that the systems developed can be hard to maintain and debug and
are not as good in performance and scalability as you may expect. In many
cases, only the person who wrote the code can understand and maintain it. I do
not mean to offend anybody because this is purely due to a lack of training and
experience and has nothing to do with talent. Neither am I suggesting that

2 INTRODUCTION

JWUS_Dcis_Ch001.qxd 10/12/2006 7:16 PM Page 2

being trained in software engineering automatically makes a person a good
software developer. In fact, many chemists working in the pharmaceutical and
chemical industries have advanced degrees and have trained themselves to be
good software developers. I was a physicist by training initially myself and
acquired a computer science degree later in my career. I learned low coupling
and high cohesion principles in graduate school. They turned out to be the two
most important principles in software development that have guided me since
then. Software development is both an art and an engineering discipline,
which in my mind requires formal training, years of practice, and continuous
learning and exploration of new and better techniques.

Chemical informatics may mean different things to different people. I
am not here to provide an authoritative definition. However, as it is the
topic of this book, I will give a definition from the IT aspect. Chemical
informatics is about capturing, storing, querying, analyzing, and visualiz-
ing chemical data electronically. Modern chemical information systems are
challenged to facilitate industry’s productivity growth by effectively han-
dling a huge amount of data. Making sure these systems are robust and
high-speed is crucial to the competitive advantage of any discovery
research organization. Chemical information systems usually require the
following tools.

1.2 CHEMICAL STRUCTURE ENCODING SCHEMA

One of the most widely used chemical structure-encoding schemas in the
pharmaceutical industry is the MDL® Connection Table (CT) File Format.
Both Molfile and SD File are based on MDL® CT File Format to represent
chemical structures. A Molfile represents a single chemical structure. An SD
File contains one to many records, each of which has a chemical structure and
other data that are associated with the structure. MDL Connection Table File
Format also supports RG File to describe a single Rgroup query, rxnfile,
which contains structural information of a single reaction, RD File, which
has one to many records, each of which has a reaction and data associated
with the reaction, and lastly, MDL’s newly developed XML representation of
the above—XD File. The CT File Format definition can be downloaded from
the MDL website: http://www.mdl.com/downloads/public/ctfile/ctfile.jsp.

Other structure-encoding schemas are developed by software vendors and
academia such as Daylight® Smiles, CambridgeSoft® ChemDraw Exchange
(CDX), and Chemical Markup Language (CML), and they all have advan-
tages and disadvantages. The MDL CT File Format is the only one that is
supported by almost all chemical informatics software vendors.

Figure 1.1 is the structure of aspirin.

CHEMICAL STRUCTURE ENCODING SCHEMA 3

JWUS_Dcis_Ch001.qxd 10/12/2006 7:16 PM Page 3

The Molfile representation of the above structure is as follows.

-ISIS� 07240513032D

13 13 0 0 0 0 0 0 0 0999 V2000
�1.1556 �0.1291 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
�1.1568 �0.9565 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
�0.4419 �1.3694 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

0.2745 �0.9560 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.2716 �0.1255 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

�0.4437 0.2836 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
�0.4462 1.1086 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
�1.1667 1.5250 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

0.9846 0.2897 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
1.7006 �0.1201 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
2.4135 0.2951 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1.7037 �0.9451 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
0.2677 1.5221 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0 0 0 0
6 7 1 0 0 0 0
3 4 2 0 0 0 0
7 8 2 0 0 0 0
5 9 1 0 0 0 0
4 5 1 0 0 0 0
9 10 1 0 0 0 0
2 3 1 0 0 0 0
10 11 1 0 0 0 0
5 6 2 0 0 0 0
10 12 2 0 0 0 0
6 1 1 0 0 0 0
7 13 1 0 0 0 0

M END

The Smiles representation of the same structure is far simpler:
C(�O)(O)c1ccccc1OC(�O)C.

1.3 CHEMICAL STRUCTURE RENDERING AND EDITING TOOLS

MDL® ISISDraw and CambridgeSoft® ChemDraw are probably the most
widely used structure editing tools. Both companies have a Web browser

4 INTRODUCTION

O

O CH3

O

O

Figure 1.1 Structure of the aspirin molecule.

JWUS_Dcis_Ch001.qxd 10/12/2006 7:16 PM Page 4

plug-in version of these structure editing tools—MDL® ChimePro Plug-in
and CambridgeSoft® ChemDraw Plug-in. MDL ChimePro also includes a
JavaBean component, which can be used either as applets or in Java Swing
based client applications.

Other products on the market include Daylight® Depict Toolkit, Accelrys®

Discovery Studio ViewerPro, and Chem Axon® Marvin Bean.

1.4 CHEMICAL INFORMATION DATABASES

Data storage and querying are the most fundamental requirements of all
informatics systems. Thanks to the Oracle® Extensibility Framework (a.k.a.
Oracle Data Cartridge Technology), chemical structure data can be stored
and queried using direct SQL and special query operators, such as substruc-
ture search, flexmatch search, similarity search, and formula search. Also,
some indexing techniques make these otherwise slow searches fast. Detailed
discussions about these databases and cartridges are beyond the scope of this
book. Please refer to the vendor’s website and product documentation for
more information.

1.5 CHEMISTRY INTELLIGENCE SYSTEMS

These tools perform structure validations, making sure molecule structures
follow certain conventions that are defined by an organization, property calcu-
lations such as molecular weight, molecular formula, pKa, and so on, and salt
handling. Many chemistry software vendors provide chemistry intelligence
software. Some vendors may encapsulate chemical intelligence components in
their data cartridge products. Some may bundle it with their structure editing
tools. Some may offer it as independent products. MDL, for example, used to
have it as part of its ISIS product suite. Now it has a product called Cheshire
that is independent of ISIS and can be integrated with both Microsoft and Java
platforms.

Since each organization has unique business rules, it is highly desirable
that the chemistry intelligence software is flexible to allow customized
implementations of chemistry rules handling. MDL Cheshire does a pretty
good job from that perspective.

The above tools provide fundamental building blocks of chemical
information systems. With these tools in place, you can pretty much
develop customized solutions that meet your specific technical and business
needs.

CHEMISTRY INTELLIGENCE SYSTEMS 5

JWUS_Dcis_Ch001.qxd 10/12/2006 7:16 PM Page 5

6

CHAPTER 2

Software Development Principles:
High–Low Open–Closed Principles

One of the biggest challenges of all software projects is managing changes.
This is true for several reasons. First, most programmers prefer developing
new systems over maintaining existing systems because they feel the former is
more challenging and creative and has a better sense of achievement than the
latter. Developers do not want to spend most of their time supporting existing
systems. Second, many software systems are poorly documented and hard to
understand. Changes in one place may have unpredictable side effects in other
places. Many software systems are poorly designed such that it is impossible
to make changes without breaking the system.

However, no matter how much you hate it, changes in software systems
are inevitable. Usually software systems that cannot be changed are short-
lived and cannot survive when the business evolves, which happens all the
time in drug discovery research. Isn’t it nice that you could always add new
behaviors to or alter the existing behavior of your software by adding new
code without even touching the existing code? Wouldn’t it be even nicer if
there were proven solutions that could help you achieve this? This is exactly
what software design principles and design patterns are about.

There are four fundamental and yet important software design princi-
ples—low coupling, high cohesion, open for extension, and closed for
changes. We can simply call them high–low open–closed principles.

2.1 LOW COUPLING

The low coupling principle tells us that a software module should be loosely
coupled with other modules in the system. Coupling is a measure of how
strongly one module is connected to, has knowledge of, or depends on other

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch002.qxd 11/2/2006 11:17 AM Page 6

LOW COUPLING 7

modules (Larman, 2005). High coupling makes the system hard to under-
stand, change, or extend.

Low Coupling Principle: Complexity can be reduced by designing the
system with the weakest possible coupling between modules.

There are two aspects to coupling: one is the number of modules to which
one module is coupled; the other is how rigid these couplings are. The low cou-
pling principle says both of them should be low. Low coupling reduces the
impact of changes in one module on the rest of the system. A good analogy to
this is a business organization that requires collaborations between employees.
A well-organized and efficient business requires only a few collaborators for an
employee to do his or her work; whereas in a poorly organized business, each
employee needs many collaborators to do his or her work. In such an organiza-
tion, there is a greater chance that things will break.

In object-oriented software systems, there are two types of couplings. One
is inheritance (also referred to as Is-A relationship). The other is composition
(also referred to as Has-A relationship). Inheritance is a more rigid coupling
than composition and should be avoided if possible. In an inheritance hierar-
chy, changes in the interface or in the base class impose the same changes in
all the subclasses. This is not necessarily a bad thing as long as all classes in
the same class hierarchy share the same behaviors. (I mean behavior at the
interface level, not at the implementation level, because each class in the hier-
archy can have its own implementation of the behaviors.) In fact, inheritance
gives you the benefits of code reuse. However, if classes in a class hierarchy
do not always have the same behavior, then inheritance is not a good choice;
in which case, you should consider using composition.

Figure 2.1 shows coupling by inheritance and how changes in Base prop-
agate to all its concrete subclasses.

In a composition relationship, one object can shield changes in another
object that it “owns.” In Figure 2.2, Class1 owns Class2. Changes in Class2
are hidden to the clients of Class1 because Class1 wraps Class2. Figure 2.2
shows coupling by composition.

Composition is a very powerful technique and is used in many Gang of
Four (GoF) design patterns (Gamma et al., 1995) such as Strategy, State, and
Command. You can further reduce coupling by having Class1 referencing an
interface or an abstract class instead of a concrete class as in Figure 2.3. This
design enables the system to dynamically swap implementation Class2
and Class3 at runtime. Figure 2.3 shows coupling by composition through
interface.

This kind of reduced coupling has direct benefits to the goals of open-
closed principles as you can see later in this chapter.

JWUS_Dcis_Ch002.qxd 11/2/2006 11:17 AM Page 7

8 SOFTWARE DEVELOPMENT PRINCIPLES: HIGH–LOW OPEN–CLOSED PRINCIPLES

2.2 HIGH COHESION

Cohesion is a measure of how strongly related or focused are the responsibil-
ities of a module. A module is highly cohesive if its responsibilities are highly
focused, which can be translated to the notion that a module’s responsibilities
should all be related. Or to be more extreme, a module should have only one

Members in a class hierarchy
are strongly coupled. If
behavior2 is added to Base,
all sub classes are forced to
implement it no matter
whether behavior2 belongs to
them or not.

Base

behavior1()

Sub1 Sub2 Sub3

Base

behavior1()
behavior2()

Sub1 Sub2 Sub3

Figure 2.1 Coupling by inheritance.

Class1
Class2

behavior1()

Class1 hides
changes in Class2

Class1
Class2

behavior1()
behavior2()

Figure 2.2 Coupling by composition.

JWUS_Dcis_Ch002.qxd 11/2/2006 11:17 AM Page 8

OPEN FOR EXTENSION AND CLOSED FOR CHANGES 9

responsibility or one reason to change. Robert Martin’s (2003) book has very
good explanations about the high cohesion principle.

High Cohesion Principle: Responsibilities of a module should be highly
related and focused so that the module has only one reason to change.

Some techniques can help you to achieve high cohesion––one of which is
to use descriptive names for your classes and methods. Descriptive names
can help you to keep the classes and methods focused. When you add
responsibilities to your classes or methods, think about whether these
responsibilities have any relevancy to the names of the class and method.
If not, most likely it does not belong there. Never use ambiguous names
for your classes and methods because they make the code hard to under-
stand and most likely lead to low cohesive design. The same rule applies
to member and local variables. Here are some bad names: MyClass and
myMethod. These names should never be used in your code (although I
use these names in this chapter to describe some concepts, they are not
recommended in the real world). Here are some good names: Molstructure,
ChemistryConventionChecker, and CompoundRegistrationService. Another
technique is to keep the module short. If the size of a class or a method is
large, usually it is a bad sign indicating the class or method is not focused
enough and you should consider moving some of the responsibilities out of
the class or method.

High cohesion makes the system easy to understand, reuse, and extend.

2.3 OPEN FOR EXTENSION AND CLOSED FOR CHANGES

These two principles are closely related.

Open (for Extension) – Closed (for Changes) Principles: Modules
should be open for extension and adaptation and closed for modifi-
cation in ways that affect its clients.

Class2

Class1

Interface

behavior1()

Class3

Figure 2.3 Coupling by composition through interface.

JWUS_Dcis_Ch002.qxd 11/2/2006 11:17 AM Page 9

Here is a real-world example for illustrative purposes. Suppose you have a
chemical information system that has to support both Molfile and Smiles
structures and a business method in a business object has to get the mol-
weight and molformula from the Molstructure objects to fulfill its responsi-
bilities. A naive design is to have two versions of the business method: one
takes a Molfile structure object as input and another takes a Smiles structure
as input (Figure 2.4).

With this design, if a new structure format (e.g., CML) is added to the sys-
tem, another version of the business method has to be added to the
BusinessObject. This design obviously violates open–closed principles.
Figure 2.5 shows a better design.

First, we create a higher level of abstraction—an abstract class
Molstructure––and make MolfileStructure and SmilesStructure subtypes of
Molstructure. Instead of having two or more versions of businessMethod, each
one takes a different format of Molstructure as input; now BusinessObject only
has one business method that takes the base type Molstructure as input, and
dynamically, it invokes the calculateMolweight and calculateMolformula
methods of either MolfileStructure or SmilesStructure depending on which
type of object is passed in at runtime. With this kind of design, when a new
structure format (e.g., CML) is introduced to the system, all we need to do is

10 SOFTWARE DEVELOPMENT PRINCIPLES: HIGH–LOW OPEN–CLOSED PRINCIPLES

MolfileStructure

BusinessObject

businessMethod()
businessMethod()

0..n

SmilesStructure
0..n

Figure 2.4 A design that is against open–closed principles.

MolfileStructure SmilesStructure

BusinessObject

businessMethod()

MolStructure

calculateMolWeight()
calculateMolFormula()

1..n

Figure 2.5 A design that is open for extension and closed for changes.

JWUS_Dcis_Ch002.qxd 11/2/2006 11:17 AM Page 10

implement another subtype of Molstructure and everything else still works
without any changes. The above design approach is described as Strategy
Pattern in the GoF design pattern book (Gamma et al., 1995).

The Strategy Pattern: Defines a family of algorithms, encapsulates
each one, and makes them interchangeable. Strategy lets the
algorithm vary independently from clients who use it.

High–low open–closed principles should be applied in accordance. They
are independent and yet related. Applying one principle can usually help to
achieve other principles. Their goal is to manage changes, and you will find
that many design patterns are realizations of these principles.

OPEN FOR EXTENSION AND CLOSED FOR CHANGES 11

JWUS_Dcis_Ch002.qxd 11/2/2006 11:17 AM Page 11

12

CHAPTER 3

Introduction to the Object-Oriented
Approach and Its Benefits

Most high-level programming languages can be categorized into one of the
four following paradigms: procedural (e.g., Basic, C, FORTRAN, MDL ISIS
PL, and Pascal), scripting (e.g., JavaScript, VBScript, Perl, and Cheshire),
4-GL (e.g., Visual Basic, and PowerBuilder), and object-oriented (e.g.,
C��, C#, Java, Ruby, and SmallTalk). Each of these paradigms has advan-
tages and disadvantages, and many software developers program in all of
them during their careers. I am an object fan although I have used all four of
the above paradigms depending on the systems I develop. As you can see
from its title, this book advocates an object-oriented approach.

As described in Chapter 2, managing changes is one of the biggest
challenges of software development. Most of the design principles and
techniques are aimed at making software systems easy to change. Object-
oriented programming provides the following four features that help software
professionals to achieve good design.

3.1 ABSTRACTION AND ENCAPSULATION

Abstraction, along with encapsulation, is a technique that hides the internal
structure and implementation details of an object or some other software unit
with its external interfaces. In this chapter, I focus on objects. Other software
units include components, subsystems, and services. They will be discussed
in subsequent chapters. Abstraction is about what a software module looks
like to the outside world. Encapsulation uses these “looks” to hide the
module’s implementation details. At first glance, abstraction may not sound
like a big deal. Quite the opposite, a system with well-designed abstractions
greatly reduces couplings between its building blocks and is much easier to
understand, maintain, and extend. Because highly coupled software systems

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch003.qxd 10/12/2006 7:47 PM Page 12

ABSTRACTION AND ENCAPSULATION 13

are difficult to change, all software designers must find ways to reduce
couplings between the building blocks of the systems.

To illustrate an object’s interface versus its implementation, I would like to
borrow a concept from an ancient Chinese philosophy of Taoism. Taoism
believes that all objects in the universe are governed by two balancing
forces—Yin and Yang. Yin represents the passive, introvert, and hidden
aspects of an object. Yang represents the active, extrovert, and exposed
aspects of an object. Therefore, we can consider an object’s implementation
detail that is hidden from the outside world as its Yin and its interface that is
exposed to the outside world as its Yang.

All object-oriented programming languages provide a feature called
“access modifier” that facilitates separations between the interfaces and the
implementations of an object. The way to achieve this result is to define
member variables of the object as private or protected and define methods
that provide services to the object’s client as public. Only the public elements
of an object can be accessed by its clients, and these are all that its clients care
to know. In Java and C#, we can go even further by creating interfaces that
have only method signatures. The implementations of these methods are pro-
vided by the classes that implement these interfaces. Although there is no
interface in C��, you can, however, create an abstract class by declaring one
or more of the class’s methods as pure virtual. Abstract class is also supported
by Java and C#. Interfaces and abstract classes are useful software constructs
for defining abstractions in a software system.

In object-oriented programming, use of global variables should be avoided
although it is not forbidden. You can still do so by declaring public member
variables in a public class. However, the difference is that in object-oriented
programming, you do not need to use global variables and still achieve your
programming goals. The way to do it is to declare all member variables pri-
vate or protected and yet provide public methods that access these variables.

Figure 3.1 The balance of Yin (black) and Yang (white).

JWUS_Dcis_Ch003.qxd 10/12/2006 7:47 PM Page 13

The fact that a programming language facilitates encapsulation and encapsu-
lation is a good programming practice does not guarantee that all developers
know how to do it correctly. There is a fine line between knowing a language and
knowing how to design software. People often do not distinguish the differences
between the two skill sets—language syntax and design skills—and wrongfully
believe that knowing language syntax is more important than knowing how to
design software. During many job interviews, interviewees are grilled much
harder with language syntax questions than with design questions. Putting the
incidental before the fundamental ways of dealing with software development is
in my mind one of the reasons why many software projects fail.

Although the following example has been used by other authors in differ-
ent contexts, I do not hesitate using it here again to demonstrate how to build
systems with better abstractions. The reason is it uses the Java Collection
Framework—a Java class library that is familiar to many developers and the
framework itself is a good example of encapsulation. Suppose you want to
design a compound library class that contains a list of individual compounds.
Also suppose that the clients of the CompoundLibrary class need read-access
to the compound list and the developer decides to use ArrayList to hold the
compounds inside the CompoundLibrary class. A naive implementation of
the CompoundLibrary class is as follows:

public class CompoundLibrary {
ArrayList compoundList � new ArrayList();
public ArrayList getCompounds() {

return compoundList;
}

}

It is naive because the getCompounds method of CompoundLibrary class
returns a concrete data type—ArrayList––instead of an abstraction. If for
some reason the developer of CompoundLibrary class decides to switch
compoundList to a Vector, or a LinkedList, or some other customized List
implementation, the clients of CompoundLibrary class all need to change
because none of these implementations are interchangeable. This kind of
coupling between the internal data structure of a class and its clients is not
desirable and can be avoided by using better abstractions to hide
CompoundLibrary’s implementation details with their interfaces.

A better solution is as follows:

public class CompoundLibrary {
ArrayList compoundList � new ArrayList();
public List getCompounds() {

return compoundList;
}

}

14 INTRODUCTION TO THE OBJECT-ORIENTED APPROACH AND ITS BENEFITS

JWUS_Dcis_Ch003.qxd 10/12/2006 7:47 PM Page 14

ABSTRACTION AND ENCAPSULATION 15

Now the method getCompounds returns an interface—List, which is a
super type of all possible concrete List classes. No matter what kind of list
CompoundLibrary uses to hold its compounds, its clients do not need to care
any more because what they get is the common abstraction: List. Another
way to achieve this is to have getCompounds to return an iterator. Please note
the iterator() method in Java Collection Framework creates a new iterator
object every time it is called and therefore is an expensive operation and
should be used with discretion.

Note: Whether the member variable compoundList of CompoundLibrary
should be declared as an interface—List or a concrete type—ArrayList should
be determined on a case-by-case basis. If the concrete class has methods that
are not defined in the interface or the abstract class, you are better off defining
the variable as the concrete type. Otherwise, you need to explicitly cast the
variable to the concrete type every time you use those methods. Either way,
the clients of CompoundList are no longer affected by the decision made by the
developer of CompoundLibrary with regard to the data type of compoundList
variable, which is what abstraction or encapsulation is all about.

In fact, CompoundLibrary has another problem—the compound list that
getCompounds method returns is modifiable by its clients—the clients can add
and delete elements in the list. This problem still breaks encapsulation and may
introduce many undesired side effects. What if CompoundLibrary needs to apply
some business rules when new compounds are added to the compound list, for
example, certain structure conventions have to be followed by the compounds,
molecular weight has to be in a specific range, or the compounds have to be
added in chronological order? If the clients are allowed to add new compounds,
these rules might be violated, which is against the principle of encapsulation.
Even if there are no such business rules at the initial phase of development, it is
still a good idea to protect the data inside a class from being modified directly by
its clients. Otherwise, changes to the class may propagate to many different
places in the system, and hidden side effects are very difficult to debug at a later
phase. The following is a better solution in which the getCompounds method
returns an unmodifiable list. Another method, addCompound, is added to the
class for adding compounds to the CompoundLibrary object.

class CompoundLibrary {
ArrayList compoundList � new ArrayList();
public List getCompounds() {

return Collections.unmodifiableList(compoundList);
}

public void addCompound(Compound aCompound) {
//...some business rules
compoundList.add(aCompound);

}
}

JWUS_Dcis_Ch003.qxd 10/12/2006 7:47 PM Page 15

Notice that the clients of CompoundLibrary class have no knowledge
about how these methods are implemented. They do not know of any busi-
ness rules that are included in these methods. Neither do they know how
compounds are kept within the CompoundLibrary class. This knowledge
belongs to the Information Expert (Larman, 2005), which in this case is the
CompoundLibrary class and is hidden from its clients. All a client can do is
to send a message by invoking the methods of a CompoundLibrary object
and expect something will happen as the result of the method invocation.
Everything else is left to the CompoundLibrary to decide. This is the power
of encapsulation.

Information Expert: Assign a responsibility to the information expert—
the class that has the information to fulfill the responsibility.

3.2 CODE REUSE THROUGH INHERITANCE

There are different types of code reuse. Here we focus on code reuse using a
class hierarchy—in other words, through inheritance.

Suppose we want to develop a module that represents the chemical struc-
ture of compounds. A structure is the signature of a compound that, in most
cases, uniquely defines all chemical properties of the compound such as mol-
weight, molformula, stereo chemistry, pKa, and logP. Suppose a structure can
be represented in many different formats—Molfile, Chime, Smiles. The algo-
rithms of calculating the chemical properties are different depending on the
structure format, and our application has to support all of them. A naive
solution is to develop a class for each structure format and repeat every com-
mon attribute and method in all of them.

The Molstructure class for the Molfile format is as follows:

public class MolfileStructure {
private String format � “MOLFILE”;
private String structure � null;
public MolfileStructure(String structure) {

this.structure � structure;
}

public String getMolstructure() {
return structure;

}

public String getFormat() {
return format;

}

16 INTRODUCTION TO THE OBJECT-ORIENTED APPROACH AND ITS BENEFITS

JWUS_Dcis_Ch003.qxd 10/12/2006 7:47 PM Page 16

public float getMolweight() {
float molweight � 0f;
//... some calculation logic specific to molfile format
return molweight;

}

public String getMolformual() {
String molformula � null;
//... some calculation logic specific to molfile format
return molformula;

}
}

The Molstructure class for the Smiles format is as follows:

public class SmilesStructure {
private String format � “SMILES”;
private String structure � null;
public SmilesStructure(String structure) {

this.structure � structure;
}

public String getMolstructure() {
return structure;

}

public String getFormat() {
return format;

}

public float getMolweight() {
float molweight � 0f;

//... some calculation logic specific to smiles format
return molweight;

}

public String getMolformual() {
String molformula � null;
//... some calculation logic specific to smiles format
return molformula;

}
}

The above two classes have a lot of duplicated code. Not only is this against
productivity, but it also makes the application difficult to change. A better
way is to introduce a common base class and to refactor the common code to
the base class.

The base class Molstructure is as follows:

abstract public class Molstructure {
public static String SMILES_FORMAT � “SMILES”;
public static String MOLFILE_FORMAT � “MOLFILE”;

CODE REUSE THROUGH INHERITANCE 17

JWUS_Dcis_Ch003.qxd 10/12/2006 7:47 PM Page 17

public static String CHIME_FORMAT � “CHIME”;

private String format � null;
private String structure � null;

public Molstructure(String format, String structure) {
this.format � format;
this.structure � structure;

}

public String getMolstructure() {
return structure;

}

public String getFormat() {
return format;

}

abstract public float getMolweight();
abstract public String getMolformual();

}

The Molstructure class is defined abstractly for two reasons:

1. You would not create an instance of Molstructure without knowing its
format.

2. The algorithm of the molweight and molformula calculations depends
on the actual format. The Molstructure class does not know how to cal-
culate them because it does not know the format until runtime. Hence,
these two methods are declared as abstract. One can argue that you can
implement getMolweight and getMolformula according to the format
member variable that is specified when the constructor is called using
the if-else conditions. However, that will require that these two meth-
ods get changed any time when a new format is introduced to the sys-
tem and therefore is against the closed for changes principle that is
discussed in Section 2.3.

The new definition of MofileStructure and SmilesStructure classes is as
follows:

public class MolfileStructure extends Molstructure{

public MolfileStructure(String structure) {
super(MOLFILE_FORMAT, structure);

}

public float getMolweight() {
float molweight � 0f;

18 INTRODUCTION TO THE OBJECT-ORIENTED APPROACH AND ITS BENEFITS

JWUS_Dcis_Ch003.qxd 10/12/2006 7:47 PM Page 18

//... some calculation logic specific to molfile format
return molweight;

}

public String getMolformula() {
String molformula � null;
//... some calculation logic specific to molfile format
return molformula;

}
}

public class SmilesStructure extends Molstructure{
public SmilesStructure(String structure) {

super(SMILES_FORMAT, structure);
}

public float getMolweight() {
float molweight � 0f;
//... some calculation logic specific to smiles format
return molweight;

}

public String getMolformula() {
String molformula � null;
//... some calculation logic specific to smiles format
return molformula;

}
}

Notice that now each of these two classes extends Molstructure class and all
common code is removed from them. This result is because the common
behaviors are inherited from the common superclass—Molstructure. Also
notice that even some logic in the constructor is inherited from the superclass.
Now we have achieved some code reuse through inheritance by having a
class hierarchy.

There are other types of reusability, one of which is software components.
Software components are typically executables distributed as .jar (Java), .dll
(windows), or .so (Unix) files. Components with well-designed abstractions
can provide reusability for many different software systems. Many commer-
cially or freely available reusable components are developed using object-
oriented technologies. The Java Collection Framework is a good example.

Service-oriented architecture (SOA) is another software reusability
enabler that has become very popular these days. SOA is not limited to
object-oriented technologies. Web service is the most talked about SOA that
uses XML-based messaging between the service provider and the service
consumer. In SOA, a service consumer uses some services somewhere in the
network to do its own work. In most cases, service provider and service

CODE REUSE THROUGH INHERITANCE 19

JWUS_Dcis_Ch003.qxd 10/12/2006 7:47 PM Page 19

consumer run on different hardware. The consumer looks up service
providers from a service registry (e.g., UDDI) and requests services from the
provider via remote method calls. This kind of architecture determines that in
SOA all parties should be loosely coupled. The consumer’s core functional-
ity should not be compromised even if the service provider is not available at
runtime, or at the very least, asynchronous messaging between the consumer
and provider has to be possible. Also, the service provider can be swapped
out and replaced by a new provider without impact to the comsumer. More
detailed discussion about SOA is beyond the scope of this book.

A very important and yet less commonly talked about reusability is apply-
ing various software patterns. The difference between patterns and other
types of reusability is that patterns provide reusability through knowledge
and experience sharing rather than through code sharing. Patterns will be dis-
cussed more throughout the book.

3.3 POLYMORPHISM AND DYNAMIC PLUG-AND-PLAY

Being able to extend or alter the functionality of the system without chang-
ing, recompiling, and redeploying the existing code is a dream of all
programmers. Object-oriented programming achieves this capability by
leveraging polymorphism and dynamic binding (also known as method over-
writing, late binding, or runtime binding). The idea is to keep the coupling
between software modules at the interface level rather than at the implemen-
tation level so that at development time, the system does not know or does not
care which implementation is used at runtime. The binding of the implemen-
tation to the system happens at runtime, and hence, the actual behavior of the
system is realized at runtime.

Suppose you want to implement a class CompoundRegistrationService that
has a register() method that registers compounds into your compound database.
Also suppose the compound being registered can be in Molfile, Smiles, or
some other format, and molweight and molformula need to be calculated
during the registration process. A naive solution is to have the register method
take a concrete structure type as an argument in the method signature:

public class CompoundRegistrationService {
public void register(MolfileStructure structure){

//... do something
structure.getMolformula();
structure.getMolweight();
//... do something

}
}

20 INTRODUCTION TO THE OBJECT-ORIENTED APPROACH AND ITS BENEFITS

JWUS_Dcis_Ch003.qxd 10/12/2006 7:47 PM Page 20

This implementation restricts CompoundRegistrationService to work only
with MolfileStructure. To support Smiles structures, either an overloaded
register method or another CompoundRegistrationService class for Smiles
structure format has to be implemented. The latter solution may require code
duplications that are not desirable.

A better solution is as follows:

public class CompoundRegistrationService {
public void register(Molstructure structure){

//... do something
structure.getMolformula();
structure.getMolweight();
//... do something

}
}

Notice that the new register() method takes the abstract class Molstructure as
input. At compile time, it does not care whether MolfileStructure or
SmilesStructure is bound to it when the application runs. At runtime, depend-
ing on what concrete type is passed into the register() method by its caller,
CompoundRegistrationService behaves according to the implementation
details of MolfileStructrure or SmilesStructure.

One may wonder who decides whether to create MolfileStructure or
SmilesStructure objects. Well, the answer is that it depends. Either it can be
configured at deployment time by an application configuration file that tells the
application what type of structure format is used, or it can be generated by the
structure drawing tool being used at runtime, or it can be created by a factory
object that makes the decision according to the runtime environment. In any
case, the application logic no longer cares what type of structure it processes.
It works on behalf of the system according to what is given to it at runtime.

Polymorphism is one of the most unique and yet powerful features of
object-oriented programming. Many design patterns are based on the ideas of
polymorphism. If used properly, it can greatly improve the design of the sys-
tem and reduce the maintenance cost.

Encapsulation, inheritance, and polymorphism are the most well-known
features of object-oriented programming. These features are provided by all
object-oriented languages.

3.4 PATTERNS: SOLUTIONS TO RECURRENT PROBLEMS

Many object-oriented patterns are codified and published by experienced
object experts and thought leaders. The most well-known ones are the GoF
design patterns (Gamma et al., 1995), Martin Fowler’s analysis patterns

PATTERNS: SOLUTIONS TO RECURRENT PROBLEMS 21

JWUS_Dcis_Ch003.qxd 10/12/2006 7:47 PM Page 21

(Fowler, 1997), Patterns of Enterprise Architecture (P of EAA) (Fowler,
2003a), Craig Larman’s UML and Patterns (Larman, 2005), Robert Martin’s
Principles, Patterns, and Practices (Martin, 2003), and the J2EE Patterns
(Alur et al., 2003). Patterns are proven solutions to recurrent problems that
can be applied in various contexts. When a problem arises, keep in mind that
there might be solutions that have been applied again and again by others to
the same problem. Programmers do not need to reinvent the wheel if they
understand these patterns and know how to customize them to serve their
needs. Patterns can be combined to build application frameworks.

No matter how good a particular technology is, it does not provide assur-
ance for good design. It is still up to the architects and developers to get
things right. Some people write procedural-like code using object-oriented
language. You can see from the code examples in this chapter how things can
be programmed differently using the same language. Educating developers
on good design principles and techniques remains a challenge. Many devel-
opment tool vendors try to incorporate patterns into their integrated develop-
ment environments (IDEs) to help average developers write better code. In
my opinion, none of the tools can yet replace humans. It will be interesting to
see how Object Management Group’s (OMG) Model Driven Architecture
(MDA) works out.

22 INTRODUCTION TO THE OBJECT-ORIENTED APPROACH AND ITS BENEFITS

JWUS_Dcis_Ch003.qxd 10/12/2006 7:47 PM Page 22

23

CHAPTER 4

Build Versus Buy

Every software project has to answer this tough and sometimes very political
question: Should we buy or build? I do not intend to give readers definitive
answers. But I will share some advice based on my experience.

The most cost-effective solution for a software project is to buy a good
product that meets your needs off the shelf. Unfortunately this is not always
possible. Vendor products are often too generic and require significant cus-
tomization to be useful to your organization. Outsourcing is another way of
buying software solutions, and they will be discussed in this chapter.

Software development is still a risky business, and its failure rate is high. To
make things worse, the complexity of software systems still grows. One devel-
oper said to me that the large systems that they develop always go wrong when
they are deployed to production. You should not build if there is lack of expert-
ise in your organization, which includes both technical and domain knowledge
expertise. For example, if you want to develop chemical information systems
in-house, you need architects and developers who know the technologies and
the vendor software being used, as well as people who have a strong organic
chemistry background and who fully understand the chemistry conventions of
your company. More ideally, you should have at least some people who have
both domain and technical expertise. In most cases, you should not build if
you do not have business and executive support. On the other hand, is there a
guarantee that you can find good outsourcing or consulting firms to do the
jobs for you? The answer is unfortunately “No.” Odds are if there is lack of in-
house expertise, it is impossible to find good outsourcing firms or consultants
yourself simply because you are not able to judge whether they are good or
bad. If that is the case, you either look for firms that have good reputations in
your business domain or hire yet another third party to do the screening for
you. Unlike other industries, many choices are not available in the chemical
information area in the market.

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch004.qxd 10/12/2006 7:49 PM Page 23

If you do have in-house expertise and executive support, and if members
of the project team work together as a team, in-house development has a bet-
ter chance to succeed than outsourcing. The reason is an in-house develop-
ment team is much closer to the end users and therefore is better positioned
to be responsive to end users’ feedback and to be more agile and adaptive to
changes. In other words, compared with outsourcing, in-house development
can easily adopt the agile development process—a methodology that is
proven to be much better than waterfall. Chapter 5 will discuss the agile iter-
ative development process in much more detail. Some consulting companies
embrace agile methodologies. They do so by full-time deployment of their
developers to customer sites.

Even if you do want to develop in-house, you should still balance between
what you have to build and what you can buy. Not everything should be
developed in-house.

Those that you should consider buying are as follows:

1. Structure rendering and editing tools: There are so many mature com-
mercial products from which to pick. MDL and CambridgeSoft are
dominant in this arena. MDL offers proprietary solutions such as
ISISBase/ISISDraw, a Web browser plug-in Chime, and, recently, Java
and .NET based MDLDraw. ChemDraw from CambridgeSoft is
another popular product.

2. Structure representation and chemistry intelligence engine: As described,
commercial tools are available and there is no need to reinvent the wheel.
Plus, developing these tools requires significant domain expertise and
resources. However, influencing the tool vendors to continually improve
their products is a good idea.

3. Molecule database and data cartridge products: Similar to the above
two, commercial software is available and there is no need to reinvent
the wheel.

Several issues need to be taken into consideration when choosing commer-
cial products:

1. Compatibility: Not all commercial software packages are compatible
with each other. Although many vendors provide tools to convert
between structure formats, there might be information losses when the
conversion takes place. You probably have to stick with one vendor for
your entire system or at least most of the system. However, it is still
possible to pick other vendors for some special purposes.

2. Performance, functionality, and complexity: Not all products are equal.
Some vendors provide better performance, whereas another vendor

24 BUILD VERSUS BUY

JWUS_Dcis_Ch004.qxd 10/12/2006 7:49 PM Page 24

may have better structure representation and chemistry intelligence. For
example, MDL provides better chemistry intelligence, whereas
Daylight® products may perform better. One has to balance these
different aspects when picking a vendor solution according to need.

Some final notes: projects for which most requirements can be clearly
defined upfront and have a low level of uncertainty are good candidates for out-
sourcing. Software upgrade is one example. In my opinion, a project like this
has clearly defined requirements—upgrade the software infrastructure (OS,
Oracle, ISIS, etc.) from one version to another—and yet it is time consuming,
resource intensive, and does not provide a huge competitive advantage. On the
other hand, a new development that has a high level of uncertainty, represents
the uniqueness of the research organization, and requires a quick solution is a
good candidate for in-house development provided the expertise exists. Doing
so avoids the risks of lengthy contract negotiations, inflexibility to changes
once the contract is signed, and lack of business knowledge by outsiders, and
yet preserves the competitive advantages. Keep in mind that projects like these
are subject to frequent requirement changes and uncertainties that may require
re-negotiation of contracts if outsourced. Usually a contract requires many
back and forth negotiations and therefore is time consuming and difficult to
respond to business in a timely manner. This type of project also requires sig-
nificant exploration and close interaction with business areas throughout the
development cycle due to a high level of uncertainty and change rates. In many
cases, this interaction cannot be easily done if outsourced.

Can outsourcing succeed in a new development project? The answer is
yes. But it requires good management practices. Never expect to fully spec-
ify and freeze all requirements up front, to give the requirements and a dead-
line to the vendor, and, on the project end date, to receive a system that meets
business needs. Even if the vendor believes the above is enough for them to
deliver the system, you should not let the project go that way. Ask the vendor
to deliver a partial system periodically and incrementally (see Chapter 5 on
the agile iterative development process) and give end users and business peo-
ple the opportunity to try the partial system and provide feedback. Also, ask
the vendor to deliver quick prototypes at the beginning of each iteration and
let the end users or business people review them. The contract should state
that requirement changes are expected during the development process based
on feedback and should be factored into the pricing and timelines. These
changes may include newly added features, elimination of no longer needed
features (research shows about 65% of planned features are never used or
rarely used) (Larman, 2005), and functional and nonfunctional changes of
planned features. The above practices are not optional but mandatory in order
to make sure the system meets business needs.

BUILD VERSUS BUY 25

JWUS_Dcis_Ch004.qxd 10/12/2006 7:49 PM Page 25

26

CHAPTER 5

The Agile and Iterative Development
Process

The reason I include this seemingly irrelevant chapter in this book is because
it is important. What are the factors that make a software project succeed?
One could say the project has to provide good business values. In addition,
the project team has to be technically competent. Although these factors are
all necessary for the project to succeed, they are not sufficient. Especially for
a software project that has some level of complexity, tight timelines, and
resource constraints, a good development process is also critical. Unless your
development process is ad hoc, most likely you will use either the waterfall
or the iterative development process. Many researchers show that the latter is
a much better choice than the former, and many thoughtful leaders advocate
its use in most software development projects.

5.1 BUSINESS CASE AND PRINCIPLES

Craig Larman (2004) presented the rationales and business cases for the agile
iterative development process in his well-written book, Agile and Iterative
Development Process: A Manager’s Guide. The book also provides guidance
on how to apply the agile iterative process to software projects and common
mistakes people tend to make. Although interested readers can get a copy and
read the book to get a more thorough coverage of the subject, I want to spend
some time discussing it in this book because it is so important to software
projects.

If you are a software professional, most likely you have run into situations
when, after months or even years of development work, you find that your
users do not like the product because either the system does not meet require-
ments (this may be caused by ill-stated and incomplete requirements by the

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch005.qxd 10/12/2006 8:34 PM Page 26

BUSINESS CASE AND PRINCIPLES 27

users or misunderstood requirements by the development team), the system
does not pass test specs, or the requirements have changed so much that the
system you developed has become irrelevant to the business. This occurs
because there is a missing link between the software under development and
the business organizations that sponsor the software project throughout the
development cycle. In a waterfall development process, user involvement
happens only at the very beginning and at the very end of the development
cycle. There is no ongoing feedback from business areas as to whether the
project is on or off target.

