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Preface 

The physical chemistry course is the course in which most chemistry students first have 
the opportunity to synthesize what they have learned in mathematics, physics, and 
chemistry courses into a coherent pattern of knowledge. The topics of the traditional 
physical chemistry course can be grouped into several areas: (1) The study of the 
macroscopic properties of systems of many atoms or molecules; (2) The study of the 
processes which systems of many atoms or molecules can undergo; (3) the study of 
the properties of individual atoms and molecules, and (4) the study of the relationship 
between molecular and macroscopic properties. 

The different portions of the book cover different parts of physical chemistry, as 
follows: 

Chapter 1: Introduction to the macroscopic description of large systems. 
Chapters 2-9: Thermodynamics and its applications 
Chapters 10-13: Nonequilibrium processes 
Chapters 14-20: Quantum mechanics and its applications 
Chapter 21: Statistical mechanics--the bridge between mechanics and thermo- 

dynamics 
Chapter 22: The structure of solids and liquids 
Chapter 23: Some theories of nonequilibrium processes 

The book is constructed so that several different sequences of these topic areas are 
possible with a minimum of adjustments. Four sequences which should be practical are: 

I. As written 
II. Ch. 1-9, Ch. 14-20, Ch. 10-13, Ch. 21-23 
III. Ch. 1, Ch. 14-20, Ch. 2-9, Ch. 10-13, Ch. 21-23 
IV. Ch. 1, Ch. 10-13, Ch. 2-9, Ch. 14-23. 

If time does not permit covering the entire book, chapters 22 and 23 can be omitted 
without loss of continuity. 

The book contains several appendixes, designed to improve the usefulness of the 
book. All of the tables of numerical data in the book are collected into Appendix A. 
Appendix B is a brief survey of some useful mathematics. Appendix C is a table of 
integrals and some information about the error function. Appendix D is a brief survey 
of classical mechanics. Appendix E contains some derivations of thermodynamic 
formulas. Appendix F presents information about special mathematical functions 
encountered in quantum mechanics. Appendix G contains a derivation of a formula 
used in perturbation theory in quantum mechanics. Appendix H is a discussion of the 
Htickel method of quantum mechanics. Appendix I discusses the matrix representation 



viii Preface 

of symmetry groups. Appendix J is a list of symbols used in the book. Appendix K 
contains answers to selected numerical exercises and problems. 

Each chapter has a list of the principal facts and ideas that are presented in the 
chapter, as well as objectives for the student. There is also a summary to assist in 
synthesizing the material of each chapter into a coherent whole. There are also marginal 
notes throughout the chapters to provide biographical information about some of the 
important people who originated the ideas that are presented in the book and to assist 
the student in following the flow of topics in the chapter. Each chapter contains 
examples that illustrate various kinds of calculations, as well as exercises placed within 
the chapter. Both these exercises and the problems at the end of the chapter are designed 
to provide practice in applying techniques and insights obtained through study of the 
chapter. 

The author welcomes feedback from students and instructors; please send your 
comments and suggestions to the author's attention. 

Robert G. Mortimer 
Department of Chemistry 
Rhodes College 
Memphis, Tennessee 38112 
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Fundamental  Constants and Conversion Factors 
From E. R. Cohen and B. N. Taylor, The 1986 Adjustment of the Fundamental Physical 
Constants, CODATA Bulletin Number 63, November 1986 
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Conversion Factors for Non-SI Units 
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The principal goal of physical chemistry is to understand the behavior 
of systems (portions of the universe) and to apply this understanding in 
useful ways. 

The state of a system is specified by the values of a certain number of 
independent variables. 

Dependent variables are those whose values are determined by 
mathematical functions of the independent variables. 

In a one-phase fluid system of one substance at equilibrium, three 
macroscopic variables such as temperature, volume, and amount of 
substance can be independent variables. Other variables, such as the 
pressure, are dependent variables given as functions of the 
independent variables. 

When a system can be described by classical mechanics the microscopic 
(mechanical) state of a system is specified by the position and velocity 
of every particle in the system. 

6. Macroscopic states are determined by the nature of microscopic states. 

, 

. 

Many microscopic states correspond to a single macroscopic state, 
and the properties of the macroscopic state correspond to averages over the 
microscopic states. 

In a system of independent molecules, the probability that a molecule 
will be found in a mechanical state with energy e is proportional to e -~/k~T 

(the Boltzmann distribution). 
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Antoine Laurent Lavoisier, 1743- 
1794, was a French chemist known as 
the "father of modem chemistry." He 
was beheaded during the French 
Revolution because of his investments 
in his father-in-law's firm, which was 
employed by the royal government to 
collect taxes. 

Joseph Louis Proust, 1754-1826, was 
a French chemist who published his 
law of definite proportions in 1799. He 
was also the first to isolate sugar from 
grapes. 

John Dalton, 1766-1844, was an 
English schoolmaster and chemist. 

Some people have always been curious about the universe, and have sought explana- 
tions for the things that they observed. Some devised explanations that we now dismiss 
as ignorant superstitions once satisfied the need to understand why things happen as 
well as describing what happens. As cultures evolved, philosophers such as Aristotle 
attempted to describe and understand the properties of the material universe in a 
systematic way, and their accumulated knowledge in this area came to be known as 
natural philosophy. As the volume of knowledge widened, it became impossible for 
any person to study all of natural philosophy, and it began to be divided into what we now 
call the several natural sciences: astronomy, biology, chemistry, geology, and physics. 

Physics has been defined as the study of the properties of matter that are shared by all 
substances, while chemistry has been defined as the study of the properties of individual 
substances. Physical chemistry involves both of these approaches and is sufficiently 
fundamental that its principles underlie the other areas of chemistry. 

The first stage in scientific inquiry is observing and reporting the properties of 
particular objects and what they do under specific conditions. The second stage is 
generalization. This means concluding from experimental facts that all systems exhibit 
some common behavior, and constructing a general statement or empirical law that 
expresses this behavior. The third stage in the scientific method is explanation. This 
means contriving a set of hypotheses about the nature of the physical universe (a 
theory). The fourth stage of the scientific method is testing the theory. One first 
deduces the consequences of the theory. This process is called deductive reasoning, or 
reasoning from the general case to the specific case. One then compares these 
predictions with experiment, possibly carrying out new experiments. If the actual 
behavior and the predictions agree, the theory is likely to be tentatively accepted as a 
valid explanation of the phenomena. 

The early history of modem chemistry provides an important example of the 
application of the scientific method. At the end of the eighteenth century, chemistry 
was evolving from the ancient art of alchemy, which included attempts to make gold 
from something less expensive. There was a body of accumulated knowledge, but it was 
not organized into a coherent picture. The discovery of three laws of chemistry began 
the development of an organized field of knowledge. Lavoisier carefully determined 
that the mass of the products equaled the mass of the reactants in every one of his 
experiments. He stated the law of conservation of mass, which asserts that this equality 
occurs in every chemical reaction. Such an assertion is strictly speaking a logical error, 
since no one can examine every possible reaction, but science is largely based on such 
laws. Proust then announced the law of constant composition, also called the law of 
definite proportions, which states that in all samples of a given compound, the ratio of 
the masses of any two elements is always the same. 

Dalton added the third law of chemistry, the law of multiple proportions, which 
states that if two elements occur in two different compounds, the masses of the first 
element that combine with a given mass of the second element in the two compounds 
are in the ratio of small whole numbers. He then proposed an explanation of these laws, 
which we call Dalton's atomic theory. This theory proposes that every element 
consists of unique, indestructible, indivisible atoms that combine as units to form 
compounds. Lavoisier has been called the father of modem chemistry, and this is true 
from an experimental point of view, but Dalton must be regarded as the father of 
modem chemistry from a theoretical point of view. 
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Wilhelm Ostwald, 1853-1932, was a 
German chemist who, among other 
things, developed the industrial 
method to make nitric acid. He 
received the 1909 Nobel Prize in 
chemistry for this contribution. 

Albert Einstein, 1879-1955, was the 
greatest physicist of the twentieth 
century, and made fundamental 
contributions in many branches of 
physics. He did some of his most 
important work in 1905 while working 
at the Swiss patent office and pursuing 
theoretical physics in his spare time. 
He received the 1921 Nobel Prize in 
physics for his explanation of the 
photoelectric effect. 

* Indicates an exercise or problem with 
an answer in Appendix K. 

There was argument about the validity of Dalton's theory for a century, although 
various experiments gave results in agreement with its predictions. At the end of the 
nineteenth century, Ostwald still argued that the concept of atoms was useful but that 
there was no evidence for their actual existence. However, even Ostwald was convinced 
by several new pieces of evidence and new theories, including Einstein's 1905 theory of 
Brownian motion, which ascribed this phenomenon to random bombardment of 
colloidal particles by solvent molecules. 

We now know that the original atomic theory is only approximately correct. Atoms 
are not indestructible, and atoms of the same element can have different masses. The 
conservation of mass is not exact if only rest-mass is considered. However, in ordinary 
chemical processes atoms are neither created nor destroyed, the conservation of mass is 
valid to about 12 significant digits, and we apply the atomic theory of Dalton in all of 
our stoichiometric calculations. 

*Exercise 1.1 
A typical chemical reaction involves several hundred kilojoules of energy per mole of reactant. 
Einstein's famous formula for the equivalence of mass and energy is E = m c  2, where E is the 
energy, m is the mass, and c is the speed of light, 2.9979 x 108m s -1. Calculate the mass 
equivalent to 400kJ of energy and compare it to a typical molar mass, say 0.100 kg mo1-1. 

Systems and States 

In physical chemistry, one studies various properties of matter. We must have clearly in 
mind what the object of our study is and what properties we are focusing on. In order to 
talk about this, we must have a common vocabulary. 

Systems 
The object that we are studying at a given moment is called the system. Much of what 
we do will be centered around three things: (1) the definition of the system; (2) the 
values of variables that specify the state of the system, which means the condition of 
the system at a given time; and (3) the processes that can change the state of the system. 
These three aspects provide a common theme in all of the areas of physical chemistry. 

The portion of the universe that is outside of the system is called the surroundings. 
We must be specific about the boundary between system and surroundings. For 
example, if we study a sample of liquid or gas confined in a container, we will 
ordinarily specify that the container is part of the surroundings. 

Figure 1.1 shows an example of a macroscopic system (a system big enough to see 
with the unaided eye). The system consists of a fluid (liquid or gas) contained in a 
cylinder with a movable piston. The cylinder and piston are part of the surroundings. 
There is a valve between the cylinder and a hose leading to the atmosphere or a tank of 
gas. When the valve is closed so that no matter can pass into or out of the system, the 
system is called a closed system. When the valve is open so that matter can pass into or 
out of the system, it is called an open system. The cylinder-piston apparatus is 
immersed in a second part of the surroundings, a constant-temperature bath. If the 
system were completely insulated from its surroundings so that no heat could pass 
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between system and surroundings, it would be called an adiabatic system, or we would 
say that it can undergo only adiabatic processes. If the system were completely 
separated from the rest of the universe so that no heat, work, or matter could be 
transferred, it would be called an isolated system. 

A microscopic system generally consists of a single atom or a single molecule. 
Microscopic systems cannot be seen with the unaided eye or with ordinary micro- 
scopes, and it is only within recent decades that images of individual atoms and 
molecules have been produced. Our information about microscopic systems is usually 
indirectly obtair,ed by interpretation of some measurement. 

Sometimes we will discuss a model system. This is an imaginary system designed to 
resemble some real system, but which can be described more easily than the real 
system. Model systems are useful only if we can show that they approximate the 
behavior of a real system and if we can analyze their behavior in a useful way. 

States and State Variables 
Specifying the state of a system means describing the condition of the system by 
giving values of a sufficient set of variables. A macroscopic system has two types of 
states: the macroscopic state, or macrostate, which involves properties of the entire 
system, and the microscopic state, or microstate, which involves molecular properties. 
A microscopic system possesses only a microscopic state. 

Macroscopic States 

A macroscopic state is sometimes called a thermodynamic state. This state is specified 
by giving values of macroscopic variables such as the pressure P, the temperature T, the 
volume V, the amount of substance n, the mass m, the density p (equal to m~ V), etc. The 
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Isaac Newton, 1642-1727, was a 
great British mathematician and 
physicist who was also one of the 
inventors of calculus. 

Tycho Brahe, 1546-1601, was a 
Danish astronomer who made the 
most accurate astronomical 
observations ever made without a 
telescope. He was able to measure 
angular positions of stars and planets 
to within 2 minutes of arc (1/30 of a 
degree). 

Important equations that will be used 
frequently will be enclosed in a 
screened box. 

Johannes Kepler, 1571-1630, was a 
German astronomer and proteg~ of 
Brahe who discovered that Brahe's 
data implied elliptical planetary orbits 
and who derived laws of planetary 
motion. 

value of every possible macroscopic variable is not needed to specify the macroscopic 
state of the system. It is an experimental fact that when values of  enough variables are 
specified, the values of  all other variables are determined as dependent variables by the 
nature of  the system. When enough variables are specified so that the other macroscopic 
variables are determined, we say that these variables specify the state of the system. The 
other variables are mathematical functions of these independent variables. All variables 
that can either be used to specify the state of the system or that depend on the state of 
the system are called state functions or state variables. 

Consider a fluid system consisting of a one-phase fluid sample of one substance at 
equilibrium. If n (the amount of substance), T (the temperature), and P (the pressure) 
are controlled, the system will take on a volume that is determined by the values of 7;, P, 
and n through a mathematical function characteristic of the system. For example, a 
dilute gas approximately obeys the ideal gas equation of state 

nRT 
V =  V ( T , P , n ) =  (1.2-1) 

P 

where R is a constant known as the ideal gas constant or molar gas constant. 
The statement that only three variables are required to specify the macrostate of a 

one-component fluid system is restricted to equilibrium states. Nonequilibrium states 
can be much more complicated. Equilibrium is a condition in which there is no 
tendency for any net change to occur. There can be systems in which no apparent 
change is observed, even over a long period of time, but which are not at equilibrium. 
For example, solid carbon can exist as diamond, graphite, or fullerenes ("buckyballs"). 
In order to be at chemical equilibrium at ordinary pressures, diamond must convert to 
graphite. However, the rate of conversion is very slow, and diamond is said to be in a 
metastable state. A metastable state is not an equilibrium state, and has a tendency to 
change toward equilibrium. However, a description that applies to equilibrium states 
can often be applied to metastable states without significant error. 

Microscopic States 
A microscopic state pertains to mechanical properties and is sometimes called a 
mechanical state. Mechanics is the branch of physics that deals with energy, forces, 
and the motions of objects. Classical mechanics, sometimes called Newtonian 
mechanics, is the theory of mechanics that dominated physics until the twentieth 
century. Newton proposed three laws of motion, which explained the motions of 
celestial bodies observed by Brahe and systematized by Kepler. Newton's second law 
is the most important of these laws: 

(1.2-2) 

where F is the force acting upon an object having mass m, r is its position vector, v is its 
velocity, and a is its acceleration. The force, position, velocity, and acceleration have 
direction as well as magnitude, so they are vectors. 

Classical mechanics is found to apply accurately to systems such as celestial bodies, 
rifle bullets, rockets, and billiard balls. Like the law of conservation of energy, it is not 
exact but it is extremely useful. Around the beginning of the twentieth century it was 
found that classical mechanics failed to explain a number of phenomena. Objects with 
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small masses, such as electrons, must be described using quantum mechanics, while 
objects moving at high speeds must be described by relativistic mechanics. 

According to classical mechanics, the microstate of a system is specified by giving 
the position and velocity of every particle in the system. When quantum mechanics is 
used, we must directly specify which state applies, usually by giving the values of a set 
of quantum numbers. A quantum state requires roughly the same amount of 
information to specify it as does the analogous classical state. A structureless particle 
moving in three dimensions requires three coordinates and three velocity components to 
specify its classical state, and requires three quantum numbers to specify its state of 
motion quantum mechanically. If we ignore its spin, the state of motion of an electron in 
a hydrogen atom is specified by the quantum numbers n, l, and m. If we have many 
particles, the specification of the microscopic state requires a lot of information. 

*Exercise 1.2 
Specification of the state of electronic motion in a hydrogen atom requires four quantum numbers, 
n, l, m, and m s, specifying the electronic energy, the magnitude of the orbital angular momentum, 
the z component of the angular momentum, and the z component of the spin angular momentum. 
For a region in interstellar space containing 1.OOnmol of hydrogen atoms, estimate the time 
required to type all of the values of the quantum numbers into a computer, pretending that the 
atoms are distinguishable from each other. 

Units of Measurement. SI Units 

We will carry out many calculations using state variables and other numerical 
quantities. The value of any numerical quantity consists of two parts, a number and 
a specification of the unit of measurement. When writing values of physical quantities, 
you should always write the unit as well as the numerical part. To carry out any 
calculation correctly, you must express all variables in terms o f  consistent units. One 
such set of units is the international system of units, or SI units. SI stands for SystOme 
International, the French name for the set of units. The SI units are "mks" units, in 
which lengths are measured in meters (m), masses are measured in kilograms (kg), and 
time is measured in seconds (s). There are seven base units in the SI. In addition to the 
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*Exercise 1.3 
Find the value of the gas constant in L atmK -1 mo1-1, in calK -1 mo1-1 
K-1 mol- 1, and in cm 3 bar K- 1 mol- 1. 

, in cm 3 atm 

The ideal gas equation of state (ideal gas law) of Eq. (1.2-1) is used to define the 
ideal gas temperature scale, which is one representation of the absolute temperature 
scale. It is found that any gas more and more nearly obeys the ideal gas law as the 
pressure is made lower and lower. We write 

,im P~0 ~ (1.3-14) 

Our interpretation of the limit symbol in Eq. (1.3-14) is that one evaluates the quantity 
PV/nR at various pressures and then extrapolates the graph of this quantity to zero 
pressure, identifying the intercept as the limit. 

State Functions 

Values of a small set of state variables suffice to specify the equilibrium state of a 
macroscopic system. All other state variables must be dependent variables whose values 
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In this example we have used the factor-label method of  converting the units in which a 
quantity is expressed in order to obtain consistent units. It is important to write the unit 
as well as the numerical part of  any value when applying this method. See almost any 
general chemistry textbook for a review of  the method. 

*Exercise 1.4 
If pressure is measured in atmospheres (atm) and volume is measured in liters (L), the value of the 
gas constant R is equal to 0.08206 L atm K -1 mo1-1. 
a. Find the volume of 2.000 mol of an ideal gas at a temperature of 298.15 K and a pressure of 

0.500 atm. 
b. Find the pressure of a sample of 1.000mol of an ideal gas at a volume of 20.00 L and a 

temperature of 500.0 K. 

Exercise 1.4 illustrates the fact that various different sets of  three variables can be 
chosen to specify the state of  a fluid system. If n, T, and P are chosen, then V is a 
dependent variable. If n, F, and T are chosen, then P is a dependent variable. 
Furthermore, we assert (to be shown later) that other dependent variables such as the 
energy are functions of  the same three variables. 

Microscopic States 
The situation is similar with microscopic states. If the system obeys classical 
mechanics, the state of  the system is specified by the values of  the positions and 
velocities of  all particles, Consider a monatomic gas containing N atoms of  a single 
element. If  we can ignore electronic energy, the kinetic energy ~ is: 

(1.4-1) 
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If vix is the x component of  the velocity of the ith particle, with similar symbols for the y 
and z components, 

2 1) 2 + vZz (1.4-2) O 2 - - V i x  + 

so that we can consider the kinetic energy to be a function of the velocity components: 

= J{'(Vlx, Vly, Vlz, v2=, V2y, V2z . . . . .  VNx, VNy, VNz) (1.4-3) 

The m o m e n t u m  is defined as the mass times the velocity, and is denoted by p: 

The potential  energy ~ is defined so that a velocity-independent force F i o n  particle 
number i can be obtained from its partial derivatives, as in Eq. (D-6) of  Appendix D: 

F i x _ _  ( a x ~ )  , Fiy - _ (a_~y~/) , F i z - -  - (0~z~/) (1.4-6) 

where Fix is the x component of  the force F;, etc. The potential energy ~U is a function 
of the positions of the particles of the system: 

~/" = ~/(Xl, Yl, Zl, x2, Y2, 22 . . . . .  XN,  YN, ZN) = ~t/~(q) (1.4-7) 

where the symbol q is an abbreviation for the coordinates of all particles in the system. 
An important property of the potential energy can be seen by inspection of Eq. 

(1.4-6): If any constant is added to the value of ~r, the forces are unchanged, since the 
derivative of a constant is equal to zero. Since the forces are the only physically 
meaningful effects of  the potential energy, we state the fact: An arbitrary constant can 
be added to a potent ial  energy without any phys ical  effect. 

The acceleration due to gravity at the 
surface of the earth depends slightly 
on latitude. We use the value 
9.80 m s -2, which applies near 38 ~ of 
latitude, the latitude of Washington 
D.C. and San Francisco, California. 

*Exercise 1.5 
Near the surface of the earth, the gravitational potential energy of an object of mass m is given by 

"ff"g = mgz (1.4-8) 

where g is the acceleration due to gravity, equal to 9.80 rn s -z, and z is the height of the object 
(the coordinate in the vertical direction). Using Eq. (1.4-6), find the gravitational force on an 
object with mass 1.000 kg near the surface of the earth. Show that this force is independent of 
whether the height is measured as the altitude above sea level or as the height above some other 
position and that different choices of the position at which z = 0 correspond to adding different 
constants to the potential energy. 

If we exclude the rest-mass energy, the total energy of a mechanical system is the 
sum of the kinetic energy and the potential energy: 

E = X + ~/~ (1.4-9) 
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Since J(~ is determined by the velocities of the molecules and ~U is determined by the 
positions of the molecules, the total energy E is a function of positions and velocities of 
the particles, and is therefore a state function of the microscopic state. We write 

E = E(v, q) (1.4-10) 

where we use the letter v without a subscript as an abbreviation for all of the velocities 
of particles in the system. We can also write 

E = E(p ,  q) (1.4-11) 

where we use the letter p without a subscript as an abbreviation for all of the momenta 
of particles in the system. 

The Macroscopic State 
Now consider the macroscopic state of a system of many molecules. The energy of the 
system is a macroscopic variable as well as a mechanical variable. We will discuss the 
discovery of this fact by Joule, Rumford, and others when we discuss the first law of 
thermodynamics in Chapter 3. The fact that the energy can be considered to be a 
function of the many positions and velocities of the molecules and can alternatively be 
considered to be a function of a few variables like the volume, pressure, and 
temperature will be discussed in Chapters 10 and 21. 

The kinetic energy of the motion of the system's center of mass is a macroscopic 
variable, as is the gravitational potential energy of the system. If we denote the mass 
of the entire system by M, the vertical coordinate of its center of mass by Z c, and 
the velocity of the center of mass by Vc, we write an equation defining the internal 
energy U: 

E - �89 2 + MgZ c + U (1.4-12) 

When we discuss thermodynamics, we will usually assume that Z c remains fixed and 
that the center of the mass of the system is stationary, so that the internal energy is the 
only contribution to the energy that we need to discuss. 

Since we have asserted that the state of a fluid system containing only one substance 
is specified by only three variables and since the total energy is a state function, the 
internal energy is also a state function depending on variables such as the temperature, 
the volume, the pressure, the amount of substance, etc.: 

U = U(T,  V, n) (1.4-13) 

o r  

U = U(T,  P, n) (1.4-14) 

etc. The internal energy consists of molecular kinetic and potential energy when viewed 
microscopically, but is a state function of macroscopic variables when viewed macro- 
scopically. 

The Relationship between Macrostates 
and Microstates 

The macroscopic and microscopic states of a given macroscopic system are not 
independent. For example, the value of the internal energy, U, a macroscopic state 
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variable, is determined by the positions and velocities of  the molecules of the system, 
which specify the microscopic state. We assert a general relationship: I f  the microscopic 
state is known, the macroscopic state is determined. However, the reverse is not true. 
Many different sets of positions and velocities of the molecules of a macroscopic 
system can correspond to the same energy. We assert: I f  the macroscopic state is known, 
many different microscopic states are possible. For example, if a fluid system is at 
macroscopic equilibrium, its macrostate does not change over a period of time. 
However, since the molecules are moving, the microstate changes very rapidly, and 
the system passes through a very large number of microstates without changing the 
macroscopic state. The equilibrium value of a macroscopic variable must correspond to 
an average of the appropriate microscopic variable over these many microstates. 

Another argument for associating a macroscopic state with an average over micro- 
scopic states is the fact that macroscopic variables are measured with measuring 
instruments such as thermometers, manometers, etc. Such instruments always require a 
certain length of time to respond to a change in the measured variable. During this 
"response time" the system must pass through many microscopic states, and the 
measured value of the macroscopic variable must correspond to an average over all of 
the microscopic states that the system occupied during the response time. 

Averaging Procedures and Probability Distributions 
There are several kinds of averages. The mean is the most commonly used type of 
average, and is commonly meant when one speaks of averages. The median of a set is a 
value such that half of the members of the set are smaller than the median and half are 
larger. The mode of a set is the most commonly occurring value in the set. 

If we have a set of numbers, w 1 , w2, w3, w4 . . . . .  WN, the mean of this set is defined 
to be 

(1.5-1) 

Assume now that some of the values of w are equal. We arrange the members of our 
set so that all of the distinct values are at the beginning of the set, with wl, w2 . . . . .  wM 
all different in value from each other. Every remaining member of the set will be equal 
to one or another of the first M members. Let N i be the total number of members of the 
set equal to w i. The mean can now be written as a sum over only the distinct members 
of the set 

(1.5-2) 

We must still divide by N, not by M, to get the correct mean value. There are fewer 
terms in this sum than in the sum of Eq. (1.5-1), unless every N i equals unity, but the 
mean value is unchanged. The formula of Eq. (1.5-2) can often enable us to average a 
large set of values conveniently. 

We define 

Ni (1.5-3) 
P i =  N 
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*Exercise 1.6 
A quiz was given to a class of 50 students. The scores were as follows: 

Score Number of Students 

100 5 
90 8 
80 16 
70 17 
60 3 
50 2 

Find the mean score on the quiz without taking a sum of 50 terms. 

We can also get the mean of  a function of  our values. If  h(w) is some function of  w, 

its mean value is 

(1.5-6) 

*Exercise 1.7 
For the quiz scores in Exercise 1.6, find the mean of the squares of the scores, 

M 

<w~l = ~2p~w~ 
i=1 

and the square root of this mean, called the root-mean-square score. 

The Probability Distribution for Molecular States 
Since we must  average over very many  microscopic states, we require a probabil i ty 

distribution for microscopic states of  a system. Assuming that classical mechanics  is an 

adequate approximation, the microscopic states of  the entire system can be specified by 

specifying the positions and velocities of  the individual molecules.  In a dilute gas, the 
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molecules are relatively far apart and the forces between them are negligible. In this 
case the state of one molecule is independent of the states of  the other molecules. 

For a system of independent molecules, we can average over the microstates of the 
system by averaging over the mechanical states of the individual molecules. However, 
the average over molecular states is not necessarily an average in which each molecular 
state occurs with equal probability. We now seek a probability distribution for these 
molecular states. We make two assumptions that will determine the mathematical form 
of the molecular probability distribution: 

1. The probability of  a molecular state depends only on the energy of  the molecular 
state. 

2. The same probability distribution applies for all kinds of  molecules. 

These assumptions are reasonable, but we must examine the agreement of their 
consequences with experiment. 

Let p(e) be the probability that a molecular state of energy e will occur for a 
randomly chosen molecule. From the first assumption, p will depend only on e. From 
the second assumption, there is only one function p for all types of molecules. 

Consider two molecules, identified as molecule 1 and molecule 2, which will be 
treated as though they were a larger molecule. Its probability distribution P depends on 
e, the energy of the pair of  particles, which is the sum of the energies of the two 
particles: 

P = P(e) = P(gl  -+- e2) (1.5-7) 

If the molecules do not interact with each other, they are independent. We apply a fact 
of probability theory: The probability of  the occurrence of  two independent events is the 
product of  the probabilities of  the two events. Therefore, 

P(e) = p(e 1 )p(e2) (1.5-8) 

Only the exponential function satisfies Eq. (1.5-8), as we will now show. 
Differentiate Eq. (1.5-8) with respect to e l, treating 8 2 as a constant: 

OP-- (~--1)P(e2)-- 
0% 1 

(1.5-9) 

By the chain rule of differentiation, the left side of this equation is 

(1.5-10) 

For more information on the chain rule and other identities involving derivatives, see 
Appendix B. We substitute this expression into Eq. (1.5-9) and divide by P: 

1 dP__ 1 dp (1.5-11) 
P(e) de p(el) de 1 

An analogous equation can be written by differentiating Eq. (1.5-8) with respect to e 2 
instead of e 1 . The left-hand sides of the two equations are identical, so that 

1 dp 1 d_P (1.5-12) 
p(el) del p(e2) de 2 

In this equation, the variables e 1 and 8 2 are separated. This statement means that e 1 
occurs only in one term and e 2 occurs only in the other term. Since they are independent 
variables, we can keep 8 2 fixed while we allow e 1 to vary. While e 2 is held fixed, the 



1.5 The Relationship between Macrostates and Microstates 1,5 

right-hand side of the equation is fixed, and the left-hand side must be a constant 
function of e 1. A similar argument applies to the right-hand side. Each side of the 
equation must equal a constant, which we denote by c: 

1 dp 
= c  (1.5-13) 

P(el) de1 

Multiplying this equation by de 1 and integrating, 

ln(p) -- ce 1 4- A (1.5-14) 

where A is a constant of integration. Taking antilogarithms, 

p(el)  -- eAe C~1 o( e c~ (1.5-15) 

The symbol oc means "is proportional to." For now, we omit the evaluation of A and 
write the proportionality instead of the equality. 

We must determine what the parameter c is. We will show in Chapter 21 that 

1 
c = (1.5-16) 

kBr 

where ks is Boltzmann's constant and where T is the absolute (kelvin) temperature. 
The probability distribution for molecular states in a dilute gas is thus 

p(e) o( e -~/kB r (1.5-17) 

This probability distribution is called the Boltzmann distribution.  
The Boltzmann probability distribution has a number of important properties: 

1. States o f  higher energy are less probable than states o f  lower energy. 
2. At higher temperatures, the difference in population between states o f  high energy 

and states o f  low energy decreases, until as T approaches infinity, all states 

approach equal probability. 
3. As T approaches zero on the kelvin scale, only the states o f  lowest energy are 

populated. 

We have assumed that the molecules of a gas do not interact. In this case, the energy 
of a molecule consists of kinetic energy and a potential energy that depends only on the 
position of the one molecule: 

e -- JU + ~U = �89 2 + ~U(x,y,z)  (1.5-18) 

Near the surface of the earth, the gravitational potential energy depends only on the 
vertical coordinate z: 

r - mgz (1.5-19) 

For a small gaseous system, the molecules are at approximately the same altitude and 
only the kinetic energy needs to be considered. The coordinate z can be measured from 
any chosen origin, so that adding a constant to the potential energy has no physical 
effect. If If" is constant, you can choose that constant so that ~ = 0. 

Figure 1.2 shows the Boltzmann probability distribution for a range of molecular 
energies and for three different temperatures, 100 K, 300 K, and 1500 K. The prob- 
ability of a state of e = 0 is arbitrarily set equal to 1 in this figure. We will find in 
Chapters 10 and 21 that the average kinetic energy of molecules of a monatomic gas is 
equal to 3kBT/2,  and is independent of the mass of the molecules. The value of this 
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*Exercise 1.8 
The altitude of Pike's Peak is 14110i~. Estimate the barometric pressure on Pike's Peak on a 
winter day when the temperature is -15 ~ 

Processes 

A process is an occurrence that changes the state of a system. Since we identified 
microscopic states and macroscopic states, we identify microscopic and macroscopic 

processes. 

Microscopic (Mechanical) Processes 
Consider first the case that classical mechanics is an adequate approximation for the 
motions of atoms or molecules. If the system is a single particle and if the force on it is 
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determined by its position, Eq. (1.2-2) can be solved to give the position of the particle 
as a function of time, and its velocity can be derived from the time dependence of its 
position. It constitutes an equation of motion for the particle. If the system consists of 
two interacting particles, their combined equation of motion can be solved, but the 
equations of motion for three or more particles cannot be solved exactly. Considerable 
research has been carried out on the numerical simulation of classical equations of 
motion for systems of several hundred particles, and useful results have been obtained. 
See Chapter 22. 
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*Exercise 1.9 
Assume that a particle of mass m moves only in the z direction and is subject to a constant force 
given by F z = rag. If the initial position of the particle is z (0 ) -  0 and its initial velocity is 
vz(O ) = 0, solve its equation of motion, finding z and v z as functions of time. Hint: This exercise 
can be solved by carrying out two integrations, as in the previous example. 

Reversible and Irreversible Macroscopic Processes 
A macroscopic process changes the macroscopic state of a system. The two principal 
classes of macroscopic processes are reversible and irreversible processes. A reversible 
process is one that can at any time be reversed in direction by an infinitesimal change in 
the surroundings. Every process has a driving force that causes it to proceed. For 
example, a temperature difference is the driving force for a flow of heat. The driving 
force for a reversible process must be infinitesimal in magnitude. For example, if heat is 
flowing reversibly from a system to its surroundings, the temperatures of the system and 
the surroundings can differ only infinitesimally, since an infinitesimal change in the 
temperature of the surroundings must be capable of reversing the direction of heat flow. 
A process is faster for larger magnitudes of its driving force, so a reversible process 
must occur infinitely slowly, and the system has time to relax to equilibrium at each 
stage of the process. During a reversible process, the system passes through a sequence 
of equilibrium states. 

The system is not required to remain in equilibrium states during an irreversible 
process, and the process can occur in a finite time. In Chapters 3 and 4, we will discuss 
irreversible processes such that the system is in an equilibrium state or metastable state 
when the process begins and is in an equilibrium state after the process ends. In Chapter 
11 we will discuss transport processes, an important class of irreversible processes. 

Summary of the Chapter 

The state of a system is the numerical specification of the circumstance in which it is 
found. There are two important kinds of states of macroscopic systems. The first is the 
macroscopic state, which concerns only variables pertaining to the system as a whole. 
The second type of state is the microscopic state, which pertains to the mechanical 
variables of individual molecules. 

The equilibrium macroscopic state of a one-phase fluid system of one component is 
specified by the values of three independent state variables. All other macroscopic state 
variables are dependent variables, with values given by mathematical functions of the 
independent variables. 

If the microscopic state of a macroscopic system is specified, the macroscopic state is 
completely determined. Many microscopic states can correspond to a single macro- 
scopic state, and a macroscopic state can be represented as an average over very many 
microscopic states of the system. 

Processes are the means by which the state of the system changes. Microscopic 
processes are governed by Newton's second law if classical mechanics is an adequate 
approximation. The two principal kinds of macroscopic processes are reversible 
processes and irreversible processes. The direction of a reversible process can be 
changed by an infinitesimal change in the surroundings. The system passes through 
equilibrium states during a reversible process. 
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1. In a simple one-phase fluid system of one substance, three variables 
suffice to specify the macroscopic equilibrium state of the system. 
At least one of the variables must be an extensive variable. 

2. The intensive state, which includes only intensive variables, is specified 
by only two variables in the case of a simple one-phase fluid system 
of one substance. 

3. The language of mathematics is used to describe the macroscopic 
equilibrium properties of systems. 

4. Nonideal gases and liquids are described mathematically by various 
equations of state. 

5. The coexistence of phases can be described mathematically. 

6. The liquid-gas coexistence curve terminates at the critical point, beyond 
which there is no distinction between liquid and gas phases. 

7. The law of corresponding states asserts that in terms of reduced 
variables, all substances obey the same equation of state. 
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In Chapter 1 we introduced the idea that the state of a system is specified by the values 
of a set of independent variables and that other variables are dependent variables whose 
values are given by mathematical functions of the independent variables. A mathema- 
tical function is a rule that delivers a value for a dependent variable when values of one 
or more independent variables are specified. It can be represented in various ways: by a 
formula, by a graph, or by a table with two or more columns of values. 

A dilute gas is one that is adequately described by the ideal gas law. If you have a 
dilute gas at equilibrium and if you choose values for n (the amount of substance in 
moles), T (the absolute temperature), and P (the pressure) for the system, the nature of 
the system dictates the value of V, which can be calculated from the ideal gas law 
contained in Eq. (1.2-1): 

nRT 
V = (2.1-1) 

P 

We could also consider n, T, and V to be independent variables so that P is a dependent 
variable: 

nRT 
P = (2.1-2) 

V 

The ideal gas law illustrates the fact that different choices can be made for the 
independent variables that specify the state of a system. Not only can P be expressed as 
a function of T, V, and n, but V can be expressed as a function of T, P, and n, and so on. 

For any fluid system at equilibrium, whether it is a dilute gas or not, P is some 
mathematical function of T, V, and n, denoted by 

P - f ( T ,  V, n) (2.1-3) 

The pressure P is the dependent variable, and there are three independent variables" T, V, 
and n. The letterfstands for the functional relationship while the letter P stands for the 
pressure. Such a functional relation is called an equation of state. If a system is not a 
dilute gas, Eq. (2.1-3) would represent a different function than that of Eq. (2.1-2). 

A formula such as that of Eq. (2.1-2) is not the only way to represent a function. 
Figure 2.1 a shows a set of graphical curves that represent the dependence of P on V for 
an ideal gas, for a fixed value of n (1.000 mol) and for several fixed values of T. Figure 
2. l b shows a perspective view of a graphical surface in three dimensions that represents 
the dependence of P on Vand on T for a fixed value of n (1.000 mol). Just as the height 
of a curve in Figure 2. l a gives the value of P for a particular value of V, the height of the 
surface in Figure 2.1 b gives the value of P for a particular value of T and a particular 
value of V. 

Instead of the notation of Eq. (2.1-3), chemists usually write 

P - P(T, V, n) (2.1-4) 

o r  

V - V(T, P, n) (2.1-5) 

using the same letter for the function and for the dependent variable, even if we use a 
different set of independent variables. Chemists also use the same letter P to represent 
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the function delivering a value of  P, no matter what independent variables are chosen 
and whatever representation of  the function is used. 

*Exercise 2.1 
Assume that the volume of a liquid system is a linearly decreasing function of P, is a linearly 
increasing function of T, and is proportional to n. Write a formula expressing this functional 
relationship using arbitrary symbols for constants and using the symbol V 0 for the volume at 
some reference temperature T 0, some reference pressure P0, and some reference amount of 
substance n o . 

Equilibrium Macroscopic States and State Variables 
In addition to P, V, T, and n, there are a number of  other variables that depend only on 
the equilibrium state of  the system. We call these variables state variables or state 
functions. They must also be mathematical functions of  the independent variables used 
to specify the state of  the system. One of  the most important is the thermodynamic 
energy or intemal energy, U, introduced but not defined in Chapter 1. We will use the 
intemal energy now as an example of  a macroscopic state variable and will define it and 
study its properties in Chapter 3. Just as P is a function of  T, V, and n, or V is a function 
of  T, P, and n, we assume that U is also a function of  three independent variables. 

There are two principal classes of  macroscopic variables: extensive variables are 
proportional to the size of  the system, while intensive variables are independent of  the 
size of  the system. For example, U, V, n, and m (the mass of  the system) are extensive 
variables, while P and T are intensive variables. One test to determine whether a 
variable is extensive or intensive is to imagine combining a given system with a replica 
of  that system, keeping P and T fixed. Any variable that has twice the value for the 
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We will denote any molar quantity by a 
subscript m. Some authors use a 
different notation and denote the molar 
volume by ( /or  V, etc. The notation I/ 
was used in the first edition of this 
book. 

combined system as for the original system is extensive, and any variable that is 
unchanged is intensive. The quotient of two extensive variables is an intensive variable. 
Examples are the density, p = m/V, the molar volume, Vm = V/n, and the molar 
intemal energy, Um= U/n. 

We now make the assertion, which we take as a summary and generalization of 
experimental fact: All equilibrium macroscopic state variables of a one-phase fluid 
system of one substance are mathematical functions of three independent variables, at 
least one of which must be extensive. Equivalently, the equilibrium macroscopic state of 
a one-component one-phase fluid system is specified by giving the values of three 
macroscopic variables, of which at least one must be extensive. One independent 
variable must be extensive because extensive variables cannot be functions only of 
intensive variables. The size of the system could be changed without changing the value 
of any intensive variable, but this must change the values of extensive variables. If two 
one-component one-phase fluid systems containing the same substance are at equili- 
brium and have the same values of three macroscopic variables (at least one of which is 
extensive), then they must have the same values of all other equilibrium macroscopic 
variables. They are in the same macroscopic state. 

One-phase fluid systems that contain several substances have an additional indepen- 
dent variable for each substance beyond the first substance, so that the total number of 
independent variables at equilibrium is c + 2, where c is the number of independent 
substances (called components). We discuss the definition of a component in Chapter 6, 
but now consider it to be a substance whose amount can be varied independently of the 
amounts of the other substances. A system with more than one phase requires more 
variables to specify its state. A one-phase system whose equilibrium state variables are 
functions of c + 2 variables is called a simple system. Fluid (liquid or gas) systems 
and strain-free solid systems are simple systems. A rubber band or a coil spring is not 
a simple system, since its length can be an additional independent variable. An 
electrochemical cell is another example of a nonsimple system. 

For a simple one-substance one-phase system, we can write 

o r  

U - U(T, V, n) (2.1-6) 

U - U(T, P, n) (2.1-7) 

We do not always know what the particular functions are that such equations represent, 
but we can sometimes get useful information without knowing the function, using 
methods of calculus and measured values of derivatives. 

Some Variables Related to Partial Derivatives 

A function of several independent variables has several derivatives. For example, the 
derivative of the intemal energy U with respect to the temperature, considering U to be 
a function of T, P, and n, is denoted by (OU/OT)p,n. The subscripts indicate that P and n 
are held fixed (treated as constants) when the differentiation is performed. This kind of 
derivative is called a partial derivative. There can be other derivatives of U with 
respect to T. The derivative of U with respect to the temperature, considering U to be a 
function of T, V, and n, is denoted by (OU/OT)v,,. The subscripts indicate that Vand n 
are treated as constants when carrying out the differentiation. The two partial 
derivatives, (OU/OT)p,, and (OU/OT)v,n, are not identical and can have different 
values. Some facts about the calculus of functions of several variables are presented 
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in Appendix B, and Eq. (B-7) of Appendix B shows the relationship between two such 
derivatives. 

A commonly measured quantity that is related to a partial derivative is the 
isothermal compressibility ~r" 

(2.1-8) 

The factor 1/V is included to make the compressibility an intensive variable. The fact 
that T and n are fixed in the differentiation means that measurements of the isothermal 
compressibility are taken on a closed system whose temperature is kept constant. It is 
found experimentally that the compressibility of any system is positive: every system 
decreases its volume when the pressure on it is increased. 

The coefficient of thermal expansion ~ is defined by 

(2.1-9) 

Like the compressibility, the coefficient of thermal expansion is an intensive quantity. 
The coefficient of thermal expansion is usually positive. However, water has a negative 
coefficient of thermal expansion between 0~ and 3.98~ 

A few values of isothermal compressibilities for pure liquids at several temperatures 
and at two different pressures are given in Table A. 1 of Appendix A. The values of the 
coefficient of thermal expansion for several substances are listed in Table A.2. Each 
value applies only to a single temperature and a single pressure, but the dependence on 
temperature and pressure is usually not large and these values can be used over fairly 
wide ranges of temperature and pressure. 

Real Liquids and Solids 

For ordinary calculations, a sample of a liquid or solid can be treated as though its 
volume is constant. If higher accuracy is needed, values of isothermal compressibilities 
and coefficients of thermal expansion can be used in approximate calculations such as 
those of the next two examples. 
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*Exercise 2.2 
a. Find expressions for the isothermal compressibility and coefficient of thermal expansion for an 

ideal gas. 
b. Find the value of the isothermal compressibility in atm -1 , in bar -1, and in Pa -1 for an ideal 

gas at 298.15 K and 1.000 atm. Find the ratio of this value to that of liquid water at the same 
temperature and pressure, using the value from Table A.1. 

c. Find the value of the coefficient of thermal expansion of an ideal gas at 20~ and 1.000 atm. 
Find the ratio of this value to that of liquid water at the same temperature and pressure, using 
the value from Table A.2. 

In addition to the coefficient of thermal expansion, there is a quantity called the 
coefficient of l inear thermal  expansion, defined by 

I(OL) (definition) (2.2-3) 

where L is the length of the object. This coefficient is usually used for solids, whereas 
the coefficient of thermal expansion in Eq. (2.1-9) is used more often for liquids. 
Unfortunately, the symbol ~ is often used without the subscript L for the coefficient of 
linear thermal expansion, and the name "coefficient of thermal expansion" is also 
sometimes used for it. Since the units of both coefficients are the same (reciprocal 
temperature) there is opportunity for confusion between them. 
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The linear coefficient is equal to one-third of the coefficient of thermal expansion, as 
can be seen from the following. Subject a cubical object of length L to an infinitesimal 
change in temperature, dT. The new length of the object is 

L( T + dT) - L(T) + - ~  P dT = L(T)[1 + c~ L dT] 

The volume of the object is equal to L 3, so 

V(T + dT) = L(T)3[1 + 0~ L dT] 3 -- L(T)3[1 + 30~ L dT + 3(c~ L dT) 2 + (c~ L dT) 3] 

Since dT is small, the last two terms are insignificant: 

V(T + dT) - L(T)3[1 + 3c~ L dT] (2.2-4) 

The volume at temperature T + dT is given by 

V(T + dT) - V(T) + - ~  dT - V(T)[ I+ccdT]  (2.2-5) 

Comparison of Eq. (2.2-5) with Eq. (2.2-4) shows that 

c~ = 3~ L (2.5-6) 

*Exercise 2.3 
Find the volume of the volumetric flask in Example 2.3 at 100.0~ 

Most liquids have a nearly constant volume under ordinary conditions, as in the 
examples just presented. The volumes of most solids are even more nearly constant. We 
therefore recommend the following practice for making ordinary calculations: Unless 

there is some reason to do otherwise, treat liquids and solids as though they had f ixed 
volumes. This practice will give adequate accuracy for most purposes. 

*Exercise 2.4 
The compressibility of acetone at 20~ is 12.39 • 10  - 1 ~  Pa -1, and its density is 0.7899 g c m  - 3  a t  

1.000 bar. Find the molar volume of acetone at this temperature and a pressure of 1.000 bar and at 
a pressure of 100.0 bar. 
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The van der Waals equation of state is 
named for Johannes Diderik van der 
Waals, 1837-1923, a Dutch physicist 
who received the 1910 Nobel Prize in 
physics for his work on equations of 
state. 

Although most gases obey the ideal gas law to an accuracy of about one percent when 

near room temperature and one atmosphere, at pressures around 100 atm one must 

usually seek a better description than the ideal gas law. Several equations of state have 

been devised to describe the volumetric behavior (relation of pressure, temperature, and 

volume) of real gases. The van der Waals equat ion of state describes real gases more 
accurately than does the ideal gas law: 

an2~ 
P +--~-T](V- nb) - nRT (2.3-~) 

The symbols a and b represent parameters that have different constant values for 
different substances. Table A.3 in Appendix A gives values for van der Waals 

parameters for several substances. 

*Exercise 2.5 
a. Show that in the limit that V m becomes large, the van der Waals equation becomes identical to 

the ideal gas law. 
b. Find the pressure of 1.000mol of nitrogen at a volume of 24.466 L and a temperature of 

298.15 K using the van der Waals equation of state. Find the percent difference from the 
pressure of an ideal gas under the same conditions. 

c. Find the pressure of 1.000mol of nitrogen at a volume of 0.500 L and a temperature of 
298.15 K using the van der Waals equation of state. Find the percent difference from the 
pressure of an ideal gas under the same conditions. 
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Another equation of state is the virial equation of state: 

PVm 
R T  

B2 B3 B4 
-- 1 +~mm +~m2 +~m3 + ' ' "  

(2.3-3) 

which is a power series in the independent variable 1/V m. The B coefficients are called 
virial coefficients. The first virial coefficient, B 1, is equal to unity. The other virial 
coefficients must be taken as functions of temperature in order to obtain an adequate 
representation. Table A.4 gives values of the second virial coefficient for several gases 
at several temperatures. An equation of state that is a power series in P is called the 
pressure virial equation of state: 

P V  m = R T  + A2P + A3 P2 + A4 P3 + . . .  (2.3-4) 

The coefficients A2, A 3, etc., are called pressure virial coefficients. It can be shown 
that A 2 and B 2 are equal. 

Exercise 2.6 
a. Show that A 2 = B 2. Proceed by solving Eq. (2.3-3) for P and substituting this expression for 

each P in Eq. (2.3-4). Then use the fact that the coefficient of any power of 1 / Vm must be the 
same on both sides of the equation. 

b. Show that A3 - -  B3 - B2. 

Table 2.1 displays several additional equations of state. The parameters in these 
equations of state are constants and values of parameters for several gases are to be 
found in Table A.3. The parameters for a given gas do not necessarily have the same 
values in different equations even if the same letters are used. The accuracy of the two- 
parameter equations of state has been evaluated. 1 The Redlich-Kwong equation seemed 
to perform better than the other two-parameter equations, with the van der Waals 
equation coming in second best. The Gibbons-Laughton modification of the Redlich- 
Kwong equation (with four parameters) is more accurate than the two-parameter 
equations. 

Graphical Presentation of Volumetric Data for Gases 

Graphs of the compression factor, Z, are sometimes used to describe the behavior of 
gases: 

(2.3-5) 

Some older books use a different name, the "compressibility factor." We avoid this 
name since it might be confused with the compressibility, defined in Eq. (2.1-8). Figure 
2.2 shows the compression factor for nitrogen gas at several temperatures. At fairly low 
temperatures, the compression factor decreases below unity for moderate pressures but 
rises above unity at higher pressure. At higher temperatures the compression factor is 
larger than unity for all pressures. The temperature at which the curve has zero slope at 
zero pressure is called the Boyle temperature. This is the temperature at which the gas 
most nearly approaches ideality for moderate pressures. 

1 j. B. Ott, J. R. Goates, and H. T. Hall, Jr., J. Chem. Educ., 48, 515 (1971); M. W. Kemp, R. E. Thompson, 
and D. J. Zigrang, J. Chem. Educ., 52, 802 (1975). 



:30 2 The Equilibrium Macroscopic States of Gases and Liquids 

The Berthelot equation of state: 

The Dieterici equation of state 

P -Jr- (V m - b)  - R T  

p e a / V m R V ( v  m - b)  - R T  

The Redlich-Kwong equation of state 

R T  a 
p ~ ~ m  

Vm -- b T1/2Vm(Vm + b) 

The Soave modification of the Redlich-Kwong equation of state 

R T  acz(T)  
P =  

Vm -- b Vm(Vm + b) 

where ~ ( T ) -  {1 + m [1 -  ( T / T c ) I / 2 ] }  2, where m is a parameter and where Tr is the critical 
temperature. See the article by Soave for values of the parameter m. 

The Gibbons-Laughton modification of the Redlich-Kwong-Soave equation" The equation is the 
same as the Soave modification, but a(T) is 

~ ( T ) - - I + X  ~ - 1  + Y  ~ -1  

where X and Y are parameters. See the article by Gibbons and Laughton for values of these 
parameters. 
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For a van der Waals gas, the compression factor is 

Z =  P V m - -  Vm - a _- 1 a y  (2.3-6) 
R T  V m - b R T V  m 1 - b y  R T  

where y = 1/V m. The variable y is proportional to the pressure at constant temperature 
if the pressure is small enough. Since a and b are both positive for all known gases, the 
first term on the right-hand side of  Eq. (2.3-6) gives a positive contribution to Z, and the 
second term gives a negative contribution. The parameter b describes the effect of  
repulsive intermolecular forces, which make Z larger than it would be for an ideal gas, 
and the parameter a describes the effect of  attractive intermolecular forces, which make 
Z smaller than it would be for an ideal gas. The first term is independent of  the 
temperature, and the second term is inversely proportional to the temperature. For 
higher temperatures, the second term is relatively unimportant, and the compression 
factor will exceed unity for all values of  y. For temperatures below the Boyle 
temperature, the second term becomes relatively more important, and a value of  Z 
less than unity will occur i fy  is not too large. For large values of  y, the denominator of  
the first term is small, making this term dominant even for lower temperatures. For any 
temperature below the Boyle temperature, there will thus be a nonzero value of  the 
pressure at which Z = 1. 

*Exercise 2.7 
a. Find an expression for the Boyle temperature of a gas obeying the Dieterici equation of state. 
b. Find the value of the Boyle temperature of nitrogen according to the Dieterici equation of 

state. 
e. Find the expression for the molar volume at which Z = 1 for the van der Waals gas for a given 

temperature below the Boyle temperature. Hint: Find the nonzero value ofy in Eq. (2.3-6) that 
makes Z -- 1. 

d. Find the value of the molar volume and the pressure at which Z = 1 for nitrogen at 273.15 K, 
according to the van der Waals equation. 
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Gases are fairly well described by the ideal gas equation of state under ordinary 
conditions. We therefore recommend the following practice for making ordinary 
calculations: Unless there is some reason to do otherwise, treat gases as though they 

were ideal. 

The Coexistence of Phases and the Critical Point 

Transitions from a gaseous state to a liquid state or from a liquid state to a solid state, 
etc., are called phase transitions and the samples of matter in the different states are 
called phases. Such transitions take place abruptly and different phases can coexist. If a 
gas is at a temperature slightly above its condensation temperature at a certain fixed 
pressure, a small decrease in the temperature can produce coexisting liquid and gas 
phases, and a further small decrease in the temperature can produce a single liquid 
phase. Similarly, small increases in the pressure at constant temperature produce the 
same effects. This remarkable behavior seems to be an exception to the general rule that 
in nature small causes have small effects and large causes have large effects. 

We will discuss the thermodynamics of phase equilibria in Chapter 6. It is found 
experimentally and understood thermodynamically that for any pure substance the 
pressure at which any two phases can coexist at equilibrium is a smooth mathematical 
function of the temperature (or equivalently, that the temperature is a smooth function 
of the pressure). Figure 2.3 shows schematic curves representing these functions for a 
typical substance. The curves are called coexistence curves and the figure is called a 
phase diagram. The three curves shown are the solid-gas (sublimation) curve at the 
bottom of the figure, the liquid-gas (vaporization) curve at the upper fight, and the 
solid-liquid (fusion or melting) curve at the upper left. The three curves meet at a point 
called the triple point. This point corresponds to the unique value of the pressure and 
the unique value of the temperature at which all three phases can coexist. 

The equilibrium temperature for coexistence of the liquid and solid at a pressure 
equal to one atmosphere is called the normal melting temperature or normal freezing 
temperature, and the equilibrium temperature for coexistence of the liquid and gas 
phases at a pressure equal to one atmosphere is called the normal boiling tempera- 
ture. These temperatures are marked on Figure 2.3. If the triple point happens to lie 
higher in pressure than one atmosphere the substance does not possess a normal 
freezing temperature or a normal boiling temperature, but possesses a normal 
sublimation temperature at which the solid and gas coexist at a pressure equal to 
one atmosphere. Carbon dioxide is such a substance. Its triple point occurs at a pressure 
of 5.112atm and a temperature of 216.55K (-56.60~ and its normal sublimation 
temperature is equal to 194.6 K (-78.5~ Equilibrium liquid carbon dioxide can be 
observed only at pressures greater than 5.112 atm. Another substance that can be 
observed to sublime is iodine. Its sublimation is noticeable because it is colored, but its 
sublimation pressure is less than 1 atm at room temperature. It has a normal melting 
temperature of 113.5~ 

The Critical Point 
There is a remarkable feature in Figure 2.3: the liquid-vapor coexistence curve 
terminates at a point called the critical point. The temperature, molar volume, and 
pressure at this point are called the critical temperature, denoted by T c, the critical 
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molar volume, denoted by Vmc, and the critical pressure, denoted by Pc. These three 
quantities are called the critical constants. Table A.5 gives values of the critical 
constants for several substances. At temperatures higher than the critical temperature 
and pressures higher than the critical pressure, there is no transition between liquid and 
gas phases. It is possible to heat a gas to a temperature higher than the critical 
temperature, to compress it until its density is as large as that of a liquid, and then to 
cool it until it is a liquid without ever having passed through a phase transition. A path 
representing this kind of process is drawn in Figure 2.3. There has been some 
speculation about whether the liquid-solid coexistence curve might also terminate at 
a critical point. Nobody has found such a critical point and some people think that the 
presence of a lattice structure in the solid, which makes it qualitatively different from 
the liquid, makes the existence of such a point impossible. There is no such qualitative 
difference between liquid and gas since both are disordered on the molecular level. 

Fluids at supercritical temperatures are often referred to as gases, but such fluids can 
have liquidlike densities or gaslike densities with no phase transition between these 
densities. At high densities, multicomponent supercritical fluids can even exhibit phase 
separations like those of two immiscible liquids. Some industrial extractions, such as 
decaffeination of coffee, are carried out with supercritical fluids such as carbon dioxide. 
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We now want to describe the pressure of a simple system as a function of T and Vm, 
the molar volume, over the entire three-phase region. Figure 2.4 schematically shows 
the pressure as a function of molar volume for several fixed temperatures in the fluid 
region, with one curve for each fixed temperature. These constant-temperature curves 
are called isotherms. No two isotherms can intersect each other. For temperatures 
above the critical temperature there is only one fluid phase, and the isotherms are 
smooth curves. For subcritical temperatures, the liquid-gas phase transition is repre- 
sented by a horizontal line segment in the isotherm. This line segment is called a tie 
line, and connects the two points representing the molar volumes of the coexisting 
liquid and gas phases. Tie lines are horizontal because the two phases must be at the 
same pressure to be at equilibrium. Aside from the tie line, a subcritical isotherm 
consists of two smooth branches. The liquid branch is nearly vertical since the liquid is 
nearly incompressible, while the gas branch of the curve is similar to the curve for an 
ideal gas. 

As isotherms for subcritical temperatures closer and closer to the critical temperature 
are chosen, the tie lines become shorter and shorter until they shrink to zero length at 
the critical point. The isotherm that passes through the critical point must have a 
horizontal tangent line at the critical point to avoid crossing any tie line. This point on 
the isotherm is an inflection point, with a zero value of (OP/OVm)r and a zero value of 
(oZP/OVZ)r, corresponding to infinite compressibility. 

At the critical point, a fluid exhibits some unusual properties such as strong scattering 
of light and infinite heat capacity, as well as infinite compressibility. If a sample of a 
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pure fluid is confined in a rigid closed container such that the average molar volume is 
equal to that of the critical state and if the temperature is raised through the critical 
value, the meniscus between the liquid and gas phases becomes diffuse and then 
disappears at the critical temperature. At this temperature the liquid and gas phases 
become indistinguishable. Figure 2.5 shows photographs illustrating this behavior in 
carbon dioxide. 2 

The graphs in Figures 2.3 and 2.4 are projections of a single three-dimensional graph 
with the pressure as the dependent variable and the temperature and molar volume as 
the independent variables, as shown schematically in Figure 2.6. (The solid-liquid and 
solid-gas phase transitions are omitted from the diagram.) As shown in Figure 2.6, 
there are only two independent variables required to give the pressure as a dependent 
variable. This is true in general for intensive variables in a one-component fluid system. 
The intensive state of a system is the state so far as only intensive variables are 
concerned. The size of the system is irrelevant. Specification of the intensive state 

2 j. V. Sengers and A. L. Sengers, Chem. Eng. News, 46, 54 (June 10, 1968). 
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requires one fewer independent variable than specification of the full macroscopic state. 
That is, for a one-phase simple system of c components, c + 1 intensive variables are 
independent. 

Several isotherms (intersections of the surface with planes of constant T) are drawn 
on the surface in Figure 2.6. The liquid-gas equilibrium tie lines joining liquid and gas 
states are seen on the tongue-shaped region. When the three-dimensional graph is 
viewed in a direction perpendicular to the T-P plane, each liquid-gas tie line is seen as 
a point, being parallel to the direction of viewing. The set of all of them makes up the 
gas-liquid coexistence curve seen in Figure 2.3. When the three-dimensional graph is 
viewed in a direction perpendicular to the Vm-P plane, Figure 2.4 results. 

Figure 2.7 shows schematically a more complete view of the three-dimensional graph 
of Figure 2.6, including the solid-liquid and solid-gas phase transitions. There are three 
sets of tie lines, as labeled in the figure, corresponding to the three curves in Figure 2.3. 
Since the entire fluid (liquid and gas) surface in Figure 2.6 is connected, it would seem 
possible to obtain an equation of state that would represent the entire surface accurately, 
making it unnecessary to use separate equations of state for the liquid and for the gas. 
Except for the ideal-gas equation, all of the gas-phase equations of state that we have 
discussed yield surfaces that resemble the true surface in the liquid region as well as in 
the gas region, although they do not represent the tie lines. The modified Redlich- 
Kwong-Soave equation of Gibbons and Laughton seems to be fairly accurate in 
representing both the liquid and the gas, and the van der Waals equation is often used to 
give qualitative information. In Chapter 6, we will discuss the behavior of the equations 
of state in the two-phase region, and will discuss the construction of the tie lines. For 
any representation of the equation of state of a fluid, we can find equations that locate 
the critical point. 
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Exercise 2.8 
Solve the simultaneous equations to verify Eq. (2.4-5). One way to proceed is as follows. Obtain 
Eq. (I) by setting the fight-hand side of Eq. (2.4-3) equal to zero, and Eq. (II) by setting the fight- 
hand side of Eq. (2.4-4) equal to zero. Solve Eq. (I) for T and substitute this expression into Eq. 
(II). 

When the values of T c and Vmc are substituted into Eq. (2.3-1), the value of the 
critical pressure for a van der Waals gas is obtained: 

a 

Pc = 27b 2 (2.4-6) 

For a van der Waals gas, the compression factor at the critical point is 

Zc Pc Vmc 3 
= R T  c = ~  = 0.375 (2.4-7) 

E x e r c i s e  2 . 9  

Verify Eqs. (2.4-6) and (2.4-7). 

Equations (2.4-5) and (2.4-6) can be solved for a and b: 

a 3 2 - -  VmcP c = 
9RVmcT c 27R2T 2 

8 64P c 
(2.4-8) 

b - Vmc = RTc  (2.4-9) 
3 8P c 

There are two or three formulas for each parameter, since values for only two variables 
are needed to obtain values for a and b. Since no substance exactly fits the equation, 
different values can result from the different formulas. The most accurate fit is obtained 
using Pc and T c as independent variables since two-parameter equations of state do not 
usually give good values of the critical molar volume. The values of the parameters for 
any two-parameter or three-parameter equation of state can be obtained from critical 
constants. 

Exercise 2.10 
a. Show that for the Dieterici equation of state, 

a a -2 (2.4-10) Vmc - -  2b, Tc = 4 b R '  Pc = - ~ e  

b. Show that for the Dieterici equation of state, Z c - 2 e  - 2  - -  0.27067. 
c. Obtain the formulas giving the Dieterici parameters a and b as functions of Pc and T c. Find the 

values of a and b for nitrogen and compare with the values in Table A.3. 

The parameters a and b in the Redlich-Kwong equation of state can be obtained 
from the relations: 

R 2 T 5 / 2  (21/3_ 1)RT c 
a -- -c b - (2.4-11) 

9 (21 /3 -  1)P c ' 3P c 
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The value of the compression factor at the critical point according to the Redlich- 
Kwong equation of state is 1/3. 

*Exercise 2.11 
Find the values of a and b in the Redlich-Kwong equation of state for nitrogen. 

The Law of Corresponding States 
From Eq. (2.4-7) we see that all substances that obey the van der Waals equation have 
the same value of the compression factor Z at the critical point, Z c -- 0.375. Any two- 
parameter equation of state gives a characteristic constant value of Zc for all substances, 
although the different equations of state do not give the same value, as seen in Exercise 
2.10. The Berthelot equation gives the same value as the van der Waals equation, 0.375. 
The experimental values for many different substances lie between 0.25 and 0.30. 

There is an even greater degree of generality, expressed by an empirical law called 
the Law of Corresponding States: 3 All substances obey the same equation of state in 
terms of  reduced variables. The reduced variables are defined as follows: The reduced 
volume is defined as the ratio of the molar volume to the critical molar volume: 

Vm 
V r = ~ (2 .4 -12 )  

Vmc 

The reduced pressure is defined as the ratio of the pressure to the critical pressure: 

P 
Pr = P-- c (2.4-13) 

and the reduced temperature is defined as the ratio of the temperature to the critical 
temperature" 

T 
Tr = Tcc (2.4-14) 

Using the definitions in Eqs. (2.4-12), (2.4-13), and (2.4-14) and the relations in Eqs. 
(2.4-5) and (2.4-6) we obtain, for a fluid obeying the van der Waals equation of state, 

aPr 8aTr 
P = 27b2, V m - 3b V r, T = 27R-----b 

When these relations are substituted into Eq. (2.3-1), the result is 

(Pr + V @ ) ( V r - 3 )  -8Tr3 (2.4-15) 

Exercise 2.12 
Carry out the algebraic steps to obtain Eq. (2.4-15) 

In Eq. (2.4-15), the parameters a and b have canceled out. The same equation of state 
without adjustable parameters applies to every substance that obeys the van der Waals 
equation of state, if the reduced variables are used instead of P, Vm, and Ii. The van der 

3 Hirschfelder, Curtiss, and Bird, op. cit., p. 235 [see Table 2.1]. 
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Waals equation of state thus conforms to the law of corresponding states. Figure 2.8 is a 
graph of the experimentally measured compression factor of a number of polar and 
nonpolar fluids as a function of reduced pressure at a number of reduced temperatures. 4 
The agreement of the data for different substances with the law of corresponding states 
is better than the agreement of the data with any simple equation of state. 

Exercise 2.13 
All two-parameter equations of state conform to the law of corresponding states. Show this fact 
for the Dieterici equation of state by expressing it in terms of the reduced variables. 

Summary of the Chapter 

The equilibrium macroscopic state of a one-phase simple system of one component is 
specified by the values of three independent state variables. All other macroscopic state 
variables are dependent variables, with values given by mathematical functions of the 
independent variables. 

The volumetric (P-V-T)  behavior of gases and liquids was described. A "calculation 
practice" was introduced. By this practice, gases are treated as ideal unless some 
specific reason exists for a more accurate treatment. Solids and liquids are treated as 

4 G.-J. Su, Ind. Eng. Chem., 38, 803 (1946). 
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loop consists of a curve with a relative maximum and a 
relative minimum. The portion of the curve from the true end 
of the vapor branch to the maximum can represent metastable 
states (supercooled vapor). The portion of the curve from the 
end of the liquid branch to the minimum can also represent 
metastable states (superheated liquid). Find the location of the 
maximum and the minimum. What do you think about the 
portion of the curve between the minimum and the maxi- 
mum? 

e. For many temperatures, the minimum in the "loop" of 
the van der Waals isotherm is at negative values of the 
pressure. Such metastable negative pressures are said to be 
important in bringing water to the top of large trees, since 
pressure of 1.000 atm can raise liquid water to a height of only 
34 ft. What negative pressure would be required to bring 
water to the top of a giant sequoia tree with height 300 ft? 
Find the minimum negative pressure in the van der Waals 
isotherm for a temperature of 25~ 

f. Find the Boyle temperature of water vapor, using the van 
der Waals equation of state. 

g. Draw a graph of the compression factor of water vapor 
as a function of pressure at the Boyle temperature, ranging 
from 0 bar to 500 bar, using the van der Waals equation of 
state. To generate points for plotting, instead of choosing 
equally spaced values of P, it is likely best to choose a set of 
values of Vm, and then to calculate both a value of P and a 
value of Z for each value of V m. 

h. Draw an accurate graph of the compression factor of 
water at the critical temperature, ranging from 0bar to 
500 bar. Use the van der Waals equation of state. Tell how 
this graph relates to the graph of part (b). 

i. Calculate the density of liquid water at a temperature of 
25~ and a pressure of 1000bar, using the method of 

Examples 2.1 and 2.2. The density of liquid water at this 
temperature and 1.000 bar is equal to 0.997296 g mL -1. 

j. Assume that the van der Waals equation of state can be 
used for a liquid. Calculate the molar volume of liquid water 
at 100~ and 1.000atm by the van der Waals equation of 
state. (A cubic equation must be solved. Get a numerical 
approximation to the solution by trial and error or other 
numerical method.) Compare your answer with the correct 
value, 18.798 cm 3 mo1-1. 

2.47. Identify each statement as either true or false. If a 
statement is true only under special circumstances, label it as 
false. 

a. All gases approach ideal behavior at sufficiently low 
pressures. 

b. All gases obey the ideal gas equation of state within 
about 1% under all conditions. 

c. Just as there is a liquid-vapor critical point, there must 
be a liquid-solid critical point. 

d. For every macroscopic state of a system, there must 
correspond many microscopic states. 

e. The equilibrium state of a system is independent of the 
history of the system. 

f. The macroscopic state of a simple one-phase system 
containing one substance is specified by the value of three 
state variables. 

g. Two gaseous systems with the same values of T, P, and n 
can have different volumes. 

h. Negative pressures can occur in metastable systems. 
i. Negative pressures can occur in equilibrium systems. 
j. Above the critical temperature and pressure, there is no 

distinction between the liquid and gaseous phases. 



1. Thermodynamics is a general macroscopic theory of the behavior of 
matter. 

2. Thermodynamics is based on three empirical laws. 

3. The first law of thermodynamics is a version of the law of conservation 
of energy. 

4. A change in U, the thermodynamic energy or internal energy of a 
system, is defined by 

AU = q + w  

where q is an amount of heat transferred to the system and w is an 
amount of work done on the system. 

5. The first law asserts that the internal energy is a state function. 

6. Heat is one way of transferring energy. 

7. Work is another way of transferring energy. 

8. The enthalpy is a variable whose change in a constant-pressure 
process is equal to the amount of heat transferred to the system in the 
process. 
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Thermodynamics arose in the nineteenth century, not only as part of the strivings of 
scientists to understand the physical universe but also as part of the efforts of engineers 
to improve the efficiency of steam engines. This practical interest produced some 
important early advances in thermodynamics, but thermodynamics quickly grew to 
become the accepted general theory of the macroscopic behavior of matter at 
equilibrium. Thermodynamics is an inherently macroscopic theory. It is possible to 
discuss thermodynamics without the concepts of atoms and molecules, and its early 
development in the nineteenth century occurred before the universal acceptance of the 
atomic theory. It also differs from most of the theories of physics and chemistry in that 
it is based on empirical laws, not on unproved assumptions. 

Thermodynamics is closely connected with the macroscopic state of a system, which 
we introduced in Chapter 1. We begin with easily defined and measured equilibrium 
variables such as n, T, V, and P. These variables depend only on the state of the system 
(and not on its history) and are called state variables. These state variables will be 
augmented by two experimental quantities, heat and work, which are not state variables. 
We will proceed to the definition of the thermodynamic energy, which is shown by 
experiment to be a state variable. 

Nicolas Leonard Sadi Carnot, 1796- 
1832, was a French engineer who was 
the first to consider quantitatively the 
interconversion of work and heat, and 
who is credited with founding the 
science of thermodynamics. 

Gaspard de Coriolis, 1792-1843, was 
a French physicist best known for the 
Coriolis force. 

The Definition of Mechanical Work 

The quantitative measurement of work was introduced by Carnot, who defined an 
amount of work as being the height an object is lifted times its weight. This definition 
was extended by Coriolis, who provided the presently used definition of work: The 
amount of  work done on an object equals the force exerted on an object times the 
distance the object is moved in the direction of  the force. Coriolis' definition of work 
becomes the same as that of Carnot if the force on the object is that due to gravity. If the 
force and the displacement of the object are both in the z direction, the work done in an 
infinitesimal displacement is 
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The Work Done on a Closed Fluid System 

Consider a closed fluid system confined in a vertical cylinder fitted with a piston, as 
depicted in Figure 1.1. let an extemal force Fex t be exerted downward on the piston 
(including any force on the piston due to gravity or atmospheric pressure). Since Fex t is 
downward, we assign its value to be negative. Let the height of the piston, z, be changed 
by the infinitesimal amount dz. If the piston moves downward, dz is negative. We 
assume that there is no friction, so that all of the force is transmitted to the system. The 
amount of work done on the system is given by Eq. (3.1-3): 

dw -- Fex t dz (3.1-5) 

We adopt the following convention: A positive value of  w corresponds to work being 
done on the system by the surroundings. A negative value of  w corresponds to work 
being done on the surroundings by the system. Equation (3.1-5) conforms to this 
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convention. If dz is negative and Nex t is negative, then dw is positive, and work is done 
on the system. 

The amount of work done on the surroundings is the negative of the work done on 
the system: 

dwsurr = - d w  (3.1-6) 

In our notation, a quantity without a subscript applies to the system, while a quantity 
applying to the surroundings is labeled with the subscript "surr." If the area of the 
piston is d ,  

Next 
d w - - - ~ - d  d z -  -Pext d dz 

where Pext is defined as the magnitude of the extemal force on the piston divided by its 
area. Since d dz equals dV, we have 

(3.1-7) 

The negative sign in Eq. (3.1-7) comes from the fact that Nex t is negative while Pext is 
defined to be positive. We assert without proof that Eq. (3.1-7) holds for a fluid system 
with any shape, such as a system confined in a balloon or contained in an open beaker. 

A system for which Eq. (3.1-7) holds is called a simple system and the work given 
by Eq. (3.1-7) is called "compression work." A fluid system or a strain-free solid 
system can be considered to be a simple system for most purposes, but if surface 
tension must be included, the work done in creating new surface area must be included 
so that even a fluid system can be a nonsimple system. We discuss surface tension in a 
later chapter and will find that it is usually negligible for liquids and solids and that it is 
always negligible for gases. For the present we neglect surface tension and treat all fluid 
systems as simple systems. A solid system might also have work done on it by bending 
or stretching it and would then not be a simple system. The "stress-strain" work would 
have to be added to the expression in Eq. (3.1-7). For a coil spring or a rubber band, the 
work done on the system is 

dw = -Pext dV + r, dL (3.1-8) 

where z is called the tension and where dL denotes the change in the length of the 
system. Electrochemical cells, which we discuss in Chapter 9, are also nonsimple 
systems. 

*Exercise 3.1 
A sample of a gas is compressed from a volume of 5.00 L to a volume of 1.000 L at a constant 
external pressure of 1.000 atm (101,325 N m-2). Calculate the work done on the system. Explain 
why the result does not depend on the temperature or the amount of gas. 

The three variables T, V, and n can be used to specify the equilibrium state of a simple 
one-phase one-component system. Therefore, the location of a point in a three- 
dimensional space with T, V, and n axes specifies an equilibrium macroscopic state of 
the system. Conversely, an equilibrium macroscopic state specifies the location of a 
point in this space. There is a one-to-one correspondence between an equilibrium state 
and a point in the space. The space is called a state space of the system, and the point 
corresponding to the state of the system is called a state point. Other choices of 
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independent variables can also be made. For example, P, T, and n can be used and a 
space with P, T, and n axes becomes the state space. 

Reversible Processes 

A reversible process is one that can be reversed in direction by an infinitesimal change 
in the surroundings. The force on the piston in the system of Figure 1.1 due to the 
pressure of the system balances the external force since an infinitesimal change in the 
external force must reverse the direction of the process. The system must be at 
equilibrium, the piston must be stationary, and 

Fsy s - P ~ / -  Pext d - - F e x  t ( e q u i l i b r i u m )  (3.1-9) 

o r  
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Some real processes begin with a system in one equilibrium state (or metastable 
state) and end with the system in another equilibrium state, although the system passes 
through nonequilibrium states during the process. This class of real processes can often 
be discussed by comparison with reversible processes having the same initial and final 
states. Thermodynamics has also been extended to include irreversible processes by the 
use of additional assumptions, 1 but we will not discuss this branch of thermodynamics. 

Work Done on an Ideal Gas in a Reversible Process 

For a finite reversible change in volume on a closed system consisting of n moles of an 
ideal gas, we can write the work done as the integral of infinitesimal steps using the 
relation shown in Eq. (3.1-11): 

Wrev lc Wrev --Jc ~ T  
P d V -  - n R  -~ dV (ideal gas, reversible process) 

(3.1-12) 

Since the integrand in this integral depends on T as well as on V, a particular 
dependence of T on V must be specified that corresponds to the way in which the 
process is carried out. This dependence can be represented by a curve in the state space 
with T and V on its axes, and is used in the integrand function to replace T by the 
appropriate functions of V. The letter c below the integral sign indicates that a curve is 
needed to specify this dependence. This kind of integral is called a line integral. 

If the temperature is constant during a process, the process is called isothermal. In a 
reversible isothermal process in an ideal gas, T can be factored out of the integral: 

Jc W r e  v - -  dwre v - -  - 7 -  d V - - n R T  ~ dV 
Vl V1 

1See, for example, S. R. deGroot and P. Mazur, Nonequilibrium Thermodynamics, North Holland, 
Amsterdam, 1962. 
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Exact and Inexact Differentials 

The differential of a state function such as dP is called an exact differential. There is an 
important theorem of mathematics concerning the line integral of an exact differential: 
A line integral of  an exact differential is equal to the function evaluated at the final end 
of  the integration curve minus the function evaluated at the initial end of  the curve. 
Therefore, the line integral of  an exact differential depends only on the end-points, and 
not on the curve connecting them. The integral of dP in part (b) of Example 3.2 is equal 
to the value of P at the end of the process minus the value of P at the beginning of the 
process: 

I dP - A P  - -  P 2  - P1  
C 

A variety of different curves can have the same initial and final points, but the line 
integral of an exact differential depends only on the starting point and the final point 
and is independent of the path between these points. It is said to be path-independent. 
The converse of this theorem is also true. If the integral of a differential is path- 
independent for all paths between the same end-points, the differential must be an exact 
differential. 

Work is Not a State Function 

Since w is not a state function, dw is not the differential of a function. A differential 
such as dw is called an inexact differential. The line integral of an inexact differential 
such as dw depends on the path of integration as well as on the initial point and the final 
point. Two processes with the same initial and final states can correspond to different 
amounts of work done on the system. We illustrate this important fact by considering a 
reversible process with the same initial and final states as the process of Example 3.2, 
but with a different path. 
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Exercise 3.2 
a. Since dwre v corresponds to Eq. (B-19) of Appendix B with N = 0, show that dwre v does not 

satisfy the criteria of Eq. (B-20) to be an exact differential. 
b. Calculate the line integral of dP for the process of Example 3.3. Show that the integral is path- 

independent for the two paths of Example 3.2 and Example 3.3. The integral will have to be 
done in three sections. 

If Pext is a known function, w can be calculated directly for an irreversible process. 

If Pext is constant, 

Wirrev---IPextdV---PextldV--Pext(V2-V1) 
(3.1-14) 

*Exercise 3.3 
a. Calculate the amount of work done on the surroundings if the isothermal expansion of 

Example 3.2 is carried out at a constant external pressure of 1.000 atm instead of reversibly, 
but with the same initial and final states as in Example 3.2. Why is less work done on the 
surroundings in the irreversible process than in the reversible process? 

b. What is the change in the pressure of the system for the irreversible process? 

For any particular representation of  a real gas, the expression for the work done in an 
isothermal reversible volume change can be obtained by integration, shown in the 

following example. 
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*Exercise 3.4 
a. Calculate the work done in the reversible expansion of 100.00 g of C O  2 from a volume of 

10.000 L to a volume of 50.00 L at a constant temperature of 25.00~ Use the truncated virial 
equation of state of Example 3.4. The second virial coefficient of CO 2 is equal to 
-128 cm 3 mo1-1 at this temperature. 

b. Recalculate the work done in the process of part (a), assuming CO 2 to be an ideal gas. 
c. Calculate the work done if the process is carried out isothermally and irreversibly with a 

constant/text equal to 1.000 atm at a constant temperature of 25.00~ but with the same initial 
and final volumes. For this calculation, does it matter whether CO2 is assumed to be ideal or if 
it is described by another equation of state? 

Joseph Black, 1728-1799, was a 
Scottish chemist who discovered 
carbon dioxide ("fixed air") by heating 
calcium carbonate. 

Heat 

Joseph Black was the first to distinguish between the quantity of heat and the 
"intensity" of heat (temperature) and to recognize "latent heat" absorbed or given 
off in phase transitions. However, Black believed in the caloric theory of heat, which 
asserted that heat was a material but "imponderable" fluid called "caloric." This 
incorrect theory was not fully discredited until several decades after Black's death. 

Heat Transferred during Temperature Changes 
An amount of heat can be measured by determining the change in temperature that it 
produces in an object of known heat capacity. The heat  capacity, C, of an object is 
defined such that 

dq = C dT (3.2-1) 

where dq is an infinitesimal amount of heat transferred to the object and dT is a 
resulting infinitesimal change in temperature. It is an experimental fact that heat 
capacities are never negative. There is no system that lowers its temperature when 
heat is added. At first glance Eq. (3.2-1) might seem to indicate that C is a derivative of 
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q with respect to T. This is not the case because dq is an inexact differential like dw. Just 
as there is no such thing as the work content of  a system there is no such thing as the 
heat content of  a system. Therefore, the value of  C depends on the way in which we 
change the temperature of  the system. The heat capacity at constant volume is generally 
different in value from the heat capacity at constant pressure. 

The specific heat  (better called the specific heat  capacity) is denoted by c and is 
defined as the heat capacity per unit mass, or C / m ,  where m is the mass of  the object. 
The specific heat of  a substance is an intensive quantity that is characteristic of each 
material. It generally depends on temperature as well as on the identity of  the substance. 

If an object is heated without any chemical reaction or phase change occurring, the 
quantity of  heat transferred to the object is given by 

(3.2-2) 

where T 2 is the final temperature and T 1 is the initial temperature. If the heat capacity is 
independent of  temperature it can be factored out of  the integral: 

q = C ( T  2 - I"1) = C A T  (3.2-3) 

Just as with work, a positive value of  q indicates heat transferred to the system, and a 
negative value indicates heat transferred from the system to its surroundings. 

*Exercise 3.5 
a. Find the amount of heat needed to heat 3.20mol of liquid water from 25.00~ to 95.00~ 

The specific heat of liquid water is nearly independent of temperature and is nearly equal to 
1.00 cal K -i g-1 = 4.184 J K -l g-l. 

b. The specific heat of aluminum equals 0.215 cal K -1 g-1. Find the final temperature if a piece 
of aluminum with mass 25.00 g and at an initial temperature of 90.00~ is placed in 100.00 g 
of liquid water initially at 20.00~ Assume that the water and aluminum are insulated from 
the rest of the universe. 
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Heat Transferred during Phase Changes 
This heat is sometimes called latent heat because it does not change the temperature of 
the system. The amount of latent heat per unit mass is characteristic of the substance 
and the phase transition. The latent heat of fusion (melting) of water at 0~ and 
1.000 atm equals 79.72 cal g-a or 333.5 kJ kg -1. The latent heat of vaporization 
(boiling) of water at 100~ and 1.000atm equals 539.55 cal g-1 or 2257.5 kJ kg -1. 

*Exercise 3.6 
Find the maximum mass of liquid water that can be brought to 100.0~ from 25.00~ by contact 
with 100.0 g of steam of 100.0~ 

Benjamin Thompson, Count Rumford, 
1753-1814, was an American-British 
physicist who left America after the 
revolution because of his royalist 
sympathies and who pursued a 
checkered career in various countries, 
including Bavaria, France, where he 
married the widow of Lavoisier, and 
England, where he founded the Royal 
Institution and hired Humphrey Davy 
as a lecturer. 

Julius Robert Mayer, 1814 - 18 78, was 
a German physicist originally trained 
as a physician. He was apparently the 
first to espouse the law of 
conservation of energy, asserting that 
heat and work are just forms in which 
energy is transferred, and that energy 
can neither be created nor destroyed. 

Internal Energy. The First Law of Thermodynamics 

Although Lavoisier discredited the phlogiston theory of combustion, which held that 
combustion was the loss of a second imponderable fluid called "phlogiston," he was 
one of the principal promoters of the equally incorrect caloric theory of heat espoused 
by Black. The first experimental studies that discredited the caloric theory were done by 
Count Rumford. Rumford was at one time in charge of manufacturing cannons for the 
Elector of Bavaria, the ruler who made him a count. Rumford noticed that when a 
cannon was bored, a dull boring tool produced more heat than a sharp tool. He carried 
out a systematic set of experiments and was able to show by using a very dull tool that 
there was no apparent limit to the amount of heat that could be generated by friction. 
Rumford's results showed that "caloric" was not simply being extracted from the 
cannon, but that work was being converted to heat. 

Rumford calculated a value for the "mechanical equivalent of heat," or the amount of 
heat to which a joule of work could be converted. His value was not very accurate. 
Better values were obtained by Mayer in 1842 and Joule in 1847. Joule carried out 
experiments in which changes of state were carried out either by doing work or by 
heating a system. His apparatus is depicted schematically in Figure 3.4. A falling mass 
turned a stirring paddle in a sample of water, raising the temperature by doing work on 
the liquid. The rise in temperature of the water was measured and the amount of work 
done by the falling mass was compared with the amount of heat required to produce the 
same change in temperature. Joule found that the ratio of the work required for a given 
change to the heat required for the same change was always the same, approximately 
4.18 J of work to 1 cal of heat. The calorie is now defined to be exactly 4.184 J. 

*Exercise 3.7 
Calculate the rise in temperature of 100.0 g of water if the falling weight of Figure 3.4 has a mass 
of 5.00 kg and drops by 0.800m. Neglect friction in the pulleys, etc. 

In Joule's experiments there was no detectable difference in the final state of the 
system whether its temperature was raised by doing work on it, by heating it, or by 
some combination of work and heating. This indicates that heat and work are actually 
two different means of changing a single property of the system, the internal energy U, 
which is a state function. Based on the work of Rumford, Mayer, Joule, and many others 
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Hermann Ludwig von Helmholtz, 
1821-1894, was a German physicist 
and physiologist who studied the 
energy of muscle contraction and who 
was one of the first to propose that the 
energy for all processes on the earth 
ultimately came from solar radiation. 

since the time of Joule, we state the first law of thermodynamics: For a closed system 
and for any process that begins and ends with equilibrium states, A U is defined by 

(3.3-1) 

where q is the amount o f  heat transferred to the system and w is the work done on the 
system. When so defined, A U is equal to the change in value o f  a state variable U, 
called the internal energy or the thermodynamic energy: 

A U ~-  Urina 1 - Uinitia 1 (3.3-2) 

In spite of the work of Mayer and Joule, the initial credit for announcing the first law of 
thermodynamics went to Helmholtz. 

A state variable is a mathematical function of the independent variables used to 
specify the state of the system and will from now on be referred to as a state function. 
For a simple equilibrium one-phase system containing one component, the state is 
specified by the values of three variables. We can write the internal energy as a function 
ofT, V, and n: 

U = U(T, V, n) (3.3-3) 

or as a function of a different set of three variables such as T, P, and n: 

U = U(T, P, n) (3.3-4) 
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Since heat and work are both means of changing the value of the internal energy, they 
do not maintain separate identities after the transfer of energy is finished. The following 
analogy has been used: 2 Heat is analogous to rain falling on a pond, work is analogous 
to the influx of a stream into the pond, and energy is analogous to water in the pond. 
Evaporation (counted as negative rainfall) is analogous to heat flow to the surroundings, 
and efflux from the pond into a second stream is analogous to work done on the 
surroundings. Once rain falls into the pond, it is no longer identifiable as rain, but only 
as water. Once stream flow is in the pond, it also is identifiable only as water, and not as 
stream flow. The amount of water in the pond is a well-defined quantity (a state 
function) but one cannot separately measure how much rain and how much stream flow 
are in the pond. Like rain, once heat has been transferred to a system it is identifiable 
only as energy, and no longer as heat. Once work has been done on a system it is no 
longer identifiable as work, but only as energy. There is no such thing as the heat 
content of a system in a given state and no such thing as the work content of a system in 
a given state. However, like the amount of water in the pond, the energy of the system 
corresponding to a given equilibrium state is a state function. 

Conservation of Energy 

The first law of thermodynamics is a version of the law of conservation of energy for 
thermodynamic systems. The law of conservation of energy is a general law of physics 
to which there are no known exceptions. In fact, apparent violations of energy 
conservation led particle physicists to search for previously unknown particles that 
could be carrying energy away from a system, leading to the discovery of the neutrino. 3 
In spite of the fact that no exceptions to the first law of thermodynamics have ever been 
verified, occasionally an unknown inventor announces a machine that will produce 
more energy than it takes in, violating the first law of thermodynamics. Such machines 
are known as perpetual motion machines of the first kind. 

It is the total energy of a system that is governed by the law of conservation of 
energy. The gravitational potential energy of the system, the kinetic energy of the center 
of mass of the system, and the rest-mass energy are usually excluded from the internal 
energy of a chemical system. If so, the total energy is 

E t o t a l  __  1 mV2c + ~g + moc2 + U (3.3-5) 

where m is the mass of the system and m 0 is its rest-mass, c is the speed of light, v c is 
the speed of its center of mass, ~g is the gravitational potential energy of the system, 
and U is the intemal energy of the system. Equation (3.3-1) applies only to a closed 
system whose center of mass is not accelerated and whose gravitational potential energy 
and rest-mass do not change. These conditions apply to most laboratory systems. In a 
rocket, energy of combustion is tumed into kinetic energy of the whole system, so we 
must consider the kinetic and potential energy of the system as a whole when we study 
the internal energy. 

The Ideal Gas as an Example System 
Thermodynamics applies to all systems, but it is convenient to have a system with 
simple properties to use for example calculations. The most commonly used example 

2 Herbert B. Callen, Thermodynamics, Wiley, New York, 1960, p. 19. 
3 E. Fermi, Z. Physik, 88, 161 (1934). 
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system is the ideal gas. A mechanical model system that represents a monatomic ideal 
gas is a collection of noninteracting point-mass molecules, which have mass but zero 
size. Point-mass molecules have no internal motions (no electronic motion, no 
vibration, and no rotation). We will analyze this model system mathematically in 
Chapter 10 and Chapter 21, once assuming that the molecules' motions are described 
by classical mechanics and once assuming that they are described by quantum 
mechanics. Since there are no intermolecular interactions (no intermolecular forces), 
the potential energy is constant and can be taken as equal to zero. The internal energy of 
this model system is equal to the kinetic energy of the molecules. 

For a model system of point-mass molecules the internal energy is proportional to the 
amount of the gas and to the temperature: 

U - 3 N k  B T - 3 n R T  (gas of point-mass molecules) (3.3-6) 

where N is the number of molecules and n is the amount of the gas in moles. It is found 
that if the factor 3 is included, k B is Boltzmann's constant and R is the gas constant. We 
assume that we can use Eq. (3.3-6) for a dilute monatomic gas if the electronic energy is 
ignored. Experimental data for the inert gases (He, Ne, Ar, etc.) conform well to Eq. 
(3.3-6) at ordinary temperatures. See Chapter 10 and Chapter 21 for discussion of Eq. 
(3.3-6). We accept it now as an experimental fact. 

For molecular gases, rotation and vibration of the molecules must be considered, but 
the electronic motion can usually be ignored at room temperature. For many gases at 
ordinary temperatures, the energy of vibrational motion is nearly constant at its 
minimum value, which can be chosen to equal zero. We will find in Chapter 21 that 
to a good approximation the rotational energy of a diatomic gas near room temperature 
is equal to nRT. The rotational energy of a polyatomic gas is approximately equal to 
3 n R T / 2  if the molecules of the gas are nonlinear (the nuclei do not lie along a straight 
line) and approximately equal to n R T  if the molecules are linear. If the vibrational and 
electronic contributions can be ignored, 

U ~ ~ n R T  (dilute diatomic or linear polyatomic gas) (3.3-7) 

U ~ 3 n R T  (dilute nonlinear polyatomic gas) (3.3-8) 

Exercise 3.8 
*a. Find the value of the rest-mass energy of 1.000 mol of argon gas, using Einstein's equation, 

E = mc 2. 

*b. Find the value of the internal energy of 1.000 mol of argon gas at 298.15 K. Find the ratio of 
this energy to the rest-mass energy of the system. Find the difference between the observed 
mass of the system at 298.15 K and at 0 K. 

e. Explain why it would be difficult to use values of total energies for chemical purposes if the 
rest-mass energy were included. 

Calculation of Amounts of Heat and Energy Changes 

Up to now, we have defined a change in energy as the sum of an amount of heat 
transferred plus an amount of work done, assuming that both heat and work can be 
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defined and measured satisfactorily. The amount of heat was measured through 
calorimetry, first defining the heat capacity and using Eq. (3.2-2). 

An Alternative Definition of Heat 

The first law of thermodynamics provides a means of calculating quantities of heat 
without using the calorimetric definition of Eq. (3.2-2). If separate means of calculating 
A U and w exist, the value of q can be calculated from 

q = A U -  w (3.4-1) 

If the first law is assumed as a postulate, Eq. (3.4-1) can be used as the definition of the 
amount of heat transferred in a process. 4 In order to use Eq. (3.4-1) to define q we find 
an adiabatic process that has the same initial and final states as the process of interest. 
Since q = 0 for an adiabatic process, 

A U  - -  Wadiabati  c (3.4-2) 

q - -  Wadiabati  c - -  W (3.4-3) 

We can regard this as an alternative definition of heat if the first law is accepted as a 
postulate. This approach is logically different from our original approach, in which it is 
assumed that heat can be defined and measured and in which the first law of 
thermodynamics is asserted as experimental fact. 

The Energy of an Ideal Gas 

The ideal gas gives simpler equations than almost any other system, so we frequently 
use it as an example system. It is a property of ideal gases at equilibrium that the 
internal energy depends only on the amount of gas and the temperature, and is 
independent of the volume or the pressure: 

4 C a l l e n ,  op. cit., pp.  17 f f  [no te  2]. 



60 3 Work, Heat, and Energy: The First Law of Thermodynamics 

where V 2 is the final volume and V 1 is the initial volume. Equations that apply to an 
ideal gas usually do not apply to other systems. You must keep in mind which equations 
apply only to a particular system, and which apply to all systems. 

Since work is not a state function and since the internal energy is a state function, 
heat is not a state function. The amount of  heat put into a system for a given change of 
state can depend on the path taken from the initial to the final state, as well as on the 
initial and final states, just as was the case with an amount of  work. The change in the 
internal energy depends only on the initial and final states. 

*Exercise 3.9 
Calculate the amount of heat that is put into the system of Example 3.6 if it expands irreversibly 
and isothermally at 298.15 K and at a constant external pressure of 1.000 atm (101,325 Pa) from a 
volume of 20.00 L to a volume of 100.00 L. Hint: AU is the same as in Example 3.6. 

Energy Changes in a General Closed Simple System 
Energy changes can be calculated by carrying out an integration of  d U ,  either following 
the actual process or following another process with the same initial and final states. For 
a closed simple system and a reversible process, 

(3.4-6) 

where c indicates the curve in the state space of  the system. This curve is determined by 
the way in which the process is carried out and can be used to specify Vas a function of  
Tor to specify Tas a function of  V. These dependences are used in the integrands of  the 
line integral of  Eq. (3.4-6). The same value for A U will result if any curve having the 
same initial and final points is used for the line integration, so we can use any of these 
curves for the actual calculation. In addition, A U will have the same value for any 
irreversible process having the same equilibrium initial and final states. 

The Heat Capacity at Constant Volume 
For an infinitesimal change in a simple system, 

d q  - -  d U  - d w  = d U  -k- Pext d V  
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If V is constant, d V  = 0 and dw = 0. Therefore, 

d q - d U -  -'~ V,n d T  (V  constant, simple system) 

Comparison of this equation with Eq. (3.2-1) shows that 

(3.4-7) 

(3.4-8) 

where C v is the heat capacity at constant volume. The constant-volume heat capacity is 
frequently measured for gases, but is seldom measured for liquids and solids because it 
is difficult to maintain a liquid or solid system at constant volume when the temperature 
is varied. 

The second term on the fight-hand side of Eq. (3.4-6) gives the variation of the 
internal energy with volume at constant temperature. As usual, the ideal gas is the 
simplest example system. Since U depends only on T and n for an ideal gas, 

For use in example calculations we apply the properties of our model system of 
noninteracting molecules from Section 3.3. For a dilute monatomic gas in which 
electronic and vibrational energy can be neglected, Eqs. (3.3-6), (3.3-7), and (3.3-8) 
give 

Cv ~ 3 nR 

C v ~ ~ nR 

C v ~ 3nR 

(dilute monatomic gas) 

(dilute diatomic or linear polyatomic gas) 

(dilute nonlinear polyatomic gas) 

(3.4-11) 

(3.4-12) 

(3.4-13) 

These equations are satisfactory approximations for some substances, but are not very 
accurate for others such as bromine, Br 2. 

Exercise 3.10 
The Euler reciprocity relation, Eq. (B- 13), implies 

Show that Eqs. (3.4-9) and (3.4-11) are consistent with this requirement. 
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The Joule Experiment 
The first attempt to determine whether (OU/OV)r,n vanishes for real gases was made by 
Joule around 1843. His experiment became known as the Joule experiment and was 
carried out in an apparatus schematically depicted in Figure 3.5. A sample of a gas was 
placed in one side of the apparatus and the other side of the apparatus was evacuated. 
The initial temperature of the apparatus was measured and called T 1 . The stopcock was 
then opened to allow the gas to expand irreversibly into the vacuum, after which the 
final temperature, T 2, was measured. 

We define the contents of the apparatus to be the system. Since the surroundings were 
not affected, w was equal to zero. The gas expanded rapidly, so there was little 
opportunity for heat to be transferred to or from the surroundings, and q therefore 
vanished to a good approximation. From the first law, Eq. (3.4-1), A U was equal to 
zero. If a change in temperature of the gas occurred, heat would be transferred to or 
from the surroundings after the expansion was complete, and T 2 would differ from T 1. 
If the heat capacity of the apparatus and the heat capacity of the gas are known, the 
change in temperature of the gas, AT, could be calculated. The derivative (OU/OV)T,n 
could be determined as follows: The Joule experiment would be carried out several 
times with various volumes for the second chamber. The ratio AT/A V is determined for 
each experiment, and extrapolated to zero value of A V, where A V is the final volume of 
the gas minus its initial volume. This extrapolation is equivalent to taking the 
mathematical limit 

/ t j - l i m  (AT)_(OT) (3.4-14) 
~ - .0  S-~ ~ ~,. 
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We have established that U is fixed in the Joule experiment, and n is fixed because the 
system is closed, so that the subscripts on the partial derivative are U and n. The 
quantity gj is called the Joule coefficient. 

The Joule coefficient is related to (OU/OV)r,, by use of the cycle rule, Eq. (B-15), 
and the reciprocal identity, Eq. (B-8): 

. . . .  #jCv 
"-~ T,n -'~ U,n - ~  V,n 

(3.4-15) 

Exercise 3.11 
Verify Eq. (3.4-15). 

Joule was unsuccessful in his attempt to measure the Joule coefficient because the 
changes in temperature that occurred were too small to be measured by the thermo- 
meters available at the time, even though he filled the apparatus at pressures up to 
22 atm. Later versions of the experiment with better apparatus have given fairly good 
values of (OU/OV)r,n. After the second law of thermodynamics has been introduced we 
will present a better way to determine values (OU/OV)r,n. 

Calculations of Energy Changes 
Once values for C v and for (OU/OV)r,n are obtained, AU can be calculated for any 
process that begins with one equilibrium state and ends with another equilibrium state, 
by integration of Eq. (3.4-6). 
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*Exercise 3.12 
a. Find AU, q, and w for an irreversible isothermal expansion at 298.15K of 1.000mol of 

argon with the same initial and final molar volumes as in Example 3.7 but with a constant 
external pressure of 1.000 atm. Compare with the values obtained assuming ideal gas behavior 
and with values obtained in Example 3.7. 

b. Find the change in temperature if 1.000mol of argon initially at 298.15 K is expanded 
adiabatically into a vacuum so that its volume changes from 2.000 L to 20.00 L. 

A change in internal energy for a nonisothermal process can be calculated by 

carrying out the line integral in Eq. (3.4-6). 
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*Exercise 3.13 
a. Calculate q and w for the reversible process that follows the path used in Example 3.8. 
b. Calculate q and w for the reversible process for the following path. Step 1: The system is 

heated from 298.15 K to 373.15 K at a constant volume of 2.000 L. Step 2: It is then expanded 
isothermally to a volume of 20.000 L. 

c. Comment on the difference between the q and w values for parts (a) and (b). What is the value 
of AU for the process of part (b)? 

Adiabatic Processes 

In an adiabatic process, q is equal to zero and dq is equal to zero for any infinitesimal 

step of  the process. 

d U  -- dq + dw  -- d w  (adiabatic process) (3.4-17) 
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Since U depends only on n and T for an ideal gas, we can write for an ideal gas 

dU = C v dT (ideal gas, reversible process) (3.4-18) 

Since P V  -- nRT for an ideal gas, 

nRT 
dw = - P  dV  = dV  (ideal gas, reversible process) (3.4-19) 

V 

Equating dU and dw (because dq = 0), we obtain 

nRT 
Cv dT - V dV  (ideal gas, reversible adiabatic process) (3.4-20) 

This is a differential equation that can be solved to give T as a function of Vor Vas a 
function of T if the dependence of Cv on T and V is known. 

To a good approximation, C v is a constant for many gases at ordinary temperatures. 
With this assumption we can solve Eq. (3.4-20) by separation of variables. We divide by 
T to separate the variables: 

Cv dT - nR dV (3.4-21) 
T V 

We integrate Eq. (3.4-21) from the initial state, denoted by V 1 and T1, to the final state, 
denoted by V 2 and T2: 

Cv In ~-1 - - - n R  In ~-1 

We divide by Cv and take the exponential of both sides of this equation: 

If the initial values V1 and T 1 are given, this equation gives/'2 as a function of//'2 or V2 
as a function of T 2. It is an example of an important general fact: For a reversible 

adiabatic process in a simple system, the f inal  temperature is a single-valued function 

o f  the f inal volume for  a given initial state. All of the possible final state points for 
reversible adiabatic processes lie on a single curve in the state space. Such a curve is 
called a reversible adiabat. This fact will be important in our discussion of the second 
law of thermodynamics in Chapter 4. 
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*Exercise 3.14 
a. Find the final temperature for the system of Example 3.9 if the final volume is 10.00 L. 
b. Find the volume to which the system of Example 3.9 must be adiabatically and reversibly 

expanded in order to reach a temperature of 273.15 K. 

An equation analogous to Eq. (3.4-20) can be written for any representation of a real 
gas. For a gas obeying van der Waals equation of state it can be shown (see Problem 
5.35) that 

OU) _ (OUm" ~ _ a (3.4-23) 
- ~  T,n ~-~m/T,n V2 

Exercise 3.15 
Show that for a reversible adiabatic process the van der Waals gas obeys 

RT 
CV, m d T  = - ,~,-----------~ d V m  (3.4-24) -- m 

Exercise 3.16 
Show that for a reversible adiabatic process in a van der Waals gas with constant Cv,m, 

(T2) (Vml-bb)R/Cv'm 
T11 = Vm2 (3.4-25) 

If the molar heat capacity of a van der Waals gas is not constant, but can be 
represented by 

Cv, m = (Z "t- fiT (3.4-26) 

the equation analogous to Eqs. (3.4-22) and (3.4-25) is 

~-1 exp ----- (3.4-27) \Vn~ 
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Exercise 3.17 
Show that Eq. (3.4-27) is correct. 

An equation analogous to Eq. (3.4-22) exists for any simple system. For each such 
equation, there is a unique curve in the V - T  plane containing all of  the points that can 
be reached by adiabatic reversible processes from a given initial state. The volume and 
the temperature are not the only choices for independent variables. For an ideal gas with 
constant heat capacity, we can substitute the ideal gas equation, T = P Vm/R, into Eq. 
(3.4-22) to obtain 

p2__(Vml~ 1-t-R/CV,m (ml) 1-t-R/CV,m 
P1 \Vm2J - -~2 (3.4-28) 

and 

T 2  - (e2~ R/(CV'm-t-R) (3.4-29) 
T1 ~,PII J 

*Exercise 3.18 
The "Santa Ana" winds of the California coast are dry winds that begin in the mountains and 
drop to an altitude near sea level. Assume that the air begins at a pressure of 0.81 atm (roughly the 
barometric pressure at 6000ft above sea level) and a temperature of 25~ and that it is 
adiabatically and reversibly compressed to a pressure of 1.00 atm. Assume that air is an ideal 
gas with Cv,m = 5R/2 = constant. Find the final temperature. This treatment ignores other 
factors that raise the temperature, such as frictional heating as the air passes along the ground. 

Enthalpy---A Convenience Variable 

Many chemical systems are contained in vessels that are open to the atmosphere, and 
are thus maintained at a nearly constant pressure, s For analysis of  processes taking 
place under constant-pressure conditions, we define a new variable, denoted by H and 
called the enthalpy: 

(3.5-1) 

The enthalpy is a state function because U, P, and V are state functions. It is one of  a 
class of variables sometimes called "convenience variables." 

Consider a simple system whose pressure remains equal to a constant external 

pressure. From now on we will refer to these conditions simply as constant-pressure 
conditions, but we mean also that the pressure is equal to the external pressure. For any 
such process 

dw = --Pext d V  = - P  d V  (constant pressure) (3.5-2) 

s The Extreme sea-level barometric pressures are 1083.8mbar (1.069atm) and 877mbar (0.866atm): 
Guinness Book of World Records, Guinness, 1998, p. 95. 
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This expression for dw is the same as that for reversible processes, Eq. (3.1-11). We do 
not assert that all processes that occur at constant pressure are reversible processes, but 
only that the same expression for dw applies. For a simple system at constant pressure, 

w - l c d w - - l c P e x t d V - - I c P d V - - - P ( V 2 - V 1 )  

= - P  AV (simple system, constant pressure) (3.5-3) 

where 1/1 is the initial volume and V2 is the final volume. 
The heat transferred to the system is given by 

dq - d U  - dw - d U  + P d V  (constant pressure) (3.5-4) 

From Eq. (3.5-1) 

d H  - d U  + P d V  + V dP (3.5-5) 

At constant pressure, the V dP term vanishes, so that 

(3.5-6) 

For a finite process 

(3.5-7) 

Although q is generally path-dependent, it is path-independent for constant-pressure 
processes since for such processes q is equal to the change in the state function H. Since 
dw = d U -  dq, w is also path-independent for constant-pressure processes. Enthalpy 
changes of processes are sometimes called "heats" of the processes. 

The Heat Capacity at Constant Pressure 
The heat capacity at constant pressure is 

lira lim 
aT--,0 \ A T / p  AT--+0 - ~ -  p 

so that 

(3.5-8) 

The heat capacity at constant pressure is the most commonly measured heat capacity for 
solids and liquids because C v is hard to measure for these systems. We now obtain an 
expression for the difference between Cp and C V so that C v can be calculated from Cp. 

We first substitute the definition of the enthalpy, Eq. (3.5-1), into Eq. (3.5-8): 

- - + P ~ (3.5-9) 

There is no V(OP/OT) term because P is held constant in the differentiation. As an 
example of the variable-change identity, Eq. (B-7) of Appendix B, we can write 

- + ~ ~ (3.5-1o) 
-~~. .  ~ ~ . .  ~.. ~.. 
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We substitute this equation into Eq. (3.5-9) and use the fact that Cv = (OU/OT)v,n to 
write 

P,n 
(3.5-11) 

Equation (3.5-11) takes on a simple form for an ideal gas, because 

OU) - 0 (ideal gas) 
- ~  T,n 

and 

OV) _ nR (ideal gas) 
-0--f p,, p 

so that 

(3.5-12) 

The physical explanation for Eq. (3.5-12) is that in heating an ideal gas under constant- 
volume conditions, no work is done on the surroundings and all of the heat increases 
the energy of the system. Under constant-pressure conditions, some of the heat is turned 
into work against the external pressure as the gas expands, so the same amount of heat 
produces a smaller change in the energy and thus a smaller change in the temperature. 
Equations (3.4-11) through (3.4-13) give with Eq. (3.5-12) 

C p , m  ,~  5 R (dilute monatomic gases) (3.5-13a) 

Cp, m "~ 7 R (dilute diatomic or linear polyatomic gases 

without electronic or vibrational excitation) (3.5-13b) 

Cp. m .~. 4R (dilute nonlinear polyatomic gases without 

electronic or vibrational excitation) (3.5-13c) 

The ratio of the constant-pressure heat capacity to the constant-volume heat capacity 
is denoted by 7: 

(3.5-14) 

The values in Eq. (3.5-13) give 

7 "~ 3 5- (dilute monatomic gas) (3.5-15a) 

7 "~ 7 (dilute diatomic or linear polyatomic gases without 

electronic or vibrational excitation) 

(dilute nonlinear polyatomic gases without 

electronic or vibrational excitation) 

(3.5-15b) 

(3.5-15c) 

Table A.6 in Appendix A gives data on the molar constant-pressure heat capacity for 
several substances. For gases, the data are represented by the polynomial 

Cp,  m = a + b T  + c T  -2 (3.5-16) 
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Pierre Louis Dulong, 1785-1838, was 
a French chemist originally trained as 
a physician. Alexis Th6rOse Petit, 
1791-1820, was a French physicist. 

The temperature dependence in this formula comes from the contributions of vibra- 
tional and electronic motions. For liquids and solids near room temperature, heat 
capacities are nearly constant, so that the values in the table can be used over a range of 
temperatures. Additional values are found in Table A.8 of Appendix A, which is a 
general table of thermodynamic data. 

For many metallic solids and other solids in which one atom is the formula unit, 
the molar heat capacity at room temperature is approximately equal to 3R--  
24.94 J K -1 mo1-1. This is the law of Dulong and Petit. A more general property, 
shared by all substances, is that the heat capacity of any system approaches zero as the 
temperature approaches 0 K. 

*Exercise 3.19 
a. Evaluate Up, m for oxygen gas at 298.15 K and at 1000 K, using the polynomial representation 

in Table A.6. Find the percent differences between these values and 5R/2. 
b. Find the percent differences between Cp, m of copper and of iron and 3R at 298.15 K. 

William Thomson, 1824-190 7, later 
Lord Kelvin, was a Scottish 
mathematician and physicist who 
proposed the absolute temperature 
scale. He was an early supporter 
of Joule and became a close 
personal friend. He had many 
accomplishments, including the 
introduction of the Bell telephone into 
Great Britain, but is reported to have 
stated around 1880 that all possible 
discoveries in physics had already 
been made. 

The Joule-Thomson Experiment 
This experiment was carried out by Joule and Thomson in the 1850s in a second 
attempt to determine a difference between the behavior of real gases and ideal gases. 
For an ideal gas the enthalpy depends only on T and n: 

H = U + P V  = U(T ,  n) + n R T  = H ( T ,  n) 

(3.5-17) 

Therefore, 

(3.5-18) 

In order to determine the value of (0H/OP)T,n for real gases, Joule and Thomson used 
an apparatus equivalent to the one schematically shown in Figure 3.8. This apparatus 
consists of two cylinders fitted with pistons and with a porous plug separating the two 
cylinders. Each side has a manometer to measure the pressure and a thermometer to 
measure the temperature of the gas. The entire apparatus is adiabatically insulated from 
the surroundings. By pushing in on the left piston and pulling out on the fight piston, a 
steady flow of gas can be maintained through the porous plug. If the pressure on each 
side is kept fixed, a time-independent nonequilibrium state (a steady state) will be 
attained with a different constant temperature on each side. Several experiments are 
carried out on a given gas with different values of the pressure difference. The Joule- 
Thomson coefficient is defined as the extrapolated limit 

(3.5-19) 

where the subscripts R and L indicate fight and left. The limit in Eq. (3.5-19) is a partial 
derivative, but we must determine what variable is held fixed in the differentiation. 
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Figure 3.8. The Apparatus for the Joule-Thomson Experiment (Schematic). During the 
experiment, one of the pistons is moved into its cylinder and the other piston is withdrawn in a 
way so that the pressure on each side remains constant as the gas flows irreversibly through the 
porous plug. 

We choose as our system a sample of n moles of gas that flows through the porous 
plug after the steady state is established. We assume that all irreversible processes take 
place within the porous plug, so that the gas inside each chamber is at equilibrium and 
is at a pressure equal to the external pressure on that side. This set of assumptions 
allows us to use our technique of discussing nonequilibrium processes with equilibrium 
initial and final states. 

The work done on the gas on the left side is given by 

f 
VL2 

We = - PL  d V L  - - - P L (  VL2 -- VL1 ) 
JVL~ 

(3.5-20) 

and the work done on the gas on the fight side is given by 

VR2 
WR - -  -- PR  d V R  - - - P R  ( VR2 -- VR1 ) 

JVRI 
(3.5-21) 

where the subscript 1 denotes the initial value and the subscript 2 denotes the final value 
of each quantity. The process that we consider is the complete transfer of the system 
from one side of the apparatus to the other. Prior to the transfer, the pressure P1 of the 
system was equal to PL, and the initial volume of the system must have been equal to 
the magnitude of the change in volume of the left side: 

V 1 = I L l -  VL2 (3.5-22) 
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The final pressure P2 must be equal to PR, and the final volume V 2 must be equal to the 
change in volume of the right side: 

V 2 -~- V R 2 -  VR1 ( 3 . 5 - 2 3 )  

From Eqs. (3.5-20) through (3.5-23), the total work done on the system is 

W = W L -+- W R = P1 V1 - /92 V2 = -A(PV) (3.5-24) 

Exercise 3.20 
a. Show that for any change in state 

A(PV) = P1 AV + V 1 AP + (AP)(AV) (3.5-25) 

b. When can A(PV) equal P AV? When can it equal V AP? When can it equal P AV + V AP? 

Since the apparatus is adiabatically insulated from the laboratory, no heat is 
transferred to or from the laboratory. Also, no heat is transferred from the system to 
the apparatus after the steady state is established, since the chamber on the right is then 
at the same temperature at which the gas exits from the plug. Therefore, 

q = 0 (3.5-26) 

A U = q + w = -A(PV)  (3.5-27) 

AH = AU + A(PV) = 0 (3.5-28) 

The Joule-Thomson process therefore occurs at constant enthalpy, and the Joule- 
Thomson coefficient is equal to a partial derivative at constant H and n: 

(3.5-29) 

We can use the cycle rule, Eq. (B-15) of Appendix B, to write 

(V)-----CPflJT T,n (3.5-30) 

Exercise 3.21 
Show that Eq. (3.5-30) is correct. 

The Joule-Thomson coefficient of an ideal gas vanishes because (OH/OP)r,n 
vanishes for an ideal gas. Joule and Thomson found that the Joule-Thomson coefficient 
is measurably different from zero for ordinary gases at ordinary pressures. It depends on 
temperature and is positive at room temperature for most common gases except for 
hydrogen and helium. Even for these gases it is positive at temperatures below room 
temperature. This means that for some range of temperature any gas cools upon 
expansion through a porous plug. It will also be cooled in an irreversible expansion 
through a nozzle or other aperture, which approximates the Joule-Thomson process. 
Expansion of a gas can be used to cool the gas enough to liquefy part of it, and the final 
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The molecular explanation for the fact that the Joule-Thomson coefficient is positive 
at sufficiently low temperature is that at low temperatures the attractive intermolecular 
forces are more important than the repulsive intermolecular forces. When the gas 
expands, work must be done to overcome the attractions. If no heat is added, the kinetic 
energy and the temperature must decrease. If the Joule-Thomson coefficient is 
negative, the repulsive intermolecular forces must be more important than the attractive 
forces. 
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Enthalpy Changes for Reversible Phase Transitions 
The values of enthalpy changes of constant-pressure phase transitions for many 
common substances can be found in published tables. Table A.7 gives specific enthalpy 
changes (enthalpy changes per gram) for reversible fusion (melting) and vaporization 
(boiling) transitions for a number of pure substances at a constant pressure of 
1.000 atm. These enthalpy changes are sometimes called latent heats of fusion or of 
vaporization, or heats of fusion or vaporization. The enthalpy changes for freezing or 
condensation processes are the negatives of these values. It is best not to call enthalpy 
changes by the name "heat," since enthalpy changes are equal to amounts of heat only if 
the pressure is constant. 
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Although AH is the same for any process with the same initial and final states as the 
overall process in Example 3.14, q and w are dependent on the path of  a particular 
process. 

Note that q is not equal to AH for the overall process, since the entire process 
constant-pressure process. For the first step, 

. . . .  

wl = A U i - q i  = - q i  = - 1 1 6 2  J 

For the second step, we let V 3 be the final volume, 

iv3 iv3 
W2 = - P d V  = - P  d V  = - P  A V 

v2 v2 

w 2 = -(3.103 x 105 Pa)(O.OlO00 m 3 - 0.007990 m 3) = -623.6 J 

w =  w 1 + w  2 = - 1 1 6 2  J -  624 J = - 1 7 8 6  J iiiiiiiiiliSi 
*Exercise 3.22 
a. Find AU for the process of Example 3.15. 
b. Find AH, q, and w for the process in which the system of Examples 3.14 and 3.15 is first 

heated at constant volume from 298.15 K to 373.15 K and then expanded isothermally from a 
volume of 5.000 L to a volume of 10.000 L. 

Enthalpy Changes for Irreversible Processes 
We consider irreversible processes that begin with an equilibrium or metastable state 
and end with an equilibrium state. To calculate AH for such an irreversible process, we 
find a reversible process with the same initial and final states, calculate AH for that 
process, and equate it to AH for the irreversible process. 

