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Chapter 1

Vector Calculus

These are summary notes on vector analysis and vector calculus. The purpose is to sesveeas Although
the discussion here can be generalized to differential forms and the introduction to tensors, transformations and
linear algebra, an in depth discussion is deferred to later chapters, and to further fe&dihg.
For the purposes of this review, it is assumed tlettorsarereal and represented in@&dimensional Carte-
sian basis(x,y, z), unless otherwise stated. Sometimes the generalized coordinate netatianxzs will be
used generically to refer te, y, z Cartesian components, respectively, in order to allow more concise formulas
to be written using using j, k indexes and cyclic permutations.
If a sum appears without specification of the index bounds, assume summation is over the entire range of the
index.

1.1 Properties of vectors and vector space

A vector is an entity that exists in gector space In order to take for (in terms of numerical values for it's
components) a vector must be associated witlhgisthat spans the vector space. In 3-D space, for example, a
Cartesian basis can be defingd y,z). This is an example of aarthonormal basis in that each component

basis vector is normalizexl- X = y -y = z - z = 1 and orthogonal to the other basis vectersy =y -z =

z-x = 0. More generally, a basis (not necessarily the Cartesian basis, and not necessarily an orthonormal basis) is
denotede;, e9, e3. If the basis is normalized, this fact can be indicated by the “hat” symbol, and thus designated
(é1, €9, €s.

Here the properties ofectorsand thevector spaceén which they reside are summarized. Although the
present chapter focuses on vectors in a 3-dimensional (3-D) space, many of the properties outlined here are more
general, as will be seen later. Nonetheless, in chemistry and physics, the specific case of vectors in 3-D is so
prevalent that it warrants special attention, and also serves as an introduction to more general formulations.

A 3-D vectoris defined as an entity that has both magnitude and direction, and can be characterized, provided
a basis is specified, by an ordered triple of numbers. The vectben, is represented as= (1, z2, z3).

Consider the following definitions for operations on the vectorandy given byx = (x1,z2,2z3) and
y = (y1,92,93):

1. Vector equalityx =y ifz; =y; Vi=1,2,3
2. Vector additionx +y =zif z; =z; +y; Vi=1,2,3
3. Scalar multiplicationux = (ax1, axs, axs)

4. Null vector: There exists a unique null vec@e (0,0, 0)

6



CHAPTER 1. VECTOR CALCULUS 1.2. FUNDAMENTAL OPERATIONS INVOLVING VECTORS

Furthermore, assume that the following properties hold for the above defined operations:

1. Vector addition is commutative and associative:
X+ty=y+x
(x+y)+tz=x+(y+2)

2. Scalar multiplication is associative and distributive:
(ab)x = a(bx)
(a+b)(x+y)=ax+bx+ay + by

The collection of all 3-D vectors that satisfy the above properties are said to f8fBheector space

1.2 Fundamental operations involving vectors

The following fundamental vector operations are defined.
Scalar Product

a-b = agb, +ayby +a.b. = Zaibi = |a||b|cos(0)

= b-a (1.1)

where|a| = y/a - a, andd is the angle between the vectarsindb.
Cross Product

ax b =x(ayb, — a.by) +y(aby — azb;) + z(azby — aybs) (1.2)
or more compactly
(¢ = axb (1.3)
where (1.4)
C; = ajbk — akbj (15)

wherei, j, k arez, y, z and the cyclic permutations x,y andy, z, z, respectively. The cross product can be
expressed as a determinant:
The norm of the cross product is
|a x b| = |a||b|sin(0) (1.6)

where, againd is the angle between the vecterandb The cross product of two vectossandb results in a
vector that is perpendicular to bathandb, with magnitude equal to the area of the parallelogram definedl by
andb.
TheTriple Scalar Product
a-bxc=c-axb=b-cxa @.7)

and can also be expressed as a determinant
The triple scalar product is the volume of a parallelopiped defineal by andc.
TheTriple Vector Product
ax(bxc)=b(a-c)—c(a-b) (1.8)

The above equation is sometimes referred to af3tHé' — C AB rule.
Note: the parenthases need to be retainedaixe(b x c) # (a x b) x cin general.
Lattices/Projection of a vector

a = (a,)% + (a,)3 + (a,)3 (1.9)

7



1.2. FUNDAMENTAL OPERATIONS INVOLVING VECTORS CHAPTER 1. VECTOR CALCULUS

r = 7rijay + rqag + rsag

ai«aj = 51’]’

aj X ak
Q= ————
aj - (aj X ak)

Gradient,V
vex| 2l iy 2] 12| 2
Ry Y oy 0z
Vi) =+ | 5]
dr = xdx + ydy + zdz
dp = (Vo) - dr
V(uv) = (Vu)o + u(Vv)
DivergenceV-

N AN AN
V'V[ax%[ay}*{az]

V-r=3

d
V(e = 370) +r
if f(r)=r""LthenV . #r" = (n+ 2)r"1

V-(fv)=Vf-v+ fV-v

(3] [5D oo(5)  oo(2) - ()

VX(fv)=fVxv+ (Vf)xv

Curl,V x

Vxr=0

VX (rf(r) =0

V(a-b)=(b-V)a+(a-V)b+bx(Vxa)+ax(Vxb)

8
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CHAPTER 1. VECTOR CALCULUS 1.2. FUNDAMENTAL OPERATIONS INVOLVING VECTORS

0? 0? 02
2
VV:VXV:V:[%]—F[%]‘F[%] (128)

Vector Integration
Divergence theorem (Gauss’s Theorem)

/ V- f(r)d®r = / V-f(r) do = / V -f(r) - nda (1.29)
\4 S S
letf(r) = uVo then
V- (uVv) = Vu - Vo + uV3v (1.30)
/ Vu-Vvd3r+/ uVvd3r = /(qu) -nda (1.31)
14 14 S

The above gives the second form of Green’s theorem.
Letf(r) = uVv — vVu then

/ Vu - Vod3r —l—/ uV2vd®r —/ Vu - Vodr — / vViuddr = /(qu) -nda — /(UVU) -nda (1.32)
\%4 \% \% %4 S S

Above gives the first form of Green’s theorem.
Generalized Green’s theorem

/ wlu — ulvd®r = /p(vVu —uVv)) - nda (1.33)
\%4 S

wherelL is a self-adjoint (Hermetian) “Sturm-Lioville” operator of the form:

L=V [pV]+q (1.34)
Stokes Theorem
/(va)-nda:?{V'd)\ (1.35)
S c
Generalized Stokes Theorem
/(da X V)o[ = }[ dXo] (1.36)
S C
whereo = _,-,x
Vector Formulas
a-(bxc)=b-(cxa)=c-(axDb) (1.37)
ax(bxc)=(a-c)b—(a-b)c (1.38)
(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c) (1.39)
VxViy=0 (2.40)
V-(Vxa)=0 (1.41)

9



1.2. FUNDAMENTAL OPERATIONS INVOLVING VECTORS CHAPTER 1. VECTOR CALCULUS

V x (Vxa)=V(V-a)— V?a
V- (da)=a V¢ +V-a
V x (a) = Vi) x a+ 9V x a
V(a-b)=(a-V)b+(b-V)a+ax (Vxb)+bx(Vxa)
V-(axb)=b-(Vxa)—a-(Vxb)

Vx(axb)=a(V-b)—b(V-a)+(b-V)a—(a-V)b

If x is the coordinate of a point with magnitude= |x|, andn = x/r is a unit radial vector

V-x=3
Vxx=0
V-n=2/r
Vxn=0

(a-V)n = (1/r)la—n(a-n)]

10
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Chapter 2

Linear Algebra

2.1 Matrices, Vectors and Scalars

Matrices - 2 indexes (2 rank tensors) 4;;/A
Vectors - 1 index (1% rank tensor) «;/a
Scalar - 0 indeX (0 rank tensor) a

Note: for the purpose of writing linear algebraic equations, a vector can be writtensisxah “Column
vector " (a type of matrix), and a scalar a$ a 1 matrix.

2.2 Matrix Operations
Multiplication by a scalaty.

C=aA =Acx means Cij = OzAZ‘j = Aij (ye’s
—_———
NxN NxN

Addition/Subtraction
C=A-B=B-A means Cij:Aij_Bij

Multiplication (inner product)

C=AB means Cj; = ZAikBkj
NxN NxM-MxN k

AB # BA in general

A -(B-C)=(AB)C=ABC associative, not always communitive

Multiplication (outer product/direct product)

C =A®B means Caﬁ = AijBkzé

nmxnm

a=n(i—1)+k B=m(j—1)+¢

11



2.3. TRANSPOSE OF A MATRIX CHAPTER 2. LINEAR ALGEBRA

A®B#B® A A(B®C)=(A®B)C
Note, for “vectors”
C=a®bl means  Cj; = a;b;
—
Nx1-1xN

2.3 Transpose of a Matrix

A = BT means Aij = (Bij)T = Bji
NxM (MxN)T=NxM

Note:
T

(AT)T = A [(Ay)"]" = [45]" = Ay

(A-B)Y =BT . AT

C=(A-B) =B". AT
T
Cij = (Z AikBkj> = AjBy;
k K
= Bridjp =Y _(Bir) (Ar;)"
I k

2.4 Unit Matrix

(identity matrix)

0
0 1 (2.2)
1

oo =

11 =1T=1 Al =1A=A

Commutator: a linear operation
[A,B]=AB - BA

[A,B] =0 if A andB are diagonal matrices

Diagonal Matrices:
Aij = a;idi;

Jacobi Identity:
[A7 [37 CH = [B7 [A7 C]] - [Cv [A7 BH

12



CHAPTER 2. LINEAR ALGEBRA

2.5. TRACE OF A (SQUARE) MATRIX

2.5 Trace of a (Square) Matrix

(a linear operator)

T.(A-B) =

NoteT,([A,B]) =0

= Z Ay =T, (AT)
Z Cii = Z Z Aszkz
- Z Z Bkz ik = BA)

Proof: (A - B)~
If x-y =1theny =x~
associativé A -B)- (B A H=A. (B-B ) A '=(A- A H)=1thus(B™1- A1) =

TT(OZA + BB) = aTr(A) + ﬂTr(B)

Inverse of a (Square) Matrix

Al A=1=A A"

Note 1-1=1,thus 1=1"

(A-B)y'=B!.A! prove

2.6 More on Trace

Tr(ABC)=Tr(CBA)

Tria@b’)=a -b

Tr(UTAU) =Tr(A) UTU=1or Tr(B~'AB)=Tr
Tr(StS) >0 Tr(BSB™'BTB™!

Tr(S'T
Tr(AB) =Tr(BA) =Tr(BTA™)
Tr(ABC) = Tr(CAB) = Tr(BCA)
[4,B]) =0

Tr(AB) = 0if A= AT andB = B”

2.7 Moreon[A, B]

[Sz, Sy] = 1S,

1 _ BflAfl
1

13
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2.8. DETERMINANTS CHAPTER 2. LINEAR ALGEBRA

2.8 Determinants

Apn A o0 A
det(A) = |A21 Az - Aogp| = Z eijk...AliAQjA?)k R (22)
: . . Ann ik...

€ijk... - Levi-Civita symbol (-1 even/odd permutation df 2,3 .. ., otherwise 0. (ha®V! terms)
A is a square matrix,/{ x N)

2.8.1 Laplacian expansion
N
D= (-1)" My Ay

N
=) cijAij
A

M;; = "minor” ij
cij = “cofactor” = (—1)"*7 M;;

D = mo A 2.3)
Ay 0
Ay A (2.4)

N
Z = Aijcik = det(A)(Sjk = ZAjiCik

det(A) is an antisymmetrizegroduct

Propertiesfor an N x N matrix A

1. The value ofdet(A) = 0 if

e any two rows (or columns) are equal

e each element of a row (or column) is zero

e any row (or column) can be represented by a linear combination of the other rows (or columns). In
this caseA is called a “singular” matrix, and will have one or more of it's eigenvalues equal to zero.

2. The value ofdet(A) is unchangedf

e two rows (or columns) are swapped, sign changes
e a multiple of one row (or column) is added to another row (or column)
e Aistransposedet(A) = det(AT) ordet(A") = det(A*) = (det(A))*

14



CHAPTER 2. LINEAR ALGEBRA 2.8. DETERMINANTS

e A undergoes unitary transformatidat(A) = det(U AU) (including the unitary tranformation that
diagonalizedA)

det(e?) = et (2.5)

3. If any row (or column) ofA is multiplied by a scalaty, the value of the determinat isdet(A). If the
whole matrix is multiplied by, then

det(aA) = aVdet(A) (2.6)

4. If A= BC,det(A) = det(B) x det(C), butif A= B+ C, det(A) # det(B) + det(C). (det(A) is not
a linear operator)
det(AN) = [det(A)N (2.7)

. If Ais diagonalizeddet(A) =11;A;; (also,det(1) = 1)
. det(A)™1) = (det(A)) ™!
. det(A*) = (detA)* = det(AT)

o N o O

. det(A) =det(UTAU) UTU =1

2.8.2 Applications of Determinants

Wave function:

Pi(x1) ha(x1) -0 Yn(x
‘Il%(xl, X9+ XN) = wl (Xg) ¢2(X2) cee (28)
: N (xN)

Evaluate:
/‘I’*(Xl,X2,X3)\IJ(X1,X2,X3)dT

(write all the terms). How does this expression reducuf (x)v;(x)dr = &;; (orthonormal spin orbitals)
J=Jacobian  |dzj >= J|dg; >= )", |dg; >< dg;|dzy, >

dzydeadas = det(J)dqrdgadgs, Ty = Oz
Oqx,
x o0x;
J—): Jl =
<Q> 7 0y
q Jqi
= 2.9
J (l‘)z] Ox; (2.9)
g\ _ | 0= T2
det [J (m)} ' 5 ‘ (2.10)
1
dxdydz = §dq1 (2.11)
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or 1 or’'
/ 2 _— = - :2
Ty oxr' 2 ox
dx 1
dr = —dq = =d
Zr dq, q1 9 qd1

2.9 Generalized Green’s Theorem

Use:
/V-vdT:/v-da

1
dx :idml

/(vLu —ulv)dr = /p(xVu —uVv) - do

L=V -[pV]+q=Vp-V+pV’+¢q

(2

Note [ vqudr = [uqudr

v

= / (V-upVu — V - upVou) dr

/ [U(Vp - Vu+ V2u+ q)u —u(Vp - Vo + pVio + q)v] dr

/ (vV - [pV]u+ Vv - (pVu) —uV - [pV]v — Vv - (pVu)) dr

Vo -pVu+ oV - [pV]u — Vu - pVv —uV - [pV]v

= /(vqu —upVv) - do
= /p(vVu —uVv) - ds

OF; OF;

OF;

dF; = d dt =(dr - V)F; + —dt
4 By Ty + ; (dr - V)F; + ot

= dr-V—i—dtQ F;

- ot) "
L=rxp=rxmv, V=wXr

Ax (B x C) = B(AC) — C(AB)
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(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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2.10 Orthogonal Matrices

(analogy toa;a; = 6;; = al - a;)

AT A=1 (AT =A"1)

AT = A7 therefore AT -A=1=17=(AT.A)
Notedet(A) = +1 if Ais orthogonal. Also:A and B orthogonal, then (AB) orthogonal.

Application: Rotation matrices

X; = ZAinj or ‘X; >= Z |Xj X Xj|X; >
J J
example:
7 sinfcosyp sinfsing cosf T
@ | = |cosfcosp cosfsinp —sind 0 (2.18)
% —sine cos 0 z

,)2
6 =cCly (2.19)
@ 2

T T 7
gl=c?t|o]=cCct|é (2.20)
2 ¢ ¢

sinceC~! = C” (C is an orthogonal matrix)

Also Euler angles (we will use later.)

2.11 Symmetric/Antisymmetric Matrices

Symmetric meansl;; = A;;, or A = AT
Antisymmetric meansl;; = —A;;, or A = —AT

1 1
A=-(A+A")+-(A-AT 2.21

S(A+AT) 4 (A-AT) (2.21)

symmetric antisymmetric
Note also:

(AAT)" = (AT)" AT

=AAT
Note: 7. (AB) = 0 if A is symmetric andB is antisymmetric. ThusAAT ATA are symmetric, but
A-AT £ A AT

Quiz If A is an upper triangular matrix, use the Laplacian expansion to determine a formula (fdr) in
terms of the elements of.

17
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2.12 Similarity Transformation

A’ = BAB' (2.22)
if B! =B” (B orthogonal) BAB” = orthogonal similarity transformation.

2.13 Hermitian (self-adjoint) Matrices

Note:
(AB)" = A*B*
(AB)" =BTAT also (ANt =4
H"=H where H" = (H")! = (H")*

A real symmetric matrix is Hermitian or a real Hermitian matrix is symmetric (if a matrix is real, Hermi-
tian=symmetric)

2.14 Unitary Matrix

Ut =uU"!
A real orthogonal matrix is unitary or a real unitary matrix is orthogonal (if a matrix is real, unitary=orthogonal)

2.15 Comments about Hermitian Matrices and Unitary Tranformations

1. Unitary tranformations are “norm preserving”
x' = Ux (X)X =xTUTUx=x"-x
2. More generallyx’ = Ux, A’ = UAU"
A'x' =UAUTUx =U(Ax) and (y)" -A'-x' =y"UTUAU"Ux
operation in transformation coordinates = transformation in uniform coordinatesAx (invariant)
. fAT=A,then(Ay)" x=yT - x=y"-AT.x=y".-A.x (Hermitian property)
4.1f AT = A, then(A)t = (UAU')T = UAUY, or (A/)t = A’/

2.16 More on Hermitian Matrices

1 1 1 1
C:—(C+C+)+— (C—C*) :f(C+C+)+—,'i(C—C+)
2 2 2 21 N’
Hermitian anti-Hermitian Hermitian!

Note: C = —i[A, B] is Hermitian even ifA andB are not, (oriC = [A,B]). C = AB is Hermition if
A = AT, B = BT, and[A, B] = 0. A consequence of this is th@t" is Hermitian if C is Hermitian. Also,
C = ¢*A is Hermitian if A = AT, butC = eioA is notHermitian (C is unitary). A unitary matrix in general
is notHermitian.

f(A) =) _CrA*¥  isHermitian ifCy are real
k

18
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2.17 Eigenvectors and Eigenvalues

SolveAc = ac, (A — al)c = 0 det() = 0 secular equation.

A'c =a;c,  Eigenvalue problem

Ac; = \;Bcg; Generalized eigenvalue problem

Ac = BcA

If C;-i_ -B- c; = (51‘]‘ thenc;“ A C; = )\zéz]

relation:A’ = B-2AB 2 andc, = B%ci (Can always transform.Lowden) Example: Hartree-Fock/Kohn-
Shon Equations:

FC =SCe, H,.;;C=SCe
ForAc; = ajc;if A=A% a;=a}, ¢l c;=6; * can be chosen

(2 (]
c; form a “complete set”
If ATA = 1, a; = =1, c - c; = 5”‘ det(A) =41

2

Hc; = ¢;c; or Hc = ce

( ) 23)

€1 0
€= (2.24)
0 EN
sincec; - ¢; = d;, ct-c=1landalsac’-H-c = c'c = cce = e hencec is a unitary matrivand is the
unitary matrix that diagonalized. c™Hc = € (eigenvalue spectrum).

2.18 Anti-Hermitian Matrices

Read about them.

2.19 Functions of Matrices

UAU" =a A=U"TaU or AU"=U"a

19
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Power series e.g.

A_ |
e = kgo gAk
. — (~1
SIH(A) = kzo (Q(k +)1)| 2kt
© Nk
cos(A) :Z ((213' A?k
k=0

Note:

A?UT =AUUT
=AUTQ
=U"QQ
:U+ QQ

Q- (Q% _0>
0 .

Ak .Ut = U+QK
Note, if f(A) = 3", CxA¥ andUAU™ = Q, then

F=f(A)U"
— Z CkUJer
k
:U+ Z Cka
k
f(a11)
:U+ . — U+f
f(ann)
soif UAUT = Q, thenUFU™ = f andf;; = f(a;)d;;

Also:
Trace Formula

det(e®) = ¢4 (special case of det[f(A)] = m; f(aii))

Baker-Hausdorff Formula

¢CHe G = H + [iGH] + J[iG, [iG, H] + -
Note, if
AUY =UTQA()) = A + A1

so has some eigenvectors, but eigenvalues are shifted.

ANUT = (A+ AU = UTQ+ UtAL = UT(Q + A1) = UTQ())

20
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CHAPTER 2. LINEAR ALGEBRA 2.20. NORMAL MARICES

2.20 Normal Marices

[A,AT] =0 (Hermitian and real symmetry are specific cases)

— q.c e — aFes + L
Ac; = aic;, ATc;=uajc;, c-c;=0

2.21 Matrix

2.21.1 Real Symmetric

A=AT=A%" g real ¢ -c;=¢;  Hermitian normal

i .

2.21.2 Hermitian

A=A" g real ¢ -c;=46; normal

)

2.21.3 Normal
[A, A+] =0 if ACZ' = a;C; C?_ cCj = (51']'

2.21.4 Orthogonal
Ul .U=1 (U'=U"') a(£1) ¢l -c;=06; unitary, normal

1

2.21.5 Unitary
UU=1 (U"=U"Y) greal(£l) ¢ -c;=6; normal

)

If UAU"' = a,andU"U = 1 then[A, A"] = 0 and conversely.
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Chapter 3

Calculus of Variations

3.1 Functions and Functionals

Here we considefunctionsandfunctionalsof a single argument (a variable and function, respectively) in
order to introduce the extension of the conventional function calculus to that of functional calculus.

e A function f(x) is a prescription for transforming a numerical argumemto a number; e.g.f(z) =
1422 +e 2,

e A functional F[y] is a prescription for transforming a function argumeft) into a number; e.gF [y] =
2 y%(x) - e 5% da.

1

Hence, a functional requires knowledge of it's function argument{gay) not at a single numerical point in
general, but rather over the entire domain of the function’s numerical argunieet, over allz in the case of
y(z)). Alternately stated, a functional is often written as some sort of integral (see below) where the argument of
y (we have been referring to it ag™) is a dummy integration index that gets integrated out.