Figure 5.1 illustrates the waterfall process. Most software development
projects deal with moving targets—changing business, changing require-
ments, and changing priorities. The waterfall model is not suited for this type
of software development.

In contrast, in an agile iterative development process, the project is divided
into short, manageable, and timeboxed iterations. Timeboxing means the start-
ing date and end date are fixed and not changeable. Each iteration implements a
small subset of features with most architecture and business significant features
being implemented in early iterations. At the end of each iteration, the partial
system is delivered to end users for testing and feedback. These systems are
partial but with production quality, not throwaway prototypes. The feedback
influences what the next iteration should do. If business requirement changes
happen at any point of time in the project and some features that were not
planned at the beginning of the project become important, they can be included
in the forthcoming iterations. This kind of continuous delivery and feedback
makes it possible for a project team to always do what is most important at any
point of time during the project and to make sure what is delivered truly meets

Figure 5.1 Waterfall development model.

Requirement

Design

Coding

Testing

JWUS_Dcis_Ch005.qxd 10/12/2006 8:34 PM Page 27

requirements and business needs. Figure 5.2 illustrates how the iterative process
develops and delivers software incrementally (Larman, 2004).

The agile iterative development process is an opponent to upfront detailed
planning and complete requirement and design specifications because studies
show that software projects are unpredictable by nature. There is no way
requirements can be predefined and frozen before design starts. Likewise,
there is no way that design can be complete, accurate, and frozen before cod-
ing starts. The agile iterative process expects and is willing to incorporate
changes and to alter the project plan accordingly. It does so by constantly
delivering the partial system and soliciting feedback. As opposed to the
upfront complete requirement specification, in a typical iterative project, a
list of functional and nonfunctional requirements is developed with a name
and a brief description with no details before the first development iteration
starts. Before an iteration starts, pick a few features that are most important,
have the highest business values, or are the most risky. At the beginning of the
iteration, a detailed requirement discussion is held only to discuss the fea-
tures that are being implemented in that iteration; design, implementation,
and testing all happen at roughly the same time throughout the iteration.

We recently successfully applied the agile iterative process in a compound
registration project at Merck. We broke the project into short iterations of 3
to 6 weeks. We implemented the most risky and architecturally significant
features in the early iterations. Those features were also of high business
value. We allocated more weeks for the early iterations because they were
more complex and required more time in order to deliver something that is
significant enough for getting meaningful feedback. After the first two itera-
tions, the entire architecture was laid out, which only needed small changes

28 THE AGILE AND ITERATIVE DEVELOPMENT PROCESS

Figure 5.2 Iterative and incremental development (From C. Larman, Agile and Iterative
Development: A Manager’s Guide, p. 10, Figure 2.1. Copyright © 2004 Pearson Education,
Inc. Reproduced by permission of Pearson Eduction, Inc. All rights reserved.)

Build for some
requirements

Build for some
requirements

Build for some
requirements

Feedback Feedback

Feedback from iteration N leads to refinement and
adaptation of the requirements and design in iteration N+1.

A 3-week iteration The system grows
incrementally.

Release to
customers

JWUS_Dcis_Ch005.qxd 10/12/2006 8:34 PM Page 28

later on when the remaining features were implemented. Later iterations
were shorter and for less-significant or low-risk features. After each iteration,
we conducted both QA and user testing to get feedback on the quality, usabil-
ity, and functionality of the system. We also did load and performance testing
after the early iterations when most architecturally significant features were
implemented to test the performance and reliability of the architecture. Even
though during the early load and stress testing we discovered database cursor
leaks, we had enough time to fix the problems. Although there were concerns
about the implications to the QA and business teams at the beginning of the
project because they needed to be involved early and more frequently in the
project, because each iteration only delivers a small portion of the features,
the amount of testing at the end of each iteration was manageable. The out-
come was great. The development team was in high morale because they
could constantly see the results of their work and get feedback from the end
users. We were able to deliver a nine-month project on time and within
budget, and incorporate new requirements late in the development process.

However, there are some lessons learned. It is very important to communi-
cate the ideas and benefits of the agile iterative development process to the
entire project team and have buy-ins not only from the developers, but also
from business analysts, the QA team, and end users. We only have a small
QA team that supports many projects and end users are busy with their prior-
ities. It is important to have some rough iteration planning upfront and have
some idea about when QA and end users need to be involved in testing. If the
plan has to change, inform QA and end users as early as possible.

5.2 KEY PRACTICES

There are several flavors of the agile iterative process. The most popular ones
are the Rational Unified Process (RUP) (Kruchten, 2003) and Extreme
Programming (XP) (Beck, 2004). Other flavors include Scrum (Schwaber
and Beedle, 2001), Evo, and Feature-Driven Development (Palmer and
Felsing, 2002). The following list of key practices is found in all agile itera-
tive development processes that in my view are the most important. For
details, please refer to Larman (2004) and Beck (2004).

1. Short, timeboxed iterations (Larman, 2004): Each iteration is 1 to 6
weeks long. Longer iteration is not favorable because you lose the ben-
efits of early, frequent results and feedback. Project planning is about
assigning features in each iteration. Early iterations should implement
features with high business values or features that are most architec-
turally significant and risky. In many cases, these two coincide, which

KEY PRACTICES 29

JWUS_Dcis_Ch005.qxd 10/12/2006 8:34 PM Page 29

is ideal because architecture can be laid out early, thus reducing risk. If
they do not coincide, you have to make a choice. My suggestion is that
if the product is large, complex, and long term with relatively low
change rates, implementing architecturally significant features first
makes the most sense. Otherwise, features with high business values
should take precedent. At the end of each iteration, a partial, production
quality system is delivered to business areas for testing and feedback.
An important point is that this deliverable is not a throwaway prototype;
it is a real system that will be extended and enhanced in the later itera-
tions. The feedback shapes and steers forthcoming iterations.

2. Early and frequent developer testing (Beck, 2004), which includes both
unit and integration testing: Early and frequent integration testing is
especially worth emphasizing because many people believe integration
testing is not needed until the last moment of a development cycle. Late
integration has more chance to cause integration problems that require
a longer time to fix and often cause delay of the timeline. For the Merck
project we had at least weekly integration testing at the beginning of
each iteration and daily integration testing in the last week of the itera-
tion. Automating test scripts is a very powerful way to increase testing
productivity because these test scripts are executed again and again
every time the code is changed when code change is made.

3. Communications: A software project is most likely to fail if the project
team does not communicate well. Face-to-face discussion is the best
communication medium. Ideally, all developers should sit in one office
and they should exchange design ideas frequently. A team where people
feel comfortable expressing and exchanging ideas freely is a healthy
team and is more likely to succeed. The development team should also
communicate directly with business analysts and end users. Having a
project manager sitting in the middle as a communication buffer is not
a good idea because this often causes misinterpretation and lost infor-
mation lost. The best approach, therefore, is to let the technical team
communicate directly with the end users. Developers must be involved
in requirement meetings with the end users, because this is the oppor-
tunity for them to understand what users want the system to do and ask
for clarification. Relying on the project manager to sit in the meeting
and then translate the information to developers is not effective. User
demo and feedback meetings are the same, and developers have to be
involved in these face-to-face meetings directly.

4. Adaptive planning—changing the project plan based on the feedback from
each iteration: Please note that it is perfectly OK to either add new features
or remove already planned features in the forthcoming iterations. This

30 THE AGILE AND ITERATIVE DEVELOPMENT PROCESS

JWUS_Dcis_Ch005.qxd 10/12/2006 8:34 PM Page 30

process makes sure that the project is always doing what is most important
and delivers the highest value to the business at any point in time.

5. Daily project meeting: At this time, each team member updates
progress and expresses problems to which the project team needs to
react quickly. The problems can be requirement ambiguities, technical
difficulties, delays in task completions, and so on. Also, the project
manager and the technical lead have to step out and take responsibility
for helping the project team to solve these problems.

6. Refactoring (Fowler, 1999): In an agile iterative process, there are no
upfront complete requirement and design specifications. Requirement
changes are expected to occur due to misunderstandings early in the
process and due to feedback after users see the partial system. These
changes in the requirements may make the earlier design decision less
optimal or obsolete. The development team has two choices. They
either do nothing to the design but address requirement changes by
adding patches to the code or they refactor the design when changes
come to keep the design clean. If the first approach is taken, the design
will soon become very bad and the cost of maintenance will grow
exponentially and the whole notion of accepting changes becomes
unrealistic. Therefore, the agile iterative development process demands
the second choice. When changing the design, the developer has to
make sure that the working code does not break. The term “refactoring
in software” is a technique of changing the internal structure of the code
without changing its external behaviors (Fowler, 1999). To do so, the
changes should be done in small steps and always be challenged by
regression testing. Martin Fowler (1999) has described many refactor-
ing techniques in his well-crafted book. People may think that refact-
oring has high costs. In fact, the cost of not doing refactoring is much
higher because the system will soon require a complete redesign.

A software project is hard to predict. The best you can do is to make sure
that the delivered software has the most business value and the highest
quality possible at any point in time. The agile iterative process helps you to
achieve that.

5.3 TESTING

In many organizations, testing—at least system and integration testing—is
not considered the responsibility of developers but the QA group. Although it
is a good idea to have an independent QA group to perform a sanity check of

TESTING 31

JWUS_Dcis_Ch005.qxd 10/12/2006 8:34 PM Page 31

the system before it is deployed to end users, the agile development method-
ology demands early and frequent developer testing instead of relying on the
QA group for most testing activities. Kent Beck (2004) calls this developer
accountability.

In most organizations, QA is a shared resource that supports many projects.
Having the QA resource available when you need it is not realistic especially if
your project is iterative and requires frequent testing. In an iterative process,
testing should be done all the time along with coding. The system is not con-
sidered done if it is not fully tested by the developers before it gets delivered to
QA or end users for further testing. When we talk about delivering a partial sys-
tem at the end of each iteration, it means the partial system is fully tested and is
of production quality—if the business decides to deploy it to production as is,
it is ready to be deployed. A misconception is that every iteration has to com-
plete coding of all features that are planned for the iteration but can skip testing
if necessary. This is totally wrong. Quite the opposite, the agile iterative process
says it is OK to cut features if they cannot all be implemented in the iteration,
but what has been implemented has to be of production quality.

The following list shows the types of testing that developers should be
responsible for:

1. Unit testing: Every module, class and method, has a unit testing code
that is rerun every time when changes are made to the module. If a bug
is found not as a result of unit testing, it becomes a new test case and is
rerun in the future. The open source XUnit (JUnit, NUnit, HttpUnit)
family of testing tools can be used to automate unit testing.

2. Integration testing: This should be done daily or at least weekly.
Because modules work as a unit does not mean they work together.
Every day, the unit tested changes of all developers are checked into the
source control, a new build is created and deployed to the test environ-
ment, and integration testing is performed to make sure the changes
made do not break integration points.

3. Functional testing: Make sure the newly built system does what it is
supposed to do—bugs are fixed and new features work according to the
specifications.

4. System regression testing: Make sure things that already worked before
the changes were made still work.

If any of the above testing fails, the developer is notified right away so that
the bugs get fixed in the next build. Some open source tools can help to auto-
mate the testing. CruiseControl is a tool that automatically builds, deploys,
and runs regression testing every time a code is checked into source control
and notifies the person who checked in the code should problems be found.

32 THE AGILE AND ITERATIVE DEVELOPMENT PROCESS

JWUS_Dcis_Ch005.qxd 10/12/2006 8:34 PM Page 32

FitNess is an acceptance testing tool that captures requirements as test cases.
It scripts the test cases and executes them automatically.

In the chemical informatics development team that I led at Merck, the
developers were told to make changes in small steps, test the changes, check
them in, and then move on to the next task. At end of every working day at
about 4:30 PM, a new build was created that included all changes that were
checked in that day and deployed to the test server. The team leader, myself,
was responsible for doing integration, functional, and regression testing. This
process worked out quite well for us.

TESTING 33

JWUS_Dcis_Ch005.qxd 10/12/2006 8:34 PM Page 33

34

CHAPTER 6

UML Modeling

UML is the acronym for the Unified Modeling Language. It is a visual lan-
guage for modeling requirements, design, and deployment of software sys-
tems. The term “Unified” comes from the fact that it unifies the pre-UML
notations such as Booch (Booch, 1991, 1994), OMT (Rumbough et al.,
1991), and Use Case modeling (Jacobson et al., 1992).

Now in version 2, UML is an OMG standard. For a good introduction and
an excellent usage guide, please see Martin Fowler’s UML Distilled (Fowler,
2003). In fact, Fowler has done such an excellent job that I find this book of
less than 200 pages covers most of the usefulness of UML. For detailed
instructions about UML, please use The Unified Modeling Language User
Guide (Booch et al., 1999). Craig Larman’s Applying UML and Patterns
book is a very practical reference to UML and its applications to OOAD
(Larman, 2005). Another good UML guide is Scott Ambler’s The Elements of
UML Style (Ambler, 2005).

It is worth pointing out that UML is neither a software development
process nor an object design technique. It is merely some graphic notations
from which you can create various diagrams that help you to visualize
requirements and design ideas. It is a great tool that can help you to capture
and analyze requirements. It can also help you to visualize and analyze your
design and therefore allows you to more easily apply design principles and
techniques to improve the design. It can also be used to communicate design
ideas with your colleagues and sometimes customers. What it does not give
you is the object design principles and techniques that require a totally
different skill set. UML is also process independent in that you can use UML
in any software development process whether it is waterfall or iterative.

UML defines a dozen diagrams. I personally find Class Diagram, Sequence
Diagram, Activity Diagram, Package Diagram, and Component Diagram the
most useful ones. One misunderstanding is that the above diagrams are for

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch006.qxd 10/12/2006 8:39 PM Page 34

UML MODELING 35

modeling the design rather than for requirements. In fact, all of the above
except Package and Component diagrams can be used to model both require-
ments and design. The following diagrams show how UML Sequence
Diagram can be used to model both requirements and design. Figure 6.1
shows how a user interacts with a Compound Registration System (CRS) to
accomplish compound registration. In the diagram, the CRS is represented by
a single box CRS. It does not show the design detail. It does show, however,
from a user’s perspective, the steps it takes to register a compound using the
system and how the system responds to every user action. This is called the
System Sequence Diagram (Larman, 2005).

Figure 6.2, on the other hand, is a sequence diagram that shows a sequence
of message sending between the objects inside the CRS. This design
sequence diagram is the basis for the implementation that is created.

Figure 6.1 A typical CRS compound registration scenario.

 : User CRS

Login

Enter compound info

Display data entry UI

Report structure problems and corrections

Correct structure

Display compound info for final review

Submit

Return compound identifier

JWUS_Dcis_Ch006.qxd 10/12/2006 8:39 PM Page 35

36

 :
 U

se
r

C
om

po
un

dE
nt

ry
F

or
m

C
R

S
C

on
tr

ol
er

C
he

m
is

tr
yR

ul
es

S
er

vi
ce

R
eg

is
tr

at
io

nS
er

vi
ce

P
er

si
st

en
ce

S
er

vi
ce

 :
 C

om
po

un
d

D
at

ab
as

e

C
om

po
un

dI
D

G
en

er
at

or

en
te

rC
om

po
un

d

su
bm

it

pr
oc

es
s

in
sp

ec
tS

tr
uc

tu
re

at
ta

ch
S

al
t

re
gi

st
er

sa
ve

in
se

rt

ge
tC

om
po

un
dI

D

re
tu

rn
C

om
po

un
dI

D

F

ig
ur

e
6.

2
A

 C
R

S
de

si
gn

 s
eq

ue
nc

e
di

ag
ra

m
.

JWUS_Dcis_Ch006.qxd 10/12/2006 8:39 PM Page 36

UML diagrams will be used throughout this book.
You may wonder about the use case diagram. In fact, the use case diagram

is not as useful as the use case specification, which is a text document.
Spending too much time getting the use case diagrams “right” does not pro-
vide much value. However, some type of use case diagram can give you a
high level idea of what functionality the system is supposed to provide.
Figure 6.3 is an example of a use case diagram.

Do not spend too much time trying to get use case diagrams accurate
because that is not the point of use case modeling. Use case text, on the other
hand, is a very good tool for capturing functional requirements. I often find
that ad hoc requirement specifications are vague, lacking details, and not
testable. Use case specifications describe scenarios in which the system inter-
acts with a user to fulfill some user goals. It clearly describes inputs and
expected outputs, the dialogues between the user and the system, or a
sequence of events (interaction steps) between the user and the system. It can
also help you to develop test cases. Another advantage of use case specifica-
tions is that compared with ad hoc requirement specifications in which infor-
mation is scattered all over the place, each use case focuses on very specific
and related usage scenarios that fit in very well in an iterative development
process in which the development team focuses on very specific feature(s). I
strongly recommend use case specifications (text) as functional requirement
specifications. Cockburn (2001) is one of the best resources about how to
write effective use cases. Larman (2005) also has some use case examples.
You will also see some examples in Chapter 9 of this book.

UML MODELING 37

Figure 6.3 CRS use case diagram.

Login

Register Compound Compound databaseUser

Generate Report

JWUS_Dcis_Ch006.qxd 10/12/2006 8:39 PM Page 37

38

CHAPTER 7

Deployment Architecture

For most organizations, the following three options exist in regard to deploy-
ment architecture.

7.1 TWO-TIERED CLIENT–SERVER ARCHITECTURE

In this type of architecture, two computer nodes are connected by a network
to do the work. The node that an end user uses is called Client. It provides
graphical user interfaces (GUIs) and event handling for user interactions. In
many cases, it also has some business logic. This type of client is called rich
client (or thick client, fat client). Client machines are typically desktop or
notebook PCs with a Microsoft Windows operating system. Some organiza-
tions still use Macintosh or Unix workstations, and Linux is an emerging
alternative. The backend node in the client–server architecture is the database
server. The chemical information database resides in this node. It may also
host some business logic that is shared by all clients in a client–server archi-
tecture. The business logic on the server node is typically implemented as
database triggers and stored procedures. In a chemical information applica-
tion, a chemical registration application puts compound data into the
database, and a querying and browsing application gets the data out of the
database and presents the data to end users.

Figure 7.1 illustrates a client–server architecture.
The biggest advantage of client–server architecture is probably its sim-

plicity. Because the client process can be single threaded, you do not need to
worry about issues such as thread safety and deadlocks. The reliability
requirements are also not as stringent because although crashing or hanging
of a single client machine is not desirable, it is not fatal to the overall system
as long as the server node is safe.

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch007.qxd 10/13/2006 4:30 PM Page 38

THREE-TIERED (OR MULTITIERED) ARCHITECTURE 39

The client-server architecture imposes several limitations. First, the com-
puting power (CPU, memory, IO) of the client machine is limited. A designer
has to carefully balance what business logic should reside on the client
machine versus what business logic should reside on the server machine.
Second, the resource utilization is not efficient because every client keeps a
connection to the database server. Third, deployment is a big burden because
every upgrade requires a new installation on all client machines. Fourth,
although it does not happen very often in the chemical information space
because Oracle is overwhelmingly dominant, business logic implemented as
database stored procedures and triggers is not portable from one database
management system (DBMS) to another.

7.2 THREE-TIERED (OR MULTITIERED) ARCHITECTURE

A three-tiered architecture includes one more node between the client and the
database server—the middle tier. In a three-tiered architecture, business logic
is offloaded from the client and the database server nodes to the middle tier.
In fact, you can choose to further distribute the business logic among more
than one middle tier node and still call it a three-tiered (or n-tiered) architec-
ture because the idea is similar. Note that the tiers do not have to be physi-
cally separated. You can have both the middle tier server and the database
server collocated on the same physical computer but running in different
processes with separate memory spaces. Modern hardware architecture can
partition a single hardware box into multiple virtually separate computers or
domains. Typically, a three-tiered architecture supports a Web-based thin
client although it can also work with a rich client.

Figure 7.1 A client–server architecture.

Client

Server

JWUS_Dcis_Ch007.qxd 10/13/2006 4:30 PM Page 39

Figure 7.2 illustrates a three-tiered architecture.
The three-tiered architecture turns the disadvantages of the client–server

architecture into its advantages:

• The computing power of the middle tier is virtually unlimited. When it
reaches its limit, by simply adding more hardware, the system should get
back on track assuming the scalability of the software is good.

• Expensive system resources can be more effectively managed. For
example, the middle tier can create a pool of database connections that
is shared by all clients. It can also implement a complex data caching
capability to boost performance.

• It provides better performance for systems with high user load.
• If a Web-based thin client is used, there is no client deployment needed.

The updated system is deployed to the middleware only, and the clients
can access it easily with a URL from a Web browser.

These advantages are not free. Three-tiered architecture has many chal-
lenges:

• The three-tiered architecture is much more complex than a client–server
architecture.

• The infrastructure and development cost of three-tiered architecture is
higher than client–server.

• Because the middle tier handles concurrent requests from many user
sessions, architects and developers are forced to consider threading
issues that are considered difficult for many junior developers.

• Session management has to be implemented to make sure every user
state is maintained between method calls.

40 DEPLOYMENT ARCHITECTURE

Figure 7.2 A three-tiered architecture.

Client

Database Server

Middle Tier Server

JWUS_Dcis_Ch007.qxd 10/13/2006 4:30 PM Page 40

• Because more networked layers are introduced, performance may suffer
if the architecture is not designed properly.

A more robust solution is to introduce a load balancer between the clients
and a farm of identical middle tier servers. The load balancer routes requests
to one of the middle tier servers based on the load and netweork topology. If
one middle tier server fails, it can reroute the request to another to prevent
single point of failure (fail-over). This architecture requires that the servers in
the middle tier farm synchronize user sessions with each other in case one has
to take over a client from another.

Figure 7.3 illustrates a three-tiered architecture with a load balancer.
By the same token, the database server can also be clustered, which is not

illustrated in Figure 7.3.
Both client–server and three-tired architectures can be developed using

either Java or .NET technology, although .NET is a more natural choice for a
rich client on Windows-based client PCs. It is also possible to take a hybrid
approach—develop rich client in .NET but business logic in Java, and inte-
grate both using SOAP-based Web services. MDL’s Isentris, for example,
takes the hybrid approach.

Which architecture to choose should be determined on a case-by-case
basis. No single architecture fits all situations. Each organization should
carefully evaluate the pros and cons of each architecture and make decisions
based on requirements, budget, technical expertise, infrastructure, technology
standards, and so on.

THREE-TIERED (OR MULTITIERED) ARCHITECTURE 41

Figure 7.3 A three-tiered architecture with a load balancer.

Workstations

Load Balancer

Middle Tier

Database Server

Middle
Tier

JWUS_Dcis_Ch007.qxd 10/13/2006 4:30 PM Page 41

This book focuses on a three-tiered architecture, on which Enterprise Java
is based.

7.3 SERVICE-ORIENTED ARCHITECTURE

Service-oriented architecture (SOA) is a hot topic these days and is consid-
ered by many people to be the enterprise computing framework of the future.
In SOA, each software unit runs on a piece of hardware as a service that can
be called by many different consumers. For example, a compound registra-
tion service can be called by a library enumeration tool and a chemistry e-
notebook to fulfill compound registration tasks. The most popular SOA is
Web services that are based on HTTP and XML or SOAP standards although
SOA as a concept has existed for awhile and is not limited to Web services.
SOA has a lot of advantages, the most important of which is code reuse and
improved productivity. However, it also presents a lot of challenges.

There are two types of code reuse; one is code libraries that are deployed
with every single application that uses them. Another is services that are
deployed and run independently somewhere in the network. The notion of
designing with SOA in mind is very important. Service is not about simply
wrapping a piece of code that is designed for a standalone application with a
service API and exposing it to the public. It represents unique requirements
and challenges such as the following:

• Security: Transparent authentication and authorization across applica-
tion boundaries.

• Performance: In general, a service performs more poorly than an in-
process method call due to network latency and bandwidth constraints.
To make things worse, a service may call other services to fulfill its
responsibilities—a chain of services. Performance has to be a design
consideration throughout the development cycle.

• Availability and scalability: A service does not know how many clients
will use it and when. It has to be very resource efficient and able to han-
dle unpredictable user load. Caching and resource pooling should be
used more widely in these systems. It should also be deployed into a
clustered environment. There also must be a monitoring and alerting
mechanism to make sure it is always in a healthy state.

• Make sure distributed transactions are atomic.
• A service also poses challenges to its clients: The clients have to be able

to recover themselves if the service or network goes down.

All of these requirements require diligent design and rigorous testing.
SOA will not be a reality without these issues being addressed.

42 DEPLOYMENT ARCHITECTURE

JWUS_Dcis_Ch007.qxd 10/13/2006 4:30 PM Page 42

43

CHAPTER 8

Software Architecture

Modern information systems provide many layers of abstractions to ease the
development and increase the portability of the software. The operating
system is an abstraction layer that hides hardware architecture. For example,
both Windows and Linux can run on Intel and AMD hardware, and applica-
tion developers usually do not care what underlining hardware is being used.
Virtual machines are a layer of abstraction that hides operating systems. For
example, Java Virtual Machines are available for almost all kinds of operat-
ing systems so that in most cases Java developers can write portable code
without even thinking about the underlining operating systems that his/her
code has to run on. Microsoft Common Language Runtime (CLR) is a
similar concept, although its implementations on operating systems other
than Windows remains to be seen. At least CLR is language independent in
that you can write your code in any language that is supported by .NET, and
they can call each other and interoperate seamlessly within the CLR.
Application server specifications are another layer of abstraction with
containers in which business components are deployed. For example, if you
adhere to J2EE standard APIs, your J2EE components should be easily
portable from one application server implementation (Weblogic) to another
(JBoss) or vice versa.

These abstraction layers offer tremendous benefits to the software devel-
opment process with reduced development complexity and costs and
increased productivity. Application server platforms and blueprints also
provide software development frameworks to help the software fit into
specific architecture patterns. One of the most commonly adopted software
architecture patterns for enterprise systems is the layered architecture
(Buschmann et al., 1996; Fowler, 2003a). It is also the heart of the J2EE
blueprint (Alur et al., 2003).

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_cH008.qxd 10/12/2006 8:42 PM Page 43

The Layered Architectural Pattern: This helps to structure applica-
tions that can be decomposed into groups of subtasks, in which
each group of subtasks is at a particular level of abstraction.

In a layered architecture, the software system is divided into layers of sub-
systems in which lower layers provide services to upper layers. A classic
example of the layered architecture is the ISO’s network protocol (Figure 8.1).

Please note that layers and tiers are two different concepts. Tiers mean the
physical separation of subsystems—each subsystem runs on a different hard-
ware or the same hardware but in different processes. In a multitiered system,
the interaction between the subsystems is accomplished through remote pro-
cedure calls (RPCs). Any RPC involves network overhead and therefore has
a performance penalty whether the remote procedure is on a separate hard-
ware or on the same physical hardware but in a different process. Layers, on
the other hand, are logical separations of the subsystems. Each layer can run
on a different physical tier, or all layers can run on a single tier. The purpose
of physical tiers is to leverage distributed hardware resources or to reuse a
piece of software that is deployed on a different hardware that your system
wants to leverage. The purpose of layered software architecture is to separate
the system into highly cohesive and loosely coupled modules (see Chapter 2
for software development principles).

44 SOFTWARE ARCHITECTURE

Figure 8.1 ISO network reference model.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

JWUS_Dcis_cH008.qxd 10/12/2006 8:42 PM Page 44

Figure 8.2 is a typical layered architecture in a Web application. It also
shows how the layers are typically distributed among the physical tiers.

From the top, the client layer resides on an end user’s desktop, laptop, or
handheld device, which is typically, but not limited to, a Windows PC with a
Web browser. Usually a Web-based client layer is called thin client, which is
lightweight. The programs that run inside the browser are typically
JavaScript, VB Script, Java Applets, ActiveX, or Web browser plug-in. Using
a rich client such as .NET or Java Swing is another choice, although this book
focuses on a Web-based architecture.

The next three layers reside on an application middleware server, although
in some systems, there is a further physical separation between the presenta-
tion layer, which runs on a different hardware from the domain and data
access layers. If EJB is used in a J2EE application, the presentation layer runs
on a Web container and the domain layer runs on an EJB container. With the
EJB local interface in J2EE 1.3, the separation becomes unnecessary, which
eliminates the network overhead between the two.

SOFTWARE ARCHITECTURE 45

Figure 8.2 A layered architecture in a Web application and how typically these layers are
distributed among the three physical tiers.

Client Tier

Client Layer

Middle Tier

Presentation Layer

Data Access Layer

Domain Layer

Data Tier

Data Source Layer

JWUS_Dcis_cH008.qxd 10/12/2006 8:42 PM Page 45

Although the J2EE application usually implies a Java Servlet, JSP, and
Enterprise Java Beans (EJB) based Web application, it does not mandate the
use of EJB. In fact, not using EJB gives you some performance advantages
and some programming freedoms. On the other hand, EJB, if used effec-
tively, can ease the development and deployment efforts because the EJB
container provides a lot of low-level services to allow you to focus on busi-
ness logic. However, being an effective EJB developer does not mean just
understanding the APIs. You have to understand how the EJB container
works to write robust and fast EJB objects. For example, Stateful Session
Beans are more expensive than Stateless Session Beans and should be
avoided when possible. Entity Beans are far more expensive than session
beans and therefore should be used to represent “first class” entities (e.g.,
Employee) in the database. Dependent objects should be used to represent
“second class” entities (e.g., Address).

The presentation layer is responsible for receiving and “interpreting”
requests from the client layer, delegating the request to the domain layer, and
generating and presenting responses back to the client layer. Please note that
the presentation layer should not actually process the requests. It should dele-
gate the requests to the domain layer. This separation of the responsibilities
increases the cohesion of each layer and makes changes easier—a single
domain layer can support multiple flavors of presentation layers and vice versa.

The business layer (or domain layer) is the center of the system that does
the real work. It implements all business logic and workflows. In J2EE, EJB
can be used to implement the Business layer. However, you can also use Plain
Old Java Object (POJO) with an object-relational mapping tool or direct
JDBC API to do the job.

The data access layer (or data persistence layer) encapsulates interactions
(select, insert, update, and delete) with the backend databases. The purpose
of this layer is to hide database schemas from the business objects in the
domain layer so that when the database schemas change, the domain layer is
not affected. The data access layer can be implemented in Entity Bean or
POJO using the JDBC API. Entity Bean is not recommended for several rea-
sons. First, as was discussed, there is a huge performance impact when Entity
Beans are used. Second, if you use MDL RCG Oracle Gateway, you will not
be able to use Container Managed Persistence (CMP). In J2EE 1.3 and 1.4,
the Enterprise Java Beans Query Language (EJB QL) does not support
MDLDirect operators. I do not know if it ever will. Not being able to use
CPM inhibits one of the biggest advantages of Entity Bean. An alternative is
to use an object-relational mapping tool such as Hibernate. In the chemical
information domain, there is the MDL Isentris Integrated Data Source
Framework. It does similar work that other object-relational mapping tools

46 SOFTWARE ARCHITECTURE

JWUS_Dcis_cH008.qxd 10/12/2006 8:42 PM Page 46

do, but it has a high license fee. Hibernate, on the other hand, is an open
source tool and is free.

The very bottom layer in the architecture is the data storage layer. This is
where the compound data are stored when a registration or update is com-
mitted. Almost all chemistry database vendors use Oracle as the data storage
DBMS, including MDL, Daylight, Accelrys, Tripos, and CambridgeSoft.
They provide some kind of chemistry data cartridge that allows you to query,
insert, update, and delete compound data using direct SQL. I have experience
using MDL’s MDLDirect Data Cartridge version 2.0 with the MDL RCG
database, and I am very satisfied with it. Storing compound data in an Oracle
database allows you to query across chemical and biological data easily,
which is a huge advantage.

An obvious benefit of the layered architecture is that you can easily swap
out a particular layer and replace it with a different one without impacting the
service consumer layer above it provided that the service consumer layer is
dependent on the interface of the layer being swapped out rather than its
implementation. For example, the chemistry intelligence component resides
in the domain layer in Figure 8.2. Assume the component has an implemen-
tation independent interface on which the presentation layer is dependent.
Today you are using vendor A’s implementation of that interface. For some
reason (maybe the vendor is going out of business; another vendor has a bet-
ter implementation or provides a better price; or you have developed a better
in-house implementation) you want to replace it with a different implemen-
tation; all you have to do is to swap out the component and replace it with the
other. To achieve easy plug and play, the higher level layer must be depend-
ent on the abstraction of the lower level layer, not its implementation. This is
called The Dependent Inversion Principle (Martin, 2003), which is discussed
further in Chapters 10–12.

This book demonstrates how the layered architecture can be used in an
enterprise chemical information system.

MDL’s new architecture Isentris is based on a layered architecture. It pro-
vides services that a standard J2EE application server provides such as ses-
sion management, object lifecycle management, messaging, object pooling,
and object-relational mapping. It also provides chemical informatics func-
tionality such as chemistry rules, compound registration, and a standard
query language for both chemical structure and alpha-numeric data. In my
view, Isentris is still young and needs some time to become mature. It is also
not cheap compared with J2EE application server products such as BEA
Weblogic and IBM Websphere. However, if your organization does not have
J2EE or .NET expertise in-house, it is worth considering as a post-ISIS
architecture.

SOFTWARE ARCHITECTURE 47

JWUS_Dcis_cH008.qxd 10/12/2006 8:42 PM Page 47

There are other architecture patterns, one of which is Pipe and Filter
(Buschmann et al., 1996). Pipeline Pilot of SciTegic (now part of Accelrys) is
a good application of the Pipe and Filter Pattern and is widely used in the
chemical information domain.

Pipe and Filter Pattern: Data flows between the filters via pipes, and
the filters apply some logic to the data so that the data that flows
out from a filter is the data needed by the next filter.

48 SOFTWARE ARCHITECTURE

JWUS_Dcis_cH008.qxd 10/12/2006 8:42 PM Page 48

49

CHAPTER 9

A Case Study: Develop a Chemical
Registration System (CRS)

Chemical registration is a task that all pharmaceutical and chemical compa-
nies have to fulfill in their chemical informatics systems. A robust chemical
registration system makes sure that the intellectual properties a research
organization produces are preserved and can later be queried and retrieved
along with other data.

Chemical registration is about storing chemical entities into permanent
data storage. Typically, the chemical registration process involves the follow-
ing steps:

• Structure editing: Structure is properly drawn and entered into the sys-
tem, which can be done using commercial chemical structure editing
tools such as MDL ISISDraw (it has a Web browser plug-in, Chime),
MDLDraw, which is aimed at replacing ISISDraw by MDL, and
CambridgeSoft’s ChemDraw.

• Structure quality checking: Make sure the entered structure is compliant
with a set of business conventions from your organization such as stereo
chemistry and sprout hydrogen. These conventions can be coded in com-
mercially available chemistry intelligent software such as MDL
Cheshire and Accelrys Accord.

• Property calculations: Molecular weight, molecular formula, pKa, and
so on.

• Enter ancillary data: Usually notebook information, chemical synthesis
methods, the research project for which the compound is synthesized or
purchased, and so on. These are alpha-numeric data and are easy to handle.

• Uniqueness checking and sample identifier generation: Although differ-
ent organizations have different rules of sample identifier generation, a

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 49

sample identifier usually consists of two parts. One is the compound
identifier (compound id)—all samples of the same compound structure
should have the same compound id. The other part is called lot or batch
number, which identifies the physical sample of different synthesis or
acquisition of the same structure because a structure can be synthesized
or acquired multiple times (the source of a sample is usually identified
by a prefix in the sample identifier). Please note that the sample id we
are talking about is different from the primary key of a record in the
database. The primary key is usually internal to the DBMS, generated
from a sequence and hidden from the end user. No business rules are
associated with it. The sample identifier, on the other hand, is generated
with a set of business rules and, once generated, is associated with some
business meanings.

• Data persistence: The compound data and the sample identifier are
inserted into the database and are ready to be searched.

There are three types of data that are involved in the chemical registration
process:

• Primary (and the most important) data: The chemical structure.
• Derivative data: Molecular weight, molecular formula, pKa, and so on.

These are calculated from the structure and rely on the structure being
correctly entered by the user and represented by the system.

• Ancillary data: Notebook information, synthesis methods, purpose of
the compound, and so on.

As such, any chemical registration system should be structure centric. It
must assist the user to get the structure right—make sure the structure is com-
pliant with all business conventions and salts are added correctly and charge
balanced. The whole process of structure handling must be optimized to be as
efficient, fast, and accurate as possible.

9.1 USE CASE MODELING

This section presents use case modeling for the CRS. As mentioned, you
should spend most of your time getting the use case text right rather than the
diagram. Figure 9.1 is a use case diagram for CRS. It is shown as an example
and not meant to be complete.

50 A CASE STUDY: DEVELOP A CHEMICAL REGISTRATION SYSTEM (CRS)

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 50

51

F
ig

ur
e

9.
1

U
se

 c
as

e
di

ag
ra

m
 o

f
C

R
S.

Q
C

 S
tr

uc
tu

re

N
ot

ify
 U

se
r

Lo
ad

 C
om

po
un

d(
s)

Lo
ad

 F
ro

m
 S

D
F

ile

Lo
ad

 F
ro

m
 X

M
L

A
ut

ho
riz

e

A
ut

he
nt

ic
at

io
n

S
er

vi
ce

A
ut

he
nt

ic
at

e

P
ro

ce
ss

 C
he

m
 R

ul
es

C
he

ck
 S

te
re

o

A
tta

ch
 S

al
t

C
al

cu
la

te
 P

ro
pe

rt
ie

s<
<

in
cl

ud
e>

>

<
<

in
cl

ud
e>

>

<
<

in
cl

ud
e>

>

<
<

in
cl

ud
e>

>

G
en

er
at

e
R

ep
or

t

Lo
gi

n

C
D

B

P
er

si
st

 C
om

po
un

d(
s)

R
es

ol
ve

 C
om

po
un

d(
s)

<
<

in
cl

ud
e>

>

C
re

at
e

T
em

pl
at

e

G
en

er
at

e
S

am
pl

e
ID

U
se

r

A
pp

ly
 T

em
pl

at
e

R
eg

is
te

r
C

om
po

un
d(

s)

<
<

in
cl

ud
e>

>

<
<

in
cl

ud
e>

>

<
<

in
cl

ud
e>

>

<
<

in
cl

ud
e>

>

<
<

in
cl

ud
e>

>

<
<

in
cl

ud
e>

>

Lo
ad

 F
ro

m
 S

ke
tc

he
r

<
<

in
cl

ud
e>

>
<

<
in

cl
ud

e>
>

<
<

in
cl

ud
e>

>

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 51

Each oval in the diagram represents a use case. Usually a use case is an
end-to-end process of a specific usage scenario. This diagram looks too
granular in that respect. It has many include relationships (Fowler, 2003b).
Usually include relationships can be used to separate a complicated step in
a use case or to represent a step that is used by many use cases to eliminate
duplications. For instance, a registration template contains common data
that can be applied to many registrations again and again. It can be created
before registration starts or during a registration process. In other words, a
Create Template use case can be part of the Compound Registration use case
or can be a standalone use case. Another example is the Process Chemistry
Rules use case, which is very complex and includes other sub-use cases.
Another type of relationship in the diagram is generalization—a line with a
triangle at the end. To register a compound, the compound data have to be
loaded into the CRS. Compound data can be loaded from different
sources—an SD File, an XML file (MDL is working on an XML schema
XDFile to replace the SDFile or RDFile), or a sketcher. A Load
Compound(s) use case is a generalization of Load From SDFile, Load From
XML File, and Load From Sketcher.

9.2 ITERATION PLANNING

In an agile iterative development framework, project planning is about itera-
tion planning—what features are implemented in what iteration based on pri-
ority of business values, risks, and complexity. In some iterative process such
as XP, there is not even an upfront iteration planning. It is not until right
before the iteration starts that the project team decides what features go into
that iteration and how long the iteration lasts (usually 1–2 weeks). In a large
project where cost and timeline estimate are required, iteration planning is
necessary. However, the iteration plan is just a rough estimate and is subject
to change based on how early iterations go and user feedback after each iter-
ation. This process is called adaptive planning (Larman, 2004). The planning
should become more and more accurate as the project moves forward and the
project team learns more. It is perfectly OK to admit that early interation
plans were not accurate; and it is still far better than the waterfall approach,
where the upfront project plan is never met and therefore useless. There are
hardly any middle-and large-size waterfall projects that do not experience
delay and overspending (Larman, 2004). The biggest problem with waterfall
is that the project team does not know the project plan is not met until very
late so there is no chance to mitigate the effects.