I EXAUF,  3:!8::::I / :  i �84 ! i : :  il; i i ! ;  :::::::i:ii {i iiiiii!} 
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A chemical reaction involves the breaking of some chemical bonds and/or the 
formation of other chemical bonds. The breaking of bonds requires an input of 
energy, so nearly every constant-temperature chemical reaction is accompanied by 
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energy and enthalpy changes. If the system gives off heat when the reaction takes place 
at constant temperature and pressure, the reaction is called exothermic, and if the 
system absorbs heat, the reaction is called endothermic. 

In this chapter we will consider only chemical reactions of a restricted class, in which 
every reactant or product is either a gas or a pure liquid or solid. Three reactions in this 
class are 

2H2 (g) + O2 (g) --+ 2H20(1) 

CaCO3(s ) ~ CaO(s) + CO2(g ) 

NzO4(g) --+ 2NOz(g) 

(3.7-1) 

(3.7-2) 

(3.7-3) 

The label "s" refers to solid, the label "1" refers to liquid, and the label "g" refers to gas. 
We now choose to write chemical reaction equations with the symbols for all 

substances on the fight-hand side, and with the --+ symbol replaced by an equals sign. 
The three reactions of Eq. (3.7-3) become 

0 = 2H20(1 ) - 2Hz(g ) - O2(g ) 

0 = CaO(s) + CO2(g ) - CaCO3(s) 

0 = 2NOz(g ) - NzO4(g ) 

(3.7-4) 

(3.7-5) 

(3.7-6) 

In order to write an equation that applies to any chemical equation, we denote the 
stoichiometric coefficient of substance number i by v i. If substance number i is a 
product, we specify that v i > 0 and if substance number j is a reactant we specify that 
vj  < 0. In Eq. (3.7-6) if NO 2 is substance number 1 and N204 is substance number 2, 
then v 1 -- 2 and v 2 = -1 .  We number the substances from 1 to c, and any chemical 
reaction equation can now be represented by the equation 

(3.7-7) 

where ~i is an abbreviation for the chemical formula of substance number i. The form 
of this equation will enable us to write a compact general formula for the enthalpy 
change of any chemical reaction. 

We can express the enthalpy change for a reaction in our restricted class in terms of 
the enthalpies of pure substances. These enthalpies depend on the state of the substance. 
The standard state of a liquid or solid substance is specified to be the pure substance at 
a fixed pressure of exactly 1 bar (100,000 Pa), which we designate by P~ The standard- 
state pressure was until recent years chosen as 1 atm (101,325 Pa). The difference in 
numerical values is small, and the formulas involving P~ are the same with either 
choice. For highly accurate work, one must determine which standard pressure was used 
for a set of data. The actual substance at pressure P~ is the standard state for solids and 
liquids, but the standard state for a gas is defined to be the ideal gas at pressure P~ This 
choice means that corrections must be made for the difference between the real gas and 
an ideal gas. These corrections are small, and we will learn how to calculate them in a 
later chapter. 

According to Dalton's law of partial pressures, each ideal gas in a mixture behaves as 
though the other gases were absent. If all substances are either pure condensed phases 
or ideal gases, if surface tension effects can be ignored, and if each substance is in an 
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equilibrium or metastable state, the enthalpy of the system is a sum of contributions of 
the separate substances 

H - ~ niHm(i ) (3.7-8) 
i=1 

where Hm(i ) is the molar enthalpy (enthalpy per mole) of substance number i and n i is 
the amount (in moles) of that substance. If the substance number i is in its standard 
state, its molar enthalpy is denoted by Hm(i) ~ 

Consider a chemical reaction that begins with all substances in equilibrium or 
metastable states at some particular temperature and pressure and ends with all 
substances in equilibrium states at the same temperature and pressure. The enthalpy 
change of the reaction is given by 

A n  - nf inal  - ninit ia  1 - -  ~ Aninm(i) (3.7-9) 
i=1 

where A n  i is the change in the amount of substance number i. We say that one mole of 
reaction occurs if 

A n i  -- ~ i 

for each substance. That is, a number of moles of a product appears that is equal to that 
product's stoichiometric coefficient, and a number of moles of a reactant disappears that 
is equal to the magnitude of its stoichiometric coefficient. For one mole of reaction 

-- ~ viHm(i ) (3.7-10) 
i=1 

This enthalpy change depends on the way in which the reaction equation is balanced. 
For example, if all stoichiometric coefficients are doubled, AH for the reaction doubles. 
When we give a value of AH, etc., for a reaction, it is always for one mole of the 
reaction, as  wr i t t en .  

A standard-state reaction is one in which all substances are in their standard states 
before and after the reaction. The enthalpy change for a standard-state reaction is 
denoted by AH ~ If values for standard-state molar enthalpies were available, Eq. 
(3.7-10) could be used to calculate AH ~ for a reaction. However, actual values for 
standard-state molar enthalpies cannot be found in tables, since an arbitrary constant 
can be added to each internal energy without any physical effect. The standard-state 
enthalpy change of formation of substance i, AfH~ is defined to be the enthalpy 
change of the chemical reaction to form one mole of substance i in the specified phase 
from the appropriate elements in their most stable forms, with all substances in their 
standard states. The superscript ~ denotes the standard state, and although we do not 
append a subscript m, the enthalpy change of formation is defined to be a molar 
quantity. Standard-state enthalpy changes of formation for a number of substances are 
listed in Table A.8 of Appendix A. 

The enthalpy change for one mole of any standard-state reaction in our restricted 
class is given by 

(3.7-11) 
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We can show this equation to be correct as follows: Let process 1 convert the reactants 
into elements in their most stable form. The standard-state enthalpy change for process 
1 is 

Z~J/~ - -  nelements - nreactant s - -  ~ v iAfn~  ( 3 . 7 - 1 2 )  
i=1 

(reactants only) 

This process is equivalent to the reverse of all of the formation reactions multiplied by 
the magnitude of the stoichiometric coefficients. The sign in front of the sum in Eq. 
(3.7-12) is positive because the stoichiometric coefficients are negative. 

Let process 2 be the production of the products of the reaction of interest from the 
elements produced in process 2. The standard-state enthalpy change of process 2 is 

l~-I~ -- ~ viAfH~ ( 3 . 7 - 1 3 )  
i=1 

(products only) 

We now invoke Hess's law, 6 which states that: The enthalpy change of  any process that 
is equivalent to the successive carrying out o f  two other processes is equal to the sum of 
the enthalpy changes of  those two processes. This law is a simple consequence of the 
fact that enthalpy is a state function, so that its change is path-independent. 

Our reaction is equivalent to the sum of processes 1 and 2. By Hess's law, 

AH - gproducts --  greactant s - -  gelements - greactant s -+- [gproducts --  gelements ] 

= AH1 + A/-/2 

The products and the reactants of any reaction contain the same number of atoms of 
each element, because atoms are neither destroyed or created in a chemical reaction. 
The two "element" terms cancel, and 

A n ~  ~ v i A f n ~  - ~ - ~ v i A f n ~  ~-~viAfn~ ( 3 . 7 - 1 4 )  
i= 1 i= 1 i-- 1 

(reactants only) (products only) 

where the final sum includes all substances involved in the reaction. We have 
established Eq. (3.7-11). 

We use dimensionless stoichiometric coefficients, so that the enthalpy change for the 
reaction has the units of joules per mole (meaning per mole of the reaction as written). 
One can think of the units of v i as moles of substance i per mole of reaction. If the way 
in which the reaction equation is balanced changes, the value of AH ~ changes. For 

6 Germain Henri Hess, 1802-1850, Swiss-Russian chemist whose law first indicated that thermodynamics 
applies to chemistry. 
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example, if all stoichiometric coefficients are doubled, the equation is still balanced, but 
the value of AH doubles. 

*Exercise 3.23 
Using values in Table A.8, find the standard-state enthalpy change of the reaction of Eq. (3.7-6) at 
298.15K. 

If the formation reaction for a substance cannot be carried out, the enthalpy change of 
formation can be calculated from the enthalpy change of a reaction that can be carried 
out, if the enthalpy changes of formation of the other substances in the reaction are 
known. 

Enthalpy Changes at Various Temperatures 
An enthalpy change for a temperature other than the temperature found in a table can be 
calculated from heat capacity data using the fact that an enthalpy change is path- 
independent. Consider the processes shown in Figure 3.10. The reaction at temperature 
T2 is the process whose enthalpy change we want to find. Call it process 2. An alternate 
pathway for the same initial and final states consists of processes 3, 1, and 4. Process 3 
is the change in temperature of the reactants from ire to T 1. Process 1 is the chemical 
reaction at temperature 7'1, whose enthalpy change is assumed to be known. Process 4 is 
the change in temperature of the products from T 1 to T 2. According to Hess's law: 

AH 2 = AH(T2) = AH 3 + AH 1 + A H  4 --- A H  3 -~- AN(T1) + AM 4 (3.7-15) 
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For one mole of reaction, process 3 consists of changing the temperature of an 
amount of each reactant equal to the magnitude of its stoichiometric coefficient, so that 

An3 -- k Ivi[Cp,m(i) dT -- k viCp, m(i) dT (3.7-16) 
r 2 i=1 i=1 

(reactants only in sum) (reactants only in sum) 

where Cp,m(i ) is the molar heat capacity of substance i. The second equality comes 
from interchanging the limits of integration and realizing that the stoichiometric 
coefficients are negative. Process 4 is the change in temperature of the products from 
T 1 to T 2, so that 

it2 An4 -- k vif  P, m(i) dT (3.7-17) 
T l i=1 

(products only in sum) 

The sums in Eqs. (3.7-16) and (3.7-17) can be combined to give the expression 

(3.7-18) 

where 

ACp - k viCp, m(i) ( 3 . 7 - 1 9 )  
i=1 

All reactants and products are included in this sum. Since reactants have negative 
stoichiometric coefficients, ACp is the heat capacity of the products minus the heat 
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*Exercise 3.24 
Find the value of the standard-state enthalpy change of the reaction of Eq. (3.7-6) at 200~ State 
any assumptions. 

Reactions Other Than Standard-State Reactions 

If the products and reactants are not at their standard states, the enthalpy change for a 
reaction can have a different value from that of the standard-state reaction. For the 
reactions in our present class this difference is not large. The enthalpy of an ideal gas 
does not depend on the pressure, and real gases behave nearly like ideal gases for 
moderate pressures. The effect on the enthalpy of pure solids and liquids due to 
moderate changes in pressures is also small. In a later chapter we will learn how to 
calculate these effects, but unless there is some need for really great accuracy we will 
use the value of the standard-state enthalpy change for the enthalpy change for a 
reaction at ordinary pressures. 

Adiabatic Reactions 

We have discussed reactions in which the final temperature is the same as the initial 
temperature. The enthalpy change will have a different value if the temperature of the 
system changes during the reaction. One case of interest is that the chemical reaction 
takes place adiabatically. If an adiabatic reaction takes place at constant pressure, the 
enthalpy change is equal to zero. In order to compute the final temperature of a system 
in which a chemical reaction takes place adiabatically, we consider the processes shown 
in Figure 3.11. Process 1 is the actual reaction, for which AH is equal to zero. Process 2 
is the isothermal reaction. Process 3 is the change in temperature of the products plus 
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any remaining reactants to the same final state as process 1. Since enthalpy is a state 
function, 

AH1 = ~-/2 + AH3 = 0 (3.7-20) 

If a stoichiometric mixture is taken and if the reaction proceeds to completion, there are 
no remaining reactants, and we can write 

.[7"2 
AH 3 --  ~,.._, viCp, m(i ) d T  - A H  2 (3.7-21) 

T l i=1 
(products only in sum) 

This equation can be solved for T 2. If there are remaining amounts of some reactants, 
their heat capacities must be added to Eq. (3.7-21). If the reaction comes to equilibrium 
short of completion, the equilibrium can shift as the temperature changes (see Chapter 
8) and the calculation is more complicated. We will not discuss that case. 
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*Exercise 3.25 
Find the final temperature if a stoichiometric mixture of methane and oxygen is ignited at 
298.15 K and allowed to react adiabatically at a constant pressure. Assume that the reaction 
proceeds to completion and that the heat capacities of the products are constant and equal to their 
values at 2000 K. 

If heat capacities are represented by polynomials as in Table A.6, a more nearly 
accurate final temperature can be calculated. The dependence of AH on temperature can 
also be included, as in Eq. (3.7-18) with T 2 replaced by a variable T. This leads to a 
nonlinear equation, which might have to be solved by trial and error or by other 
numerical techniques. 

*Exercise 3.26 
Using the parameters from Table A.6, find the final temperature after the adiabatic combustion of 
the stoichiometric mixture of hydrogen and oxygen in Example 3.20. 

Energy Changes of Chemical Reactions 

Energy changes of chemical reactions could be calculated from energy changes of 
formation in exactly the same way as enthalpy changes. However, tables of energy 
changes of formation are not commonly used because it is possible to calculate the 
energy change of a chemical reaction from the enthalpy change of the reaction. From 
the definition of the enthalpy, Eq. (3.5-1), 

AU = A H -  A(PV) (3.8-1) 

Ordinarily, A(PV) is much smaller than AH, so that it can be calculated approximately 
while AH is calculated accurately. For example, if AH is 1000 times larger than A(PV) 
and if five significant digits are desired in AU, then five significant digits are required in 
AH but only two significant digits are needed in A(PV). For the class of reactions that 
we considered in the previous section, 

PV = P[V(s) + V(1) + V(g)] (3.8-2) 

where V(s) is the volume of all of the solid phases, V(1) is the volume of all of the liquid 
phases, and V(g) is the volume of the gas phase. Under ordinary conditions, the molar 
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volume of a gas is several hundred to a thousand times larger than the molar volume of 
a solid or liquid. We ignore the volume of the solid and liquid phases and write 

A(PV) ~ A[PV(g)] (3.8-3) 

If the products and reactants are at the same temperature and if we use the ideal gas 
equation as an approximation, 

A[PV(g)] ~ [ A n ( g ) ] R T  

If one mole of reaction occurs, then 

(3.8-4) 

An(g) - A v ( g ) -  ~ v i (3.8-5) 
i=l 

(gases only) 

which defines the quantity Av(g), equal to the number of moles of gas in the product 
side of the balanced chemical equation minus the numbers of moles of gas in the 
reactant side of the balanced equation. 

*Exercise 3.27 
Using the fact that the molar volume of liquid water is 18 c m  3 mo1-1 at 298.15 K, make a more 
accurate calculation of A(PV) for the reaction of Example 3.21. 

*Exercise 3.28 
Find AU ~ for the reaction of Eq. (3.7-6) at 298.15 K. 

Calorimetry 
The most common procedure for the determination of enthalpy changes of formation of 
combustible substances is to carry out the combustion reaction in a constant-volume 
calorimeter. The enthalpy change of combustion is determined and the enthalpy change 
of formation is calculated as in Example 3.18. Figure 3.12 depicts a constant-volume 
calorimeter known as a bomb calorimeter. The reaction is carried out in a rigid 
container that is called the "bomb." A pellet of a solid reactant is placed in the bomb 
along with an excess of oxygen at a pressure of about 25 atm. 

The bomb is placed in a bucket filled with a measured amount of water, and the water 
is stirred until a steady temperature is attained. The system, consisting of the solid 
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reactant and the oxygen, is in a metastable state that can be treated as though at 
equilibrium. The system is ignited electrically and the bomb, water, and bucket are 
allowed to approach equilibrium at a new temperature several degrees higher than the 
initial temperature. The amount of heat transferred to the calorimeter (bomb, water, and 
bucket) is calculated from knowledge of the heat capacity of the calorimeter. If this heat 
capacity is independent of temperature (an excellent approximation for a temperature 
change of only a few degrees) 

q = -qcal - Coal AT (3.8-6) 

Since the system is at constant volume, w = 0 and 

q = AU (3.8-7) 

From the amount of solid reactant present, A U for one mole of reaction is calculated, 
allowing AH for one mole of reaction to be calculated from equation (3.8-4). This value 
of AH is not quite equal to AH ~ because neither the final pressure nor the initial 
pressure is equal to the standard-state pressure, and the gases present are not ideal. 
Also, the final temperature is not equal to the initial temperature. For ordinary work, 
these differences are negligible compared with the experimental errors, but corrections 
can be made if needed for highly accurate work. In most calorimeters a wire fuse is used 
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to ignite the sample, and the heat of combustion of the wire and the electrical energy 
needed to ignite the fuse must be included in the calculation. 

*Exercise 3.29 
What will be the rise in temperature of the calorimeter in Example 3.22 if a pellet of anthracene of 
mass 1.345 g is burned? The enthalpy change of combustion of anthracene is -7114.5 J mo1-1 

The calorimetry of substances reacting in solutions is commonly carried out at constant 
pressure. In this case, q is equal to AH, and no calculation of A(PV) is necessary to 
determine enthalpy changes of reactions. 

Average Bond Energies 
Chemical reactions involve the breaking and forming of chemical bonds. If it were 
possible to determine exactly the energy required to break every type of chemical bond, 
it would be possible to calculate standard-state energy changes of a gaseous chemical 
reaction from bond energies. One problem is that breaking chemical bonds between the 
same pair of elements in different compounds requires slightly different amounts of 
energy. Tables of average values have been constructed, from which estimates of energy 
changes can be made. Table A.9 in Appendix A is a table of such values, given as the 
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energy required to break 1 mol of the given bond. To estimate the energy change for a 
gas-phase reaction, one uses the relationship 

A U ,~ (sum of all bond energies in reactants) - (sum of all bond energies in products) 

(3.8-8) 

The calculation can be simplified if one omits from both terms those bonds that occur in 
both reactants and products, since their contributions cancel. 

In practice, this method is used only if enthalpy changes of formation are not available, 
since the results are only approximately correct. The error of 9 kJ tool -1 in Example 
3.23 is typical. It is larger than the difference between AH and A U, so that the value of 
A U obtained from average bond energy values is ordinarily used for AH without 
correction for the value of A(PV). Average bond energies cannot be used for reactions 
involving solids or liquids, where intermolecular forces also make important contribu- 
tions. Various schemes have been devised to improve on the simple scheme that we 
have presented, and have produced better results. 7 

*Exercise 3.30 
Using average bond energy values, estimate AH for the reaction 

C2H2(g ) -+- H2(g ) ---+ C2H4(g ) 

Compare your value with the correct value of AH obtained from enthalpy changes of formation. 

7 See, for example, D. W. Smith, J. Chem. Soc., Faraday Trans., 94, 3087 (1998). 
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1. There are two principal physical statements of the second law of 
thermodynamics: 
1 It is impossible for a system in a cyclic process to turn heat 

completely into work. 
2 Heat cannot flow spontaneously from a cooler to a hotter object if 

nothing else happens. 

2. The mathematical statement of the second law establishes a new state 
function, the entropy. 

3. The mathematical statement provides a means of calculating the entropy 
change of any process that begins and ends at equilibrium states. 

4. The second law of thermodynamics governs whether any macroscopic 
process can occur spontaneously. The criterion is that the entropy of the 
universe cannot decrease. 

5. Entropy is connected with lack of information through the definition 
of the statistical entropy due to Boltzmann: 

&t --- kB ln(gt) 

. 

Q 

where kB is Boltzmann's constant and f~ is the number of mechanical 
states in which the system might exist if it is known to be in a 
given thermodynamic state. 

The third law of thermodynamics allows the entropy of a pure crystalline 
substance to be set equal to zero at absolute zero of temperature. 

The second and third laws of thermodynamics imply that zero 
temperature on the kelvin scale is unattainable. 
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Like the first law of thermodynamics, the second law of thermodynamics is based on 
experimental fact. It can be stated both verbally and mathematically. 

Rudolf Julius Emmanuel Clausius, 
1822-1888, was a German physicist 
who is generally considered to be the 
discoverer of the second law of 
thermodynamics. 

Physical Statements of the Second Law 

There are two important physical (verbal) statements of the second law of thermo- 
dynamics that are generalizations of experimental fact. The Kelvin statement of the 
second law of thermodynamics involves cyclic processes, which are processes in which 
the final state of the system is the same as its initial state: It is impossible for a system to 
undergo a cyclic process whose sole effects are the flow of  an amount of  heat from the 
surroundings to the system and the performance of  an equal amount of  work on the 
surroundings. In other words: It is impossible for a system in a cyclic process to turn 
heat completely into work done on the surroundings. 

The Clausius statement of the second law of thermodynamics is: It is impossible for 
a process to occur that has the sole effect o f  removing a quantity o f  heat from an object 
at a lower temperature and transferring this quantity of  heat to an object at a higher 
temperature. In other words: Heat cannot flow spontaneously from a cooler to a hotter 
object i f  nothing else happens. The Clausius statement of the second law is closely 
related to ordinary experience. The Kelvin statement is less closely related, and it is 
remarkable that the statements are equivalent to each other. 

No violation of either physical statement of the second law of thermodynamics has 
ever been observed in a properly done experiment. A machine that would violate the 
Kelvin statement of the second law and turn heat completely into work in a cyclic 
process is called a perpetual motion machine of the second kind. Such a machine 
cannot exist. However, heat can be completely turned into work if the process is not 
cyclic. In an isothermal expansion of an ideal gas AU vanishes, so that 

Wsur~ = - w  = q (ideal gas, isothermal volume change) (4.1-1) 

Since Wsurr is the amount of work done on the surroundings by the system and since q is 
the amount of heat put into the system, heat transferred to the system has been 
completely turned into work done on the surroundings. However, the system has not 
been restored to its original state. The process is not cyclic and there is no violation of 
the second law of thermodynamics. 

The Carnot Engine 

The Carnot  heat engine is an imaginary model machine that Carnot devised in 1824 to 
represent a steam engine. A simple steam engine is depicted schematically in Figure 
4.1a. It has a cylinder with a piston connected to a crankshaft by a connecting rod. 
There is an intake valve through which a boiler can inject high-pressure steam into the 
cylinder and an exhaust valve through which steam can be exhausted into the 
atmosphere. This steam engine operates with a two-stroke cycle. The cycle begins 
with the piston at top dead center (the position of minimum volume in the cylinder) and 
with the intake valve open. High-pressure steam from the boiler enters the cylinder 
through the intake valve and pushes on the piston, which turns the crankshaft. When the 
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piston reaches bottom dead center (the position of maximum volume in the cylinder) 
the intake valve closes and the exhaust valve opens. The inertia of the crankshaft and 
flywheel pushes the piston back toward top dead center, expelling the "spent" steam 
through the exhaust valve. The exhaust valve closes and the intake valve opens when 
top dead center is reached, and the engine is ready to repeat its cycle. 

The Carnot engine is depicted in Figure 4.lb. The cylinder contains a gaseous 
"working fluid," which we define to be the system. This engine has no valves, so the 
system is closed. We define the cylinder, piston, crankshaft, reservoirs, etc., to be the 
surroundings. To simulate passing steam into and out of the cylinder the Carnot engine 
allows heat to flow from a "hot reservoir" into its working fluid and exhausts heat into a 
"cold reservoir" by conduction through the cylinder walls or cylinder head. Like the 
simple steam engine, the Carnot engine operates with a two-stroke cycle, but it is 
defined to operate reversibly and without friction. We begin the cycle at top dead center 
with the hot reservoir in contact with the cylinder. The first stroke is expansion, which 
we break into two steps. The first step is an isothermal reversible expansion of the 
system at the temperature of the hot reservoir. We stop this expansion with the piston 
only part of the way toward bottom dead center and remove the hot reservoir from the 
cylinder. The termination point of the first step is chosen so that the second step, which 
is an adiabatic reversible expansion, ends with the system at the temperature of the cold 
reservoir and with the piston at bottom dead center. The compression stroke is also 
broken into two steps. The third step of the cyclic process is a reversible isothermal 
compression with the cylinder in contact with the cold reservoir. The third step ends at 
such a volume that the fourth step, a reversible adiabatic compression, ends with the 
piston at top dead center and the system at the temperature of the hot reservoir. This 
state is the same state as the beginning of the cycle and the engine is ready to repeat the 
cycle. 

Figure 4.2a shows the path that the state point of the system follows in the state space 
as the engine undergoes one cycle, using Vand T as the independent variables. Figure 
4.2b shows the same cycle using Vand P as the independent variables. The state at the 
beginning of each step is labeled with the same number as is that step. Since the second 
and fourth steps of the Carnot cycle are adiabatic, 

q2 = q4 -- 0 (4.1-2) 

For the entire cycle, 

qcycle - -  q l  + q2 -Jr- q3 q- q4 - -  q l  q- q3 (4.1-3) 

The internal energy U is a state function and the cycle begins and ends at the same state, 
so that 

m Ucycl e - -  0 ( 4 . 1 - 4 )  

and 

Wcycle - -  A g c y c l e  - qcycle - -  - q l  - q3 (4.1-5) 

The efficiency, r/c, of the Camot engine is the work done on the surroundings divided by 
the heat input from the hot reservoir. The heat exhausted at the cold reservoir is wasted 
and is not reckoned as a negative part of the heat input. 

r/c . . . . .  _ Wsurr __ --Wcycl_....~e_ qcycl.__...._~e __ q l  -k- q3 __ 1 + q 3  (4.1-6) 

ql ql ql ql ql 
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Since the cycles are reversible, the amount of work done on the system in the reverse 
(heat pump) cycle, w', is equal to the amount of work done on the surroundings in the 
forward (engine) cycle if the same two reservoirs are used for both cycles: 

! 

Wcyc l  e m _ Wcyc l  e m Wsur  r (4.1-9) 

For a heat pump, the output is the heat delivered to the hot reservoir and the input is the 
work put into the heat pump. The ratio of the output to the input is called the coefficient 
of performance and denoted by r/h p. It is analogous to an efficiency: 

Iq~l q~ ql 
~ h p  : t : - -  t : 

Wcyc l e  - - q 2  - -  q ~  q l -+- q 3  

1 1 

1 + q3/ql qc 

(4.1-10) 
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This coefficient of performance equals the reciprocal of the Camot efficiency, since the 
input and output are reversed in their roles as well as their signs. The Camot efficiency 
is always smaller than unity, so the Camot heat pump coefficient of performance is 
always greater than unity. The amount of heat delivered to the hot reservoir is always 
greater than the work put into the heat pump because some heat has been transferred 
from the cold reservoir to the hot reservoir. A real heat pump must have a lower 
coefficient of performance than a reversible heat pump but will likely have a coefficient 
of performance greater than unity. 

We now prove that any reversible heat engine has the same efficiency as the Camot 
engine if it exchanges heat with the same two reservoirs. We assume the opposite of 
what we want to prove and then show that this assumption leads to a contradiction with 
fact and therefore must be incorrect. This technique is often used in the proof of 
mathematical theorems. However, we now seek a contradiction with experimental fact 
while a mathematician seeks a contradiction with an earlier theorem or with an axiom. 
Assume that a reversible heat engine does exist with a greater efficiency than a Carnot 
engine. This is the assumption that we want to show to be false. We call this engine a 
"superengine" and label its quantities with the letter s and label the quantities for the 
original Carnot engine by the letter c. By our assumption r/s > ~/c, so that 

1 + q3 (s) q3 (c) 
ql(s ) > 1 -F~ql(c ) (4.1-11) 

Now use the superengine to drive the Carnot engine as a heat pump between the same 
two heat reservoirs as used by the superengine. If there is no friction all of the work 
done by the engine is transmitted to the heat pump: 

w(s) = - w'(c) (4.1-12) 

From Eq. (4.1-10) the amount of heat put into the hot reservoir by the Camot heat pump 
is equal to 

- q~(c) - w'(c) 
1 + q3(c)/ql(c) 

The amount of heat removed from the hot reservoir by the superengine is 

w(s) w'(c) 
ql(s) = - < 

1 § q3(s)/ql(s) 1 § q3(c)/ql(c) 

Therefore, 

q l(S) < -- q~(c) (statement contrary to fact) 

and a larger amount of heat has been put into the hot reservoir by the heat pump than 
has been removed from it by the superengine. This contradicts the Clausius statement of 
the second law of thermodynamics, which means that our assumption must be false. 
The efficiency of  the second reversible engine cannot be larger than that of  a Carnot 
engine. 

The second reversible heat engine also cannot have a smaller efficiency than the first 
Camot engine. If it did its coefficient of performance as a heat pump, which is the 
reciprocal of its efficiency as a heat engine, would be larger than that of a Carnot heat 
pump, and the second law could be violated by using the first engine to drive the second 
engine as a heat pump. We have shown that the efficiency of  a reversible heat engine 
operating with two heat reservoirs does not depend on the nature of  the working fluid 
or on the details of  its design. 
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Exercise 4.1 
Carry out the mathematics to show that a reversible engine cannot have a smaller efficiency than a 
Carnot engine if it uses the same heat reservoirs. 

If a heat engine operates irreversibly, its coefficient of performance as a heat pump 
will not necessarily be the reciprocal of its engine efficiency, since each step cannot 
necessarily be reversed. If the efficiency of the irreversible engine were greater than the 
Carnot efficiency it could violate the second law if used to drive a Carnot heat pump. 
Our conclusion pertaining to real steam engines, internal combustion engines, etc. is: 
Any real heat engine cannot be more efficient than a Carnot engine operating between 
the same two reservoirs, but it can be less efficient. 

The Thermodynamic Temperature and the Zeroth Law of 
Thermodynamics 
The zeroth law of thermodynamics is a summary and generalization of experimental 
fact, like the other laws of thermodynamics. It states that if two objects, A and B, are at 
thermal equilibrium with each other and if B is at thermal equilibrium with a third 
object, C, then A is also at thermal equilibrium with C. This fact is important enough to 
be called a law of thermodynamics, and it is so basic that it needs to precede the other 
laws, but the other laws had already been numbered before people figured out how 
important this law is, so it is called the zeroth law. 

The temperature is the variable that has the same value in all objects at thermal 
equilibrium with each other, so we assert that any other reservoir at the same 
temperature could be substituted for one of our reservoirs without any change in our 
analysis. The value of the ratio q3/ql therefore depends only on the temperatures of the 
reservoirs. The thermodynamic temperature, 0, is defined by the relation 

(4.1-13) 

where 0 c is the thermodynamic temperature of the cold reservoir and Oh is the 
thermodynamic temperature of the hot reservoir. We require the thermodynamic 
temperature to be positive. The Carnot efficiency is now given by 

r / c -  1 0c (4.1-14) 
Oh 

The thermodynamic temperature scale is not related to any particular kind of 
substance and is therefore more fundamental than the ideal gas temperature scale. 
The thermodynamic temperature scale can coincide with the ideal gas temperature 
scale. Assume that the working fluid of a Carnot engine is an ideal gas with a constant 
heat capacity. For the first step of the Carnot cycle, from Eq. (3.4-5) 

ql = nRTh ln(V2/V1) (4.1-15) 

For the third step, 

q3 = nRTc ln(V4/V3) (4.1-16) 
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We can now locate the states at which steps 1 and 3 terminate by using Eq. (3.4-22) 
twice: 

Th -~3 (4.1-17) 

and 

Tc(V1) nR/Cv 
Th ~ (4.1-18) 

These two equations imply that 

Vl v4 
= (4.1-19) 

V2 V3 

When this relation is substituted into Eq. (4.1-16), 

q3 -- nRTc ln(V4/V3) - nRTc ln(V1/V2) = - nRTc ln(Vz/V1) (4.1-20) 

Equation (4.1-20) and Eq. (4.1-15) are substituted into Eq. (4.1-5) to give 

W c y c l e  : - -  ql -- q3 -- n R ( - T h  + Tc) ln(V2/V1) (4.1-21) 

and 

Since the two reservoirs can be at any temperatures so long as T h > T c, temperatures on 
the thermodynamic and ideal gas temperature scales are proportional to each other for 
any value of the temperature. The two scales coincide if the unit on the thermodynamic 
temperature scale is chosen as the kelvin, and the symbol Twill from now on stand for 
the temperature on both the thermodynamic scale and the ideal gas scale. We will call 
both scales the absolute temperature scale or the kelvin temperature scale. The 
thermodynamic temperature is a fundamental quantity like mass, length, and time, 
and the kelvin is one of the "base units" of the SI. We will later show as a consequence 
of the second and third laws of thermodynamics that zero temperature on the 
thermodynamic scale is unattainable. 

*Exercise 4.2 
Calculate the efficiency of a Carnot heat engine that represents a steam engine with its boiler at 
600.0 K and its exhaust at 373.15 K. 



102 4 The Second and Third Laws of Thermodynamics: Entropy 

The Carnot heat pump coefficient of performance is now 

(4.1-24) 

If a heat pump functions as a refrigerator (or air conditioner), the coefficient of 
performance is defined to be the heat removed from the cold reservoir divided by the 
work put into the refrigerator: 

ql ql q3 

Wcycle - - q 2  --  q4 q l -k- q3 

(4.1-25) 

For Carnot heat pumps the coefficient of performance is always greater than unity, and 
for Carnot refrigerators the coefficient of performance exceeds unity if Th/T c < 2. 

*Exercise 4.3 
a. Calculate the coefficient of performance of a reversible heat pump operating between a high 

temperature of 70.0~ and a low temperature of 40.0~ 
b. Calculate the coefficient of performance of a reversible refrigerator operating between an 

interior temperature of 4.0~ and an exterior temperature of 22.0~ 
c. If a real heat pump has an efficiency that is 50.0% of that of the reversible heat pump of part 

(a), find the cost per joule of heating a house in the United States if electrical energy costs 
$0.13 per kilowatt-hour and if the temperatures are as in part (a). 

d. Calculate the cost per joule of heating the house of part (c) with an electrical resistance heater. 

The Mathematical Statement of the Second Law. 
Entropy 

The first law defines the internal energy as a state function in a direct manner, but the 
physical statements of the second law have no obvious connection with a state function. 
The second law of thermodynamics can be stated mathematically in a way that defines a 

new state function: I f  one defines the differential dS 

where Tsurr is the temperature of the surroundings. 
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The argument that the mathematical statement of  the second law follows from a 
physical statement of  the second law consists of  three parts. The first part is to establish 
that in the state space of  the system only one reversible adiabat passes through any 
given point, so that two such curves cannot intersect. The second part of  the argument is 
to show that this fact implies that a function S exists whose differential vanishes along 
the reversible adiabat on which dqrev also vanishes. This implies that dqrev possesses an 
in tegrat ing factor, which is a function y that produces an exact differential dS when it 
multiplies an inexact differential: 

dS = y dq,:e,, (4.2-3) 

The third part of  the proof  is to show that y = 1 /T  is a valid choice for an integra- 
ting factor. 1 We present only the first part of  the proof here and sketch the rest in 
Appendix E. 

To show that two reversible adiabats cannot cross, we assume the opposite of  what 
we want to prove and then show that this assumption leads to a contradiction with fact 
and therefore must be false. Assume that there are two different reversible adiabats in 
the state space of  a closed simple system such that the curves coincide at state number 
1, as depicted in Figure 4.4. The axes of  the state space are labeled with Vand Tbut  our 
argument applies if other axes are chosen. We choose a state on each reversible adiabat, 
labeled states number 2 and number 3 such that the reversible process leading from 
state 2 to state 3 has q > 0. (If we happen to number the states so that q < 0 for this 
process, we must renumber the states.) Now consider a reversible cyclic process 
1 --+ 2 --+ 3 --+ 1. Since steps 1 and 3 are adiabatic, 

qcycle -- q2 > 0 (4.2-4) 

Since A U -  0 in any cyclic process, 

Wsur r n w Wcycl e ~ _ A Ucycl e _Jr_ qcycle n qcycle -- q2 (4.2-5) 

Heat transferred to the system has been converted completely to work done on the 
surroundings in a cyclic process, violating the second law of  thermodynamics. The 
source of  this violation is the assumption that two reversible adiabats can cross. 
Therefore, only one reversible adiabat passes through any given state. 

We now need to show that the fact that two reversible adiabats cannot cross leads to 
the conclusion that dqrev possesses an integrating factor, and that 1/T is such an 
integrating factor. This argument is sketched in Appendix E. It is first shown that the 
cyclic integral of  dqrev/T vanishes around a Carnot cycle and then that the cyclic 
integral of  dqrev/T vanishes around any cycle. If dS is equal to dqr~v/T then dS is an 
exact integral and S is a state function, establishing Eq. (4.2-1). For a simple system of  
one phase and one substance, we can write 

S -- S(T, V, n) (4.2-6) 

or we can write that S is a function of  any other set of  three state variables, at least one 
of  which must be extensive. However, since Eq. (4.2-1) defines dS and not S any 
constant can be added to the value of  the entropy without any physical effect (the 
differential of  a constant equals zero). As with the energy, only changes in the entropy 
are well defined, but the third law of  thermodynamics will provide a conventional 
assignment of  zero entropy. 

1C. Caratheodory, Math. Ann., 67, 335 (1909); J. G. Kirkwood and I. Oppenheim, Chemical Thermo- 
dynamics, McGraw-Hill, New York, 1961, pp. 31 if; J. deHeer, Phenomenological Thermodynamics, Prentice- 
Hall, Englewood Cliffs, NJ, 1986, pp. 123ff. 
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Entropy Changes for Adiabatic Processes 
Consider a reversible adiabatic process for any kind of a system. We integrate Eq. (4.2-1) 
along the curve representing the process. Since dqrev -- 0 for every step of the process, 
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irreversible process has occurred, we carry out a reversible constant-volume step from 
state 2 to state 3 (step 2). For a constant-volume process, 

q2- Icdq- lcCzdT (4.2-8) 

It is an experimental fact that the heat capacity of any system is positive. Therefore, 
q > 0 for the step 2 --+ 3 since the temperature of state 2 is lower than that of state 3. 
After step 2, we carry out a reversible adiabatic step from state 3 to state 1 (step 3). Step 
1 (the irreversible process) and step 3 are both adiabatic, so that 

qcycle - -  q2  > 0 (4.2-9) 

Since U is a state function 

m Ucycl e - -  0 ( 4 . 2 - 1 0 )  

The work done on the surroundings in the cycle is 

Wsurr - -  - -  Wcycl e - -  - -  A Ucycl e + qcycle = - A Ucycl e -Jr- q2 = q2 (4.2-11) 

Heat transferred to the system has been completely turned into work done on the 
surroundings in a cyclic process, which is a violation of the second law. The process is 
not possible: an irreversible adiabatic process cannot lead to a state below the reversible 
adiabatic curve. 

If state 2 is above the reversible adiabatic curve as in Figure 4.6b, we carry out a 
constant-volume reversible step (step 2) from state 2 to state 3, and an adiabatic 
reversible step from state 3 to state 1. This time, since state 2 is at a higher temperature 
than state 3, 

qcycle - -  q2  < 0 ( 4 . 2 - 1 2 )  

so that 

Wsurr - -  - -  Wcycl e - -  - -  m Ucycl e + qcycle = - A Ucycl e + q2  = q2  < 0 (4.2-13) 

In this case, heat transferred to the surroundings has been tumed completely into work 
done on the system. This does not violate the second law of thermodynamics since the 
surroundings do not undergo a cyclic process. The process of Figure 4.6b is possible. 
The final temperature for an irreversible adiabatic process cannot be lower than for a 
reversible adiabatic process with the same final volume, but it can be higher. 

Now consider the irreversible adiabatic process from state 1 to state 2 that was 
depicted in Figure 4.6b. Since S is a state function, 

AScyc l  e - -  A S  1 + A S  2 -'l- A S  3 - -  0 

Since step 3 is reversible and adiabatic, AS3 - 0 ,  and 

(4.2-14) 

A S  1 ~- - A S  2 (4.2-15) 

Since step 2 is reversible, we can integrate Eq. (4.2-1) for this step" 

I ~ dqrev j~'3 Cv 
AS2= = T dr  <o  

T2 T /'2 
(4.2-16) 
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The inequality comes from the fact that the temperature and the heat capacity are both 
positive and the fact that the temperature of state 2 must be greater than that of state 3. 
From Eq. (4.2-15) AS 1 > 0. Therefore, 

where the equality holds for reversible processes. For any adiabatic process, the 
entropy o f  the system cannot decrease. 

Entropy Changes for Nonadiabatic Processes 
Consider a closed system and its surroundings arranged as in Figure 4.7. Assuming 
surface tension effects between system and surroundings to be negligible, 

Scombinatio n : S + Ssurr (4.2-19a) 

AScombinatio n - -  A S  + ASsurr (4.2-19b) 

where the system plus surroundings is called the combination. Since the combination is 
isolated from the rest of the universe, it can undergo only adiabatic processes, and Eq. 
(4.2-18) applies to it: 

(4.2-20) 

For reversible process the entropy change of the system and the entropy change of the 
surroundings cancel, and for irreversible processes the sum of dS and dSsurr must be 
positive. Since the combination is the only part of the universe involved in the process, 

dSuniverse - -  dScombinatio n > 0 (4.2-21) 

The most important consequence of the second law of thermodynamics is: In any 
reversible process, the entropy o f  the universe remains constant. In any irreversible 
process, the entropy o f  the universe increases. 

In order to focus on the system, we rewrite Eq. (4.2-20) in the form 

dS >_ - dSsurr (4.2-22) 

It is not necessary that dS be positive. However, if dS is negative, then dSsurr must be 
positive and large enough that the sum dS + dSsurr is not negative. We make the 
simplest possible assumption about the surroundings: we assume that the heat capacity 
and the thermal conductivity of the surroundings are so large that the surroundings 
remain at equilibrium during any process and that the temperature of the surroundings 
does not change. This means that we can apply Eq. (4.2-1) or (4.2-14) to the 
surroundings: 

dSsurr - dqsurr = d q  (4.2-23) 
Vsu~ Tsurr 
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where the second equality comes from the fact that any heat transferred to the 
surroundings must come from the system. Equation (4.2-22) now gives 

(4.2-24) 

where the equality applies to reversible processes and the inequality applies to 
irreversible processes. The temperature of the surroundings, not the temperature of 
the system, occurs in Eq. (4.2-24). This equation is the mathematical statement of the 
second law, with Eqs. (4.2-1) and (4.2-2) combined, and it has been obtained from a 
physical statement of the second law. The opposite procedure is also possible: if the 
mathematical statement is taken as a postulate, the physical statements can be derived 
from it. 2 

Exercise 4.4 
Show from the mathematical statement of the second law that heat cannot flow from a cooler 
object to a hotter object if nothing else happens. Hint: consider two objects that form a 
combination that is isolated from the rest of the universe, and are at different temperatures. 

Since no violations of the second law of thermodynamics have ever been observed, 
there is no reason to doubt its universal applicability, but if it is universally applicable 
the ultimate fate of the universe will be to approach a state of thermodynamic 
equilibrium in which every object in the universe will be at the same temperature. 
There will be no energy flow from stars to planets, and no life or any other macroscopic 
processes will be possible. This "heat death" of the universe will of course not occur 
for a very long time, but is unavoidable if the second law is universally valid. 

Some people have speculated that the second law might not be universally valid, but 
might just be a statement of what nearly always occurs. If so, perhaps under some 
circumstances violations of the second law could be observed (possibly if the universe 
some day begins to contract instead of expanding). This idea is unsupported specula- 
tion, and we have every reason to apply the second law of thermodynamics to any 
process in any macroscopic system and have no reason to assume that it might be 
violated, 3 

The Calculation of Entropy Changes 

The most direct way to calculate entropy changes is by carrying out the appropriate 
integral of dS.  For any process that begins at an equilibrium state (state 1) and ends at 
an equilibrium state (state 2) the entropy change is given by 

(4.3-1) 

Equation (4.3-1) is a general working equation. The integral must be carried out along a 
curve in the equilibrium state space of the system beginning at the point representing 

2 Kirkwood and Oppenheim, op. cit. [note 1 ]. 
3 See S. Frautschi, Entropy in an Expanding Universe, Science, 217, 592 (1982). 
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the initial state and ending at the point representing the final state. The actual process 
does not have to be a reversible process so long as it has equilibrium initial and final 
states, but the path on which the line integral is calculated must correspond to a 
reversible process. If you can find a more convenient path with the same initial and final 
states as a process for which you want to calculate AS, use the more convenient path for 
your integration. 

Entropy Changes for Isothermal Reversible Processes 
Since the process is reversible we integrate along the actual path of  the process, and 
since T is constant we can factor 1 /T out of  the integral: 
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Entropy Changes for Processes That Start and End at the 
Same Temperature 
Since the entropy is a state function, AS has the same value for two processes if they 
have the same initial state and the same final state. If a process has a final temperature 
that is equal to its initial temperature, Eq. (4.3-2) can be applied to it even if the 
temperature of  the system changes during the process and even if the process is not 
reversible. We must use qrev for the isothermal reversible process to do the calculation, 
and not the value of  q for the actual process if it differs from qrev" 
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*Exercise 4.6 
Calculate AH, q, and AS for the reversible vaporization of 50.0 g of ethanol at 1.000 atm. The 
molar enthalpy change of vaporization is equal to 40.48 kJ mol -~ and the boiling temperature at 
1.000 atm is 78.5~ 

Entropy Changes for Reversible Changes in Temperature 
Another simple class of  processes consists of  temperature changes in closed systems 
without phase change or chemical reaction. If the pressure is constant, the relations of  
Eqs. (3.5-6) and (3.5-8) give 

dq = d H  = Cp d T  (closed system, constant pressure) (4.3-5) 

so that Eq. (4.3-2) becomes 
. . . . . . . . . . . . .  

*Exercise 4.7 
For a gas whose molar constant-pressure heat capacity is represented by 

Cp,m -- a + b T  + cT  -2 

derive a formula for AS if the temperature is changed from T 1 to T 2 at constant pressure. 
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For temperature changes at constant volume, Eqs. (3.4-7) and (3.4-8) give 

dq  = d U  = C v d T  (closed system, constant volume) 

so that Eq. (4.3-2) becomes 

(4.3-7) 

(4.3-8) 

*Exercise 4.8 
Calculate the entropy change if 2.500mol of neon gas is heated from 80.0~ to 250.0~ at a 
constant volume of 100.0 L. State any assumptions. 

The Entropy Change of an Irreversible Process 

The system depicted in Figure 4.8a contains one large object at temperature T 1 and 
another large object at a higher temperature T 2. These objects are insulated from the 
surroundings and from each other, except for a thin bar connecting the objects. If the 
objects are very large compared with the bar, they will have nearly uniform and 
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constant temperatures, and the system will come to a steady state, in which the 
properties of the system do not depend on time although an irreversible process is 
taking place. The bar will have a temperature that depends on position but not on time, 
as depicted in Figure 4.8b. Consider a period of time At, during which a quantity of heat 
q passes through the bar. Since the nonequilibrium state of the bar is time-independent, 
the amount of heat entering one end of the bar is equal to the amount of heat leaving the 
other end of the bar. We assume that the entropy of the bar is a function of its 
nonequilibrium state, and since the nonequilibrium state of the bar is time-independent, 
the entropy of the bar does not change. 

Since object 1 essentially remains at equilibrium, its entropy change is 

= [ dql = q__L1 (4.3-9) AS 
3 rl /1 

where q l is the amount of heat transferred in the time At. The entropy change of object 
2 is 

AS2 _ ~_~2 - -  q2 _ q lT2 (4.3-10) 

The entropy change of the system is 

AS = q l  - (4.3-11) 

Since the system is adiabatically insulated from its surroundings, the entropy change of 
the surroundings vanishes, and the entropy change of the universe is equal to the 
entropy change of the system. 

The time rate of change of the entropy of the universe is called the entropy 
production. It is the rate at which new entropy is being generated. For our steady- 
state process, the entropy production is 

dSuniv (dq)(~--~l ~--22) ( d q )  (AT-~2) dt = ~ - - -~- (4.3-12) 

where dq/dt is the rate at which heat is transferred and where AT = T 2 -T1 .  The 
entropy production is the product of two factors. The first factor, dq/dt, specifies the 
rate of the process, and the second factor, AT/(T 1T2), specifies the extent to which the 
system deviates from equilibrium. In irreversible thermodynamics the first factor is 
called a "flux," and the second factor is called a "force," and it is generally found that 
the entropy production is a sum of terms that are products of this sort. 

*Exercise 4.9 
For the system of Figure 4.8, calculate the rate of entropy production if the first object is at 325 K 
and the second object is at 375 K, and if 200 J of heat flows in 30 s. 

Entropy Changes for Irreversible Processes That Begin 
and End with Equilibrium States 
Many of the irreversible processes begin with the system in one equilibrium or 
metastable state and end with the system in another equilibrium state. Since entropy 
is a state function, we can calculate the entropy change of the system using a reversible 
process that has the same initial and final states as the irreversible process. If the 
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entropy change of the surroundings is required, a separate calculation is necessary, since 
the final state of the surroundings will not necessarily be the same in the reversible 

process as in the irreversible process. 

*Exercise 4.10 
Find AS, ASsurr, and ASuniv if 3.000mol of argon (assumed ideal) expand isothermally into a 
vacuum at 298.15 K, expanding from a volume of 15.00 L to a volume of 40.00 L. 
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Metastable supercooled or superheated phases can undergo irreversible phase 
changes at constant pressure, and their entropy changes can be calculated by consider- 
ing reversible processes with the same initial and final states, treating metastable initial 
states as though they were equilibrium states. 

The Entropy Change of Mixing Ideal Gases 
According to Dalton's law of partial pressures, each gas in a mixture of ideal gases acts 
as though it were alone in the volume containing the mixture. Consider a mixture of 
several ideal gases in which n l is the amount of substance 1, n2 is the amount of 
substance 2, etc. The number of substances is denoted by s. To create the mixture we 
imagine an initial state with each substance confined in a separate compartment of a 
container, as shown in Figure 4.9. We arrange the system so that each gas is at the 
temperature and the pressure of the final mixture by letting 

n i R T  
V/= P (i -- 1,2, 3 . . . .  , s) (4.3-13) 

where V/is the volume of compartment number i, n i is the amount of substance number 
i in compartment number i, and T and P are the desired temperature and pressure. 

The gases are mixed by withdrawing the partitions between compartments, so that 
each gas expands irreversibly and isothermally into the entire volume. Since ideal gases 
act as though each were present by itself, each expansion has the same initial and final 
states as an isothermal expansion into a vacuum, and these initial and final states are 
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also the same as those for a reversible isothermal expansion. The entropy change of gas 
number i is obtained from Eq. (4.3-3): 

In ( ~ . )  ( i --  1, 2, 3 . . . . .  s) (4.3-14) ASi  --  ni R 

where V is the total volume of the container: 

V -  ~ V/ (4.3-15) 
i=1 

The entropy change of the system is 

The mole fraction of substance number i is defined by 

El i 
x i = -- (4.3-17) 

n 

where n is the total amount of all gases, 

n - ~ nj (4.3-18) 
j = l  

From Eqs. (4.3-13), (4.3-15), (4.3-17), and (4.3-18), 

Vi (4.3-19) X i - - - - ' ~  

so that the entropy change on mixing the ideal gases is 

A S  - - R ~ n i ln(xi) (4.3-20) 
i=1 

All of the mole fractions must be less than or equal to unity, so that the entropy change 
of mixing is nonnegative. Equation (4.3-20) applies to the mixing of substances in other 
kinds of systems besides ideal gases if the intermolecular interaction is unimportant. 
For example, it can be used to calculate the entropy change of mixing of isotopes of a 
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single element, and we will see in a later chapter that it applies to a class of liquid or 
solid solutions called ideal solutions. 

*Exercise 4.11 
a. Find the entropy change of mixing for 1.000mol of the normal mixture of Br atoms, with 

50.69% 79Br and 49.31% 81Br. 
b. Find the entropy change of mixing in 0.500 mol of naturally occurring Br 2. Note that there are 

three kinds of Br 2 molecules if there are two isotopes. 

Statistical Entropy 

The entropy has been defined as a macroscopic quantity without molecular interpreta- 
tion. However, a statistical entropy was defined by Boltzmann: 

(4.4-1) 

where k B is Boltzmann's constant and where S O is an arbitrary constant that we can take 
equal to zero. This definition is carved on Boltzmann's tombstone. The thermo- 
dynamic probability f~ is defined to be the number of mechanical states (microstates) 
of the system that are compatible with our information about the macroscopic state of 
the system. The thermodynamic probability is a measure of lack of information about 
the mechanical state of the system, with larger values corresponding to less information 
and with a value of unity corresponding to knowledge that the system is in a specific 
microstate. Since the logarithm is a monotonic function of its argument, the statistical 
entropy is also a measure of lack of information about the mechanical state of the 
system. If we know that the system definitely occupies a single mechanical state, the 
statistical entropy is equal to zero. 

In order to show the relationship between the thermodynamic entropy and the 
statistical entropy, we examine a model system called the lattice gas. This system 
contains a fixed number N of noninteracting point-mass molecules moving freely in a 
rectangular box of volume V. The molecules are assumed to obey classical mechanics 
so the states of the molecules are specified by their locations and velocities. We 
mentally divide the volume of the box into a number M of rectangular cells of equal size 
arranged in a rectangular array (lattice) as shown schematically in Figure 4.10. We 
number the cells from 1 to M. Since the cell boundaries are imaginary, the molecules 
simply pass through them. Instead of giving the values of three coordinates to specify 
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the location of one particle we specify which cell it occupies at a given instant. This 
specification of location is called a "coarse-grained" description, and it gives less 
precise information about the location of the particles than specifying exact coordinate 
values. We continue to specify the velocity of each particle by specifying the values of 
three velocity components. 

The model system is at thermodynamic equilibrium with known values of T and V 
and a known number of particles, N. This information suffices to specify the 
equilibrium macroscopic state, but gives very little information about the mechanical 
state of the system, since the particles can be arranged with very many positions and 
velocities. Very many mechanical states could correspond to the known macroscopic 
state, and f~ has a very large value. 

We assume that the probability that a randomly chosen molecule possesses a 
particular velocity is independent of the probability that the same molecule possesses 
a particular position. Therefore, any velocity state of all the molecules can be combined 
with any coordinate state of the molecules. It is a fact of probability theory that the 
number of ways of accomplishing two independent events is the product of the number 
of ways of accomplishing each event. Therefore, the thermodynamic probability is the 
product of two factors, one for the coordinates and one for the velocities: 

~'~ = ~"~coord~"~vel (4.4-2) 

We now seek a formula representing f~coora for our lattice-gas model. If we have only 
thermodynamic information, we know nothing about the positions of the molecules 
except that they are somewhere in the box, and the number of possible coordinate states 
for a single molecule is equal to the number of cells, M. Since the molecules are mass 
points they do not interfere with each other, and the presence of one molecule in a cell 
does not keep other molecules from occupying the same cell. Any state of a second 
molecule can occur with any state of the first molecule, so the number of possible 
coordinate states for two molecules is M 2. Any state of a third molecule can occur with 
any state of the first pair of molecules, etc. For a system of N molecules, 

~coord  = MN (4.4-3) 

If the molecules were not mass points this equation would not be valid because a cell 
could fill up and not be able to accept any more molecules after a certain number were 
in it. 
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*Exercise 4.12 
a. List the 36 possible states of two dice and give the probability for each sum of the two 

numbers showing in the upper faces of the dice. 
b. Determine how many possible states occur for four dice. 
e. Determine how many possible states occur for two "indistinguishable" dice, which means that 

there is no difference between a four on the first die with a five on the second die and a five on 
the first die with a four on the second, etc. Explain why the correct answer is not equal to 18. 

The Statistical Entropy and the Thermodynamic Entropy 
We now show that the change in the statistical entropy and the change i n t h e  
thermodynamic entropy are equal for isothermal volume changes in our lattice gas. It 
is shown in Chapter 10 that a model system of independent particles behaves like an 
ideal gas, and we assume our lattice gas will behave like an ideal gas. Equation (4.3-3) 
gives the change in the thermodynamic entropy for an isothermal volume change in an 
ideal gas: 

A S - - n R  l n ( - ~ )  (4.4-4) 

where V2 is the final volume and V 1 is the initial volume. 
The change in the statistical entropy for any process is 

(~r'~coord( 2 ) ~"~vel(2) t 
ASs t -  kB ln(f~2)- kB ln(D1) -- kB ln(f~2/D,) -- kB In \~i)Dvel(1----~, / (4.4-5) 

We assume that the velocity distribution depends only on the temperature. With this 
assumption, the velocity factor in f~ depends only on the temperature, so that for an 
isothermal process 

~'~vel(2) -- ~"~vel(1) (4.4-6) 

The velocity factors in Eq. (4.4-5) cancel, and 

mast - k B In 
(~"~coord(2)) 
k~"~coord( 1 ) 

Using Eq. (4.4-3) and the fact that N is fixed, 

(t 2t ASst- k B In k MN] -- kB In ~ -- Nk. In 

(4.4-7) 

In order to maintain a given precision of position specification, the size of the cells 
must be kept constant, so that the number of cells is proportional to the volume of the 
system: 

M2 V2 
M1 V1 

Therefore, 

/ V , \  
ASst- Nk Bln[" ~ |  (4.4-9) 

\VlJ 

(4.4-8) 
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The change in the statistical entropy is identical to the change in thermodynamic 
entropy given in Eq. (4.4-4) if we let 

Nk B = nR 

which assigns a value to the Boltzmann constant: 

nR R 8.3145 J K -1 mo1-1 
kB = - N - -  NAv 6.0221 x 1023 mo1-1 = 1.3807 x 10 -23 J K -1 (4.4-10) 

We assert without further discussion that the equivalence between the statistical and 
thermodynamic entropies in a lattice gas and for isothermal expansions is typical of all 
systems and all processes and write the general relation 

*Exercise 4.13 
Find the value of f~ for a system if its entropy is equal to 210 J K - 1  . 

Entropy and Randomness 
We have established a connection between entropy and lack of information about the 
mechanical state of a system. It is commonly said that entropy is a measure of 
"randomness," with larger values corresponding to greater randomness. This statement 
is an imprecise way of stating the connection between entropy and lack of information 
about the mechanical state, because disorder or randomness generally corresponds to 
lack of information about the mechanical state of the system. 

Walter Hermann Nemst, 1864-1941, 
was a German physical chemist who 
received the 1920 Nobel Prize in 
chemistry for his work on the third law 
of thermodynamics, but who also 
made numerous other contributions, 
including the Nernst equation of 
electrochemistry. 

The Third Law of Thermodynamics and Absolute 
Entropies 

Like the first and second laws, the third law of thermodynamics is a summary and 
generalization of experimental fact. It was first stated by Nernst: For certain isothermal 
chemical reactions o f  solids, the entropy changes approach zero as the thermodynamic 
temperature approaches zero. Nernst based this statement on his analysis of experi- 
mental data of T. W. Richards, who studied the entropy changes of chemical reactions 
between solids as the temperature was made lower and lower. The statement of Nernst 
was sometimes called Nernst's Heat Theorem. 
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Theodor William Richards, 1868- 
1928, was an American chemist who 
won the 1914 Nobel Prize in chemistry 
for his accurate chemical 
determinations of atomic masses. 

Max Karl Ernst Ludwig Planck, 1858- 
1947, was a German physicist who 
won the 1918 Nobel Prize in physics 
for his pioneering work in quantum 
theory. 

Gilbert Newton Lewis, 1875-1946, 
was an American chemist who, prior to 
the development of quantum 
mechanics, proposed that covalent 
chemical bonds arise from sharing of 
electrons according to the octet rule. 

Sir Franz Eugen Francis Simon, 
1893-1956, was a German-British 
physicist who, independently of 
Giauque, developed the method of 
adiabatic demagnetization to reach 
low temperatures. 

William Francis Giauque, 1895-1982, 
was an American chemist who 
discovered that ordinary oxygen 
consists of three isotopes. He received 
the 1949 Nobel Prize in chemistry for 
proposing the process of adiabatic 
demagnetization to attain low 
temperatures. 

In 1911 Planck proposed extending Nernst's statement to assert that the entropies of 
individual substances actually approach zero as the temperature approaches zero. 
However, there is no experimental justification for this assertion. In 1923 Lewis 
proposed the following statement of the third law: I f  the entropy o f  each element in 
some crystalline state be taken as zero at the absolute zero o f  temperature, every 
substance has a finite positive entropymbut at the absolute zero o f  temperature the 
entropy may become zero, and does so become in the case o f  perfect crystalline 
substances. 4 We base our entropy calculations on this statement. 

The restriction to perfect crystals was made necessary by the discoveries of Simon 
and Giauque, who found that substances such as CO and NO fail to obey the third law 
in their ordinary crystalline forms. These substances easily form metastable crystals 
with some molecules in positions that are the reverse of the equilibrium positions, and 
ordinary crystals are in such metastable states. We discuss such systems later in this 
section. 

Exercise 4.14 
Show that if the entropies of pure perfect crystalline elements are taken equal to nonzero 
constants at zero temperature, the entropy of a pure perfect crystalline compound at zero 
temperature is equal to the sum of the entropies of the appropriate numbers of  moles of the 

elements at zero temperature. 

The Unattainability of Absolute Zero 

In Section 4.2 we showed that two reversible adiabats cannot cross. Since a reversible 
adiabat corresponds to constant entropy, the curve representing T - - 0  is a reversible 
adiabat as well as an isotherm (curve of constant temperature). This is depicted in 
Figure 4.11, in which the variable X represents an independent variable specifying the 
state of the system, such as the volume or the magnetization. A reversible adiabat gives 
the temperature as a function of X. Since two reversible adiabats cannot intersect, no 
other reversible adiabat can cross or meet the T = 0 isotherm. Therefore, no reversible 
adiabatic process can reduce the temperature of the system to zero temperature. 
Furthermore, since we found in Section 4.2 that irreversible adiabatic processes lead 
to the high-temperature side of the reversible adiabat, irreversible adiabatic processes 
cannot lead to lower temperatures than reversible adiabatic processes. Therefore, no 
adiabatic process can lead to zero temperature. 

If no adiabatic process can lead to zero temperature, one might ask if some other kind 
of process might lead to zero temperature. Unless a heat reservoir already exists at zero 
temperature, conduction of heat away from an object cannot do the job, since heat flows 
from a hotter to a cooler object. A refrigerator cannot do the job, since its coefficient of 
performance must be less than that of a Carnot refrigerator, which approaches zero as 
the lower temperature approaches zero. We therefore conclude that no process can 
cause a system to attain 0 K, which is therefore called absolute zero. The unattain- 
ability of absolute zero is a consequence of both the second and third laws. 

Very low temperatures have been attained by adiabatic demagnetization. This 
process, invented by Giauque, consists of magnetizing an object isothermally. The 

4 G. N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical Substances, McGraw- 
Hill, New York, 1923, p. 448. 
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magnetization process decreases the entropy, since it aligns magnetic dipoles in the 
material and reduces the randomness of the system. Heat flows from the object to a heat 
reservoir during the magnetization. Once the object is magnetized, it is adiabatically 
insulated and then removed from the magnetic field that has magnetized it. During the 
adiabatic demagnetization, which approximates a reversible process, the entropy 
remains nearly constant and the temperature drops. Carrying out this process repeatedly 
has achieved temperatures of less than 0.000001 K (1 microkelvin) in the nuclear spins 
of a magnetizable system. Recent studies of ultralow temperatures have involved 
opposing laser beams that effectively stop the translational motion of atoms, thus 
lowering their temperature so far as this motion is concerned. Saubamea and coworkers 
have achieved an effective temperature of 3 nK (nanokelvin). 5 

Peter J. W. Debye, 1884-1966, was a 
Dutch-American physicist and chemist 
who received the Nobel Prize in 
chemistry in 1936 for his work on the 
dipole moments of molecules and who 
made numerous other important 
contributions. 

Absolute Entropies 
According to the third law as stated by Lewis, we can consistently set the entropy of any 
pure perfect crystalline substance equal to zero at zero temperature. The entropy change 
to bring a sample of a pure substance from zero temperature in a perfect crystalline 
form to some specified state at a temperature of interest is called the absolute entropy 
of that substance at the specified temperature. We write, for 1 mol of any substance, 

iiiiii iiiiiiiiiiiiiiiii iiiiiii!iiill !!ii!i !iii  iliii 
ii iiiiii~N)!i iNili~i i} i i!il} iiiiiiiiiii~ii)ill iiil ( 4.5-1 ) 
iiiii~i~ii~i!iiii~i~ii~ii~i~i~i~ii~iiiii~i~i~ii!ii~ii!i~iii~i~i!~iiii~ii~ii~J~ii~i!ii~iii~i!~iii!~iii~ii~J~ii!i~ii~i~ii!i! ~ii) iii li 

where SIn(T1) is the absolute molar entropy of the substance at temperature T 1 . If there 
is no phase transition between T = 0 and T = T 1 (the substance must be in the same 
crystal structure at temperature T 1 as at 0 K) and if the final and initial states are at the 
same pressure, 

ii iii!i!iiiiiiiiiiiiiii iiiii iiiiiiiiiii;iiii!!ii ii iiiiiii iiiiiiiiiii N!i ~i~iii !ii iii~~ii~it!!}iiiii~{~iiiiiiiiiili ! ~  iii!iiiii~~ i! ~iiiii (4.5-2) 

A similar equation can be written for a constant-volume integration. 
Inspection of Eq. (4.5-2) shows that the heat capacity must approach zero as the 

temperature approaches zero if the integral is not to diverge. Heat capacity data are 
difficult to obtain at very low temperatures, but all experimentally determined heat 
capacities tend toward zero as the temperature approaches zero. An approximate theory 
of Debye 6 gives the result that for a crystal of a monatomic substance the constant- 
volume heat capacity at low temperatures has a contribution from vibrational motions 
that is proportional to the cube of the temperature. An approximate theory for the 
motion of mobile electrons in metals gives a contribution proportional to the first power 
of the temperature, 7 so that for sufficiently low temperature 

C v ,  m - a T  3 + b T (valid at low temperature) (4.5-3) 

5 See for example J. Lawall, S. Kulin, B. Saubamea, N. Bigelow, M. Leduc, and C. Cohen-Tannoudji, 
Phys. Rev. Lett., 75, 4194 (1995). 

6 p. Debye, Ann. Physik, 17(4), 817 (1911). See Section 22.3. 
7 j. S. Blakemore, Solid State Physics, 2d ed., W. B. Saunders, Philadelphia, 1974, pp. 176ff. 
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where a and b are parameters that can be determined from experimental data. For 
nonconductors the parameter b is equal to zero. Equation (4.5-3) is quite reliable up to 
temperatures of about 15 K. Above this temperature data are usually available. Since the 
difference between Cp and C v is numerically small for solids, Eq. (4.5-3) is usually 
used for Cp as well as for C v. 

Exercise 4.15 
a. Show that if Eq. (4.5-3) is valid between zero temperature and some temperature T 1 and if 

b = 0, the value of the molar entropy at T1 is given by 

SIn(T1) = aT3 = Cv'm(Tl~) (4.5-4) 
3 3 

*b. Find the expression for Sm(T1) if b is not equal to zero. 

If a phase transition occurs between zero temperature and the temperature of interest, 
Eq. (4.5-2) must be modified to include the entropy change of the phase transition. If 
the substance is a liquid at temperature T1, Eq. (4.5-2) becomes 

(4.5-5) 

where Tf is the reversible freezing temperature (melting temperature), AfusHm is the 
molar enthalpy change of fusion (melting), Cp,m(S) is the molar heat capacity of the 
solid, and Cp, m(1 ) is the molar heat capacity of the liquid. 

Exercise 4.16 
Write the equation analogous to Eq. (4.5-5) that applies to a gaseous substance. 

Calculation of Entropy Changes for Chemical Reactions 
Since absolute (third-law) entropies can be calculated from experimental data, tables of 
their values have been created. Some values for substances in their standard states are 
included in Table A.8 of Appendix A. These values can be used to calculate entropy 
changes for chemical reactions. For a reaction beginning with an equilibrium state or a 
metastable state and ending with an equilibrium state, the change in entropy is equal to 
the entropy of the products minus the entropy of the reactants. For one mole of an 
isothermal reaction at temperature T 1 written as in Eq. (3.7-7), 

(4.5-6) 

The symbol Sm,i(T1) stands for the absolute molar entropy of substance number i at 
temperature T 1. Compare this equation with Eq. (3.7-11), which contains enthalpy 
changes of formation. This equation contains absolute entropies, not entropy changes of 
formation. 

The standard state for the entropy is the same as the standard state for the enthalpy. 
For a solid or liquid, the standard state is the actual substance at pressure P~ (exactly 
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1 bar). For a gas, the standard state is a hypothetical ideal gas state at pressure P~ That 
is, a correction must be made for the difference between the entropy of the real gas at 
pressure P~ and the corresponding ideal gas at pressure P~ We will discuss how to 
make this correction in Chapter 5. For most gases the difference between the real gas 
and the ideal gas is small, and we can take the standard state as that of the real gas at 
pressure P~ without serious error. 

*Exercise 4.17 
Assuming that the surroundings remain at equilibrium at 298.15 K, calculate the entropy change 
of the surroundings and of the universe for one mole of the reaction in Example 4.12. 

Chapter 3 presented the approximate calculation of energy changes of chemical 
reactions, using average bond energies. There is an analogous estimation scheme for the 
entropy changes of chemical reactions, in which contributions from bonds and 
contributions from groups of atoms are included. We do not discuss this scheme, but 
the interested student can read the article by Benson and Buss. 8 

Statistical Entropy and the Third Law of Thermodynamics 

There are some substances that originally appeared not to obey the third law of 
thermodynamics, and these anomalies can be explained using statistical entropy. 
Carbon monoxide is an example. The absolute entropy of gaseous carbon monoxide 
determined by an integration such as in Eq. (4.5-1) turned out to be too small to agree 
with values inferred from entropy changes of chemical reactions and absolute entropies 
of other substances. Carbon monoxide molecules are nearly symmetrical in shape and 
have only a small dipole moment, so a carbon monoxide molecule fits into the crystal 
lattice almost as well with its ends reversed as in the equilibrium position. Metastable 
crystals can easily form with part of the molecules in the reversed position. (In fact, it is 

8 S. W. Benson and J. H. Buss, J. Chem. Phys., 29, 546 (1958); S. W. Benson, et al., Chem. Rev., 69, 279 
(1969). 
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difficult to obtain a perfect crystal.) If we assume that the occurrence of reversed 
molecules is independent of the rest of the state of the crystal, we can write 

-- ~"~orient~"~rest (4.5-7) 

where ~'~orient is the number of ways of orienting the molecules in ways compatible with 
our knowledge of the state of the system. The other factor, ~"~rest, is the number of 
possible states of the crystal if the orientation of the molecules is ignored. 

Statistical mechanics predicts that at absolute zero the various vibrations of a crystal 
lattice all fall into a single lowest-energy state, as do the electronic motions. If there is 
no entropy of isotopic mixing, 

lim ~2rest = 1 (4.5-8) 
T-+0 

If a metastable crystal exists in which each molecule can occur with equal probability in 
either the equilibrium state or the reversed state, then 

~"~orient = 2N (4.5-9) 

where N is the number of molecules in the crystal. If ~'~rest is set equal to unity, the 
statistical entropy of the metastable crystal near zero temperature is 

Sst(metastable) = kB ln(2 N) = NkB ln(2) = nR ln(2) (4.5-10) 

For 1 mol of carbon monoxide, 

Sm,st(metastable) = R ln(2) = 5.76 J K -1 mo1-1 (4.5-11) 

This value agrees with the amount by which carbon monoxide appeared to deviate from 
the third law. 

*Exercise 4.18 
Pretend that you have synthesized 1.00 mol of CaCO 3 in which each carbonate ion has one 160 
atom, one r70 atom, and one ~80 atom. Calculate the entropy of the metastable crystal near zero 
temperature, if nothing is known about the orientations of the carbonate ions except that each 
equilibrium oxygen position is occupied by an oxygen atom of some isotope. 

Trouton's Rule 

Trouton's rule is an empirical rule for entropy changes of vaporization. It states that for 
"normal" liquids the molar entropy change of vaporization at the normal boiling 
temperature (at 1.000 atm) is roughly equal to 10.5R ~ 88 J K -1 mo1-1 . Trouton's rule 
underestimates the entropy change of vaporization for liquids like ethanol and water, in 
which there is considerable molecular association. Trouton's rule also badly over- 
estimates the entropy change of vaporization for hydrogen and helium, so these liquids 
do not qualify as normal liquids. Modifications of Trouton's rule have been proposed, 
including a version that uses entropy changes of vaporization to form gases with the 
same value of the molar volume instead of whatever molar volume corresponds to one 
atmosphere pressure at the normal boiling temperature. The values for hydrogen and 
helium fall closer to those of other substances if this modified rule is used. There is also 
a method in which contributions for different groups of atoms in the molecule are 
considered. 9 

9 D. Hoshino, K. Nagahama, and M. Hirata, Ind. Eng. Chem. Fundam., 22, 430 (1983). 
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e. The entropy of the surroundings remains constant when 
a reversible process occurs. 

f. The entropy of the universe remains constant when a 
reversible process occurs. 

g. The energy of an isolated system remains constant when 
a reversible process occurs in the system. 

h. The energy of an isolated system decreases when a 
reversible process occurs in the system. 

4.47. Make an accurate graph of each of the following, 
stating any assumptions: 

a. The molar entropy of a monatomic ideal gas with 
( C v ,  m = 3R/2 =constant)  as a function of temperature 
from 0 K to 300 K. Assume that the molar entropy vanishes 
at 0 K and assume a constant pressure of 1.000 bar. 

b. The molar entropy of an ideal gas as a function of molar 
volume from 1.000 L to 10.00 L at a constant temperature of 
300 K. 

c. The molar entropy of water from - 5 0 ~  to +50~ at a 
constant pressure of 1.000 atm. 



1. The second law of thermodynamics provides the general criterion 
for spontaneous processes: the entropy of the universe cannot 
decrease. 

2. This general criterion can be used to derive criteria for spontaneous 
processes in terms of system properties under specific circumstances. 

3. The Gibbs and Helmholtz energies provide information about the 
maximum amount of work that can be done by a system in a 
given process. 

4. General equations for the differentials of various thermodynamic 
functions can be written from the first and second laws. 

5. Thermodynamic equations for practical applications can be obtained 
from these general equations. 

6. The methods of calculus can provide useful thermodynamic relations, 
such as the Maxwell relations. 

7. The chemical potential is an important variable in describing 
multicomponent systems. 

8. Euler's theorem and the Gibbs-Duhem relation are useful in making 
calculations. 
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The second law of thermodynamics provides the fundamental criterion that must be 
obeyed in order for a process to take place: that the entropy of the universe cannot 
decrease in any real process. We now investigate specific situations and express this 
fundamental criterion in terms of properties of the system. 

Criteria for Spontaneous Processes in Closed Systems 
In this section, we examine the behavior of a closed system. If the system is in contact 
with surroundings, we assume that the surroundings are very large and have a very large 
thermal conductivity and a very large heat capacity, so that the surroundings can be 
assumed to remain at equilibrium at a fixed temperature, allowing us to focus on the 
properties of the system. Consider first a closed system that is not necessarily a simple 
system. The second law of thermodynamics implies that possible processes must obey 
the relation of Eq. (4.2-31) 

dq (dU - dw) 
d S  > - - -  (5.1-1) 

- Tsurr rsurr 

where Tsurr is the temperature of the surroundings and where we have used the first law 
in the form dq  - d U -  dw.  This equation is the same as 

(5.1-2) 

We now consider criteria for possible processes in a closed simple system under 
various conditions. An isolated system is a closed system that cannot exchange either 
heat or work with anything else: dq  - 0 and d w  - 0 so that d U  - 0 and 

( 5 . 1 - 3 )  

We have already obtained this criterion for an adiabatic system. 
Next, consider the special case that no work is done and that the entropy of the 

system is constant. A system known to be in a given mechanical state has constant 
statistical entropy and can fit this case, but it is otherwise not likely to be encountered. 
Since d S  = 0 and d w  = O, 

(5.1-4) 

We next consider the important case in which the temperature of the system is 
constant (and equal to the temperature of the surroundings). Equation (5.1-2) becomes 

d U  - T d S  - d w  <_ 0 ( T  constant) (5.1-5) 

If our system is simple, d w -  -Pext d V ,  and 

d U  - T d S  + Pext dV <_ 0 (simple system, T constant) (5.1-6) 

There are two important cases for isothermal (constant-temperature) processes in closed 
simple systems. The first case is that of constant volume, so that d V  - 0: 

d U -  T d S  <_ 0 (simple system, T and V constant) (5.1-7) 



5.1 Criteria for Spontaneous Processes and for Equilibrium 133 



134 5 The Thermodynamics of Real Systems 

Pierre Eugene Marcelin Berthelot, 
1827-1907, was a French chemist 
who synthesized many useful 
compounds, but who argued against 
Dalton's atomic theory of matter. 

Pierre-Maurice-Marie Duhem, 1861- 
1916, was a French physicist whose 
doctoral dissertation showing 
Berthelot's conjecture to be false was 
initially rejected because of Berthelot's 
objection. 

The relation shown in Eq. (5.1-18) is the most useful criterion for the spontaneity of 
chemical reactions, since the most common circumstance for chemical reactions is that 
of constant temperature and pressure. However, thermodynamics does not distinguish 
between chemical and physical processes, and Eq. (5.1-18) is just as valid for physical 
processes such as phase transitions as it is for chemical reactions. 

In the nineteenth century, Berthelot incorrectly maintained that all spontaneous 
reactions must be exothermic (q < 0). The incorrectness of Berthelot's conjecture was 
shown by Duhem, who established Eq. (5,1-17). 

From Eq. (5.1-14), Eq. (5.1-18) can be written 

(5.1-19) 

In many chemical reactions, the T AS term is numerically less important than the AH 
term, and the incorrect criterion of Berthelot gives the correct prediction about the 
spontaneity of such a reaction. However, in other cases the T AS term dominates, and 
the criterion of Berthelot fails. 

The AH term dominates at sufficiently low temperature (small values of T give small 
values of T AS), but the T AS term becomes important and can dominate at sufficiently 
high temperature. The vaporization of a liquid is a simple nonchemical example. Both 
AH and AS are positive. There is some temperature at which the vaporization is a 
reversible process, and the two phases can coexist. At this temperature, A G = 0 and 
AH = T AS. When T is smaller than this equilibrium temperature, the AH term 
dominates and A G > 0 for the vaporization process. That is, the condensation is 
spontaneous and the equilibrium state is the liquid phase. At a higher temperature the 
T AS term dominates and A G < 0. Vaporization is spontaneous and the equilibrium 
state is the gas phase. Some people say that there are two tendencies: that of the 
enthalpy or energy of a system to decrease, and that of the entropy of the system to 
increase. In fact, the lowering of the enthalpy corresponds to an increase in the entropy 
of the surroundings. There is only one fundamental tendency, that of the entropy of the 
universe to increase, although we can separately focus on the system or the surround- 
ings. 

General Equilibrium Criteria for a Closed System 
We now have a set of criteria for possible processes in a closed simple system, given by 
Eqs. (5.1-3), (5.1-4), (5.1-11), and (5.1-17): I f  the system is isolated, the entropy cannot 
decrease. I f  S is f ixed and no work is done, U cannot increase. I f  T and V are fixed, A 
cannot increase. I f  T and P are fixed, G cannot increase. 

For a system to be at macroscopic equilibrium, every process must have proceeded to 
the state at which the appropriate criterion for spontaneity has been satisfied. For 
example, when a closed simple system at constant temperature and pressure reaches 
equilibrium, the Gibbs energy must have reached the minimum value possible for that 
system at the given pressure and temperature. Figure 5.1 represents the situation. The 
variable x schematically represents the extent to which a chemical reaction or some 
other process has occurred. The value of x at the minimum in the curve corresponds to 
the equilibrium state for the particular constant values of P and T, and other values of x 
must correspond to unstable states or metastable states. We nearly always assume that a 
state variable such as the Gibbs energy is a differentiable function of its independent 
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variables, so that the dependence is as shown in Figure 5.1a, not as shown in Figure 
5. lb: there is a smooth minimum at which 

(5.1-20) 

o r  

(5.1-21) 

For a closed simple system at constant temperature and volume, any spontaneous 
process must lower the value of the Helmholtz energy of the system. Therefore, at 
equilibrium the Helmholtz energy must be at a minimum, so that 

(5.1-22) 

o r  

(5.1-23) 

If a system is at equilibrium, both G and A are at minimum values at the same time, but 
with respect to different processes. If a system is at constant temperature and pressure 
but not yet at equilibrium, a spontaneous process could possibly increase A, but must 
decrease G. If a system is at constant temperature and volume but is not yet at 
equilibrium, a spontaneous process could possibly increase the value of G, but must 
decrease the value of A. 

Spontaneity and Equilibrium Criteria for Nonsimple Systems 
For a closed system that is not a simple system, we write 

dw = -Pext dV + dwne t (5.1-24) 

The term -P~xt dV is called "compression work" or " P - V  work." The term dwne t is 
called the "net work." It is whatever work can be done in addition to compression work, 
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such as electrical or stress-strain work. Equation (5.1-5) for the case of constant 
temperature becomes 

d U  - T dS + Pext d V  - dwne t - d A  - dw < 0 ( T  cons t an t )  (5.1-25) 

which is the same as 

It is possible to increase the Gibbs energy of a nonsimple system at constant Tand P 
by doing "net" work on the system. An example of this kind of process is electrolysis, 
in which a chemical reaction is caused to proceed in the nonspontaneous direction by 
passing an electric current through an electrochemical cell. 

The criteria for a nonsimple system to be at equilibrium are also different from those 
of a simple system: For a nonsimple system to be at equilibrium at constant Tand V, the 
Helmholtz energy is not necessarily at a minimum value. What must be the case is that 
if a system at equilibrium undergoes an infinitesimal change, instead of d A -  0 at 
constant T and V, as in Eq. (5.1-22), 

(5.1-28) 

(5.1-29) 

Work and the Helmholtz and Gibbs Energies 
The Helmholtz energy and the Gibbs energy have important relationships to the work 
that can be done on the surroundings in a given process. Since d w s u r r - - d w ,  the 
relation shown in Eq. (5.1-25) is 

(5.1-30) 

or, for a finite process 

(5.1-31) 

That is, the work that can be done on the surroundings in an isothermal process cannot 
exceed the negative of the Helmholtz energy change of the system, and only for a 
reversible process can it be equal to -AA. Equation (5.1-31) holds both for a simple 
system and a nonsimple system. If work is to be done on the surroundings by any kind 
of a closed system at constant T, a process with negative AA must be found. 

In the case that P -- Pext = constant and T = Tsurr -- constant, the relation shown in 
Eq. (5.1-27) is the same as 

(5.1-32) 
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If the system is simple, Eq. (5.1-33) becomes the same as Eq. (5.1-18). 
Just as the total work done on the surroundings at constant temperature is limited by 

- & 4 ,  the net work done on the surroundings at constant temperature and pressure is 
limited by -AG. That is, if T and P are constant, only a process corresponding to a 
negative change in the Gibbs energy can do net work on the surroundings, and the 
amount of net work done on the surroundings can be no greater than -AG.  If the 
process is reversible, the net work done on the surroundings is equal to -AG.  

*Exercise 5.1 
Write the relation governing the maximum amount of work done on the surroundings in a 
nonsimple system at constant T and V. 

Fundamental Relations for Closed Simple Systems 

For a closed simple system and for reversible processes, the first law is 

d U  -- dq - P d r  (5.2-1) 

and the second law is 

d S  - dqrev (5.2-2) 
T 

Combination of these equations gives 

The field of irreversible 
thermodynamics deals with rates of 
entropy production and with relations 
among phenomenological coefficients, 
which specify the relation between 
rates of processes and the driving 
forces. See works in the Additional 
Reading section. 

(5.2-3) 

This equation holds for a closed simple system with any number of phases and any 
number of substances. The derivation given applies only to reversible changes of state. 
However, in irreversible thermodynamics, which is a separate branch of thermody- 
namics, this equation is assumed to be valid for nonequilibrium systems if the deviation 
from equilibrium is not large. This assumption is an additional hypothesis, and does not 
follow from our analysis. 

Consider a closed system that contains only one phase but can contain any number of 
substances. Since the state of a simple one-phase closed system at equilibrium is 
specified by two independent variables (other than the amounts of the substances, which 
are fixed) we can consider U to be a function of S and I~ 

()  (0) OU dS  + 
d U -  - -~  V,n 

(simple closed system; 
S,n reversible processes) (5.2-4) 

d V  
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where the single subscript n means that all substances present are at fixed amounts. 
Comparison of Eqs. (5.2-3) and (5.2-4) gives us two important relations: 

(5.2-5) 

(5.2-6) 

The Maxwell Relations 

From the Euler reciprocity relation shown in Eq. (B-13) of Appendix B, 

Since the second derivative is the derivative of the first derivative, 

(;05). 
Therefore, 

(5.2-7) 

(5.2-8) 

(5.2-9) 

(5.2-10) 

Equation (5.2-10) is one of a class of equations called Maxwell relations after James 
Clerk Maxwell. Their principal utility is in replacing a hard-to-measure partial 
derivative with one that can more easily be measured. For example, it would be 
difficult to measure (OP/OS)v,n, but much easier to measure (OT/OV)s,n. 
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*Exercise 5.2 
a. Find the value of (OP/OS)v,, , for 1.000mol of helium gas at 1.000atm (101,325Pa) and 

298.15 K. Assume that the gas is ideal with Cv = 3nR/2. 
b. Find the value of (OP/OS)v,, , for 2.000mol of helium gas at 1.000atm (101,325Pa) and 

298.15 K. Explain the dependence on the amount of substance. 
c. Find the value of (OP/OS)v,n for 1.000mol of helium gas at 2.000atm (202,750Pa) and 

298.15 K. Explain the dependence on the pressure. 

To obtain the other three principal Maxwell relations we write the differentials dH, 

dA, and dG: 

d H  - d U  + P d V  + V dP - T dS  - P d V  + P d V  + V dP 

= T d S +  V d P  (5.2-11) 

Therefore, 

(5.2-12) 

and 

(5.2-13) 

By using the Euler reciprocity relation, we obtain a second Maxwell relation from Eqs. 
(5.2-12) and (5.2-13)" 

(5.2-14) 

*Exercise 5.3 
a. Find an expression for (8V/OS)p,n for an ideal gas with constant heat capacity. 
b. Evaluate (OV/OS)p,,, for 1.000mol of helium (assumed ideal) at 1.000 atm and 298.15 K. Take 

the molar heat capacity to be constant and equal to 3R/2. 
e. Evaluate (OV/OS)p,n for 2.000mol of helium at 1.000atm and 298.15K. Explain the 

dependence on the amount of substance. 

The third Maxwell relation comes from the differential of  the Helmholtz energy. 
Equations (5.1-8) and (5.2-3) give 

dA - - S  d T  - P d V  (closed system) (5.2-15) 
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Equations (5.2-10), (5.2-14), (5.2-18), and (5.2-22) are the four principal Maxwell 
relations. 

We can now derive Eq. (4.3-3) in a different way. The entropy change for an 
isothermal volume change of an ideal gas is equal to 

A S -  -~  d V -  -~ d V -  d V -  nR In V2 (5.2-23) 
V1 T,n V1 V,n V1 
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Exercise 5.4 
The pressure virial equation of state is shown in Eq. (2.3-4), and in Exercise 2.6 it is shown that 

A 2 -- B2. 

a. Find an expression for (OSlOP)r,n for a gas obeying the pressure virial equation of state 
truncated at the A 2 term. 

b. Evaluate the expression of part (a) for 1.000 mol of argon at 1.000 atm and 298.15 K. 
c. Derive the expression for the entropy change for an isothermal pressure change of an ideal gas 

and calculate AS for the expansion of 1.000mol of argon from 10.00 atm to 1.000 atm at 
298.15 K. Compare your result with that obtained by assuming argon to be ideal. 
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For a closed simple system at constant temperature, Eq. (5.2-20) is 

dG = V dP (simple system, T and n constant) (5.3-1) 

where constant n (without a subscript) means that the amounts of all substances present 
are constant. Integration of this formula at constant n and T gives 

G(T, P2, n) - G(T,  P1, n) -- g dP (5.3-2) 
1 

The Gibbs Energy of an Ideal Gas 

For an ideal gas, Eq. (5.3-2) becomes 

j~ 2 1 dP G(T,  P2, n) - G(T,  P1, n) + nRT  ~ 

G(T,  P2, n) - G(T,  PI , n) + nRT  ln(/"~l / 

In terms of the molar Gibbs energy, G m -- G/n,  

(ideal gas) 

(5.3-3) 

(5.3-4) 

The standard state for the Gibbs energy of an ideal gas is the same as for the entropy: 
a fixed pressure of po (exactly 1 bar = 100,000 Pa) and whatever temperature one is 
interested in. At one time in the past, P~ was commonly chosen to be 1 atm. Use of this 
choice for po makes no difference to the formulas that we write, and makes only a small 
difference in numerical values. For highly accurate work, one must determine whether 
the 1-atm standard state or the 1-bar standard state has been used in a given table of 
numerical values. If state 1 is chosen to be the standard state and if the subscript is 
dropped on P2, Eq. (5.3-4) becomes 
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*Exercise 5.5 
Find the value of the difference between the two standard-state molar Gibbs energies of an ideal 
gas at 298.15 K. 

The Gibbs Energy of a Real Gas. Fugacity 
It is usually an adequate approximation to treat real gases as though they were ideal 
gases. When corrections for nonideality are necessary, we write a new equation in the 
same form as Eq. (5.3-5): 

(5.3-6) 

The quantityfis called the fugacity of the gas. It has the dimensions of pressure and the 
fugacity of an ideal gas is equal to its pressure. The fugacity plays the same role for a 
nonideal gas as does the pressure of an ideal gas in determining the molar Gibbs energy 
of the gas. 

The quantity Gm(T) is the molar Gibbs energy of the gas in its standard state, just as 
in Eq. (5.3-5) for the ideal gas. However, the standard state of a real gas is not the real 
gas at pressure P~ It is a "hypothetical" state, defined to be the corresponding ideal gas 
at pressure P~ That is, the effects of gas nonideality are eliminated from the standard- 
state quantity. 

Since any gas approaches ideal gas behavior as its pressure approaches zero, we can 
obtain an expression for the difference between the molar Gibbs energy of the real gas 
at some given pressure P' and the standard-state (ideal-gas) molar Gibbs energy as 
follows: 

G m real(T, P') - Gm(T ) -- Gm,real(T, P') - lim [G m real(T, P") - Grn id( T, P")] - GIn(T) 
' P " - - +  0 ' ' 

(5.3-7) 

The real gas and the corresponding ideal gas are the same in the limit of low pressure. 
Therefore, the two terms inside the limit add to zero and can be included without 
changing the equation. From Eq. (5.3-1), the first two terms on the fight-hand side of 
Eq. (5.3-7) represent the change in Gibbs energy for changing the pressure of the gas 
from 0 to P' at constant temperature: 

j p ,  

(first two terms) - -  V m , r e a l  dP 
0 
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From Eq. (5.3-3), the last two terms in the right-hand-side of Eq. (5.3-7) represent AGm 
for changing the pressure from P~ to 0 for an ideal gas: 

(last two terms) = gm, id d P  = ~ d P  
o o 

The formula in Eq. (5.3-7) is therefore equivalent to integrating from the standard-state 
pressure P~ down to zero pressure with the ideal gas, and then integrating back up to 
pressure P' ,  the pressure of interest, with the real gas. Since the real gas and the 
corresponding ideal gas are equivalent at zero pressure, this procedure gives the 
difference between the real gas at pressure P' and the ideal gas at pressure P~ 

The integral to which the last two terms are equal can be broken into two parts, as 
follows (we have also exchanged the limits and changed the sign): 

(last two terms) = - d P  - d P  = - d P  - R T  l n ( P ~  ') 
o o 

The left-hand-side of Eq. (5.3-7) is equal to R T  I n ( f  ~P~ so that if f '  denotes the 
fugacity at pressure P', we can combine the two integrals to write 

Gm,real (T,  P') - G m(T) - RT In = RT In ~-g + Vm,real - - -  d P  
0 

(5.3-8a) 

o r  

('~ RT In ~ + RT In ~-7 -- Vm, real - ~ - )  d P  (5.3-8b) 

which is the same as 
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*Exercise 5.6 
a. For argon at 273.15 K, B 2 = - 2 1 . 5  c m  3 mo1-1. Find the value of the fugacity of argon gas at 

5.000 atm and 273.15 K. 
b. For carbon dioxide at 273.15K, B 2 -- -154 cm 3 mo1-1. Find the value of the fugacity of 

carbon dioxide gas at 5.000 atm and 273.15 K. 

The Gibbs Energy of Solids and Liquids 
We now consider the pressure dependence of the Gibbs energy in a condensed phase 
(solid or liquid). As with the gas, we begin with Eq. (5.3-1). The value of the isothermal 
compressibility of a typical solid or liquid is near 10 -9 Pa -1 so that a change in 
pressure of 10 atm (roughly 106 Pa) produces a change in volume approximately equal 
to a tenth of a percent. Thus, typical solids and liquids are nearly incompressible under 
ordinary pressure changes. We assume the volume to be approximately constant in the 
integrand of Eq. (5.3-2), giving 

G(T,  P2, n) - G(T,  PI,  n) = V(P2 - P1) (5.3-10) 

The standard state of a substance in a condensed phase is chosen to be the actual pure 
substance at pressure po. For a solid or liquid phase at pressure P, 

Gm(T ' p )  ~_ Gm(T ) + Vm(e _ eo)  (5.3-11) 

*Exercise 5.7 
a. Find G m - G m for solid copper at 293.15K and 1.100bar. 
b. Find Gm-  Gm for solid copper at 293.15 K and 10.00 bar. 

The Temperature Dependence of the Gibbs Energy 
From Eq. (5.2-19), if the pressure is constant and the system is closed, 

dG -- - S  d T  (closed system, P constant) 

Integration of this equation at constant pressure gives 

G(T2, P)  - G(T1, P) - - S (T ,  P)  d T  (closed system) 
rl 

(5.3-12) 

(5.3-13) 



146 5 The Thermodynamics of Real Systems 

The relation in Eq. (5.3-13) is not directly usable, because the actual value of the 
entropy is not defined. The calculation of "absolute" entropies is a convention, based 
on an assignment of zero entropy for elements at 0 K. A useful equation that is 
analogous to that in Eq. (5.3-13) can be written for AG of an isothermal process carried 
out once at temperature T 1 and once at temperature T 2. 

We can write Eq. (5.3-13) once for the initial state and once for the final state, using 
the same values of T1 and T 2. The difference of these equations gives 

j /'2 
AG(T 2, P) - AG(T 1 , P) -- - AS(T ,  P) d r  

T1 
(closed system) (5.3-14) 

where AG(T, P) is the Gibbs energy change for an isothermal constant-pressure process 
at temperature T, and where AS(T ,  P) is the entropy change for the same process. The 
integration in Eq. (5.3-14) does not mean that we are considering nonisothermal 
processes. It corresponds to considering isothermal processes at different temperatures. 

If AS is nearly independent of temperature between T1 and T2, Eq. (5.3-14) becomes 

A G ( T  2, P) - A G ( T  1 , P) ~ - ( T  2 - T1) AS (5.3-15) 

This equation should be a usable approximation if the difference between T 2 and Ta is 
not very large. An alternative equation is known as the Gibbs-Helmholtz equation: 

AG(T 2, P) A G ( T  1 , P) _ _ I r2 A H ( T ,  P) 
T2 - T1 T, ~ dT  (5.3-16) 

If M-/ is  nearly constant, 

AG(Tz '  - AG(T~ ' P) - - ~--fl) (5.3-17) 

Exercise 5.8 
*a. Derive Eq. (5.3-16). 
*b. At 373.15K and 1.000atm, the Gibbs energy change of vaporization of water is equal to 

zero, and the entropy change is equal to 109 J K -1 mo1-1 . Find the Gibbs energy change of 
vaporization of water at 383.15 K and 1.000 atm, using Eq. (5.3-15). What does the sign of 
your answer mean? 

c. Repeat the calculation of part (b) using Eq. (5.3-16). Assume that zM-/is constant and equal 
to 40.67 kJ mol -l . Comment on the comparison between your values for parts (a) and (b). 

Equations (5.3-15) and (5.3-16) apply to any kind of process. Thermodynamics does 
not distinguish between physical processes such as fusion or vaporization and chemical 
reactions. We will apply these equations to chemical reactions in Chapter 8. 

The Description of Multicomponent and Open 
Systems 

The equilibrium macroscopic state of a simple closed system is specified by values of 
only two variables (in addition to the amounts of the substances present, which are 
fixed). At least one of these two variables must be an extensive variable. In Chapter 1, 
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we asserted as an experimental fact that for a one-phase simple open system the number 
of variables required to specify the state is c + 2, where c stands for the number of 
independent substances, called components. The number of components is not 
necessarily equal to the number of distinct chemical species present. In a one-phase 
system the number of components is equal to the number of substances whose amounts 
can separately be varied under the given conditions. It is also equal to the minimum 
number of substances from which the system can be prepared under the given 
conditions. If chemical reactions can come to equilibrium in the system, all of the 
substances present are not independent, since some can be produced from others by the 
chemical reactions. For example, if a gaseous system contains NO2, it will also contain 
N204 at equilibrium, and at equilibrium, the amount of N204 is not independent of 
the amount of NO 2. Generally speaking, each chemical reaction that can equilibrate 
reduces the number of components by one. We will return to the counting of 
components in a multiphase system in Chapter 6. 

The Chemical Potential and Partial Molar Quantities 

For a one-phase simple system containing c components, c + 2 independent variables 
are required to specify the state. We can make the choice 

G -- G(T ,  P, n l ,  n2, . . . ,  nc) (5.4-1) 

where n i is the amount of substance number i (measured in moles). Equation (5.4-1) 
corresponds to the differential relation 

d G -  OG d T  + 

P,n T,n 
dP + dn i (5.4-2) 

i=1 T,P,n' 

where we use the subscript n to stand for keeping the amounts of all of the components 
fixed and the subscript n' to stand for keeping the amount of every component fixed 
except for component number i. 

The first two partial derivatives in Eq. (5.4-2) are no different from the partial 
derivatives in Eqs. (5.2-20) and (5.2-21). In those equations, the amounts of all 
substances present were held fixed because the system was closed. In Eq. (5.4-2), the 
amounts of all substances are held fixed because that is how partial derivatives are 
defined. Therefore, Eq. (5.4-2) is the same as 

(5.4-3) 

(5.4-4) 

The quantity ~i is called the chemical potential of component number i. The relation in 
Eq. (5.4-3) is called the Gibbs equation or the fundamental relation of chemical 
thermodynamics. It is the basis of the thermodynamic description of multicomponent 
systems. 
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Other independent variables can be chosen to specify the state of the system. For 
example, 

OG d r  @ - ~  d V  Jr- dn i (5 .4-5)  
d G  - ~ V,n T,n i= l T, V,n I 

However, the partial derivatives (OG/OT)v,n and (OG/OV)r,n are not equal to any simple 
thermodynamic variables as are the partial derivatives in Eq. (5.4-2). We therefore say 
that the natural independent variables for the Gibbs energy are P, T, n l ,  n 2 . . . . .  n c. 

Exercise 5.9 
Use an analog of Eq. (B-7) of Appendix B to write a relation between (OG/Oni)r,v, n, and #i- 

The intemal energy, the enthalpy, and the Helmholtz energy have their own sets of 
natural independent variables. For example, if 

H - H ( S ,  P,  n 1 , n 2 . . . . .  nc) (5.4-6) 

then 

() oH a s +  
d H - -  - ~  P,n S,n 

d P  + dn i (5.4-7) 
i--1 S,P,n' 

Comparison with Eq. (5.2-11) shows that 

i=1 S,P,n' 
dn i (5.4-8) 

The definitions of H, A, and G are still as they were, so that from Eq. (5.4-3), 
Eq. (5.4-8), and the relation G -  H -  TS, 

d H  - d G  + T dS  + S d T  
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so that 

Ui -- (5.4-13) 
S, V,n' 

and 

#i  - -  ( 5 . 4 - 1 4 )  
T, V,n ~ 

Exercise 5.10 
Carry out the mathematical steps to derive Eqs. (5.4-] ]) and (5.4-]2). 

The chemical potential is thus equal to four different partial derivatives. Equation 
(5.4-4) is the most useful equality. 

The chemical potential is an example of a partial molar quantity and is called the 
partial molar Gibbs energy. A partial molar quantity is a partial derivative of an 
extensive quantity with respect to the amount of one substance, keeping pressure, 
temperature, and the amounts of all other substances fixed. If the letter Y stands for any 
extensive quantity (U, H, A, G, S, V, etc.), the partial molar quantity for substance 
number i is denoted the Y/and defined by 

(5.4-15) 

All partial molar quantities are intensive quantities. The partial derivatives in Eqs. 
(5.4-10), (5.4-13), and (5.4-14) are not partial molar quantities, because P and Tare not 
both held fixed in the differentiations. 
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The Partial Molar Quantities in a One-Component System 

The equilibrium thermodynamic state of a simple one-component open system can be 
specified by T, P, and n, the amount of the single component. This gives the differential 
relation for a general extensive quantity, Y: 

() or  d r  + ~ dP + -~n dn (S.4-16) 
d Y -  - ~  P,, r,n r,P 

The derivative in the last term is the partial molar Y, since no other substances are 
present. For a one-component system, the molar Y is given by 

Y 
Ym = -- (5.4-17) 

n 

The molar quantity Ym is an intensive quantity. In a one-component system it cannot 
depend on n, but depends only on P and T since an intensive quantity cannot depend o n  

an extensive quantity. Therefore 

(5.4-18) 

That is, in a one-component system the molar quantity and the partial molar quantity 
are equal to each other. 

Partial Molar Quantities of an Ideal Gas 

As with any pure substance, the partial molar volume of a one-component ideal gas is 
equal to the molar volume: 

( O V ) - V - - V - - R T  ( i d e a l g a s ) - - _ - -  (5.4-19) 
T,P m--  n P 

The chemical potential of a one-component ideal gas is equal to the molar Gibbs 
energy. From Eq. (5.3-5), 

l t -  G m - G m ( T ) + R T  l n ( P ~  (ideal gas) (5.4-20) 
\r-~! 

The relation of Eq. (5.4-20) is the same as 

(5.4-21) 

where p~ is the chemical potential in the standard state. The standard state for the 
chemical potential of an ideal gas is the same as the standard state for the other 
thermodynamic functions: the ideal gas at pressure P~ (1 bar). 

The partial molar entropy of an ideal gas is obtained by use of Eq. (5.2-21): 

'm e - \ O T J P  +R l n ( P )  

(5.4-22) 
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The partial molar enthalpy of a one-component ideal gas is obtained from Eq. (5.1-14): 

Hm - Gm + TSm - G m -+-RT l n ( P ) +  T I S  m - R  l n ( P ) ]  

Hm - G m +  TSm -- Hm (ideal gas) (5.4-23) 

The partial molar enthalpy of an ideal gas does not depend on pressure. We already 
knew this from Eq. (3.5-18). 

Exercise 5.11 
a. Find the expression for the partial molar Helmholtz energy of a one-component ideal gas as a 

function of temperature and pressure. 
b. Rewrite the expression of part (a) as a function of temperature and molar volume. 

According to Dalton's law of partial pressures and also according to our ideal gas 
model, which we will develop in Chapter 10 and Chapter 21, each gas in a mixture of 
ideal gases behaves as though it were alone in the container. The chemical potential of a 
component of a mixture of ideal gases is independent of the presence of the other gases, 
so that the equations for a one-component ideal gas also apply to any substance in an 
ideal gas mixture. For example, 

(5.4-24) 

where #] is the chemical potential of substance i in the standard state, and where Pi is 
the partial pressure of substance i. All of the other equations for ideal gases apply as 
well. 

*Exercise 5.12 
a. Calculate ~i -- ~]  for argon gas in dry air at 298.15 K and 1.000 atm, assuming that the gases 

are ideal. The mole fraction of argon is 0.00934. 
b. Calculate ~ i -  ~]  for argon gas at 298.15K and a partial pressure of 1.000 atm. 

In a mixture of gases that cannot be assumed to be ideal, the situation is more 
complicated. We define f ,  the fugacity of component i, by the relation 

(5.4-25) 

where #~ is the same standard-state chemical potential as for the pure gas: the 
hypothetical ideal-gas state at pressure P~ and whatever temperature is being consid- 
ered. We will not discuss the evaluation o f f  in a mixture of nonideal gases. Under 
most conditions we will consider gases to be ideal. 
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Our first identity of this section is an expression for (OU/OV)r , ,  ,. We convert Eq. (5.2-3) 
to a derivative equation by nonrigorously "dividing" by dV, converting the quotients 
to partial derivatives and specifying that T and n are held fixed. The process is 
mathematically indefensible, but gives the correct derivative relation: 

r,. \ o v l  r,. \ - ~ I  r,. 

The partial derivative of V with respect to Vequals unity. We apply the Maxwell relation 
of Eq. (5.2-18) to the first term to obtain 

(5.5-1) 

The relation shown in Eq. (5.5-1) is called the thermodynamic equation of state. It 
can be used to show that (OU/OV)T,n - 0 for an ideal gas, making it unnecessary to 
include this property as a separate part of the definition of an ideal gas. 

Exercise 5.13 
a. Show that (OU/OV)r,, , = 0 for an ideal gas, using only the equation of state, P V  = nRT, and 

Eq. (5.5-1). 
b. Show that P is proportional to T in an ideal gas using Eq. (5.5-1) and the assumption that 

OU/OV)T, ,  =0.  
*c. For a gas obeying the truncated virial equation of state, 

show that 

= BE PVm 1-+--- 
R T  V m 

OU) = RT 2 (dB2/dT) 
-~~,n V~m 

Find the value of this derivative for 1.000 mol of argon at 1.000 atm and 298.15 K, using data 
in Example 3.7. 

The partial derivative ( O U / O V ) r , ,  is one measure of the deviation of the system from 
ideal gas behavior. It has the same units as pressure, and is known as the internal 
pressure. If the intemal pressure is positive (as in the preceding exercise), the energy 
increases as the volume increases, corresponding to a tendency for the volume to 
decrease. This indicates that the attractions between the molecules are more important 
than the repulsions. The intemal pressure is considered to be a measure of the net 
cohesive forces, and can have a large value for liquids, typically equal to several 
thousand bar. 

An equation for (OH/OP)r , ,  , that is analogous to Eq. (5.5-1) can be derived in a 
similar way. We convert Eq. (5.2-11) to a derivative equation: 

T,n T,n T,n 
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Exercise 5.14 
a. Show that for an ideal gas (OH/aP)r,n = 0, using only the equation of state, PV = nRT, and 

Eq. (5.5-2). 
b. Show that Vis proportional to 1/T for an ideal gas using Eq. (5.5-2) and the assumption that 

(OH/OP)r,, = 0. Using the result of Exercise 5.13b, complete the derivation of the ideal gas 
equation of state by asserting that at constant T, and P, V must be proportional to n. 

*e. Find an expression for (OH/OP)r,, for a gas obeying the truncated pressure virial equation of 
state: 

PV m = RT + A2P 

where A 2 is a function of T. It has been shown that A 2 = B2, the second virial coefficient. 
Evaluate (OH/OP)r,, for 1.000tool of argon at 1.000atm and 298.15K. 

We can substitute the relation of Eq. (5.5-1) into Eq. (3.5-11) to obtain a relation 
between Cp and Cv: 

+ P - P  - ~  - - C v +  T 
Cp -- C V "11- k - ~ ]  V,n P,n V,n e,n 

We apply the cycle rule in the form: 

V,n P,n T,n 

to obtain 

Cp -- C V - ~ O V /  T,n - ~  P,n 
(5.5-3) 

Using the definition of the isothermal compressibility, Eq. (2.1-8), and the coefficient of 
thermal expansion, Eq. (2.1-9): 

TVo~ 2 
Cp = C v + ~ (5.5-4) 

N, T 



154 5 The Thermodynamics of Real Systems 

Exercise 5.15 
*a. Find the value of Cv, m for liquid water at 25.00~ and 1.000 atm. The coefficient of thermal 

expansion is equal to 49.60 x 10 -6  K -1 ,  the molar volume is equal to 18.0687 cm 3 mo1-1, 
and the compressibility is equal to 45.24 • 10 -6 bar -1. Cp,m is equal to 
75.297 J K -1 mo1-1. 

*b. At 3.98~ liquid water has maximum density and the coefficient of thermal expansion 
vanishes. What is the value of Cp, m - Cv,m at this temperature? 

c. Show that Eq. (5.5-4) leads to the expression for an ideal gas obtained in Chapter 3: 

C,om - CV,m -- R (ideal gas) 

*d. Calculate the value of the ratio ~ - -  Cp,m/Cv, m for liquid water at 25.000~ and 1.000 atm and 
compare it to the value of the same ratio for argon gas at the same temperature and pressure. 

This example and this exercise illustrate that fact that the difference Cp, m - C v ,  m is 
generally small for condensed phases. There are a number of  organic liquids that have 
fairly large coefficients o f  thermal expansion. Even in these cases the difference 

between Cv,m and Cp, m is much smaller than with a gas. For almost all solids the 

difference between Cp, m and CV, m is very small. 

*Exercise 5.16 
The constant-pressure specific heat capacity of metallic iron at 298.15 K and 1.000 atm is equal to 
0.4498 J K -1 g-1. The coefficient of thermal expansion is 3.55 x 10 -5 K -1, the density is 
7.86 g cm -3, and the isothermal compressibility is 6.06 x 10 -7 atm -1 . Find the constant-volume 
specific heat capacity at 298.15 K. 

We can now obtain two additional relations for the heat capacities. From Eqs. (3.5-8) 

and (3.4-8), 

Cp--(~T)p, n 
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Exercise 5.17 
Use Eqs. (5.5-5) and (5.5-6) and the cycle rule to show that 

Cp tc T 

Cv ~Cs 

where tr s is the adiabatic compressibility, 

KS m _ " V  S ,n 

(5.5-7) 

(5.5-8) 

We now obtain some equations similar to the Maxwell relations that can be used for 
multicomponent open systems. We begin with the Gibbs equation, Eq. (5.4-3): 

_s 
dG - - S  dT + V dP + ).2 lai dni (5.5-9) 

i=1 

Using the Euler reciprocity relation, Eq. (B-13) of Appendix B, 

which is the same as 

_ _co i  
\a,,,] 

\Or/p,.  

A second use of the Euler reciprocity relation gives 

-~ni T,P,., \ O P J  

which is the same as 

v" = \aP]~.n 

P,n  

T ,n  

(5.5-1o) 

(5.5-11) 
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Euler 's  theorem is a mathematical theorem that applies to homogeneous functions. A 
proof of this theorem is found in Appendix E. A function of several independent 
variables, f (n  1 , n 2, n 3 . . . . .  nc), is said to be homogeneous of degree k if 

f ( n l ,  n2 . . . . .  nc) - -  n ~ g ( n 2 / n l ,  n 3 / n l  . . . . .  n ~ / n l )  (5.6-1) 

where g is some function of c -  1 variables, and where k is an integer (it can equal 
zero). Equation (5.6-1) is the same as 

f ( a n l ,  an2 ,  an3 . . . . .  a n  c) = a k f ( n l ,  n2, n3 . . . . .  nc)  (5.6-2) 

where a is a positive constant. For example, if each independent variable is doubled, the 
new value of the function is equal to the old value times 2 k. If T and P are held fixed, 
any extensive quantity is homogeneous of degree 1 in the amounts of the components, 
n 1 , n 2 . . . . .  nc, and any intensive quantity is homogeneous of degree 0 in the amounts of 
the components. For example, if the amount of every component is doubled at constant 
Tand P, the value of every extensive quantity doubles, while the value of every intensive 
quantity remains unchanged. 

I f f  is a homogeneous function of degree k, Euler's theorem states that 

kf - ~-~ni(of ) (5.6-3) 
i= 1 ~ n /  n' 

where we use the subscript n' to stand for holding all of the n's constant except for n i. let 
Y stand for any extensive quantity. Since Y is homogeneous of degree 1 in the n's if T 
and P are constant, Euler's theorem implies: 

(5.6-4) 

where ~'i is the partial molar quantity for substance i. Of course, both sides of the 
equation must refer to the same state of the system. Two examples of Eq. (5.6-4) are 

G - ~ nil2 i (5.6-5) 
i=1 

and 

V -  ~-~ngP i (5.6-6) 
i--1 

Equation (5.6-4) contains a remarkable relation that gives the value of an extensive 
quantity as a weighted sum of partial derivatives. An unbiased newcomer to thermo- 
dynamics would likely not believe this equation without its mathematical proof. Euler's 
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This result is as remarkable as Euler's theorem. In a two-component mixture, it specifies 
how much the chemical potential of one component must decrease if the chemical 
potential of the other component increases at constant temperature and pressure: 

X2 
d#a = d#2 (constant T and P) (5.6-12) 

Xl 

The Gibbs-Duhem relation is often written as a derivative relation instead of a 
differential relation. It is necessary that the partial derivatives be taken with T and P 
constant since the Gibbs-Duhem relation is valid only for constant T and P. For a two- 
component system, 

- o  
Xl lk OXl ] T,p ~k OXl ] T,p 

Both derivatives must be with respect to the same mole fraction. For a system with more 
than two components, the equation is 

(0,,] 
~ X  i - -0  (5.6-14) 
i=1 ~kOXkJ T, p 

where the index k must be the same in every term. Equation (5.6-14) is valid for any 
kind of changes in the mole fractions if T and P are fixed. 

The Experimental Determination of Partial Molar Quantities 
The partial molar volume is probably the most easily measured partial molar quantity 
and we discuss it as an example. The most direct way to determine the partial molar 
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volume is to measure the volume of  the system as a function of  the amount of  the 
component of  interest, keeping the pressure, temperature, and amounts of  other 
substances fixed. If this volume can be represented by a polynomial or other functional 
form, the partial molar volume can be obtained by differentiation. If only the data points 
are available, the partial molar volume can be obtained by numerical means. 1 

Exercise 5.18 
At constant temperature and pressure, the volume of a solution made from component 1 and 
component 2 is represented by the polynomial 

V - bin  1 -Jr- b2n 2 -Jr- bl2nln2 -+- bll n2 + b22 n2 

where n 1 and n 2 are the amounts of the two components in moles and the b's are constants at 
constant temperature and pressure. Find an expression for the partial molar volume of component 
2 as a function of n 1 and n 2. 

The Method of Intercepts 
This is a graphical method for the determination of  partial molar quantities in a two- 
component system. In this method, the mean molar quantity is graphed as a function of  
one of  the mole fractions for a fixed value of  T and a fixed value of  P. Figure 5.2 shows 
Vm, the mean molar volume of  a solution of  ethanol (component 1) and water 
(component 2), as a function of  xl, the mole fraction of  ethanol. From Euler's theorem, 
Eq. (5.6-4), 

Ym -- X1 Y1 -]-" x2Y2 (5.6-15) 
where Y stands for any extensive variable. Since x 2 - - 1 -  x 1 in a two-component 
system, this equation can be written as a function of  x 1 �9 

Ym = (}71 - }r2)Xl-}- }r2 (5.6-16) 

Let x] be a particular value of  x 1 for which we desire the values of  the partial molar 
quantities Y1 and ~'2-At xl - Y  l, we draw a tangent line to the curve, as shown in the 
figure. The intercepts of  this line at the edges of  the figure give the values of  the two 
partial molar quantities for the composition x 1 - x ] .  A proof  of  the validity of  this 
method is contained in Appendix E. 

In order to gain better accuracy, it is better to graph a quantity of  smaller magnitude 
than the mean molar quantity, and there is a modified method of  intercepts that exploits 
this fact. We define the change in the mean molar quantity on mixing: 

AYrn,mix -- Ym - (Xl Y,*m,1 + x 2  Ym,2) (definition) (5.6-17) 

where Y.* is the molar quantity of  pure substance 1 and similarly for substance 2 m, 1 
Since x2 - 1 - Xl, we can write 

AYm,mix-  Y m -  [Y*,2 + X l ( Y * , l -  Ym,2)] (5.6-18) 

To carry out the method, one plots experimental values of  A Ym,mi x as a function OfXl, as 
in Figure 5.3, which shows a graph made from data for ethanol and water. The 

1 D. P. Shoemaker, C. W. Garland, and J. W. Nibler, Experiments in Physical Chemistry, 6th ed., McGraw- 
Hill, New York, 1996, pp. 757ff. See also Robert G. Mortimer Mathematics for Physical Chemistry, 2d ed., 
Academic Press, San Diego, CA, 1999, pp. 327ff. 
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Summary of the Chapter 

In this chapter we have obtained two types thermodynamic tools for the application of 
thermodynamics to real systems: criteria for spontaneous processes and useful 
formulas. These are obtained from the fundamental laws of thermodynamics. The 
second law of thermodynamics provides the general criterion for possible processes: No 
process can decrease the entropy of the universe. For a closed simple system at constant 
pressure and temperature, the Gibbs energy G cannot increase, and for a closed simple 
system at constant temperature and volume the Helmholtz energy A cannot increase. 

Several fundamental relations were obtained for simple closed systems. The first 
relations were for the differentials of the different energy-related state variables for 
closed simple systems. For example, 

dG = - S  d T  + V dP 

The Maxwell relations were derived from these differentials. For example, 

T,n P,n 
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1. The laws of thermodynamics determine equilibrium behavior in multiphase 
systems. 

2. The fundamental fact of phase equilibrium is that at equilibrium the 
chemical potential of any substance must have the same value in 
all phases in which the substance appears. 

3. The Gibbs phase rule gives the number of independent intensive variables 
in a multicomponent multiphase system at equilibrium: 

f = c - p + 2  

where f is the number of independent intensive variables, c is the number 
of components, and p is the number of phases. 