In general, a functional’[y] of the 1-dimensional functionp(x) may be written

€2

Flol = [ 1 (wy@) /@),y (), ) da (3.)
1

wheref is a (multidimensional) function, ang = dy/dz,--- y" = d"y/dx". For the purposes here, we will

consider the bounday conditions of the function argumeate such thay, v’ - - - y»~1) have fixed values at

the endpoints i.e.,

gV (@) =y, y () =gy forj=0,---(n—1) (32)
wherey!”) andy”) are constants, and® = y.
In standard function calculus, the derivative of a functjgn:) with respect tar is defined as the limiting

process
m AR i) (3.3)
dx |,
(read “the derivative of with respect tor, evaluated at). Thefunction derivativendicates howf (z) changes
whenz changes by an infintesimal amount franto = + .
Analogously, we define the functional derivativeofy] with respect to the functiop at a particular point
xo by

e—0 €

_ i Ly €0(@ —z0)] — Fly]

(5y<l‘):| y(z0) e—0 € (34)

{5}7
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CHAPTER 3. CALCULUS OF VARIATIONS 3.2. FUNCTIONAL DERIVATIVES

(read, “the functional derivative of with respect tgy, evaluated at the point(z()). Thisfunctional derivative
indicates howF'[y] changes when the functiaf{z) is changed by an infintesimal amount at the paint z
fromy(x) toy(z) + ed(x — o).

We now procede formally to derive these relations.

3.2 Functional Derivatives: Formal Development in 1-Dimension

Consider the problem of finding fanctiony(x) that corresponds to a stationary condition (an extremum
value) of the functionaF'[y] of Eq., subject to the boundary conditions of 3.2; i.e., that the fungtion
and a sufficient number of it's derivatives are fixed at the boundary. For the purposes of describing variations, we
define the function

ylz,€) = ylz) +en(r) = y(x,0) + en(z) (3.5)

wheren(z) is an arbitrary differentiable function that satisfies the end conditigh$z,) = n¥)(z2) = 0
for j = 1,---(n — 1) such that in any variation, the boundary conditions of [Eq| 3.2 are preserved; i.e., that

y 9 (1) =y andy (z,) = y{ for j = 0,--- (n — 1). It follows the derivative relations
yI(z,e) = yD(@)+ e (x) (3.6)

L D@e = 7)) (3.7)

&y

where superscripf (j = 0,---n) in parentheses indicates the order of the derivative with respect 6o
remind, heren is the highest order derivative gfthat enters the functiond[y]. For many examples in physics
n = 1 (such as we will see in classical mechanics), and onlyixeel end pointsf y itself are required; however,
in electrostatics and quantum mechanics often higher order derivatives are involved, so we consider the mor
general case.

If y(z) is the function that corresponds to an extremun¥@j], we expect thaany infintesimal variation
en(z) away fromy that is sufficiently smooth and subject to the fixed-endpoint boundary conditions [of Eq. 3.2)
will have zero effect (to first order) on the extremal value. The “arbitrary” functior) of course has been
defined to satisfy the differentiability and boundary conditions, and the scale faatlmwvs a mechanism for
effecting infintesimal variations through a limiting procedure approachiag0d. At ¢ = 0, the varied function
y(z, €) is the extremal valug(x). Mathematically, this implies

d
e Flytenll—y = 0
d[ [ ,
A RIS @9

L)
A (-}

where we have usetly(z, €)/0e = n(z), 9y (z,€)/0e = 1/ (), etc... If we integrate by parts the term in Eq3.8

involving 1’ (x) we obtain
= Of S AN e )]
[ (55)iwar = (55)w| - [ (55) e

g (Of
‘Alm<@J“@“ (3.9)
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3.3. VARIATIONAL NOTATION CHAPTER 3. CALCULUS OF VARIATIONS

where we have used the fact thgt:;) = n(z2) = 0 to cause the boundary term to vanish. More generally, for
all the derivative terms in E{]. 3.8 we obtain

o o ] . T2 JJ o

1

for j = 1,---n where we have used the fact that) (z;) = 79 (z3) = 0for j = 0,---(n — 1) to cause the
boundary terms to vanish. Substituting Eqg. 3.10 in[EG. 3.8 gives

oot - [{()-2()

+(—1)n% (a%) } n(z) da
— 0 (3.11)

Sincen(z) is an arbitrary differential function subject to the boundary conditions df Ep. 3.2, the terms in brackets
must vanish. This leads to a generalized form of the Euler equation in one dimension for the extremal value of

F[y] of EQ.[3.4
’ (af>_d<af>+...+(_1)ndn<6f>—0 (3.12)
oy dzx \ 0y’ dzn \ gy ) '

In other words, for the functiop(z) to correspond to an extremal value Bfy], Eq.[3.12 must be satisfied for
all y(x); i.e., over the entire domain of of y(x). Consequently, solution of Efj. 3]12 requires solving for an
entirefunction- not just a particular value of the function argumeras in function calculus. Eff. 3.J12 is referred
to as the Euler equation (1-dimensional, in this case), and typically results in a differential equation, the solution
of which (subject to the boundary conditions already discussed) provides the fupttipthat produces the
extremal value of the functiond[y].

We next define a more condensed notation, and derive several useful technigues such as algebraic manipu-
lation of functionals, functional derivatives, chain relations and Taylor expansions. We also explicitly link the
functional calculus back to the traditional function calculus in certain limits.

3.3 Variational Notation

We defined F'[y], the “variation of the functionak'[y]”, as

d
6F[y] = e [Fly +enl]—g €
x2 af d [0f dn af
= ) - = (=L 1)
LAG) = (5r) =i (m) o
2 §F
= oy(x) dx 3.13
oy 329
where (analagouslyjy(x), the “variation of the functiony(x)”, is defined by
d
oy(z) = —-ly(@) +enz)]—ge
= en(z)
= y(.ﬁ,ﬁ) —y(x,()) (314)
where we have again used the identjty, 0) = y(z). Relating the notation of the preceding section, we have
y(z,€) = y(z) + en(z) = y(x) + dy(z) (3.15)
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Note that the operatorsandd/dx commute; i.e., thad(d/dx) = (d/dx)0:

dy d

5y (z) = 5% = [CZS (y + en)} » € (3.16)

d d
= W +en)] ge=n'e=—(ne) = —dy
Hence the (first) functional variation @f[y] can be written

OF[y] = " 52{;) dy(x) dx (3.17)

where% is defined as “the (first) functional derivative Bfy| with respect tgy at positionz”, and assuming
F[y] in the form of Eq[ 3.IL, is given by

SF  (0f\ d [0f ,dt [ Of
st = (3y) ~a () * 0 i () (349

Note that the functional derivative defined above is itself a function i fact, Eq[3.1]7 can be considered as a
generalization of an exact differential of a discreet multivariable function in calculus, .e.qg.,

dF(iL‘l,xQ,”- ,xN):Za‘Fjdxi (319)

where the summation over discreet variahlgbas been replaced by integration over a continuous set of variables
xZ.
An extremal value of'[y] is a solution of the stationary condition
dF[y] =0 (3.20)

and can be found by solution of the Euler equafion|3.12.

3.4 Functional Derivatives: Elaboration

3.4.1 Algebraic Manipulations of Functional Derivatives

The functional derivative has properties analogous to a normal function derivative

5;23;) (ClFl + CQFQ) = (5(;1(:;13) + o 5j€;> (3.21)
5 R 5P
e N7 = Sm ) 522
5 (R [ OF JF,
5y() (F) - (@(z)FQ - h 6y<x>> /i (3.23)
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3.4.2 Generalization to Functionals of Higher Dimension

The expression for the functional derivative in Eq. 3.18 can be generalized to multidimensional functions in a
straight forward manner.

la 8f) n o of
= (=) + —1)J N 3.24
Sp(z1, -z <8p ;( ) ;6965 <8 g(i) ( :
The functional derivative in the 3-dimensional case is
oF g _ of o [ Of o
5o(0) (ap> v (aw>+v <8V2p> 829

Example: Variational principle for a 1-particle quantum system.
Consider the energy of a 1-particle system in quantum mechanics subject to an external pgientigie
system is described by the 1-particle Hamiltonian operator
. h?

H= %VQ + u(r) (3.26)

The expectation value of the energy given a trial wave funcii¢n) is given by

[(r) (-%v? + v(r)) U(r)dsr

E[v] = = = (3.27)
[ () (r)d3r

(o] %)

(TP)

Let us see what equation results when we require that the energy is an extremal value with respect to the wave
function; i.e.,
SE[¥]
0¥(r)
Where we denote the wave function that produces this extremal ¥alugince this is a 1-particle system in
the absence of magnetic fields, there is no need to consider spin explicitly or to enforce antisymmetry of the
wave function as we would in a many-particle system. Moreover, there is no loss of generality if we restrict
the wave function to be real (one can double the effort in this example by considering the complex case, but
the manipulations are redundant, and it does not add to the instructive value of the variational technique - and
a student’s time is valuable!). Finally, note that we have constructed the energy fund.fi[(i’]aio take on an
un-normalized wave function and return a correct energy (that is to say, the normalization is built into the energy
expression), alleviating the need to explicitly constrain the wave function to be normalized in the variational
process. We return to this point in a later example using the method of Lagrange multipliers.
Recall from Eq[ 3.23 we have

sty _ (v [A[¥) s
SU(r) 0¥(r) 0¥(r)

~0 (3.28)

<x1: ’H‘ q/> /(0| W)?2 (3.29)

Let us consider in more detail the first functional derivative term,

5<ili‘)m> _ 5\;@) / (r) <—Zv2 —l—v(r)) b (r)dr (3.30)
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where we have dropped the complex conjugation since we consider the caselwbesal. It is clear that the
integrand, as written above, depends explicitly onlyloand V2. Using Eq|[ 3.25 (the specific 3-dimensional
case of Eq. 3.74), we have that

[
v~ 2m ——VU(r) + 2v(r)¥(r) (3.31)
of B h?
<8V2\P(r)> B <2m‘1’( )>
and thus
m =2 h2v2 +o(r) | O(r) = 2HT(r) = 2H|T) (3.32)
oW (r) 2m '
where the last equality simply reverts back to Bra-Ket notation. Similarly, we have that
5(W|w) _
T 2V (r) = 2|) (3.33)
This gives the Euler equation
IE[Y] 3 2
o H( \1/>) /(0| W) (3.34)

= (zmwwm —2|0) <‘I’
a

(w19 (v |E[Y)
W) (o

=0

Multiplying through by(¥| W), dividing by 2 and substituting in the expression fgi/] above we obtain

H|¥) = HHM@ — B[]|¥) (3.35)
(U7

which is, of course, just the stationary-state $dimger equation.

3.4.3 Higher Order Functional Variations and Derivatives

Higher order functional variations and functional derivatives follow in a straight forward manner from the cor-
responding first order definitions. The second order variatiait & = J(6F), and similarly for higher order
variations. Second and higher order functional derivatives are defined in an analogous way.

The solutions of the Euler equations asd¢remals i.e., stationary points that correspond to maxima, minima
or saddle points (of some order). The nature of the stationary point can be discerned (perhaps not completely) b
consideration of the second functional variation. For a functidtjgl, supposef; is the function that solves the
Euler equation; i.e., that satisfiés'[f] = 0 or equivalently[(SF[ [/6f(@)] sy, =0, then

_ //5f [ 5f( )]ffoéf(:r’)dxdx' (3.36)

The stationary point of [ fy] at fo can be characterized by
§2F >0 : minimum
6°F =0 : saddle point (order undetermined)
§?F <0 : maximum
(3.37)
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Example: Second functional derivatives.
Consider the functional for the classical electrostatic energy

L[ [ pp) gy s
=1 L (3.38)

what is the second functional derivatl{/g‘sL}

The first functional derivative with respect por) is

oJlpl 1 [ p(t') 5, 1 [ p(x) 5,
o) = 3 / d3r +5 / dr (3.39)

2 lr —1/| lr — r/|
/ p(r/) d3r/
Ir—1|

Note,r’ is merely a dummy integration index - it could have been called, r’”, etc... The important feature

is that after integration what results is a functionrefthe samer that is indicated by the functional derivative
6J[p]
op(r)”

The second functional derivative with respecpte’) is

62 (o] } 8 8] 340
Lp(r)«sp(r') = 5p() bplr) (3:40)
_ 5 p(I‘) 3,../
N 5p(r’)/\r—r’\d
B 1
Y
3.4.4 Integral Taylor series expansions
An integral Taylor expansion faF'[fo + A f] is defined as
fo+Afl = Flfo
1 sMF
i Zn/ / / [51’ (e0)65 @)+ 3f (o) |

For functionals of more than one function, e.g[f, g], mixed derivatives can be defined. Typically, for

sufficiently well behaved functionals, the order of the functional derivative operations is not important (i.e., they
commute),

5F 52F
57 (2)0a(x) — Sg(@)df () (3.42)
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An integral Taylor expansion faF[fo + Af, go + Ag] is defined as

Flfo+Af,g0+Ag] = F[fo, 0]
oF
+ /[6f(x)}f07goAf(x)dx

o f [aﬁﬂ]fogf“@dx

L [51“ iCE >]f0,goAf(x’)dwdxl
+ / / Af(x) {(,)Logo Ag(') deda’
* / [ 296 |55 >LO,QOA9(”’”:”“/

+ (3.43)

3.4.5 The chain relations for functional derivatives

From Eq[3.1B, the variation of a function&(f] is given by

OF
0F = | ——0f(x)dx 3.44
57 @ (3.44)
(where it is understood we have dropped the definite integral notation with endpqiadsiz- - it is also valid
that the boundaries be at plus or minus infinity). If at each poirft(z) itself is a functional of another function
g, we write f = flg(z), z] (an example is the electrostatic potentiét) which at every point is a functional
of the charge density at all points), we have

df(x)

of(w) = dg(x’)

Sg(x') dz (3.45)

which gives the integral chain relation

§F = //55F ‘5fx/ 5g(z') dzda’

(')
oF N
= /5g(x/)5g(x)da: (3.46)
hence,
oF 0F o0f(x)

Sg(z") ) 8f(z)g(z)) x (3.47)

Supposé’[f] is really an ordinary function (a special case of a functional);i.e= F'(f), then written as a
functional

F(f(@) = [ FU)6a’ — s (3.48)

it follows that

5 () = ﬁ&m —x) (3.49)
If we take F'(f) = f itself, we see that
of(x) _ 0
SF) iz — x) (3.50)
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If instead we have a function that takes a functional argumentge=gg(F[f(x)]), then we have

ég dg 5Ff,] ,
@) / e e

7$)5F[fa I”] d.fl?’
dF[f a! 6f(x)
_dg OF
= F5E (3.51)

If the argumentf of the functionalF’[f] contains a parameter i.e., f = f(x; \), then the derivative of'[ f]
with respect to the parameter is given by

AF[f (x5 )] SF  9f(z;\)
/5f o de (3.52)

3.4.6 Functional inverses

For ordinary function derivatives, the inverse is definettids/df) ! = df /dF such thatdF'/df)~1-(df /dF) =
1, and hence is unique. In the case of functional derivatives, the relation befW¢pand f(z) is in general a
reduced dimensional mapping; i.e., the sc&lf| is determined from many (often an infinite number) values of
the function argument(z).

Suppose we have the case where we have a fungfioy each value of which is itself a functional of another
function g(z’). Moreover, assume that this relation is invertable; i.e., that each valg@9fcan be written as
a functional off(z). A simple example would be if (x) were a smooth function, ang(z’) was the Fourier
transform off () (usually thez” would be called: or w or something...). For this case we can write

5f(x) of (@ (( ,))5 (+') da’ (3.53)
Sg(x)) = (f?((a::,))af( " da” (3.54)
which leads to
5f(z) = / / g ((;”,)) (fjf((i)) 5F(x") da da” (3.55)
providing the reciprocal relation
S T o = Ty = o= (859
We nowdefinethe inverse as § |
bl Ik (557
from which we obtain — ”
o { 5g(x,)] da! = 5z — 2" (3.58)

3.5 Homogeneity and convexity properties of functionals

In this section we define two important properties, homogeneity and convexity, and discuss some of the powerful
consequences and inferences that can be ascribed to functions and functionals that have these properties.
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3.5.1 Homogeneity properties of functions and functionals
A function f(z1, x5 - - ) is said to behomogeneous of degredik all of it's degrees of freedom) if
fOx, Aza, ) = Nf(z,ap--0) (3.59)
and similarly, a functionaF'[ f] is said to behomogeneous of degreéfk
FIAf] = NF[f] (3.60)

Thus homogeneity is a type e€aling relationshigetween the value of the function or functional with unscaled
arguments and the corresponding values with scaled arguments. If we differentjate Eq. 3.59 with réspect to
obtain for the term on the left-hand side

df()\!El, )\IQ, cee ) af()\$1, )\332, cee ) d()\xz)

X - d(\x;) X (3.61)
Of Az, Aw2,--+)
Zi: i ) (3.62)
(where we note that(\x;)/d\ = z;), and for the term on the right-hand side
d
— (Nf(@rma,)) = BN (o) (3.63)
Setting\ = 1 and equating the left and right-hand sides we obtain the important relation
8 a:‘ 7:1:‘ y ...
N LR (364)
Similarly, for homogeneous functionals we can derive an analogous relation
OF
r)der = kF 3.65
57! @ ] (3.65)

Sometimes these formulas are referred tdeater’'s theorem for homogeneous functions/functionalbese
relations have the important conseugnce that, for homogeneous functions (functionals), the value of the functiol
(functional) can be derived from knowledge only of the function (functional) derivative.

For example, in thermodynamicsxtensivequantities (such as the Energy, Enthalpy, Gibbs free energy,
etc...) are homogeneous functionals of degree 1 in their extensive variables (like entropy, volume, the number o
particles, etc...). anohtensivequantities (such as the pressure, etc...) are homogeneous functionals of degree 0.
Consider the energy as a function of entrgfiyvolumeV, and particle numben; for each type of particlei(
represents a type of particle). Then we have fhat F(S,V,ny,ny---) and

E = E(S,V,ni,ng---) (3.66)

OF OF OF
E = |— — ; .67
d <3S>v,ni ds + <3V>s,ni dV+§i: <3m>s,v,n#i dn (3.67)

= TdS—pdV + ) pidn;

7

where we have used the identitig4%),, =T, (5%),, = -p and((gi = 11;. From the first-order

)S,V,nj7g7;
homogeneity of the extensive quanty(.S, V, ni, ns - - - ) we have that

E()‘Sa)“/a)\nb)\n%”'):)\E(SavvvnlanQ"') (368)
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The Euler theorem for first order homogeneous functionals then gives

oF OFE )
E = (— — ;
()5 @) 2 G,

= TS—pV+> mn (3.69)

Taking the total differential of the above equation yields

dE = TdS+ SdT —pdV — Vdp+ > pdn; + nidp;

Comparison of Eq$. 3.68 apd 3] 70 gives the well-kn@ilobs-Duhem equation

SdT - Vdp+ > nidp; =0 (3.70)

Another example is the classical and quantum mechanigal theoremthat uses homogeneity to relate the
kinetic and potential energy. The virial theorem (for 1 particle) can be stated as

oV oV oV

Note that the facto? arises from the fact that the kinetic energy is a homogeneous functional of degrédee
particle coordinates. If the potential energy is a central potential}ife.) = C - " (a homogeneous functional
of degreen) we obtain

n(V) = 2(K) (3.72)

In the case of atoms (or molecules - if the above is generalized slightly) is the Coulomb potential /r,
n=—-landwehavec V >=-2< K >0rE=(1/2) <V >sinceE =<V > + < K >.

3.5.2 Convexity properties of functions and functionals

Powerful relations can be derived for functions and functionals that possess cemagxityproperties. We
define convexity in three cases, starting with the most general: 1) general functions (functionals), 2) at least
once-differentiable functions (functionals), and 3) at least twice-differentiable functions (functionals).
For a general function (functional) to lsenvexon the intervall (for functions) or the domaif® (for func-
tionals) if, for0 < A <1

f(A;Ul + (1 — )\)xg)
FIAfi+ (1= \)fo]

A(z1) + (1= N) f(z2) (3.73)

<
< AF[A]+ A =N F[f] (3.74)
for z1,zo € I andfi, fo € D. f(x) (F[f]) is said to bestrictly convexon the interval if the equality holds only
for z1 = xo (f1 = f2). f(x) (F[f]) is said to beconcave(strictly concavgif —f(x) (-F[f]) is convex(strictly
convey.

A once-differentiable functiorf (x) (or functional F'[f]) is convex if and only if

f(x1) = f(x2) = fl(z2) - (21 —22) > 0 (3.75)
P - i - [ (5] o pepas = o 3.76)
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for z1,29 € T and fy, fo € D.
A twice-differentiable functiory (x) (or functional F'[ f]) is convex if and only if

f'x) > 0 @17
_O°Flf]
[5f(33)5f(x’)} = 0 (3.78)

forx € Tandf € D.
An important property of convex functions (functionals) is knownJassen’s inequality For a convext
function f(x) (functional F[f])

fz)) < (f(2)) (3.79)
FINHT < (FIfD (3.80)

where(- - -) denotes an average (either discreet of continuous) over a positive semi-definite set of weights. In
fact, Jensen’s inequality can be extended to a convex function of a Hermitian operator

1((0)) = (19) (3.81)

where in this casé - - ) denotes the quantum mechanical expectation value- -| ¥). Hence, Jensen’s inequal-
ity is valid for averages of the form

(f) = ZPfZ where P, > 0, ZP =1 (3.82)
(fy = /P x) dz; where P(x) > 0, /P =1 (3.83)
(fy = /\I/*(x)f\Il(:c) dx; Where/\I/*(a;)\I/(a:) dr =1 (3.84)

The proof is elementary but | don't feel like typing it at 3:00 in the morning. Instead, here is an example of
an application - maybe in a later version...