We said that iteration planning should be based on business values,
risks, and complexity. Using our case study, CRS as an example, here is a

52 A CASE STUDY: DEVELOP A CHEMICAL REGISTRATION SYSTEM (CRS)

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 52

sample of a high-level iteration plan (based on a team of six full-time
developers):

Time Business
Iteration Features Frame Value Complexity Risk

1 User login and 6 weeks High High High
register single
compound (no
salt) with structure
convention checking

2 Register a list of 4 weeks High High Medium
compounds (could
be a library) plus
salt handling

3 Resolve 2 weeks High Medium Medium
compound(s)

4 Support SD file 1 week High Low Low
and XML file as
input

5 Create and apply 2 weeks Medium Low Low
template

6 User notification 1 week Medium Low Low
and reporting

Please note that in an agile process, the initial iteration plan may not be the
actual path the project takes. At the end of each iteration, the plan should be
revisited based on feedback and requirement/priority changes and adjusted
accordingly—that is, adaptive planning (Larman, 2004). At every point of
time during the project, the project team must make sure it is doing the most
important things. Please also note that the time frame of each iteration is not
changeable after the iteration starts. What can be changed is the number of
features being implemented by the iteration. The project team can reduce the
scope of the iteration but has to make sure what is delivered at the end of the
iteration must be of production quality.

9.3 USE CASE SPECIFICATION

Enough has been said about the use case diagram and iteration planning. Now
let’s look at how to write use case specifications—text specification of use cases.

USE CASE SPECIFICATION 53

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 53

The following use case specification is for the Register Compound(s) Use Case.
This book is not about how to write use cases. For more detailed discussion
about how to write effective uses case specifications, please see Cockburn
(2001) and Larman (2005).

Use Case UC1: Register Compound(s)

Scope: CRS.
Level: User goal.
Primary Actor: Chemist.
Preconditions: System has to be available. Chemist workstation has to be

connected to the network. Chemist is authenticated and authorized.
Postconditions: Compound data are saved into the database. Sample iden-

tifiers are generated. Compounds are retrievable from the database.
Brief Description: This use case allows a Chemist to register single or

multiple compounds interactively (not start from an SD File). At the end
of the use case, the compounds are registered into the database and the
Chemist receives sample identifiers for each compound. The Chemist
must be authenticated and authorized to access this use case.

Basic Flow

1. Chemist starts CRS to register compound(s).
2. System allows the Chemist to input compound structure(s).
3. Chemist inputs a structure by either drawing the structure from scratch

or importing the structure from a molfile. If the compound has salt(s),
the Chemist also specifies salt type(s) from a pick list and their coeffi-
cient(s) (which defaults to 1 and must be a positive integer). The salt(s)
can also be included in the structure that is drawn or in the molfile that
is imported.

4. System decomposes the structure into fragments and displays them to
the Chemist. System displays salt structures that were picked, drawn,
or imported in step 3 as separate fragments.

5. Chemist verifies each fragment’s role (parent or salt) and coefficient.
Chemist updates the roles and coefficients if necessary.

6. System performs quality checking (QC) on the parent structure using
a set of chemistry business rules (see QC Structures Use Case Spec).
If the structure is corrected by the QC process, System displays the
structure in its original form and the corrected form side-by-side and
highlights what has been changed. If the structure requires manual
correction, the System displays the structure and highlights what must
be corrected. Otherwise, the structure passes QC.

54 A CASE STUDY: DEVELOP A CHEMICAL REGISTRATION SYSTEM (CRS)

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 54

7. Chemist manually corrects the structure.
Repeat steps 6 and 7 until the structure passes QC.
8. System attaches salt(s) to the parent structure (see Attach Salt Use

Case Spec) and displays the structure with salt(s) attached.
Repeat steps 3 to 8 until all structures are entered, pass QC, and salt(s)

attached.
9. Chemist enters ancillary data such as notebook info, research project

info, formulation info, and distribution info. These data can be
entered either manually or by applying a template. Chemist submits
the compounds to register them.

10. System makes sure all required data are entered (see Compound
Registration Required and Optional Data Supplement). System performs
uniqueness check against the database (see Uniqueness Check Business
Rules Supplement). If the structure is unique, System registers the com-
pound with a new sample identifier (see Sample Identifier Generation
Rules Supplement). If it is not unique, System displays the compound to
be registered and the hit compounds from uniqueness search and prompts
the Chemist to resolve (see Resolve Compounds Use Case Spec).

11. Chemist resolves the compound.
System repeats steps 10 and 11 until all structures are registered.
12. System displays the sample identifiers.

Alternative Flows

2 – 9a. At any point between steps 2 and 9, Chemist decides to abort the reg-
istration. System aborts the registration. System does not save the data.

3 – 9a. At any point between steps 6 and 9, Chemist decides to save the data
and come back later. System saves the data and aborts the registration.

4a. Structure has only one fragment. Go to step 6.
6a. Structure passes QC. Go to step 8.
8a. Some salt(s) cannot be attached. System warns the Chemist.
8b. Structure requires salt to be charge balanced, but salt is not specified in

steps 3 and 5. System flags an error.
9a. Chemist wants to add more structures. Repeat steps 2 and 9 until all

structures are added. All previously entered compounds are preserved.
9b. Chemist chooses some structures to be excluded from the registration.

System removes the structures from the registration.
9c. Chemist further modifies a structure. Repeat steps 4 to 8.
9d. Chemist submits the registration in an asynchronous mode. System

reports that the registration is being processed. System processes the

USE CASE SPECIFICATION 55

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 55

registration in the background. When the registration finishes, System
sends a message (e.g., e-mail) to the Chemist reporting registration out-
come—sample identifiers for those that are registered, errors for those
that failed, and tracking numbers for those that are not structurally
unique and require resolution.

10a. System finds missing required data. System prompts the user to enter
the data.

10b. Registration fails. System displays an error message.
Special Requirements: Chemist’s workstation has to have at least 256

MB of memory and 800 MHz CPU. The supported operating system is
Microsoft Windows XP Professional with Internet Explore 6.0 Web
browser, MDL ISISDraw 2.5, and MDL ChimePro 2.6 SP6 Plug-in.

The following outline is a brief description of what each section is about
(Cockburn, 2001; Larman, 2005).

Scope: The system or business process for this use case. In our example,
we are describing usage scenarios of a software system under develop-
ment—CRS.

Level: A use case can be a user goal level or subfunction level. A user goal
level use case describes a set of scenarios for fulfilling some kind of
user goals. Register Compound(s) is a user goal, and therefore, it is a
user goal level use case. A subfunction level use case describes substeps
for fulfilling some user goals. In Figure 9.1, Process Chemistry Rules is
an example of a subfunction use case.

Primary Actor: The primary user (or user role) of the system whose goal
must be fulfilled.

Preconditions: Conditions that have to be satisfied before the use case
starts.

Postconditions: Conditions that have to be satisfied after the success sce-
nario of the use case is completed.

Basic Flow: A typical success path of the use case; at the end of the flow,
the user goals for which this use case are fulfilled.

Alternative Flows: Other paths of the use case. They include both suc-
cesses and failures.

Special Requirements: Nonfunctional requirements such as system
requirements, performance requirements, and load requirements. Some
of these requirements can also be included in supplements.

The above use case text has reference points that lead to other user goal
and subfunction use cases. These points are the includes in the use case
diagram (Figure 9.1).

56 A CASE STUDY: DEVELOP A CHEMICAL REGISTRATION SYSTEM (CRS)

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 56

There is no standard format for use case specifications. The above is the
Alistair Cockburn format, which can be found at his website — alistair.cock-
burn.us or in his book (Cockburn, 2001). The template is available for down-
load from the website. Another popular format is the IBM Rational RUP
format that can be downloaded from http://www 128.ibm.com/developer-
works/ rational/library/4152.html.

Please note that use case modeling is not associated with any development
process. It is even independent of object-oriented technologies. It is a generic
tool for capturing functional requirements. I have used use case specifica-
tions in ISIS PL projects, and it worked perfectly.

In an object-oriented world, in addition to capturing functional require-
ments, use case specifications can be used as a starting point for developing
a domain object model, which is discussed in the next chapter.

Other types of requirements, usually nonfunctional, may not be captured
by use case specifications such as performance, scalability, availability,
usability, security, and software–hardware constraints. These requirements
can be included in the supplementary specifications. Please see Larman
(2005) for examples.

Use case specifications can be visualized using UML Activity Diagrams
and System Sequence Diagrams (Larman, 2005). I always find a graphic
model easy to understand and communicate. However, these visualized mod-
els should be used as supplements, not as a replacement for use case specifi-
cations in text.

Figure 9.2 is a system sequence diagram (SSD) of the above use case.
Figure 9.3, on the other hand, is the activity diagram of the above use case.
SSD is an excellent way of illustrating actor–system dialogue. However, it is
cumbersome to show both Basic Flow and Alternative Flows in one SSD. The
activity diagram, on the other hand, can be used to easily visualize both Basic
Flow and Alternative Flows in one diagram. Which one to use is a matter of
personal preference. I find both of them useful in my work, and therefore, the
SSD and activity diagram often complement each other for me.

9.4 WHEN TO DEVELOP USE CASE SPECIFICATIONS

In an agile iterative process, not all use case specifications need to be fully
developed before the design and implementation starts. Usually, a scope and
a vision document are developed with a list of features that should be
included in the system, including a brief description of each feature as in the
Brief Description section of the above use case specification. These features
are prioritized and planned according to their business values, complexity,
and architectural significance (please see Chapter 5). At the beginning of an

WHEN TO DEVELOP USE CASE SPECIFICATIONS 57

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 57

iteration, the features being implemented by the iteration are analyzed and
use case specifications for those features are developed.

Never expect that use case specifications are complete and accurate and
do not change before the design and implementation work starts. No matter
how much time is spent on requirement analysis, there will be omissions,
misunderstandings, and unknowns. Often users may not even know how the

58 A CASE STUDY: DEVELOP A CHEMICAL REGISTRATION SYSTEM (CRS)

 : Chemist CRS

1: input structure & salt(s)

2: QC structure

3: report structure errors

4: correct structure(s)

5: attach salt(s)

6: display final structure(s)

7: input ancillary data

8: submit

9: validate input

12: display sample id(s)

Repeat till all
structures are
entered

11: generate sample id and register

10: check uniqueness

Figure 9.2 The SSD of the Register Compound(s) Use Case.

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 58

WHEN TO DEVELOP USE CASE SPECIFICATIONS 59

Figure 9.3 The activity diagram of Register Compound(s) Use Case.

Start

System Displays
CRS Screen

Chemist Inputs Chemical
Structure and Salt(s)

System Decomposes Structures and
Displays Fragments

Chemist Specifies Fragment Roles
and Coefficients

System Performs Structure QC
and Displays QCed Structures

System Displays Structures with Salt
Attached and Calculated Properties

[agree with the corrections]

Chemist Modifies
Structure

[else]

Chemist Enters Ancillary Data
and Submits the Registration

System Registers and
Displays Sample Identifier

[structure unique]

Chemist Resolves
Compound

[else]

System Prompts Chemist
to Enter Missing Data

[missing required data]

[else]

System Emails Registration
Status to Chemist

[asynchronous]

[else]

End

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 59

system should work before they see a prototype or a partial system.
Therefore, do not overengineer use case specifications upfront. Keep in
mind that use case specifications provide enough information to get the
development work started. New discoveries will emerge during the develop-
ment and feedback process. On the other hand, not spending any time on
requirement analysis at the beginning of the iteration is also not a good prac-
tice. It is the upfront analysis combined with ongoing feedback that makes
sure the system meets business needs.

60 A CASE STUDY: DEVELOP A CHEMICAL REGISTRATION SYSTEM (CRS)

JWUS_Dcis_Ch009.qxd 10/12/2006 9:04 PM Page 60

61

CHAPTER 10

A Chemical Informatics Domain
Analysis Object Model

Use case specifications document functional requirements. The next step is to
design the partial system that the current iteration is supposed to deliver. The
gap between requirements and design is not trivial, and a bridge between the
two is desired. This bridge is what object-oriented analysis is about.
The domain analysis object model is not the final design. However, it pro-
vides a starting point for the design process.

A domain object model is a model that describes key domain concepts and
their relationships. Many of these concepts come from “tangible” objects in
the real world of the problem domain. In the chemical informatics space,
these are the “objects” that chemists are dealing with on a daily basis, such as
compounds, structures, notebooks, and libraries. The domain analysis model
being presented here focuses on those objects that are involved in the com-
pound registration process.

One technique that can help you to capture domain objects is to look for
nouns in the use case specifications—those terms in bold in UC1 of Chapter
9. The following are the key domain objects from UC1.

• Registration: This is an abstraction that represents a compound regis-
tration transaction. A registration can be for a single compound, a group
of discrete compounds, or a compound library.

• Compound: The object that represents a chemical entity. It has proper-
ties such as structure, molweight, molformula, chemical name, stereo-
chemistry description, and toxicity. In an ideal world, the chemical
structure should define all other properties.

• Structure: This is the most important object in CRS. Getting structures
correct is critical to the compound registration process. After being reg-
istered, the structures have to be searchable and linkable to biological

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch010.qxd 10/12/2006 9:09 PM Page 61

data for analysis. The registration process has to make sure the structure
is represented correctly and the correct sample identifier is generated
based on the uniqueness of the structure in the database. Structure can
also be used to derive chemical properties such as molweight, molfor-
mula, LogP, and pKa. In MDL technology, a structure is represented by
a Connection Table. The string representation of the MDL Connection
Table is called Molfile—an open standard that is supported by all ven-
dors. In Daylight technology, a structure is represented by a Smiles
string. In CambridgeSoft technology, a structure is represented by an
XML format—CML.

• Structure Component (or fragment): A structure being registered may
have one to many fragments. Some of them (at least one) are parent frag-
ments, and some of them are salt fragments.

• Sample: A sample is a physically synthesized compound—the product
that a chemist produces. A compound represents a structure on paper
before it is synthesized through chemical reactions. The compound is
instantiated when a physical sample is produced. CRS registers physi-
cally synthesized compound samples.

• Sample Identifier: Each compound sample has a laboratory identifier.
Although companies use different sample identifier formats, they are
usually composed of three parts: a base that identifies the parent struc-
ture (can be a mixture of multiple parent fragments); a form that identi-
fies the salt form, formulation, or radiolabel; and a lot or batch number
that identifies the actual synthesized sample.

• Library: A compound library is a group of related compounds synthe-
sized by some parallel synthesis or combinatorial chemistry process.

• Notebook: Chemists use a notebook to record information about the
synthesis—date, chemist name, notebook page number, and so on.

• Research Project: The research project for which the compound is syn-
thesized.

• Registration Template: A template stores common information that
can be applied to compound registrations multiple times. For example,
a chemist may synthesize many compounds or libraries for a research
project. These compounds share the same attributes such as project
name, chemist, and the assays against which these compounds are
screened. The chemist can create a registration template that contains
these common attributes and then apply the template when registering
these compounds and libraries without having to reenter them again
and again.

Figure 10.1 is an analysis domain object model of CRS.

62 A CHEMICAL INFORMATICS DOMAIN ANALYSIS OBJECT MODEL

JWUS_Dcis_Ch010.qxd 10/12/2006 9:09 PM Page 62

These conceptual objects are not necessarily software objects that will be
in the design model, although many of them may become software objects in
the design model. Usually the design model has more objects than in the
analysis model when software design principles are applied to introduce
more levels of abstractions and in-directions.

Usually the analysis model should include only classes and attributes and
not methods. Adding methods to objects is part of the object design process
called assigning responsibilities, which is another reason the conceptual
model in Figure 10.1 is not a design. The benefit of creating a domain con-
ceptual model is that the model serves as a bridge between the terms we use
in the real world and the software objects. Craig Larman (2005) has some
guidelines for creating such domain conceptual models.

Figure 10.1 shows conceptual classes (the boxes), the associations (the lines
between the boxes), and multiplicity (the numbers or number ranges at the end
of associations). Some of these associations have directions that are specified
by the navigation arrows, and some of them do not. The arrows indicate that
one object has a reference to another object. There are situations where the
navigation is bidirectional or cannot be determined at the analysis phase.

A CHEMICAL INFORMATICS DOMAIN ANALYSIS OBJECT MODEL 63

Chemist

Structure

StructureComponent

Template

Notebook

Compound

11

1..n

SampleIdentifier

ResearchProject

Library

Registration

0..10..1

0..n

0..1

Sample

11

1..n1..n

1

1

1

1

1

0..n

1

0..n
1..n0..1 1..n0..1

1..n1..n

1..n

1

1..n

1

realizes

described-by

contains recorded-by

registers registers

is-synthesized-by
is-specified-by

is-synthesized-for

contains
applies

Figure 10.1 An analysis domain object model of CRS.

JWUS_Dcis_Ch010.qxd 10/12/2006 9:09 PM Page 63

For example, it makes sense that the library has a reference to the compound
samples it contains. Also, each compound sample should have a reference to
the library to which it belongs. Multiplicity specifies the number of objects of
one class that can be associated to an object of another class. For example, a
compound sample can have only one notebook, and so the multiplicity is 1 at
the Notebook end of the Sample–Notebook association. A library can have 1
to many compound samples, and so the multiplicity is 1..n at the Sample end
of the Library–Sample association, and so on. If multiplicity is obvious dur-
ing the analysis phase, then specify it. Otherwise, defer this decision to the
design phase.

The domain object analysis phase must be very brief in an iterative
process. It should be a �

1
2

� –1 day activity after the use case specification is
developed. Do not expect the analysis model to be complete, accurate, and
unchanging. Many decisions can be, and should be, deferred to the design
phase.

64 A CHEMICAL INFORMATICS DOMAIN ANALYSIS OBJECT MODEL

JWUS_Dcis_Ch010.qxd 10/12/2006 9:09 PM Page 64

65

CHAPTER 11

Presentation Layer

Although the Presentation Layer is not a main focus of this book, several
options and some guiding principles are discussed in this chapter.

Although the first generation of chemical information systems used punch
cards as the user interface, nowadays almost all of them use some type of
graphical user interface (GUI). MDL ISISBase,Visual Basic, .NET, Java Swing,
and Web pages are some of the most popular options from which organizations
can choose. MDL is developing its next-generation chemical informatics GUI
framework called MDLBase, which is based on Microsoft .NET technology.
CambridgeSoft and Accelrys GUI tools also use Microsoft technologies. The
Web has not been a mainstream GUI framework for chemical information sys-
tems, partly due to a lack of Web-based tools in the chemistry domain. At the
time of this writing, Merck had successfully developed a Web-based compound
registration application using the J2EE technology combined with MDL tools
such as MDL Direct, Cheshire, and ChimePro Plug-in.

Web-based systems offer several advantages over rich client: easy to
deploy and access, easy to scale (by adding more hardware resources to the
application server), and shared computing resources (CPUs, memory, data-
base connections). However, most of the information this book presents is not
limited to Web-based applications. It promotes the loosely coupled
Presentation Layer and Domain Layer so that business logic can be reused no
matter what GUI technology is being used.

A common pattern of GUI design is the Model-View-Controller (MVC)
framework. MVC is not about graphic design. It is about separating business
logic from graphic widgets so that they are decoupled and can easily be
replaced and reused. Avoiding monolithic code that has presentation and
business logic intermingled provides a huge advantage. Monolithic code
makes the application difficult to change, test, replace, and reuse.

In an MVC framework, Model is the data or business logic that produces the
data. View is the graphic components such as windows, text fields, and buttons.

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch011.qxd 10/12/2006 9:12 PM Page 65

Controller is the event handler and dispatcher. In J2EE, there are two possible
ways of implementing the MVC framework. In Model 1 MVC, Model can be
Java Beans, Plain Old Java Object (POJO), or EJB. JavaServer Pages play the
roles of View and Controller. Figure 11.1 is a typical Model 1 MVC.

In Model 2 MVC, JavaServer Pages only play the role of View. The Controller
role is played by a Java Servlet. Figure 11.2 is a typical Model 2 MVC.

Perhaps the most popular MVC framework for J2EE Web-based applica-
tions is the Apache Struts framework. It is the de facto standard for Java-
based Web application development. The key components in the Struts
framework are Action Servlet, Action Class, Action Form, and the view
objects such as JSP, Velocity Template, and XSLT. The Action Servlet comes
with the Struts class library, which can be downloaded from
http://struts.apache.org. It plays the Controller role in the Model 2 MVC,
which maps the HTTP Request to an Action Class that is responsible for han-
dling the request. The mapping is defined in a configuration file called struts-
config.xml. The struts-config.xml configuration file also defines to what
view objects (e.g., JSP) the action object should forward. The Action Class is
responsible for processing the request and forwarding the flow to the next
view object in the flow. The Action Class must be implemented by the devel-
oper. However, the Struts class library provides an abstract base action class
that all custom action classes extend. This action class hierarchy is an appli-
cation of the Command Pattern in the GoF book (Gamma et al., 1995). It is
recommended that the Action object delegates to a business object (POJO,

66 PRESENTATION LAYER

Figure 11.1 A typical Model 1 MVC.

Browser JSP (Controller, View) Java Object (Model) Database

1: HTTP Request

2: invoke

3: access

4: HTTP Response

JWUS_Dcis_Ch011.qxd 10/12/2006 9:12 PM Page 66

EJB, etc.) to do the actual work, because the action class is a Web component.
It takes HTTP Request as an argument into its execute() method. Coding
business logic in the action class makes it less reusable and difficult to test.
Action Form is a Java Bean that holds user input from the HTML form. It has
the setter methods that Struts uses to set its properties from the HTTP
Request object. It also has getter methods that the action class uses to access
these properties. Figure 11.3 illustrates a hypothetical compound registration
transaction using the Struts framework.

The following XML is the struts-config.xml example that shows how to start
from a compound registration data entry form - /pages/ Compound Registration.
jsp, submit the form - CompoundRegistration.do, map to crs.Compound
RegistrationAction which uses action form CompoundRegistrationForm, and if
the compound registration succeeds, display /pages/ CompoundRegistration
Report.jsp, otherwise display /pages/Error.jsp:

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<!DOCTYPE struts-config PUBLIC

“-//Apache Software Foundation//DTD Struts Configuration 1.2//EN”
“http://struts.apache.org/dtds/struts-config_1_2.dtd”>

<struts-config>
<form-beans>

<form-bean

PRESENTATION LAYER 67

Figure 11.2 A typical Model 2 MVC.

Browser JSP (View)Java Object (Model) DatabaseServlet (Controller)

3: access

1: HTTP Request

2: invoke

4: dispatch

JWUS_Dcis_Ch011.qxd 10/12/2006 9:12 PM Page 67

name=”compoundRegistrationForm”
type=”crs.CompoundRegistrationForm”/>

</form-beans>
<action-mappings>

<action
path=”/CompoundRegistration.do”
type=”crs.CompoundRegistrationAction”
name=”CompoundRegistrationForm”
scope=”request”
validate=”true”
input=”/pages/CompoundRegistration.jsp”>
<forward

name=”success”
path=”/pages/CompoundRegistrationReport.jsp”/>

<forward
name=”failure”
path=”/pages/Error.jsp”/>

</action>
</action-mappings>
<message-resources parameter=”resources.application”/>

</struts-config>

Struts provides an excellent framework for implementing Model 2
MVC. It helps developers make the system easier to maintain and change.
The caveat is its learning curve and complexity to people who are new to it.
However, if your system is large and complex, the overhead will definitely
pay off. For a small project with a handful of JSPs and Java objects,
Model 1 MVC might be more cost effective. To learn more about Struts, go
to http://struts.apache.org. Many books on Struts can be found at
http://www.amazon.com. Also see Agarwal (2004).

68 PRESENTATION LAYER

Figure 11.3 Compound registration in the Apache Struts framework.

CompoundRegistrationReport.jspaBrowser ActionServlet CompoundRegistrationAction CompoundRegistrationForm

1: HTTPRequest

2: execute

3: getXXX

4: forward

JWUS_Dcis_Ch011.qxd 10/12/2006 9:12 PM Page 68

69

CHAPTER 12

Business Layer

The Business Layer is in the center of CRS where the core business func-
tions reside. Any business application has a workflow—the steps it takes to
accomplish one or many tasks or transactions. Clearly analyzing and under-
standing the workflow is essential to designing the Business Layer correctly.
Use case specifications capture workflow from a user’s perspective. The
System Activity Diagram is an excellent tool to capture system workflow
from a system perspective. Figure 12.1 is the System Activity Diagram
(CAD) of CRS.

The registration process starts when a user enters compound data into the
system. The input can be either an SD File, an XML File, or manually drawn
structures. The system then converts these data into domain objects that can
easily be processed by the system. The next few steps involve chemical intel-
ligence. The system decomposes structures into fragments to allow the user
to specify parents versus salts and their coefficients (relative counts). The
system then combines the parent fragments into the parent structure and
performs QC checking to see whether the parent structure is compliant with
chemistry business rules. The reason salt structure is not included in the QC
process is that salts can be picked from a predefined salt dictionary and the
structures can be pre-QCed. After QC, the user can verify and manually
correct the structures; in which case, the QC process will kick in again until
both the user and the system agree with the structures. The system then
attaches salts to the parent structures, calculates the chemical and physical
properties, generates sample identifiers, and stores the data into the backend
chemical database.

Each activity in Figure 12.1 involves one to many groups of domain
objects. Each of these object groups is a cohesive software component or
service. From the above CAD, we come up with the following core compo-
nents in the Business Layer.

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 69

• Domain Object: The design domain objects that are derived from the
conceptual model in Chapter 10.

• Data Binder: Since we are developing an object-oriented system, if the
input is an SD File or an XML File, it must be converted to Java objects
for processing efficiency reasons. This conversion is done by the Data
Binder objects.

• Application Controller: The central controller of the system workflow.
• Chemistry Intelligence: Objects that implement chemistry business

rules and salt handling logic.
• Property Calculator: Objects that are responsible for calculating chem-

ical and physical properties.

70 BUSINESS LAYER

Figure 12.1 The System Activity Diagram (CAD) of CRS.

Start

Input Data

Create Domain
Objects

QC Structures

edit structure

Attach Salts

Calculate
Properties

Register
Chemical Sample

End

Can be SD File,
XML File, or manual
input from GUI

Fragment
Structure

[edit structure]

Specify Fragment
Role and Coefficient

Create Combined
Parent Structure

Generate Chemical
Sample Identifier

[else]

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 70

• Chemical Laboratory Sample Identifier (LSI): An identifier that
uniquely identifies a chemical sample. Although the format of sample
identifier differs from organization to organization, it usually consists of
five parts: a prefix that specifies the sample’s source (e.g., synthesized
internally or acquired from external sources); a base that uniquely
specifics parent structure; a form that indicates whether a chemical sam-
ple is a free base or with salt, radiolabeled, or a formulation; a parity bit
checksum that is derived from the combination of prefix, base, and form
using a check-sum hash algorithm; and a batch or a lot number that iden-
tifies the actual physical sample.

• Registration Service: Objects that are responsible for uniqueness
checking, compound sample identifier generation, and persisting com-
pound data into the chemical database.

Figure 12.2 is the component diagram that shows the above components
and their relationships. We will discuss the design of each of these compo-
nents in this chapter.

12.1 DESIGN BY INTERFACE

A good software designer or architect cares about getting the interfaces right
first and foremost before thinking about implementations. Jumping right into
implementation details without carefully designing the interfaces first often
leads to a rigid and hard-to-extend design for the reasons that were presented

DESIGN BY INTERFACE 71

Data
Binder

Domain
Object

Application
Controller

Chemistry
Intelligence

Property
Calculator

Registration
Service

Sample
Identifier

Figure 12.2 The component diagram of the business layer.

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 71

in Chapters 2 and 3, one of which is that dependencies between the software
modules are at the implementation level rather than at the abstraction level.
Software architecture is primarily concerned about dividing the system into
subsystems and defining the interfaces and the interaction protocols between
them. This technique is called Design by Interface.

Interface design and implementation design focus on two different aspects
of software development. The interface of a module should be stable, simple,
and intuitive for its clients to use. The latter two qualities are very much simi-
lar to graphic user interface (GUI) design, except that client here means other
software modules rather than human users. On the other hand, the implementa-
tion of the module has to deal with issues such as data structure, algorithm,
memory efficiencies, performance, thread safety, and network. These imple-
mentation complexities should be hidden from clients because the clients do
not care about how the component does the work internally. We often talk about
user friendliness when designing GUI. The same concepts apply to application
programming interface (API) design. Often the interface is used by your peer
developers in the same team or sometimes developers of other teams. Many
organizations promote code sharing for productivity reasons. Nevertheless,
three obstacles make code sharing difficult:

• Lack of useful documentation.
• Complexity of the API.
• Changes of the reusable component may have big impacts for clients.

Design by Interface helps to remove the second obstacle by hiding the
complexity of the component with simple and intuitive interfaces. Design by
Interface helps to remove the third obstacle by keeping the dependencies at
the abstraction level.

A good API must have the following three characteristics:

• Stability: It should not change very often.
• Simplicity: Its parameter set should be as small and as cohesive as pos-

sible, and it should have a simple return type that its clients expect. It
should also only throw exceptions that the clients care about.

• Clarity: Its name should clearly describe what it does or what services it
provides.

When designing an API, put yourself into the position of a potential user
of the API and think about how you would want the API to look and whether
you would be willing to use it if it is designed the way it is. If the answer is
“no,” try to change it until you are satisfied as a potential user.

For the CRS system, we have identified seven core components. Our first
task is to design their interfaces and the relationships between the interfaces.
Figure 12.3 is the interface diagram of the CRS business layer.

72 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 72

ICRSController serves as the Application Controller (Fowler, 2003a) that
controls the application workflow. It uses IDataBinder to create domain
objects from an SD file, an XML file, or any format of input. IChemicalEntity
is the core domain object that can be either a chemical library or a chemical
sample. IChemicalEntity uses IChemistryIntelligence for structure convention
checking and attaching salts to the structure. IChemicalEntity also uses
IChemicalPropertyCalculator and IPhysicalPropertyCalculator to calculate
chemical and physical properties. Finally, when the IChemicalEntity is ready
to be registered, ICRSController passes it to IRegistrationService, which
stores the IChemicalEntity into the database.

These interfaces can be coded as either Java interfaces or abstract classes.
Each of these interfaces and their implementations are discussed in more
detail in this chapter.

12.2 DOMAIN OBJECTS

In Chapter 10, we presented a conceptual domain object model of CRS. The
objects in the conceptual object model represent real-world concepts of the
problem domain with which we are dealing. We said that these conceptual
objects are candidates of real software objects. We also said that the design
model will be more complex than the conceptual model because software

DOMAIN OBJECTS 73

IChemicalPropertyCalculator

calculateFormula()
calculateWeight()

IPhysicalPropertyCalculator

calculatePka()
calculateLogP()
calculateLogD()

IChemistryIntelligence

inspectStructure()
attachSalt()

IDataBinder

bindLibary()
bind()

ICRSController

process()

IRegistrationService

register()

IChemicalEntity

process()

ISampleIdentifier

getPrefix()
getBase()
getForm()

getCheck()
getLot()

+uses

+uses

+checked by

+creates +processes

+generates

Figure 12.3 The interface diagram of the CRS business layer.

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 73

design principles and patterns introduce layers of abstractions and indirec-
tions. Let’s see how the conceptual object model in Chapter 10 evolves to a
design object model.

12.2.1 The Chemical Entity Object Design Model

The use case specification presented in Chapter 9 describes steps in a com-
pound registering process:

• Enter structure
• Fragment structure
• Specify parent(s), salt(s), and coefficients
• QC structure
• Attach salt(s)
• Enter ancillary data
• Register

The goal of object design is to support the above workflow. As the
Compound object is in the center of this process, it makes sense to further
analyze and design the Compound object first.

The above workflow can very well be represented by a finite state
machine—the compound object goes through a series of state transitions in
the compound registration process. A finite state machine can be modeled
using the UML State Diagram. Figure 12.4 is the UML State Diagram of a
compound object.

When a compound object is created, its structure may have multiple frag-
ments. The system should first decompose the structure into individual frag-
ments and let the chemist specify their roles—parent, salt, and their
coefficients. This is done at the Created State, which transitions to the
Fragmented State when the fragmentation finishes. Next, the system must
make sure the structure is fully compliant with structure conventions. This is
the structure QC process. There are three possibilities as a result of this
process:

1. The structure is fully compliant with structure conventions and the
compound transitions to the Valid State.

2. The structure is not compliant with chemical conventions and the com-
pound transitions to the Invalid State.

3. The structure is not compliant with chemical conventions, but the chem-
istry intelligence logic can automatically correct them and the compound
transitions to the Corrected State.

74 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 74

If the structure is invalid, it requires manual correction that again leads to
three possible state transitions:

1. The corrected structure becomes fully compliant with structure conven-
tions and the compound transitions to the Valid State.

2. The corrected structure is not compliant with chemical conventions and
the compound stays in the Invalid State.

3. The corrected structure is not compliant with chemical conventions, but
the chemistry intelligence logic can automatically correct them and the
compound transitions to the Corrected State.

If the structure is automatically corrected by the chemistry intelligence
logic, the compound moves into the Corrected State. At this point, the

DOMAIN OBJECTS 75

Figure 12.4 The state transition diagram of the Compound object.

Fragmented

Start

CorrectedInvalid

Valid
next[pass qc]

Excluded

edit[fail qc]

Registered

Ready for
Registration

Structure requires
manual correction

Structure
corrected by
the system

Structure
compliant with
chemisrry rules

Sample identifier
generated and
compound saved in
database

Excluded from
registration

modify[qc corrected]

Created

Salt
Attached

edit

excludeexclude

next[pass qc]

next[qc corrected]

next[fail qc] next

register

enter ancillary data

edit[qc corrected]edit[fail qc]

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 75

system should display the original and corrected structures to allow the
chemist to review the changes. The chemist can further edit the corrected
structure or accept the change. Depending on what the chemist does to the
structure, the compound at Corrected State can have three possible state
transitions:

1. The structure is edited by the chemist and becomes invalid and the com-
pound transitions to the Invalid State.

2. The structure is edited by the chemist and is not compliant with chemi-
cal conventions, but the chemistry intelligence logic can automatically
correct them and the compound remains in the Corrected State.

3. The structure is accepted or edited by the chemist and becomes valid
and the compound transitions to the Valid State.

When the structure becomes valid, the system attaches salt to the parent
structure and the compound transitions to Salt Attached State. At this point, if
the chemist edits the structure, the system has to decompose the structure into
fragments again and the whole structure process will start over. Otherwise, the
system makes sure all required ancillary data are entered and the compound
enters the Ready for Registration State. The final state of the compound is
Registered State—compound stored in the database.

Another state the compound can transition to is the Excluded State.
Compounds in this state are excluded from registration by the chemist.

The state transition analysis leads to an important design decision—the
GoF State Pattern (Gamma et al., 1995).

The State Pattern allows an object to alter its behavior when its inter-
nal state changes. The object will appear to change its class.

Figure 12.5 is the class diagram of compound states.
CompoundState is an abstract class that defines an abstract method process().

CreatedState, FragmentedState, ValidState, CorrectedState, InvalidState, and
ReadyToBeRegisteredState are all concrete subclasses of CompoundState and
must implement the process() method. They define the behaviors of a compound
depending on its state.

Start with the CompoundState class, which is an abstract class. It has an
attribute—compound. This compound is the one that the CompoundState
describes. It is set in the constructor—when a CompoundState object is cre-
ated (CompoundMemento object is described later in this chapter).
CompoundState also defines an abstract method process(). Its source code is
as follows:

76 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 76

package com.abcpharma.crs.entity;

public abstract class CompoundState {
protected Compound compound � null;
protected CompoundMemento memento � null;

public CompoundState(Compound compound){
this.compound � compound;

}

public abstract void process();
}

CreatedState is a concrete class that extends CompoundState. Its constructor
takes a Compound object as input and calls the constructor of its super-
class—Compound State. Its process() method uses a chemistry intelligence
object—Molstructure Inspector’s fragment() method to decompose the
structure of the compound object into structure fragments (Molstructure
Inspector will be discussed in much more detail in Chapter 14). It then adds
salts and parent fragments to the Compound object and sets its state to
FragmentedState according to the state diagram in Figure 12.4. The roles of
the fragments are assigned based on some basic rules, for example, by
comparing each fragment with a salt dictionary. If a match is found, it is a
salt; otherwise it is a parent. This is, of course, pending for the chemist to
verify.

package com.abcpharma.crs.entity;

import com.abcpharma.crs.chemintell.*;
import com.abcpharma.crs.Molstructure.StructureFragment;

DOMAIN OBJECTS 77

Figure 12.5 The State Pattern of the Compound object.

CorrectedState

InvalidStateCreatedState

ValidState

CompoundState

process()

MolStructure

format : String
value : String
formula : String
weight : float
chemicalName : String
pka : float
logP : float
logD : float

Compound

process()
getStructure()
createMememto()
setMemento()

ReadyToBeRegisteredState

FragmentedState

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 77

public class CreatedState extends CompoundState{

public CreatedState(Compound compound){
super(compound);

}

public void process() {
MolstructureInspector inspector � MDLCheshire Molstructure Inspector
Impl. getInstance();
StructureFragment[] fragments � null;
try{

fragments � inspector.fragment(compound.getMolstructure());
if(fragments !� null){
for (int i � 0; i < fragments.length; i��){

if(fragments[i]. getRole().equals (Structure Fragment. PARENT_ROLE)){
compound.addParent(fragments[i]);

}
else{

compound.addSalt(fragments[i]);
}

}
}
compound.setState(compound.fragmentedState);
}catch(ChemistryRulesException e){

e.printStackTrace();
}

}
}

Now CRS should display the parent and salt fragments to allow the
chemist to confirm or alter the fragment roles and specify their coeffi-
cients.

The current state is the FragmentedState. After the chemist has con-
firmed or altered the fragment roles and coefficients, an event will trigger
the application controller to invoke FragmentedState’s process() method.
The process() method first uses a chemistry intelligence object—
MolstructureInspector—to combine all parent fragments of the compound
object to create a combined parent structure. It then uses the
MolstructureInspector object to inspect the structure using structure con-
vention rules. According to Figure 12.4, the structure QC logic determines
to what state the compound transitions. If the structure is compliant with
structure conventions, it transitions to the Valid State. If the structure has
problems but is corrected by the structure QC logic, it transitions to the
Corrected State. If the structure has problems and requires manual correc-
tion, it transitions to the Invalid State. The source code of the Fragmented
State class is as follows:

78 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 78

package com.abcpharma.crs.entity;

import com.abcpharma.crs.chemintell.*;

public class FragmentedState extends CompoundState {

public FragmentedState(Compound compound){
super(compound);

}

public void process(){
MolstructureInspectorinspector � MDLCheshireMolstructureInspector
Impl.getInstance();
String[] message � null;
try{

compound.setMolstructure(inspector.combineParentFragments(
compound.getParentFragments()));

message � inspector.executeAllRules(compound.get Molstructure());
if(message !� null){

compound.setState(compound.correctedState);
compound.setStateDescription(message);

}
else

compound.setState(compound.validState);
}catch(ChemistryRulesException e){

compound.setState(compound.invalidState);
message � new String[1];
message[0] � e.getMessage();
compound.setStateDescription(message);

}
}

}

InvalidState is another concrete class that extends CompoundState. Just as
the FragmentedState, its constructor takes a Compound object as input and
calls the constructor of its superclass—CompoundState. Its process()
method uses a chemistry intelligence object—MolstructureInspector—to
inspect the structure of the compound object. Depending on the return of the
MolstructureInspector object’s executeAllRules method, the InvalidState
object alters the state of the compound object according to the state diagram
in Figure 12.4.

package com.abcpharma.crs.entity;

import com.abcpharma.crs.chemintell.*;

public class InvalidState extends CompoundState {

DOMAIN OBJECTS 79

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 79

public InvalidState(Compound compound){
super(compound);

}
public void process() {

MolstructureInspector inspector � MDLCheshireMolstructureInspector
Impl.getInstance();
String[] message � null;
try{

message � inspector.executeAllRules(compound.get
Molstructure());
if(message !� null){

compound.setState(compound.correctedState);
compound.setStateDescription(message);

}
else

compound.setState(compound.validState);
}catch(ChemistryRulesException e){

message � new String[1];
message[0] � e.getMessage();
compound.setStateDescription(message);

}
}

}

Likewise, the following class implements CorrectedState—another concrete
CompoundState:

package com.abcpharma.crs.entity;

import com.abcpharma.crs.chemintell.*;

public class CorrectedState extends CompoundState {

public CorrectedState(Compound compound) {
super(compound);

}

public void process() {
MolstructureInspector inspector � MDLCheshireMolstructureInspector
Impl.getInstance();
String[] message � null;
try{

message � inspector.executeAllRules(compound.get
Molstructure());
if(message !� null){

compound.setStateDescription(message);
}
else

80 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 80

compound.setState(compound.validState);
}catch(ChemistryRulesException e){

compound.setState(compound.invalidState);
message � new String[1];
message[0] � e.getMessage();
compound.setStateDescription(message);

}
}

}

When the compound becomes valid, salts can be attached to its parent struc-
ture, which is accomplished by the ValidState object:

package com.abcpharma.crs.entity;

import com.abcpharma.crs.chemintell.*;

public class ValidState extends CompoundState {

public ValidState(Compound compound) {
super(compound);

}

public void process() {
SaltHandler handler � MDLCheshireSaltHandlerImpl.getInstance();
String[] message � new String[1];
message[0] � handler.executeAddSalt(compound.getMolstructure(),

compound.getSaltFragments());
compound.setState(compound.saltAttachedState);
compound.setStateDescription(message);

}
}

If the compound has salt(s), the ValidState object attaches the salts to the parent
structure using a SaltHandler object (SaltHandler will be discussed in much
more detail in Chapter 14). The compound transitions to the Salt Attached State.