4. The Gibbs phase rule allows phase diagrams to be understood. 

5. The Clausius and Clausius-Clapeyron equations govern the curves in 
phase diagrams. 

6. Thermodynamics allows analysis of the stability of phases in systems. 

7. Surface effects must be included in a complete thermodynamic treatment, 
but are usually negligible. 
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A phase is a region of a system inside which intensive properties do not change 
abruptly as a function of position. The principal kinds of phases are solids, liquids, and 
gases, although plasmas (ionized gases), liquid crystals, and glasses are sometimes 
considered to be separate types of phases. Solid and liquid phases are called condensed 
phases and a gas phase is often called a vapor phase. 

Numerous elements such as carbon exhibit allotropy in the solid phase. That is, there 
is more than one kind of solid phase of a single substance. Many compounds exhibit the 
same phenomenon, which is then called polymorphism. Most pure substances exhibit 
only one liquid phase, but helium is a special case, exhibiting allotropy in liquid phases. 
Pure 4He (the most abundant isotope) exists in two different liquid forms, while pure 
3He exists in three different liquid forms. A pure substance can exhibit only one gas 
phase. 

In a mixture at equilibrium there can often be several solid phases or several liquid 
phases present. For example, if one equilibrates mercury, a mineral oil, a methylsilicone 
oil, water, benzyl alcohol, and a perfluoro compound such as perfluoro-(N-ethylpiper- 
idine) at room temperature, one can obtain six coexisting liquid phases. 1 Each phase in 
this mixture contains a large concentration of one substance and small concentrations of 
the other substances. Under ordinary conditions, only a single gas phase can exist in a 
single system. However, if certain gaseous mixtures are brought to supercritical 
temperatures and pressures, where the distinction between gas and liquid disappears, 
two fluid phases can form without first making a gas-liquid phase transition. 

Equilibrium between Phases 
A two-phase simple closed system at a given temperature and a given pressure is 
depicted in Figure 6.1. If the contribution of the surface area between the phases is 
negligible, the Gibbs energy of the system is the sum of the Gibbs energies of the two 
phases: 

G = G (I) + G (II) (6.1-1) 

where we denote the two phases by the superscripts (I) and (II). The system contains 
several substances. The substances whose amounts can be independently varied are 
called components. We number the components from 1 to c. We assume that the system 
is closed, so that any substance moving out of one phase must move into the other 
phase: 

d n l  I) - -dnl II) (i -- 1,2 . . . . .  c) (6.1-2) 

1 j. Kochansky, J. Chem. Educ., 68, 653 (1991). 
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For an infinitesimal transfer of matter, the change in the Gibbs energy is given by 

dG = dG (0 + dG (II) 

�9 (I) dn~I) = - S  (I) dT + V (I) dP + ~ tAi 
i=1 

(  i   nlli, t -Jr- - S  0I) dT + V (II) dP + ~ t.ti 
i=1 

Let us maintain the system at equilibrium at constant T and P, so that dP and dT 
vanish, and carry out an infinitesimal transfer of matter between the phases. From our 
criteria for equilibrium in Chapter 5, dG must vanish for an equilibrium change at 
constant T and P. From Eqs. (6.1-2) and (6.1-3) 

dG = ~ / A l  I) dn~ I) + ~-~'pti'II)'4"IIu,,i _ ~ [ ~ I I )  _ #~II)] dn~I)_ 0 ( 6 . 1 - 4 )  
i=1 i=1 i--1 

It is possible, without violating the second law, to find a semipermeable membrane that 
will selectively allow any one of the components to pass, but not the others. Therefore, 
each term of the sum in the fight-hand side of Eq. (6.1-4) must vanish since all of the 
dn's but one can be made to vanish. Since dn i is not necessarily equal to zero, the other 
factors must vanish, and 

(6.1-5a) 

This analysis does not depend on whether a suitable semipermeable membrane can be 
found in the real world. The important thing is that nothing in thermodynamics forbids 
the existence of such membranes. One can reach the same conclusion without 
membranes by arguing mathematically that each term must separately vanish because 
the dn's are linearly independent. Equation (6.1-5a) is not restricted to a system with 
just two phases. If more than two phases are present at equilibrium, we can consider any 
pair of phases, and conclude that the chemical potential of any substance has the same 
value in every phase into which it can pass. We write a second version of the equation 

(6.1-5b) 

where the superscripts (~) and (fl) designate any two phases of a multiphase system. 
The properties of any equilibrium system are no different than they would be if the 

system arrived at its equilibrium state under some other conditions than the actual 
conditions. Therefore, Eq. (6.1-5) is also valid for an open system and for a system that 
approached equilibrium without being at constant temperature and pressure. It is the 
fundamental fact of phase equilibrium: At equilibrium the chemical potential of  any 
substance has the same value in all phases in which it occurs. 

Nonequilibrium Phases 
Consider a two-phase simple system maintained at constant temperature and pressure, 
but in a metastable state that is not yet at equilibrium. The Gibbs energy of the system is 
still given by Eq. (6.1-1). The criterion for possible processes is given by the inequality 
in Eq. (5.1-17): 

dG < 0 (T and P constant) (6.1-6) 
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Since dT and dP vanish and since the system as a whole is closed, 

�9 (II) d n l I I )  _ v-~Cr (I) . (II)1 d n l I )  < 0 dG- ~ # } I ) d n l I )  + ~ Pti 2.. . ,[#i - - P t i  J 
i=1 i=1 i=1 

(6.1-7) 

Each term separately must be negative since the introduction of semipermeable 
membranes would not violate the second law of thermodynamics. The two factors in 
each term of the sum in Eq. (6.1-7) must be of opposite signs: 

~(I) . (II) 
i > /*i implies tha t "  (i) an i < 0 (6.1-8) 
(I) . (II) 
i < pt i implies tha t "  (i) an i > 0 (6.1-9) 

Therefore, any substances moves spontaneously from a phase of  higher values of  its 
chemical potential to a phase of  lower value of  its chemical potential. The name 
"chemical potential" was chosen by analogy with the tendency of a mechanical system 
to move toward states of lower potential energy. 

The spontaneous transfer of a substance from a phase of higher chemical potential to 
a phase of lower chemical potential is not restricted to systems at constant pressure. 

Exercise 6.1 
Argue that a substance will move spontaneously from any phase of higher value of its chemical 
potential to any other phase of lower value of its chemical potential in a system with each phase at 
constant V and with both phases at the same constant T. 

Transport of Matter in a Nonuniform Phase 
Assume that a one-phase system is at the same temperature and pressure throughout but 
is of nonuniform composion. Imagine dividing the system into small regions (subsys- 
tems), each one of which is small enough that the composition is almost uniform within 
one subsystem. We treat each subsystem in the same way as one phase was treated in 
obtaining Eqs. (6.1-8) and (6.1-9) so that any substance will move from a subsystem of 
higher values of its chemical potential to another subsystem with a lower value. The 
analogue of the fundamental fact of phase equilibrium for nonuniform systems is 
obtained: In a system with uniform temperature and pressure, any substance tends to 
move from a region of  larger value of  its chemical potential to a region of  smaller value 
of  its chemical potential. A nonuniformity of the chemical potential is the driving force 
for diffusion, which will be discussed in Chapter 11. 

The Gibbs Phase Rule 

The equilibrium thermodynamic state of a one-phase simple system with c components 
is specified by the values of c + 2 thermodynamic variables, at least one of which must 
be an extensive variable. All other equilibrium variables (both extensive and intensive) 
are dependent variables. The intensive state is the state of the system so far as only 
intensive variables are concerned. Intensive variables cannot depend on extensive 
variables. The number of variables required to specify the intensive state is smaller 
by one than the number to specify the full equilibrium state: the equilibrium intensive 
state of a one-phase simple system is specified by the values of c + 1 variables, all of 
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which are intensive. A convenient set of independent variables to specify the intensive 
state of a one-phase simple system consists of T, P, and c - 1 mole fractions. The mole 
fractions automatically obey the relation 

(6.2-1) 

so that if all of the mole fractions but one are known, the last one can be calculated from 
this relation. Therefore, no more than c -  1 of them can be used as independent 
variables. 

Now consider a multiphase system with a number of phases equal to p and a number 
of components equal to c. In counting phases, we count only regions that are different in 
their intensive properties from other regions. For example, crushed ice and liquid water 
are a two-phase system, just like a system of liquid water and a single ice cube. 

Counting the Number of Components in a System 
A component of a system is a substance whose amount can be varied independently of 
the other substances. The number of components is equal to the number of substances 
present minus the number of relations that constrain the amounts of the substances. 
There are three principal types of relations: relations due to chemical equilibrium, 
relations due to a requirement of electrical neutrality, and relations due to the way the 
system was prepared (such as a specification that two substances are in their 
stoichiometric ratio). For each chemical reaction that comes to equilibrium, the 
number of components is reduced by unity. If charged particles are present, electrical 
neutrality reduces the number of components by unity. 

The number of components is also equal to the number of substances from which the 
system could be prepared, given the conditions imposed on the system. A mixture of 
gaseous hydrogen, oxygen, and water vapor can remain unreacted for a very long time 
at room temperature, due to the slowness of the reaction. We treat the metastable 
mixture as we would if no reaction were possible and say that there are three 
components. However, if a platinum catalyst is introduced into the system chemical 
equilibrium is rapidly established, reducing the number of components to two (besides 
the catalyst). The amount of water vapor is determined by the amounts of hydrogen and 
oxygen and the nature of the chemical equilibrium. If the additional constraint is added 
that the hydrogen and oxygen are in the stoichiometric ratio of two moles to one, then 
the system has only one component. The fact that there is one component can be seen 
from the fact that the system could be produced from water vapor in the presence of the 
catalyst. 
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*Exercise 6.2 
Determine the number of components in: 
a. An aqueous solution containing NaC1 and KBr. 
b. An aqueous solution containing Na +, Cl-, K +, and Br-. Explain any difference from part (a). 
e. A gaseous system containing PC15, PC13, and C12 at chemical equilibrium with each other. 
d. A solid mixture containing powdered graphite and powdered diamond without a catalyst or 

other means of converting one phase to the other. 
e. A gaseous mixture containing carbon dioxide and water vapor. 
f. A gaseous mixture containing carbon dioxide and water vapor, all of which was produced by 

the combustion of a stoichiometric mixture of methane and oxygen (assume that the residual 
methane and oxygen are negligible in amount). Explain any difference from part (e). 

g. A system containing solid Na2SO4.10H20 and an aqueous phase containing Na + and SO ]- 
ions, which was produced by dissolving some of the sodium sulfate decahydrate. 

Derivation of the Gibbs Phase Rule 

If the p phases in a multiphase simple system of  c components are separated from each 
other, there are a total of  p ( c  + 1) independent intensive variables to specify the 
equilibrium intensive states of all phases (c + 1 variables for each phase). Let the 
phases be placed in contact with each other, opened to each other, and allowed to 
equilibrate. Thermal equilibrium implies that all phases have the same temperature, 
mechanical equilibrium implies that all phases have the same pressure, and phase 
equilibrium implies that the chemical potential of  every substance has the same value in 
every phase. 

Each constraint (or equality) that did not exist when the phases were separated turns 
one variable into a dependent variable. Specifying that one variable has the same value 
in two phases means one equality; specifying that one variable has the same value in 
three phases means two equalities, etc., so that p -  1 equalities suffice for one variable 
and p phases. The number of variables that have equal values in all phases is c + 2 
(P, T, and the chemical potentials of c components), for a total of ( p -  1)(c + 2) 
constraints. This means that f ,  the n u m b e r  of independent  intensive variables after 
equilibrium of all phases, is equal to 

f = p ( c  + 1) - (p - 1)(c -+- 2) = p c  + p - p c  + c - 2p + 2 

(6.2-2) 
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This equation is the phase rule of Gibbs. The number of independent intensive 
variables is also called the number  of degrees of freedom or the variance. 

For a one-component, one-phase system, the number of independent intensive 
variables at equilibrium is 

f -- 1 - 1 + 2 = 2 (one component, one phase) 

In a phase diagram such as that of Figure 2.3, an open area represents a single phase. 
Since there are two independent intensive variables, T and P can both be independent, 
and any point in the area can represent a possible intensive state of the system. 

For one component and two phases, the number of independent intensive variables at 
equilibrium is 

f = 1 - 2 + 2 = 1 (one component, two phases) 

If we choose to fix the temperature, then every other variable is a dependent variable 
with a value determined by the nature of the system and that value of the temperature. 
Only one value of the pressure is possible, only one value for the density of each phase 
is possible, etc. For example, 

P -- P ( T )  (c = 1,p -- 2) (6.2-3) 

Such a function is represented by a curve in a phase diagram such as in Figure 2.3. The 
equilibrium pressure when a liquid and a vapor phase are equilibrated is called the 
vapor pressure. The vapor pressure of water at 100.00~ is equal to 1.000atm 
(760.00 torr), and at 25.00~ is equal to 23.756 torr. Figure 6.2 shows the equilibrium 
vapor pressure of water as a function of temperature. 

If one component and three phases are present, the number of independent intensive 
variables is zero. There is no choice about the temperature, pressure, density of each 
phase, or any other intensive variable, and the system is said to be at a triple point. The 
solid-liquid-vapor triple point of water occurs at temperature of 273.16 K (this value 
defines the size of the kelvin) and a pressure of 4.562 torr. 

One-Component Phase Diagrams 
Figure 6.3 shows the phase diagram of water. This kind of phase diagram is a plot of 
curves representing functional relationships as shown in Eq. (6.2-3). The pressure scale 
in this diagram is so compressed that the liquid-vapor curve of Figure 6.2 is too close to 
the horizontal axis to be visible. Water exhibits polymorphism, the existence of 
different crystalline forms for the same substance. Eight different crystalline forms of 
water are shown, denoted by Roman numerals. There is no ice IV, since a metastable 
phase was mistaken for an equilibrium phase and given this number. When this error 
was discovered the other forms were not renumbered. 

In the novel Cat's  Cradle  2 a fictional form of ice is discovered that melts at 114~ 
Since it is more stable than liquid water at room temperature, ultimately all of the water 
on the earth freezes to this form of ice, destroying life as we know it. In the !ate 1960s, 
it was thought for a time that there might be a second liquid phase of water, which was 
named "polywater" since it seemed to consist of polymers of water molecules. 3 This 
phase seemed to have a lower chemical potential than ordinary liquid water at the same 

2 KLlrt Vonnegut, Cat's Cradle, Delacorte Press, New York, 1963. 
3E. R. Lippincott, et al., Science, 164, 1482 (1969); A. Cherkin, Nature, 224, 1293 (1969). 
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horizontal axis to be seen. Of the solid phases that can equilibrate with the liquid, only ice (I) is less 
dense than the liquid. From B. Kamb, in E. Whalley, S. Jones, and L. Gold (eds.), Physics and 
Chemistry of Ice, University of Toronto Press, Toronto, 1973.) 

temperature and pressure. Numerous experimental and theoretical studies of polywater 
were published before it was discovered that the small capillaries in which the 
polywater was supposedly prepared were leaching substances into the water, forming 
solutions. If it had been a real phase, polywater would have threatened life just as did 
the fictional form of ice in Vonnegut's novel. 

Helium has some properties that it does not share with any other substance. It is 
apparently the only substance that exhibits different allotropic liquid phases. It also has 
qualitatively different phase diagrams for different isotopes. Figure 6.4 shows the low- 
temperature phase diagrams of 4He and 3He. The diagram for 4He shows two triple 
points, for two liquid forms and the vapor phase, and one for the two liquid forms and 
the solid phase. The diagram for 3He shows three triple points, since there are three 
different allotropic liquid phases. Neither isotope exhibits coexistence between the solid 
and the vapor, and the solid phases of both isotopes can exist only at pressures 
somewhat larger than 1 atm. Helium seems to be the only substance that cannot freeze 
at a pressure of 1 atm. 

Phase Equilibrium in a One-Component System 

A one-component equilibrium system can consist of one phase, two phases, or three 
phases. If more than one phase occurs, the phases have equal values of the temperature, 
the pressure, and the chemical potential of the single component. In a one-component 
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system the chemical potential is equal to the molar Gibbs energy, so that for phases c~ 
and/~, 

G~ ) -- G~ ) (6.3-1) 

The equality of the chemical potential in the different phases imposes conditions as 
specified by the Gibbs phase rule. 

The Clapeyron equation is named 
after Benoit-Pierre-Emile Clapeyron, 
1799-1864, a French engineer who 
translated Carnot's cycle into the 
language of calculus. 

The Clapeyron Equation 
The Clapeyron equation governs the dependence of P on T as shown in Eq. (6.2-3). To 
derive the equation, we impose an infinitesimal change dT in the temperature of the 
system, maintaining equilibrium during the change. Since P is a function of T, the 
pressure will change by an amount dP that is determined by dT, and the molar Gibbs 
energies of the two phases, G~ I) and ~(I,. I),  will undergo changes that are given in terms 
of dP and dT by Eq. (5.2-19): 

dG~ ) - - - S  O) dT + V(m I) dP 

d G ~ - - s O  ~ dv + v2O dP 

(6.3-2) 

(6.3-3) 
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The molar Gibbs energies remain equal to each other during the change, so that 
dG2 - riG2 and 

-S(Im ) dT + V(m I) d P - - S ( m  II) dT + V(m II) dP (6.3-4) 

Nonrigorously "dividing" this equation by dT, we obtain the differential equation 

(6.3-5) 

where AS m -S(m n ) -  S(m I) and A V m - -  V(m I I ) -  V(m I). The relation of Eq. (6.3-5) is the 
Clapeyron equation. 

For a reversible phase change, Eq. (4.3-4) gives 

AHm (6.3-6) ASm- T 

so that the Clapeyron equation can be written 

(6.3-7) 

Using the Clapeyron equation, we can interpret the curves in a phase diagram. 

Exercise 6.3 
For most substances a solid-liquid coexistence curve has a positive slope. In the water phase 
diagram the ice l-liquid curve has a negative slope. Explain this phenomenon. In the 3He phase 
diagram a horizontal region occurs in the solid-normal liquid curve and a region with a negative 
slope also occurs. Interpret these two phenomena given that the explanation of the negative slope 
is not the same as with water. 

In order to have a representation for the function P = P(T), we integrate the 
Clapeyron equation. We write Eq. (6.3-5) in the form 

dP = ASm dT (6.3-8) 
Arm 

Consider first a solid-liquid or a solid-solid phase transition. We apply our 
calculation practice, that solids and liquids have nearly constant volume so that A Vm 
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is nearly equal to a constant. Over a sufficiently small range of temperature, AS m is 
nearly constant and we can write 

ASm 
P2 - P1 ~ ~ - ~  (T2 - / 1 )  (T 2 - T 1 small) (6.3-9a) 

Anm (T 2 - T1) (T 2 - T 1 small) (6.3-9b) 
T A V  m 

where P1 is the pressure corresponding to temperature T 1 and P2 is the pressure 
corresponding to temperature T 2. In Eq. (6.3-9b), T is a value of the temperature such 
tha tT  1 < T < T  2. 

Equation (6.3-9) implies that the curve in the phase diagram should be linear. In the 
water phase diagram several of the solid-solid equilibrium curves are nearly linear, and 
this equation should be an adequate approximation for these curves. However, some of 
the solid-liquid curves are noticeably curved and a different approximation is needed. If 
instead of assuming that the quotient ASm/A Vm is approximately constant, one assumes 
that the quotient A H m / A V  m is approximately constant, one can integrate 

dP  = 1 z ~  m d T  
A V  m T 

to obtain 

P 2 - P I ' ~  z~r-/mAvm ln( T2)'~l (z~-/m constant) (6.3-10) 

The relation of Eq. (6.3-10) is probably better than that of Eq. (6.3-9) for large 
differences between T2 and T 1, since AH is likely to be more nearly independent of T 
than is AS. 

*Exercise 6.4 
Estimate the pressure of the system of Example 6.3, using Eq. (6.3-10) instead of Eq. (6.3-9). 
Compare the answer with that of Example 6.3 to see whether the assumption of constant AH 
gives different results from the assumption of constant AS. 
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The Clausius-Clapeyron Equation 
If one of the two phases involved is a gas, we can write a useful modification of the 
Clapeyron equation by making two approximations: (1) that the vapor phase is an ideal 
gas, and (2) that the molar volume of the condensed phase (solid or liquid) is negligible 
compared with that of the vapor (gas) phase. These are both good approximations. Most 
gases obey the ideal gas equation to about one percent under ordinary conditions, and 
the molar volumes of vapor phases are typically several hundred times as large as the 
molar volumes of condensed phases. For a vaporization (liquid-vapor transition): 

Arm- 
R T  
P (6.3-11) 

From Eqs. (6.3-7) and (6.3-11) we obtain the derivative form of the Clausius-Clapeyron 
equation: 

(6.3-12) 

where AvapH m is the molar enthalpy change of vaporization. For a sublimation (solid- 
vapor transition), Eq. (6.3-12) applies except that AvapH m is replaced by AsubH m, the 
molar enthalpy change of sublimation. We omit the subscript and apply the equation to 
either case. 

To obtain a representation of P as a function of T, we multiply Eq. (6.3-12) by dT 
and divide by P: 

1 dP AHm dT (6.3-13) 
P dT  dT  = RT---- T 

Integration of Eq. (6.3-13) with the assumption that AHm is constant gives the integral 
form of the Clausius-Clapeyron equation: 

(6.3-14) 

If the enthalpy change of vaporization or sublimation depends on temperature, then 
AH m in this formula represents an average enthalpy change over the interval from T 1 to 
r2. 

Exercise 6.5 
Carry out the steps to obtain Eq. (6.3-14). 
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*Exercise 6.6 
The normal boiling temperature of ethanol is equal to 78.5~ and the molar enthalpy change of 
vaporization is equal to 40.5 kJ mo1-1. Estimate the vapor pressure of ethanol at 100~ State any 
assumptions or approximations. 

If the enthalpy change of a particular substance is not known, and one wishes to 
estimate the vapor pressure of a liquid at one temperature from knowledge of the vapor 
pressure at another temperature, Trouton's rule (see Section 4.5) can be used as an 
approximation. 

*Exercise 6.7 
The normal boiling temperature of chloroform is 61.7~ Estimate the vapor pressure of 
chloroform at 50.0~ using Trouton's rule. 

The Effect of Total Pressure on the Vapor Pressure 

The vapor pressure that we have discussed thus far is measured with no other 
substances present. The presence of other substances in the gas phase can make a 
difference. The principal effect that the other gases have is to change the pressure on the 
condensed phase, since the amounts of other substances that dissolve in the condensed 
phase are negligible. We denote the total pressure by P' and the vapor pressure (the 
partial pressure of the substance that occurs in the liquid phase) by P. From the 
fundamental fact of phase equilibrium, 

G~ ~ = G(m g) (6.3-15) 

When the total pressure is changed from one value P] to another value P~, the change in 
the molar Gibbs energies of the two phases must be equal. Assuming the vapor phase to 
be ideal and using Eqs. (5.3-10) and (5.3-4) 

Vm(liq)(P ~ - P ~ )  - R T  l n ( P 2 / P 1 )  (6.3-16) 

Equation (6.3-16) can be solved for P2: 

(6.3-17) 
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*Exercise 6.8 
Find the total pressure necessary to change the vapor pressure of water by 1.00 torr at 100.0~ 

The Gibbs Energy and Phase Transitions 

In this section, we investigate such questions as: Why is equilibrium water a liquid at 
1.000atm and 373.14K, but a vapor at 1.000atm and 373.16K? Why should such a 
small change in temperature make such a large change in structure? The thermo- 
dynamic answer to this question involves the fact that at equilibrium at constant T and 
P, the Gibbs energy of the system is at a minimum. 

Figure 6.5 shows schematically the molar Gibbs energy (chemical potential) of liquid 
and gaseous water as a function of temperature at 1 atm pressure. If one phase has a 
more negative value of the molar Gibbs energy than the other phase, the system can 
lower its Gibbs energy by making the transition to the phase of lower molar Gibbs 
energy. 

In order to construct Figure 6.5, we have written Eq. (4.2-21) for molar quantities: 

( O G m ~  - -  - S  m (6.4-1) 

The molar entropy of the water vapor is greater than the molar entropy of the liquid 
water, so that the vapor curve in Figure 6.5 has a more negative slope than the liquid 
curve. The temperature at which the curves cross is the temperature of phase 
coexistence, since this is the temperature at which the values of the chemical potential 
in the two phases are equal. Above this temperature, the vapor curve lies lower, so that 
the vapor is the stable phase, and the liquid must be metastable if it occurs (indicated by 
a broken curve). Below the normal boiling temperature, the liquid is stable and the 
vapor is metastable if it occurs. 

We can also reach the same conclusion as follows: the molar Gibbs energy is given 
by 

Gm = Hm - TSm (6.4-2) 
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At constant temperature, we can minimize G m either by lowering H m or by raising S m. 
The second term is more important at high temperature than at low temperature since it 
is proportional to T. The phase of higher molar entropy is the more stable phase at high 
temperature, but the phase of lower molar enthalpy is the more stable phase at low 
temperature. The temperature of coexistence is the temperature at which these two 
tendencies balance each other. 

Figure 6.6 shows schematically the molar Gibbs energy of liquid and gaseous water 
as a function of pressure. The slope of the tangent to the curve is given by Eq. (5.2-21): 

( OGm) - -  V m (6.4-3) 
3P J v 

The molar volume of the vapor is greater than that of the liquid phase, so that the vapor 
curve has a more positive slope than the liquid curve. At a pressure greater than 1 atm at 
373.15 K the liquid is the stable phase, but at a pressure less than 1 atm the vapor is the 
stable phase. 

Exercise 6.9 
Sketch the rough graphs representing the molar Gibbs energy of water as a function of the 
temperature and as a function of the pressure in the vicinity of the solid-liquid phase transition. 
Liquid water has a smaller molar volume than solid water. 

The Maxwell Equal-Area Construction 
For a fluid described by a particular equation of state, we can locate the pressure of 
liquid-vapor coexistence. Figure 6.7a shows the pressure as a function of molar volume 
at a fixed subcritical temperature as described by an equation of state such as the van 
der Waals equation. Instead of the tie line that actually describes the behavior of the 
fluid, there is an S-shaped curve (a "loop"). If we exchange the roles of the variables in 
this figure, we obtain Figure 6.7b. Two points, labeled a and e, correspond to equal 
values of the chemical potential in the two phases, and we want to find the location of 
these points. There are two regions, from a to b and from d to e, which can represent 
metastable phases. There is one region, from b to d, which corresponds to a negative 
compressibility. A real compressibility cannot be negative, so that this portion of the 
curve cannot represent even a metastable system. 

Since the curve corresponds to fixed temperature, 

dp = dG m = V m dP (constant temperature) (6.4-4) 

In order to have the molar Gibbs energy at points a and e equal to each other, the 
integral of dG m along the curve from point a to point e must vanish. This integral is 
written in the following way, since the curve does not represent a single-valued 
function: 

Gm(e ) - Gm(a ) - V m dP + V m dP + V m dP + V m dP (6.4-5) 
a b c d 

The area to the right of the vertical line segment between points a and e is called area 
1 and is equal to 

area 1 - -  V m d P -  V m d P -  V m dP + V m dP (6.4-6) 
a c 
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and the area to the left of this line segment, labeled area 2 in the figure, is given by j;e 
area 2 -  V m d P -  V m d P -  - V m d P -  V m d P  (6.4-7) 

d d c d 

Comparison of Eq. (6.4-5) with Eqs. (6.4-6) and (6.4-7) shows that when 
Gm(e ) - G m ( a  ) = 0, area 1 and area 2 are equal. The adjustment of the locations of 
points a and e to make these areas equal is known as the equal-area construction and 
is due to Maxwell, and locates the liquid and vapor states of equal chemical potential. 

The van der Waals equation of state provides only a qualitatively correct description 
of the liquid-vapor transition when the equal-area construction is applied to it. The 
other common equations of state provide varying degrees of accuracy in describing the 
liquid-vapor transition when the equal-area construction is applied to them. Gibbons 
and Laughton obtained good agreement with experiment with their modification of the 
Redlich-Kwong equation of state (see Table 2.1). 

Classification of Phase Transitions 

A first-order phase transition is one in which at least one of the first derivatives of the 
molar Gibbs energy is discontinuous at the phase transition. Either the molar volume or 
the molar entropy (or both) is discontinuous. Usually both qualities are discontinuous, 
but in some first-order phase transitions, such as the transition between ice VI and ice 
VII, only one of these quantities will be discontinuous. Ordinary phase transitions such 
as vaporizations, freezings, etc., are first-order transitions. In a first-order transition, the 
Gibbs energy has a cusp in at least one of the graphs like those of Figure 6.5 or Figure 
6.6. Figure 6.8 shows schematically the molar volume of solid and liquid water as a 
function of pressure, and Figure 6.9 shows the molar entropy as a function of 
temperature for a typical first-order transition. 

Second derivatives of the Gibbs energy are also used in characterizing phase 
transitions. Equations (4.2-21), (4.2-22), (1.3-9), and (4.5-5) give 

O2Gm) -(OO@ ) -- Cp'm (6.4-8) 
OT 2 p p T 

( 02Gm'~ -- ( ~ )  ----VmK T (6.4-9) 
OP2 J y T 

where Ce, m is the molar heat capacity at constant pressure and ~c r is the isothermal 
compressibility. 

If the molar volume or the molar entropy has a discontinuity, the heat capacity or the 
compressibility must have a singularity (a point at which it becomes infinite). Figure 
6.10 shows the constant-pressure heat capacity as a function of temperature in the 
vicinity of a first-order phase transition, and Figure 6.11 shows the compressibility as a 
function of pressure in the vicinity of a first-order phase transition. The infinite value of 
the heat capacity at the first-order phase transition corresponds to the fact that a nonzero 
amount of heat produces no change in the temperature as one phase is converted to the 
other, and the infinite value of the compressibility corresponds to the fact that a finite 
volume change occurs as one phase is converted to the other with no change in the 
pressure. 

A second-order phase transition is one in which both of the first derivatives of the 
Gibbs energy are continuous but at least one of the second derivatives is discontinuous. 
Figure 6.12 schematically shows the heat capacity in the vicinity of a second-order 
phase transition and Figure 6.13 shows the compressibility in the vicinty of a second- 
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order phase transition. In a second-order transition, neither the compressibility nor the 
heat capacity becomes infinite. Therefore, the molar entropies of the two phases must 
be equal to each other and the molar volumes of the two phases must be equal to each 
other. 

There are several types of phase transitions that are not first-order transitions. These 
include normal-superconducting transitions in some metals and ceramics, paramag- 
netic-ferromagnetic transitions in some magnetic materials, and a type of transition that 
occurs in certain solid metal alloys, called an order-disorder  transition. For example, 
r-brass, which is a nearly equimolar mixture of copper and zinc, has a low-temperature 
equilibrium state in which every copper atom in the crystal lattice is located at the 
center of a cubic unit cell, surrounded by eight zinc atoms at the corners of the cell. At 
742 K, an order-disorder transition occurs from the ordered low-temperature state to a 
disordered state in which the atoms are randomly mixed in the same crystal lattice. 

The order of a phase transition must be determined experimentally. To establish 
whether a phase transition is second-order, careful measurements of the compressibility 
and the heat capacity must be made in order to determine whether these quantities 
diverge at the phase transition. Second-order phase transitions are not common. The 
transition between normal and superconducting states is said to be the only well- 
established second-order transition. A phase transition that was once said to be second- 
order is the transition between normal liquid helium and liquid helium II. (See Figure 
6.4 for the phase diagram.) Later experiments indicated that the heat capacity of liquid 
helium does appear to approach infinity at the transition, so that the transition is not 
second-order. However, the heat capacity rises smoothly toward infinity instead of 
rising abruptly as in a first-order transition. A plot of the heat capacity versus the 
temperature resembles the Greek letter lambda, as shown in Figure 6.14, and the 
transition is called a lambda transition. The order-disorder transition in fi-brass is also 
a lambda transition. A lambda transition is generally considered not to be either first- 
order or second-order. 

The Critical Point of a Liquid-Vapor Transition 

The liquid-vapor critical point, which was introduced in Section 2.6, is the point 
beyond which the liquid-vapor phase transition does not occur. As can be seen in 
Figure 2.4, the molar volumes of the liquid and the vapor become more and more nearly 
equal to each other as the temperature is increased toward the cricial temperature. The 
discontinuities in Figures 6.8 and 6.9 gradually shrink to zero while two curves in 
Figure 6.6 approach each other more and more closely, until there is only one curve at 
the critical temperature, with a vertical tangent at the critical point. Figure 6.15 shows 
schemically the molar volume as a function of pressure at the crucial temperature. 

Many properties of the system in states near the critical point are abnormal. In the 
vicinity of the critical point, the fluid scatters light strongly, a phenomenon called 
critical opalescence. Furthermore, as shown in Figure 2.5, if the system is near the 
critical state the meniscus between the liquid and vapor phases is diffuse, instead of 
appearing to be sharp like a mathematical plane. Quantities such as the compressibility 
and the heat capacity, which become infinite at the crucial point, do not suddenly jump 
to infinite values as they do away from the critical point, but rise smoothly (and steeply) 
toward infinite values. The behavior is described in terms of critical exponents. For 
example, the temperature dependence of the constant-volume heat capacity for fixed 
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density equal to the critical density can be represented in the immediate vicinity of the 
critical point by the expression 

C v c~ ( T -  Tc) -~ (for T > Tc) (6.4-10) 

C v c~ (T c - T) -~' (for T > Tc) (6.4-11) 

The exponents ~ and ~' are the critical exponents for the heat capacity. 
Similarly, the densities of the coexisting liquid and gas phases just below the critical 

point are represented by 

p(1) - p(g) c( (T c - T)/~ (6.4-12) 

The temperature dependence of the compressibility for fixed density equal to the critical 
density is represented by 

~r c~ ( T -  To) -~ (for T > To) (6.4-13) 

KT c( (T  c - T) -~' (for T < To) (6.4-14) 

The dependence of the pressure on the density at constant temperature equal to the 
critical temperature is described by 

P - Pc cx IP - Pc I ~- 1 (p _ Pc) (6.4-15) 

Equation (6.4-16) has this form to ensure that the correct sign is produced for the left- 
hand side of the equation for any value of 6. 

It appears that many fluids are well described by nearly equal values of the critical 
exponents, as would be expected from the law of corresponding states. Following are 
some experimental values, along with the values that are predicted by the van der Waals 
equation of state. We do not discuss the analysis that provides these predictions. 4 

CO2 0.1 0.34 1.0 4.2 0.1 1.35 
Xe < 0.2 0.35 1.2 4.4 1.3 
van der Waals 0 0.5 1 3 0 1 

Exercise 6.10 
Draw rough graphs representing the behavior described by Eqs. (6.4-10) through (6.4-15) for a 
van der Waals gas. 

Surface Structure and Thermodynamics 

Some thermodynamic equations are valid only in the case that surface tension can be 
neglected. For example, we assumed that the thermodynamic energy of a one- 
component fluid system depended on three variables, such as T, V, and n, but not on 
the surface area. Although this is ordinarily an excellent approximation, the energy 
actually depends on the surface area. 

4 H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New 
York, 1971, pp. 74ff. 
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The Energy Attributed to a Surface 

The surface energy is primarily potential energy of molecular interaction. Since 
molecules at the surface of the liquid have fewer nearest neighbors than molecules in 
the bulk of the liquid, they have a different average potential energy than molecules in 
the bulk. However, the values of surface energies indicate that the surface energy is 
numerically unimportant unless a system has a very large surface area or a small 
amount of substance. 
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Exercise 6.11 
*a. Estimate the surface energy per square meter for liquid water, assuming that the principal 

intermolecular force is hydrogen bonding, with a bond energy of 20kJmo1-1 for each 
hydrogen bond. Assume that a molecule in the interior of a sample of liquid water has four 
hydrogen-bonded nearest neighbors and that a molecule in the surface has three. Remember 
that each hydrogen bond involves two atoms. Compare your result with the experimental 
value at 25~ 0.072 J m -2. 

*b. For 1.00mol of water contained in a beaker with diameter 3.00cm, find the ratio of the 
surface energy of the upper surface to the energy required to vaporize 1.00 mol of water. 

e. Explain why gases have negligible surface energy. 

There can be several different kinds of  surfaces. In a system consisting of  water and 
diethyl ether near room temperature, there is a liquid phase that is mostly water, a liquid 
phase that is mostly diethyl ether, and a vapor phase. There is one surface between the 
two liquid phases, one surface between the upper liquid phase and the vapor phase, and 
each phase has a surface with the container. The energy, Gibbs energy, and other 
energy-related functions depend separately on the area of  each of  these surfaces. If a 
system has only one component and one kind of  surface the Gibbs energy G is a 
function of  T, P, d (the surface area), and the amount of  the substance, n: 

dG = - S  dT + V dP + 7 d~/ + ~ dn (6.5-1) 

where 

OG) (6.5-2) 
7 -  - ~  T,P,n 
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and where the other partial derivatives are now defined to be taken at constant area in 
addition to whatever was previously held constant. The quantity 7 is the Gibbs energy 
per unit area. 

Since U = G - P V 4- TS, we can also write 

d U  - d G  - d ( P V )  + d ( T S )  -- T dS  - P d V  + ? d ~  + It dn (6.5-3) 

so that ? can be interpreted as the internal energy per unit area or as the Gibbs energy 
per unit area. It is equal to the reversible work per unit area required to produce new 
surface and can be interpreted as a force per unit length. In SI units 7 has the unit joules 
per square meter or newtons per meter. 

Surface Energy as Surface Tension 

Consider a liquid system such as depicted in Figure 6.16, which has a wire frame that 
protrudes from the surface of a sample of liquid. There is a film of liquid within the area 
of the flame, which has a length equal to L, and the system is at equilibrium with a gas 
phase at constant temperature. Let the frame be moved reversibly upward by a distance 
dx, increasing the area by an amount L dx  and the energy by 

d U  = T ds 4- 7 d d  (6.5-4) 

Since there are two sides to the liquid layer, the area increases by 2L dx, and 

d U  = T dS  4- 72L dx (6.5-5) 

By comparison with Eq. (3.1-5), 

dwre v = Fre v dx = 7 d d =  2L7 dx (6.5-6) 

and ? is recognized as the force per unit length exerted by the surface. It is therefore 
usually called the surface tension. The unit of surface tension is usually quoted as 
newtons per meter instead of joules per square meter. Table A.10 in Appendix A gives 
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values of the surface tension for several pure substances in contact with the vapor of the 
same substance. 

The surface of a liquid in contact with a vapor phase acts somewhat like a stretched 
elastic film that has a tendency to pull the surface toward the bulk of the phase. This 
produces a force that can have some noticeable effects. For example, a liquid can be 
attracted into or repelled from a tube of small diameter (or other small passages). Water 
molecules are attracted to the polar and ionic groups on a glass surface, and water is 
drawn into a vertical glass tube as shown in Figure 6.17a. The liquid surface is tangent 
to the glass surface and approximates a hemisphere. Figure 6.17b shows another case, 
in which the liquid does not completely wet the surface of the solid. The liquid surface 
meets the solid surface at an angle, which is called the contact angle and denoted by 0. 
In the case of water on glass, the contact angle is equal to zero. 

The liquid rises into the tube because the surface tension force balances the 
gravitational force on the column of liquid in the tube. If the radius of a vertical tube 
is r and if the contact angle is zero, the vertical surface tension force is equal to 2~zr?. If 
the density of the liquid is p, the gravitational force on the column of liquid is equal to 
~zrZhpg, where g is the acceleration due to gravity, and where h is the height of the 
column. The height of the column is thus 

h - 2? (zero contact angle) (6.5-7) 
pgr 

(a) A liquid that wets the 
solid surface. The liquid surface (the meniscus) is tangent to the inner surface of the tube. This 
surface approximates a hemisphere. (b) A liquid that partially wets the solid surface. The 
contract angle, 6, is larger than 0, so that the liquid surface is not tangent to the inner surface of the 
tube. The liquid surface approximates a portion of a hemisphere. (c) Capillary depression of 
mercury in a glass capillary. Since the liquid does not wet the glass surface, the contact angle is 
greater than 90 ~ , and the meniscus is depressed below the surface of the bulk liquid. 
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*Exercise 6.12 
a. Find the height to which water at 20~ will rise in a capillary tube of diameter 0.60 mm. 
b. Find the height to which the surface of water will rise in a tube with a diameter equal to 

6.0 cm. 

If the contact angle is not equal to zero, the surface tension force is not vertical, but is 
exerted at an angle of 0 from the vertical. Its upward component is equal to 
2rcr7 cos(0), and the height to which the liquid rises is 

27 cos(0) 
h = ~ (6.5-8) 

pgh 

Mercury is attracted so weakly to glass that it forms a contact angle nearly equal to 
180 ~ The surface tension force is downward, and a mercury meniscus is depressed in a 
glass capillary tube, as shown in Figure 6.17c. 

*Exercise 6.13 
Assuming a contact angle of 180 ~ calculate the distance to which the mercury meniscus is 
depressed in a glass capillary tube of radius 0.500 mm. 

Since the surface of a liquid acts like a stretched film, in an isolated sample of liquid 
there is a difference between the pressure inside and outside the droplet. The system 
depicted in Figure 6.18 consists of a cylinder with a movable piston and containing a 
small droplet of liquid suspended in a vapor phase. The piston is displaced reversibly so 
that the volume of the system changes. The work done is 

dwre v = -P(gas)  dV = -P(gas)(dV(gas) + dV(liq)) (6.5-9)) 

where P(gas) is the pressure of the gas phase, P(liq) is the pressure of the liquid phase, 
V(gas) is the volume of the glass phase, and V(liq) is the volume of the liquid phase. 
Only the pressure of the gas phase enters in the expression for dwrev because only the 
gas phase is in contact with the piston. 

We can write a different expression for the reversible work by considering the phases 
separately. The 7 d d  term of Eq. (6.5-6) is added to the usual expression for dwre v for 
the liquid phase. No such term is added for the vapor phase, which has negigible 
surface tension: 

dwrev = -P(gas)  dV(gas) - P(liq) dV(liq) + 7 d d  (6.5-10) 

Equating the two expressions for dwre v and canceling the term P(gas)dV(gas) from 
both sides, we obtain 

(P(liq) - P(gas)) dV(liq) = 2 d d  (6.5-11) 

The droplet is assumed to be spherical, so 

dV(liq) -- d(J rcr 3) = 4rcr 2 dr 

d~r = d(4rcr 2) = 8rcr dr 

(6.5-12a) 

(6.5-12b) 
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Substituting these relations into Eq. (6.5-11) and canceling the common factor dr, we 
obtain 

(6.5-13) 

Equation (6.5-13) is known as the Laplace equation. If the radius of the droplet 
becomes large, the difference in pressure between the inside and outside of the droplet 
approaches zero, as we would expect. 

If the pressure on a sample of liquid is increased, its vapor pressure increases (see Eq. 
(6.3-17)), so the vapor pressure of a small droplet of a liquid increases as the size of the 
droplet decreases. For a planar surface the relation of Eq. (6.5-1) is 

dG = - S  d T  + V dP + 7 d d  + #(P) dn (6.5-14) 

where the superscript (p) means that the value pertains to a planar surface. 
Let our system consist of a small spherical liquid droplet and the vapor that is at 

equilibrium with the droplet. If the volume of the droplet is changed by an amount d V  

at constant T, constant P, and constant composition, then 

dW - -  V m dn (6.5-15) 

where V m is the molar volume of the liquid. From Eq. (6.5-12), 

deal _ _2 d V  - 2 V m dn (6.5-16) 
r r 

The relation of Eq. (6.5-14) can now be written 

( 2 Wm~') 
dG - - S  d T  + V dP + /2 (p) + dn (6.5-17) 

The effective chemical potential is therefore 

2Vm7 /2 -  ]A (p) - - [ - ~  (6.5-18) 
r 

If the vapor can be assumed ideal, the chemical potential and the partial vapor pressure 
are related by Eq. (4.4-24): 

P i - - l t ~ - + - R T  l n (p~)  (6.5-19) 

When this equation is combined with Eq. (6.5-18), we obtain 

(6.5-20) 

where P}P) is the partial vapor pressure for substance i at a planar surface. 



6.6 Surfaces in Multicomponent Systems 191 

Since small droplets of a liquid have a larger vapor pressure than large droplets, small 
droplets disappear while large droplets grow. This is the mechanism by which raindrops 
grow large enough to fall. The initial formation of a small droplet from the vapor is 
called nucleation and often requires a partial pressure of the liquid that is considerably 
larger than the equilibrium vapor pressure at a planar surface. Most raindrops 
apparently nucleate on specks of solid material, and seeding of supersaturated air 
with small crystals of silver iodide is sometimes used in efforts to produce rain. 
Homogeneous nucleation (without a solid speck) requires the spontaneous collection 
of a cluster of molecules, which is quite improbable unless the partial pressure of the 
substance greatly exceeds the equilibrium vapor pressure at a planar surface. Silver 
iodide is used for "cloud seeding" because it can be made into very small particles. It is 
possible to make 1015 particles of solid silver iodide from a single gram by spraying a 
solution of silver iodide in acetone through a suitable nozzle. 

The surface of a cavity inside a liquid produces a greater pressure inside the cavity 
(often carelessly called a "bubble"). The vapor phase is inside a cavity, and the vapor 
pressure inside the cavity is therefore decreased below that of a planar surface. 

Exercise 6.14 
a. Show that the vapor pressure inside a spherical cavity is given by 

ln( ,~)~ = 2Vm7 (6.5-21) 
\Pi J rRT 

*b. Find the vapor pressure of water at 298.15K inside a spherical cavity with diameter 
0.0200mm. 

Because the lessening of the vapor pressure inside a cavity is greater for a smaller 
cavity, the formation of a cavity requires a higher temperature than vaporizing the liquid 
from a planar surface. For this reason, a liquid can often be heated well above its normal 
boiling temperature if its container is smooth and there are no dust particles in the liquid 
at which cavities can begin to form. In such a case, the superheated liquid can suddently 
boil ("bump") when the metastable superheated liquid finally begins to form cavities. 

Surfaces in Multicomponent Systems 

In Example 6.6 we calculated the energy as though one layer of molecules had the 
normal liquid on one side and the normal vapor on the other. A solid surface might 
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(a) A one- 
component system, lne thickness ot the surtace region Js several times as large as a molecular 
diameter. The density profile shown in the diagram is an average profile. (b) A two-component 
system. The density profiles of the two substances are not required to have any simple relation to 
each other, since either or both of the substances can accumulate at the interface. 

nearly be like this crude model, but a liquid surface is more diffuse and it is perhaps 
appropriate to call it a surface region or a surface phase. Figure 6.19a shows 
schematically an average density profile through a single-component liquid-vapor 
surface at equilibrium. The thickness of a liquid-vapor interfacial region is typically 
equal to several molecular diameters, perhaps near 1 nm. We assume that the surface is 
planar and perpendicular to the z coordinate. A dividing plane is placed at z 0 inside the 
surface region, which extends from zl to z2. The volume of each phase is assigned to be 
the volume that extends up to the dividing plane. The volume of the system is then 
exactly equal to the sum of the volumes of the two phases, and no volume is ascribed to 
the surface. 

The concentration in the homogeneous portion of each phase (the "bulk" portion) is 
extrapolated up to the surface plane as shown in Figure 6.19a. The amount of substance 
in each phase is assigned to be the amount that would occur if the concentration obeyed 
this extrapolation. The shaded area to the right of the surface plane in Figure 6.19a 
represents the amount of substance that is present but not accounted for in phase II by 
this convention. The shaded area to the left of the surface plane represents the amount 
of substance that is included in phase I by the convention, but is actually not present. 
For a one-component system it is possible to place the plane in the interfacial region so 
that these two amounts of substance cancel, which would make the two shaded areas 
equal in size and make it unnecessary to ascribe any amount of the substance to the 
surface. 

In a multicomponent system, this cancelation cannot be achieved for every 
substance. Figure 6.19b shows a schematic concentration profile for a two-component 
system, and it is apparent that no placement of the plane will produce equal areas for 
both substances. However, the plane can be placed so that the cancelation occurs for 
one substance (usually the solvent). The extrapolation is carried out for each substance, 
and we denote the amount of substance i thus assigned to phase I by nl I) and the amount 
assigned to phase II by " (II) r t  i . We define for substance number i 

n(r _ nlI )  ..(II) (definition) i m H i  m r t  i (6.6-1) 
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-(~) is the amount of substance i where n i is the total amount of substance number i and rt i 
attributed to the surface, called the surface excess. The surface excess of one substance 
(usually the solvent) can be made to vanish by the appropriate placement of the plane, 
but the surface excess will then not generally vanish for the other substances. For a 
solute that accumulates at the surface, the surface excess is positive, and for a substance 
that avoids the surface, the surface excess is negative. 

The values of the thermodynamic variables for each phase are equilibrium values for 
the volume assigned by the convention, as though this volume were an interior portion 
of a very large system (and thus with no surface contributions). They obey all of the 
equations of thermodynamics without surface contributions. For phase I, 

dG (I) - - S  (D dT + V (I) dP + ~ #i dnl (6.6-2) 
i=1 

with a similar equation for phase II. The phases are at equilibrium, so that T, P, and the 
#'s have the same values in all phases, and require no superscripts. 

Let us subtract Eq. (6.6-2) and its analogue for phase II from the version of Eq. 
(6.5-1) that applies to a multicomponent system: 

diG - G (D - G 0D] - - I S  - S (I) - -  S (II)] dT + [V - V (I) - V (II)] dP 

+ 7 d d  + ~ din i - n} I) - n} II)] (6.6-3a) 
i=1 

which we rewrite as 

dG (~) - - S  (~) dT + 7 d d  + ~ #i dnl ~ (6.6-3b) 
i=1 

where G (~ is called the surface Gibbs energy: 

G (~) = G -  G (~) - G (I~) (6.6-3c) 

In Eq. (6.6-3b), we have used the fact that V (I) + V (II) = V, so that the dP term 
vanishes. The surface Gibbs energy is the Gibbs energy that is assigned to the surface 
by our definition of the Gibbs energies of the phases. It depends on the location of the 
plane with which we divide the phases from each other. There are definitions for S (~) 
and other thermodynamic variables that are analogous to that of G (~) in Eq. (6.6-3). 

The surface tension 7 is an intensive variable, depending only on T, P, and the 
composition of the phases of the system. Although s~' is not proportional to the size of 
the system, we assume that there is a contribution to G equal to 7 d  so that Euler's 
theorem, instead of the version in Eq. (5.6-5), is 

G -- 7 d  + ~ #ini (6.6-4) 
i=1 

Each phase obeys Euler's theorem without a surface term, so that 

G (I) = ~ #inl I) (6.6-5) 
i=1 

with an analogous equation for phase II. When Eq. (6.6-5) and its analogue for phase II 
are subtracted from Eq. (6.6-4), we obtain 

G (~') - 7 d  + ~ #in~ a) (6.6-6) 
i=1 
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We can write an expression for dG (g) from Eq. (6.6-6): 

dG (g) - ?  dzr  + d d? + ~ rt i "(g) d#i + ~ # i  dnl a) 
i=1 i=1 

(6.6-7) 

Equating Eq. (6.6-3b) and Eq. (6.6-7) and dividing by d ,  we obtain a surface version of 
the Gibbs-Duhem equation: 

S(g) 
0 -- ~ dT + d7 + f F} ~ dlAi (6.6-8) 

i=1 

The surface excess per unit area, FIg), is called the surface concentration" 

..(g) 
F I  g) - -  rti (definition) (6.6-9) 

d 

If the temperature is constant, 

a7 - - ~ FI g) dpi (constant temperature) (6.6-10) 
i=1 

This equation can be interpreted as follows: if adding substance i (raising its chemical 
potential) decreases the surface tension, then FI g) is positive and substance i accumu- 
lates at the interface. A substance that significantly lowers the surface tension is called a 
surfactant, and accumulates at the surface. If raising the chemical potential of 
substance i increases the surface tension, then FI g) is negative, and substance i 
avoids the interface. 

We will see in Chapter 7 that for a solute in a dilute solution we can write to an 
adequate approximation 

o (c;)  
#i -- #i + RT  ln ~ (6.6-11) 

where p[ is a constant at constant T and P, and where ci is the molar concentration of 
substance i expressed in mol L -1 , and c ~ is defined to equal 1 mol L -1 (exactly). For a 
two-component solution, the surface dividiing the phases can be positioned so that F 1, 
the surface concentration of the solvent, is zero. It can be shown that 

F 2 =  1 ( 07 ) (6.6-12a) 
RT 01n(c2) r,P, ci 

and 

(6.6-12b) 

Exercise 6.15 
Show that both versions of Eq. (6.6-12) follow from Eqs. (6.6-10) and (6.6-11). 

There are many kinds of systems with interracial effects that are of intrinsic and 
practical interest. Such systems have a large surface area per unit mass and either 
consist of very small particles or have an extremely irregular surface. A number of 
solids act as heterogeneous catalysts, which allow adsorbed reactants to react on their 
surfaces. We discuss adsorption and catalysis in Chapter 13. Colloids are suspensions 
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of small solid particles in a liquid medium. Aerosols are suspensions of fine solid or 
liquid particles in a gas, and are important in atmospheric chemistry and physics. 
Surface effects, including surface charges, dominate in determining the behavior of 
such systems. 

Summary of the Chapter 

The fundamental fact of phase equilibrium is that 

where the subscript i denotes the substance and the superscripts ~ and/3 denote two 
different phases. 

The Gibbs phase rule is 

f - - c - p + 2  

where f is the number of independent intensive variables, c is the number of 
components, and p is the number of phases. 

The Clapeyron equation govems the curves in one-component pressure-temperature 
phase diagrams" 

d P  A S  m 

d T  A V  m 

where P is the pressure at which two phases can coexist at equilibrium, ASm is the 
molar entropy change of the phase transition, and A V m is the molar volume change of 
the transition. 

The integrated Clausius-Clapeyron equation is 

-AHm 
ln(P) = ~ + constant 

R T  

Inclusion of surface effects lead to the expression for dU, 

d U  -- T dS - P d V  + 7 d5~' + # dn 

where 7 is called the surface tension and where ~ / i s  the interfacial surface area of the 
system. In most systems the effects of the surface energy are negligible. 
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1. Ideal solutions are defined such that every component has its chemical 
potential given for all compositions by 

~i - 12"~ .at. RT In(x/) 

where #* is the chemical potential of the pure substance, R is the ideal 
gas constant, T is the absolute temperature, and x i is the mole fraction 
of the substance in the solution, which can be a liquid solution or a solid 
solution. 

2. Every component in an ideal solution at equilibrium with an ideal vapor 
phase obeys Raoult's law at all compositions: 

Pi  - -  PP'xi 

where Pi is the partial pressure of gaseous substance i at equilibrium with 
the solution and P* is the partial pressure of gaseous substance i at 
equilibrium with pure liquid or solid substance i. 

3. Solutes in dilute solutions at equilibrium with an ideal phase obey Henry's 
law: 

Pi  ~ kixi  

where ki is a function of temperature called the Henry's law constant 
and x i is the mole fraction of substance i in the solution. 

4. Activities and activity coefficients describe deviations from ideal or dilute 
behavior. 

5. The activities of strong electrolyte solutes require special treatment. 

6. Phase diagrams can be used to show the phase equilibria of multicomponent 
systems, and can be understood through the phase rule of Gibbs. 

7. Colligative properties depend on concentrations of solutes, but not on 
their identities. 
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Ideal Solutions 

A homogeneous liquid or solid mixture is often called a solution. If in a given solution 
one component is present in a larger amount than the others, it is called the solvent. The 
other substances are called solutes. An ideal solution is defined as one in which the 
chemical potential of each component is given for all compositions by the formula 

(7.1-1) 

where #*(T, P) is the chemical potential of the pure substance i when it is at the 
temperature T, and pressure, P, of the solution, and where xi is the mole fraction of 
substance i in the solution. Like the ideal gas, the ideal solution is a model system. It 
closely resembles some real solutions. However, any dilute gas approximates ideal gas 
behavior, while there are solutions that do not approximate ideal solution behavior 
under any circumstances. 

Raoult's Law 
Ideal solutions exhibit two important properties that follow from Eq. (7.1-1). The first 
property is: The equilibrium partial vapor pressure of each component of an ideal 
solution very nearly obeys Raoult's law for all compositions of the solution. We state 
Raoult's law as 

(7.1-2) 

where Pi is the partial vapor pressure of substance i, the partial pressure of the 
substance in the vapor phase that is equilibrated with the solution. P* is the equilibrium 
vapor pressure of the pure substance i at the temperature and pressure of the solution, 
and x i is the mole fraction of substance i in the solution (not in the vapor phase). Figure 
7.1 illustrates Raoult's law in the case of toluene and benzene, which form a very nearly 
ideal solution. It shows the partial vapor pressures of benzene and toluene and the total 
vapor pressure in a solution at 80~ plotted as functions of the mole fraction of 
benzene. 

The version of Raoult's law shown in Eq. (7.1-2) corresponds to the assumption that 
the vapor phase at equilibrium with the solution is an ideal gas mixture. If the vapor 
phase is not ideal, the partial vapor pressure of the substance in the gas phase must be 
replaced by the fugacity of the gas, defined in Eq. (5.3-6). We will assume that the vapor 
phase is ideal. 

Raoult's law is a consequence of the relation shown in Eq. (7.1-1) if the ideal solution 
is at equilibrium with an ideal vapor phase. The chemical potential of component i in 
the vapor phase is given by Eq. (5.4-24), 

o,gas, 
~i - -  ~i + R T  I n  (7.1-3) 

�9 o(gas) where P~ is the standard-state pressure (1 bar), ~i is the chemical potential of the gas 
in its standard state, and Pi is the partial pressure of component i in the vapor phase. 
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From the fundamental fact of phase equilibrium, the chemical potential of component i 
has the same value in the solution and in the vapor: 

#*(T, P ) + R T  ln(xi)= #~(gas)n t-RT ln(~--}~) (7.1-4) 

where P stands for the actual pressure exerted on the solution. With this equation, we 
are using the vapor phase as a probe to study the solution. 

Since P is not necessarily equal to P~ or to the equilibrium vapor pressure of the pure 
substance, we can write from Eq. (6.4-4) 

~*(T, P*) - p*(T, P) = V*(i,  licO(P* - P) ~ 0 (7.1-5) 

where V*(i, liq) is the molar volume of the pure liquid substance i. We will assume that 
this quantity is negligible (See Exercise 7.1.) 

The chemical potential of pure liquid component i is equal to the chemical potential 
of gaseous component i at pressure P* by the fundamental fact of phase equilibrium, so 
that 

( g a s )  [ ~  . o ( g a s )  (P__~ ~ / ,N 
i ~,1, P*) = #i + R T  In (7.1-6) 

When Eqs. (7.1-4), (7.1-6), and (7.1-5) are combined, we obtain 

ln(P~xi~ (~----~io) RT \ ~ ]  = RT In (7.1-7) 

We take antilogarithms and obtain 

Pi -" P*xi (7.1-8) 

which is Raoult's law, Eq. (7.1-2). An ideal solution obeys Raoult's law except for a 
small pressure corrrection (shown in Eq. (7.1-5)), which we neglect. There is an also 
small correction for nonideality of the vapor, which we also neglect. 

*Exercise 7.1 
The density of ethanol is equal to 0.7885 g cm -3 at 19.0~ Its equilibrium vapor pressure at 
19.0~ is equal to 40.0torr. Find the value of the quantity shown in Eq. (7.1-5) at 19.0~ for 
ethanol at P -  1.000atm and compare the value of this term with the value of RT ln(P*/P~ 
assuming a mole fraction of 0.500. 

An ideal solution is sometimes defined as a solution that obeys Raoult's law for all 
compositions. If this definition is taken, it can be shown that Eq. (7.1-1) follows as a 
consequence. 

Exercise 7.2 
Assuming that Raoult's law holds for component i for all compositions of an ideal solution, show 
that the chemical potential of this component is given by Eq. (7.1-1). State any assumptions. 
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The Thermodynamic Variables of an Ideal Solution 

The thermodynamic properties of any kind of a system are specified with reference to a 
standard state. We have already defined the standard state of a gas to be the ideal gas at 
a pressure of exactly 1 bar (denoted by P~ and that of pure liquids and solids to be the 
substance at pressure P~ There does not seem to be universal agreement about the 
standard state for a component of an ideal solution. Some authors take the pure 
substance i at the pressure of the solution as the standard state of substance i in the 
solution, so that # * ( T , P ) -  p~. The pressure on the solution can take any value, 
although if the solution is open to the atmosphere, the pressure on it will be equal to the 
barometric pressure. In this case the pressure is not necessarily equal to the vapor 
pressure of the solution, because air is also present in the gas mixture at equilibrium 
with the solution. 

We will use the other (more common) practice of defining the standard state of a 
component of an ideal liquid solution to be the pure liquid at a pressure of 1 bar 
(exactly), and the standard state of a component of an ideal solid solution to be the pure 
solid at a pressure of 1 bar. This will have the advantage that all of our standard states 
are at the same pressure, exactly 1 bar (100,000 Pa or 0.98692 atm). If the solution is not 
under an extremely high pressure, it makes no significant numerical difference whether 
the standard state is at 1 bar or at some other pressure, as the correction would be like 
the correction term of Eq. (7.1-5), evaluated in Exercise 7.2. To adequate accuracy, we 
will write a modified version of Eq. (7.1-1): 

~i(T, P) - la~(T) + RT In(x/) (7.1-9) 

where #i~ is the chemical potential of the pure substance i in its standard state at 
pressure 1 bar. The standard state does not specify any particular temperature, so we 
include its dependence on T. 

The thermodynamic variables of a solution are usually expressed in terms of the 
quantities of mixing. These quantities are defined as the change in the variable for 
formation of the solution from the unmixed components at the same temperature and 
pressure. For example, the Gibbs energy change of mixing is 

This is the same formula as for the Gibbs energy change of mixing for a mixture of 
ideal gases. 
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Exercise 7.3 
Write a formula for the Gibbs energy change of mixing for a mixture of ideal gases, and show 
that it is the same as Eq. (7.1-12). 

Once an expression for one thermodynamic quantity is obtained, we can obtain an 
expression for other thermodynamic quantities by the use of thermodynamic identities. 
For example, we can obtain the entropy change of mixing for an ideal solution by use of 
Eq. (5.2-20). 

(3G(solution)~ 
-S(solution) = k, ~ fl P,n (7.1-13) 

Using Eq. (7.1-11), this equation becomes 

I ] -S(so lu t ion)  - i=1 ~ ni ~,,-~Jp+ R In(x/) (7.1-14) 

For the unmixed components, 

- S ( u n m i x e d ) - ~ - ~ n i ( ~ T  ) 
i=1 p 

(7.1-15) 

so that 

Exercise 7.4 
Show that Eq. (7.1-19) is correct. 
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We can also obtain expressions for other partial molar quantities from the expression 
for the chemical potential. For example, to obtain the expression for the partial molar 
entropy, we use Eq. (5.5-10): 

Si - - \ O T J p , .  (7.1-20) 

Application of this equation to Eq. (7.1-1) gives 

Rln x/) 
P,n 
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pointing in the direction in which U decreases, there is an attraction at moderate 
distances and a repulsion at smaller distances. For nonspherical molecules there is also 
a dependence of the potential energy on the relative orientations of the molecules. 

It is found experimentally that Raoult's law applies most nearly to mixtures of 
substances in which the substances have molecules of similar size, shape, and polarity. 
For example, benzene and toluene form a nearly ideal solution. The explanation for this 
fact is that two molecules of similar substances interact with each other in much the 
same way as with molecules of their own kind. The potential energy curve analogous to 
that of Figure 7.2 that applies to one benzene molecule and one molecule of toluene 
must be nearly the same as the curve that applies to two benzene molecules or the curve 
that applies to two toluene molecules. If a molecule of toluene is substituted for a 
molecule of benzene in the solution, the energy, the enthalpy, and the volume of the 
solution are therefore almost unchanged. The similarity between the molecules also 
allows them to mix randomly in a solution just as noninteracting molecules mix 
randomly in an ideal gas mixture, so that the formulas for the entropy changes of 
mixing are the same for an ideal solution and for an ideal gas mixture. 

*Exercise 7.6 
From the following list, pick pairs of substances that you think will probably form nearly ideal 
liquid solutions: 

o-xylene m-xylene 
p-xylene toluene 
ethylbenzene 1 -propanol 
2-propanol naphthalane 
anthracene phenanthrene 
3-methy!pentane 2-methylpentane 
3-pentanone 2-pentanone 
propanol propanone 

Phase Diagrams of Two-Component Ideal Solutions 
Phase diagrams are graphs that show the regions in a state space that corresponds to 
various numbers of phases. In a phase diagram for one component, as in Figure 6.3 or 
Figure 6.4, the plane of the diagram represents a state space with axes corresponding to 
T and P, and curves are the boundaries between regions corresponding to particular 
phases. In an equlibrium two-component system with one phase, Gibb's phase rule 
gives 

f = c - p + 2 = 2 - 1  + 2 = 3  

so that there are three independent intensive variables, which we take to be T and P and 
one mole fraction. The full phase diagram therefore requires three dimensions. To make 
a two-dimensional phase diagram, we specify a fixed value for one variable. There are 
two principal types of two-dimensional phase diagrams for a two-component solution. 
One is the pressure-composition phase diagram, for which the temperature has a 
fixed value. The mole fraction of one component is plotted on the horizontal axis and 
the pressure is plotted on the vertical axis. 
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For a solution obeying Raoult's law, the partial pressure of both components is given 
by Eq. (7.1-2), so the total vapor pressure is 

Ptot -- P~x1 -+- P~x2 -- P~ -t- (P~{ - P~)x1 (7.1-24) 

where we have used the relationship x2 = 1 - X l .  This equation is represented by a 
straight line in the pressure-composition phase diagram. 

Exercise 7.7 
Show that the intercepts of the function in Eq. (7.1-24) at x 1 " - -  0 and x 1 = 1 are equal to P~' and 
P~'. 

The composition of the vapor phase at equilibrium with the liquid solution is not the 
same as the composition of the liquid solution. If we assume that the vapor phase is 
ideal, the mole fraction of component 1 in the vapor is given by Dalton's law of partial 
pressures: 

P1 P~'Xl 
Yl = Pto---~ -- P~  + (P~ - P~)x l  (7.1-25) 

where we denote the mole fraction of component 1 in the vapor phase by Yl. 
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implies that there are three independent intensive variables for two components and one 
phase. In addition to the temperature, both the mole fraction and the pressure are 
independent, so that any point in this area represents a possible state of the system. The 
area above both curves represents possible equilibrium states of the system when it is a 
one-phase liquid, and any point in this area represents a possible state of the system. 

The area between the curves represents two-phase states. In addition to the 
temperature (held fixed for this diagram) there is only one independent intensive 
variable. Therefore, a point in this area, corresponding to a value of P and a value of one 
mole fraction, cannot represent a possible intensive state of the system. A horizontal 
line segment, or tie line, between the two curves connects the state points for the two 
phases at equilibrium with each other. Several tie lines are shown in the figure. There is 
only one tie line for a given value of the pressure, so that the compositions of the two 
phases are dependent variables once the temperature and the pressure are chosen. 

The second common type of two-dimensional phase diagram for a two-component 
system is the temperature-composit ion diagram, in which the variables are the mole 
fraction of one component and the temperature, with the pressure held fixed. Figure 7.4 
shows the liquid-vapor temperature-composition diagram of benzene and toluene at 
1.000 atm. The upper curve gives the boiling temperature at the given pressure as a 
function of the mole fraction of benzene in the vapor phase, and the lower curve gives 
the boiling temperature at the given pressure as a function of the mole fraction of 
benzene in the liquid phase. Tie lines drawn between the two curves connect values of 
the mole fraction in the two phases at equilibrium with each other. Each tie line in this 
diagram must correspond to a tie line in one of the pressure-composition diagrams. 

A constant-pressure distillation process can be described with the temperature- 
composition phase diagram, as depicted in Figure 7.5. Point a on the diagram in this 
figure represents the composition of a liquid solution that is being boiled in the still. 
Point b, at the other end of the tie line, represents the composition of the vapor at 
equilibrium with this liquid. This vapor condenses at the temperature represented by 
point c. A simple still in which this process can be carried out is said to have one 
theoretical plate. A still can be made to produce a greater separation of the 
components by packing its column with glass beads or other objects. The liquid 
condenses on the glass beads part way up the column and then evaporates again, 
making this part of the column equivalent to one theoretical plate. For the process 
beginning at point a, a second evaporation at point c leads to a vapor with the 
composition at point d, and this vapor can condense further up the column, giving a 
liquid corresponding to point e. This process corresponds to two theoretical plates, with 
a temperature that changes as one moves up the column. A continuation of the process 
leads to a staircase pattern in the diagram, with one step for each theoretical plate. Three 
theoretical plates lead to a liquid with the composition at point g. A still with a large 
number of theoretical plates can lead to a condensate that is almost entirely made up of 
the more volatile component. A "spinning-band" still has a rotating helical wire screen 
that wipes the walls of the column and can provide several hundred theoretical plates. 

*Exercise 7.8 
Estimate from Figure 7.5 the composition and boiling temperature of the condensate produced 
from the liquid at point a by a still with three theoretical plates. 

The solid-liquid phase diagrams for a two-component mixture are similar to liquid- 
vapor phase diagrams if the solids are at least partially miscible. Figure 7.6 shows the 
temperature-composition phase diagram of silicon and germanium, which are miscible 
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in the solid phase and form a nearly ideal solid solution. Note the similarity with Figure 
7.4, which shows a liquid-vapor equilibrium of benzene and toluene. The area below 
the two curves in Figure 7.6 represents one-phase solid states (solid solutions), and the 
area above the two curves represents one-phase liquid states (liquid solutions). The area 
between the curves is a tie-line region, with the two ends of a tie line representing the 
compositions of the solid phase and the liquid phase at equilibrium with each other. A 
continuation of the silicon-germanium diagram to higher temperatures leads to the 
liquid-vapor transition region, giving a diagram with two areas of tie lines, as shown in 
Figure 7.7. 

In order to represent the full equilibrium pressure-temperature-composition behavior 
of a two-component system, a three-dimensional graph is required, as schematically 
represented in Figure 7.8, which represents the liquid-vapor equilibrium of a nearly 
ideal liquid solution. The compositions of the liquid and of the vapor at equilibrium 
with each other are represented by two surfaces, and tie-lines parallel to the composi- 
tion axis connect coexisting states on these two surfaces. A pressure-composition 
diagram is created by passing a plane of constant temperature through the three- 
dimensional graph, and a temperature--composition diagram is created by passing a 
plane of constant pressure through the three-dimensional graph. The intersection of 
these two planes contains the common tie line of the two diagrams, as shown in the 
figure. 
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Henry's Law and Dilute Nonelectrolyte Solutions 

Most liquid and solid solutions are not well described by Raoult's law. Figure 7.9 shows 
the partial vapor pressures and total vapor pressure of a mixture of diethyl ether 
(component 1) and ethanol (component 2) at 20~ In this system, the partial vapor 
pressures of both components are greater than predicted by Raoult's law, which is 
represented by broken lines. This behavior is called positive deviation from Raoult's 
law. Since both types of molecules have a greater tendency by move from the solution 
into the vapor phase than in an ideal solution, this corresponds to greater repulsions 
between unlike molecules than between like molecules and/or to lesser attractions 
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between unlike molecules than between like molecules. In the case of negative 
deviation, the vapor pressure is smaller than predicted by Raoult's law. It is also 
possible (but less likely) for the deviation to be positive for one component and negative 
for another, as is the case with acetone and nitromethane at 318.5 K. It is not possible 
for one component to have positive deviation and the other to have negative deviation 

1 over the entire composition range. 

Exercise 7.9 
At 318.15 K, acetone (component 1) has a negative deviation from Raoult's law in a solution with 
nitromethane (component 2), and nitromethane has a positive deviation from Raoult's law over 
part of the range of compositions. What conclusions can you draw about 1-1, 1-2, 2-2 molecular 
interactions? 

There are two features of Figure 7.9 that are typical for nonionic substances. The first 
is that for small values of Xl the curve representing PI is nearly straight, and for small 
values of x2 the curve representing P2 is nearly straight. The second is that the curve 
representing P1 nearly coincides with the line representing Raoult's law for values ofxl 
near unity. The same is true of the curve representing P2 for values of x2 near unity. 
These properties can be summarized: A nearly pure component approximately obeys 
Raoult's law, and a dilute component approximately obeys Henry's  law, which is 
written 

(7.2-1) 

Henry's law is named for William 
Henry, 1774-1836, an English chemist 
who was a friend and colleague of 
John Dalton, and who influenced 
Dalton's formulation of the atomic 
theory. 

where kg is called the Henry's law constant for substance i. It does not depend on the 
mole fraction, but depends on temperature and on the identities of all substances 
present. This situation is different from Raoult's law, in which the constant P* depends 
only on temperature and the identity of substance i, and not on the identities of the other 
substances present. 

A dilute solution is one in which the solute or solutes have small mole fractions, and 
in which the solvent has a mole fraction nearly equal to unity. In such a solution the 
solvent approximately obeys Raoult's law and the solutes approximately obey Henry's 
law. Most nonelectrolyte solutions behave like this at sufficiently low mole fractions of 
the solutes. The extrapolated line corresponding to Henry's law for ethanol (the solute) 
in diethyl ether (the solvent) is shown in Figure 7.9. The intercept of this line with the 
edge of the graph is equal to the value of Henry's law constant for ethanol in diethyl 
ether, approximately 160 torr at the temperature of the figure. The Henry's law constant 
for ethanol in solution with some solvent other than diethyl ether would have a different 
value. 

Figure 7.9 could also represent a dilute solution of diethyl ether in ethanol, using the 
portion of the figure near the fight edge. The diagram shows that ethanol nearly obeys 
Raoult's law for values of x 2 near unity, and that diethyl ether nearly obeys Henry's law 
for small values ofxl,  although the line representing Henry's law for diethyl ether is not 
shown in the diagram. 

1See M. L. McGlashan, J. Chem. Educ., 40, 516 (1963). 
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*Exercise 7.10 
Find the value of Henry's law constant for benzene in ethanol at 40~ The partial vapor pressure 
of benzene is equal to 12.8 torr if the mole fraction of benzene is equal to 0.0130. State any 
assumptions. 

The Chemical Potential in a Dilute Solution 

Consider a dilute solution in which the partial vapor pressure of the solute is large 
enough to measure. We equilibrate the solution with a vapor phase, which we assume to 
be ideal. Using Henry's law, Eq. (7.2-1), for the partial vapor pressure of substance 
number i (a solute), we have from the fundamental fact of phase equilibrium: 

z(soln) .(gas) /A~(gas)_[._ R T  l n ( ~ )  
i - -  /~i - -  

To make this equation resemble Eq. (7.1-9), we write 

(7.2-2) 

where 

/. / ; (H) _ /.to(gas)_+_ RT ln(pk_L~) (7.2-3) 

�9 o ( H )  Since /~i is equal to the chemical potential of component i in the vapor phase when 
the partial pressure Pi is equal to k i, it is equal to the chemical potential that the pure 
liquid would have if it obeyed Henry's law for for xi -- 1. We define this "hypothetical" 
pure liquid to be the s tandard state for substance i in the dilute solution. We refer to 
�9 o(H) 

/~i as the standard-state chemical potential of substance i for this particular standard 
state. This standard state depends on the temperature and on the identity of the solvent 
as well as on the identity of the solute. As with the standard state of a component of an 
ideal solution, we specify a pressure of exactly 1 bar for this standard state, in order for 
all of our standard states to be at the same pressure. This would require a small 
correction term like that in Eq. (7.1-5). We neglect this correction. It may seem strange 
at first glance to have a standard state that corresponds to a hypothetical pure substance 
when we are discussing a dilute solute. The reason for this choice is that it allows us to 
write Eq. (7.2-2) in the same form as Eq. (7.1-9). 
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Distribution of a Solute between Two Solvents 

Consider the equilibrium of two solutions containing the same solute but with different 
solvents that do not mix appreciably. If iodine is dissolved in water most of the iodine 
can be extracted from the water by equilibrating this phase with carbon tetrachloride or 
another nonpolar solvent. Assuming that Henry's law is obeyed in both solutions, the 
equilibrium mole fraction of iodine in the water phase is proportional to the mole 
fraction of iodine in the carbon tetrachloride phase. This fact is called Nernst 's  
d is tr ibut ion law. The proportionality constant K d is called the distr ibut ion constant ,  
and is given by 

(7.2-4) 

where iodine is called substance i, and where the labels I and II denote two phases. For 
example, we could denote the carbon tetrachloride phase by I and the aqueous phase by 
II. In addition to depending on the identity of the solute, the value of K d depends on 
temperature and on the identities of the two solvents. 

We use the fundamental fact of phase equilibrium to derive Eq. (7.2-4). The chemical 
potential of iodine in the two phases is given by 

�9 o(H) 
/~i(~) - ~;(i) + RT ln(xi(~)) (7.2-5a) 

and 

�9 o(H) 
~/i(II) - -  /~i(II) + RT l n ( x i ( i i ) )  (7.2-5b) 

where we add a subscript to specify the phase. At equilibrium, 

~i( I )  = ~i(II )  

We solve Eq. (7.2-5a) for xi(i) and solve Eq. (7.2-5b) for Xi(ii) ,  and after using Eq. 
(7.2-3), we can write 

r o(H) o(H)-I 

xi(n---2- exp . . . .  k(il / K d  - -  e q )  - -  - -  

"~i(D 
(7.2-6) 

where ki(i)  and ki(n) are the Henry's law constants for substance i in phases I and II, 
respectively. 

Exercise 7.11 
a. Carry out the steps to obtain Eq. (7.2-6). 

*b. The value of the distribution coefficient for iodine between water (phase II) and carbon 
tetrachloride (phase I) is approximately equal to 0.0022 at 25.0~ If a solution containing 
0.0100 mol of iodine and 1.000 mol of water is equilibrated with 1.000 mol of carbon 
tetrachloride at this temperature, find the final mole fraction of iodine in each phase. Neglect 
any water that dissolves in the carbon tetrachloride phase and any carbon tetrachloride that 
dissolves in the aqueous phase. 
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The molality of component i in a solution is defined by 

(7.2-7) 

where n i is the amount of component i in moles and wl is the mass of the solvent 
(component 1) in kilograms. The units of molality are molkg -1, also referred to as 
"molal." We use the symbol wa for the mass of the solvent because mi is the accepted 
symbol for the molality and another quantity denoted by the letter m would be 
confusing. For small amounts of the solute, the molality is nearly proportional to the 
mole fraction. If M 1 is the molar mass of the solvent, then 

w 1 - n l M  1 (7.2-8) 

so that the mole fraction of component i is given by 

/'/i Hi 
X i = = (7.2-9) 

n l -}- n 2 + ' " - J r  n c ( W l / M 1 )  -Jr- n 2 + " ' - } -  n c 

For a dilute solution, n 1 is much larger than the other amounts, so that 

n i m l  
x i ,~ ~ = m i M  1 (7.2-10) 

W1 

In this case, Henry's law can be expressed in terms of the molality: 

For a dilute solution, the chemical potential can be expressed in terms of the molality 
in an equation similar to Eqs. (7.2-2) and (7.1-9). Using Eqs. (7.2-2) and (7.2-10), 

__ .o(H) 
[l i tzi + R T  l n ( m i M 1 )  #~(m) + R T  l n ( m i / m  ~ (dilute solution) (7.2-12) 

_ . o(H) where ]/~(m) l~i - } - R T  ln(Mlm ~ and where m ~ is defined to equal 1 molkg -1 
(exactly). 

The quantity #~(m) is the chemical potential of substance i in its molality standard 
state. This standard state of component i is that of a substance in a "hypothetical" 
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solution with m i equal to m ~ (1 molkg -1) and with Henry's law in the form of Eq. 
(7.2-11) valid at this molality. Again we specify a pressure of exactly 1 bar for this 
standard state. 

Exercise 7.12 
Show tha t  ]2~ (m) is equal to the chemical potential of i in the vapor phase at equilibrium with a 
1.000molkg -1 solution if Eq. (7.2-11) is valid at this molality. 

The molar concentration of component i is defined by 

ni ( 7 . 2 - 1 3 )  r ~ ~ 

where n i is the amount of the solute in moles and V is the volume of the solution. The 
term "concentration" is sometimes used to refer to the mass of a solute per unit volume, 
but we will not use this measure of composition, and will usually refer to the molar 
concentration simply as the concentration. The SI unit of volume is m 3, but we will also 
use the liter. If the volume is measured in liters, the molar concentration is commonly 
called the molarity. A common symbol for the molarity is the formula for the substance 
inside square brackets: 

C i -  [ '-~i] ( 7 . 2 - 1 4 )  

where ~ i  is an abbreviation for the formula of substance i. Although molarity is 
commonly used in general chemistry courses and in spite of its convenience in 
volumetric analyses, the molality is more commonly used in physical chemistry courses 
because the molarity depends on temperature while the molality does not. 

*Exercise 7.13 
Assuming that the coefficient of thermal expansion of an aqueous solution is the same as that of 
water, 2.0661 x 10 -4 K - l ,  determine the molarity at 25~ of a solution that has a molarity of 
0.1000molL -1 at 20.0~ 

Henry's law can be expressed in terms of concentration. By Euler's theorem, Eq. 
(5.6-4), the volume of a dilute solution is 

/-i nl/-i_ n] V'm,1 (7.2-15) V -  n i ,  i ~ - ,  
i=1 

where the approximate equality holds for a dilute solution, in which n 1 is much larger 
than the amounts of the solutes. In this case 

ni x i 
c i , ~  ~ , ~  ~ (dilute solutions) (7.2-16) 

n l V *  V *  m, 1 m, 1 

Exercise 7.14 
a. Show that for a dilute solution, Henry's law becomes 

Pi "- ki V'm,1 ci -" k~ c) ci (7.2-17) 
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b. Show that for a dilute solution, the chemical potential can be expressed in terms of the 
concentration: 

(c/) ]A i - -  /A; (c) --[- RTln -~ ( 7 . 2 - 1 8 )  

�9 o(c) . o(H) , 1 mol per unit volume (exactly). where ~i --~i  + R T  ln(c~ and where c ~  
o(c) Interpret the molarity standard state, at which the chemical potential is equal to ]A i 

In addition to the mole fraction, molality, and concentration, other measures are used 
to express the composition of solutions, including percentage by mass, percentage by 
volume, and parts per million by mass. For dilute solutions, Henry's law can be 
expressed in terms of any of these composition measures, since all of them are 
proportional to the mole fraction for sufficiently dilute solutions. 

*Exercise 7.15 
Find the expressions for the Henry's law constants using parts per million, percentage by volume, 
and percentage by mass. 

The Solubility of a Gas in a Liquid 

Henry's law, which applies to equilibrium between a solution and a gas phase, can be 
used to express the maximum solubility of gases in liquids. At equilibrium the amount 
of a gas dissolved in a liquid is proportional to the partial pressure of the gas. The only 
difference from the usual version of Henry's law is that instead of thinking of a solution 
producing a vapor phase at equilibrium with the solution, we think of a gas dissolving 
to produce a solution at equilibrium with the gas phase. 

The Solvent in a Dilute Solution Obeys Raoult's Law 

If all solutes in a solution obey Henry's law over some dilute range of composition, the 
solvent obeys Raoult's law over this range of composition. We show this fact for a two- 
component solution, leaving the proof for several components as a problem at the end 
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of the chapter (Problem 7.46). We begin with the Gibbs-Duhem relation for constant 
pressure and temperature: 

x l (  0/~1'] +x2 (0#2'] - 0  (7.2-19) 
Ik OX2 ,] T,P Ik OX2 ,] T,P 

This equation requires that the pressure exerted on the solution is constant. The vapor 
phase must have an additional gas or gases (such as air) present to keep the pressure 
constant. The small amount of air that dissolves in the solution can be ignored, and the 
small effect of a modest change in pressure on the chemical potentials in the solution is 
negligible (see Example 6.5). 

Assume that component 2 obeys Henry's law over the range of composition from 
x2 - 0 to x2 = x~. In this range 

( 0#2 ~ __ R T ( d  ln(x2)' ] _ R T  (7.2-20) 
OX2,] T, P dx2 / X2 

Since x 1 + x 2 = 1, dx 2 = - d x  1 . Therefore, by Eq. (7.2-19) 

X, (0#1~ -- X 2 (0#2~ -- K2RT = R T  (7.2-21) 
~,OXl,] T,p ~,OX2,] T,p X2 

Dividing this equation by x 1 and multiplying by dx l, we obtain 

3x l ,] r, p -~1 dx l (7.22) 

Integrating this equation from x 1 = 1 to x 1 - x '  1 = 1 -:(2, we obtain 

~ (x'~) - ~ ( 1 )  - RT[ln(x'~) - I n ( l ) ]  

which is the same as 

#l(x l )  - la~' + RT  ln(xl) (7.2-23) 

where we recognize P l (1) as pl*, and where we have dropped the prime (') on the value 
o fx  1. Equation (7.2-23) is the same as Eq. (7.1-1) for an ideal solution, and leads to 
Raoult's law for the solvent, as in Eq. (7.1-2). We define the standard state for the 
solvent in a dilute solution to be the pure substance at pressure po (exactly 1 bar). 
Again, this would require a small correction term like that in Eq. (7.1-5). We neglect 
this correction. 

where p~ is the chemical potential of substance i in the appropriate standard state. The 
relation shown in Eq. (7.3-1) is a general equation, to be used for pure substances and 
components of mixtures in solid, liquid, or gaseous phases. Notice the similarity of this 
equation with Eqs. (7.1-9), (7.2-2), (7.2-12), and (7.2-18). An important property of the 
activity is that it is equal to unity if the substance is in its standard state, since the 
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logarithm of unity is equal to zero. However, we will have different kinds of standard 
states for different kinds of systems. 

The Activity of a Pure Solid or Liquid 

The standard state of a pure solid or liquid is the substance at pressure P~ This choice 
means that the activity of the pure substance is equal to unity if the pure substance is at 
pressure P~ If the substance is at a pressure other than P~ 

lai(P' ) = Gi(P') = ~ + V* �9 dP - #~ + V * , i ( F  - P~ (7.3-2) o m , t  

where we have used Eq. (5.3-11) and where we assume the substance to be 
incompressible. The activity at pressure P is given by 

R T  I n ( a / ) -  g*m, i (P-  P~ (7.3-3) 

which is equivalent to 

*Exercise 7.16 
Find the pressure such that the activity of liquid water is equal to 1.0100 at 298.15 K. 

For ordinary pressures we will assume that the activity of a pure solid or liquid is equal 
to unity. 

The Activity of an Ideal Gas 

The standard state for the activity of an ideal gas is the same as that used for the Gibbs 
energy: the pure ideal gas at whatever temperature we wish to discuss and at pressure 
P~ Comparison of Eq. (7.3-1) with Eq. (5.3-5) shows that 

(7.3-5) 
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where Pi is the pressure (or partial pressure) of the gas. Since each gas in an ideal gas 
mixture behaves as though it were the only gas present, Eq. (7.3-5) can also be used for 
components of ideal gas mixtures. 

Activities in Ideal Solutions 
For a component of an ideal liquid or solid solution, the composition is most 
conveniently expressed in terms of the mole fractions of the components. Comparison 
of Eq. (7.3-1) with Eq. (7.1-9) shows that 

(7.3-6a) 

(7.3-6b) 

where the standard state is the pure substance at the temperature of the solution and at 
pressure P~ and in the same phase as the solution. If the solution is a liquid, the 
standard state must be the substance in the liquid phase. 

An example of a solution that is nearly ideal is a liquid mixture of benzene and 
naphthalene. However, benzene does not mix with solid naphthalene. This is a common 
occurrence. For a substance to mix with another substance that is a solid it must fit into 
its crystal lattice. The same is not required for a liquid, so that miscibility is much more 
common in the liquid phase than in the solid phase. Since naphthalene is a solid at room 
temperature the standard state of naphthalene for the liquid solution must be pure 
supercooled liquid naphthalene at the temperature of the solution. Since the chemical 
potential of the supercooled (metastable) liquid is higher than that of the solid at 
temperatures lower than the melting temperature, there is a range of mole fractions of 
naphthalene near unity in which the chemical potential of naphthalene in the solution 
would exceed that of the solid naphthalene. Solutions in this range exceed the 
maximum solubility of naphthalene in benzene, and if they occur they are metastable 
and are called supersaturated. Figure 7.10 schematically shows the vapor pressure and 
chemical potential of naphthalene in a solution with benzene near room temperature. 

Exercise 7.17 
Show that the maximum solubility of a solid such as naphthalene is independent of the identity of 
the liquid solvent if the two substances form an ideal solution. 

Activities in Nonideal Systems. The Activity Coefficient 
The activity of a component of a nonideal system is defined in whatever way is needed 
to make Eq. (7.3-1) valid. It is always necessary to define the standard state. The extent 
to which the actual activity deviates from the ideal activity is specified by the activity 
coefficient ~,, defined as the ratio 

(7.3-7) 
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The Activity and Activity Coefficient of a Nonideal Gas 

The standard state for the activity of a nonideal gas is the hypothetical ideal gas at the 
standard-state pressure P~ Comparison of Eq. (7.3-1) with Eq. (5.3-6) shows that the 
activity of a nonideal gas is the ratio of the fugacity to P~ 

(7.3-8) 

In the case of an nonideal gas, a/(ideal) in Eq. (7.3-7) is the activity of the ideal gas, 
Pi/P ~ where Pi is partial pressure of the gas. 

The activity coefficient is given by Eq. (7.3-7) as 

f / e  ~ fie 
= - -  (7.3-9) 7i --pi/Po Pi 

It is also known as the fugacity coefficient, and is sometimes denoted by (~i instead of 
by 7i. The activity coefficient of an ideal gas equals unity. 

The chemical potential of a nonideal gas can be written 

#i--#~-q-RT ln(ai)--l.t~-+-RT ln(pf--~o)- ~ q-RT l n ( ~ )  (7.3-10) 

If the value of the activity coefficient is greater than unity, the gas has a greater activity 
and a greater chemical potential than if it were ideal at the same temperature and 
pressure. If the value of the activity coefficient is less than unity, the gas has a lower 
activity and a lower chemical potential than if it were ideal. 

Activities and Activity Coefficients in Nonideal Solutions 

The activities of the components of a nonideal solution are specified in different ways, 
depending on whether one of the components is designated as the solvent and 
depending on the variables used for specifying the composition of the solution. We 
will discuss first the descriptions based on mole fractions, and will discuss molality and 
concentration descriptions later in this section. 

Convention I. In this treatment all of the components are treated on an equal 
footing, with no substance designated as the solvent and with mole fractions used to 
specify the composition. The standard state for each component is the pure substance at 
pressure P~ and at the temperature of the solution, just as with an ideal solution. For a 
solution of volatile substances at equilibrium with a vapor phase, the chemical potential 
of substance i in the solution is equal to its chemical potential in the vapor phase. If we 
write the chemical potential in the solution in terms of the activity as in Eq. (7.3-1) and 
assume the vapor to be an ideal gas, 

#~(I) + RT ln[a~ I)] ~i + RT In (7.3-11) 

�9 o(I) where we attach the superscript (I) to specify Convention I. Since #i is the chemical 
potential of the pure liquid, ~t*, it is equal to the chemical potential of the gaseous 
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substance at a partial pressure equal to the equilibrium vapor pressure P*. The relation 
of Eq. (7.3-11) becomes 

.to(gas) (Pi*~ ln(ali)) #~(gas)_].. (pP___~) i -If" R T  In + R T  --  R T  In \ p o j  (7.3-12) 

Canceling equal terms and taking antilogarithms in Eq. (7.3-12) gives 

e i  - P * a l  I~ (7.3-13) 

which is just like Raoult's law, Eq. (7.1-2), except that the activity a} I) occurs instead of 
the mole fraction x i. The activity acts as an "effective" mole fraction in determining the 
partial vapor pressure of the substance. Equation (7.3-13) is equivalent to 

*Exercise 7.18 
Find the value of the activity and the activity coefficient of ethanol in the solution of Example 7.7, 
according to Convention I. The partial vapor pressure is 46.91 torr and the vapor pressure of pure 
ethanol at 25~ is equal to 49.31 torr. 



7.3 The Activity and the Description of General Systems 221 

Convention II. In this description the mole fractions of all components are used to 
specify the composition, but one of the components (which we choose to be substance 
number 1) is designated as the solvent and is treated just as in Convention I: 

P1 a( II) _a ] I )  _ 

, /,--7, 
y(II) 7{I) a] I) 

1 ~ X 1 

(solvent -- component 1) (7.3-16) 

P1/P~ P1 
= (7.3-17) 

Pl(ideal)/p o P~Xl 

(When one component is designated as the solvent, we will call it component number 
1.) Instead of specifying the deviation from Raoult's law for a solute, we specify its 
deviation from Henry's law. This means that the standard state for the activity of a 
solute is a hypothetical pure liquid or solid with a vapor pressure equal to Henry's law 
constant, just as for a solute in a dilute solution. 

From the fundamental fact of phase equilibrium, we write for a solute in its standard 
state 

o(II) o(H) , o(gas) (pk_~/o) 
i - -  tzi - -  # i  + R T  In (i :fi 1) (7.3-18) 

The activity takes on the value that is needed to make Eq. (7.3-1) valid: 

�9 ofn) ln(alm) (7.3-19) ]A i - -  IA i -~- R T 

Equation (7.3-18) is substituted into Eq. (7.3-19) and the chemical potential of 
substance i in the solution is equated to its chemical potential in the gas phase. This 
gives 

#o(gas) (pk_@/o) _ .  o(gas) (pP___@~) i "+- R T  In + R T  ln(al Ix)) lai Jr- R T  In (7.3-20) 

Cancelation and taking antilogarithms leads to 

. (IS) 
Pi -- Kiai (i --/= 1) (7.3-21) 

This equation is just like Henry's law, Eq. (7.2-1), except for the occurrence of the 
activity instead of the mole fraction. If Henry's law is obeyed, the activity and the mole 
fraction are equal to each other. If not, the activity is an "effective" mole fraction in 
expressing the chemical potential and the partial vapor pressure. Equation (7.3-21) is 
equivalent to 

(7.3-22) 

The activity coefficient is again defined as the ratio of the activity to the mole fraction. 
It is equal to the actual vapor pressure divided by the vapor pressure predicted by 
Henry's law: 

_(II) P i  
.(II) u i  (7.3-23) Yi "-" ~ ~--- 

Xi k i x i  

Equation (7.3-19) can now be written 

# i -  #i ~ - - ] - R T  ln(71n)xi) (7.3-24) 
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Convention II is sometimes referred to as the application of the solute standard 
state to the solutes and the application of the solvent s tandard state to the solvent. 
Convention I is called the application of the solvent s tandard state to every 
component. The reason for having two conventions is that we would like to have 
activity coefficients nearly equal to unity as often as possible. If Henry's law is nearly 
obeyed by solutes, the use of Convention II gives solute activity coefficients nearly 
equal to unity as well as a solvent activity coefficient nearly equal to unity, while 
Convention I gives activity coefficients nearly equal to unity if Raoult's law is nearly 
obeyed by all substances. 

*Exercise 7.19 
Using Convention I, find the activity and activity coefficient for diethyl ether in the solution of 
Example 7.8. The partial vapor pressure of diethyl ether at this composition and pressure is equal 
to 408.6 torr and the vapor pressure of pure diethyl ether at this temperature is equal to 442.6 torr. 

Activities and activity coefficients of solutes are also defined to be used with 
molalities and concentrations instead of mole fractions. Once again, we require that 
Eq. (7.3-1) be valid, and choose standard states so that the activity is numerically equal 
to the molality if Eq. (7.2-10) is valid or to the concentration if Eq. (7.2-15) is valid. 

The Molality Description 
From Eq. (7.2-7), the molality of component i is 

t l  i 17 i X i 
m i . . . . .  (definition, i :/: 1) (7.3-25) 

wl nlM1 xlM1 
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where M1 is the molar mass of the solvent and w 1 is the mass of the solvent. Using the 
relation of Eq. (7.3-25) in Eq. (7.3-24), we write 

/ (n) ) 
#i -- #~(ii) + RT ln(M lm~ + R T  In [)'i Xl mi 

\ m ~ 
(7.3-26) 

where m ~ is defined to equal 1 mol kg -1 (exactly). This equation is in the form of Eq. 
(7.3-1): 

where 

and 

�9 o(m) ln(a}m))  ~i -- ~i + RT (7.3-27) 

.(H).. 
a(m) _ yi -~lmi (7.3-28) i m o 

#o(m)  __ 
i 1~9 ) + R T  ln(M1 m~ (7.3-29) 

As in the molality description of a dilute solution, the standard state is the hypothetical 
solution with molality equal to 1 mol kg -1 and obeying the molality version of Henry's 
law, Eq. (7.2-11). We define the molality activity coeff ic ient  

~)(m) (II) ~- 
i = 7i ~l (7.3-30) 

so that Eq. (7.3-27) can be written 

(m) 
. o ( m )  (7i mi~ #i--/Ai + R T  l n \  m ~ ] (7.3-31) 

Since Xl, the mole fraction of the solvent, is approximately equal to unity in dilute 
solutions, the molality activity coefficient and the mole fraction activity coefficient are 
nearly equal in dilute solutions. 

Equation (7.3-31) is the same as Eq. (7.2-12) except for the presence of the activity 
coefficient. All that is needed to convert an expression for a dilute solution into one for 
an arbitrary solution is to insert the activity coefficient, which describes how the solute 
deviates from the molality description of a dilute solution. This is generally true: 
inclusion of the effects of nonideality is accomplished by inserting an activity 
coefficient as a factor that multiplies the mole fraction, molality, or other composition 
variables. 

The Concentration Description 
The concentration is given by Eq. (7.2-13), 

ni xi (7.3-32) Ci--'-~"--~m 

where Vm is the mean molar volume, V/n  (n is the total amount of all substances). We 
want to write an equation of the form 

. o ( c )  (7}C) ci~ 
#i -- ]-zi @ R T  In (7.3-33) \co] 
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so that the activity in the concentration description is 

(c) 
a~C)~ = ~i Ui (7.3-34) 

C ~ 

where c ~ is defined to equal 1 molL -1 or 1 molm -3. Equation (7.3-33) is valid if 

o ( c )  . (II) 
i - - ~ i  + R T  ln(V* m,1 r  (7.3-35) 

and 

.(II) 
.(c) / i  

/ i  - -  V* (7.3-36) 
m, 1 

The standard-state chemical potential is that of a hypothetical solution with a 
concentration of substance i equal to 1 mol L -1 (or 1 mol m -3) and obeying Henry's 
law in the concentration description, as in Eq. (7.2-15). Correction is made for the fact 
that the mean molar volume is not equal to the molar volume of the solvent except in 
the limit of infinite dilution. 

In all our descriptions, the solvent is treated in the same way as in Convention I. Its 
activity is always its mole fraction times its activity coefficient: 

a 1 = ~)lXl (solvent, all descriptions) (7.3-37) 

Since the activities and activity coefficients of the same solute in two different 
descriptions are not necessarily equal to each other we have attached superscripts to 
specify which description is being used. We sometimes omit these superscripts, relying 
on the context to make clear which description is being used. Inspection of Eqs. 
(7.3-33) and (7.3-36) shows that all of the solute activity coefficients become equal to 
each other in the limit of infinite dilution. 

Activities of Nonvolatile Solutes. The Gibbs-Duhem 
Integration 
If a solute has a small vapor pressure that cannot be measured conveniently, another 
method must be found to determine its activity. For a two-component solution with a 
volatile solvent and a nonvolatile solute, the activity coefficient of the solute can be 
determined by measuring the vapor pressure of the solvent over a range of composition 
and then integrating the Gibbs-Duhem relation. For constant pressure and temperature, 
the Gibbs-Duhem relation is given by Eq. (5.6-11). When we substitute Eq. (7.3-1) into 
this equation for the case of two components, we obtain 

x l R T  d[ln(al) ] + x 2 R T  d[ln(a2) ] = 0 (7.3-38) 

We use Convention II. For both components, a i - - ] ) i x i ,  where we omit superscripts. 
Using the fact that x i d[ln(xi)  ] = dx i, we obtain 

x l R T  d[ln(71)] + R T  dx 1 + x 2 R T  d[ln(?2)] + R T  d x  2 = 0 

Since x 1 + x 2 --" 1, dx 1 + d x  2 = 0 ,  and two terms cancel. We divide by x 2 and obtain the 
equation 

d[ln(72)] - Xl d[ln(?l)] (7.3-39) 
1 - x  1 

The vapor pressure of the solvent (component 1) is measured over a range of 
compositions beginning with pure solvent and extending to the composition at which 
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' ' - -1  ' From the vapor we want the value of 72, denoted by X 1 - - X  1 or X 2 - - X  2 - - X  1. 

pressure, the activity coefficient of the solvent, 71 is calculated for a number of 
compositions within the range of interest. Equation (7.3-39) is then integrated from 
Xl -- X'l' to Xl - x~, where x' 1' is a value of Xl close enough to unity that Raoult's law is 
obeyed by the solvent and Henry's law is obeyed by the solute. At Xl = x~', 72 is equal to 
unity, so that 

--  I Xi=~ii X 1 
ln[72(S1)1 -- Jx~:x'( 1 - X 1 d[ln(71)] (7.3-40) 

" cannot be where we consider both 9'2 and 71 to be functions of x 1 . The lower limit x 1 
taken equal to unity, because the denominator 1 - x ~  goes to zero in this case. 

Unless the data are fit to some formula, this integral is approximated numerically. 
Before the advent of digital computers it was often done graphically, with the integrand 
xl/(1 - x l )  plotted on the vertical axis and ln(71) plotted on the horizontal axis. 

Thermodynamic Functions of Nonideal Solutions 
The thermodynamic functions of solutions are generally expressed in terms of the 
changes in the variables produced by mixing the pure components to from the solution 
at a fixed temperature and pressure. We begin with the Gibbs energy change of mixing. 
From Euler's theorem and Eq. (7.3-1), the Gibbs energy of a nonideal solution can be 
written in a way that is analogous to Eq. (7.1-11) for an ideal solution: 

a(soln) -- ~ ni[/z] (I) + RT ln(a}X))] (7.3-41) 
i=1 

The actual value of the Gibbs energy or any other energy-related variable can always be 
modified by adding a constant to the potential energy. Therefore, only changes in any 
such variables are unambiguous. We must write an equation for AG for a process of 
interest instead of for G. For Convention I the standard states are the pure components, 
so that 

a(unmixed ) - -  ~ nil.t* --- ~ ni /z ;  (I) (7.3-42) 
i=1 i=1 

The change in Gibbs energy for producing the solution from the pure substances is 

AGrnix - -  RT ~ n i ln(a} I)) (7.3-43) 
i--1 

We can rewrite this equation in terms of the activity coefficients" 

A G mi  x - -  R T ~  n i ln(71I)xi)  
i-1 

= RT ~ n i ln(xi) + RT ~ n i ln(7} I)) 
i=1 i=1 

(7.3-44) 
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The first sum in the right-hand-side of the final version of the equation is the same as for 
an ideal solution, and the second sum represents a correction for the nonideality of the 
solution. This correction is called the excess Gibbs energy, and is denoted by GE: 

G z _ AGmix(actual ) - AGmix(ideal ) 

= R T  ~ n i ln(?l I)) (7.3-45) 
i=1 

so that 

AGmi x - AGmix(ideal) -q- G E (7.3-46) 

The excess enthalpy, excess energy, excess entropy, etc., can all be defined for a 
nonideal solution: 

H E __ AHmix(actual ) - AHmix(ideal ) 

U E _. AUmix(actual ) - AUmix(ideal) 

S E _- ASmix(actual ) - ASmix(ideal ) 

V E - -  A Vmix(actual ) - A Vmix(ideal ) 

(7.3-47a) 

(7.3-47b) 

(7.3-47c) 

(7.3-47d) 

Exercise 7.20 
Show that 

S E - - R  ~ n i ln[7l I)] - RT ~ n i ln(71I)) 
i=1 i=1 OT P 

(7.3-48) 

The enthalpy change of mixing is often expressed in terms of the heat of solution or 
enthalpy change of solution. For a two-component solution, the molar  integral heat 
of solution of component 1 in component 2 is defined by 

Anmix  
Anint ,  1 = (7 .3 -49 )  

nl 

and the molar integral heat of  solution of component 2 is defined by 

z~d~mi X 
Anint ,  2 --  ( 7 .3 -50 )  

n2 

The same enthalpy change of mixing occurs in both equations, but it is divided by the 
amount of a different substance in each case. 
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Using the relation for a two-component solution 

AHmi  x - -  nl/7tl  + n2[ /2  - (n lH*m, 1 n t- n2H*m,2) (7.3-51) 

the integral heat of mixing of a component of a two-component solution can be written 
in terms of the partial molar enthalpies: 

AHint  2 - -  1 [n 1 ([/1 -- H* H* 2)] ' n-~ m,1) -[- n2(ff/2 -- m, 

nl (/2/1 - H* H* (7.3-52) = - -  m, 1) "[-/~2 -- m,2 
n2 

The integral heat of solution is the enthalpy change per mole of solute for the entire 
process of making the solution, starting with pure solvent and adding the pure solute to 
make the desired concentration. It is therefore a kind of average molar quantity for 
making the solution of the desired concentration. In the limit of zero concentration it 
approaches a limit that depends only on the temperature, the pressure, the identity of the 
other substance. 

The differential heat of solution is defined by 

Z~/diff,  2 __ ( 0  z~r/mix.~ (definition) (7.3-53) 
On2 ,] T,P,n' 

The differential heat of solution is the enthalpy change per mole of solute for adding an 
infinitesimal amount of solute to the solution (not changing its composition), or 
equivalently for adding 1 mol of solution to a very large amount of the solution 
(again not changing its composition). From Eqs. (7.3-51) and (7.3-53), 

AHdiff, i - H i  - H *  �9 (7.3-54) m, l  

Equation (7.3-54) is valid for any number of components, while Eq. (7.3-52) is valid 
only for a two-component solution. 

Exercise 7.21 
Write the version of Eq. (7.3-52) that applies to a solution of c components. 

Tabulated Thermodynamic Properties for Solution 
Components 
In Chapters 3 and 5 we discussed enthalpy and Gibbs energy changes of formation for 
gases and pure substances. The enthalpy change of formation of substance i in a 
solution is defined as the enthalpy change to produce 1 tool of substance i from the 
necessary elements in their most stable forms and then to dissolve the one mole of 
substance i in a large amount of the solution of the specified composition. A large 
amount of solution is used so that the addition of the solute does not appreciably change 
its composition. The enthalpy change of formation is related to the differential heat of 
solution, not the integral heat of solution. The Gibbs energy change of formation is 
analogous; it is the change in Gibbs energy to produce one mole of the substance from 
the necessary elements in their most stable forms, and then to dissolve it in a large 
amount of the solution of the specified composition. These quantities do not include the 
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enthalpy change or the Gibbs energy change to produce the large amount of solution to 
which the substance is added. 

The composition of the solution must be specified. The tabulated values of enthalpy 
changes and Gibbs energy changes of formation of solutes in Table A.8 are for standard 
states. The notation (ao) in the table means that the value is for the hypothetical 
1 mol kg -1 solution with activity coefficient set equal to unity. The notation (ai) means 
the same thing, but for a complete ionization of a weak electrolyte. For all standard 
states the pressure is specified to equal P~ The standard-state enthalpy change of 
formation is defined by 

Some compounds ionize or dissociate to form electrically charged ions in a solution 
with water and some other solvents. The electrical forces between these ions in solution 
are strong, and act over a large distance compared to molecular dimensions. They are 
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Coulomb's law is named for Charles 
Augustin de Coulomb, 1736-1806, the 
French physicist who discovered the 
law. 

said to be long-range forces. The force on a macroscopic object with charge Q1 due to 
one of charge Q2 is given by Coulomb's law 

Q1Q2 
F12 - e r 4~z~r22 (7.4-1) 

where r12 is the distance between the centers of the objects, and where the charges are 
measured in coulombs (C). The constant e depends on the identity of the substance 
(medium) between the charges, and is called the permittivity of the medium. The 
permittivity of a vacuum is denoted by %, and is equal to 8.85419 x 10 -12 C 2 

N -1 m -2. The permittivities of various substances have various values, always larger 
than that of a vacuum. The force is a vector that is proportional to the unit vector er, 
which points from object 2 toward object 1. If the two charges have the same sign the 
force is a repulsion and if they have opposite signs the force is an attraction. By 
Newton's third law, the force on object 2 due to object 1 is the negative of the force on 
object 1 due to object 2. Although Eq. (7.4-1) was deduced for macroscopic charged 
objects, it is assumed to hold also for ions in a solution with the appropriate value of the 
permittivity of water. 

The ratio of the permittivity of a given substance to that of a vacuum is called the 
dielectric constant and denoted by ~rel" The dielectric constant of water is larger than 
that of most substances, and at 25~ is equal to 78.54. Although the electrostatic forces 
between ions in water are weaker than in a vacuum by this factor, these forces are of 
long range and have significant effects on the behavior of the solution. There are two 
principal equilibrium effects of the elctrostatic forces: The first is that the long-range 
electrostatic forces cause significant deviations from ordinary dilute behavior even at 
low concentrations. The second is that the chemical equilibrium between the ions and 
the unionized or undissociated compound produces a behavior of the chemical potential 
that is qualitatively different from that of nonelectrolyte solutes. We will discuss the first 
effect in this section, and will discuss the second effect in Chapter 8, when we discuss 
the thermodynamics of chemical equilibrium. 

In an ideal solution the effective molecular environment of the molecules of any 
substance must be composition-independent, which can happen if the intermolecular 
forces between unlike molecules and like molecules are the same. In a sufficiently 
dilute solution, almost all solute molecules are surrounded only by molecules of the 
solvent. If the intermolecular forces are short-rane forces, the molecular environment is 
independent of compositions so long as the solution remains dilute. However, in an 
electrolyte solution the long-range electrostatic interaction between the ions makes 
fairly distant ions influence a given ion, and electrolyte solutions deviate from dilute 
behavior except for extremely low concentrations. 

The Debye-HEtckel theory is named 
for Peter J. W. Debye, 1884-1966, 
Dutch-American physicist and chemist 
who received the Nobel Prize for 
chemistry in 1936 for his work on the 
dipole moments of molecules, and for 
Erich HEtckel, 1896-1980, German 
chemist who is also known for an 
approximation scheme used in 
molecular quantum mechanics. 

The Debye-H6ckel Theory 
There is a molecular theory for the activity coefficients of an electrolyte solution, due to 
Debye and Hfickel. We will not discuss their theory except to mention its underlying 
ideas and to quote its principal result. 2 

The Debye-Hfickel theory begins with the assumption that a pair of ions exert forces 
on each other given by Eq. (7.4-1), except that the centers of two ions cannot approach 

2 An account of the development is found in T. L. Hill, Statistical Thermodynamics, Addison-Wesley, 
Reading, MA, 1960, pp. 321ff. The original reference is P. Debye and E. Hfickel, Physik. Z., 24, 185 (1923). 
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each other more closely than some distance of closest approach, called a. The 
solution is assumed to behave like an ordinary dilute solution except for the effects 
of the electrostatic forces, so that there is no other contribution to the activity 
coefficient. 

The main idea of the Debye-Hiickel derivation was to pretend that the ions in a 
solution could somehow have their changes varied reversibly from zero to the actual 
values, and to determine the consequences of this process from electrostatic theory and 
statistical mechanical theory. During the reversible charging process, an "ion atmo- 
sphere" is created, consisting of an excess of ions of the opposite charge in the vicinity 
of any given ion. An equation for the statistical average distribution of ions around the 
fixed ion was derived by combining the Poisson equation of electrostatics (which we 
will not discuss) and the Boltzmann probability distribution of Eq. (1.7-25) into an 
equation called the Poisson-Boltzmann equation. The reversible work of creating the 
ion atmosphere was calculated from electrostatic theory. According to Eq. (5.1-27), the 
net work done on the system in a reversible process is equal to the change in the Gibbs 
energy, which leads to equations for the electrostatic contribution to chemical potential 
and the activity coefficient. 

The first major result of the Debye-Htickel theory is a formula for the statistical 
distribution of charge around a given ion in the solution: 

--Zje 2 exp[-~c(r-  a)] 
nj(r )  - -  4rter(1 + ~ca) (7.4-2) 

where r is the distance from the center of the given ion of valence zj, where nj(r)  

represents the average net charge per unit volume at a distance r from a given ion, and 
where e is the charge on a proton, 1.6022 x 10 -19 C. The quantity K is 

(2Nav p 1 i )  1/2 
tr - ~ \ ekB T (7.4-3) 

where NAv is Avogadro's number, Pl is the density of the solvent, kB is Boltzmann's 
constant, and T is the temperature. The quantity I is the ionic strength, defined for a 
solution with s different charged species by 
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*Exercise 7.22 
Calculate the ionic strength of a solution that is 0.150molkg -1 in K2SO 4 and 0.050molkg -1 in 
NazSO 4. Assume complete dissociation. 

The expression for tc can be written 

t r  flI 1/2 (7.4-5) 

where/3 is a parameter that depends only on the temperature and the properties of the 
solvent: 

(2NAvPl)  1/2 
= ~ \  ~kBT (7.4-6) 

The reciprocal of  tc is called the Debye length. This length is a measure of the effective 
range of the net electrostatic interaction of the ions in the solution. 

Exercise 7.23 
Show that for water at 298.15 K, 

/3 = 3.281 x 10 9 kg 1/2 mo1-1/2 m -1 (water, 298.15 K) 

The density of water at 298.15K is equal to 997.14kgm -3. 

(7.4-7) 

The total net charge in a spherical shell of  thickness dr and radius r centered on a 
given ion of  valence zj is given by 

dQshell = 4nr2nj(r) dr (7.4-8) 

where the factor 4nr2dr is the volume of the spherical shell. Figure 7.11 shows 
14nrZn+(r)l around an anion of a 1-1 electrolyte at a molality of 0.005 molkg  -1. The 
maximum in the curve is at the Debye length ( r -  l/K), which for this case is 
approximately 43 A (4300 pm or 4.3 x 10 -9 m), illustrating the relatively long range of 
the net electrostatic forces. 

Exercise 7.24 
Show that the maximum in the curve of Figure 7.11 is at r = 1/~ and verify the value of the 
distance to the maximum for a 1-1 electrolyte at 0.005 molkg -1 . 
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The second major result of the Debye-Hfickel theory is obtained from equating the 
reversible work to form the ionic atmosphere with the change in the Gibbs energy. We 
obtain from this a formula for the activity coefficient of ions of valence z: 

(7.4-9) 

The quantity c~ is a second function of temperature and of the properties of the solvent: 

)~/2( ~2 )3/2 
c~ - -  ( 2 7 t N A v P 1  4rcekT (7.4-10) 

Equation (7.4-9) is commonly used for the activity coefficient in both the molality and 
molarity descriptions, since these activity coefficients are nearly equal in a dilute 
aqueous solution. 

Exercise 7.25 
Show that for water at 298.15 K, the value of a is 

ct = 1.171 kg 1/2 mo1-1/2 (water, 298.15 K) (7.4-11) 

The chemical potentials and activity coefficients of individual ions cannot be 
measured, because the chemical potential is a partial derivative with respect to the 
amount of the given substance, keeping the amounts of other substances fixed. The 
amount of energy required to add ions of one charge without adding ions of the 
opposite charge is so large that it is not possible to add a significant amount of one kind 
of ion to a system without adding some ions of the other charge at the same time. For an 
electrolyte solute represented by the formula Mv+Xv_, where v+ and v_ represent the 
numbers of cations and anions, respectively, in the formula of the solute, it is customary 
to define the mean ionic activity coefficient 

?+ - (7++?v-) 1/v (7.4-12) 

where v - v+ + v_, the total number of ions in the formula. From Eq. (7.4-9) we can 
obtain 

0~I1/2 
ln(v• -- -z+[z_[ 1 + flail~2 (7.4-13) 

Exercise 7.26 
Carry out the algebraic steps to obtain Eq. (7.4-13). 
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The Debye-Hiickel theory has been shown experimentally to be an accurate limiting 
law. That is, it gives the correct behavior as the concentration is made very small. In 
practice, it is accurate enough for some purposes for ionic strengths up to about 
0.01 molkg -1, but often fails badly for ordinary concentrations. Figure 7.12 shows 
experimental values of the mean ionic activity coefficient of several electrolyte solutes 
in water at 298.15 K as a function of ~/-m. The correct limiting behavior is shown by the 
fact that the curves of each set of ions with the same value of z+lz_l approach unity 
with the same slope. 

Since fla is approximately equal to 1.0 kg -1 mo1-1 for many ions, as in Example 
7.12, we write as an approximation 

~I1/2 
ln(Ti) = -z+lz_[ 1 + ( I /m~ 1/2 (7.4-14) 

where m ~ = 1 mol kg -1 (exactly). For small values of the ionic strength the flaI 1/2 term 
in the denominator of Eq. (7.4-13) is relatively small compared with unity, and the 
Debye-Hfickel equation is similar to the first term in an empirical equation of Bronsted 
that predated the theory of Debye and Hiickel. 3 

ln(7+) = --o~rn 1/2 + 2tim (7.4-15) 

Much work has been done to extend the Debye-Hiickel theory, beginning in 1926 
with a theory of Bjerrum 4 in which it was assumed that two ions of opposite charge 
closer to each other than a certain distance comprised an ion pair that could be treated 
as a single chemical species in chemical equilibrium with the dissociated ions. These 
ion pairs do not constitute molecules with an ionic chemical bond, because they are 
separated by water molecules that are strongly attached to the ions. In this regard they 
differ from such complexes as AgC12, which has coordinate covalent bonds between 
the silver ion and the chloride ion. There appear to be many such ion pairs in an 
electrolyte solution. 5 Later research is largely based on theoretical work of Mayer, 6 in 
which the Debye-Hiickel result appears as the leading term of a series containing 
powers and logarithms of the ionic strength. 