Example: Convex functionals in statistical mechanics.
Consider the convect functioef (it is an infinitely differentiable function, and ha8 (e®)/dz? = €°, a positive definite second
derivative). Hence <"~ < (exp(z)).
<" < (exp(x)) (3.85)
This is a useful relation in statistical mechanics.
Similarly the functionzin(z) is convex forz > 0. If we consider two sets of probabiliti€’; and P/ such thatP;, P{ > 0 and
>, Pi =Y, P/ =1, then we obtain from Jensen’s inequality

(z)in((z)) < (zin(z)) (3.86)

N N
;P P; p;
(Z P R) In (Z P p> <ZP (P,>> (3.87)
Note thathV P -P/P = ZZN P; =1 and hence the left hand side of the above inequality is zero $inbg(1) = 0. The right hand
side can be reduced by canceling out fPfefactors in the numerator and denominator, which results in

N
ZRM(%) > 0 (3.88)

which is a famous inequality derived by Gibbs, and is useful in providing a lower bound on the entragy=et/N then, taking minus
the above equation, we get

IN

N
-Y Pi-in(P) < In(N) (3.89)

If the entropy is defined as kg Zf.v P; - in (P;) wherekp is the Boltzmann constant (a positive quantity), then the largest value
the entropy can have (for an ensembleNofdiscreet states) &g - In(NV), which occurs when all probabilities are equal (the infinite
temperature limit).
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3.6 Lagrange Multipliers

In this section, we outline an elegant method to introduce constraints into the variational procedure. We begin
with the case of a discreet constraint condition, and then outline the generalization to a continuous (pointwise)
set of constraints.

Consider the problem to extremize the functiof&f] subject to a functional constraint condition

G[f]=0 (3.90)
In this case, thenethod of Lagrange multiplieian be used. We define the auxiliary function
Q[f] = F[f] — AG[f] (3.91)
where) is a parameter that is yet to be determined. We then solve the variational condition

60 _ OF | G
0f(x)  of(z) " of(x)

Solution of the above equation results, in general, in a infinite set of solutions depending on the continuous
parametefambda. We then have the freedom to choose the particular value tbht satisfies the constraint
requirement. Hopefully there exists such a value\péind that value is unique - but sometimes this is not the
case. Note that, ify(x) is a solution of the constrained variational equation 3.92), then

2= 570) ! 570) — (3:99)

for any and allvalues of fy(x)! Often in chemistry and physics the Lagrange multiplier itself has a physical
meaning (interpretation), and is sometimes referred tossnaitivity coefficient

Constraints can be discreet, such as the above example, or continuous. A continymist(asg set of
constraints can be written

=0 (3.92)

glf, 2] =0 (3.94)

where the notatiorgy[f, ] is used to represent a simultaneous functionaf @nd function ofx - alternately
statedg[f, x] is a functional off at every pointc. We desire to impose a continuous set of constraints at every
pointz, and for this purpose, we require a Lagrange multipligr) that is itself a continuous function af We

then define (similar to the discreet constraint case above) the auxiliary function

Qlf) = FIf) - [ Malgls.aldo (3.95)
and then solve 50 5P 5qlf. )
— = — x’ I, T = )
) = 5 ] A gy =0 (3.99)

As before, the Lagrange multipliex(z) is determined to satisy the constraint condition of [Eq.[3.94. One can
consider)(z) to be a continuous (infinite) set of Lagrange multipliers associated with a constraint condition at
each pointr.
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3.7 Problems

3.7.1 Problem1

Consider the functional

Twlp] = é / dedr (3.97)

a. Evaluate the functional derivativlyy /dp(r).

b. Let p(r) = |i(r)]* (assumey is real), and rewritel'[y)] = Ty [|[v(r)|?]. What does this functional
represent in quantum mechanics?

c. Evaluate the functional derivativé&l'[1)]/d1(r) directly and verify that it is identical to the functional
derivative obtained using the chain relation

0Tly] _ 6Twlpl _ [ 0Twlp] dp(r') 5
ap(r)  o(r) dp(r')  0v(r)

3.7.2 Problem 2

Consider the functional

E.lp| = — /p4/3(r) [c - b2x3/2(r)} d3r (3.98)
wherec andb are constants, and
|Vp(r)|
= 3.99
x(r) p4/3(r) ( )

evaluate the functional derivati pf][g] .

3.7.3 Problem3

This problem is an illustrative example of variational calculus, vector calculus and linear algebra surrounding an
important area of physics: classical electrostatics.
The classical electrostatic energy of a charge distribysi@n is given by

1 /
J[p] . // p(r>p(r >d37"d37‘/ (3100)
2 |r — 1|
This is an example of a homogeneous functional of degree 2, that is t& 3ay= \2.J[p].

3.7.3.1 PartA

Show that

Jlp] = % / [%L p(r)d®r (3.101)

wherek = 2. Show that the quantit%%} = ¢(r) where¢(r) is the electrostatic potential due to the charge
P
distributionp(r).
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3.7.3.2 PartB

The charge density(r) and the the electrostatic potentialr) are related by formula derived above. With
appropriate boundary conditions, an equivalent condition relatingand¢(r) is given by the Poisson equation

V2(r) = —dp(r)
Using the Poisson equation and Eq. 3]101 above, write a new functidria| for the electrostatic energy with

¢ as the argument instead @find calculate the functional derlvatnféL
3.7.3.3 PartC

RewriteTV; [¢] above in terms of the electrostatic (time independant) field —V ¢ assuming that the quantity
¢(r)Ve(r) vanishes at the boundary (e.g.|dt= oc). Denote this new functiondVz[¢]. Wa[¢] should have
no explicit dependence ahitself, only through terms involving ¢.

3.7.3.4 PartD

Use the results of the Part C to show that

Jpl = Wi[p] = Wa[g] > 0
for any p and¢ connected by the Poisson equation and subject to the boundary conditions described in Part C.

Note: p(r) can be either positive OR negative or zero at different
3.7.3.5 PartE

Show explicitly
oWy 6Ws

5p(r) — do(r)
3.7.4 Problem4

This problem is a continuation of problem 3.

3.74.1 PartF

Perform an integral Taylor expansion #fp] about the reference charge densityr). Let dp(r) = p(r) -
po(r). Similarly, leto(r), ¢o(r) anddo(r) be the electrostatic potentials associated with, po(r) anddp(r),
respectively.

Write out the Taylor expansion to infinite order. This is not an infinite problem! At what order does the
Taylor expansion becomexactfor any py(r) that is sufficiently smooth?

3.7.4.2 PartG

Suppose you have a densitir), but youdo not knowthe associated electrostatic potenti&t). In other words,
for some reason it is not convenient to calculate) via

Ir - r/l
However, suppose you know a densityr) that closely resembleg(r), and for which youdo knowthe asso-
ciated electrostatic potentiah(r). So the knowns arg(r), po(r) and¢o(r) (but NOT ¢(r)!) and the goal is
to approximate/|[p] in the best way possible from the knowns. Use the results of Part F to come up with a new
functionalWs|p, po, ¢o] for theapproximateelectrostatic energy in terms of the known quantities.
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3.7.43 PartH

Consider the functional

Uald) = [ pwitiatr + o [ 60V otwitr (3102)

whereg(r) is notnecessarily the electrostatic potential correspondingi, but rather a trial function indepen-
dent ofp(r). Show that
0U[8] _
8¢ (r)
leads to the Poisson equation; i.e., the) that produces an extremum UE[(Z)] is, in fact, the electrostatic
potentialy(r) corresponding ta(r). .
Note: we could also have written the functiorid},[¢] in terms of the trial densitg(r) as

. r)p(r! 1 o(r)p(r’
| = / / p|(r )_p(r/|)d3rd3r’— 3 / / p|(r )_'Oil|)d3rd3r' (3.103)
withe variational condition ~
dp(r)

3.7.4.4 Partl

Show that,[¢o] andU,[po] of Part H are equivalent to the expressionifidg[p, po, ¢o] in Part G. In other words,
the functionalVs|p, po, ¢o] shows you how to obtain the “best” electrostatic energy approximatiory ffielr
given a reference densipy(r) for which the electrostatic potentiab(r) is known. The variational condition

oU4[d] SULP
sd(r) 0 or /E )
model potential(r). This is really useful!!

= 0 of Part H provides a prescription for obtaining the “best” possible model density and

3.7.4.5 Partd

We now turn toward casting the variational principle in Part H into linear-algebraic form. We first expand the
trial densityp(r) as

Ny
r) =Y crpr(r)
k

where thep, (r) are just a set alV; analytic functions (say Gaussians, for example) for which it assumed we can
solve or in some other way conveniently obtain the matrix elements

pi(r 3 i3
d rd3r
auy= [ [P0
b// d3d3’
I‘—I‘

SO A is anN; x Ny square, symmetric matrix artslis an /Ny x 1 column vector. Rewrité/,[5] of Part | as a
matrix equatiori/,[c| involving the A matrix andb vector defined above. Solve the equation

and

6Up|c]
oc
for the coefficient vectoe to give the “best” model density(r) (in terms of the electrostatic energy).

=0
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3.74.6 PartK

Repeat the excercise in Part J with an additional constraint that the model gegmn$ityave the same normaliza-
tion as the real density(r); i.e., that

/ p(r)d3r = / p(r)d3r = N (3.104)

or in vector form
cl'-d=N (3.105)

whered; = [ p;(r)d>r. In other words, solve
§{Uylc] = Ac"-d=N)} =0

for ¢*(\) in terms of the parametex, and determine what value of the Lagrange multiphesatisfies the
constraint condition of Eq. 3.1D5.

3.7.4.7 PartL

In Part J you were asked to solve amconstrainedvariational equation, and in Part K you were asked to solve
for the more general case of a variation with a single constraint. 1) Show that the general solutioh)of
(the x superscript indicates that (\) variational solution and not just an arbitrary vector) of Part K reduces to
the unconstrained solution of Part J for a particular valua ¢fvhich value?). 2) Express*(\) asc*(\) =
c*(0) + dc*(N) wheredc*(\) is the unconstrained variational solutief(0) when the constraint condition is
turned on. Show that indeet,[c*(0)] > U,[c*(\)]. Note that this implies the extremum condition corresponds
to amaximum 3) Suppose that the densjiyr) you wish to model bys(r) can be represented by

p(r) = appp(r) (3.106)
k

where the functiongy (r) are the same functions that were used to exgany Explicitly solve forc*(0), A and
c*(\) for this particularp(r).

3.7.4.8 PartM

In Part J you were asked to solve anconstrainedzariational equation, and in Part K you were asked to solve

for the more general case of a variation with a single constraint. You guessed it - now we generalize the solution
to anarbitrary number of constraintéso long as the number of constraii{s does not exceed the number of
variational degrees of freedof¥i, - which we henceforth will assume). For example, we initially considered a
single normalization constraint that the model dengity) integrate to the same number as the reference density
p(r), in other words

/ﬁ(r)dgr = /p(r)d37° =N
This constraint is a specific case of more general forfinefr constraint
[t = [ pwrgu)ir =y,
For example, iff; (r) = 1 we recover the original constraint condition with= NN, which was that thenonopole
moment ofp equal that ofp. As further example, iff2(r) = z, f3(r) = y, and f4(r) = z, then we would also

require that each component of ttigole moment ofj equal those op, and in general, iff,(r) = 'Y}, (&)
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where the function7,,, are spherical harmonics, we could constrain an arbitrary numbautifipole moments
to be identical.
This set of N, constraint conditions can be written in matrix form as

DT.C:y

where the matriXD is anN; x N, matrix defined as

Dis = [ mle) )

and they is an N, x 1 column vector defined by

v = [ o) w0
Solve the general constrained variation
§{Uylc] = AT - (DT -c—y)} =0
for the coefficients:*(\) and theN, x 1 vectorof Lagrange multipliers\. Verify that 1) if A = 0 one recovers

the unconstrained solution of Part J, and\2»> A1 (wherel is just a vector of 1's) recovers the solution for the
single constraint condition of Part K.
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Chapter 4

Elementary Principles of Classical Mechanics

4.1 Mechanics of a system of particles

4.1.1 Newton’s laws

1. Every object in a state of uniform motion tends to remain in that state unless acted on by an external force.

V; =1 %I’i (41)
p; = Mt = m;v; (4.2)

2. The force is equal to the change in momentum per change in time.

d
F,=—p, =D, 4.3
5 Pi = Pi (4.3)

3. For every action there is an equal and opposite reaction.

F;; = —F;; (weak law), not always true

e.g.F;; = —V,;V(r;;), e.g. Biot-Savart law moving™~

Fij e f,-jrij == _Fij = fjirji (Strong |a.W)

e.g.F;; = —V:V(Jr;;|), e.g. “Central force problem”
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4.1.2 Fundamental definitions

d

V; :%I‘Z‘ = i'i (44)
d d? :
a; :avi = @I’i =T (45)
p; =m;v; = myT; (4.6)
Li =r; X P; (47)
d
N; =r; X p; (4.10)
d
=r; X a(mlrl)
d
= @(Pz’ X P;)
d
=—L;
dt
— 1,
Proof:
d . .
—(r; X p;) =F; X p; +1; X P; (4.11)

dt

=V; X mVv; +1; X P;

:0 + r; X pl
If %A(t) = 0, At =constant, andl is “conserved.”

A “conservative” force field (or system) is one for which the work required to move a particle in a closed
loop vanishes.

$ F-ds =0note:F = VV(r), then

f—vwr) ds = /_(v < VV(r)) - hda (4.12)
c s T
fA ds = /(V x A)-nda (Stoke’'s Theorem) (4.13)

System of particles; # m;(t)
Fixed mass, strong law afandr on internal forces.
SupposeF; = 3 Fji + FP andf;; = —fj;

Fij =0
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I‘Z“XFZ":I"Z‘XF'Z‘:O (414)
J J J J
Strong law onF';;
d d
2

;L
letR = =% and M = Y, m

Z i = dt2 Zmzrz (4.16)

(2

d2 m;r;
=M —

dt? - M

*R
M-

dt?

=Y FO+Y N Ry

Note:>, > i Fij =2, > ;~i(Fij + Fji) =0

o _ 2, CR (e) —_ga(e)
P=M—7= ZF =F (4.17)
. dr;
P= M= 4.18
zi: 7 (4.18)
d
=P
dt
Nz‘ =r; X Fz‘ (419)
=r; X P
1.

N; ZN ZL_L (4.20)
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ZZI‘Z‘XFij—FZZI‘iXF]‘Z‘:O (421)

i j<i i g>i
ZZI'Z' X Fz‘j = —eri X Fji
i j<i i j>i
Note, although
P= ZPZ (4.22)
d
= Zmz dtrz
_d
i

(4.23)
dR dr;
Ve LTl

L=> L (4.24)

ri=(r; -R)+R=r,+R (4.25)
i =i, + R (4.26)
p; =p, + m;V (4.27)
(V; :Vg +V) (4.28)
L:ng><P;+ZRZ-XP§+Zr;me~Vi+ZRixmiVZ» (4.29)
Note
Z m;r; = Z m;r; — Z m; R (4.30)
=MR-MR=0
hence

D orixmV o= (Z mirz) XV =0 (4.31)

> RxP;=) RxmVj (4.32)
=R x % (Z mir;)
=0
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L= ) rixP; + RxMV (4.33)
—-———  LofC.O.M.
L about C.O.M.

For a system of particles obeying Newton’s equations of motion, the work done by the system equals the
difference in kinetic energy.

. d i
F; = m;V;,dr; = d—rtdt (4.34)

2
Wig =) / F; - dr; (4.35)
5 J1
2

21 d

2 1

2
2 ’1:T2_T1

The kinetic energy can be expressed as a kinetic energy of the center of mass and a T of the particles relative to
the center of mass.

1 , ,
T:§Zmi(v+vi) (V+V)) (4.36)
— 1 2 ! 1 / 2
3 M2 >, mi V).V internal
Note
S miVi=Y miV,— MV =0
Proof
S V=0 S (4.37)
- LV dt : Ay )
o i m;r;
S dt ~ M
dR
M
dt
=MV
2
aeti =¥ [Euan oo
7: 1

In the special case that

F, = Fl(-e) + ZFZ']' WhereFEe) =-V,V; andFij = _viVij(|ri — I‘j’)
J
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Note
=ViVij(rij) =V;Vi, Vij(rij)
=Vji(rij)
-1 /dV
iy <d7“z'j> (xi = x3)
Wi =T —'Th
2 2
=Z/ ~ViV; - dri+ ZZ/ =ViVij(rij) - fri
- 1 . . 1
) 1 J
Note
2 2
/ ViV - dr; = — / (dr; - Vi)V
1 1
2 2
— _/ dv; = V;
1 1
where J J J

;;Azj =D A+ Y A+ Ay

1 §<i i J>i %

2 2
_ZZ/I ViVijrij - dr; :—22/1 ViVij(rij) - driV;Vii(rij) - dr;
i

1 g<i

2
==> > /1 VijVij (rij)drij

i g<i

2
= - ZZ/l (drij - Vij)Vij

i j<i

2
= 2% [ vy
i og<i V1
==2. 2V

1 j<i

1
"z 2V
i

2
1

2
1

Hence we can define a potential energy

1
- T
¥ .
—_
external internal
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(4.42)
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(4.44)

(4.45)
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Wio =15 —T1 (4.46)
=—(Va-W)
= -V

4.2 Constraints

Constraints are scleronomous if they do not depend explicitly on time, and are rheonomous if they do.
(fry,re, ..., ry, t)= 0 (holonomic)

e.g. rigid body(r; — r;)? = CZ

ij
Nonholonomic:2a? > 0, e.g. container boundary

Nonholonomic constaints cannot be used to eliminate dependent variables.

rl...I'N—>q1...qN7K;qN7K+1...qN

For holonomic systems with applied forces derivable from a scalar potential with workless constraints, a La-
grangian can always be defined.

“Constraints” are artificial...name one that is not...?

ri(q1,q2 - qN-K, QN K+1,9N)
4.3 D’Alembert’s principle

F;, = Fl(.“) +f; Fga) = applied force
f; = constraint force

or;(t) = virtual (infintesimal) displacement, so small tiat does not change, consistent with the forces and
constraints at the time

We consider only constraint forcésthat do no net virtual work on the systefy’, f; - v; = 0) since:

2
Wi =/ f; - dr; (4.47)
1

2
:/ fz‘ ‘Vidt
1

In other words, infintesimally} ", f; - or; = 0.
Not all constraint forces obey this condition, like a frictional force due to sliding on a surface.

So at equilibriumF; = 0, thus
SR or =) FWor > - o (4.48)

= Z Fga) . 5I‘i

46



CHAPTER 4. CLASSICAL MECHANICS 4.3. D’ALEMBERT’S PRINCIPLE

The principle of virtual work for a system at equilibrium:

3 F\% . 61, =0 (4.49)

We want to derive Lagrange’s equations for a set of generalized corrdinates that can be used to eliminate
set of holonomic constraints. Here we. gowe start with Newton’s equations (valid for Cartesian Coordinates)

F, = Pi, or(Fi — Pz) =0

> (Fi—Py)-or; =0 (4.50)

Recalldr; is not an independent variation-it must obey the constraints.

D’Alembert’s principle:

SR —By) o+ Y g =Y (B - P;) or =0 (4.51)

2 2 1

(for constant forces that do no net virtual work)

Not useful yet. .

r; :ri((thQ?"'an’t)

4

dt

Z or; dqJ 81rZ
0q; dt

ri (4.52)

Vv, =

ori =Y —dq; (4.53)
j

al‘l‘
=> Qg
J
WhereQ; =, F; - 8—1”? = generalized force.
> Piori =) mi (4.55)
aI'i
2 gy
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Note:

Zi mr% —Zmr%—i-mri Ori
dt zl@qj_i o Crdt

0q;

or; OV dv _or,
and,dt( ) a4, recall i

0q; — 0g;
. d ov; ov;
Pi . (51‘1‘ = —_ (mivi . Z> A -t 5(]‘ (456)
Zi: ;; dt 8(]]' 8(]]' J
| 2 (med) Z(hme?)

So D’Alembert’s principle can be written:

@ o d (0T oT
-3 (P~ P;) - or, = > [dt (aqj e K (4.57)
? J
Note: the only restriction on the constraints is that the net virtual work of the constraint forces vanish. (In-
cludes some non-holonomic constraints!)