The last state of a compound in the compound registration context is
Ready To Be Registered State. A compound is ready for registration when its
structure passes chemistry convention rules and salts have been attached, and
all required ancillary data, such as project and notebook information, have
been entered.

Each organization may have different business rules with regard to com-
pound state transition, but the above discussion captures the essence of how
such a system can be designed.

Now look at the Compound class. The Compound class has all its states as
its instance variables. These variables are instantiated when the compound
object is created (see its constructor), not the first time when they are needed.

DOMAIN OBJECTS 81

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 81

This process is called eager instantiation. Another approach is not to create
these state objects until the first time when they are needed, which is called
lazy instantiation. Lazy instantiation is more resource efficient because the
objects are not created before they are needed and are never created if they
are never needed. In our situation, if we take the lazy approach, the state
objects will be responsible for creating other state objects, which is against
the Expert Principle (Larman, 2005).

Expert Principle: Assign a responsibility to the class that has the
information needed to fulfill it.

If we take the lazy instantiation approach, the process() in the Fragmented
State class will appear as follows:

public void process(){
MolstructureInspector inspector � MDLCheshireMolstructureInspector
Impl.getInstance();
String[] message � null;
try{

compound.setMolstructure(inspector.combineParentFragments(
compound.getParentFragments()));

message � inspector.executeAllRules(compound.getMolstructure());
if(message !� null){

if(compound.qcedState ���� null)
compound.qcedState �� newQCedState(compound);

compound.setState(compound.qcedState);
compound.setStateDescription(message);

}
else{

if(compound.validState ���� null)
compound.validState �� newValidState(compound);

compound.setState(compound.validState);
}

}catch(ChemistryRulesException e){
if(compound.invalidState ���� null)

compound.invalidState �� new InvalidState(compound);
compound.setState(compound.invalidState);
message � new String[1];
message[0] � e.getMessage();
compound.setStateDescription(message);

}
}

The highlighted changes will be in all state classes, which is awkward.
Every design has trade-offs. We use eager instantiation to trade resource

efficiency for clarity. Which approach to take should be determined on a
case-by-case basis.

82 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 82

The other instance variables in the Compound class include a Molstructure
object, a list of salt structures, a list of parent structures, a String array that
contains information about what has been changed or what the problems are
in the structure as a result of the chemistry rules checking, and a CompoundState
object representing the current state of the Compound object. The process()
method in the Compound object simply delegates the call to its current state
object, which knows how to process the Compound object depending on its
current state as described above.

package com.abcpharma.crs.entity;

import java.util.*;

import com.abcpharma.crs.Molstructure.*;

public class Compound {

private Molstructure structure � null;
private List salts � new ArrayList();
private List parents � new ArrayList();

private String[] stateDescription � null;

CompoundState createdState � null;
CompoundState fragmentedState � null;
CompoundState correctedState � null;
CompoundState validState � null;
CompoundState invalidState � null;
CompoundState saltAttachedState � null;
CompoundState readyForRegistrationState � null;
CompoundState state � createdState;

public Compound(){
createdState � new CreatedState(this);
fragmentedState � new FragmentedState(this);
correctedState � new CorrectedState(this);
validState � new ValidState(this);
invalidState � new InvalidState(this);
saltAttachedState � new SaltAttachedState(this);
readyForRegistrationState � new ReadyForRegistrationState(this);

}

public Molstructure getMolstructure(){
return structure;

}

public void setMolstructure(Molstructure structure){
this.structure � structure;

}

DOMAIN OBJECTS 83

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 83

public List getSaltFragments(){
return Collections.unmodifiableList(salts);

}

public Iterator getSaltIterator(){
return salts.iterator();

}

public void addSalt(StructureFragment fragment) throws IllegalArgumentException{
if(!fragment.getRole().equals(StructureFragment.SALT_ROLE))

throw new IllegalArgumentException(“Fragment is not a salt.”);
salts.add(fragment);

}

public void removeSalt(StructureFragment fragment) throws IllegalArgument
Exception{

if(!fragment.getRole().equals(StructureFragment.SALT_ROLE))
throw new IllegalArgumentException(“Fragment is not a salt.”);

salts.remove(fragment);
}

public List getParentFragments(){
return Collections.unmodifiableList(parents);

}

public Iterator getParentIterator(){
return parents.iterator();

}

public void addParent(StructureFragment fragment) throws IllegalArgument Exception{
if(!fragment.getRole().equals(StructureFragment.PARENT_ROLE))

throw new IllegalArgumentException(“Fragment is not a parent.”);
parents.add(fragment);

}

public void removeParent(StructureFragment fragment) throws IllegalArgument Exception{
if(!fragment.getRole().equals(StructureFragment.PARENT_ROLE))

throw new IllegalArgumentException(“Fragment is not a parent.”);
parents.remove(fragment);

}

void setState(CompoundState state){
this.state � state;

}

void setStateDescription(String[] stateDescription){
this.stateDescription � stateDescription;

}

84 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 84

public String[] getStateDescription(){
return stateDescription;

}

public void process(){
state.process();

}

}

At this point, the original single object, Compound in the conceptual model in
Chapter 10, has evolved to a design model with eight classes using the GoF
State Pattern. We used the conceptual model to inspire design ideas. However,
object design is different from conceptual modeling in that it introduces addi-
tional layers of indirections to reduce coupling and increase cohesion.

The above design using The State Pattern addresses a simple one-way traf-
fic scenario of the flow—the process can only go forward, not backward. In
reality, the chemist may want to undo and roll back a step either because of
human mistakes or the system did something that is against the chemist’s
intention. “Undo” is a common functionality in many productivity software
systems, such as Microsoft Word. Fortunately, there is another GoF design
pattern called Memento, which provides an elegant solution.

To perform undo, the system has to remember the states of the objects
along the way in the process. Memento is the object that stores previous
states on behalf of the subject object and allows the subject object to recover
its previous states when necessary.

The Memento Pattern: Without violating encapsulation, capture and
externalize an object’s state so that the object can be restored to this
state later.

Suppose the compound state transition only involves structure changes and
undo only needs to recover the structure and the compound state. Figure 12.6
is the class diagram of the Memento Pattern for the Compound object.

The source code of CompoundMemento class is as follows:

package com.abcpharma.crs;

import com.abcpharma.crs.Molstructure.*;

class CompoundMemento {
private Molstructure structure � null;
private CompoundState state � null;

void setState(Molstructure structure, CompoundState state){

DOMAIN OBJECTS 85

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 85

this.structure � structure;
this.state � state;

}

Molstructure getStructure(){
return structure;

}

CompoundState getState(){
return state;

}
}

The modified Compound class has three additional methods: createMemento(),
setMemento(), and undo(). They are highlighted in the following source code:

package com.abcpharma.crs.entity;

import java.util.*;

import com.abcpharma.crs.Molstructure.*;

86 BUSINESS LAYER

Figure 12.6 The class diagram of the Memento Pattern for the Compound object.

Compound

process()
getStructure()
createMememto()
setMemento()

MolStructure

format : String
value : String
formula : String
weight : float
chemicalName : String
pka : float
logP : float
logD : float

1

CompoundState

process()

CompoundMemento

setState()
getState()

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 86

public class Compound {
private Molstructure structure � null;
private List salts � new ArrayList();
private List parents � new ArrayList();

private String[] stateDescription � null;

CompoundState createdState � null;
CompoundState fragmentedState � null;
CompoundState correctedState � null;
CompoundState validState � null;
CompoundState invalidState � null;
CompoundState saltAttachedState � null;
CompoundState readyForRegistrationState � null;
CompoundState state � createdState;

public Compound(){
createdState � new CreatedState(this);
fragmentedState � new FragmentedState(this);
correctedState � new CorrectedState(this);
validState � new ValidState(this);
invalidState � new InvalidState(this);
saltAttachedState � new SaltAttachedState(this);
readyForRegistrationState � new ReadyForRegistrationState(this);

}

public Molstructure getMolstructure(){
return structure;

}

public void setMolstructure(Molstructure structure){
this.structure � structure;

}

public List getSaltFragments(){
return Collections.unmodifiableList(salts);

}

public Iterator getSaltIterator(){
return salts.iterator();

}

public void addSalt(StructureFragment fragment) throws IllegalArgument
Exception{

if(!fragment.getRole().equals(StructureFragment.SALT_ROLE))
throw new IllegalArgumentException(“Fragment is not a salt.”);

salts.add(fragment);
}

DOMAIN OBJECTS 87

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 87

public void removeSalt(StructureFragment fragment) throws IllegalArgument
Exception{

if(!fragment.getRole().equals(StructureFragment.SALT_ROLE))
throw new IllegalArgumentException(“Fragment is not a salt.”);

salts.remove(fragment);
}

public List getParentFragments(){
return Collections.unmodifiableList(parents);

}

public Iterator getParentIterator(){
return parents.iterator();

}

public void addParent(StructureFragment fragment) throws IllegalArgument
Exception{

if(!fragment.getRole().equals(StructureFragment.PARENT_ROLE))
throw new IllegalArgumentException(“Fragment is not a parent.”);

parents.add(fragment);
}

public void removeParent(StructureFragment fragment) throws IllegalArgument
Exception{

if(!fragment.getRole().equals(StructureFragment.PARENT_ROLE))
throw new IllegalArgumentException(“Fragment is not a parent.”);

parents.remove(fragment);
}

void setState(CompoundState state){
this.state � state;

}

void setStateDescription(String[] stateDescription){
this.stateDescription � stateDescription;

}

public String[] getStateDescription(){
return stateDescription;

}

public CompoundMemento createMemento(){
CompoundMemento memento �� new CompoundMemento();
memento.setState(structure, state);
return memento;

}

void setMemento(CompoundMemento memento){
structure �� memento.getStructure();
state �� memento.getState();

}

88 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 88

public void undo(CompoundMemento memento){
setMemento(memento);

}

public void process(){
state.process();

}
}

The createMemento() method creates and returns a CompoundMemento
object that is a snapshot of the current state of the Compound object. The
setMemento() method restores the state of the Compound object to the state
that was saved in the CompoundMemento object that is passed in. The
undo() method is called by the client of Compound object to restore
the state.

Sometimes it is necessary to perform undo multiple steps. In this case, cre-
ate a Caretaker class that holds a stack of Memento objects. If redo is desired,
then have two stacks in the Caretaker, one for undo and one for redo, and the
Memento object that is popped from the undo stack gets pushed into the redo
stack and vice versa. The code example is as follows:

package com.abcpharma.crs.entity;

import java.util.*;

public class ComoundMementoCaretaker {
private Stack undoStack � new Stack();
private Stack redoStack � new Stack();
private Compound compound � null;

public ComoundMementoCaretaker(Compound compound){
this.compound � compound;

}

public void saveState(){
undoStack.push(compound.createMemento());

}

public void undoState(){
if(undoStack.empty())

return;
CompoundMemento memento � (CompoundMemento) undoStack. pop();
compound.undo(memento);
redoStack.push(memento);

}

public void redoState(){

DOMAIN OBJECTS 89

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 89

if(redoStack.empty())
return;

CompoundMemento memento � (CompoundMemento) redoStack.pop();
compound.redo(memento);
undoStack.push(memento);

}
}

Figure 12.7 is a sequence diagram that shows undo and redo using
Memento Pattern.

90 BUSINESS LAYER

a Client : CompoundMementoCaretaker : CompoundMemento : Compound

1: saveState()

2: createMemento()

4: undoState()

6: undo(CompoundMemento)

7: getState()

8: redoState()

9: redoState()

10: redo(CompoundMemento)

11: getState()

3: setState(MolStructure)

5: undoState()

Figure 12.7 The sequence diagram of Memento Pattern.

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 90

12.2.2 Molecular Structure Object Model

Another key concept in CRS is molecular structure. A molecular structure
has the following basic attributes:

• Format: The format in which the structure is represented—Molfile,
Smiles, CXL, and so on.

• Value: The actual molecular structure represented in the specified for-
mat.

• Formula: Molecular formula—an attribute that can be derived from the
structure.

• Weight: Molecular weight—an attribute that can be derived from the
structure.

• Chemical Name: An attribute that can be derived from the structure.
• pKa: The negative logarithm of the acid dissociation constant—an

attribute that can be derived from the structure.
• logP: Octanol–water partition coefficient—an attribute that can be

derived from the structure.
• logD: Octanol–water distribution coefficient—an attribute that can be

derived from the structure.

The source code of the Molstructure class is as follows:

package com.abcpharma.crs.Molstructure;

public class Molstructure {
public static final String MOLFILE � “molfile”;
public static final String SMILES � “smiles”;
public static final String CDX � “cdx”;
public static final String CDXML � “cdxml”;

private String format;
private String value;
private String formula;
private float weight;
private String chemicalName;
private float pka;
private float logP;
private float logD;

public Molstructure(String format, String value) throws IllegalArgumentException{
if(!format.equals(MOLFILE)

&& !format.equals(SMILES)
&& !format.equals(CDX)
&& !format.equals(CDXML)

DOMAIN OBJECTS 91

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 91

)
throw new IllegalArgumentException(“Structure format “ � format � “
not supported.”);
this.format � format;
this.value � value;

}

public String getFormat(){
return format;

}

public void setFormat(String format){
this.format � format;

}

public String getValue(){
return value;

}

public void setValue(String value){
this.value � value;

}

public String getFormula(){
return formula;

}

public float getWeight(){
return weight;

}

public String getChemicalName(){
return chemicalName;

}

public float getLogP(){
return logP;

}

public float getLogD(){
return logD;

}

public float getPka(){
return pka;

}

private String calculateFormula(){
if(format.equals(MOLFILE))

return “formula calculated from molfile”;

92 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 92

if(format.equals(SMILES))
return “formula calculated from smiles”;

return null;
}

}

Molstructure is similar to the Quantity object described in Martin Fowler’s
Analysis Patterns book (Fowler, 1996) in that it has a format (unit) and a value.

Some compound registration systems require that not only the combined
molecular structure gets registered, but its structure components or fragments
get registered as well. By “combined” structure, I mean isomer mixture or a
structure with salt(s). These fragments can be either parents or salts. The
advantage of storing structure components is that some research activity may
only care about parent structures. Here we introduce another concept—
Structure Fragment. A Structure Fragment has all of the attributes that a
molecular structure has plus two more attributes:

• Role: The role of the fragment in the combined molecular structure. It
can take two possible values: parent or salt.

• Coefficient: The relative count of the fragment in the combined molecu-
lar structure.

We can make StructureFragment a subclass of Molstructure as in
Figure 12.8.

DOMAIN OBJECTS 93

Figure 12.8 The class diagram of Molstructure and StructureFragment.

Molstructure

format : String
value : String
formula : String
weight : float
chemicalName : String
pka : float
logP : float
logD : float

StructureFragment

role : String
coefficient : int

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 93

The source code of the StructureFragment class is as follows:

package com.abcpharma.crs.molstructure;

public class StructureFragment extends Molstructure {
public static final String PARENT_ROLE � “parent”;
public static final String SALT_ROLE � “salt”;

private String role;
private int coefficient;

public StructureFragment(String format, String value, String role, int coefficient)throws
IllegalArgumentException{
super(format, value);
setRole(role);
setCoefficient(coefficient);

}

public String getRole(){
return role;

}

public void setRole(String role) throws IllegalArgumentException{
if(!role.equals(PARENT_ROLE) && !role.equals(SALT_ROLE)){

throw new IllegalArgumentException(“Illegal fragment role: “� role);
}
this.role � role;

}

public int getCoefficient(){
return coefficient;

}

public void setCoefficient(int coefficient){
this.coefficient � coefficient;

}
}

Some systems support various structure formats and need to convert the struc-
tures from one format to another from time to time. Although this may not be
required by a registration system, it could be very useful in other types of
chemical information systems such as molecular modeling. The good news is
that some tools from the major chemical informatics software vendors can do
the conversions. In this situation, commercial solutions make sense because
you do not want to reinvent the wheel.

However, when you start developing your system, you may not know
what tool you will end up using or you may pick one tool today and switch to

94 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 94

a different tool in the future for one reason or another. These tools may be
developed in different technologies and may have different APIs. Still you
want to build in the flexibility to insulate vendor specifics so that the system
under development is not affected when the tools change. This result can be
achieved by leveraging the power of abstraction—separation of interface
from implementation. Designing the system to insulate itself from vendor
specifics is an important subject of this book and will be touched on again in
other chapters.

In Chapter 3, we talked about the Yin and Yang of an object. The Yang rep-
resents the external view of the object—behaviors that an outsider sees. It is
encoded by the interface of the object. When designing an object’s interface,
think about what the clients of the object would expect: easy to understand
and simple to use.

The interface of a Molfile–Smiles converter is as follows:

package com.abcpharma.crs.molstructure;

public interface MolfileSmilesConverter {
public String molfileToSmiles(String molfile) throws MolstructureConversion
Exception;
public String smilesToMolfile(String smiles) throws MolstructureConversion
Exception;

}

It defines two simple methods. The molfileToSmiles() method converts a
Molfile string to a Smiles string. The smilesToMolfile() method does the
opposite—converting a Smiles string to a Molfile string. They both throw
MolstructureConversionException to flag conversion failures. The failure
can be caused by exceptions from the vendor implementation or from the
CRS code.

The vendor tools that you end up using may have completely different
APIs. But you should not care when you design the interfaces of your system.
Remember, the vendor API may not be the best design, or at least it may not
be ideal for your system. All you need to care about is what makes the most
sense to the clients that use the structure conversion API in your system. To do
the conversion between Molfile and Smiles, the above API is the simplest.

Now assume you want to use the Vendor A solution. But the Vendor A API
is different from MolfileSmilesConverter—the names of the methods may
be different, parameter sets might be different, and the exceptions might be
different too. How do you stick to your API on which the rest of your system
is already dependent while leveraging a third-party solution? The GoF
Design Patterns book offers an elegant solution: the Adapter (Gamma et al.,
1995).

DOMAIN OBJECTS 95

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 95

The Adapter Pattern converts the interface of a class into another
interface that the clients expect. Adapter lets classes work together
that could not otherwise because of incompatible interfaces.

A code example of the Adapter Pattern that leverages the Vendor A solu-
tion for Mofile–Smiles conversion and still adapts to the MolfileSmiles
Converter interface is as follows:

package com.abcpharma.crs.molstructure;

public class MolfileSmilesVendorAAdapter implements MolfileSmilesConverter {
private static final MolfileSmilesVendorAAdapter instance � new MolfileSmiles
VendorAAdapter();

private MolfileSmilesVendorAAdapter(){
}

public static MolfileSmilesVendorAAdapter getInstance(){
return instance;

}

public String molfileToSmiles(String molfile) throws MolstructureConversion
Exception{

try{
Call Vendor A API to convert molfile to smiles

}catch(VendorAException ex){
throw new MolstructureConversionException(ex.getMessage());
}

return “Vendor A smiles”;
}

public String smilesToMolfile(String smiles) throws MolstructureConversion
Exception{

try{
Call Vendor A API to convert smiles to molfile

}catch(VendorAException ex){
throw new MolstructureConversionException(ex.getMessage());

}

return “Vendor A molfile”;
}

}

The molfileToSmiles() and smilesToMofile() methods delegate the con-
version calls to Vendor A APIs to do the work and therefore insulate the client
of MolfileSmilesConverter from vendor implementations. The client of
MolfileSmilesConverter API has no knowledge of who actually does the

96 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 96

work and is completely decoupled from vendor implementations. If someday
in the future your company wants to switch to the Vendor B solution for some
reason, all you have to do is write another Adapter that leverages the Vendor
B solution and yet hides Vendor B APIs from the clients:

package com.abcpharma.crs.molstructure;

public class MolfileSmilesVendorBAdapter {
private static final MolfileSmilesVendorBAdapter instance � new MolfileSmiles
VendorBAdapter();

private MolfileSmilesVendorBAdapter(){
}

public static MolfileSmilesVendorBAdapter getInstance(){
return instance;

}

public String molfileToSmiles(String molfile) throws MolstructureConversion
Exception{

try{
Call Vendor B API to convert molfile to smiles

}catch(VendorBException ex){
throw new MolstructureConversionException(ex.getMessage());

}

return “Vendor B smiles”;
}

public String smilesToMolfile(String smiles) throws MolstructureConversion
Exception{

try{
Call Vendor B API to convert smiles to molfile

}catch(VendorBException ex){
throw new MolstructureConversionException(ex.getMessage());

}

return “Vendor B molfile”;
}

}

To truly decouple client code from vendor solutions, the vendor-specific
exception has to be handled by the adapters as well. If Vendor A API throws
exceptions that are proprietary, there must be a try–catch block surrounding
the Vender A API call that either handles it in the catch block or rethrows the
MolstructureConversionException that contains information in the vendor
exception for the client to handle. Otherwise the vendor proprietary exception

DOMAIN OBJECTS 97

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 97

has to be exposed directly to the client, which increases the coupling and
inhibits vendor insulation.

You may have noticed that both MolfileSmilesConverterAdapterA and
MolfileSmilesConverterAdapterB have a private constructor and a static
getInstance() method that returns an instance of the class. Yes, this is the GoF
Singleton Pattern (Gamma et al., 1995).

The Singleton Pattern ensures that a class has only one instance, and
it provides a global point of access to it.

The reason Singleton Pattern is used in these two classes is that only one
instance of each is needed in the entire JVM, because there is no instance vari-
able in these two classes—they are stateless. Limiting the number of objects that
can be created is a way to increase runtime efficiency and achieve good
performance because object creation and garbage collection are two of the most
expensive operations in JVM. The Singleton Pattern is implemented by creating
a private constructor—this makes sure no instance of the class can be created
outside the class itself, a static final instance of the class itself, and a public static
method that returns the instance. As the constructor is private, none of its clients
can instantiate the class directly. Instead, they have to use the public static
method getInstance() to retrieve the one and only instance of the class.

An example of a client class of the above Molfile–Smiles conversion API
is as follows:

package com.abcpharma.crs.Molstructure;

public class AClientOfMolfileSmilesConverter {
private MolfileSmilesConverter msConverter � null;

public AClientOfMolfileSmilesConverter(MolfileSmilesConverter msConverter){
this.msConverter � msConverter;

}

public void aMethod(String molfile){
//do something

try{
String smiles � msConverter.molfileToSmiles(molfile);

}catch(MolstructureConversionException ex){
ex.printStackTrace();

}

//do something
}

}

98 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 98

The constructor takes a MolfileSmilesConverter object as the argument
and saves it into an instance variable. Its business method aMethod() calls the
MolfileSmilesConverter object to convert a molfile to smiles. Because
AClientOfMolfileSmilesConverter class uses the base type MolfileSmiles-
Converter, it is not coupled with any implementation of MolfileSmiles-
Converter interface. It is rather dependent on an abstraction—the
MolfileSmilesConverter interface. Depending on abstraction instead of
implementation is a good practice in object-oriented design that makes the
system easy to maintain and change. This is called The Dependency
Inversion Principle (DIP) (Martin, 2003). With DIP, when implementation of
MolfileSmilesConverter changes, AClientOfMolfileSmilesConverter does
not need to change at all.

The Dependency Inversion Principle:

1. High-level modules should not depend on low-level modules. Both
should depend on abstractions.

2. Abstractions should not depend on details. Details should depend
on abstractions.

Figure 12.9 illustrates the design of the MolfileSmilesConverter framework.
Figure 12.10 is the sequence diagram that illustrates how the objects work

together in the above framework. You may wonder how the system determines

DOMAIN OBJECTS 99

Figure 12.9 The design of the MolfileSmilesConverter framework using the Adapter Pattern.

MolfileSmilesVendorAAdapter

VendorAMolfileSmilesAPI

MolfileSmilesVendorBAdapter

VendorBMolfileSmilesAPI

AClientOfMolfileSmilesConverter

msConverter : MolfileSmilesConverter

aMethod()
MolfileSmilesConverter

molfileToSmiles()
smilesToMolfile()

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 99

which MolfileSmilesConverter implementation to use. The goal is to not change
and recompile the code when switching from one implementation to another.
There are several ways to achieve this goal. One way is to make this config-
urable in an application configuration file and use an application initialization
object to read in the configurations from the file and set it as an application prop-
erty. The configuration file can even include business rules: for example, if A is
true, use MolfileSmilesVendorAAdapter; else if B is true, use Molfile
SmilesVendorBAdapter. In Figure 12.10, the application CRS determines that
the system should use Vendor A implementation. It gets the singleton instance
from its static factory method—getInstance()—creates an instance of AClient
OfMolfileSmilesConverter, and calls its aMethod(). Because the Molfile-
SmilesConverter is set to MolfileSmilesVendorAAdapter in the constructor of
AClientOfMolfileSmilesConverter, the aMethod() invokes the smilesToMolfile
implementation of MolfileSmilesVendorAAdapter at runtime. AClient
OfMolfileSmilesConverter has no knowledge of which implementation it uses
at compile time. This process is called dynamic binding or late binding.

The above design reduces coupling in two ways. The Adapter Pattern
decouples the system from vendor APIs. The Dependency Inversion Principle
further decouples the client of MolfileSmilesConverter from its implementa-
tions—the adapters. Low coupling makes the system easy to change; adding
adapters for new vendors does not need to change any existing code.
Therefore, the system is Open for Extensions and Closed for Changes.

The same approach can be used for property calculations, because you
may have multiple choices and each one has different APIs. It is possible that
today you choose one vendor solution to do the work. Some time in the future
you may switch to a different vendor for the purpose of cost savings, better
algorithm, performance, or reliability. Or you may face a harder choice—the
vendor you chose in the past is going out of business. The solution we
described above for Molfile–Smiles conversion keeps your system closed for

100 BUSINESS LAYER

Figure 12.10 The sequence diagram that illustrates how objects work together in the
Molfile–Smiles conversion framework.

 : CRS : AClientOfMolfileSmilesConverter : MolfileSmilesVendorAAdapter

2: create(MolfileSmilesConverter)

3: aMethod()

4: smilesToMolfile(String)

1: getInstance()

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 100

these types of changes and yet makes your system adaptive to business needs.
Figure 12.11 is the class diagram of a structure property calculator.

It must be pointed out that Figure 12.11 may not be the best design for
property calculations. When we talked about High Cohesion Principle in
Chapter 2, we said that a module should only have one reason to change. In
other words, if a module has to change, all of its methods should change
together. Otherwise the module should be broken down to smaller, more
cohesive modules so that each module can evolve independently. In the
StructurePropertyCalculator interface, there are two types of properties. One
is chemical properties such as formula and weight. The other one is physical
properties such as pKa, logP, and logD. It is very likely that you may use dif-
ferent vendor tools to calculate them. You may choose MDL tools to calcu-
late chemical properties and ACDLabs tool to calculate physical properties.
Using The Interface Segregation Principle (ISP) (Martin, 2003), we should
separate them into two interfaces (Figures 12.12 and 12.13)

The Interface-Segregation Principle: Clients should not be forced to
depend on methods that they do not use.

DOMAIN OBJECTS 101

Figure 12.11 The class diagram of structure property calculator.

StructurePropertyCalculator

calculateFormula()
calculateWeight()

calculateChemicalName()
calculatePka()

calculateLogP()
calculateLogD()

CRS

VendorAPropertyCalculatorApapter

VendorAPropertyCalculator

VendorBPropertyCalculatorAdapter

VendorBPropertyCalculator

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 101

102 BUSINESS LAYER

Figure 12.12 The class diagram of a ChemicalPropertyCalculator.

ChemicalPropertyCalculator

calculateFormula()
calculateWeight()

CRS

VendorAPropertyCalculatorAdapter

VendorAPropertyCalculator

VendorBPropertyCalculatorAdapter

VendorBPropertyCalculator

Figure 12.13 The class diagram of a PhysicalPropertyCalculator.

PhysicalPropertyCalculator

calculatePka()
calculateLogP()
calculateLogD()

VendorCPropertyCalculatorAdapter

VendorCPropertyCalculator

VendorDPropertyCalculatorAdapater

VendorDPropertyCalculator

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 102

Figures 12.12 and 12.13 increase the cohesion of the interface by further
limiting the responsibilities of each, and therefore, each one can evolve more
“freely.”

12.2.3 The Chemical Entity Object Design Model

To increase productivity, a registration system should be able to register a
compound library as a single transaction. Usually a compound library con-
sists of a group of compounds that are synthesized using parallel synthesis,
combinatorial chemistry, or compounds that are acquired from commercial
or academic sources. From the compound registration perspective, a library
can also be a group of compounds that share some common attributes such as
a research project they are synthesized for, the chemist who synthesized
them, the creation date, and the notebook information.

A compound library contains one to many compound samples. In other
words, library and compound sample form a “Has-A” relationship. At the
same time, library and compound samples also share some common attrib-
utes such as project, chemist, and notebook. Therefore, they should have a
common base class—we call it ChemicalEntity. In Figure 12.14, abstract
class ChemicalEntity owns properties that are common to ChemicalLibrary
and ChemicalSample, such as chemist, project, creation date, and notebook.
Both ChemicalLibrary and ChemicalSample classes extend ChemicalEntity.
The association line from ChemicalLibrary to ChemicalEntity indicates that
a ChemicalLibrary is a composite of other chemical entities. This design is
described as the Composite Pattern in the GoF book (Gamma et al., 1995).
The benefit of the Composite Pattern is that component and composite share
the same interfaces and therefore their clients can invoke them transparently
without knowing whether they are dealing with a component or a composite
at run time.

The Composite Pattern: It allows you to compose objects into tree struc-
tures to represent part–whole hierarchies. Composite lets clients
treat individual objects and compositions of objects uniformly.

The source code of ChemicalEntity class is as follows:

package com.abcpharma.crs.entity;

import java.util.*;

public abstract class ChemicalEntity {
private int id;
private Calendar creationDate � null;

DOMAIN OBJECTS 103

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 103

private Notebook notebook � null;

public ChemicalEntity(){

}

public ChemicalEntity(int id, Calendar creationDate){
this.id � id;
this.creationDate � creationDate;

}

104 BUSINESS LAYER

MolStructure

format : String
value : String
formula : String
weight : float
chemicalName : String
pka : float
logP : float
logD : float

Compound

process()
getStructure()

11

ChemicalSample

page : String

getSampleIdentifier()
1..n1..n

realizes

SampleIdentifier

1

1

1

1

ResearchProject

id : int
name : String
description : String
status : char

Chemist

id : int
lastname : String
firstname : String
initial : String
siteCode : String
phone : String
email : String
streetAddress1 : String
streetAddress2 : String
city : String
country : String
postalCode : String
title : String

ChemicalLibrary

Notebook

notebook : String
page : String
reference : String

ChemicalEntity

id
creationDate

process()
add()
remove()
get()
getIterator()

is-synthesized-by

is-synthesized-for

consists-of

is-specified-by described-by

Figure 12.14 The class diagram of ChemicalLibrary–ChemicalSample composite hierarchy.

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 104

public int getID(){
return id;

}

public void setID(int id){
this.id � id;

}

public Calendar getCreationDate(){
return creationDate;

}

public void setCreationDate(Calendar creationDate){
this.creationDate � creationDate;

}

public Notebook getNotebookInfo(){
return notebook;

}

public void setNotebook(Notebook notebook){
this.notebook � notebook;

}

public void add(ChemicalEntity entity){
throw new UnsupportedOperationException();

}

public void remove(ChemicalEntity entity){
throw new UnsupportedOperationException();

}

public ChemicalEntity get(int index){
throw new UnsupportedOperationException();

}

public Iterator getIterator(){
throw new UnsupportedOperationException();

}

public abstract void process();
}

Notice that the add(), get(), remove(), and getIterator() methods do nothing
but throw UnsupportedOperationException. This is because these operations
are not available in the leaf objects in the composite hierarchy such as
ChemicalSample. They only make sense in the composite objects such as
ChemicalLibrary. Defining these methods in the component class makes the
design compliant with The Liskov Substitution Principle (Martin, 2003).

DOMAIN OBJECTS 105

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 105

The Liskov Substitution Principle: Subtype must be substitutable for
the base types.

If we do not include these methods in the component class and leave them
to the composite class only, the leaf and the composite will have different
interfaces and the client has to determine which type it is dealing with at run-
time and downcast the object to composite in order to call the aggregation
operations such as add(), remove(), get(), and getIterator(). Also notice that
the process() method is defined as abstract and is left to the composite and
leaf classes to implement.

The ChemicalSample class is implemented as the leaf in the Composite
Pattern:

package com.abcpharma.crs.entity;

import java.util.*;

public class ChemicalSample extends ChemicalEntity {

private Compound compound � null;

public ChemicalSample() {

}

public ChemicalSample(int id, Calendar creationDate, Compound compound) {
super (id, creationDate);
this.compound � compound;

}

public void process() {
compound.process();

}
}

Notice how the process() method is implemented—it calls the process()
method on the Compound object, which is a member variable of the
ChemicalSample object. As described at the beginning of this chapter, the
Compound object is a finite state machine. Its process() method is imple-
mented based on what state the Compound object is in and is responsible for
the state transition of the Compound object.

The ChemicalLibrary class is implemented as the composite in the
Composite Pattern:

package com.abcpharma.crs.entity;

import java.util.*;

106 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 106

public class ChemicalLibrary extends ChemicalEntity {
private List elements � new ArrayList();

public ChemicalLibrary(){

}

public ChemicalLibrary(int id, Calendar creationDate){
super(id, creationDate);

}

public void add(ChemicalEntity entity){
elements.add(entity);

}

public void remove(ChemicalEntity entity){
elements.remove(entity);

}

public ChemicalEntity get(int index){
return (ChemicalEntity) elements.get(index);

}

public Iterator getIterator(){
return elements.iterator();

}

public void process() {
for(int i � 0; i < elements.size(); i��){

((ChemicalEntity) elements.get(i)).process();
}

}
}

As ChemicalLibrary is a composite class, it implements all aggregation
methods—add(), get(), remove(), and getIterator(). Its process() method
iterates through all of its components, which in this case are the
ChemicalSample objects, and calls their process() method. When you reg-
ister a library with multiple compounds, each compound goes through its
lifecycle depending on the quality of its structure. If the structure is perfect
according to the chemistry conventions, it becomes ready to be registered
immediately. Otherwise, it has to go through other states such as Invalid
State, Corrected State, and Valid State before it becomes ready to be
registered. The GUI display strategy should be based on the compound
lifecycle as well. For corrected and invalid compounds, they may require
the chemist’s intervention for manual corrections. Therefore, they should

DOMAIN OBJECTS 107

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 107

be reported to the chemist before they become valid and ready to be
registered.

12.2.4 The Chemical Lab Sample Identifier

The lab sample identifier (LSI) is an important piece of information for
medicinal chemists. They use LSI as a compound identifier to commu-
nicate with their peer chemists and biologists who perform assay screen-
ing. LSI is also used to track the compound when it goes to preclinical
development.

Although LSI is a unique identifier of compound samples, it is worth not-
ing that LSI should not be used as the primary key of the chemical sample in
the compound database because it has business meanings and its value may
change. If a compound structure was registered wrong and has to be cor-
rected, the uniqueness checking may return a different result and the LSI may
have to change to maintain data integrity. For the same reason, LSI should not
be used as a reference (foreign key) to the compound data in other databases
such as the assay screening database. The primary key, on the other hand, is
usually a sequence number that has no business meanings and never changes.
Using LSI as a primary key or as a foreign key increases data maintenance
costs and should be avoided if possible.

LSI usually is composed of five parts:

• Prefix—a letter that specifies the source or type of the chemical sample.
• Base—specifies the parent structure in the compound.
• Form—for a given parent, specifies different salt forms, different radio

isomers, or different formulations.
• Check—a checksum that is derived from the Prefix, Base, and Form

combination.
• Batch—for a given Prefix, Base, and Form combination, specifies the

actual physical sample of the compound that is synthesized in a specific
chemical reaction.

Different organizations may have slightly different LSI representations,
but the basic structure should be similar.

In this chapter, we assume the LSI takes the form of

P-XXXXXXXXX-XXXCXXX

where P is the Prefix, XXXXXXXXX is the Base, XXX is the Form, C is the
Check, and XXX is the Batch.

108 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 108

Because each chemical sample has a molecule structure that represents its
chemical characteristics, and each compound has a parent that represents
its core structure, there are also three types of LSI—Parent ID, Compound
ID, and Sample ID.

• Parent ID—combination of Prefix and Base. Uniquely identifies a parent
structure.

• Compound ID—combination of Parent ID, Form, and Check. Uniquely
identifies the complete structure, including salt, radio isomer, or formu-
lation.

• Sample ID—combination of Compound ID and Batch. Uniquely identi-
fies the physical sample.

Based on the above analysis, we come to the conclusion that Sample ID
and Compound ID form a “Has-A” relationship. The same is true between
Compound ID and Parent ID. At the same time, Compound ID and Parent ID
also form an “Is-A” relationship in that both of them have a Prefix and a Base
as their attributes. The same is true between Sample ID and Compound ID in
that they both have Parent ID, Form, and Check. This type of relationship is
similar to the ChemicalSample–ChemicalLibrary relationship and can be
represented by the GoF Composite Pattern (Gamma et al., 1995) as shown in
Figure 12.15.

It is a good practice to represent LSI as objects rather than as strings because
LSI is a data structure that has attributes and behaviors. However, creating
objects is an expensive operation. There will be times when you want to sim-
ply treat the LSI as a string and parse its constituents. This is the reason
behind creating a utility class called LsiUtil. All of its methods are static. All
LSI objects use LsiUtil to parse LSI strings.

The source code of LsiUtil is as follows, and you will see later how
ParentID, CompoundID, and SampleID objects use it to parse LSI string to
get its constituents in their reset() methods:

package com.abcpharma.crs.lsi;

public class LsiUtil {

public static String getPrefix(String input)
throws IllegalArgumentException {

if (input !� null && input.length() > Lsi.PREFIX_LENGTH) {
return input.substring(0, Lsi.PREFIX_LENGTH);

} else
throw new IllegalArgumentException(

“The input parameter does not have a valid prefix.”);
}

DOMAIN OBJECTS 109

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 109

public static String getBase(String input) throws IllegalArgumentException {
if (input !� null && input.length() >� Lsi.PARENTID_LENGTH) {

return input.substring(Lsi.PREFIX_LENGTH � 1,
Lsi.PARENTID_LENGTH);

} else
throw new IllegalArgumentException(

“The input parameter does not have a valid
base.”);

}

110 BUSINESS LAYER

Figure 12.15 The LSI class diagram.