The work of Mayer gives some credibility to the Bronsted equation and to an 
equation of GuggenheimT: 

~[1/2 2v+v 
ln(7+) = -z+lz_[ 1 + ( I /m~ 1/2 -k- v - bm (7.4-16) 

3 j. N. Bronsted, J. Am. Chem. Soc., 44, 938 (1922). 
4 N. Bjerrum, Kgl. Danske Vidensk. Selskab., 7, no. 9 (1926). 
5 See R. W. Clark and J. M Bonicamp, J. Chem. Educ., 75, 1182 (1998) for a discussion of the inclusion of 

this and other factors in solubility equilibria. 
6j. E. Mayer, J. Chem. Phys., 18, 1426 (1950); K. S. Pitzer, Acc. Chem. Res., 10, 317, (1977). 
7E. A. Guggenheim, PhiL Mag., 19, 588 (1935); E. A. Guggenheirn and J. C. Turgeon, Trans. Faraday 

Soc., 51, 747 (1955). 
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where b is a parameter that is evaluated experimentally for each electrolyte solute. The 
Davies equation 8 assumes that a fixed value of this constant can be used for all 
electrolyte solvents. For water as the solvent and for a temperature of 298.15 K, the 
Davies equation is 

(7.4-17) 

This equation has no adjustable parameters in it, and is used when no experimental 
information is available for an ionic solute. In some cases it can give usable results for 
activity coefficients up to ionic strength of 0.5 mol kg -1 or beyond, but it is ordinarily in 
error by several percent in this region. Table A.11 in Appendix A gives experimental 
values of the mean ionic activity coefficients of several aqueous electrolytes at various 
concentrations. It also gives the predictions of the Debye-Hiickel formula, Eq. (7.4-13), 
with fla taken equal to unity, and of the Davies equation, Eq. (7.4-17). 

Exercise 7.27 
Calculate the activity coefficient for the solution of Example 7.12 using the Davies equation. Find 
the percent difference between the result of the Davies equation and the Debye-Hiickel limiting 
law. 

Phase Diagrams for Nonideal Mixtures 

In this section, we present and discuss some temperature-composition and pressure- 
composition phase diagrams for nonideal two-component and three-component 
solutions. 

Liquid-Vapor Phase Diagrams of Two-Component Nonideal 
Systems 
Figure 7.13 shows a pressure--composition liquid-vapor phase diagram of ethanol and 
diethyl ether for a fixed temperature of 20~ Figure 7.14 shows the temperature- 
composition phase diagram of the same mixture for a fixed pressure of 1.84 atm. 
Compare Figure 7.13 with Figure 7.3, which represents an ideal mixture. The curve in 
Figure 7.13 representing total vapor pressure as a function of liquid composition lies 
higher than the line segment that would represent Raoult's law. This is called positive 
deviation from Raoult 's law. The curve representing the pressure as a function of 
vapor phase composition also lies higher than the ideal curve would. The corresponding 
temperature curves in Figure 7.14 lie lower than the curves for an ideal solution, since if 
the vapor pressure is larger than that of an ideal solution, the solution will boil at a 
lower temperature than an ideal solution. Deviation in the other direction also occurs 
with some mixtures, and this is called negative deviation from Raoult 's law. 

If the deviation from ideality is large enough, the curves in the phase diagram can 
exhibit a maximum or a minimum. Figure 7.15 shows the pressure-composition phase 

8 C. W. Davies, Ion Association, Butterworth, London, 1962, pp. 35-52. 
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diagram of ethanol and benzene, which shows a maximum in the vapor pressure curve. 
A strong negative deviation can give a minimum in the vapor pressure curve. Either a 
maximum or minimum point in such a curve is called an azeotrope. The two curves 
representing liquid and vapor compositions are tangent at this point, so that the two 
phases have the same composition at an azeotrope. To show this fact we write the 
Gibbs-Duhem relation, Eq. (5.6-11), for the liquid phase at constant temperature and 
pressure. Using Eq. (7.3-1) and dividing by RT, we obtain 

X 1 d[ln(a~)] + d 2 d[ln(a2) ] -- 0 (7.5-1) 

where xl and x 2 are the mole fractions in the liquid. In order to have constant pressure, 
an additional gas, such as air, must be present in the gas phase. We neglect any of this 
gas that dissolves in the solution. Also, the effect of this added gas on the vapor 
pressure is small, as shown in Example 6.5, and we ignore it. 

If the gas phase (assumed ideal) is at equilibrium with the solution, the chemical 
potential of component 1 has the same value in each phase. Assuming Convention I for 
the solution, we write 

/t~ (I) + RT ln(al) - -  ]21 (gas) + RT ln(P1/P ~ 

For an infinitesimal equilibrium change in state at constant T and P, 

RT d[ln(al)] = RT d[ln(P1/P~ (7.5-2) 

When Eq. (7.5-2) and the analogous equation for substance 2 are substituted in Eq. 
(7.5-1), we obtain for the vapor at equilibrium with the solution 

xa d[ln(P1/P~ + x2 d[ln(P2/P~ = 0 

1 1 
X l -~1 dP1 + x2 -~2 dP2 -- 0 
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where the mole fractions are those in the liquid solution. We convert this equation into a 
derivative equation: 

+ -- 0 (7.5-3) 
el ~-~x1/] T,P -~2 ~-~X1J T,P 

The total vapor pressure is the sum of the partial vapor pressures: 

P v a p  - -  P1 + P2 

At the azeotrope, the total vapor pressure is at a maximum or a minimum with respect 
to x l, so that 

(0Pvap~ (OPI~ (OP2) 
- + - 0 (7.5-4) 

k OXl )T,P \OXlJr,P \-~Xllr,P 
When this equation is substituted into Eq. (7.5-3), 

X 1 X2 
P1 P2 

or 

Xl_ _-- ~P1 = Xl(gas)~ (7.5-5) 
X2 P2 Xz(gas) 

where we have used the fact that in an ideal gas mixture the mole fraction is 
proportional to the partial pressure (Dalton's law). We have shown that each mole 
fraction has the same value in the solution and in the gas phase, since they have the 
same ratio and must add to unity. 

Azeotropes can occur with either positive or negative deviation from ideality. Figure 
7.16 shows the temperature-composition phase diagram of acetone and chloroform, 
which exhibits an azeotrope. Since there is a maximum in the curves this diagram, a 
pressure-composition phase diagram would have a minimum, corresponding to a 
negative deviation from ideality. An azeotropic mixture is sometimes called a constant- 
boiling mixture, since it distills without any change in composition. It is impossible to 
distill from one side of an azeotrope to the other. For example, ethanol and water have 
an azeotrope at 1.00 atm pressure at an ethanol mole fraction equal to 0.90. Any mixture 
of ethanol and water can be distilled to this composition, but no further. 

Exercise 7.28 
The normal boiling temperature of water is 100~ and that of ethanol is 78.3~ At 1.000 atm, 
the azeotrope boils at 78.17~ 
a. Sketch the liquid-vapor temperature-composition phase diagram of ethanol and water. 
b. By drawing a "staircase" of line segments representing distillation, as in Figure 7.5, show that 

a distillation process beginning with a mole fraction of ethanol less than 0.90 cannot give a 
distillate with an ethanol mole fraction greater than 0.90. 

If a binary mixture has a sufficiently large positive deviation from ideality, there can 
be a separation into two liquid phases, each one of which is mostly one component 
saturated with the other component. Such phase separations are well known. ("Oil and 
water don't mix.") Figure 7.17 shows schematically the temperature-composition phase 
diagram of two hypothetical substances, called A and B. Below the temperature labeled 
T c, there is a region of tie lines in the center of the diagram. Only the compositions to 
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the fight or to the left of this region are possible equilibrium compositions of a single 
liquid phase at temperatures below T c. Any horizontal tie line connects points 
representing the compositions of the two liquids that can be at equilibrium with each 
other at the temperature of the tie line. 

The highest point in the tie-line region is called an upper  critical solution point, or 
an upper consolate point. It has a number of properties similar to those of the gas- 
liquid critical point in Figure 2.4. For example, if a mixture has the same overall 
composition as that of the consolute point, it will be a two-phase system at a 
temperature below the consolute temperature. As its temperature is gradually raised, 
the meniscus between the phases becomes diffuse and disappears, in the same way that 
the meniscus between the liquid and vapor phases disappears as the liquid-vapor 
critical point is approached, as shown in Figure 2.5. 

There are a few mixtures, such as water and nicotine, that have both an upper and a 
lower consolute point, so that the boundary of the tie-line region is a closed curve. For 
example, below the lower consulute point at 61.5~ water and nicotine mix in all 
proportions, and above the upper consolute temperature at 233.0~ they also mix in all 
proportions. 9 Between these two temperatures, there is a tie-line region in the diagram 
and the liquids are only partially miscible. In this region, the Gibbs energy of the system 
is lower when it separates into two phases than it would be if it were in the (metastable) 
one-phase state. Another mixture with both a lower and an upper consolute temperature 
is butoxyethanol and water, with a lower consolute temperature of 48.01~ and an 
upper consolute temperature of 130.7~ 1~ 

If the positive deviation from ideality is even greater than that of Figure 7.17, the 
two-phase region can extend to the liquid-vapor region, and produce a phase diagram 
like that of Figure 7.18, which shows the temperature-composition phase diagram of 
furfural and water at 1.000 atm. The horizontal tie line at 97.90~ connects three points 
representing the compositions of the two liquid phases and one gas phase that can 
coexist at equilibrium. For two components and three phases, only one intensive 
variable is independent. Since the pressure is fixed for this diagram, no other variable is 
independent, and the compositions of all phases and the temperature are fixed for this 
state. 

To purify furfural by the process of steam distillation, water is added to impure 
furfural and the two'phase mixture is boiled. If the impurities do not change the boiling 
temperature very much, the two-phase mixture boils near 97.90~ at 1.000 atm. The 
vapor has a furfural mole fraction equal to 0.092, independent of the amounts of 
furfural and water. The vapor is condensed to a two-phase liquid, and the furfural layer 
is recovered and dried (at 20~ this layer has a furfural mole fraction of 0.78 before 
drying). The advantage of steam distillation is that it can be carried out at a lower 
temperature than an ordinary distillation, which might decompose the organic 
substance. 

Solid-Liquid Phase Diagrams 
Figure 7.19 shows the solid-liquid temperature-composition phase diagram of gold and 
copper, which are completely miscible in both the solid and liquid phases. This diagram 
is similar in appearance to a liquid-vapor phase diagram such as the upper part of 

9 A. N. Campbell, E. M. Kartzmark, and W. E. Falconer, Can. J. Chem., 36, 1475 (1958). 
lOy. Izumi, et al., J. Physique, 42, 544 (1981). 
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Figure 7.17. Instead of a liquid solution, the lower area represents a solid solution, and 
instead of a gaseous mixture the area above the tie-line regions represents a liquid 
solution. The tie-line areas contain tie lines containing the composition of a solid 
solution and the composition of the liquid solution at equilibrium with that solid 
solution. 

Just as liquids are sometimes purified by distillation, solids are sometimes purified by 
zone refining, in which a rod-shaped piece of the solid is gradually passed through a 
ring-shaped furnace. A zone of the solid melts as it passes into the furnace and refreezes 
as it passes out of the furnace. This process is analogous to the vaporization and 
recondensation of a liquid in distillation, except that the melting process gives a liquid 
of the same composition as the solid, making the initial process correspond to a vertical 
line segment in the diagram instead of a horizontal line segment. The liquid system is 
often not so easy to equilibrate as the vapor, but in many cases the solid that freezes out 
approximates the equilibrium composition at the other end of the tie line, being richer in 
the higher-melting component than the original solid. This is analogous to distillation in 
a still with one theoretical plate. A second pass through the furnace can lead to a further 
purification. 

*Exercise 7.29 
By drawing a "staircase" in Figure 7.19, determine what composition will result from three 
successive zone refining passes starting with a gold-copper solid solution of gold mole fraction 
equal to 0.70. What would many successive zone refining pases lead to if the curves had a 
maximum instead of a minimum? 

Figure 7.20 shows the solid-liquid temperature-composition phase diagram of silver 
and copper at 1.00 atm. This diagram is similar in appearance to the liquid-vapor phase 
diagram of water and furfural in Figure 7.18, except that we have two coexisting solid 
solutions instead of two coexisting liquid solutions in the bottom area of the diagram. 
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Just as the tie line at 97.90~ in Figure 7.18 connects the state points representing two 
liquid phases and a vapor phase, the tie line at 779~ in Figure 7.20 connects the state 
points representing the two solid phases and one liquid phase that can be at equilibrium. 
The point representing the liquid phase at equilibrium with the two solid phases is 
called the eutectic point. If a liquid that has the same composition as the eutectic is 
cooled, two solid phases will freeze out when it reaches the eutectic temperature, with 
the compositions represented by the ends of the tie line. This two-phase solid mixture 
can consist of very small grains of one phase imbedded in the other phase, so that it 
looks almost like a single phase unless viewed through a microscope. 

Exercise 7.30 
For each one-phase region in the phase diagram of Figure 7.20, give the phase that can occur, and 
give the number of independent intensive variables (excluding the pressure, which is fixed at 
1 atm). For each two-phase (tie-line) region give the phases that can be at equilibrium and give the 
number of independent intensive variables, excluding the pressure. 

Solid-liquid phase diagrams like that of Figure 7.20 are constructed by analyzing 
experiments in which a mixture of known composition is heated above its melting point 
and then allowed to cool slowly. Figure 7.21 shows cooling curves representing the 
temperature of mixtures of silver and copper as a function of time for various mole 
fractions of copper. The cooling curve for copper mole fraction equal to 0.80 drops 
smoothly until a copper-rich solid solution begins to freeze out at about 950~ At this 
point, the rate of cooling becomes slower, since the enthalpy of freezing is evolved and 
since the composition of the liquid changes as the solid is removed. When the eutectic 
temperature is reached at 779~ a second solid solution, rich in silver, begins to freeze 
out. With three phases present, the temperature must remain constant. A horizontal 
portion of the cooling curve results, called the eutectic halt. Only after the system is 
entirely frozen can the temperature drop further. 
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Figure 7.22 shows the solid-liquid pressure--composition phase diagram of p-xylene 
and bromobenzene at 1 atm. This diagram is similar to that of silver and copper in 
Figure 7.20 except that the solids are almost completely insoluble in each other. The 
regions of solid solubility are too small to show in the figure, and the two solids that 
equilibrate with each other are essentially pure substances. 

Solid-Liquid Phase Diagrams with Compounds 
Sometimes two substances form solid-state compounds, even if they do not react in the 
liquid or gas phase. Figure 7.23 shows the solid-liquid temperature-composition phase 
diagram of aniline (A) and phenol (P), which exhibit a one-to-one compound (AP) in 
the solid state and are completely miscible in the liquid phase. The existence of such a 
compound depends not only on the interaction between the reactant molecules but also 
on the crystal lattice. The compound AP exists only in the solid state. When it melts, an 
equimolar liquid solution of aniline and phenol results. 

The phase diagram resembles two phase diagrams set side by side, and that is 
essentially what it is. The vertical line at mole fraction 0.5 represents the compound 
C6HsOH.C6HsNH2, which we abbreviate by AP. The fight half of the diagram is the 
phase diagram for the two substances AP and A. The left half of the diagram is the 
phase diagram for the two substances P and AP. Each diagram contains a eutectic point, 
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below which the two nearly pure solid substances can coexist. Either A or P can coexist 
with the compound AR but they cannot coexist with each other at equilibrium because 
of the existence of the compound. 

If more than one solid compound occurs a solid-liquid phase diagram can be quite 
complicated. Figure 7.24 shows the temperature-composition phase diagram of copper 
and lanthanum, with four different compounds. There are only two maxima in the 
diagram, for the compounds LaCu 2 and LaCu 6. The two compounds LaCu 4 and LaCu 
do not melt in the same way as does the compound of aniline and phenol and the 
compounds LaCu 2 and LaCu6. For example, at 55 I~ LaCu melts to form a liquid 
phase with lanthanum mole fraction equal to 0.57 plus solid LaCu2, as indicated 
by the tie line. This phenomenon is called incongruent melting, because the liquid 
phase does not have the same composition as the solid phase from which it arose. 
The point representing the composition of the liquid at 551~ is called a periteetie 
point. 

Exercise 7.31 
For each area in Figure 7.24, tell what phase or phases occur, and give the number of independent 
intensive variables. 
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Three-Component Phase Diagrams 

For three components and one phase, f = 3 - 1 + 2 = 4. We have already had to keep 
one variable fixed in order to draw a two-dimensional phase diagram for two 
components. For three components we must keep two variables fixed to have a two- 
dimensional phase diagram. If the amount of one substance is held fixed at zero, we 
have an ordinary two-component phase diagram. If the temperature and the pressure are 
both held fixed, we have a composition-composition phase diagram, since two mole 
fractions are independent if there is a single phase. 

For a composition-composition phase diagram at a fixed temperature and a fixed 
pressure, an equilateral triangle is customarily used, as depicted in Figure 7.25, instead 
of a plane with two perpendicular axes. There is a theorem of plane geometry that 
asserts that the sum of the three perpendicular distances to the sides has the same value 
for any point inside an equilateral triangle. If the size of the triangle is chosen so that 
this sum equals unity these three perpendicular distances can represent the three mole 
fractions, which must add to unity. Each vertex of the triangle represents a different 
pure component, and the pependicular distance from the opposite side to any point 
inside the triangle equals the mole fraction of the component represented by that point. 

Figure 7.26 shows the liquid-liquid composition-composition phase diagram of 
water, acetone, and ethyl acetate at 30~ and 1.00 atm. The tie lines in the two-phase 
region connect points representing the compositions of two liquid phases that coexist at 
equilibrium. Since all points in the diagram correspond to the same temperature and 
pressure, the tie lines must remain in the plane of the diagram, but are not required to be 
parallel to any side of the triangle or to each other. Their directions must be determined 
experimentally. 

In order to display a temperature-composition phase diagram at constant pressure, a 
three-dimensional space must be used. Figure 7.27 shows a perspective view of a partial 
solid-liquid phase diagram for bismuth, tin, and lead. These substances actually 
dissolve appreciably in each other in the solid phases, but the solid solution regions 
are artificially shrunk to zero to simplify the diagram. Each face of the triangular prism 
is a two-component temperature-composition diagram. Each two-component diagram 
has a single eutectic, and the bismuth-lead diagram also has a peritectic point, but we 
will ignore this in describing the phases that can occur. The interior of the prism 
represents compositions in which all three components are present. There is a triple 
euteetie at 96~ The surface shown in the diagram is the lower boundary of the three- 
dimensional one-phase liquid region. This surface has three grooves in it that lead down 
to the triple eutectic from the three two-component eutectics. 

Below the surface lie regions corresponding to two, three, or four phases. Figure 7.28 
shows schematically a composition-composition phase diagram obtained by passing a 
plane through the prism slightly above the triple eutectic. The central roughly triangular 
region is a one-phase liquid region inside which all points represent possible composi- 
tions of a single liquid phase. Each tie line from an edge of this region connects to a 
comer of the diagram. This means that only one solid phase freezes out from a composition 
corresponding to a point on the edge of the region. At a composition corresponding to a 
comer of the region, two components freeze out, as in a two-component eutectic. The 
triangular regions along the sides ofthe triangle are three-phase regions. Just as the two ends 
of a tie line give the possible compositions of two phases, the comers of these regions give 
the compositions of three coexisting phases (the liquid with a composition corresponding to 
the comer ofthe liquid region, and the two solids). There are no tie lines in these regions and 
each region could be called a "tie triangle." 
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At the triple eutectic temperature, the liquid region has shrunk to a point, from which 
three tie lines extend, one to each comer, indicating that at the triple eutectic three solid 
phases at equilibrium with the eutectic liquid. Four phases are at equilibrium, and if the 
pressure is fixed, the temperature and the compositions of the four phases are fixed. 

Colligative Properties 
Colligative properties are properties that depend on the concentration of a solute but not 
on its identity. The name comes from a Latin word meaning "tied together" and is used 
because of the common dependence that the properties have on solute concentration. 
The four principal colligative properties are freezing point depression, boiling point 
elevation, vapor pressure lowering, and osmotic pressure. Discussing these four 
phenomena is like performing variations on a theme. The theme on which we will 
see four variations is the fundamental fact of phase equilibrium. We will assume that the 
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solution is dilute, so that the solutes obey Henry's law and the solvents obey Raoult's 
law. 

Freezing Point Depression 
Consider a system consisting of a liquid solution with a single solute at equilibrium 
with the pure solid solvent. We assume that the solute is completely insoluble in the 
frozen solvent. From the fundamental fact of phase equilibrium, 

/z 1 (liq) - / t l*(solid ) (7.6-1) 

where the solvent is called component number 1. We assume that the solution is dilute, 
so that the solvent acts as it would in an ideal solution. Therefore, 

#l*(liq) + RTln(Xl) -- #1*(solid) (7.6-2) 

where xl is the mole fraction of the solvent in the solution. There are two phases and 
two components, so that by the Gibbs phase rule there are two independent intensive 
variables. If we regard pressure and temperature as independent, the mole fraction of 
the solvent becomes a dependent variable. 

We divide Eq. (7.6-2) by T and then differentiate it with respect to temperature, 
keeping the pressure fixed: 

We obtain an identity by use of thermodynamic relations: 

O(la*/T).) T(Ola*/OT)p- la* -TS*m,i- .* H*m,i 
~7 = p-- T2 : T2 : T2 (7.6-4) 

Use of this identity in Eq. (7.6-3) gives 

R(O ln(x,)) H* H* (solid) AfusHm, m,l(liq) - m,1 _ 1 (7.6-5) 
0T p-- T 2 -- T - - T ~  

where AfusHm,1 is the molar enthalpy change of fusion (melting) of the pure solvent. In 
Eq. (7.6-5), Xl is a dependent variable since we have chosen T and P to be the two 
independent variables. 

We multiply Eq. (7.6-5) by dT and integrate both sides of Eq. (7.6-5) from the 
normal melting temperature of the pure solvent Tin, 1 to some lower temperature T'. 

j'T' (0 ln(Xl)) JT' AfusHm,1 
R dT -- T2 dT (7.6-6) 

Tin,1 OT p rm, x 

To a good approximation, the enthalpy change of fusion is constant over a small range 
of temperature. The result of the integration is therefore 

1) 
R ln[x 1 (T')] -- -AfusHm, 1 - , Tm,1 

where x~ (T') is the mole fraction of the solvent in the solution that is at equilibrium with 
the pure solvent at temperature T', and where we have used the fact that the equilibrium 
value of x 1 - 1 at temperature Tin, 1. 
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Our present system (solid pure solvent plus liquid solution) is the same as the system 
that corresponds to one of the liquid composition curves in a solid-liquid phase 
diagram such as Figure 7.22, so that Eq. (7.6-7) is the equation for this curve if Raoult's 
law holds and if there is no appreciable solid solubility. In this case the curve is 
independent of the identity of the second component (except that it stops when it meets 
the other curve at the eutectic point). 

For dilute solutions, Eq. (7.6-7) is simplified by using the first term of a Taylor series: 

ln(Xl) = ln(1 - x 2 )  ~ - x  2 (7.6-8) 

This is valid only if x2 is small compared with unity. 

*Exercise 7.32 
a. Write the next two terms in the Taylor series for ln(1 - x 2 ) .  
b. Evaluate the two terms of part (a) for x 2 = 0.01. 
e. Find the percentage error for the approximation of Eq. (7.6-8) for x 2 = 0.100, 0.0100, 

0.00100, and 0.000100. 

Use of the approximation of Eq. (7.6-8) gives 

Tm, 1 - T (7.6-9a) 
x2 "~ AfusHm, 1 RTm, 1 T 

where we drop the prime symbol on the equilibrium temperature. Equation (7.6-9a) is 
accurate only for dilute solutions, in which case T is approximately equal to Tm,1. We 
write as a further approximation 

(A s/ m 1) 
X 2 ~ R T 2  1 ATf (7.6-9b) 

where we use the symbol A Tf for Tin, 1 - T,  the freezing point depression. 
Equation (7.6-9b) is often rewritten in terms of the molality, using Eq. (5.6-11) to 

relate the molality and the mole fraction for a dilute solution. The result is 

ATf = Kf lm 2 (7.6-10) 

where m 2 is the molality of the solute (component 2) and where M 1 is the molar mass of 
the solvent (measured in kilograms). The quantity Kfl is called the freezing point 
depression constant. 

M 1 R T .  2 
m, 1 (7.6-11) 

Kfl = At, usHm, 1 

The freezing point depression constant has a different value for each solvent, but is 
independent of the identity of the solute. Equation (7.6-11) is still valid if there are 
several solutes, in which case m 2 is replaced by the sum of the molalities of all solutes. 
If a solute dissociates or ionizes, the total molality of all species must be used. 

Exercise 7.33 
The molar enthalpy change of fusion of water is equal to 6.01 kJ mol -z. Show that the value of the 
freezing point depression constant for water is equal to 1.86 Kkgmo1-1 
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Boiling Point Elevation 
Consider a volatile solvent (component 1) and a nonvolatile solute (component 2) in a 
solution that is at equlibrium with pure component 1 in a vapor phase. We assume that 
the dilute solution approximation is valid, that the gas phase is ideal, and that our 
system is at a fixed pressure P. The fundamental fact of phase equilibrium gives 

,/A 1 (liq) fl 1 (gas) 
+ R ln(Xl(liq)) --  T (7.6-12) 

where we have divided the equation by T. Differentiation of this equation with respect 
to T at constant P and use of the identity of Eq. (7.6-4) gives 

R(ln(Oxl(liq))~ = - Hm' 1(gas) Hrn' l(liq) --  i v a p H m  1 (7 .6 -13 )  
k OT ]p T---T~+----~2 - -  T ------T-~ 

where AvapHm, 1 is the molar enthalpy change of vaporization of the pure liquid 
component 1. This equation is similar to Eq. (7.6-5) except that the fight-hand side 
of Eq. (7.6-13) is a negative quantity, while that of Eq. (7.6-5) is a positive quantity. The 
reason for this difference is that going from the liquid phase to the vapor phase is an 
endothermic process, while going from the liquid phase to the solid phase is an 
exothermic process. 

We now multiply Eq. (7.6-13) by dT and integrate from Tb, 1, the normal boiling 
temperature of component 1, to a higher temperature, T'. Over a small interval of 
temperature, the enthalpy change of vaporization is nearly constant, giving an equation 
analogous to Eq. (7.6-7): 

( 1  1 )  (7.6-14) R ln(x~ liq)) --  AvapHm, 1 t Tb, 1 

Equation (7.6-14) can be simplified in the case of small boiling point elevations by 
using the same approximations as were used in Eq. (7.6-9b), with the result 

--  { mvapH-m'l')" A T  b (7.6-15) 
x2 kRT~,I 

l 

where ATb = T -  Tb, 1 is the boiling point elevation (a positive quantity). Notice how 
similar the boiling point elevation equation is to the freezing point depression equation. 

When Eq. (7.6-15) is solved for the boiling point elevation and written in terms of the 
molality, the result is analogous to Eq. (7.6-10): 

A T  b = K b l m  2 (7.6-16) 
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where the boiling point elevation constant for component 1 is given by 

MaRT2'I (7.6-17) 
Kbl -- AvapHm, 1 

Again, this quantity is different for each solvent, but does not depend on the identity of 
the solute or solutes. If more than one solute is present, the molality m 2 is replaced by 
the sum of the molalities of all solutes. 

*Exercise 7.34 
a. Find the value of the boiling point elevation constant for water. The molar enthalpy change of 

vaporization is equal to 40.67 kJ mo1-1. 
b. Find the boiling temperature at 1.00 atm of a solution of glucose with 5.00 g of glucose in 

1.000 kg of water. 

Vapor Pressure Lowering 
For a nonvolatile solute and a volatile solvent that obeys Raoult's law, the total vapor 
pressure is equal to the partial vapor pressure of the solvent, given by 

Pvap(total) -~- xlP~' (7.6-18) 

where PI* is the vapor pressure of the pure solvent (component 1). The lowering of the 
vapor pressure is given by 

APva p - -  P~' - X l P  ~ - -  Pl*(1 - x , )  -- P~'x 2 (7.6-19) 

*Exercise 7.35 
a. Calculate the vapor pressure at 100.0~ of the solution in Exercise 7.34b. 
b. From Eq. (7.6-19), obtain an expression for the vapor pressure lowing of a dilute solution in 

terms of the molality. 

Osmotic Pressure 
This colligative property involves the equilibrium of a liquid solution and its pure liquid 
solvent on opposite sides of a semipermeable membrane that allows only the solvent to 
pass and to be equilibrated between the two sides. The chemical potential of the solvent 
is made to have equal values in the two phases by having the two phases at different 
pressures. A simple apparatus in which this equilibrium can be accomplished is shown 
in Figure 7.29. The left side of the apparatus contains a solution containing a solute 
(component 2) dissolved in a solvent (component 1), and the fight side contains the 
same pure solvent. The pressure of the solution is increased above that of the pure 
solvent by the gravitational (hydrostatic) force on the solution in the left column, and 
the entire apparatus is held at constant temperature. Let the pressure on the pure solvent 
on the fight side of the semipermeable membrane be called P, and the pressure on the 
solution of the left side be called P + H. The difference H is the osmotic pressure. 



7.6 Colligative Properties 249 

The van't Hoff equation is named for 
Jacobus Henricus van't Hoff, 1852- 
1911, a Dutch physical chemist who 
won the 1901 Nobel Prize in chemistry 
for this work on osmotic pressure. He 
was also the first person to propose 
the tetrahedral carbon atom. 

At equilibrium, the value of the chemical potential of the solvent must be the same on 
both sides of the membrane: 

la{'(T, P)  = lal(T,  P + H )  - la~'(T, P -t- H )  -t- R T  ln(Xl) (7.6-20) 

From Eq. (5.3-10), if the molar volume of the pure liquid is nearly independent of 
pressure (a good approximation), 

[ P+FI 

# ~ ' ( T , P  + H) - #~*(T, P) --  V* d P  ,~ 1-IV* (7.6-21) m, 1 m, 1 
J P  

which gives 

I-IV* - - R T  ln(xl) - - R T  ln(1 - X 2 )  ~'~ R T x  2 (7.6-22) m, 1 

where the approximation of Eq. (7.6-8) for dilute solutions has been applied. It is 
customary to rewrite Eq. (7.6-22) in another form. For a dilute solution of two 
components 

and 

n2 n2 
x 2 

nl + n2 nl 

V* V -- n 1 V1 "+" n2 V2 ~ nl m,  1 

Use of these two equations gives 

(7.6-23) 

where c2 is the concentration of the solute. Equation (7.6-23) is remarkably similar to 
the ideal gas equation of state. It is known as the van ' t  Hoff equation. 

Exercise 7.36 
a. Verify Eq. (7.6-23). 

*b. Find the osmotic pressure of a solution of 5.00 g of glucose in enough water to make 1.000 L 
of solution. 

For solutions of moderate concentration, the osmotic pressure is quite large. 
According to the van't Hoff equation, a 1.00mol L -1 solution has an osmotic pressure 
of 24.4 atm at 25~ corresponding to the hydrostatic pressure of a column of water 
roughly 250 m high. 

Summary of the Chapter 

For each component of an ideal solution, by definition 

ltg(T, P )  --  #*(T, P)  + R T  ln(x/) 

Each component of an ideal solution obeys Raoult's law 

Pi -- P*xi  

where x i is the mole fraction of component i in the solution. 
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In a nonideal solution, the partial vapor pressure of a sufficiently dilute solute is 
governed by Henry's law: 

P i  = k i x i  

A solution in which Henry's law is obeyed by the solutes is called a dilute solution. 
The activity a i is defined by the general relation 

~ i  - -  ~ t  _ql_ R T  ln(ai) 

where #~ is the chemical potential in some standard state. 
According to two different mole fraction descriptions, called Convention I and 

Convention II, the activity is given by 

a i - -  ~ i x i  

The activity of a solute in the molality description is given by 

(m) 
_(m) ~/ m/ 
u i - -  m o 

The Debye-Hiickel theory provides an accurate limiting law for the activity 
coefficients of electrolyte solutes. A semiempirical equation, the Davies equation, 
can provide usable estimates of electrolyte activity coefficients at larger concentrations. 

Two-component pressure-composition and temperature-composition phase diagrams 
give information about phases present at equilibrium. For a three-component system, a 
composition-composition diagram at constant temperature and pressure is plotted in an 
equilateral triangle, and a temperature-composition diagram is plotted in a (three- 
dimensional) triangular prism. 

The four principal colligative properties are freezing point depression, boiling point 
elevation, vapor pressure lowering, and osmotic pressure. In each case, the magnitude 
of the effect in a dilute solution is determined by the concentration of the solute but is 
independent of its identity. 
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1. The principles of thermodynamics determine the state of chemical 
equilibrium for any system. 

2. The familiar equilibrium constant expression of elementary chemistry 
is equal to a constant at constant temperature and pressure, when 
modified to include activity coefficients. 

3. The principle of Le Chgttelier can predict how a chemical system at 
equilibrium responds to changes in temperature, pressure, or amounts of 
substances. 

4. The coupling of biochemical reactions can be understood through 
thermodynamics and the use of postulated mechanisms. 
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Gibbs Energy Changes and Equilibria of Chemical 
Reactions. The Equilibrium Constant 

Equation (3.7-7) is a "generic" chemical equation that can stand for any chemical 
reaction: 

0 -- L Vi~'i (8.1-1) 
i=1 

where the formula of substance number i is denoted by ~ i  and its stoichiometric 
coefficient is denoted by v i. The stoichiometric coefficients of products are positive, and 
those of reactants are negative. For example, the equation for the ionization of acetic 
acid is written 

C2H402(aq) -+- H20 ~ C2H302(aq) -+- H30+(aq) (8.1-2a) 

or  

0 = C2H302(aq) -F H30+(aq) - C2H402(aq) - H20 (8.1-2b) 

The arrow or double arrow that we ordinarily use is replaced by an equal sign. The 
inconvenience of writing chemical equations in this unfamiliar way is more than 
outweighed by the resulting ability to write thermodynamic equations in compact forms 
that apply to any chemical reaction. 

We consider reactions in closed systems at constant pressure and temperature, and 
assume that the system can be considered to be in a metastable state at any time during 
the reaction, so that the Gibbs energy and other thermodynamic variables of the system 
have well-defined values as equlibrium is approached. The Gibbs energy of the system 
must decrease until it reaches a stable minimum value at equilibrium. 

If an infinitesimal amount of reaction takes place at constant T and P, the change in 
the Gibbs energy is given by Eq. (5.4-3): 

d G  - L Pi d n i  (constant T and P) (8.1-3) 
i= 1 

To express d G  in terms of the amount of reaction that takes place, we define the extent 
of reaction ~ by 

n i = ni(initial)+ Vi~ (8.1-4) 

where r/i is the amount of substance i. Use of any substance in Eq. (8.1-4) gives the 
same value of ~ if only one chemical reaction can occur. The extent of reaction has the 
dimensions of moles. If ~ increases from zero to one mole, one mole of reaction has 
occurred. If so, v i moles of i have appeared if i is a product, and [vii moles of i have 
disappeared if i is a reactant. The meaning of one mole of reaction changes if the 
balancing of the reaction equation is changed. For example, if all stoichiometric 
coefficients are doubled, the equation is still balanced, but one mole of reaction now 
corresponds to twice the amount of each substance. 

For an infinitesimal extent of reaction, d~, we can write a relation that is valid for any 
choice of substance i so long as it is involved in the reaction: 

dl'l i = v i d~ (8.1-5) 
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Equation (8.1-3) now becomes 

dG--~#iYid~--(~Yi#i) i--1 (7' and P constant) (8.1-6) 

where we factor a common factor d~ out of  the sum. We can see that 



258 8 The Thermodynamics of Chemical Equilibrium 

side of Eq. (8.1-12) would vanish, and the change in G for one mole of reaction would 
be equal to 

AG~ ~ r,P standard statel d~-Ji (i=~l Vi~)d~--(i=~ 1 Vi#~)Ii d~ 

(8.1-13) 

The quantity AG ~ is called the standard-state Gibbs energy change for one mole of 
reaction. If the standard-state Gibbs energy change is negative, the forward reaction 
would be spontaneous under standard conditions, and if it is positive, the reverse 
reaction would be spontaneous under standard conditions. 

The Evaluation of the Standard-State Gibbs Energy Change 
The Gibbs energy change of formation of a substance is defined as the Gibbs energy 
change to produce one mole of the substance from the appropriate elements in their 
most stable forms and is denoted by AfG(i) for substance i. An exception to the practice 
of taking the most stable form of the element in defining the formation reaction is in the 
case of phosphorus, for which white phosphorus is taken instead of the more stable red 
phosphorus. The Gibbs energy change for the standard-state reaction can be calculated 
from standard-state Gibbs energy changes of formation in the same way as AH ~ was 
calculated in Chapter 3. 

(8.1-14) 

where the Gibbs energy of formation AfG~ is the Gibbs energy change to form one 
mole of substance i from the elements in their most stable form. This equation is an 
exact analogue of Eq. (3.7-11) for the enthalpy change of the reaction, and follows from 
the fact that the Gibbs energy is a state function, as is the enthalpy. Values of standard- 
state Gibbs energy changes of formation for a number of substances are included in 
Table A.8 of Appendix A. This table also includes values of the quantity 
- ( G  m -H~nZ98)/T, which can also be used to calculate AG ~ for a reaction, as is 
done in Example 8.1. The reason for including this function in the table is that it is 
found experimentally to be a more slowly varying function with temperature than is 
AfG ~ If a value for a temperature not in the table is needed, interpolation in its table 
gives greater accuracy than does interpolation in a table of AfG ~ values. 

The Gibbs energy change of a constant-temperature reaction can also be calculated 
from 

AG = A H -  T AS (8.1-15) 

where the enthalpy change is calculated from enthalpy changes of formation by Eq. 
(3.7-11) and the entropy change for a reaction is calculated from third-law ("absolute") 
entropies, using Eq. (4.5-6). 
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*Exercise 8.1 
a. Using Gibbs energy changes of formation from Table A.8, calculate AG ~ at 298.15 K for the 

reaction 

PC15(g ) ~ PCla(g ) + Cle(g) 

b. Calculate the standard-state enthalpy change and entropy change at 298.15 K for the same 
reaction. 
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c. Calculate the standard-state Gibbs energy change at 298.15 K for the same reaction using Eq. 
(8.1-15). Compare with the answer of part (a). 

d. Calculate AG ~ at 298.15 K for the same reaction using values o f - (Gm -Hm298)/T and the 
values of AH ~ 

The Gibbs Energy Change at Fixed Composition 

Using the identity that a sum of  logarithms is equal to the logarithm of  a product, we 
write Eq. (8.1-12) in the form 

(8.1-16) 

where 

(8.1-17) 

The notation 1-I denotes a product of  factors, just as Y~ denotes a sum of  terms. The 
quantity Q is called the activity quotient.  It is called a quotient because its factors for 
reactants have negative exponents. 

Exercise 8.2 
Carry out the steps to obtain Eqs. (8.1-16) and (8.1-17). 

If it is possible to keep the activity of  every substance fixed during a chemical 
reaction, either by having a very large system or a small amount of  reaction, or by 
adding reactants and removing products, the change in Gibbs energy for one mole of  
reaction can be written 

fixed comp 

I 

-- AG]fixe d '  comp 

= [AG ~ + RT ln(0) ] d~ - [AG ~ + RTln(O)] d~ 

(8.1-18) 

*Exercise 8.3 
a. Calculate the value of AG]fixed corn p at  298.15 K for the reaction of Exercise 8.1 if the partial 

pressure of PC15 is maintained equal to 0.100 bar, the partial pressure of PC13 is maintained 
equal to 0.600 bar, and the partial pressure of C12 is maintained equal to 0.300 bar. 

b. Repeat the calculation if the partial pressure of PC15 is maintained equal to 0.600bar, the 
partial pressure of PC13 is maintained equal to 0.100 bar, and the partial pressure of C12 is 
maintained equal to 0.300 bar. 
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The Thermodynamics of Chemical Equilibrium 
At equilibrium, ( O G / O ~ ) r , p  = 0, and Eq. (8.1-16) becomes 

0 = AG ~ 4- R T  ln(Qeq ) (8.1-19) 

The standard-state Gibbs energy change, A G  ~ , depends only on temperature since the 
standard-state chemical potentials depend only on temperature. The value of Qeq is 
therefore equal to a constant at constant temperature. It is called the equilibrium 
constant, K, or sometimes the thermodynamic equilibrium constant. 

(8.1-20) 

where ai(eq) denotes the equilibrium value of a i. Equation (8.1-20) is valid for any kind 
of reacting system. 

The equilibrium constant is a quick indication of the equilibrium state of the system. 
If the equilibrium constant is greater than unity the equilibrium activities of the 
products will be greater than those of the reactants, and if the equilibrium constant is 
smaller than unity the equilibrium activities of the reactants will be larger. 

Reactions Involving Gases and Pure Substances 

For our first class of chemical reactions, we will assume that all gases can be assumed to 
be ideal and that all liquids and solids can be assumed to have constant volumes. The 
expressions for the activities these substances are relatively simple. 

Gaseous Reactions 
For reactions in which all substances are ideal gases, all of the activities are given by 

Pi  
ai - -p-7 (ideal gas) (8.2-1) 

Equation (8.1-20) for the equilibrium constant is 

(8.2-2) 

where we attach the subscript P to indicate that all activities are expressed in terms of 
partial pressures. If the gases are not ideal gases, the partial pressures in Eq. (8.2-2) 
are replaced by fugacities. Some chemistry texts omit the P~ divisors, giving the 
equilibrium constant the dimensions of pressure raised to the appropriate power, and 
others define two different equilibrium constants, one with the divisors and the other 
without them. 



262 8 The Thermodynamics of Chemical Equilibrium 

Reactions Involving Pure Condensed Phases and Gases 
If the pressure of the system does not differ very much from P~ then Eq. (7.3-4) gives 
for the activity of a pure liquid or solid: 

a i ~ 1 (Pure liquid or solid near P~ (8.2-3) 
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Substances that are pure liquids or solids contribute a factor nearly equal to unity to the 
equilibrium constant expression, and can be omitted from it. 
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*Exerc ise 8.4 
a. Find the final partial pressure of propane and oxygen if a stoichiometric mixture of propane 

and oxygen comes to equilibrium at 298.15K and a total pressure of 760torr. 
b. Find the volume containing one molecule of propane at the equilibrium of part (a). Comment 

on the magnitude of your result. 

Chemical Equilibrium in Solution 

For a component of  a liquid or solid solution, the activity is given in one of several 
different ways, as described in Chapter 7. In discussing chemical equilibrium, one must 
specify which description is being used, since activities and standard states are different 
for different descriptions. We will usually use the molality description for aqueous 
solutions, but the molarity description and Convention II are also used. In the molality 
description, the activity of a solute is given by Eq. (7.3-28): 

"Y i m  i 
ai  = ~ (8.3-1) 

m o 

where m i is the molality of substance number i, m ~ is equal to 1 mol kg -1 by definition, 
and ~i is the activity coefficient of substance i. We omit superscripts on the activity 
coefficients. The activity of  the solvent is given by Eq. (7.3-37): 

a 1 = ]JlXl (8.3-2a) 

where x~ is the mole fraction of the solvent and ?~ is its activity coefficient. In a dilute 
solution, both the activity coefficient and the mole fraction of the solvent are nearly 
equal to unity, so that 

a 1 ~ 1 (8.3-2b) 

The Gibbs energy change for a standard-state solution reaction can be calculated 
from tables of  the standard-state Gibbs energy changes of  formation, using Eq. (8.1-14). 
Table A.8 of Appendix A includes some values of AG ~ for solids, liquids, gases, and 
some solutes in the molality standard state. 
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*Exercise 8.5 
Find the value of AG ~ for the reaction of Example 8.4 using mole fractions according to 
Convention II instead of the molality description. State any assumptions. 

The equilibrium constant for a reaction involving only solutes is given in the molality 
description by 

g -- Q e q -  I~I (Timi(eq)~Vi 
/=2k, m ~ J (8.3-3) 

Component number 1 (the solvent) is omitted from the product since it is not involved 
in the reaction. The equilibrium constant for a reaction involving the solvent is given by 

g = Oeq = (71Xl) vl f i  ('~imi(eq)~vi 
i--2 ~k m~ fl (8.3-4) 

For a dilute solution, x 1 and 71 are both nearly equal to unity, so that the activity factor 
for the solvent can be omitted to a good approximation, making Eq. (8.3-4) the same as 
Eq. (8.3-3). For a dilute solution in which the activity coefficients are nearly equal to 
unity, an approximate equilibrium constant is often written that omits all activity 
coefficients: 

K m - -  f i ( m i ( e q ) / m ~  vi (8.3-5) 
i=2 

Some authors also omit the m ~ factors, giving an equilibrium constant that has the 
dimensions of molality raised to some power. When the activity coefficients differ 
considerably from unity the use of Km can be a poor approximation. 

The value of the equilibrium constant for a solution reaction can be calculated from 
the Gibbs energy change of the standard-state reaction. Once the equilibrium constant is 
evaluated, the equilibrium composition can be calculated for any particular case, if 
information about activity coefficients is available from experimental data or from 
theoretical estimates. 
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The foregoing discussion of chemical equilibrium provides the means to discuss some 
unique properties of the activities of strong electrolytes. We first consider a solution of a 
volatile strong electrolyte at equilibrium with a vapor phase, using hydrogen chloride as 
an example. From the fundamental fact of phase equilibrium, 

/~(HC1, aq) -/~(HC1, g) (8.4-1) 

The HC1 ionizes in solution according to the equation 

HCl(aq) ~ H+(aq) + Cl-(aq) (8.4-2) 

Writing H+(aq) does not express any particular assumption about hydration of the 
hydrogen ions. Some aqueous hydrogen ions are apparently bonded to a water 
molecule, forming Ha O+, the hydronium ion, but even more are apparently attracted 
to water dimers, producing H50~-. 1 Others can be attached to trimers, and so on. The 
symbol H+(aq) stands for all of these species taken together, just as we write, for 
example, Na+(aq) for all of the variously hydrated sodium ions. The condition for 
equilibrium of the reaction of Eq. (8.4-2) is, from Eq. (8.1-10) 

/~(HC1, aq) =/z(H+)+#(C1 -)  (8.4-3) 

We use the molality description for the H § and C1- ions and omit the label "aq" since 
they occur only in the aqueous phase. For the aqueous HC1, we use a new molality 
description, in which m ~ (1 mol kg -1) is replaced by m', a constant molality that is 
unspecified. This policy is necessary because the equilibrium constant for the ionization 

1H.-E Cheng and J. L. Krause, J Chem. Phys., 107, 8461 (1997). 
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of HC1 is too large to be measured, and meq(HC1) is too small to be measured. It allows 
us to avoid writing equations in which meq(HC1 ) occurs. 

The chemical potentials can be written in terms of activity coefficients and molalities: 

#~ aq) 4- RT ln[a(HC1, aq)] = #~ aq) 4- RT ln(7(HC1)meq(HC1)/m' ) 

= #~ +) + RT ln[7(H+)meq(H+)/m ~ 

+/t~ + RT ln[7(C1-)meq(C1-)/m ~ 

(8.4-4) 

The standard-state chemical potentials of H + and C1- refer to the hypothetical solution 
with molality m ~ (1 mol kg -1) and activity coefficient equal to unity, but that of the 
HC1 refers to the hypothetical solution with molality m' and unit activity coefficient. 

Since the value of m(HC1) is too small to measure, the value of m' is unmeasurable. 
To avoid use of the value of m! we specify that 

/t~ aq) =/ t~  +) 4-/t~ (convention) (8.4-5) 

which uniquely determines m', even though we still do not know its value. Combining 
Eq. (8.4-5) with Eq. (8.4-4) and taking antilogarithms, we obtain 

a(HC1, aq) - 7(HC1)m(HC1)/m' - (7(H+)meq(H+)/m~ ~ 

= 7+7_m+m_ (8.4-6) 
mO2 

where we have simplified the notation, replacing meq(H +) by m+ and meq(C1- ) by m ,  
with similar notation for the 7's. This allows us to replace a(HC1, aq) by an expression 
containing only measurable quantities. 

Exercise 8.6 
Show that Eq. (8.4-6) is equivalent to Eq. (8.4-4). 

Equation (8.4-5) is the same as requiring that 

AG ~ = 0 (8.4-7) 

for the ionization reaction of Eq. (8.4-2), which means that the equilibrium constant for 
the reaction is given by 

K -  (7+m+/m~176 = 1 (8.4-8) 
(7(HC1)m(HC1)/m') 

Equation (8.4-8) does not mean that the molality of the unionized HC1 is roughly equal 
to the product of the molalities of the ions, because m' is not equal to m ~ 

We assume that the vapor is an ideal gas, and write 

/t(HC1, g) --/t~ g ) +  RT ln(P(HC1)) (8.4-9) 

and from Eqs. (8.4-1) and (8.4-4) 

#~ g) 4- RT ln(P(HC1)/P ~ - #~+ 4- ~to_ 4_ RT ln(7+7_m+m_/m ~ (8.4-10) 

The stoiehiometrie molality m is defined to be the total amount of HC1 per kilogram of 
solvent, including both ionized and unionized forms. Some authors call the stoichio- 
metric molality the "gross molality." If no H + ions and C1- ions are added to the 
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solution from other solutes and if the amount of H + ions from water can be neglected, 
m+ and m_ are both equal to m since the molality of the unionized HC1 is negligible. 
Equation (8.4-10) is equivalent to 

L(m)... 24,2 P(HC1) -- k(m)]: + y_m2 - t~+ m y+ (8.4-11) 

where 

+ -- ~ exp la~ 
R T  

(8.4-12) 

and where 7• is the mean ionic activity coefficient of Eq. (7.4-12): 

~+ = (~+~;_),/2 (8.4-13) 

If the concentration of HC1 is small enough, the activity coefficients are nearly equal 
to unity and the partial vapor pressure of HC1 is nearly proportional to the square of the 
molality, not proportional to the molality as in Henry's law. Figure 8.2 shows the partial 
vapor pressure of HC1 as a function of molality in an aqueous solution at 298.15 K. 
Table A.12 gives the values of the partial pressure for larger molalities for the same 
temperature. The table represents experimental data, and the graph represents values 
calculated from values of the activity coefficients determined by other techniques. 

Equations (8.4-4) through (8.4-8) are valid for a nonvolatile electrolyte such as NaC1 
or KOH as well as for a volatile electrolyte such as HC1 or HNO 3. However, since the 
partial vapor pressure of these electrolytes is too small to measure, we cannot apply 
Eqs. (8.4-9) through (8.4-12) to these substances. For a general univalent-univalent 
electrolyte represented by the formula MX, we write the same equation as Eq. (8.4-6): 

a(MX, aq) -- 7 ( M + ) m ( M + ) y ( X - ) m ( X - ) / m ~  - 7 2 m + m _ / m  ~ (8.4-14) 

2S. J. Bates and H. D. Kirschman, J. Am. Chem. Soc. 41, 1991 (1919). 
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For CaC12, 

CaC12 ~ Ca 2+ + 2C1- 

Setting AG ~ for this reaction equal to zero as in Eq. (8.4-7) leads to 

a(CaCl2) - (?+m+/m~176 2 

(8.4-15) 

(8.4-16) 

Exercise 8.7 
Show that Eq. (8.4-16) is correct. 

For CaC12, the mean ionic activity coefficient is defined to be 

7-1- - -  ( ] ~ + ] ~ 2 ) 1 / 3  (8.4-17) 

and the mean ionic molality for CaC12 is defined to be 

m+ - (m+m2) 1/3 (8.4-18) 

so that 

a(CaCl2) - (7+m+) 3 (8.4-19) 

If there is no other source of Ca 2+ or C1- than the CaCI2, 

m+ - m, m - 2m (8.4-20) 

where m is the stoichiometric molality (total amount of CaC12 per kilogram of solvent), 
so that for CaCI2: 

m+ - m(2211)1/3 _ mv+ (8.4-21) 

where the second equality defines the quantity v+ for CaC12 or a similar 1-2 electrolyte. 
We now write 

a(CaCl2) - -  (7+m•176 3 - -  (7+v+m/m~ 3 (8.4-22) 

The analogous quantities are defined for any electrolyte. If the formula of the 
electrolyte is represented by Mv+Xv,  and if there is no other source of either ion, 

a(Mv+Xv_ ) - -  (7+m+/m~ (~++v-) (8.4-23) 

where, as in Eq. (7.4-12), the mean ionic activity coefficient is 

7+ -- (7;+7v--) 1/(v++v-) (8.4-24) 

and the mean ionic molality is 

" v + " " v - " ~ l / ( v + + v - )  - -  m(v++vV-) 1/(v++v-) (8.4-25) m+ -- tm+ , . _  , = mv+ _ 

For example, the mean ionic molality of a 3-1 electrolyte such as CrC13 is equal to 
271/4m. 

Exercise 8.8 
a. Verify Eqs. (8.4-23) and (8.4-24). 

*b. Write expressions for 7+ and m+ for Mg3(PO4) 2 in terms of m, the stoichiometric molality, 
and the activity coefficients of the ions. Neglect hydrolysis (a poor approximation). 
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Tabulated Thermodynamic Values for Electrolytes 
Gibbs energy changes of formation, activities, activity coefficients, etc., for separate 
ions cannot be measured because of the near impossibility of adding ions of one charge 
to a system without adding ions of the opposite charge. In spite of this fact, it is 
desirable to tabulate values of enthalpy changes of formation, Gibbs energies of 
formation, and absolute entropies for ions instead of for the neutral substances in 
order to have a shorter table. We make an arbitrary division of the Gibbs energy change 
of formation, enthalpy change of formation, entropy, etc., between the ions of one 
electrolyte, and make all other values consistent with this division. The arbitrary choice 
that is made is to assign zero values to the Gibbs energy change of formation, enthalpy 
change of formation, entropy, etc., of the hydrogen ion in its standard state in aqueous 
solution. This convention is equivalent to assigning the entire Gibbs energy change of 
formation of aqueous HC1 to the chloride ion, etc. This arbitrary convention does not 
change the value of AG or AS, etc, for a chemical reaction. 

Acid-Base Equilibrium Calculations 

It is customary to specify the acidity of a solution in terms of the pH, which has been 
variously defined. We would like to be able to use the definition 

(8.5-1) 
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where log10 denotes the logarithm to the base 10 (the common logarithm). A version of 
the definition of Eq. (8.5-1) or of the analogous concentration definition that omits the 
activity coefficient is commonly found in elementary chemistry textbooks. The pH as 
defined in Eq. (8.5-1) cannot be measured exactly because of the impossibility of exact 
measurement of 7(H+). However, we will assume that 7(H +) can be approximated in 
some way so that we can use Eq. (8.5-1) as our definition of pH. We will describe the 
electrochemical method for determining pH in Chapter 9. 
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*Exercise 8.9 
a. Find the standard-state Gibbs energy change and the equilibrium constant at 298.15 K for the 

ionization of water, which is the reverse reaction from that of Example 8.8. 
b. Calculate the molalities of hydrogen and hydroxide ions in pure water at 298.15 K. Use the 

Davies equation to estimate activity coefficients. 

The calculation of pH in aqueous solutions is not always as simple as it was in 
Example 8.9. If a weak acid is quite dilute, the hydrogen ions that come from the water 
ionization cannot be neglected, and this complicates the calculation. 
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* E x e r c i s e  8 .10  
Another possible complication is that some acids are polyprotic, wlaich means that one molecule 
of the acid ionizes successively to give more than one hydrogen ion. Find the pH of a solution 
made from 1.000 kg of water and 0.100mol of phosphoric acid, H3PO 4, for which the three acid 
dissociation constants are 

K 1 = 7.52 x 10 -3, K 2 = 6 . 2 3 x  10 -8 , K 3 =2 .2  • 10 -13 

Three simultaneous equations must be solved. It is best to seek simplifying approximations, such 
as neglecting the H + ions from the third ionization in discussing the first two ionizations. The 
validity of such approximations should be checked at the end of the calculation. 

Buffer Solutions 

In the titration of  a weak acid with a strong base, the pH changes only slowly with 
addition of  more base when about half of  the acid has been neutralized. Figure 8.3a 
shows the titration curve of 0.100 molal acetic acid with 0.100 molal sodium hydroxide, 
and Figure 8.3b shows the titration curve of  0.100 molal hydrochloric acid with 0.100 
molal sodium hydroxide. Near the neutral pH value of  7, the curve has a large positive 

Figure 8.3. Titration Curves. (a) Curve for a solution of acetic acid and a strong base. (b) 
Curve for a solution of hydrochloric acid. For the acetic acid solution, there is a buffering region 
around pH 5. 
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slope in both diagrams, but near a pH value of 5, the acetic acid curve has a much 
smaller slope than does the hydrochloric acid curve. 

A solution that resists changes in pH is called a buffer solution. A buffer solution 
can be produced by adding both the weak acid and its salt or by partially titrating the 
acid. Consider a solution with n a mol of a weak acid and n s mol of salt of this acid 
added to 1.000 kg of water. The acid will ionize slightly, and the anion will hydroyze 
slightly. These effects will nearly cancel, and we can write to a good approximation 

m(HA) - na m(A-) - ns 
1.000 kg'  1.000 kg 

Assuming ~/HA to equal unity (a good approximation), the equilibrium expression is 

( 7 ( H + ) m ( H + ) / m ~  ~ a(H+)7(A-)ns 
X = = ( 8 . 5 - 3 )  

m ( H A ) / m  ~ n a 

If 7(A-) is also assumed to equal unity, this equation can be written 

(8.5-4) 

where 

( 8 . 5 - 5 )  

and where log10 denotes the common logarithm (logarithm to the base 10). Equation 
(8.5-4) is known as the Henderson-Hasselbaleh equation. This equation is used 
frequently in making buffer solutions. If greater accuracy is desired than the Hender- 
son-Hasselbalch equation affords, one must use Eq. (8.5-3) with experimental or 
theoretical values of the activity coefficient of A-.  
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Exercise 8.11 
a. Verify Eq. (8.5-6). 
b. Substitute the numerical result of part (b) of Example 8.11 into the equilibrium expression, 

Eq. (8.5-3), to verify its correctness. 

Biological Buffering 
The principal buffeting system in mammalian blood is that of  carbonic acid, which can 
equilibrate with its two anions and with gaseous and aqueous carbon dioxide through 
the reactions: 

CO2(g ) ~ CO2(aq) 

CO 2 (aq) + H 20 ~ H 2 CO 3 (aq) 

H 2CO 3 (aq) ~ H + + HCO~- 

HCOy ~ H + 4- CO~- 

(8.5-7a) 

(8.5-7b) 

(8.5-7c) 

(S.5-7d) 

*Exercise 8.12 
The Henry's law constant for C O  2 in water at 25~ is equal to 1.24 x 10 6 torr. The equilibrium 
constant for reaction (8.5-7b) is equal to 2.58 x 10 -3, that for reaction (8.5-7c) is equal to 
1.70 x 10 -4, and that for reaction (8.5-7d) is equal to 4.69 x 10 -11 . It is not possible by chemical 
analysis to distinguish CO2(ac D from HzCO 3. If the combined concentration of CO2(aq) and 
HzCO 3 is used in the equilibrium expression, a different value for the first acid ionization is 
found. (The molality of CO2(aq) is larger than that of H2CO3. ) 

a. Find the value of the first ionization constant of carbonic acid, using the combined molalities 
of CO2(aq) and H2CO 3 in the equilibrium expression instead of the molality of H2CO 3. 
Explain why reaction (8.5-7c) can act as an effective buffering reaction near the normal pH of 
blood, around pH 7.4. 

b. Find the pH of a solution produced by equilibrating water with carbon dioxide gas at 760 torr 
at 25~ Assume all activity coefficients are equal to unity. 

c. Repeat the calculation of part (b), using the Davies equation to estimate activity coefficients. 

The pH of human blood can be raised by removing dissolved carbon dioxide from 
the blood through hyperventilation (rapid breathing). The reaction of  Eq. (8.5-7b) is 
catalyzed by an enzyme, carbonic anhydrase, so that equilibrium is established rapidly. 
If  the molality of  dissolved carbon dioxide is lowered below its normal value, the 
reaction of  Eqs. (8.5-7b) and (8.5-7c) shifts to the left, raising the pH of  the blood and 
producing a feeling of  "light-headedness." A person who has hyperventilated is often 
told to breathe into and out of  a paper bag. Since exhaled air is about 4% carbon 
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dioxide, this practice increases the level of carbon dioxide in the blood and alleviates 
the symptoms. The body also attempts to correct the situation by increasing the 
excretion of the bicarbonate ion in urine. 

Temperature Dependence of Equilibrium Constants. 
The Principle of Le Chgtelier 

The temperature derivative of AG ~ at constant pressure is given by differentiation of Eq. 
(8.1-13): 

d AG o 4-, = Z_, vi (8.6-1) 
d T  \ OT ] i=1 P,n 

The derivatives on the fight-hand side of this equation are at fixed P and n because each 
standard state corresponds to a specified fixed composition and pressure. From Eq. 
(5.5-10) 

OT } p,, 

Substitution of the standard-state version of Eq. (8.6-2) into Eq. (8.6-1) gives 

d AG ~ _ _ ~ Vi~;  __ _ A S O  
d T  i--1 

(8.6-2) 

(8.6-3) 

where AS ~ is the entropy change for one mole of the standard-state reaction. It is 
convenient to write 

which is equivalent to 

d ( A G ~  1 d A G  ~ 1 
= A G  ~ 

d T  T d T  T 2 

(8.6-4) 

The relation shown in Eq. (8.6-4) is the differential version of the Gibbs-I-Ielmholtz 
equation. This equation holds only for a reaction that begins and ends at the same 
temperature. The value of A G is not defined for a temperature change, because at 
constant pressure a temperature change would produce a change in the Gibbs energy 
given by 

A G  -- d G -  - - ~  d T -  - S d T  (8.6-5) 
Tl Tl P,n T1 

This expression cannot be evaluated because the actual value of the entropy of the 
system is not known. The third law implies only that the entropy can consistently be 
chosen to equal zero at zero temperature, not that it is known to vanish. The fact that 
A G is defined only for a constant-temperature process means that the derivative in Eq. 
(8.6-4) has the interpretation that AG values for constant-temperature processes at 
different temperatures can be compared. 
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Exercise 8.13 
Show that 

d(AG~ 
d(1/T) 

=AH ~ (8.6-6) 

Equation (8.1-20) can be written 

AG ~ 
ln(K) -- 

RT 

From this equation and the Gibbs-Helmholtz equation, we can write 

d ln(K) k J-/~ 

dT RT 2 

o r  

(8.6-7) 

(8.6-8) 

d ln(K) AH ~ 
-- (8.6-9) 

d(1 /T)  R 

Exercise 8.14 
Verify Eqs. (8.6-8) and (8.6-9). 

If the value of AH ~ is known as a function of temperature, Eq. (8.6-8) can be 
integrated to obtain the value of K at one temperature from the value at another 
temperature: 

l fK(T2)" ~ 1 I r2 AH ~ 
n~K(Vl) ) - - ~  rl - - ~  dT (8.6-10) 

which is equivalent to 

AGO(T2) AGO(T1) fr2 AHo 

J - T7 - rl - ~ T  d T  (8.6-11) 

where AG~ is the value of AG ~ at temperature T2, and AG~ is the value of AG ~ 
at temperature T 1. 

If A H  ~ is temperature-independent, Eq. (8.6-10) becomes 

(8.6-12) 

(8.6-13) 

which is the integral version of the Gibbs-Helmholtz equation. 

Exercise 8.15 
Carry out the integrations to obtain Eqs. (8.6-12) and (8.6-13). 
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*Exercise 8.16 
Find the value of Kp for the reaction of Example 8.3 at 1000 K. State any assumptions 

If the assumption of constant AH ~ is not sufficiently accurate, the next simplest 
assumption is that the heat capacities are constant, so that 

AH~ = AH~ + ACp(T - T~) (8.6-14) 

When Eq. (8.6-14) is substituted into Eq. (8.6-8) and an integration is carded out from 

T 1 to T 2, the result is 

( K ( T 2 ) ' ] _  A H ~  1 )  ACp[ (T2) T 1 ] 
In K(T,)J - - - - - - - - f f~  ~ 2 - ~ -  1 + - - -R- - In  ~ + ~ 2 - 1  (8.6-15) 

Exercise 8.17 
a. Verify Eq. (8.6-15). 

*b. Using heat-capacity data from Appendix A and assuming the heat capacities to be 
temperature-independent, evaluate K and AG ~ for the reaction of Example 8.12 at 100~ 
Calculate the percent difference between your value for K and that in Example 8.12. 

This principle is named for Henri Louis 
Le Ch#tefier, 1850-1936, a French 
chemist. 

The Principle of Le Chfitelier 

The behavior of a system at chemical equilibrium when subjected to a change in 
temperature illustrates the principle of Le Chgtelier. This principle states that if 
possible a system will respond to a "stress" placed upon it by reacting in the direction 
that minimizes the effect of  that stress on intensive properties of the system. 3 

3 See J. A. Campbell, J. Chem. Educ., 62, 231 (1985) for an interesting rule for predicting the direction of 
the shift in a reaction equilibrium produced by a change in temperature if the sign of AH ~ is not known, and 
also for references to articles discussing the correct statement of the principle of Le Ch~telier. 



8.6 Temperature Dependence of Equilibrium Constants. The Principle of Le Ch&telier 279 

Consider first the case that the transfer of heat to the system is the applied stress. 
From Eq. (8.6-8) we see that the equilibrium constant for an endothermic reaction 
(AH > 0) has a positive temperature derivative. The stress causes the reaction to shift 
toward the fight (producing more products), absorbing part of the heat put into the 
system. The temperature of the system rises by a smaller amount than if the reaction 
were somehow "frozen" and could not shift its reaction equilibrium. This moderation 
of the temperature rise is the lessening of the effect of the stress referred to in the 
statement of the principle. For an exothermic reaction (AH < 0) transfer of heat to the 
system will cause the equilibrium to shift toward the left, again causing the temperature 
of the system to rise by a smaller amount than if the reaction were frozen. An increase 
in temperature shifts a chemical reaction in the endothermic direction. 

The principle of Le Chgttelier can also be applied to a shift in the equilibrium of a 
gas-phase reaction produced by changing the volume of a system at constant 
temperature. 

Let us write an equilibrium expression for a gaseous reaction in terms of the mole 
fractions, given by Dalton's law (assuming ideal gases) as 

P i  (8.6-16) 
Xi ~ etot 

where Ptot is the total pressure. Equation (8.2-2) becomes 

K p  --  f i  ( x i P t o t / P ~  v' - ( P t o t / P ~  Av f l  (xi) vi - (P to t /p~  
i=1 i=1 

(8.6-17) 

where Av is the sum of the stoichiometric coefficients: 

A v  --  ~ v i (8.6-18) 
i=1 

equal to the net change in the number of moles of gas in the system if 1 mol of reaction 
occurs. Since the v's are negative for reactants, this sum is the difference between the 
number of moles of products and the number of moles of reactants. 

The quantity K x is not a true equilibrium constant, since it depends on pressure for a 
gaseous reaction 

K x - -  ( P t o t / P ~  (8.6-19) 

If the products consist of fewer moles of gas than the reactants and if the pressure on the 
system is increased, K x will increase and the mole fractions of the products will 
increase. If the products consist of more moles of gas than the reactants the mole 
fractions of the reactants will increase. In either case, a reduction of volume (the stress) 
will increase the pressure by a smaller amount than if the reaction were somehow 
prevented from shifting. 

*Exercise 8.18 
For the reaction of Example 8.2, calculate the degree of dissociation if the volume is reduced to 
10.00 L at 298.15 K. Interpret the results in terms of the principle of Le Chfitelier. 
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The principle of Le Chgttelier can also be applied to the addition of an additional 
amount of a reactant or product to an equilibrium reaction mixture. 

Exercise 8.19 
Verify the result of Example 8.13 by substituting the value of ~ into the equilibrium constant 
expression. 

Chemical Reactions and Biological Systems 

An important feature of biochemical reactions of metabolism and respiration is the 
coupling of pairs of reactions, which can result in the driving of a nonspontaneous 
reaction by the progress of a spontaneous reaction. This coupling is used both in driving 
useful reactions and in regenerating reactants for the spontaneous reactions. The 
hydrolysis of adenosine triphosphate (ATP) to form adenosine diphosphate (ADP) 
and phosphoric acid (P) is shown in Figure 8.4. Since ATP, ADP, and phosphoric acid 
are all weak polyprotic acids they exist as various anions in aqueous solutions as well as 
in the forms shown in Figure 8.4. At neutral pH, the most abundant form of ATP is a 
triply negative anion with a single proton on one of the acid groups. This reaction 
equation is abbreviated as 

ATP + H20 ~ ADP + Pi (8.7-1) 

where the abbreviation in Eq. (8.7-1) stand for whatever ionized and unionized forms of 
ATE ADP, and phosphoric acid occur. The symbol Pi stands for "inorganic phosphate." 
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The anions of ATP and ADP have a strong tendency to form complexes with positive 
ions such as Mg 2+ or Ca 2+. It is customary to define a modified standard-state reaction 
in which the substances in the reaction equation are at unit activities but the hydrogen 
ions and any complexing cations are at specified activities not necessarily equal to unity. 
The symbol AG ~ is used for the Gibbs energy change of such a modified standard-state 
reaction. For the reaction of Eq. (8.7-1), using the concentration description, AG ~ is 
equal to -29 .3  kJ mo1-1 at 298.15 K with pH equal to 7.00 and pMg equal to 4.00. The 
pMg is defined by analogy with pH: 

pMg = - lOgl0[a(Mg2+)] = - loglo[7(MgZ+)c(Mg2+)/c ~ (8.7-2) 

The specified value of AG ~ is for the combined reactions of whatever unionized, 
anionic, and complexed forms occur. For example, the standard state for ATP is the 
state with the sum of the concentrations of all forms of ATP equal to 1 mol L -1 and 
with all activity coefficients equal to unity. 

*Exercise 8.20 
Find the value of (OG/O~)r,p for the case that c(ATP)= 0.0100mol L -1 and c(ADP)= 
c(P) = 0.0200 mol L -1 at pH 7.00 and pMg = 4.00. Approximate all activity coefficients by 
unity. 
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The hydrolysis of ATP is a spontaneous reaction under the conditions occurring in 
biological systems as well as under the modified standard-state conditions. This 
reaction is "coupled" to various other reactions that would otherwise not be sponta- 
neous. That is, the spontaneous hydrolysis of ATP "drives" the nonspontaneous 
reactions, causing them to proceed. For example, the reaction 

Pi + glucose ~ glucose 6-phosphate + H20 (8.7-3) 

is driven by the reaction of Eq. (8.7-1). 
The ADP that is formed in the reaction of Eq. (8.7-1) is "recycled." That is, other 

substances undergo spontaneous reactions that are coupled to the reaction of Eq. 
(8.7-1), driving it from fight to left. A reaction that drives the regeneration of ATP 
is the hydrolysis of phosphoenolypyruvic acid (abbreviated PEP): 

O 
I 

H--O--P--O--H 
I 
O O 
I II 

CH2=C--C-O--H 

The hydrolysis of PEP is sufficiently spontaneous to produce ATP from ADP. The 
sum of the two reactions is equivalent to a spontaneous reaction: 

(A) 
(B) 
(C) 

PEP + H20 ~ Py + Pi 
ADP + Pi ~ ATP + H20 

ADP + PEP ~ ATP + Py 

AG ~ = -53.6 kJ mo1-1 
A G ~  +29.3 kJ mo1-1 

AG ~ = -24.3 kJ mo1-1 

where Py stands for pyruvic acid 

O O 
II II 

CH3--C--C-O--H 

and/or pyruvate ion. The hydrolysis of PEP produces phosphoric acid, which is a 
reactant in the regeneration of ATP from ADP. According to the principle of Le 
Chfitelier the phosphoric acid would shift the equilibrium of the regeneration reaction, 
producing more ATE In the next example, we show that the effect of this shift is 
insignificant. 
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To explain the coupling of  reactions, there must be a mechanism that in some 
molecular sense makes one reaction out of  two reactions. A proposed mechanism for 
the coupling of  these two reactions involves an enzyme, pyruvate kinase, denoted by 
E: 4 

(1) 
(2) 

E + PEP ~ EP + Py 
EP + ADP ~- E + ATP 

ADP + PEP ~ ATP + Py 

An enzyme generally possesses an active site, a cavity into which a reactant 
molecule can fit. Once in the active site, the reactant molecule is rendered more 
reactive, possibly by being distorted into a conformation resembling the transition state 
for the reaction. The important aspect of  the proposed mechanism is that the phosphate 
is not simply released into the solution: it is held in the active site of  the enzyme until it 
reacts with an ADP molecule. Since the first step is not repeated until the second step 
occurs, the hydrolysis of  PEP does not occur without the regeneration of  ATP and the 
two reactions are combined into a single reaction. 

*Exercise 8.21 
a. Find the equilibrium constant at 298.15 K for the combined reaction 

ADP + PEP ~ ATP + Pi 

b. Find the equilibrium ATP concentration for the initial concentrations of Example 8.15, 
treating the combined reaction as a single reaction. 

Exercise 8.22 
The coupling of the spontaneous hydrolysis of ATP to drive other reactions is similar to the 
coupling that regenerates ATE 

a. Write a possible mechanism for the coupling of the spontaneous hydrolysis of ATP to drive 
the phosphorylation of glucose, Eq. (8.7-3). 

*b. For the combined reaction, AG ~ = -9.6 kJ mo1-1. Find AG ~ for the phosphorylation of 
glucose and find the equilibrium constant for the combined reaction. 

Processes other than nonspontaneous chemical reactions are also coupled to the 
hydrolysis of  ATE Figure 8.5 depicts a proposed mechanism for the active t r anspor t  of  
a hypothetical substance, A, through a biological membrane from a solution of  low 
concentration and low chemical potential of  A (on the left in the figure) to a region of  
high concentration and high chemical potential of  A (on the fight in the figure). 5 This 

4 K. J. Laidler, Physical Chemistry with Biological Applications, Benjamin/Cummings, Menlo Park, CA, 
1978, pp. 246ff. 

5 K. J. Laidler, op. cit. pp. 487ff. (Note 4). 
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transport is opposite in direction to the spontaneous transport of A, which is from a 
higher to a lower value of the chemical potential. The mechanism assumes the existence 
inside the membrane of a carrier substance that has two forms and that the substance A 
is able to pass through the surfaces of the membrane. The first form of the carrier, 
denoted by C, has a tendency to form a complex with the substance A, while the second 
form, denoted by C', has no such tendency. The conversion of C to C' is nonsponta- 
neous, and is coupled to the hydrolysis of ATE 

Step (1) of the mechanism is the combination of C with A at the left surface of the 
membrane. This process is followed by step (2), the spontaneous transport of the 
complex CA through the membrane from left to fight to a region where the 
concentration and chemical potential of CA are small. Step (3) is the conversion of 
C to C', which is coupled to the hydrolysis of ATE The transported molecule A is still 
attached to C when C is converted to C', but A is released in step (4) as soon as the 
conversion to C' is complete. Because of the dissociation of C'A, the concentration of 
CA is kept small on the fight side of the membrane, which makes step (2) spontaneous, 
After the molecule A is released from C', the C' molecules move spontaneously from 
fight to left in step (5), because they are converted in step (6) back to the form C at the 
left side of the membrane by an enzyme located there, keeping the concentration of C' 
small at the left side of the membrane. The C molecules at the left side of the membrane 
are now available to complex again with A molecules, and the process can be repeated. 
The process that causes the overall process to transport A molecules from a lower to a 
higher chemical potential is step (3), which consumes ATE Although the chemical 
potential of A increases, the Gibbs energy of the entire system decreases due to the 
negative Gibbs energy change of hydrolysis of ATE 

Summary of the Chapter 

For a reaction at equilibrium at constant temperature and pressure, 

T,P i=l 

which leads to the constancy of K, the equilibrium constant: 

K -  (-I ai(eq) vi 
i--1 

where ai(eq) is the equilibrium value of the activity of substance i. The equilibrium 
constant is related to the Gibbs energy change of the standard-state reaction: 

K = e -AG~ 

The equilibrium constant for a reaction involving ideal gases is 

f i ( P i ( e q ) )  vi 
Kp - (gaseous reaction only) 

i=1 

The equilibrium constant for a reaction in solution is 

K - (71Xl) vl Is176 v~ 
i=2 
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where the solvent is designated as substance number 1. For dilute solution, the solvent 
factor can be omitted from the equilibrium expression. 

The Gibbs-Helmholtz equation for the temperature dependence of an equilibrium 
constant is 

a ln(K)~ _ kah r~ 

aT J p R T  2 

The principle of Le Chfitelier asserts that in general a system will react to lessen the 
effect of a stress on an intensive variable, if it can do so. This effect was illustrated by 
considering the shift in equilibrium by changing the temperature or the pressure on a 
system and by adding a reactant or product to the system. 
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1. Thermodynamic relations can be specialized to give useful information 
about electrochemical systems. 

2. The effects of the electric potential must be included in the chemical 
potentials of substances with charged particles. 

3. In an electrochemical cell, a flow of current is accompanied by the progress 
of a chemical reaction. 

4. In an electrochemical cell, the chemical reaction that occurs is physically 
divided into two half-reactions, which take place at different electrodes. 

5. Electrochemical data can be used to obtain thermodynamic information 
about chemical reactions. 

291 
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Faraday's constant is named for 
Michael Faraday, 1791-1867, a great 
English physicist and chemist who 
discovered the laws of electrolysis and 
who invented the first electric 
generator. 

The Chemical Potential and the Electric Potential 

Electrochemistry exploits the fact that many chemical reactions involve the transfer of 
electrons and other charged particles. If a particle of charge Q has an electrostatic force 
F exerted on it, this corresponds to an electric field 8 such that 

F - Q 8  (9.1-1) 

The e lec t r i c  p o t e n t i a l  q) is defined such that the electric field is equal to the negative 
gradient of the electric potential 

8 -- -Vq~ (9.1-2) 

The gradient of a scalar function is defined in Eq. (B-37) of Appendix B. The x 
component of g is given by 

~ = Ox (9.1-3) 

and the other components are similar. The electric potential is a potential energy per 
unit charge and the electric field is a force per unit charge. The electrostatic contribution 
to the potential energy of a particle of charge Q is 

"~/'electrostatic : Qq~ (9.1-4) 

An arbitrary constant can be added to the electric potential without any physical effect, 
as is the case with any potential energy. It is customary to choose the value of the 
electric potential to be zero at a location that is infinitely distant from all charges. 
Electric potentials relative to this zero are sometimes called "absolute" potentials. 

The electrostatic potential energy is part of the thermodynamic energy U and is 
included in the Gibbs energy and in the chemical potential. The chemical potential of an 
ionic species i is given by 

(9.1-5) 

where re is the proton charge, NAv is Avogadro's number, and z i is the valence of the ion 
(the number of proton charges on the ion: it is positive for a cation and negative for an 
anion). The charge on a mole of protons is denoted by F and called Faraday's 
constant. 

F = N A v  e - -  96485 C mo1-1 (9.1-6) 

Equation (9.1-5) can be written 

(9.1-7) 

The quantity//i(chem) is the chemical part  of the chemical potential. It is assumed to 
be independent of the electric potential and depends only on temperature, pressure, and 
composition of the system. If the substance is uncharged or if the electric potential has a 
zero value /li(chem) is equal to the entire chemical potential. The chemical potential 
including the electric potential is usually called the electrochemical potential. It is the 
true chemical potential that obeys the Gibbs-Duhem relation and the fundamental fact 
of phase equilibrium. Unfortunaely, /2i(chem ) has sometimes been called the "chemical 
potential" to distinguish it from the electrochemical potential. We will call fli(chem) the 
chemical part of the chemical potential and will use the term chemical potential or the 
term electrochemical potential for the full chemical potential. 
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The chemical potential of a single charged species cannot be measured, since charged 
particles cannot easily be added without adding ions of the opposite charge at the same 
time. We use the analogue of Eq. (8.4-3) to write the chemical potential of a neutral 
electrolyte solute denoted by i, with the formula Mv+Xv and with ion valences z+ and 

~i - -  V + # +  -Jr- V_/2_ - -  V+]2+(chem ) + V_]2_(chem) -~- (V+Z+ .Jr_ v_z_)F~o (9.1-8) 

Electrical neutrality implies that v+z+ + v z _ -  O, so the last term in Eq. (9.1-8) 
vanishes and the chemical potential (electrochemical potential) of the neutral electrolyte 
is equal to the chemical part of the chemical potential. 

J/i - -  V+J2+(chem ) + V_#_(chem) - -  /2i(chem ) (9.1-9) 

Exercise 9.1 
a. Show that the electrochemical potential of aqueous CaC12 has no dependence on the electric 

potential. 
b. Show that the electrochemical potential of aqueous Na3PO4 has no dependence on the electric 

potential. 

Electrons have a chemical potential like any other charged species" 

/g~ - -  /g~(chem) - -  Frp (9.1-10) 

If two different homogeneous conducting phases are placed in close contact and 
allowed to come to equilibrium, the electrochemical potential of electrons will have the 
same value in both phases. Since the phases are of different materials, the chemical part 
of the electron's chemical potential can have different values in the two phases and the 
electric potential must also have different values in the two phases at equilibrium, as 
depicted in Figure 9.1. If two phases are not at equilibrium, both the chemical part of 
the chemical potential of electrons and the electric potential can have different values in 
the two phases. If electrons are used as a probe to measure a difference in the electric 
potential between two terminals the terminals must consist of the same material so that 
the chemical part of the chemical potential will have the same value in the two 
terminals. 

Galvanic cells are named after Luigi 
Galvani, 1737-1798, Italian anatomist 
who showed that electricity caused 
frog muscles to contract and that 
dissimilar metals in contact with the 
muscle tissue could produce an 
electric current. 

Electrochemical Cells at Equilibrium 

An electrochemical cell is a device in which the passage of an electric current is 
accompanied by the progress of a chemical reaction. There are three principal types of 
electrochemical cells. In an electrolytic cell a current is passed by an external driving 
force, causing an otherwise nonspontaneous chemical reaction to proceed. In a galvanic 
cell the progress of a spontaneous chemical reaction causes the electric current to flow, 
doing work on the surroundings. 

An equilibrium electrochemical cell is at the state between being an electrolytic cell 
and a galvanic cell. The tendency of a spontaneous reaction to push a current through 
the external circuit is balanced by an external voltage (electromotive force or e.m.f.) 
that exactly cancels this tendency. If this counter e.m.f, is increased beyond the 
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equilibrium value, the cell becomes an electrolytic cell, and if it is decreased below the 
equilibrium value, the cell becomes a galvanic cell. 

Electrochemical cells always contain several phases. There are two or more electro- 
des, made of metal or graphite, that can conduct a current of electrons, and there must 
be at least one electrolyte solution in contact with the electrodes. Under certain 
conditions, solvated electrons can occur at low concentrations in solutions, 1 but we 
will consider uncombined electrons to be insoluble in electrolyte solutions. The zero- 
valent metal of  a typical electrode is also insoluble in liquid solutions, and the 
components of  a liquid solution are insoluble in the metal of  the electrode. We 
cannot use the fundamental fact of  phase equilibrium, because no substance occurs 
in more than one phase. However, if  the material of  the electrode can oxidize to form an 
ion that occurs in the electrolyte solution or can accept electrons from a chemical 
reaction in the solution, a chemical reaction can come to equilibrium at the phase 
boundary, and this fact will provide an equilibrium condition on the chemical poten- 
tails. 

Figure 9.2 schematically depicts a particular electrochemical cell. A figure such as 
Figure 9.2 is called a cell d iag ram and shows the phases that occur and how they are 
connected. This cell is one of a class called cells without  liquid junction, which means 
that both electrodes are in contact with the same solution. If a cell contains two different 
solutions, the interface between the solutions is called a liquid junction. A cell without a 
liquid junction can be a reversible cell, which means that all processes in the cell can be 

1 L. Kevan and B. Webster, eds., Electron-Solvent and Anion-Solvent Interactions, Elsevier, New York, 
1976. 
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You can remember the names 
"anode" and "cathode" by noting that 
"anode" and oxidation" both begin 
with vowels, and that "cathode" and 
"reduction" both begin with 
consonants. 

One way to remember which half- 
reaction goes with which side of the 
cell is to note that "reduction" and 
"right" both begin with the letter r. 

reversed by an infinitesimal adjustment of a counter e.m.f. A cell with a liquid junction 
is not a reversible cell. 

The electrode at the left in Figure 9.2 is a hydrogen electrode. It has a platinum 
surface that has been "platinized" (plated with porous platinum) to increase its surface 
area. Hydrogen gas at a specified pressure is bubbled through the solution around the 
electrode, and is adsorbed on the platinum, where it can undergo the oxidation process: 

Hz(g) ~ 2H + + 2 e -  (9.2-1) 

As in this equation, we will label substances in gaseous phases by (g), those in solid 
phases by (s), and those in pure liquid phases (such as liquid mercury) by (1). 
Substances that are not labeled are understood to be in aqueous solution. The process 
of Eq. (9.2-1) is called a half-reaction, since it cannot take place without another 
process to accept the electrons produced. This half-reaction is an oxidation half- 
reaction, and the electrode for which an oxidation half-reaction is written is called an 
anode. 

The electron at the fight in the cell of Figure 9.2 is called the silver-silver chloride 
electrode. It is a piece of silver that is coated with solid silver chloride. The reduction 
half-reaction 

AgCl(s) + e -  --+ Ag(s) + C1- (9.2-2) 

can occur at this electrode. The electrode for which a reduction half-reaction is written 
is called a cathode. There is a piece of platinum attached to the silver of the fight 
electrode so that an electric potential difference can be measured between two terminals 
of the same material. 

We multiply the reduction half-reaction equation by 2 and add the two half-reaction 
equations to obtain the cell reaction equation: 

H2(g ) + 2AgCl(s) + 2~-(R) --+ 2H + + 2Ag(s) + 2C1- + 2~-(L) (9.2-3) 

We have labeled the electrons at the fight and left electrodes. In an electrochemical cell 
the half-reactions take place in different locations, so that the electrons must be 
transported from one electrode to the other through an external circuit. We use a 
single arrow to indicate the direction of the reaction that we are considering. This 
reaction is spontaneous in the direction indicated if it takes place outside of an 
electrochemical cell. We can rewrite the cell reaction equation using only electrons 
and uncharged substances: 

H2(g ) + 2AgCl(s) + 2~-(R) ~ 2HC1 + 2Ag(s) + 2~-(L) (9.2-4) 

Equation (9.2-3) and Eq. (9.2-4) are equivalent, but the second equation makes it easier 
to write the chemical potentials, since the electric potential terms of neutral electrolytes 
cancel, as in Eq. (9.1-10). 

There are several conventions that have been adopted to make the description of 
electrochemical cells systematic. The first convention is: The left electrode in a cell 
diagram is assigned to be the anode and the right electrode is assigned to be the 
cathode. The choice that we make for the fight and left electrodes thus dictates the 
direction in which we write our cell reaction equation (or vice versa). It can happen that 
the spontaneous direction of the reaction is opposite to the way we write it. 

A cell symbol communicates the same information as the cell diagram. In this 
symbol, the phases of the cell are listed, beginning with the terminal of the left electrode 
and proceeding through the cell to the terminal of the fight electrode. The symbol for 
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each phase is separated from the next by a vertical line. The cell symbol for our present 
cell is 

Pt(s) [H 2 (g)I HC11AgCl(s)lAg(s)I Pt(s) 

Any substance without a phase label (such as HC1 in this case) is in aqueous solution. 
Since the platinum wire at the fight terminal is present only to provide a phase at 

which to measure the potential, it is sometimes omitted from the cell symbol. The 
platinum at the left terminal provides a surface for the adsorbed hydrogen to react on, 
but it is also sometimes omitted. 

The molality, concentration, or activity of the electrolyte solute involved in the 
reaction is usually included in the cell symbol, as is the pressure of a gas. If the molality 
of the HC1 in solution is equal to 0.500 mol kg -1 and the pressure of the hydrogen gas is 
0.990 atm, the complete cell symbol is 

Pt(s)JH2(g, 0.990 atm)JHCl(0.500 mol kg-1)lAgCl(s)lAg(s)lPt(s) 

A similar specification of composition is used for an electrode that is a solid solution or 
an amalgam (solution in liquid mercury). 

Let us leave our galvanic cell on "open circuit" (with the two terminals not 
connected to a circuit) and allow the cell to stabilize at constant temperature and 
pressure, with a fixed partial pressure of hydrogen at the anode. The state that is reached 
is a metastable state, since bringing the reactants to the same location or short-circuting 
the terminals would permit a reaction to occur spontaneously. One way to measure the 
electric potential difference between its terminals is with a potentiometer, in which an 
ajustable counter e.m.f opposes the electric potential difference of the cell. The counter 
e.m.f, is adjusted until it is just sufficient to stop the flow of electrons in the external 
circuit, as indicated by a galvanometer. The state of the cell is now the same as though 
the cell were an open circuit, and the counter e.m.f, is equal in magnitude to the 
potential difference between the electrodes. The value of this potential difference is 
called the cell's reversible potential difference or its reversible voltage. To an 
excellent approximation, the cell reaction is now thermodynamically reversible. If the 
counter e.m.f, is made slightly smaller than its equilibrium value the cell functions as 
a galvanic cell and a current flows while the reaction proceeds in the spontaneous 
direction. If the counter e.m.f, is made slightly larger, the cell functions as an 
electrolytic cell and a current flows in the opposite direction. 

An infinitesimal amount of reaction d~ in our system at equilibrium corresponds to 

0 
T,P 

= [2p(HC1) + 2p(Ag) -/2(H2) - 2p(AgC1) + 2p(e-(L))  - 2#(e-(R))]  d~ (9.2-5) 

which can be written 

(.0Gelectr~ d~ (9.2-6) (0Gchem~ d~ + Ik, 0~ ,] 
0 - \  0~ J r,e r,e 

where Gchem includes the chemical potentials of substances other than electrons. All of 
these substances are neutral, so only the chemical parts of these chemical potentials are 
included. If the reaction took place outside of an electrochemical cell, (OGchem/O~)r, P 
would be the rate of change of Gibbs energy for the reaction. Since all other substances 
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were written as uncharged species, the electric potential occurs only in the chemical 
potential expression of the electrons. Both terminals are made of platinum and are at the 
same temperature and pressure, so the chemical parts of the chemical potential of the 
electrons cancel, we can write from Eq. (9.1-5): 

(0Gchem~ 
+ 2FE (9.2-7) 

where E is the difference in electric potential between the right terminal and the left 
terminal. We introduce our second convention: The potential difference o f  a cell (the 
cell voltage) is defined as the electric potential o f  the right electrode minus that o f  the 
left electrode: 

(9.2-8) 

Both electrodes must be made of the same material. 
Since electrons are negatively charged, a positive value of E means that the chemical 

potential of the electron is larger in the left electrode, and electrons move spontaneously 
from the left terminal to the right terminal if a circuit is connected between the 
terminals. In this case oxidation occurs at the left electrode, and the cell reaction 
proceeds spontaneously in the direction in which we wrote it. If the cell potential 
difference is negative, the reverse of the cell reaction proceeds spontaneously and 
electrons move spontaneously from right to left in the external circuit. 

The relation of Eq. (7.3-1) gives the chemical potential of each substance other than 
electrons in the form: 

#i = #~ + RT ln(ai) (9.2-9) 

We can now write 

2FE ~ -- -AG ~ - RT ln(Q) (9.2-10) 

where 

AG ~ - 2# ~ (HC1) + 2/~ ~ + #~ (H2) + 2# ~ (AgC1) (9.2-11) 

and where Q is the activity quotient: 

Q - [a(HC1)]2[a(Ag)]2[a(H2)] -l[a(AgC1)] -2 = 
[a(HC1)] 2 [a(Ag)] 2 

[a(H2)][a(AgC1)] 2 
(9.2-12) 

This quantity is the same as the activity quotient of Chapter 8, except that now Q can 
take on other values than its equilibrium value if there is no external circuit connecting 
the electrodes or if a counter e.m.f, maintains a persistent metastable state. 

The standard-state potential difference E ~ for this cell is defined as 

(9.2-13) 
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It is the potential difference (voltage) that would be measured if all substances were in 
their standard states (with unit activities). Equation (9.2-10) is now 

The Nernst equation is named for 
Hermann Walther Nernst, 1864-1941, 
the German physical chemist who was 
mentioned in Chapter 4 for his work on 
the third law of thermodynamics. 

where n is the number of electrons in the cell reaction equation and where 

Q -  Is a~; (9.2-19) 
i=1 

The activity quotient Q does not include the activity of the electron and contains the 
activities of the same substances as if the reaction took place outside of a cell. 
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Exercise 9.2 
a. Write the cell symbol, the cell reaction equation and the Nernst equation for the cell with the 

half-reactions: 

2Hg(1) + 2C1- ---> Hgz(Clz(s ) + 2~-  
C12(g ) + 2,~- --+ 2C1- 

*b. Find E for the cell at 298.15 K ifP(C12) = 0.965 atm and a(C1-) = 0.250. The standard cell 
voltage is E ~ = 1.091 V. 

If the cell reaction equation is modified by multiplying all of the stoichiometric 
coefficients by the same constant, say C, the Nernst equation is unchanged, because Q 
will be raised to the power C, while the n factor in the denominator in front of ln(Q) will 
be increased by the same factor C, canceling the effect of the exponent C. 

Exercise 9.3 
Multiply the cell reaction equation in Eq. (9.2-4) by �89 Write the Nernst equation for the new 
reaction equation and show that it is the same as Eq. (9.2-16). 

Determination of E ~ Values 

Since the standard states of solutes are hypothetical states, E ~ of any cell cannot be 
measured directly, but if E is measured and if the activity coefficients are known, E ~ can 
be calculated using Eq. (9.2-18). If the activity coefficients are not known, an 
extrapolation to zero concentration can be used since the activity coefficients approach 
unity in this limit. Consider the cell of Figure 9.2. We keep the pressure of the hydrogen 
equal to P~ and measure E at various molalities. For small enough values of m, 7+ will 
be given by the Debye-Hfickel formula. Let us use the augmented version of Eq. 
(7.4-14). For HC1, the ionic strength is equal to the molality m if no other electrolytes 
are present. If Eq. (7.4-14) is substituted into Eq. (9.2-16), 

o~ml/2 
2RT 1 + ) 

E -- E ~ + - - ~  (m/m o 1/2 

which can be rewritten 

E + - - f -  - 1 + ( m / m ~  1/2 - In F 

The left-hand-side of Eq. (9.2-20) contains only measurable quantities. If this function 
is plotted as a function of m, the plot should be linear in the region in which Eq. 
(9.2-20) is valid (the region near m - - 0 ) ,  so that extrapolation to the m = 0 axis is 
straightforward. The intercept is equal to E ~ and the slope of the tangent line near the 
axis is equal to 2RTb/F. 

An alternate method can also be used. For small values of m, not only is the ~zm 1/2 

term negligible compared to unity, but also the bm term is negligible compared to the 
ccm 1/2 term. If the bm term is omitted, Eq. (9.2-20) becomes 

2RT (~-S) E~ 2RT E + ~ In _ _t_ F ccm 1/2 (9.2-21) 
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If the left-hand-side of  this equation is plotted as a function of  m 1/2, the extrapolation to 
m = 0 should be nearly linear for small values o f  m 1/2, giving the value of  E ~ from the 
intercept. 

The cell of  Figure 9.3 has a hydrogen electrode on the left side and a calomel electrode 
on the right side. The calomel electrode contains liquid mercury with solid calomel 
(mercury(l) chloride, Hg2C12) in contact with it. A platinum wire extends from the pool 
of  mercury and acts as a terminal. The solution in this cell is an aqueous solution of  
hydrochloric acid, just as in the cell of  Figure 9.2. The reduction half-reaction of  the 
calomel electrode is 

Hg2C12(s ) + 2 e -  -+ 2Hg(1) + 2C1- (9.3-1) 

and the oxidation half-reaction of  the hydrogen electrode is the same as in Eq. (9.2-1). 
E ~ = 0.268 V for this cell. 

Exercise 9.4 
a. Write the cell reaction equation for the cell of Figure 9.3. 
b. Write the Nernst equation for the cell of Figure 9.3. 
c. Write an equation analogous to Eq. (9.2-20) that could be used to determine the value of E ~ 

for the cell of Figure 9.3. 



9.3 Half-Cell Potentials and Cell Potentials 301 

The cell that is obtained by interchanging the right and left half-cells of Figure 9.2 
has the cell reaction equation: 

2HC1 + 2Ag(s) + 2e - (R)  ~ H2(g ) + 2AgCI(s) + 2e- (L)  (9.3-2) 

The standard-state cell potential difference of this cell is the negative of that of the ceil 
of Figure 9.2, equal to -0.2223 V. 

Figure 9.4 shows a cell that contains the silver-silver chloride electrode on the left 
and the calomel electrode on the fight. It is possible to calculate the value of E ~ for this 
cell without making a measurement. We construct a double cell as depicted in Figure 
9.5. This cell consists of two complete cells, one of which is the "reversed" version of 
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the cell in Figure 9.2 and one of which is the cell of Figure 9.3. Hydrogen gas at the 
same pressure is fed into both hydrogen electrodes and the two HC1 solutions are at the 
same concentration (and the same activity). A wire is connected between the two 
hydrogen electrodes, and maintains them at the same electric potential. We can write 

E(double cell) - q~R(right cell) - q0L(lefl cell) 

= q0R(right cell) - qoL(right cell) + q0R(lefl cell) - q0L(lefl cell) 

The second equality follows from the fact that the two hydrogen electrodes are in the 
same state. The second equality is the same as 

E(double cell) - E(right cell) + E(left cell) 

Since this relation is true for an arbitrary state, it is true for the standard state: 

E~ cell) - E~ cell) + E~ cell) 

= 0.268 V + ( -0 .2223  V) - 0.046 V (9.3-3) 

The voltage of the cell in Figure 9.4 is also 0.046 V, because the state of the left 
electrode of the left cell in Figure 9.5 is not different from the state of the left electrode 
of the cell in Figure 9.2 and the state of the fight electrode of the fight cell in Figure 9.5 
is not different from the state of the fight electrode of the cell in Figure 9.4. 

We adopt the following convention: The standard-state potential difference of a cell 
consisting of  a hydrogen electrode on the left and any other electrode on the right is 
called the standard reduction potential of  the right electrode or of  the right half-cell. It 
is also sometimes called the standard half-cell potential or electrode potential. The 
standard-state potential difference of the cell of  Figure 9.4 can now be written 

E ~ - E~ half-cell) - E~ half-cell) (9.3-4) 

= 0.268 V - 0.222 V - 0.046 V (9.3-5) 

where these E ~ values are standard reduction potentials. The negative sign in Eq. (9.3-4) 
comes from the fact that the left cell in Figure 9.5 has its hydrogen electrode on the 
right, so that its standard-state potential difference is the negative of that conventionally 
assigned to its left electrode. 

The procedure that led to Eq. (9.3-4) for the cell of  Figure 9.4 can be applied to any 
pair of electrodes that can be combined to make a galvanic cell: To obtain the standard- 
state potential difference of  any cell take the standard reduction potential of the right 
half-cell and subtract the standard reduction potential of  the left half-cell from it. This 
procedure enables us to make a fairly short table of standard reduction potentials and 
from this table to calculate potential differences for a large number of cells. 

Exercise 9.5 
Show that from a table of N half-cell potentials, the potential differences for N(N - 1)/2 cells can 
be calculated if each half-cell can be combined with every other half-cell to make a cell. 

The convention that assigns standard reduction potentials relative to the standard 
hydrogen electrode is an arbitrary assignment. There have been a number of theoretical 
approaches to the determination of the "absolute" potential of electrodes (relative to the 
potential at a location infinitely distant from all charges). All of  them require 
assumptions and the use of nonthermodynamic theories. One work cites a value of 
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-4 .43V (absolute) for the standard hydrogen electrode. 2 Other workers have come up 
with values ranging from this value to -4 .73 V. We will use only half-cell potentials 
relative to the standard hydrogen electrode. Table A. 13 in the Appendix gives values for 
standard reduction potentials (in the molality description) for a number of half-cells. 
Longer versions of such tables are available in handbooks. Unfortunately, some older 
works use the opposite convention from the presently accepted conventions that we use, 
and give values that are the negative of the reduction potentials (these are called 
oxidation potentials). If you are not certain whether an old table gives reduction 
potentials or oxidation potentials, look for an active metal like sodium or potassium. If 
the table gives reduction potentials, the half-cell potential of such a metal will be 
negative. 

Cells with Liquid Junctions 
Some pairs of half-cells cannot be combined into a cell with a single liquid solution. A 
single solution in contact with both electrodes cannot contain all of the ionic species 
without undesired chemical reactions. Either a precipate would form or else one of the 
dissolved species would react directly with an electrode or another dissolved species. 
Such a cell must contain two different electrolyte solutions with a liquid junction 
between them. Consider the cell with the half-reactions 

Zn(s) ~ Zn 2+ -k- 2 e -  
Cu 2+ + 2 e -  --+ Cu(s) 

If the Cu 2+ ion were contained in the solution that contacts the zinc electrode, the 
oxidation and reduction half-reactions would take place at the interface between the 
zinc electrode and the solution, without transferring electrons through an external 
circuit. A galvanic cell with two compartments can be constructed to use these half- 

2H. Reiss and A. Heller, J. Phys. Chem., 89, 4207 (1985). 
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reactions as shown in Figure 9.6. This cell is known as the Daniell cell, and these cells 
were once used to power telephones and railroad signals. The left compartment contains 
a zinc electrode and a solution of zinc sulfate, and the fight compartment contains a 
copper electrode and a solution of copper(II) sulfate. The barrier between the 
compartments is porous and keeps the liquid junction between the solutions confined 
to one location. Ions can diffuse through the liquid filling its pores, but the two 
solutions cannot mix by flowing together. 

Some Daniell cells were constructed without a porous barrier. A concentrated CuSO4 
solution was placed in the bottom of the cell container and a less dense dilute ZnSO 4 
solution was layered above it. When the cell was not in use a small current was allowed 
to flow so that Cu 2+ ions were moving downward toward the copper electrode in the 
bottom of the container. This motion overcame the tendency of the Cu 2+ ions to diffuse 
upward, and the solutions did not mix appreciably. 

A cell with a liquid junction is called a cell with transference. In a cell symbol, a 
liquid junction is sometimes represented by a vertical broken line, but it can be 
represented by an unbroken vertical line like that of any phase boundary. The presence 
of the liquid junction makes it impossible to have a persistent metastable state of the 
cell, because ions can diffuse through the liquid junction even if the cell is on open 
circuit or has a counter e.m.f, to stop the flow of current. A cell with a liquid junction is 
not a reversible cell because reversing the current does not reverse these diffusion 
processes. The irreversible processes make a contribution to the potential difference of 
the cell, called the liquid junction potential. 
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to the liquid junction potential when diffusing in the same direction, and if their 
transference numbers are equal, their contributions cancel. The liquid junction 
potentials at the two ends of the salt bridge are of opposite signs, are fairly small, 
and nearly cancel. Calculations indicate that the net liquid junction potential with a 
salt bridge is generally no larger in magnitude than a few millivolts, and can be 
negligible in some cells. Liquid junction potentials without a salt bridge can range up to 
30 or 40 mV. 

Concentration Cells 

Figure 9.8 schematically depicts a concentration cell, which contains two solutions of 
the same electrolyte with different concentrations. The cell symbol of the cell of Figure 
9.8 can be written 

Pt(s)lH2(g, P1)[HCI(ml)I[HCI(m2)IH2(g, P2)lPt(s) 

where P1 and P2 represent two pressures of the hydrogen gas and m 1 and m 2 represent 
two different molalities of the HC1 solutions. If the hydrogen is at the same pressure in 
both sides of the cell, the cell reaction for this concentration cell is 

HCI(m2) --+ HCI(ml) (9.3-6) 

The standard states for the half-cells are the same, so E ~ vanishes for any concentration 
cell. The Nernst equation for our concentration cell is, assuming zero liquid junction 
potential, 

RT l n ( a l ( H C 1 ) ] _  RT ln(tT+lml/m~ ] _ 2RT ln{[7•176 
E - -  F a2(HC1)] F ~,[-~;m2/--~,]  F ~,[-~;m-22/--~,] 

(9.3-7) 

where the extra subscript on 7+ indicates the cell in which that value applies. If the 
activity coefficient of HC1 at one molality is known, this equation can be used to 
determine the activity coefficient at the other molality if the liquid junction potential 
can be evaluated. 
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In order to eliminate the liquid junction potential, the cell of Figure 9.8 can be 
replaced by the double cell of Figure 9.9, which is a reversible cell. Assuming that the 
pressure of hydrogen is equal to P~ in both cells, the Nemst equation for the left-hand 
cell is 

E(left cell) = 0.2223 V -  

and that of the fight-hand cell is 

2RT 
F ln(7+lml/m~ 

2RT 
E(right cell) - -0 .2223  V + ---if-- ln(T+2m2/m ~ 

so that the potential difference of the double cell is equal to that of Eq. (9.3-7) without 
the liquid junction potential. Another possibility is to build just one cell, like half of the 
double cell, and then to measure its potential difference once when filled with a solution 
of a given molality, and once when filled with a solution of another molality. 

*Exercise 9.7 
Find the potential difference of the concentration cell of Figure 9.8 if in solution 1 the molality is 
0.500 molkg -1 with mean ionic activity coefficient equal to 0.757, and in solution 2 the molality 
is 0.200 mol kg -1 with mean ionic activity coefficient equal to 0.767. 

In the case of a volatile electrolyte such as HC1 or HNO 3, the mean ionic activity 
coefficient can be determined for large concentrations from the partial vapor pressure, 
using Eq. (8.4-11). 
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4S. J. Bates and H. D. Kirschman, J. Am. Chem. Soc., 41, 1991 (1919). 
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The Gibbs-Duhen Integration 
For a two-component solution with a volatile solvent and a nonvolatile solute, values of 
the vapor pressure of the solvent can be used to obtain values of the activity coefficient 
of the solvent. If this is done for several values of the solvent mole fraction between 
unity and the composition of interest, integration of the Gibbs-Duhem relation can give 
the value of the activity coefficient of the solute. The vapor pressure of the solvent is 
usually determined using the isopiestic method. In this procedure, the solution of 
interest and a solution of a well-studied nonvolatile reference solute are placed in the 
same closed container at a fixed temperature, as schematically shown in Figure 9.10. 
For aqueous solutions, KC1 is usually used as the reference solute, since accurate water 
activity coefficients data are available for KC1 solutions. The solutions are left 
undisturbed at constant temperature until enough solvent has evaporated from one 
solution and condensed in the other solution to equilibrate the solvent in the two 
solutions. The solutions are then analyzed to determine the mole fractions of the solvent 
in both solutions. The activity of the solvent in the reference solution is then calculated 
from tables of values for the solvent in the reference solution, and equated to the 
activity of the solvent in the experimental solution. 

At equilibrium, the activity of solvent (substance 1) in the solution of interest (phase 
II) is equal to the activity of solvent in the reference solution (phase !). Therefore 

a l ( I )  71(I)Xl(I) (9.4-3) 
3; 1 (II) - -  X 1 (II) Xl (II) 

The activity of the solvent is often expressed in terms of the osmotic coefficient ~b, 
defined by 

~b - - ln(al-------~) = kt~ - #1 (definition) (9.4-4) 
M 1  v m 2  R T M  1 v m  2 

where al is the activity of the solvent, M1 is the molar mass of the solvent, v = v+ + v_ 
for the solute, and m 2 is the stoichiometric molality of the solute (the molality that 
would occur if no dissociation occurred). If the solute dissociates completely, vm 2 is 
equal to the sum of the molalities of the ions. From Eq. (9.4-4), 

[21 - -  [2~ --  RTM1 vm2qb (9.4-5) 

The chemical potential of the solute can be written 

]22 - -  ]2~ -Jr- v R T  l n ( v + T z m z / m  ~ ( 9 . 4 - 6 )  

where we write 72 for 7+- 
For constant pressure and temperature, the Gibbs-Duhem relation for a two- 

component system is given by Eq. (5.6-11), 

n 1 d#l + n 2 dk t  2 - -  0 (9.4-7) 

Since the molality m 2 is equal to the amount of substance 2 divided by the mass of 
substance 1, 

n 2 = m 2 n l M  1 ( 9 . 4 - 8 )  

where M 1 is the molar mass of substance 1. Use of Equations (9.4-5), (9.4-6), and 
(9.4-8) in Eq. (9.4-7) gives 

-nlvRTMl[m 2 ddp + ~ dm2] + mznlM1vRT[dln(72) + d ln(m2) ] -- 0 



310 9 The Thermodynamics of Electrical Systems 

Cancellation of the common factor and use of the identity 

d ln(m) -- (1/m) d m  

gives 

which is the same as 

- m  2 ddp - dp d m  2 -t- m 2 d ln(72) 4- d m  2 = 0 (9.4-9) 

d ln(72) - ddp -t- d m  2 (9.4-10) 
m2 

Equation (9.4-10) can be integrated from m 2 = 0 to m 2 - m~, a particular value of m2: 

d ln(72) - d ~  + d m  2 (9.4-11) 
d m  2 - - 0  d m  2 =0 0 m2 

The integral on the left-hand side yields zero at its lower limit, since the activity 
coefficient approaches unity as m 2 approaches 0. It can be shown that ~b approaches 
unity as m 2 approaches zero, so that 

t ."z  
t 

-- 1 2 d m  2 (9.4-12) ln(y(m~)) -  ~b(m~) 1 + ~b-  1 
J0 m2 

If values of ~b are measured over the range of molalities between 0 and m~, numerical 
integration of this equation gives the value of 72 at m~. 

Exercise 9.8 
Using the relation x I - 1 - x  2 ~ - -  1 -n2/n 1 at high dilution, show that q~ approaches 1 as m 2 
approaches 0. 

Determination of pH 
Since the activity of a single ion cannot be measured, we cannot correctly use the 
definition of the pH given in Eq. (8.5-1). Instead we define the pH by 

pH = - lOgl0[a'(H+)] (9.4-13) 

where a'(H +) is the closest approximation to the activity of hydrogen ions that can be 
obtained. In Example 9.5, Eq. (9.4-2) was used to calculate the activity of HC1 in a cell 
containing HC1 in solution. We can write 

a(H+)a(C1 - )  = a(HC1) (9.4-14) 

If we can assume that a(H +) is approximately equal to a(C1-), then we have a value of 
a(H+), and thus of the pH for this cell. 

Exercise 9.9 
Find the pH of the solution in the cell of Example 9.5, using the assumption stated above. 

In order to measure the pH conveniently, it is customary to modify the cell of Figure 
9.2 as shown in Figure 9.11. The calomel electrode is fitted with a porous plug in which 
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a liquid junction is formed. The solution in the container of the calomel electrode is a 
KC1 solution that is saturated with calomel. If the concentration of the KC1 is 
1.000 mol L -1, the electrode is called the normal calomel electrode. If the solution 
is saturated in KC1 as well as in calomel, the electrode is called the saturated calomel 
electrode. The half-cell potential of the normal calomel electrode is 0.2802 V, and that 
of the saturated calomel electrode is 0.2415 V. We place the calomel electrode and the 
hydrogen electrode in the solution whose pH we wish to measure, as shown in the 
figure. The solution does not have to be a solution of HC1, since the chloride ions 
needed to react at the calomel electrode are in the solution of the calomel electrode. 

The Nernst equation for the cell of Figure 9.11 is 

E = 0.2415 V + ELj 
RT ( a(H+)a(C1 -) 

(9.4-15) 

where a(H +) is measured in one solution and a(C1-) is measured in the other solution. 
Since the KC1 solution on the calomel electrode side of the liquid junction is 
presumably much more concentrated than the solution on the other side, the magnitude 
of the liquid junction potential should be fairly small, and should not change much 
when a different solution is placed in the cell. 

The activity of the chloride ion is not known accurately, since it is a single-ion 
activity, and we cannot assume that the H + ions and the C1- ions have equal activity 
coefficients, so we do not try to use Eq. (9.4-15) directly. Instead, we first put into the 
cell a reference solution (solution I) that has a known value of its pH. We measure the 
voltage of the cell at a known hydrogen pressure, and then remove this solution and put 
a solution whose pH we wish to determine (solution II) into the cell, and measure the 
voltage with the same hydrogen pressure as before. We assume that the liquid junction 
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potential has the same value in both cases and that the activity of the chloride ion is the 
same in both cases, so that 

RT 
g ( i i  ) _ E ( I )  _ RT ln[a(H + II)] + ln[a(H + I)] 

- - - - k -  ' T -  ' 
(9.4-16) 

where E (I) and E (II) a r e  the two voltages measured. Equation (9.4-16) is the same as 

(9.4-17) 

We can regard Eq. (9.4-17) as an operational definition of pH, equivalent to Eq. 
(9.4-13). The pH of solution I must be known in advance. 

Exercise 9.10 
Show that Eq. (9.4-17) is correct. 

The first commonly available pH meter 
was made possible in the late 1930s 
when Arnold Beckman, a chemistry 
professor at the California Institute of 
Technology, invented an amplifier that 
allowed the voltage-measuring device 
to read the cell voltage. Professor 
Beckman left Caltech and founded a 
company that sold the pH meters 
and the famous Beckman DU 
spectrophotometer, which used the 
same amplifier. 

The glass electrode has come into common use to replace the hydrogen electrode, 
which can be dangerous. This electrode is schematically depicted in Figure 9.12. It 
consists of a silver-silver chloride electrode inside a thin-walled glass bulb filled with a 
buffered solution of nearly constant pH. To measure the pH of an unknown solution, a 
glass electrode and a calomel electrode are immersed in the solution. The special glass 
of which the bulb is made allows hydrogen ions to establish an equilibrium across the 
membrane. Since the chemical part of the chemical potential is not the same on the two 
sides of the membrane, there is an electrical potential difference across the glass 
membrane. 

Although the voltage of the cell depends on the exact nature of the glass membrane 
and on the hydrogen ion activity inside the bulb, the dependence of the voltage on the 
pH of the unknown solution is the same as in the cell of Figure 9.11, so that Eq. 
(9.4-17) can be used if a reference solution is available, pH meters are found in almost 
every chemistry laboratory, and consist of the pair of electrodes described above, a 
voltage-measuring device, an analog or digital display, and a circuit that gives the pH 
directly without requiting the operator to substitute numbers into Eq. (9.4-17). Since the 
temperature occurs in Eq. (9.4-17), most pH meters have a control knob with which one 
can set the temperature. 

*Exercise 9.11 
Calculate the difference between the cell voltages that occur for a pH reading of 7.00 and one of 
12.50 at 298.15 K. 

Thermodynamic information about many chemical reactions that occur outside of 
electrochemical cells can be obtained from electrochemical measurements. For a 
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general reaction written in the form of Eq. (9.2-17), the analogue of Eq. (9.2-7) is 

*Exercise 9.12 
Find the value of the equilibrium constant for the reaction of Exercise 9.2 at 298.15 K. 

From Eq. (7.6-3), we can write an expression for the entropy change of a reaction 
outside of an electrochemical cell (we now omit the subscript "chem"): 

oI t ( to t) T,P T,P p P 

(9.5-4) 
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For the standard-state reaction, this equation becomes 
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Even though this reaction equation is not an oxidation-reduction reaction, it can be 
written as the sum of the oxidation and reduction half-reaction equations: 

AgI(s) + ~ -  --+ Ag(s) + I-  E ~ = -0 .1519  V 

Ag(s) --+ Ag + + e -  E ~ = -0 .7986  V 

AgI(s) --+ Ag + + I-  E ~ = -0 .9505  V 

The solubility product constant is, from Eq. (9.5-3), 

((1)(96485; C mo1-I)(-0.9505 V)'~ 
Ksp -- exp~-(~Si~- ~ ~-K--_T ~ol--i)--~-~:i~ ~-~,,] = e -36"99 = 8.6 • 10 -17 

Summary of the Chapter 

In this chapter, we have discussed the thermodynamics of electrochemical cells. An 
electrochemical cell can function as an electrolytic cell, in which an externally imposed 
voltage produces a chemical reaction, or as a galvanic cell, in which a spontaneous 
chemical reaction produces a current in an external circuit. An equilibrium electro- 
chemical cell is at the state between these two conditions. 

The chemical potential of a charged species was separated into two contributions: 

]2i = ]gi(chem) -}- ziFgo 

where z i is the valence of the charged species i, F is Faraday's constant, and go is the 
electric potential. 

The Nernst equation is 

E -  E ~ . . . .  R T  ln(Q) 
n F  

where Q is the activity quotient for the reaction and where E ~ is the reversible standard- 
state cell voltage. 

Standard-state half-cell reduction potentials can be used to obtain the standard-state 
voltage for any cell that can be made from two half-cells in the table, using the relation 

E ~ = E ~ (right) - E ~ (left) 

where E~ and E~ are the half-cell potentials for the two electrodes in their 
standard states. 

Thermodynamic functions can be determined electrochemically, using the relations 

A Gchem = - n F E ~  

K -  e--AG2hem/RT - -  e nFE~ 

where AGc~ refers to the reaction outside of  the cell. 
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1. The first model system that represents a dilute gas is a system of 
noninteracting molecules without internal structure. 