In the case of holonomic constraints, it is possible to find a set of independent coordinates that obey the
constraint conditions.

r; =1i(q1,...qn, 1)
Fi = —VZ'V(I'l, NN I‘N)

or; 0
aq] Z 5g; B (4.58)

81‘Z
_ Z 8% \V

Generalized forces:

Q=) F;- - (4.59)

d (0T B
- ( > -5 (T-V)=0 (4.60)

If V.=V(ry,...ry) as above, then:



CHAPTER 4. CLASSICAL MECHANICS 4.4. VELOCITY-DEPENDENT POTENTIALS

and

d (OL\ 0L
(=) == 4.61
dt (%) 9q; ’ (.61

whereL(q, 4, t) = T(¢,q) — V(q,t)

Note: J
L'(q,4,t) = L(q,¢,t) + (e (4.62)
d (oL oL  d [ 8 dF 0 dF
dt(aq‘)‘aqfdt[aqi <L+dt>]‘aqi[“dt} (4.63)
aF aF
—F (q,t qu (4.64)
9 (dF\ _oF oONd _d (9
8(]@ dt _8qi 8qi dt _dt 8(]2'
d [(OL d [OF L o\ d d (0L L
— (= Sl (e Y e ety e (i 4.
dt (8(],) + dt <8q1> dq; <8QZ> dt dt (8%) 0q; (4.65)

4.4 Velocity-dependent potentials and dissipation functions

Recall:

(9I‘Z'
— £; - 4.66
=215, (4.66)
if F; = —vi’U(I'l, R ) ande 8q]
If thereisal(q, ¢,t) S.t.
ou d (oU
Tl B 4.67
QJ aq]‘ * dt <8qj> ( )
Then, clearly D’Alembert’s principle:
d (0T 0 d (oU ou
— = |- =—T=Q;=—— | —— 4.
i) o= (55) o (429
orwithL=T-U
d (LY _oL
dt \94¢;) 9d¢;
U = “generalized potential”
F =¢[E + (v x B)] (4.69)
dA
=q[-V¢ — i + V(A - v)]
E(r,t) = —Vo(r,t) — 88? (4.70)
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B(r,t) =V x A(r,t)

d (oU
P=-vu+ g (5)

—q[E + (v x B)]

U(r,t) = q[¢p — A - V]

Proof:
—VU(r,t) = q[-V¢ + V(A - V)]
d (OUY\  dA
di <av) =T
Where:
VA v)=(A-V)v+ (v-VV A+ A X (VxVv)+vx(VxA)
Note:

Vxr=0,s0V x v=0also,

0 d o
%(V) :ﬁ%(ﬂ
_d,

—at”
=0

VIA-v)=(v-V) A+vx(VxA)=(v-V)A+vxB

Note:
dA  0A
a o TVVIA
dA  0A
_<dt_8t>+VXB
d (oU
F—=_— ~ (==
vU+dt(8v>
dA  0A dA
—Q[‘V‘f)*(dt‘at)”XB‘dJ

=q[E + v x B]
4.5 Frictional forces
1 —
F :§ZVl . ]{ 'V
1
:i Z(kxvgz + kyvz?y + kZUin)
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(4.75)

(4.76)
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Suppose a force cannot be derived from a scalar potéiitial ¢, t) by the prescription:Q; = _% +
jt (a ) for example, the frictional forcé’s;, = —k,vi,. In this case we cannot use Lagrange’s equations in
their form but rather in the form:

d (0L oL d (oU ou
Sl il I o JP iy i 4.79
i) o= (5 () o) = 7
In the case of a frictional fochﬂ can be derived'y; = —Vvy, F
whereF = %Zi(kxvfz + kyv + k.v2) (Rayleigh’s dissipation function)
Work done on the system = -work done by the system.
Note:
Wy :/Ff'dr (4.80)
= [ —VF - -vdt
dW
/ Lt
(4.81)
2F = the rate of energy dissipation due to friction.
Transforming to generalized coordinates:
.or; _ 0V,
recall: o0 = 95,
8ri
Qi=> Fy- e (4.82)
i 4
or;
_ —Vv.
Z Vi dq;
8vi
= — Vv, F
04 v
__9oF
04,
Q; = aq = the generalized force arising from friction
Derived fromFy; = — Vv, F
The “Lagrange” equations become:
d 8L> oL oF
— == - =—= (4.83)
(3% 9qi 94,

Transformation of the kinetic energy to generalized coordinates
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4.5. FRICTIONAL FORCES

CHAPTER 4. CLASSICAL MECHANICS

Problem 23 of Goldstein

Lagrange’s equation:

or

This is of the form:

T:Z%mivg
l 2
8@. or;

=my, + Z m]‘]] + = Z mij]Qk

]k

=T, +T1 + Ty

1 aI‘Z' 2
mo =) 5mi (m)
61‘1' 81‘,‘

mj =) mig

8%‘
81‘,‘ 31‘1'
mi L = mi—-
Tk ZZ: dqj  Oqi
81‘1'
oandm,; =0, if — =
m m; = 0,1 5 0
L=T-V
_lm?}2 —mgz
1
F:§kv§
OF
Qz - 81)3
=— kv,

d (0L
dt (81)2) ks

(mv,) + mg = —kuv,

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)
(4.89)

(4.90)

(4.91)

(4.92)
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4.5. FRICTIONAL FORCES

or

where:

In our case:

Note:

a(t) Zeft i

k.
=emt

% [e%tVZ(t)} _ [d‘st(t) X sz(t)] ol

k
= — geﬁt

k
Valt) = = 2% + cem !
__mg
=0
_mg
Tk
dV,
dt >
% :tlim V. (t)
__mg
- k
xt
lim 1-e¢ = lim —te” r=—Er
x—0 €T x—0 m
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Chapter 5

Variational Principles

Particle sliding down a movable wedge (frictionless)

T = 8-CcOs0 +x Ty = §-cosO + &
Ym = —sinf Um = —5 - sin 6
I =T Ty =2
ym =0 ym =0
1 . ) 1 . .
T= §m(933n +9m) + §M($§w + i) (5.1)

1 1
= 5m(s2 + 2i:5 - cos O + %) + §M¢2

V =mgy (5.2)
=—1mg-sinf
_1 .9 .. .9 1 .9 .

L—Qm(s + 245 -cosf + @ )+2Mf£ +mgs - sin 6 (5.3)
d (0L _OL _, d (OLN oL _,
dt \ 0s 0s dt \ 0% or
L L
gszmg-siDG gx:()
L L
a—,zmé+m:’c-cos€ a—_:(m+M)ab+mS~cost9
0s 0T
%[méerab.cosQ]:mgsinH %[(quM)i:eré-cosG]:O

constant of motion
1. 3(m) + &(m - cosf) = mg - sin 6

2. §(m-cos@)+E(m+ M) =0
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CHAPTER 5. VARIATIONAL PRINCIPLES 5.1. HAMILTON’S PRINCIPLE

(1) — 2 gives:

cos 0
Z [m-cos@— (mC:—SéW)] =mg -sinf (5.4)
or
.. . cos 6
Z =mg-sinf - [mCOSQQ— (m—i—M)] (5.5)
. L. 5
x(t) = o + Tot + §Axt (5.6)
(1) = (rsp(2.) gives:
. (m-cos)?] )
§ [m ) |- mg - sin 6 (5.7)
or
L . (m + M)
§ =mg -sinf [m(m + M) —m?-cos?6 (5-8)
—A,
i 1. 9
s(t) = 8o + Sot + §Ast (5.9)

5.1 Hamilton’s Principle

A monogenic system is one where all forces (except for those of constraint) are derivable from a generalizec
scalar potential/(q, ¢, t).

If the scalar potential is only a function of the coordinat€éy), a monogenic system is also conservative.
Hamilton’s Principle (The principle of least action)

Fundamental postulate of classical mechanics for monogenic systems under holonomic constraints to replac
Newton’s equations of motion.

For monogenic systems, the classical motion of a system (i.e., it's path through phase space) betwgen time
andt, is the one for which the action integral:

tp
S(a,b) = / Lq,d.t)dt (5.10)
ta
L=T-U (5.11)

has a stationary value, that is to s& = 0, which leads to the Lagrange equatio%(%g) — %—s =0, and the
generalized forces are:
d (0U oUu
R = 5.12
9= <5d> dq (5-12)

55



5.2. COMMENTS ABOUT HAMILTON’S PRINCIPLE CHAPTER 5. VARIATIONAL PRINCIPLES

5.2 Comments about Hamilton’s Principle

0S5 = 0 poses no restrictions to the particular set of generalized coordinates used to represent the motion of the
system, and therefore are automatical, invariant to transforméatimta/een sets of generalized coordinates.

*Transformations withlet(.J) # 0, i.e. that span the same space.

Note: Hamilton’s Principle takes the form of an un-constrained variation of the action integral.
If the system constraints are holonomic, i.e. can be written as :

falai,q2,---qn) =0
a=1,...K

Then a set of generalized coordinates can always be fatng, . . . ¢y, that satisfy the constraint conditions,
in which case Hamilton’s Principle is both a necessary and sufficient condition for Lagrange’s equations.

If nonholonomic constraints are present such that a set of generalized coordinates cannot be defined that
satisfy the constraints, sometimes these constraints can be introduced through a constrained variation of the
action integral with the method of Lagrange multipliers.

Suppose we consider a more general form of constraint, formally a type of nonholonomic constraint, called
semi-holonomic:

folai,q2,...qn, 41,42, ... 4n,t) =0

a=1,...K
Consider the constrained variation of the action:
k
5/ (L(q, 0, t) + > Aalg,6,) fala, d)) dt =0 (5.13)
a<l
d (0L OL d| 0 0
. <0qk> 5t [aqk (Z mz)] = B <Z Aafa> =0 (5.14)
of d [ OL OL
/ — PR JE—
where

0 d[ o
r_ Y Mafo | —— | == Ao fa 5.16
% aqk<za: pn ) dt[aqk@j f)] (5.16)
if the generalized force of constraint, in terms of the yet-to-be-determined Lagrange multiplieds here, the
forces of constraint will be supplied as part of the solution to the problem!
By solving explicitly for the constraint forces, there is no need to try and find a generalized set of coordinates

(which cannot be done for semi-holonomic constraints).
Expanding out the expression @, we obtain:

, Of d (0fa
%= G~ (o)
Oy d [0\,

O s dDo O
—Z[f+ Ofa

Ao 17
aae dt at oq.| O
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Note, in the case of the semi-holonomic constraint condition:

fa(ql,...qN,le,...(jN) :0

which must be imposed in order to solve for the also implies thafg—;x = 0. Imposition of these conditions on

Q). leads to:
/ Ofa d (Ofa Ao O fa
_ @ _ 1
o %:A“ [6% dt \ gy, )| dt od (518)

which is the same result we would have obtained if we assumed from the staxt thad, (¢) only. Note further
that if the f,, were actually holonomic constraintg, (q1, ... gn) = 0,

/ 6fa

«

which is often seen in other texts.

Example of a hoop on a wedge

M = mass of hoop

1 1
T :§M02 + 51& (5.20)
v =k (5.21)
I=Mr? (5.22)
w =0 (5.23)
1 22 1 272
T :iMa: + §M7" 0 (5.24)
V =mgy (5.25)

=Mg({ — x)sin¢
1 1 :
L :§M:'U2 + §M7~202 — Mg(¢ — x)sin¢ (5.26)

Unconstrained variation of the action leads to:

a4 fory _or dfory or
dt \ 0z or dt \ 90 90
d . . . d 2‘ o
%(M:):)—Mg-suub—() dt(Mr 0)—0=0
Z=g-sing 6=
az(t):xo+abot+%g~sinqb-t2 O(t) =040, -t
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If starting at rest at top of wedde:, = 0, z, = 0) the time it would take to go down would be:
r .
x(ty) =4 = ig-smqﬁ-tfc (5.27)

20
g-sing

ty =

Note, ¢, does not depend o, or 6,. If 6, = 0 andé, = 0, thend(t) = 0, and the hoop completely slips down
the wedge.

Consider now the constraint the hoop must roll down the wedge without slipping. The constraint condition is
thatrdf = dz, orrf = z, hence:

fi=rf—i=0
The constrained variatiof{ [ (L + A1 f1)dt} = 0 gives:
Q,:iaj_ﬁl Q’:iaj—a—L
T gt \ 0 07 O at \ 96 90
ofi  d (0fi ofir  d (0fi
A e (T P N e
@=x 54 (%) %=x{% (%))
_ o8 _ o
=M% =M
=0—Ai(=1)= A =0—M\r=—\ir
r—i=0 (5.28)
d . . :
a(Mx) — Mg-sing =\ (5.29)
d o .
—(Mr°0) = =\ (5.30)
dt
Solving forz, 6 and\ we obtain:
Mr20 = — \ir (5.31)
=Mrz
(5.32)
or
Mi=—)\ (5.33)
:}\1Mg -sin ¢
(5.34)
or
A :w (5.35)
& :@ (5.36)
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1 the acceleration with slipping

jo 9 sng (5.37)
2r
40

te— 5.38

! g-sing ( )
Note: we “pretended” in this problem we had a semi-holonomic constraint

fa=10—3=0= fo(&,0)
but really we could have stated this as a holonomic constraint
fa=1r0—2=0= fo(x,0)
in which case th&)’,’s are in holonomic form:
Ofa Ifa
=\ =\
Q=7 T
= —)\1 = )\17“
Carrying through, we again obtain the equations of motion.
g-sing .« g-sing
xr = 0 =
2 2r

but \ is given by: '

N MgS“;‘b (5.39)

In this case\ amounts to a frictional force of the non-slipping constraii€¢, that is the magnitude
of gravitational force along the Wedgecgiy(ng) = —My - sin ¢, and in the opposite direction.

The “first integral” of Lagrange’s equations

Note:
d oL
- [ (¢,4,1 qu ]
oL . 0L . d [ OL
54‘ . %@‘F Qki—z k ;det <8qk>
) oL oL
| (aq) ~ u) (5.40
Hence, if2 = 0, then
d [ OL oL
Ll 22 ) | = 541
Xk:% [dt (3%) 3%} 0 (5.41)

If the Lagrange equaﬂon% (8%) — % = ( are satisfied, this gives the first integral equation:

OL aL
L(g:4:t) = Y v ] = (5.42)
k
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5.3 Conservation Theorems and Symmetry

We define a generalized momentumigs= 7 "’—L

canonical momentum.
It is clear by the first integral equation that%{i = 0, then:

that is said to be conjugate {g. Sometimes this is called the

L .
- [5 qu. —L(q,q,t)] = constant “energy function”
i
k

oL

d N N
@ ansdn g t) = — -

dt
If there is an “ignorable” coordinate in th% = 0, then clearly:

d (0L d
S(=)=0==np
d<aqk> 0=gt

henceP,, =constant
Also more generally if:
oL
> Wi =0, whereWy, # Wi(t)
: Oqr,

then Z WP, = constant

Symmetry: Finally note that timeis “reversible” in the equations of motion: reversing the velocifigs sends
the trajectory backwards along the same path.
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Chapter 6

Central Potential and More

6.1 Galilean Transformation
A Galilean transformation is one such that:
r(t) =r'(t)+v-t' =1'{t)+v-t

sincet = t' and relates two reference frames to one another, where fr@me moves with constant velocity
relative ther frame.

A fundamental assumption of classical mechanics (that breaks down in relativistic mechanics) is that the
classical equations of motion are invariant to Galilean transformation.

6.2 Kinetic Energy

The kinetic energy of a particle is:

T :%m(i’Q + 9% 4 £?) Cartesian (6.1)
:%m(7'"2 + 7202 + 2 sin 6 - ?) Spherical (6.2)
:%m(%2 +r2¢? + 2%) Cylindrical (6.3)

6.3 Motion in 1-Dimension

6.3.1 Cartesian Coordinates

L= %mx'Z —U(x) (6.4)
d, .. 0L
or
d 0L
4 [L _ xax} _0 (6.6)
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I . L.
— [meQ - U(z) - me] :§m$2 +U(x) (6.7)
=F = constant
. dx 2
== E(E —U(z)) (6.8)
dt = e t :/ 4 e
2(E - U(x)) 5 (E—U(2))

SinceE =T + U andT > 0andE > U. WhenE = U(zg)T = 0, so thex are “turning points.”

Calculating the period’(E') between the turing points, (E) andzs(E):

z2(E) z1(E)
T(E) = / dt + / (—dt) (6.9)
z1(E) z2(E)
w2 (E)
9 / dt
z1(E)

1(
_2/962@) dr
n(®) L [2(E - U(x))

6.3.2 Generalized Coordinates

L :%mﬁ —U(x) (6.10)
=T(i) — U(x)

ingenerall’ = T,(q) + T1(q, 4) + T2(q, q) if x = z(¢) and notx = z(q, t), then:

:%ma(Q)qz
L=m-al)- @~ Ula) (6.12)
E :q‘a—L, ' (6.13)
dq
Z%WG(Q)QQ +U(q)
2 _ . dqg
ol a(q) [E-U(g)] =q¢= = (6.14)
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6.4. CLASSICAL VIRAL THEOREM

dt =

dq m dgq
== C
V2 al@) [E-Ulg) t \E/ V@ E 0w

L g
TE) = 2’\E/m) NCOICEDIO)

6.4 Classical Viral Theorem

(for central forces)

ConsiderG = ), p, - r; for a system of particles:

from 4p, = F;

Consider:

In this case,

or

If Fz = —VZ‘V(I‘l, .

For a central force:

%ZZE'PH-ZP@"E

%:ZFi-ri—FZmi'f%

%

(4) = lim * /O " At

T—00 T
E = lim l Edt
dt T—=oo T Jo dt
~1 i j6(r) = G (0)]
T T—00

=0, when lim G(7) < constant

T—00

<‘§> — 0= (2T) + <ZFr>

2(T) = — <Z F;- ri> Viral theorem

ry)andV (ry,...ry) is a homogeneous function of degree- 1 in ther;,

2(T) = <Z ViV (r1,...rN) - ri>

—(n+1) (V)

V(r) =ar™tt F.=—(n+1lar" ~r"

2(1) = (n+1) (V) or (1) = "X vy

63

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)



6.5. CENTRAL FORCE PROBLEM CHAPTER 6. CENTRAL POTENTIAL AND MORE

6.5 Central Force Problem

A monogenic system of 2 mass particles interactingi¥ja, — ry), we have:

L=T(R,t)—U(r,¥,...) (6.20)
VRN .
—2MR —|—2,ur —U(r,r,...)
1 miri + malo .
R:MZmiri:m, r=r9—rq (621)

_ my - Mo
H= mp + ms
or
L1 1
1% mip M2
d (0L oL ..
— (=) - ==MR-= 22
dt <6R> R R=0 6-22)
R(t) = R, + Rt (6.23)
ForV =V (r):
d (0L oL . 0V

—H r dr

ForV = V(r) we have the following constants of motion:

MR = constant (total linear momentum)
L =r x p = constant (angular momentum about the center of mass)
1 .
L= iﬂ(ﬁ +1r20%) -V (r) (6.25)

SinceL is conserved (a constant), ahd r = 0, (L. L r) motion must occur in a plane.

d (OL\ 0L d , ..
- (ae) — 2 = 31 ) —0=0 (6.26)
Py
26 =0 (6.27)
Iw? =Py (6.28)
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1. w0 =Py =1 (6.29)
constant (angular momentum)

(Kepler's 2¢ Law)
.. L 1 .
Note: 26 = 0 implies also [27" : (re)] = constant

S
(sectorial velocity)

d (0L oL d, . OV
=~
dv.
dr
dA
=2 31
e | %] 6:31)
i constant (6.32)
sl BV po V(Y
a wrd — dr == 20 \r

Multiply both sides by, we obtain:
i -7 :% (;w) (6.33)
]
ity

Combining, we obtain the conservation of the energy function (which we knew should be!)

d {1 , 1 [0\?
— | = - = 34
L +2M <r> +V 0 (6.34)
or
1 o, 1 [¢)?
—ur*+ — (-] +V =FE= constant (6.35)
2 2 \r

Note: this is ¥ integral.

. . 1 5. 1
0 - 0 + rur — §pr292 — §,u7'“2 + V(r)
We begin with the first integral 6.B5, since it does not coupd@dd. Solving fors:

2 02 dr
= | —(E-V(r)— —) = — 6.36
= | 2BV -5 = (6.36)
—_————
—V'(r)
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6.5. CENTRAL FORCE PROBLEM CHAPTER 6. CENTRAL POTENTIAL AND MORE

/ 4
Vir)y=V+ m
dt = dr (6.37)
¢Z<E—V&y—$;)
letr(t,) =r,
EZ

) —
then,V'(r) =V (r) + S

T 2ur?

T dr
(r) = (6.38)
t /’”" \/i (E—V(T) £ )

B /T dr
o 2 _
VaE=V(r))
Solving fort(r) and inverting gives (¢), then first integralirf = ¢ = yr% gives:

t
“”_KA;;Zw+@’ (6.39)

Note, this is equivalent to the problem of a particle of massoving under the influence of an effective
potential:

1

E:§WQ+VWﬂ (6.40)
Example:
/ e
Viiry=V(r)+ S
with )
E:—ﬂﬁwg— (6.41)
dr — ur3
~~
centrifugal force
E>V' >V
V=- k (6.42)
T
k
f=- 2 (6.43)

(gravitational electrostatic)

Sometimes we are interested not necessaritytipandé(t), but rather on-(6) or 6(r) or some other relation
between- andd that describe to orbit. Recall:

do l

— = 44
dt  pur? (6-44)
ar _ |2 E—V—fi (6.45)
dat  \l u 21?2 '
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CHAPTER 6. CENTRAL POTENTIAL AND MORE 6.6. CONDITIONS FOR CLOSED ORBITS

dr df (dr dr L [(dr
a _a@ar a_ (T 4
dt dt <d9> dt  pr? <d9> (6-46)

wr? dr

2 2
6 = £ dr (6.48)
2 2
W“Q\/u (E -V - 2/”"2)
f— / dr + 0, (6.49)

Indroducing a sometimes useful transformatios %:

0 =6, / du (6.50)
Uo 4 / 2u(E-V) _ u2
52
This can be solved for many cases when:
“power law” of force
V =ar™t! (6.51)
F, =(n+1)ar" (6.52)
n = 1,—2, -3 (trigonometric) anch = 5, 3,0, —4, —5, —7 (elliptic)
6.6 Conditions for Closed Orbits
) &
Vi(r)=V(r) 2y (6.53)
For circular orbit: 2
1
E=V(r,) + — + ~pur? 54
V(r)—i—zug—i—Q,ur (6.54)
av’ ,
- dr . —O—f (ro)
£2
_f(TO) + 3
for circular orbit, equivalent tgf (r,) = —/ffg
PAVdS
if v >0 (stable orbit)
dr? |,

<0 (unstable orbit)
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6.7. BERTRAND’S THEOREM CHAPTER 6. CENTRAL POTENTIAL AND MORE

@V df| 3P
dr? |, dr|,  prd
For a stable orbit:
df 3
ar < _Ef(ro)
or:
L _a (df\| _dmf| __
(Ti) f(ro) \dr )|, ~dlnr .

(assumef(r,) < 0)
If f = —Fkr™, astable orbit requires > —3if £ > 0, orn > 0 for k& < 0.
For small perturbations about stable circular orbits:

U=-=U,+acosfl

S =

Condition for closed orbits(eventually retraces itself), and we have:

k

s f) =t (6.55)

dinr

wereg is a rational number.

It turns out, that for arbitrary perturbations (not only small ones), stable closed orbits are possible only for
(3% = 2 andB? = 4. This was proved by Bertrand.