Lsi

setPrefix()
setBase()
setForm()
setCheck()
setBatch()
getPrefix()
getBase()
getForm()
getCheck()
getBatch()
getParentIDString()
getCompoundIDString()
getSampleIDString()
reset()

CompositeLsi

setComponent()
getComponent()

1

ParentID

prefix : char
base : Sting

CompoundID

form : String
check : char

getParentID()

SampleID

batch : String

getCompoundID()

LsiUtil

getPrefix()
getBase()
getForm()
getCheck()
getBatch()

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 110

public static String getForm(String input) throws IllegalArgumentException {
if (input !� null && input.length() >� Lsi.COMPOUNDID_LENGTH) {

return input.substring(Lsi.PARENTID_LENGTH � 1,
Lsi.COMPOUNDID_LENGTH - 1);

} else
throw new IllegalArgumentException(

“The input parameter does not have a valid
form.”);

}

public static char getCheck(String input) throws IllegalArgumentException {
if (input !� null && input.length() >� Lsi.COMPOUNDID_LENGTH) {

return input.charAt(Lsi.PARENTID_LENGTH � 1 �Lsi. FORM_
LENGTH);

} else
throw new IllegalArgumentException(

“The input parameter does not have a valid
checksum.”);

}

public static String getBatch(String input) throws IllegalArgumentException {
if (input !� null && input.length() �� Lsi.SAMPLEID_LENGTH) {

return input.substring(Lsi.COMPOUNDID_LENGTH,
Lsi.SAMPLEID_LENGTH);

} else
throw new IllegalArgumentException(

“The input parameter does not have a valid
batch.”);

}

public static String getParentIDString(String input)
throws IllegalArgumentException {

if (input !� null && input.length() >� Lsi.PARENTID_LENGTH) {
return input.substring(0, Lsi.PARENTID_LENGTH);

} else
throw new IllegalArgumentException(

“The input parameter does not have a valid
parent id.”);

}

public static String getCompoundIDString(String input)
throws IllegalArgumentException {

if (input !� null && input.length() >� Lsi.COMPOUNDID_LENGTH) {
return input.substring(0, Lsi.COMPOUNDID_LENGTH);

} else
throw new IllegalArgumentException(

“The input parameter does not have a valid
compound id.”);

DOMAIN OBJECTS 111

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 111

}

public static String getSampleIDString(String input)
throws IllegalArgumentException {

if (input !� null && input.length() �� Lsi.SAMPLEID_LENGTH) {
return input;

} else
throw new IllegalArgumentException(

“The input parameter does not have a valid
sample id.”);

}
}

At the very top of Figure 12.15 is an abstract class Lsi. Lsi is the base class
of all concrete Lsi classes—Parent ID, Compound ID and Sample ID. All of
its methods are declared abstract. It defines common interfaces of the com-
ponent and composite in the Lsi class hierarchy. Parent ID is the smallest pos-
sible unit and therefore is a component. Both Compound ID and Sample ID
can have another type of Lsi as a component and therefore are composites.

The source code of the abstract base class Lsi is as follows:

package com.abcpharma.crs.lsi;

public abstract class Lsi implements Cloneable {

public static final int PREFIX_LENGTH � 1;

public static final int BASE_LENGTH � 9;

public static final int FORM_LENGTH � 3;

public static final int CHECK_LENGTH � 1;

public static final int BATCH_LENGTH � 3;

public static final int PARENTID_LENGTH � PREFIX_LENGTH � 1 �
BASE_LENGTH;

public static final int COMPOUNDID_LENGTH � PARENTID_LENGTH � 1
� FORM_LENGTH � CHECK_LENGTH;

public static final int SAMPLEID_LENGTH � COMPOUNDID_LENGTH �
BATCH_LENGTH;

public abstract Object clone();

public String toString() {

112 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 112

StringBuffer buffer � new StringBuffer(SAMPLEID_LENGTH);
buffer.append(getPrefix()).append(‘-’).append(getBase());
try {

String form � getForm();
char check � getCheck();
buffer.append(‘-’).append(form).append(check);
buffer.append(getBatch());

} catch (UnsupportedOperationException ex) {
ex.printStackTrace();

}
return buffer.toString();

}

public int hashCode() {
return toString().hashCode();

}

public boolean equals(Object obj) {
if (obj �� null) {

return false;
}

if (obj �� this) {
return true;

}

if (obj.getClass() !� this.getClass()) {
return false;

}

return obj.toString().equals(this.toString());
}

abstract void reset(String input);

protected void setComponent(Lsi lsi) throws UnsupportedOperationException {
throw new UnsupportedOperationException(

“AbstractLSI object does not have component”);
}

protected Lsi getComponent() throws UnsupportedOperationException {
throw new UnsupportedOperationException(

“AbstractLSI object does not have component”);
}

public abstract String getPrefix();

public abstract String getBase();

public abstract String getForm() throws IllegalArgumentException;

DOMAIN OBJECTS 113

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 113

public abstract char getCheck() throws UnsupportedOperationException;

public abstract String getBatch() throws UnsupportedOperationException;

public abstract String getParentIDString();

public abstract String getCompoundIDString()
throws UnsupportedOperationException;

public abstract String getSampleIDString()
throws UnsupportedOperationException;

protected abstract void setPrefix(String prefix);

protected abstract void setBase(String base);

protected abstract void setForm(String form)
throws UnsupportedOperationException;

protected abstract void setCheck(char check)
throws UnsupportedOperationException;

protected abstract void setBatch(String batch)
throws UnsupportedOperationException;

}

The Lsi class first defines some constants (static final variables), the lengths
of each component of the LSI objects. We use these “global”constants to
parse the input of the various methods in the Lsi class library instead of hard
coding them in each and every parsing logic. A better approach is to ready
these constants from a configuration file. The Lsi class provides implementa-
tions of Java canonical methods such has equals(), toString(), and
hashCode() and declares getters and setters of LSI elements, but they are left
to the concrete classes to implement.

ParentID is the smallest unit of LSI. The source code of the ParentID class
is as follows:

package com.abcpharma.crs.lsi;

public class ParentID extends Lsi {
private String prefix � null;

private String base � null;

ParentID(String input) {
reset(input);

}

114 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 114

public Object clone() {
return new ParentID(toString());

}

public String getPrefix() {
return prefix;

}

public String getBase() {
return base;

}

public String getForm() throws UnsupportedOperationException {
throw new UnsupportedOperationException(“A ParentID object has no Form”);

}

public char getCheck() throws UnsupportedOperationException {
throw new UnsupportedOperationException(

“A ParentID object has no Check”);
}

public String getBatch() throws UnsupportedOperationException {
throw new UnsupportedOperationException(

“A ParentID object has no Batch”);
}

public String getParentIDString() {
return toString();

}

public String getCompoundIDString() throws UnsupportedOperationException {
throw new UnsupportedOperationException(

“ParentID.getCompoundIDString() not supported”);
}

public String getSampleIDString() throws UnsupportedOperationException {
throw new UnsupportedOperationException(

“ParentID.getSampleIDString() not supported”);
}

void reset(String input) {
setPrefix(LsiUtil.getPrefix(input));
setBase(LsiUtil.getBase(input));

}

protected void setPrefix(String prefix) {
this.prefix � prefix;

}

DOMAIN OBJECTS 115

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 115

protected void setBase(String base) {
this.base � base;

}

protected void setForm(String form) throws UnsupportedOperationException {
throw new UnsupportedOperationException(“A ParentID object has no Form”);

}

protected void setCheck(char check) throws UnsupportedOperationException {
throw new UnsupportedOperationException(

“A ParentID object has no Check”);
}

protected void setBatch(String batch) throws UnsupportedOperationException {
throw new UnsupportedOperationException(

“A ParentID object has no Batch”);
}

}

The ParentID class has two instance variables: prefix and base. It also defines
their getters and setters. For attributes that are not part of ParentID, their get-
ters and setters simply throw UnsupportedOperationException.

CompositeLsi is an abstract superclass of CompoundID and SampleID
classes. It is the abstract composite in the LSI class hierarchy:

package com.abcpharma.crs.lsi;

public abstract class CompositeLsi extends Lsi {
private Lsi component � null;

protected void setComponent(Lsi lsi) {
component � lsi;

}

protected Lsi getComponent() {
return component;

}
}

CompositeLsi has a component as instance variable and its setter and getter.
In the case of CompoundID, the component is its ParentID. In the case of
SampleID, the component is its CompoundID.

The source code of CompoundID class is as follows:

package com.abcpharma.crs.lsi;

public class CompoundID extends CompositeLsi {

116 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 116

private char check � (char) 0;

private String form � null;

CompoundID(String input) {
reset(input);

}

public Object clone() {
return new CompoundID(toString());

}

public ParentID getParentID() {
return (ParentID) getComponent();

}

public String getPrefix() {
return getParentID().getPrefix();

}

public String getBase() {
return getParentID().getBase();

}

public String getForm() throws UnsupportedOperationException {
if (form �� null) {

throw new UnsupportedOperationException(“This LSI has no
form”);

}
return form;

}

public char getCheck() throws UnsupportedOperationException {
if (check �� (char) 0) {

throw new UnsupportedOperationException(“This LSI has no
check”);

}
return check;

}

public String getBatch() throws UnsupportedOperationException {
throw new UnsupportedOperationException(

“A CompoundID object has no Batch”);
}

public String getParentIDString() {
return getParentID().getParentIDString();

}

public String getCompoundIDString() throws UnsupportedOperationException {

DOMAIN OBJECTS 117

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 117

if (form �� null) {
throw new UnsupportedOperationException(

“This LSI has no compound ID”);
}
return toString();

}

public String getSampleIDString() throws UnsupportedOperationException {
throw new UnsupportedOperationException(

“CompoundID.getSampleIDString() not supported”);
}

void reset(String input) {
if (getComponent() �� null) {

setComponent(new ParentID(input));
} else {

getComponent().reset(input);
}

if (input.length() >� COMPOUNDID_LENGTH) {
setForm(LsiUtil.getForm(input));
setCheck(LsiUtil.getCheck(input));

}
}

protected void setPrefix(String prefix) {
getParentID().setPrefix(prefix);

}

protected void setBase(String base) {
getParentID().setBase(base);

}

protected void setForm(String form) {
this.form � form;

}

protected void setCheck(char check) {
this.check � check;

}

protected void setBatch(String batch) throws UnsupportedOperationException {
throw new UnsupportedOperationException(

“A CompoundID object has no Batch”);
}

}

The CompoundID class has two more instance variables: form and check,
and their getters and setters. For prefix and base operations, it delegates to its

118 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 118

component—the ParentID object. Because batch does not belong to
CompoundID, its getter and setter throw UnsupportedOperationException.

The last member in the LSI class hierarchy is the SampleID class:

package com.abcpharma.crs.lsi;

public class SampleID extends CompositeLsi {
private String batch � null;

SampleID(String input) {
reset(input);

}

public CompoundID getCompoundID() {
return (CompoundID) getComponent();

}

public Object clone() {
return new SampleID(toString());

}

public ParentID getParentID() {
return getCompoundID().getParentID();

}

public String getPrefix() {
return getParentID().getPrefix();

}

public String getBase() {
return getParentID().getBase();

}

public String getForm() throws UnsupportedOperationException {
return getCompoundID().getForm();

}

public char getCheck() throws UnsupportedOperationException {
return getCompoundID().getCheck();

}

public String getBatch() throws UnsupportedOperationException {
if (batch �� null) {

throw new UnsupportedOperationException(“This LSI has no batch”);
}
return batch;

}

DOMAIN OBJECTS 119

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 119

public String getParentIDString() {
return getParentID().getParentIDString();

}

public String getCompoundIDString() throws UnsupportedOperationException {
return getCompoundID().getCompoundIDString();

}

public String getSampleIDString() throws UnsupportedOperationException {
if (batch �� null) {

throw new UnsupportedOperationException(“This LSI has no
sample ID”);

}
return toString();

}

void reset(String input) {
if (getComponent() �� null) {

setComponent(new CompoundID(input));
} else {

getComponent().reset(input);
}

if (input.length() �� SAMPLEID_LENGTH) {
setBatch(LsiUtil.getBatch(input));

}
}

protected void setPrefix(String prefix) {
getParentID().setPrefix(prefix);

}

protected void setBase(String base) {
getParentID().setBase(base);

}

protected void setForm(String form) throws UnsupportedOperationException {
getCompoundID().setForm(form);

}

protected void setCheck(char check) throws UnsupportedOperationException {
getCompoundID().setCheck(check);

}

protected void setBatch(String batch) {
this.batch � batch;

}
}

You might have noticed that the constructors of the above LSI classes are
not public, which means they cannot be instantiated from outside the LSI

120 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 120

package. This restriction is because the string argument these constructors
take has to be validated to make sure it is in the right format before a valid
LSI object can be created. We assign the responsibility of instantiating LSI
objects to an LSIFactory object on behalf of LSI clients. The LSIFactory
object uses LSIValidator objects to validate the input before the LSI objects
are created on behalf of the clients.

Figure 12.16 is the class diagram that shows LSIFactory and the LSIValidator
classes:

Figure 12.16 also shows the ICheckLetterGenerator interface. The
CompoundIDValidator object uses it to make sure the compound id’s check-
sum matches what is derived from its prefix, base, and form using the check-
sum algorithm.

DOMAIN OBJECTS 121

Figure 12.16 The class diagram of LSI Factory and the LSI Validator.

ILsiValidator

validate()

PrefixValidator
BaseValidatorFormValidator

BatchValidator

ParentIDValidator SampleIDValidator

LsiFactory

createParentID()
createCompoundID()
createSampeID()
validateLsi()

AbstractLsiValidator

CompoundIDValidator

ICheckLetterGenerator

getCheck()

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 121

The source code of the ILsiFactory interface is as follows:

package com.abcpharma.crs.lsi;

public interface ILsiFactory {
public Lsi createLsi(String input)

throws IllegalArgumentException;

public Lsi createParentID(String input)
throws IllegalArgumentException;

public Lsi createCompoundID(String input)
throws IllegalArgumentException;

public Lsi createSampleID(String input)
throws IllegalArgumentException;

}

The ILsiFactory interface declares four methods for creating ParentID,
CompoundID, and SampleID objects and the Lsi object in general.

The source code of the abstract LsiFactory class is as follows:

package com.abcpharma.crs.lsi;

public abstract class LsiFactory implements ILsiFactory {
public Lsi createLsi(String input)

throws IllegalArgumentException {
switch (input.length()) {
case Lsi.PARENTID_LENGTH:

return createParentID(input);
case Lsi.COMPOUNDID_LENGTH:

return createCompoundID(input);
case Lsi.SAMPLEID_LENGTH:

return createSampleID(input);
default:

throw new IllegalArgumentException(“Invalid length of LSI “
� input);

}
}

}

The abstract factory class implements the createLsi() method. It simply
calls the createParentID(), createCompoundID(), or createSampleID()
method depending on the length of the input.

The LsiFactoryImpl class is as follows. It implements the rest of the meth-
ods in the ILsiFactory interface:

package com.abcpharma.crs.lsi;

122 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 122

import com.abcpharma.crs.lsi.validator.*;

public class LsiFactoryImpl extends LsiFactory {
private static final LsiFactoryImpl instance � new LsiFactoryImpl();

private LsiFactoryImpl() {
}

public static LsiFactoryImpl getInstance() {
return instance;

}

private void validateLsi(ILsiValidator validator, String input)
throws IllegalArgumentException {

if (input �� null) {
throw new IllegalArgumentException(“LSI is null”);

}

input � input.toUpperCase();
validator.validate(input);

}

public Lsi createParentID(String input)
throws IllegalArgumentException {

validateLsi(ParentIDValidator.getInstance(), input);
return new ParentID(input);

}

public Lsi createCompoundID(String input)
throws IllegalArgumentException {

this.validateLsi(CompoundIDValidator.getInstance(), input);
return new CompoundID(input);

}

public Lsi createSampleID(String input)
throws IllegalArgumentException{

validateLsi(SampleIDValidator.getInstance(), input);
return new SampleID(input);

}
}

Notice that each factory method uses the corresponding validator object to
validate the input before the LSI object is created. This process makes sure
that all LSI objects are in the correct format.

The ILsiValidator in Figure 12.16 defines the LsiValidator interface:

package com.abcpharma.crs.lsi.validator;

public interface ILsiValidator {

DOMAIN OBJECTS 123

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 123

public void validate(String input) throws IllegalArgumentException;
}

This simple interface has only one method: validate(). It makes perfect sense
because this is all its clients need it to do.

The source code of the LsiValidator abstract class is as follows:

package com.abcpharma.crs.lsi.validator;

import java.util.*;

public abstract class LsiValidator implements ILsiValidator {
protected List validators � new ArrayList();

protected int length;

public void validate(String input) throws IllegalArgumentException {
if (input �� null) {

throw new IllegalArgumentException(“Could not validate null LSI”);
}

if (input.length() < length) {
throw new IllegalArgumentException(“Invalid length of LSI “ � input);

}

for (int i � 0; i < validators.size(); i��) {
ILsiValidator validator � (ILsiValidator) validators.get(i);
validator.validate(input);

}
}

}

The abstract class LsiValidator has two attributes: the correct length of the
LSI that is being validated and a list of validators. Each element in the list is
the validator of one particular component in the LSI. LsiValidator imple-
ments the common validation logic: Check null value and the length of the
input and call the validator objects to validate the LSI components.

The source code of the ParentIDValidator is as follows:

package com.abcpharma.crs.lsi.validator;

import com.abcpharma.crs.lsi.*;

public class ParentIDValidator extends LsiValidator {
private static final ParentIDValidator instance � new ParentIDValidator();

124 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 124

private ParentIDValidator() {
length � Lsi.PARENTID_LENGTH;
validators.add(PrefixValidator.getInstance());
validators.add(BaseValidator.getInstance());

}

public static ParentIDValidator getInstance() {
return instance;

}

public void validate(String input) throws IllegalArgumentException {
super.validate(input); // validate prefix and base

// check hyphen between prefix and base
if (input.charAt(Lsi.PREFIX_LENGTH) !� ‘-’) {

throw new IllegalArgumentException(
“No hyphen between the prefix and base in
LSI “ � input);

}
}

}

ParentID validator is a Singleton. Its constructor sets the length of parent id
and the list of validator objects that are responsible for validating the compo-
nents of the parent id—PrefixValidator and BaseValidator. Its validate()
method invokes the validate() method in the base abstract class—LsiValidator,
which iterates through the validator list, invokes their validate() method, and
makes sure there is a hyphen between prefix and base in the input.

The source code of the CompoundIDValidator is as follows:

package com.abcpharma.crs.lsi.validator;

import com.abcpharma.crs.lsi.*;

public class CompoundIDValidator extends LsiValidator {
private static final CompoundIDValidator instance � new CompoundIDValidator();

private CompoundIDValidator() {
length � Lsi.COMPOUNDID_LENGTH;
validators.add(ParentIDValidator.getInstance());
validators.add(FormValidator.getInstance());

}

public static CompoundIDValidator getInstance() {
return instance;

}

public void validate(String input) throws IllegalArgumentException {

DOMAIN OBJECTS 125

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 125

super.validate(input); // validate prefix and base

// validate check
int checkPos � Lsi.COMPOUNDID_LENGTH - 1;
ICheckLetterGenerator checkLetterGenerator � CheckLetterGenerator

.getCheckLetterGenerator();
char validCheckLetter � checkLetterGenerator.getCheck(input);
if (input.charAt(checkPos) !� validCheckLetter) {

throw new IllegalArgumentException(
“Check letter is not valid in LSI “ � input);

}

// check for hyphen between base and form
if (input.charAt(Lsi.PARENTID_LENGTH) !� ‘-’) {

throw new IllegalArgumentException(
“No hyphen between the base and form exists in LSI “
� input);

}
}

}

Similar to the ParentIDValidator, its constructor sets the length and the list of
validator objects—ParentIDValidator and FormValidator. The validate()
method does two more things: making sure the check letter matches what it
derived from the CheckLetterGenerator and that there is a hyphen between
the parent id and the form.

The source code of the SampleIDValidator is as follows:

package com.abcpharma.crs.lsi.validator;

import com.abcpharma.crs.lsi.*;

public class SampleIDValidator extends LsiValidator {
private static final SampleIDValidator instance � new SampleIDValidator();

private SampleIDValidator() {
length � Lsi.SAMPLEID_LENGTH;
validators.add(CompoundIDValidator.getInstance());
validators.add(BatchValidator.getInstance());

}

public static SampleIDValidator getInstance() {
return instance;

}
}

Similar to the ParentIDValidator and CompoundIDValidator, the constructor
sets the length and the list of validator objects—CompoundIDValidator and
BatchValidator. Once the validator list is set correctly, there is no additional

126 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 126

validation logic required in SampleIDValidator, and therefore, there is no
need to override the validate() method.

The above discussion is the Lab Sample Identifier framework. I skipped
PrefixValidator, BaseValidator, FormValidator, and BatchValidator because
their rules may be different in different organizations.

12.2.5 Data Binder Object Model

In a compound registration system, compound data can be imported from
data files such as SD File, XML File, or Molfile. Alternatively, data can be
entered from the presentation layer using a structure drawing package such as
ISISDraw or ChemDraw. These data, once imported to the system, need to be
bound to the domain objects in order for the system to process them effi-
ciently. To support a variety of data sources, a Data Binder API is needed to
decouple the system from specific format of input data and make it easily
extensible to support other data input formats down the road. Figure 12.17 is
the class diagram of the Data Binder API.

The interface DataBinder defines two methods:

• bind(), which takes a String as input and returns a List object—a list of
ChemicalSample objects that are represented in the input. The input
String can be an SD File, an XML File, and so on.

DOMAIN OBJECTS 127

Figure 12.17 The class diagram of the Data Binder API.

DataBinder

bindLibrary()
bind()

SDFileBinder XMLFileBinder

ChemicalLibrary

create create

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 127

• bindLibrary(), which takes a String as input and returns a ChemiclLibrary
object—a library of ChemicalSample that is represented by the input.

The source code of the DataBinder interface is as follows:

package com.abcpharma.crs.databinder;

import java.util.*;

import com.abcpharma.crs.*;

public interface DataBinder {

public ChemicalLibrary bindLibrary(String input);

public List bind(String input);

}

The SDFileBinder implementation takes an SD File as input, whereas the
XMLFileBinder implementation takes an XML File as input.

Parsing the SD File is a tricky job because the SD File is not a well-struc-
tured format, in contrast to XML. An SD File example with two records is as
follows:

�ISIS� 07240513032D

13 13 0 0 0 0 0 0 0 0999 V2000

�1.1556 �0.1291 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
�1.1568 �0.9565 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
�0.4419 �1.3694 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

0.2745 �0.9560 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.2716 �0.1255 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

�0.4437 0.2836 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
�0.4462 1.1086 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
�1.1667 1.5250 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

0.9846 0.2897 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
1.7006 �0.1201 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
2.4135 0.2951 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1.7037 �0.9451 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
0.2677 1.5221 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0 0 0 0
6 7 1 0 0 0 0
3 4 2 0 0 0 0
7 8 2 0 0 0 0
5 9 1 0 0 0 0
4 5 1 0 0 0 0
9 10 1 0 0 0 0
2 3 1 0 0 0 0

128 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 128

10 11 1 0 0 0 0
5 6 2 0 0 0 0
10 12 2 0 0 0 0
6 1 1 0 0 0 0
7 13 1 0 0 0 0
M END
> <ID>
2

> <Salt_type>
TFA

> <Salt_Coefficient>
2

> <page>
86

$$$$

�ISIS� 07240513072D

12 13 0 0 0 0 0 0 0 0999 V2000
�0.3723 �0.3166 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
�0.3734 �1.1440 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

0.3414 �1.5569 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1.0578 �1.1435 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1.0550 �0.3130 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.3396 0.0961 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1.7648 0.1009 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
2.4811 �0.3106 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
3.1936 0.1039 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
3.1909 0.9297 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
2.4699 1.3394 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1.7604 0.9225 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

6 1 1 0 0 0 0
1 2 2 0 0 0 0
3 4 2 0 0 0 0
7 8 2 0 0 0 0
8 9 1 0 0 0 0
4 5 1 0 0 0 0
9 10 2 0 0 0 0
2 3 1 0 0 0 0
10 11 1 0 0 0 0
5 6 2 0 0 0 0
11 12 2 0 0 0 0
12 7 1 0 0 0 0
5 7 1 0 0 0 0
M END

DOMAIN OBJECTS 129

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 129

> <ID>
1

> <Parent_Coefficient>
1

> <Salt_type1>
TFA

> <Salt_Coefficient1>
1

> <page>
86

> <reference>
12345

$$$$

The source code of the SDFileBinder class binds the above SD File to a
ChemicalLibrary object or a list of ChemicalSample objects, as follows:

package com.abcpharma.crs.databinder;

import java.util.*;
import java.io.*;

import com.abcpharma.crs.*;
import com.abcpharma.crs.Molstructure.*;

public class SDFileBinder implements DataBinder {

private static final SDFileBinder instance � new SDFileBinder();
private static final String REC_DELIMITER � “$$$$”;
private static final String MOL_DELIMITER � “M END”;

private SDFileBinder(){
}

public static SDFileBinder getInstance(){
return instance;

}

public ChemicalLibrary bindLibrary(String input){
ChemicalLibrary library � new ChemicalLibrary();
int index � �1;
while(input.length() > 1){

int endOfRecord � input.indexOf(REC_DELIMITER) � 4;
String record � input.substring(0, endOfRecord);

130 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 130

library.add(buildRecord(index��, record));
input � ‘\n’ � input.substring(endOfRecord).trim();

}
return library;

}

public List bind(String input){
List samples � new ArrayList();
int index � �1;
while(input.length() > 1){

int endOfRecord � input.indexOf(REC_DELIMITER) � 4;
String record � input.substring(0, endOfRecord);
samples.add(buildRecord(index��, record));
input � ‘\n’ � input.substring(endOfRecord).trim();

}
return samples;

}

protected ChemicalSample buildRecord(int id, String record){
Compound compound � new Compound();
ChemicalSample sample � new ChemicalSample(id, new Gregorian Calendar(), com-
pound);
StringBuffer attributeValue � new StringBuffer();
String attributeName � null;

while (!record.equals(REC_DELIMITER)) {
int endOfLine � record.indexOf(‘\n’) � 1;
String line � record.substring(0, endOfLine);
record � record.substring(endOfLine);
if (line.startsWith(MOL_DELIMITER)) { //the end of mol string

attributeValue.append(line);
Molstructure structure � new Molstructure
(Molstructure.MOLFILE,
attributeValue.toString());
compound.setMolstructure(structure);

}
else if (line.startsWith(“> <”) || (line.startsWith(“> <”))) { //get
attribute name

attributeName � (line.substring(line.indexOf(“<”) � 1,
line.lastIndexOf(“>”))).toUpperCase(); //take field to
uppercase
attributeName.trim();
attributeValue.setLength(0);

}
else if ((line.length() �� 0 || line.equals(“\n”)) &&
attributeName !� null) {//get attribute

value other than mofile
String value � attributeValue.substring(0,
attributeValue.length()).toUpperCase().
trim();
attributeName � null;

/*

DOMAIN OBJECTS 131

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 131

insert code here to set compound or sample attribute
*/
//attributeValue.setLength(0);
}
else {

attributeValue.append(line);
}

}
return sample;

}
}

Binding an XML File to CRS objects is a much simpler task because open
source tools are available that can help us to do the work. Castor XML
Mapping and Apache Xerces are the two examples. Using the Data Binder
API and implementing an XMLBinder that uses any open source XML
parser should do the work.

12.2.6 Application Controller

Before a chemical sample or a chemical library can be registered into a data-
base, a series of business logic and flow of screens have to be involved to
make sure the compounds are in “good shape” before being registered into
the database. Some of these screens are displayed only if the compounds are
transitioned into certain states. A standard way of implementing a system like
this is to use the Model�View�Controller framework. As Martin Fowler
(2003a) pointed out, “to some degree the various Model–View–Controller
input controllers can make some of these (flow) decisions, but as an applica-
tion gets more complex this can lead to duplicated code as several controllers
for different screens need to know what to do in a certain situation.” The
Application Controller is used to address the following problem:

Application Controller: You can remove this duplication by placing all
flow logic in an Application Controller. Input controllers then ask
the Application Controller for the appropriate commands for exe-
cution against a model and the correct view to use depending on the
application context.

The Application Controller decides what business logic to run and which
view to forward to depending on the outcome of the business logic. In CRS,
there are three core business logics: load input data, process chemistry intelli-
gence on the compounds, and submit the compounds for registration. The
Application Controller holds domain command objects as well as names and
locations of views (e.g., URL) and returns them to the Front Controller such as

132 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 132

a Java Servlet. Figure 12.18 is a class diagram that illustrates the Application
Controller and its collaborators.

This design uses another GoF Design Pattern—the Command Pattern.

The Command Pattern: It encapsulates a request as an object, thereby
letting you parameterize other objects with different requests,
queue or log requests, and support undoable operations.

The idea behind Command Pattern is that the requester (Front Controller)
invokes the execute() method on the command object. The command object
invokes an action on the receiver (e.g., DataBinder) object that the requester
has no knowledge of and therefore decouples the requester from the receiver.
We will see The Command Pattern in action soon.

The source code of the CRSCommand interface is as follows:

package com.abcpharma.crs;

import java.util.*;

public interface CRSCommand {

public void execute(Map parameters) throws IllegalArgumentException;
}

The Command Pattern is simple. It only declares one method execute(), which
delegates the request to a receiver object.

The source code of CRSApplicationController class is as follows:

DOMAIN OBJECTS 133

DataInputCommand ChemistryProcessCommand RegistrationCommand

CRSCommand

execute()

CRSFrontController

CRSApplicationController

viewUrls : Map

getCommand()
getView()

nn

Figure 12.18 The class diagram of Application Controller and its collaborators.

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 133

package com.abcpharma.crs;
import java.util.*;
import com.abcpharma.crs.databinder.*;
public class CRSApplicationController {

private Map commands � new HashMap();
private Map views � new HashMap();
private static final CRSApplicationController instance � new CRSApplication
Controller();
private CRSApplicationController(){

commands.put(“datainput”, DataInputCommand.getInstance());
commands.put(“xmlfile”, XMLBinder.getInstance());
commands.put(“chemistry”, LibraryChemistryProcess Command. get
Instance());

}

public static CRSApplicationController getInstance(){
return instance;

}

public CRSCommand getCommand(String commandName){
return (CRSCommand) commands.get(commandName);

}

public String getView(String stateName){
return (String) views.get(stateName);

}
}

The CRSApplicationController object has a Map of Command object that
maps the key—the name of the request to the Command object that handles the
request. It also holds another Map that maps the key—the alias of the view to
the URL of the view. The getCommand() method takes the request name and
returns the Command object that is responsible for handling the request. The
getView() method takes the alias of the view and returns the URL of the view.

Figure 12.19 is a sequence diagram that shows how the Front Controller,
the Application Controller, and the Command objects interact with each other
in the Load SD File transaction.

Load SD File Transaction

After the user imports an SD File and submits the form, the Front Controller
receives a request to upload the SD File. The Front Controller asks the
Application Controller for the appropriate Command object that can handle
the SD File upload request. The Application Controller returns a Data Input
Command. The Front Controller invokes the execute() method on the
DataInputCommand object. The DataInputCommand object invokes the SD
File Binder’s bind() method, which returns a List of ChemicalSample

134 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 134

objects. The Front Controller then makes another call to the Application
Controller to get the next view the system should display and forward the
flow to that view that finishes the Load SD File Transaction. The Front
Controller should also save the ChemicalSampleList into the HTTPSession
object so that the next transaction can retrieve it and continue the work.

The source code of DataInputCommand is as follows:

package com.abcpharma.crs;
import java.util.*;
import com.abcpharma.crs.databinder.*;
public class DataInputCommand implements CRSCommand{

private static final DataInputCommand instance � new DataInputCommand();
private DataInputCommand(){

}

public static DataInputCommand getInstance(){
return instance;

}

public void execute(Map input){
ChemicalLibrary library � null;
if(input.get(“sdfile”) !� null){

library � SDFileBinder.getInstance().bindLibrary((String) input.
get(“SDFile”));

}
else if(input.get(“xmlfile”) !� null){

library � XMLBinder.getInstance().bindLibrary((String) input.
get(“SDFile”));

DOMAIN OBJECTS 135

Figure 12.19 The sequence diagram of Application Controller and DataInputCommand in
the Load SD File transaction.

 : CRSFrontController : CRSApplicationController : DataInputCommand : SDFileBinder A View

1: getCommand(String)

2: return

4: bind(String)

5: getView(String)

6: forward

3: execute(Map)

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 135

}

else{
throw new IllegalArgumentException(“Neither an SD file nor an XML file can be
found

in the input”);
}

((UserSession) input.get(“usersession”)).setLibrary(library);
}

}

The execute() method uses the DataBinder object as the request receiver to
bind the input SD File or XML File to the ChemicalLibrary object. Because
registering a compound or a library requires several interactions between the
user and the system, the state has to be maintained between those interac-
tions. As a result, the DataInputCommand object saves the library object into
a UserSession object for future access.

Figure 12.20 is the sequence diagram of the chemistry intelligence trans-
action.

Chemistry Intelligence Transaction

Every time the chemist edits the data and submits the form, the Front
Controller receives a request and updates the ChemicalSample objects in the
session. Depending on the type of request and the states of the Compound
objects, it retrieves a Command object from the ApplicationController. If this
is in the middle of structure QC or salt handling process, the Application
Controller returns a ChemistryProcessCommand object. The FrontController

136 BUSINESS LAYER

Figure 12.20 The sequence diagram of the chemistry intelligence transaction.

 : CRSFrontController : CRSApplicationController : ChemistryProcessCommand : ChemicalSample : ChemicalSample Structure QC PageStructure QC Page

1: getCommand(String)

2: return command

4: process()

5: getView(String)

6: forward

3: execute(Map)

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 136

invokes the ChemistryProcessCommand object’s execute() method, which
invokes the process() method on the ChemicalSample objects. As described
earlier in this chapter, the process() method of the ChemicalSample object
relies on the Compound object’s State object to do the work.

The source code of the LibraryChemistryProcessCommand, which processes
chemistry logic on a chemical library, is as follows. (You can have another
Command object to process discrete compounds. The idea is the same.)

package com.abcpharma.crs;

import java.util.Map;

public class LibraryChemistryProcessCommand implements CRSCommand{
private static final LibraryChemistryProcessCommand instance � new Library
ChemistryProcessCommand();

private LibraryChemistryProcessCommand(){

}

public static LibraryChemistryProcessCommand getInstance(){
return instance;

}

public void execute(Map input){
if(input.get(“library”) �� null){

throw new IllegalArgumentException(“Library not found “);
}
((ChemicalLibrary) input.get(“library”)).process();

}
}

The execute() method simply calls the ChemicalLibrary object’s process()
method. If you remember how the process() method in ChemicalLibrary is
implemented, all it does is iterate through all its ChemicalSample objects and
invoke their process() methods, which depends on what state the Compound
object is in, and either decompose the compound’s structure into fragments,
QC the structure, or attach salt to the parent structure.

Figure 12.21 is the sequence diagram of the submit registration transaction.

Submit Registration Transaction

When all ChemicalSample objects are in the Ready To Be Registered State
and all required ancillary data are entered, the user can submit the Chemical
Samples for registration. The ApplicationController returns a Registration
Command object to the FrontController. The FrontController invokes the

DOMAIN OBJECTS 137

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 137

RegistrationCommand object’s execute() method, which invokes the regis-
ter() method on the RegistrationService object. The RegistrationService
object does the job of registering the compounds, including generating sam-
ple identifiers and persisting compounds into the database. The Application
Controller returns the RegistrationReportView to the FrontController to
display the registration report.

The source code of the RegistrationCommand class is as follows:

package com.abcpharma.crs;

import java.util.Map;

public class RegistrationCommand implements CRSCommand{
private static final RegistrationCommand instance � new RegistrationCommand();

private RegistrationCommand(){

}

public static RegistrationCommand getInstance(){
return instance;

}

public void execute(Map input){
RegistrationService.getInstance().register((ChemicalLibrary)input.get
(“library”));

}

}

138 BUSINESS LAYER

Figure 12.21 The sequence diagram of the submit registration transaction.

 : CRSFrontController : CRSApplicationController : ChemistryProcessCommand : ChemicalSample : ChemicalSample Structure QC PageStructure QC Page

1: getCommand(String)

2: return command

4: process()

5: getView(String)

6: forward

3: execute(Map)

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 138

12.2.7 Registration Service

The last step of the compound registration workflow persists compound data
into the database. This step is accomplished by a RegistrationService object
along with a data persistence layer, which will be discussed in the next chapter.

A robust compound registration system should support two registration
modes—synchronous and asynchronous. The synchronous mode locks up a
user’s application screen until the registration transaction finishes. This is
fine if the number of compounds being registered is small and the processing
time is short. When registering a large library of hundreds or even thousands
of compounds, synchronous registration is not optimal. Asynchronous regis-
tration, on the other hand, submits the registration request to a message queue
and frees the user session immediately. In this case, the RegistrationService
becomes the message consumer that takes the message from the queue and
processes the registration request in the background.

Figure 12.22 is the class diagram of the Registration Service.
The IRegistrationServiceDelegate interface defines three register() meth-

ods. The first method takes a single ChemicalSample object as input. The
second method takes a List of ChemicalSample objects as input. The third
method takes a ChemicalLibrary as input.

IRegistrationServiceDelegate has two implementations: SynchRegistration-
Delegate and AsynchRegistrationDelegate. SynchRegistrationDelegate simply
delegates the registration request to the RegistrationService object that does the
actual work. AsynchRegistrationDelegate submits the registration request to a
message queue—RegistrationMessageQueue. The consumer of the registration
message—RegistrationMessageConsumer—subscribes to the message queue
and, upon receiving the message, forwards it to the RegistrationService object.
The DAO is the data persistence layer that will be discussed in Chapter 13.
Notice that both SynchRegistrationDelegate and AsynchRegistrationDelegate
simply delegate the registration request to RegistrationService. Asynch-
RegistrationDelegate does this through the message queue and the message
consumer. They are not responsible for registering the compounds.
RegistrationService is the object that does the actual work. The above design
supports both synchronous and asynchronous registration modes with maxi-
mized code reuse.

RegistrationService has two private methods: uniquenessSearch(), which
determines whether the structure of the compound to be registered is unique
in the database; and generateSampleIdentifier(), which according to the
result of uniquenessSearch() generates the sample identifier.

Figure 12.23 is the sequence diagram of the synchronous registration process.
Figure 12.24 is the sequence diagram of the asynchronous registration

process.

DOMAIN OBJECTS 139

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 139

The Source code of the IRegistrationDelegate interface is as follows:

package com.abcpharma.crs.registrationservice;

import java.util.*;

import com.abcpharma.crs.entity.*;

public interface IRegistrationDelegate {

public void register(ChemicalSample sample);

public void register(ChemicalLibrary library);

public void register(List samples);
}

The clients of the interface are given three options—register a single sample,
register a list of samples, and register a sample library. These registrations can

140 BUSINESS LAYER

IRegistrationDelegate

register()
register()
register()

AsynchRegistrationDelegate

publishRegistrationMessage()

SynchRegistrationDelegate

DAO

insert()
update()
find()

RegistrationMessageQueue

RegistrationMessageConsumer

onMessage()

RegistrationService

register()
register()
register()
generateSampleIdentifier()
uniquenessSearch()

Figure 12.22 The class diagram of the Registration Service.

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 140

be processed in two different modes—synchronous or asynchronous. They are
provided by the two implementations of the IRegistrationDelegate interface—
SynchronousRegistrationDelegate and AsynchronousRegistrationDelegate.

DOMAIN OBJECTS 141

 : CRS : SynchRegistrationDelegate : RegistrationService : DAO : DAO

1: register(ChemicalLibrary)

2: register(ChemicalLibrary)

4: find()

6: insert()

3: uniquenessSearch()

5: generateSampleIdentifier()

 : CRS : CRS : AsynchRegistrationDelegate : RegistrationMessageQueue : RegistrationMessageConsumer : DAO : RegistrationService

3: sendMessage

4: onMessage

5: register(ChemicalLibrary)

7: find()

9: insert()

1: register(ChemicalLibrary)

2: publishRegistrationMessage()

6: uniquenessSearch()

8: generateSampleIdentifier()

Figure 12.23 The sequence diagram of the synchronous registration process.