2. The first part of the kinetic theory of gases is the mathematical analysis of 
the behavior of this model system, and includes averages over microscopic 
states of the molecules of the system, using probability distributions. 

3. The probability distribution for molecular velocities is the Maxwell- 
Boltzmann probability distribution: 

(Probability of a state of velocity v) c< e -mvz/2kBT 

4. The probability distribution for molecular speeds is 

(Probability of a speed v) c~ v 2e -mvz/zkB T 

5. Gas kinetic theory of noninteracting molecules predicts the ideal gas 
equation of state. 

6. Gas kinetic theory predicts the rate of wall collisions and the rate of effusion 
of a dilute gas. 

7. The molecules of real gases and liquids are fairly accurately described by a 
pair potential function that corresponds to intermolecular attractions at 
moderate distances and repulsions at short distances. 

8. The second model of a dilute gas is the hard-sphere gas, which allows 
analysis of molecular collisions. 

9. The properties of a liquid can be understood qualitatively in terms of 
intermolecular forces. 

319 
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Daniel Bernoulli, 1700-1782, was a 
Swiss mathematician best known for 
Bernoulli's principle, which states that 
the pressure decreases as the flow 
velocity of a fluid increases. 

James Prescott Joule, 1818-1889, 
was a great English physicist who 
pioneered in the thermodynamic study 
of work, heat, and energy while 
managing his family's brewery. 

James Clerk Maxwell, 1831-1879, in 
addition to his work on gas kinetic 
theory, also derived the Maxwell 
relations of thermodynamics and the 
Maxwell equations of electrodynamics. 

Ludwig Boltzmann, 1844-1906, was 
an Austrian physicist who was one of 
the inventors of gas kinetic theory, and 
who killed himself when his ideas were 
not widely accepted. 

John James Waterston, 1811-1883, 
was teaching in India at the time of his 
work on kinetic theory, and was unable 
to get his work published. 

Chapter 1 presented the two principal types of states of systems: microscopic or 
mechanical states, and macroscopic or thermodynamic states. A gas is a system that 
consists of many rapidly moving molecules moving about in a volume considerably 
larger than the total volume of the molecules. In previous chapters we have applied 
much of thermodynamic theory to the macroscopic states of gases. In this chapter we 
study gas kinetic theory, which explicitly averages over molecular states of a system of 
particles obeying classical mechanics in order to gain information about the macro- 
scopic behavior of the gas. 

Gas kinetic theory was originated by Bernoulli, who was the first to test the 
consequences of assuming that a gas was a mechanical system made up of many 
tiny moving particles. It was brought to an advanced state by Joule, Maxwell, and 
Boltzmann. The fundamentals were worked out independently by Waterson, about 15 
years prior to the work of Joule and Maxwell. Gas kinetic theory is similar in spirit to 
statistical mechanics, which we study in Chapter 21. However, statistical mechanics is 
not restricted to the study of gases, and is not restricted to the use of classical mechancs. 

Definition of the Model System 
The simplest model system that represents a dilute gas is depicted in Figure 10.1. It has 
the following properties. 

1. It consists of a large number, N, of molecules, moving about randomly in a 
container. For the present, we assume that all of the molecules have the same mass. 

2. The motions of these molecules are governed by classical (Newtonian) mechanics. 
3. The molecules are point mass particles that do not exert any forces on each other. A 

point mass is an object of vanishingly small size, so that point masses cannot collide 
with each other. 

4. The container confining the gas is a rectangular box with smooth hard walls. 

We will derive the probability distributions of molecular velocities and speeds and will 
show that this model obeys the ideal gas law. In a later part of the chapter we will define 
a slightly more realistic model system. 

The Mechanical States of the Model System 
According to classical mechanics, the mechanical state (microstate) of the system is 
specified by giving the position and velocity of every particle. Let us number the 
particles from 1 to N. The position of particle number i in three dimensions can be 
specified by its cartesian coordinates x i, Y i ,  and z i, equivalent to a position vector r i that 
has its tail at the origin of the coordinate system and its head at the particle's location. 
The components of the position vector are the cartesian coordinates x i, Y i ,  and z i. The 
unit vectors i, j, and k (vectors of unit length) are defined such that i points in the 
direction of the positive x axis, j points in the direction of the positive y axis, and k 
points in the direction of the positive z axis. The position vector can be written in terms 
of the unit vectors and components: 

ri  - -  iXi  21- JYi + kz ,  i (10.1-1) 
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A vector is denoted by a letter in boldface type. Since it is difficult to write in boldface, 
you can also represent a vector by a letter with an arrow above it, as in ~. A vector is 
also denoted by its three cartesian components listed within parentheses, as in 
ri - -  (x i ,  Yi ,  z i ) .  Appendix B contains a brief introduction to vectors. 

Figure 10.2 shows the vector r, the cartesian axes, the unit vectors, and the cartesian 
components of the vector. Each term in Eq. (10.1-1) is a product of a scalar (the 
component) and a unit vector. Such a product is a second vector with the same direction 
as the unit vector if the scalar is positive. If the scalar is negative, the product is in the 
opposite direction from the unit vector. The position vector equals the sum of three 
vectors. The sum of two vectors can be represented geometrically by moving the second 
vector so its tail is at the head of the first vector, and drawing the sum vector from the 
tail of the first to the head of the second. Figure 10.3 shows how its three components 
times their unit vectors add to equal the position vector r i. 

The velocity of particle number i is specified by the velocity vector 

V i - -  iVix + JViy + kviz (10.1-2) 

The components of the velocity are the rates of change of xi, Yi, and z i" 

dxi dyi dzi 
V ix - -  d t  ' O i y  d t  v iz dt  (10.1-3) 
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The velocity vector can be represented geometrically in much the same way as the 
position vector, as in Figure 10.4. The space of  this figure is called velocity space. It is 
not a physical space, but is a graph of  rates of  motion. However, many of the 
mathematical properties of  ordinary space apply to velocity and we will treat it much 

like ordinary space. 
The direction of  the velocity vector is the direction of  motion of  the particle and its 

magnitude is the speed: 

Iv, I = = (4 + + 'gz) ' '2 (10.1-4) 

We use either of  the two notations in Eq. (10.1-4) to denote the magnitude of  a vector: 
the boldface letter within vertical bars, and the letter in plain type. The magnitude of  a 
vector is always nonnegative, although a vector's components can be positive, negative, 
or equal to zero. 

Exercise 10.1 
a. Use the theorem of Pythagoras to verify Eq. (10.1-4). (It must be used twice.) 

*b. Find the speed of a particle with the velocity components: 

v x = 400 m s -1, Vy = -600 m s -1 , Vz - 750 m s -1 

*c. If this particle is a neon atom, find its kinetic energy. 
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The instantaneous microstate of the model system is specified by giving the values 
of three coordinates and three velocity components for each of the N particles, a total 
of 6N numbers. Note the vast difference between the amount of information in 
the specification of the microscopic state and the specification of the macroscopic 
state of our gas. Specification of the microscopic state requires approximately 
3600,000,000,000,000,000,000,000 values for a system containing one mole. It is 
impossible to determine this many values, especially since molecules are too small to be 
observed directly. 

Specification of the equilibrium macroscopic state requires the values of only three 
variables, such as T, V, and n. This vast difference in amount of information indicates 
that many microscopic states must correspond to the same macroscopic state. In 
Chapter 1 we asserted that an average of these many microscopic states corresponds to 
the single macroscopic state. Gas kinetic theory provides a way to carry out this average 
without information about the states of the individual molecules. 

The Mechanical Behavior of the System---Newton's Laws 
of Motion 

Newton's second law is the most important formula of classical mechanics: 

dvi  - d2ri (10.1-5) 
F i --- m i a  i - -  m i ~ mi  d t  2 

where F i is the force on the ith particle, m i is its mass, and a i is its acceleration, or rate 
of change of its velocity. Since the velocity is a vector, a i is also a vector. Equation 
(10.1-5) is a vector equation, so it is equivalent to three scalar equations, one of which is 

( d v i x ' ~ _  (d2x i '~  
Fix -- mi ~, dt  ] m i k - - ~ -  ] (10.1-6) 

Since the particles in our model system do not interact with each other, the only forces 
on them are the forces due to interactions at the walls of the container holding the gas. 
Away from the walls, the particles move in straight lines at constant speeds. 

Mean Values over Molecular States 

Just as we recognized state functions of macroscopic states, we recognize state 
functions of microscopic states. All mechanical properties of the system are functions 
of the positions and velocities of the particles, and therefore are state functions 
depending only on the microscopic state of the system. The mechanical energy is the 
sum of the kinetic and the potential energy: 

E = ~s + "U (10.1-7) 

The kinetic energy of the system, s(, is a microscopic state function that depends only 
on the velocities of the particles. It is given by 

m + + + . . .  + 
--/f~l "nt-/f~2 nt-/'~3 +"""-t- /2"~N--~- 

N 
- - m ~-~ v2 (10.1-8) 

2 i=1 

where/f~i represents the kinetic energy of particle number i and where we have assumed 
that all of the particles of our model system have the same massl 
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Forces that are velocity-independent can be derived from a potential energy (see 
Appendix D). The potential energy, ~ ,  is a microscopic state function that depends only 
on the positions of the particles: 

~/" = ~F~(rl, r 2 . . . . .  r , )  (10.1-9) 

For the present, we will ignore the effects of gravity, which are insignificant unless the 
gas is confined in a very tall container. The molecules of our system have no forces 
exerted on them except by the walls enclosing the system, so their potential energy is 
constant so long as they remain within these walls, and we can set this potential energy 
equal to zero inside the container. (No physical effect is ever produced by adding a 
constant to a potential energy.) In order to represent the confinement of the particles in 
the container, we assign an infinite value to the potential energy if any particle is outside 
of the box. 

Since the potential energy is zero for possible states of the system, the energy of the 
system is equal to the sum of the molecular kinetic energies: 

E = 6,1 -1- 6,2 -'1- 6,3 J r - ' "  + 6,N = / f : l  '~ "/f~:2 '~/f~3 -Jr- ' ' '  Jr-/f~:X = ~ (10.1-10) 

where we use the symbol e i for the energy of particle number i, which is now equal to 
the kinetic energy of the particle, denoted by Zi. The mean molecular kinetic energy is 
given by the sum of the molecular kinetic energies divided by the number of molecules: 

1 ~" E 
(6,) - - ~ ( B  1 + 8 2 -~- B 3 n t - ' ' "  -~- BN) - - - ~ - - - ~  (10.1-11) 

We now seek a means of determining this mean value without knowledge of the many 
individual terms making it up. I fp j  is the fraction of the molecules in statej with energy 
equal to 6,j, 

Nj (10.1-12) 
PJ = N 

then we can write the mean molecular energy as in Eq. (1.5-4): 

( e ) -  y~pjej (10.1-13) 
J 

where this sum is a sum over the possible molecular states, not over the molecules. The 
set of fractions P2, P2, P3 . . . .  is a probability distribution, since the probability that a 
particular state will be observed if a molecule is chosen randomly is equal to the 
fraction of the molecules that are in this state. If we can obtain an expression for the p's, 
we can carry out the average without knowledge of the energies of the individual 
molecules. 

Since we describe our system with classical mechanics, averaging over molecular 
energies is equivalent to averaging over molecular coordinates and momenta. Coordi- 
nates and momenta vary continuously, so we must integrate over their possible values 
instead of summing over discrete energies as in Eq. (10.1-13). 
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Probability Distributions for Continously Varying Quantities 
Consider some continuously varying quantity u that can take on values in some range. 
We define a probability distribution f ( u )  such that 

( The probability that u lies ) 
between u' and u' + du - f (u) du (10.2-1) 

where du is a small (infinitesimal) range of values of u. The probability distributionf(u) 
is independent of the size of du and is a probability per unit length on the u axis, so that 
it is also called a probability density. Figure 10.5 schematically depicts a probability 
density. The probability of a small interval of width du is given by the product f (u)  du, 
which is equal to the area that is shaded in the figure. 

If u 1 is the smallest possible value of u and u 2 is the largest possible value, the total 
probability is equal to the integral 

Ji Total probability - f ( u )  du (10.2-2) 
1 

which is equal to the area under the curve representing the probability density. In some 
cases b/1 - - -  --OO and tg 2 = -3t-OO. TO normalize the probability density, we multiply the 
probability density by a constant so that the total probability equals unity. If the 
probability density is normalized, the mean value of u is given by an equation that is 
analogous to Eq. (1.5-4) and Eq. (10.1-13): 

(u) -- u f (u)  du (10.2-3) 
u, 

We can calculate the mean of a function of the independent variable u: 

'2 

(h(u)) - h(u) f (u) gu 
1 

(10.2-4) 

Velocity Probability Distributions 
We now seek a formula that represents the probability distribution for the velocities of 
molecules in our model system. Such a formula will enable us to write an integral 
representing the mean kinetic energy of the molecules of our system, among other 
things. We begin with a reasonable (but unproved) assumption: The probabili ty density 
o f  each velocity component  is independent o f  the other velocity components.  This 
assumption is sufficient to determine the mathematical form of the probability 
distribution. Consider the velocity of a representative particle, with components v x, 
Vy, and v z. Let f (Vx)  be the probability density for v x. The probability that v x will lie 
between v' x (a particular value of vx) and v'x + dvx is given by 

(Probability) = f(V'x) dv x (10.2-5) 

The probability density in the other two dimensions is similar. Now consider the joint 
probability in three dimensions. Let v~, Vy, and V'z be particular values of v x, Vy, and v z. 
Let the probability that v x lies between V'x and V'x + dvx, and that Vy is in the range 
between v~ and V'y + dry, and that Vz lies between v' z and V'z -t-dvz be given by 

(Probability) - g(Vfx, v'y, v'z) dv x dry dv z - g(v') d3v (10.2-6) 
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where we abbreviate the product of the three differentials dvx dry dv  z by the symbol d3v 
and write the dependence on the vector components as dependence on the vector v. 

The probability density g(v) is a probability per unit volume in velocity space. That 
is, the probability for an infinitesimal region in velocity space is equal to the probability 
density evaluated for the location of the region times the volume of the infinitesimal 
region (a volume element), which is equal to dvx dry dvz. The probability for a finite 
region is the integral of the probability density over that region. Figure 10.6 shows the 
velocity space with a volume element, which unfortunately must be drawn with finite 
size. 

If the effects of gravity are negligible, there is no physical difference between any two 
directions. Therefore, g can depend only on the magnitude of v (the speed v), and not 
on its direciton. Furthermore, the probability distributions for Vy and v z must be the 
same function as that for v x. We have assumed that the probability densities for v x, Vy, 

and Vz are independent of each other. It is a fact of probability theory that the joint 
probability of three independent events is the product of the probabilities of the three 
events. Therefore, 

g(v) -- g(v)  - f (Vx) / ( v y )  f (Vz) (10.2-7) 

The assumptions made to obtain Eq. (10.2-7) are sufficient to determine the mathe- 
matical forms of the probability distributions f and g, as follows. 

We first differentiate g with respect to Vx. By the chain rule, Eq. (B-9) of Appendix B, 

~ ~ ~ - - ~ ~  2 1  0g ag ag o[( x 
3v x dv  3v x dv  Ov x 

_ dg  1 (v 2 4- v 2 4- v 2 ) - l / 2 ( 2 V x )  - -  d g  v x (10.2-8) 
- --dvv 2 dv  v 

We divide this equation by v x to get 

l o g  l dg  
= - - -  (10.2-9) 

v x 3v x v dv  

Since v x, vy, and v z all occur in the expression for the speed v in the same way, the 
corresponding equation for differentiation by vy or v z will be the same except for having 
vy or v z in place of v x. The fight-hand side of each equation will be the same, so that 

l o g  l o g  l o g  l d g  
- -  ~ = = . . . . .  (10.2-10) 
V x OV x Vy OVy V z 3v z v dv  

We extract three ordinary differential equations for this partial differential equation by 
separation of variables. The first step in this technique is to manipulate the equation 
into a set of terms such that each term depends on only one variable. Since vy and Vz are 
treated as constants in the v x differentiation 

3g = f ( v y ) f ( V z )  d f  (10.2-11) 
3v x dvx 

Similar equations for (3g/Ov;)  and (Og/OVz) can be written, so that Eq. (10.2-10) 
becomes 

(10.2-12) 
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Division of this equation by f (Vx)  f (Vy)  f (Vz)  gives 

l ( d f ) -  l ( d d @ s ) - l ( d f  ) 
V x f ( l )x)  -d~v x Vy f(Vy-------~ 1) z f (Vz )  ~V z 

(10.2-13) 

In this equation we have separated the variables v x, Vy, and v z. That is, we have an 
equation in which each of these variables occurs in only one term. Since these variables 
are independent, it is possible to keep Vy and v z constant while allowing v x to range. 
Therefore, the first term must be a constant function of v x. The second term must be a 
constant function of Vy, and the third term must be a constant function of Vz. Each term 
of the equation equals the same constant, denoted by C. Setting the first term equal to C 
and multiplying by Vxf(Vx), we obtain: 

df 
= Cv x f (Vx)  (10.2-14) 

dvx 

We will use this technique of separation of variables several times in our study of 
quantum mechanics. The basic procedure is to manipulate the expression into a set of 
terms such that each depends on a single independent variable and set each term equal 
to a constant. 

Equation (10.2-14) is an ordinary differential equation that can be solved by a second 
version of separation of variables. In Eq. (10.2-13) we separated three independent 
variables from each other. We now separate a dependent variable from an independent 
variable. We multiply Eq. (10.2-14) by dv x and divide it b y f ( v x ) .  

lay  
dv x = Cv x dv x (10.2-15) 

f d G  

We recognize (d f /dvx )  dvx as the differential of the dependent variable, df, and write 

1 
7 d f  - Cv x dv x (10.2-16) 
J 

The variables are separated: the left-hand side of this equation contains only f, the 
dependent variable, and the right-hand side contains only Vx, the independent variable. 
This equation can be solved by carrying out an integration. An indefinite integration of 
both sides of Eq. (10.2-16) gives 

ln(f)  -- - - ~  + A ( 10.2-17) 

where A is a constant of integration. We take the exponential of each side to obtain the 
formula for our probability distribution, 

f (Vx)  = e'4e cv2x/2 (10.2-18) 

We will require that f is normalized, which means that the integral o f f  over all 
possible values of v x is equal to unity: 

J ~ - 1 1 0 . 2 - 1  f (Vx)  dvx ( 9) 

Since we are using nonrelativistic mechanics, speeds greater then the speed of light are 
not excluded. 

The constant C must be negative, since otherwise the integrand in Eq. (10.2-19) 
would grow without bound for large magnitudes of v x, and the integral would diverge. 
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We let b = - C ,  so that b is positive. We eliminate the parameter A by the normalization 
condition: 

1 = e '4 e -bv2/2 d v  x - e A (10.2-20) 
--(30 

where we have looked up the definite integral in Appendix C. Solving Eq. (10.2-20)for 
e A, we have 

- ( 1 0 . 2 - 2 1 )  

and Eq. (10.2-18) becomes 

f (v~) - e - b ~ / 2  

The probability distribution for all three components is 

g ( v )  = f ( v x ) f ( v y ) f ( V z )  = e-bv2x/2e-bv2/2e -be2~2 

(10.2-22) 

_ e-b(v2 +v 2 +v~)/2 (10.2-23) 

The exponent in the probability distribution function is proportional to the kinetic 
energy of the particle, e, so that we can also write 

g ( v )  - e -b~/m (10.2-24) 

To finish our derivation, we must identify the parameter b. The total energy of a 
system is the sum of kinetic and potential energy. We have set the potential energy of 
the system equal to zero, so that the energy is all kinetic energy: 

M 
E - • - N(e) - N-~- (v 2) (10.2-25) 

The mean molecular kinetic energy is 

m m ( v 2  + 2 2 (~> - ~ (v2> = ~ v; + Vz) 

= m( (v2 )+  (v 2) + (v2)) (10.2-26) 
2 

Because the x, y, and z velocity component probability distributions are the same 
function, the three terms in Eq. (10.2-26) will be equal to each other after integration, 
and 

( ~ )  (b)3/2J OO I OO .I O~ 2 2 __ 2 - b y  /2  - b y  ~ 2 e - b y 2 ~ 2  3 m  (v2x ) _  Vx e x e y d v  x dvy  d v  z 
(~) - Y  -o0  -oo -oo  

(10.2-27) 

where we have written g in its original factored form. We can factor the multiple 
integral in Eq. (10.2-27), since our limits are constants and the integrand can be 
factored: 

2 by 2 /2  e-bv2/2 e-bv2/2 
(e) - -  Vx e x d v  x d v y  d v  z (10.2-28) 

- - ~  --OG --OG 
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The integrals over Vy and v z in Eq. (10.2-28) are the same as in Eq. (10.2-20), so they 
produce factors of (2re~b) 1/2. The integration over v x gives 

( 8 , ) -  v2e -bv2/2 dv  x 

_ (27c)1/2b_3/2 3m = 2--ff (10.2-29) 

where we have looked the integral up in Appendix C. 
In order to complete our identification of the parameter b, we must invoke some 

experimental information. In Chapter 3, we asserted as an experimental fact that the 
thermodynamic energy of a monatomic gas is very nearly given by Eq. (3.3-6): 

3 3 
U - -~ n R T  - -~ N k  B T (10.2-30) 

where k B is Boltzmann's constant, already introduced in Eq. (1.3-13), and equal to 
R / N A v ,  the ideal gas constant divided by Avogadro's constant. We assume that we can 
identify the thermodynamic energy with the mechanical energy of the system: 

U = E  = N ( e )  (10.2-31) 

The mean molecular kinetic energy is now 

3 
(a) - - - ~ k B T  (10.2-32) 

Comparison of Eqs. (10.2-29) and (10.2-32) allows us to identify the parameter b: 

b = m / k B T  (10.2-33) 

Equation (10.2-23) becomes 

(10.2-34) 

(10.2-35) 

which is the same as the Boltzmann probability distribution of Eq. (1.5-17) in 
normalized form. 

The important qualitative physical facts about the Boltzmann probability distribution 
were presented in Chapter 1: 

1. At a fixed temperature, molecular states of higher energy are less probable than 
states of lower energy. States with energy much larger than k B T  are quite 
improbable. 

2. A molecular state of high energy will be more probable at a high temperature than at 
a low temperature. As the temperature approaches infinity, all states approach equal 
probability. 
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*Exercise 10.2 
Find the ratio of the probabilities of the following two velocities of argon atoms at 300 K: 

I v -  9 9 0 m s  -1 First velocity: v x -- 650 m s -1, Vy = 780 m s- , z 
Second velocity: v x - 300 m s -1, Vy = 290 m s -1, v z = 430 m s -1 

The probability density for the x component of  the velocity is 

) 1/2 
m e_mV2/2kB T (10.2-36) 

f ( V x )  - 2 ~ z k  B T 

This probability distribution is represented in Figure 10.7 for oxygen molecules at 

298 K. It is an example of  a gauss ian dis t r ibut ion,  also called a n o r m a l  distr ibution.  
A gaussian probability distribution is sometimes called a "bell-curve" or a "bell-shaped 

curve" because of  the shape of  the graph representing it. It is represented by the 
formula 

(10.2-37) 

(10.2-38) 
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Figure 10.8. The Gaussian (Normal) Probabi l i ty Distr ibut ion.  (a) T h e  g r a p h  s h o w i n g  t h e  

famous "bell-shaped" curve. (b) The probability that the variable deviates no more than one 
standard deviation from its mean. The shaded area represents this probability, given that the total 
area under the curve equals unity (normalization). 

where u stands for the independent variable. The standard deviation is a convenient 

measure of the width of a probability distribution. 

E x e r c i s e  10 .3  

Show that the definition in Eq. (10.2-38) when applied to tile gaussian probability distribution 
leads to % -  a. 

* E x e r c i s e  10 .4  

a. By comparison with Eq. (10.2-37), find a formula for tile standard deviation a of tile 
probability distribution of Eq. (10.2-36). 

b. Find the value of the standard deviation for oxygen molecules at 298 K. 

If h(u) is a function of u, the mean value of h(u) can be calculated as in Eq. (10.2-4) 
and the mean value of h(u) 2 can be calculated in a similar way. The standard deviation 

of h is defined as follows: 

a t , -  [(h(u) 2) - (h(u))2] 1/2 (definition) (10.2-39) 

* E x e r c i s e  10.5  
a. Obtain a formula for the standard deviation of tile c, contribution to the kinetic energy. 
b. Evaluate this standard deviation for oxygen molecules at 298 K. 

Since the probability that a variable u has a value between u' and u'+ du equals 

f(u') du, the probability that u lies between a and b is 

.h 

(Probability that a < u < h) - I f ( u )  du 
, El 

( ! 0.2-40) 
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Unfortunately, the gaussian probability distribution is an integrand function for which 

no antiderivative can be found, so that a probability integral such as in Eq. (10.2-40) for 

a gaussian distribution must be carried out numerically or looked up in a table of  values. 

In a gaussian probability distribution, 68.3% of  the members of  the statistical 

population lie within one standard deviation of  the mean. This probability is repre- 
sented in Figure 10.8b as a shaded area. For most ordinary distributions other than the 

gaussian distribution, the probability that the random variable lies within one standard 

deviation of  the mean is approximately equal to two-thirds. 

*Exercise 10.6 
a. Find the probability that v x for an argon atom in a system at 273.15 K is in the range 

650 m s -l < v x < 651 m s -1. Use Eq. (10.2-42). 
b. Find the probability that v x for an argon atom in a system at 273.15 K is in the range 

6 5 0 m s  -1 < v  x < 6 5 2 m s  -1. 

1M. Abramowitz and I. A. Stegun, eds., Handbook o f  Mathematical Functions with Formulas, Graphs, 
and Mathematical Tables, U.S. Govt. Printing Office, Washington, D.C., 1964, pp. 297ff. 
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*Exercise 10.7 
a. What fraction of the molecules have x-components of the velocity between - a  and +a? 
b. Find a value V'x such that there is a 95% probability that a molecule will have a value of v x 

between -v~: and v~ for N 2 molecules at 298.15 K. 
c. Repeat this calculation for 1000.0 K. 

Equation (10.2-34) represents the probability density in the three-dimensional 
velocity space of Figure 10.4. Every point in the velocity space represents a possible 
velocity of a molecule. We say that there is a one-to-one correspondence between the 
points of the space and the possible velocity states of a molecule. If we have N 
molecules, we can represent their velocities by a set of N points, one for each molecule. 
The density (number of points per unit volume) of this swarm of points at some 
location, say v', is proportional to g(v'), the probability density for the velocity 
evaluated at that point. Figure 10.9 schematically represents the swarm of points for 
a system of a few hundred molecules. 

The Distribution of Molecular Speeds 

The speed is the magnitude of the velocity, so that it is a nonnegative quantity 
represented by the length of the directed line segment in Figure 10.4. All velocity 
vectors that have the same magnitude but differ in direction correspond to the same 
speed, so that the probability distribution of speeds is different from the distribution of 
velocities. We change to spherical polar coordinates in velocity space, analogous to the 
spherical polar coordinates in coordinate space usually studied in mathematics courses. 
One of the coordinates is the speed v. The second coordinate is 0, the angle between the 
positive z axis and the velocity vector. The third coordinate is qg, the angle between the 
positive x axis and line segment in the x - y  plane that lies directly under the head of the 
position vector. These angles specify the direction of the velocity vector in velocity 
space and the speed v specifies its magnitude. 

An infinitesimal volume element corresponding to an infinitesimal increment in each 
coordinate is shown crudely in Figure 10.10. The volume element is a little "box" with 
length in the v direction equal to dr, length in the 0 direction equal to v dO, and length 
in the ~b direction equal to v sin(0)d~b. If the increments were finite, the sides of this 
volume element would not all be planes and all pairs of opposite sides would not be 
parallel. However, an infinitesimal volume element is a rectangular parallelepiped, and 
the volume of this element is equal to v 2 sin(0)dv dO dck. We denote the volume 
element by the symbol 

d3v = v 2 sin(0) dv dO dd/) (10.3-1) 

Using the symbol d3v both for the volume element in cartesian coordinates and for the 
volume element in spherical polar coordinates enables us to write some equations so 
that they apply to either set of coordinates. 

The probability that the velocity of a randomly chosen molecule lies in the volume 
element v 2 sin(0) dv dO dck is 

(Probability) = g(v) d3v -- g(v)v 2 sin(0) dv dO ddp (10.3-2) 
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To get the probability density for molecular speeds, we integrate (sum) this probability 
over all points in velocity space corresponding to speeds in an infinitesimal range dr, 
making up a spherical shell of thickness dv as shown in Figure 10.11. We integrate the 
probability shown in Eq. (10.3-2) over all values of 0 and q5 for a fixed value of v. Since 
g(v) depends only on the speed, it factors out of the integral: 

(Probability - g(v)v 2 dv sin(0) dO ddp 

= 4rcv2g(v) dv 

(10.3-3) 

(10.3-4) 

The factor 47zv 2 is the area of one surface of the spherical shell in Figure 10.11, and 
47tv 2 dv is the volume of the shell. The probability in Eq. (10.3-4) is therefore a 
probability density (probability per unit volume in velocity space) times the volume of 
the shell. 

Exercise 10.8 
Show that the integrals in Eq. (10.3-3) lead to the factor 4rt in Eq. (10.3-4). 
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The probability in Eq. (10.3-4) is a probability density times an infinitesimal interval 
dr, so the probability density f~ for molecular speeds is 

m e-,nv2/2k B T (10.3-5) fv(v) -- 47rv2 2nk BT 

Figure 10.12 shows this probability density for oxygen molecules at 298 K. Compare 
this figure with Figure 10.7. The most probable value of any velocity component is 
zero, while the most probable speed is nonzero and the probability of zero speed is zero. 
This difference is due to the fact that the probability density of a speed is proportional 
to the area of the spherical shell in velocity space (equal to 4nv 2) times the probability 
density of the velocities lying in the spherical shell. The area of the spherical shell 
vanishes for zero speed. 

A formula for the most probable speed, Vp, is obtained by finding the value of the 
speed at which the first derivative of the probability density in Eq. (10.3-5) vanishes. 
The result is 

(10.3-6) 

The derivative also vanishes at v = 0 and v -- ~ .  These points correspond to minimum 
values of the probability. 

Exercise 10.9 
a. Verify Eq. (10.3-6) by setting the derivative off~ equal to zero and solving for v. 

*b. Find the most probable speed of oxygen molecules at 298 K. 
*e. Find the most probable speed of helium atoms at 298 K. 
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The mean speed is given by 

m v 3 e-mV2/2k B T dv 
(v) - -  Vfv(V) d v  = 4re 2rckBT 

0 0 
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The most probable speed, the mean speed, and the root-mean-square speed are all 
indicated in Figure 10.12. 

*Exercise 10.10 
Find the most probable speed, the mean speed, and the root-mean-square speed of helium atoms 
at 298 K. 

*Exercise 10.11 
Show that the two ratios (1))/Vp and Vrms/Vp have the same two values for all gases at all 
temperatures and find those values. 

*Exercise 10.12 
Find the ratio of the probability densities for each of the following pairs of speeds: 

I1, Up and (v) for 02 gas at 298.15 K. 
b. Vp and (v) for 0 2 gas at 500.0 K. 
e. Vp and (v) for He gas at 298.15 K. 
d. Vp and Vrms for O 2 gas at 298.15 K. 
e. Vp and Vrms for O2 gas at 500.0 K. 
f. Vp and Vrms for He gas at 298.15 K. 

Our model gas is an ideal gas. To show this, we will derive an equation for the pressure 
of our model gas by computing the force exerted on the walls of the container by 
individual molecules and adding these forces up. We assume that our model system of 
N noninteracting molecules is confined in a rectangular box the edges of which are 
parallel to our coordinate axes and the walls of which are smooth, slick, flat, and 
impenetrable. Since the walls are smooth and slick, the molecules will collide 
specularly with them. A specular collision has the properties: (1) It is elastic. That 
is, the kinetic energy of the molecule is the same before and after the collision. (2) No 
force parallel to the wall is exerted on the particle. 

The trajectory of a particle striking the wall at the right end of the box is shown in 
Figure 10.13. The values of v x and Vy do not change since no force is exerted in these 
directions. Since the kinetic energy does not change and since v 2 and v 2 do not change, 
v 2 cannot change although the sign of Vy does change. Let v(i) be the initial velocity and 
v ( f )  be the final velocity: 

V x ( f )  = Vx(i ), V y ( f )  = -Vy( i ) ,  V z ( f )  = Vz(i ) (10.4-1) 

As the particle strikes the wall, the magnitude of the force exerted on the wall rises 
suddenly and drops just as suddenly. Any measuring instrument used to measure the 
force on the wall requires a period of time, called the response time, to adjust to a 
sudden change in the force. The reading of the instrument is a time average over the 
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response time, which we denote by z. The time average of the y component of the force 
on the particle over a period of time from 0 to r is defined by 

(10.4-2) 

The ( ) symbol denotes either a time average or a mean value computed with a 
probability distribution. One must determine from the context which type of average is 
meant in a particular case. 

From Newton's second law, Eq. (10.1-5), the force component equals the mass times 
the acceleration component: 

(Fy)- - -  m a y d t - -  m - ~ d t - -  m--~ dt (10.4-3) 
"Co o ~ o "E o 

The differential dry is equal to (dry~dr)dt, so that 

m [~ - _  
= - d r y  m [Vy(~) - vy(0) ]  - m [vy( f )  - vy( i ) ]  ( 1 0 . 4 - 4 )  (Fy) 

Jo  ~ 

Equation (10.4-1) can be used to replace Vy(f) by -Vy(i), so that 

2mvy(i) 
(Fy)  = (10.4-5) 

By Newton's third law, the force on the wall, F w, is equal in magnitude to F and 
opposite in direction, so that 

2mVy (10.4-6) 
(Fwy)  = - ( F Y )  - -  "c 

We use only initial velocities from now on and omit the (i) label on our velocity 
component. 

The total force on the wall is the sum of the contributions to the force from all of the 
particles in the system. Consider first the particles whose velocities lie in the 
infinitesimal volume element in velocity space dvx dry dvz. The fraction of all particles 
whose velocities lie in this volume element is 

(fraction) = g(v) dv x dry dv z (10.4-7) 

All of the particles with velocities in this infinitesimal range are moving in the same 
direction with the same speed. Those particles in this set that will strike an area sg on 
the wall are contained in a prism whose sides are parallel to the direction of motion of 
the particles, as shown in Figure 10.14. 

The particles that are no farther from the wall in the y direction than a distance equal 
to ZVy will strike the wall during the time interval z (due to the familiar relation, 
d i s t ance-  rate x time). The distance in the y direction, not the distance along the 
surface of the prism, must be used, because we are considering the y component of the 
velocity, not the speed. We assume that our system is uniform. The number density, 
~U, in any part of the system is equal to N~ V, where N is the number of particles and V 
is the volume of the system. The volume of the prism is equal to the area of its base 
times its altitude: 

Vprism = ~Vy'C (10.4-8) 
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The number of particles in the prism is 

N 
(Number in prism) - Y d  vy~ -- ~ dvy 

so that 

(10.4-9) 

Number with velocities i n )  
the given volume element - JVJVy'Cg(v) dvx dry dv z (10.4-10) 

striking d in time 

Let the total force on s~' be denoted by {F d). Each particle makes a contribution to this 
force that is given by Eq. (10.4-6): 

( on but, on due) 
to particles with velocities - (2mvy/~)~s~ 'vyrg(v)  dvx dry dv~ 

in the given range 

= 2mJf'sJvZg(v) dv x dry dv z 

N s~/vZg(v ) dv x dry dv z (10.4-11) = 2m-~  
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Notice that ~: cancels out of  this equation. 
We not add up the contributions for molecules with different velocities by integrating 

over the velocity components. Only molecules with positive values of  Vy will strike the 
wall at the right end of  the box, while the components parallel to the wall can be 
positive or negative. The total time-average force on d is 

( fd)  - --------~2mNd -~cr o -cr vZg(v) dvx dry dv z (10.4-12) 

The integral in this equation is the same as one of  the terms in Eq. (10.2-26) except that 
the lower limit of  the Vy integration is 0 instead - o o .  Since the integrand is an even 
function of  Vy, the value of  the integral will be half of  that of  the integral obtained by 
changing the lower limit to - o o .  

N N 1 
l(vy)-- -- 2m d (v 2) 

1 N 3kBT N d k B T  
-- ~ m - ~ z g  . . . .  m V ~4/'dkBT (10.4-13) 

where we have used the relation shown in Eq. (10.3-8) for (v 2) and have used the fact 
that 2(v 2) - (v2). 

The pressure, P, is the force per unit area so that 

( F~r ) = JV kB T Nk B T n R T 
P = d - V =---V- (10.4-14) 

where 

nR R 
k B - -~- - NAv (10.4-15) 

and where NAv is Avogadro's number. We do not label P as a time average, since it is a 
time-independent equilibrium quantity. 

We have taken a model system whose states and processes are described mechani- 
cally on the molecular scale. An average over microscopic states has given a 
macroscopic pressure of  the model system that is the same as that of  an ideal gas. 
This analysis depended on the use of  Eq. (10.2-30), which gave the energy of the gas as 
proportional to the temperature. It is also possible to assume that the gas obeys the ideal 
gas equation of  state and then to derive Eq. (10.2-30). 

*Exercise 10.13 
Find the number of oxygen molecules with Vy = 444 m s -1 that must strike an area of 1.000 m 2 
in 1.000 s in order for a force of 101,325 N to be exerted on the area. 
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The Pressure of a Mixture of Gases 

We now change our model system so that it contains a mixture of different gaseous 
substances but continue to assume that the molecules do not exert forces on each other. 
The molecules of each substance will move just as though the other substances were not 
present. The total pressure is the sum of the pressure exerted by each set of molecules: 

P = P1 + P2 + P3 + " "  + Pc (10.4-16) 

where P1 is the partial pressure of substance 1, defined to be the pressure that this 
substance would exert if it were alone in the container, and similarly for the other 
substances. Equation (10.4-16) is Dalton's law of partial pressures. Since each gas 
obeys Eq. (10.4-14), 

p = n lRT n2RT ncRT nRT 
---V-- + ---V--- + """ + ~ = V (10.4-17) 

where 

n = n 1 + n 2 + . . .  + nc (10.4-18) 

Our model system conforms to the ideal gas law and to Dalton's law of partial pressures. 
Real gases conform approximately to these laws and conform more closely at lower 
pressures. This supports the belief that a real dilute gas consists of moving molecules 
that do not collide with each other frequently enough to make it much different from 
our model system. 

Graham's law is named for Thomas 
Graham, 1805-1869, a British chemist 
who not only studied diffusion and 
effusion, but also determined the 
formulas of the various species formed 
from phosphoric acid in aqueous 
solution. 

Wall Collisions and Effusion 

Effusion is a process by which molecules of a gas pass through a small hole into a 
vacuum. The hole must be small enough so that the gas does not flow through the hole 
as a fluid, but passes as individual molecules. Graham's  law of effusion is an empirical 
law, asserting that at a given temperature and a given pressure the rates of effusion of 
different gases are inversely proportional to the square roots of the densities of the 
gases, and thus to the square roots of the molecular masses or molar masses. 

Refer again to Figure 10.14. Our analysis of effusion will be similar to that of Section 
10.4, except that we will now compute the number of molecules striking an area s~' 
instead of the force exerted on the wall. If this area is a section of the wall, we obtain the 
rate of wall collisions. If the area is a hole in the wall, we obtain the rate of effusion. 

The number of molecules whose velocities lie in the velocity interval dv x dry dv z and 
which will strike the area d in time ~ is given by Eq. (10.4-10): 

(Number striking d in time ~) = ~/'dVyrg(v) dvx dry dv z (10.5-1) 

The total number of molecules striking the area d in the time interval ~: is 

Total number )  
striking area 
~ / i n  time r 

-- JVd-c vyg(v) dv x dry dv z 
- c x ~  0 - e c  

( )3/2 Ice JccJ~  m r dv x dry dv z 
~A/'d 2nkBT _~ 0 - ~  

i 

(10.5-2) 



342 10 Gas Kinetic Theory. The Molecular Theory of Dilute Gases at Equilibrium 

This equation is factored as was Eq. (10.2-28) and the integrations over v x and Vz are 
carried out as with that equation: 

(Total  n u m b e r ) (  )1/2j.~ 2nkBT m 
striking area - J[ / 'd  z rye  -mvzy/2kBT dry (10.5-3) 
s~' in time z 0 

The integral in this equation can be performed by the method of substitution. We let 
w -  v 2, so that the integral becomes 

1 e -mw/2kBT dw o ~ye-mV2y/ZkBT -~ 0 

1 ' 7 "  O0 

---- L2kB-----Z-~(-e-mw/2k"r) ---- - LZkJ-L (0 - 1) - (10.5-4) 
I T '  kB_f_r 

2 m 2 m m 

Therefore, 

(Total  number ) \ 2 n m / ( k B T ~ l / 2 1 - 4  (8kBT~l/21rcm / -4 
striking area - ~4/'dz = ~ s ~ ' z \  - Jf~dz(v) (10.5-5) 
d in time z 

Notice how physically reasonable this result is. The number of particles that strike the 
area d in time z is proportional to the area sJ, proportional to the length of time z, 
proportional to the number of particles per unit volume, and proportional to the mean 
speed of the particles. The number of molecules striking unit area per unit time is 
denoted by v: 

(10.5-6) 
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*Exercise 10.14 
a. Estimate the number of air molecules striking the palm of your hand in 24 hours. 
b. A certain solid catalyst has a surface area of 55 m 2 per gram of catalyst. A mixture of gases 

containing 0.5 mol% carbon monoxide passes over the catalyst at 350 K and 1.00 atm. Find 
the amount of CO in moles striking 1 g of the catalyst per second. 

Equation (10.5-6) also gives the rate of effusion per unit area through a small hole, 
since nothing in the derivation depended on the fate of the molecules after they struck 
the area d .  The effusion rate predicted by Eq. (10.5-6) is inversely proportional to the 
square root of the mass of the particles, in agreement with Graham's law of effusion. 
The model system defined in this chapter conforms to Graham's law of effusion, and to 
the ideal gas law. 

The Model System with Potential Energy 

We now define two model systems with molecules that have variable potential energy as 
well as kinetic energy. We first consider a system in which the potential energy of each 
particle is independent of the positions of the other particles. This case excludes 
intermolecular forces but includes gravitational potential energy. Let the potential 
energy of particle number i be denoted by 

q) = ~o(xi, Yi, zi) (10. 6-1) 

(Do not confuse this potential energy with the electric potential denoted by the same 
symbol in Chapter 9. There are not enough letters in the alphabet to use one letter for 
only one quantity.) The total energy of the molecule is 

m v 2 "~- V2z) Zi) (10.6-2) ~'i - -  "-~" (V2x "~- -~- q?(xi' Yi,  
Z 

The Boltzmann probability distribution applies. From Eqs. (1.5-17) and (10.2-35), 
the probability of the state with energy of Eq. (10.6-2) is given by the proportionality 

Probability oc e -m(v2 +V2y +v2) /2kB T e-~O(x,y,z),kB T ( 1 0 . 6 - 3 )  

We now normalize this probability distribution in order to write it as an equality instead 
of a proportionality. Let the probability that the position of a randomly chosen particle 
lies in the coordinate volume element dx dy dz and that its velocity lies in the velocity 
space volume element dvx dry dvz be given by 

(Probability) - G(x', y',  z', V~x, vy, V'z) dx dy dz dv x dry dv z 

= G(r', v') d3r d3v (10.6-4) 

where x', y', and z' are coordinates lying in the volume element dx dy dz and where v~, 
Vy, and v'~ are velocity coordinates lying in the volume element dv x dry dv z. From Eq. 
(10.6-3), this probability density is the product of a velocity factor and a coordinate 
factor: 

G - g(v x, Vy, Vz)gc(X, y, z) -- g(v)gc(r ) (10.6-5) 

where g(v) is the same function as in Eq. (10.2-34) and where 

gc(r) cx e -~~ (10.6-6) 
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The probability that a particle is in the coordinate volume element dx dy dz, irrespective 
of  its velocity is 

(Probability) - gc(r)g(v) dv x dry dv z dx dy dz 
-- 0 0  --  (X) 

= g~(r) dx dy dz (10.6-7) 

The second equality follows from the fact that the velocity probability distribution of  
Eq. (10.2-34) is separately normalized. 

We assume that the system is enclosed in a rectangular box of  dimensions a by b by 
c, and require that gc be normalized 

gc(r) dx dy dx - gc(r) d3r - 1 
0 V 

(10.6-8) 

where the second version of  the integral is an abbreviation for the first version. We 
define the configurat ion integral  (" 

-- J e -~~ d3r (10.6-9) 
V 

where the label on the integral indicates that the integration is over the volume of  the 
box containing the gas. The normalized coordinate distribution function is 

1 
gc -- -~ e-~~ (10.6-10) 

The barometric distribution can be obtained from this distribution, since the pressure 
is proportional to the number of  molecules per unit volume and since the gravitational 
potential energy is given by 

tp -- mgz 

The barometric distribution for an atmosphere of  constant temperature is 

P - m g h / k B T  e - M g h / R T  - - = e  = (10.6-11) 
/'0 

where h is the altitude, P0 is the pressure at altitude h = 0, g is the acceleration due to 
gravity, and M is the molar mass of  the gas (sometimes taken as an average value for the 
atmosphere). We do not normalize the barometric distribution in Eq. (10.6-11) because 
the system is not confined in a convenient box. 

Exercise 10.15 
a. Show that for a system confined in a box with potential energy ~ - 0 inside the box, the 

configuration integral is given by 

~ = v  

where V is the volume of the box. 
*b. Find an expression for ~ if q9 = mgz, where z is the vertical coordinate and where g is the 

acceleration due to gravity, 9.80 m s -2. Assume the system to be confined in a box of 
dimensions a by b by c with z ranging from 0 to c. 
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Inclusion of Intermolecular Forces 

In order to represent a nonideal gas, a model system must include intermolecular forces. 
Two uncharged molecules attract each other at moderate intermolecular distances and 
repel each other at smaller intermolecular distances. The attractive forces are called 
London dispersion forces 2 or van der Waals forces. A classical picture used to 
visualize the attractive force between neutral molecules is that electron motion produces 
temporary fluctuating electric dipoles in two molecules, which can become synchro- 
nized and attract each other. Intermolecular repulsions are also visualized in a relatively 
simple way. One repulsive effect arises from the fact that according to quantum 
mechanics the kinetic energy of a moving object rises when it is confined to a smaller 
region, as happens to the electrons in two molecules that are pushed close together. 
Another repulsive effect arises from the fact that the electrons move primarily in the 
outer regions of a molecule or atom, and repel the electrons in a nearby atom or 
molecule. 

Forces that are independent of velocities can be derived from a potential energy 
function (see Appendix D). The potential energy u of a pair of argon atoms is shown in 
Figure 10.15 as a function of the distance between the centers of the molecules. The 
behavior in this figure is typical of pairs of atoms that do not react chemically. Diatomic 
and polyatomic molecules exhibit a similar intermolecular potential energy with 
additional dependence on molecular orientations. A force is the negative of the 
derivative of the potential energy function, so that at any intermolecular distance the 
force points in the direction in which the potential energy function decreases. There is 
repulsion at small distances and attraction at somewhat larger distances. A minimum in 
a potential energy corresponds to a mechanical equilibrium, with repulsive forces 
balancing attractive forces. In a condensed phase (liquid or solid) the average separation 
of the molecules from their nearest neighbors is approximately equal to the inter- 
molecular distance at the minimum. Since mechanical work must be done either to 
expand or compress the system, solids and liquids have nearly fixed volumes. 

A simple model system with intermolecular forces is defined to have potential 
energies of pairs of molecules similar to that in Figure 10.15: 

1. The system consists of a number, N, of particles, which move according to classical 
mechanics. 

2. The intermolecular forces are independent of the particles' velocities. 
3. The force on particle 1 due to particle 2 is unaffected by the positions of particle 3, 

particle 4, etc., and similarly for the other pairs of particles. This is a good 
approximation for gases, although only a fairly good assumption for liquids. 3 

4. The magnitudes of the intermolecular forces depend only on the distances between 
the particles, and not on their orientations. 

5. The force on one particle due to a second particle is in the direction of the second 
particle. 

For this model system, the intermolecular potential energy ~/" is a sum of one-body 
and two-body contributions: 

N-1 N 

~ U -  ~ y~ u(ro. ) (10.6-12) 
i=1 j= i+ l  

2E London, Z. physik. Chem., Bll, 222 (1930); Trans. Faraday Soc., 33, 8 (1937). 
3 D. R. Williams and L. J. Schaad, J. Chem. Phys., 47, 4916 (1967). See C. A. Parish and C. E. Dykstra, J. 

Chem. Phys., 101, 7618 (1944) for a three-body potential for helium atoms. 
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The Lennard-Jones potential is named 
for J. E. Lennard-Jones, 1894-1954, a 
prominent British theoretical chemist. 

The function u is the pai r  potential energy function of the pair of  particles i and j 
and is a function such as shown in Figure 10.15. The limits on the double sum in Eq. 
(10.6-12) are chosen so that the contribution of  a single pair of  particles is not counted 
twice. A common approximate representation for the pair potential function is the 
Lennard-Jones 6-12 potential, which was used to draw Figure 10.15: 

ULj(r) 6] (10.6-13) 

The values of  the parameters a and e are chosen to match experimental data for each 
substance. Table A. 14 of  Appendix A gives values for a few substances. 4 The parameter 
o- is equal to the intermolecular separation at which the potential energy is equal to zero, 
and the parameter e is equal to the depth of  the minimum in the curve. The designation 
6-12 denotes the choice of  the exponents in the formula. Other choices for the 
exponents are also used, but the Lennard-Jones 6-12 potential is the most common 
choice, and is usually called simply "the Lennard-Jones potential." Other, more 
accurate potentials have been obtained. 5 

Exercise 10.16 
a. Show that for the Lennard-Jones potential, 

ULj(O" ) ~ 0 (10.6-14) 

b. Show that the value of r at the minimum in the Lennard-Jones potential is 

rmi n = 21/6o - = (1.12246)o" (10.6-15) 

c. Show that 

ULj(rmin) = --~ (10.6-16) 

d. The force in the r direction is given by - du / d r .  Show that the force on one particle due to 
another particle at distance r is 

F r = 4e 12r-iT- 6 7 (10.6-17) 

e. Show that F r = 0 if r = 21/6o'. 

A simpler but less realistic representation of  the pair potential function is the square  
well potential 

{ +oo  if r < d 
u ( r ) -  - e  i f d < r < c  (10.6-18) 

0 i f r > c  

This potential function is shown in Figure 10.16. A still simpler representation of  the 
pair potential is the hard-sphere potential 

_ ] + ~  if r < d u(?') 0 if r > d (10.6-19) / 

4 j. O. Hirschfelder, C. E Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New 
York, 1954, pp. 111 Off. 

5 See, for example, D. E. Moon, J. Chem. Phys., 100, 2838 (1994). 
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which is depicted in Figure 10.17. The parameter d is the distance of closest approach 
of the centers of the two spheres, and is thus equal to the sum of their radii. If the two 
spheres have equal radii, this is twice the radius of one of them and is equal to the 
diameter of each. 

The Hard-Sphere Gas 

The hard-sphere potential is the crudest possible representation of intermolecular 
potential energy. It completely disregards the attractive forces that are responsible for 
condensation and cannot be used in a realistic description of liquids or solids, but when 
the appropriate size of the spheres is taken, many of the properties of a real gas can be 
simulated by a model gas of hard spheres. Table A.15 gives the value of the effective 
hard-sphere diameter for several gases. 

The centers of two molecules in a hard-sphere gas cannot approach any closer than a 
distance d. To obtain an approximate equation of state for a hard-sphere gas, we first 
pretend that all of the particles in the system are stationary except particle number 1. 
This moving particle has access to a volume that is smaller than V, due to the presence 
of the other particles. Figure 10.18 shows the volume due to particle 2 into which the 
center of particle 1 cannot penetrate. This excluded volume is spherical, with radius 
equal to d, the diameter of one particle. If the gas contains N molecules, the total 
volume from which particle 1 is excluded is N -  1 times the volume in Figure 10.18: 

Vex c - (N-1)(~rcd3) ~ N 4 ~xd  3 (10.7-1) 

where we neglect unity compared with N. 
If all of the particles are moving, the excluded volume in Figure 10.18 represents not 

only the volume from which particle 1 is excluded because of particle 2, but also the 



348 10 Gas Kinetic Theory. The Molecular Theory of Dilute Gases at Equilibrium 

volume from which particle 2 is excluded because of particle 1. We assign half of this 
volume to each particle and write for the net excluded volume for a single particle 

Vex c - ~  ~d 3 - N ~ - ~ d  3 (10.7-2) 

We take as our approximate equation of state that of an ideal gas in a container whose 
volume is equal to the volume in which each particle can move, 

P ( V  - Vexc) - N k  B T - -  n R T  (10.7-3) 

where kB is Boltzmann's constant, n is the amount of the gas measured in moles, and R 
is the ideal gas constant. We divide Eq. (10.7-3) by n and obtain 

P ( V  m - b)  - R T  (10.7-4) 

where Vrn - V / n ,  the molar volume, where we define the constant b, 

b N 2  2 - n~rCd3 - NAy ~rtd 3 (10.7-5) 

and where NAv is Avogadro's number. Equation (10.7-4) resembles the van der Waals 
equation of state of Eq. (2.3-1) except for the absence of the term containing the 
parameter a. 

If we write Eq. (10.7-4) in the form 

R T  
P = ~ (10.7-6) 

Vm - b 

we can see that the pressure of our hard-sphere gas is greater than that of an ideal gas 
with the same values of V m and T. Since our present system has only repulsive forces, 
we assert that repulsive forces generally make a positive contribution to the pressure. 
The parameter b in the van der Waals equation has the same relationship to the effective 
size of the molecules as in Eq. (10.7-5). Attractive forces make a negative contribution 
to the pressure, so that the parameter a in the van der Waals equation represents the 
effect of attractive forces. The argument has been advanced that attractive forces must 
slow a particle down just before it strikes a wall since other molecules will be only on 
the side of the molecule away from the wall as it strikes the wall. Similarly, repulsive 
forces accelerate a particle as it strikes the wall. 

*Exercise 10.17 
Calculate the radius of an argon atom from the value of the van der Waals parameter b in Table 
A.3. Compare your result with argon's radius in Table A.15. Why might the two values differ? 

Equation (10.7-4) is only an approximation because of our assumption that the 
excluded volumes of the different molecules simply add together. It ignores the effect of 
finding two particles close enough together so that the volumes which they exclude for a 
third particle partially overlap. 

The virial equation of state of Eq. (2.3-3) is a widely used equation of state for 
nonideal gases. Classical statistical mechanics, which is introduced briefly in Chapter 
22, provides formulas for calculating all of the virial coefficients of a nonideal 



10.7 The Hard-Sphere Gas 349 

monatomic gas. The formulas for the higher virial coefficients contain numerous terms, 
but the formula for the second virial coefficient contains a single term: 

iOO B 2 -- NAy [e - " ( r ) / k B r -  1]4rcr 2 dr (10.7-7) 
2 0 

where r is the intermolecular distance and u(r) is the pair potential energy function. 
This equation is valid for any pairwise additive potential that depends only on the 
distance between the molecules. 

Exercise 10.18 
*a. Obtain a formula for the second virial coefficient of a hard-sphere gas. 

b. Write Eq. (10.7-6) in the form 

and use the identity 

1 - x  

PVm 1 

R r  1 -- b/Vm 

= 1 -+-x + x  2 -~-'X 3 -']- ' '  �9 IX] < 1 

to transform Eq. (10.7-6) into the form of the virial equation of state. Show that the same 
formula results for the second virial coefficient as in part (a). 

The equation of state of a hard-sphere fluid has been the subject of considerable 
research, and far better approximate equations than Eq. (10.7-4) have been obtained. 6 
One such equation of state is found in Problem 10.61. Much of this research has used 
the technique of molecular dynamics, in which solutions to the equations of motion 
(Newton's second law in appropriate forms) for a system of several hundred particles 
are numerically simulated by a computer program. Energies, pressures, etc., are then 
calculated as a function of time from the particles' positions and velocities. The 
molecular dynamics technique has also been used for other model systems, including 
those with Lennard-Jones potentials, and has also been used to compute nonequilibrium 
properties. 

The results of molecular dynamics calculations indicate that there is no gas-liquid 
condensation in the hard-sphere system, and we would expect no such condensation 
since there are no attractive intermolecular forces. However, there is considerable 
evidence from these results that a gas-solid phase transition occurs, v This result was 
originally somewhat surprising. 

Molecular Collisions in a Hard-Sphere Gas 

In the hard-sphere model system at fairly low density, a molecule will undergo a 
number of collisions, moving at a constant velocity between collisions. Study of these 
collisions will help us to understand transport processes (diffusion, viscous flow, and 
thermal conduction) and chemical reaction rates in gases. For fairly small pressures, the 
probability that three molecules will collide is small, so we neglect three-body 
collisions. 

6 R .  Hoste and W. Van Dael, J. Chem. Soc. Faraday Trans. 2, 80, 477 (1984). 
7 H. Reiss and A. D. Hammerich, J. Phys. Chem., 90, 6252 (1986). 
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For a first approximate analysis of molecular collisions, we assume that only particle 
number 1 is moving while the others are stationary and distributed uniformly 
throughout the container. The mean number of stationary particles per unit volume is 
given by 

N - 1  N 
- - =  JU (10.7-8) 

V V 

where we neglect unity compared with N. The mean number N' of particles in a given 
portion of the system with volume V' is given by 

N ' -  JffV' (10.7-9) 

As the moving particle travels along, it "sweeps out" a cylindrical volume as shown in 
Figure 10.19. The radius of this collision cylinder is equal to d, the sum of the radii of 
two particles, which is called the collision diameter. Any molecule whose center is 
within the cylinder will be struck by the moving particle. The length of the cylinder that 
contains on the average one stationary particle is equal to the mean distance between 
collisions, called the mean free path and denoted by 2. The cross-sectional area of the 
collision cylinder is called the collision cross section 

(Collision cross section) = 7zd 2 (10.7-10) 

The volume containing on the average one stationary particle is 

(Volume containing one particle) - 2red 2 (10.7-11) 

This must equal V/N, the mean volume per molecule: 

V 1 
= 2~zd 2 

N Jff 
(10.7-12) 
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The mean free path is therefore given by 

1 
2 - red2------- ~ (approximate equation) (10.7-13) 

We assume that our moving particle has a speed equal to the mean molecular speed 
given by Eq. (10.3-7): 

,/8 r 
/91 - - ( V ) -  - - -  (10.7-14) 

v n m  

From the simple relationship, distance = rate • time, the mean time between collisions 
is equal to the mean free path divided by the speed. We denote this time by %o11- 

2 1 ~n8~Bm 1 (approximate)  
~ c o l l  ~ ~ -  - -  (10.7-15) 

(V) ( v ) r c d Z J V  " -7' n d Y d f f  equation 

The rate of collisions (number of collisions per unit time) for our moving particle is 
denoted by z 1, 

1 
z 1 - -  ~ ~ n d 2 N  (approximate equation) (10.7-16) 

"Ccoll 

These equations are crude approximations because all of the particles are actually 
moving. When two particles collide they might initially be moving toward each other, 
they might initially be moving roughly at right angles to each other, or they might be 
moving in the same general direction. We assume that the "average" collision occurs 
with the particles moving initially at right angles to each other, as in Figure 10.20, and 
that both particles are moving at the mean speed. If, prior to the collision, x is the 
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distance of one particle from the collision site and y is the distance of the other from this 
site, the separation of the two particles is given by 

r - (x 2 +y2)1/2 (10.7-17) 

The relative speed is defined as Idr/dtl. 
If the particles are moving at the same speed, x and y must be equal to each other in 

order for the collision to occur. Therefore, by the theorem of Pythagoras 

r -  V/-2x (10.7-18) 

The relative speed is larger than the speed of each particle by a factor of V~: 

Vre 1 I ~-~ (10.7-19) 

If both particles are moving at the mean speed, we identify their relative speed as the 
mean relative speed: 

(Vre,) xi~ (v) ~12~/81% T- ~/16kB T 
= = v ~ m  = v  ~mm 

(10.7-20) 

Our analysis is approximate, but Eq. (10.7-20) is the correct formula for the mean 
relative speed. 

If we assume that particle 1 is approaching the other particles at a mean speed of 
~ ( v )  instead of (v) it will meet the other particle in a time that is shorter by a factor of 
V~, so that the mean collision time becomes 

(10.7-21) 

and the mean molecular collision rate becomes 

(10.7-22) 

where we use the subscript 1 to indicate that this is the mean collision rate for substance 
1, the only substance present. The mean free path is also shorter by a factor of 2-1/2: 

(10.7-23) 



10.7 The Hard-Sphere Gas 353 

*Exercise 10.19 
For helium gas at a molar volume of 24.45 L: 

a. Find the length of a cube containing on the average one atom. 
b. Find the mean free path. 
c. Why is the mean free path so much larger than the length of the cube of part (a)? 

The total rate of collisions per unit volume is not equal to the mean molecular 
collision rate multiplied by the number of molecules per unit volume because this 
would count each collision twice. For example, the collision between molecule number 
1 and molecule number 37 would be included once for molecule 1 and once for 
molecule 37. We correct for this double counting by dividing by 2: 

(10.7-24) 

where Zll stands for the total collision rate per unit volume of molecules of substance 1 
with other molecules of substance 1. 

We notice the following important physical facts: (1)The total collision rate per unit 
volume is proportional to the square of the number density; (2) it is proportional to the 
collision cross section; and (3) it is proportional to the mean speed and thus to the 
square root of the temperature. For example, doubling the number density quadruples 
Zll, while doubling the absolute temperature raises the Zll by a factor V~. These facts 
will aid in analyzing the rates of chemical reactions in gases. 
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Collisions and Free Paths in a Multicomponent 
Hard-Sphere Gas 

If other substances are present, a molecule might have collided with other types of 
molecules between the two collisions with others of its own kind. The effect of such 
collisions will be to put bends in the collision cylinder. So long as there are not too 
many such bends, the volume of the cylinder will be nearly the same as if it were 
straight, so that the results for a one-component gas can be applied to the collisions 
between like particles in a multicomponent gas. 

The radius of the collision cylinder (collision diameter) for collisions between 
molecules of substance 1 and substance 2 is denoted by d12 and is equal to the sum 
of the radii of the molecules, or half the sum of their diameters: 

d l  2 _ 1 (d 1 + d2 ) (10.7-25) 

where dl and d2 are the collision diameters for collisions of like molecules. 
Assume that molecule 1 is of substance 1, and is moving at (vl), the mean speed of 

molecules of substance 1, and that molecule 2 is of substance 2 and is moving (v2), the 
mean speed of molecules of type 2. Assume again that the average collision takes place 
at fight angles. Figure 10.20 must be modified, as shown in Figure 10.21. In order for 
the molecules to collide, the distances from the site of the collision must be 

x = tc(vl), y = tc(V2) (10.7-26) 

where t c is the time yet to elapse before the collision occurs. The molecular separation 
is given by the theorem of Pythagoras: 

r -  tc[(Vl) 2 + (/)2)2] 1/2 (10.7-27) 

and the mean relative speed is given by 

(/)rel) - -  (/)12) - -  r  -t- (/)2) 2 - -  / 8kB T 8kB T 

V~zm 1 + ~  7~m 2 

(10.7-28) 

where ml and m 2 are two molecular masses, and where ]212 is the reduced mass of 
particles 1 and 2: 

(10.7-29a) 
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When we take account of the fact that the molecules of substance 2 are moving, we 
obtain the mean free path between collisions of a single particle of substance 1 with 
particles of substance 2: 

(10.7-31) 

This is not necessarily an average straight-line path length. Collisions with other 
molecules of substances other than substance 2 can intervene between the two 
collisions with molecules of substance 2. The mean free path of a molecule of 
substance 2 between collisions with molecules of substance 1 is denoted by ),2(1) and 
is obtained by switching the indices 1 and 2 in Eq. (10.7-31). It is not necessarily equal 

to 21(2). 
The formula for the mean rate of collisions of one molecule of substance 1 with 

molecules of substance 2 is analogous to Eq. (10.7-22): 

(10.7-32) 

The rate of collisions of a molecule of substance 2 with molecules of substance 1 is 
obtained by switching the indices 1 and 2 in Eq. (10.7-32). 

The total rate per unit volume of collisions between molecules of substance 1 and 
molecules of substance 2 is equal to the collision rate of Eq. (10.7-32) times the number 
density of molecules of substance 1, and vice versa: 

(10.7-33) 

There is no need to divide by 2, as in Eq. (10.7-24). The two molecules in a given 
collision are of different substances, so there is no double counting. The important 
physical fact shown in Eq. (10.7-33) is: The total rate of collisions between molecules 
of  two substances is proportional to the number density of each substance. This fact, 
like that of Eq. (10.7-24), will aid us in discussing the rates of chemical reactions in 
gaseous systems. 

*Exercise 10.20 
Assume that 0.800mol of nitrogen (substance 1) and 0.200tool of oxygen (substance 2) are 
contained in 24.45 L at 298 K. 
a. Find z~(2), Z2(l) , ZI(1) , and Z2(2). 

b. Find Z ll, Z22, and Z12. 
c. Find the total number of collisions per second. 
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The Molecular Structure of Liquids 

The model system of noninteracting particles is a usable model system for the pressure 
of a dilute gas because of the large average distances between molecules in a gas. 
Similarly, the hard sphere gas is a usable model for collisions in a dilute gas. Since 
liquid molecules are close together, it is more difficult to construct a simple model 
system for liquids. A great deal of theoretical research has been carried out on the 
properties of liquids, but a single comprehensive theory for the liquid state does not 
now exist. The theories that do exist are much more complicated than gas kinetic theory, 
and we are not prepared to discuss them. 

We present a few elementary comments about the equilibrium structure of liquids, 
based on a simple but important fact: The structure and properties of  a liquid are 
primarily determined by the potential energy of  the system, not its kinetic energy. For 
example, consider liquid argon. The Lennard-Jones representation of the intermolecular 
potential function for argon was shown in Figure 10.15. If two argon atoms are 
separated by about 3.8 x 10 -l~ m (380pm or 3.8 A), they are at a stable equilibrium 
position, and the potential energy of the pair of atoms must be increased either to 
separate them or to push them closer together. Therefore, the atoms in solid argon or 
liquid argon tend to be about 380pm from their nearest neighbors. 

Substances such as argon consist of spherical atoms. In a solid lattice of spherical 
particles, 12 "nearest-neighbor" spheres can surround a given sphere. Each of these 
nearest neighbors touches the central sphere and four of the other 11 nearest neighbors. 
In solid argon, the nearest-neighbor distance is equal to 3.72 x 10 l~ m, nearly equal to 
the equilibrium separation of the Lennard-Jones potential of Figure 10.15. The volume 
of the solid is nearly fixed, because considerable energy is required either to increase or 
to decrease the nearest-neighbor distance. 

In liquid argon, although the density is smaller than in the solid, the nearest 
neighbors are at very nearly the same distance as in the solid. On the average there 
are fewer nearest neighbors, because the nearest neighbors are disordered and voids 
exist between them. In a liquid of spherical molecules, the average number of nearest 
neighbors is approximately 10 or 11, in accordance with the fact that the liquid is less 
dense than the solid. 

*Exercise 10.21 
Estimate the number of nearest neighbors around an argon atom in the liquid by multiplying 12, 
the number of nearest neighbors in the solid, by the ratio of the density of the liquid to the density 
of the solid. The density of solid argon is equal to 1.82 g mL -1 , and that of liquid argon is equal 
to 1.40 g mL -1. 

Since molecules in the liquid are surrounded by nearest neighbors at nearly the same 
distance as in a solid, their motions are very different from those of gaseous atoms. The 
nearest-neighbor molecules form a sort of "cage" in which a given molecule is 
confined by the repulsive intermolecular forces of the neighbors. Instead of moving 
considerable distances in nearly straight trajectories between occasional collisions, a 
molecule of a liquid is almost constantly involved in collisions as it undergoes a kind of 
zig-zag rattling motion. 
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Intermolecular forces do not depend on velocities, so the velocity distribution of 
Section 10.2 is valid for a liquid or solid as well as for a gas. The mean speed of 
molecules of mass m in a liquid at temperature T is given by Eq. (10.3-7): 

(v) -- ~ / 8 k s T  (10.8-1) 
u 7~m 

Since the molecules in a liquid are much closer together than in a gas, and since they 
are moving just as rapidly as in a gas at the same temperature, the rate of collisions in a 
liquid is much greater than in a gas. There is some ambiguity in the definition of a 
collision between two molecules in a liquid, because the molecules are not exactly like 
hard spheres, and there is no unique instant of contact between them. However, if some 
definition of a collision is adopted, the rate of collisions between liquid molecules can 
be estimated. 8 

As seen in Example 10.10, collision rates of a molecule in a typical liquid are roughly 
several hundred times larger than in a typical gas. 

Summary of the Chapter 

We have deduced the macroscopic properties of a model system of noninteracting point 
mass molecules by averaging over molecular states, using the Maxwell probability 

8E K. Davies, J. Chem. Phys., 57, 517 (1972). 
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distribution of molecular velocities: )3/2 
m e_mV2/2kB T 

g(v) - -  2kBT 

The probability distribution for molecular speeds is 

( m I)2e-mV2/2kB T 

f~(v) - 4~z 2kBT 

We derived formulas for the mean speed, the most probable speed, and the root-mean- 
square speed. 

It was found that the model system obeyed the ideal gas law and Dalton's law of 
partial pressures. The rate of wall collisions per unit area per unit time was also derived: 

1N 1 

Beginning with Section 10.6, we discussed a model system with interacting 
molecules. The hard-sphere gas is a special case of this system. We derived an 
approximate equation of state for this system and discussed molecular collisions 
using this model system. We obtained formulas for the mean free paths between 
collisions and for collision rates, for one-component and for multicomponent systems. 
An important result was that the total rate of collisions in a one-component gas was 
proportional to the square of the number density and to the square root of the 
temperature. In a multicomponent gas, the rate of collisions between molecules of 
two different substances was found to be proportional to the number densities of both 
substances and to the square root of the temperature. 

In Section 10.8, we presented a few elementary ideas about the molecular structure of 
liquids. In a liquid, the shell of nearest neighbors contains voids, so that fewer nearest 
neighbors are present than in the solid. In a typical liquid, a molecule undergoes 
roughly a hundred times as many collisions per second as does a molecule in a typical 
gas. 

P R O B L E M S  
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occurs when a third body collides with a pair of molecules in 
the act of colliding, 

a. Estimate the number density of colliding pairs by 
estimating the time during which two colliding molecules 
are close enough together to be struck by a third body. Take 
this time as the time for a molecule moving at the mean 
relative speed to travel a distance equal to the collision 
diameter. 

b. Estimate the rate of three-body collisions by estimating 
the rate of collisions between colliding pairs and third bodies. 
Take an effective hard-sphere diameter of the colliding pair to 
be twice that of a single molecule. 

10.72. Assume that a certain sample of polluted air has the 
following composition by moles: nitrogen, 76.08%; oxygen, 
20.41%; water vapor, 2.63%; argon 0.910%; carbon dioxide, 
0.0306%; ozone, 0.0004%; carbon monoxide, 0.0005%. The 
air is maintained at a temperature of 300 K and a pressure of 
1.000 bar. 

a. Find the number of collisions a single ozone molecule 
undergoes with carbon monoxide molecules. 

b. Find the number of ozone-carbon monoxide collisions 
per cubic meter per second. 

e. Find the number of ozone-oxygen collisions per cubic 
meter per second. 

d. Find the number of nitrogen-nitrogen collisions per 
cubic meter per second. 

*10.73. Label each of the following statements as either true 
or false. If a statement is true only under special circum- 
stances, label is as false. 

a. If a given sample of a pure gas is isothermally expanded 
to twice its original volume, the total rate of collisions in the 
entire sample drops to one-fourth of its original value. 

b. If a given sample of a pure gas is isothermally expanded 
to twice its original volume, the rate of collisions per unit 
volume drops to one-fourth of its original value. 

c. The mean speed of water molecules at 100~ has the 
same value in the liquid as in the vapor. 

d. The ratio of the most probable speed to the mean speed 
has the same value for all gases at all temperatures. 

e. The ratio of the mean speed to the root-mean-square 
speed has the same value for all gases at all temperatures. 

f. Ordinary gases behave nearly like ideal gases because 
the molecules are far enough part on the average that the 
intermolecular forces are small. 

g. In a typical gas under ordinary conditions, the average 
distance between neighboring molecules is roughly ten times 
as great as the distance betweeen neighboring molecules in 
the liquid. 

h. The mean free path in an ordinary gas is roughly equal 
to the average distance between neighboring molecules. 

i. Since the temperature on the kelvin scale cannot be 
negative, a state of higher energy cannot have a greater 
population than a state of lower energy. 

j. The mean value of a velocity component is equal to the 
mean speed of the molecules of a dilute gas. 

k. The most probable value of a velocity component is 
equal to the most probable speed of the molecules of a dilute 
gas. 

1. The mean molecular kinetic energy of a gas at a fixed 
temperature is independent of the molecular mass of the gas. 



Transport Processes 

1. If there is any tendency for a process to occur in a system, that system is not 
at equilibrium. 

2. The macroscopic description of nonequilibrium states of fluid systems 
requires two classes of variables that do not occur in equilibrium 
thermodynamics: variables to specify the extent to which the system deviates 
from equilibrium and variables to express the rates of processes. 

3. The three principal transport processes are heat conduction, diffusion, and 
viscous flow. 

4. Each transport process is described macroscopically by an empirical linear 
law. 

5. Molecular theories of transport processes in dilute gases are based on gas 
kinetic theory. 

6. The electrical conductivity of solutions of ions can be understood on the 
basis of ionic motion in an electric field. 
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The Macroscopic Description of Nonequilibrium 
States 

In a one-phase simple system at equilibrium, the intensive macroscopic state is 
specified by s + 1 variables, where s is the number of independent chemical substances. 
These variables could be T, P, and s -  1 concentrations or mole fractions. (We use the 
letter s now rather than the letter c for the number of substances because we will use c 
for concentrations.) Nonequilibrium states are more complicated than equilibrium states 
and require more variables to specify them. The discussion of this chapter is limited to a 
one-phase simple system containing several substances in which no chemical reactions 
can occur and in which the deviation from equilibrium is not very large. Processes that 
take place far from equilibrium, including such things as explosions and turbulent flow, 
are difficult to describe mathematically, and we do not attempt to describe them. 

The thermodynamic variables of a nonequilibrium system can depend on position, 
although the definitions of these variables require measurements at equilibrium. In order 
to define these variables in a nonequilibrium system, we visualize the following 
process: A small portion of the system (a subsystem) is suddenly removed from the 
system and allowed to relax adiabatically to equilibrium at fixed volume. Once 
equilibrium is reached, variables such as the temperature, pressure, density, and 
concentrations in this subsystem are measured. These measured values are assigned 
to a point inside the volume originally occupied by the subsystem and to the time at 
which the subsystem was removed. This procedure is performed repeatedly at different 
times and different locations in the system, and interpolation procedures are carried out 
to obtain smooth functions of position and time to represent the temperature, 
concentrations, etc. 

T = T(x ,  y, z, t) = T(r, t) (11.1-1 a) 

P : P(x ,  y, z, t) = P(r, t) (11.1-1 b) 

c i -- ci(x, y ,  z, t) =- ci(r, t) (i -- 1,2 . . . . .  s) (11.1-1 c) 

where r is the concentration of substance i, measured in mol m -3 or mol L -1. The 
symbol r stands for the position vector with components x, y, and z. 

The intensive variables are measured after each subsystem comes to equilibrium, so 
they obey the same relations among themselves as they would in an equilibrium system. 
At any point in a nonflowing system, s + 1 intensive variables are independent 
variables, and all other intensive variables are dependent variables. If the system is 
flowing, a specification of the flow velocity as a function of position and time is also 
needed. We also need a specification of the dependence of the independent variables on 
position. We will consider only the near-equilibrium case, in which the deviation from 
equilibrium is not very large. In this case, we assume that the intensive state at a point is 
adequately described by s + 1 independent intensive variables and the flow velocity 
plus the gradients of these quantities. 

The gradient of a scalar function f is defined by Eq. (B-37) of Appendix B. It is a 
vector that points in the direction of the most rapid increase of the function and has a 
magnitude equal to the derivative with respect to distance in that direction. For example, 
the temperature gradient is denoted by V T and is given in cartesian coordinates by 

V T - i OT OT OT 
-~x + j -~y + k Oz (11.1-2) 
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where i, j, and k are unit vectors in the directions of the x , y  and z axes. The 
concentration gradient of substance number i is 

OC i OC i OC i 
VC i - -  i -~-x + j -o-y-y+ k Oz (11.1-3) 

The time derivatives of the temperature, concentrations, etc., are not required to specify 
the state of the system. They are dependent variables. 

*Exercise 11.1 
Assume that the concentration of substance number 2 is represented by the function 

C 2 --- C2(Z  , t) = c o + a cos(bz)e -t/r 

where Co, a, b and r are constants and where t represents the time. Write the expressions for Vc2 
and for 0c2 ~Or. 

The flow velocity u can also be written as a function of position and time: 

u = u(x, y, z, t) = u(r, t) = iux(r, t) + juy(r, t) + kuz(r, t) (11.1-4) 

Each of the three components of the velocity has a gradient with three components. The 
gradient of the flow velocity vector thus has nine components. Such a nine-component 
quantity is called a dyadic, or cartesian tensor. Fortunately, we will be able to avoid 
using more than one component of it at a time. For example, consider 

Ouy (11.1-5) 
(Vu)~y = Oz 

which is the derivative of the y component of the velocity with respect to z, giving the 
rate of change of Uy in the z direction. This quantity specifies the rate of shear, or the 
rate at which one layer of the fluid is sliding (shearing) past an adjacent layer. 

Gradients can also be expressed in other coordinate systems. In cylindrical polar 
coordinates the three coordinates are z, as in cartesian coordinates, ~b as in spherical 
polar coordinates, and p, equal t o  v/X 2 + y2. The gradient of a scalar functionf is given 
by 

Of 1 Of Of (11 1-6) 
V f = e ;  V + e ,  p0--~ + k ~  

where ep is the unit vector in the p direction, % is the unit vector in the q5 direction, and 
k is the unit vector in the z direction. 
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The gradient of a function f expressed in spherical polar coordinates is 

Of lOf  1 Of 
Vf - e r ~r + e~ - + % - -  (11.1-7) 

r ~ r sin(0) 0~b 

where the unit vectors er, e0, and e~ point in the directions in which infinitesimal 
changes in the respective coordinates move a point in space. 

In the near-equilibrium case all of the gradients of the intensive variables and of the 
flow velocity are assumed to be small. We do not attempt a description of turbulent flow 
and other processes involving states far from equilibrium, in which case the gradients 
might be large and chaotic. 

Transport Processes 

In the absence of chemical reactions, the principal nonequilibrium processes that can 
occur in a simple system are heat conduction, diffusion, and viscous flow. These 
processes are called transport processes because in each process some quantity is 
transported from one location to another. In heat conduction, energy in the form of heat 
is transported; in diffusion, substances are transported; and in viscous flow, momentum 
is transported. These three processes are important in the chemical process industry, in 
biological organisms, and in many activities of everyday life. 

Variables to Specify the Rates of Transport Processes 
In addition to variables needed to specify the nonequilibrium state of the system, 
dependent variables are needed to specify the rates of heat flow, diffusion, and viscous 
flow. The rate of heat flow is specified by the heat flux, which is a vector q that has the 
direction of the flow of heat and has magnitude equal to the quantity of heat in joules 
per square meter per second passing through a plane perpendicular to the direction of 
heat flow. The rate of diffusion of substance i is specified by its diffusion flux, which is 
a vector J/ that  has the direction of the average velocity of the molecules of substance i 
and a magnitude equal to the net amount of the substance in moles per square meter per 
second passing through a plane perpendicular to the direction of diffusion. In precise 
discussions of diffusion one must specify whether the plane is stationary in the 
laboratory or is stationary with respect to the center of mass of a small portion 
of the fluid in the system, etc. We will assume that our plane is stationary in the 
laboratory. 

Specification of the rate of viscous flow is not quite so straightforward as that of heat 
flow and diffusion. Figure 11.1 shows an idealized experimental apparatus for the 
measurement of viscosity, which is the resistance of a fluid to sheafing flow. The fluid is 
confined between two very large parallel plates perpendicular to the z direction. The top 
plate is dragged along parallel to its surface in the y direction, and the lower plate is 
fixed to a stationary object (assumed to have infinite mass). The moving plate drags a 
layer of fluid along, transferring momentum to it, and this layer of fluid drags another 
layer along, transferring momentum to it, and so on. The momentum is eventually 
transferred to the stationary object, which has an infinitesimal acceleration due to its 
infinite mass. Because of frictional losses the speed of each layer is a little smaller than 
the speed of the layer above it, giving a nonzero value to the rate of shear defined in Eq. 
(11.1-5). In Figure 11.1, arrows are used to indicate the magnitude of the flow velocity 
at different heights. This kind of flow is called laminar flow (flow in layers). A flow 
that is not laminar is called turbulent flow. 
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Fourier's law is named for Jean 
Baptiste Joseph Fourier, 1768-1830, 
a famous French mathematician and 
physicist who also invented Fourier 
series and Fourier transforms. 

Figure 11.1. An Idealized Viscosity Experiment. The lower plate is stationary, and the upper 
plate is pulled at a constant speed relative to the lower plate. The fluid between the plates exhibits 
laminar flow, with a velocity that depends smoothly on the height above the lower plane. 

In order to make our discussion of viscous flow similar to that of heat flow and 
diffusion, the momentum flux could be used as a rate variable. However, it is 
customary to use as a rate variable (dependent variable) the force per unit area that 
must be exerted on the moving plate by an external agent in order to keep it at a steady 
state. Since Newton's second law relates force to the rate of change of momentum, this 
variable gives the same information in a different form. A force per unit area is a 
pressure if the force is exerted perpendicular to the area. The force exerted on the upper 
plate is parallel to the area so this force per unit area is not a pressure. 

Driving Forces and Linear Laws 
To a first approximation each rate variable depends on a single state variable that we 
will call the "driving force" for that variable. The temperature gradient is the driving 
force for heat conduction, the concentration gradient of substance i is the driving force 
for diffusion of that substance, and the velocity gradient (rate of shear) is the driving 
force for viscous flow. Each rate variable is a dependent variable whose value is 
determined by the value of the driving force of that process. In a thorough treatment of 
irreversible thermodynamics, more carefully defined driving forces are used, and the 
possibility is included that the driving force for one transport process can make a 
contribution to the rate of another transport process. An example is thermal diffusion, in 
which a diffusion flow is driven by a temperature gradient. We will not discuss this and 
other cross-effects, although there is a considerable literature involving them. 1 

There are three well-known empirical laws that give the dependence of the rates on 
the driving forces for our three transport processes. The first is Fourier's law of heat 
conduction. 

(11.2-1) 

where tr is called the thermal conductivity. If the temperature varies only in the z 
direction, this equation is 

(11.2-2) 

1 See, for example, R. G. Mortimer and H. Eyring, Proc. Natl. Acad. Sci. USA, 77, 1828 (1980) and R. L. 
Rowley and E H. Home, J. Chem. Phys., 68, 325 (1978). 
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Fourier's law is an example of a linear law. It is called linear because the rate is 
directly proportional to (linearly dependent on) the driving force. The thermal 
conductivity tc is the proportionality constant. It is not a true constant and depends 
on the composition, the temperature, the pressure, and the identities of the substances 
present, but does not depend on the gradients of temperature, concentrations, or velocity. 
Although gaseous systems, liquid systems, and solid systems are very different from each 
other on the molecular level, Fourier's law holds quite accurately for all three. Table A. 16 
in Appendix A gives the values of the thermal conductivity for several pure substances. 

In some cases transport processes are studied by measuring the rate at which an 
isolated system originally in a nonequilibrium state relaxes toward equilibrium. In other 
cases a system is maintained in a time-independent nonequilibrium state (a steady 
state). A time-independent temperature gradient might be maintained by keeping one 
end of a system at one temperature and the other end at another temperature while heat 
flows through the system as in Figure 4.8. A steady state is not an equilibrium state, 
although it is time-independent, since an external agent must maintain the steady state. 

Fick's law is named for Adolf Fick, 
1829-1901, a German physiologist. 

The second linear law is Fick's law of diffusion: 

(11.2-3) 

If the concentration varies only in the z direction, Fick's law becomes 

(0ci  
Jiz - - D i  k az j (11.2-4) 

The quantity D i is called the diffusion coefficient of substance i. It depends on 
temperature, pressure, composition, and on the identities of all substances that are 
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present, but not on the concentration gradient. Fick's law is a very good approximation 
for most gaseous, liquid and solid systems. Table A.17 gives the value of several 
diffusion coefficients near room temperature. It is remarkable that many liquid 
substances with "ordinary size" molecules have diffusion coefficients roughly equal 
to 10 -9 m 2 s -! -- 10 -5 cm 2 s -1. Diffusion coefficients for gases are somewhat larger 

than this value and are more variable in size, and those for solids are much smaller. 

*Exercise 11.2 
Calculate the value of the steady-state diffusion flux of sucrose in water at 25~ if the 
concentration of sucrose at the top of a cell of height 0.100m is maintained at 0.060 mol L -1 
and at the bottom of the cell is maintained at 0.0300 mol L -1 

Fick's law expressed in Eq. (11.3-3) is sometimes called Fick's first law. Fick's 
second law is obtained by combining Fick's first law with the equat ion of continuity. 
We now derive a one-dimensional version of the equation of continuity. Consider a 
small horizontal slab in a fluid system in which properties depend on the vertical 
coordinate z but not on x or y, as depicted in Figure 11.2. The area of  the large face of 
the slab is d and the thickness of the slab is Az. A diffusion flux is present in the 
upward direction. The diffusion flux is the amount passing unit are per unit time and the 
net amount of substance i entering the slab per second from below is 

Influx = dJiz(Z') (11.2-5) 

where z' is the value of the z coordinate at the bottom of the slab. The amount leaving 
the slab per second through its top surface is 

(11.2-6) 



3 7 2 1 1  Transport Processes 

where we specify that Jiz can depend on z. The rate of change of the amount of 
substance i in the slab is the excess of the influx over the efflux: 

dni = d[J iz (Z ' )  - Jiz(Z' + Az)] (11.2-7) 
dt 

Since the concentration of substance i is the amount of i per unit volume, the rate of 
change of the concentration is 

Oc i (dn i /d t )  Jiz(Z') - Jiz(Z' + Az) 
= ~ = ( 1 1 . 2 - 8 )  

Ot d Az  A z  

The derivative Oci/Ot is a partial derivative because this derivative is taken at fixed 
values of the coordinates. Now we take the limit that Az approaches zero so that the 
fight-hand side of Eq. (11.2-8) becomes a derivative. The result is the one-dimensional 
version of the equation of continuity: 

(11.2-9) 

Its physical content is the conservation of matter because it is equivalent to saying that 
rate of change in the concentration is just the difference between what arrives and what 
leaves. If a chemical reaction is using up or producing substance i, this equation must 
be modified. 

The three-dimensional version of the equation of continuity is 

u = - + = - v .  J, (11.2-10) 

where V �9 J i  is called the divergence of Ji, defined in Eq. (B-38) of Appendix B. The 
divergence is a measure of the rate at which "stream-lines" of a vector quantity diverge 
from each other. If it is positive the stream lines move away from each other and the 
concentration of the substance decreases as one follows the flow. This physical 
interpretation of the divergence explains why the name was chosen. 

Exercise 11.3 
Derive Eq. (11.2-10) by considering a small cube instead of a slab in a fluid system. 

We substitute Eq. (11.2-4) into Eq. (11.2-9) to obtain 

(11.2-11) 

This is F i c k ' s  s e c o n d  l a w  o f  d i f f u s i o n  for the one-dimensional case. If D i is 
independent of composition and is therefore independent of position, 

(11.2-12) 
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This equation is called the di f fus ion  e q u a t i o n .  If the concentration depends on all three 
coordinates and if D i is constant, 

(11.2-13) 

The Laplacian is named for Pierre 
Simon, Marquis de Laplace, 1749- 
1827, a great French mathematician 
and astronomer who proposed that the 
solar system condensed from a 
rotating gas cloud. 

The operator V 2 ("del squared") is called the Laplaeian operator. It also occurs in the 
Hamiltonian operator of quantum mechanics. 

Equation (11.2-12) is a partial differential equation that can be solved for some sets 
of initial conditions. For example, if a solution initially containing substance 2 at 
concentration c o is placed in the bottom half of a cell and pure solvent (substance 1) is 
carefully layered above it in the top half of the cell, the initial condition is 

c o if z < 0 
C2(Z , 0)  - -  0 if z > 0 

This initial condition fails to meet our criterion of small gradients at the location z = 0, 
but the state of the system rapidly becomes one in which the gradient of c 2 is fairly 
small and Fick's law seems to hold quite accurately for this case. The solution of Eq. 
(11.2-12) that satisfies this initial condition for a long cell is 2 

Co 
c2(z , t) - -  ~ [ 1  - erf(z/2~2t)] (11.12-14) 

where erf( . . . )  is the error function, introduced in Chapter 10 and described in 
Appendix C. This solution is shown in Figure 11.3 for three values of t and for 
a value of D 2 equal to 1.0 x 10 -9 m 2 s -1, a typical value for ordinary liquids. This 
figure illustrates the fact that ordinary liquids require several hours to diffuse one 
centimeter. 

2 See D. E Shoemaker, C. W. Garland, and J. W. Nibler, Experiments in Physical Chemistry, 6th ed., 
McGraw-Hill, New York, 1996, pp. 134 ff for a solution pertaining to a cell of finite length. 



3 7 4 1 1  Transport Processes 

Exercise 11.4 
Show by substitution that the function of Eq. (11.2-14) satisfies Eq. (11.2-12). You will need the 
identity: 

(11.2-15) 

Another case that can be mathematically analyzed is obtained when the bottom half  
of  a cell is filled with pure solvent and a very thin layer of  solute is layered carefully on 
it, followed by more pure solvent to fill the cell. Let z = 0 at the center of  the cell. An 

idealized representation of  this initial condition is 

{ o o  if  z - 0  
c2(z,  0) - 0 if z :/: 0 

This concentration function also fails to meet our criterion of  small gradients, but Fick's 
law seems to hold fairly well for this case. For a long cell, a solution to Eq. (11.2-12) 

that matches this initial condition is 

C 2 (Z, t) --  no e -z2/4D2t (11.2-16)  
2 V/rCD2 t 

where the total amount  of  substance 2 initially present per unit cross-sectional area is 

denoted by n 0. This function is shown in Figure 11.4 for a value of  D 2 equal to 
1.0 x 10 -9 m 2 s -1 and for three values of  t. It is represented by a gaussian curve 

similar to the gaussian distribution introduced in Chapter 10. 

Exercise 11.5 
a. Show by substitution that the function in Eq. (11.2-16) satisfies Eq. (11.2-12). 
b. Show that the same amount of substance 2 is present at a time t -- t 2 as at time t = t 1 by 

showing that 

i oo c2(z, t) n o dz 
- - 0 0  

which is independent of t. Since the cell is assumed to be long, we can use infinite limits for 
the integrals without serious numerical error. 
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Since all of  the molecules of  substance 2 started out at z = 0, we can use Eq. 
(11.2-16) to study their average displacement in the z direction. Consider a thin slab 
of  the system lying between z' and z' § dz, where z' is some value of  z. The fraction of  
the molecules of  substance 2 in the slab at time t is 

Fraction in slab - -  c 2 ( z ' ,  t )  d z  _- c 2 ( z ' ,  t )  d z  ( 1 1 . 2 - 1 7 )  
c2(z, dz 

where we have used the value of  the integral from Exercise 11.5. This fraction is a 
probability much like those of  Chapter 10, except that in Chapter 10 we were dealing 
with velocities instead of  positions. The mean value of  the coordinate z at time t is given 
by an expression analogous to that of  Eq. (10.2-3): 

- - -  z c  2 ( z ,  t )  d z  = 0 ( 1 1 . 2 - 1 8 )  (z(t)} no - ~  

The fact that the mean displacement in the z direction is zero means that for every 
molecule that has moved in the positive z direction, another has moved the same 
distance in the negative z direction. 

The root-mean-square change in the z coordinate is an inherently nonnegative 
quantity and gives a measure of  the magnitude of  the distance traveled in the z 
direction by an average molecule. The root-mean-square value is the square root of  the 
mean-square value: 

Zrms _ (z 2) 1/2 _ 1 Z2Cz(Z, t) dz  -- [2Dzt] 1/2 (11.2-19) 
--(X) 

The root-mean-square displacement is proportional to the square root of  the elapsed 
time and to the square root of  the diffusion coefficient. This behavior is typical of  a 
process which can be represented by a "random walk, ''3 which is a model process in 
which an object repeatedly takes a step of  fixed length in a randomly chosen direction. 

Exercise 11.6 
Look up the integral and show that Eq. (11.2-19) is correct. 

Although we obtained the root-mean-square distance traveled by a diffusion 
molecule by considering a special case in which all of  the molecules started out at 
the same value of  z, the individual molecules diffuse in the same way for other initial 
conditions, and we can use Eq. (11.2-19) for any kind of  initial conditions, and for the x 

and y directions as well. 

3 L. E. Reichl, A Modern Course in Statistical Physics, University of Texas Press, Austin, 1980, pp. 151 ft. 
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Newton's law of viscous flow is named 
for Sir Isaac Newton, 1642-1727, a 
great British mathematician and 
physicist who is famous for Newton's 
law of motion and for being one of the 
inventors of calculus. 

Newton's  law of viscous flow is the third linear law: 

(11.2-20) 

where Pzy is the force per unit area parallel to the upper plate in Figure 11.1 that is 
required to maintain the steady speed that corresponds to the rate of  shear on the right- 
hand side of  the equation. The first subscript on Pzy indicates that the upper plate is 
perpendicular to the z direction, and the second subscript indicates that the force is in 
the y direction (parallel to the plate). The derivative (OUy/OZ) is a component of the 
velocity gradient and is the rate of shear. The coefficient q is called the viscosity 
coefficient or the viscosity. It depends on the temperature and the identity of the 
substance but does not depend on the rate of  shear if Newton's law is obeyed. Table 
A. 18 of Appendix A gives values for viscosity coefficients for a few liquids and gases. 
There are some liquids, such as blood and polymer solutions, that do not obey Newton's 
law. These fluids are called non-newtonian fluids or thixotropic fluids, and are 
described by a viscosity coefficient that depends on the rate of  shear. 

*Exercise 11.7 
A certain sleeve bearing in a machine has an area of 26.6 cm 2. It is lubricated with an oil having a 
viscosity coefficient equal to 0.0237 kg m -1 s -1 . If the film ofoil has a thickness of 0.20 mm and 
the radius of the bearing is 2.00 cm, find the frictional torque on the shaft if it is turning at 600 
revolutions per minute. Assume that the oil does not slip on the metal surfaces. 

When laboratory measurements of viscosity coefficients are made, an apparatus like 
the idealized apparatus of Figure 11.1 is not ordinarily used. One simple apparatus used 
for liquids contains a tube of  uniform diameter through which the liquid is forced by a 
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Poiseuille's equation is named for 
Jean Leonard Marie Poiseuille, 1797- 
1869, a French physician who studied 
the circulation of blood. 

pressure difference. For laminar flow in an incompressible liquid, the volume rate of 
flow dV/dt, is given by Poiseuille's equation: 

(11.2-21) 

where R is the radius of the tube, L is its length, and P 2 -  P1 is the difference in 
pressure between the ends of the tube. 

The first part of the derivation of Poiseuille's equation is to find how the flow velocity 
of the fluid in the tube depends on position. If laminar flow occurs, the velocity will be 
parallel to the tube walls. Consider a portion of the fluid in the tube that is contained in 
an imaginary cylinder of radius r that is concentric with the tube walls, as shown in 
Figure 11.5. When a steady state has been reached, the frictional force due to viscosity 
at the surface of this cylinder will exactly balance the hydrostatic force on the liquid in 
the cylinder. From Newton's law of viscosity, 

 ='71d r 
(11.2-22) 

where F is the magnitude of the force on the liquid, d is the area of the walls of the 
cylinder (not the area of its ends), and [duz/drl is the magnitude of the velocity 
gradient, which is perpendicular to the axis. We take the axis of the cylinder as the z 
direction, and the perpendicular distance from the axis as the variable r. 

The magnitude of the net force on the liquid in our imaginary cylinder is equal to the 
difference of the pressure at its ends times the cross-sectional area of the cylinder 
(assuming that the pressure does not depend on r) and the area of the cylinder is its 
circumference times its length: 

F -- (P2 - P1) ~/'2 d =2nrL 

Substitution of these equations into Eq. (11.2-22) gives 

F (P2 - P1) r duz 
- J =  2L dr 
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This is a differential equation that can be solved by an integration. We divide both sides 
of the equation by r /and multiply both sides by dr so that the right-hand side is then 
equal to the differential duz. We integrate both sides from r = R to r = r', where r' is 
some value of r: 

fir du z Uz(/) dr - [ dUz- 
aUz(R) 

P2 - P12Lrl rL r 

If the liquid adheres to the tube walls, uz(R) will vanish, and carrying out the 
integrations gives 

Uz(r, ) _ P2 - P1 (r,2 _ R 2) (11.2-23) 
4Lr/ 

This parabolic dependence of the flow velocity on position is represented in Figure 11.6 
such that the length of each arrow is proportional to the flow velocity at its location. 

The total rate of  flow of the incompressible liquid through the tube can be computed 
from the flow velocity. Consider a cylindrical shell of thickness dr and radius r 
concentric with the walls of  the tube. The volume of the fluid in this shell that flows out 
of  the tube in one second (the contribution of this shell to dV/dt) is equal to the cross- 
sectional area of the shell times a length equal to the distance traveled in one second. 
Since the circumference of a shell of  radius r is equal to 2~zr and since its thickness is 
dr, 

(Contribution of shell to dV/dt) = 2ztr drluz(r)l 

The total volume rate of  flow is the integral of the contributions of all such shells: 

dV I~ P2 - P1 j.R (R2r-  r 3) dr dt = 2re rluz(r)[ d r -  2re 4Lq o 

(11.2-24) 

This is Eq. (11.2-21), Poiseuille's equation for an incompressible liquid undergoing 
laminar flow in a tube of radius R. A different version holds for the flow of a gas. 4 

4 D. P. Shoemaker, C. W. Garland, and J. W. Nibler, Experiments in Physical Chemistry, 6th ed., McGraw- 
Hill, New York, 1996, pp. 126ff. 
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*Exercise 11.8 
The blood pressure difference across a capillary in a human body is approximately 22 torr. 
Assume that a human body contains 1 x 10 l~ capillaries with an average length of 8 x 10-4m 
and an average diameter of 7 x 10 -6 m. Although blood is a non-newtonian fluid and contains 
red blood cells with diameter near 7 x 10 -6 m, assume that a Newtonian viscosity of 
0.004 kg m -1 s -1 can be used ("Blood is thicker than water"). Estimate the volume of blood 
flowing through the human circulatory system in L min -1, assuming Poiseuille's equation. The 
actual value is near 5 L min -1. 

Poiseuille's equation is correct only if the fluid flow is laminar. If the flow is 
turbulent, the problem is much more complicated and we will not attempt to discuss it. 
There is a dimensionless quantity called the Reynolds  n u m b e r  that can be used to 
determine whether flow through a tube can be approximated by laminar flow. The 
Reynolds  n u m b e r  is defined for flow in a cylindrical tube by 

(11.2-25) 

where R is the radius of  the tube, p is the density of  the fluid and (u) is the mean speed 
of  flow in the tube. It is found experimentally that flow in a tube is nearly always 
laminar if the Reynolds number is smaller than some value near 2000, no matter what 
the values of  the individual quantities in Eq. (11.2-25) are. If the tube is long, smooth, 
and straight, the flow might be laminar if the Reynolds number is as large as 3000, but it 
is best to assume that the flow is not laminar if ~ exceeds 2000. 

*Exercise 11.9 
Estimate the Reynolds number for the flow of blood in a typical human capillary. Is the flow 
laminar? 

Stokes's law was derived from the 
laws of hydrodynamics by George 
Gabriel Stokes, 1819-1903, an Anglo- 
Irish mathematician and physicist who 
pioneered the science of 
hydrodynamics. 

Another method of measuring the viscosity is by using the frictional force that 
a fluid puts on a spherical object moving through the fluid. Viscosities can be measured 
by dropping a spherical ball into the fluid and measuring its rate of  descent. For 
a spherical object moving at a velocity v through a fluid with viscosity r/, Stokes 's  law 
is 

(11.2-26) 

where F f  is the frictional force, r is the radius of  the spherical object, and v is its 
velocity. The negative sign indicates that the friction force is in the opposite direction to 
the velocity. Stokes's law holds only for velocities small enough that the flow around the 
sphere is laminar. 
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*Exercise 11.10 
Obtain an approximate Reynolds number for the flow in Example 11.6 by replacing the diameter 
of a tube by the diameter of the sphere and replacing the mean speed of the fluid by the speed of 
the sphere through the liquid (this is considered to be acceptable practice). Comment on your 
results. 

Although Stokes's law was derived for macroscopic spherical objects, it is frequently 
applied as an approximation to molecules moving through a liquid. Since Stokes's law 
depends on a description of the fluid as a set of flowing layers without recognition of its 
molecular nature, application of Stokes's law to moving molecules is more meaningful 
for large molecules such as proteins than for small molecules that are nearly the same 
size as the solvent molecules. However, even for small molecules and ions we often say 
that Stokes's law defines an "effective radius" of a molecule or ion. 

An elementary molecular theory for nonequilibrium processes in a hard-sphere gas is 
based on the theory of collisions in a hard-sphere gas presented in Chapter 10. We will 
apply this theory to self-diffusion and give the results of its application to heat 
conduction and viscous flow. 

Self-Diffusion 

For diffusion to take place there must be at least two substances present. In self- 
diffusion the molecules of the two substances have all of their properties in common 
but can somehow be distinguished from each other. This situation cannot actually occur 
but is approximated in the laboratory by using two substances that differ only by 
isotopic substitution. The molecular masses will be different but this difference can 
sometimes be made small by substituting isotopes of two elements. Diffusion of two 
substances that differ only by isotopic substitution is called tracer diffusion. 

Consider a gaseous model system with two kinds of hard spherical molecules, both 
with the same molecular size and molecular mass. The model system is at a uniform 
temperature and a uniform pressure and is in a rectangular box with four vertical sides. 
The concentrations depend on z, the vertical coordinate, but the sum of the two 
concentrations is independent of position so as to avoid a pressure gradient. The process 
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of diffusion will gradually eliminate the concentration gradient as the molecules mix. 
Figure 11.7 depicts our model system. In the interior of the system are three imaginary 
horizontal planes. The upper and lower planes are placed at a distance from the center 
plane equal to 2, the mean free path between two collisions with any kind of particle. 
Since all molecules are of the same size and mass, and since we are considering all 
kinds of collisions, the mean free path is given by Eq. (10.7-23): 

1 
2 = (11.3-1) ~zd2~ 

where ~tt is the total number density, the sum of the number densities of the two 
substances: 

= ~ + ~U 2 (11.3-2) 

and where d is the effective hard-sphere diameter of the molecules. 
We now assume that all molecules passing upward through the center plane last 

suffered collisions in the vicinity of the lower plane and were equilibrated at that 
location. Molecules passing through the center plane from above are assumed to have 
been equilibrated at the location of the upper plane. This assumption is the crucial 
assumption of the theory. It is not correct for every molecule, since the z component of 
every free path is not equal to the mean free path and since equilibrium might not be 
complete at each collision, but it should be roughly valid on the average. The number of 
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molecules of substance 1 passing upward through the center plane per unit area per unit 
time is given by Eq. (10.5-6): 

Vl(Up) - �88 Jf~l(z' - 2)(v) (11.3-3) 

where (v) is the mean speed of the molecules and where the argument of ~11 indicates 
that ~ is evaluated at z' - 2. The rate of molecules of substance 1 passing downward 
through unit area of the center plane is also given by Eq. (10.5-6) with the number 
density evaluated at z' + 2" 

Vl(dOwn) _ 1 ~/~l(z, + 2)(v) (11.3-4) 

The number densities are evaluated at the location at which the molecules had their last 
collision before approaching the center plane, because this is the location at which we 
assume they were equilibrated. 

The magnitude of the diffusion flux equals the net amount (in moles) of the substance 
passing unit area of a plane perpendicular to the direction of diffusion per second. Since 
our sytem is uniform in the x and y directions, the diffusion flux is in the z direction, and 
is given by 

1 
Jlz -- ~ [Vl (uP)  - V l ( d o w n ) ]  ( 1 1 . 3 - 5 )  

where the factor 1/NAv is needed to express the flux in moles instead of molecules. The 
expressions for the upward and downward rates are substituted into Eq. (11.3-5): 

(v) 
[~11 (Z' -- ,~) -- ,~1 (Z' -~- 2)] - -  ~ [Cl(Z' -- ,~) -- Cl(Z' "t- 2)] Jlz = 4NA----- ~ 

- - -  (V) ICI(Zt'-~"2)--CI(Z'--2)" ] 4  22 22 

where we have recognized that c 1 -,A~l/Nav and where in the last equation we have 
multiplied and divided by 22. 

If we were to take the limit of the quantity in square brackets as 2 approached zero, it 
would become equal to the derivative OCl/OZ. We cannot take this limit since 2 is 
determined by the properties of the system, but if Cl is approximately a linear function 
of z, the quotient of finite differences is nearly equal to the derivative, and we can write 

(v)2 0cl 
Jlz = ( 1 1 . 3 - 6 )  

2 Oz 

For the case of dependence only on the z coordinate, Fick's law is given by Eq. (11.2-4): 

Oc 1 
Jzz -- --D1 (11.3-7) 

Oz 

Comparison of this with Eq. (11.3-6) shows that 

(~2 I (8kBT)  1/2 1 
D 1 -  -- -2 k n m / ~/ 2 rc d Z ~ rtt -- nd2 ~tt \ nm / (11.3-8) 

where we have used Eq. (10.3-7) for the mean speed and Eq. (10.7-23) for the mean 
free path. Since substances 1 and 2 are of the same mass and size, D 1 and D 2 are equal. 

Our theory was cruder than necessary. A more accurate theory for the hard-sphere 
gas takes into account the fact that the molecules do not all arrive at a given plane from 
a vertical distance equal to the mean free path. The diffusion coefficient obtained in this 
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treatment has the same dependence on density, temperature, mass, and hard-sphere 
diameter as the expression of Eq. (11.3-8), and gives a value that is only about 18% 
different in size from that expression: 

(11.3-9) 

One should use Eq. (11.3-9), not Eq. (11.3-8), for any numerical calculations. Except 
for the constant, the first version of Eq. (11.3-9) is easy to remember because it is so 
reasonable physically. The farther the molecules travel without collision, the faster they 
diffuse, and the faster they travel, the faster they diffuse. 

Stop for a moment and consider what we have done. We have taken a mechanical 
model system and have analyzed its behavior from a molecular point of view. We have 
compared our result to an empirical macroscopic equation, Fick's law of diffusion. We 
have found they give the same dependence on the concentration gradient, with an 
explicit expression for the diffusion coefficient in the theoretical result. Experimental 
studies of the dependence of diffusion coefficients on temperature and density agree 
fairly well with Eq. (11.3-9). The calculated hard-sphere diameters computed from 
diffusion data depend somewhat on temperature. This is explained by the fact that the 
actual intermolecular repulsive potential is not infinitely steep like the hard-sphere 
potential. When two molecules strike together more strongly, as they more often do at 
higher temperature, the distance of closest approach is smaller and the effective hard- 
sphere diameter is expected to be smaller. Table A.19 gives some experimental values 
for self-diffusion coefficients. 

*Exercise 11.11 
Find the effective hard-sphere diameter of argon atoms from each of the self-diffusion coefficient 
values in Table A.19. Comment on your results. 
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Thermal Conduction 

An analysis of heat conduction and viscous flow that is very similar to that for self- 
diffusion can be carried out. 5 For heat conduction in a hard-sphere gas, instead of 
counting molecules that pass the central plane, we compute the contributions that the 
molecules make to the kinetic energy that is transported. The molecular energy is 
expressed in terms of the heat capacity at constant volume. From Eq. (10.2-32), the heat 
capacity of a monatomic gas is 

( O U ) _ 3 n R  3k B 
C v -  - ~  V,n 2 or cv = 2 (11.3-10) 

where Cv is the heat capacity per molecule. The mean molecular energy is 

(e) - cvT = 3kBT 2 (11.3-11) 

An analysis similar to that leading to Eq. (11.3-9) is carried out, with the temperature 
depending on z and the net transport of (e) being computed. The result is compared 
with Fourier's law of thermal conduction, Eq. (11.2-1) and an expression for the 
coefficient of thermal conductivity is deduced For a one-substance hard-sphere gas 

(11.3-12) 

This equation is at the level of accuracy of Eq. (11.3-9). For a polyatomic gas with 
rotational and vibrational energy the thermal conductivity is more complicated, since 
only part of the rotational and vibrational energy is transferred in a collision. We will 
not discuss this case. 

Exercise 11.12 
Carry out the derivation of Fourier's law of thermal conduction and obtain an expression for the 
thermal conductivity analogous to Eq. (11.3-8). Use a system of one component, assume that the 
temperature depends on the z coordinate, and that the molecules are equilibrated at the 
temperature of the plane from which they come to approach the central plane. Calculate the 
percent difference between your result and that of Eq. (11.3-12). 

Viscous Flow 

If a fluid has a velocity in the y direction that depends on z, the y component of the 
momentum is transported in the z direction. An analysis similar to that of self-diffusion 
can be carried out in which the net flow of the momentum is computed. The result is an 
expression for the viscosity coefficient: 

(11.3-13) 

where this equation is at the level of accuracy of Eq. (11.3-9). 

5 j. O. Hirschfelder, C. E Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New 
York, 1954, pp. 9ft. 
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At a fixed value of ~ all three transport coefficients are proportional to the mean 
speed of the molecules, which means that they are proportional to the square root of the 
temperature. Therefore, a hard-sphere gas becomes more viscous when the temperature 
is raised (opposite to the behavior of a liquid). The coefficient of viscosity and the 
coefficient of thermal conductivity are independent of the number density. This 
behavior was predicted by kinetic theory before it was observed experimentally. 

*Exercise 11.13 
Certain dimensionless ratios of physical constants are useful enough that they are called 
dimensionless groups. Show that for a hard-sphere gas each of the following ratios equals a 
dimensionless constant and find each constant: 

rl C v rl D c v J U  

mJ l /~D ' tom ' tc 

The Structure of Liquids and Transport Processes 
in Liquids 

The structure and properties of a liquid are determined by the system's potential energy 
and its kinetic energy, whereas the properties of a gas are primarily determined by its 
kinetic energy. This makes the theoretical analysis of liquid behavior much more 
difficult than that of gases, although liquids obey the same linear laws as do gases. In 
Section 10.8, the molecular environment in a typical molecule in a liquid was described 
as a cage made up of neighboring molecules, in which the molecule is confined by the 
repulsive intermolecular forces. If a molecule were absolutely confined to such a cage 
there could be no diffusion or viscous flow, and this is almost the case in solids. 
However, in a liquid there are voids among the neighbors. There is a chance that, after 
colliding many times with the neighboring molecules in a given cage, a molecule can 
move past some of these neighbors into an adjacent cage. Whereas a molecule in a 
typical gas might undergo a collision every 10 -1~ to 10 -9 s, a molecule in a typical 
liquid might undergo a collision with its neighbors every 10 -12 to 10 -11 s (see Example 
10.10). The molecule might move to a new cage every 10 -9 to 10 -8 s. 

In some approximate theories of liquid transport it is found that the motion of a 
molecule or ion through a fluid is on the average impeded by a frictional force 
representing the retarding effects of the interactions with the neighboring molecules. 
This force is approximately proportional to the negative of the average velocity of the 
molecules or ions: 

Ff -- - f v  (11.4-1) 

where Ff is the frictional force and where f is called the friction coefficient. This 
equation is similar to Stokes's law, Eq. (11.2-26). Although Stokes's law was originally 
derived for a macroscopic sphere moving through a continuous fluid, we can write 

f = 6 n r l r e f  f (11.4-2) 

and use this relation to define ref f as an effective radius of the molecule or ion. 
Reasonable values for effective radii of molecules and hydrated ions are obtained in this 
way. For macromolecules (molecules of large molecular mass) and colloidal particles 
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(particles roughly 3 to 1000 nm in diameter) that are nearly spherical, Eq. (11.2-26) is 
found to be nearly as accurate as it is for macroscopic spheres. 

Around 1905, Einstein devised a theory of Brownian motion, the irregular motion of 
colloidal particles suspended in a liquid. A colloidal particle is a particle that is 
considerably larger than solvent molecules but small enough to remain suspended 
without settling out under the force of gravity. Einstein assumed that a colloidal particle 
is bombarded randomly by the molecules of the solvent and was able to show for a 
spherical colloidal particle that the mean-square displacement of the particle in the z 
direction in a time t is given by 

kBV 
(z 2) - ~--~ t (11.4-3) 

where kB is Boltzmann's constant, T is the absolute temperature, r is the radius of the 
particle, and q is the viscosity of the solvent. Comparison of this equation with Eq. 
(11.2-19) shows that the diffusion coefficient of the colloidal substance is given by 

(11.4-4) 

Jean Baptiste Perrin, 1870-1942, was 
a French physicist. 

Using a dark-field microscope, Perrin was able in 1908 to measure repeatedly the 
displacements of colloidal particles and verified Eq. (11.4-3) experimentally. For many 
skeptics this was considered to be the definitive verification of the existence of atoms 
and molecules, since Einstein's derivation of Eq. (11.4-3) depended on the assumption 
that the colloidal particle was bombarded randomly by solvent molecules. Perrin was 
able to obtain the value of Boltzmann's constant from Eq. (11.4-3), and thus calculated 
a value of Avogadro's constant using the known value of the ideal gas constant. 

*Exercise 11.14 
a. Estimate the molar volume of hemoglobin from the molecular size in Example 11.8. 
b. Human hemoglobin has a density of 1.335 g mL -1 (a little larger than typical protein values, 

which run around 1.25 g mL-1). It has a molar mass of 68000 g mo1-1. Calculate its molar 
volume and compare with your answer from part (a). State any assumptions. 

The Temperature Dependence of Diffusion and Viscosity 
Coefficients in Liquids 
From Eq. (11.3-9), we see that the self-diffusion coefficient of a hard-sphere gas is 
proportional to the square root of the temperature, and from Eqs. (11.3-12) and 
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(11.3-13) we see that the thermal conductivity and the viscosity depend on the 
temperature in the same way. This rather weak dependence on temperature is different 
from that of small molecules in liquids, in which coefficients of diffusion and viscosity 
depend quite strongly on temperature. Liquids are less viscous at higher temperatures, while 
diffusion coefficients in liquids increase as the temperature is raised. It is found experi- 
mentally that diffusion coefficients in liquids are usually quite well described by the 
formula 

D -- Do e-EaJRT (11.4-5) 

where R is the ideal gas constant and T is the absolute temperature. The quantity Do is a 
parameter that is nearly temperature-independent and Ead is a positive parameter with 
the dimensions of energy, which is called an activation energy. It is similarly found 
that liquid viscosities are quite well described by the formula 

- -  1"]0 e E a q / R T  (11.4-6) 

where the symbols have similar meanings as in Eq. (11.4-5). 
An elementary explanation of Eq. (11.4-5) is as follows: In order for a molecule in a 

liquid to push past some of its nearest neighbors and move into the next cage, it must 
possess a relatively high kinetic energy. If we identify ea as a minimum energy required 
to break out of a cage (an "activation energy"), then from Eq. (10.2-35) we see that the 
probability for a molecule to have a velocity corresponding to this energy is 

(Probability) c( e -ea/kB T = e-Ea/RT (11.4-7) 

where kB is Boltzmann's constant and where E a -- NAve a. It is therefore reasonable that 
a diffusion coefficient in a liquid would obey Eq. (11.4-5) with Ead roughly equal to the 
molar energy required to move into the next cage. 

In order for shearing flow to take place, layers of a liquid must flow past each other. 
This requires disruption of cages and much the same kind of activation energy as in 
diffusion. Note that the sign of the exponent in Eq. (11.4-6) is opposite from that in Eq. 
(11.4-5). This is because the rate of shear is proportional to the factor in Eq. (11.4-7), 
making the viscosity coefficient inversely proportional to it. It is found that the 
activation energy for viscosity is roughly equal to the activation energy for self- 
diffusion in the same liquid, giving further plausibility to this argument. 
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*Exercise 11.15 
The value of the self-diffusion coefficient of carbon tetrachloride at 25~ is equal to 
1.4 x 1 0  - 9  m 2 s - 1  . Estimate the value at 40~ assuming the same value of the energy of 
activation as for the viscosity from Example 11.9. 

Sedimentation 

Macromolecules and colloidal particles can sediment through a liquid under the force 
of gravity or under centrifugal force if they have a greater density than the liquid. 
Sedimentation experiments provide a means of determining the size of the particles or 
molecules through use of Eq. (1 1.4-2). To provide sufficiently rapid sedimentation of 
protein molecules, one must use an ultracentrifuge, which can turn at speeds of several 
thousand revolutions per second. An object of mass m that is at a distance r from the 
axis of rotation is maintained in a circular orbit by a centripetal force that is given by 
Eq. (D- 1 6) of Appendix D: 

F c = mro92 (11.4-8) 

where 09 is the angular speed, which is measured in radians per second. The rate of 
rotation measured in revolutions per second is equal to o9/2n ,  since one revolution is 
equal to 2n radians. 