6.7 Bertrand’s Theorem

The only central forces that result in closed orbits for all bound particles are for:

—k
fr)=35—mp 2 (6.56)

where:

1. > =1landf(r) = =£ (inverse square law)

2. 3 =4andf(r) = —k-r (Hooke’s law)

6.8 The Kepler Problem
—k —k /r
V=" F=(;)

The equation for the orbit in the Kepler problem:

68



CHAPTER 6. CENTRAL POTENTIAL AND MORE 6.8. THE KEPLER PROBLEM

0 =0 — / . du (indefinite integral) (6.57)
1
VEE-V ()] -w
d
:9/ — / v V=—k-u
VEIE + k] — w2
Note: J . )
/ Y =— arccos [—ﬁ * VU] (6.58)
Va+ fu+ yu? V= Vi
whereq = 32 — 4ary
let:
_2uFE 2uk
2uk\ 2 202
(2 (%
Note: cos(a) = cos(—a), thusarccos can give+
22U
0 = 0’ — arccos M (6.60)
14+ 2F/02
uk?
2E12
1+ 2 =e
_ Lu
—cos(0— ) = M (6.61)
€
/ &
ccos(0—0)+1=—
e - cos( )+ ,uku
Only 3 of 4 constants appear in the orbit equation
1 k
u=—=2 (14 cos(6-9)) (6.62)
0" = turning point of orbit
ConstantsF, ¢, ¢, 0, [0, = initial position]
a(l —e?)
= 6.63
" [1+e-cos(d—6)] (6.63)
whereq is the semimajor axis
1
a :E(Tl +79) (6.64)
_—k
- 2F



6.8. THE KEPLER PROBLEM

CHAPTER 6. CENTRAL POTENTIAL AND MORE

Equation for a conic with one focus at the origin:
e = “eccentricity” and ellipse axisz(1 — e) anda(1 + €)

_. 1 2E¢?
e= el
2
-t
pka

Aside: In the Bohr model for the atom:

1 ¢ 2\ 1
E:T+V:£—<€ )
-

62

2 pur? 47e,

1 ﬁ u? — u
2\ 4e,

leads to:

If £is chosen to be quantized=nh,n=1.2...
Note:

1 e 1

E =—_ . )
" 2 d4dme, T,

The equation for the motion it time for the Kepler problem:

N

Va2 k2

° E+?_2,ur2
do

03 0

Tk /90 [1+e-cos(d —6)]?

= e /tan(Q)(l +2%)dx  fore=1
2uk? J,
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CHAPTER 6. CENTRAL POTENTIAL AND MORE 6.9. THE LAPLACE-RUNGE-LENZ VECTOR

or:

t—ﬂ tang—l—ltangg
- 2uk? 2 3 2

Parabolic motion. Hard to invert!
Introduce auxiliary variabl@ (the eccentric anomaly)

r=a(l—ecosV)

3 v
(W) :\/'ua/ (1 —ecos¥)d¥
k- Jo
:\/gag(\ll —esin V)

T =t(27)

:27r\/ga§ (period)

Note: Kepler's 3¢ law, K = +G(my - my), for all planetsn, = mass of the sun.

3
2maz
r=— 2T C.a}
G(ml-mg)

w :277T (Revolution frequency)
|k
N\ pa?
_ k<1>
B K a%
6.9 The Laplace-Runge-Lenz Vector

A=pxL—ukl
.

(6.76)

(6.77)

(6.78)

(6.79)
(6.80)

(6.81)

(6.82)

(6.83)
(6.84)

(6.85)

(6.86)



6.9. THE LAPLACE-RUNGE-LENZ VECTOR CHAPTER 6. CENTRAL POTENTIAL AND MORE

for:

f(r)=—% (6.87)

Note: A -L =0andA - p =0, A7 in plane of orbit.
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Chapter 7

Scattering

7.1 Introduction

| = intensity (flux density) of incident particles

o(Q)dQ2 = scattering cross section (differential scattering cross section)
= number of particles scattered into solid angfe

(about(?) per unit time

Incident intensity (Symmetry about axis of incident beam)

dQ) = 27 sin 6dO

© = scattering angle

s = impact parameter

muv,

¢ = angular momentum anél = energy
r, = distance of periapsis

O=7r-2V¥

sin ©0(0)[dO| = s|ds|

s ds
o(®) = sin© | dO

(Assume one-to-one mappirg— ©)
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7.1. INTRODUCTION CHAPTER 7. SCATTERING

Recall:
O = + O, (7.4)

1\ :/ (7.5)
- dr = U(E, /) (7.6)
2\ JR(E-V(r)] - &
Note: § = # = constant, hence it cannot change sign (is monotonic in time)
Want W in terms ofS and E.
L
|| = ¢ = |r x p| = constant
rxp= T 0 Z
s s 0
Vo 0 0
=uVoos2
1
L =pVsos E :§#Vo2o WWoo =/ 2uFE
{=s5-\/2uFE (7.8)
O(s) =m — 2V (7.9)




CHAPTER 7. SCATTERING 7.1. INTRODUCTION

With ¢ = S\/2uF andO(S) = 7 — 20

Q(s) :w—z/oo s dr (7.10)

r\/r2 (1— @) — 52

1 1 d
w== r== dr=-5 (7.11)
T u u
1
Um, = Uoo =0 (7.12)
T'm
Um . d
o(s) :7r—2/ A (7.13)
0 \/1 _ V(Ea) 242
Scattering in a Coulomb field
YA . .
V= (atomic units)
ForE > 0,
2E1?
=1+ — 7.14
=\ zze (7:14)
14 2Fs\?
B Z7
1 77
= (62) [ecos(§ — ') — 1], letd ==
-
1 HH
lim — =0, hence ecos(@ —7m)—1=0
r—oo T
cos(—W) = cos ¥ = — =cos r_© (7.15)
€ 2 2
—cos |2 - T
R PR
=sin 9 = 1
-3 2 ¢
Solving for:
€% = cot? © + 1 =+ cos? © (7.16)
2 2
since: ) L
. 12 _ cos ac.—i;sm T — otz 41
S~ x S~ xr
© 2FEs
cot 5= o7 (7.17)
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7.2. RUTHERFORD SCATTERING

CHAPTER 7. SCATTERING

this gives:
§=77 ©
~9E %
recall:
S ds
o )‘sme\d@|

1(zz'\* ,©
1 ( 2E> Y
7.2 Rutherford Scattering

7.2.1 Rutherford Scattering Cross Section

(Rutherford experiment...)

Total scattering cross section:

op = / dQo ()

=27 / dO sin Oc (O)
0

Really,® not a single-values function ef

s; |ds
o(®) = Z sin© [dO

i

Rainbow scatteringK of particle exceed¥,,,, goes through)

Glory scattering (orbiting/spinaling occurs...)

7.2.2 Rutherford Scattering in the Laboratory Frame

Mo sin ©

tanf; =
ano my + mg cos(O)

Scattering Patrticle:

z7'\*
0'2(92) = < ok ) -se<33 (92

0‘1(91) = difficult ...
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CHAPTER 7. SCATTERING

7.3. EXAMPLES

o~ my

0 =20,

Case I
me9 >> ma C"‘) ~ 91
(61) = 1(zz 2csc4 o1 (same result)
A=\ 28, 2
Case ll:
m
mi1 =mg = 1M ,LL fe—
2
“"infig. 01 + 0y = %
Z7'\? cos b,
01) =
71(01) <E1 > sin 6,

For identical particles, cannot tell which is “scattered”, so:

ZZ\*( 1 1
o1(6) = ( E, > (sin49 * cos40> cosf

I\ 2
= <ZEZ> [0504 0 + sect 0] cos
1

7.3 Examples

E>V' >V

E4 = circular
E5 = elliptic
E5 = parabolic
E, = hyperbolic
r1, ro = apsidal distances (turning points) for bounded motion.

T, 1S solution of:

av’
dr ro =0
(Circular orbit)
a(l —e?)

r:1+e‘cos(9—9’)

2E0?

e= 1+MK2
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Chapter 8

Collisions

Collisions...
P
P) =V +p—
mo

P
Py=—puVo+pu—
mi

AB =P OC =uV,
AO mq P
o AO =y—
OB mo 'umg
P
OB =p—
m1

If mq is initially at rest (OB| = uv,)

mo Sinx 1
tan 01 - 2 Oy ==(m — x)
m1 + Mg COS T 2

In center of mass reference frame (i.e. moving with the center of mass) Ptetal for this frame...

p? P?
Ei= B+ |+ | B+ —
27711 2m2

E; = internal energy

Py =mivy

RS
2m1 2m1

|P1| =[P2| = P,

P2 = M9yVy = —Pl
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(8.6)

(8.7)

(8.8)



CHAPTER §.

COLLISIONS

8.1. ELASTIC COLLISIONS

P} P}

T =
2m2 277’L2

e =E; — (E1; + Ey)
= “disintegration energy”> 0

(1 1) B
2 °\m1  ma 24

mima

mi + meo

(8.9)

(8.10)
(8.11)

In laboratory center of mass reference fraies= velocity of primary particle prior to disintegration.

v = velocity of one of the patrticles (in L frame) after disintegration
v, = velocity of one of the particles (in C frame) after disintegration

V=v-v,
v=V+v,

Vvo=v—V

8.1 Elastic Collisions

No change in the internal energy of colliding particles.
In center of mass reference franie & 0), let:

Py, =pvy

b, .

Vo, =—1p

r_ /

Pol =M1V
o /
- P02

:Poﬁo

|P/01| = |P/02| =5

Primes— after collision

’ ’
mMiv, = —MaV
/ / / A
02 = M2Vyy =~ = —Fone
’ o /
mi1vy =Fyna mivy =5,
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8.1. ELASTIC COLLISIONS CHAPTER 8. COLLISIONS

_ = %5, 8.23
Vol mi + mso mln ( )
- [ *Po A

Vip= Y0 _ “Log, (8.24)

m1 + mgo my

In “L" reference frame:

P =P, +Ps V =V] — Vs (8.25)
vl =vig+V (8.26)
vh =vh, +V (8.27)
v E _ mivi + mava (8.28)

m m1 + mo

P
! =Pty + (P1 + Py)— 1 — [vo n } (8.29)
mi + meo mo
P
L= Pyt (P 4Py "2 [vo n } (8.30)
my + mg mi
If mo is initially at rest P, = 0) then:
mo Sin T 1

tanfyy =———— Oy == (m — 8.31
ano mi + Mo cOS T 2 2(7r 7) ( )
i _IPil _ V/(mi+mi+2mimscos) (8.32)

! mi mi + ms

P! 2 1

vh :‘ 2| = MY GnZg (8.33)

mo mi + me 2

e For head on collisionsy = © andP; and P, are in the samenf; > ms) or opposite {11 < mo)
directions.

¢ In this case (head-on collision):

— 2
v M ma v 2m (8.34)
my + mo my + ma
1 4dmims
B == 2 E! =-F 8.35
1 27’77,1’[) 2mazx (my + m2)2 1 ( )

For head-on collision, ifn; = mq, thenm; stops and transfers all of it's energyo.

e If m1 < mo thenm; can bounce offny and have velocity in any direction.
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CHAPTER 8. COLLISIONS 8.1. ELASTIC COLLISIONS

e If m; >5, it cannot “bounce back” (become reflected) and there is an @hglefor which the deflected
angled; must lie within—0,,,,. < 61 < Opaq

SN Opas = 2 (8.36)
mi
If m1 = mg, thenf; + 0, = %:
b, =+ Oy =~ (r — 2) (8.37)
1 —2.’E 2 —2 ™= .
1
V| =V cos 37 vh =vsin 37 (8.38)

and after collision, particles move at right angles to one-another.
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Chapter 9

Oscillations

9.1 Euler Angles of Rotation

Euler's Theorem: The general displacement of a rigid body with one point fixed is a rotation about some axis.

Chasles’ Theorem: The most general displacement of a rigid body is a translation plus a rotation.

1
u(z) zikra:Q P(z) ~e @)
x(t) = Asin(wt + ¢) 9.2)
dx . . .
p(t)dt = ———= (Classical, microcanonical) (9.2)
2wV A2 — 22
—aa? ku
|\IJO|2 ~e o= 72
i 1
w _ -1 E
/O p(t)dt = 5, Sitl (A) (9.3)

9.2 Oscillations

Consider a conservative system with generalized coordinates whose transformation are independent of time (i.e.
constraints are independent of time &ne- 7>—quadratic).

At equilibrium:

oV
Qi=—<8qi>020 (9.4)

V(q) =V (q,) +dq" - VWV + %MT VO . 5q+ ...

82
(V‘(’2))z‘j :aqi;/qj

o
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CHAPTER 9. OSCILLATIONS

9.2. OSCILLATIONS

So, for small displacementg; about the equilibriuny,,, we have:

1
V(a) -~ V(q,) =AVq=dq" - V). 4q

1 @) . .
T= izTij 4iq;
ij

where:

where:

Note:

o (2) 1 82T(2)
@) () 72 T . ij Lo T ij
~ T (a0)
—_——
T<2)

for smallédq =q —q,

So,
AV =V(q) - V(q,)
:%5qT VP . 5q

Note: the zero of the potential is arbitrary

T = %55{ .T) . 6

L=T-AV

= [pa" - TP + 54"V - iq
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9.2. OSCILLATIONS CHAPTER 9. OSCILLATIONS

dL (0L oL
) 1@ 55+ V@ sg =0 9.13
dt<aq> oq o a4t Voiod (-13)
Note: 4 (T£2)> = 0 since the equation of transformation are independent of timeT4Hd= T (q,)

Note: in Cartesian coordinates,

Z1
1
Z1 1
X

3 TN
yn

3
ZN

3

(T(2)> =My, -0;; Wherea; = moD(i,3)
ij

e.g.
m
mq
my
ma
ma
ma

and in mass-weighted Cartesian coordinates:
A (2)) —5..
(s =0

T

let:

dqr, =C — ay, - cos(wt — @) 8, = — w2oqy,

Note: thedq,'s are functions of time, and the,’s are linear algebraic coefficients to be solved for.

(ng> - sz(@) 5q =0 (9.14)
V®a, = TP a, (9.15)
(9.16)

VAA=TPA .

(A generalized eigenvector problem that have non-trivial solutions wifeis a root of the secular equation.

Note thatV andT are real symmetric.)
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CHAPTER 9. OSCILLATIONS 9.3. GENERAL SOLUTION OF HARMONIC OSCILLATOR EQUATION

We learned previously that the solution of a generalized eigenvector problem involving Hermitian matrices
results in a set of eigenvectors that are bi-orthogonal with real eigenvalues. Note:

VAOA =T . A.w? (9.17)

o o

Dropping superscrips and subscripts.

(T™2-V-T 2)T?A=T :TT :T A-w? (9.18)

Regular eigenvector problem:
VA = Alw?

wWwr=A"T .V . A
if A’is normalized such that’" - A = 1 in which case:
AT = A (A is orthogonal)
or

agﬂT - V'ay,

1 T
ak .

wp =
ag

ifall w >0,allwy, >0 —  minimum.
if onew? < 0, thatwy, is imaginary— “transition state” (' order saddle point)
if n of thew,ﬁ < 0, thosewy, are imaginary, #* order saddle point”

VA = TP Aw? (9.19)

A = (aj,ay...ay)ag

Choose normalization such that:

ATVRIA = o2 (diagonal) ATTZA =1

9.3 General Solution of Harmonic Oscillator Equation
9.3.1 1-Dimension
d2
) = —wq(t) (9.20)
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9.3. GENERAL SOLUTION OF HARMONIC OSCILLATOR EQUATION CHAPTER 9. OSCILLATIONS

it it [eiwt _ e—iwt]
q(t) =Cre™" + Coe™™ Oy +Cu.. (9.21)

=Cssin(wt) + Cy cos(wt)
=Cj sin|wt + Cg]
=C7 cos|wt + C7]

e.g.
q(0) =go q(0) =0 (9.22)
Cy =qo wCs =0 C3 =0
q(t) = go coswt
e.g.
q(to) =0 q(to) =vo
Vo
Cﬁ = — wtO wC'5 =Vo 05 =
w

q(t) = 22 sinfw(t — t,)]

9.3.2 Many-Dimension

Normal coordinates

8qi(t) = Z Clrair cos|wt + ¢y] or equivalent
!

let:
oq = AT . 5q
N’
sq,,=(al-sq)ay

(Projection in orthogonal coordinates)

or
dg=A &q
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CHAPTER 9. OSCILLATIONS 9.4. FORCED VIBRATIONS

V ==6q" - V@ . sq (9.23)

T ==6q" - T? . §q (9.24)

9.4 Forced Vibrations
Q=Y 4;Q; (Q@=AT-QQ=A-Q)

8¢; + widq, = Q;

Suppose), = Q. cos(wt + ¢;) (e.g. the oscillating electromagnetic field of a monochromatic light source
on a polyatomic moleculég, are the molecular normal “Raman” vibrational modes)
Note:

Q) = ~w*Qjy cos(wt + 6;) = ~w?Q;

/
let 5q, = 2Qi 5 then 84 = — w?oq.
wi — W

0G; + widq; = — w?oq; + widq] (9.25)

=(w} — w?)éq]
Q;

:(QJZQ - wz)w2 — w2
=Q; (9.26)
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9.5. DAMPED OSCILLATIONS CHAPTER 9. OSCILLATIONS

Which is a solution of the desired equation. Hence:

/
(T
dq;(t) = ?’( )2 (9.27)
wi — W
L, cos(wt + 0;)
O wR—w?
S5qi(t) ZAU(qu (9.28)
o cos(wt + ;)
o Z w — W2
9.5 Damped Oscillations
Recall:
1 C e
=5 ZZFij5Qi5Qj (9.29)
2(5q -F -9
1
- F®@) 58
2(5 F,” - 0q
“Lagrange’s” equations are:
d (0L oL oF
B e P R W 9.30
dt <5qj> 9q; s 9q; -39
or in matrix form.
TP6g + F 2o+ Vg =0 (9.31)

It is not possible, in general, to find a principle axis transformation that simultaneously diagonalizes three
matices in order to decouple the equations.

In some cases it is possible, however. One example is when frictional forces are proportional to both the
particles mass and velocity.

More generally, anytime the transformation that diagonoliié%,J and V,(f) also diagonalizei?‘,(f) with
eigenvalued’;, we have:

8Gy + Frdd), + widq), =0 (9.32)

In that case (use of complex exponentials useful)

5q)(t) = Cre ™t leads to:

wk +iw, Fy — w?| 6, (t) =0 (9.33)
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CHAPTER 9. OSCILLATIONS 9.5. DAMPED OSCILLATIONS

F?2 F

" 2_ "k _;7k
wy, = £/ Wy 1 T (9.34)

az’® 4+ bz + ¢
_ —bx Vb —dac
e 2a
a= b=iF} c=— w,%
Which gives:
—Fpt .

5qp(t) = Cre 2 e il (9.35)

The general solution is harder
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Chapter 10

Fourier Transforms

10.1 Fourier Integral Theorem

f(r) piecewise smooth, absolutely integrable, and if:

Fr) = 5 [F0%) + £)] (101
at points of discontinuity, then:
fr) = (21)3 Fk)eXT g (10.2)
mT)2 J—00
where
f(k) =Fr(f(r)) (10.3)
_ 1 > N —ikx’ 53 1
_(QW)% /_Oof(r)e d’r
Note, this implies:
f(r)= (27::)3 /_00 Bre™T /_OO d3r’e*ikr,f(r’) (10.4)
* / / 1 > i -1’
= [0 o [T

S(r—r') = (2717)3 / ek (-1 g3, (10.5)

This is the “spectral resolution” of the identity.

oo b [T sk m 7 RN SN Gl e
=y L owe T Fo =y [ e s
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CHAPTER 10. FOURIER TRANSFORMS 10.2. THEOREMS OF FOURIER TRANSFORMS

10.2 Theorems of Fourier Transforms

e Derivative Theorem:

F{Vf(r)} = —ikf(k)

e Convolution Theorem:

(f * 9)(x) = / o() fx — 1)’

1

Fi{f*g}= - F(K)g(k)
(2m)?
e Translation Theorem:

e—ik'RA

Fk{(S(I‘—RA)} = 3

(2m)?

and hence:
e—ik‘RA .
Fe{f(r—Ra)} = 5[ (k)

e Parseval’'s Theorem:

/_ T e d = / 0 500k

Note: there are other conventions for defining things, for example:

o) = [ T dke KT (1)

9 = 2;)3 / Z PreXTf(r)

10.3 Derivative Theorem Proof
1

Ml — s —ikr r
R{VES) = g e s
Note: ‘ ‘ ‘

VI' (e—zk-l‘f(r)> — <vre—zk-1‘> f(I‘) + e_zk'rVrf(I')
hence

/ :d?’reik'rvrf (r) =
/ T By (e—ik'f f(r)) - / N (vre—ik'r> F(r)

—00 — 00
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(10.7)

(10.8)

(10.9)

(10.10)

(10.11)

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)



CHAPTER 10. FOURIER TRANSFORMS

10.4. CONVOLUTION THEOREM PROOF

recall the generalized divergence theorem
/ dVVyof = / doof (10.18)
1% S
/ Prvr (R () = / dor (e (1)) = 0 (10.19)
—00 S—o00
(10.20)

if (]e—ik'r| = 1) (r) — O atany boundarty s.tf, __ do|f(r)| = 0 then we have:

1 .
/ dPrvee KT f(r)

3
2 J—o0

F Vrf r)y=—
MVrf(r)} =

—00

L s —ikr
_+Zk(27r)§/ d’re f(r)

=+ ikf (k)

10.4 Convolution Theorem Proof
(10.21)

! / T kKT f107(k)

92



CHAPTER 10. FOURIER TRANSFORMS 10.5. PARSEVAL’S THEOREM PROOF

10.5 Parseval’'s Theorem Proof

/_ b Pl (E)g(k) = /_ " Bk [(2;3 /_ b d%ik'rf*(r)] g(k) (10.22)
= T S s B ik-(r-r7)
_ [T p r = By v 1 sy k(o)
/_ood rit )/_ood rolr) (2m)2 /_ood e
s(r—r’)
= [ @i

V2(x) = —dmp(r)

=~ ~ o(k
~k?p(k) = — 4mp(k) p(k) = ”]E:Z)
for Gaussian,
k2
~ 452
d(k) = dr - —— (10.23)
(2m)2 k2
k2
1 4 & e 1.
¢(r) = R )g/ &k = KT (10.24)
T T —00
k-r=krcos6 (10.25)
d ikr cos @ . : ikr cos @
%6 = —¢krsinfe (10.26)
2
4m > 2 °n " : ilcrcos@ezwi2
o(r) =53 ; dkk ; do ; dfsinf e =R (10.27)

1 0 —k2 ikrcos@ |7
=" 277/ dk e? [e - }
0 —tkr |,
—_——

e—tkr + etkr _ 2sin(kr)
—ikr ikr T kr

21 [ 462
:/ kS sin(kr)
Tr Jo k

1 21 1 [" 32,2
:..2(77.452)2/(@ e By
T 0

93



10.5. PARSEVAL’S THEOREM PROOF

CHAPTER 10. FOURIER TRANSFORMS

(10.28)
(10.29)
ik
"o
(10.30)
(10.31)

let:
t =By
1 2 1 1 [P
dt—ﬁdy:;*iﬂ'% 26ﬁ/ dt €_t2
™ 0
2 x
erfﬁﬂr) where erf(x) Eﬁ/o dt e "
Application:
3
pir) = () e [astatr =1
T
1 o0 3 .
() = G <5> o iker
2m)2 —00 ™
3 proo 2
— 1 T <ﬁ> / d37~ei(ﬁr7i%)26_4k?
(27‘1’)5 ™ —00
Since:
k\? .. ... kK2
(ﬁr—2%> —ﬁ'l" —2Zﬂrﬁ—47/82
2 3 o0
:< 1>3 ¢ 1 < b > / &3 e r’
2m)2 ™ —00
1
k2
e 452
(20
Note:
1. (2n)?
21—
k{T} 2
So
3 _ K2
oy —— B &
(2m)z K (2m)
k2
e 4p2
(2m)3k?

for a Gaussiagg(r)
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Chapter 11

Ewald Sums

11.1 Rate of Change of a Vector

(dG)s = (dG)pody+ (dG)rotationa)= (AG)r + d2 x G
~—— —_—
(space) (pody“)  (rotational

dt

i—@_Fx =V, +w X
dtr_dtTwr Ve =V, +wXr

“Newton's equations”  F, =mQ, =m (4vs),

oo (G o)

:m[ (d;’">r+w X vy + (i(w X r)>r+w X (w X r)}
~——

ar

d d . ,
i) =\ +wx rotating coordinate system

=ma, + mw X v, + w X v, + w X (w X r)]

=ma, + 2m(w X v,) + mw X (w X r)]

F-2m( wxv, )—m|[ wx(wxr) |=Fq;=ma,

Coriolis effect Centrifugal force

Only if w x v, # 0, sov,, = 0 or v, || w), and Centrifugal force 0.3% of gravitational force.