Figure 12.24 The sequence diagram of asynchronous registration process.

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 141

The source code of the SynchronousRegistrationDelegate is as follows:

package com.abcpharma.crs.registrationservice;

import java.util.List;

import com.abcpharma.crs.entity.*;

public class SynchRegistrationDelegate implements IRegistrationDelegate{

private static final SynchRegistrationDelegate instance � new Synch Registration
Delegate();

private SynchRegistrationDelegate(){

}

public static SynchRegistrationDelegate getInstance(){
return instance;

}

public void register(ChemicalSample sample){
RegistrationsService.getInstance().register(sample);

}

public void register(ChemicalLibrary library){
RegistrationsService.getInstance().register(library);

}

public void register(List samples){
RegistrationsService.getInstance().register(samples);

}
}

The SynchronousRegistrationDelegate delegates registration requests
directly to the RegistrationService object to do the work. As explained, syn-
chronous registration is good when the number of compounds in the registra-
tion is small. When the number becomes large and the processing time is
long, asynchronous registration is more desirable:

package com.abcpharma.crs.registrationservice;

import java.util.*;
import javax.jms.*;
import javax.naming.*;
import java.io.*;

import com.abcpharma.crs.entity.*;

142 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 142

public class AsynchRegistrationDelegate implements IRegistrationDelegate{

private static final AsynchRegistrationDelegate instance � new Asynch Registration
Delegate();

private AsynchRegistrationDelegate(){

}

private void sendMessage(Serializable obj) throws NamingException, JMSException{
InitialContext jndiContext � new InitialContext();
QueueConnectionFactory factory � (QueueConnectionFactory)

jndiContext.lookup(“AsynchRegisterCF”);
Queue registrationQueue � (Queue) jndiContext. lookup(“Asynch Register
JMSQueue”);
QueueConnection connection � null;
try{

connection � factory.createQueueConnection();
QueueSession session � connection.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);
QueueSender sender � session.createSender(registrationQueue);
ObjectMessage message � session.createObjectMessage();
message.setObject(obj);
sender.send(message);

}finally{
connection.close();

}
}

public static AsynchRegistrationDelegate getInstance(){
return instance;

}

public void register(ChemicalSample sample){
sendMessage((Serializable) sample);

}

public void register(ChemicalLibrary library){
sendMessage((Serializable) library);

}

public void register(List samples){
sendMessage((Serializable) samples);

}
}

The above code assumes JMS is used as the messaging server. The register()
methods call the sendMessage method() to submit the registration to a JMS
message queue. Here we use a message queue rather than a message topic

DOMAIN OBJECTS 143

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 143

because there is only one consumer of the message—the RegistrationService
object. The sendMessage() method first uses JNDI to look up the Message
Queue and the MessageQueueFactory. The MessageQueueFactory then cre-
ates a QueueConnection on which a QueueSession is created. The Queue
Session object creates a QueueSender and an ObjectMessage. Finally, the
ObjectMessage, with the registration request being set as its content, is sent
to the MessageQueue by the QueueSender, which completes the transaction.

Once the message queue receives the registration request message, an event
is fired off and the onMessage() method on the RegistrationMessageConsumer
object is invoked that retrieves the message from the queue and processes the
registration request. The source code of the RegistrationMessageConsumer is
as follows:

package com.abcpharma.crs.registrationservice;

import javax.jms.*;

public class RegistrationMessageConsumer implements MessageListener{

public void onMessage(Message msg) {
ObjectMessage message � (ObjectMessage) msg;
RegistrationService regService � RegistrationService.getInstance();
try {

Object obj � (Object) message.getObject();
Class[] argTypes � {obj.getClass()};
Object[] args � {obj};
RegistrationService.class.getMethod(“register”, argTypes)

.invoke(regService, args);
} catch (Exception ex) {

ex.printStackTrace();
}

}
}

The RegistrationMessageConsumer class implements the JMS MessageListener
interface. It therefore has to implement the onMessage() method. The
onMessage() method uses reflections to invoke the right version of the register()
method in the RegistrationService class.

Finally, the source code of the RegistrationService class is as follows:

package com.abcpharma.crs.registrationservice;

import java.util.List;

import com.abcpharma.crs.entity.ChemicalLibrary;
import com.abcpharma.crs.entity.ChemicalSample;

144 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 144

public class RegistrationService {

private static final RegistrationService instance � new RegistrationService();

private RegistrationService(){

}

public static RegistrationService getInstance(){
return instance;

}

public void register(ChemicalSample sample){
//register sample

}

public void register(ChemicalLibrary library){
//register sample libary

}

public void register(List samples){
//register sample list

}

}

As each organization has slightly different rules of registration, the imple-
mentation details of the register() methods are left blank in the above example.

12.2.8 Enterprise Java Beans

You might have wondered about Enterprise Java Beans (EJBs). The advan-
tage of using EJBs is that the container does a lot of plumings, such as object
lifecycle management, object pooling, and access control. However, EJBs are
more difficult to port and test than Plain Old Java Objects (POJOs). For that
reason, my recommendation is to not leave any business logic in the EJBs
(especially session beans). Use EJBs as wrappers that simply delegate the
method calls to POJOs. Also use Business Delegate and Service Lookup
Patterns (Alur et al., 2003) to hide EJB-specific protocols from clients.
The code example of the SynchRegistrationBean, which wraps the
SynchRegistrationDelegate object is as follows. Both ChemicalSampleDTO
and ChemicalLibraryDTO are data transfer objects (Alur et al., 2003).

package com.abcpharma.crs.registration.service;
import javax.ejb.*;
import java.util.*;
import com.abcpharma.crs.entity.*;

DOMAIN OBJECTS 145

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 145

public class SynchRegistrationBean implements SessionBean {
SessionContext sessionContext;
SynchRegistrationDelegateregService;

public void ejbCreat() throws CreateException {
regService � SynchRegistrationDelegate.getInstance();
}

public void setSessionContext(SessionContextsessionContext) {
this.sessionContext � sessionContext;
}

public ChemicalSample register(ChemicalSampleDTO sample) throws Compound
RegistrationExpception{
try{

regService.register(sample);
}

catch (Exception ex) {
throw new CompoundRegistrationException(ex.getMessage());

}
return sample;

}

public List register(List sample) throws CompoundRegistrationException{
try{

regService.register(samples);
}

catch(Exception ex) {
throw new CompoundRegistrationException(ex.getMessage());

}
return samples;

}

public ChemicalLibrary register(Chemical LibraryDTO library) throws Compound
RegistrationException{

try{
regService.register(library);

}
catch(Exception ex) {

throw new CompoundRegistrationException(ex.getMessage());
}
return library;

}
}

146 BUSINESS LAYER

JWUS_Dcis_Ch012.qxd 10/12/2006 9:16 PM Page 146

147

CHAPTER 13

Entity Dictionary

The compound registration process uses some reference data that do not
change very often. Examples of these data are Research Projects, Assays,
People, and Salts. These ancillary data are usually accessed by CRS using
some lookup mechanism, such as by name, site, and id.

These data do not change very often, should not be entered as free text, and
should introduce very little overhead into the overall registration process. It is
recommended that they be cached in the application and refreshed periodically.
This way, they can be accessed quickly from the memory rather than queried
every time from the underline database. In memory data access is much faster
than any input/output (I/O) operations, especially I/O that involves network traf-
fic. As the dictionary data do not change very often, the performance benefit of
accessing it from the cache overweighs the benefit of real-time up-to-date data.

In this chapter, we present a way of caching the Entity Dictionary—the
lookup data. Figure 13.1 is the class diagram of the Entity Dictionary frame-
work.

The EntityDictionaryDao is a Data Access Object that is responsible
for retrieving entity dictionary data from the underlined data source. The
EntityDictionaryManager is responsible for caching and refreshing entity
dictionary data and for providing the API to access the entity dictionary
for the clients. The diagram does not show all getter methods in the
EntityDictionaryManager class, but it gives you an idea of how the entity
dictionary is accessed.

The source code of the EntityDictionaryDao is as follows:

package com.abcpharma.crs.entitydictionary;
import java.sql.*;
import java.util.*;

import com.abcpharma.crs.entity.*;
import com.abcpharma.crs.molstructure.*;

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 147

public class EntityDictionaryDao {
private static final EntityDictionaryDao instance � new EntityDictionaryDao();

public static final int SALT_SIZE � 256;
public static final int PERSONNEL_SIZE � 8192;
public static final int SITE_SIZE � 32;
public static final int PROJECT_SIZE � 512;
public static final int ASSAY_SIZE � 1024;
public static final int NAME_TYPE_SIZE � 8;
public static final int SOURCE_SIZE � 8;

public static final String ASSAY_LIST � “Assay List”;
public static final String ASSAYID_MAP � “Assay Id Map”;
public static final String ASSAYNAME_MAP � “Assay Name Map”;

public static final String PROJECT_LIST � “Project List”;
public static final String PROJECTID_MAP � “Project Id Map”;
public static final String PROJECTNAME_MAP � “Project Name Map”;

public static final String PERSON_LIST � “Person List”;
public static final String PERSONSITE_MAP � “Person Site Map”;
public static final String PERSONID_MAP � “Person Id Map”;
public static final String PERSONUSERNAME_MAP � “Person ISID Map”;
public static final String PERSONNAME_MAP � “Person Name Map”;

public static final String SITE_LIST � “Site List”;

public static final String SALTTYPE_MAP � “Salt Type Map”;
public static final String SALTID_MAP � “Salt Id Map”;
public static final String SALTFORMULA_MAP � “Salt Formula Map”;

public static final String SOURCE_LIST � “Source List”;

public static final String NAMETYPE_LIST � “Name Type List”;

148 ENTITY DICTIONARY

Figure 13.1 The class diagram of the Entity Dictionary.

EntityDictionaryDao

retrieveAssays()
retrieveProjects()
retrieveSalts()
retrieveNameTyes()
retrieveSourceTypes()
retrievePersonnel()

EntityDictionaryManager

getAssays()
getAssay()
getAssayByName()
getProjects()
getProject()
getProjectByName()
getPeople()
getPerson()
getPersonByName()
getPersonByUsername()
getPeopleBySite()
load()

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 148

private Connection conn � null;

private static String assayQuery � null;
private static String projectQuery � null;
private static String personnelQuery � null;
private static String nameTypeQuery � null;
private static String sourceQuery � null;
private static String saltTypeQuery � null;

static {
StringBuffer temp � new StringBuffer(512);

temp.append(“select assay_id, assay_name”)
.append(“ from assay_view”)
.append(“ order by assay_name”);

assayQuery � temp.toString();

temp.setLength(0);
temp.append(“select name_type”)

.append(“ from name_type_view”);
nameTypeQuery � temp.toString();

temp.setLength(0);
temp.append(“select project_id, project_name”)

.append(“ from research_project_view”)

.append(“ order by project_name “);
projectQuery � temp.toString();

temp.setLength(0);
temp.append(“select person_id, username, first, middle, last”)

.append(“, site, mail_drop, email_address”)

.append(“ from personnel_view”)

.append(“ where division � ‘RESEARCH’”)

.append(“ and status � ‘ACTIVE’”)

.append(“ order by last, first”);
personnelQuery � temp.toString();

temp.setLength(0);
temp.append(“select source_name”)

.append(“ from source_table”)

.append(“ order by source_name”);
sourceQuery � temp.toString();

temp.setLength(0);
temp.append(“select salt_id, salt_type, molfile, molweight, molformula”)

.append(“ FROM salt_dictionary”)

.append(“ order by salt_type”);
saltTypeQuery � temp.toString();

}

ENTITY DICTIONARY 149

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 149

private EntityDictionaryDao() {
}

public static EntityDictionaryDao getInstance() {
return instance;

}

public Map retrieveAssays() throws SQLException {
List assays � new ArrayList(ASSAY_SIZE);
Map assayByID � new HashMap();
Map assayByName � new HashMap();

PreparedStatement prepStmt � null;
ResultSet rs � null;
try {

prepStmt � conn.prepareStatement(assayQuery);
prepStmt.setFetchSize(ASSAY_SIZE);
rs � prepStmt.executeQuery();
while (rs.next()) {

Assay assay � new Assay();
int assayid � rs.getInt(“assay_id”);
String assayname � rs.getString(“assay_name”);

assay.setName(assayname);
assay.setId(assayid);

assays.add(assay);
assayByID.put(new Integer(assayid), assay);
assayByName.put(assayname, assay);

}
} finally {

Util.cleanUp(conn, prepStmt, rs);
}

Map result � new HashMap();
result.put(ASSAY_LIST, assays);
result.put(ASSAYID_MAP, assayByID);
result.put(ASSAYNAME_MAP, assayByName);
return result;

}

public List retrieveNameTypes() throws SQLException {
List nameTypes � new ArrayList(NAME_TYPE_SIZE);

PreparedStatement prepStmt � null;
ResultSet rs � null;
try {

prepStmt � conn.prepareStatement(nameTypeQuery);
prepStmt.setFetchSize(NAME_TYPE_SIZE);

150 ENTITY DICTIONARY

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 150

rs � prepStmt.executeQuery();
while (rs.next()) {

nameTypes.add(rs.getString(“name_type”));
}

} finally {
Util.cleanUp(conn, prepStmt, rs);

}

return nameTypes;
}

public Map retrieveProject() throws SQLException {
List projects � new ArrayList(PROJECT_SIZE);
Map projectByID � new HashMap();
Map projectByName � new HashMap();

PreparedStatement prepStmt � null;
ResultSet rs � null;
try {

prepStmt � conn.prepareStatement(projectQuery);
prepStmt.setFetchSize(PROJECT_SIZE);
rs � prepStmt.executeQuery();

while (rs.next()) {
int projectID � rs.getInt(“project_id”);
String projectName � rs.getString(“project_name”);
Integer id � new Integer(projectID);
ResearchProject project � (ResearchProject) project
ByID

.get(id);
if (project �� null) {

project � new ResearchProject();
project.setId(projectID);
project.setName(projectName);
projectByID.put(id, project);
projectByName.put(projectName, project);
projects.add(project);

}
}

} finally {
Util.cleanUp(conn, prepStmt, rs);

}

Map result � new HashMap();
result.put(PROJECT_LIST, projects);
result.put(PROJECTID_MAP, projectByID);
result.put(PROJECTNAME_MAP, projectByName);

return result;
}

ENTITY DICTIONARY 151

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 151

public Map retrievePersonnel() throws SQLException {
List persons � new ArrayList(PERSONNEL_SIZE);
Map personBySite � new TreeMap();
Map personByID � new HashMap();
Map personByUsername � new HashMap();
Map personByName � new HashMap();

Set sites � new HashSet(SITE_SIZE);

PreparedStatement prepStmt � null;
ResultSet rs � null;

try {
prepStmt � conn.prepareStatement(personnelQuery);
prepStmt.setFetchSize(PERSONNEL_SIZE);
rs � prepStmt.executeQuery();
while (rs.next()) {

String site � rs.getString(“site”);
int id � rs.getInt(“person_id”);
String username � rs.getString(“username”);
sites.add(site);
Person person � new Person();
person.setSite(site);
person.setId(id);
person.setUsername(username);
person.setLast(rs.getString(“last”));
person.setFirst(rs.getString(“first”));
person.setMiddle(rs.getString(“middle”));
person.setMailDrop(rs.getString(“mail_drop”));
person.setEmail(rs.getString(“email_address”));

//for a new site, create a new entry in the personBySite
map
List personSite � (List) personBySite.get(site);
if (personSite �� null) {

personSite � new ArrayList();
personBySite.put(site, personSite);

}
personSite.add(person);

//mapping individual person by personID
personByID.put(new Integer(id), person);

//mapping individual person by username
personByUsername.put(username, person);

//mapping individual person by person’s fullName
personByName.put(person.getFullName(), person);

//constructing all of the person objects
persons.add(person);

}

152 ENTITY DICTIONARY

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 152

} finally {
Util.cleanUp(conn, prepStmt, rs);

}
Map result � new HashMap();
result.put(PERSON_LIST, persons);
result.put(PERSONSITE_MAP, personBySite);
result.put(PERSONID_MAP, personByID);
result.put(PERSONUSERNAME_MAP, personByUsername);
result.put(PERSONNAME_MAP, personByName);
result.put(SITE_LIST, sites);
return result;

}

public List retrieveSource() throws SQLException {
List sources � new ArrayList(SOURCE_SIZE);

PreparedStatement prepStmt � null;
ResultSet rs � null;
try {

prepStmt � conn.prepareStatement(sourceQuery);
prepStmt.setFetchSize(SOURCE_SIZE);
rs � prepStmt.executeQuery();
while (rs.next()) {

sources.add(rs.getString(“SOURCE_NAME”));
}

} finally {
Util.cleanUp(conn, prepStmt, rs);

}
return sources;

}

public Map retrieveSalts() throws SQLException {
Map saltByType � new HashMap(SALT_SIZE);
Map saltById � new HashMap(SALT_SIZE);
Map saltByFormula � new HashMap(SALT_SIZE);

PreparedStatement prepStmt � null;
ResultSet rs � null;
try {

prepStmt � conn.prepareStatement(saltTypeQuery);
prepStmt.setFetchSize(SALT_SIZE);
rs � prepStmt.executeQuery();
while (rs.next()) {

StructureFragment salt � new StructureFragment();
String saltType � rs.getString(“salt_type”);

Clob molfile � rs.getClob(“molfile”);
salt.setValue(molfile.getSubString(1, (int) molfile.
length()));
salt.setFormat(Molstructure.MOLFILE);
Clob formula � rs.getClob(“molformula”);

ENTITY DICTIONARY 153

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 153

salt.setFormula(formula.getSubString(1, (int) formula.
length()));
salt.setRole(StructureFragment.SALT_ROLE);
salt.setId(rs.getInt(“structure_id”));
salt.setName(rs.getString(“salt_type”));
salt.setWeight(rs.getFloat(“molweight”));
saltByType.put(salt.getName(), salt);
saltById.put(new Integer(salt.getId()), salt);
saltByFormula.put(salt.getFormula(), salt);

}
} finally {

Util.cleanUp(conn, prepStmt, rs);
}

Map result � new HashMap();
result.put(SALTTYPE_MAP, saltByType);
result.put(SALTID_MAP, saltById);
result.put(SALTFORMULA_MAP, saltByFormula);
return result;

}
}

At the beginning of the EntityDictionaryDao, it defines a series of constants:
the size and the name of each entity dictionary. Using these constants, the code
allocates the Java Collection objects so that the sizes of these Collection objects
do not need to expand at runtime, which causes extra CPU cycles to be wasted.
Following the sizes are String constants: names that are used to look up each
entity dictionary. The class also defines SQL statements that are used to query
the entity dictionary as static variables and initialize them in a static block:

static {
StringBuffer temp � new StringBuffer(512);

temp.append(“select assay_id, assay_name”)
.append(“ from assay_view”)
.append(“ order by assay_name”);

assayQuery � temp.toString();

temp.setLength(0);
temp.append(“select name_type”)

.append(“ from name_type_view”);
nameTypeQuery � temp.toString();

temp.setLength(0);
temp.append(“select project_id, project_name”)

.append(“ from research_project_view”)

.append(“ order by project_name”);
projectQuery � temp.toString();

154 ENTITY DICTIONARY

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 154

temp.setLength(0);
temp.append(“select person_id, username, first, middle, last”)

.append(“, site, mail_drop, email_address”)

.append(“ from personnel_view”)

.append(“ where division � ‘RESEARCH’”)

.append(“ and status � ‘ACTIVE’”)

.append(“ order by last, first”);
personnelQuery � temp.toString();

temp.setLength(0);
temp.append(“select source_name”)

.append(“ from source_table”)

.append(“ order by source_name”);
sourceQuery � temp.toString();

temp.setLength(0);
temp.append(“select salt_id, salt_type, molfile, molweight, molformula”)

.append(“ FROM salt_dictionary”)

.append(“ order by salt_type”);
saltTypeQuery � temp.toString();

}

An alternative is to externalize these SQL statements into a configuration file
and load them in from the static block.

The EntityDictionaryDao is implemented as a Singleton by introducing a
private constructor and a static getInstance() method:

private EntityDictionaryDao() {
}

public static EntityDictionaryDao getInstance() {
return instance;

}

The core of the EntityDictionaryDao is in the retrieve…() methods. Here we
assume the entity dictionaries are stored in a relational database. They can also
be accessed from other types of data sources, such as web service, XML, and
flat files. The point is to transform them into something that can be accessed
easily and quickly by CRS. Take a closer look at the retrievePersonnel()
method. Like most other retrieve…() methods, retrievePersonnel() returns a
Map. What is in the Map depends on what kind of lookups the clients want to
use to access the personnel dictionary. In the context of CRS, the personnel
data can be accessed by its entirety, the research site where the person is
located, person id, person’s full name, or person’s username. Therefore,
the Map that retrievePersonnel() returns has four Collections—an entire per-
sonnel list, a site–people map, a person id–person map, a person’s full
name–person map, and a username–person map.

ENTITY DICTIONARY 155

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 155

The retrievePersonnel() method first executes the personnelQuery that
retrieves the personnel data from the data source. It then iterates through the
ResultSet and creates a Person object per each row in the ResultSet. The fol-
lowing code snippet shows how the personnel dictionary is built:

while (rs.next()) {
String site � rs.getString(“site”);
int id � rs.getInt(“person_id”);
String username � rs.getString(“username”);
sites.add(site);
Person person � new Person();
person.setSite(site);
person.setId(id);
person.setUsername(username);
person.setLast(rs.getString(“last”));
person.setFirst(rs.getString(“first”));
person.setMiddle(rs.getString(“middle”));
person.setMailDrop(rs.getString(“mail_drop”));
person.setEmail(rs.getString(“email_address”));

//for a new site, create a new entry in the personBySite map
List personSite � (List) personBySite.get(site);
if (personSite �� null) {

personSite � new ArrayList();
personBySite.put(site, personSite);

}
personSite.add(person);

//mapping individual person by personID
personByID.put(new Integer(id), person);

//mapping individual person by username
personByUsername.put(username, person);

//mapping individual person by person’s fullName
personByName.put(person.getFullName(), person);

//constructing all of the person objects
persons.add(person);

}

The code does not rerun the query for each lookup. It accesses the data only
once from the data source and adds the Person object from each row to all
lookups in each iteration of the while loop. This approach offers good per-
formance for building the entity dictionary.

In each iteration in the while loop, the code determines whether a new
research site is introduced:

156 ENTITY DICTIONARY

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 156

//for a new site, create a new entry in the personBySite map
List personSite � (List) personBySite.get(site);
if (personSite �� null) {

personSite � new ArrayList();
personBySite.put(site, personSite);

}

If yes, then a new list is created that stores people in that site and the new site
is added to the site–people map.

The whole database access code is surrounded by a try-finally block.
There is no catch because the exceptions are rethrown by the code. However,
the finally block is necessary because the ResultSet, Statement, and
Connection objects must be closed properly whether an exception is thrown,
or otherwise there will be database resource leaks. The database cleanup is
implemented in a Util class. The initialization of the Connection object is
purposely left out from the code. It can be either from a connection pool or
from a Thread Local variable that is set earlier in the method call stack.
Thread Local will be discussed further in Chapter 15.

The other retrieve…() methods are all implemented more or less in the
same way as retrievePersonnel() and become self-explanatory once
retrievePersonnel() is understood.

EntityDictionaryManager has two responsibilities: provide entity diction-
aries to clients and refresh the entity dictionaries from the data source peri-
odically. The first responsibility is accomplished by its public API—the
getters. The second one is accomplished by its private refresh() and load…()
methods, and a background thread that wakes up every 30 minutes.

The source code of the EntityDictionaryManager is as follows:

package com.abcpharma.crs.entitydictionary;

import java.util.*;
import java.sql.*;

import com.abcpharma.crs.entity.*;
import com.abcpharma.crs.molstructure.*;

public class EntityDictionaryManager {
private static List assays � null;
private static Map assayByID � null;
private static Map assayByName � null;

private static List nameTypes � null;

private static List projects � null;
private static Map projectByID � null;
private static Map projectByName � null;

private static List personnel � null;

ENTITY DICTIONARY 157

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 157

private static Map personnelBySite � null;
private static Map personnelByID � null;
private static Map personnelByUsername � null;
private static Map personnelByName � null;

private static List sites � null;

private static List sources � null;

private static Map saltByType � null;
private static Map saltByID � null;
private static Map saltByFormula � null;

private static final EntityDictionaryManager instance � new
EntityDictionaryManager();

public static int INTERVAL_TIME � 30 * 60; // 30 min
private static Thread refreshThread;

private EntityDictionaryManager() {
loadEntityDictionary();

}

public static EntityDictionaryManager getInstance() {
return instance;

}

static {
refreshThread � new Thread() {

public void run() {
while (!isInterrupted()) {

try {
Thread.sleep(INTERVAL_TIME
* 1000);

}
catch (InterruptedException ex) {

System.out.println(“Entity dic-
tionary refresh thread

interrupted...” +ex.get
Message());

break;
}
instance.refresh();

}
}

};
refreshThread.start();

}

public synchronized void interruptThread() {

158 ENTITY DICTIONARY

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 158

if (refreshThread !� null) {
refreshThread.interrupt();

}
}

public void finalize() {
interruptThread();

}

private void refresh() {
loadEntityDictionary();

}

private void loadAssays() {
EntityDictionaryDao dao � EntityDictionaryDao.getInstance();
Map assayMap � new HashMap();

try {
assayMap � dao.retrieveAssays();

}
catch (SQLException e) {

e.printStackTrace();
}

assays � (List) assayMap.get(EntityDictionaryDao.ASSAY_LIST);
assayByID � (Map) assayMap.get(EntityDictionaryDao.ASSAYID
_ MAP);
assayByName � (Map) assayMap.get(EntityDictionaryDao.ASSAY-
NAME_MAP);

}

private void loadNameTypes() {
EntityDictionaryDao dao � EntityDictionaryDao.getInstance();
try {

nameTypes � dao.retrieveNameTypes();
}
catch (SQLException e) {

e.printStackTrace();
}

}

private void loadProjects() {
EntityDictionaryDao dao � EntityDictionaryDao.getInstance();
Map projectTarget � null;
try {

projectTarget � dao.retrieveProject();
}
catch (SQLException e) {

e.printStackTrace();
}

ENTITY DICTIONARY 159

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 159

projects � (List) projectTarget.get(EntityDictionaryDao.PROJECT_ LIST);
projectByID � (Map) projectTarget.get(EntityDictionaryDao.PROJEC
TID_MAP);
projectByName � (Map) projectTarget.get(EntityDictionaryDao.PRO-
JECTNAME_MAP);

}

private void loadPersonnel() {
EntityDictionaryDao dao � EntityDictionaryDao.getInstance();
Map people � null;
try {

people � dao.retrievePersonnel();
}
catch (SQLException e) {

e.printStackTrace();
}

personnel � (List) people.get(EntityDictionaryDao.PERSON_LIST);
personnelBySite � (Map) people.get(EntityDictionaryDao.PERSON-
SITE_MAP);
personnelByID � (Map) people.get(EntityDictionaryDao.PERSONID_
MAP);
personnelByUsername � (Map) people.get(EntityDictionaryDao.PER-
SONUSERNAME_MAP);
personnelByName � (Map) people.get(EntityDictionaryDao.PERSON-
NAME_MAP);

sites � (List) people.get(EntityDictionaryDao.SITE_LIST);
}

private void loadSource() {
EntityDictionaryDao dao � EntityDictionaryDao.getInstance();
try {

sources � dao.retrieveSource();
}

catch (SQLException e) {
e.printStackTrace();

}
}

private void loadSalts() {
EntityDictionaryDao dao � EntityDictionaryDao.getInstance();
Map salt_map � null;

try {
salt_map � dao.retrieveSalts();

}
catch (SQLException e) {

160 ENTITY DICTIONARY

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 160

e.printStackTrace();
}
saltByType � (Map) salt_map.get(EntityDictionaryDao. SALTTYPE _
MAP);
saltByFormula � (Map) salt_map.get(EntityDictionaryDao.

SALTFORMULA_MAP);
saltByID � (Map) salt_map.get(EntityDictionaryDao.SALTID_MAP);

}

public synchronized void loadEntityDictionary() {
loadPersonnel();
loadAssays();
loadNameTypes();
loadProjects();
loadSalts();
loadSource();

}

public List getAssays() {
synchronized (this) {

if (assays �� null) {
loadAssays();

}
}
return assays;

}

public Assay getAssay(Integer id) {
synchronized (this) {

if (assays �� null) {
loadAssays();

}
}
return (Assay) assayByID.get(id);

}

public Assay getAssayByName(String name) {
synchronized (this) {

if (assays �� null) {
loadAssays();

}
}
return (Assay) assayByName.get(name);

}

public List getNameTypes() {
synchronized (this) {

if (nameTypes �� null) {
loadNameTypes();

}

ENTITY DICTIONARY 161

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 161

}
return nameTypes;

}

public List getSites() {
synchronized (this) {

if (sites �� null) {

loadPersonnel();
}

}
return sites;

}

public List getProjects() {
synchronized (this) {

if (projects �� null) {
loadProjects();

}
}
return projects;

}

public ResearchProject getProjectByID(String projectID) {
synchronized (this) {

if (projectByID �� null) {
loadProjects();

}
}
return (ResearchProject) projectByID.get(projectID);

}

public ResearchProject getProjectByName(String projectName) {
synchronized (this) {

if (projectByName �� null) {
loadProjects();

}
}
return (ResearchProject) projectByName.get(projectName);

}

public List getProjectNames() {
List projectNames � null;

synchronized (this) {
if (projects �� null) {

loadProjects();
}

}
Iterator it � projects.iterator();

162 ENTITY DICTIONARY

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 162

while (it.hasNext()) {
ResearchProject project � (ResearchProject) projects;
String name � project.getName();
projectNames.add(name);

}
return projectNames;

}

public List getPeople() {
synchronized (this) {

if (personnel �� null) {
loadPersonnel();

}
}
return personnel;

}

public List getPeopleBySite(String site) {
synchronized (this) {

if (personnelBySite �� null) {
loadPersonnel();

}
}
return (List) personnelBySite.get(site);

}

public Person getPersonByID(String personid) {
synchronized (this) {

if (personnelByID �� null) {
loadPersonnel();

}
}
return (Person) personnelByID.get(personid);

}

public Person getPersonByUsername(String username) {
synchronized (this) {

if (personnelByUsername �� null) {
loadPersonnel();

}
}
return (Person) personnelByUsername.get(username);

}

public Person getPersonByName(String first, String middle, String last) {
synchronized (this) {

if (personnelByName �� null) {
loadPersonnel();

}
}

ENTITY DICTIONARY 163

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 163

EntityDictionaryDao dao � EntityDictionaryDao.getInstance();
String strUniqueName � Person.getFullName(first, middle, last);
return (Person) personnelByName.get(strUniqueName);

}

public List getPersonNames() {
List persons � personnel;
List personNames � null;

synchronized (this) {
if (personnel �� null) {

loadPersonnel();
}

}

Iterator it � persons.iterator();
while (it.hasNext()) {

Person person � (Person) persons;
String first � person.getFirst();
String middle � person.getMiddle();
String last � person.getLast();
personNames.add(last + “, “ + first + “ “ + middle);

}
return personNames;

}

public List getPersonNames(String site) {
List persons � (List) personnelBySite.get(site);
List personNames � null;

synchronized (this) {
if (personnelBySite �� null) {

loadPersonnel();
}

}

Iterator it � persons.iterator();
while (it.hasNext()) {

Person person � (Person) persons;
String first � person.getFirst();
String middle � person.getMiddle();
String last � person.getLast();
personNames.add(last + “, “ + first + “ “ + middle); //full names

}
return personNames;

}

public List getSource() {
synchronized (this) {

if (sources �� null) {

164 ENTITY DICTIONARY

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 164

loadSource();
}

}
return sources;

}

public StructureFragment getSaltByType(String saltType) {
synchronized (this) {

if (saltByType �� null) {
loadSalts();

}
}
return (StructureFragment) saltByType.get(saltType.toUpperCase());

}

public StructureFragment getSaltByID(String saltID) {
synchronized (this) {

if (saltByID �� null) {
loadSalts();

}
}
return (StructureFragment) saltByID.get(saltID);

}

public StructureFragment getSaltByFormula(String formula) {
synchronized (this) {

if (saltByFormula �� null) {
loadSalts();

}
}
return (StructureFragment) saltByFormula.get(formula);

}
}

The class first declares a set of static variables for holding the entity diction-
aries. Its private constructor and the static getInstance() method make it a
Singleton. Its load…() methods call EntityDictinaryDao to load the entity
dictionaries from the data source. Let us again use personnel dictionary as an
example. The code snippet of the loadPersonnel() method is as follows:

private void loadPersonnel() {
EntityDictionaryDao dao � EntityDictionaryDao.getInstance();
Map people � null;
try {

people � dao.retrievePersonnel();
}
catch (SQLException e) {

e.printStackTrace();
}

ENTITY DICTIONARY 165

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 165

personnel � (List) people.get(EntityDictionaryDao.PERSON_LIST);
personnelBySite � (Map) people.get(EntityDictionaryDao.PERSONSITE_MAP);
personnelByID � (Map) people.get(EntityDictionaryDao.PERSONID_MAP);
personnelByUsername � (Map) people.get(EntityDictionaryDao.PERSONUSER-
NAME_MAP);
personnelByName � (Map) people.get(EntityDictionaryDao.PERSONNAME
_MAP);
sites � (List) people.get(EntityDictionaryDao.SITE_LIST);

}

It calls EntityDictionaryDao’s retrievePersonnel() method and saves the
returned personnel dictionaries into its own dictionary variables: personnel(the
entire personnel list), personnelBySite(site to people map), personnelByID(per-
son id to person map), personnelByUsername(username to person map),
personnelByName(full name to person map), and sites(the research site list).
Because EntityDictionaryDao’s retrievePersonnel() method builds these person-
nel dictionaries with one single query, the retrieval process is highly efficient.

Now let us take a look at one of personnel dictionary’s getter methods—
getPersonnelBySite():

public List getPeopleBySite(String site) {
synchronized (this) {

if (personnelBySite �� null) {
loadPersonnel();

}
}
return (List) personnelBySite.get(site);

}

The method takes a site name as input. It first checks whether
personnelBySite is null. If yes, it calls the loadPersonnel() method to load the
personnel dictionaries first. It returns the list of people at the site.

Please note that all getters in the EntityDictionaryManager have a synchro-
nized block. This block makes sure that when a load method is being executed,
all its getter counterparts are on hold. You may wonder why none of the load
methods are synchronized. This is because the load methods are all private and
therefore cannot be invoked other than the EntityDictionaryManager, and all
invocations inside the EntityDictionaryManager are enclosed in a synchro-
nized block. This is why the loadEntityDictionary method is synchronized as
follows:

public synchronized void loadEntityDictionary() {
loadPersonnel();
loadAssays();
loadNameTypes();
loadProjects();

166 ENTITY DICTIONARY

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 166

loadSalts();
loadSource();

}

The above are all good until the entity dictionaries change in the data source.
What if new employees are added and new projects and assays are registered?
What if some employees are terminated? These situations require the entity
dictionary cache in the EntityDictionaryManager get refreshed periodically.
The following static block accomplishes this task:

static {
refreshThread � new Thread() {

public void run() {
while (!isInterrupted()) {

try {
Thread.sleep(INTERVAL_TIME * 1000);

}
catch (InterruptedException ex) {

System.out.println(“Entity dictionary refresh thread
interrupted...” +

ex.getMessage());
break;

}
instance.refresh();

}
}

};
refreshThread.start();

}

The static block is executed when the class is loaded into the JVM. Look at
what the static block does. It creates an anonymous inner class of type
Thread—the refreshThread. Its run() method puts the thread into sleep for a
period of time (30 minutes in our code example). When it wakes up, it calls
the refresh() method of the EntityDictionaryManager. The static block starts
the refresh thread, which means that the entity dictionary refresh is handled
by an independent thread. The thread is in an indefinite while-loop that puts
the thread into sleep after every entity dictionary refresh. The thread wakes
up every 30 minutes and does the next entity dictionary refresh.

The above entity dictionary module provides fast, in-memory access of
most frequently accessed data for the compound registration process while
keeping the in-memory cache up-to-date. In a multitiered system, controlling
network traffic is critical to its speed and user experience. The above design
eliminates the need of querying the database every time a piece of data is
asked for, and since the system can use the cached dictionaries to display
only the valid entities to the user, it also reduces human errors.

ENTITY DICTIONARY 167

JWUS_Dcis_Ch013.qxd 10/12/2006 9:23 PM Page 167

168

CHAPTER 14

Chemistry Intelligence API

One critical task of any compound registration system is to make sure molec-
ular structures are compliant with chemistry conventions. This ensures con-
sistent representations of molecular structures in the database so that
structure searches can find, and only find, the right compounds. Although
different organizations may have slightly different conventions, the following
ones are some of the most common that the Chemistry Intelligence API takes
care of.

Add chiral flag: If the compound has a single stereo center, a chiral flag
should be present:

Invalid stereo bonds: Replace invalid stereo bonds with flat bonds:

Explicit hydrogen: Hydrogen atoms should be implicit rather than
explicit:

N

H

N

F

Cl

Br

F

Cl

Br

Chiral

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 168

CHEMISTRY INTELLIGENCE API 169

Invalid atom symbol should be detected:

Remove chiral flag: If a structure does not have a stereo center, the chiral
flag should not be present:

Valence: Make sure each atom in the molecule has the right number of
valences. The following is an example. A carbon cannot have four bonds:

Wave bond: The wave bond should be replaced by the straight bond:

Commercial software vendors provide tools that can codify these chem-
istry rules. MDL Cheshire, CambridgeSoft ChemOffice, and Accerlys
Accord Structure Checker are three examples. The recommendation is to
leverage these tools. However, you do not want to be locked into these tools
(although that is what the vendors would prefer). What you want is a design
that allows you to easily unplug one tool and plug in another when neces-
sary.

In Chapter 12, we talked about Design by Interface. To do this, forget
about the vendor solution for a moment and think about what a client might
expect from the Chemistry Intelligence API. The client has a molecular struc-
ture and wants to inspect the structure using a chemistry convention to make
sure the structure is in good quality and can be accepted by the compound
database. The client wants to receive the corrected molecular structure and be
informed of what has been changed as a result of the inspection. Therefore,
these inspection methods take a String molfile as input and return a String
array, one element of which is the corrected molfile, and the other is the rea-
son for the correction. The source code of the MolstructureInspector interface
is as follows:

package com.abcpharma.crs.chemintell;

public interface MolstructureInspector {

public String[] fragment(String molfile) throws ChemistryRulesException;

Chiral

X

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 169

170 CHEMISTRY INTELLIGENCE API

public String addFragment(String targetMol, String fragMol) throws Chemistry
RulesException;

public String[] executeAllRules(String molfile) throws ChemistryRulesException;

public String[] inspectValence(String molfile) throws ChemistryRulesException;

public String[] inspectExplicitHydrogen(String molfile) throws ChemistryRules
Exception;

public String[] inspectWavyBond(String molfile) throws Chemistry Rules
Exception;

public String[] inspectInvalidStereoBond(String molfile) throws ChemistryRules
Exception;

public int getFragmentCount(String molfile) throws ChemistryRulesException;

public String neutralize(String molfile) throws ChemistryRulesException;

public int getCharge(String molfile) throws ChemistryRulesException;

public int getQuaternionNitrogenCount(String molfile) throws ChemistryRules
Exception;

public boolean isNoStructure(String molfile) throws ChemistryRulesException;

public boolean hasInvalidAtom(String molfile) throws ChemistryRulesException;

public String[] addChiralFlag(String molfile) throws ChemistryRulesException;

public String removeChiralFlag(String molfile) throws ChemistryRulesException;
}

In addition to the above chemistry rules, it also declares other structure
manipulation methods such as neutralize(), getFragmentCount(), and
getCharge().

Once the interface is defined, the vendor-specific adapters can be imple-
mented. Assume we use MDL Cheshire as the chemistry intelligence engine;
we need a CheshireMolstructureInspectorImpl class. By the same token, you
can also create an AccordMolstructureInspectorImpl class.