The rotor of an ultracentrifuge has a vertical axis of rotation and has a sample cell 
with a transparent top and bottom so that a beam of light can shine through the cell each 
time it passes the location of the beam. When the rotor spins, the macromolecules will 
sediment toward the outside of the rotor if they are denser than the solvent, and the 
value of r, the distance from the axis of rotation, can be measured by passing a beam of 
light through the cell and observing the position dependence of the index of refraction, 
which depends on composition. After the rotor has been spinning a short time, the 
sedimentation speed Use d = dF/dt will attain a steady value. The centripetal force is then 
equal in magnitude to the frictional force given by Eq. (1 1.4-1). Since a macromolecule 
is immersed in a solvent, its centripetal force must be corrected for buoyancy, giving 
instead of Eq. (1 1.4-8) 

F c = (m - msolvent)ro9 2 (11.4-9) 
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The svedberg unit is named for 
Theodor (called The, pronounced 
"Tay") Svedberg, 1884-1971, 
Swedish biophysical chemist who 
received the 1926 Nobel Prize for his 
work in disperse systems (colloids, 
protein suspensions, etc.) 

where rrtsolven t is the mass of solvent displaced by the macromolecule. If P l is the 
density of the solvent and P2 is the density of the macromolecular substance, we have 

Pl Pl  M2 
msolvent = - -  m - -  - - ~  ( 1 1 . 4 - 1 0 )  

P2 P2 NAy 

where M 2 is the molar mass of the macromolecular substance and NAy is Avogadro's 
constant. Combination of Eqs. (11.4-1) and (11.4-9) gives 

- -M2 ( 1 - p ~ ) r o ~ 2  
fused  - -  ~ A v  

(11.4-11) 

The sedimentation coefficient S is defined as the ratio of Use d to the centrifugal 
acceleration, re) 2" 

S J Used 
r~o2 (definition of S) (11.4-12) 

so that 

S - M2  1 - P l / P 2  (11.4-13) 
NAy f 

The sedimentation coefficient has the units of seconds and is ordinarily approximately 
equal to 10 -13 s. The practical unit of sedimentation coefficients is the svedberg, 
defined so that 1 svedberg-  10 -13 s. 

Equation (11.4-4) allows us to express f in terms of D2, the diffusion coefficient of 
the macromolecular substance, giving 

(11.4-14) 

where we have replaced kBNAv by R. This equation has been widely used to obtain 
molar masses of proteins. It is possible to get values of both S and D 2 from the same 
experiment if a concentration profile similar to that of Figure 11.4 can be observed in 
addition to the sedimentation rate. 
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Transport in Electrolyte Solutions 

Sections 10.8 and 11.4 contain some qualitative comments about the structure of liquids 
and transport processes in liquids. The motions of molecules in a liquid were crudely 
described as rattling about in a cage of adjacent molecules and occasionally moving 
into a neighboring cage. In an ionic solution, the motion of an ion is similar to the 
motion of a molecule in an ordinary liquid except that an ion will have an electrostatic 
force placed on it by an electric field. The electrostatic forces between ions are also 
important except at extremely low concentration, influencing the probability with which 
an ion will move into an adjacent cage. 

Electric currents consist of drifting motions of charged particles. Electric currents in 
metallic conductors and in semiconductors are due to the motions of electrons, while 
electric currents in electrolyte solutions are due to the motions of ions. Ohm's law is an 
empirical law that describes both cases. It asserts that the current in a conducting 
system is proportional to the voltage imposed on the system: 

V 
I - - ~  (11.5-1) 

where V is the voltage, I is the current (equal to the amount of charge passing a given 
point per second), and R is the resistance of the conductor. Ohm's law with a constant 
resistance is obeyed very nearly exactly by metallic conductors, to a good approxima- 
tion by most electrolyte solutions, and less accurately by most semiconductors. 
Deviations from Ohm's law can be described by using Eq. (11.5-1) with a resistance 
R that is dependent on V. 

Ohm found by painstaking experiments with homemade equipment (even including 
homemade wires) that the resistance of a conductor of uniform cross-sectional area is 
proportional to its length and inversely proportional to its cross-sectional area. We 
define the resistivity r of a conducting object shaped as in Figure 11.8 by 

R d  
r -- - - ~  (11.5-2) 

where s~' is the cross-sectional area and d is the length of the object. The resistivity is 
independent of d and d ;  it depends only on the composition of the object, the 
temperature, and the pressure (the dependence on the pressure is usually very weak). 
The units of resistivity are ohm meters (ohm m). The reciprocal of the resistivity is 
called the conductance a: 

1 
= - (11.5-3) 

r 

The units of conductance are ohm -1 m -1 or S m -1. The ohm -1 has been called the 
mho, but the SI name for ohm -1 is the siemens, denoted by S. 

We define the current density j (do not confuse it with the unit vector j) as a vector 
with magnitude equal to the current per unit area and with the same direction as the 
current: 

I 
j -- ]jl - ~ (11.5-4) 

where s~' is the cross-sectional area of the conductor. The direction of an electric 
current is by convention the direction of apparent motion of positive charges. This 
convention was proposed by Benjamin Franklin, who was an excellent amateur 
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physicist as well as a statesman and who also invented the designation of the two kinds 
of electric charge as positive and negative. Ohm's law can be written 

j -- crg (11.5-5) 

where g is the magnitude of the electric field, equal to V / d  for an object like that of 
Figure 11.8. 

Exercise 11.16 
Show that Eq. (11.5-5) is correct 

Let the mean velocity of cations be denoted by v+ and the mean velocity of anions be 
denoted by v_. The mean drift velocity is a vector average velocity. At equilibrium, 
even though the ions are moving about, the mean velocity vanishes because as many 
molecules will be moving in a given direction as in the opposite direction. If v+ or v_ is 
nonzero, it is often called a "drift velocity." The current density is the sum of a cation 
contribution and an anion contribution due to the drift velocities: 

j - j+ + j_ (11.5-6) 

On the average, positive ions (cations) no farther from a fixed plane than a distance 
equal to v+ times 1 s will pass in 1 s, and similarly for anions. The current density can 
be written 

j = Z+NAve'C+V + + [z_[NAve.C_V_ (11.5-7) 

where e" is the charge on a proton, 1.6022 x 10 -19 C and where NAv is Avogadro's 
constant. The quantity z+ is the valence of the cation (the number of proton charges on 
one ion) and z_ is the valence of the anion (a negative integer equal in magnitude to the 
number of electron charges on one ion). The concentrations of cations and anions in 
mol m -3 are denoted by c+ and c_, respectively. 

Exercise 11.17 
Show that Eq. (11.5-7) is correct. 

If dissociation or ionization is complete and if the solution is made from c moles of 
electrolyte solute per cubic meter of solution, 

c+ = v+c and c = v_c (11.5-8) 

where v+ is the number of cations per formula unit of the solute and v_ is the number of 
anions per formula unit. For a single electrolyte solute these quantifies must obey the 
electrical neutrality relation 

v + z + + v  z = 0  (11.5-9) 

The magnitude of the current density can also be written 

j = F(z+c+v+ + [z_lc_v_) (11.5-10) 

where F is Faraday's constant, equal to the charge on 1 mol of protons, 96485 C mo1-1 . 
If the conductor represented in Figure 11.8 is an electrolyte solution, the ions that 

flow cannot pass out of the ends of the container. This means that if a direct current 
flowed, cations would accumulate at one end of the system and anions would 
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accumulate at the other end, unless some electrochemical half-reactions consumed the 
ions at one end and produced them at the other. If this cannot be arranged, alternating 
current is used to measure the conductivities of an electrolyte solution. Since the current 
flows alternately in one direction and then the other, only small accumulations of ions 
occur at the ends of the system during one half of the cycle and these ions move back 
during the other half of the cycle. 

For a general binary electrolyte Mv+Xv_, the analogue of Eq. (11.5-12) is 

i+ + _ i+ + -i_- 
(11.5-13) 

Exercise 11.18 
Show that Eq. (11.5-13) is correct. 

Since the cations and anions in a given electrolyte will not generally have equal 
friction coefficients, the two kinds of ions will not necessarily carry the same amount of 
current (one substance that comes close is KC1). The fraction of the current that is 
carried by a given type of ion is called its transference number, t: 

Ji t; = . (11.5-14) 
Jtotal 

From Eq. (11.5-13), it follows that if there is only one type of cation and one type of 
anion present, 

~+:+/s+ v+:+lS+ 
t+ c+zZ / f  + -+-c_zZ/f - v+z2+/f+ + v_zZ / f  - (11.5-15) 

with a similar equation for t_. 
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The mobility ui of the ith type of ion is defined by 

vi (11.5-16) U i ~---~ 

where v i is the magnitude of the mean drift velocity of this type of ion and where 8 is 
the magnitude of the electric field. The mobility is numerically equal to the mean drift 
velocity if the electric field is 1 V m -1. The relation shown in Eq. (11.5-16) is 
equivalent to 

[Zi[~ [Zi]~ 
u i = ~ = (11.5-17) 

f 6nt lr i (ef f )  

where f/ is the friction coefficient for the /th type of ion, and where r/(eff) is the 
effective radius of the ion. The second equality in this equation comes from Stokes's 
law, Eq. (11.2-26). Ions with equal valence magnitudes and with equal effective radii 
will have equal mobilities according to Stokes's law. 

The conductivity can be written in terms of the mobilities: 

= F(c+z+u+ + c _ l z _ l u _ )  (11.5-18a) 

a - Fc(v+z+u+ + v_ lz_]u_)  (11.5-18b) 

*Exercise 11.19 
Write the transference numbers in terms of the ion mobilities. 

Ion mobilities are measured by several different techniques. The technique of 
electrophoresis is used in the study of the ion mobilities of protein molecules. In 
this technique a solution is placed between electrodes, across which a direct voltage is 
placed. Most protein molecules contain various weak acidic and basic functional 
groups, which ionize at different characteristic pH values. The protein molecules 
thus have a characteristic average charge that depends on pH. The mobility of the 
protein thus depends on pH, and electrophoresis experiments at different pH values can 
be used to separate mixtures of proteins. 

It is found that the mobilities and friction coefficients of a given ion actually depend 
on the concentrations of the ions present so that Eq. (11.5-17) is correct only for very 
small concentrations. One reason for the dependence on concentration is that interionic 
forces are "long-range" forces. That is, while the forces between uncharged molecules 
decrease rapidly with distance, electrostatic forces decrease slowly with distance. Ions 
that are at a considerable distance exert significant forces, as stated in the discussion of 
the Debye-Htickel theory in Chapter 7. There are three important effects. The first is the 
electrophoretic effect, due to the fact that ions of the opposite charge are moving in the 
opposite direction from a given ion. At nonzero concentration, the attractive forces of 
these ions on the given ion tend to slow it down. The second effect is the relaxation 
effect. Every ion repels ions of its own charge and attracts ions of the opposite charge. 
Because of this there exists an "ion atmosphere" of excess charge of the opposite sign 
around every ion, as described in Chapter 7. If an ion moves, it is no longer at the center 
of its ion atmosphere, which must then relax to become centered on the new position of 
the ion. This effect also slows down the motion of the ion compared with its motion at 
infinite dilution. The third effect is that of solvation. At high concentrations, ions must 
compete with each other to attract solvent molecules. Since the effective size of ions 
can include some of the solvent molecules that are strongly attracted to the ions, any 
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change in the solvation can affect the mobility. The electrophoretic effect and the 
relaxation effect vanish in the limit of infinite dilution and the solvation effect 
approaches concentration-independent behavior, so that ion mobilities and friction 
coefficients approach constant values in the limit of infinite dilution. Table A.20 gives 
values of ion mobilities at infinite dilution in water at 25~ 

The ions with the largest mobilities in aqueous solutions are the hydrogen ion and the 
hydroxide ion. The reason for the large mobilities is that hydrogen and hydroxide ions 
can "exchange" with water molecules. A hydrogen ion can attach itself to one or more 
water molecules, making the hydronium ion, H 30 +, or the HsO + ion. After such an ion 
is formed, a hydrogen ion on the other side of the ion can be released. This hydrogen 
ion can attach itself to a second water molecule, after which a different hydrogen ion is 
released on the other side of the second hydronium ion, and so on, providing a rapid 
apparent motion of hydrogen ions. The exchange of hydroxide ions is similar. 

Some cations with a small radius, such as lithium, have somewhat lower mobilities 
and larger effective radii than might be expected. This is attributed to the fact that small 
cations are more strongly hydrated (more strongly bound to water molecules) than 
larger cations, because water molecules can approach closer to the center of charge of 
the smaller ion. These strongly bound water molecules are more likely to be carried 
along with the ions than are less strongly bound water molecules, increasing the 
apparent size of the ions. 

*Exercise 11.20 
a. Calulate the effective radii of the hydrogen ions from the ion mobilities. 
b. Calculate the effective radius of the lithium ion from its ion mobility. 

Another quantity that is commonly tabulated is the molar conductivity, denoted by 
A, and defined by 

O" 
A = - (11.5-19) 

C 

where c is the stoichiometric concentration of the electrolyte in mol m -3 or in mol L -1 . 

From Eq. (11.5-18b), 

A - a__._ F(v+z+u+ + v_lz_lu_)  (11.5-20) 
C 

This quantity would be independent of concentration if the mobilities were indendent of 
concentration. At fairly small concentrations the molar conductivity actually depends 
linearly on the square root of the concentration, much like the logarithm of the activity 
coefficient according to the Debye-H/ickel theory: 

A = A o - Ac 1/2 ( 1 1 . 5 - 2 1 )  

This equation was discovered empirically by Kohlrausch in 1900. It also represents the 
results of the Debye-H/ickel-Onsager theory, which provides an expression for the 
parameter A. In the limit of infinite dilution, A approaches a constant limit, just as do 
the mobility and friction coefficient: 

A 0 = lim A (11 .5 -22 )  
c----~ 0 

The value at infinite dilution, A 0, is called the limiting molar conduct iv i ty .  
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The conductivity contains a term for the cation and a term for the anion, so the molar 
conductivity can be written as such a sum. For a uni-univalent electrolyte, 

A = 2+ + 2_ (11.5-23) 

A o = (2+) o + (2_)o (11.5-24) 

where (2+) 0 and (2_)0 are the limiting molar conductivities of the ions. Equation 
(11.5-24) is known as Kohlrausch's law and was discovered empirically around 1875. 
The limiting molar conductivities for the ions can be separately tabulated, making it 
possible to construct a shorter table than if values for neutral electrolytes were 
tabulated. Table A.20 contains values of limiting molar conductivities of several ions 
in water at 25~ 

Since a weak electrolyte is only partially ionized at nonzero concentration, an 
extrapolation such as that in Example 11.12 is difficult for weak electrolytes, since 
the percent ionization and the ion mobilities are both changing with concentration. 
However, one can easily determine the limiting molar conductivity of a weak electrolyte 
such as acetic acid from the values for the ions. 
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Exercise 11.21 
*a. Find the value of the limiting molar conductivity for acetic acid from the values in Table 

A.20. 
b. Following are data on the molar conductivity of acetic acid as a function of concentrations at 

25~ 

Attempt an extrapolation as in Example 11.12 to determine the limiting molar conductivity. 

Summary of the Chapter 

The three transport processes correspond to the transport of some quantity through 
space: heat conduction is the transport of energy, diffusion is the transport of molecules, 
and viscous flow is the transport of momentum. These processes are described by 
empirical linear laws: heat conduction is described by Fourier's law, diffusion is 
described by Fick's law, and visous flow is described by Newton's law of viscous flow. 

Transport processes in a hard-sphere gas can be analyzed theoretically. A formula for 
the self-diffusion coefficient was derived in this chapter, and similarly formulas for 
thermal conductivities and viscosity coefficients were presented. Each transport 
coefficient is proportional to the mean free path and to the mean speed, and thus 
proportional to the square root of the temperature. 

A molecule in a liquid was pictured as partially confined in a cage made up of its 
nearest neighbors. This model and an assumed frictional force were related to diffusion 
in liquid solutions, to viscosity in pure liquids, and to sedimentation in solutions of 
macromolecular substances. 

We presented the consequences of assuming that an ion moving through a solution 
experiences a frictional force proportional to its speed with a proportionality constant 
called a friction coefficient. It was shown that this assumption leads to Ohm's law for an 
electrolyte solution, with a conductance contribution for each type of ion that is 
inversely proportional to the friction coefficient. 
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The Macroscopic Description of Chemically 
Reacting Systems 
In Chapter 11 we described nonequilibrium processes in fluid systems that do not 
undergo any chemical reactions. We now discuss uniform fluid systems in which 
chemical reactions can occur at constant temperature. These conditions can usually be 
met by carrying out the reaction in a constant-temperature bath and either stirring the 
system or using a sufficiently small system. It is possible to treat reactions in systems in 
which the temperature is not uniform, 1 but we will not discuss such reactions. 

Consider a chemical reaction 

aA + bB --+ dD + f F  (12.1-1) 

where the capital letters stand for chemical formulas, and the lower-case letters are 
stoichiometric coefficients. We define the rate of the reaction, denoted by r: 

1 d[A] 1 d[B] 1 d[D] 1 d[F] 
r . . . . . . .  (12.1-2a) 

a dt b dt d dt f dt 

where [A] is the concentration (molL -1 or molm -3) of substance A, [B] is the 
concentration of substance B, etc., and where t is the time. 

An equation similar to Eq. (12.1-2a) can be written for any other reaction, using the 
appropriate stoichiometric coefficients. In Eq. (8.1-1) a general reaction equation was 
written in the form 

for which the rate can be written as 

0 -- ~ YiJ~i 
i= l  

1 d [~ i l  
r = -- ~ (12.1-2b) 

Yi dt 

This equation gives the same value for the rate for any choice of substance i taking part 
in the reaction. 

We will assume that the rate of the reaction is a function of temperature, pressure, and 
the concentrations of the substances in the system. For reactions in nonideal solutions, 
it would be a better approximation to assume that reaction rates are functions of 
activities instead of concentrations, but we will assume that concentrations and 
activities are equal. In most reactions the rate will depend only on the concentrations 
of the substances occurring in the chemical equation. If a substance that does not occur 
in the chemical equation increases the rate, it is a catalyst. 

The macroscopic rate of a chemical reaction is determined by measuring concentra- 
tions and is actually a net rate: 

r = ?'net ~- Ff - F r (12.1-3) 

where rf is the forward rate, or the rate at which products form, and where r r is the 
reverse rate, or the rate at which reactants form. Chemical reactions usually proceed 
smoothly toward a macroscopic equilibrium state in which the forward and reverse rates 

1 See for example R. G. Mort imer,  J. Phys. Chem., 67, 1938 (1963). 
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cancel each other. However, some oscillatory reactions do exist. 2 Figure 12.1 
shows schematically how a nonoscillatory chemical reaction, A--+ B, approaches 
equilibrium. 

In most reactions the forward rate depends only on the concentrations of the 
reactants, so that the forward reaction can be observed in the absence of the reverse 
reaction if the products are absent. If A and B are the reactants, 

1 d[A] 
rf  . . . . . .  rf([A], [B]) (no reverse reaction) (12.1-4) 

a d t  

If the function represented in Eq. (12.1-4) is known, it is called the rate law of the 
forward reaction. Similarly, the reverse reaction rate usually depends only on the 
concentrations of the products. If D and F are the reactants, 

(12.1-5) 

Equation (12.1-5) is the rate law of the reverse reaction. 
There is a large class of chemical reactions in which the forward reaction rate is 

proportional to the concentration of each reactant raised to some power. For example, 

1 d[A] 
rf = = kf[A]~[B]/~ (12 1-6) 

a aft 

Equation (12.1-6) is called a rate law with definite orders. The exponent ~ is called 
the order with respect to substance A and the exponent fl is called the order with 
respect to substance B. If there is more than one reactant in the rate law, these orders 
are sometimes called partial orders. The sum of the orders with respect to the different 
substances is called the overall order. If ~ and fl are both equal unity, the reaction is 
said to be first order with respect to substance A, first order with respect to substance B, 
and second order overall. Higher orders are similarly assigned. The orders are usually 
small positive integers, but other cases do occur. There are some reactions that are not 
described by Eq. (12.1-6). Such reactions are said not to have a definite order. 

The proportionality Constant kf in Eq. (12.1-6) is independent of the concentrations, 
and is called the forward rate constant. Rate constants depend on temperature and 
pressure, although the pressure dependence is generally negligible. 3 We will discuss the 
temperature dependence of reaction rates in Chapter 13, and will discuss only constant- 
temperature systems in this chapter. 

One of the objectives of the kinetic study of a reaction is to determine the rate law. 
For a reaction with definite orders, this means to determine the orders with respect to 
each reactant and the value of the rate constant. There are at least two reasons why this 
is useful. The first is that it allows us to predict the rates of the reaction for new values 
of the concentrations without doing additional experiments. The second is that the form 
of the rate law usually provides information about the sequence of molecular steps 
making up the reaction (the mechanism of the reaction). 

2 R. J. Field and M. Burger, Oscillations and Traveling Waves in Chemical Systems, Wiley, New York, 
1985. 

3 R. E. Weston and H. A. Schwarz, Chemical Kinetics, Prentice-Hall, Englewood Cliffs, N.J., 1972, pp. 
181ft. 
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Forward Reactions with One Reactant 

In this section we discuss reactions with definite orders, a single reactant, and with 
negligible reverse reaction. Inspection of Figure 12.1 shows that when a reaction that 
converts A to B has approached equilibrium, the reverse rate cannot be neglected. We 
must avoid applying the results of this section to that case. However, many reactions 
proceed essentially to completion and in that case we can neglect the reverse reaction 
for nearly the entire reaction. 

The "classical" method for determining the rate law for a reaction is to mix the 
reactants and to determine the concentration of one of the reactants or products as a 
function of time as the reaction proceeds at constant temperature. A variety of analytical 
methods have been used to determine concentrations, including measurement of the 
following: 

1. The absorbance of radiation at some wavelength at which a given product or 
reactant absorbs 

2. The intensity of the emission spectrum of the system at a wavelength at which a 
given product or reactant emits 

3. The volume of a solution required to titrate an aliquot of the system 
4. The pressure of the system (for a reaction at constant volume) 
5. The volume of the system (for a reaction at constant pressure) 
6. The electrical conductance of the system 
7. The mass spectrum of the system 
8. The ESR or NMR spectrum of the system 
9. The dielectric constant or index of refraction of the system 

10. The mass loss or gain if a gas is lost or absorbed 

Once we know from experiment how the concentration of a reactant or product depends 
on time, we must have a formula for the concentration as a function of time to compare 
this with. We now proceed to integrate differential rate laws for a number of cases to 
obtain such formulas. 

First-Order Reactions 

Consider a first-order reaction without significant reverse reaction: 

A ~ products ( 12.2-1 ) 

The differential rate law is 

d[A] 
r -  - d--7-= kf[A] (12.2-2) 

To separate the variables we multiply Eq. (12.2-2) by dt and divide by [A]: 

1 d[A] 1 
ltrA--q - - ~  dt - t~l~ d[A] - - k f  dt (12.2-3) 
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We carry out a definite integration from time t = 0 to t = t', where t' is a specific value 
of the time: 

i t' 1 I t' 
o [-~ d [ A ] -  - o k f  dt 

in([A]t, ) - ln([A]o ) = - k f t '  

(12.2-4) 

where the subscript on a concentration indicates the time at which it is measured. 
Taking antilogarithms of Eq. (12.2-4), 

(12.2-5) 

where we have written t instead of t'. An indefinite integration can also be carried out, 
followed by evaluation of the constant of integration. 

Exercise 12.1 
Carry out an indefinite integration of Eq. (12.2-3). Evaluate the constant of integration to obtain 
Eq. (12.2-5). 

For a reaction that involves a change in the number of moles of gaseous substances 
the progress of the reaction can be monitored by measuring the pressure. In this case, it 
is convenient to use partial pressures instead of concentrations. 

The half-life, t 1/2, is defined as the time required for half of the starting compound to 
react. Since [A]q/2 - [A]0/2, we can write from Eq. (12.2-4), 

ln(1) 
k f t l / 2  - -  _ Ink, [A]o ) 

4 H. S. Johnston and Y. Tao, J. Am.  Chem.  Soc.,  73, 2948 (1951). 
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or 

(12.2-6) 

The relaxation time z is the time for the amount of  reactant to drop to a fraction 1/e 
(approximately 0.3679) of  its original value. Substitution of  this definition into Eq. 
(12.2-4) gives 

1 tl/2 
r -- ~ -- ln(2) "~ 1"4427q/2 (12.2-7) 

For a first-order reaction kf has units of  time -1 (s -1, min -1, etc.). 

Exercise 12.2 
*a. Find the half-life and the relaxation time for the reaction of Example 12.1. 

b. Verify Eq. (12.2-7). 

Like some chemical reactions, the decay of  radioactive nuclides obeys first-order 
kinetics with rate constants that do not appear to depend on temperature. Half-lives, not 
rate constants, are tabulated for radioactive nuclides. 

*Exercise 12.3 
The half-life of 235U is equal to 7.1 x 108years. 
a. Find the first-order rate constant. 
b. Find the time required to a sample of 235U to decay to 10.0% of its original amount. 

Second-Order Reactions 
The rate law for a second-order reaction with a single reactant and negligible reverse 

reaction is 

d[A] _ kf[A]2 (12.2-8) 
r - -  d--~- 

With the variables separated, 

1 d [ A ] d t _ d [ A ] _ _ k f d  t (12.2-9) 
[A] 2 dt [A] 2 -  

We carry out a definite integration from time t = 0 to time t = t'. 

f d[A__j . t A ~ , , _  --kf at (12.2-10) 
31110 [A] 2 

The result of  the integration is 

(12.2-11) 
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For a second-order reaction, kf has units of  concentration -1 time -1 (Lmo1-1 s -1, 
m 3 mo1-1 min -1, etc.). 

Exercise 12.4 
Carry out an indefinite integration and evaluate the constant of integration to obtain Eq. (12.2-11) 
in an alternative way. 

*Exercise 12.5 
a. Find the concentration of NO2 in the experiment of Example 12.2 after a total elapsed time of 

145 min. 
b. Find the concentration after 145 min if the initial concentration is 0.100molL -1. 

The half-life of the reaction is the time necessary for half of  the initial amount of 

reactant to be consumed: 

1 1 2 1 
= = k f t l / 2  (12.2-12) 

[A]0/2 [ A ] 0  [ A ] 0  [A]0 

where we have used the fact that [A]t,/2 - [A]0/2. Equation (12.2-12) leads to 

(12.2-13) 

*Exercise 12.6 
a. Find the half-life of the reaction of Example 12.2 with the given initial concentration. 
b. Find the half-life of the reaction of Example 12.2 if the initial concentration is equal to 

0.0200 molL -1 . 
c. Find the half-life of the reaction of Example 12.2 if the initial concentration is equal to 

0.1000 mol L -1 . 

If  there is considerable experimental error, it might be difficult to tell a first-order 
reaction from a second-order reaction by inspection of a graph of  the concentration 
versus time if the graph extends over only one half-life. Figure 12.2 shows a 
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hypothetical case: substance A undergoes a first-order reaction and substance B 
undergoes a second-order reaction with the same half-life. The concentrations in the 
two cases differ only slightly for times up to t l /2 .  

*Exercise 12.7 
a. Find expressions for the time required for the concentration of the reactant in each of the 

reactions of Figure 12.2 to drop to one-sixteenth of its original value, assuming that the 
reverse reaction is absent. Express this time in terms of tl/2. 

b. Express this time in terms of the two forward rate constants and the initial concentrations. 

nth-Order Reactions 

The rate law for an nth-order reaction with a single reactant is 

d[A] 
r -  d t  = kf[A]n (12.2-14) 

where n is not necessarily an integer but is not equal to unity or zero. The variables can 
be separated by division by [A]" and multiplication by dt, giving 

d[A] 
[A] n = kf  d t  (12.2-15) 

We perform a definite integration from t -  0 to t -  t' 

I t 

[AIr' d[A____]]_ - k f  I o d t  (12.2-16) 
J[A]o [A] n 

The result is 

1 [ 1 1 ] _ k f t ,  
' n -  n - 1  [A]t, 1 [A]~)-l 

(12.2-17) 

The half-life of an nth-order reaction without reverse reaction is found by substituting 
[A]q n = [A]o/2 into Eq. (12.2-17). The result is 

2 n-1 - 1 

t l /2 - (n - 1)kf[A]~) -1 (12.2-18) 

This formula is not valid if n -  1 or n -  0. If n -  1, Eq. (12.2-6) applies. 

Exercise 12.8 
a. Verify Eq. (12.2-18). 
b. For a third-order reaction with a single reactant and negligible reverse reaction, find an 

expression for the time required for 80% of the reactant to react. 
e. In terms of tl/2, how long will it take for 7 of the reactant of part (b) to react? 
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Zero-Order Reactions 
In the rare case that a reaction of  a single reactant is zero order (the rate is independent 
of  the concentration of  the reactant), the rate law for the forward reaction is 

d[A] = kf[A]O = kf (12.2-19) r = -  d--7- 

The solution of  this equation is 

[A]0 - k f t  if 0 < t < [A]0/k f (12.2-20) 
[Alt--  0 i f [A]0 /k  f < t  

where the first line of  the solution is obtained from Eq. (12.2-19). The second line of  the 
solution is obtained from the fact that the reaction stops when the reactant has been 
consumed. 

*Exercise 12.9 
a. A hypothetical zero-order reaction has a rate constant equal to 0.0150molL -1 s -1 at a certain 

temperature. If the initial concentration of the single reactant is 1.000molL -1, find the 
concentration after a reaction time of 5.00 s at this temperature. 

b. Find the time required for all of the reactant of part (a) to react at this temperature. 
c. Find an expression for the half-life of a zero-order reaction and the value of the half-life of the 

reaction of part (a). 

Determination of Reaction Order by Comparison of 
Experimental Data with Integrated Rate Laws 

Since linear graphs are the easiest type to use and since concentrations are not linear 
functions of  time except for zero order, one does not ordinarily use a graph of  the 
concentration as a function of  time to determine the reaction order. For each order, one 
plots the appropriate function of  the concentration that will give a linear graph. To test 
for zero order, one makes a graph of  [A]t as a function of  t. To test for first order, one 
makes a graph of  ln([A]) as a function of  t. To test for second order, one makes a graph 
of  1/[A] as a function of  t. To test for third order, one makes a graph of  1/2[A] 2 as a 
function of  t, etc. To test for nonintegral orders, graphs of  1/((n - 1)[A] n-l)  for various 
nonintegral values of  n can also be made. The graph that is most nearly linear 
corresponds to the correct order. Figure 12.3 shows schematic graphs for zero, first, 
second, and third orders. Using commercially available software packages such as 
Excel, MathCad, Mathematica, CricketGraph and KaleidaGraph, one can construct the 
graphs and carry out least-squares (regression) fits to the data. The software auto- 
matically calculates the correlation coefficient (or its square), which is a measure of  
the accuracy of  the fit of  the function to the data. Some packages will print out a list of  
residuals,  which are the differences between the data point and the least-squares line. 

The Method of Half-Lives 
Another way to determine the order of  a reaction is to determine how the half-life of  the 
reaction depends on the initial concentration. If the half-life of  the reaction is 
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independent of concentration the reaction is first order. To test for other orders we take 
the logarithm of Eq. (12.2-18) to obtain: 

( 2 " ~  - 1)  
l n ( t l / 2 )  - -  l n \ (  n - l i ~  - (n - 1)ln([A]o ) (n :fi 1, n :fi O) (12.2-21) 

To use Eq. (12.2-21), one could perform a set of different experiments at the same 
temperature but with different initial concentrations, determine the half-life for each, 
and construct a plot of ln(tl/2) versus ln([A]0 ). A straight line should result, with slope 
equal to - ( n  - 1) and with intercept equal to the first term on the right-hand-side of Eq. 
(12.2-21). One can also take the data for a single experiment and regard different times 
during the experiment as "initial" times. The reverse reaction must be negligible for the 
entire experiment. 
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The Method of Initial Rates 

In this method, one compares data directly with the differential rate laws instead of with 
the integrated rate laws. The method has two advantages: it is not necessary to integrate 
the rate law, and there is almost certainly no interference by the reverse reaction. The 
reaction is followed for a short time At for which there is a change A[A]: 

A[A] = [A]A t - [A]0  (12.2-22) 

The time At must be short enough that A[A] << [A]. The initial rate is approximated by 
a quotient of finite differences: 

d[A] A[A] 
-- - ~ ~  (12.2-23) 

r i n i t i a l  - -  dt At 

One could alternatively measure the concentration at several times and use a graphical 
or numerical procedure to obtain a better approximation to the derivative d[A]/dt at 
t = 0 .  
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If there is only one reactant, the logarithm of Eq. (12.1-6) is 

ln(rinitial) = ln(kf) + ~ ln([A]0 ) (12.2-24) 

To determine the order and the rate constant, one carries out several experiments at the 
same temperature but with different initial values of [A]. Plots of the logarithm of the 
initial rate as a function of the logarithm of the initial concentration are constructed or a 
linear least-squares fit is performed. The slope of the line best fitting the data points is 
the order of the reaction, and the intercept is the logarithm of the rate constant. 

The method of initial rates has the disadvantage that several experiments must be 
carried out. A modification to the above method would be to determine the value of 
A[A]/At and the value of [A] at different times in a single experiment and to use these 
values in Eq. (12.2-24). 

Forward Reactions with More Than One Reactant 

Reactions with more than one reactant are harder to deal with than reactions of a single 
reactant. In a few cases the differential rate law can be integrated to obtain an integrated 
rate law, and in other cases we can use the method of initial rates or the method of 
isolation. 

Integration of the Differential Rate Law That Is First Order 
in Each of Two Reactants 

Consider a reaction 

aA + bB --+ products (12.3-1) 
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where a and b represent stoichiometric coefficients. The rate law is 

1 d[Al 
r = = ky[A][B] (12.3-2) a dt 

We first assume that the reactants are in the stoichiometric ratio: 

[A]0 a 
[B]0 = ~ (12.3-3) 

The concentrations will remain in this ratio during the reaction. 

Exercise 12.10 
Show that if Eq. (12.3-3) holds then 

[A]t a 
[B]t = ~ (12.3-4) 

for all values of t greater than 0. 

Equation (12.3-2) appears to have two dependent variables, [A] and [B]. However, 
we can express the equation in terms of a single dependent variable x(t): 

[A]o - [ A ] t  [B]o - - [g] t  x(t) -- = (12.3-5) 
a b 

We can now write Eq. (12.3-2) in the form 

dx 
dt = kf([A]~ - ax)([B]~ - bx) (12.3-6a) 

-kfab([A~]b~ -X)([B-~]b~ -X ) - kfab([A~]a~ -X)  2 (12.3-6b) 

where we have used the fact that [B]o/b = [A]o/a for a stoichiometric mixture. 
The variables can be separated in Eq. (12.3-6b) by dividing by ( [ A ] o / a -  x) 2 and 

multiplying by dt: 

dx 

_ x) 
2 = k f a b  dt (12.3-7) 

We integrate both sides of Eq. (12.3-7) from t =- 0 to t -  t" 

[A]~ x({) 
a 

1 
[A]0 = kfabt 

which, if we replace t' by t, is the same as 

1 1 

[hit [A]o 
-- krbt (12.3-8) 
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Equation (12.3-8) is the same as Eq. (12.2-11) except for the appearance of  the factor b 
in the fight-hand side. 

*Exercise 12.11 
a. Find the expression for the half-life of the reaction of Eq. (12.3-1) for the case of a 

stoichiometric mixture. 
b. Find the half-life of the reaction in Example 12.5 with the given initial concentrations. 
c. Find the half-life of the reaction in Example 12.5 with initial concentrations both equal to 

5.00 x 10 -5 mol L -1. 

If  the reactants are not mixed in the stoichiometric ratio, we separate the variables in 
Eq. (12.3-6a) to obtain 

1 
dx - kf dt (12.3-9) 

([A]0 - ax)([B]0 - bx) 

This equation can be integrated by the method of  partial fractions. We write 

1 G H 
= + (12.3-10) 

([A]o - ax)([B]o - bx) [A]o - ax [B]o - bx 

where G and H are guaranteed by a theorem of  algebra to be constants. These constants 
are 

1 1 
G - and H -- 

[B]o - b[A]o/a [A]o - a[B]o/b 

Exercise 12.12 
Verify the expressions for G and H. 

When the expressions for G and H are substituted into Eq. (12.3-10) and the 

resulting expression is substituted into Eq. (12.3-9), a definite integration gives 

, (tBl,IAl0  
a[B] ~ b[A] ~ In - kf t  (12.3-11) 

- \[A]t[B]o j 
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Exercise 12.13 
Verify Eq. (12.3-11). 

The Method of Initial Rates for Two or More Reactants 

For a reaction with several reactants, the method of initial rates provides the 
most convenient way to determine the rate law and the rate constant. The method is 
very similar to that with a single reactant, which led to Eq. (12.2-14). Consider the 
reaction: 

aA + bB + f F  --+ products (12.3-12) 

for which the initial rate can be written as 

1 A[A] 
a At ' ~  /"init ial--  kf[A]~)[Blo~[F]o r (12.3-13) 

Several experiments are carried out at the same fixed temperature and with the same 
values of [B]o and [F]o, but with different values of [A]o. The initial rate is determined 
for each experiment. We write 

ln(rinitial) -- ln(kf[BloB[F]o ~) + ~ ln([A]o) (12.3-14) 

The first term on the right-hand side of this equation has the same value in all of these 
experiments. A plot of ln(rinitial) as a function of ln([A]0 ) should give a straight line with 
slope equal to ct. 

Additional experiments are carried out in which the initial concentration of each of 
the other substances is varied in turn, keeping all other initial concentrations fixed. 
Equations analogous to Eq. (12.3-14) allow the order with respect to each substance to 
be determined. After all of the orders are determined, everything in the fight-hand side 
of Eq. (12.3-13) is known but kf, so kf can be computed from any one of the 
experiments. Since there is always some experimental error, a reasonable policy is to 
calculate the rate constant separately from each experiment and then to average the 
values. 



416 12 The Rates of Chemical Reactions 

The Method of Isolation 

In this method, an experiment is carried out in which the initial concentration of one 
reactant is made much smaller than the concentrations of the other reactants. During the 
reaction the fractional changes in the large concentrations are negligible, and these 
concentrations are treated as constants. The species having the small concentration is 
monitored as in the case of a single reactant. For example, in the reaction of Eq. 



12.4 Inclusion of a Reverse Reaction. Chemical Equilibrium 417 

(12.3-12), if [A] is much smaller than [B] and [F], the relative changes in [B] and [F] 
will be small. We write 

1 d[A] 

a dt 
- - ~ = (kf[B]fl[F]O)[A] ~ (12.3-15) 

where the quantity in parentheses is approximately constant. Data from this kind of 
experiment can be treated like data from reactions with a single reactant. For example, if 
c~ = 2, Eq. (12.2-11) can be transcribed to obtain 

1 1 
= ~ +  (kf[B]fl[F]~)t (12.3-16) 

[A]t [A]0 

Sets of experiments can also be carried out in which [B] is made much smaller than [A] 
and [F], and then in which [F] is made much smaller than [A] and [B], in order to 
determine t ,  ~b, and kf. 

If a reaction in a solution includes the solvent as a reactant, the concentration of the 
solvent is usually much larger than the concentrations of other reactants and is almost 
constant. Assume that the solvent S is involved in the reaction 

A + S ----> products (12.3-17) 

and that the rate law is 

d[A] = k[SI~[A] ~ _ kapp[A]~ (12.3-18) 
r =  dt  

where a is the order with respect to the solvent. [S] is almost constant in a dilute 
solution. The quantity /Cap p is equal to k[S] G and is almost constant. It is called an 
apparent  rate constant.  The order with respect to substance A and the apparent rate 
constant can be determined by any of the methods that apply to a single reactant. 
However, the actual rate constant k and the order with respect to the solvent cannot be 
determined unless the concentration of the solvent can be varied. If the reaction is first 
order with respect to substance A and of unknown order with respect to the solvent, the 
reaction is called a pseudo first-order reaction. If the reaction is second order with 
respect to substance A, the reaction is called pseudo second-order, and so on. 

Inclusion of a Reverse Reaction. Chemical 
Equilibrium 

So far, we have treated only reactions for which the reverse reaction could be neglected. 
We now include a reverse reaction for the simplest case, that the reaction is first order in 
both directions and that there is one product and one reactant: 

kf 
A ~,-~- B (12.4-1) 

kr 

where kf is the rate constant for the forward reaction and kr is the rate constant for the 
reverse reaction. Other cases, such as second order in one direction and first order in the 
other direction and reactions with more, than two substances, are much more difficult to 
treat and we will not discuss them explicitly. 
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The net (observable) rate of the reaction is given by the difference between the 
forward rate and the reverse rate: 

d[A] 
rnet=- -  dt =kr[Al-kr[B] (12.4-2) 

At equilibrium, 

rnet(eq ) --" 0 = k f [ A ] e  q - -  k r [B l e  q 

Equation (12.4-3) is the same as 

(12.4-3) 

(12.4-4) 

where Keq is the equilibrium constant for the reaction. A large value for the equilibrium 
constant means that the rate constant for the forward reaction is large compared with the 
rate constant for the reverse reaction. A small value means that the rate constant for the 
forward reaction is small compared with the rate constant for the reverse reaction. 
Equation (12.4-4) can apply to a more general case as shown in the following exercise. 

Exercise 12.14 
Assume that for the reaction 

kf 
aA + bB ~ dD + f F  (12.4-5) 

k~ 

the forward and reverse rates of the reaction are given by 

rf = kf[A]a[B] b and r r = kr[D]d[F] f (12.4-6) 

That is, assume that the order with respect to each substance is equal to its stoichiometric 
coefficient (which might or might not be the case in a real reaction). Show that 

kf 
Keq = ~r (12.4-7) 

We subtract Eq. (12.4-3) from Eq. (12.4-2) to obtain 

d[A] 
dt = kf([A] -[A]eq)  - kr([B ] -[B]eq) (12.4-8) 

Equation (12.4-8) appears to contain two dependent variables. However, we can express 
[B] in terms of [A]. Assume that initially only substance A is present so that [B]0 = 0: 

[B] = [A]0 - [ A ]  and [B]e q = [A]0 -[A]e q 

so that 

[B] - [B]e  q = [A]0 - [ A ]  - ([A]o - [A]eq) = - [A]  -+- [A]e q (12.4-9) 

When the relation of Eq. (12.4-9) is substituted into Eq. (12.4-8), we get 

d[A] 
dt = (kf + kr)([A ] -[A]eq) (12.4-10) 

Since [A]e q is a constant for any particular initial condition, we can replace d[A]/dt  
by d ( [ A ] -  [A]eq)/dt. Equation (12.4-10) is identical to Eq. (12.2-2) except for the 



12.4 Inclusion of a Reverse Reaction. Chemical Equilibrium 419 

symbols used, and the solution is obtained by transcribing Eq. (12.2-5) with appropriate 
changes in symbols: 

[ A ] r -  [A]e q --  ([A]0 - [ A ] e q ) e - ( k f + k r )  t ' (12.4-11) 

Exercise 12.15 
Carry out the separation of variables to obtain Eq. (12.4-11). 

Figure 12.5 shows the concentration of  a hypothetical reactant as a function of  time. 
[ A ] -  [A]e q decays exponentially, as did [A] in the case of  Figure 12.2. 

We define the half-life of  the reversible reaction to be the time required for 
[A] - [A]e q to drop to half  of  its initial value. We find that 

ln(2) 
tl/2 = kf _i_ k r (12.4-12) 

Exercise 12.16 
Verify Eq. (12.4-12). 

The re laxat ion  t ime z is the time required for [ A ] -  [A]e q to drop to 1/e  of its 
original value: 

1 
z = ~ (12.4-13) 

kf+kr 

A large value of  the reverse rate constant is as effective in giving a rapid relaxation to 
equilibrium as is a large value of  the forward rate constant, even if there is no product 
initially present. 

*Exercise 12.17 
For a hypothetical is0merization with kf = 17.7 min -1 and k r --32.2 min -1, find the final 
composition if the initial concentration of A is equal to 0.175 molL -1 and the initial concentra- 
tion of B is equal to zero. Find the half-life and the relaxation time. Find the composition at time 
t - 0.100 min. 

Exercise 12.18 
The treatment of the reaction 

kf 
A ~,-~- B 

kr 

can be carried out for [B]0 -r O. Carry out this analysis and compare your results with those 
corresponding to the assumption that [B]0 = O. 
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Consecutive Reactions and Competing Reactions 

We now consider two cases in which two reactions are linked together. The first case is 
that of  consecutive reactions in which the product of the first reaction is the reactant of a 
succeeding reaction. The second case is that of  competition between two reactions with 
the same reactant. We consider only the cases in which both reactions are first order 
with a single reactant. 

Consecutive Reactions 
Consider the case that a single reactant forms a second substance in a first-order 
reaction with a negligible reverse reaction, and that this substance forms a product in 
another first-order reaction with a negligible reverse reaction: 

kl k2 
A > B > F (12.5-1a) 

where kl is the rate constant for the first step and k2 is the rate constant for the second 
step. We number the reactions as follows: 

(1) A ~ B (12.5-1b) 

(2) B ~ F (12.5-1c) 

Equation (12.5-1) constitutes a reaction mechanism.  Many chemical reactions consist 
of two or more sequential steps analogous to Eqs. (12.5-1b) and (12.5-1c). When the 
steps in a sequence of reactions are numbered, the rate constants for the steps are 
labeled with the number of the step. If both forward and reverse reactions are included 
in step number i, the rate constant for the forward reaction will be called k i and the rate 
constant for the reverse reaction will be called k~. 

The reaction shown in Eq (12.5-1b) has the same rate law as Eq. (12.2-2), 

alIA] 
dt = - k ~  dt  (12.5-2) 

The rate law for the reaction of Eq. (12.5-1c) is 

d[B] 
dt -- k l [ A ] -  k2[B] (12.5-3) 

Equations (12.5-2) and (12.5-3) are a set of simultaneous differential equations. 
However, the first equation does not contain [B] and can be solved separately. Its 
solution has already been obtained: 

[A], = [A]0 e-kit (12.5-4) 

This solution can be substituted into Eq. (12.5-3) to obtain a single differential equation 
relating [B] and t: 

d[B] 
dt = k l [ A ] ~  - k2[B] (12.5-5) 

The solution of this equation is carried out in Appendix B for the case that no B or F is 
present at time t = 0. The solution is 

kl [A]0 (e_k,t  _ e_k2t) (12.5-6) 
[Bit = k2 _ kl 
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Exercise 12.19 
Substitute the function of Eq. (12.5-6) into the original differential equation of Eq. (12.5-5)and 
show that it satisfies this equation. 

The concentration of  the final product F is obtained from 

IF] = [A]0 - [ A ] -  [B] (12.5-7) 

Figure 12.6a shows the concentrations of  all three substances for the case that 
k 1 = 0.100 s -1 and k 2 - - 0 . 5 0 0  s -1, and Figure 12.6b shows the concentrations for 
the case that k 1 = 0 . 5 0 0  s - !  and k 2 = 0.100 s -1. Since the reverse reactions are 
assumed to be negligible, the final state is complete conversion to the product F in 
both cases. If k 1 < k 2, the amount of  B remains relatively small, but if k 1 > k 2, the 
amount of  B becomes fairly large before dropping eventually to zero. If k 1 = k 2, the 
solution of  (12.5-6) cannot be used since it is not permissible to divide by zero. See 
Problem 12.44 for the solution in this case. 

If steps 1 and 2 have reverse reactions, 

(1) A ~--- B (12.5-8a) 

(2) B ~ F (12.5-8b) 



422 12 The Rates of Chemical Reactions 

the differential equations giving the rates are 

d[A] 

dt 
= -kl [A]  + UI[B ] (12.5-9a) 

d[B] 

dt 
- ' -  k 1 [A] + k' 1 [B] - k2[B ] + k~[F] 

d[F] 

dt 

(12.5-9b) 

= k2[B ] - k;[F] (12.5-9c) 

This set of simultaneous differential equations presents a more difficult mathematical 
problem than if the reverse reactions are negligible. It can be solved but we will not 
present the solution. 5 In this case, both steps are at equilibrium when the entire reaction 
is at equilibrium: 

[ B ] e q  _ _  _ _  k_.[ ~_  K~ (12.5-10) 
[A]eq k~l 

and 

[F]eq __ k2 
[B]eq -- ~22-- K2 (12.5-11) 

The equilibrium constant K for the overall reaction is equal to 

K - [ F ] e q -  [F]eq [B]eq-" K 1 K  2 - kl k2 (12.5-12) 
[A]e q [B]e q [A]e q kll k~ 

The relationships shown in Eq. (12.5-12) are valid for any stepwise reaction: I f  the 
orders in all steps are equal to the stoichiometric coefficients, the equilibrium constant 
is equal to the product of  all of  the rate constants for the forward reactions divided by 
the product of  all of  the rate constants for the reverse reactions. 

Competing (Parallel) Reactions 
In many syntheses a side reaction occurs that consumes part of the reactants but gives a 
product other than the one desired. We consider the case of two such competing 
reactions, both of which are assumed to be first order with negligible reverse reaction. 

(1) A --+ F (12.5-13a) 

(2) A --+ G (12.5-13b) 

The rates of the two reactions combine to give 

d[A] 
at = (k~ + k2)[A ] (12.5-14) 

This equation is the same as Eq. (12.2-2) except that kf is replaced by k 1 + k2, and the 
solution is 

[A]t = [A]oe-(k, +k2)t' (12.5-15) 

5 T. M. Lowry and W. T. John, J. Chem. Soc., 97, 2634 (1910). 
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The half-life for the disappearance of A is 

ln(2) (12.5-16) 
tl/2 --  kl + k2 

In other words, [A] decreases as in a single first-order reaction except that the sum of 
the rate constants appears instead of a single rate constant. 

Consider the concentrations of the two products. We have 

d[F] = kl [A] - k 1 [m]0 e-(kl +k2)t (12 .5-17)  
dt  

The fight-hand side of this equation does not contain [F], so we can multiply by dt  and 
integrate to obtain 

-kl[A]~ (e -(kl+k2)t' - 1) (12.5-18) 
[ F ] t , -  [F]0 = [F]t, -- kl q- k 2 

where we assume that [F]o - 0. A similar treatment for [G] gives the same result except 
that k 1 is replaced by k 2 in the numerator: 

-k2 [A]o (e-(kl +k2)t' 
[Gl t , -  [G]o = [Glt, -- kl + ~  - 1) (12.5-19) 

The ratio [F]/[G] is thus the same at any time: 

[F] k 1 
= - -  (12.5-20) 

[~1 k2 

Exercise 12.20 
For the reactions shown in Eq. (12.5-13) assume that [A]0 - 0.500 mol L -1, that k 1 -- 0.100 S -1 
and that k2 = 0.0100 s -1. Construct a graph showing [A], IF], and [G] for t ranging from 0 to 
20s. 

If the reverse reactions cannot be neglected, the situation can be different. If the 
system comes to equilibrium, 

[F]eq - kl  - Ka (12.5-21 a) 
[A]eq ka 

[G]eq k2 
[A]eq -- k22 -- K2 (12.5-21 b) 

so that 

[F]eq _. k__.l.1 ~2 ._. k_..l_l k~ = g___l_l (12 .5-22)  
[G]e q k~ k 2 k 2 k 1 K 2 

Depending on the values of the four rate constants, this ratio might differ significantly 
from the ratio in Eq. (12.5-20). If F is a desired product and G is an undesired product 
of a side reaction, the ratio of [F] to [G] might be optimized by allowing the system to 
come to equilibrium (using "thermodynamic control") or by stopping the reaction 
before it comes to equilibrium (using "kinetic control"). 
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The Experimental Study of Fast Reactions 

The "classical" method of studying reaction rates is to mix the reactants and then to 
determine the concentration of some reactant or product as a function of time. This 
method is clearly inadequate if the reaction time is comparable to or shorter than the 
time required to mix the reactants. 

Flow Techniques 
There are two common flow methods that can be used to speed up the mixing of liquids 
or gases. In the continuous-flow method, two fluids are forced into a mixing chamber. 
The newly mixed fluid passes into a transparent tube of uniform diameter. The flow 
rates into the mixing chamber are kept constant so that the distance along the tube is 
proportional to the elapsed time after mixing. The concentration of a reactant or product 
is determined spectrophotometrically as a function of position along the tube, using the 
tube as a spectrophotometer cell. The position dependence of the concentration is 
translated into time dependence from knowledge of the flow rate. 

In the stopped-flow method, two fluids are forced into a mixing chamber as in the 
continuous flow method. After a steady state is attained, the flow of solutions into the 
chamber is suddenly stopped and the concentration of a product or reactant is 
determined spectrophotometrically as a function of time, using the mixing chamber 
as a spectrophotometer cell. Figure 12.7 schematically shows a stopped-flow apparatus. 
Flow systems have been designed that can mix two liquids in a tenth of a millisecond, 
so that reactions with half-lives of from 1 ms to 1 s can be studied by either of the two 
flow methods. 
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Relaxation Techniques 
These techniques do not rely on mixing but use the fact that equilibrium compositions 
depend on temperature and sometimes on pressure. The experiment begins with a 
system at equilibrium and the temperature or pressure is suddenly changed so that the 
system is no longer at equilibrium. The relaxation of the system to its new equilibrium 
state is then monitored. Figure 12.8 shows the range of reaction half-lives for which 
each of several techniques can be used. 

In the shock-tube method a reaction vessel is constructed with two chambers 
separated by a diaphragm that can be ruptured suddenly. On one side is a mixture of 
gaseous reactants and products at equilibrium at a fairly low pressure. On the other side 
is a "driver" gas at a much higher pressure. When the diaphragm is ruptured the driver 
gas moves quickly into the low-pressure chamber. Collisions of the driver gas 
molecules with the other molecules produce a shock wave that propagates through 
the low-pressure gas and heats it. The reacting system will then relax to the equilibrium 
state for the new temperature and the concentration of a reactant or product is 
monitored spectrophotometrically. This method is applied to reactions that have half- 
lives in the range from 1 ms to 1 ps, but it is limited to gas-phase reactions. 

In the flash photolysis method 6 a brief burst of light irradiates the system. If this 
light is absorbed it can quickly change the composition of the system and its 
temperature. The concentration of a reactant or product is then measured spectro- 
scopically as a function of time as the system relaxes to its new equilibrium. Figure 12.9 
shows schematically an apparatus for flash photolysis. Flash photolysis differs from the 
shock-wave technique in that the irradiation ordinarily does more than change the 
temperature of the system. Photochemical processes can produce new species so that 
the system is far from equilibrium immediately after the irradiation. 

In the temperature-jump ("T-jump") and the pressure-jump ("P-jump") methods 
a gaseous or liquid system is subjected to a rapid heating or a rapid change in pressure. 
A heating pulse can be delivered by a burst of microwave radiation or by the passage of 
a brief pulse of electric current if the system is electrically conductive. A rapid change 
in pressure can be achieved by rupturing a diaphragm. The T-jump technique usually 

6See G. Porter, J Chem. Soc., Faraday Trans. 2, 82, 2445 (1986) for a historical survey. 



426 12 The Rates of Chemical Reactions 

produces a larger effect and is more commonly used than the P-jump technique, which 
will produce a significant change in equilibrium composition only for a gas-phase 
reaction. After the temperature or pressure change, the system relaxes to its new 
equilibrium state. The concentration of a reactant or product is usually monitored 
spectroscopically, although the reaction of hydrogen ions and hydroxide ions was 
monitored by measurement of the electrical conductivity. 

Consider a system in which the reaction can occur: 

(1) A + B ~ C  (12.6-1) 

Assume that this reaction is second order overall in the forward direction and first order 
in the reverse direction. 

Suppose that a temperature or pressure jump is suddenly imposed on the system at 
time t -  0. The system then relaxes to its new equilibrium state under conditions of 
constant temperature and pressure. The time to accomplish the T-jump or P-jump 
should not be greater than 10% of the half-life of the reaction. Figure 12.10 shows 
schematically the concentrations of A, B, and C before and after a T-jump. 

The initial concentration [A]0 was the equilibrium concentration at the temperature 
prior to the temperature jump, but since the equilibrium constant of the reaction 
depends on temperature, [A]o is not equal to the new equilibrium concentration, 
denoted by [A]e q. The same is true of [B] and [C]. We now let 

A[A] = [A]t - [A]e q (12.6-2a) 

A[B] = [B]t -  [B]e q (12.6-2b) 

A[C] = [C]t -  [C]e q (12.6-2c) 

We assume that ]A[A]I << [A], IA[B]I << [B], and IA[C]] << [C], since it is not possible 
to change the equilibrium composition very much with a temperature jump or a 
pressure jump. A temperature jump is usually limited to about 20~ and a pressure 
jump is limited to 2 or 3 atm. 

From the stoichiometry of the reaction shown in Eq. (12.6-1), 

A[A] = A[B] = -A[C] (12.6-3) 
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so that we can express the concentrations in terms of A[C]" 

[C] - [ C ] e  q + A[C] (12.6-4a) 

[A] - [A]e  q - A[C] (12.6-4b) 

[B] --  [B]e q - A[C] (12 .6 -4c)  

The differential equation for the net rate is 

dA[C] _ kl[A][B]_ k,l[C] (12.6-5) Rate - -  d---7- - 

To solve this differential equation, we must write it in terms of one dependent variable, 
which we do using Eq. (12.6-4): 

dA[C] 
dt = kl ([A]eq - A[C])([B]eq - A[r - k~l([C]e q + A[C]) 

= k 1 [A]eq[g]eq - k' 1 [Cle q -- k 1 ([A]eq + [g]eq)A[C] 

-- k'IA[C ] + k l (A[C])  2 (12 .6-6)  

The first two terms on the right-hand side of the final version of Eq. (12.6-6) cancel 
because the first is the forward rate at equilibrium and the second is the reverse rate at 
equilibrium. The final term on the right-hand side is much smaller than the others 
because the deviation from equilibrium is small so that (A[C]) 2 << ]A[C]]. We neglect 
this term, which linearizes the equation: 

dA[C____~] = _ (k l ( [A]eq  "n t- [B]eq) + k,1) A[C] (12 .6-7)  
dt 

Equation (12.6-7) is exactly like Eq. (12.2-2) except for the symbols used, so we can 
write the solution: 

A [ C ] -  A[C]0 e-t/~ (12.6-8) 
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where 

1 
- = k 1 ([A]e q 4- [B]eq) 4- k '  1 (12.6-9) 
r 

The quantity z is the relaxation time for A[C]. The relaxation is exponential because we 
linearized the equation. 

E x e r c i s e  1 2 . 2 1  

a. Verify the steps of algebra leading to Eq. (12.6-7). 
b. Verify that Eq. (12.6-8), with Eq. (12.6-9), is a solution to Eq. (12.6-7). 
e. Write the expressions for A[A] and A[B]. 

H3 O+ 4 -OH-  ~ 2H20 

which has the general form 

A + B  ~ 2C 

Assume that the reaction is second order in both directions. We write 

[C] = [C]e q 4- A[C] 

[A] = [A]e q - I A[C] 

[B] - [B]e q - 21- A[C] 

The reaction of hydrogen ions and hydroxide ions in water can be written as 

(12.6-10) 

(12.6-11) 

(12.6-12a) 

(12.6-12b) 

(12.6-12c) 

When Eqs. (12.6-12) are substituted into the differential equation for the rate of the 
reaction and the necessary steps of algebra are carried out with neglect of terms 
proportional to (A[C]) 2, we obtain 

A[C] = A[C]0 e-'/~ (12.6-13) 

where 

1 _ kl [A]eq 4- [B]eq 
- 2 + 2k'1 [C]e q (12.6-14) 
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Similar expressions for the relaxation time can be derived for other rate laws. 7 

Exercise 12.22 
a. Verify Eq. (12.6-14). 
b. For the reaction equation 

A + B  ~--X+Y 

assumed second order in both directions, show that the relaxation is exponential, with relaxation 
time given by 

1 
- = kl([A]eq + [B]eq) + k'l ([X]eq nt-[Y]eq) (12.6-15) 
T 

Summary of the Chapter 

A rate law of the form 

R a t e -  k[A]~[B] ~ 

is said to have definite order, with order c~ with respect to A and with order/~ with 
respect to B. The proportionality constant k is called the rate constant although it 
depends on temperature. We solved several such differential rate laws to obtain the 
integrated rate laws. 

Some techniques for experimental determination of the rate law involve comparison 
of the integrated rate equation with concentration data. The method of initial rates 
allows direct comparison of the differential rate law with the experimental data. In the 
method of isolation, the concentration of one reactant is made much smaller than the 
concentrations of the other reactants. During the reaction, the fractional changes in the 
larger concentrations are negligible, and the small concentration behaves like the 
concentration in a reaction with one reactant. 

For a reversible reaction, the difference between the concentration of the reactant and 
its equilibrium value relaxes exponentially, and it was found that the relaxation time and 
the half-life are both inversely proportional to the sum of the two rate constants. 

The case of two consecutive first-order reactions without reverse reactions was 
considered. This is a simple example of a reaction mechanism. It was found that the 
concentration of the reactive intermediate rose and then fell as the reaction proceeded. 

Some techniques were presented for studying fast reactions that cannot be studied 
by classical experimental techniques. These techniques included continuous-flow and 

7 K. J. Laidler, Chemical Kinetics, 3d ed., Harper and Row, New York, 1987, p. 38. 
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stopped-flow techniques, which are rapid mixing methods, as well as relaxation 
techniques. The relaxation techniques included shock-tube methods, flash photolysis, 
and T-jump and P-jump methods. Equations were derived for the relaxation of a 
reaction after a small perturbation, giving an exponential relaxation for a variety of rate 
laws. 
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i. In the case of two consecutive reactions with reverse 
reactions, the concentration of the intermediate always 
remains small compared with the initial concentration of the 
reactant. 

]. The linearization of the rate equation that is done in the 
study of the temperature-jump method is usually a good 

approximation, because the state immediately after the 
temperature jump does not deviate very much from the final 
equilibrium state. 

k. First-order processes occur only in chemical processes. 
1. All rate laws can be written in a form with definite 

orders. 



Chemical Reaction Mechanisms 
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Reaction Mechanisms and Elementary Processes in 
Gases 

One of the gas-phase reactions that endanger the ozone layer in the earth's upper 
atmosphere is 

2NO 2 + 03 --+ N205 + O 2 (13.1-1) 

As is the case with almost all chemical reactions, this reaction does not take place in a 
single step. The forward reaction mechanism is thought to consist of the following 
steps: 1 

(1) NO2 + 03 --+ NO3 + 02 (13.1-2a) 
(2) NO 3 n t- NO 2 ~ N205 (13.1-2b) 

NO3 is called a reactive intermediate. It is produced and then consumed and does not 
occur in the stoichiometric equation. The steps of a mechanism must add to give the 
stoichiometric equation, although one or more of the steps might have to be multiplied 
by small integers before summing the steps in order to recover the stoichiometric 
equation. The reactive intermediate must cancel in this summation. 

The steps of Eq. (13.1-2) are assumed to be elementary processes. An elementary 
process is one that cannot be broken down into simpler steps. We classify an elementary 
process by its molecularity, which is the number of reactant molecules that are 
involved in it. Both steps in the mechanism of Eq. (13.1-2) are bimolecular. That is, 
they involve two reactant particles. Unimolecular steps involve a single particle. 
Termolecular processes involve three particles. Termolecular processes are relatively 
slow due to the smallness of the probability that three molecules will collide or diffuse 
together at once. Elementary processes involving four or more reactant particles 
probably do not occur in chemical reaction mechanisms. 

Bimolecular Gas-Phase Reactions 

Bimolecular elementary processes in gases involve the two-molecule collisions that we 
discussed in Chapter 10. At ordinary pressures the collision rate in a gas is very large, 
typically several billion collisions per second for a single molecule. If every collision in 
a reactive mixture led to chemical reaction, gas-phase reactions would be very rapid, 
coming to completion in a few nanoseconds. Since gas-phase reactions are almost never 
this rapid, apparently only a small fraction of all collisions lead to chemical reaction. 

We first consider a bimolecular elementary process involving two molecules of 
substance number 1, whose formula is abbreviated by ~1.  

i + g 1 --+ products (13.1-3) 

We make an important assumption: The fraction of binary collisions that lead to 
chemical reaction in a gas-phase bimolecular elementary process depends only on the 
temperature. We discuss the validity of this assumption in Section 13.3. 

Equation (10.7-24) gives the rate of two-body collisions, which is proportional to the 
square of the concentration of the substance. If we assume that at a fixed temperature a 
fraction f of the collisions leads to reaction, the rate of the forward reaction is also 

1H. S. Johnston and D. M. Yost, J. Chem. Phys., 17, 386 (1949). 
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proportional to the square of the concentration of the substance, and the reaction is 
second order: 

- = ~ = J l / ~ 2  ( 1 3 . 1 - 4 )  
Rate 2 dt NAv Av k rcml / 

where m 1 is the mass of a molecule of  the reacting substance, d 1 is its effective hard- 
sphere diameter, and ~F 1 is its number density. We divide by Avogadro's constant to 
express the rate in moles per second rather than molecules per second. 

By comparison with Eq. (12.1-6) we can write an expression for the forward rate 
constant: 

(13.1-5) 

The SI units o f k  in Eq. (13.1-5) are m 3 mo1-1S - 1  . If  concentrations and rates are to be 
measured in mol L-  1, an additional conversion factor is needed, equal to 1000 L m -3, to 
give k the units L mo1-1 s -1 . 

Exercise 13.1 
Show that Eq. (13.1-5) is correct. Remember that a factor of �89 occurs in the definition of the rate 
as in Eq. (12.1-6), that each reactive collision uses up two molecules of substance 1, and that a 
factor of i was introduced into Eq. (10.7-24) to avoid overcounting of collisions. 

The quantity red 2 is the cross-sectional area of the collision cylinder depicted in 
Figure 10.19 and is the area of the "target" with which the center of a molecule can 
collide. The quantity fred 2 is an effective cross-sectional area, or the area of the "target" 
that actually leads to reaction. It is called the reaction cross section. 

In the case of a bimolecular elementary process involving one molecule each of 
substance 1 and substance 2, the elementary bimolecular process is first order in each 
substance and second order overall. The rate constant is given by 

(13.1-6) 

where d12 is the collision diameter for a collision of a molecule of substance 1 with a 
molecule of substance 2, and where/t12 is the reduced mass of molecules of mass m 1 
and m2, defined in Eq. (10.7-29) and in Appendix B: 

mlm2 
/ t12 --- (13.1-7) 

m l  + m 2  

We can now summarize our results for both types of bimolecular processes in gaseous 
reactions: A gaseous bimolecular elementary process is second order overall, and for  a 
two-substance reaction it is first order in each substance. 

Exercise 13.2 
a. Show that Eq. (13.1-6) is correct. 

"b. For a hypothetical bimolecular elementary reaction of a gaseous substance with an effective 
hard-sphere diameter of 3.00 x 10-1~ m and a molar mass of 0.060kgmo1-1, the rate 
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constant is equal to 6.0 x 10 - 4  m 3 mo1-1 S - 1  a t  298 K. Find the fraction of collisions that 
lead to reaction. 

Termolecular Gas-Phase Reactions 
A termolecular elementary process must involve a three-body collision, which can be 
pictured as a collision of a third particle with a pair of molecules that is undergoing a 
binary collision. The number of three-body collisions is proportional to the number of 
pairs of particles that are in the process of colliding with each other and is also 
proportional to the number of "third" particles. The number of colliding pairs is 
proportional to the square of the number density (or the product of two number 
densities). If we again assume that the fraction of three-body collisions that lead to 
reaction is fixed at constant temperature, we obtain a second important result: Gaseous 
termolecular elementary processes are third order overall, and the order with respect to 
any substance is equal to the number of  molecules of  that substance involved in the 
three-body collision. 

Unimolecular Gas-Phase Reactions 
Unimolecular elementary processes are qualitatively different from bimolecular and 
termolecular processes since they involve a single molecule. We assert another 
important result: Gaseous unimolecular elementary processes are first order. That is, 
they have a rate that is proportional to the number of molecules available to react. We 
will discuss unimolecular processes in Section 13.4, when we will find that the above 
assertion is an oversimplification that applies only at sufficiently high pressure. 

The Molecularity Equals the Order for Any Elementary 
Gas-Phase Process 
To summarize our results, we define the molecularity of an elementary process with 
respect to any substance as the number of molecules of that substance involved in the 
process. Our results for gas-phase elementary reactions are summarized: For a gaseous 
elementary process, the order with respect to any substance is equal to the molecularity 
of  that substance and the overall molecularity is equal to the sum of  the molecularities 
of  all substances. This equality of order and molecularity holds only for elementary 
processes. A reaction that is first order could have a multistep mechanism that has no 
unimolecular steps in it. The order of a process does not imply anything about its 
molecularity unless it is an elementary process. 

Elementary Reactions in Liquid Solutions 

A chemical reaction in a liquid solution is qualitatively different from a gas-phase 
reaction. The reacting molecules must diffuse together before reacting, and the product 
molecules will diffuse apart after the reaction. We will speak of a process that has a one- 
step chemical part as an elementary process in spite of the occurrence of the two 
diffusion processes. Some reactions in solutions occur very rapidly. For example, the 
reaction between hydrogen ions and hydroxide ions in aqueous solution is a second- 
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order process with a rate constant at 25~ equal to 1.4 x 1011 L mo1-1 S - 1  . If solutions 
could be mixed instantaneously to give a solution containing hydrogen ions at 
O. 10 mol L -1 and hydroxide ions at O. 10 mol L -1 , this rate constant would correspond 
to a half-life of 7 x 10 -11 s, or 0.07 ns. 

Exercise 13.3 
Verify the half-life value given above. 

The rapidity of some liquid-state reactions at first seems surprising since ordinary 
diffusion processes in liquids take hours or days to occur. The reason for the large 
difference between the time required for ordinary diffusion processes and for the 
diffusion processes in liquid-state chemical reactions is the difference between the 
average distances traveled by the molecules. In an ordinary diffusion process, the root- 
mean-square distance traveled by molecules might be a few centimeters, while the mean 
distance between reacting molecules in a solution might be a few nanometers. 

A solute molecule in a liquid solution can be pictured as being temporarily confined 
in a cage of other molecules, colliding repeatedly with the molecules making up the 
cage. In Chapter 10, we concluded that collisions of a molecule in a typical liquid are 
roughly one hundred times more frequent than collisions of a molecule in a typical gas. 
This means that a molecule might undergo several collisions per picosecond. Since the 
molecules making up the cage are also moving, an avenue can occasionally open up for 
a molecule to move out of a cage into an adjacent cage. However, a molecule or ion will 
typically undergo hundreds of collisions in one cage before it moves into an adjacent 

cage. 
If substance 2 can react with substance 3, a molecule of substance 2 can react only if 

it is in a cage in which a molecule of substance 3 is one of the "cage" molecules. 
Motion of a type-2 molecule into a cage containing a type-3 molecule (or vice versa) is 
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called an encounter. It is an interesting fact that the average rate of 2-3 collisions in a 
liquid is approximately the same as the rate of 2-3 collisions in a gas having 
concentrations equal to the concentrations in the liquid. The collision rate when 
molecules of substance 2 and molecules of substance 3 are in the same cage is much 
higher, but each molecule of type 2 spends much of its time in cages containing no 
molecule of type 3, and vice versa. 

Bimolecular Liquid-Phase Reactions 
In a diffusion-limited or diffusion-controlled bimolecular elementary reaction 
between substances 2 and 3, the chemical part of the reaction is so rapid that every 
encounter of a type 2 molecule with a type 3 molecule leads to reaction. The rate is 
therefore controlled (limited) by the rate at which the reactant molecules diffuse 
together. The reaction of hydrogen ions and hydroxide ions in water is an example 
of a diffusion-limited bimolecular elementary reaction. 

A theory for the rate of a bimolecular elementary diffusion-limited process was 
developed by Smoluchowski. 2 The first version of the theory was based on the 
assumption that molecules of type 2 are diffusing toward fixed molecules of type 3. 
On the average, the motion of the substance 2 molecules toward the fixed molecules of 
type 3 constitutes a diffusion flux that obeys Fick's law of diffusion, given in Equation 
(11.2-3): 

J2 - - - D 2  Vc2 

where the vector J2 is called the diffusion flux. Its magnitude is the net amount of 
substance 2 diffusing per unit area per unit time and its direction is the average direction 
in which the molecules are diffusing. The diffusion coefficient is denoted by D 2. The 
gradient operator, represented by V, is defined in Eq. (B-37) of Appendix B. The 
magnitude of Vc 2 is equal to the derivative of c 2 in the direction of most rapid change 
of c i. The important physical fact is that the rate of diffusion is greater if the derivative 
of the concentration is greater. 

In this case of a diffusion-limited reaction, it is assumed that the reaction occurs as 
soon as the center of the type 2 molecule reaches a critical distance d23 from the center 
of the type 3 molecule. The concentration of type 2 molecules closer to the center of the 
substance 3 molecule than this distance vanishes. The distance d23 is called the reaction 
diameter. It is not necessarily equal to the hard-sphere collision diameter of the 
reacting molecules. Since the reactants react as soon as they encounter each other, a 
concentration gradient is set up. A solution to Fick's law of diffusion is sought such that 
the concentration is time-independent and vanishes at distances less than or equal to d23 
from the fixed type 3 molecule. The diffusion flux gives the rate of reaction, since all 
molecules that diffuse up to the sphere of radius d23 are assumed to react. 

The diffusion flux is proportional to the bulk concentration of substance 2 (the 
concentration at distances far from any type 3 molecule), and the rate of reaction is also 
proportional to the concentration of (fixed) type 3 molecules, so that the reaction is 
second order overall, first order with respect to 2 and first order with respect to 3. The 
second-order rate constant is given by 

k - -  4rCNAvD2d23 (13.2-1) 

2 M. V. Smoluchowski, Z. Phys. Chem., 92, 129 (1917). See K. J. Laidler, Chemical Kinetics, Harper and 
Row, New York, 1987, pp. 212ff. 
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where NAv is Avogadro's constant. When the fact that the type 3 molecules are also 
moving is included, the result is 3 

(13.2-2) 

where D 3 is the diffusion coefficient of substance 3. Equation (13.2-2) is used in 
preference to Eq. (13.2-1) for calculations. 

If two molecules of substance 2 react in a diffusion-controlled reaction, the reaction 
is second order in that substance. By an analysis that is analogous to that leading to Eq. 
(13.2-2), 

(13.2-3) 

where d22 is the reaction diameter for two type 2 molecules. The factor i in Eq. (13.2-3) 
is included because of the factor of i in the definition of the rate in Eq. (12.1-5) for a 
substance with stoichiometric coefficient equal to 2. 

According to a theory of Debye 4 the formula for the rate constant shown in Eq. 
(13.2-2) must be modified if the reactants are ions. The formula given must be 
multiplied by the electrostatic factor f :  

f - -  Y (13.2-4) 
e Y - 1  

where 

z2z3~2 (13.2-5) 
Y -- 4/zed23k B T 

The respective valences of the two ions are represented by z 2 and 23 . The symbol 
stands for the charge on a proton and e stands for the permittivity of the solvent, which 
was introduced in Eq. (7.4-1). 

3 K. J. Laidler, Chemical Kinetics, Harper and Row, New York, 1987, pp. 212ff. 
4p. Debye, Trans. Electrochem. Soc., 82, 265 (1942). 
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The electrostatic factor f is greater than unity if z 2 and z 3 have opposite signs, 
corresponding to an enhancement of  the rate due to electrostatic attraction of the ion 
pair. If z2 and z 3 have the same sign, the electrostatic factor is smaller than unity, 
corresponding to a decrease in the rate due to electrostatic repulsion. 

The reaction diameter for the reaction between hydrogen ions and hydroxide ions is 
somewhat larger than the sum of the radii of these ions. The explanation for this is that 
water is the solvent for the reaction, and water ionizes to form hydrogen and hydroxide 
ions. Water molecules can exchange hydrogen and hydroxide ions. One or two water 
molecules combine with a hydrogen ion to form an H3 O+ ion or an HzO + ion. Either of 
these ions can then lose a different hydrogen ion to a second water molecule, which 
then passes a still different hydrogen ion to a third water molecule, and so on. Similarly, 
a water molecule can lose a hydrogen ion to a hydroxide ion, forming a hydroxide ion 
in a new location. These exchange processes also explain the large magnitudes of the 
diffusion coefficients of hydrogen and hydroxide ions in water and the large mobilities 
of  these ions in water. 

*Exercise 13.4 
Calculate the values of the electrostatic factorf for z2z 3 equal to 2, 1, 0, -1,  and - 2  at 298.15 K, 
assuming a dielectric constant equal to 78.4 and a reaction diameter equal to 0.50 nm. Comment 
on your results. 

Equation (11.4-4) relates a diffusion coefficient to the radius of the diffusing 
molecules and the viscosity of the solvent: 

kBT kBT 
D2 --- f = 6rcq~ 
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where r is the effective radius of the molecule and q is the viscosity of the solvent. If we 
use this relation in Eq. (13.2-2) and assume that d23 = r2 + r3, we obtain 

-- 6q + (r2 + r3) - - ~ q  2 + - -  + (13 .2-6)  
r3 

If r 2 and r 3 are nearly equal, Eq. (13.2-6) becomes 

8RT 
k ~ (two different reacting substances) (13.2-7a) 

3q 

so that k is independent of the identity of the reactants. If the two reacting molecules are 
of the same substance, we must divide by 2 in order to avoid counting the same 
encounter twice: 

4RT 
k ~ ~ (single reacting substance) (13.2-7b) 

3r/ 

If a reaction is slightly slower than the rate of encounters it is known as a partially 
di f fus ion- l imi ted  react ion.  Solution reactions that are much slower than diffusion- 
limited reactions are called ac t iva t ion - l imi t ed  react ions .  In an activation-limited 
process, the reaction will not occur immediately for every encounter. After the 
encounter occurs, the motions of the molecules must produce a high-energy collision 
as in a gas-phase reaction. The molecules might have to undergo many encounters 
before a collision occurs with relative kinetic energy larger than the critical value. For 
activation-limited reactions we will assume, as with gaseous reactions, that only a 
fraction of collisions will lead to reaction, and that this fraction depends only on the 
temperature. For an activation-limited reaction between type 2 molecules and type 3 
molecules, the rate will be proportional to the number of encounters as well as to the 
fraction of collisions that lead to reaction. Since the number of 2-3 encounters is 
proportional to the number of type 2 molecules and the number of type 3 molecules, 
such an activation-limited bimolecular elementary reaction is first order with respect to 
each reactant and second-order overall, just as with a diffusion-limited reaction and a 
gas-phase reaction. 

Unimolecular and Termolecular Liquid-Phase Reactions 

Unimolecular elementary processes in liquids exhibit first-order kinetics, as in the gas 
phase. The rates of diffusion-limited termolecular elementary processes in liquid phases 
are proportional to the number of encounter pairs (pairs of molecules in the midst of an 
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encounter) and also to the number of "third" molecules present to diffuse into the same 
cage as the encounter pair. Therefore, diffusion-limited termolecular elementary 
processes are third order, just as in the gas phase. Activation-limited termolecular 
elementary reactions are also third order if the fraction of collisions that lead to reaction 
is independent of the concentration. 

General Statement That Molecularity Equals Order in 
Elementary Processes 
We can now summarize the facts for elementary processes in both liquids and gases: 
The molecularity o f  a substance in an elementary process is equal to its order, and the 
overall order is equal to the sum o f  the orders o f  the individual substances. 

Svante Arrhenius, 1859-1927, was a 
Swedish chemist who won the 1905 
Nobel Prize in chemistry for his theory 
of dissociation and ionization of 
electrolytes in solution. 

The Temperature Dependence of Rate Constants. 
The Collision Theory of Bimolecular Gaseous 
Reactions 

Reaction rates depend strongly on temperature, nearly always increasing when the 
temperature is raised. A common rule of thumb is that the rate of a reaction doubles if 
the temperature is raised by 10~ The first quantitative generalizations about the 
temperature dependence of rate constants were published in the last half of the 
nineteenth century, and various empirical formulas were proposed. 5 The most widely 
used empirical relation is that of Arrhenius, which was proposed in 1889. This formula 
has gained wide acceptance because it is based on a physical picture of elementary 
processes. 

Arrhenius pointed out that typical rate constants for gaseous reactions are much 
smaller than they would be if every collision led to reaction and that the typical 
temperature dependence of reaction rate constants is much too strong to be explained by 
the temperature dependence of collision rates. He postulated that "activated" molecules 
(with high energy) must exist in order to react and that the numbers of such activated 
molecules would be governed by the Boltzmann probability distribution of Eq. (1.5-17) 
or Eq. (10.2-35). This assumption leads to the Arrhenius relation: 

(13.3-1) 

The quantity ga is the energy relative to the ground-state energy that the molecules must 
have in order to react, and is called the activation energy. The temperature-independent 
factor A is called the preexponential factor. It is common to express Eq. (13.3-1) in 
terms of a molar activation energy E a, which is equal to e a times Avogadro's constant. 

(13.3-2) 

where E a = NAvg a is the molar activation energy. Experimental molar activation energy 
values are usually in the range 50 to 200 kJ mo1-1, somewhat smaller than energies 

5 K. J. Laidler, op. cit., pp. 40ff (Note 3). 
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required to break chemical bonds. Equation (13.3-2) is quite accurate for liquid-phase 
reactions as well as for gas-phase reactions. 

Exercise 13.5 
*a. Find the value of the activation energy if a rate constant doubles in value between 20~ and 

30~ 
*b. Find the value of the activation energy if a rate constant doubles in value between 90~ and 

100~ 
c. A common definition of the activation energy of a reaction is 

(13.3-4) 

Show that if k is given by Eq. (13.3-2), Eq. (13.3-4) gives the s a m e  E a as in Eq. (13.3-2) ifA 
is temperature-independent. 

The Collision Theory of Bimolecular Elementary Gas-Phase 
Reactions 
The basic assumption of  this theory is that the initiation of the reaction involves an 
inelastic collision in which energy is transferred from translational kinetic energy to 
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energy of internal motions. The energy that can be transferred to internal motion is not 
the total kinetic energy of the two particles. If two rapidly moving molecules happen to 
be moving in nearly the same direction with nearly the same speed, they can have rather 
large kinetic energies, but not transfer much of their kinetic energies if they collide. It is 
the energy of motion of one particle relative to the other that determines the amount of 
energy transferred. We assume that the probability of reaction equals zero if the relative 
speed is smaller than a certain critical value that is characteristic for a given reaction, 
and that the probability equals unity for relative speeds larger than this value, as shown 
in Figure 13. l a. This corresponds to a reaction cross section equal to zero for relative 
speeds smaller than the critical value, and equal to the collision cross section for values 
larger than the critical value. We will improve on this assumption later. 

Consider a bimolecular elementary reaction between molecules of substance 1 and 
substance 2. Equation (10.7-33) gives the total rate of collisions per unit volume that 
involve molecules of type 1 and type 2: 

/8k r 
212 - -  Zl(2)Jf"  2 - -  Z2(1)J1/'l - -  ~ / 2 1 2  7"Cdl2Jl/ ' lJ[/ '2 ( 1 3 . 3 - 5 )  

We want to consider molecules of type 1 whose velocities lie in the infinitesimal range 
d3Vl and molecules of type 2 whose velocities lie in the infinitesimal range d3v2 . To 
make Eq. (13.3-5) apply to our case, we replace the mean relative speed by our 
particular relative speed, Ivl, and multiply by the probability that the first molecule has 
its velocity in the infinitesimal r a n g e  d3Vl and that the second molecule has its velocity 
in the infinitesimal range d3v2 . We write this collision rate as dZ12: 

dZ12 -- ~zd22M/'l ~t/" 2 [ v l g ( v  1 )d3Vlg(V2)d3v2  ( 1 3 . 3 - 6 )  

where ~I~ 1 is the number density of molecules of type 1, where ~f~2 is the number 
density of molecules of type 2, where dl2 is the collision diameter of the molecule pair, 
and where g is the probability distribution of Eq. (10.2-34). The relative velocity v is 
given by 

V = V 2 --  V 1 ( 1 3 . 3 - 7 )  

The magnitude of the relative velocity is the relative speed. 



13.3 The Temperature Dependence of Rate Constants. The Collision Theory of Bimolecular Gaseous Reactions 447 

In order to obtain the total rate of collisions that lead to reaction, we integrate over all 
velocities that satisfy the condition 

v = l v  2 - v l 1  > v  c (13.3-8) 

where v c is the minimum relative speed that can lead to reaction. In order to carry out 
this integration, we change variables, expressing the kinetic energy of the pair of 
particles in terms of the velocity V c of the center of mass and the relative velocity v of 
the two molecules. The kinetic energy is given by the three-dimensional version of Eq. 
(D-29) of Appendix D 

Y -- 1MV 2 + �89 fly 2 (13.3-9) 

where M -- m l + m2, and where # -- m 1 mz/M is the reduced mass of the particles. The 
first term on the fight-hand side of Eq. (13.3-9) is the kinetic energy of the center of 
mass and the second term is the relative kinetic energy. Using Eq. (10.2-34) for the 
probability distributions, we can write after changing variables, 

( ml )3/2( m2 ) 3/2 ve-MV2/2kB T e-l~v2 /2kB T d3V d3v 
dZ12 = nd~2Jff l ~U2 2~kB T 27rk B T 

(13.3-10) 

Exercise 13.6 
Verify Eq. (13.3-10). 

We integrate Eq. (13.3-10) over all values of V and over the values of v that satisfy 
Eq. (13.3-8). Integration over V is just like the integration in Eq. (10.2-20), and gives a 
factor of (2rck B T/M) 3/2" 

(2~zk B ) 3 / 2 (  ml )3/2( m2 )3/2 
Z12(reactive ) = ~zd122Yl~2 M T [ ve--#v2 /2ka T d 3 

2rckB ~r 2rck B T J 
v 

(13.3-11) 

The integration in this equation is carried out in spherical polar coordinates in the 
relative velocity space of v, 0, and 4). Integration over the angles 0 and ~b gives a factor 
of 4~z. The integration must include only values of v satisfying Eq. (13.3-8). We use a 
tabulated indefinite integral to obtain 

jc~ l e_~vZ /2kB r (2k~ T) ( 2kBT ) e-~W :/2k B T133 dv = ~ v 2 + 
v e # 

The final result is 

Z12(reactive) - ~d22N1N2(8kB T/~z#)1/2 (1 + #v2 /2kB T)e -uv~ /2kBr (13.3-12) 

Comparison of this equation with Eq. (13.1-4) shows that we have an expression for the 
fraction of collisions that lead to reaction in a bimolecular elementary process: 

( flV2KB ~ /2kBT f = 1 +2, T je  -~2c (13.3-13) 

Exercise 13.7 
Verify Eq. (13.3-12). 



448 13 Chemical Reaction Mechanisms 

The critical value of the relative kinetic energy is given by 

e~--1#v2 (13.3-14) 

SO that Eq. (13.3-12) can be written 

( Zl2(reactive ) _ :rcd22M# 1M/. 2 (8k  B T~ 1/2 1 + e-~c/kBV (13.3-15) 

which corresponds to 

k--NAvTr, d22(8kBT~l/2( ) 1 + Ec .,-ec/Rr (13.3-16) 

where NAv is Avogadro's constant, where we let 

E c = NAve c (1 3.3-1 7) 

and where we use the fact that the ideal gas constant R is equal to NAvk B. 
Equation (1 3.3-1 6) is not quite the same as the Arrhenius formula, Eq. (1 3.3-1), since 

the preexponential factor in Eq. (13.3-16) depends on T. However, the exponential 
factor depends so much more strongly on temperature than does the preexponential 
factor in Eq. (13.3-16) that the difference between the two equations is numerically 
small over a limited range of temperature, and E c can be approximately identified with 
E a, the Arrhenius activation energy. 

Equation (13.3-16) corresponds to the probability of reaction shown in Figure 13.1a. 
A more realistic assumption is that the probability of reaction is given by 

_ ~ 0 if E r < E c Probability (13 3-18) / 1 - E c / E  r i f E  r > E c 

as represented in Figure 13.1 b. This probability can be defended as follows: A collision 
with a relative kinetic energy barely great enough to initiate a reaction should have a 
lower probability of producing a reaction than unity, since some of the translational 
energy could get transferred into "inactive" intemal motions of the molecules that do 
not lead to reaction. Collisions with a larger relative kinetic energy should provide 
plenty of energy even if some is lost in inactive intemal motions and should have a 
larger probability of reaction. 
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When the probability of Eq. (13.3-18) is introduced into the integration of Eq. 
(13.3-11), the result is 6 

\ 7r/~ / 
e -e~/Rr (13.3-9) 

This formula also does not exactly agree with the Arrhenius formula, since the 
preexponential factor still depends on temperature. However, the difference is numeri- 
cally fairly small. We will use Eq. (13.3-19) in preference to Eq. (13.3-16) as the result 
of the collision theory of bimolecular reactions. 

The value of the collision diameter in Example 13.7 is too small by a factor of about 
10, which is typical of the collision theory. There is a simple explanation for the 
smallness of the collision diameter: the molecules not only have to collide with at least a 
minimum relative energy, but in many reactions must also be oriented properly with 
respect to each other in order to react. For example, an organic molecule with a 
functional group would be much more likely to react if struck on the functional group 
than if struck on the hydrocarbon portion of the molecule. 

To account for the orientation dependence an additional factor, called the steric 
factor, is introduced into the collision theory. The steric factor is defined to be the 
fraction of collisions in which the orientation of the molecules is appropriate for 
reaction. If this factor is denoted by qo, Eq. (13.3-19) becomes 

(13.3-20) 

*Exercise 13.8 
Find the value of the steric factor for the reaction of Example 13.7 that will give a value for the 
collision diameter equal to the mean of the hard-sphere diameters of H2 and 12 in Table A.15 of 
Appendix A. 

6K. J. Laidler, op. cit., pp. 85ff (Note 3). 
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Liquid-State Reactions 
The temperature dependence of rate constants for both gaseous and liquid-state 
reactions is reasonably well described by the Arrhenius formula, Eq. (13.3-2). For 
activation-limited reactions in liquid phases, the activation energies are roughly equal to 
those for gas-phase reactions. This is as expected, since the collisional activation is very 
similar to that of gaseous reactions. Diffusion coefficients commonly have a tempera- 
ture dependence given by Eq. (11.4-5), 

D = Do e-Ead/RT 

which depends on temperature in much the same way as in the Arrhenius formula. 
Diffusion-limited reaction rates therefore have much the same dependence on tempera- 
ture as other reactions. The activation energies are somewhat smaller, often near the 
values for the energies of activation for diffusion processes, which again is what we 
would expect. 

*Exercise 13.9 
For the reaction 

21 ~ 12 

in carbon tetrachloride, the value of the rate constant at 23~ is 7.0 x 10 6 m 3 mo1-1  S -1. At 
30~ the value is 7.7 x 10 6 m 3 mo1-1 s -1. Find the activation energy and compare it with the 
activation energy for the viscosity of carbon tetrachloride in Example 11.9. 

We will continue our discussion of the theories of chemical reaction rates in Chapter 
21, when we consider the activated complex theory of chemical reaction rates in dilute 
gases. This theory postulates that in order for an elementary process to occur, an 
activated complex must be formed, and that an activation energy is required to form this 
complex from the reactants. 

Reaction Mechanisms and Rate Laws 

Unfortunately, there is no way to take an experimentally determined rate law for a given 
reaction and deduce the correct mechanism from it. For example, the reaction 

H 2 + 12 ~ 2HI 

is second order overall. The rate law could indicate that this reaction is a bimolecular 
elementary reaction, and such was once thought to be the case. However, there are 
altemative mechanisms that also conform to the same rate law, and the reaction is now 
thought to proceed by several competing mechanisms, including the elementary 
mechanism. 7 

Although we cannot directly deduce a mechanism from a rate law, we can often 
deduce the rate law that corresponds to a given assumed mechanism and compare this 
equation with the experimental rate law. If the two do not match, the mechanism must 
be incorrect. If they do match, the mechanism might be correct. There are sometimes 

7 K. J. Laidler, op. cit., pp. 297ff (Note 3); Sullivan, J. Chem. Phys., 46, 73 (1967). 
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other types of experiments that can be done, including direct detection of reaction 
intermediates, molecular beam experiments, and radioactive tracer experiments. The 
results can sometimes verify a possible mechanism. However, we must regard even a 
well-accepted mechanism as tentative. 

Since a proposed mechanism consists of elementary steps, we can deduce a rate 
differential equation for each step from the fact that for an elementary process the order 
equals the molecularity. Every multistep mechanism leads to a set of simultaneous 
differential equations analogous to those for the consecutive reactions of Eq. (12.5-1). 
However, they are generally not so easily solved as was that set of two equations. For 
example, consider the reaction of Eq. (13.1-1): 

2NO 2 -t- 0 3 ~ N205 -Jr- 0 2 

If the reaction were elementary it would be termolecular and the reaction would be third 
order overall with the rate law: 

rate law ) 
d[N2Os] d[O3] - k[NO212[O3] for one-step (13.4-1) 

Rate -- dt - -~ mechanism 

However, the reaction is found experimentally to be second order overall. 
The accepted mechanism of the forward reaction is 

(1) 
(2) 

N O  2 -Jr- 03 ~ NO 3 -Jr- 02 

N O  3 + N O  2 ~ N205 

No reverse reactions for the individual steps are included, so the reverse of the entire 
reaction cannot be described by this mechanism. For this mechanism, we can write the 
set of simultaneous differential equations 

a[O3l 
dt 

d[N205] 

dt 

-- - k  1 [NO2][O3] (13.4-2a) 

= kz[NO3][NO2] (13.4-2b) 

There are as many independent differential rate equations as there are steps in the 
mechanism, and this is generally true. However, we have some choice as to which 
concentration time derivatives are used for the left sides of the equations. 

Exercise 13.10 
Write the differential equation for d[NO3]/dt (it will have two terms on the right-hand side) and 
show that the fight-hand side of this equation is equal to a linear combination (weighted sum or 
difference) of the fight-hand sides of Eqs. (13.4-2a) and (13.4-2b), and that this equation is 
therefore not independent of the other two equations. 

The differential equations of Eq. (13.4-2) are nonlinear. That is, they have terms that 
are not proportional to the individual dependent variables. This makes them more 
difficult to solve than the equations of Eqs. (12.5-2) and (12.5-3). We do not attempt a 
solution of this set of equations, but apply a common approximation scheme that 
reduces the set of differential equations to a single rate law. 
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The Rate-Limiting Step Approximation 
Let us assume that the elementary reaction of Eq. (13.4-2b) is much more rapid than 
that of Eq. (13.4-2a). We mean by this assumption that k 2 >> kl, not that the actual rate 
of the second step is greater during the reaction (which cannot be since one of its 
reactants is furnished by the first step). The inherently rapid second step uses up a 
molecule of NO3 very quickly after it is produced by the slow first step. Since the 
products of the first step are immediately used up, the rate of the reaction is controlled 
by the first step. We call the slow first step the rate-limiting step or rate-determining 
step. The rate law of the forward reaction is Eq. (13.4-2a), the rate differential equation 
of the slow first step: 

d[o3] 
dt -- kl ['N02][03] 

and the forward reaction is second order overall. The rapid second step plays no role in 
determining the rate law, since the rate of the reaction is controlled by the first step. This 
rate law agrees with experiment, so the mechanism of Eq. (13.1-2) is possibly correct, 
although other mechanisms can be found that predict the same rate law. 

If a step other than the first step is much slower than all other steps, the slow step will 
still be the rate-limiting step. However, the steps prior to the rate-determining step will 
play a role in determining the rate law, but any steps after the rate-limiting step will play 
no role in determining the rate law. Consider the gaseous reaction 

203 ~ 302 (13.4-3) 

This reaction is thought to proceed by the mechanism 

(1) 03 + M ~--- 02 q-O--I- M (fast) (13.4-4a) 

(2) 0 q-- 03 ~ 202 (slow) (13.4-4b) 

where M stands for any molecule, such as an 0 2 molecule or a molecule of another 
substance (if other substances are present). An inelastic collision with the molecule M 
is needed to provide the energy for breaking the bond in the 03 molecule. 

The second step is assumed to be the rate-determining step. Because of the slowness 
of the second step a reverse reaction for the first step must be included to allow for the 
possibility that this reverse reaction is rapid compared with the second step. We do not 
include the reverse reaction for the second step and will obtain only the forward rate 
law. The rate differential equation for the second step is 

d[O2] 

dt step 2 
= 2k2[O3][O ] (13.4-5) 

where only the contribution of step 2 to the production of 0 2 is included. The factor 2 is 
included because two molecules of O2 occur in the equation for the step. If this factor 
were omitted, the definition of k 2 would be changed and it would be twice as large as 
with this assignment. Step 1 also produces O2. However, the rate of this step is 
controlled by the rate of step 2. When step 2 produces two molecules of O2, step 1 
produces one molecule of O2 along with the one atom of O that is needed for step 2 to 
produce two molecules of O2. When we obtain the rate of 02 formation from the second 
step, we will multiply it by 3/2 to obtain the rate of the reaction. 

Equation (13.4-5) cannot be solved by itself because of the presence of [O], a 
concentration that is not known. We invoke the equilibrium approximation, which is 
the assumption that all steps prior to the rate-limiting step are at equilibrium. These 
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equilibria are sometimes called preequilibria. This assumption is not strictly correct 
while the reaction is proceeding, but if the rate-limiting step really is much slower than 
all previous steps, it gives relations among the concentrations that are accurate enough 
for some purposes. 

The equilibrium expression for the first step of the mechanism is 

K 1 = kl = [O21[O][M] (13.4-6) 
U1 [O31[M] 

where we display the relation between the equilibrium constant K 1 and the rate 
constants shown in Eq. (12.4-7). This equation could also have been derived by 
equating the forward and reverse rates of step 1. The effect of writing Eq. (13.4-6) is the 
replacement of a differential equation with an algebraic equation. Equation (13.4-6) is 
solved for [O], giving 

[ 0 ]  - -  K 1 [O3][M~] -- K 1 [O31 
[O2][M] [02] 

This is substituted into Eq. (13.4-5) to obtain 

d[O2] 
dt step 2 

[03] 2 
-- 2k2103][0 ] - 2k2K 1 [02] 

We write the rate of the reaction: 

1 ,02, 1  ,02, I  ,02,1 ) 
- -  - -  + d t  Rate 3 dt -5\ (It step2 stepl 

= ( 3 )  ( 3 )  d[O2] [03]2 
dt  s t e p 2 - ( 3 )  ( ~ )  2k2K1 [02] 

~- k 2 K  1 [03]2 (13.4-7) 
[02] 

The factor 3/2 comes from the fact that step 1 produces one molecule of 0 2 for every 
two molecules produced by step 2. The order with respect to O2 is - 1 .  Equation 
(13.4-7) holds for the forward rate only if some O2 is present, since O2 (a product) 
occurs in the rate law. 

*Exercise 13.11 
For the gaseous reaction 

2NO + 2H 2 --+ N 2 + 2H20 

the mechanism 

(1) 2NO + H 2 ~ N 2 + H 202 
(2) H202 + H 2 --+ 2H20 

has been proposed. 
a. Find the rate law if step 1 is rate-limiting and the reverse reaction of step 1 is omitted. 
b. Find the rate law if the second step is rate-limiting and the reverse reaction of step 1 is 

included. 
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The Steady-State Approximation 
This approximation (which is also called the "quasi-steady-state approximation") is the 
second approximation scheme that is used to produce a single rate law from a set of 
differential equations. It is used when there is not a step that is sufficiently slow 
compared with the others that the rate-limiting step approximation can be applied 
accurately. It consists of the assumption that the rate of change of the concentration of 
one or more reactive intermediates is negligibly small, so that the reactive intermediate 
is approximately in a "steady state." The steady-state approximation is generally a good 
approximation only if the concentration of the intermediate is small. Improvements on 
the simple steady-state approximation have been developed. 8 

Consider the successive reactions of Section 12.5, which constitute a simple 
mechanism. If the first step is fast compared with the second step, as in Figure 
12.6b, the concentration of the intermediate B becomes large during the reaction. Since 
the concentration is large, its time derivative is fairly large for most values of the time. If 
the second step is fast compared with the first step, the concentration of the intermediate 
B remains small, as in Figure 12.6a. Unless it oscillates, a small quantity has a small 
time derivative so that d[B]/dt will have a small magnitude compared with the d[A]/dt 
and d[F]/dt. Numerical solutions to sets of simultaneous rate differential equations have 
shown that the approximation quite often gives accurate results. 9 

8 See for example L. O. Jay, A. Sandu, E A. Potra, and G. R. Carmichael, SlAM Journal of  Scientific 
Computing, 18, 182 (1997). 

9L. A. Farrow and D. Edelson, Int. J. Chem. Kinet., 6, 787 (1974); V. Viossat and R. I. Ben-Aim, J. Chem. 
Educ., 70, 732 (1993); G. I. Gellene, J. Chem. Educ., 72, 196 (1995); R. A. B. Bond, B. S. Martincigh, J. R. 
Mika, and R. H. Simoyi, J. Chem. Educ., 75, 1158 (1998); V. Viossat and R. I. Ben-Aim, J. Chem. Educ., 75, 
1165 (1998). 
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Comparison of Eq. (13.4-10) with Eq. (13.4-7) shows that if 

k'l[O2l[M] >> k2[O31 

then Eq. (13.4-10) becomes the same as Eq. (13.4-7). This corresponds to the 
assumption on which the rate-limiting step approximation was based--that both the 
forward and reverse rates of the first step are much larger than the rate of the second 
step. 

Exercise 13.12 
Apply the steady-state approximation to the reaction of Exercise 13.11. 
a. Find the rate law if the steady-state approximation is used without the reverse of step 1. 
b. Find the rate law if the steady-state approximation is used with inclusion of the reverse of step 

1. 
c. Under what circumstances would the rate laws of parts (a) and (b) of Exercise 13.11 be 

obtained? 

The Lindemann Mechanism 

There is a problem with unimolecular gas-phase reactions that was recognized in the 
late nineteenth century. It is hard to imagine how a molecule could undergo either an 
endothermic or an exothermic unimolecular process without colliding with another 
molecule to transfer energy. For a time there was a theory called the radiation theory, 
which asserted that the necessary energy transfer took place by the absorption or 
emission of radiation. However, around 1920 Lindemann 1~ proposed that a unimolec- 
ular elementary process is neither strictly unimolecular nor strictly elementary. Consider 
a gas-phase reaction 

A ~ B + C (13.4-11) 

This could represent the thermal decomposition of cyclopentene, C5H8, in which case B 
stands for cyclopentadiene, C5H6, and C stands for H2. This reaction occurs sponta- 
neously when cyclopentene is heated to 500~ 

The forward reaction for this class of reactions is found experimentally to be 
described by the rate law (without definite orders): 

d[B] k[A] 2 
Rate = -- (13.4-12) 

dt k' + k"[A] 

10 A. Lindemann, Trans. Faraday Soc., 17, 598 (1922). 
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where k, k', and k" are temperature-dependent coefficients. Lindemann proposed the 
following mechanism, which was also advanced by Christiansen: 11 

(1) A + A ~ A* + A (13.4-13a) 

(2) A* --+ B + C (13.4-13b) 

The symbol A* stands for a molecule of A that is in an excited state due to energy 
gained through the inelastic collision of step 1, and is able to decompose according to 
step 2. Step 1 is not a chemical reaction in the usual sense, since no new substance is 
created. One possibility is that the inelastic collision in step 1 excites vibrations in the A 
molecule in such a way that the vibrational energy can eventually rupture a chemical 
bond. If another substance M is present, the second molecule of A in step 1 could be 
replaced by an M molecule. 

We apply the steady-state approximation and write two differential equations, 

d[A*] 

dt 

d[B] 

dt 

= kl[A] 2 - k~l [A][A*]- k2[A* ] ~ 0 (13.4-14) 

~ = k2[A*] (13.4-15) 

It is important to choose the concentration of the reactive intermediate A* as one of the 
concentrations whose time derivatives are written. Imposing the steady-state approx- 
imation and setting this time derivative equal to zero gives an algebraic equation as in 
Eq. (13.4-14). This equation is solved for [A*] to obtain 

kl[A] 2 
[A*] -- (13.4-16) 

k2 + k'l[A] 

and this equation is substituted into Eq. (13.4-15) to give 

d[B] klk2[A] 2 
Rate = = (13.4-17) 

dt k2 + k'~[A] 

This equation agrees with Eq. (13.4-12), with the parameters k, k', and k" identified in 
terms of the rate constants for the steps of the mechanism. As with the rate-limiting step 
approximation, we have reduced a set of two differential equations to a single rate law 
by replacing a differential equation by an algebraic equation. 

We write Eq. (13.4-17) in the form 

d[B] klkz[A ] 
Rate - ~ = [A] -- kuni[A ] (13.4-18) 

dt k 2 + k'ltA ] 

where kun i depends on [A] as indicated. If the pressure or concentration of substance A 
is large enough that k 2 << k' 1 [A], kun i approaches a constant and the rate law is first 
order, which corresponds to our general assumption about unimolecular elementary 
reactions. If the pressure or concentration of substance A is small enough that 

11 j. S. Christiansen, Ph.D. Dissertation, University of Copenhagen, 1921. 
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k2 >> k'l [A], then kun i decreases in value and the rate law approaches second order. This 
region of low pressure or concentration is called the "fall-off region." 

Gaseous unimolecular processes generally proceed by mechanisms like that of Eq. 
(13.4-13) and are therefore not truly elementary and are not strictly first order. 12 

However, most unimolecular processes are observed in the first-order (high-pressure) 
region, and we will continue to assume first-order kinetics for unimolecular steps in 
multistep mechanisms. There are not very many reactions known to be unimolecular. 
The first one discovered was the isomerization of cyclopropane to propene. Others are 
the dissociation of molecular bromine and the decomposition of sulfuryl chloride. 13 

Mechanisms with More Than Two Steps 

If a proposed mechanisms consists of three steps, three independent simultaneous 
differential equations can be written. Either the rate-limiting step approximation or the 
steady-state approximation can be applied to obtain a single rate law. If the third step is 
rate-limiting, algebraic equations are written for the equilibria of the first two steps, and 
these equations are used to eliminate the concentrations of reactive intermediates from 
the differential equation for the rate-limiting step. If the steady-state approximation is 

12 K. J. Laidler, op. cit., pp. 150ff (Note 3). 
13K. J. Laidler, op. cit., pp. 150ff (Note 3). 
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applied, two differential equations are replaced by algebraic equations. In either case, 
we retain only one differential equation. 

Exercise 13.13 
Apply the steady-state approximation to the mechanism of Example 13.10. 

14 M. V. Twigg, Mechanisms of Inorganic and Organometallic Reactions, Plenum Press, New York, 1983, 
p. 39. 
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Exercise 13.14 
a. Verify Eq. (13.4-34). 
b. Add a back reaction in the second step of the mechanism of Example 13.11 and assume that 

the third step is rate-limiting. Find the rate law for the reaction. An equilibrium expression 
must be written for each of the first two steps. 

e. What assumptions will cause the steady-state result to become the same as the result of part 
(b)? 

The examples of  this section have illustrated the fact that it is often possible to 
deduce a rate law from a proposed mechanism using either the rate-limiting step 
approximation or the steady-state approximation. It is not always a routine matter to 

15R. A. Ogg, Jr., J. Chem. Phys., 15, 337, 613 (1947). 
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decide what mechanism to propose. However, inspection of the experimental rate law 
can provide some guidance. 16 If in the experimental rate law there is a denominator 
with two or more terms, one should attempt to find a mechanism to which the steady- 
state approximation applies. If the rate law shows definite orders, one should first 
attempt to find a mechanism to which the rate-limiting step approximation applies. 

In order to propose a reasonable mechanism to which the rate-limiting step 
approximation can be applied, one can use some of the following rules: 

1. If there are some reactants that do not appear in the rate law for the forward reaction, 
these substances occur only in steps after the rate-limiting step. 

2. If no products appear in the rate law for the forward reaction, a possible mechanism 
is that the rate-limiting step is the first step. 

3. If negative orders or fractional orders occur in the rate law, the rate-limiting step 
cannot be the first step. 

4. Substances with positive orders have a larger sum of stoichiometric coefficients on 
the left-hand sides of step equations up to and including the rate-limiting step, and 
substances with negative orders have a larger sum of stoichiometric coefficients on 
the fight-hand sides of step equations prior to the rate-limiting step. 

5. Reactive intermediates must occur in the left-hand side of one step equation and on 
the fight-hand side of a later step equation. 

6. Let the chemistry guide the choice of an assumed mechanism. For example, consider 
the breaking of a weak bond in preference to the breaking of a strong bond. 

Let us examine a few hypothetical cases: If the stoichiometry of the reaction is 

and if the rate law is 

then the mechanism could be 

aA 4- bB ~ cC 4- dD (13.4-35) 

Rate = ki[Ala[B] b (13.4-36) 

(1) aA 4- bB --+ reactive intermediates (slow, rate-limiting) 

(2) reactive intermediates --+ cC + dD (fast) 

If the stoichiometry of a reaction is 

B + F ---, D + other products (13.4-37) 

and the rate law is 

R a t e -  kapp[B]a+b[F]a[D]-a 

then the first step in the mechanism cannot be rate-limiting. The following mechanism 
can produce this rate law: 

(1) B + F ~ A + D (fast in both directions) (13.4-38a) 

(2) aA + bB ~ products (slow, rate-limiting) (13.4-38b) 

The equilibrium approximation applied to the first step gives 

[B][F] 
[A] = K 1 

[D] 

16 j. O. Edwards, E. E Greene, and J. Ross, J Chem. Educ., 45, 381 (1968). 
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so that the rate expression is 
a 

[B][F]'~ [B]b _ kapp[B]a+b[F]a[D]_ a (13.4-39) R a t e - k  2 1 [D] ,] 

If the stoichiometry of a reaction is 

bB + 2F + H --~ D + other products 

and the rate law is 

Rate - kapp[B][F]2[H][D] -1  

then the first step cannot be rate-limiting because of the presence of [D] in the rate law. 
The following three-step mechanism corresponds to this rate law if the third step is rate- 
limiting: 

(1) B + F ~ A + D (fast) (13.4-40a) 

(2) F + H ~ G (fast) (13.4-40b) 

(3) A + G --+ products (slow) (13.4-40c) 

This mechanism leads to the rate law 

R a t e -  k3([KI[B][F][D]-I)(Kz[F][H]) (13.4-41) 

in agreement with the given rate law. 

Exercise 13.15 
Verify Eq. (13.4-41). 

Exercise 13.16 
a. Show that the proposed mechanism in Example 13.12 leads to the correct rate law. 
b. If H20 and NO3 are the products of step 2, and if no further HNO3 enters in later steps, 

propose steps 3 and 4 to complete the mechanism and give the correct stoichiometry. 



462 13 Chemical Reaction Mechanisms 

Fractional orders can occur if one of the substances in the rate-limiting step is produced 
in a previous step with a stoichiometric coefficient greater than unity, as in Eq. 
(13.4-31). 

The Temperature Dependence of Rates of Nonelementary 
Reactions 

The rate law of a reaction corresponding to an assumed mechanism contains the rate 
constants of some or all of the steps of the mechanism. If the temperature dependence 
of these rate constants is known, the temperature dependence of the overall rate can be 
deduced. The rate law for the ozone decomposition of Eq. (13.4-4) is given by Eq. 
(13.4-7): 

1 (d[O2]' ~ [03] 2 
R a t e - ~  \ dt ] - Napp [02] 

k! [03] 2 
-- kzK1 [03]2 -- k2 77 

[o~1 k, 
(13.4-45) 

If each of the elementary rate constants is governed by the Arrhenius formula, Eq. 
(13.3-2), 

k = Ae -Ea/Rr (13.4-46) 

then the temperature dependence of the overall rate constant, kap p, is given by 

A2A l e-ea2/Rre-ea~ / Rr 
Napp = A_ 1 e-ea,,/Rr 

~-Aap p e x p ( -  Ea2nt-Eal-Eal")RT 

-- Aap p e x p ( -  Ea'apP)RT ] (13.4-47) 

The relationship of the overall activation energy, Ea,app, to the activation energies of the 
individual rate constants is shown in this equation. Since the ratio kl/k '  1 is equal to an 
equilibrium constant, we can rewrite this Eq. (13.4-47) as 

kapp- A 2 exp ( -Ea2  n t- AG~)RT (13.4-48) 

It is even possible that the apparent activation energy of a reaction with a multistep 
mechanism is negative, so that the reaction is slower at higher temperature. This occurs 
in the recombination of iodine atoms to form I2. 

*Exercise 13.17 
The temperature dependence of a rate law corresponding to a steady-state approximation is more 
complicated. Write the temperature dependence of the apparent first-order rate constant for the 
decomposition of N205 given in Eq. (13.4-34). 
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Some Additional Mechanisms, Including Chain and 
Photochemical Mechanisms. Competing 
Mechanisms 

In this section, we complete our brief introduction to reaction mechanisms with 
discussion of three specialized categories of mechanisms. 

Chain Reactions 
Chain reactions are characterized by a mechanism in which one or more steps produce 
reactive intermediates (chain carriers) in addition to products. The chain carriers react 
further, producing more products and still more chain carriers, which react further, and 
so forth. A chain mechanism usually contains the following steps: an initiation step, 
in which chain carriers are formed; one or two chain propagation steps in which 
products are formed and in which chain carriers are produced as well as being 
consumed; and a chain termination step in which chain carriers are consumed. 

A thoroughly studied chain reaction is the gas-phase reaction: 

H 2 -+- Br 2 --+ 2HBr (13.5-1) 

The empirical rate law for the foward reaction in the presence of some HBr is 

d[H2] ka[H2][Br2] 1/2 

dt  1 + kb[HBr]/[Br2] 
(13.5-2) 

where k a and k b are temperature-dependent parameters. The accepted mechanism for 
the forward reaction is 17 

(1) Br 2 ~ 2Br (13.5-3a) 

(2) Br + H 2 ~ HBr + H (13.5-3b) 

(3) H + Br 2 --+ HBr + Br (13.5-3c) 

The reverse reaction of step 3 is omitted because its rate is small in the initial stages of 
the reaction. The forward reaction of step 1 is the initiation step, which produces Br, 
one of the two chain carriers. The forward reactions of steps 2 and 3 are chain 
propagation steps, producing the two chain carriers, Br and H. The reverse reaction of 
step 1 is the termination step. The reverse reactions of steps 2 and 3 regenerate chain 
carriers but consume the product. They are called inhibition processes. Once Br atoms 
are formed in the initiation step, the reaction can proceed almost indefinitely without 
further initiation. The chain length 7 is defined as the average number of times the 
cycle of the two propagation steps is repeated for each intiation step. It is possible to 
have a chain length as large as 106. In this reaction, the initiation step gives two Br 
atoms, and each of these gives two molecules of HBr per cycle, so that the average 
number of molecules of product for each initiation step is equal to 4 times the chain 
length. 

We obtain the rate law by use of the steady-state approximation. We write differential 
equations for the time derivatives of the concentrations of H2, H and Br. It is better to 

17K. J. Laidler, op. cit., pp. 291ff (Note 3). 



464 13 Chemical Reaction Mechanisms 

choose H2 instead of Br2 because H2 occurs in only one step of the mechanism and will 
give a simpler differential equation. We obtain the simultaneous equations" 

a[H2] 
dt 

d[Br] 

dt 
d[H] 

dt 

- ~  = k2[Brl[Hz]- k~[HBrl[H] (13.5-4a) 

= 2kl[Br2] -- k2[Brl[H2] 4- k3[Hl[Br2] + k~[HBr][H] - 2UI[Br] 2 = 0 (13.5-4b) 

= k2[Brl[H2]- k~[HBr][H]- k3[Hl[Br2] -- 0 (13.5-4c) 

where we have applied the steady-state approximation and set the time derivatives of the 
concentration of the chain carriers equal to zero. To solve the algebraic versions of Eqs. 
(13.5-4b) and (13.5-4c), we add Eqs. (13.5-4b) and (13.5-4c) to give 

k l[Br2] -- k~l [Br] 2 = 0 (13.5-5a) 

which is the same as 

[Br] = ( ~ , , 2  kkl]  [Br2] 1/2 (13.5-5b) 

Equation (13.5-5b) is the same equation that would result from assuming that step 1 is 
at equilibrium. The relation of Eq. (13.5-5b) is substituted into Eq. (13.5-4b) or Eq. 
(13.5-4c) to obtain (alter several steps of algebra) 

k2(kl/ktl )1/2 [H2][Br2] 1/2 
[H] - -  k 3 [ B r 2 ] l / 2  if- k~[HBr] (13.5-6) 

We now simplify Eq. (13.5-4a) by noticing that the first two terms in Eq. (13.5-4c) 
are the same as the two terms on the right-hand side of Eq. (13.5-4a), so that 

d[H2] 
dt 

= k3 [H][HBr2] 

When Eq. (13.5-6) is substituted into this equation, we have 

d[H2] k2(kl/k11)l/2[H2][Br2] 1/2 
- d-----~ = k~[HBr] (13.5-7) 

1 + ~  
k3[Br2] 

which reproduces the empirical rate law with the following expressions for the 
empirical parameters: 

= (13.5-8) 

k~ (13.5-9) ku=g 

Exercise 13.18 
Verify Eqs. (13.5-6) and (13.5-7). 
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Photochemical Chain Reactions 

The initiation step of the chain mechanism of Eq. (13.5-3) requires 194 kJmo1-1 to 
break the Br-Br bond. This energy can be supplied by ultraviolet light instead of by 
inelastic molecular collisions. 