11.2 Rigid Body Equations of Motion

Inertia tensorI(3 x 3)

Ijk = /p(r)(r25j~k — xjxk)dgT‘

v
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11.2. RIGID BODY EQUATIONS OF MOTION CHAPTER 11. EWALD SUMS

T =1T,Y, 2 fori=1,2,3

e.g. for a system of point particles
L, = Zmi(rgéjk — xjTy)
i

Note: Typically the origin is taken to be the center of mass.

ax(bxc)=(a-c)b—(a-b)c
:Zmi(ri X Vi) V; =W X T;

A
= Z [mﬂ‘?? — I'iI'i] ‘W
= N—r

' T (old notation)

1
= ‘ imivi Vi
1
1
= —m;vi - (w X 1;)
— 2
1
1
= imzw (r; X vy)
i
1
:iw m;(r; X v;)
i
1
—— . L
2w
or
1
T, =—wl 1T w
2
1
=—Jw?
5 w

wherew = wn (n = axis of rotation) and =n” -1-n
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(11.5)
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CHAPTER 11. EWALD SUMS 11.3. PRINCIPAL AXIS TRANSFORMATION

11.3 Principal Axis Transformation

uTu? =1, (diagonal)
- 0
Ip = I,
0 Izz
1., Iy, andl,, are the “principal moments” (eigenvalues)lof
Radius of gyration:
R _1 Z mir?
(o} m - (23
1 2 13
or p(r) - rd’r
m
I
or /—
m
n” . py/m
Moment of inertia about axia
1
=n- —
SR
I=n" -I-n
11.4 Solving Rigid Body Problems
Lo 1o o
T=-Mv"+ -Iw* =T, + 1T,
2 2
1 T .
T, =5w ‘T w in general
1 . L .
=5 Z wily; in the principal axis system
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U-U" =1

(11.8)

(11.9)

(11.10)

(11.11)

(11.12)

(11.13)

(11.14)
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11.5. EULER’S EQUATIONS OF MOTION CHAPTER 11. EWALD SUMS

11.5 Euler’s equations of motion

dL dL
(%), = (@) rwr=

torque
“Space" Hbody"
system  rotating system

(@)~ (@), =

Recall:

In the principal axis system (which depends on time, since the body is rotating) takes the form:

dw;
Iiditz + €ijrwiwily = N;

Iz‘d}z' — ijk(fj — Ik) = Ni
i,5,k=1,2,3 3,1,2 2,3,1

11.6 Torque-Free Motion of a Rigid Body

L
LY xL=N=0
dt ),

Example: Symmerticall{ = 1) rigid body motion.

Ly = wows(Iy — I3) Ly = (1) — I3)wows
IQd)Q ZW3W1(13—11) Il :_[2 11@2 = (13—11)w1w3
Igd}g = wlwg(h - Ig) Igd)g =0
Isws =0 Isws =L3 = constant
w=w x N Q=02
I -1
wl :Mu@w?, = —QWQ
I
(,ZJQ :le

where:

Note: ) = 0 sincews = constant
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(11.17)
(11.18)

(11.19)

(11.20)

(11.21)

(11.22)

(11.23)
(11.24)



CHAPTER 11. EWALD SUMS 11.7. PRECESSION IN A MAGNETIC FIELD

o = — Q%9 = Qun Harmonic! wy =Acos Ot
Wy =iy = —0? - Asin Ut (6 = — QAsin Q)

So:
wy = Asin Ot

Note:
w? 4 w3 = A%[cos? Ot + sin? Qt] = A? = constant

This is an equation for a circle. Thus= constantws = constant, and> precesses around z axis with

11.7 Precession of a System of Charges in a Magnetic Field

1 .
m = Z qi(r; X vy) magnetic moment
T

L= Zm,(rl X Vi)
Consider the case when:
q

m =~L ~ =——(gyromagnetic ratio)
2m

Example? but~ often left unspecified.

V=—(m-B) B = magnetic field

N=Mx B (torque)=+L x B

Same as(%) +wxL=0or (%) = L x w (formula for torque free motion!)

r

w=-1B= Larmor frequency
2m

=yB (more general)
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11.8. DERIVATION OF THE EWALD SUM CHAPTER 11. EWALD SUMS

11.8 Derivation of the Ewald Sum

E = Z qz'q]'ﬁ}l

i<j

1
=3 Z Z QiQﬂ‘Zgl

1 jFi

1
analogous — / / p(r1)p(r2)ry drydry

For periodic systems:
1 / _
B=52 > aid e+l
i n
1
=3 3N g Ve(ri;)
(2]
1
25 Z qigD(I'i) where QO(I'Z) = Z q]“llE(I‘ij)
( J
Consider the split:
p(ri) = [p(ri) — @s(ri)] + @s(ri)

= potential of charges
ps = “screening” of potential

For example, choosg, to come from a sum of spherical Gaussian functions:

gs(r) = <f7?>3 e ()’

ps(r) = Z g Y _gs(r+n—Ry)

Note p, is a smooth periodic function.
V2p,(r) = —4mpa(r)

11.9 Coulomb integrals between Gaussians

/ / gu(r1 — Ra)gs(rs — Ry dridrs

af
erf [WRAB]
Rap
where:
erf(x) — 2 xe_t2dt
VT Jo
: erf(BRAB)
1. llmaﬁm1 TBE
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CHAPTER 11. EWALD SUMS 11.10. FOURIER TRANSFORMS

ot ()]

RaB

2. lim,_.g,

Prealri) =¢(ri) — @s(ri) (11.33)
_ 67“f(ﬁ|rij+n|)>
X0 (o — Pt
_ . er fe(B|ri; + nl)
N Z]: N zn: Irij + |

Short-ranged and can be altervatedtby
One can choosg s.t. only then = 0 term is significant.

er fe(Brij) B
realri) = Z%‘Tj - Qiﬁ
i " NI\
“self term”
and Energy contribution
er fe(Br; )
Ereal= ZZ 4:9;j <74J - \Fﬁ&]) (11.34)

This choice of3 is sometimes termed the “minimum imagé;’ and leads to a(N?) procedure for the real
space term.

11.10 Fourier Transforms
For a periodic system described by lattice vectors:
n = njaj; + ngas + nizas
The Fourier transform must be taken over a reciprocal lattice.
m = m;aj + moas + mazaz
where the reciprocal space lattice vectors satisfy:
aj -a; = 0;; ,j=1,2,3

or

P=(a; ay a3)



11.10. FOURIER TRANSFORMS CHAPTER 11. EWALD SUMS

% az X as az X ag
al - - - f(a17327a3)
a] X az -ag v

aT :f(a3valaa2) }
aj =f(ag,as,a;) } cyclic permutation

The discrete Fourier transform representation of a function over the reciprocal lattice is:

fr) =2 faek
k

where:
k = 2rm = 27(mya] + moaj + msa3)

We now return to:
1. v2908(r) = —4mps(r)

where

ps(r) = 4;g5(r — Ry)
;

Note:

12

Flgs(r)} =e *

Fourier transform of 1. gives:

(Zk)Qas(k) = — 4mps (k)
ps(k)

(k) =4 2

by inverse transforming we obtain:

k2

1 e 7 .k r_R.
p(r) = =D gpam 5O
7 k

Note: this blows up ak = 0! Can we throw this term out?
1 p(k)
s(r)=—- ) 4dr—5=
pa(r) = ~ % ™

butps(0) = [ ps(r)dr = 0 for neutral system!

It turns out we can throw out tHe = 0 term if;
1. system is neutral

2. system has no dipole moment
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(11.38)

(11.39)

(11.40)

(11.41)

(11.42)
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CHAPTER 11. EWALD SUMS 11.11. LINEAR-SCALING ELECTROSTATICS

Under these conditions we have:

47 0s(k
ps(r) = = P /-e(2 ) (11.46)
k=0
If there is a dipole, an extra term in the energy must be added of the form:
J(P,D, E)  |D|?
D =dipole
P = shape
FE = dielectric
What do we do in solution?
(What “errors” are introduced due to periodicity?)
11.11 Linear-scaling Electrostatics
1 3
E = p(r)p(r)d’r (12.47)
/ / )d3 /d3
/ G(r, ") p(r))d>r (11.48)
V2p(r) = —4mp(r) « €(r) = 1“gas-phase”
V2G(r,r') = —4né(r, 1)
G(r,r') =—— (non periodic) (11.49)
r —r/|
© _ik-(r-r’)
4 e -
— > —z—  (periodic) (11.50)
k=0
(k = 27mm)
11.12 Green’s Function Expansion
G(r,x') =) Ni(r) My (r)) (11.51)

Seperable!
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11.13. DISCRETE FT ON A REGULAR GRID

CHAPTER 11. EWALD SUMS

11.13 Discrete FT on a Regular Grid

f(.CL‘) - f(xn) = fn T =nA
¢ ; 2 2mm
f(k>_>f(km):fm km :ﬂ

N-1
f(k) — /f(x)emd:v ~ Z fnez%r%
similarly

1 N—-1 A
fum = 3 e
m=0

11.14 FFT

Danielson-Lanczos Lemma

N-1
f =S WRT S,
n=0

N
N

:fm

(11.52)

(11.53)

(11.54)

(11.55)

(11.56)

N_g
2

= Z W&mfén + W]T\Tn Z anf?n—',—l
n=0 2

n=0

. N
=F; + Wy fo, — 2FTsof d|m.5

(11.57)

Used recursively with “bit reversal” to obtain the full FFTdrt NV log N)!

Ewald Sums (Linear Scaling)

p(r) = Z id(r — R;)
ps(r) = Z ¢i9(r — R;)

(11.58)

(11.59)

(11.60)
(11.61)



CHAPTER 11. EWALD SUMS

11.15. FAST FOURIER POISSON

V2¢S(I‘) = —47Tp3(1')
Fourier transform N
_k2¢s(k> = —4mps(k)

Particle-MeshP3 M Methods
FFTg(r), >, ¢:0(r — R;) to obtainp, (k)

Note: ps(k) is the transform op,(r) (a plane wave expansion)

11.15 Fast Fourier Poisson

Evaluatep,(r) directly on grid. (No interpolation)

Solve forg,(r) on grid. Modify real space term accordingly.
1 erfe(f'rij)
E 25 Z Z 4id; ’l“ij
)
N2
Zi: v
1
2

% ka Ps (iujak)¢3(i)j’k)

,_ B
7=

which equals the exact integral for the plane-wave projected density.
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+ /ps(r)(bs(r)dgr +J(D, P,¢)

(11.62)
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Chapter 12

Dielectric

12.1 Continuum Dielectric Models

Gas phase:
/
V2o (r) = — 4mpo(r) @o(x) :/ yf . ) o
V - E, =47p,
Suppose in addition tp,(r) there is a dipole polarizatiop(r), then:
po(r’)  P(')-(r—r)
¢(r) :/ (,r ] R d*r (12.1)

:/ (|fo_(r;),’ +P(')V, <|r_1r/|>) .

[ (et Bt P

V2¢(r) = -V -E(r) (12.2)
= — 47 (po(r) + opai(r))

D(r) = E(r) + 47p(r) (12.3)

V- D=V -E+471V -p (12.4)
=47p, + ATOpor — AT el

=41 p,
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CHAPTER 12. DIELECTRIC 12.1. CONTINUUM DIELECTRIC MODELS

V -D =4mp,

So where doep come from?

p=z.-E x. = electric susceptibility

D=E+4rp=(1+4rz )E=¢E  (LPIM)

e(r) =1+ 4z, static dielectric function
VD =4np,
=V - (¢E)
=4mp,
V(eVo) = —4mp, Poisson equation for lin. isotropic pol. med.

(;5(1‘) = ¢o(r) + ¢pol(r)
V- e(Voo + Vopo) = —4mp,

Ve V(po+ dpot) + V200 +eV2hp0 = —4mp,
4
—€edmp,

V200 = —4mpo[l — €] — Ve - Vo

vZ(Zspol = —dmp,

[1_6]_E.v¢
€ €

= —Admopy
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12.2. GAUSS’ LAW I CHAPTER 12. DIELECTRIC

12.2 Gauss’ Law |

Br4+— | — - Vod'r (12.11)
€

1
1 /v
€
1 1 1 1 1
- -1 d3r—/ - V-Dd3r+/ -~ | D-ada
€ 47 € AT Jo—oo \ €
1 1 1 1

—1—>d3r+/ <>D-ﬁda

€ € AT Jo—oo \ €

1 Ve
v () =

lete — €, ares = oo (constant). Notef D - ida = [V - Dd®r = 4 [ pod®r

|ty = - <62; 1) [ ntert 1212

Gauss’ Law |: Volume integral over all space.

If e changes froma; to e; discontinuously at a dielectric boundary defining the surtagethen care must be
taken to insure the boundary conditions.

(D, — Dy) - no1 = 4o, Whereo, is a static surface charge density (parpgf

(E2 —E1) x 21 =0 (12.13)
This implies:
Opot = —(pa — p1) - o1 (12.14)
where
i—1
p; = (E > Ei (12.15)
4
(e
4me;
Recall:
D =E =4 ~lo_m
e P C4n

dielectric dicont.ejea andsys
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CHAPTER 12. DIELECTRIC 12.3. GAUSS’ LAW 1I

If 0o =0,D3 N1 =Dy 791 =D oy

Opol = — (pQ - pl) -1
_ €y — 1 o €1 — 1
- 4meq P2 4meq

1 €Q — €1
=—— D
4 ( €2€1 >

12.3 Gauss’ Law I

Guass’ Law Il for integral over surface at dielectric discontinuity.

12.4 Variational Principles of Electrostatics

Electrostatic energy:
1 D
W = 4/d3r/ E.éD (Nonlinear dielectric medium)
s 0

if medium is Iinear,foD E-0D = {E - D, then:

1
W:/d3rE-D
81

1
—87r/d37“(—v¢) D
1 3 1 .
:747r d’r¢V -D — o oD - nda
1
22/d37“pod>

Wiopod = [ powote)d’s = o [ V6. e Vod's
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(12.18)

(12.19)

(12.20)
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12.5. ELECTROSTATICS - RECAP CHAPTER 12. DIELECTRIC

W 2
5¢5(I‘) - po(r) + 8771'

V- [eV] = —4np (The Poisson equation with dielectric)

V- [eVe] =0 (12.23)

The variational prinicple allows to be solved for using optimization methods. Do you minimize or maxi-
mize?

V- [V (12.24)

_ / & [po(r)—l—;Vr/[e(r)vrxqﬁ(r’)} 5(r —1')dr

82w 1 , /
Somdew) — ap v r ) Vrolr =] (12.25)

if e > D, the operator is negative in that:
52W 3, 330 N 3., .73,/
//f(r)5¢(r)5¢( ] "Nd°rd //f Wy - [e(@ )V d(r — )] f(x)drd°r (12.26)
/ / f@)[e(x)Vyd(r — 1) - Vi f(x))dPrd®r’
//f )V d(r — )] - Ve f(x))d>rd>
—— [y msw)pi <o

hencelW[¢] is maximized to obtaig(r).

e =1 W=[<z>,po,e=1]=/po¢d3r—;/w~wd3r

12.5 Electrostatics - Recap

“Gas-phase” “in vacuo” ¢ = 1"

Vigo(r) = — 4mp(r) (Lo = —4mp)
r) = /Go(r, ') po(r))d3r (22.27)
where:
Viy2Go(r,r') = —4nd(r — 1) (12.28)

depends on boundary conditions:

_1
=g

GO(r7 r/) = 471- Zk) o

“real spaced, Vo = 0,17 — oo
sk @r-17)

e k =2mm

m = mjaj + meaj + msaj
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CHAPTER 12. DIELECTRIC 12.5. ELECTROSTATICS - RECAP

Sometimes we can use the Green'’s function and analytically obtain a solution for the potential.
In real space, for example Gaussian:

_ (B R (BN e Ry
p1(r) = N e p2(r) = NG e
/
$1(r) = / |f 1(rr3|d3r’ (12.29)
_erf(B,7)
T
/
// pl d3 d3 I _ e’rf(/BIQR12) (1230)
I'—I' R12
/o ﬂl'/@2
G aesy
In reciprocal space, Ewald sum:
For minimum image3” s.t.n = 0 only term.
k2
erfe(Bri;) B 4m e ﬁ (LT
N TRt P R
g Y ko
k2
erfc ﬁrlj) B ) e 467 2
=3 a (T ) Y gl
] ( X J 2
e Tij NS v i k
_ Z g KT (12.33)

Sometimes, however, we need to break dawir, r’) into a product form, and found it useful to expand
G(r,r’) in terms of eigenvectors of it's associated operator. This leads to:

Real space:
Q
o(r) = dr Z% — Zyem ) bem(r) (12.34)
L (" (240 e [T a-p
ben(r) = gz [ O pen()dz +1* [0y () (12.35)
0 0
where
pinlr) = [ a2, (Q)p(r) (12.36)
or Fourier transforms:
—k*¢(k) = — dmp(k) (12.37)
_ 1 3, ikr 47rp(k)>
¢(r)—(2ﬂ) / dke ( " (12.38)
1 . *
pk) =—— [ @&k (eXT) p(r 12.39
(k) (%)g/ (%) pir) (12.39)
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12.6. DIELECTRICS CHAPTER 12. DIELECTRIC

Reciprocal space (lattice):

47 p(k
o) = T3 A
v
k=0
for:
3
k =27m m = m;aj
=1
12.6 Dielectrics
V- -D =4np,
D =cE
=E +4mp
E=-V¢

Poisson equation for a linear isotropic polarizable medium characterize@ by

V- [eVe] = —dmp,

Upol(r) =-V-.p

(;5(1‘) _ / (po(rl) = Upol(rl))d?)rl

Gauss Law I:

Gauss Law Il:

€9 — €
/ 6o1(r)da = _< 2 1>/ po(r)dPr
512 €1€2 v1

pion(r) =D cogse™P1:0T) (cs = conc.)
S

Y csgs—BY B gl (linearized)
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(12.42)

(12.43)

(12.44)

(12.45)

(12.46)

(12.47)
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For Born ion, LPB equation leads to:

V2 — k26 = —Amp,(r)

(Note: I = 13" q2c, ion conc.)

e—kr

O(r) =dion—— (pt. chg.)
or
Qione_k(r_a) . f radi
¢(r) = (15 ka) (ion of radiusa)
) 1 e—1 2
LEpol [(;SPOZ; Pos €] = 9 €| Epa + . E, | d°r
7V¢pol —Véo

2

&CEpol e—1
o=V [ (Ve () ve )| -

Ve - (wpol + = 1V¢o>

€

-1 —1
+ 6V2¢pol +eV <6> Voo + €+ ¢ <€) V24, =0
R,—/ € € \/—/

—47T0'pol —4mpo

leads to:
e—1 1 Ve
Opol = — po+477 QZ)
T X
e—1
Opol = — < c >po
1V -1 1 -1
o (wpoz + ewo) + =V <€ ) Vo
47 € € 47
Note:
-1 1
v(e )—w+(e—1)v <>
€ € €
Ve Ve
=— —(e—1) 5
€ €
Ve
e

(12.50)

(12.51)

(12.52)

(12.53)

(12.54)

(12.55)

(12.56)

(12.57)

(12.58)

(12.59)

(12.60)
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-1 1V
Upol = - 67 po + 776 v¢pol + V¢o (1261)
€ AT €\ e —_——
Vo

Suppose: fields cancell=1 ¢ =

/ /

// pO + UPOZ )) (po( ) + UPOZ(r ))dS?”dg’l"l (1262)

r—r|

oW
=0 (12.63)
00 pol
5Upol 7po Go - p,+ O pol Bp, + io-pol A T pol (12.64)
ow
5o = Bp,t Aoy =0 (12.65)
T pol
Opol = Z Upol,kfk: (I‘) Po = Z Po,t9k (I‘)
k J4
ool =—A"1-B-p, (12.66)
sg. sym.

/ / filr d3 d3r' (12.67)

r— r'|

Not sg. or sym.