MDL Cheshire is a proprietary technology. It is composed of Cheshire
Runtime, Cheshire scripts, a scripting language for writing chemistry logic,
and a Cheshire Studio for developing and debugging Cheshire scripts. In
addition, Cheshire has a Java JNI interface that can be called from Java
programs. Figure 14.1 is a component diagram that illustrates Cheshire
architecture.

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 170

CHEMISTRY INTELLIGENCE API 171

Although Cheshire does a good job applying chemistry logic on molecule
structures, it has two serious drawbacks:

1. Its JNI API is unnecessarily complex.
2. It is not thread safe. Only one thread can execute Cheshire Runtime at

a time. To make it worse, you can only create one Cheshire Runtime
instance in a JVM!

The second drawback makes Cheshire completely single threaded. In an
enterprise system, this is not acceptable. Both of the above suggest that the
Cheshire environment must be carefully managed, which inspires us to create
a CheshireManager class and a CheshireManagerFactory class. The responsi-
bility of the two classes is to hide Cheshire’s complexities and make sure the
Cheshire environment is run by one thread only at all times. Figure 14.2 is the
class diagram of the CRS Cheshire Chemistry Intelligence Framework.

Both CheshireJNI and CheshireUtil are classes in MDL’s Cheshire JNI
library. One goal of the CheshireManager is to hide this complexity so that
the clients only interact with one Façade object—CheshireManager.

Figure 14.3 is a sequence diagram that illustrates how the CRS Cheshire
Chemistry Intelligence Framework works.

Façade: Provide a unified interface to a set of interfaces to a subsystem.
Façade defines a higher level interface that makes the subsystem
easier to use.

When the CheshireMolstructureInspectorImpl object provides service to its
client, the first thing it does is to get a CheshireManager object from the
CheshireManagerFactory object. After the work is done by the execute()
method of CheshireManager, the CheshireMolstructureInspectorImpl returns
the CheshireManager object immediately back to the CheshireManagerFactory
object so that the CheshireManager object is available to serve other clients.

There are two ways that CheshireManagerFactory manages the Cheshire-
Manager object. One is to store only one instance of the CheshireManager so
that when it is being used by one client, other clients have to wait in a queue
until it is returned to the CheshireManagerFactory. The other is to store a list

CheshireJNI Cheshire RT

Cheshire Script

Figure 14.1 The component diagram of MDL Cheshire.

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 171

172 CHEMISTRY INTELLIGENCE API

of CheshireManager objects. To do this, the CheshireManager has to be an
RMI remote object because only one Cheshire JNI object can be created in
each JVM. Although there is no simple answer to which way is better,
I can provide some advice here. Using RMI means there will be inter-JVM
remote method calls. Even if all the JVMs run on the same physical com-
puter, there is still a significant overhead of remote method calls between the
JVMs. Plus each JVM requires some computing resources. Therefore, using
RMI is not efficient if the number of simultaneous transactions is low.
On the other hand, a single Cheshire shared by all users and transactions does
not scale. If the number of concurrent users and transactions is high, using a

MolstructureInspector

inspectValence()
inspectExplicitHydrogen()

inspectZwitterion()
inspectSproutHydrogen()

fragment()
addFragment()

inspectWavyBond()
getFragmentCount()

inspectValence()
neutralize()

CheshireJNI

CheshireMolstructureInspectorImpl

CheshireManagerFactory

getCheshireManager()
returnCheshireManager()

CheshireManager

init()

execute()

CheshireUtil

Figure 14.2 The class diagram of the CRS Cheshire Chemistry Intelligence Framework.

aClient : CheshireMolstructureInspectorImpl : CheshireManagerFactory : CheshireManager

2: getCheshireManager()

3: return

4: execute(String, String)

1: inspectSproutHydrogen(String)

5: returnCheshireManager(CheshireManager)

Figure 14.3 The sequence diagram of the CRS Cheshire Chemistry Intelligence Framework.

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 172

CHEMISTRY INTELLIGENCE API 173

pool of RMI objects is recommended. Although it takes longer to serve a sin-
gle user, it certainly scales better if the number of simultaneous transactions
is high.

The source code of the CheshireManager class is as follows:

package com.abcpharma.crs.cheshire;

import java.io.*;
import java.util.*;

import com.mdli.cheshire.jni.*;
import com.mdli.cheshire.util.*;

import com.abcpharma.crs.chemintell.*;

public class CheshireManager{

private CheshireJNI cheshireJni = null;

private CheshireUtil cheshireUtil = null;

private CheshReturnObject cheshireReturn = null;

private long cCatId = -1;

private static String qcScript = null;

private static String saltScript = null;

private static final int resetLimit = 1000;

private static int resetCounter = 0;

private static final String STRUCTUERE_LOAD_ERROR = “ structure can not be
loaded to Cheshire environment.”;

CheshireManager() throws ChemistryRulesException {

init();
}

private void init() throws ChemistryRulesException {

// initialize Cheshire environment
cheshireJni = new CheshireJNI();
if (cheshireJni == null) {

throw new ChemistryRulesException(“Can not create Cheshire
JNI”);

}

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 173

174 CHEMISTRY INTELLIGENCE API

cheshireReturn = cheshireJni.createEnvironment();
if (cheshireReturn == null) {

throw new ChemistryRulesException(
“Can not create Cheshire Return Object”);

}

cheshireUtil = new CheshireUtil();
if (cheshireUtil == null) {

throw new ChemistryRulesException((“Can not create Cheshire
Util Object”));

}
cCatId = cheshireJni.currentEnvironment().getId();

if (cCatId != 1) {

throw new ChemistryRulesException(
“Can not create a valid Cheshire ID”);

}

// read in Cheshire script as String

String path = System.getProperty(“user.dir”);
String sctQC = path + “/../cheshirescripts/cheshire_qc.cct”;
String sctSalt = path + “/../cheshirescripts/cheshire_salt.cct”;
try {

qcScript = cheshireUtil.readFile(sctQC);
saltScript = cheshireUtil.readFile(sctSalt);

} catch (IOException e) {
throw new ChemistryRulesException(

“Could not read Cheshire Script file. “ +
e.getMessage());

}
loadScript(qcScript);
loadScript(saltScript);

}

//load Cheshire Script
private void loadScript(String cheshireScript) throws ChemistryRulesException {

if (!cheshireJni.runScript(cCatId, cheshireScript).isSuccess()) {
if (!cheshireJni.repeatLastScript(cCatId).isSuccess()) {

throw new ChemistryRulesException(
“Could not use previously loaded
Cheshire Script”);

}
}

}

private void reset() throws ChemistryRulesException {
resetCounter++;

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 174

CHEMISTRY INTELLIGENCE API 175

if (resetCounter >= resetLimit) {
doReset();

}

}

private void doReset() throws ChemistryRulesException {
cheshireReturn = cheshireJni.resetEnvironment(cCatId);
if (!cheshireReturn.isSuccess()) {

throw new ChemistryRulesException(
“Reset Cheshire Environment failed.”);

}
resetCounter = 0;
loadScript(qcScript);
loadScript(saltScript);

}

public String[] executeRule(String molIn, String rule)
throws ChemistryRulesException {

String[] cheshireOutput = new String[2];
try {

if (!cheshireJni.loadTargetMol(cCatId, molIn).isSuccess()) {
throw new ChemistryRulesException(“executeRule: “

+ STRUCTURE_LOAD_
ERROR);

}
cheshireReturn = cheshireJni.runScript(cCatId, rule);
cheshireOutput[0] = cheshireReturn.getOutputString();
cheshireOutput[1] = cheshireJni.unLoadTargetMol(cCatId).get
OutputString();

} finally {
reset();

}
return cheshireOutput;

}

private String[] executeFragment(String molIn, String targetName,

String molFrag, String ruleName, String fragName)
throws ChemistryRulesException {

String[] output = new String[2];
String sctOut = null;

try {
if (!cheshireJni.loadMol(cCatId, molFrag, fragName).is
Success()) {

throw new ChemistryRulesException(fragName
+ STRUCTURE_LOAD_
ERROR);

}

if (!cheshireJni.loadMol(cCatId, molIn, targetName).
isSuccess()) {

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 175

176 CHEMISTRY INTELLIGENCE API

throw new ChemistryRulesException(“Target “
+ STRUCTURE_LOAD_
ERROR);

}
cheshireReturn = cheshireJni.runScript(cCatId, ruleName);
output[0] = cheshireReturn.getOutputString();

if (output[0].startsWith(“Function”) || output[0].equals(“-1”)) {
throw new ChemistryRulesException(“Add “ + frag
Name

+ “ error.”);
}
sctOut = cheshireUtil.catCheshReturn(cheshireReturn);
output[1] = cheshireJni.unLoadMol(cCatId, targetName). get
OutputString();

} finally {
reset();

}
return output;

}

public String[] executeAddFragment(String molIn, String fragIn)
throws ChemistryRulesException {

String rule = “AddFragment()”;
return executeFragment(molIn, “MIXTURE_TARGET_MOL”, fragIn, rule,

“PARENT_FRAG”);
}

public String[] executeGetChargedMol(String combinedMol, String fragMol)
throws ChemistryRulesException {

String rule = “GetChargedMol()”;
return executeFragment(combinedMol, “COMBINED_TARGET_ MOL”,
fragMol,

rule, “FRAG_MOL”);
}

public String[] executeAddSalt(String molIn, String saltIn,
int parentCoeff, int vhc, int nsalt)
throws ChemistryRulesException {

String sctOut = null;
String rule = “ADDSALT4(“ + parentCoeff + “, “ + vhc + “, “ + nsalt + “);”;
return executeFragment(molIn, “TARGET_MOL”, saltIn, rule, “SALT_
FRAG”);

}

public List readSDFile(String sdfile) throws ChemistryRulesException {
List molList = new ArrayList();

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 176

CHEMISTRY INTELLIGENCE API 177

if (!cheshireUtil.openSDFile(sdfile)) {
throw new ChemistryRulesException(

“Read SDFile ERROR: Cannot open input
SD File\n”);

}
while (cheshireUtil.isSDFileOpen()) {

molList.add(cheshireUtil.readMolFromSDFile());
}
cheshireUtil.closeSDFile();
return molList;

}
}

The CheshireManager’s constructor has no access modifier; it cannot be
instantiated outside its package. Its client can acquire it only through its fac-
tory object, which makes sure its instantiation is controlled. The constructor
calls the private init() method. The init() method initializes a CheshireJNI
object(cheshireJni), a CheshireUtil object(cheshireUtil), a CheshireReturn
object(cheshireReturn), and a Cheshire id(cCatId). The init() method makes
sure the creation of these objects is successful. Otherwise it throws excep-
tions. Lastly, the init() method loads the Cheshire scripts that it needs to do its
works from the file system. At this point, the CheshireManager is ready to
receive service calls.

The executeRule() method executes the Cheshire scripts that encode chem-
istry rules. The two arguments are the molfile representing the structure that it
needs to act upon and the name of the chemistry rule it is asked to execute. It first
loads the molfile to the Cheshire Runtime through its JNI object. It then executes
the chemistry rule, retrieves the output, and then unloads the molfile. All rules
are already loaded from the Cheshire script files in the init() method when the
CheshireManager object is created. Cheshire Runtime maintains a map between
the signature of the Cheshire script procedure and the body of the procedure.
This map requires that the second parameter in the executeRule(String molIn,
String rule) be exactly the same as the signature of the Cheshire script proce-
dure. For example, if the RemoveWavyBond() procedure in your Cheshire script
is to be executed, the second argument of the executeRule() method in the
CheshireManager must be “RemoveWavyBond()”. The executeRule() method
returns a String array. The first element of the array is an annotation of what gets
changed as a result of the rule execution, and the second element is the updated
molfile. If the structure has no issues according to the rule, the first element is an
empty String and the second is the original molfile. If the structure does have
problems but it requires manual corrections, the first element explains what is
wrong, and the second element is the original molfile. The reset() and doReset()
methods are self-explanatory—reset the Cheshire environment every so often to
release resources it holds to prevent memory leaks. The readSDFile() is a utility

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 177

178 CHEMISTRY INTELLIGENCE API

method. It takes an SD File as input and returns a list of molfiles contained by
the SD File.

Now CheshireManager becomes the Façade of Cheshire Runtime. As
described earlier in this chapter, the Cheshire environment is not thread-safe;
therefore, managing the CheshireManager object becomes a challenge. There
are two options: one is to create only one instance of the CheshireManager
within the JVM and let all requests share it. The other is to create a pool of
CheshireManager that implements the RMI Remote interface—each runs in
its own JVM. We have discussed the pros and cons of each approach. Here
we take the first approach. However, we still implement it using an object
pool for readers who are interested in the second approach. We use Apache
Org’s Object Pool Library to illustrate how it works.

Apache’s Object Pool Library requires an object factory for each pooled
object. The factory only needs to implement one method—makeObject(). The
library provides default implementations to all other methods. In our example,
the CheshireManager is the pooled object, so we need a PoolableCheshire-
ManagerFactory:

package com.abcpharma.crs.cheshire;

import org.apache.commons.pool.*;

class PoolableCheshireManagerFactory extends BasePoolableObjectFactory{
public Object makeObject() throws Exception{

return new CheshireManager();
}

}

It is very simple: the makeObject() method simply instantiates a
CheshireManager object and returns it. Notice the class is not declared public;
it can be accessed only by other classes in the package. This PoolableCheshire-
ManagerFactory is not to be accessed by clients of CheshireManager objects. It
is used only to create the CheshireManager pool.

Next, we need a factory object that the CheshireManager’s clients use to
get a CheshireManager instance. We name it the CheshireManagerFactory:

package com.abcpharma.crs.cheshire;

import com.abcpharma.crs.chemintell.*;

import org.apache.commons.pool.*;
import org.apache.commons.pool.impl.*;

public class CheshireManagerFactory {
private static final int POOL_SIZE = 1;

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 178

CHEMISTRY INTELLIGENCE API 179

private static final ObjectPool pool = new GenericObjectPool(new Poolable
CheshireManagerFactory());

private static final CheshireManagerFactory instance = new CheshireManager
Factory();

private CheshireManagerFactory() {
try {

init();
} catch (ChemistryRulesException ex) {

ex.printStackTrace();
}

}

public static CheshireManagerFactory getInstance() {
return instance;

}

private static void init() throws ChemistryRulesException {
for (int i = 0; i < POOL_SIZE; i++) {

try{
pool.addObject();

}catch(Exception ex){
ex.printStackTrace();

}
}

}

public CheshireManager getCheshireManager() throws Exception{
CheshireManager cm = (CheshireManager) pool.borrowObject();
return cm;

}
public void returnCheshireManager(CheshireManager cm) throws Exception{

pool.returnObject(cm);
}

}

The CheshireManagerFactory is a singleton—only one instance exists. We
use Apache’s GenericObjectPool to maintain the CheshireManager objects.
The constructor of GenericObjectPool takes an instance of PoolableCheshire
ManagerFactory as input so that when its addObject() method is called, the
PoolableCheshireManagerFactory object’s makeObject() is called to create
an instance of CheshireManager class that is saved in the GenericObjectPool.
The init() method in CheshireManagerFactory does exactly that. Everything else
in the CheshireManagerFactory is self-explanatory—the getCheshireManager()
method checks out a CheshireManager object from the pool and returns it to

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 179

180 CHEMISTRY INTELLIGENCE API

the client, and the returnCheshireManager() method checks it back into the
pool.

Now we have a managed Cheshire environment that hides Cheshire com-
plexity and allows us to implement a molstructure inspector that uses Cheshire
through the CheshireManager. The source code of the CheshireMolstructure-
InspectorImpl is as follows:

package com.abcpharma.crs.cheshire;

import com.abcpharma.crs.chemintell.*;

import java.lang.reflect.*;

public class CheshireMolstructureInspectorImpl implements
MolstructureInspector {

private static final CheshireManagerFactory cmFactory =
CheshireManagerFactory.getInstance();

private static final CheshireMolstructureInspectorImpl instance = new Cheshire
MolstructureInspectorImpl();

private CheshireMolstructureInspectorImpl() {
}

public static CheshireMolstructureInspectorImpl getInstance() {
return instance;

}

public String[] fragment(String molfile) throws ChemistryRulesException {
return executeRule(molfile, “GetFragments()”);

}

public String[] executeAllRules(String molfile) throws ChemistryRulesException {

String retMsg = null;

String[] feedback = new String[2];

String[] output = new String[2];

if (hasInvalidAtom(molfile)) {
output[0] = “Found unknown atom.”;
output[1] = molfile;
return output;

}

Method[] methods = this.getClass().getDeclaredMethods();

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 180

CHEMISTRY INTELLIGENCE API 181

Object[] args = {molfile};

for (int i = 0; i < methods.length; i++){
if(methods[i].getName().startsWith(“inspect”)){

try{
feedback = (String[]) methods[i].invoke
(this, args);

}catch(Exception ex){
ex.printStackTrace();

}
if (!feedback[0].equals(“none”)) {

retMsg = retMsg + feedback[0] + “, “;
}

}
}

output[0] = (retMsg == null) ? “none” : retMsg;
output[1] = feedback[1];
return output;

}

public boolean isNoStructure(String molfile) throws ChemistryRulesException {
if (executeRule(molfile, “IsNoStructure()”)[0].equalsIgnoreCase(“yes”)) {

return true;
} else {

return false;
}

}

public boolean hasInvalidAtom(String molfile) throws ChemistryRulesException {
if (executeRule(molfile, “HasUnknownAtom()”)[0].equalsIgnore
Case(“yes”)) {

return true;
} else {

return false;
}

}

public String[] addChiralFlag(String molfile) throws ChemistryRulesException {
return executeRule(molfile, “AddChiralFlag()”);

}

public String removeChiralFlag(String molfile) throws ChemistryRulesException {
return executeRule(molfile, “RemoveChiralFlag()”)[1];

}

public String[] inspectStereo(String molfile) throws ChemistryRulesException {
return executeRule(molfile, “DrawStereo()”);

}

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 181

182 CHEMISTRY INTELLIGENCE API

public String[] inspectValence(String molfile) throws ChemistryRulesException {
return executeRule(molfile, “ValenceCheck()”);

}

public String[] inspectExplicitHydrogen(String molfile) throws ChemistryRules
Exception {

return executeRule(molfile, “ExplicitHydrogen()”);
}

public String[] inspectInvalidStereoBond(String molfile) throws Chemistry
RulesException {

return executeRule(molfile, “InvalidStereoBond()”);
}

public String[] inspectZwitterion(String molfile) throws ChemistryRulesException {
return executeRule(molfile, “Zwitterion()”);

}

public String[] inspectWavyBond(String molfile) throws Chemistry RulesException {
return executeRule(molfile, “RemoveWavyBond()”);

}

public String[] inspectOverlappingGroups(String molfile) throws ChemistryRules
Exception {

return executeRule(molfile, “OverlappingGroups()”);
}

public int getQuaternionNitrogenCount(String molfile) throws ChemistryRules
Exception {

int numOfQuatN = -1;
try {

numOfQuatN = Integer.parseInt((executeRule(molfile,
“GetQuatN()”))[0]);

} catch (NumberFormatException ex) {
throw new ChemistryRulesException(“Get quaternion nitrogen
failed: “

+ ex.getMessage());
}
return numOfQuatN;

}

public int getCharge(String molfile) throws ChemistryRulesException {
return Integer.parseInt(executeRule(molfile, “GetCharge()”)[0]);

}

public int getFragmentCount(String molfile) throws ChemistryRulesException {
return Integer.parseInt(executeRule(molfile, “CountFragments()”)[0]);

}

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 182

CHEMISTRY INTELLIGENCE API 183

public String neutralize(String molfile) throws ChemistryRulesException {
return executeRule(molfile, “NeutralizeParent()”)[1];

}

private String[] executeRule(String molIn, String rule) throws Chemistry
RulesException {

String[] feedback = null;
CheshireManager cheshireManager = null;
try {

cheshireManager = cmFactory.getCheshireManager();
feedback = cheshireManager.executeRule(molIn, rule);

}catch(Exception ex){
ex.printStackTrace();

} finally {
try{

cmFactory.returnCheshireManager(cheshireManager);
}catch(Exception ex){

ex.printStackTrace();
}

}
return feedback;

}

public String addFragment(String targetMol, String fragMol) throws Chemistry
RulesException {

CheshireManager cheshireManager = null;
String[] feedback = null;
try {

cheshireManager = cmFactory.getCheshireManager();
feedback = cheshireManager.executeAddFragment(targetMol,
fragMol);

}catch(Exception ex){
ex.printStackTrace();

} finally {
try{

cmFactory.returnCheshireManager(cheshireManager);
}catch(Exception ex){

ex.printStackTrace();
}

}
return feedback[1];

}
}

This implementation of MolstructureInspector uses CheshireManager to
apply chemistry rules to inspect molstructures. Take a close look at the
executeRule() method, which is the core of the CheshireMolstructure-
InspectorImpl class. This private method is called by almost all other

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 183

184 CHEMISTRY INTELLIGENCE API

methods in the class. Three consecutive lines of code make use of the
CheshireManager object:

cheshireManager = cmFactory.getCheshireManager();
feedback = cheshireManager.executeRule(molIn, rule);
cmFactory.returnCheshireManager(cheshireManager);

The first line grabs the CheshireManager object from the object pool
through its factory. The second line uses the CheshireManager object to exe-
cute a rule. And the third line returns the CheshireManager object to the pool
through its factory. These three lines of code make sure the CheshireManager
object is obtained right before it is needed and returned right after its job is
done. Also notice that these three lines are surrounded by a try—finally block
to make sure the CheshireManager object is returned to the pool even if an
exception is thrown.

Every chemistry rule method simply calls the executeRule() method by
passing in the molfile and the name of the Cheshire script function that
implements the rule. Take the wavy bond rule as an example. The following
method removes wavy bonds in the molfile:

public String[] inspectWavyBond(String molfile) throwsChemistryRulesException {
return executeRule(molfile, “RemoveWavyBond()”);

}

The Cheshire script that does the actual work is as follows:

function RemoveWavyBond(){
colWavy = Find(B_MARK, B_MARK_EITHER);
colWavy.Set(B_MARK, B_MARK_NONE);

if(colWavy.Count() > 0){
var ret = “Removed Wavy Bond”;
return (ret);

}
else {

return “none”;
}

}

Let us review how we accomplished the above design. We first created an inter-
face—MolstructureInspector–– which defines a set of chemistry intelligence
methods–– their signatures only. In doing so, we put aside any implementation
details and vendor specifics. We only considered what made sense to clients.
This is the essence of Design by Interface. Based on the decision of using MDL
Cheshire and our knowledge of its complexity, we then implemented a
CheshireManager and its factory. This approach insulates Cheshire complexities

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 184

CHEMISTRY INTELLIGENCE API 185

and offloads the burden of every client having to manage the complexity.
Finally, we implemented CheshireMolstructureInspectorImpl, which is an
implementation of MolstructureInspector and uses Cheshire to execute chem-
istry logics through CheshireManager. The same process can be repeated to cre-
ate an implementation of the above framework for any vendor solutions while
keeping the clients of the chemistry intelligence API intact. To achieve this,
there is one more piece that is missing in the puzzle. How could the client get an
instance of the right implementation? The trick is a configuration file and a
MolstructureInspectorFactory object. The factory object reads a configuration
or a property file that instructs it on which implementation to use and returns the
implementation as its interface type—MolstructureInspector. This way the
client does not care which implementation is returned at run time, and therefore,
the design achieves the goal of Closed for Changes. To switch from one vendor
to another, simply code another MolstuctureInspector implementation and
change the configuration file. It is the factory’s responsibility to return the right
implementation. A code template based on the above idea is as follows:

public class MolstrcutureInspectorFactory {
public MolstructureInspector getStructureInspector(String key){

//return the right implementation based on configuration.
}

}

There is always a better way. One thing can be improved in the above design.
Since executeAllRules() should be the same no matter what vendor tool is
used, it could be put into an abstract base class that all implementation
classes extend to enhance code reuse.

JWUS_Dcis_Ch014.qxd 10/12/2006 9:27 PM Page 185

186

CHAPTER 15

Data Persistence Layer

The Data Persistence Layer (also known as the Data Access Layer) is responsi-
ble for bridging business objects with the Data Storage Layer, which is usually
a relational database. There are some obvious inconsistencies between an
object model and a relational model. Relational databases are composed of
tables with primary keys as the identifier of each row and foreign keys that
cross-reference between tables. This can easily be mapped to the “Has-A” rela-
tionship in the object model. However, inheritance in the object model cannot
easily be mapped to the relational database. A bridge between the two, there-
fore, is desired to decouple the object model from the relational storage.
Another motivation of having the Data Persistence Layer is that the application
code and data storage schema may evolve independently. Having the relational
access logic embedded in the Business Layer may cause the Business Layer to
change every time the relational database changes, which is not desirable.

The Data Persistence Layer can be a thick layer that resides in the appli-
cation middleware or a thin layer in the application middleware combined
with some stored procedures in the database. The former makes the Data
Persistence Layer independent of the underline RDBMS that is being used.
The latter provides better performance because the number of network calls
can be reduced. Either way, a well-defined interface between the Business
Layer and the Data Storage Layer is the key.

There are a few design options for the Data Persistence Layer. Here we use
the Data Mapper Pattern (Fowler, 2003b). The reason is that we want to sep-
arate the domain layer and the database schema and allow them to evolve
independently.

Data Mapper Pattern: A layer of Mappers that moves data between
objects and database while keeping them independent of each other
and the mapper itself.

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 186

DATA PERSISTENCE LAYER 187

The Data Persistence Layer performs four types of operations in the data-
base on behalf of the Business Layer: query, insert, update, and delete. These
operations are invoked by the service objects in the Business Layer. In Chapter
12, we presented one type of service—the Registration Service. There are
other types of services such as Query Service and Update Service, each of
which leverages the Data Persistence Layer to perform database operations.

In the case of the chemistry database, the situation is more complex.
Compound data cannot be queried or updated using standard SQL. The read
and write operations are encapsulated in vendor-specific Oracle data car-
tridges. Therefore, the Data Persistence Layer has another responsibility—
hide vendor specifics with a standard interface so that the Business Layer
does not care about vendor variations.

The first interface of the Data Persistence Layer is the finder interface—
the interface for querying the database. Two types of queries must be sup-
ported by a chemical information database: one is numeric or text query, and
the other is structure query. The first type is the same as any other type of
database. The second type is where chemistry databases differ—search the
database based on substructure, structure similarity, and structure flexmatch.
As such, the finder interface has to support these two types of finder methods.
The CompoundFinder interface is as follows:

package com.abcpharma.crs.registrationservice;

import com.abcpharma.crs.entity.*;

import java.util.*;

public interface CompoundFinder {
public Compound find(int id);
public Compound find(Integer id);
public Compound findByCompoundId(String compoundId);
public List findByParentId(String parentId);
public List findBySubstructure(String structure);
public List findBySimilarity(String structure);
public List findByFlexmatch(String structure);
public List findByFormulalike(String formula);
public List findByWeightRange(float low, float high);

}

The first two find() methods search the compound by its primary key. The
third and fourth methods search the compound by its Lab Sample
Identifier—Compound ID or Parent ID (Section 12.2.6). The fifth to seventh
methods search the compound by its structure. The eighth and ninth methods
search the compound by its formula and weight. These are the canonical
finder methods of a chemical database.

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 187

188 DATA PERSISTENCE LAYER

A chemical database usually has three core tables:

1. Compound table, which stores compound level information such as
structure, molweight, molformula, compound id, and the like.

2. Sample table, which stores sample level information such as notebook
info, project info, and sample id.

3. Compound component table, which stores the parent and salt compo-
nents with which the compound is made up.

Each one of these tables will have a data mapper object. There might be
other tables such as name table and distribution table, and they can be han-
dled in the same way. These data mapper objects are used together to build
the entire object tree that was described in Chapter 12 and to insert, update,
and delete a record in the database.

We now introduce another interface that defines write operations to the
database: the PersistenceManager class. The three write operations are insert,
update, and delete:

package com.abcpharma.crs.registrationservice;

import java.util.*;

import com.abcpharma.crs.datamapper.DataSourceAccessException;
import com.abcpharma.crs.entity.*;

public interface PersistenceManager {
public int insert(AbstractEntity entity) throws DataSourceAccessException;
public void update(AbstractEntity entity) throws DataSourceAccessException;
public void delete(AbstractEntity entity) throws DataSourceAccessException;

}

Now we are ready to develop the data mapper for the Compound object—the
CompoundMapper class. The following class diagram describes Compound
Mapper’s relationship with the two interfaces (Figure 15.1).

The AbstractMapper class is introduced to abstract out the common code
that can be used by all data mapper objects of entity objects (Fowler, 2003b):

package com.abcpharma.crs.datamapper;

import java.util.*;
import java.sql.*;

import com.abcpharma.crs.entity.*;
import com.abcpharma.crs.registrationservice.*;
import com.abcpharma.db.*;

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 188

189

C
om

po
un

dF
in

de
r

fin
d(

)
fin

dB
yC

om
po

un
dI

d(
)

fin
dB

yP
ar

en
tId

()
fin

dB
yS

ub
st

ru
ct

ru
re

()
fin

dB
yS

im
ila

rit
y(

)
fin

dB
yF

le
xm

at
ch

()
fin

dB
yF

or
m

ul
aL

ik
e(

)

P
er

si
st

en
ce

 m
an

ag
er

in
se

rt
()

up
da

te
()

de
le

te
()

A
bs

tr
ac

tM
ap

pe
r

M
D

LD
ire

ct
Q

ue
ry

B
ui

ld
er

A
cc

es
sC

on
tr

ol
S

tr
at

eg
y

ac
ce

ss
C

on
tr

ol
S

ta
te

m
en

t(
)

D
ef

au
ltA

cc
es

sC
on

tr
ol

S
tr

at
eg

y
R

is
tr

ic
te

dC
om

po
un

dA
cc

es
sC

on
tr

ol
S

tr
at

eg
y

C
om

po
un

dM
ap

pe
r

C
he

m
D

B
Q

ue
ry

B
ui

ld
er

bu
ild

S
ub

st
ru

ct
ur

eS
ea

rc
hS

ta
te

m
en

t(
)

bu
ild

M
ol

si
m

S
ta

te
m

en
t(

)
bu

ild
F

le
xm

at
ch

S
ta

te
m

en
t(

)
bu

ild
F

or
m

ul
al

ik
eS

ta
te

m
en

t(
)

F
ig

ur
e

15
.1

C
la

ss
 d

ia
gr

am
 o

f
C

om
po

un
dM

ap
pe

r.

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 189

190 DATA PERSISTENCE LAYER

public abstract class AbstractPersistenceManager implements PersistenceManager{
protected Map registry = new HashMap();

private AccessControlStrategy accessController = null;

public AbstractPersistenceManager(AccessControlStrategy accessController){
this.accessController = accessController;

}

protected String findStatement(){
return findStatementPrimary() � accessController.access Control
Statement();

}

protected String findByCorpIdStatement(){
return findByCorpIdStatementPrimary() � accessController.access
ControlStatement();

}

abstract protected String findStatementPrimary();

abstract protected String insertStatement();

abstract protected String findByCorpIdStatementPrimary();

abstract protected AbstractEntity doLoad(Integer id, ResultSet rs) throws SQL
Exception;

abstract protected void doInsert(AbstractEntity entity, PreparedStatement insert
Statement) throws

SQLException;

protected AbstractEntity abstractFind(Integer id) throws DataSource Access
Exception{

AbstractEntity entity = (AbstractEntity) registry.get(id);
if(entity != null)

return entity;

PreparedStatement stmt = null;
ResultSet rs = null;
try{

stmt = DBUtil.prepare(findStatement() � access Controller.
accessControlStatement());
stmt.setInt(1, id.intValue());
rs = stmt.executeQuery();
rs.next();
entity = load(rs);

}catch(Exception ex){
throw new DataSourceAccessException(ex);

}finally{
DBUtil.cleanUp(rs, stmt);

}

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 190

DATA PERSISTENCE LAYER 191

return entity;
}

protected AbstractEntity abstractFindByCorpId(String corpId) throws DataSource
AccessException{

AbstractEntity entity = null;
Connection conn = null;
PreparedStatement stmt = null;
ResultSet rs = null;
try{

stmt = DBUtil.prepare(findByCorpIdStatement() � access
Controller.accessControl Statement());
stmt.setString(1, corpId);
rs = stmt.executeQuery();
rs.next();
entity = load(rs);

}catch(Exception ex){
throw new DataSourceAccessException(ex);

}finally{
DBUtil.cleanUp(rs, stmt);

}
return entity;

}

protected AbstractEntity load(ResultSet rs) throws SQLException{
Integer id = new Integer(rs.getInt(1));
if(registry.containsKey(id))

return (AbstractEntity) registry.get(id);
AbstractEntity entity = doLoad(id, rs);
registry.put(id, entity);
return entity;

}

protected List loadAll(ResultSet rs) throws SQLException{
List entities = new ArrayList();
while(rs.next())

entities.add(load(rs));
return entities;

}

public List findMany(StatementSource source) throws DataSourceAccess
Exception{

Connection conn = null;
PreparedStatement stmt = null;
ResultSet rs = null;
try{

stmt = DBUtil.prepare(source.getSql() � accessController.
accessControlStatement());
for(int i = 0; i < source.getParameters().length; i��){

stmt.setObject(i�1, source.getParameters()[i]);
}

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 191

192 DATA PERSISTENCE LAYER

rs = stmt.executeQuery();
return loadAll(rs);

}catch(Exception ex){
throw new DataSourceAccessException(ex);

}finally{
DBUtil.cleanUp(rs, stmt);

}
}

public int insert(AbstractEntity entity) throws DataSourceAccessException{
PreparedStatement stmt = null;
try{

stmt = DBUtil.prepare(insertStatement());
stmt.setInt(1, entity.getId());
doInsert(entity, stmt);
registry.put(new Integer(entity.getId()), entity);
return entity.getId();

}catch(SQLException ex){
throw new DataSourceAccessException(ex);

}finally{
DBUtil.cleanUp(null, stmt);

}
}

}

Notice that AbstractDataMapper has one collaborator—AccessControlStrategy,
which is the object that provides access control logic—whether a client should
have access to certain records in the database. This object has a single method—
accessControlStatement()—which returns a “where” clause that gets
appended to the SQL statement in findStatement(), findByCorpId
Statement(), abstractFind(), and findMany() methods. The reason is that not
all compounds in the corporate database are accessible by everyone. Some
compounds developed through partnership are protected by legal obligations.
It is the AccessControlStrategy object’s responsibility to make sure these
compounds are protected from unauthorized access.

Usually the level of access is controlled by user role, which is managed in
a centralized repository (LDAP or a database). Two approaches can be imple-
mented by access control. One is to give AccessControlStrategy the user’s
identity so that it can look up the user role from the central repository. The
other is to provide AccessControlStrategy with the user role directly so that it
can simply use it to build the access control logic. Either way, the user identity
information should be saved in a session object in the front layer when the user
logs into the system and needs to be passed into the AccessControlStrategy
object. Using arguments in the method call is tedious in that the argument has
to be passed through a chain of method calls before it is actually used. An
alternative is to use Thread Local variables. Thread Locals are variables that

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 192

DATA PERSISTENCE LAYER 193

are local to their own thread. Somewhere in the thread these variables are cre-
ated and saved in a registry and only the thread that creates them can access
them. The following DataMapperThreadLocalRegistry class defines three
thread local variables—a JDBC Connection object, a username and a list of
user roles, along with their setters and getters:

package com.abcpharma.crs.datamapper;

import java.sql.*;

public class DataMapperThreadLocalRegistry {
private static final DataMapperThreadLocalRegistry instance = new DataMapper
ThreadLocalRegistry();

private DataMapperThreadLocalRegistry() {
}

public static DataMapperThreadLocalRegistry getInstance(){
return instance;

}

private static class ThreadLocalConnection extends ThreadLocal {
}

private static class ThreadLocalUsername extends ThreadLocal {
}

private static class ThreadLocalUserRoles extends ThreadLocal {
}

private ThreadLocalConnection connection = new ThreadLocalConnection();
private ThreadLocalUsername username = new ThreadLocalUsername();
private ThreadLocalUserRoles userRoles = new ThreadLocalUserRoles();

public void setConnection(Connection conn) {
connection.set(conn);

}

public Connection getConnection() {
return (Connection) connection.get();

}

public void setUsername(String un) {
username.set(un);

}

public String getUsername() {
return (String) username.get();

}

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 193

194 DATA PERSISTENCE LAYER

public void setUserRoles(String[] ur) {
userRoles.set(ur);

}

public String[] getUserRoles() {
return (String[]) userRoles.get();

}
}

The way it works is that these variables are set by an application controller
and can then be accessed by the AccessControlStrategy object to create the
access control “where” clause. If a transaction involves multiple updates to
the database, for example, the controller should start and finish the transac-
tion and make sure all updates use the same Connection object to ensure they
are either all committed or all rolled back.

The above approach is one way of handling row level access control. If
Oracle Fine Grained Access Control is used, the AccessControlStrategy
object should set the username to the connection context to allow access con-
trol to be handled by Oracle transparently.

The findStatement() and findByCorpIdStatement() are Template Methods.
They rely on the subclass to provide their primary behaviors (findStatement
Primary() and findByCorpIdStatementPrimary()) while incorporating a com-
mon behavior through the AccessControlStrategy object.

Template Method: Define the skeleton of an algorithm in an opera-
tion, deferring some steps to subclasses. The Template Method lets
subclasses redefine certain steps of an algorithm without changing
the algorithm’s structure.

All entity objects should be able to be queried by their primary keys. The
way it works has little difference between the entity objects except in the
SQL statement. The method abstractFind() abstracts out common behaviors
of find by primary key operation of all entity objects:

protected AbstractEntity abstractFind(Integer id) throws DataSourceAccess
Exception{

AbstractEntity entity = (AbstractEntity) registry.get(id);
if(entity != null)

return entity;

PreparedStatement stmt = null;
ResultSet rs = null;
try{

stmt = DBUtil.prepare(findStatement() � accessController.
accessControlStatement());
stmt.setInt(1, id.intValue());

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 194

DATA PERSISTENCE LAYER 195

rs = stmt.executeQuery();
rs.next();
entity = load(rs);

}catch(Exception ex){
throw new DataSourceAccessException(ex);

}finally{
DBUtil.cleanUp(rs, stmt);

}
return entity;

}

The registry object, defined as an instance variable of the AbstractMapper
class, caches the entity objects in a map, the primary key of the object as the
key and the object as the value. The abstractFind() method performs a lookup
in the registry and returns the object being searched if it is already in the
cache. Otherwise it performs a database query, calls the load() method to
build the entity object, and returns it.

The load() method is as follows:

protected AbstractEntity load(ResultSet rs) throws SQLException{
Integer id = new Integer(rs.getInt(1));
if(registry.containsKey(id))

return (AbstractEntity) registry.get(id);
AbstractEntity entity = doLoad(id, rs);
registry.put(id, entity);
return entity;

}

Notice two things in the load() method. First, it performs a registry lookup one
more time. The reason is that the load() method might be called by other finder
methods, for example, findBySubtructure, which do not perform a lookup.
Second, the load() method puts the newly queried object into the registry.

Many entity objects have a corp id in addition to its primary key. These
identifiers are often used by people to specify a specific entity (in the user
community, nobody cares about primary keys). Examples are lab sample
identifiers (compound id, sample id, parent id), and employee identifier
(worldwide employee id or social security number). For this reason, we
introduce a findByCorpId() method. It is very similar to the find() method.

The methods findMany() and loadAll() are used by all finder methods,
such as findByParentId() (a parent id may have multiple salt forms) and
findBySubstructure() in the CompoundMapper object, that return a list of
entities.

The insert() method inserts a new entity object into the database table. It
also puts it into the cached registry so that the finder methods can return it
from the cache.

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 195

196 DATA PERSISTENCE LAYER

A few abstract protected methods are left to the concrete mapper object to
implement. They are declared in AbstractMapper so that they can be called
by the Template Methods to maximize code reuse.