*Exercise 13.19 
Calculate the minimum frequency and maximum wavelength of light with sufficient energy per 
photon to break a Br-Br bond. 

The accepted mechanism for the photochemically initiated reaction is 

(1) Br 2 + hv ~ 2Br (13.5-10a) 

(1') 2Br ~ Br 2 (13.5-10b) 

(2) Br -k- H 2 ~ HBr + H (13.5-10c) 

(3) H + Br 2 --+ HBr + Br (13.5-10d) 

where we use the expression for the energy of a photon, hv, as a symbol for the photon 
itself. The mechanism is just as in Eq. (13.5-3) except for replacing process 1 by the 
photochemical process. The termination reaction is the same as before and is labeled 1'. 

Photochemical reactions are described by two empirical laws. The first is the 
Grot thuss-Draper  law, which states that only the absorbed radiation is effective in 
producing a photochemical change. A large intensity of incident light will not produce 
a photochemical effect if none of it is absorbed. The second law is the S t a r k - E i n s t e i n  

law of photochemical equivalence, which states that for each photon absorbed one 
molecule undergoes the initial photochemical process. With high-intensity laser light, a 
molecule can absorb several photons in a single photochemical process, and this 
provides an exception to the Stark-Einstein law. 18 

The hydrogen-bromine reaction conforms to the laws of photochemistry, so that the 
rate of the initiation step of Eq. (13.5-10a) is proportional to the rate at which photons 
are absorbed. By measurement of incident and transmitted intensifies of light, one can 
measure the amount of radiation absorbed in the range of wavelengths that can produce 
Br atoms. We let J be the average rate of absorption of light, measured in einsteins per 
unit volume per second (one einstein is one mole of photons). The rate of photo- 
chemical production of Br atoms is equal to 2J, so that the steady-state equation for Br 
atoms is now 

d[Br] 
= 2 J  - k2[Br][H2] + k3[H][Br2]  + k~[HBr] [H]  - 2k~l[Br] 2 

d--7 
= 0  (13.5-11) 

We neglect the collisional (thermal) production of Br atoms, which is much slower than 
the photochemical production. The steady-state equation for [H] is still Eq. (13.5-4c). 
When this equation is added to Eq. (13.5-11), we obtain 

J -  k'l[Br] 2 -- 0 (13.5-12) 

18 See, for example, L. Li, M. Wu, and P. M. Johnson, J Chem. Phys., 86, 1131 (1987). 
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Equation (13.5-12) is combined with Eq. (13.5-5) and substituted into Eq. (13.5-7) to 
obtain 

d[H2 ] k2(2/k~)l/2[H2] j1/2 
- d---~ = 1 -~ k; [HBr] (13.5-13) 

k3 [Br2] 

which agrees with experiment. Note that [Br] does not occur in the numerator of the 
rate law, as it did in Eq. (13.5-7). 

The quantum yield �9 of a photochemical reaction is defined as the number of 
molecules of product produced per photon absorbed. It is also equal to the number of 
moles of product per einstein of photons absorbed. The quantum yields of photo- 
chemical reactions range from nearly zero to about 10 6. Quantum yields greater than 
unity ordinarily indicate a chain reaction. The quantum yield of the photochemical 
hydrogen-bromine reaction is equal to four times the chain length, and therefore can 
greatly exceed unity. 

Hydrogen reacts in the gas phase with chlorine or with iodine much as with bromine, 
but there are differences between the three reactions. The first difference is the fact that 
it is inhibited by the presence of oxygen. An approximate empirical rate law for the 
photochemical reaction isl9 

dine1] kaJ[U2][C12] 

dt kb[r + [O2]([H2] + k~[Cl2]) 
(13.5-14) 

where k a, k b, and k c are temperature-dependent parameters. In the complete absence of 
oxygen, the reaction becomes first order in hydrogen and zero order in chlorine (except 
for the dependence of J on the concentration of chlorine). However, kb is sufficiently 
small that partial pressures of oxygen down to a few hundredths of a torr are effective in 
inhibiting the reaction. Another difference between the hydrogen-chlorine reaction and 
the hydrogen-bromine reaction is that the recombination of chlorine atoms, analogous 
to process 1' in Eq. (13.5-10) is unimportant, while termination of chains by 
combination of chlorine atoms with the surface of the reaction vessel and with other 
molecules (such as oxygen) is important. A third difference is that the hydrogen- 
chlorine reaction gives off enough heat that the reaction mixture can heat up, speeding 
up the reaction and causing an explosion. 

The hydrogen-iodine reaction was mentioned at the beginning of the previous 
section: 

H 2 -+- 12 ~ 2HI (13.5-15) 

It is different from both of the other reactions since it is not primarily a chain reaction, 
except at high temperatures. The reaction obeys second-order kinetics and was thought 
at one time to be a bimolecular elementary reaction. It is now thought that several 
mechanisms compete, including the elementary mechanism, and that under different 
conditions of temperature and pressure different mechanisms dominate. The chain 
mechanism analogous to Eq. (13.5-3) is dominant above 750 K but is unimportant 

19K. L. Laidler, op. cit., pp. 295ff (Note 3). 
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below 600K. The following nonchain mechanism appears to be dominant below 
600 K: 2~ 

(1) 12 - -  2I (fast) (13.5-16a) 

(2) 2I + H 2 --+ 2HI (slow) (13.5-16b) 

*Exercise 13.20 
a. Find the rate law for the mechanism of Eq. (13.5-16) using the rate-limiting step approxima- 

tion. 
b. Find the rate law for the mechanism of Eq. (13.5-16) using the steady-state approximation. 

The Principle of Detailed Balance 

For any reaction that proceeds by two competing mechanisms, there is a fundamental 
physical principle that governs the rate constants for the two mechanisms. This 
principle is called the principle of detailed balance: All mechanisms fo r  the same 
reaction must give the same value o f  the equilibrium constant at the same temperature. 
Another statement is: At equilibrium, each mechanism must separately be at equili- 
brium, with canceling forward and reverse rates. Consider the elementary gas-phase 
mechanism at some high temperature: 

(1 a) H 2 + 12 --~ 2HI (13.5-17) 

Consider also the mechanism of Eq. (13.5-16) with inclusion of a reverse reaction in 
step 2. Figure 13.2 shows the two pathways. Since both mechanisms must separately be 
at equilibrium, it is not possible for the forward reaction of one mechanism to be 
canceled by the reverse reaction of the other mechanism. If this were possible, the laws 
of thermodynamics could be violated. Let us assume that equilibrium of the reaction of 
Figure 13.2 corresponds to a large forward rate of the two-step mechanism and a large 
reverse step of the one-step mechanism, with smaller rates for the reverse rate of the 
two-step mechanism and the forward rate of the one-step mechanism. 

If a solid substance can be found that absorbs iodine atoms, insertion of a sample of 
this substance into the reaction vessel would slow down the forward rate of the two-step 
reaction but would do nothing to the rate of the one-step mechanism. The system would 
no longer be at equilibrium and would have to change its composition to restore 
equilibrium. Removal of the solid substance would cause the system to return to its 
original equilibrium state, so that one could at will change the equilibrium composition 
back and forth. It might be possible to harness some of the Gibbs energy change of the 
forward reaction or the reverse reaction, and one would have a perpetual motion 
machine of the second kind, in violation of the laws of thermodynamics. 

From Eq. (12.4-7), the equilibrium constant for reaction (la) is given by 

kla 
Kla ~- ~ (13.5-18) 

k~a 

2~ L. Laidler, op. cit., pp. 295ff (Note 3). See also J. H. Sullivan, J. Chem. Phys., 46, 73 (1967). 
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The statement about time reversibility 
is correct for classical mechanics. 
In quantum mechanics, other 
transformations must be carried out in 
addition to time-reversaL but the 
overall situation is much the same. 

By analogy with Eq. (12.5-16), the equilibrium constant for the mechanism of Eq. 
(13.5-16) is 

K - k l k 2  (13.5-19) 

Since both equilibrium constants refer to the same reaction, they must be equal: 

klk2 kla 
= ~ (13.5-20) k~ k~ ktla 

The principle of detailed balance follows from a more fundamental principle, the 
principle of microscopic reversibility, which states that all mechanical processes are 
time-reversible. That is, the equations goveming these processes must be unchanged if 
the value of the time is replaced by its negative so that time appears to run backward. If 
it were possible to take a moving picture of the motions of molecules, the mechanical 
laws of motion would still seem to apply if the movie were run backward. This would 
not be the case if the principle of detailed balance were not valid. 

Irreversible macroscopic processes do not obey time reversibility. A movie of a 
macroscopic diffusion process or a chemical reaction run backward would appear to 
violate the second law of thermodynamics, and the entropy of the universe would seem 
to decrease. However, a microscopic movie of the molecular motions during the process 
would appear normal if run backwards. One of the most interesting tasks of science is to 
answer the question: How can irreversible macroscopic processes result from time- 
reversible molecular processes? Although much progress has been made in under- 
standing how to average over microstates to represent a macrostate, the question is not 
yet completely answered. 

Branching-Chain Reactions 
The combustion of hydrogen with oxygen is a chain reaction that appears to proceed by 
a branching-chain mechanism. This means that some propagation steps produce more 
chain carriers than they consume, accelerating the reaction and possibly producing an 
explosion. A simplified version of the accepted mechanism of the hydrogen-oxygen 

(1) H 2 + wall --+ H(adsorbed) + H (initiation) 

(2) H -~- 0 2 ---+ OH --]-- O (branching) 

(3) O-+- H 2 ~ OH -+- H (branching) 

(4) OH + H 2 ~ H20 -k- H (propagation) 

(5) H + 0 2 + M ~ HO 2 -k- M (termination) 

(6) H + wall --+ stable species (termination) 

(7) HO + wall ~ stable species (termination) 

(8) HO 2 + wall ~ stable species (termination) 

reaction is 21 

In step 5, M represents any molecule that can collide with the H and 0 2. This could be 
an H2 or an O2 molecule, but could be an impurity molecule if one is present. Steps 2 
and 3 consume one chain carrier but provide two chain carriers, so that as these steps 

21S. W. Benson, The Foundations of Chemical Kinetics, McGraw-Hill, New York, 1990, p. 454ff. 
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occur the reaction rate is accelerated and an explosion can occur. Since several 
processes at the walls of the vessel are included in the mechanism, the ratio of the 
surface area to the volume is important, as are the temperature and pressure, in 
determining whether an explosion will occur. 

Irving Langmuir, 1881-1957, was an 
American industrial chemist who won 
the 1932 Nobel Prize in chemistry for 
his work on surface chemistry. 

Catalysis 
A substance that increases the rate of a chemical reaction but does not appear in the 
chemical equation for the reaction is a catalyst. This term was coined in 1836 by 
Berzelius from the Greek words "kata" (wholly) and "lyein" (to loosen). 22 Catalysis 
can be divided into three classes: In homogeneous catalysis all substances involved in 
the reaction, including the catalyst, occur in the same phase. In heterogeneous 
catalysis the catalyzed reaction occurs at the boundary between two phases (the 
catalyst is usually a solid). Enzyme catalysis can be considered to be a separate 
class. A catalyst generally provides an alternative mechanism that competes with the 
uncatalyzed mechanism. If the catalyzed mechanism is faster than the uncatalyzed 
mechanism, the observed rate of the reaction is due mostly to the catalyzed mechanism, 
although the reaction is also still proceeding by the uncatalyzed mechanism. 

Heterogeneous Catalysis 
In this type of catalysis reacting molecules are adsorbed from a gas or liquid phase onto 
the surface of a solid catalyst. Consider an uncatalyzed unimolecular process: 

A(gas) --+ products or intermediates (13.6-1) 

and a competing catalyzed process: 

A(gas) + surface site --+ A(adsorbed) (13.6-2) 

A(adsorbed) ~ same products or intermediates (13.6-3) 

The rate of the first process depends on the concentration of substance A in the gas 
phase, while the rate of the second process depends on the amount of substance A 
adsorbed on the solid surface. 

The Langmuir Theory of Adsorption 
The study of adsorption was pioneered by Langmuir, who derived an expression for the 
equilibrium fraction of a solid surface covered by an adsorbed substance as a function 
of the concentration of the substance in the gas or liquid phase. The adsorption process 
is represented by 

A + surface site ~ A(adsorbed) (13.6-4) 

It is assumed that the surface contains a set of sites at which molecules of A can be 
adsorbed, and that only a single layer of molecules (a monolayer) can be adsorbed on 
the surface. The sites might include all of the atoms of the solid surface or might be 
surface imperfections such as a "step" between two layers of atoms, as schematically 

22 K. J. Laidler, op. cit., p. 229 (Note 3). 
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depicted in Figure 13.3. The fraction of the surface sites occupied by adsorbed A 
molecules is denoted by 0. 

The adsorption process is assumed to be an elementary process so that the rate of 
adsorption is first order in the concentration of A in the fluid phase and is also 
proportional to 1 - 0 ,  the fraction of surface sites available for adsorption: 

Rate of adsorption = k 1 [A](1 - 0) (13.6-5) 

The desorption is also assumed to be an elementary process, so that 

Rate of desorption - k'l 0 (13.6-6) 

At equilibrium, the rate of desorption equals the rate of adsorption, and we can write 

ktl 0 - k 1 [A](1 - 0) (13.6-7) 

This equation can be solved for 0 to give the Langmuir  isotherm: 

(13.6-8) 

where K is a type of equilibrium constant, and has the units of reciprocal concentration 
(L mol-1 or m 3 mol-1). 

X -- --kl (13.6-9) 

The name "isotherm" is used because the formula gives the fraction of the surface 
covered as a function of the concentration of A at a fixed temperature. 

Figure 13.4 schematically depicts the Langmuir isotherm for a hypothetical system. 
The value of K can be determined from a graph of the Langmuir isotherm by 
determining the value of the concentration of A corresponding to 0 - 1. 

Exercise 13.21 
Show that 1/K equals the value of [A] corresponding to 0 - 1. 
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Since the total area of an adsorbing surface and the area occupied by an adsorbed 
molecule will probably not be known, the value of 0 is not directly measurable. 
However, the mass adsorbed is proportional to 0, and a graph of the mass adsorbed will 
have the same shape as the graph of Figure 13.4; the location of the asymptote 
corresponds to 0 - 1, allowing one to determine where 0 - �89 is located on the graph. 
Accurately locating an asymptote on a graph is difficult if the data suffer from 
experimental errors, so it is desirable to make a linear plot, as shown in Figure 13.5. 
In this graph, 1/0 is plotted as a function of 1/[A], corresponding to the version of Eq. 
(13.6-8): 

1 1 + K[A] 1 
= K[A] = K[A----] + 1 (13.6-10) 

In practice, a plot of the reciprocal of the mass adsorbed is plotted, since this quantity is 
proportional to 1/0. Since a plot of 1/0 as a function of 1/[A] has an intercept equal to 
unity, it is possible to determine the relationship between 0 and the mass absorbed and 
then to determine the value of K from the slope of the plot. A linear least-squares 
procedure can be used as an alternative to graphing. 

Exercise 13.22 
Show that Eq. (13.6-10) is correct. 
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Adsorption processes are divided into two classes: physical adsorption and 
chemical adsorption (chemisorption). In physical adsorption, the binding forces are 
London dispersion forces, dipole-dipole attractions, etc. In chemisorption, covalent 
chemical bonds are formed between the atoms or molecules of the surface and the 
atoms or molecules of the adsorbed substance. The Langmuir isotherm applies to both 
classes so long as only a monolayer of atoms or molecules can be adsorbed on the 
surface, and so long as the adsorbed molecules do not dissociate. There are other 
isotherms that apply to the case of multiple layers. 23 

In some cases of chemisorption, the molecules of the adsorbed substance dissociate 
and are bonded to the surface as atoms or as free radicals. For example, when hydrogen 
is adsorbed on platinum it dissociates into individual hydrogen atoms that are 
chemically bonded to platinum atoms on the surface. Platinum is an effective surface 
for a hydrogen electrode and an effective catalyst for hydrogenation reactions for this 
reason. In this case a different isotherm from that of Eq. (13.6-8) applies. If a substance 
A2 dissociates to form two A atoms, it occupies two sites on the surface and we write 

A2(g ) + 2 surface sites ~ 2A(adsorbed) (13.6-12) 

If the adsorption is an elementary process, 

Rate of adsorption = k 1 [A2] (1 - 0) 2 (13.6-13) 

The rate of desorption is proportional to the square of the number of adsorbed atoms 
per unit area and thus to 02: 

Rate of desorption - k' 102 (13.6-14) 

The rates of adsorption and desorption are equated to obtain the equilibrium isotherm: 

K1/2[A2] 1/2 
0 - (13.6-15) 

1 + K1/Z[A2] 1/2 

23 K. J. Laidler, op. cit., p. 234 (Note 3). 
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The Rate of a Heterogeneously Catalyzed Reaction 

Consider the mechanism: 

(1) A + surface site ~ A(adsorbed) (fast) (13.6-16a) 

(2) A(adsorbed) --+ further intermediates or products (slow) (13.6-16b) 

If the second step is rate-limiting the rate is proportional to 0. We assume the first step 
to be at equilibrium so that 0 is given by Eq. (13.6-8) and the rate is given by 

Rate = k20- k2K[A] (13.6-17) 
1 + K[A] 

For sufficiently small values of [A] the rate becomes first order in A, but for large 
enough values of [A] it is zero order in A. This limit corresponds to the fully covered 
catalytic surface so that the rate is determined by the amount of surface sites and not by 
the concentration of A. 

Exercise 13.23 
Derive an expression for the rate of the reaction of Eq. (13.6-16) assuming the steady-state 
approximation instead of the rate-limiting step approximation. 

*Exercise 13.24 
The catalyzed reaction of a substance that dissociates upon adsorption can also be studied. Find 
the rate law for the forward rate of the catalyzed reaction 

A 2 --+ products 

with the assumed mechanism 

(1) A 2 + 2 surface sites ~ 2 A(adsorbed) (fast) 

(2) A(adsorbed) ~ further intermediates or products (slow) 

Assume that the second step is rate-limiting. 

For the case of two different substances reacting with each other at a solid surface we 
consider two possible mechanisms. If only one of the reactants is adsorbed the 
mechanism is called the Langmuir-Rideal  mechanism: 

(1) A + surface site ~ A(adsorbed) (13.6-18a) 

(2) A(adsorbed) + B --+ further intermediates or products (13.6-18b) 

Since molecules must collide to react this mechanism means that the B molecules from 
the fluid phase must collide with the adsorbed A molecules. If the second step is rate- 
limiting, the rate law is 

Rate = k2K1 [B][A] (13.6-19) 
1 + KI[A ] 

This mechanism is thought to be quite improbable. 

Exercise 13.25 
Derive Eq. (13.6-19). 
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If both of the reacting molecules are adsorbed and if at least one of them can move 
around on the surface, the reaction between two adsorbed molecules can occur. This 
mechanism is called the Langmuir-Hinshelwood mechanism, and occurs more 
commonly than the Langmuir-Rideal mechanism. It can be represented by 

(1) A + surface site ~ A(adsorbed) (13.6-20a) 

(2) B + surface site ~ B(adsorbed) (13.6-20b) 

(3) A(adsorbed) + B(adsorbed) ~ further intermediates or products (13.6-20c) 

We assume both substances adsorb on the same set of sites so that the fraction of free 
sites is equal to 1 -  0 A - 0 B ,  where 0 A is the fraction of sites with adsorbed A 
molecules and 0 B is the fraction of sites with adsorbed B molecules: 

Rate of adsorption of A -- ka[A](1 - 0 A - 0 B )  

Rate of adsorption of B - k2[B](1 - 0 A - 0B) 

(13.6-21) 

(13.6-22) 

The rates of desorption are 

Rate of desorption of A - k'l 0 A 

Rate of desorption of B -- k'20 B 

(13.6-23) 

(13.6-24) 

When the rate of adsorption is equated to the rate of desorption for each substance and 
the resulting equations are solved simultaneously for 0 A and 0 B, we get the equilibrium 
relations: 

KI[A] 
0A = 1 + KI[A ] + K2[B ] (13.6-25) 

K2[B] 
0B = 1 + K l [A] + K2[B ] (13.6-26) 

Exercise 13.26 
Verify Eqs. (13.6-25) and (13.6-26). 

If step 3 in the Langmuir-Hinshelwood mechanism is rate-limiting, both absorption 
processes will be assumed to be at equilibrium, and the rate law is 

Rate - k3OAO B -- k3K1Kz[A][B] 
(1 + K 1 [A] + Kz[B]) 2 (13.6-27) 

Figure 13.7 shows a schematic plot of the rate as a function of [A] for a fixed value of 
[B]. For small values of [A] the rate is roughly proportional to [A], but as [A] is 
increased the rate passes through a maximum and then drops, becoming proportional to 
1/[A] for large values of [A]. This decline in the rate corresponds to a value of K1 [A] 
that is larger than the other two terms in the denominator, so that the denominator 
becomes proportional to [A] 2. The reason for the decline is that as the A molecules 
compete more and more successfully for the surface sites, there are fewer B molecules 
adsorbed on the surface. The reaction then slows down because of the scarcity of 
adsorbed B molecules. In the reaction of CO with O2 on platinum (one of the reactions 
carried out in an automobile's catalytic converter), the CO is bonded much more 
strongly on the catalyst surface than is the O2, and the rate is inversely proportional to 
[CO] for nearly all cases, 24 corresponding to the case that K 1 [CO] is much larger than 
the other terms in the denominator. 

24 K. J. Laidler, op. cit., p. 249 (Note 3). 
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Homogeneous Catalysis 
This class of catalysis occurs in a gas or a liquid phase. One subclass of homogeneous 
catalysis in aqueous solutions is acid or base catalysis. One type of acid catalysis is 
called general acid catalysis, defined as catalysis depending on the concentration of 
undissociated weak acid. If the catalysis depends on the concentration of hydrogen ions, 
irrespective of the strong or weak acid from which the hydrogen ions come, it is called 
specific hydrogen-ion catalysis. Acid and base catalysis are illustrated by an exam- 
ple, 25 the isomerization of a-D-glucose to {/-D-glucose (or vice versa). This was one of 
the first reactions shown to exhibit generalized acid catalysis. It is sometimes called the 
"mutarotation" of glucose because of the change in optical rotation of the solution as 
the reaction proceeds. The reaction is 

H OH 
- 

OH H 

(13.6-28) 

where the structural formulas are abbreviated by omission of some Hs and OHs. 
When the reaction is carried out in pure water, both the forward and reverse reactions 

are found to be first order. The rate law for the forward reaction of the alpha isomer is 

Forward rate = k0[~ ] (13.6-29) 

where [~] stands for the concentration of the alpha isomer. The rate constant k 0 has the 
value of 0.0054 min -1 at 18~ In the presence of a strong acid, the rate law is 

Forward rate = ko[c~ ] + kH+[H+]H (13.6-30) 

where k0 has the same value as before and where kH+ is equal to 0.0040 L mo1-1 min -1 
at 18~ The uncatalyzed mechanism gives rise to the first term and the catalyzed 
mechanism gives rise to the second term, showing the competition between the two 
mechanisms. The second term corresponds to specific hydrogen ion catalysis, since 
hydrogen ions from any strong acid give the same contribution to the rate. 

The reaction also exhibits base catalysis, so that the rate law with both catalyzed 
mechanisms included is: 

Forward rate = k0[~ ] + kH+[H+][~] + koH-[OH-]M (13.6-31) 

where koH---3800 L mo1-1 min -1 at 18~ In basic solution the concentration of 
hydrogen ions will be small and in acidic solution the concentration of hydroxide ions 
will be small, so that only one of the last two terms will make an important contribution 
in a given case. However, both terms are still present because introducing another 
mechanism does not shut down an existing mechanism. 

The proposed mechanism is that either the alpha or beta pyranose ring isomer of 
glucose is converted to the open-chain form, which can then close the ring to form 
either ring isomer. The mechanism for forming the open-chain form is thought to be the 
following for general acid catalysis: 26 

258. W. Benson, op. cit., pp. 558ff (Note 21). 
268. W. Benson, op. cit., pp. 558ff (Note 21). 



476 13 Chemical Reaction Mechanisms 

H H 

+ . A  

OH OH H 

+ A -  

H H 

OH H OH\H 
(13.6-32) 

H H 

~ C ~ o O \  H + A- "- I'"k + HA -" ~ C ~ ) o \  H 

The alpha isomer is shown, but the mechanism for forming the open-chain structure 
from the beta isomer is analogous, and the mechanism for formation of either pyranose 
ring isomer from the open-chain structure is the reverse of this mechanism. 

Step 1 is thought to be rate-limiting, so that the forward reaction is predicted to be 
first order in a-glucose and first order in the acid HA: 

Rate = k 1M[HA] (13.6-33) 

Other examples of homogeneous catalysis also correspond to mechanisms that 
contain steps involving the catalyst. For example, the gas-phase decomposition of 
ozone 

203 --+ 302 (13.6-34) 

is catalyzed by N205. The proposed mechanism is 27 

(1) N205 ~ NO 3 -k-NO 2 (13.6-35a) 

(2) NO 2 -+- 03 ~ NO 3 -k- 0 2 (13.6-35b) 

(3) 2NO 3 --+ 2NO 2 -+-O 2 (13.6-35c) 

(4) NO 3 -k-NO 2 ~ N205 (13.6-35d) 

Step 1 is the same as the first step of the mechanism of Example 13.11. Step 4 is the 
reverse of step 1. We have written it separately to emphasize that the N205 is 
regenerated. Step 2 must be doubled for the equations of the mechanism to add up 
to the stoichiometric equation. 

27 H. S. Johnston, Gas Phase Reaction Rate Theory, Ronald Press, New York, 1966. 
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Many biochemistry textbooks denote 
the reactant S (for substrate) and its 
concentration by [ S] instead of [ R]. 

Enzyme Catalysis 
In cellular biological organisms nearly all reactions are catalyzed by enzymes. Enzymes 
are usually given trivial names by adding the ending "ase" to the name of the reactant 
or the reaction that is catalyzed. The enzyme urease catalyzes the hydrolysis of urea and 
a protease catalyzes the hydrolysis of proteins. Most enzymes are proteins, although 
some ribonucleic acids have been found to exhibit catalytic activity. 28 Enzymes 
generally exhibit specificity. Three kinds of specificity are recognized. The first is 
absolute specificity, which means that the enzyme catalyzes the reaction of only one 
substance. Urease exhibits this kind of specificity, since it will not catalyze the reaction 
of anything other than urea. The second kind of specificity is group specificity, which 
means that the enzyme catalyzes any of a group of reactions. Protease catalyzes the 
hydrolysis of various kinds of proteins, but will not catalyze the hydrolysis of fats or 
carbohydrates. The third kind of specificity is called stereochemical specificity, which 
means that an enzyme will catalyze the reaction of one optical isomer but not its 
enantiomorph. Protease will catalyze the hydrolysis of polypeptides made of L-amino 
acids, but not polypeptides made of D-amino acids. 

A typical enzyme molecule has an active site at which a reactant molecule can attach 
itself. The active site is often like a socket into which the reactant molecule fits, like a 
key in a lock, as shown schematically in Figure 13.8. Once situated in the active site, 
the reactant molecule is rendered more reactive. Through conformational changes or 
polarizations produced by interaction with the enzyme, it is put into a state of greater 
reactivity, often into a conformation similar to a transition state. The first accepted 
mechanism for enzyme catalysis was proposed by Michaelis and Menten. 29 For the case 
of a single reactant R and a single product P, this mechanism is 

(1) E + R ~--- ER (13.6-40a) 

(2) ER --+ E + P (13.6-40b) 

28T. R. Cech, Science, 236, 1532 (1987). 
29L. Michaelis and M. L. Menten, Biochem. Z., 49, 333 (1913). 
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where E stands for the enzyme, R stands for the reactant, ER stands for the enzyme- 
reactant complex, and P stands for the product. In addition to this mechanism there is 
presumably an uncatalyzed mechanism proceeding at the same time but with a smaller 
rate, so that the catalyzed mechanism dominates. 

The application of the steady-state approximation to obtain the rate law for the 
Michaelis-Menten mechanism was first carried out by Briggs and Haldane. 3~ The two 
differential rate equations are 

d[ER] 
dt = kl[E][R]- k'I[ER] - k2[ER] (13.6-41a) 

d[P] 
dt = k2[ER] (13.6-4 lb) 

The steady-state approximation is invoked by setting the fight-hand side of Eq. 
(13.6-41a) equal to zero. This equation can be solved for [ER] and the expression 

for [ER] can be substituted into Eq. (13.6-41b). However, in a typical case [E], the 
concentration of uncombined enzyme, is not known. An unknown but significant 
fraction of the enzyme is in the combined form ER, so that [E] will differ significantly 
from the total concentration of enzyme, given by [E]total  = [E]  -+- [ER]. However, since 
the concentration of reactant is much larger than the enzyme concentration and is thus 
much larger than [ER], [R] can be considered to be approximately equal to both the 
total concentration of reactant and to the concentration of uncombined reactant. 

When we substitute [E]total  - [ER] into the right-hand side of Eq. (13.6-4 la) in place 
of [E], set the result equal to zero, and solve for [ER], we obtain 

kl [E]total[R] 
[ER] -- (13.6-42) 

ktl + k 2 + k l[R] 

The rate law is obtained by substituting Eq. (13.6-42) into Eq. (13.6-41b). Since we 
have not included a reverse reaction for the second step, we obtain the rate law for the 
forward reaction. This rate law is called the Miehaelis-Menten equation: 

(13.6-43) 

where 

k'l K m = ~ (13.6-44) 
kl 

The parameter K m is called the Miehaelis-Menten constant or the Miehaelis 
constant. Since it is a combination of rate constants it is a constant only at constant 
temperature. An extended version can be derived with a reverse reaction for step 2, 
which applies near equilibrium and can be related to the equilibrium constant for the 
reaction. (See Problem 13.57.) The Michaelis-Menten mechanism has also been 
studied without use of the steady-state approximation. 3~ 

Since Eq. (13.6-43) is not easily integrated, the method of initial rates is commonly 
used to apply it. A number of experiments with the same concentration of enzyme, but 
with different concentrations of reactant, are carried out and the initial rate in each case 
is determined. Figure 13.9 shows the initial rate given by Eq. (13.6-43) as a function of 

3o G. E. Briggs and J. B. S. Haldane, Biochem. J., 19, 338 (1925). 
31N. Sundaram and P. Wankat, J. Phys. Chem., 102, 717 (1988). 
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reactant concentration. Note the resemblance of Eq. (13.6-43) to Eq. (13.6-17), and the 
resemblance of Figure 13.9 to Figure 13.4. The initial rate increases monotonically as 
the reactant concentration is increased, approaching the value k2[E]total asymptotically. 
The value of K m can be determined by locating the asymptote and equating K m to the 
value of [R] at which the initial rate is equal to one-half of  the asymptotic value, as 
indicated in the figure. The number of reactant molecules that react per enzyme 
molecule per second is called the turnover number. Its maximum value is equal to k2, 
and can range up to 106 s -1 . 

Exercise 13.27 
a. Show that the initial rate approaches the value k2[E]total for large values of [R]. 
b. Show that K m is equal to the value of [R] at which the initial rate is equal to half of its 

asymptotic value. 
c. Show that the maximum value of the turnover number is equal to k 2. 

Just as with Eq. (13.6-8), the accurate location of the asymptote in Figure 13.9 from 
experimental data on initial rates is difficult if there is considerable experimental error. 
To avoid this problem, plots of  initial rate data analogous to that of  Figure 13.5 can be 
made. If (13.6-44) is solved for the reciprocal of the initial rate the result is the 
Lineweaver-Burk equation. 32 

(13.6-45) 

where r i = (d[P]/dt)initial is the initial rate. Data on initial rates should give a straight 
line when 1/r  i is plotted as a function of 1/[R], as in Figure 13.10. The slope of the line 
is equal to Km/k2[E] to ta l ,  the intercept on the vertical axis is equal to 1/k2[E]total , and the 
intercept on the horizontal axis is equal to - 1 / K  m. 

32 H. Lineweaver and D. Burk, J. Am. Chem. Soc., 56, 658 (1934). 
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*Exercise 13.28 
An altemative linear plot is the E a d i e  plot, 33 for which Eq. (13.6-43) is put into the form 

ri ri k2[E]total -- -~ (13.6-46) 
[R] g m g m 

Use the data of Example 13.15 to make a plot or a linear least-squares fit of ri/[R ] as a function of 
r i. Find the value of the Michaelis-Menten constant for the reaction of Example 13.15 and 
compare it with the value from the Lineweaver-Burk equation of Example 13.15. 

Many enzyme-catalyzed reactions are subject to inhibition. That is, the rate of the 
process is decreased by the presence of  some substance. The degree of inhibition is 
defined as 

r 
i =  1 (13.6-47) 

r0 

where r is the rate of the catalyzed reaction in the presence of the inhibitor and r 0 
is the rate in the absence of the inhibitor. A competit ive inhibitor is one for which the 
degree of inhibition decreases if the reactant concentration is increased with constant 
concentration of the inhibitor. A noncompeti t ive inhibi tor  is one for which the degree 
of  inhibition is independent of the reactant concentration, and an anticompetitive 

33 G. S. Eadie, J. Biol. Chem., 146, 85 (1942). 
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inhibitor is one for which the degree of inhibition increases if the concentration of the 
reactant is increased. 

The accepted mechanism for competitive inhibition is that the inhibitor can occupy 
the same active site as the reactant. Acetylcholine is a neurotransmitter, or a substance 
that diffuses across the synapse between two nerve cells and triggers a signal in the 
second nerve cell. This substance is hydrolyzed by the enzyme cholinesterase, which 
causes the signal to be interrupted by lowering the concentration of acetylcholine. 
Diisopropyl fluorophosphate is a competitive inhibitor for this hydrolysis. Figure 13.11 
shows the structural formulas of acetylcholine and of diisopropyl fluorophosphate. The 
diisopropyl fluorophosphate molecules compete with the acetylcholine molecules for 
the active sites, which inhibits the catalyzed reaction since those enzyme molecules 
with diisopropyl fluorophosphate molecules in their active sites are not available for 
acetylcholine hydrolysis. With sufficient inhibition the neurotransmitter remains in the 
synapse and the nerve cell transmits a signal repeatedly. If the nerve cell repeatedly 
stimulates a muscle to contract the muscle soon succumbs to fatigue. Various 
substances similar to diisopropyl fluorophosphate have been prepared as insecticides 
and as chemical warfare agents ("nerve gases"). A proposed mechanism for a 
noncompetitive inhibitor is that an enzyme has a second site other than the catalytic 
active site, to which the inhibitor can bind. The inhibited enzyme molecule is assumed 
unable to catalyze the reaction, although it can still bind to the reactant. 

Experimental Molecular Study of Chemical 
Reactions 

The "classical" study of chemical reaction rates involves determination of concentra- 
tions of reactants or products, and delivers only macroscopic information. Such 
information cannot lead directly to knowledge of a reaction mechanism. However, 
there exist techniques that deliver molecular information about a reaction mechanism. 

Observation of Reaction Intermediates 
If a reactive intermediate included in a proposed mechanism can be detected in the 
experimental system, that mechanism becomes more plausible, and if the intermediate's 
concentration can be determined as a function of time, individual rate constants for 
elementary steps can sometimes be evaluated. The most direct technique for detecting 
reactive intermediates is spectroscopy. An early example of spectroscopic detection of a 
reactive intermediate was a study of the decomposition of N205 .34 According to the 
mechanism of Example 13.11, the first step is the formation of NO2 and NO3 from 
N205. Schott and Davidson carried out shock tube studies, using the reaction tube as a 
spectrophotometer cell. They monitored the absorption of light at 546 nm and 652 nm, 
at which wavelengths NO3 absorbs much more strongly than NO2, at 366 nm, at which 
wavelength NO2 absorbs more strongly than does NO3 and at 436 nm, at which 
wavelength NO2 and NO3 absorb nearly equally. Schott and Davidson were able to 
determine the concentration of NO3 as a function of time and to calculate values for the 

34 G. Schott and N. Davidson, J. Am. Chem. Soc., 80, 1841 (1958). See also H. Sun and E Heinz, J. Phys. 
Chem., B101, 705 (1997). 
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elementary rate constants in the mechanism of Example 13.11. They found that the 
preexponential factor in k 2 is equal to 1.66 x 108 L mo1-1 s -1 and that the activation 
energy is approximately equal to 16 kJ mo1-1 over the temperature range from 300 K to 
820K. 

Another technique for the detection of reactive intermediates is mass spectrometry. In 
a mass spectrometer, molecules are converted into positive ions, often undergoing 
fragmentation in the process. The resulting ions are accelerated by an electric field, 
attaining a speed depending on their charge/mass ratio. They are then passed through 
electric and magnetic fields (or other analyzing devices) and separated, so that the 
number of ions with each charge/mass ratio can be determined. The identity of the 
original substance can often be deduced, not only from its molecular mass but also from 
its fragmentation pattern. To employ mass spectrometric detection of reactive inter- 
mediates, one carries out a gas-phase reaction in a vessel that adjoins the ionization 
chamber of a mass spectrometer. The total pressure in the ionization chamber is around 
10 -4 torr. A small aperture allows the reacting gases to pass into the ionization chamber 
of the mass spectrometer. The mass spectrum of a reactive intermediate can sometimes 
be found in the mass spectrum of the reacting mixture of reactants, intermediates, and 
products. An advantage of the mass spectrometric method of detecting reactive 
intermediates comes fom the fact that the pressure in the mass spectrometer is very 
small, both in the analyzing chamber and in the ionizing chamber. The low pressure in 
both chambers lowers the collision rate of reactive intermediates, prolonging their 
lifetimes and making it easier to detect short-lived species. 

It is also possible to infer the presence of certain kinds of reactive intermediates from 
their chemical effects. In the mirror  technique a reacting gas is passed through a tube 
with a metallic mirror deposited on its inner surface. If free radicals are present, they 
can combine with the metal to form volatile products that can be trapped at low 
temperature and analyzed. For example, a lead mirror will combine with methyl radicals 
to form tetramethyl lead, Pb(CH3)4, a stable substance that can be condensed in a trap. 35 
Molecular oxygen also reacts with free radicals, and if addition of oxygen to a reacting 
system inhibits the rate of reaction it is likely that some kind of a free radical 
intermediate is present in the reaction mechanism. 

Another technique that can be used to detect the presence of free radical inter- 
mediates is based on the fact that almost any free radical catalyzes the conversion of 
ortho-H2 to para-H2 and vice versa. At room temperature equilibrium H2 consists of 
75% ortho-H2 and 25% para-H2, while at low temperatures the equilibrium mixture is 
nearly 100% para-H2. (Ortho-H2 has its two nuclear spins parallel, and para-H2 has its 
two nuclear spins antiparallel. See Section 19.2 for more information.) If para-H2 
prepared at low temperature is brought into contact with free radicals, the rate of 
conversion to the equilibrium mixture is a measure of the amount of free radicals 
present. However, these techniques for the detection of free radical intermediates do not 
distinguish one free radical intermediate from another. 

A final technique is the use of isotopic substitution. For example, the decomposition 
of acetaldehyde 

CH3CHO ~ CH 4 -+-CO (13.7-1) 

35 S. W. Benson, op. cit., p. 101, gives a table of free radicals and metals that had been studied as of the 
1950s (Note 21). 
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was thought to proceed by the mechanism 

(1) CH3CHO ~ CH 3 -+-CHO (13.7-2a) 

(2) CH 3 + CH3CHO --+ CH 4 -+-CH3CO (13.7-2b) 

(3) CH3CO --+ CH 3 -+-CO (13.7-2c) 

A mixture of CH3CHO and CD3CDO was reacted, where D stands for deuterium 
(2H).36 The product mixture contained the statistically expected mixture of randomly 
isotopically substituted methanes, which increased the plausibility of this mechanism, 
since a mechanism without free radicals such as CH3 would not have mixed the 
isotopes randomly. 

Molecular Beam Reactions 

In this technique the reaction is carried out by forming beams of reactants in an 
otherwise evacuated chamber ("beams instead of bulbs"). Figure 13.12 shows 
schematically an apparatus for generating a molecular beam from a solid or liquid 
material. The material is vaporized in an oven and the molecules exit from a small 
aperture into an evacuated chamber. The molecules pass through a second chamber that 
is evacuated to even lower pressure. The molecules then pass into a third chamber in 
which the beam can be observed or reacted with a second beam. Only those molecules 
moving in nearly the same direction can pass through both barriers, producing a nearly 
unidirectional (collimated) beam. It is also possible to collimate the beam further by a 
third barrier with a small hole. 

If it is desirable to select only those molecules in a narrow range of speeds, a velocity 
selector can be used. Figure 13.13 shows schematically one type of velocity selector. 
The rotating disks have slots through which molecules can pass. When the set of disks 
is rotating, it allows molecules to pass only if their speed is such that they reach the 
second disk when one of its slots is in the beam position and reach the third disk when 
one of its slots is in the beam position, etc. Varying the speed of rotation of the disks 
allows different speeds to be selected. 

Chemical reactions can be carried out with two crossed molecular beams, as 
schematically depicted in Figure 13.14. The beams are generally brought together at 
fight angles and the product molecules that are scattered away from the collision region 
are detected by a movable detector, allowing the angular distribution of products to be 
determined. Since the product molecules are scattered away from the reaction region 
into a region where further collisions are unlikely, reactive intermediates can be 
detected and identified. The detector is usually a mass spectrometer, but molecules 
containing alkali metal atoms can be detected by a surface ionization detector. 37 

It is also possible to carry out a reaction by bringing a beam of molecules into a 
stationary gaseous sample. The reaction cross section is equal to the collision cross 
section times the reaction probability, and can be measured by the attenuation of the 
beam. The reaction cross section generally depends on the states of the reactants and 
products and on the collision energy. An ordinary chemical reaction is a sum of such 
reactions, since various states of the reactant and product molecules are represented in a 
system of many molecules. The "ideal" molecular beam kinetics experiment would 
give the reaction cross section for different values of the collision energy and for 

36 S. W. Benson, op. cit., p. 108 (Note 21). 
37 G. G. Hammes, Principles of Chemical Kinetics, Academic Press, New York, 1978, pp. 113ft. 
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different states of the reactants, the angular distribution of products (the angle relative to 
the original molecular beam at which the product molecules leave the collision region), 
the velocity distribution of the product molecules, and the distribution of electronic, 
vibrational, and rotational states of the products. No single experiment has given all of 
these pieces of information, but each of them has been obtained in at least one kind of 
experiment. Some types of molecular beam experiments that are used to obtain 

38 molecular kinetic information are: 

1. Chemiluminescence. In this method, radiation emitted by excited products is 
spectroscopically analyzed as it is emitted. The intensities of radiation due to 
various transitions can be used to determine the population distribution for product 
states. Modem techniques also allow time-resolved spectra to be observed (intensity 
as a function of time as well as of wavelength). Measurements in the picosecond 
region are becoming common and femtosecond measurements are being carried out. 

2. Chemical lasers. Some reactions produce product molecules with an inverted 
population distribution. That is, the population of some state of higher energy is 
larger than that of some state of lower energy. In this case, a chemical laser is 
possible, in which incident radiation can cause stimulated emission and radiation of 
the same wavelength is emitted (see Chapter 20). For example, the flash photolysis 
of trifluoroiodomethane in the presence of hydrogen and a buffer gas can produce 
excited HF molecules with a population inversion: 

(1) CF3I uv flash F + CF2I (13.7-3a) 

(2) F + H 2 ---+ H -+- HF* (13.7-3b) 

stimulated emission 
(3) HF* > HF + hv (13.7-3c) 

38 G. G. Hammes, op. cit., pp. 210ff (Note 37). 
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Incident radiation of the proper frequency can cause emission of radiation from the 
excited HF molecules. Figure 13.15 shows the laser emission as a function of time 
for a number of transitions in this system. 

3. Laser pump and laser probe. In this technique one laser is trained on a beam of 
reactant molecules, essentially using photons as one of the reagents. A second laser 
is trained on the beam in the product region, raising product molecules to excited 
states, from which they fluoresce. Spectroscopic analysis of the fluorescent radiation 
gives information about the distribution of products and their states. 

4. Crossed molecular beams. This method is illustrated in Figure 13.16, which shows 
an apparatus for the reaction of chlorine atoms with molecules of the other halogens. 
The detector is a mass spectrometer that can be moved to different angles so that 
the angular distribution of the products can be studied. The TOF (time-of- 
flight) chopper allows for determination of the velocity distribution of the 
products, giving information on the distribution of energy between translational 
and internal degrees of freedom. By the use of chemiluminescence or laser 
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excitation fluorescence, the vibrational and rotational state distribution can be 
determined, giving the distribution of energy among the translational, rotational, 
and vibrational degrees of freedom. 

Summary of the Chapter 

This chapter has focused on chemical reaction mechanisms, which are the sequences of 
elementary steps that make up chemical reactions. An elementary step is one that 
cannot be divided into simpler steps. A gas-phase elementary process involves a single 
molecular collision. A liquid-phase "elementary" process is actually preceded and 
followed by diffusion processes. If the diffusion of the reactant molecules is a slow 
process compared to the chemical part, the reaction is called a diffusion-limited or 
diffusion-controlled reaction. In either a gaseous or liquid-state elementary process, the 
molecularity of a substance is equal to its order. 

The empirical Arrhenius formula for the temperature dependence of elementary rate 
constants was presented. This empirical formula was based on an idea that "activated" 
molecules with high energy are necessary for the reaction to occur and that the 
population of molecules with a characteristic activation energy is given by the 
Boltzmann probability distribution. We presented the collision theory of bimolecular 
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reaction rates, using first the assumption that all collisions with a relative kinetic energy 
greater than a critical value would lead to reaction. 

A set of differential equations can be constructed for a mechanism, with one equation 
for each elementary step. These simultaneous differential equations cannot generally be 
solved analytically. We introduced two approximation schemes, the rate-limiting-step 
approximation and the steady-state approximation. These approximation schemes are 
used to deduce a rate law corresponding to a given mechanism. Example mechanisms 
were studied, including chain reactions, in which propagation steps are included in the 
mechanism. 

Catalysis involves an alternative mechanism in which the catalyst is involved. 
Catalysis is divided into three classes, heterogeneous catalysis, homogeneous catalysis, 
and enzyme catalysis. Heterogeneous catalysis at the surfaces of solids involves 
adsorption of the reactants. We discussed the Langmuir theory of adsorption and 
applied it to heterogeneous catalysis. Homogeneous catalysis involves mechanisms with 
steps that occur in a single phase, and example reactions were analyzed. 

The accepted theory of biological catalysis asserts that an enzyme possesses an active 
site into which the reactant molecule fits in such a way that it is more reactive in the 
active site than out of it. We obtained the rate law for the simplest mechanism, due to 
Michaelis and Menten. 

We discussed various techniques for direct detection of reaction intermediates. These 
techniques included direct observation of the reaction intermediates and study of their 
effects. 
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Classical Mechanics 

Classical mechanics is based on the laws of motion discovered by Sir Isaac Newton, 
and is also called Newtonian mechanics. Appendix D presents a brief survey of 
classical mechanics, which is now known to be accurate only for objects of relatively 
large mass and for relatively high energies. 

Hooke's law is named for Robert 
Hooke, 1635-1703, one of Newton's 
contemporaries and rivals. 

The Classical Mechanical Analysis of the Harmonic Oscillator 
The harmonic oscillator is a model system that represents a mass suspended from a 
stationary object by a spring as shown in Figure 14.1. Let the vertical coordinate z of the 
mass equal zero at its equilibrium position and be positive if the mass is above this 
position and negative below it. The force on a mass suspended by a spring is described 
for fairly small values of z by Hooke's law: 

F z = - k z  (14.1-1) 

where k is called the force constant. The larger the force constant, the stiffer the spring. 
The harmonic oscillator obeys Hooke's law exactly for all values of the z coordinate. 

The mass of the spring suspending the oscillator is assumed to be negligible. From 
Newton's second law, Eq. (D-l) of Appendix D, the force on an object equals its mass 
times its acceleration. This gives the equation of motion of the harmonic oscillator: 

d2z 
-k z  - m dt---- T (14.1-2) 

This differential equation is called linear because the variable z enters only to the first 
power and is called second order because its highest-order derivative is the second 
derivative. 

The general solution of a differential equation is a family of functions that includes 
nearly every solution of the equation. The general solution for Eq. (14.1-2) must 
contain two arbitrary constants, since this is a property of linear differential equations of 
second order. A general solution can be written as 

z,,, sin(  t)+ cos (14.1-3) 

where A and B are arbitrary constants. The velocity can also be found from Eq. 
(14.1-3): 

v z ( t ) - ~ t - ~ [ A c ~  ) - B sin(~mk~ t ) l  (14.1-4) 

To make the general solution apply to a specific case, we apply initial conditions. 
Since there are two arbitrary constants, we require two initial conditions. These 
conditions can be that at time t = 0 

z(O) = z o, Vz(O ) = 0 (14.1-5) 
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where z 0 is a constant initial displacement. Since s in(0)= 0 and cos(0)=  1, then 
vz(O) = 0 only if A = 0 and z(0) = z 0 only if B = z 0. The solution that applies to the 
initial conditions shown in Eq. (14.1-5) is 

z , zo cos( ,) 

 1417  
Figure 14.2a shows the position as a function of time and Figure 14.2b shows the 
velocity as a function of time. This motion is called uniform harmonic motion. It is a 
periodic motion, repeating the same pattern over and over. The constant z 0 is the 
largest magnitude that z attains and is called the maximum amplitude of the oscillation. 

The length of time required for the oscillator to go from a certain position and 
velocity to the next repetition of that position and velocity is called the period of the 
oscillation and is denoted by v. It is the length of time required for the argument of the 
sine function in Eq. (14.1-6) or the cosine function in Eq. (14.1-7) to change by 2n: 

~/~r - 2n (14.1-8) 

o r  

z -- 2 n ~  (14.1-9) 

The frequency v of the oscillation is the reciprocal of the period, or the number of 
oscillations per second: 
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The kinetic energy of a harmonic oscillator is a state function of the velocity. For our 
initial conditions, 

1 1 k k 
Y - -~mv 2 - -~m- -~m sin t - sin 2 t (14.1-11) 

Equation (D-5) of Appendix D relates the potential energy ~/~ and the corresponding 
force: 

d ~  
Fz - dz  (14.1-12) 

The potential energy of the harmonic oscillator is 

1 
(z) - ~ kz 2 + constant ( 14.1 - 13) 

An arbitrary constant can be added to a potential energy without any physical effect, 
since it does not change the forces. We set the constant in Eq. (14.1-13) equal to zero so 
that ~ 0 )  = 0. Figure 14.3a shows the potential energy for the harmonic oscillator as a 
function of z, and Figure 14.3b shows the force due to this potential energy. For our 
initial conditions, the potential energy is given as a function of time by 

~F" = ~ 0 c~ t (14 1-14) 

The total energy, E, is given by 

E -  Y + ~/" = ~k~0 sin 2 t -~-COS 2 t - - ~ / ~ 0  (14.1-15) 

since sinZ(x) + cosZ(x) = 1 for all values ofx. The total energy does not change during 
the oscillation, corresponding to conservation of energy. 

The kinetic energy becomes equal to zero at the extreme of an oscillation (the 
turning point) as the object changes direction, so the total energy equals the potential 
energy: 

1 
E - ~/"(zt) - -  ~k~t (14.1-16) 

The displacement at the turning point is denoted by zt, 

2 t - -  ~ / ~  (14.1-17) 

For our initial conditions, z t = z 0. 
The harmonic oscillator is used as a model for a vibrating diatomic molecule. Since 

both nuclei move, the model oscillator consists of two movable masses connected by a 
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spring, as depicted in Figure 14.4. As shown in Appendix D, it is necessary to replace 
the mass in the harmonic oscillator formulas by the reduced mass/~: 

m l m  2 
/~ - -  ~ ( 1 4 . 1 - 1 8 )  

m 1 -+-m 2 

where m 1 and m 2 are the masses of the two nuclei. The frequency of oscillation of a 
diatomic molecule is given by 

(14.1-19) 

Classical Waves 

There are various wave phenomena that are adequately described by classical 
mechanics. These include sound waves, light waves, waves on the surface of bodies 
of water, and vibrations of the strings in musical instruments. A wave consists of an 
oscillating displacement. In a water wave the displacement is the distance to a point on 
the surface from the equilibrium position of this part of the surface. A region of positive 
displacement is called a crest, and a region of negative displacement is called a trough. 
A location where the displacement of a wave equals zero is called a node. Most waves 
are periodic waves, with a number of crests and troughs having the same shape. The 
distance from one crest to the next is called the wavelength 2. The period of a wave is 
the time for the first return of the oscillating object to an initial state. The frequency is 
the reciprocal of the period, or the number of oscillations per unit time, and it is denoted 
by v. A wave is inherently delocalized (cannot exist at a single point in space). 

There are two principal types of waves. A traveling wave propagates (moves along) 
like the waves on the surface of a body of water. A standing wave, such as the vibration 
of a string in a musical instrument, does not propagate but has stationary nodes. Figure 
14.5 represents some features of traveling and standing waves. It shows how the 
traveling wave in Figure 14.5a moves to the fight without changing shape, while the 
standing wave in Figure 14.5b oscillates between stationary nodes. 

One important property of waves is interference. When two waves come to the same 
location, their displacements add. If two crests or two troughs coincide, a displacement 
of larger magnitude results. This addition is called constructive interference. If a crest 
of one wave and a trough of another wave coincide, they will partially or completely 
cancel each other. This cancellation is called destructive interference. Constructive 
and destructive interference are qualitatively depicted in Figure 14.6a, which shows the 
sum of two waves of different wavelengths. 

A property that arises from interference is diffraction. If a water wave encounters a 
post, there will be a reflected wave that moves out in all directions with crests that are 
circles or arcs of circles. The reflected waves from a row of equally spaced posts can 
interfere to produce a diffracted wave with straight crests, which travels in a direction 
different from that of the incident wave. Figure 14.6b illustrates diffraction by a set of 
equally spaced scattering centers. The broken straight lines represent the crests of a 
plane wave moving from left to fight. The arcs represent the crests of diffracted waves 
moving outward from the scattering centers. At a distance from the scattering centers 
that is large compared to a wavelength, these crests combine to produce a diffracted 
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plane wave. The wave nature of light was established experimentally when interference 
and diffraction of light were observed. 

Waves in a Flexible String 

The flexible string is a model system that represents a real vibrating string. It is defined 
to be uniform (all parts have the same mass per unit length, denoted by p); there is a 
tension force of magnitude T pulling at each end of the string; the string is perfectly 
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flexible; there is no friction; the string undergoes only small displacements, so that the 
total length of the string remains nearly constant and the magnitude of the tension force 
T is nearly constant; the equilibrium position of the string is a straight line segment on 
the x axis, with its ends fixed on the x axis at x = 0 and x -- L. 

At some initial time the string is displaced into some position in the x - z  plane and 
released to vibrate freely in this plane. The state of the string is specified by giving the 
displacement and velocity at each point of the string as a function of t: 

z = z(x,  t) (14.2-1) 

Oz 
v z - Vz(X, t) - Ot (14.2-2) 

The classical wave equation of the string is derived from Newton's second law in 
Appendix D. Equation (D-9) of Appendix D is 

02z p 02z 1 02z 

Ox ---5 = -TOt - -2  = c - 5 0 t  ---2 (14.2-3)  

where c 2 = T / p .  We will show later that c is equal to the speed of propagation of the 
wave in the string. 

Standing Waves in a Flexible String 
Equation (14.2-3) is a partial differential equation whose solution is a function of x and 
t. We begin by seeking a solution that represents a standing wave by separating the 
variables. 

1. The first step in the separation of variables is to assume a trial solution that is a 
product of functions of one independent variable" 

z(x, t) - -  ~(x)~( t )  (14.2-4) 

2. The second step of the method is to substitute the trial solution into the differential 
equation and to perform whatever algebraic operations that result in an equation with 
terms that are functions of only one independent variable. We substitute the trial 
function of Eq. (14.2-4) into Eq. (14.2-3)" 

d2~ 1 d2~ 
dx--- T = c- 5 J~ dt 2 (14.2-5) 

The derivatives are ordinary derivatives since ~ and ~ each depends on a single variable. 
We divide Eq. (14.2-5) by ~ :  

1 d2~ 1 d2~ 
O(x----~ dx - - T  = c2~(t) dt 2 (14.2-6) 

Each term depends on only one independent variable, so the variables are separated. 
3. The third step in the method is to set each side of the equation equal to a constant 
since each side is a function of a different independent variable. This gives the two 
equations: 

1 d2~ 
-- constant - -/s (14.2-7) 

O(x) ax 2 

1 d2~ = _/s (14.2-8) 
c2~(t) dt 2 
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The constant must be negative to give an oscillatory solution. We denote it by _/s SO 

that/s will be a real quantity. 
Multiplying Eq. (14.2-7) by ~ and Eq. (14.2-8) by c2~ gives 

d21p + / s  - -  0 (14.2-9) 
dx 2 

d2~ 
dt 2 +/s - 0 (14.2-10) 

These equations have the same form as Eq. (14.1-2). The general solutions are obtained 
by transcribing the solution to that equation with appropriate changes in symbols: 

O(x) = B cos(/s + D sin(/s (14.2-11) 

~(t) = F cos(/s + G sin(Kct) (14.2-12) 

where B, D, F, and G are arbitrary constants. The product of these two functions is a 
wave function that satisfies the wave equation, Eq. (14.2-3). 

However, the solution does not yet apply to a string with fixed ends. It must obey the 
boundary conditions that z vanishes at x = 0 and at x = L. The function ~ must vanish 
at these points, since it contains all of the x dependence of z. The condition that 
~(0) = 0 requires that B = 0, since s in(0)= 0 and cos(0)- -1 .  The sine function 
vanishes if its argument is an integral multiple of rt, so that 

/s = nrc (14.2-13) 

where n is an integer. We have the values of B and/s and can write 
I \ nT~x 

O ( x ) -  D sin(---~-) (14.2-14) 

Now that we have satisfied the boundary conditions, the constants D, F, and G are 
chosen to match initial conditions. A classical equation of motion generally requires 
two initial conditions, one related to the initial position and one related to the initial 
velocity. We specify the first initial condition that the string is passing through its 
equilibrium position (z = 0 for all x) at the time t = 0. This requires that F = 0, since 
sin(0) = 0 and cos(0) = 1. The solution can now be written as 

�9 lnrcx\ (nrcct~ 
z(x, t) -- ~(x)~(t) -- D G  sm~---ff-) sin\  L J 

�9 {nrcx\ (nrcct] 
= A sm~f--ff- } s i n \ L  J (14.2-15) 

We have replaced the product DG by a constant A. 
We now choose as the second initial condition that the maximum value that z 

achieves is equal to z0. We call z 0 the maximum displacement or amplitude of the 
wave. This condition determines the initial velocity of the string. The solution now 
contains no unknown constants: 

( . (nrcct~ 
z ( x ' t ) - - z ~  L / (14.2-16) 

The velocity of any point of the string is 

Vz Ot Zo\----~- j sin\  L J = - -  = cos~---E- ) (14.2-17) 

The velocity at t = 0 is 

(nztc~ sin(nrtx~ 
Vz (O) -  z ~  L J \ ~ - J  (14.2-18) 
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The function z(x, t) is a wave function that represents the motion of the flexible string 
for all values of x and t. 

The Fourier series is named for Jean 
Baptiste Joseph Fourier, 1768-1830, 
famous French mathematician and 
physicist. 

Exercise 14.1 
a. Show by substitution that Eq. (14.2-15) satisfies Eq. (14.2-3). 
b. What is the effect on the wave function of replacing n by its negative? 

*c. What is the relationship between the value of n and the number of nodes? 

The relationship between L and the wavelength 2 for a standing wave is 

2L 2n 
n 2 -  2L or 2 - - - -  = (14.2-19) 

n K 

The period ~: of the motion is the time for the string to return to an initial state. It is the 
time necessary for the argument of s in(nnct /L)  to change by 2n, so that 

nncz 2L 
2n -- or 1: -- (14.2-20) 

L nc 

The frequency v is the number of oscillations per unit time or the reciprocal of the 
period: 

nc n /-T 
(14.2-21) 

v - 2---L -- 2L 

A different frequency results for each value of n. For a fixed value of n, the frequency 
can be increased by increasing the tension force, by decreasing the length of the string, 
or decreasing the mass per unit length of the string. 

The wave function shown in Eq. (14.2-15) represents a different standing wave for 
each value of n, so there is a set of wave functions. Figure 14.7 represents the wave 
functions for several values of n. Each wave function corresponds to a different 
frequency and wavelength. The frequencies and wavelengths are quant ized (take on 
values from a discrete set). In musical acoustics, the standing wave with n - 1 is called 
the fundamenta l  or the first harmonic ,  the standing wave with n - 2 is called the first 
overtone to the second harmonic  and so on. A string does not usually move as 
described by a single harmonic. A l inear  combinat ion (sum with coefficients) of 
harmonics can satisfy the wave equation, and such a linear combination represents a 
typical motion of a flexible string: 

(nnx~ 
z(x, t) - ~ a,( t)  sin\---~-/ (14.2-22) 

n--1 

The fact that a linear combination of solutions can be a solution to the wave equation is 
called the principle of superposition. The sum shown in Eq. (14.2-22) is called a 
Fourier  sine series. Fourier cosine series also exist, which are linear combinations of 
cosine functions, and a more general Fourier series contains both sine and cosine terms. 

The Fourier  coefficients a l, a2 . . . .  must depend on t to satisfy the wave equation. 
With the initial condition that the string is passing through its equilibrium position at 
t -  0, the following sum is a solution" 

. / ~ x ~  ( ~ c t ]  
z(x, t) -- ~ a ,  sm[---~-) sin (14.2-23) 

n = l  \ L /  
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Exercise 14.2 
Show by substitution that the series in Eq. (14.2-23) satisfies Eq. (14.2-3). 

The constants A1,A 2 . . . . .  can have any values. Any harmonic whose coefficient 
does not vanish makes a contribution to the motion of  the string, with constructive and 
destructive interference that continually changes because the different harmonics have 
different frequencies. Figure 14.8 shows a linear combination of  three harmonics with 

A 1 = 1, A 2 = 0.2, and A 3 = 0.1. Figure 14.8a shows the sum at time t = L/(4c), and 
Figure 14.8b shows the sum at t -- 3L/(4c). 

Traveling Waves 
In a string of  finite length, stationary nodes are required at the ends of  the string, which 

prevents the occurrence of  traveling waves. Traveling waves can occur in an infinitely 
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long string. A wave function that satisfies Eq. (14.2-3) and corresponds to a traveling 
wave is 

z(x,  t) = a sin(rex -- tcct) (14.2-24) 

Exercise 14.3 
Show by substitution that the function in Eq. (14.2-24) satisfies Eq. (14.2-3). 

We can find the speed of  a traveling wave by following the motion of  one of  the 
nodes. At time t = 0 there is a node at x - 0. As time passes this node will be located at 
the point where x -  ct = 0. Thus 

x(node) = ct (14.2-25) 

The node is moving toward the positive end of  the x axis with a speed equal to c, as 
stated earlier. Since c = ~ / T / p ,  increasing the mass per unit length decreases the speed 
and increasing the tension force increases the speed. 

*Exercise 14.4 
What change would have to be made in the mass per unit length to quadruple the speed of 
propagation? What change would have to made in the tension force to double the speed of 
propagation? 

If the function of  Eq. (14.2-24) is replaced by 

z(x,  t) = A sin(rex + tcct) (14.2-26) 

the wave travels toward the negative end of  the x axis with speed c. This function 
satisfies the same wave equation as the function shown in Eq. (14.3-24). 
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Exercise 14.5 
a. Show that the function of Eq. (14.2-26) satisfies Eq. (14.2-3). 
b. Show that the speed of the wave is equal to c. 

In one wavelength, the argument of the sine function changes by 2n for fixed t, so 
that the same relationship occurs as in Eq. (14.2-19) for a standing wave: 

(14.2-27) 

The relationship between the frequency and the wavelength can be obtained by 
observing that in time t, the length of the wave "train" that passes a fixed point is 

Length = ct 

where c is the speed. The number of wavelengths in this wave train is equal to 

ct 
Number = -- 

2 

In time t, the number of oscillations is equal to 

Number -- vt 

so that vt - c t /2 ,  or 

(14.2-28) 

Equation (14.2-28) is the general relation between wavelength and frequency. This 
important equation holds for all kinds of waves, including sound waves and electro- 
magnetic waves. 

*Exercise 14.6 
The speed of sound in air at sea level and room temperature is approximately equal to 338 m s - 1  . 

Find the wavelength of a sound wave with a frequency of 440 s -l , or 440 Hertz. (This frequency 
is the frequency of "A" above "middle C" in a musical scale.) 

Two traveling waves moving in opposite directions can interfere to produce a 
standing wave. The two waves 

ZR(X, t) = A sin(xx - Kct) (14.2-29a) 

and 

interfere to give 

which is the same as 

z L(x, t) = A sin(•x + ~cct) 

z(x, t) = A[sin(Kx + Kct) + sin(rex - rcct) 

(14.2-29b) 

(14.2-30) 

z(x, t) = 2A sin(~cx) cos(~cct) (14.2-31) 
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Exercise 14.7 
Use trigonometric identities to obtain Eq. (l 4.2-3 l) from Eq. (14.2-30). 

James Clerk Maxwell, 1831-1879, 
made fundamental contributions to 
electrodynamics, gas kinetic theory 
and thermodynamics. 

Albert A. Michelson, 1852-1931, was 
an American physicist who was the 
first American to win a Nobel Prize in 
science (in 1907) and Edward W. 
Morley, 1838-1923, was an American 
chemist. 

The Classical Wave Theory of Light 
In 1865, Maxwell developed a mathematical theory of electromagnetism. In this theory, 
there are four important vector quantities, the electric field $', the electric displacement 
D, the magnetic field strength .~, and the magnetic induction B. The dependence of 
these quantities on time and position is described by Maxwell's equations, which 
Maxwell deduced from empirical laws. He found that the electric and magnetic fields 
can oscillate like waves, constituting electromagnetic radiation. Example of such 
radiation are visible light, infrared radiation, ultraviolet radiation, X-rays, radio 
waves, microwaves, etc., which differ from each other only in having different 
wavelengths and frequencies. At first it was thought that light consisted of oscillations 
in a medium called "the luminiferous ether." The assumption that such a medium exists 
was abandoned after Michelson and Morley demonstrated that the speed of light has the 
same value for observers moving with different velocities. We now think of light and 
other electromagnetic waves as oscillations that do not require any supporting medium. 

A plane polarized wave traveling in the y direction can have an electric field that 
oscillates in the y - z  plane and a magnetic field that oscillates in the x -y  plane. In a 
medium with zero electrical conductivity (a perfect insulator or a vacuum), the 
following equations for such a wave follow from Maxwell's equations. 1 

02~z 1 02~z = 0 (14.2-32) 
Oy 2 c 2 0 t  2 

~ x  1 ~ x  
Oy 2 c 2 Ot 2 

= 0  (14.2-33) 

where 

c -- ~ (14.2-34) 

and where e is called the permittivity of the medium and # is called the permeability 
of the medium. The values of these quantities for a vacuum are denoted by e0 and #0. In 
SI units, the permeability of a vacuum has the value 

#0 - 4 n  x 10-TN A -2 (exact value by definition) 

= 12.566370614...  • 10 -7NA -2 (14.2-35a) 

and the permittivity of a vacuum is 

% - 8.8542 • 10 -12 C 2 N -1 m -2 (14.2-35b) 

There is an additional condition from Maxwell's equations that makes Eqs. (14.2-32) 
and (14.2-33) interdependent: 

Ez 
~r -- -+-v/'~ (14.2-36) 

1 See J. C. Slater and N. H. Frank, Electromagnetism, McGraw-Hill, New York, 1947, pp 90if, or any other 
textbook on electricity and magnetism. 
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The electric field cannot oscillate without oscillation of the magnetic field, and vice 
versa. Equations (14.2-32) and (14.2-33) have the same form as Eq. (14.2-3), in which c 
is the speed of propagation of the wave. The theory of Maxwell correctly predicts the 
value of the speed of light. 

Exercise 14.8 
Show that the units in Eq. (14.2-34) are correct, using the fact that an ampere (A) is the same as a 
coulomb per second. 

A traveling-wave solution to Eqs. (14.2-32) and (14.2-33) is 

gz(Y, t) = g0 sin[27r(y - ct)/2] (14.2-37) 

)fx(Y, t) -- ) f0  sin[2rc(y - ct)/2] (14.2-38) 

where g0 and )fro are constants that obey Eq. (14.2-36). The wavelength 2 can take on 
any real value. 

Figure 14.9 shows $' and ) f  as functions ofy  at time t = 0 with 8 and ,,~ plotted in 
the directions in which they point. As time passes, the traveling wave moves to the fight 
without changing its shape or wavelength. Since oscillating electric and magnetic fields 
put oscillating forces on charged particles such as the electrons and nuclei in molecules, 
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molecules can absorb electromagnetic radiation. The converse is also true. According to 
Maxwell's equations, oscillating electric charges emit electromagnetic radiation. 

An electromagnetic wave cannot penetrate a perfect conductor. Therefore, electro- 
magnetic waves must have nodes at perfectly conducting walls, and will approximately 
vanish at a real conducting wall. Reflection between walls in a conducting cavity can 
produce standing electromagnetic waves. 

The Old Quantum Theory 

Near the end of the nineteenth century, several important phenomena were discovered 
that classical physics was unable to explain. Three of these were explained early in the 
twentieth century by new theories: Planck's theory of blackbody radiation, Einstein's 
theory of the photoelectric effect, and Bohr's theory of the hydrogen atom. These 
theories are the major parts of what is called the "old quantum theory." They were 
based on assumptions of quantization, which is the idea that the value of a physical 
quantity can equal one of a discrete set of values, but not any of the values between 
those in the discrete set. We will discuss these theories for historical perspective, and 
this section can be skipped without loss of continuity. 

Planck's Theory of Blackbody Radiation 
If an object has a temperature of 1000~ it glows with a red color, no matter what 
material it is made of. At higher temperatures, it glows orange, yellow, white, or even 
blue if the temperature is high enough. At any temperature an object with a lower 
reflectivity glows more intensely at every wavelength, so that a black body, a model 
system that reflects no radiation at any wavelength, has the maximum emissivity at 
every wavelength. 

The best laboratory approximation to a black body is not an object, but a small hole 
in a hollow box. If the inside of the box (the "cavity") is made fairly nonreflective, any 
light falling on the hole from outside will be absorbed as it is reflected around in the 
box. Measurements on the light emitted through the hole when such a box is heated 
show that the amount of light emitted and its spectral distribution depend only on the 
temperature of the walls of the box. Figure 14.10 shows the spectral radiant emittanee 
r /of  a black body as a function of wavelength for several temperatures. This quantity is 
defined such that r/(2)d2 is the energy per unit time per unit area emitted in the 
wavelengths lying between 2 and 2 + d2. The visible part of the electromagnetic 
spectrum, which ranges from about 400 nm to 750 nm, is labeled in the figure. 

At 2000 K, only the red part of the visible spectrum (around 650 to 750nm) is 
represented, but at higher temperature the other visible wavelengths are also repre- 
sented. At around 6000 K the maximum in the curve is in the middle (green) portion of 
the visible region, and black-body radiation of this temperature is similar to sunlight. 
Near room temperature, almost all of the radiation is in the infrared region. It is this 
radiation from the surface of the earth that is involved in the greenhouse effect in the 
earth's atmosphere, which is the absorption in the upper atmosphere of infrared 
radiation emitted by the earth. It is principally due to CO2, H20, CH4, and various 
chlorofluorocarbons. 

The total radiant emittance (emission per unit area per unit time, summed over all 
wavelengths) is equal to the area under the curve. The Stefan-Boltzmann law is an 
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John William Strutt, third Baron 
Rayleigh, 1842-1919, was the 1904 
Nobel Prize winner in physics, and Sir 
James Jeans, 1877-1946, was a 
British astronomer and physicist. 

empirical law that relates the total radiant emittance to the absolute temperature of the 

black body: 

(Total radiant emittance) = a T  4 (14.3-1) 

The Stefan-Boltzrnann constant a has the value 

tr -- 5.67051 x 10 -8 Jm  -2 s -1K -4 = 5.67051 x 10 -8 W m  -2 K -4 (14.3-2) 

Rayleigh and Jeans constructed a classical theory of black-body radiation. They 
defined as their system the set of standing electromagnetic waves that could exist inside 
a cavity. For a rectangular cavity, they counted the possible standing waves of various 
wavelengths that could exist in the cavity with nodes at the walls and computed the 
average energy of each standing wave as a function of temperature using statistical 
mechanics (see Chapters 21 and 22). Their result was 

q(2) d2 = 2rcckB T 
24 d2 (14.3-3) 

where c is the speed of light, k B is Boltzmann's constant, and T is the absolute 
temperature. 
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Max Planck, 1858-194 7, received the 
Nobel Prize in physics in 1918 for this 
theory, although at first most other 
physicists were reluctant to believe 
that it was correct. 

Equation (14.3-3) agrees well with experiment for large values of the wavelength 
(much larger than visible wavelengths), but predicts that the spectral radiant emittance 
becomes large without bound in the limit of short wavelength. This failure of the 
Rayleigh-Jeans theory was called the "ultraviolet catastrophe." In 1900, Planck devised 
a new theory of black-body radiation that eliminated the ultraviolet catastrophe. 
Although he was working to obtain a result in agreement with experimental data, his 
theory is based on assumptions (hypotheses) that at the outset had no direct evidence to 
support them. The following statements are a simplified version of assumptions that 
lead to his result: 2 

1. In the walls of the cavity there exist oscillating electric charges. Each such oscillator 
has a characteristic fixed frequency of oscillation, but many oscillators are present 
and every frequency is represented. 

2. The standing waves in the cavity are equilibrated with the oscillators in such a way 
that the average energy of standing waves of a given frequency equals the average 
energy of the oscillators of the same frequency. 

3. The energy of a wall oscillator is quantized. That is, it is capable of assuming only 
one of the values 

E = 0, hv, 2hv, 3hv, 4hv . . . . .  nhv . . . .  (14.3-4) 

where v is the frequency of the oscillator and where h is a new constant, now known 
as Planek's constant. The quantity n, which can take on any nonnegative integral 
value, is called a quantum number.  A quantum number is an integer or some other 
value that can be used to specify which state occurs from a set of possible states. 
Figure 14.11 schematically shows this energy quantization. Quantization has been 
compared to a ladder. A person can stand on any rung of a ladder, but nowhere 
between the rungs. The energy can take on any of the values in Eq. (14.3-4), but no 
value between these values. 

4. The probability of any energy is given by the Boltzmann probability distribution, Eq. 
(1.8-25). 

The result of Planck's derivation is that the spectral radiant emittance is given by 
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*Exercise 14.9 
Find the temperature that corresponds to a wavelength of maximum spectral emittance in the red 
part of the visible spectrum at 650. nm. 

Exercise 14.10 
Show that in the limit as 2 ~ oc, Eq. (14.3-5) agrees with Eq. (14.3-3). 

*Exercise 14.11 
Use the definite integral 

j ec X 3 g4 

o eX - 1 d x  - 1--5 (14.3-7) 

to derive the Stefan-Boltzmann law, Eq. (14.3-1). Calculate the theoretical value of the Stefan- 
Boltzmann constant. 

Albert Einstein, 1879-1955, was a 
German-Swiss-American physicist 
who received the 1921 Nobel Prize in 
physics for this work. He was the 
greatest physicist of the twentieth 
century and made fundamental 
contributions in almost every area of 
theoretical physics. 

Einstein's Theory of the Photoelectric Effect 
When a metal plate inside an evacuated glass tube is illuminated with light of 
sufficiently short wavelength, it emits electrons. Electrons are not ejected unless the 
wavelength of the incident light is at least as small as a threshold wavelength, and the 
maximum energy of the ejected electrons depends only on the wavelength. There was 
no explanation for this behavior until 1905, when Einstein published a theory for the 
photoelectric effect. This theory is based on the hypothesis that the energy in a beam of 
light consists of discrete "quanta," and that each quantum has an energy 

(14.3-8) 

where h is Planck's constant and c is the speed of light. Equation (14.3-8) is known as 
the Planck-Eins te in  relation. The quanta of light are called photons. 

Einstein obtained the quantitative explanation for the photoelectric effect from Eq. 
(14.3-8). The energy of an electron ejected from the metal is equal to the energy of the 
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Robert A. Millikan, 1868-1953, was an 
American physicist who received the 
Nobel Prize in physics in 1923 for his 
measurement of the charge on the 
electron. 

photon minus the energy required to detach the electron from the metal. The work 
function W is the minimum energy required to detach an electron from a given 
substance. The maximum electron energy is 

hc 
Ema x(electrOn) -- hv - W = ~ - W (14.3-9) 

In 1916 Millikan made accurate measurements of the photoelectric effect that agreed 
well with Eq. (14.3-9). 

Since light exhibits a particlelike nature in some experiments and wavelike properties 
in other experiments, we say that it has a wave-particle duality. This terminology 
means that light appears in some circumstances to act like a wave and in other 
circumstances to act like a particle. We cannot adequately answer the question: "What 
is light really like?" We use the wave description when it explains the observations of a 
particular experiment, and use the particle description when it explains the observations 
of another experiment. 

*Exercise 14.12 
The work function of nickel equals 5.0 eV. Find (a) the threshold wavelength for nickel and (b) the 
maximum electron speed for a wavelength of 195 nm. 

Johannes Robert Rydberg, 1854- 
1919, was a Swedish physicist. 

Bohr's Theory of the Hydrogen Atom 
Excited hydrogen atoms emit light when electrons in higher energy states drop to lower 
energies. However, only certain wavelengths are emitted. Four wavelengths are present 
in the visible light and other wavelengths occur in the ultraviolet and in the infrared. 
When viewed in a spectroscope, each wavelength produces an image of the slit of the 
spectroscope, resembling a line segment. Such a set of separated lines is called a line 
spectrum and the slit images are called spectral lines. 

Rydberg was able to represent the wavelengths of all of the spectral lines of hydrogen 
atoms with a single empirical formula: 

(14.3-10) 

Ernest Rutherford, first Baron 
Rutherford of Nelson, 1871-1937, was 
a British physicist originally from New 
Zealand who won the 1908 Nobel 
Prize in chemistry, and who coined the 
terms ~, 3, and 7 radiation. 

Niels Henrik David Bohr, 1885-1962, 
was a Danish physicist who received 
the Nobel Prize in physics in 1922 for 
this work. He was responsible for 
much of the accepted physical 
interpretation of quantum mechanics 
and for the quantum mechanical 
explanation of the form of the periodic 
table of the elements. 

where n 1 and n2 are two positive integers and ~H is a constant known as Rydberg 's  
constant for the hydrogen atom, equal to 1.09677581 • 107m -1. Using classical 
physics, no explanation for this relationship could be found. 

In 1911, Rutherford scattered a-particles from a thin piece of gold foil. From the way 
in which the a-particles were scattered, he concluded that atoms contained a very small 
positive nucleus containing almost all of the mass of the atom, with the negative 
electrons orbiting around the nucleus. However, according to the electrodynamics of 
Maxwell, an orbiting electron would emit electromagnetic radiation, losing energy and 
falling onto the nucleus and collapsing the atom. Classical physics was unable to 
explain either the line spectrum of the hydrogen atom or its continuing existence. 

In 1913, Bohr published a theory of the hydrogen atom, based on unproven 
assumptions. A simplified version of Bohr's assumptions is: 

1. The hydrogen atom consists of a positive nucleus of charge e and an electron of 
charge - e  moving around it in a circular orbit. The charge e had been determined 
by Millikan to have the value 1.6022 x 10 -19 C. 
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2. The angular momentum (see Appendix D) of the electron is quantized: its 
magnitude can take on one of the values h /2n ,  2h /2n ,  3h /2n ,  4h /2n ,  etc., where 
h is Planck's constant. No other values are possible. Figure 14.12 schematically 
shows the quantization of the angular momentum. 

3. Maxwell's equations do not apply. Radiation is emitted or absorbed only when a 
sudden transition is made from one quantized value of the angular momentum to 
another. 

4. The wavelength of emitted or absorbed light is given by the Planck-Einstein 
relation, Eq. (14.3-8), with the energy of the photon equal to the difference in 
energy of the initial and final states of the atom. 

5. In all other regards, classical mechanics is valid. 

We now derive the consequences of Bohr's assumptions. For simplicity, we assume 
that the electron orbits around a stationary nucleus. This is a good approximation, but it 
can be removed if desired by replacing the mass of the orbiting electron by the reduced 
mass of the electron and the nucleus (see Appendix D). To maintain a circular orbit, 
there must be a centripetal force on the electron: 

my 2 
Fr = (14.3-11) 

F 

where v is the speed of the electron, m is its mass, and r is its distance from the nucleus 
(see Eq. (D- 13) of Appendix D). 

*Exercise 14.13 
Find the centripetal force on an object of mass 1.50 kg if you swing it on a rope so that the radius 
of the orbit is 2.50m and the time required for one orbit is 1.00s (a speed of 9.43 ms-l). 

The centripetal force is provided by the electrostatic attraction of the positive nucleus 
for the negative electron: 

my2 ~2 
- 7  -- 4ne0r2 (14.3-12) 

where e 0 is the permittivity of the vacuum. 
The angular momentum of the electron in a circular orbit is given by Eq. (D-15) of 

Appendix D. It is quantized, according to assumption 2: 

nh 
L - rmv - 2---n (14.3-13) 

where the quantum number n is a positive integer. 
Equation (14.3-13) is solved for the speed v and the result is substituted into Eq. 

(14.3-12). The resulting equation is solved for r to give 

(14.3-14) 

where a 0 is equal to 5.29 • 10-11m 52.9pm and is called the Bohr radius. Figure 
14.13 depicts the first few Bohr orbits. 
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Exercise 14.14 
a. Obtain Eq. (14.3-14) from Eqs. (14.3-12) and (14.3-13). 
b. Using the accepted values of the physical constants, verify the value of the Bohr radius. 

The energy of the electron is also quantized. The potential energy for an electron of 
charge - e  in an orbit of radius r around a nucleus of charge e is 

~2 
~/~ = (14.3-15) 

4~zeor 

where we choose a value of zero for the potential energy at r ~ cx~. 

Exercise 14.15 
Using Eq. (D-6) of Appendix D and Eq. (B-41) of Appendix B, show that the potential energy of 
Eq. (14.3-15) leads to the force expression of Eq. (14.3-12). 

The kinetic energy is given by 

1 1 ~2 1 
3/g~ ---2 mv2 = 2 47teor = ~[~UI (14.3-16) 

where Eq. (14.3-12) has been used to replace v 2. The kinetic energy is equal to half of 
the magnitude of the potential energy. This is one of the consequences of the virial 
theorem of mechanics that holds for any system acted upon only by electrostatic 
forces. 3 

The total energy of the hydrogen atom is 

(14.3-17) 

where we have used Eq. (14.3-14) for the value of r. The energy is determined by the 
value of the quantum number, n. Figure 1 4.1 4 depicts the first few energy levels. Each 
horizontal line segment is placed at a height proportional to the energy value. 

The energy of an emitted or absorbed photon is equal to the difference between two 
quantized energies of the atom: 

E(photon) : En2 - Enl -- 27zm~4 (nl~l ~22) (4~ze0)2h2 - (14.3-18) 

Figure 14.15 depicts the first few transitions corresponding to emission of photons. 
Using the Planck-Einstein relation for the energy of the photon, Eq. (14.3-8), 

! - - E n 2 - E n l - -  2rcme4 (~11-~22) (14.3-19) 
2 -  hc - (4rt~o)2h3c 

This is the formula of Rydberg, Eq. (14.3-10), with the constant N given by the 
expression in front of the bracket. The first set of transitions shown in Figure 1 4.15, in 
which the lower-energy state (n 1 state) is the n = 1 state, corresponds to the series of 
spectral lines known as the Lyman series. The second set of transitions, in which 

3 Ira N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, N.J., 1991, pp. 434ff. 
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n l =- 2, is the Balmer series. The next series, which is not shown, is the Paschen series. 
When the values of the physical constants are substituted into Eq. (14.3-19), we get 

9t~ = 1.097373 x 107 m -1 (14.3-20) 

This value is labeled with the subscript oe, corresponding to the assumption that the 
nucleus is stationary, as it would be if infinitely heavy, if we replace the mass of the 
electron by the reduced mass of the electron and proton to correct for the actual motion 
of the nucleus as in Eq. (D-27) of Appendix D, we get 

~D~ H - -  1.09678 x 107 m -1 (14.3-21) 

which is in agreement with the experimental value. This value of Rydberg's constant is 
for wavelengths measured in a vacuum. Wavelengths measured in air are slightly shorter 
than vacuum wavelengths, so the value of 9t in air is larger by a factor of 1.00027, the 
refractive index of air for visible wavelengths. 

Exercise 14.16 
a. Substitute the values of the constants into the expression of Eq. (14.3-19) to verify the value 

of 9t~. 
b. Use the value of the reduced mass of the proton and electron to calculate the value of ~ H  

from the value of 9t~. 
*e. Calculate the wavelength and frequency of the light emitted when n changes from 4 to 2. 

What color does this correspond to? 

De Broglie Waves and the SchrSdinger Equation 

Even though the Bohr theory gave the correct values for the energies of the hydrogen 
atom, it failed when applied to any other atoms or to any molecule. The theories of 
Planck, Einstein, and Bohr are now known as the "old quantum theory," and have been 
supplanted by the quantum theory of Schr6dinger and Heisenberg, based on the "matter 
waves" of de Broglie. 

De Broglie Waves 
In 1923 de Broglie was trying to find a physical justification for Bohr's hypothesis of 
quantization of angular momentum. In classical physics, one thing that is quantized is 
the wavelength of standing waves, given for example by Eq. (14.2-19). De Broglie 
sought a way to relate this to Bohr's theory of the hydrogen atom, and came up with the 
idea that a moving particle such as an electron might somehow be accompanied by a 
"fictitious wave. ''4 

According to Einstein's theory of relativity, a photon of energy E has a mass m such 
that 

E = m c  2 (14.4-1) 

4 Jammer, op. cit., pp. 243ff (Note 2). 
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where c is the speed of light, even though it has no rest-mass. If the Planck-Einstein 
relation, Eq. (14.3-8), is used for the energy and if mc is replaced by the momentum p, 
Eq. (14.4-1) becomes 

h c  h 
--~ = p c  or 2 - - (14.4-2) 

P 

where 2 is the wavelength. De Broglie deduced that the velocity of the wave 
accompanying a particle was the same as the velocity of the particle if the wavelength 
is given by Eq. (14.4-2). 

(14.4-3) 

We omit most of de Broglie's argument, which is more complicated than simply saying 
that Eq. (14.4-3) is analogous to Eq. (14.4-2). 

The quantization assumption of Bohr's theory arises naturally from Eq. (14.4-3) if 
one assumes that the circumference of a circular electron orbit in a hydrogen atom is 
equal to an integral number of wavelengths. This assumption means that the wave 
repeats itself with the same phase (with crests in the same positions) on each trip around 
the orbit, as depicted in Figure 14.16a. The situation depicted in Figure 14.16b is 
assumed not to occur. For a circular orbit 

nh 
2rcr = n2 = ~ (14.4-4) 

my 

This equation is the same as Eq. (14.3-13), the hypothesis of Bohr. 

nh 
m v r  = 

2~ 
(14.4-5) 

Although he had established his wave-particle relation only for the motion of 
electrons in the hydrogen atom, de Broglie hypothesized this relation to hold for any 
motion of any particle. This proposal of matter waves was revolutionary. When 
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de Broglie presented his doctoral thesis containing this proposal, the examining 
committee refused to believe that it might correspond to physical reality. 

De Broglie suggested at his final oral examination that electron diffraction by crystals 
could verify his theory. In 1927, Davisson and Germer 5 accidentally grew a single 
crystal while heating a piece of nickel. When they irradiated this piece of  nickel with a 
beam of electrons, they observed diffraction effects, verifying the existence of 
de Broglie's matter waves. 

*Exercise 14.17 
Find the speed of electrons with a de Broglie wavelength equal to 2.15 x 10 -10 m, the lattice 
spacing in a nickel crystal. 

The notion of a wave moving along with a particle as it traces out a classical 
trajectory has been abandoned. We now speak of a wave-particle duality for electrons 
and other particles, with the wavelike properties inherently belonging to the object and 
not to an accompanying wave. This wave-particle duality is illustrated by a hypothetical 
experiment. 6 A beam of electrons, all with the same speed, is allowed to stream toward a 
partition with two slits in it, as depicted in Figure 14.17a. At some distance from the 
other side of the partition is a screen coated with a material such as zinc sulfide, which 
glows when an electron strikes it. 

A glowing pattern of bands is observed on the screen when an intense beam of 
electrons is passed through the slits. This pattern is schematically depicted in Figure 
14.17b, where the intensity of the glow is plotted as a function of position on the screen. 
The pattern is explained by the constructive and destructive interference of waves 
appearing to pass through the two slits, since the waves are diffracted by the slits and 
produce waves moving in various directions from the slits. If the difference in the path 
lengths from the two slits to a given point on the screen equals an integral number of 
wavelengths, there is constructive interference and a glowing band. Between the bands, 
there is destructive interference and little or no glow. 

If the intensity of the source is decreased so that electrons pass through the slits one 
at a time, it can be observed that each electron lands at a single point on the screen. 
There is a tiny localized flash when each electron arrives. If the flashes are recorded and 
summed up, exactly the same pattern of diffraction bands appears as with an intense 

5 C. J. Davisson and L. H. Germer, Phys. Rev. 30, 705 (1927). 
6 R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 3, Addison- 

Wesley, Reading Mass. 1965, Ch. 1. 
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beam of electrons. If one slit is covered while the electrons continue to pass through the 
second slit, there is a single band distributed on the screen. If the first slit is uncovered 
and the second slit is covered another single band is observed. The sum of these two 
single bands shows no interference effect, as shown schematically in Figure 14.17c. 

Our observations are interpreted as follows: The path of any electron from the source 
to the screen cannot be specified when no attempt is made to detect its location along 
the path. The position of the electron can be determined only by doing something to it 
such as stopping it with a screen. Only when the screen is placed at the slits is it 
possible to say which slit the electron passes through. When the screen is some distance 
from the slits, there is no way to say whether the electron went through slit 1 or slit 2, 
and wavelike interference properties are observed as though the electron passed through 
both slits in a delocalized wavelike fashion. 
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The Schr6dinger Equation 
Erwin Schrddinger, 1887-1961, was 
an Austrian physicist who shared the 
1933 Nobel Prize in physics with 
P. A. M. Dirac, who pioneered the 
development of relativistic quantum 
mechanics. 

In 1926, Schr6dinger published a series of four papers containing a wave equation for 
de Broglie waves. The first three papers presented the time-independent version of the 
Schr6dinger equation and applied it to the hydrogen atom, rotation and vibration of 
diatomic molecules, and the effect of an external electric field on energy levels. The 
time-dependent version of the equation was reported in the fourth paper at the end of 
1926. 7 

Nonrigorous Derivation of the Schr6dinger Equation 
In the formal theory of quantum mechanics, the Schr6dinger wave equation is taken as 
a postulate (fundamental hypothesis). In order to demonstrate a relationship with the 
classical wave equation, we obtain the time-independent Schr6dinger equation non- 
rigorously for the case of a particle that moves parallel to the x axis. For a wave along 
the x axis, the classical coordinate wave equation of Eq. (14.2-9) is 

d21/t 4n 2 
dx-- T + ---if- ~ - 0 (14.4-6) 

where we have used Eq. (14.2-19) to replace the wave constant K in terms of the 
wavelength 2. Use of the de Broglie relation, Eq. (14.4-3), to replace 2 gives 

d 21/t 4n 2 m2/)2 
dx-- T + - - ~  ~ - 0 (14.4-7) 

This equation now represents a matter wave moving along the x axis. 
We eliminate the speed v from our equation, using the relation 

E -  ~ + "U - �89 my 2 + ~t/'(x) (14.4-8) 

where ~" is the kinetic energy, W(x) is the potential energy, and E is the total energy. 
The result is the time-independent Schr6dinger equation for one-dimensional 
motion: 

(14.4-9) 

where ~, is the coordinate wave function or time-independent wave function. We 
introduce the symbol h ("h-bar"): 

h 
h - 2--7 (14.4-10) 

Exercise 14.18 
Carry out the algebra to obtain Eq. (14.4-9) from Eq. (14.4-7). 

The left-hand side of Eq. (14.4-9) can be abbreviated by 

9 - -  h2 d2 
2m dx 2 I- Y/(x)  (14.4-11) 

7 The time-independent equations are presented in Ann. Physik, 79, 361 (1926), 79, 489 (1926), and 80, 
437 (1926), and the time-dependent equation is presented in Ann. Physik, 81, 109 (1926). 
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so that 

(14.4-12) 

The quantity/~/is a mathematical operator, since it stands for the carrying out of 
mathematical operations. It is called the Hamiltonian operator. Mathematical opera- 
tors will be discussed in Chapter 15. 

The Time-Dependent Schr6dinger Equation 
For motion in the x direction, the time-dependent Schrrdinger equation is postulated to 
be 

(14.4-13) 

where i is the imaginary unit 

i =  ~ - 1  (14.4-14) 

There is no way to construct the time-dependent Schrrdinger equation from the 
classical wave equation because that wave equation is second order in time while the 
Schrrdinger equation is first order in time. A first-order differential equation requires 
one initial condition to apply a general solution to a specific case, while a second-order 
differential equation requires two initial conditions. Equation (14.2-12) required one 
initial condition related to the position of the string and one related to its velocity in 
order to assign values to the two constants F and G. The uncertainty principle of 
quantum mechanics (to be discussed later) implies that positions and velocities cannot 
be specified simultaneously to arbitrary accuracy. For this reason only one initial 
condition is possible, which requires the Schrrdinger equation to be first order in time. 
The fact that the equation is first order in time also requires that the imaginary unit must 
occur in the equation in order for oscillatory solutions to exist. The function W is the 
time-dependent wave function, or the displacement of the matter wave as a function of 
position and time. In this chapter and the next we will use a capital psi (W) for a time- 
dependent wave function, and a lower-case psi (~) for a coordinate wave function. 

The time-independent Schrrdinger equation, Eq. (14.4-12), can be obtained from the 
time-dependent equation by separation of variables. We assume a trial solution of the 
same type as with the classical wave function: 

W(x, t) = O(x)~(t) (14.4-15) 

We use the same symbols as for the factors in the classical wave function, Eq. (14.2-4), 
but do not mean to imply that they are the same functions. We substitute (14.4-15) into 
Eq. (14.4-13) and divide by ~(x)~(t), obtaining 

~ H~9 - ih d~ (14.4-16) 
dt 

The variables x and t are separated in this equation. Each side is equal to the same 
constant, which we denote by E: 

^ 

-~HO -- E (14.4-17) 
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and 

ih d( 
( dt 

- - - - = E  (14.4-18) 

Multiplication of the first equation by ~ and of the second equation by (/ih gives 

H~  - - E ~  (14.4-19) 

and 

d( E 
d t  = i-h ( ( 1 4 . 4 - 2 0 )  

Equation (14.4-19) is the same as the time-independent Schr6dinger equation, Eq. 
(14.4-12), so ~ is the same coordinate wave function as in that equation and E is the 
constant energy of the system. Equation (14.4-20) has the solution 

((t) - C e  Et/ih - C e  - i E t / h  (14.4-21) 

where C is a constant. Since the Schr6dinger equation is satisfied for any value of C, we 
take C -  1 and the complete wave function is 

tP(x, t) -- ~(x)e -iEt/~ (14.4-22) 

If we have a solution to the time-independent Schr6dinger equation, including 
knowledge of the value of the energy E, we can immediately write a solution to the 
time-dependent equation by multiplying the coordinate wave function by the function (. 
This type of solution, with the coordinate and time dependence in separate factors, 
corresponds to a standing wave, as in the classical wave. There are also solutions of the 
time-dependent Schr6dinger equation that correspond to traveling waves, and the time- 
independent Schr6dinger equation does not necessarily apply to such solutions. The 
time-dependent equation applies to all cases. 

The coordinate wave function can in many cases be chosen to be a real function. The 
function ( is always complex, and can be written as a real part plus an imaginary part 
(see Appendix B): 

e - i E t / h  - -  cos(-Et /h)  + i s in(-Et/h)  - cos(Et/h) - i sin(Et/h) (14.4-23) 

where we have used the fact that the cosine is an even function and the sine is an odd 
function. For an even function, f ( - x )  = f(x),  and for an odd function, f ( - x )  = - f (x) .  
The real part and the imaginary parts oscillate with the same frequency, but out of 
phase. If the coordinate wave function is real, the real and imaginary parts of the 
complete wave function have stationary nodes in the same locations, since they have the 
same coordinate factor. 

The Schr6dinger Equation in Three Dimensions 
For a single particle moving in three dimensions, the Hamiltonian operator is 

[-I - ~mh2 ( 02-~x2 + - ~  -+- -~z 02) + r y, z) - - 2----mh2 V2 -k- U'(x' Y' Z) (14.4-24) 
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where the potential energy ~/" can depend on x, y, and z. The operator V 2 is the 
Laplacian operator, introduced in Eq. (11.2-13) and in Eq. (B-40) of Appendix B. In 
cartesian coordinates, 

V 2 02 02 02 
= ~x 2 4- ~y2 4- Oz---2 (14.4-25) 

Since the Hamiltonian operator depends on x, y, and z, the coordinate wave function 
will depend on x, y, and z. To write the Schr6dinger equation for a particular system, 
one must find an expression for the potential energy function that applies to that system. 
If it is convenient to express the potential energy in coordinates other than cartesian 
coordinates, the Laplacian operator can also be expressed in those coordinates in order 
to obtain a solution (see Appendix B). 

The Schr6dinger Equation for a Mutiparticle System 
If the system consists of n point-mass particles moving in three dimensions, the 
potential energy can depend on 3n coordinates. The Hamiltonian operator for such a 
system is 

(14.4-26) 

where V 2 is the Laplacian operator for the coordinates of particle number j and where 
we use the abbreviation q to stand for the coordinates of all n particles. Since the 
Hamiltonian operator contains the coordinates of all of the particles, the solution to the 
Schr6dinger equation must depend on all of these coordinates. Just as with the 
Schr6dinger equation of a single particle, a solution to the time-independent Schr6- 
dinger equation for a system of many particles gives a solution to the time-dependent 
Schr6dinger equation when multiplied by the time-dependent function of Eq. (14.4-21), 
but there can be other solutions of the time-dependent Schr6dinger equation that are not 
of this form. 

Exercise 14.19 
Carry out the steps to show that equations analogous to Eqs. (14.4-19) and (14.4-20) hold for a 
system of n particles. 

Eigenvalue Equations 
The time-independent Schr6dinger equation is one of a class of equations called 
eigenvalue equations. The word "eigenvalue" is a partial translation of the German 
word Eigenwert. A full translation is "characteristic value." An eigenvalue equation 
has on one side an operator operating on a function, and on the other side a constant 
(the eigenvalue) multiplying the same function, which is called the eigenfunction. In 
the time-independent Schr6dinger equation, the eigenvalue is E, the value of the energy, 
and is called the energy eigenvalue. The coordinate wave function is often called the 
energy eigenfunction. 

There is generally a set of eigenfunctions to a given eigenvalue equation, with each 
eigenfunction corresponding to a specific eigenvalue. Two common cases occur: (1) the 
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eigenvalue can take on any value within some range of values (a continuous spectrum 
of eigenvalues); (2) the eigenvalue can take on values only from a discrete set, with the 
values between the allowed values not permitted (a discrete spectrum of eigenvalues). 
The occurrence of a discrete spectrum of eigenvalues corresponds to quantization. 

In addition to satisfying the Schr6dinger equation, the wave function must satisfy 
other conditions. Since it represents a wave, we assume that it has the properties that are 
shared by all waves: (1) the wave function is single-valued, (2) the wave function is 
continuous, and (3) the wave function is finite. These properties will lead to boundary 
conditions that have important consequences. 

The Particle in a Box. The Free Particle 

In this section we solve the time-independent Schr6dinger equation for the two simplest 
cases. This analysis will show how the wave function and the values of the energy are 
determined by the Schr6dinger equation and the three conditions obeyed by the wave 
function. 

The Particle in a One-Dimensional Box 
The particle in a one-dimensional box is a model system that consists of a single 
structureless particle that can move parallel to the x axis. The particle moves without 
friction, but is confined to a finite segment of the x axis, from x = 0 to x = a. Inside this 
interval (the box) there is no force on the particle. This model system could represent a 
particle sliding in a tight-fitting (but frictionless) tube with closed ends or a bead sliding 
on a frictionless wire between barriers. The principal chemical system represented by 
this model is an electron moving in a conjugated system of single and double bonds. 
The model only very crudely represents this system since the electron interacts with the 
other electrons and with nuclei, but we will discuss this application in Chapter 18. Since 
the particle experiences no force inside the box, its potential energy is constant inside 
the box, and we choose the value zero for this constant. In order to represent absolute 
confinement within the box we say that this potential energy outside the box is made to 
approach infinity. 

Figure 14.18a shows the position of the particle as a function of time according to 
classical mechanics, and Figure 14.18b shows the velocity of the particle as a function 
of time. We will see that the quantum mechanics solution is qualitatively very different 
from this behavior. The time-independent Schr6dinger equation for the system is 

h2 d2~t 
2m #Ix 2 

+ U(x)@(x) - E~,(x) (14.5-1) 

where ~(x) is the coordinate wave function (energy eigenfunction) and E is the energy 
eigenvalue. We divide the x axis into three regions and solve separately in each region: 

Region I: x < 0 
Region II" 0 < x _< a 
Region III: a < x 

We will adjust the three solutions so that ~ is continuous at the boundaries between the 
regions. 
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In regions I and III the potential energy must approach an infinite value, so we write 
Eq. (14.5-1) as 

2m~U 2 m E  
d2~dx 2 r--+oolim h2 ~ --  h2 ~ (14.5-2) 

We assume that E is finite, so the fight-hand side of this equation is finite. The left-hand 
side would be infinite unless ~ vanished, so the solution is 

For region II 

where tc is given by 

~t (I) (X) --  I//(III) (X) --  0 

d2~t(II) 

dx 2 

(14.5-3) 

__ _/s (14 .5 -4 )  

tC 2 __ __ 2 m E  
h2 (14 .5 -5 )  

Equation (14.5-4) is of the same form as Eq. (14.2-9). Its general solution is 

I//(II) (X) --  B cos(/s -~- C sin0cx) (14.5-6) 

In order for $ to be continuous at x -  0 and x -  a, we must have the boundary 
conditions 

~/(II) ( 0 )  - -  ~ / (I) (0)  - -  O; ~(II) (a) --  !//(III) (a)  --  0 (14.5-7) 

These conditions are similar to the boundary conditions for the vibrations of a string 
described in Section 14.2. In order for ~(m(0) to vanish, the constant B must vanish, 
because cos(0) equals unity while sin(0) equals zero. Thus 

~,(II) (x) -- C sin(rex) (14.5-8) 

The condition that ~(II)(a) vanishes imposes a condition on to, as in Eq. (14.2-14). The 
sine function vanishes when its argument is an integral multiple of n, so that 

F/7"C --  /ca 
n/s f 4 n  ~ f'~ 

or K - ~ (14.~-~) 
a 

where n is a quantum number that can take on integral values. Specifying a value of n is 
equivalent to specifying which energy eigenfunction is "occupied" by the system. We 
can now write a formula for the set of energy eigenfunctions: 

( n n x )  
~n(X) - C sin -7-- / (14.5-10) 

where we now omit the superscript (II). 
The energy eigenvalues are quantized, with values determined by the value of n: 

h2tr 2 h2n2rc 2 h2n 2 

E - -  E n - -  2m = 2ma 2 = 8ma 2 (14.5-11) 

We disregard negative values of n, because replacing a value of n by its negative does 
not change the energy eigenvalue and is equivalent to changing the sign of C since the 
sine is an odd function. We also disregard n -- 0 since n = 0 corresponds to ~p = 0. The 
value of C is unimportant at this stage since the Schr6dinger equation is satisfied for 
any value of C and since the energy eigenvalue does not depend on C. We will later 
introduce a normalization procedure to assign convenient values to such constants. 

There is a single energy eigenfunction for each energy eigenvalue. This is called the 
nondegenerate case. In the degenerate case there is more than one energy eigenfunc- 
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tion corresponding to a given eigenvalue, and the number of eigenfunctions for a given 
eigenvalue is called its degeneracy. A single eigenfunction never corresponds to more 
than one eigenvalue. Figure 14.19a represents the energy eigenvalues by horizontal line 
segments at heights proportional to their energy values and Figure 14.19b shows the 
wave functions (energy eigenfunctions). Each wave function is plotted on a separate 
axis, placed at a height in the diagram corresponding to its energy eigenvalue. Equation 
(14.5-10) resembles Eq. (14.2-14) for the vibrating string and each wave function in 
Figure 14.19b resembles one of the standing waves in Figure 14.7. 

The quantization of the energy eigenvalues comes not only from solving the 
Schr6dinger equation but also from the boundary condition that the wave function 
must vanish at the ends of the box. Unlike the quantization by hypothesis of the old 
quantum theory, quantization has arisen from the mathematical analysis of the 
eigenvalue equation. 

The energy in Eq. (14.5-11) is kinetic energy, since we set the potential energy inside 
the box equal to zero. Since we do not allow n = 0, the minimum possible kinetic 
energy is positive and is called the zero-point energy. It is not possible for the particle 
in a box to have zero kinetic energy. This result is very different from classical 
mechanics, which allows a particle to be at rest with zero kinetic energy. 

*Exercise 14.20 
How does the energy for a given value of n change if the length of the box is doubled? How does 
it change if the mass of the particle is doubled? 
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The Schr6dinger Equation and De Broglie Waves 
The particle in a box model provides the clearest illustration of  the fact that the 
Schr6dinger equation is the wave equation for de Broglie waves. In the case of  zero 
potential energy, the total energy is equal to the kinetic energy so that 

1 _ p2 
E -- -~mv 2 2m (14.5-12) 

where we use the definition of  the momentum, p = mv. From Eq. (14.4-3) and Eq. 
(14.5-12), 

h h 
2 = - = (14.5-13) 

p 2v/~E 

which is the same as 

h 2 
E - -  (14.5-14) 

2m2 2 

The energy of  a de Broglie wave is inversely proportional to the square of  its 
wavelength. When the relationship between the wavelength and the length of  the box 
is used, this becomes the same as the energy expression in Eq. (14.5-11). 

Exerc ise  14.21 

a. Show that the value of the wavelength corresponding to 0n is equal to 2a/n. 
b. Show that the same formula for the energy as in Eq. (14.5-11) is obtained by substituting the 

result of part (a) into Eq. (14.5-14). 

As the value of  n increases, the energy increases, the wavelength decreases, and the 
number of  nodes increases. It is an important general fac t  that a wave funct ion  with 
more nodes corresponds to a higher energy. 

If the potential energy inside the box is assigned a nonzero constant value ~0 instead 
of  zero, the energy eigenfunction is unchanged and the energy eigenvalue is increased 
by the value of  ~0- 

Exerc ise  14.22 

a. Carry out the solution of the time-independent Schr6dinger equation for the particle in a one- 
dimensional box with constant potential ~0 in the box. Show that the energy eigenvalue is 

E, = ~ 0 + ~  
h2n 2 

8ma 2 

but that the wave function is unchanged. 
b. The result of part (a) is generally true. That is, adding a constant to the potential energy adds 

the same constant to the energy eigenvalues. Write the time-independent Schr6dinger equation 
for a general system of n particles, Eq. (14.4-26), and show that this statement is correct. 

If  a particle in a box is electrically charged, it can absorb or emit photons. The energy 
of  a photon that is emitted or absorbed is equal to the difference in energy of  the initial 
and final states of  the particle. 
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*Exercise 14.23 
Calculate the wavelength and frequency of the photon emitted if an electron in a one-dimensional 
box of length 10.0 A (1.00 x 10-9 m) makes a transition from n -- 3 to n --- 2 and the energy 
difference is entirely converted into the energy of the photon. 

Equation (14.4-22) can be used to obtain the time-dependent wave function for a 
particle in a one-dimensional box: 

(mzx) e_iE.t/h ~P,(x, t) - C sin\--a-- / 

: c + i sin(-iEn,/    5-15) 
\ a /  

It is generally possible to choose a real energy eigenfunction for a particle confined in a 
finite region, but the time-dependent wave function is always complex. We will usually 
refer to the energy eigenfunction as the coordinate wave function and the time- 
dependent wave function as the complete wave function. At times when we do not 
need to discuss the complete wave function we will simply call the energy eigenfunc- 
tion "the wave function." 

Exercise 14.24 
*a. Calculate the frequency of the de Broglie wave for the n -- 2 and n -- 3 states of an electron 

in a box of length 1.000 nm. 
b. Calculate the difference between these frequencies. 
c. Compare these frequencies and their difference with the photon frequency in Exercise 14.23. 

Do you think there is any simple relationship between these frequencies? 

Specification of the State of a Particle in a Box 

Instead of specifying the position and velocity of the particle, the state of the quantum- 
mechanical particle is specified by saying which wave function and energy eigenvalue 
correspond to the state of the particle. We recognize two cases: 

1. The wave function of the system is known to be an energy eigenfunction times 
the appropriate time-dependent factor as in Eq. (14.5-15). Chemists are usually 
interested in this case. When a photon is absorbed or emitted by a molecule, the 
initial and final molecule states correspond to energy eigenfunctions. 

2. The wave function is some function other than an energy eigenfunction times the 
appropriate time-dependent factor. Such a function must obey the time-dependent 
Schr6dinger equation and the same boundary conditions as the energy eigenfunc- 
tions. It can be represented by a linear combination analogous to that of Eq. 
(14.2-23): 

o~ 

~P(x, t) -- ~ A,,~b,,(x)e -iE"t/r' (14.5-16) 
n = l  

where A 1, A2, . . .  are a set of time-independent constants. As in the classical case, 
this equation expresses the principle of superposition. 
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Exercise 14.25 
Show that the function of Eq. (14.5-16) satisfies the time-dependent Schr6dinger equation for the 
particle in a one-dimensional box. 

The Particle in a Three-Dimensional Box 

We now consider a model system consisting of a single point-mass particle confined 
in a three-dimensional rectangular box, which is placed so that its lower left rear comer 
is at the origin of coordinates and its walls are perpendicular to the coordinate axes, as 
depicted in Figure 14.20. Denote the length of the box in the x direction by a, the 
length in the y direction by b, and the length in the z direction by c. We will use 
this model system to represent the motion of an electron or of a gas molecule in a 
container. 

The solution of the Schr6dinger equation is carried out in Appendix E The energy 
eigenfunction (coordinate wave function) is a product of three wave functions for 
particles in one-dimensional boxes 

Onxnynz(X, y ,z)  C sin(nxrCX) " [nyrcy'x - , a / sm~---~--) sin( nzrcz),, c / (14.5-17) 

where C is a constant. The energy eigenvalue is the sum of three energy eigenvalues for 
particles in one-dimensional boxes: 

(14.5-18) 

There are three quantum numbers nx, ny, and nz, which we will sometimes denote by the 
three values in parentheses, as for example (1,1,2), etc. A particular energy eigenfunc- 
tion and its energy eigenvalue are specified by giving the values of the three quantum 
numbers. 

If a = b = c (a cubical box) the energy eigenvalue is 

h2 (n 2 + n 2 + n 2) (14.5-19) 
E n z n y n z  - -  8ma2 

There can be several states that correspond to the same energy eigenvalue in this case. 
The two sets of quantum numbers (1,2,3) and (3,2,1) both correspond to the same 
energy although they correspond to different states. A set of states with equal energies 
is called an energy level, and the number of states making up the energy level is called 
the degeneracy of the energy level. 
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*Exercise 14.26 
For an electron in the cubical box of Example 14.7 find the energy eigenvalues and degeneracies 
of all energy levels of lower energy than that in Example 14.7. 

The Free Particle in One Dimension 

The free particle is an object on which no forces act. The potential energy of  the particle 
is equal to a constant, which we set equal to zero. If a point-mass particle can move only 
parallel to the x axis, the time-independent Schr6dinger equation is 

h 2 d2~t 
2m dx  2 = EO (14.5-20) 

Equation (14.5-20) is the same as Eq. (14.5-4) for the motion of  a particle in a box, but 
the boundary conditions are different. The general solution to Eq. (14.5-20) is the same 
as that in Eq. (14.5-6). We write this solution (the energy eigenfunction) in a different 
way: 

~(x )  = D e  "~x + Fe  -i~x (14.5-21) 

where the constant x is given by Eq. (14.5-5). 

*Exercise 14.27 
Use the identity 

e ~ -- cos(x) +/sin(x) (14.5-22) 

to find the relations between the constants B, C, D and F that cause Eq. (14.5-6) and Eq. 
(14.5-21) to represent the same function. 

There are now no walls at which the wave function must vanish. We must still 
conform our solution to the assumptions that the wave function be continuous and 
finite. The finiteness condition requires that ~r be real. We let 

~ c = a + i b  

where a and b are real. The solution is now 

O(x) = D e  iax e -bx + F e  -lax e bx (14.5-23) 

If b is positive, the second term grows without bound for large positive values of  x. If b 
is negative the first term grows without bound if x becomes large and negative. To keep 
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the wave function finite, b must vanish and ~: must be real. The energy eigenvalues are 
given by Eq. (14.5-5)" 

h2K 2 
E -- (14.5-24) 

2m 

There is no restriction on the values of the parameter 1< except that it must be real, so E 
can take on any real nonnegative value. The energy is not quantized and there is no 
zero-point energy. 

If F vanishes, the complete wave function is 

W(x, t) - D e  i~:x-iEt/h = D e  i(Kx-Et/h ) (14.5-25) 

where E is given by Eq. (14.5-24). Separating the real and imaginary parts, we obtain 

tP(x, t) - D[cos(~cX - h )  + isin(~CX h Et)] (14.5-26) 

Comparison of this with Eq. (14.2-24) shows both the real and imaginary parts to be 
traveling waves moving to the fight with a speed given by 

hK 
c = ~ (14.5-27) 

2m 

A nonzero value of the constant F corresponds to a traveling wave moving to the left. 

Exercise 14.28 
Show that Eq. (14.5-27) is correct. 

*Exercise 14.29 
Show that the function 

W(x, t) = F e  -ixx-iEt/h (14.5-28) 

represents a traveling wave moving to the left, and find its speed. 

If D and F are equal, the two traveling waves can produce a standing wave: 

~(x) -- D(e i~x + e - i~x )  - -  2D cos(rex) (14.5-29) 

Exercise 14.30 
Use Eq. (14.5-22) to verify Eq. (14.5-29). 

The complete wave function corresponding to Eq. (14.5-29) is 

W(x, t) -- 2D cos(tcx)e -iEt/~ (14.5-30) 

Exercise 14.31 
Show that if D = - F ,  a different standing wave results. How does it compare with that of Eq. 
(14.5-30)? 
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If the constants D and F are both nonzero but have unequal magnitudes, the complete 
wave function becomes 

W(x, t) = D e  i(•x-Et/h) -Jr- F e  -i(~cx+Et/h) (14.5-31) 

which represents a combination of traveling waves with different amplitudes, one 
moving to the right and one moving to the left. This behavior is rather different from 
that found in classical mechanics, in which one state always corresponds to only one 
kind of behavior. The idea that a single particle can have a single state corresponding to 
motion in two different directions at the same time seems impossible, but it is allowed 
in quantum mechanics. A possible interpretation is that since some predictions of 
quantum mechanics are statistical in nature, a wave function should be thought of as 
representing the behavior of a large collection (an ensemble) of objects, all in the same 
state but capable of different outcomes of a particular measurement. We will return to 
this question in the next chapter. 

The Free Particle in Three Dimensions 

From the Hamiltonian operator in Eq. (14.4-24), the time-independent Schr6dinger 
equation for a free particle moving in three dimensions is 

a20 2mE 
h2 ~, (14.5-32) 

This is the same as for a particle inside a three-dimensional box, and it can be solved in 
the same way by separation of variables. For the special case of a traveling wave moving 
in a definite direction with a definite energy (definite values of K x, Xy, and Kz) the energy 
eigenfunction is 

ilt (x, y, z) -- De  iK'x e iKyy e iK~z (14.5-33) 

where 

2 2mEx 2 2mEy 2 2mEz 
K x = h2  , K y - ~  h ~ ,  K, z -~ h2  (14.5-34) 

The vector K with components Xx, ~Cy, and ~c z points in the direction in which the 
traveling wave moves and is called the wave vector. The three components of the wave 
vector can take on any real values. 

The energy eigenvalue is given by 

h 2 h2K 2 
E -- E~ + Ey + Ez -- ~m (~C2 + ~c~ + ~c2) -- (14.5-35) 

The energy is not quantized and there is no zero-point energy. Just as Eq. (14.5-31) 
represents a linear combination of waves moving in opposite directions, an energy 
eigenfunction for a three-dimensional free particle can consist of a linear combination 
of waves moving in various directions as long as the wave vectors have the same 
magnitude. 
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Charles Hermite, 1822-1901, was a 
great French mathematician who 
made many contributions to 
mathematics, including the proof that 
e (2.71828...) is a transcendental 
irrational number. 