/ / filr : d3rd3r’ (12.68)

r—r \

1 1
W=2p, Go-p,—p' B A1 B -p,+p; B -A1-B.p, (12.69)
1 1 _
=5P0 *Go p,—5p, B A -B-p,

Gpol
1 T
=P8 +[Go+ Gopall p

G,=B"-A'.B
This is the “Conductor like screening model” COSMO

114



Chapter 13

Expansions in Orthogonal Functions

The scalar product (or inner product) of two functions (in general complex) over the intervak < b is
denoted f, g) and is defined by
b
= [ @yl

- / £ (1)g(x)dr

The scalar product with respect to weighting functiofx) or w(r) is

For functions of more than one variable,

fgw—/f (2)dz = (f,gw)

(f.9 w/f (¥)dr = (f, gw)

where the weighting functiom is real, nonnegative and integrable over the region involved, and can vanish at
only a finite number of points in the region.

The above deinitions of scalar products, both with and without a weighting function, satisfy the basic require-
ments of a scalr product in any linear vector space, namely:

1. (f, g) is a compex number, and, g)* = (g, f)

2. (fa c191 + 0292) = Cl(f7gl) + c?(fv 92)

3. (f,f)=0,real,and f, f) = 0 f = 0 “almost everywhere”,
i.e., f = 0 except at a finite number of points in the region.

From these properties other important relations follow. For example

(cifr +caf2,9) = 1 (f1.9) + c3(f2, 9)

Proof:
(c1f1 +cafa, 9) =(g,c1f1 + cafo)” from 1.
=[c1(g, f1) + c2(g, fo)" from 2.
=ci(9, f1)" + c3(g, f2)* = c1(f1,9) + c5(f2, 9) from 1. Q.E.D.
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13.1 Schwarz inequality

An important consequence of the basic properties of a scalar product is the Schwarz inequality:

(£, 9)* <(f. f)(g.9)

or

[(F. )l <l f1Hgl
where| f|| = (f, f)% is called the norm of.

Proof of the Schwarz inequality:
(f + Ag, f + Ag) > 0 for any complex numbek, and= 0 if and only if f = —\g, proportional

(fs f)+A(f,9) + X(g, f) + A*A(g,9) =0

_ _ g
If (g,9) # 0, choose\ = — (.07 SO

(f,9)"
(9,9)

(f,9)
(9,9)

(f: f) = (1)

(f: N)g:9) = (£,9)(9, ) = |(f,9) (13.1)
If (¢9,9) =0,theng =0, so(f,g) = (f,0) =0, and the equality is clearly satisfied.

13.2 Triangle inequality

1F+ gl < 171 + llgll and[f = gll = 1A = [lgll |

Follow from the basic properties of a scalar product, and the Schwarz inequality.

Proof:

0 < |If + Agll® =(f + Ag, f + Ag)
=(f, f) + A(f,9) + X(g, f) + X" Mg, 9)

For\ =1,

If +gl> =(f, f) + (9.9) + (f.9) + (f,9)" = IFI* + llglI* + 2Re(f, )
<|IFII* + lgl* + 2|(£, 9)], sinceRe z < |z| for any complex:

<|IFI1% + lgll* + 21I£]1l lg]l, from the Schwarz inequality
<(IfIl + llglh?

If+all <171+ gl
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Forl = —1,

1f = gl =1 £17 + llgl* — 2Re(f, 9)
>[I F11* + lgll* - 2I(f, )]
>[I FI1” + lgll* = 201 £1 g1
=(If1 = llallgl)®

IF =gl =TIl = llgll ], Q-E.D.
Definition 1 f is normalizedf and only if|| f|| = (f, f)z = 1

Definition 2 f andg are orthogonaif and only if (f,g) = 0

Definition 3 The setu;, i = 1,2, ... is said to be orthonormdf eachu; is normalized and is orthogonal to the
otheru;

Definition 4 For an orthonormal sets;, (u;, u;) = d;;

13.3 Schmidt Orthogonalization Procedure

From any set of linearly independefoinctions (or vectors);, ¢ = 1,2, ... one can construct the same number
of orthonormafunctionsu; as follows:

Uy

Uy = , hormalized
[[v1
s :w, so normalized, atuz,u;) =0
1”1
i1
v1 — > i1 (vi, uj)uy .
— 2j=1 (Vi ) = 0, normalized, afuy,u;) =0, k <1,

e [

since

(w3 uk) — 253 (w3 ) )
Vi, Uk) — (v, ug) (ug,u
(g, up) = i ”]*1 H DT o k<t
None of theu; vanish (and hence they are normalizable) because; thee linearly independent. Otherwise
the procedure might fail. The procedure is not unique, because the order in which one uses (lables) the origine
v; is arbitrary.

(u1,v2 — (v2,ur)ur) =(u1,v2) — (v2,u1)(u1,ur)

=(u1,v2) — (u1,v2) =0

117



13.4. EXPANSIONS OF FUNCTIONS CHAPTER 13. EXAPANSIONS

13.4 Expansions of Functions

Given an enumerably infinite orthonormal sgt: = 1,2, ..., it is sometimes possible to expand an arbitrary
function f (from a particular class of functions) in the infinite series:

Z ciui(z) for some range of (orr).

The principal topic of this chapter is the investigation of the nature of such expansions, and the conditions
under which such a series converges to the funcficor represents it in some other useful way.

If there is a set of; such that the seri€s ;°, ¢;u;(x) converges uniformly, and hence defines a continuous
function, and that function equaf§z), then thec; must be related tg by ¢; = (u;, f), since, iff = > .2, ciu,,
and the series converges uniformly, so it can be integrated term-by-term,

b
/ u;ffdx =(uj, f)
0 b
:Zci/ uju;d
i=1 a

o
E C; uj, uz
=1 Y
5ji
:Cj

¢i = (ui, f), called the Fourier coefficiemtr f with respect to they;. If there is a weighting functiom,

b
i = (wis o = [ i fwds
a
This expression for the coefficientsin a seriesy _, c;u; representing' can be arrived at in different mannor.
Suppose one wants to approximgitey a finite series ;" ; aju; in the “least squares sense”, or “in the mean”,

by determining thex; such that

w dx

a

n n b n 2
= aui, =Y aiug)y = / F=Y " au;

is a minimum. For any choice of thg, M > 0, so

0<M=(f, flw— (f,zaiuz) - (Z aiui7f> + Zaiuiyzajuj
i=1 w  \i=l w  \J=l j=1
—;ai(f,ui)w—;ai(uz, —i—ZZa aj (Ui, uj)w

=1 j=1 he

*

SinCE(ui,Uj)w = 51’]’1 (ui, f)w = ¢;, and(f, ui)w = (’LLZ', f):;) =c;,
0<M=(fflo—> aic;— Y ajei+ Y aja;
=1 i=1 =1
=(fs flw + Z lai — cif” — Z il
=1 =1
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Clearly M is a minimum ifa; = ¢; = (u;, f)w, the Fourier coefficient.
The minimum value is:

n
Mmin :Hf - ZciuiH2
i=1

b n
=/ fF=> e
a i=1

n

—(f fu =Y Jel? 2 0

i=1

2
wdz

So
b n
(F = [ 1Pwds = 3 el
a i=1

Taking the limit ash — oc:

b n 00
flPwdz > lim Gl? = cil? Bessel's inequality
[ i 3ol =Dl

Hence, iffab | f|lw dz exists, then the seri€s ;2 |c;|? converges, sbmy, .« |c;|> = 0. Thereforelimy, o ¢; =
0.
This remarkable result will be used later in the proof of the convergence of Fourier series.

Definition 5 The setu;, i = 1,2, ..., is said to be complet&ith respect to some class of functions if for any
function f of the class.

n
lim || f ~ Zun =0
i
or equivalently if;

2
wdr =0 (13.2)

lim
n—oo

b
a

n
f - Z CiU;
i=1

(Bessel's Inequality becomes an equality) or

(f, Hw=>_ lail? (13.3)

The last equation is called a completeness relation

Definition 6 The completeness relation is a special case of a more general realtion called Parseval’s relation

If the setu; is complete, andf c¢; = (ui, flw,  bi = (Ui, 9)w, then(f, g)w = > iy cib;.
u1 complete means:

n
lim ||f — E Ciui||2:0
n—o0 -

(]
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Proof:
(£ 9w — > bl =I(f9)w — D (f ui)ubi]
i=1 =1
w (f> Z bzuz)w
=1
:’(f?g - Z bzuz)w
=1
<If g = biull
=1
from the Schwarz inequality |(f, 9)| < ||/l |9l
Hence:
dim [(f,9)u Zc bil < [I£II lim lg — ZbuZH =0
lim [(f,g) - Zcm] =0
=1
because

n
lim [|g— > bu;| =0 since theu; are complete.
Hence(f, 9)w = Yoy ¢ b; Itis important to note that, even if the setwfis complete, so that
2
wdx =0 (13.4)

lim
n—oo a

iU

it does not necessarily mean that= ">, ¢;u;, even almost everywhere. Sufficient conditions for the latters to
be true, in addition to the set being complete, are that thfeandu; be continuous, and the serigs= > ">° | c;u;
converge uniformly.

Proof:

o
- e
i=1

2 b o0 o0 i b
wdx:/ f*f—f*Zciui—ZC;‘uff-l-(Zﬁ@) chuj w dzx
a = i=1 =1 =1
0o ;o Zoo 9 ’
U) Zcz f7Uz ZC: Uy, )+chfcj(uivuj)
=1

i=1 i=1 j=1

becausé .7, c;u; converges uniformly, so it is a continuous function, and the series can be integrated term-by-
term. Since:; = (ui, f), (ui,uj) = Jijv

/ |f — chu2| wdzr = (f, fw 2‘01’2

if the system converges uniformly.
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But also we know that

2

wdz = (f,f) zw

b
lim
n—oo

E Ciu;

e}
f= Z Cill;
i=1

if the series converges uniformly and lim can then be moved inside the integration.
Hence, if the series converges uniformly,

b 2
/a Zczul wdx—nlLrgo/ ‘f EEciui

=1
=0 if the set is complete
But if the series converges uniformly, it is a continuous functionf I§ also continuousf = 3 :°, cju; is
continuous, and the integral can vanish only i -, ciu; = 0,0r f = >°, ciuj,a <2z <b Q.E.D.

wdx

Theorem 1 (Dettman p.335) A uniformly convergent sequence of continuous functions converges to a continuous
function

Definition 7 The set of vectors (functions), i = 1,2, . . ., is said to be closed any function orthogonal to all
thewu; must have zero norm, and hence is zero almost everywhere. That is, if:

(i ) =0 then  |[f] = (f, /)3 =0

Theorem 2 If a set ofu; is complete, then it is closed.

Proof: Since the set is complete,

n

F=> (i, fu;

i=1

2
wdr =0

b
lim
n—oo a

So any functionf orthogonal to all they; satisfies:
b
lim / |f — 0]*wdz =0
n—oo a

b
=/ fPwde

=[£I

Ifl=0

The converse is also true for square-integrable functions, but the proof requires some preliminary discussion
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Definition 8 Definition: An infinite sequencg,, n = 1,2,... of vecotrs in a linear vector space (such as a
sequence of square-integrable functions) is said to form a Cauchy seqifiegoen anye > 0, there is an
integer N such thatl|g,, — gm| < €if n,m > N.

Definition 9 A linear vector spacés said to be completié every Cauchy sequence of vectors in the space has a
limit vector in the space, such thhtn,, ., |g — g, || = 0, whereg is called the limit of the sequengg.

Definition 10 A Hilbert spaces an infinitely-dimensional complex complete linear vector spece with a scaler
product.

Theorem 3 (Riesz-Fischer theorem) Every Cauchy sequence of square-integrable fulnatgoasimit, which is
a square-integrable function.

Hence the space of square-integrable functions is a Hilbert space. We are now ready to prove the following:
Theorem 4 If the set of orthonormal functions, i = 1, 2, ... is closed, then it is complete.

Proof: Letf be any square-integrable function, apd= f — > | c;u;, wheree; = (u;, f). Then:

(ks gn) =(ug, f =Y ciui)
i=1

=(uk, f) — Zci(ukaui)
i—1

=(ug, ) — Zci(Ski, since(ng, u;) = Ji;
i—1

=0 if k<n

Next consider:
n m
Hgn - gmH2 :Hf - Zciui —f+ ZCiUiHQ
=1 =1

m
= Y cuwil® wherem >n

i=n+1
m m
= E CiUg, E CjUj
1=n-+1 j=n—+1
m m
= E E cicj(ug, uj)
i=n+1j=n+1 6"_ _
ij
m
2
=) el
i=n—+1

But from Bessel's inequality f, f) > >, |ci|%, it follows that the series converges, so for any- 0
there is an integeN such thaty " ., lci|?> < e for m > n > N. Hence they, from a Cauchy sequence of
square-integrable functions, and hence there is a square-integrable funstioln that

lim ||g —gnl| =0 (Riesz-Fischer)
n—oo
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Therefore:
lim [|gn|| = lim ||gn — g+ g|
n—oo n—oo
< 1im {llgn — ]l + lgll}
=|lgll
Furthermore, for givetr andn > k,

|(ur, 9)| =[(ur, 9 — gn)| since (ux,gn) =0forn >k

<llurll g = gnll
=|lg — gn|| from the Schwarz inequality, and:| = 1

Hence:
Jim [(ug, )| < lim |lg = gall =0
so|(ux, g)| = 0 and(uy, g) = 0

So the limit functiong is orthogonal to all the:, (hence closed). Hence, if the setwf is closed, then
llg|| = 0. But then

Jim{lgn ]| = llgll = 0
or
b n 2
lim f=> cu| wdz =0 (meansy is complete)
n—oo

i=1
and we have proved that the set of orthonormats complete if it is closed.

Definition 11 A real functionf(x) is piecewise continuoysr sectionally continuous) on an interval< = < b
if the interval can be subdivided into a finite humber of intervals in each of wfieh is continuous and
approaches finite limits at the end.

If f(x)is acomplex function of the real variahlg it is piecewise continuous and both its real and imaginary
parts are piecewise continuous.

Definition 12 A functionf(z) is piecewise smooftifiboth f(x) and its derivativef’(x) are piecewise continu-
ous.

Example:f(z) is continuous, and’(x) is piecewise continuous an< = < b so f(x) is piecewise smooth.
Example: bothf(z) and f’(z) are piecewise continuous, $¢x) is piecewise smooth.

Definition 13

f@t) = lim f@+e)
Definition 14

f@=) = lim fl@—e)
Definition 15

which means that, given amy> 0, there is aJ > 0 such thatf’(x) exists so that

fz+Az) — f(2)
Ax

f'(z) - <eif |Az| <6
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So in the definitionf’(x) = lima, 0 %ﬂw, the limit must exist and be independent of whether

Az — 0 through positive or negative values.

Definition 16 The right-hand derivativef f(x) atx is

b one o Jlet+Az) = fzt)
Tr(z) = o<1£:£l—>0 Az

Definition 17 The left-hand derivatives

, L flxz=) — (z — Ax)
Tr(z) = 0<lir£:0 Az

At a point at whichf’(z) exists,f(z) = f; (xz) = f'(z) If f(x) is piecewise smooth, thef},(z) = f'(z+)
andf; (z) = f'(z—), and these exist at each point.

13.5 Fourier Series

Reference: Churchill, Fourier Series and Boundary Value Problems

The set of functions{\/%, ﬁ cosnz, =sinnz}, n = 1,2,..., is orthonormal over any interval of length
2w. Consider the interval-m < = < 7. The series best representifigr) in the least-squares sense has
coefficientse,, = (u,, f), SO the series is

(\/L )m ZKCOW f>\/17?cosnx+<\}7?sinnx,f>\}Esinnx}

f (1, f) +Z [(cosnx f) cosnx—i—?lr(sinnm,f)sinnx]

A o0
=5 Z [A, cosnx + By, sin nx]
where
1 1 ("
Ay, =—(cosnx, f) = — f(x)cosnxdx,n=0,1,2,...
T T ) _x
1 1 .
B, =—(sinnz, f) = — f(z)sinnz dx
™ 7r

This Trignometric series with the coefficiends, and B,, is called the Fourier series fgi(x) over—n <z <7

13.6 Convergence Theorem for Fourier Series

If f(x) is piecewise continuous and periodic with peribdfor all , and if, at points of discontinuity (x) is
defined by:

Fla) = S (a+) + fla-)] (13.5)
then -
flz) = % Z[An cosnz + By, sinnz] (13.6)
n=1
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where

™ 1 7T
A, _1L f(z) cosnz dx B, =— f(z)sinnx dzx
™) _ . ™) _ .
at all points wher¢f (z) has finite right and left derivatives. This includes all pointg(if) is piecewise smooth.
If f(z) is not periodic, the expansion is valid ferr < = < r, with the series converging & f (7—)+ f (—7+)]
atr = +£m.

Lemmal If [ [g(z)|*dx exists, then

™

s
lim g(x)cos Nxdr =0 and AlfimR/ g(x)sin Nxdx =0
—RJo

n—oo 0

Proof: The function %sin Nz, N =1,2,...are orthonormal ovel < x < 7. Hence Bassel's inequality

gives:
™ & s 2
/ \g(z)|2dz > Z / \/751n Nzg(z)dx
0 N—1!70 T

2

so the series converges.

Hence

™

lim sin Nzg(x)dx =0

n—o0 0

Similarily, the set{ 4=, /2 cos Nz} is orthonormal oved < z < 7, SO
y T2

™

lim cos Nzg(z)der =0 Q.E.D.

n—oo 0

1 ™ ™
Ay, =— f(x) cosnx dx B, =— f(z)sinnzx dx
™ J_rx -

We are now ready to prove the convergence Th. for Fourier series. The partial sum of the Fourier series is

N
1
Sn(z) :§Ao + g [Ay, cosnz + By, sinnx|
n=1
1 " / / al 1 " / / / 1 " / . / / .
— flah)dx" + E — f(a") cosna'dx’| cosnx + |— f(a")sinnx'dz" | sinnx
T T
n=1 —T —T

:27T -

N
1 s
=— da' f(x) { 1+2 Z [cos nz’ cos nx + sinna’ sin nz] }

2 J_, o
1" al

=— dm’f(x'){l+22(:osny}
2m - n=1

Change the variable of integrationgo= 2z’ — z, sody = dx’, and

1 T—x N
SN(x>_27T/ dyf(y—i—:):){l—i-QZcosny}
n=1

—T—
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Since the integrand is periodic with perigd, [* “ = [" . Also, the series can be summed as follows:

N
Fy =1 +2Zcosny

n=1

=) e (13.7)

SO
My — Fy = ez(N+1)y o e—zNy

o (N+1)y _ ,—iNy
Fy = A
e —1
eig(ei(N—&-%)y _ e—i(N-i—%)y)

= Y Y
ei%(el§ —e '2)

sin(N + 1)y

in ¥
SlIl2

(13.8)

Hence
N

1+ZZcosny:

n=1
1 (™ sin(N+ % 1 (7 N
/ (,7g2)ydy —/ 1+22c08ny dy
m™Jo S1n2 0 —t

N . B
sinny
y+22 - ]
0

n=1

sin(N + 1)y

in¥
SID2

(13.9)

Therefore also

)

3| =

=1

SO

1 (™ sin(N + 3
/ wdyzl (13.10)
m™Jo Sln§

Using the Eq.[(13]9) above in the last expressionSiofz) gives

1 [7 sin(N + 1)y
Sn(z) :%/ dyf(y+x)Tg2
- g
1 (7 sin(N + 1)y 1 /0 sin(N + 1)y
_271'/ dy f(y + x)———5>—dy + 2/ dy' f(y + @) ———
0 S 5 ™ J_x sin %
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Replacingy’ by —v in the second integral,

sin(N + 1)y sin(N + 1)y

SN(x):l/O dyf(y‘i‘l‘)sinydy‘f';ﬂ/o dy f(—y + )

2m 9 sin ¥
™ in(N 1
=27 J, [f(x+y)+ flz— y)]wdy (13.11)
From Eq.[(13.10) it follows that
1 I in(N + 3
) + fla=)] = 27T/0 [f (z+) + f(z)]Wdy (13.12)

Subtracting Eq[(13.12) from Eq. (13]11) we obtain:

4 in(N + 1
SN(X) = 3L+ F@l =5 [ +9) = o) + 1o =)~ Fa i gy
T Jo sin §
:71T/0 o(y) sin(N + %)y dy (13.13)
where
_fla+ty) = fla+) + fl@—y) - f(z—)]
o) = 2sin ¥
Yy Y sin 5
From Eq. [13.1B),

Jim {Svla) - 507G+ + fo1}

= Jim_ % /07r ¢(y) sin(N + %)y dy

= ]\}Enoo % /07r o(y) [sin Ny cos %y + cos Ny sin ;y] dy

- A}gnoo % /Orr [d)(y) cos ;y} sin Nydy + A}Enoo % /07r [(;S(y) sin ;y] cos Ny dy

=0 from the lemma (13.15)

if #(y) cos %y and¢(y) sin 3y are square integrable over< y < m, which is the case if(y) is piecewise
continuous fof < y < w. From the first of expressions Efj. (13.14) fdy) it is apparent thab(y) is piecewise
continuous or) < y < 7 except possibly ay = 0 wheresin ¥ vanishes. But from the second expression

Eq. (13.18),

, . fl@t+y) —f@t)]  [fla—)—fl@-—y]| ()
oilynlw(y)zogio{ yy B y : }sin2(32/)

=fr(z) — fr(z) (13.16)

So, at points: for which f7,(z) and f] (x) exist,
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S E) + fa)] = lim Sy(z)

—00

1 > .
:§AO + Z[A” cos nx + By, sin nz] (13.17)

n=1
This completes the proof of the convergence theorem.
A o o
2

+ Z Z[An cosnx + By, sinnx]

n=1n=1

fl@) = Slfla+) + fla—)] =

if f(z)is piecewise continuous and periodic (perig

13.7 Fourier series for different intervals

If g(t) is piecewise smooth and periofic with peridd, it has the Fourier series:

1 > :
g(t) = 5AO + Z:I[An cosnt + B,, sinnt] (13.18)
where
1 (7 1 (" .
Ay :/ g(t) cosnt dt B, :/ g(t) sinnt dt
™ J)_x T™J—x