The CompoundMapper class—the data mapper for the compound
object—is as follows:

package com.abcpharma.crs.datamapper;

import java.sql.*;
import java.util.*;

import com.abcpharma.crs.entity.*;
import com.abcpharma.crs.molstructure.*;
import com.abcpharma.crs.registrationservice.*;
import com.abcpharma.crs.lsi.*;
import com.abcpharma.db.DBUtil;

public class CompoundMapper extends AbstractPersistenceManager implements Compound
Finder{

private static String columns = “id, compound_id, molfile”;
private static final String selectStatement = “select “ � columns � “ from compounds a
where “;

private static final String updateStatement = “update compound set ctab = ?”;

private static final String deleteStatement = “delete from compound where id = ?”;

private ChemDBQueryBuilder chemQueryBuilder = null;

public CompoundMapper(ChemDBQueryBuilder chemQueryBuilder, Access
ControlStrategy

accessController){
super(accessController);
this.chemQueryBuilder = chemQueryBuilder;

}

protected String findStatementPrimary() {
return selectStatement � “ id = ? “;

}

protected String findByCorpIdStatementPrimary(){
return selectStatement � “ compound_id = ?”;

}

public Compound find(Integer id) throws DataSourceAccessException{
return (Compound) abstractFind(id);

}

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 196

DATA PERSISTENCE LAYER 197

public Compound find(int id) throws DataSourceAccessException{
return find(new Integer(id));

}

public Compound findByCompoundId(String compoundId) throws DataSource
AccessException{

return (Compound) abstractFindByCorpId(compoundId);
}

public List findByParentId(String parentId) throws DataSourceAccessException{
return findMany(new FindByParentId(parentId));

}

static class FindByParentId implements StatementSource{
private String parentId;
public FindByParentId(String parentId){

this.parentId = parentId;
}

public String getSql() {
return selectStatement � “ parent_id = ?”;

}

public Object[] getParameters() {
Object[] result = {parentId};
return result;

}
}

public List findByComponentGroupId(int componentGroupId) throws DataSource
AccessException{

return findMany(new FindByComponentGroupId(componentGroupId));
}

class FindByComponentGroupId implements StatementSource{
private int componentGroupId;

public FindByComponentGroupId(int componentGroupId){
this.componentGroupId = componentGroupId;

}

public String getSql() {
return selectStatement � “ and component_group_id = ?”;

}

public Object[] getParameters() {
Object[] result = {new Integer(componentGroupId)};
return result;

}

}

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 197

198 DATA PERSISTENCE LAYER

public List findBySubstructure(String molfile, boolean negate) throws DataSource
AccessException{

return findMany(new FindBySubstructure(molfile, negate));
}

class FindBySubstructure implements StatementSource{
private String molfile;
private boolean negate;

public FindBySubstructure(String molfile, boolean negate){
this.molfile = molfile;
this.negate = negate;

}

public String getSql() {
return selectStatement � chemQueryBuilder. buildSubstructure
SearchStatement(“CTAB”, negate);

}

public Object[] getParameters() {
Object[] result = {molfile};
return result;

}
}

public List findBySimilarity(String molfile, String simType, String simRange,
booleannegate) throws

DataSourceAccessException{
return findMany(new FindBySimilarity(molfile, simType, simRange,
negate));

}

class FindBySimilarity implements StatementSource{
private String molfile;
private String simType;
private String simRange;
private boolean negate;

public FindBySimilarity(String molfile, String simType, String
simRange,boolean negate){
this.molfile = molfile;

this.simType = simType;
this.simRange = simRange;
this.negate = negate;

}

public String getSql() {
return selectStatement � chemQueryBuilder. buildMolsim
Statement(“CTAB”, simRange,

negate);
}

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 198

DATA PERSISTENCE LAYER 199

public Object[] getParameters() {
Object[] result = {molfile, simType};
return result;

}
}

public List findByFlexmatch(String molfile, String flexParameters, boolean negate)
throws

DataSourceAccessException{
return findMany(new FindByFlexmatch(molfile, flexParameters, negate));

}

class FindByFlexmatch implements StatementSource{
private String molfile;
private String flexParameters;
private boolean negate;

public FindByFlexmatch(String molfile, String flexParameters, boolean
negate){

this.molfile = molfile;
this.flexParameters = flexParameters;
this.negate = negate;

}

public String getSql() {
return selectStatement � chemQueryBuilder.build Flexmatch
Statement(“CTAB”, negate);

}

public Object[] getParameters() {
Object[] result = {molfile, flexParameters};
return result;

}
}

public List findByFormulaLike(String formula, boolean negate) throws DataSource
AccessException{

return findMany(new FindByFormulaLike(formula, negate));
}

class FindByFormulaLike implements StatementSource{
private String formula;
private boolean negate;

public FindByFormulaLike(String formula, boolean negate){
this.formula = formula;
this.negate = negate;

}

public String getSql() {

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 199

200 DATA PERSISTENCE LAYER

return selectStatement � chemQueryBuilder.build FormulaLike
Statement(“CTAB”,

negate);
}

public Object[] getParameters() {
Object[] result = {formula};
return result;

}
}

protected AbstractEntity doLoad(Integer id, ResultSet rs) throws SQLException{
String compoundId = rs.getString(“compound_id”);
String molfile = rs.getString(“molfile”);
Compound compound = new Compound(id.intValue());
Molstructure structure = new Molstructure(Molstructure.MOLFILE,
molfile);
compound.setMolStructure(structure);
compound.setLsi(LsiFactoryImpl.getInstance().createCompoundID
(compoundId));
return compound;

}

protected void doInsert(AbstractEntity entity, PreparedStatement stmt) throws
SQLException{

Compound compound = (Compound) entity;
stmt.setObject(2, compound.getMolStructure().getValue());
stmt.setObject(3, compound.getLsi().getCompoundIDString());

}

protected String insertStatement(){
return “insert into compound values (?, ?, ?)”;

}

public void update(AbstractEntity entity) throws DataSourceAccessException{
PreparedStatement stmt = null;
Compound compound = (Compound) entity;
try{

stmt = DBUtil.prepare(updateStatement);
stmt.setObject(1, compound.getMolStructure().getValue());
stmt.execute();

}catch(SQLException ex){
throw new DataSourceAccessException(ex);

}finally{
DBUtil.cleanUp(null, stmt);

}
}

public void delete(AbstractEntity entity) throws DataSourceAccessException{

}

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 200

DATA PERSISTENCE LAYER 201

public List uniquenessSearch(String structure){
return new ArrayList();

}
}

The CompoundMapper defines specific data access logic for the Compound
object. Its findStatementPrimary() method defines how to query the com-
pound table using its primary key. The findByCorpIdPrimary() defines how
to query the compound table using its corporate id and so on.

The CompoundMapper has a key collaborator—ChemDBQueryBuilder.
This object builds SQL operators that are specific to a particular vendor’s
chemistry database. The implementation for the MDLDirect cartridge and
the MDL RCG database is as follows:

package com.abcpharma.crs.datamapper;

public class MDLDirectQueryBuilder implements ChemDBQueryBuilder{
private static final MDLDirectQueryBuilder instance = new MDLDirect
QueryBuilder();

private MDLDirectQueryBuilder() {
}

public static MDLDirectQueryBuilder getInstance(){
return instance;

}

public String buildSubstructureSearchStatement(String columnName, boolean
negate){

StringBuffer sql = new StringBuffer();
negate(sql, negate);
sql.append(“ sss(“).append(columnName).append(“, ?) = 1”);
return sql.toString();

}

public String buildFlexmatchStatement(String columnName, boolean negate){
StringBuffer sql = new StringBuffer();
negate(sql, negate);
sql.append(“ flexmatch(“).append(columnName).append(“, ?, ?) = 1”);
return sql.toString();

}

public String buildUniquenessStatement(String columnName, boolean negate){
StringBuffer sql = new StringBuffer();
negate(sql, negate);
sql.append(“ (flexmatch(“)

.append(columnName)

.append(“, ?, ?) = 1 AND “)

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 201

202 DATA PERSISTENCE LAYER

.append(“BATCH_JOB_ID”).append(“ != ?) OR “)

.append(“(flexmatch(“)

.append(columnName)

.append(“, ?, ?) = 1 AND “)

.append(“BATCH_JOB_ID”).append(“ = ?)”)
;
return sql.toString();

}

public String buildMolsimStatement(String columnName, String range, boolean
negate){

StringBuffer sql = new StringBuffer();
negate(sql, negate);
sql.append(“ molsim(“).append(columnName).append(“, ?, ?) “).append
(range);
return sql.toString();

}

public String buildFormulaLikeStatement(String columnName, boolean negate){
StringBuffer sql = new StringBuffer();
negate(sql, negate);
sql.append(“ fmla_like(“).append(columnName).append(“, ?) = 1”);
return sql.toString();

}

private void negate(StringBuffer sql, boolean negate){
if(negate)

sql.append(“ NOT “);
}

}

Readers who are familiar with the MDL database should not be surprised to
see MDL’s structure query operators such as sss, molsim, and flexmatch. The
CompoundMapper’s StatementSource objects use ChemDBQueryBuilder to
append these structure search operators to the structure search SQL state-
ments. Take the substructure search as an example. In CompoundMapper, we
have an inner class FindBySubstructure whose getSql() method is as follows:

public String getSql() {
return selectStatement � chemQueryBuilder.buildSubstructureSearch
Statement(“CTAB”, negate);

}

The buildSubstructureSearchStatement looks as follows:

public String buildSubstructureSearchStatement(String columnName, boolean
negate){

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 202

DATA PERSISTENCE LAYER 203

StringBuffer sql = new StringBuffer();
negate(sql, negate);
sql.append(“ sss(“).append(columnName).append(“, ?) = 1”);
return sql.toString();

}

which appends sss(“CTAB”, ?) = 1 to the SQL statement if MDL implemen-
tation is used.

The implementation of the ChemDBQueryBuilder interface is determined at
runtime depending on which implementation is passed into the
CompoundMapper’s constructor. This design makes the CompoundMapper
open for extension while remaining closed for changes. Switching to a different
vendor database does not require changes in CompoundMapper. All it requires
is an implementation of ChemDBQueryBuilder for that vendor, which is passed
into CompoundMapper’s constructor so the CompoundMapper object knows
which one to use at runtime.

For each table in the database, a mapper object is needed. To manage a
transaction that involves multiple tables, which is the case for compound reg-
istration, use a Unit of Work (Fowler, 2003b) object that groups the inserts
and updates together.

The above approach is the basic idea of the Persistence Layer, which
decouples the business layer from the data storage layer. Nowadays, com-
mercial and open-source object-relational mapping tools should be consid-
ered. They all have a persistence management framework that eases the job
of creating one from scratch. Examples are Hibernate, Apache’s Relational-
Object Bridge, and Oracle’s Toplink. They usually define object-relational
mapping using an XML file for the persistence manager to do the work at
runtime. These tools when used effectively can be quite powerful.

JWUS_Dcis_Ch015.qxd 10/12/2006 9:30 PM Page 203

204

CHAPTER 16

Put Everything Together

In this book, I have demonstrated how to develop chemical information sys-
tems using the Java technology and an object-oriented approach, using the
chemical registration system as an example. This final chapter summarizes
some key points that were discussed in the book.

Technologies have evolved to a point where it is no longer necessary to
rely on vendor proprietary technologies such as MDL ISIS to develop chem-
ical information systems (Chapter 1). Enterprise Java and .NET, combined
with some chemical information tool kits, are fully capable of developing
these systems. The outcome is increased productivity and reduced costs and
systems with enterprise strength.

Organizations should use off-the-shelf tools as much as possible
(Chapters 1 and 4). Structure drawing packages, chemistry databases and
data cartridges, and chemistry rules and property calculations packages are
readily available from major chemistry software vendors. They have
matured over time, and many provide open APIs. Although there is no end-
to-end development framework available in the chemistry information
space, we can use industry standard frameworks such as Enterprise Java and
.NET to develop chemical information systems. This approach is not special
to the chemistry domain because other industries also take the same
approach—using open standards combined with domain-specific tool kits.
MDL Isentris is aimed at providing such a framework for chemical informa-
tion systems, but it was not ready for prime time when this book was writ-
ten. I wonder whether products such as Isentris are really necessary, and
whether it is the right approach to develop a life science-specific application
server when J2EE and .NET application servers are available that are backed
by other industries. In my view, J2EE or .NET combined with life science-
specific tool kits can offer the best-of-breed solutions with the lowest total
cost of ownership possible.

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

JWUS_Dcis_Ch016.qxd 10/12/2006 9:31 PM Page 204

PUT EVERYTHING TOGETHER 205

Whether to develop in-house or outsource the project, the development
team must have strong technical skills combined with strong business knowl-
edge and must interact with users on a regular basis (Chapters 1 and 5). Try to
embed a user in the development team if possible. The idea of handing off a
requirement document to an outsourcer and expecting a product in 6 months
or 1 year that meets user expectations and gets delivered to the users on time
simply does not work.

Again regardless of in-house or outsource development, document a list of
features and prioritize them. Break the project down into short, timeboxed
iterations, each focusing on one or two of these features (Chapter 5). Do not
let the iteration deadline slip. Reduce the scope of the iteration if necessary.
Implement features with high business values and high business and techni-
cal risks in early iterations. Make sure each iteration delivers a production
quality partial system to solicit feedback and let the system grow incremen-
tally. The project plan should be adjusted based on the feedback. It is OK if
the initial project plan is not accurate. However, it should become more and
more accurate as more iterations are completed. Test and integrate early and
frequently.

Design the architecture in early iterations (Chapters 7 and 8). Both user
requirements (functional and nonfunctional) and corporate IT standards drive
architecture decisions. However, user requirements always take precedence.

Develop use case specification documents to capture detailed functional
requirements (Chapter 9). Use System Sequence Diagrams and Activity
Diagrams as complements. Use case specifications should be developed,
communicated, and reviewed at the beginning of each iteration.

Develop a domain object model based on use case specifications (Chapter
10). This is the bridge between the requirements and the design.

Evolve the domain object model into a design object model by applying
object design principles (Low–High, Open–Closed) and patterns (Chapters 2,
3, 12, 14, and 15). Introduce new objects and layers of indirections to reduce
coupling and increase cohesion. Use the Design by Interface technique to
keep the dependencies at abstraction levels rather than at implementation lev-
els. Insulate vendor specifics using vendor-neutral APIs. The goal is to be
able to swap out current vendor tools and replace them with others without
affecting the rest of the system.

As software professionals, we are not developing software systems for the
sake of developing software systems. Our goal is to deliver software systems
that provide the highest business values to our users (e.g., helping them to
increase drug discovery productivity and providing them with better decision
support). When developing these software systems, always keep in mind that
business evolves and so should the software systems under development. The
system must adapt to changes, or otherwise it will not sustain and will soon

JWUS_Dcis_Ch016.qxd 10/12/2006 9:31 PM Page 205

206 PUT EVERYTHING TOGETHER

become obsolete. Everything we can do to facilitate the evolution is worth the
investment, and hence, the design principles and patterns are valuable. We
cannot do much to the fact that we are always working within the resource
and deadline constraints. What we can do, though, is work with business to
prioritize tasks and deliver the highest business values quickly and all the
time. Sticking to a plan that is outdated and no longer has business value is a
waste of time and money. This is what iterative and incremental development
methodologies are all about.

JWUS_Dcis_Ch016.qxd 10/12/2006 9:31 PM Page 206

207

Agarwal, P. 2004. Struts Best Practices: Build the Best Performing Large Applications.
http://www.javaworld.com/javaworld/jw-09-2004/jw-0913-struts.html.

Ambler, S. 2005. The Elements of UML(TM) 2.0 Style. Cambridge University Press.

Alur, D., Crupi, J., and Malks, D. 2003. Core J2EE Design Patterns: Best Practices
and Design Strategies, Second Edition. Prentice Hall.

Beck, K. 2004. Extreme Programming Explained: Embrace Change, Second
Edition. Addison-Wesley Professional.

Booch, G. 1991. Object-Oriented Analysis and Design with Applications.
Benjamin/Cummings.

Booch, G. 1994. Object-Oriented Analysis and Design with Applications, Second
Edition. Benjamin/Cummings.

Booch, G., Rumbaugh, J., and Jacobson, I. 1999. The Unified Modeling Language
User Guide. Addison-Wesley Professional.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 1996. Pattern-
Oriented Software Architecture: A System of Patterns. Wiley.

Cockburn, A. 2001. Writing Effective Use Cases. Addison-Wesley.

Fowler, M. 1997. Analysis Patterns: Reusable Object Models. Addison-Wesley.

Fowler, M. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

Fowler, M. 2003a. Patterns of Enterprise Application Architecture. Addison-Wesley.

Fowler, M. 2003b. UML Distilled, Third Edition. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley.

Jacobson, I., et al. 1992. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Kruchten, P. 2003. The Rational Unified Process: An Introduction, Third Edition.
Addison-Wesley Professional.

Larman, C. 2004. Agile and Iterative Development: A Manager’s Guide. Addison-
Wesley.

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

BIBLIOGRAPHY

JWUS_Dcis_Biblio.qxd 10/12/2006 9:42 PM Page 207

Larman, C. 2005. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, Third Edition. Prentice Hall.

Martin, R. 2003. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall.

Palmer, S. R., and Felsing, J. M. 2002. A Practical Guide to Feature-Driven
Development (The Coad Series). Prentice Hall.

Rumbough, J., et al.1990. Object-Oriented Modeling and Design. Prentice Hall.

Schwaber, K., and Beedle, M. 2001. Agile Software Development with SCRUM, First
Edition. Prentice Hall.

208 BIBLIOGRAPHY

JWUS_Dcis_Biblio.qxd 10/12/2006 9:42 PM Page 208

209

Developing Chemical Information Systems: An Object-Oriented Approach
Using Enterprise Java, by Fan Li
Copyright © 2007 John Wiley & Sons, Inc.

INDEX

Abstract class Lsi, 112–114
Abstraction, 10–16, 43, 72, 95, 99
AbstractMapper, 188–192
Accelrys®

Accord, 2, 49
Accord Structure Checker, 169
Discovery Studio ViewerPro, 5

Access modifier, 13
ACDLabs, 101
Action Class hierarchy, 66
Action Servlet, 66
ActiveX, 45
Activity Diagram, 34, 57–58, 205
Adapter Pattern, 95–99
Adaptive planning, 30–31, 52–53, 205
Agile and Iterative Development

Process–a Manager’s Guide (Larman),
26, 28

Agile iterative development process
business cases, 26–29
key practices, 29–31
project planning, 52–53
testing, 29, 31–33
use case specifications, 57–58

Algorithm, 100
Alternative Flows, use case modeling, 55–57
Ambiguous requirements, 31
Ambler, Scott, 34
AMD hardware, 43
Analysis Patterns (Fowler), 93
Ancillary data, 49–50
Apache

Object Pool Library, 178–179
Relation-Object Bridge, 203
Struts Framework, 66
Xerces, 132

Application Controller, Business Layer, 70, 73
Application layers, 44

Application programming interface (API) design,
43, 72, 95–98, 100, 127, 204–205. See also
Chemistry Intelligence API

Application server, 43
Architecture

agile and iterative development process, 28–30
deployment, 38–42
enterprise, 22
service-oriented (SOA), 19–20
software, 43–48
Web services, 19–20

Aspirin, chemical structure of, 3–4
Asynchronous

messaging, 20
registration, 139, 141–143

Atomic transactions, 42
Authentication, 42
Authorization, 42
Availability, 42, 57

Bandwidth constraints, 42
Base, lab sample identifier, 108–109, 112–113,

115–121, 125
Base Flow, use case modeling, 54–55, 57
Batch

lab sample identifier, 108–109, 112–121, 126
number, 50

BEA Weblogic, 47
Blueprints, 43
Budget/budgeting, 41
Build vs. buy decision, 23–25
Bundled products, 5
Business analysts, functions of, 29–30
Business language, software architecture, 46
Business Layer

Application Controller, 70, 73, 132–138
Chemical Entity object design model, 74–90,

103–108

JWUS_Dcis_Index.qxd 10/16/2006 8:37 AM Page 209

Chemical Lab Sample Identifier (LSI), 71,
108–127

component diagram of, 71
Data Binder object model, 71, 127–132
Data Persistence Layer and, 186–187
Design by Interface, 71–73
domain objects, 73–146
Enterprise Java Beans (EJBs), 46, 145–146
functions of, 46
molecular structure object model, 91–102
registration service, 71, 139–145, 203
System Activity Diagram (CAD), 69–70

Business logic, 39, 41, 65, 132

C, 12
C++, 12–13
C#, 12–13
Caching, 40, 42, 167
CambridgeSoft®

ChemDraw, 24, 49
ChemDraw Exchange (CDX), 3–5
ChemDraw Plug-in, 5
ChemOffice, 169
GUI , 65
Oracle Cartridge, 2

Caretaker class, 89
Case modeling, 50–52
Castor XML Mapping, 132
Chain of services, 42
Change

management, 6, 11
rates, 30, 33

Checksum, lab sample identifier, 108–109,
112–121

CheckLetterGenerator, 121, 126
Chem Axon® Marvin Bean, 5
Chemical Entity object design model, 73–90,

103–108
Chemical informatics, 3, 47
Chemical information databases

defined, 4
historical perspectives, 1–2

Chemistry intelligence systems, 5
Chemical information systems, complexity of, 2
Chemical Laboratory Sample Identifier (LSI),

Business Layer, 71
ChemicalLibrary, 106–107, 128, 130, 135–136,

142, 145–146
Chemical Library-Chemical Sample composite

hierarchy, 103–104, 109
Chemical Markup Langague (CML), 3, 10
Chemical property calculator, 73, 101–103
ChemicalSample, 103–106, 128, 130–131, 135,

137, 139, 142, 145–146

Chemical structure
compliance, 50
encoding schema, 3–4
rendering and editing tools, 4–5

Chemistry databases, 204
Chemistry Intelligence

application programming interface, see
Chemistry Intelligence API

Business Layer, 70, 73
engine, 24–25
transaction, sequence diagram, 136–137

Chemistry Intelligence API
CheshireManager, 171–180, 183–184
chiral flag, 168–169, 181
Design by Interface, 169–170, 184
explicit hydrogen, 168, 170
invalid stereo bonds, 168, 181–182
valence, 169, 170, 182
wave bond, 169, 170, 177, 182

Chemistry logic, 137, 170
ChemistryProcessCommand, 137
Chemistry rules, 47
Cheshire (MDL), 5, 12, 49, 65, 169–178, 184
Cheshire Chemistry Intelligence Framework,

172–173
Cheshire MolstructureInspector, 169–170, 180–185
CheshireManager, 171–180, 183–184
Chime (MDL), 16, 24, 49
ChimePro Plug-in (MDL), 5, 56, 65
Class Diagram (UML), 34
Class hierarchy, 7
Client layer, 45
Client server architecture

three-tiered architecture, 40
two-tiered architecture, 38–39

Closed for Changes, 185
Clustering, 41
Cockburn, Alistair, 57
Code libraries, deployment architecture, 42
Code reuse

applications of, generally, 7
chemistry intelligence API, 185
through inheritance, 16–20
SOA, 42

Cohesion, high, 8–9, 44
Collection objects, 154
Command Pattern, 133–134
Commercial products, selection factors, 24–25
Common Language Runtime (CLR), 43
Communications, importance of, 30
Competency, 26
Complexity of system, 7, 26, 43, 52
Component Diagram (UML), 34-35
CompositeLsi, 116

210 INDEX

JWUS_Dcis_Index.qxd 10/16/2006 8:37 AM Page 210

Composite Pattern, 103, 106–107
Composition, coupling by, 7–9
Compound

component table, 188
data, 50
defined, 61
identifier see CompoundID
Registration, use case, 52
table, 188

Compound ID, 50, 109, 111–112, 187
CompoundLibrary design, 14–16, 62
CompoundMapper, 188–189, 195–196,

202–203
CompoundMemento, 76, 85–90
Compound Object

State Pattern of, 76–82
state transition diagram, 74–75

Compound registration service/system (CRS)
analysis domain object model, 63–64
applications, 20–21, 47, 67–68
Business Layer, 69–146
characteristics of, 28–29, 35–37, 42
development case study, 49–60
System Activity Diagram, 69–70
use case modeling, 50–52

CompoundState object, 76
Computing power

deployment architecture and, 38–39
presentation layer, 65
use case specification, 56

Connection Table (CT), 3, 62
Container Managed Persistence (CMP), 46
Corrected State, 75–76, 78, 80, 107
Cost savings strategies, 23, 100
Coupling

low, 6–9
high, 12–13
polymorphism and, 20

Create Template, use case, 52
CreatedState, 76–77
CRSCommand, 133–134
CruiseControl, 32–33
CT File Format, 3
CXL, 91

Daily project meetings, 31
Data

caching, 40
cartridge products, 5, 24, 204
maintenance costs, 108
storage, 2. See also Data Storage Layer
transfer objects, 145

Data Access Layer, 46–47. See also Persistence
Layer

Data Access Object (DAO), defined, 139. See
also EntityDictionaryDao

Database management system (DBMS), 39, 47, 50
Data Binder, Business Layer, 70, 7e, 127–133
DataInputCommand, 134–136
Data Persistence Layer, see Persistence Layer
Data Storage Layer, 47, 186
Daylight®

chemistry intelligence products, 25
data storage, 47
DayCart, 2
Depict Toolkit, 5
Smiles, 3, 62

Decision process
architecture selection, 41
build vs. buy, 23–25

Dependency Inversion Principle (DIP), 47, 99–100
Deployment architecture

service-oriented architecture, 42
three-tiered/multi-tiered architecture, 39–42
two-tiered client-server architecture, 38–39

Derivative data, 50
Design by Interface, 71–73, 169, 205
Development

costs, 1, 23, 40, 100
cycle/process, components of, 25–26
team, see Development team

Development team
communication skills, 30
functions of, 205
meetings with, 30–31
problem-solving skills, 31
team leader functions, 33

Diagrams
Application Controller, 133, 135
Business Layer, 71, 73
Chemical Library-Chemical Sample composite

hierarchy, 104
chemistry intelligence transaction, 136
CompoundMapper, 189
CRS Cheshire Chemistry Intelligence

Framework, 172
CRS system, System Activity, 70
Entity Dictionary, 148
LSI, 110, 121
MDL Cheshire, 171
Memento Pattern, 86, 90
Molfile-Smiles conversion, 100
Molstructure, 93
property calculators, 101–102
registration process, 141
Registration Service, 140
state transition, 75
StructureFragment, 93

INDEX 211

JWUS_Dcis_Index.qxd 10/16/2006 8:37 AM Page 211

submit registration transaction, 138
system sequence, 57
UML, 34–37, 57
use case, 53, 59
use Case modeling, 51–52

Direct (MDL), 65, 201
Direct SQL, 2, 5
Discrete compounds, 137
.dll files, 19
Documentation, 5–6
Domain, see Domain Layer

command objects, 132–133
conceptual models, 63
expertise, 23–24

Domain Layer, 46–47, 65
Dynamic binding, 20, 100
Dynamic plug-and-play, 20–21

Eager instantiation, 82
Elements of UML Style, The (Ambler), 34
Encapsulation, 12–16, 21, 46, 85
End-to-end process, 52
End-users

dissatisfaction with project, 26–27
Enterprise

chemical information system, 47
systems, 43

Enterprise Java, 2, 204
Enterprise Java Beans (EJB), 45, 67, 145–146
Entity Beans, 46
EntityDictionaryDao

class diagram, 148
constants, 154
load() methods, 165–167
lookups, 156
research sites, 156–157
retrieve() methods, 155–156, 166
source code, 147–154
SQL statements, 154–155
try-finally block, 157

Evo, 29
Expert Principle, 82
Externalization, 85
Extreme Programming (XP), 29–30, 52

Façade Pattern, 171, 178
Face-to-face meetings, 30
Feedback

from end-user, 24, 27–28, 30
importance of, 205
iteration plan, 53
about partial systems, 31
use case modeling, 60

Flexmatch, 202

FitNess, 33
Flexmatch search, 5
Form, lab sample identifier, 108–109, 112–113,

115–121, 125–126
Formula search, 5
Formulation, 109
FORTRAN, 12
4-GL, 12
Fowler, Martin, 21, 34, 93, 132
FragmentedState, 75–79, 82
Front Controller, 133–135, 137–138
Functional testing, 32–33

Gang of Four (GoF)
Composite Pattern, 66, 109, 133
defined, 7
design patterns, 21–22
Memento Pattern, 85
State Pattern, 85

Generalization, 52
GenericObjectPool, 179
Global variables, 13–14
GoF Design Patterns, 95
Graphical user interface (GUI)

characteristics of, 38, 65, 72
compound lifecycle and, 107

Hardware
additions of, 39
resource distribution, 44
software architecture and, 43

Has-A relationship, 7, 109, 186
Hibernate, 46–47, 203
High Cohesion Principle, 101
High-low open-closed principles, 6–11
HTML, 67
HTTP, 32, 42, 66–67

IBM
Rational RUP, 57
Websphere, 47

ICRSController, 73
If-else condition, 18
Incremental development method, 206
Industry standards, historical perspectives, 1–2
Information Expert, 16
Infrastructure, 40–41
Inheritance, 7, 16–21
In-house

development, 2, 23–25, 205
implementation, 47

Input controllers, 132
Installations, deployment architecture concerns, 39
Instantiation, 81–82, 121

212 INDEX

JWUS_Dcis_Index.qxd 10/16/2006 8:37 AM Page 212

Integrated Development Environments (IDEs), 22
Integration testing, 30–33
Intel hardware, 43
Interface Segregation Principle (ISP), 101–103
Invalid State, 75–76, 79, 107
Is-A relationship, 7, 109
Isentris (MDL), 41, 46–47, 204
Isentris Integrated Data Source Framework

(MDL), 46–47
ISIS (MDL)

Base, 24, 65
characteristics of, 1, 5, 25, 204
Draw, 4–5, 24, 49, 56
PL, 12, 57

ISO Network Reference Model, 44
Iteration planning, 52–53, 205
Iterative development method, 26, 206

.jar files, 19
Java

Applets, 45
business logic, 41
characteristics of, 5, 12–13
Collection Framework, 14–15, 19
Enterprise Java, 2, 204
.jar files, 19
JavaScript, 12, 45
JavaServer Pages, 66
JNI API, 170, 177
J2EE applications, 1, 43, 45–46,

65–66, 204
Servlet, 46, 66, 133
Swing, 5, 45, 65
three-tiered architecture, 41
Virtual Machines, 43

Java Beans, 5, 66. See also Enterprise Java
Beans (EJBs)

JBoss, 43
JDBC

API, 46
Connection, 192–193

JMS messaging service, 143–144
JNDI, 144
JNI, 170, 177
JSP, 66, 68
J2EE

applications, generally, 1, 65, 204
software architecture, 43, 45–46

JUnit, 32
JVM, 98, 167, 172, 178

Lab Sample Identifier (LSI)
characteristics of, 108–126, 187
Factory class, 121–123

Validator class, 121, 123–126
Larman, Craig, 22, 26, 34, 63
Late binding, 20, 100
Layered architecture, 43–48
Lazy instantiation, 82–83
Library, 62
LibraryChemistryProcessCommand, 137
Licensing, cost of, 1
LinkedList, 14
Linux, 38, 43
Liskov Substitution Principle, 105–108
List, 15
Load

balancer, 41
Compound use case, 52
input data, 132
testing, 29

logD, 91–92, 101–102
logP, 91–92, 101–102
Lot, 50
LsiUtil, 109

Macintosh, 38
Maintenance costs, 31
Mapping tools, object-relational, 203
Martin, Robert, 22
MDL®

Cheshire, 5, 12, 49, 65, 169–178, 184
Chime, 24, 49
ChimePro Plug-in, 5, 56, 65
Connection Table (CT), 3, 62
CT File Format, 3
Direct, 65, 201
Isentris, 41, 46–47, 204
ISIS, 1, 5, 25, 204
ISISBase, 24, 65
ISIS Draw, 4–5, 24, 49, 56
ISIS PL, 12, 57
MDLDirect, 2, 46–47
MDLDraw, 49
RCG, 47, 201–202
RCG Oracle Gateway, 46
structure query operators, 202–203
website, 3
XDFile, 52

Memento Pattern, 85–90
Merck Research Laboratories, 1–2, 65
Message queue, 143–144
Messaging, 19–20, 47
Microsoft

Common Language Runtime (CLR), 43
.dll files, 19
.NET technology, 24, 41, 43, 45, 65, 204
platform, 5

INDEX 213

JWUS_Dcis_Index.qxd 10/16/2006 8:37 AM Page 213

Windows, 38, 43
Word, 85

Middle tier, three-tiered architecture, 38–40
Middleware servers, 45
Model-View-Controller (MVC), 65–68, 132
Molecular modeling, 94
Molecule database products, 24
Molfile, 3–4, 16, 20–21, 62, 91, 127, 131, 177
Molfile-Smiles conversion, 95–100
MolfileStructure class, 10, 16–19
molsim, 202
Molstructure

class, 10–11, 91–92
Inspector, 77–79, 169–170, 180–185
object, 83

Multi-tiered architecture/systems, 39–42, 44, 167

.NET technology, 24, 41, 43, 45, 65, 204
Network

latency, 42
layer, 44
topology, 41

New development projects
outsourcing considerations, 25
uncertainty factor, 25

N-tiered architecture, 39
Notebook, 62, 81. See also Recordkeeping

guidelines
NUnit, 32

Object, see Object-oriented technology
lifecycle management, 47, 145
pooling, 47

Object Management Group (OMG), Model
Driven Architecture (MDA), 22

Object-oriented technology
abstraction and encapsulation, 12–16
characteristics of, 1, 7, 12
code reuse, through inheritance, 16–20
dynamic plug-and-play, 20–21
patterns, 21–22
polymorphism, 20–21

Object-relational mapping tools, 46–47, 203
Open for Extension while remaining Closed for

Changes, 100, 202–203
Open source tools, 32
Operating systems, 25, 43
Oracle

business logic, 39
data cartridges, 5, 187
data storage DBMS, 47
Extensibility Framework, 2, 5
software infrastructure, 25
Toplink, 203

Outsourcing, 23–25, 205
Overwriting, 20

Package Diagram (UML), 34–35
ParentID class, 109–112, 114–126, 187
Partial systems, 25, 27, 30–32
Pascal, 12
Patterns of Enterprise Architecture (P of EAA),

22, 132
Performance

indicators of, 42, 57, 100
testing, 29

Perl, 12
Persistence Layer

AbstractMapper, 188–192, 194
access control, 192–194
characteristics of, generally, 46–47, 139, 186
CompoundMapper, 188–189, 195–196,

200–203
Data Mapper Pattern, 186–187, 193
Query Service, 187
Registration Service, 187
structure query operators, 202–203
template method, 194–202
Update Service, 187

PersistenceManager, 188
Physical layer, 44
Physical property calculator, 101–103
Pipe and Filter Pattern, 48
Pipeline Pilot of SciTegic, 48
pKa, 91–92, 101–102
Plain Old Java Object (POJO), 46, 65, 145
Plug and play, layer architecture, 47
Polymorphism, 20–21
Portable code, 43
PowerBuilder, 12
Prefix, lab sample identifier, 108–110, 112–113,

115, 117–121, 125
Presentation layer, 44–47, 65–68
Primary data, 50
Process Chemistry Rules use case, 52, 56
Programming languages, object-oriented, 13–14
Project, generally

manager, specific functions of, 30
planning, significance of, 28–29, 205
team, iteration planning, 52–53

Property calculations/calculators, 49, 70,
101–103, 204

Prototypes, 27, 30

Quality assurance (QA), functions of, 31–32
QC

logic, 78
process, 69, 74

214 INDEX

JWUS_Dcis_Index.qxd 10/16/2006 8:37 AM Page 214

Quality of system, 29–30
Query

language, standard, 47
operators, 5
solutions, 2

Radio isomer, 109
Rational Unified Process (RUP), 29–30
RCG (MDL), 46–47,

201–202
RDFile, 52
Read-access, 14
ReadyToBeRegisteredState, 76, 81
Recordkeeping guidelines, 49, 62, 64
Refactoring, 17, 31
Register Compound(s), use case

modeling, 54, 59
Registered State, 76
Registration

Command, 138–139
defined, 61
MessageConsumer, 144
Service, 71, 73, 138–145
template, 62

Regression testing, 31–33
Relational database management system

(RDBMS), 186
Relationships, composition, 7
Relation-Object Bridge, 203
Reliability, 100
Remote procedure calls (RPCs), 44
Requirement(s)

analysis, 58–59
changes, 25, 27
detailed, 28
meetings, 30

Research project, 49, 62
Resource

pooling, 42
utilization, 39

RG File, 3
Rgroup query, 3
Rich clients, 39, 41, 45
Risk, 52
RMI objects, 172–173, 178
Ruby, 12
Runtime binding, 20
rxnfile, 3

Salt
Attached State, 76
characteristics of, 109
dictionary, 77
Handler object, 81

Sample
defined, 62
identifier, see Sample identifier (SampleID)
table, 188

Sample identifier (SampleID)
characteristics of, 62, 116, 119–123, 126–127
generation, 49–50
lab sample identifier, 109, 111–113

Scalability, 42, 57
Scrum Schwaber, 29
SD File

Business Layer, 69–70
characteristics of, 3, 127–130, 177–178
load transaction, 134–136
use case, 52

Security, 42, 57
Sequence Diagram (UML), 34–37
Service-oriented architecture (SOA), 19–20, 42
Session management, 40, 47
Similarity search, 5
Singleton Pattern, 98–101, 125, 155, 165
SmallTalk, 12
SmilesStructure class, 10, 16, 18, 21,

62, 91, 93
SOAP, 41–42
.so files, 19
Software architecture

hardware concerns, 43
Layers Architectural Pattern, 43–48

Software developers/designers
change management, 6
educational background, 2–3
encapsulation and, 14
expertise of, 23
functions of, 205–206
industry standards and, 2

Software development principles
high cohesion, 8–9
low coupling, 6–8
open for extension-closed for changes, 9–11
overview of, 6

Software upgrades, 25
SQL

operators, 200
statements, 154

sss, 202
Stateful Session Beans, 46
Stateless Session Beans, 46
State Pattern, 85
Strategy Pattern, 11
Stress testing, 29
Structure

component, defined, 62
defined, 61–62

INDEX 215

JWUS_Dcis_Index.qxd 10/16/2006 8:37 AM Page 215

drawing packages,204
editing tools, 5, 49
-encoding schemas, 3–4
property calculator, 101
quality checking, 49
query operators, 202–203
rendering tools, 24

StructureFragment, 93–94
struts-config.xml, 66
Struts Framework, 67–68
Submit Registration Transaction, 137–138
Substructure search, 5
Sun Microsystems, 1
SynchRegisrationBean, 145–146
Synchronous registration, 139, 141–142
System Activity Diagram, 69–70
System Sequence Diagrams (SSD)s,

57–58, 205
System testing, 31–32

Taoism, 13
Testing

automation tools, 32–33
importance of, 205

Test scripts, automation of, 30
Thin clients, Web-based, 39–40, 45
Threading, 40
Thread locals, 192
Three-tiered/multi-tiered architecture, 39–42
Timeboxing, 27, 29, 205
Timelines, 25–26
Toplink, 203
Transport layer, 44
Tripos®

Auspyx for Oracle, 2
data storage, 47

Two-tiered client-server architecture, 38–39

UDDI, 20
UML (Unified Modeling Language)

design patterns, 22
modeling, 34–37

State Diagram, 74
UML and Patterns (Larman), 34
UML Distilled (Fowler), 34
Uniqueness checking, 49
Unit of Work, 203
Unit testing, 30, 32
Unix, 19, 38
URL, 40, 133–134
Usability of system, 29, 57
Use case

Case Diagrams (UML), 37, 57
iteration planning, 52–53
modeling, 50–52, 57
specification, 53–60, 205

User, see End-users
demo, 30
friendliness, 72

ValidState, 75–76, 78, 81, 107
VBScript, 12, 45
Vector, 14
Velocity Template, 66
Vendor

insulation, 96–98, 205
-neutral APIs, 205
quality, 24–25

Visual Basic, 12, 65

Waterfall development process, 26–27, 52
Web browser plug-in, 45
Weblogic, 43
Windows, see Microsoft Windows

XDFile (MDL), 3, 52
XML

characteristics of, 42, 52, 67
File, 69–70, 127–128,

132, 136, 203
XSLT, 66
XUnit, 32

Yin and Yang, 13, 95

216 INDEX

JWUS_Dcis_Index.qxd 10/16/2006 8:37 AM Page 216