The functionf(z) = g(7x) is piecewise smooth and periodic with periad. Replacingt by %* in the
Fourier series foy(t), we obtain

1 o0 nmwx .
fl@) =540+ Y +n=1 [An cos —— + By sin —} (13.19)

where

L
/ f(g;)cos?dx (13.20)
and
n=t [0 ) 2
n = Lg 7 sin )T T
L
/ f(z )sm$dx (13.21)

For a piecewise smooth functiof{x), which is periodic with perio@L, this Fourier series converges to

f(@)=L[f(z—) + f(z+)] atallz.
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A piecewise smooth functiofi(x) which is not periodic inc can be expanded in a Fourier series in the form
of Egn 1 above, and the series will convergeffa) = 3[f(z—) + f(z+)] at all points on any open interval of
length2L, sayz, — L < z < z, + L, if the coefficients are determined by:

1 To+L 1 ro+L
A, :/ f(z) cos O By :/ f(z)sin "2 4a (13.22)
zo—L L L To—L L

This is because one can define a functiofx) which is periofic with perio®Z and which equalg (x) for
— L <z <z,+ L. F(x) has a Fourier series E{. (13/19) which eqydls) for z, — L < = < z,+ L. Since
F(x) is periodic with perio®L, the integrals in4,, and B,, can be taken over any interval of length, and in
particular forz, — L < = < z, + L, whereF(z) = f(x), giving the expression§ (13]22). At= z, — L and
z =z, + L, the series converges $df (z, — L+) + f(zo + L—)].
In particular, for the interval- L < = < L, a piecewise smootfi(x) can be expanded as:

1 > nmwx nwr
_ ! nrr in L<z< .
f(zx) 2A0+;[Ancos 7 + By, sin 7 }, (-L<xz<L) (13.23)
where
L
:% /L f(z) cos ﬂLxdx / f(z)sin —daz

If f(z)is an even function, all th&,, = 0, and if it is an off function, all thed,, = 0. A function which is
piecewise smooth fa¥ < x < L can be expanded in a Fourier sine series

(@) %[f(ar—> + farb)
- Z B, sin @ (13.24)
where
L T
— % /0 f(x)sin %dw (13.25)

and where the series vanishes:at 0 andxz = L, or the function can be expanded in a Fourier cosine series

1 > nwe
=_A A — .
fla) = 540+ nzl n oS — (13.26)
where
) L
= L/o f(x) cos n—zxdx (13.27)

and the series converge $6f (z—) + f(z+)] for 0 < < L, to f(0+) for = 0, and tof (L—) atz = L.
These results follow from the fact that a piecewise smooth function definédd ¥nr < L can have its
definition extended te- L < x < L in such a way that it is either an odd or an even functiom.of
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13.8. COMPLEX FORM OF THE FOURIER SERIES CHAPTER 13. EXAPANSIONS

13.8 Complex Form of the Fourier Series

Suppose thaf(x) is either a real or complex function which is piecewise smoothon L < x < z,+ L. The
Fourier series fof (x), valid on that interval, can be written:

0
1 nmwx nmwx

fla) =540+ ; | An cos —— + By sin T}
1 oo [ eingz _i_e*m em% —eimﬂ
=_A, Ay | ———— L B | ————&
o e I Ml ]
Y +i -}(A —iB,)e " +1(A +iB)e T (13.28)
S22 g '
Let
1 1 CEO+L
Cp = Q(A” —iBy,) = QL/%L <COSLZx — csin?) f(z)dx
1 Tot+L inmTx
S ~inge 13.29
=gp | S s (13.29)
Then
1 1 [T+l
“A, = — =c, 13.
5 T fz)dx = ¢ (13.30)
and
1 TotL nmwr nwr
U viny L e ™ 507
2( +iBy,) 2L/%_L f(z) |cos T + isin 7 dx
1 :E(,—l-L inTx
=37 - f(x)e L dx
=C_, (13.31)
Hence
flx)=co+ Z [cneme + c_ne*m% (13.32)
n=1
or
flx) = Z cnemLm To—L<z<z,+L

This is called the complex form of the Fourier series fdr), whether or notf(z) itself is complex. It
converges to

[f(z=) + f(z+)] for 2—L <2 < 20— L

N |

Atz =z, — Landz = z, + L, itconvergesto %[f(zo — L+) + f(zo + L—)].
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9. UNIFORM CONVERGENCE OF FOURIER SERIES

13.9 Uniform Convergence of Fourier Series

A4,
flz)= 9
(1Al +Bl)?
(14] - |B])?

(|4l +1B])* + (14 - |B))®

hencelA| + [B| < V2(JA[2 + |B[?)2

| Ay, cosnz + By, sin nz|

+ Z [A;, cos nz + By, sin nz|
n=1

(13.33)

=|A* + |B]” +2|A[|B]
=|A* + |B]* - 2|A[|B]
=2(|AP + B[* = (|| +|B])?

<|A, cosnz| + | By, sin nx

<|An| + | Byl
<[|Auf* + BaP)2
=v2[A2 + B}
taking f(x) to be real, so thel,, and B,, are real. Hence the Fourier series fidr:) converges absolutely and

uniformly if the seriesy " [A2 + BZ]% converges.
Let

N
SN EZ[Ai + B

1
2
(2(A% + B2)]>

| Dl

Dy,

D=

N
> n*(A; + B)

Ln=1

(e, D) < [le]l |1 D]

from the Schwarz inequality in a vector space in which vectors are N-Tuples of real numbers, sueh as
(c1,¢2...¢cn), d = (dy,da...dy, and the scalar product is defined by d) = ZnN:1 cndy,. The Schwarz
inequality is|(c, d)| < (e, c)% (d, d)%, or

N N N
> endn < [Z N di] (13.34)
With the choice
1
P d, =[n2(A% + B2)]z = n(A2 + B2): (13.35)
n
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N

N N N
342+ B2): < Z Z (A2 + B?) (13.36)
n=1 n=1 n=1

If, for —7 < x <, f(z) is continuous,f’(x) is piecewise continuous, ao‘d m) = f(m), then the series
S0 n?(A2 + B2) converges as shown in problem (9). Since the sénig$, -1 also converges, it follows

that> > | (A2 + B?l) 2 converges, so the Fourier series fdr:) converges uniformly and absolutely.

Y — =((p) (Reimann Zeta

Hence we have proven:

Theorem 5 If f(z) is continuous and if it is only piecewise continuous gh@:) is piecewise continuous for
-t <z < 7, and f(—m) = f(m), then the Fourier series fof (z) converges uniformly and absolutely on
—7m < z < 7 (or any interval that is continuous).

It can be shown, by a more complicated proof, that the Fourier series for a piecewise smooth function converges
uniformly and absolutely in any closed subinterval in which the function is continuous. Piecewise smooth
f(z), f'(z) are piecewise continuous.

13.10 Differentiation of Fourier Series

If f(x) is periodic and continuous, and jf(x) and f”(z) are piecewise continuous, then the term-by-term
derivative of the Fourier series fgi(x) equalsf’(x) except at points wher# (z) is discontinuous.

Under these conditions boif{x) and f’(x) have convergent Fourier series, and the term-by-term derivation
of the series forf (z) equals the series fgf’ (x). Details are worked out in problem (12.)

13.11 Integration of Fourier Series

If f(x) is piecewise continuous ferL < x < L, then, whether or not the Fourier serigs+>"> | [A4,, cos "2 + B, sin "]
corresponding tgf(x) converges, the term-by-term integral of the series fromtox < L equalsffL f(x)dx

Proof:
= / f(x)dx — lex
I 2

is a continuous function, with derivative' (z) = f(x) — %AO which is piecewise continuous eAL < x < L
for f(x) piecewise continuous oAL < z < L
Show F'(z) periodic.
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Also F(—L) = $A,L, and

L 1
—/ f(z)de — = A,L
. 2

=LA, — 1AOL
2
1
HenceF'(z) has a Fourier series
Qo > . hmx
F(z)= 5 + 321 {an cos 2L 4 by, sin T] (13.37)

which converges tg(z) for all pointson—L <z < L. Atz = L,

o0
Qo .
=5 + g 1 [an cos nm +b, sin nmw
n= (,1)71 0

Hence

ao 1 > n
5 = 54l — nzlan(—l) (13.38)

Also, forn > 0

1 (L
an, :/ F(a:)cosnLﬂdx

LJ g

1 [ [F(x)sin 2= L L F'(x)sin 272
I\ | = |~ Tdiﬁ

a ~L —-L L
1 L
=—— F'(x)sin L
nm J_r, L
1 [t nwT

— [ ) s sn e

L
—/ flx sin@dx

nm L

:——B forn >0
nm
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And

1 L
b, =— / F(z)sin nre dx
L L

=] [ )

L
=—— / F'(z) cos ?dm

—L

L1 [t 1
—/_L [f(x) — 2A0] cos ?d:p
nmx L

L
:Ll{/ fl= )cosnzmdx;/lo[smnﬁ]L}

=—A, forn >0

Hence the Fourier series

n=1 L
becomes
( ( A, L Zan > g[anCOs +0b, SIHT}
—A L+nz:1{an [005@7(7 ) } +b, Slnnzx}
:%AOL —l—nzz:l{ — iBn [COS@ _ (_1)7@ I AnSlnan}
BUtF f f %on’ .

/if(a:)dx:; (x+ L) —l—Z{A —sin@—B - [COSL—(—l)n}}

_/_L 2A0d:c—|—n§:1 [An/_LCOSTTCd:C+Bn/_LSinTde]

=Term-by-term integral of the Fourier series ().

/f = [ fourier series forf f(x) = four. ser. aJ;(;)
x)piecewise continuous f(z)continuous f(z)periodic and
or piecewise continuous
f'(z)p.c. f'(x)p.c.
f"(@)p.c.
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CHAPTER 13. EXAPANSIONS 13.12. FOURIER INTEGRAL REPRESENTATION

13.12 Fourier Integral Representation

If f(x)is piecewise smooth for L < x < L, it has a complex Fourier series.

° . 1 L .
F(z) = Z cne™ L Cn EM/Lf(x)e’”idw

n=—oo

which converges tg[f(z+) + f(z—)] for —L < = < L.
We wish to consider what happens As— oo. We cannot naively put = oo for ¢,, because that gives
cn = 5= [7o f(z)dx for all n, and the Fourier series becomes p3}° __ ¢,,. Puttingc, in the series foif (z):

e 1 L 12 Z”lﬂﬂ')
CEDEY I
=1 [F e
=Y | dlf@) T (13.41)
2L ||
n=—oo
Let Ak = 7. Then,
fay= 3 S8 [ e (13.42)
n—fm)2ﬂ —L .
But
Jim ST Fnak)Ak = / F(k)dk (13.43)

Hence, ad. — oo, Ak = T — 0. Fourier integral expression fgi(z):

— L
fa) = QL / dk / de! (') =) (13.44)
T J—-c0 —00
This proof is heuristic (suggestive, but not rigorous). The result can be written
1 &0 ;
=—— [ dkF(k)e™ 13.45
fla) = <= [ dkF(ige (13.45)
where
F(k) = L dz' f(z)e~™**"  Fourier transform off (z)
V2T J

Before providing rigorously the Fourier integral theorem, we need to consider “improper integrals” of the
form:

(k) —/OO (o, k)dz

R—o00
—_——
Ir(k

= lim Ip(k) (13.46)

R—o00

R
= lim/ f(z, k)dz
)

or
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:/_o; f(x, k)dx

R
= lim F(x,k)dx

R—oo J_p
— lim Ig(k (13.47)
R

I(k) is said to converge uniformiy &, for A < k < B, if givene > o, one can find), independent of for
< k < b, such that

|[I(k) —Ir(k)| < e for R>Q

13.13 M-Test for Uniform Convergence

If |f(z, k)| < M(z)for A < k < Bandif [*° M(z) exists, then[™ f(z, k)dz converges uniformly. A
uniformly convergent improper integra(k) can be integrated under the integral sign:

/AB dk /Z flx, k)dz = /: </AB f(z, k)dk) dz (13.48)

These properties are analogous to those of a uniformly convergent infinite series:
oo
=2 Fulk)
n=0

= lim > Fu(k) (13.49)

An important simpler example is
I(k) = / F(x)e*®dz (13.50)

If [ |f(z)|dz exists, therl (k) converges uniformly irk, since| f(z)e?| = | f(z)|, S0 one can take/(z) =

|f (2 )\

13.14 Fourier Integral Theorem

If f(x) is piecewise smooth for all finite intervals,ﬁf_’oOO | f(x)|dx exists, and if

—zk’x
= / f(z dx (13.51)
then
(@) = Sf ) + flam)] = —— / T Rk (13.52)
2 Vor J s '

PO == [ dnetg)
P == [ dne gy

Proof: Reference: Dettman, Chapter 8, or Churchill.
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Lemma 2 Riemann’s Lemma. ff(x) is piecewise continuous far< = < b, a andb finite, thenimp_ ff f(z)sin Rz a
0

Proof: Since the integral can be split up into integrals of a continuous fct, Lgrma 2 is true if it si true for
a continuousf (x), which we now assume. If we change the variable frono ¢ such thatRx = Rt + 7, S0
r=t+ %,

b b—o -
/ f(z)sin Rxdx —/ f (t + —) sin(Rt + ) dt
a a—% R/ ~—on——

—sin Rt

h— T
- —/ Ty (t—i— %) sin Rt dt (13.53)

Hence, adding these expressions:

=

2/bf(:z)sinRxd:c:/bf(x)sinRxdx—/ f(:E-i—%) sin Rx dx

s

f (m + %) sin Rx dx

_/ab; [f (:L'+ %) —f(x)} sin Rz dx

b
+/b_ f(x)sin Rz dx

b
2‘ / f(z)sin Rz dz

g‘/a_wf <m+%> sin Rx dx
+’/:_; (= D) - s ‘+’/bbwf(x) sin R do

fo+ %) - fla)

T T
<SMA+|b—— —
>R —i—‘ I a

T
—M
+R

max

fora <z < by where|f(z)| < M fora <z < b. M is finite, and — 0askR — o

fla+ %) - flx)

max

becausef (x) is continuous. Hence

b
lim 2’/ f(z)sin Redz| =0

R—o00

b
= lim / f(z)sin Redx =0

R—o0
Lemma 3 If f(x) is piecewise smooth in any finite interval afid_|f(x)|dz < oo, then

T : T
Jim. / ) gt = T 1f@t) + fa)] 0<T <o
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Proof: First consider finit&

T in Rt
Ir=tim [ g™ - D54 + o)
R—oo J_p t
. T sin Rt T
= Jim_ |0+ o = 0= dt = Gl + fla-)]
But
T & RT ;. 4/
lim / SR im / L
R—o0 J t R—o0 Jo t/
_ / sint
0 t
_T
2
as we showed last semester by contour integration.
Hence
T — p— J— p—
Iy = Jim [f(x+t)t flat)  fl= t)t [z >]sintht
— 0 0

=0 from Lemmd 2, since the integrand is piecewise
continuous for all finite > 0

lim
t—0

[f(m +t)t— flat) | fle- t)t— f(:v—)] — fh(x) — fi(2) (13.54)

which exists fincef’(x) is piecewise continuous. This proves the Lemma for filfitd-or 7’ = oo

But - -
[»um+ma-[ (o))t

so given any > 0 can findT" large enough Stéf__g +f;°) ft)dt < e

Hence
) &0 sin Rt T
Rhm ‘/ flz+1) dt—[f($+)+f(x—)]‘
<et lim ’ / fl@+1) Smtht - E[f(ach) + f(x—)]‘
0, from proof for finite7’, Lemmg 2
=0, € arbitrary, since
Q.E.D.
t
= Jin [ ple 0™ i = ) + o

Proof of the Fourier Integral Theorem:
\/127/: F(k)e**dk :jz? /_Z dk{\/%/_z f(x’)e—““’dx’}e““
:\/12? / " an / i da’ f(2)ek =)
—I%lgréo E /I; dk /_Z da' f () eF@=")
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But |f(z/)e*@==)| = | f(2')| and [*°_da'| f(2')| < oo, SO the integral over’ converges uniformly irk, so
the order of the integration can be exchanged.

1 > ikx : 1 > / / f ik(z—2z')
— F(x)e"™dk = lim — dz' f(x") dke

V2T J_o R—o0 2T J_ R
00 : N k=R
~ lim - / do! f(') | SnEE =)
R—o0 2T J_ (x — ') k——R
1 [ sin R(x — ')
~dm [P
1 [ sin Rt
_]%l—rgoﬂ'/oodtf< —l—t)
=%[f(x+) + f(z—)] from Lemmd 3. Q.E.D.

We note for future reference that the Fourier transfét(&) of a piecewise smooth functiof(x) statisfying
J°, | f(2)|da < oo is bounded:

SO

27 J o

1 o0
:E 7oo|f(5'3)|dl’
=B <>

since [*_|f(x)|dz < oo

= |F(k)| < B < 0

13.15 Examples of the Fourier Integral Theorem

[

x

f(z) = ce” -2, called a gaussian function. (13.55)

Sl-
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CHAPTER 13. EXAPANSIONS

F(k) =—— ce o2y
\V/ 27 /—oo
c 0 1
= e o2 [562 + ikazw] dx
vV 2w /oo
00 . 2\ 2
_c L 2 2 tko B
m/_me x° +ikoz + 5
c & ~L n iko?\? d L k2f4
f— e o €T e o
V2T /Oo 2
c x4t (/"O _a? dx)
— e e oc— | O
V2T oo o
JT
_C9 TR
V2
which is a gaussian function &f
Note that -
/ f(@)dz = VIR (0) = \/27T% _1
if c= ﬁ
— a2 62,9
Sof(x) = ﬁeoi2 hadF(k) = Squt%eTk

Ax =0 Ak Eg = AzAk =0
o

g

2 =2, forallo

(13.56)

The narrowerf(x), the broade'(k). This is typical of all functions and their Fourier transforms.
2

1

Aso — 0, f(z) = o~
if # # 0, but [*_d(z)dz =1, and

f@) = [ i’ - s

if f(z)is continuous at. The last property follows from

/_Z f(2)o(x' — x)da’ = /;:6

e 0% approaches the Dirac delta functioriz), which has the propertie§z) = 0

The Fourier transform of(z — z,) is

so the Fourier integral representation is:

1

Vor

o(x —x,)
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This important result follows also from putting

F(k) = L / h fla)e ™" da! (13.57)

f(z) :\15 / - F(k)e*®dk
_L o L o N —ika' 3 0\ ika
‘m/_oo{m/_oo“‘”e d”””}e o

— :;Tr /OO dk /OO dxlf(m/)eck(xfx/)

:/ dx' f(z) {217r/ ek(x—ml)dk}, exchanging order of integration

/ F()3(a' — 2)da

As another example, consider

ikox g < <
flz) = {6 =T (13.58)
0, r< —0, T>0
F(k‘) :i /U eikoeik’mdm
2 J_o
L (7 ih—ko)a L[
=— e )dr = — cos(k — ko)xdx
27 J_, 27 J_,
1 sin(k — ko)x \/isin(k —ko)o \/gsin(k —ko)o
~o_ ‘—0’ =\ = =0\~
2 (k— ko) T (k—ko) m (k—ko)o
AzAk =0l =7
g
13.16 Parseval’'s Theorem for Fourier Transforms
Supposg (z) andg(x) are piecewise smooth for all finite intervals, afid_ | f(z)|dz and [~ |g(z)|dx exist, so

f(z) andg(x) have Fourier integral representations with Fourier transfariig andG (k) WhICh are bounded,
so in particulaiG(k)| < B for all .
The Parseval theorem is that:

/_ " g (@) ) da = /_ " G (k)P (k)R (13.50)
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Proof:

/_ Z G*(k)F(k)dk = /_ Z dkG* (k) {\/‘% /_ Z f(;n)e—“mdx}
_ jﬂ /_Z dk {/_Z f(a:)G*(k)e—““dx}

But the integral over: converges uniformly ik, since
()G (K)e™ ™| < |f(«)|B, = M(x)

and - -
/_OOM(x)dx:B/OO |f(z)|dx < 0o

Hence the order of integration can be changed:

/Z G*(k)F(k)dk :\/1277 /Z dzF(x) {/Z G*(k)ei’”dk}

:/_Z dzF(x) {Jlﬂ /_Z G(k)e'“”dk}*
:/OO drf(2)g(z)*, Q.ED.

—00

For the special casgz) = f(z),
/OO |f (2)dz = /OO |\F(k)|2dk

—00 —00

13.17 Convolution Theorem for Fourier Transforms

If H(k) = G(k)F(k), where
1 %S . B 1 %) N e—i -
G(k:):\/%/_oog(x)e k2 dr  and F(k)_m/_mf( Yooy

then

h(zx) —\/12? / Z H (k)e*®dk
:\/12? / Z Gk F (k)™ di
:\/12? /_ Z dk {\/12? /_ Z g(m')e_ik:”/dm'} F(k)e*®
:jﬁ /_ Z dk /_ Z da' g(a')e™* @) (k)

The integral over’ converges uniformly ik, since

/ da'|g )|
—infty
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exists, andF'(k)| < B, so the order of integration can be exchanged.

- L / da’ / dkF (k)e* =) g (a!)
2m

\/ﬂ/ da'g(x {W/ ekl ’f)dk} (13.63)

h(z) = \/127/ g(z") f(z — 2")dz';  Called the Fourier Convolution of(z) andg(x)
T J—00
If we change the variable of integrationt6 = = — 2/, d2” = —dx’
o) == [ glo— o)) (-de")
V2T Jo
1 (o)
—__ (.T//)g(ﬂf //)dl'//
V2T J o
1 oo
r f(a")g(x —2)da’ (13.64)
T J—00

Hence the convolution is symmetric in the two functighandg. The significance of the convolutioin(z)
is that it is the function whose Fourier transform is the product of the transforrisuoflg.

F{h(z)} = h(k) = g(k)f (k)

13.18 Fourier Sine and Cosine Transforms and Representations

F(k \/ﬂ/ f(x ““da:—r/ f(z)[cos kx — sin kz|dzx

Hence, iff(—x) = f(z), an even function,
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