The Harmonic Oscillator 

The time-independent Schr6dinger equation of  the harmonic oscillator is 

/2/I//-  h2 d2~ 1 
2m dz 2 + 2 kz2~ - E ~  (14.6-1) 

where we continue to use the letter z for the coordinate as in Section 14.1. We define the 
constants 

2mE v ~  
b - h2 , a - h (14.6-2) 

so that the Schr6dinger equation can be written 

d21ll 

dz  2 
~ +  (b - a2z2)ff = 0 (14.6-3) 

This differential equation is of  the form of  a we!l-known equation known as the Hermite 
equation (see Appendix F). The solutions to the Hermite equation are of  the form 

Ip(z) - e-az2/2S(z) (14.6-4) 

where S(z)  is a power series 

oo 
S(z)  -- c O -.]-- c1Z + c2 Z2 + c3 Z3 + . . . .  Z Cn Zn 

n-O 
(14.6-5) 

with constant coefficients c1, c2, c3 . . . .  Hermite showed that the series must terminate 
in order to keep ~ from becoming infinite as ]z] becomes large. The series S becomes 
one of  a set of  polynomials known as I-lermite polynomials.  Appendix F contains 
some information about the solution. As is shown in Appendix F, the termination of  the 
polynomials determines the energy eigenvalues, which are given by 

(14.6-6) 

where v is the frequency of  the oscillator predicted by classical mechanics, (see Eq. 
(14.1-10)) and where v = 0, 1,2, 3 . . . . .  The energy is quantized and there is a zero- 
point energy: 

Eo _ l hv (zero-point energy) (14.6-7) 

With the particle in a box the quantization was produced by the condition that the wave 
function must be continuous. With the harmonic oscillator system, the energy 
quantization is produced by the condition that the wave function must be finite. 

Exercise 14.32 
*a. Find a formula for the frequency of a photon with energy equal to the difference in energy 

between the v = 0 state and the v = 1 state. 
b. How does this frequency compare with the classical frequency of the oscillator? How do you 

interpret this comparison? 
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For v -- 0, the energy eigenfunction of the harmonic oscillator is 

, o -  (14.6-8) 

where the choice for the value of Co will be discussed later. For v -  1, the energy 
eigenfunction is 

~ z e - a X 2 / 2  ~1 (14.6-9) 

and for v -  2, the wave function is 

a ) 1/4 _ _  )e-aZ2 /2 if/2-- ~ ( 2az2 1 (14.6-10) 

The factor (2az 2 - 1) is proportional to the Hermite polynomial Hz(v/-a z). Other energy 
eigenfunctions can be generated from formulas for the Hermite polynomials in 
Appendix E 

Exercise 14.33 
Obtain a formula for I//3 for the harmonic oscillator. Do not evaluate the constant c 0. 

Figure 14.21 shows the energy eigenfunctions for v = 0, v = 1, v = 2, and v = 3. 
Each wave function is plotted on a separate axis at a height representing the energy 
eigenvalue. The potential energy as a function of z is also plotted with the same energy 
scale. The classical turning point for any given energy is the point at which the potential 
energy is equal to the total energy, and the wave function is nonzero in the regions past 
the turning points. A comparison of these graphs with those for the particle in a one- 
dimensional box in Figure 14.19b shows that the general pattern of the nodes is the 
same, with more nodes corresponding to higher energy. In addition to the nodes at 
infinite Izl for the harmonic oscillator and at the ends of the box for the particle in a box, 
the lowest-energy wave function has no nodes, the next-lowest-energy wave function 
has one node, and so on. 

We can now compare the classical and quantum-mechanical solutions for the 
harmonic oscillator. The classical solution gives the position and velocity of the 
oscillator as a function of time, as shown in Figure 14.2, and the state of the oscillator 
at any instant is specified by giving the value of the position and the velocity. The 
quantum-mechanical state is specified by stating which wave function corresponds to 
the state of the system. The wave function describes a de Broglie wave and, if the wave 
function corresponds to a standing wave, the de Broglie wave oscillates with a certain 
frequency but does not move. The de Broglie wave oscillates over all values of the 
coordinate, including values beyond the classical turning points. As we will show in the 
next chapter, this behavior corresponds to possible penetration of the particle into a 
classically forbidden region, which is called tunneling. 
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*Exercise 14.34 
a. Find a formula for the frequency of oscillation of the harmonic oscillator wave function for the 

v -  1 state. 
b. Find a formula for the frequency of oscillation of the harmonic oscillator wave function for the 

v -- 2 state. 
c. Compare the frequencies from parts (a) and (b) and the frequency from Example 14.8 with the 

frequency of the photon in Exercise 14.32 and with the frequency of oscillation of the classical 
oscillator. 

d. Compare the difference between the frequencies of the v -- 2 state and the v -- 1 state with the 
frequency of the photon. 

*Exercise 14.35 
Find the classical amplitude of oscillation of a hydrogen molecule with an energy equal to that of 
the v = 0 quantum state. Express it as a percentage of the bond length, 0.74 x 10 -l~ m. The 
molecule vibrates like a harmonic oscillator with a mass equal to the reduced mass of the two 
nuclei (see Eq. (D-30) of Appendix D). The force constant is equal to 576 N m -1, and the reduced 
mass is equal to 8.369 x 10 -28 kg (half the mass of a hydrogen atom). 

Summary of the Chapter 

The solution of  the classical equation of  mot ion for the harmonic oscillator provides 

formulas for the posit ion and velocity of  the mass as functions of  time. The solution of  

the classical equation of  motion for a flexible string prescribes the posit ion and velocity 

of  each point of  the string as a function of  time. 
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The "old quantum theory" consists of theories with arbitrary assumptions of 
quantization, devised to explain phenomena that classical physics could not explain. 
This theory consists primarily of the black-body radiation theory of Planck, the 
photoelectric effect theory of Einstein, and the hydrogen atom theory of Bohr. 

De Broglie sought a physical justification for Bohr's assumption of quantization, and 
hypothesized that all particles move with a wavelike character with a wavelength given 
by 

h 

my 

where h is Planck's constant, m is the mass of the particle, and v is its speed. According 
to the concept of wave-particle duality, electrons and other objects have some of the 
properties of classical waves and some of the properties of classical particles. 
Schr6dinger discovered a wave equation for these matter waves. The time-independent 
equation is an eigenvalue equation given by 

[70 -- EO 

where E is the energy of the system, ~, is a wave function, and/2/is the Hamiltonian 
operator. The time-dependent Schr6dinger equation is 

[-I~ - -  i h  0~_~ 
Ot 

By assuming that the wave function ~P is a product of a coordinate factor ~ and a time 
factor ~, the coordinate factor is found to obey the time-independent Schr6dinger 
equation. 

The solutions to the time-independent Schr6dinger equation for three example 
systems were presented: the particle in a hard box (in one dimension and in three 
dimensions), the free particle, and the harmonic oscillator. Sets of energy eigenfunc- 
tions and energy eigenvalues were obtained, and in the cases of the particle in a box and 
the harmonic oscillator, we found a discrete spectrum of energies, corresponding to 
energy quantization. Two new phenomena occurred. First, the particle in a box and 
harmonic oscillator exhibited a zero-point energy. Second, the harmonic oscillator has a 
nonzero wave function in regions where classical mechanics predicts that the particle 
cannot enter. 



Problems 535 



,536 14 The Principles of Quantum Mechanics. I. Classical Waves and the SchrSdinger Equation 



Problems 537 



,,638 14 The Principles of Quantum Mechanics. I. Classical Waves and the Schr6dinger Equation 

where G is the gravitational constant, equal to 6.673x 
10 -11 m 3 s -2 kg -1 and m 1 and m 2 are the masses of the two 
objects. The mass of the earth is 5.983 x 1024 kg, 
and the mass of the sun is larger by a factor of 332,958. 
The earth's orbit is slightly elliptical, but pretend that it is 
circular, with a radius of 1.4967 x 1011 m. Assume that 
the sun is stationary (as it would be if it were infinitely 
massive). 

a. Find the value of the Bohr radius. 
b. Find the value of the quantum number corresponding to 

the size of the earth's actual orbit. 
c. Find the kinetic energy, the potential energy, and the 

total energy of the earth's orbital motion. 
d. Find the ratio of the reduced mass of the earth-sun 

system to the mass of the earth. See. Eq. (D-27) for the 
definition of the reduced mass. 

Identify each statement as either true or false. If a 
statement is true only under special circumstances, label it as 
false. 

a. A de Broglie wave can be identified as a transverse 
wave. 

b. A de Broglie wave can be identified as a longitudinal 
wave. 

c. The oscillating quantity in a de Broglie wave cannot be 
physically identified. 

d. The Bohr theory of the hydrogen atom is a hybrid 
theory, maintaining elements of classical mechanics along 
with quantization. 

e. Planck's constant appears in all of  the theories of the old 
quantum theory. 

fi The Schr6dinger equation has been rigorously derived 
from first principles. 

g. An eigenvalue equation can have solutions for arbitrary 
values of the eigenvalue. 

h. Several different eigenvalues can correspond to the 
same eigenfunction. 

i. Several different energy eigenfunctions can correspond 
to the same energy eigenvalue. 

j. Light can be identified as a wave in a pervasive medium. 
k. Light exhibits both wavelike and particlelike properties. 
I. Electrons exhibit both wavelike and particlelike proper- 

ties. 
m. If the length of its box is made to approach infinity, a 

particle in a box behaves like a free particle. 
n. A free particle cannot be described by a standing-wave 

type of wave function, but must be described by a traveling- 
wave type of wave function. 



The Principles of Quantum 
Mechanics. 11. The Postulates of 
Quantum Mechanics 

1. Quantum mechanics is based on a set of postulates. 

2. The first two postulates establish the role of the wave function in quantum 
mechanics. 

3. The third postulate of quantum mechanics establishes a connection between 
each mechanical variable and a mathematical operator. 

4. The fourth postulate provides the means to obtain information about the 
values of mechanical variables. 

5. The fifth postulate concerns the determination of the state of a system by 
experimental measurements. 
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Werner Karl Heisenberg, 1901-19 76, 
was a German physicist who invented 
matrix mechanics, a form of quantum 
mechanics equivalent to the 
Schr6dinger formulation, and who 
discovered the uncertainty principle, 
for which he received the 1932 Nobel 
prize in physics. 

The First Two Postulates of Quantum Mechanics 

Schr6dinger did not derive his equation from other principles, and it is not based on 
experimental fact. We take the time-dependent Schr6dinger equation as a postulate. A 
postulate is a fundamental assumption on which a theory is based, and the conse- 
quences of any postulates must be compared with experiment to validate the theory. 
Schr6dinger, Heisenberg and others devised several postulates that form a consistent 
logical foundation for quantum mechanics. We will state five postulates in a form 
similar to that of Mandl 1 and Levine. 2 The first two postulates were introduced in 
Chapter 14, without calling them postulates. They are: 

Postulate 1. All information that can be obtained about the state o f  a mechanical 
system is contained in a wave function ~ ,  which is a continuous, finite, and single- 
valued function of  time and of  the coordinates o f  the particles o f  the system. 

Postulate 2. The wave function tp obeys the time-dependent Schrddinger equation 

~ t p  = ih - -  OtP (15.1-1) 
Ot 

where H is the Hamiltonian operator. 

Since the available information about the state is contained in the wave function, we 
can specify the state by specifying which wave function applies to the system at a given 
instant. There is a one-to-one relationship between the state of the system and its wave 
function. That is, to each state there corresponds one wave function, and to each wave 
function there corresponds one state. The terms "state" and "wave function" are often 
used interchangeably, and the wave function is sometimes referred to as the state 
function. Information about values of energy, momentum, etc., must be obtained from 
this wave function, instead of from values of coordinates and velocities as in classical 
mechanics. Specification of the state in quantum mechanics usually gives less 
information about the mechanical variables of the system than it does in classical 
mechanics, where specification of the state allows precise calculation of the values of all 
mechanical variables. In some cases we will be able to predict with certainty from a 
known wave function what result an error-free measurement of a mechanical variable 
will give. In other cases only statistical predictions can be made, even in the absence of 
experimental error. We will discuss this strange situation when we reach the fourth 
postulate. 

There is no need to have a separate postulate for the time-independent Schr6dinger 
equation. It can be derived from the time-dependent equation, as was shown in Chapter 
14, by assuming that the wave function is a product of two factors, 

�9 (q, t) -- $(q)~(t) (15.1-2) 

where q stands for all of the coordinates of the particles in the system. With this 
assumption, the coordinate wave function ~ is an energy eigenfunction, and satisfies the 
time-independent Schr6dinger equation. There are solutions to the time-dependent 
Schr6dinger equation that are not of this form, but wave functions of the form of Eq. 
(15.1-2) are the most important wave functions in chemistry. 

1 E Mandl, Quantum Mechanics, Butterworths Scientific Publications, London, 1957, pp. 60ft. 

2 I. N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, N.J., 1991, pp. 173ff. 
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Mathematical Operators 

The third postulate will assert that there is a mathematical operator that corresponds to 
each mechanical variable. A mathematical operator is a symbol standing for carrying 
out one or more mathematical operations. The Hamiltonian operator H in the 
Schr6dinger equation is an important example of a quantum-mechanical operator. 
When the symbol for an operator is written to the left of the symbol for a function, the 
operation is to be applied to that function. For example, d/dx is a derivative operator, 
standing for differentiation of the function with respect to x; h(z) is a multiplication 
operator, standing for multiplication of a function by the function h(z); and c is also a 
multiplication operator, standing for multiplication of the function by the constant c. We 
will usually denote an operator by putting a letter with a caret (^) over it. 

The result of operating on a function with an operator is another function. I f f (x)  is 
the function on which we operate and g(x) is the resulting function, in most cases g(x) 
is a different function from f (x) .  Figure 15.1 shows an example of a function, 
f ( x )  = ln(x), and g(x) = 1/x, the result of operating on f with the derivative operator, 
d/dx. 

Operator Algebra 
There is an operator algebra in which we symbolically operate on operators 
themselves without specifying the functions on which the operators operate. For 
example, an operator can be set equal to another operator in an operator equation. 
The operator that always produces the same function as the one on which it operates is 
called the identity operator and is denoted by/~. It is equivalent to multiplying by 
unity: 

E f  (q) -- f (q) (15.2-2) 

where q is an abbreviation for the independent variables of the function f .  Equation 
(15.2-1) can be written as an operator equation: 

/ ~ -  1 (15.2-2) 

An operator equation means that the operators on the two sides of the equation always 
produce the same result when applied to any well-behaved function, which is not 
written explicitly in the equation. It is not an operator equation if it must be applied to a 
certain function or set of functions in order to give an equality. 

The product  of two operators is defined as successive application of the operators, 
and is denoted by writing the two operator symbols adjacent to each other: 

Cf(q) - f4Bf(q) -- ~4(tlf(q)) -- f4g(q) (15.2-3) 

where g(q) is the function produced when/Y operates on f (q) .  The operator written on 
the fight operates first. That is, the operator closest to the function operates first. The 
first equality in Eq. (15.2-3) is equivalent to the operator equation: 

- AB (15.2-4) 

Operator multiplication is associative, which means that 

(15.2-5) 
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Operator multiplication is not necessarily commutative. It can happen that 

AB -r (in some cases) (15.2-6) 

If AB -- BA, the operators .4 and b are said to commute. 
The commutator of two operators ~] and/~ is denoted by [A, B] and is equal to the 

two-term operator 

*Exercise 15.1 

Find the commutator Ix2, d ] .  

The following facts are useful: 

1. Every operator commutes with itself. 
2. Multiplication operators commute with each other. 
3. A constant multiplication operator commutes with all other operators. 
4. Operators that act on different variables commute with each other. 
5. A derivative operator almost never commutes with a multiplication operator 

containing the same independent variable. 
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*Exercise 15.2 

a. Find the operator (J{ -t- r if o,~ and ~ do not commute. 
b. Find the operator (.4 + B) 3 if z) and b do commute. 

The operators that are used in quantum mechanics have two important properties: 
they are linear and hermitian. We discuss these two properties before establishing the 
operators that correspond to specific mechanical variables. 

Linear Operators 
An operator A is linear if 

(15.2-8) 

and if 

(15.2-9) 

where c is an arbitrary constant and where f and g are arbitrary functions. That is, Eq. 
(15.2-8) and (15.2-9) must hold no matter what the functionsf and g are, so long as the 
functions are well-behaved (for example, if .4 is a derivative operator, they must be 
differentiable). 

Hermitian Operators 
An operator A is hermitian if it obeys the relation 

(15.2-10) 

The functions f and g must obey boundary conditions such that the integral converges. 
All independent variables must be integrated over their entire ranges of values. For 
example, if q represents the cartesian coordinates of two particles that can move in three 
dimensions, the integral in this equation is a sixfold integral, and dq stands for 
dx 1 dy 1 dz 1 dx 2 dy 2 dz 2. If the particles can move in all of space, the integration 
limits are - c ~  to cx~ for each cartesian coordinate. In Eq. (15.2-10), f *  denotes the 
complex conjugate of the function f and A* denotes the complex conjugate of the 
operator A. The complex conjugate of an operator is taken in the same way as is that of 
a complex number, by changing the sign of its imaginary part. A real quantity or a real 
operator is equal to its complex conjugate, and an imaginary quantity or an imaginary 
operator is the negative of its complex conjugate. Complex quantities are surveyed 
briefly in Appendix B. 

Hermitian operators have several important properties: 

1. Hermitian operators are linear. 
2. Two hermitian operators are not required to commute with each other. 
3. A hermitian operator has a set of eigenfunctions. 
4. The eigenvalues of a hermitian operator are real. 
5. Two eigenfunctions of a hermitian operator with different eigenvalues are orthogonal 

to each other. 
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6. Two commuting hermitian operators can have a set of common eigenfunctions. 
7. The set of eigenfunctions of a hermitian operator form a complete set for expansion 

of functions obeying the same boundary conditions. 

The proofs for Properties 4 and 5 are in Appendix B. 

Exercise 15.3 
a. Show that the multiplication operator x is linear and hermitian. 
b. Show that the operator i(d/dx) is linear and hermitian. 
e. Show that any hermitian operator is linear. 

*Exercise 15.4 
Show that the two hermitian operators x and i(d/dx) do not commute and find their commutator. 

Two functions f and g are orthogonal to each other if 

(15.2-11) 

where f *  is the complex conjugate o f f  and g* is the complex conjugate of g. The two 
integrals in Eq. (15.2-11) are the complex conjugates of each other, so that if one 
vanishes, so does the other. 
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Exercise 15.5 
Show that the first two energy eigenfuncti0ns of the harmonic oscillator are orthogonal to each 
other. 

Property 6, that two commuting hermitian operators can have a set of common 
eigenfunctions, means that a set of functions fjk(q) can be found such that 

~4fjjk(q ) - ajfjjk(q) (15.2-12a) 

Bf jk (q ) -  bkfjk(q) (15.2-12b) 

where A and B are two hermitian operators that commute and where aj and b k are 
eigenvalues. Two indices are needed to enumerate all of the functions in the set, because 
several functions can have the same eigenvalue for A but have different eigenvalues for 
/}. An example of simultaneous eigenfunctions is found in the electronic wave functions 
of the hydrogen atom, which are simultaneous eigenfunctions of the Hamiltonian 
operator and two angular momentum operators. 

The completeness specified in Property 7 means we can accurately represent any 
wave function as a linear combination (sum of functions multiplied by constant 
coefficients) of all of the eigenfunctions of a hermitian operator if the function obeys 
the same boundary conditions as the eigenfunctions: 

oo 

0 = ~ 9 ~  (15.2-13) 
j = l  

where ~ ,Jz,f3 . . . .  are the set of eigenfunctions of some hermitian operator A, having 
eigenvalues a l, ae, a3, �9 �9 �9 �9 The wave function 0 is said to be expanded in terms of the 
set of functions f1,3~,J3, �9 �9 �9 �9 This set of functions fl ,Jz,f3 . . . .  is called the basis set. 
Sometimes the notation {f  } or {fj} is used to represent the entire set of functions. The 
coefficients c 1 , c e, c 3 . . . .  are called the expansion coefficients, and must have values 
chosen to represent the specific function 0. Equation (15.2-13) corresponds to the 
principle of superposition, already mentioned in Chapter 14 in connection with waves 
in a flexible string. The sine and cosine functions in a Fourier series are an example of a 
complete set of functions for representing periodic functions. Although a general proof 
of this property for eigenfunctions of hermitian operators is lacking, it is generally 
accepted. 

It is possible to represent a time-dependent wave function in terms of time- 
independent basis functions if the expansion coefficients are time-dependent. For 
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example, we choose the energy eigenfunctions of a system as our basis functions and 
write 

oo 
V -- ~ cj(t)~/j (15.2-14) 

j=l 

where I//1, I//2 . . . .  are the energy eigenfunctions (which are time-independent). This 
function can satisfy the time-dependent Schr6dinger equation if the set of expansion 
coefficients have the proper time dependence. 

Exercise 15.6 
Show that the function �9 in Eq. (15.2-14) satisfies the time-dependent Schr6dinger equation if 

cj(t) = 9(O)e-W//r (15.2-15) 

The result of this exercise shows that the wave function of a system at a given instant 
can be any function of the proper coordinates that satisfies the boundary conditions 
required of a wave function (continuity and finiteness). It will then evolve according to 
the time dependence of the expansion coefficients given in Eq. (15.2-15). 

Postulate 3. Mathematical Operators Corresponding 
to Mechanical Variables in Quantum Mechanics 

This postulate asserts that every mechanical variable has its own hermitian operator. 

Postulate 3. There is a hermitian mathemat ical  operator in one-to-one correspon- 
dence with every mechanical  variable. 

Finding the Operator to Correspond with a Particular Variable 
We begin by asserting that the Hamiltonian operator is the mathematical operator that is 
in one-to-one^correspondence with the energy of a system. This is plausible because 
the operator H occurs on one side of the time-independent Schr6dinger equation and 
the eigenvalue E occurs on the other side of the equation. There is a one-to-one 
correspondence between/2/and E in this equation, which means that the variable E has 
a unique connection with the operator f-/and vice versa. 

We next write the classical Hamiltonian (the classical expression for the energy), 
which is written as a function of momenta and coordinates (see Appendix D), and 
associate it with the Hamiltonian operator. For one particle moving in the direction of 
the x axis, 

p2 h2 d 2 
Z---m+ ~t/~(x) +-~ 2 m d x  2 t- f ' ( x )  (15.3-1) 

where Px stands for the x component of the momentum, equal to my x. The symbol 
means "is in one-to-one correspondence with." The potential energy function U(x) 
occurs on both sides of this equation in the same way, so we postulate that the operator 



15.3 Postulate 3. Mathematical Operators Corresponding to Mechanical Variables in Quantum Mechanics 547 

for the potential energy is the operator for multiplication by the potential energy 
function. 

~/" ++ ~U(x) (15.3-2) 

We extend this assumption, and postulate that any function of  coordinates corresponds 
to the operator for multiplication by that function. 

If the potential energy is canceled from the two sides of Eq. (15.3-1), the remaining 
terms indicate that the operator for the kinetic energy • is 

~m h2 d2 
~U <-+ P2 -- 2m dx 2 (15.3-3) 

The operator for the square of the x component of the momentum is therefore 

"2 _h2 d2 
P x - -  dx 2 (15.3-4) 

The operator for the square of a momentum component must be the square of the 
operator for that momentum component. The square of an operator means operating 
twice with the operator. Therefore, the operator for Px is 

d l i d  
Px +> fix = - i h dxx - 7dxx (15.3-5) 

If more than one coordinate is involved, we replace the derivative in Eq. (15.3-5) by a 
partial derivative. Since any quantity has two square roots, the opposite sign could also 
have been taken. The sign in Eq. (15.3-5) gives the momentum the correct sign when a 
particle is moving in a known direction (see Problem 15.37). 

We complete the third postulate by the additional assumption that the pattern of Eq. 
(15.3-5) holds for all cartesian momentum components and all functions of momentum 
components: The quantum-mechanical operator for any mechanical variable is 
obtained by (1) expressing the quantity classically in terms of cartesian coordinates 
and cartesian momentum components and (2) replacing the momentum components by 
h/i  times the derivative with respect to the corresponding coordinate. If the use of a 
coordinate system other than cartesian coordinates is required in a particular problem, 
the expression for an operator is constructed in cartesian coordinates and then 
transformed to the other coordinate system. The operator must be hermitian, and it 
must be verified by comparison of its action with experimental fact. 

We can now obtain the Hamiltonian operator for motion in three dimensions, Eq. 
(14.4-24). For one particle moving in three dimensions 

oU _ p 2  +p2 +p2 (15.3-6a) 
2m 

and 

h2(a 2 0 2 0 2 ) 
2m ~x2 + O--~ + ~ z  2 

(15.3-6b) 
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*Exercise 15.7 
a. Construct the operator for L x. 

^ 

b. Construct the operator for L.. 
e. Construct the operator for L 2. 

Example 15.6 illustrates the procedure that must be used if an operator is needed in 
other than cartesian coordinates. The operator is first written in cartesian coordinates 
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and then transformed to another coordinate system. The expression for the operator L,z 
in Eq. (15.3-10) will be important in our later discussions of atomic and molecular wave 
functions. We will also use the expression for/~2 in spherical polar coordinates, which 
we present without derivation: 

The commutation relations between operators are important. Some authors find the 
form of/3 x by postulating that the commutation relation of Eq. (15.3-13) and its 
analogues must hold, instead of deducing the form of/3 x by inspecting the Hamiltonian 
operator. 

Exercise 15.8 
*a. Find the commutator [/3 x,/3y]. 

b. Show that [/Lx,/3y] = ifi/3 z. 

Postulate 4. Expectation Values 

The first postulate of quantum mechanics asserts that the wave function of a system 
determines its state. Any information about the values of mechanical variables must 
therefore be obtained from the wave function. The fourth postulate provides the 
methods for obtaining this information: 

Postulate 4: (a) I f  a mechanical variable A is measured without experimental error, 
the only possible measured values of  a variable A are eigenvalues of  the operator ~4 
that corresponds to A. 
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(b) The expectation value of  the error-free measurement of  a mechanical variable 
A can be calculated from the formula 

(15.4-1) 

where ~4 is the operator corresponding to the variable A, and where ~ - W(q, t) is 
the wave function corresponding to the state of  the system immediately prior to the 
measurement. 

As is the case with all quantum-mechanical integrations, the integrals in Eq. (15.4-1) 
extend over all values of all of the coordinates, which are abbreviated by q. The 
expectation value is defined to be the predicted mean of a set of many measurements of 
the variable, given that the system is in the state corresponding to the wave function q~ 
immediately prior to each measurement. It is therefore a statistical piece of information 
unless it can be shown that every measurement will give the same result. 

If the wave function qJ is a product of a coordinate wave function and a time- 
dependent factor as in Eq. (14.4-22), the expectation value can be calculated from the 
coordinate wave function. We substitute the product wave function into Eq. (15.4-1) and 
use the fact that the complex conjugate of any complex function can be obtained by 
changing the sign in front of every i symbol that occurs (see Appendix B): 

Therefore, 

(e iEt/h )* = e-iEt/h 

(A) f d/*eiEt/~4~e -iEt/~ dq 
-- f ~ * e i E t / ~ e  -iEt/~ dq (15.4-2) 

The two time-dependent factors in the denominator cancel. If the operator A is the 
operator for an ordinary mechanical variable, it does not depend on time. The time- 
dependent factor to its fight can be factored through it, and cancels with the other time- 
dependent factor as in the denominator. Therefore, 

(15.4-3) 

The expectation value in Eq. (15.4-3) is time-independent. This behavior occurs with 
any expectation value if the operator is independent of the time and if the wave function 
is the product of an energy eigenfunction and a time factor. A state corresponding to 
such a wave function is called a stationary state. For stationary states, coordinate wave 
functions can be used to calculate expectation values. 

Normalization 

There is a conventional way to simplify the formula for the expectation value. The 
denominator in Eq. (15.4-1) is the same whether we are calculating the expectation 
value of the angular momentum, the energy, or any other variable. We use the following 
fact: If  any wave function that satisfies the Schrrdinger equation is multiplied by an 
arbitrary constant it will still satisfy the Schriidinger equation and will still give the 
same value for any expectation value. 
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Exercise 15.9 
a. Show that if a wave function qJ satisfies the time-dependent SchrSdinger equation 

/-/qJ = ifi ~ 
Ot 

then the function Cq J also satisfies it, where C is any constant. 
b. Show that if a wave function ~ satisfies the time-independent Schr6dinger equation 

[40 = EO 

then the function CO also satisfies it, where C is any constant. 
c. Show that the formula in Eq. (15.4-1) for the expectation value is unchanged if q~ is replaced 

by Cq j, where C is any constant. 

If we choose a value of a constant multiplying a wave function such that 

(15.4-4) 

the wave function T is then said to be normalized.  If a normalized wave function is 
used in Eq. (15.4-1), the expectation value is unchanged and the denominator in the 
equation equals unity. 

(15.4-5) 

If the time-dependent wave function in Eq. (15.4-4) is the product of a coordinate factor 
and a time-dependent factor, the coordinate factor is normalized if the full wave 
function is normalized. 

Exercise 15.10 
a. Show that if 

and if 

then 

W(q, t) -- d/(q)e -iF"t/~ 

J T*~P dq = 1 

I ~t*d/ dq = 1 

b. Carry out the integration to show that the harmonic oscillator coordinate wave function in Eq. 
(14.6-8) is normalized. 

The Use of Postulate 4 to Obtain Information about Variables 

Part (a) of  the fourth postulate allows us to determine the list of  possible values for any 
variable by solving the eigenvalue equation for that variable. If there is a discrete 
spectrum of eigenvalues, the variable is quantized (can take on values from a discrete 
list). This part of  the postulate is not related to a particular state. Part (b) of  the postulate 
provides the means to extract all possible information about mechanical variables 
from knowledge of  the state of  the system, but sometimes provides only statistical 



552 15 The Principles of Quantum Mechanics. II. The Postulates of Quantum Mechanics 

information about the values of state variables. We distinguish between two different 
cases. For certain systems, certain states, and certain variables, it is possible to make a 
precise prediction of the outcome of a measurement from knowledge of the wave 
function. We will refer to this case as case 1. For some states and some variables, the 
outcomes of individual measurements will be distributed over various values (all of 
which must be eigenvalues of the operator). Only statistical predictions can be made. 
We will refer to this case as case 2. 

Position Measurements 

Position measurements provide an important example of case 2. Consider the position 
of a particle that moves parallel to the x axis. Assume that we make a set of position 
measurements with the state of the system corresponding to the same wave function, 
�9 (x, t), just before each measurement. The expectation value of x is 

(x) - J ~(x, t)*x~(x, t) dx (15.4-6) 

where we assume that the wave function ~ is normalized. We will not discuss the 
eigenfunctions of the position operator in detail, but all values of x can be eigenvalues 
and are thus possible outcomes of the position measurement. See Problem 15.33 for 
some information about these eigenfunctions and eigenvalues. 

Since the multiplication operator x commutes with multiplication by ~*, we can 
write 

(x) - l ~(x, t)*x~(x, t) dx - Ix~(x,  t)*~(x, t)dx - j'xl~(x, t)[2 dx (15.4-7) 

where we use the fact that any quantity times its complex conjugate is equal to the 
square of the magnitude of the quantity (see Appendix B). If the wave function is a 
product of an energy eigenfunction and a time factor, the time factor cancels against its 
complex conjugate, as in Eq. (15.4-3): 

(x) -- J'xd/(x, t)*~t(x, t) dx - I xlC/(x, 012 dx (15.4-8) 
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Exercise 15.11 
a. Show that the particle-in-a-box energy eigenfunction given in Eq. (15.4-9) is normalized. 
b. Verify the value of the integral used in Example 15.8 without using a table. 

*Exercise 15.12 
Find (x) for a particle in a hard one-dimensional box of length a for the n = 2 state. 

Probability Densities 
We have asserted that position measurements belong to case 2 for almost any kind of 
wave function. The mean of a set of many repeated measurements of the position of a 
particle is well defined, but individual members of the set can have different values. We 
now want to study the probabilities of different outcomes of the position measurement. 
In Chapter 10, we defined a probability density for a variable denoted by u: 

Probability that u lies 

between u' and u' + duJ = f (u') du 

The funct ionf  (u) is a probability per unit length on the u axis. The mean value of u is 
given by 

(u) -- I uf(u)du (15.4-12) 

Comparison of Eq. (15.4-7) with Eq. (15.4-12) shows that the probability of finding the 
particle between x and x + dx is equal to 

(Probability) - IW(x, t)[ 2 dx (15.4-13) 

o r  

(15.4-14) 

This is an important result, which we will generalize to three dimensions and to more 
than one particle. The square of the magnitude of the wave function is the probability 
density for finding the particle or particles. For a single cartesian coordinate, the 
probability density is a probability per unit length. At any location where the square of 
the wave function is nonzero, there is some probability of finding the particle. Where 
the wave function vanishes there is no probability of finding the particle. This 
corresponds to our earlier assertion that a wave function equal to zero corresponds to 
the absence of a particle. 



554 15 The Principles of Quantum Mechanics. II. The Postulates of Quantum Mechanics 

For the motion of one particle in three dimensions, the probability that the particle 
lies between x and x + dx in the x direction, between y and y + dy in the y direction, and 
between z and z + dz in the z direction is analogous to that in Eq. (15.4-13): 

(Probability) - IqJ(x, y, z, 012 dx dy dz  (15.4-15) 

The probability density in this case is a probability per unit volume in three dimensions. 

(15.4-16) 

To obtain the probability that a particle is to be found in a finite region, we integrate 
Iq'(x, y, z, 012 over the region of interest. 

*Exercise 15.13 
For a particle in a three-dimensional hard box, the eigenfunction of the Hamiltonian operator is 
given by Eq. (14.5-39). For the n x = 1, ny = 1, n z = 1 state, find the probability that the particle 
is in a small rectangular region in the center of the box such that the length of the region in each 
direction is equal to 1.000% of the length of the box in that direction. Avoid an integration by 
proceeding as though the wave function were constant in the region so that the probability is the 
product of the wave function squared times the volume of the region. 

For the motion of two particles in three dimensions, the probability that the first 
particle is between x 1 and x] + dx 1 and between Yl and Yl + dyl and between z 1 and 
z 1 + dz 1 and that simultaneously the second particle is between x 2 and x 2 + dx 2 and 
between Y2 and Y2 + dy2 and between z 2 and z 2 + dz 2 is 

(Probability) - IW(x 1 , Yl, zl, x2, Y2, Z2, 012 dxl dYl dzl dx2 dy2 dz2 

= IW(rl, r2, 012 d3rl d3r2 (15.4-17) 

(15.4-18) 

That is, [~'tl2 is a probability per unit six-dimensional volume. For a system with n 
particles the square of the magnitude of the wave function is a probability density in a 
space with 3n dimensions (a probability per unit 3n-dimensional volume). 

If a wave function is normalized, its probability density is also normalized. The total 
probability of all positions is equal to the integral of the square of the magnitude of the 
wave function over all values of the coordinates, which equals unity for a normalized 
wave function. For a stationary state, in which the wave function is a product of a 
coordinate wave function and time factor, the probability density is time-independent: 

IqJ(x, 012 - -  ~(x)*eiEt/h~t(x)e -iEt/h -- ~t*(x)~t(x) --I~t(x)l 2 (15.4-19) 

The analogue of Eq. (15.4-19) can be written for a wave function that depends on more 
than one coordinate. 

Figure 15.2 shows the probability density (square of the magnitude of the wave 
function) for four energy eigenfunctions of a particle in the box. These four graphs are 
placed at heights proportional to the energy eigenvalue corresponding to each wave 
function. These probability densities are very different from the predictions of classical 
mechanics. If the state of  a classical particle in a box is known, the probability at a 
given time will be nonzero at only one point, as in Figure 15.3a. The classical 
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probability density averaged over a long time would be uniform, with all parts of the 
box being equally probable, as shown in Figure 15.3b. 

The quantum-mechanical probability density for a stationary state of a particle in a 
box is time-independent, and is best compared with the time-average classical 
probability distribution. The probability is distributed over the entire box but is not 
uniform, and there are points at which the probability density vanishes. However, if a 
very large value of n is taken, these points become closer and closer together, as 
schematically shown in Figure 15.4, which is drawn for n = 10. For very large values of 
n, the probability density resembles that of the classical case, since the width of the 
oscillations in the curve become smaller than the experimental uncertainty of a real 
measurement. This behavior conforms to the correspondence principle, which states 
that for sufficiently large energies and masses, the behavior predicted by quantum 
mechanics approaches the behavior predicted by classical mechanics. 
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*Exercise 15.14 
From inspection of Figure 15.2, estimate the probability of finding the particle in the left one-third 
of the box for the n = 1 state. After making this estimate, make an accurate calculation of the 
probability. 

Figure 15.5 shows the probability densities for the first few energy eigenfunctions of 
a harmonic oscillator. Each graph is placed at a height in the figure proportional to its 
energy eigenvalue, and the potential energy is also plotted in the figure. The classical 
turning point for each state is located where the axis for that state crosses the potential energy 
curve, since that is the point where the energy is all potential energy. The vertical axis is used 
for two different variables, as in Figure 15.2. The behavior of the harmonic oscillator 
probability density is qualitatively like that of the particle in a box, and the numbers of 
nodes follows the same pattern. However, for the harmonic oscillator the probability density 
does not vanish outside of the classically permitted region, but extends beyond the classical 
turning points. Penetration into a classically forbidden region is called tunneling. The 
name was chosen because a tunnel into a hillside allows access to a location under an 
inaccessible location of high gravitational potential energy. 

Distinguishing Case 1 from Case 2 

A common measure of the "spread" of a probability distribution is the standard 
deviation, which we have already defined in Eq. (10.2-38). The standard deviation for 
the measurement of a variable A is denoted by aA and defined by 

(15.4-20) 

The square of the standard deviation is called the variance. 

Exercise 15.15 
Show that application of the definition of the standard deviation in Eq. (15.4-20) to the gaussian 
probability distribution in Eq. (10.2-37) gives the same standard deviation as specified in that 
equation. 

Calculation of the standard deviation provides a general way to distinguish case 1 
from case 2. In case 1, all outcomes for repetition of a measurement will be equal, so 
that the standard deviation will equal zero. In case 2, the outcomes will be distributed 
statistically and the standard deviation will be nonzero. 
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*Exercise 15.16 
a. Calculate the probability that a particle in a one-dimensional hard box will be found within 

one standard deviation of its mean position for the n = 2 state. Comment on the comparison 
with the fact that with a gaussian distribution the probability would be 0.683. 

b. Calculate the probability that a particle in a one-dimensional hard box will be found within 
one standard deviation of its mean position for the n = 3 state. 

Uncertainty in the Measurement of a Variable 

If  case 2 applies, we will use the standard deviation, which we can evaluate from Eq. 

(15.4-20), as a measure of the  width of the  probabili ty distribution, or of the  u n c e r t a i n t y  of  

the measurements  of  the variable. In general, a single measurement  will have roughly a 

two-thirds probabil i ty of  lying within one standard deviation of  the expectation value. 
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*Exercise 15.17 
Calculate the value of the following ratio for the harmonic oscillator: 

Ratio -- 
I~o(zt)l 2 

I~0(0)[ 2 

Explain in words what this ratio represents. 

We have used the position of  a particle as an example of  a mechanical  variable. We 

must consider other variables, such as the momentum,  the energy, and the angular 
momentum.  

3 M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, 
and Mathematical Tables, U.S. Government Printing Office, Washington, D.C., 1964. See Appendix 8 for a 
table of values. 
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Exercise 15.18 
Show that the uncertainty in the energy of a particle in a box is equal to zero if it is known that the 
particle is in the n -- 1 state or any other state corresponding to an energy eigenfunction. 

The nonzero value of  the standard deviation shows that for this system and this state, 
case 2 applies to the momentum, while the zero value for the standard deviation of  the 
energy in Exercise 15.18 shows that the energy belongs to case 1 for this system and 
this state. 

Heisenberg's Uncertainty Principle 
We use a x and apx as measures of  the uncertainty in predictions of  position and 
momentum. Their product is a measure of  the combined uncertainty of  the two 
variables, and is called an uncer ta in ty  product .  From Examples 15.10 and 15.13, 
the value of  the uncertainty product of  x and Px for the n = 1 state of  the particle in a 
one-dimensional hard box is 

axapx -- (0.180756a)h---n-n- 0.56786h -- 0.09038h (15.4-22) 
a 

Table 15.1 gives some values of  a x and Ppx for a particle in a box. The coordinate x and 
the momentum component Px are conjugate  variables in the sense of  Eq. (D-19) of  
Appendix D. The Heisenberg  uncer ta in ty  principle is a general statement of  the 
combined uncertainties of  two conjugate variables: The product  o f  the uncertainties o f  
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two conjugate variables is equal to or larger than h/4~z, where h is Planck's constant. If 
we use the symbols Ax and Apx for the uncertainties of a coordinate and its conjugate 
momentum, then the uncertainty principle is 

(15.4-23) 

Equation (15.4-23) corresponds to the use of the standard deviation as the measure of 
uncertainty. There are other measures of the uncertainty of a statistical prediction 
besides the standard deviation. For a gaussian probability distribution, the uncertainty 
in a prediction at the 95% probability level is equal to 1.96 times the standard deviation. 
At this level of probability the fight-hand side of Eq. (15.4-23) would be replaced by a 
larger value. The actual value of the uncertainty product depends on the nature of the 
system and on the state considered. The uncertainty product for the n = 1 state of the 
particle in a box, 0.09038h, is slightly larger than h/(4n), which equals 0.079577h. The 
uncertainty product for the v = 0 state of the harmonic oscillator is exactly equal to 
h/(4n). 

Coordinates and momenta are not the only variables that have nonzero uncertainty 
products. The commutator of the operators of two conjugate variables is nonzero, as we 
have already seen for the commutator [x, Px]. Any two variables whose operators do not 
commute must have a nonzero uncertainty product. There is a general relation 

aA a8 >__ I~Jq,*[J, h]~aq (15.4-24) 

where [A,/~] is the commutator of A and /~.4 From the commutator of two angular 
momentum components, we can see that two components of the angular momentum 

4 Levine (Quantum Chemistry, 4th ed, Prentice-Hall, Engelwood Cliffs, N.J., 1991 pp. 82, 188) assigns the 
proof as a homework problem. A lot of hints are included, but it is a fairly long proof. 
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obey an uncertainty relation, at least for states for which the eigenvalue of the third 
component is not equal to zero. See Problem 15.36. 

Exercise 15.19 
Use Eqs. (15.4-24) and (15.3-13) to obtain the uncertainty relation for x and Px. 

The uncertainty principle is a rather subtle concept, and deserves more discussion 
than we give it in this book. However, the main idea is that it requires that case 2 applies 
to at least one of a conjugate pair of variables, and if case 1 applies to one of the 
variables, the other variable has an infinite uncertainty. 

Exercise 15.20 
Write the integral to calculate a x for the free particle of Example 15.14 and argue that its value is 
infinite. 

From the expectation value of the momentum of a free particle we can now justify the 
apparently arbitrary choice of sign that we made in Eq. (15.3-5). It appeared at that time 
that either ih d / d x  or - i h  d / d x  could have been chosen as the operator for Px. The free- 
particle wave function De ixx corresponds to a positive value of (Px), as shown in 
Example 15.14. If we combine this coordinate wave function with the appropriate time 
factor, e x p ( - i E t / h ) ,  we obtain the time-dependent wave function 

tp = D exp i(ax-Et/~') 
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which represents a traveling wave moving to the right (with positive value of Px). If 
ih d/dx had been chosen for the Px operator, a negative value for (Px) would have 
resulted, indicating motion in the wrong direction. 

Exercise 15.21 
Show that taking the opposite sign for the momentum operator leads to a negative value of (Px). 

The Time-Energy Uncertainty Relation 
Like position and momentum, energy and time also obey an uncertainty relation: 

h 
AE At > m (15.4-25) 

-41z 

The time-energy uncertainty relation is different from that of position and momentum, 
since time is not a mechanical variable that can be expressed in terms of coordinates 
and momenta and does not correspond to any quantum-mechanical operator. Although 
the time-dependent Schr6dinger equation has the Hamiltonian operator on one side and 
the time derivative operator on the other, this does not imply that ih O/Ot can be used as 
an operator for the energy, although such an operator relationship would lead to a 
commutator that would establish Eq. (15.4-25). 5 The Hamiltonian operator is the 
operator corresponding to the energy, and a single variable cannot correspond to two 
different operators. 

The standard interpretation of the time-energy uncertainty relation is that if At is the 
time during which the system is known to be in a given state (the "lifetime" of the 
state) then there is a minimum uncertainty AE in the energy of the state as given by Eq. 
(15.4-25). This is a different interpretation from the interpretation of the uncertainties in 
position and momentum, which can be expressed as standard deviations. Even if the 
state being considered corresponds to an energy eigenfunction, which has a zero value 
of a E, the fact that it is known to be in this state for only a finite length of time imposes 
an uncertainty on the energy, which we understand to be an actual uncertainty in the 
value of the energy eigenvalue. It is as though when a system makes a transition into a 
new state, the energy of the system gradually settles toward the fixed value correspond- 
ing to having been in the state forever. This uncertainty can be observed experimentally. 
It imposes a broadening on spectral lines that is larger if the system spends a shorter 
time in a given state. This phenomenon is known as "uncertainty broadening." It is 
important only if a system is observed very shortly after it makes a transition to a given 
state. 

5 y. Aharanov and D. Bohm, Phys. Rev., 122, 1649 (1961). 
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*Exercise 15.22 
If the energy of a system is to be measured to an uncertainty of 1.0 x 10 -21 J, find the minimum 
time during which the system must be in the state at the measured energy. 

We have stated that case 1 applies when the state of the system just prior to a 
measurement corresponds to an eigenfunction of  the operator for the variable. The 
t ime-energy uncertainty principle means that it must be known that the system has been 
in this state for an infinite length of time for case 1 to apply with absolute accuracy. 

The result of Example 15.16 illustrates the important general fact: I f  the wave 
function is an eigenfunction o f  the operator corresponding to the variable being 
measured, the outcome o f  an error-free measurement is completely predictable (the 
measurement belongs to case 1). The only value that will occur is the eigenvalue 
corresponding to the given eigenfunction. 

Exercise 15.23 
a. For a general system whose wave function ~pj is an eigenfunction of the operator .4 with 

eigenvalue aj, show that (A) = aj and that the standard deviation, aA, vanishes. 
*b. For a one-dimensional harmonic oscillator, find <E) and a E for the state corresponding to the 

v = 1 energy eigenfunction. 
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Although we have discussed energy eigenfunctions to the exclusion of other kinds of 
wave functions, there is no requirement that the wave function actually corresponding to 
the state of a system be an energy eigenfunction. 

*Exercise 15.24 
For a particle in a one-dimensional hard box, find (E) and a e for the coordinate wave function 

where I//1 and ~2 are the first two energy eigenfunctions. 

We now obtain a general formula for the expectation value of A when the wave 
function is expressed as a linear combination of basis functions as in Eq. (15.2-13). If 
the set of functionsfl ,fz,f3 . . . . .  are eigenfunctions of a hermitian operator A they form 
a complete set and we can write 

oo 

-- ~ c k f  '~ (15.4-27) 
k = l  
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If a complete set consists of normalized functions that are orthogonal to each other, we 
call it a complete or thonormal  set. We substitute the expansion of Eq. (15.4-27) into 
the expression for the expectation value, Eq. (15.4-1), assuming that ~p is normalized: 

(A) - ~p*Ar Y~ Y~ c~cka k fkdq (15.4-28) 
j = l  k = l  

We have used the eigenfunction property, have factored the constants out of the 
integrals, and have exchanged the order of integrating and summing. In order for it to 
be possible to exchange the order of summing and integrating, the sums and integrals 
must be uniformly convergent 

Since the functions fl ,f2 . . . .  are an orthonormal set, those integrals in which j ~ k 
will vanish, and the integrals with j = k will equal unity. We write 

I { 1 i f j - k  
s  d q -  6jk - 0 if j ~ k (15.4-29) 

This equation defines the quantity 6jk, which equals unity when its two indices are equal 
and equals zero otherwise. It is called the Kronecker  delta. When the sum over k is 
performed, only thej  = k term will be nonzero, and the sum over k collapses to a single 
term and the double sum collapses to a single sum. 

oo or or oo 

(A) -- E ~_~ c)ckak6jk E c~cjaj Y~ [cj[2aj 
j = l  k = l  j = l  j = l  

(15.4-30) 

Comparison of Eq. (15.4-30) with Eq. (1.5-4) shows that (A) is given in the same way 
as a mean value is given from individual values and their probabilities. We have already 
asserted in Postulate 4 that individual measurements of A can give as a result only one 
or another of the eigenvalues of the operator A, and we now assert that the probability 
that the eigenvalue %. will occur is 

p j  - Icj 12 (15.4-31) 

*Exercise 15.25 
Find the probability of each of the eigenvalues in Exercise 15.24. 

Postulate 5. The Determination of the State of a 
System 

The fifth and final postulate gives the rule for determining the mechanical state of a 
quantum-mechanical system: 

Postulate 5. Immediately after an error-free measurement of  the mechanical 
variable A in which the outcome was the eigenvalue aj, the state of  the system 
corresponds to a wave function that is an eigenfunction of  A with eigenvalue equal 
toaj. 

This postulate says nothing about the state of the system prior to the measurement, 
because the act of measurement can change the state of the system. If the energy of a 
particle in a box is measured and the result equals E 2, then the system is definitely in the 
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state corresponding to the energy eigenfunction ~2 immediately after the measurement. 
It could have been in any state prior to the measurement so long as the wave function 
for that state if represented as a linear combination of energy eigenfunctions included a 
term for ~2. 

The measurement of a variable belonging to case 2 is more complicated. Consider 
the determination of the position of a particle by allowing it to scatter electromagnetic 
radiation, much as an airplane reflects radar waves. When a macroscopic object such as 
an airplane reflects an electromagnetic wave, the effect on the object is negligible. 
When an object of small mass such as an electron scatters light, the effect is not 
negligible. If the position of an electron is to be determined to an accuracy of 0.1 nm, 
radiation with a wavelength of no more than 0.1 nm is needed. 

There is another argument. Assume that a particle in a box of length a is in a state 
corresponding to one of the energy eigenfunctions. The square of the wave function is 
the probability density for finding the particle, and this quantity is nonzero over the 
entire box except for the locations of nodes in the wave function. However, a single 
position measurement will give a single well-defined outcome, such as the location of a 
flash of light at a screen. An immediate repetition of the measurement would have to 
give a position very near the first position, since there would be no time for the particle 
to move appreciably. The wave function immediately after the first measurement must 
be a function that is nonzero only in the immediate vicinity of the measured position, 
since the square of the magnitude of the wave function is the probability density for 
finding the particle. The act of measurement must have changed the wave function. 
Figure 15.7a shows a possible wave function just before the measurement of position. 
Figure 15.7b shows the wave function schematically immediately after the position 
measurement. Figure 15.7c shows the wave function after a fairly short time has 
elapsed. The wave function has begun to evolve back into a delocalized wave function. 
We could follow this evolution by solving the time-dependent Schr6dinger equation. 

The fifth postulate asserts that the wave function immediately after the measurement 
of an observable A is an eigenfunction of.~ with eigenvalue a i equal to the outcome of 
the measurement. If the eigenvalue is nondegenerate, the act of measurement has put 
the system into a known state. If several eigenfunctions of A have the same eigenvalue, 
the act of measurement has not put the system into a known state. Let g i  be the number 
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of different eigenfunctions whose eigenvalues equal a i. If these are numbered from 1 to 
g, the wave function immediately after the measurement is 

gi 
O(after) = ~ cj(after)fj (15.5-1) 

j = l  

where fa ,f2 . . . . .  are the eigenfunctions whose eigenvalues equal ai .  Only the functions 
with the same value for the eigenvalue are included in the sum, but we do not know 
what the coefficients c x , c 2. c 3 . . . . .  cg i are. However, if there are other variables whose 
operators commute with A, measurement of enough of these variables can put the 
system into a known state. We say that such a set of variables form a complete set of 
commuting observables. For example, a complete set of commuting observables for 
the electron in a hydrogen atom has four variables. We will discuss this in the next 
chapter. 

Information about the State Prior to a Measurement 

A single measurement gives us information about the state after the measurement. 
Some information about the original wave function of a quantum-mechanical system 
can be obtained by repeated measurements if we have a procedure to put the system 
back into the original state before each measurement. 

Consider the nondegenerate case, that each eigenfunction of the operator 
corresponding to a variable A has a distinct eigenvalue. Since the set of eigenfunctions 
is assumed to be a complete set, the wave function priorto the measurement can be 
represented as a linear combination of eigenfunctions of A, as in Eq. (15.2-13): 

oo 

O(prior) -- ~ cj(prior)fj (15.5-2) 
j = l  



568 15 The Principles of Quantum Mechanics. II. The Postulates of Quantum Mechanics 

We now make a set of many measurements of A, ensuring somehow that the system is 
in the same state prior to each measurement. (If this cannot be done, we cannot 
determine anything about the state prior to the measurements.) Each outcome will be an 
eigenvalue of A, and we can determine the fraction of measurements corresponding 
to each eigenvalue. Let the fraction that results in the value a/ be equal to pj. By 
Eq. (15.4-31), 

Icj(prior)l-  x /~  (15.5-3) 

If all of the measurements give the same result, say ai, and if the state corresponding to 
f is nondegenerate, then Pi equals unity and we can assert that the state prior to the 
measurement must have been the state corresponding to f .  If more than one eigenvalue 
has a nonzero probability, we can determine the magnitudes of the cj(prior) coefficients. 
We cannot know the real and imaginary parts of each expansion coefficient, so we 
cannot know exactly what the wave function was prior to the measurement unless case 1 
applies. 

Summary of the Chapter 

In this chapter we have presented postulates that are the theoretical basis of quantum 
mechanics. The first two postulates establish a one-to-one correspondence between the 
mechanical state of a system and a wave function and establish the Schr6dinger 
equation, which governs the wave functions. 

The third postulate was that there is a hermitian mathematical operator in one-to-one 
correspondence to each mechanical variable for a given system. The recipe for writing 
the operator for a given variable is: (1) write the classical expression for the variable in 
terms of cartesian coordinates and momentum component, (2) replace each momentum 
component by the relation 

hO 
Pxj + i a x 

and its analogues. 
The fourth postulate provides the means for predicting values of mechanical 

variables from operators and the wave function of the system. The first part of the 
postulate is that the only possible outcomes of a measurement of a variable are the 
eigenvalues of the operator corresponding to that variable, and the second part is that 
the expectation value of the variable A is given by 

(A) - f ~*)4~ dq 
f ~ * ~ a q  

By study of the standard deviation of A, given by 

O" A = [(A 2) - (A)2] 1/2 

it was established that if the state just before a measurement of A corresponds to an 
eigenfunction of A, the only possible outcome of the measurement is the eigenvalue 
corresponding to that eigenfunction. In this case, a measurement is completely 
predictable, similar to the case in classical mechanics. If the wave function is not an 
eigenfunction of A, the standard deviation gives a measure of the spread of the 
distribution of results. 
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The fifth postulate states that in a measurement of A, if the result is as, one of the 
eigenvalues of A, then the state of the system immediately after the measurement 
corresponds to a wave function that is a linear combination only of those eigenfunctions 
whose eigenvalues equal aj. 

The measurement on the same system of a complete set of commuting observables 
suffices to put the system into a state that is completely known, even though only partial 
information is available about the state of the system prior to the measurements. 

P R O B L E M S  
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The Electronic States of Atoms. 
I. The Hydrogen Atom and the 
Simple Orbital Approximation 
for Multielectron Atoms 

1. The Schr6dinger equation for the hydrogen atom is an example of the 
"central-force problem," in which the potential energy depends only on the 
distance between the two particles that make up the system. 

2. In the central-force problem, the angular momentum of the system can have 
definite values if the system is in a state corresponding to an energy 
eigenfunction. 

3. The Schr6dinger equation for the hydrogen atom can be solved exactly, 
giving electronic wave functions called orbitals. 

4. Electrons have intrinsic (spin) angular momentum in addition to the angular 
momentum of orbital motion. Spin orbitals describe both space and spin 
behavior. 

5. Each electron in a multielectron atom occupies a hydrogenlike spin orbital if 
the simple orbital approximation is applied. 

6. The wave function for a multielectron atom must be antisymmetric. That is, 
the wave function changes sign if the coordinates of two electrons are 
exchanged. 

7. In an orbital wave function, every electron must occupy a different spin 
orbital (the Pauli exclusion principle). 

8. The total orbital angular momentum and the total spin angular momentum 
correspond to the same pattern as other angular momenta, and are used to 
characterize the energy levels of multielectron atoms. 
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The Hydrogen Atom and the Central Force System. 
Angular Momentum 

A hydrogen atom consists of a single electron with charge - e  and a nucleus containing 
a single proton with charge e, as depicted in Figure 16.1. The Hamiltonian operator for 
this system contains the potential energy function that corresponds to Coulomb's law 

# 2  

~ ( r )  = (16.1-1) 
4neor  

where e 0 is the permittivity of the vacuum and where r is the distance between the 
particles. The hydrogen atom is a member of a class of systems called central-force 
systems, which consist of two particles separated by a distance r with a potential energy 
function ~U that depends only on r. The Schr6dinger equation will be expressed in 
spherical polar coordinates, and the variables can be separated in this coordinate 
system. The solution for the 0 and q~ factors is the same for any central-force system. 
The results of this part will give us all of the information that can be obtained about the 
angular momentum of the hydrogen atom or any other central-force system. We will 
then proceed to the solution for the r factor, which is specific to the hydrogen atom. 

To construct the Hamiltonian operator for any system we write the classical 
Hamiltonian function in cartesian coordinates and then make the replacements 
analogous to Eq. (15.3-5) to form the Hamiltonian operator. The cartesian coordinates 
of the nucleus are denoted by Xn, Yn, and z n, and the cartesian coordinates of the electron 
are denoted by x~, y~, and z~. However, the variables cannot be separated with these 
coordinates. We transform to relative coordinates and center-of-mass coordinates. The 
relative coordinates: x, y and z are 

X = Xr; - -  X n ( 1 6 . 1 - 2 a )  

Y = Y r ~  --Yn (16.1-2b) 

Z = Z,,.~ - -  Z n (16.1-2c) 

The potential energy depends on the distance between the particles, which is 

r = ( x  2 + 7  2 - + - 2 2 )  1/2 (16.1-3) 

The coordinates of the center of mass are 

X 
mr~ xr + mnXn 

M 
(16.1-4a) 

Y _ _ m,~ y,~ + mny n 
M 

(16.1-4b) 

Z -- m~ z,.j + mnZ n 

M 

where the sum of the masses is denoted by M: 

(16.1-4c) 

M = m~ + m n (16.1-5) 
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The classical Hamiltonian contains the kinetic energy in terms of momentum compo- 
nents. The kinetic energy in terms of the velocity of the center of mass and the relative 
velocity is given in Eq. (D-26) of Appendix D: 

M P (v 2 + 2 Vz 2) (16.1-6) 
( + + i + 

where V and v are the velocity of the center of mass and the relative velocity, 
respectively. The reduced mass is denoted by/.t: 

mnme. 
p -- ~ (16.1-7) 

m n -Jr- m~ 

The momenta conjugate to the center-of-mass coordinates X, Y, and Z are 

P~ = MV~, Py = MVy, Pz -- MVz (16.1-8a) 

The momenta conjugate to the relative coordinates x, y, and z are 

(16.1-8b) Px --  #Vx, Py = #Yy, Pz = #Vz 

The classical Hamiltonian function is 

1 1 2 He ' _ ~r(p2 + p2 + p2) +_ (p2  + p )  +p2) + r (16.1-9) 
~t 

The Hamiltonian operator is obtained by the usual replacements for cartesian momen- 
tum components as in Eq. (15.3-5): 

f / - -  2M o-~+o-Y-2+o-~  -2-~ ~x2+O--~+~z  2 +y/~(r) 

h 2 h 2 
= -2--M V2 -2-~ Vr2 + V(r)  (16.1-10) 

where V 2 is the Laplacian operator defined in Eq. (14.4-25) and Eq. (B-40). 
The first term in the Hamiltonian operator is the c e n t e r - o f - m a s s  H a m i l t o n i a n :  

h2 
/~/e - -  2M V2 (16.1-11) 

and the other two terms are the relative I - Iami l ton ian .  

h 2 
t-/r - -  Vr 2 + ~U(r) (16.1-12) 

2# 

The time-dependent Schr6dinger equation is 

(t-/c -Jr- fi/r) tIj - -  EtI~ (16.1-13) 

This equation can be solved by the separation of variables. We assume the trial function 

--- ~c(X, Y,Z)~(x ,y , z )  (16.1-14) 

In previous chapters T has represented a time-dependent wave function. We will use 
both T and ~ for coordinate wave functions in the next several chapters, usually using 

for wave functions of more than one particle. 
By separation of variables, Eq. (16.1-14) leads to the two equations 

[/c~c -- EeOc (16.1-15) 

/2/~ _ E r  ~ (16.1-16) 
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with the energy eigenvalue E, 

E = E c + Er (16.1-17) 

Exercise 16.1 
Carry out the steps to obtain Eq. (16.1 - 15)-(16.1 - 17). 

Equation (16.1-15) for the center of  mass is the same as the Schr6dinger equation for 
a free particle. We can transcribe the energy eigenfunctions and energy eigenvalues 
from Chapter 14 with replacement of the symbol for the mass by M. We will return to 
the motion of the center of mass in Chapter 19 and will then also consider the 
possibility that the atom or molecule is contained in a box. 

Solution of the Relative Schr6dinger Equation 
Equation (16.1-16) is the Schr6dinger equation for the relative motion. It is mathema- 
tically equivalent to the problem of the motion of a particle of mass ~ moving at 
distance r from a fixed origin under the effect of  the potential energy V(r )  (see 
Appendix D). Figure 16.2 depicts this equivalence. The vector from the nucleus, 
(labeled n) to the electron (labeled e) in Figure 16.2a is equal to the vector from a fixed 
origin to the fictitious particle of mass/~ in Figure 16.2b. If one of the particles is much 
heavier than the other, as is the case in the hydrogen atom, the reduced mass is nearly 
equal to the mass of the lighter object, the center of  mass is much closer to the heavier 
particle than to the other, and the motion is nearly the same as though the heavier 
particle were stationary with the lighter particle moving around it. 

*Exercise 16.2 
The mass of the electron is 9.10939 x 1 0 -  31kg and the mass of the proton is 
1.672623 • 10- 27 kg. 
a. Calculate the ratio of the reduced mass of the hydrogen atom to the mass of the electron. 
b. For a hydrogen atom with the electron at a distance 1.000 x 10-l~ from the nucleus, find 
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the distance from the center of mass to the nucleus and to the electron. Hint: Assume that the 
particles are temporarily on the x axis. 

We now transform the relative Schrrdinger equation to spherical polar coordinates, in 
which r is one of the coordinates. These coordinates are shown in Figure 16.3. The 
expression for the Laplacian operator in spherical polar coordinates in Eq. (B-42) of 
Appendix B gives the relative SchrSdinger equation: 

2pr 2 -~r r2 ~ ~  sin(0) -+ + Y/~(r)~ + sin(0) 00 ~ sin2(0) 

=Er~ p (16.1-18) 

Comparison of this equation with Eq. (15.3-11) shows that the operator for the square 
of the angular momentum is contained in the Hamiltonian operator: 

2#r 2h2 OrO ( 0 ~ )  1 /~ 2 r2--~r + ~pr2 ~ + ~(r)d/ - Erd / (16.1-19) 

This equation can be solved by another separation of variables. We assume the trial 
solution 

d/(r, O, dp) - R(r) Y(O, ~b) (16.1-20) 

The separation of variables is a little more difficult in this case than in previous cases 
since the coordinates do not occur only in separate terms in the Hamiltonian operator. 
We have to do it in two steps. 

Since the operator L 2 does not contain r, substitution of the trial solution into Eq. 
(16.1-19) gives 

Y r 2 -k- RL2y + (r - Er)RY -- 0 (16.1-21) 
2p ~dr r  

We multiply this equation by 2prZ/h 2 and divide by RY. This separates r from the other 
variables, giving 

1 d (r2dR" ~ 2#r 2 1 1L2 
R dr \ + ---~ -(~t/~ - Er) + h--2Y Y - 0 (16.1-22) 

The Angular Factors in the Wave Function 
The final term on the left-hand side of Eq. (16.1-22) contains no r and the other terms 
contain no 0 or ~. The last term must be a constant function of 0 and ~b, which we set 
equal to the constant K. Multiplication by h2y gives the equation 

~ 2 y _  h2Ky (16.1-23) 

which we can solve for the angular factor Y, which is also the eigenfunction of L 2 . The 
factor R in the eigenfunction will be different for different potential energy functions, 
but the factor Y will be the same for every potential energy function ~ that depends 
only on r. 

Equation (16.1-23) can be written 

.2E, (sinr 
sin(O) O0 ~ ~ 

1 0 2 Y] 
sin2(O) O-~J - h2Ky (16.1-24) 
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To carry out a second separation for the variables 0 and ~b, we assume the trial solution 

Y = | (16.1-25) 

Substitution into Eq. (16.1-24) followed by division by |  and multiplication by 
sin2(0) gives 

sin(O) d ( s i n ( o ) d |  1 d20  
| dO -do + -~ dd? ----~ = - K  sin 2(0) (16.1-26) 

The last term on the left-hand side of this equation depends only on ~b, so it must be a 
constant function of ~b, which we call - m  2. If this choice for the constant is made, m 
will turn out to be a real integer. Multiplication by �9 gives the equation 

d2(I) 
dt~2 -- - m 2 ~  (16.1-27) 

Except for the symbols used, Eq. (16.1-27) is exactly the same as several equations 
already encountered, and its general solution can be written as in Eq. (14.5-21): 

6# = Ae im4~ + Be -im4~ (16.1-28) 

where A and B are constants. The version of the general solution with sine and cosine 
functions could also have been used. 

A wave function must be continuous. The variable ~b ranges from 0 to 2n radians. 
Since 4~ = 0 and ~ = 2n refer to the same location for given values of r and 0, 

�9 (0) = ~(2n)  (16.1-29) 

This condition is satisfied only if m is real and equal to an integer. 

Exercise 16.3 
Use the identity 

e i'n4~ = cos(m~) + i sin(m~b) 

to show that m is real and equal to an integer. 

There are two standard forms of the function in E q. (16.1-28). For the first form, we 
choose the values so that ~ is an eigenfunction of L z, given by Eq. (15.3-10): 

~ z _ h  0 
i 0~b (16.1-30) 

We operate on �9 with Lz: 

~z ~ _ h__ (imAeim4 ~ _ imBe_i,n4~) (16.1-31) 
i 

We have an eigenfunction of L,z with eigenvalue hm if B is chosen to equal zero, or an 
eigenfunction of L z with eigenvalue - h m  if A is chosen to equal zero. It can be shown 
that L 2 and L,z commute with each other and with/2/r, so that these three operators can 
have a set of common eigenfunctions. It is sometimes useful to have wave functions that 
are eigenfunctions of L z. 

Exercise 16.4 
Show that/2/r, L 2, and Lz all commute. 
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With B = 0, the normalized (I) function is 

where the values of A and B are chosen for normalization. The complex (I) functions are 
eigenfunctions of the Lz operator. The real functions are not eigenfunctions of the Lz 
operator if m 5~ 0, but sometimes it is convenient to have real wave functions. 

The equation is named for Adrien- 
Marie Legendre, 1752-1833, a 
famous French mathematician. 

Exercise 16.5 
Show that ~mx and f~my a r e  not eigenfunctions of Lz for m ~ O. 

After replacement of the constant term by - - m  2 and multiplication by | Eq. 
(16.1-26) becomes an equation that can be solved for the | function: 

sin(0)~- 0 sin(0)--d-- 0- - m20 + K sin2(0)| = 0 (16.1-35) 

This equation can be transformed into the associated Legendre equation by a change 
of variables: 

y = cos(0), P(y) = | (16.1-36) 

The associated Legendre equation and its solutions are given in Appendix E The 
solutions are called associated Legendre functions, and are derivatives of polynomials 
known as Legendre polynomials. 

For a solution to exist that obeys the relevant boundary conditions, the constant K 
must be equal to l(l + 1) where l is an integer at least as large as [ml. There is one 
solution for each set of values of the two quantum numbers l and m: 

l~)(O) = Olm(O) (16.1-37) 

The solutions are the same for a given value of m and its negative: 

Olin(O) = 0l,-m(O) (16.1-38) 
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where we insert a comma to avoid confusing two subscripts having values l and - m  
with a single subscript having a value equal to ( l -  m). 

The Y functions are called spherical harmonic functions. Each one is a product of a 
| function and a (I)m(~b) function having the same value of m as the | function: 

y -- Ylm(O, ~)  = ~)lm(O)(I)m(~) 

Table 16.1 gives the normalized spherical harmonic functions for l = 0, l -  1, and 
l -- 2. Additional functions can be derived from formulas in Appendix E 

Angular Momentum Values 
The spherical harmonic functions, Ylm(O, 4)), are eigenfunctions of the operator for the 
square of the angular momentum with eigenvalue hZK, as in Eq. (16.1-23). The fact that 
K must equal l(l + 1) where l is a nonnegative integer gives us the eigenvalues of the 
square of the angular momentum: 

(16.1-39) 

(16.1-40) 
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so that the magnitude of the angular momentum takes on the values 

L----ILl=O, x/2h, x/-6h, V/f2h, ~/~-6h . . . .  (16.1-41) 

Compare these mathematically generated values with the assumed values h, 
2h, 3h . . . . .  in the Bohr theory of the hydrogen atom. Not only is the origin of the 
quantization different, but the values are different from those of the Bohr theory. The 
Bohr theory gave the correct value of the energy of the hydrogen atom, but not of the 
angular momentum. 

The function (I) m in Eq. (16.1-32) is an eigenfunction o fL  z with eigenvalue hm,  so 
that Ytm is also an eigenfunction: 

(16.1-42) 

(16.1-43) 

The magnitude of the angular momentum and the z component can simultaneously 
have predictable values. In order to specify completely the direction of the angular 
momentum vector, values of L x and Ly would have to be specified as well as Lz. 
However, L x, Ly, and L z do not commute with each other, so all three of these operators 
cannot have a full set of common eigenfunctions. Only one component of the angular 
momentum can have a predictable value for the full set of states, and the exact direction 
of the angular momentum vector cannot be determined. 

Exercise 16.6 
a. Use Eq. (15.4-24) and the expression for the commutator [/~x, Ly] in Problem 15.36 to obtain 

an uncertainty relation for L x and Ly. As the wave function in the integral, use the spherical 
harmonic function Y21. 

b. Repeat part (a) using the spherical harmonic function Y00. Comment on your result. 

Figure 16.4 depicts the case that l = 2, for which m can take on the values 2, 1, 0, 
- 1, and - 2 .  The magnitude of L is , /~h = 2.4495h, and the possible values of L z are 
2h, h, 0, - h ,  and -2h .  The angular momentum vector can point anywhere on the five 
cones drawn in the figure. If the wave function is known to correspond to particular 
values of I and m, then it is known which cone applies, but the direction on that cone is 
not known. For any values of l, there are 2l + 1 cones, one for each possible value of m. 
Notice the similarity between each cone on Figure 16.4 and the cone of directions 
around which a gyroscope axis precesses, as shown in Figure D-3 of Appendix D. 

There is nothing unique about the z direction. One could choose L x or Ly as a 
member of a set of commuting observables instead of Lz. In that event, the �9 functions 
would be different, and would correspond to cones in Figure 16.4 that would be 
oriented around either the x axis or the y axis. We choose L z since its operator is simpler 
in spherical polar coordinates than those of the other components. 
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*Exercise 16.7 
Transform the expression for,Oll(I)lx to cartesian coordinates. Show that this function is an 
eigenfunction of the operator L x and find its eigenvalue. 

This equation is named for Edmund 
Laguerre, 1834-1866, a famous 
French mathematician who solved the 
equation. 

The Wave Functions of the Hydrogen Atom 

In Section 16.1, we wrote the energy eigenfunction for any central-force system as 

kI/(r, 0, r  = R(F)YIm(O , Eft) = R ( r ) O l m ( O ) f ~ m ( ~ )  (16.2-1) 

The spherical harmonic functions Ytm(O, dp) = | are the same functions for 
any central-force problem. The R function (the radial factor) is different for each 
choice of the potential energy function ~/'(r). We replace ~2y by h21(l + 1)Y in Eq. 
(16.1-22), according to Eq. (16.1-39) and multiply the resulting equation by R to obtain 
the differential equation for R: 

d ( r z d R  ) 2/~r2 
dr -~r + ~ (~1/- - E)R + l(l + 1)R - 0 (16.2-2) 

where we now omit the subscript r from the symbol for the relative energy. For the 
hydrogen atom, V(r )  is given by the expression in Eq. (16.1-1). Expanding the 
derivative term into two terms gives 

_r2d2R dR 2 p r 2 (  ~2 ) 
dr 2 2r dr h2 E + 4neo r R + l(l + 1)R - 0 (16.2-3) 

We make the following substitutions: 

c~ 2 = 2pE ]2~ 2 

h2 , fl = 4rce0~h2, p - 2~r (16.2-4) 

The resulting equation is divided by p2, giving an equation that is known as the 
associated Laguerre equation: 

d2R 2 dR R fir R 
dp 2 t P dp 4 ~ ~p - l(l + 1) ~-~ - 0 (16.2-5) 

where we use the letter R for the function of p that is equal to R(r). 

Exercise 16.8 
Carry out the manipulations to obtain Eq. (16.2-5) from Eq. (16.2-3). 

The solution is written as 

where G(p) is a power series 

R(p) = G(p)e -p/2 (16.2-6) 

(x) 
G(p) -- y~ ajp j (16.2-7) 

j=O 

with constant coefficients al, a2, a3, . . . .  The solution of the equation, which we will 
not discuss, is reduced to the problem of determining these coefficients. 
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The Hydrogen Atom Energy Levels 
As with the series in the harmonic oscillator solution, the series in Eq. (16.2-7) must 
terminate after a finite number of terms in order to keep the wave function from 
becoming infinite for large values of p, violating our boundary conditions. 1 The 
termination requires that the parameter fl in Eq. (16.2-4) is equal to an integer n, 
which must be at least as large as l + 1. The minimum value of n is unity, and this value 
occurs only for l - 0 .  Solving the second equality in Eq. (16.2-4) for ~, we obtain 

]2~ 2 
= (16.2-8) 

47re0h2n 

From the first relation in Eq. (16.2-4), the energy is quantized, with a value determined 
by the quantum number n: 

(16.2-9) 

The energy expression in Eq. (16.2-9) is identical with that of the Bohr theory. As in 
the case of the particle in a box and the harmonic oscillator, the energy is quantized by 
the nature of the Schr6dinger equation and its boundary conditions, and not by arbitrary 
assumption as in the Bohr theory. These negative values of the energy eigenvalue E 
correspond to bound states, in which the system does not have sufficient relative 
energy for the electron to escape from the nucleus. There are also non-bound states 
called scattering states in which the energy is positive and in which the electron moves 
toward the nucleus, passes it, and continues on its way. We will not discuss these states, 
which do not have quantized energy values. 2 

Exercise 16.9 
Substitute the values of the constants into Eq. (16.2-9) to show that the energy of relative motion 
of a hydrogen atom can take on the values 

(16.2-10) 

where 1 eV (electronvolt) is the energy required to move one electron through an electric potential 
difference of 1 volt, equal to 1.6022 x 10-19 j. 

The parameter a is the same as the radius of the smallest orbit in the Bohr theory of 
the hydrogen atom in Eq. (14.3-14): 

(16.2-11) 

1 Frank L. Pilaf, Elementary Quantum Chemistry, McGraw-Hill, New York, 1968, pp. 151 IT. 
2 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Systems, Plenum, New 

York, 1977, pp. 21if, pp. 32IT. 
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where A represents the angstrom unit, 10-10 m. When we express the energy in terms 
of this parameter, we get 

h 2 ~2 e2 

E - -  E n - -  2In -- 2(4neo)an 2 (16.2-12) 

Exercise 16.10 
Verify Eqs. (16.2-11) and (16.2-12). 

In the (fictitious) limit that the nucleus is infinitely heavy compared to the electron, 
the electron moves about the stationary nucleus, and the reduced mass becomes 

m e m n  
l i m p  -- lim \m~ ~ ran/ - m~ (16.2-13) 

mn----~ (X) mn---+ OO 

where me is the mass of the electron. Equation (16.2-11) becomes 

h24neo 0_11 
lim a -  a 0 = ~ = 5.29198 x 1 m (16.2-14) 

mn --'-~ O0 m e e 2 

For ordinary purposes, the distinction between relative motion of the nucleus and 
electron about their center of mass and electronic motion about a stationary nucleus is 
numerically unimportant, because the nucleus is so much more massive than the 
electron. We usually refer to the relative motion as electronic motion. 

*Exercise 16.11 
Calculate the percentage error in the hydrogen atom Bohr radius and in the hydrogen atom energy 
introduced by replacing the reduced mass by the mass of the electron. 

The rules that the quantum numbers obey can be restated: 

n = 1,2, 3 . . . .  (16.2-15a) 

/ - -  0, 1,2 . . . . .  n - 1  (16.2-15b) 

m = 0, + 1,-t-2 . . . . .  + l  (16.2-15c) 

The quantum number n is called the principal quantum number. The quantum 
number l has been called the azimuthal quantum number,  but could also be called the 
angular  momentum quantum number. The quantum number m has been called the 
magnetic quantum number,  but could also be called the angular  momentum 
projection quantum number. Since the energy eigenvalue depends only on the 
value of the principal quantum number, the energy levels are degenerate except for 
the n = 1 level. 
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Figure 16.5 shows the energy level diagram for the first few bound-state electronic 
energy levels of a hydrogen atom. Each state is represented by a horizontal line segment 
at the appropriate height for its energy level. There is also a continuous spectrum of 
unbound states of positive energy. The characteristic pattern for the degeneracies of the 
bound states is that increasing the value of n by unity makes one more value of I 
available while increasing the value of I by unity makes two more values of m available. 

The Radial Factor of the Hydrogen Atom Wave Functions 

The polynomial G in Eq. (16.2-6) is expressed as a function of p, which is proportional 
to r. From Eqs. (16.2-4), (16.2-8) and (i6.2-11), 

2r 
p - 2c~r -- (16.2-17) 

na 

These polynomials are related to the associated Laguerre functions. Appendix F 
describes these functions and the Laguerre polynomials of which they are derivatives 
and gives formulas for generating the polynomials. There is a different R factor for each 
set of values of the quantum numbers n and l. Table 16.2 gives the R functions for 
n - 1, 2, and 3, and others can be written from the formulas for associated Laguerre 
functions given in Appendix E 

The energy eigenfunctions of relative motion in the hydrogen atom are called 
orbitals. Each orbital is obtained by multiplying a radial factor R,t by a spherical 
harmonic function Ylm, which must have the same value of l as the radial factor. The Ylm 
factor consists of a Olm(O ) factor and a q)m(4~) factor with the same value of m: 

trkJnl m - -  Rnl  Ylm -= Rnl(r )~) lm(O)dPm(qb ) 

To each one of these eigenfunctions there corresponds a stationary state of the electron, 
with predictable values of the energy and the square of the angular momentum. If the 
complex (I) functions are used, there is also a predictable value of the z component of 
the angular momentum. The energy, the square of the angular momentum, and the z 
component of the angular momentum are a complete set of commuting observables for 
the electronic motion of the hydrogen atom. That is, if each of these variables is 
measured, the system will afterwards be in a state corresponding to a known wave 
function. 
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The electronic energy levels of  the hydrogen atom are called shells, because the 
expectation value of  the distance of  the electron from the nucleus is approximately the 
same for all states with the same value of  n and is larger for larger values of  n. The 
shells are labeled with the value of  n, the principal quantum number. There is also an 
older notation in which the first shell is called the K shell, the second shell is called the 
L shell, etc. Within a given shell, the states with a given value of  l constitute a subshell. 
The l - 0 state of  a shell is called its s subshell. The three states in a shell with l - 1 
constitute a p subshell. A d subshell consists of  the five l - 2 states. An f subshell 
consists of  the seven l = 3 states. As further subshells appear, they are given the letters 
g, h, i, etc. (alphabetical after f ) .  The letters s, p, d, a n d f  came from the spectroscopic 
terms "sharp",  "principal," "diffuse", and "fundamental," but these names have no 
connection with the present usage. There are n subshells in the nth shell. The first shell 
has only the ls subshell, while the seventh shell has the 7s, 7p, 7d, 7f, 7g, 7h, and 7i 
subshells. 

*Exercise 16.12 
Give the value of each of the three quantum numbers for each state of the fourth shell. 

The Hydrogenlike Atom 
A He + ion or a Li 2+ ion has a single electron, and must be similar to a hydrogen atom. 
We define a hydrogenl ike a tom to have one electron and a number Z of  protons in its 
nucleus. The only change that we need to make in our discussion of  the hydrogen atom 
is to replace the potential energy function in Eq. (16.1-1) by 

Z ~  2 
~ ( r )  = (16.2-18) 

4~ze0r 
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The energy eigenvalue of Eq. (16.2-12) is replaced by 

h2o~ 2 Z 2 ~  2 Z 2 

E --  E n --  - 2--7 = - 2 ( 4 r t e o ) a n  2 = -(13.60 eV)--7 (16.2-19) 

and the variable p becomes 

2 Z r  
p -- 2c~r = (16.2-20) 

g/a 

Since p is proportional to Z, the effective radius of a shell is inversely proportional to Z. 
The first shell for a He + ion is closer to the nucleus than the first shell of a hydrogen 
atom, and so on. The orbital energy is directly proportional to Z 2 so that E 1 is larger in 
magnitude (more negative) for a He + ion than for a hydrogen atom, and so on. 

Table 16.1 contains formulas for the first few spherical harmonic functions, and 
Table 16.2 contains formulas for the first few radial factors of the hydrogenlike atoms. 
Table 16.3 contains formulas for the real energy eigenfunctions for the first three shells 
(us ing  f~mx and (~my instead of (I) m and (I)_m). The real (I) functions will often be more 
useful in describing chemical bonding, and the complex (I) functions will be more 
useful in discussing angular momentum values. 

Instead of giving the value of the subscript l, we can give the letter of the subshell. 
The 210 function can be called the 2p0 function and the 211 function can be called the 
2p 1 function, etc. The 2p0 function is also called the 2pz function. The 2p function with 
(I)mx is called the 2px function, and the 2p function with f~mx is called the 2py function. 
The labels on the real 3d functions can be seen in Table 16.3. The formulas in these 
tables can be applied to the hydrogen atom by letting Z = 1, to the He + ion by letting 
Z = 2, etc. Other wave functions can be constructed from formulas in Appendix E 

It is important to have a grasp of the qualitative properties of the hydrogenlike 
orbitals. Figure 16.6 shows graphs of the R functions for the first three shells. The 
number of nodes in the R function increases by unity if n is increased by unity for fixed 
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l, and decreases by unity if I is increased by unity for fixed n. The | function and the 
(I) 0 function for the s subshells are equal to constants. The orbitals in the s subshells 
depend only on r and are called spherically symmetric functions. The other | and (I) 
functions are more complicated, especially in the case of the complex ~ functions, 
which have a real and an imaginary part. Figure 16.7 shows graphs of several of these 
functions. The three spherical harmonic functions that occur in the 2p subshell are 
exactly the same as the three spherical harmonic functions that occur in the 3p subshell 
or any other p subshell, and those of the 3d subshell are the same as those of any other d 
subshell, and so on. 

It is not possible to draw a graph representing a function of three independent 
variables, and it is also difficult to visualize the qualitative properties of the orbital by 
looking at three separate graphs for the R, 0 ,  and (I) functions. Therefore, we introduce 
the orbital region, which is the region in space where the magnitude of the orbital 
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function is larger than some specified small value. Since the square of the orbital 
function is the probability density, the orbital region is the region inside which the 
electron is likely to be found. A common policy chooses a constant magnitude of the 
orbital at the boundary of the orbital regions such that 90% of the total probability of 
finding the electron is inside the orbital region. Pictures of orbital regions are seen in 
almost all elementary chemistry and organic chemistry textbooks, but sometimes the 
distinction between the orbital and the orbital region is not made clear. The orbital is a 
one-electron wave function, while the orbital region is a three-dimensional region in 
space inside of which the orbital is larger in magnitude than some small value. Figure 
16.8 shows several orbital regions. The sign of the orbital function is indicated for the 
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real orbitals. Notice the differences between the orbital regions for the complex 2p and 
the real 2p orbitals. For the complex orbitals, we take the magnitude of the complex 
exponential e im4~ or e -im4~, which is a constant, while for the real orbitals we have either 
sin(mq~) or cos(m~). The compactness of the orbital regions of the real p functions often 
makes them more useful than the complex p orbitals in discussing chemical bonding. 
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The orbital regions can be approximately constructed from the pattem of the nodal 
surfaces in the R, | and (I) functions. The orbital region cannot include any nodal 
surface, so any nodal surface divides the orbital region into two separate subregions, 
which are sometimes called "lobes". If there is a node in the R factor, the nodal surface 
is a sphere. If there is a node in the q) factor the nodal surface is a cone, or a plane if the 
node occurs at 0 = re/2 (90~ If there is a node in a real (I) factor the nodal surface is a 
half-plane with edge at the z axis, which is always paired with another half-plane to 
make a nodal plane containing the z axis. The nodes in the real part of a complex 
function are just like those of a real (I) function, and the nodes in the imaginary part of a 
complex (I) function are just like those of a different real (I) function. The number of 
nodal surfaces is always equal to n -  1 if the spherical nodal surface at r--+ oc is 
excluded (and we will consistently exclude it). The ls orbital has no nodal surfaces. 
Each of the orbitals in the second shell has one nodal surface, and each of the orbitals in 
the third shell has two nodal surfaces, and so on. 

Exercise 16.13 
Describe the nodal surfaces for the real orbitals of the 3d subshell. 

In general, a wave function with more nodes corresponds to a higher energy. This fact 
correlates with the fact that the de Broglie wavelength has a smaller value if there are 
more nodes. By Eq. (14.4-3), the de Broglie wavelength is inversely proportional to the 
speed, and thus has a smaller value when the kinetic energy is larger. With a particle in a 
one-dimensional box, the number of nodes was (in addition to the nodes at the ends of 
the box) equal to n - 1, where n was the quantum number. The energy was proportional 
to the square of n. With the harmonic oscillator, the number of nodes was equal to v, the 
quantum number, and the energy was proportional to v + 1. In the real hydrogenlike 
orbitals, the number of nodal surfaces is equal to n -  1, where n is the principal 
quantum number, and the energy is also higher for larger values of n. 

Normalization of the Hydrogenlike Orbitals 
For motion of one particle in three dimensions, normalization in cartesian coordinates 
means 

O(x, y, z)*O(x, y, z) dx dy dz - [O(x, y, z)[ 2 dar - 1 
- - C O  - - 0 0  - -  ( X )  - -  ( X )  - -  ( X )  - - 0 0  

(16.2-21) 
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In spherical polar coordinates, 

I~(r, 0, ~b)12r 2 sin(0)ddp dO dr -- I~(r, 0, ~b)l 2 d3r - 1 (16.2-22) 
0 0 

We abbreviate the volume element in any coordinate system by d3r or by dq. The factor 
r 2 sin(0), which is called a ,lacobian, is required to complete the element of volume in 
spherical polar coordinates. 

d3r = r 2 sin(0)dq5 dO dr (spherical polar coordinates) (16.2-23) 

The form of this Jacobian can be deduced from the fact that an infinitesimal length in 
the r direction is dr, an infinitesimal arc length in the 0 direction is r dO, and an 
infinitesimal arc length in the ~b direction is r sin(0)d~b. Since the lengths are 
infinitesimal, there is no distinction between arc lengths and linear lengths. The element 
of volume is the product of these mutually perpendicular infinitesimal lengths, giving 
Eq. ( 16.2-23). 

The normalization integral for the hydrogen orbitals can be factored in spherical 
polar coordinates: 

R*Rr 2 dr |174 sin(0) dO ~ * ~  d4~ - 1 (16.2-24) 
o 

We make the additional normalization requirement that each of the three integrals in 
this equation equals unity. The constants in the formulas for the R, | and �9 factors that 
we have introduced correspond to this requirement. These separate normalizations in 
Eq. (16.2-24) simplify the calculation of many expectation values. 
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*Exercise 16.14 
Substitute the values of the constants into Eqs. (16.2-26) and (16.2-27) to obtain numerical values 
for (1/r) and (~) for a hydrogen atom. 

As shown in Eq. (16.2-27) the expectation value of the potential energy of a 
hydrogenlike atom equals twice the total energy of Eq. (16.2-12). Therefore, the 
expectation value of the kinetic energy is half as large as the magnitude of the potential 
energy, and is equal in magnitude to the total energy (the kinetic energy must be 
positive while the total energy and the potential energy are negative). This behavior 
occurs in all systems of particles interacting only with the Coulomb potential energy, 
and is a consequence of the virial theorem of mechanics. 3 

The Radial Distribution Function 

The radial distribution function, fr, is defined as the probability per unit value of r for 
finding the electron at a distance r from the nucleus. That is, 

(Probability that the particle ) 
fr d r -  lies at a distance from the (16.2-28) 

nucleus between r and r + dr 

The locations that lie at distances from the nucleus between r and r + dr constitute a 
spherical shell of radius r and thickness dr, as shown in Figure 16.10a. The total 
probability of finding the electron in this shell is obtained by integrating over 0 and qS: 

(J:Ji ) fr dr - [~(r, 0, ~b)12r 2 sin(0)~b dO dr (16.2-29) 

where r is not integrated. The integral can be factored, and the 0 and ~b integrals give 
factors of unity: 

(16.2-30) 

The expectation value of a quantity depending only on r can be computed using the 
radial distribution function. For example, 

(1) I ~ I i  ~1 1 R , R r  2 dr fr dr 
F F 

(16.2-31) 

Figure 16.10b shows graphs of the radial distribution function for several energy 
eigenfunctions. All of the states of a given subshell have the same radial distribution 
function because they have the same radial factor in their wave functions. Since the 
radial distribution function is proportional to r 2, each one vanishes at the nucleus, and 
since it is proportional to an exponential function, each one approaches zero for large 
values of r. Therefore, each radial distribution function goes through one or more 
relative maxima. The s orbitals are nonzero at the nucleus (the origin) but even their 
radial distribution functions vanish at the nucleus. 

3Ira N. Levine, Quantum Chem•try, 4th ed., Prentice-Hall Englewood Cliffs, N.J., 1991, pp. 434ff. 
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*Exercise 16.15 
a. Calculate the expectation value (r) for a hydrogenlike atom in the ls state. Why is this not 

equal to (1/r)-l? 
b. Calculate (r 2) for a hydrogenlike atom in the ls state. Why is this not equal to (r)2? 
c. Find the most probable value of r for a hydrogenlike atom in the ls state. Why is this not equal 

to (r)? 

The Time-Dependent Wave Function of the Hydrogen Atom 
We can now write the time-dependent wave function, using the three-dimensional 
analogue of Eq. (14.4-22): 

tr~nlm(r, O, q~, t) -- Onlm(r, O, ~)e  -iE"t/h (16.2-32) 

This represents a stationary state. The probability density for finding the electron is 
time-independent. The expectation value of any time-independent variable is time- 
independent, and can be calculated with the coordinate wave function. 

Exercise 16.16 
Show that the expectation value (1/r) is exactly the same as in Example 16.4 when the time- 
dependent wave function ~1oo is used instead of the coordinate wave function ~1oo. 
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The Intrinsic Angular Momentum of the Electron. "Spin" 
It is found experimentally that in addition to the angular momentum included in the 
solution to the Schr6dinger equation, electrons have an additional angular momentum. 
To obtain adequate agreement with experiment, this feature must be added to the 
Schr6dinger theory. The angular momentum included in the Schr6dinger theory is now 
called the orbital angular momentum and the additional angular momentum is called 
the intrinsic angular momentum or the spin angular momentum. The Schr6dinger 
theory is nonrelativistic and cannot be correct when particles have speeds near the 
speed of light. There is a version of quantum mechanics that is compatible with special 
relativity, based on the Dirac equation rather than the Schr6dinger equation. The 
intrinsic angular momentum occurs naturally in this theory. 

The z component of the intrinsic angular momentum takes on one of only two 
possible values, h/2 and - h / 2 .  We denote the intrinsic angular momentum by S and 
write 

(16.2-33) 

We assign a new quantum number, ms, for the z component of the intrinsic angular 
momentum, with the values 

(16.2-34) 

The total angular momentum of an electron is the vector sum of the orbital and intrinsic 
angular momenta. The total angular momentum is denoted by J and its z component is 
denoted by Jz. It has values 

Jz = mh + msh (16.2-3 5) 

where m is the same quantum number as before. 
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The pattern of values of m s is analogous to that of Eq. (16.1-43) for the orbital 
angular momentum if we assign a quantum number s for the square of the intrinsic 
angular momentum with a fixed value of 1. If we allow half-integral values for quantum 
numbers, all angular momentum quantum numbers follow this pattern. The square of 
the intrinsic angular momentum has the fixed value 

+ 1 (16.2-36) 

following the same pattern as Eq. (16.1-40). 
There are three principal differences between the orbital angular momentum and the 

intrinsic angular momentum. First, the orbital angular momentum occurred naturally in 
the nonrelativistic Schr6dinger theory, while the intrinsic angular momentum is 
arbitrarily added to the theory in order to make it agree with experiment and with 
this aspect of relativistic quantum mechanics. Second, the intrinsic angular momentum 
has only one possible magnitude while the orbital angular momentum has variable (but 
quantized) magnitude. Third, this single magnitude corresponds to a quantum number 
that is a half-integer instead of an integer. Figure 16.11 shows the two cones of possible 
directions of the intrinsic angular momentum. 

It is natural to seek a classical interpretation for the intrinsic angular momentum. 
Although we have previously treated the electron as a mass point, and although it is not 
known what its internal structure is (if any), it is customary to ascribe the intrinsic 
angular momentum to rotation of the electron about its own axis, calling it spin 
angular momentum. The assumed motion is analogous to the rotation of the earth on 
its axis as it revolves about the sun. We will use this spin interpretation, although we 
could proceed if we wished without any mental picture of spinning motion, and there is 
no guarantee that it is physically accurate. We now have twice as many possible states 
of electronic motion in a hydrogenlike atom as we did before, since for every set of 
values of the quantum numbers n, l, and m, there are two possible values of m s. We will 

. . . .  1 "spin down" call the state for ms - + �89 the spin up state and the state for m s = - ~  
state, corresponding to the direction of the intrinsic angular momentum vector. 

There are two different ways to include spin in our notation. The first is to attach 
another subscript to the orbital symbol, replacing n l m  by n l m m  s.  There is no need to 
include the value of s since it is fixed. The orbital is now called a spin orbital. The 
second way is to multiply the original orbital by a spin function that is called a for 
ms _ + 1 and fl for m - -�89 The original orbital is now called a space orbital and the 
product is called a spin orbital. The spin function is thought of as being a function of 
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some spin coordinates that are not explicitly represented. The two ways of writing a 
spin orbital are equivalent: 

I/Inlm, 1/2 -- Onlm O~, Onlm,-1/2 -- Onlmfl (16.2-37) 

We define operators for the spin angular momentum that are analogous to the orbital 
angular momentum operators. We do not write any explicit mathematical forms for 
them, but assign their properties by definition. The spin functions a and fl are defined to 
be eigenfunctions of S 2, the operator for the square of the spin angular momentum: 

~ 2 ~ _  h2(1/2)(3/2)~ (16.2-38) 

~2 fl _ hZ(1/2)(3/2)f l  (16.2-39) 

They are also defined to be eigenfunctions of Sz, the operator for the z component of the 
spin angular momentum: 

(16.2-40) 

(16.2-41) 

The spin functions are defined to be normalized and to be orthogonal to each other. 
Addition of the intrinsic angular momentum modifies the Schr6dinger theory of the 

electron so that it agrees adequately with experiment for many purposes. Further 
modifications can be made to include additional aspects of relativistic quantum 
mechanics such as small differences between the energies of "spin up" and "spin 
down" states for states of nonzero orbital angular momentum. We will not discuss the 
spin-orbit coupling that produces this effect, although it is numerically important in 
heavy atoms. 4 

The Helium Atom in the "Zero-Order" Orbital 
Approximation 

The hydrogenlike atom is the only atom for which the Schr6dinger equation can be 
solved without approximation. This does not invalidate the Schr6dinger quantum theory 
for other atoms, since approximate treatments of other atoms have been carried out that 
give accurate agreement with experimental energy values. It does mean that the only 
way to proceed with other atoms is with approximations. 

The Hamiltonian of a Heliumlike Atom 

The helium atom contains two electrons and a nucleus containing two protons. We 
define a "heliumlike" atom with Z protons in the nucleus, so that Z -  2 represents 
the He atom, Z -  3 represents the Li + ion, etc. The system is shown in Figure 16.12. 
The three-body problem cannot be solved exactly, either in classical or in quantum 

4pilar, op. cit., pp. 301ff (Note 1); K. Balasubramanian, J. Phys. Chem., 93, 6585 (1989). 
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mechanics, so we assume that the helium nucleus is stationary. This is a good 
approximation, as with the hydrogenlike atom. With a stationary nucleus, the classical 
Hamiltonian function is 

1 1 2 1 { Z62 Z~2 ~2 "~ 
- ~ ~- ) (16 Hcl ~mm p2 + ~mmP 2 -k- ~ F2 t'l ~112 .3-1) 

where Pl is the vector momentum of electron 1, P2 is the vector momentum of electron 
2, m is the electron mass, and the distances are as labeled in Figure 16.12. The 
Hamiltonian operator is 

h e 1 ( Z e 2  Z62 ~2) 
2m (V2 + V2) + ~ r 2 rl ~12 (16.3-2) 

where V 2 and V 2 are the Laplacian operators for electrons 1 and 2. 

The "Zero-Order" Orbital Approximation 
The Hamiltonian operator of Eq. (16.3-2) gives a time-independent Schrrdinger 
equation that has not been solved exactly. We begin with the zero-order approxima- 
tion, which is obtained by neglecting the repulsion of the electrons for each other. It is 
not a good approximation, but it is a starting point for better approximations. The 
approximate Hamiltonian operator is now 

[/(0) = h2 V 2 Ze2 h2 V 2 Ze2 (16.3-3) 
2m 4rte0r 1 2m 4rte0r 2 

where we add a superscript (0) to distinguish the approximate "zero-order" Hamilto- 
nian from the correct Hamiltonian. It is a sum of hydrogenlike Hamiltonian operators: 

/_2/(0) _/2/HL(1) +/2/HL(2) (16.3-4) 

where the subscript HL stands for "hydrogenlike," and where we abbreviate the 
coordinates of a particle by writing only the particle index. The approximate time- 
independent Schr6dinger equation is 

/2/(~176 [/2/HL(1 ) +/~HL(2)]q~(0)(1, 2 ) -  E(~176 (16.3-5) 

where we attach a superscript (0) to the zero-order wave function and eigenvalue. 
Equation (16.3-5) can be solved by separation of variables, using the trial solution: 

qJ(~ - ~l(r l ,  01 , q51)ff2(r 2, 02, ~b2) = ~1(1)ff2(2) (16.3-6) 

where ~1 and ~2 are two orbitals (functions of the coordinates of one electron). In the 
second version of the orbitals, each particle's coordinates are represented only by their 
subscript. A multielectron wave function that is a product of orbitals is called an orbital 
wave function. 

We substitute the trial solution into Eq. (16.3-5) and use the fact that ~1(1) is treated 
as a constant when/?/HL(2) operates and ff2(2) is treated as a constant when HI~L(1) 
operates. The result is 

ff2(2)HHc(1)ffl(1) -+- ~1 (1)[/HC(2)ff2(2) -- E(~ ) (16.3-7) 
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Division of this equation by ~1(1)~2(2) completes the separation of variables: 

1 ^ 
1 [/nL(1)ffl(1) + HHL(2)ff2(2 ) -- E (~ (16.3-8) 

01( 1 ) 02( 2 ) 

Each of the terms on the left-hand-side of the equation contains only a set of variables 
not occurring in the other term, and the fight-hand side is a constant. The first term must 
be equal to a constant, which we call El, and the second term must be equal to a 
constant, E2, such that 

E 1 + E 2 = E (~ (16.3-9) 

We now have two differential equations: 

[-/HE(I)01 (1) -- El~tl(1 ) (16.3-10) 

/2/HL(2)02(2 ) -- E202(2) (16.3-11) 

Equations (16.3-10) and (16.3-11) are two hydrogenlike Schr6dinger equations. There- 
fore, E 1 and E 2 are hydrogenlike energies (orbital energies). The total electronic energy 
in the zero-order approximation is 

E (O)nl n2 -- Enl(HL)-JvEn2(HL ) - -  _(13.60 eV)(Z2) [ ~  + 122] (16.3-12) 

where n 1 and n 2 are two values of the principal quantum number for a hydrogenlike 
atom. The orbitals ~1(1) and ~2(2) are hydrogenlike orbitals: 

W(~ -- ~1(1)~2(2) - -  ~lnlllmlms 1(1)On212m2ms2(2 ) (16.3-13) 

The values of a given quantum number for the two orbitals are not necessarily equal, so 
we add a subscript on each subscript to distinguish them from each other. The notation 
with separate spin functions can also be used. 

Probability Densities for Two Particles 
For a system of two particles whose wave function is W(1, 2), the probability of finding 
particle 1 in the volume element d3ra and finding particle 2 in the volume element d3r2 
is given by 

(Probability) = qJ*(1, 2)qJ(1,2)d3rl d3r2 = I~(1, 2)12 d3rl d3r2 (16.3-14) 

The square of the magnitude of the wave function is a probability density in a six- 
dimensional space. For the orbital wave function of Eq. (16.3-13), the probability 
density for two particles is the product of two one-particle probability densities: 

IW(1, 2)12 = 101(1)12102(2)12 (16.3-15) 

Since we have neglected the interaction between the electrons, it is reasonable that the 
probability densities of the two particles are independent of each other. If this 
probability density is normalized, 

I IW(1, 2)12 d3rl d3r2 - 1 (16.3-16) 

We consider the inclusion of spin functions later. 
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The Indistinguishability of Identical Particles 
Although we have obtained a function that satisfies our approximate Schr6dinger 
equation and the appropriate boundary conditions, it must be further modified to obtain 
agreement with experiment. It must conform to the condition: Identical particles are 
inherently indistinguishable from each other. This condition does not occur in classical 
mechanics and is an additional hypothesis that must be tested by comparing its 
consequences with experimental fact. It is plausible because of the uncertainty 
principle, which makes exact trajectories impossible to specify, so that if two identical 
particles approach each other closely it might not be possible to tell which is which after 
the encounter. Figure 16.13 shows two encounters that could be distinguished from 
each other if classical mechanics were valid, but which might not be distinguished 
according to quantum mechanics. 

We must not build anything into our theory that would allow us to distinguish one 
particle from another of the same kind. In a helium atom, the probability of finding 
electron 1 at location 1 and finding electron 2 at location 2 must equal the probability of 
finding electron 1 at location 2 and finding electron 2 at location 1. Any difference in 
these two probabilities would give an illusory means of distinguishing the particles. The 
probability density in Eq. (16.3-14) must remain unchanged if the locations of the two 
electrons are interchanged: 

�9 (1, 2)*~(1, 2) = ~(2,  1)*~(2, 1) (16.3-17) 

That is, the probability density qJ*W must be symmetric with respect to interchange of 
the two particles' locations. The probability density of two particles does not have to be 
symmetric if the particles are not identical. For example, the probability density for a 
hydrogen atom does not have to be symmetry with respect to interchange of the proton 
and the electron. 

With real functions there are only two ways to satisfy Eq. (16.3-17). Either the wave 
function must be symmetric with respect to interchange of the particles: 

~P(1, 2) = ~g(2, 1) (symmetric wave function) (16.3-18) 

or the wave function must be antisymmetric with respect to interchange of the particles 
(change sign if the locations of the particles are switched): 

$ (1 ,2 )  = - ~ ( 2 ,  1) (antisymmetric wave function) (16.3-19) 

Although our wave functions are not required to be real, they are also not required to be 
complex. We consider only these two possibilities. 

Particles that obey Eq. (16.3-18) are called bosons, and particles that obey Eq. (16.3- 
19) are called fermions. Electrons are found experimentally to be fermions, so that our 
approximate two-electron wave function must be modified to obey Eq. (16.3-19). 
Protons and neutrons are also fermions. Photons are bosons. Atoms or molecules 
containing an even number of fermions are bosons, and molecules containing an odd 
number of fermions are fermions. The requirement that a two-electron wave function be 
antisymmetric is a requirement of the same sort as the requirement that a wave function 
be continuous, single-valued, and finite. These conditions, in addition to solution of the 
Schr6dinger equation, must be applied to find an acceptable wave function. 

The simplest way to obtain an antisymmetric two-electron orbital wave function is to 
add a second term that is the negative of the first term with the orbital labels 
interchanged, giving 

~P(1,2) - C[~tl(1)~t2(2 ) - ~2(1)~1(2)] (16.3-20) 
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We say that we have antisymmetrized the wave function. With this wave function it is 
not possible to say which electron occupies which orbital, because the labels are in one 
order in the first term of the antisymmetric wave function and in the other order in the 
second term. 

Exercise 16.17 
By explicit manipulation, show that the function of Eq. (16.3-20) obeys Eq. (16.3-19). 

The Paufi exclusion principle is named 
for Wolfgang Pauli, 1900-1958, who 
received the 1945 Nobel Prize in 
physics for his contributions to 
quantum mechanics. 

The Pauli Exclusion Principle 
There is an important fact about fermions that we can see in Eq. (16.3-20). If the 
orbitals ~l and ~2 are the same function, the two-particle wave function is the 
difference of two identical terms and vanishes. A vanishing wave function cannot 
represent any state of the system. Therefore, a given spin orbital cannot occur more than 
once in any term of a two-electron wave function. We will later construct orbital wave 
functions for more than two electrons. When antisymmetrized, these will consist of a 
sum of terms with different signs. Each term will be a product of spin orbitals, one for 
each electron. The Pauli exclusion principle is a generalization of our observations for 
two electrons: In an orbital  wave  funct ion,  the same  spin orbital  cannot  occur  more  

than once in each term. A spin orbital that occurs in an orbital wave function is said to 
be "occupied" by an electron. Another statement of the Pauli exclusion principle is: In 

an orbital wave  funct ion,  no two electrons can occupy  the same  spin orbital. 

The probability density for the antisymmetrized wave function of Eq. (16.3-20) is 

W(1,2)*tP(1, 2) - ICI2[@1(1)121@2(2)12 + 1@2(1)121@1(2)12 

-- ~tl(1)*~t2(l)~2(2)*~l(2 ) -- ~2(1)*~1(1)~1(2)*~2(2)] (16.3-21) 

where C is a normalizing constant. Each term in Eq. (16.3-21) gives an integral that 
factors into a product of two one-particle integrals. Each of the first two terms gives 
unity if the orbitals are normalized. Each of the last two terms gives zero if the orbitals 
are orthogonal to each other. To normalize the wave function, 

1 = [CI2[1  -k- 1] = 2[C[ 2 

or if C is taken to be real and positive, 

C - ~ (16.3-22) 

The probability of finding particle 1 in the volume element d3rl irrespective of the 
location of particle 2 is given by integrating the probability density in Eq. (16.3-14) 
over all positions of particle 2: 

(Probability of finding ) [ I  qj(1 2),qj(1 2)dar2 ] rl 
particle 1 in d3rl - ' ' d3 (16.3-23) 

If the two-electron wave function is a one-term orbital wave function such as that of Eq. 
(16.3-6), the orbital function for electron 1 factors out of the integral: 

(Probability of f i n d i n g ) p a r t i c l e  1 in d3rl - ~l(1)*~1(1)dgr1J "~2(2)*~2(2)d3r2 
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If I//2 is normalized, the integral in this equation equals unity and 

( Probability of finding ) 
particle 1 in d3rl - ffl(1)*ffl(1)d3rl -1~1(1)12 d3rl (16.3-24) 

The probability density for electron 1 is just that of its own orbital, independent of 
electron 2. An analogous equation can be written for electron 2. 

If the antisymmetrized wave function of Eq. (16.3-21) is used, the expression must be 
integrated in the same way as Eq. (16.3-23) to obtain the probability density for particle 
1. Only the first two terms in Eq. (16.3-21) survive, due to the orthogonality of the 
orbitals, and the result is 

Probability of finding) 2 12 
particle 1 in d3rl - I C I  [1~1(1) + lff2(1)12]d3rl 

1 12 d3 =5[[~t l (1)  +[~t2(1)] 2] rl (16.3-25) 

This probability is the average of what would occur if electron 1 occupied orbital 1 and 
what would occur if it occupied orbital 2. Since we cannot specify which orbital is 
occupied by the electron, this is a plausible result. An exactly analogous expression can 
be written for electron 2. The total probability of finding some electron in a volume d3r 
is the sum of the probabilities for the two electrons: 

Probability of finding) _ 2lCi2[l~Pl(r)12 + [ff2(r)12] d3r 
an electron in d3rl 

= [l&l(r)l 2 + l&2(r)12] d3r (16.3-26) 

When this probability density is multiplied by - e ,  the electron charge, it is the charge 
density (charge per unit volume) due to the electrons. 

The Ground State of the Helium Atom 

The lowest-energy state of a system is called its ground state. Since the subshell of 
lowest orbital energy, the ls subshell, contains two spin orbitals (one space orbital), 
both electrons can be in the ls subshell. Our approximate ground-state wave function is 

(0) 
q / i s i s ( l ,  2) - -  t~ls,1/2;ls_l/2(1,2) 

- -  C [ ~ 1 o o , 1 / 2 ( 1 ) r  - -  ~Jl00 _1/2(1)~J100,1/2(2)] (16.3-27) 

where two sets of orbital subscripts are used because the orbital wave function contains 
two spin orbitals. This wave function is antisymmetric, and satisfies the Pauli exclusion 
principle. If the spin orbitals are written as products of space orbitals and spin functions, 
the spin part can be factored out: 

tp(o) (1,2) - C[~ loo(1)~(1)~ lOO (2)fl(2) - ~ lOO (1)fl(1)O loo (2)a(2)] 

= C~ loo(1)~ lOO(2)[a(1)fl(2) - fl(1)a(2)] (16.3-28) 

To normalize the wave function, the constant C must be such that 

1 - C * C I t P ( ~ 1 7 6  2 (16.3-29) 

where the coordinates of both particles are integrated. Since we have introduced spin 
functions, an integration over the independent variables of the spin functions as well as 
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over the space coordinates is indicated. We regard dq' 1 and dq' 2 as representing both 
space and spin coordinates: 

dq' 1 - d3rl dS(1) (16.3-30) 

where d3rl is the volume element in ordinary space, and dS(1) is the "volume element" 
of the unspecified spin coordinates. We do not explicitly integrate over the unspecified 
spin coordinates, but define the spin functions ~ and/3 to be normalized and orthogonal 
to each other: 

Je(1)*e(1)d~(1) I / ~ ( 1 ) * / ~ ( 1 ) d ~ ( 1 ) ( b y  definition) (16.3-31) 1 

and 

I fi(1)*o~(1)dS(1) - J offl)*fi(1)dS(1) - 0 
f 

(by definition) (16.3-32) 

We use these definitions when an integration over spin coordinates is indicated instead 
of explicitly carrying out an integration. 

The two-electron wave function in Eq. (16.3-28) is substituted into the normalization 
integral of Eq. (16.3-29). The integral can be factored, since the space and spin 
coordinates of each particle occur in separate factors: 

1-C*CI~tloo(1)*~loo(1)d3rlI~lOO(2)*~lOO(2)dar 2 

• -/3(1)c~(2)],[e(1)//(2)-/3(1)e(2)] dS(1) dS(2) (16.3-33) 
f a  

Since the hydrogenlike orbitals are normalized, the integrals over the space coordinates 
equal unity, and we have, after multiplying out the terms and factoring the spin 
integrals: 

1--C*C{[Ic~(1)*c~(1)dS(1)Jfl(2)*~(2)dS(2 ) 

+ I/3(1)/3(1) dS(1)I c~(2)*c~(2)dS(2) 

- I  ~(1)*/3(1)dS(1)I/3(2)*~(2) dS(2) 

- I/3(1)*e(1) dS(1) J c~(2)*/3(2) dS(2)] } (16.3-34) 

where we have factored the double integrals. Each of the first two terms in the final 
equation above gives unity because of the defined normalization of the spin functions. 
The last two terms give zero because of the defined orthogonality of the spin functions, 
so that if we choose C to be real and positive, 

C - V~ (16.3-3 5) 

The energy eigenvalue for our zero-order ground-state wave function is the sum of 
two hydrogenlike orbital energies: 

(0) _ EI(HL) + E 1 (HL) -- 2 ( -  13.60 eV)Z 2 (16.3-36a) ls ls  

For helium, Z = 2, so that 

(0) _ _ 108.8 eV (16.3-36b) ls ls  
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This approximate energy eigenvalue is seriously in error, since the experimental value is 
- 79 .0  eV. Since 1 eV is equivalent to 96.5 kJ mol-1, an error of 30 eV is a very large 
error, larger than chemical bond energies. We obtain better approximations in the next 
chapter. 

Excited States of the Helium Atom 

States of higher energy than the ground state are called e x c i t e d  s ta te s .  For excited states 
represented by orbital wave functions, there are two cases: (1) both electrons occupy the 
same space orbital with different spin functions, and (2) the two electrons occupy 
different space orbitals, either with the same or different spin functions. A statement of 
which orbitals are occupied is called the electron configuration. The detailed 
configuration is specified by writing the designation of each occupied space orbital 
with a fight superscript giving the number of electrons occupying that space orbital. 
This superscript can equal either 1 or 2. The subshen configuration is specified by 
writing the designation of each subshell with a right superscript giving the number of 
electrons occupying orbitals of that subshell. The maximum value of this superscript is 
2 for an s subshell, 6 for a p subshell, 10 for a d subshell, and so on. The configuration 
of the ground state of helium is (ls) 2 (subshell and detailed configurations are the same 
with s subshells). Two of the many possible excited configurations are (ls)l(2s) 1 and 
(ls)l(2p0) 1 (detailed) or (ls)l(2p) 1 (subshell). A superscript equal to unity is often 
omitted, so that (ls)(2s) means the same as (ls)l(2s) 1. 

If both electrons occupy the same space orbital, a wave function for an excited state is 
similar to that of the ground state, with the antisymmetric spin factor. For the 
configuration (2s)2: 

1 
~2s2~ = ~ ~2s(1)~Zs(2)[~(1)/3(2) -/~(1)~(2)] (16.3-37) 

For the configuration (ls)l(2s) 1, there are four states, since each electron has two 
choices, spin up and spin down. Four antisymmetric wave functions are: 

1 
~1 - ~ [~tls(1)~tZs(2) - ~tZs(1)~tls(2)]~(1)~(2) (16.3-38a) 

1 
~2 -- ~ [~ ,s(1)~2s(2) - O2s( 1 )~ ,s(2)]/3(1)/3(2) (16.3-38b) 

1 
~3 - 5 [Ols(1)O2s(2) - O2s(1)Ols(2)][~ + fl(1)c~(2)] (16.3-38c) 

1 
t~/4 -- 2 [~ ls(1)~t2s(2 ) -+- ~2s(1)~t ls(2)][~(1)fl(2) - fl(1)~(2)] (16.3-38d) 

All of these functions are eigenfunctions of the ~2 and ,~2 operators, although we do not 
prove that fact. 

Exercise 16.18 
Show that kP 3 and tIJ 4 satisfy the zero-order Schr6dinger equation and find the energy eigenvalue. 
Show that these functions are normalized if the orbitals are normalized. 
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Angular Momentum in the Helium Atom. RusselI-Saunders 
Coupling 
It is a theorem of both classical and quantum mechanics that the total angular 
momentum of an isolated system is conserved. If no external forces act on the 
system, its total angular momentum does not change in time. A conserved quantity 
is called a constant of the motion. A quantum number determining the value of a 
conserved quantity is called a good quantum number,  and the quantity itself is 
sometimes referred to by the same name. The total angular momentum is always a good 
quantum number for an isolated atom or molecule, and for atoms in the first part of the 
periodic table the orbital and spin angular momenta can be assumed to be good 
quantum numbers. This assumption is called Russell-Saunders coupling. 

The sum of two angular momenta is a vector sum. Consider an atom with two 
electrons. Let I 1 and s 1 be the orbital and spin angular momenta of electron 1, and 
let 12 and s2 be the orbital and spin angular momenta of electron 2. We will now 
use lower-case letters for angular momenta of single electrons, and capital letters 
for angular momenta of multielectron atoms. The total orbital and spin angular 
momenta of the helium atom are vector sums of the contributions of the individual 
electrons: 

L = 11 + 12 (16.3-39) 

S = s 1 --]- s 2 ( 1 6 . 3 - 4 0 )  

The total angular momentum of the atom is 

,I = L + S (16.3-41) 

The eigenvalues of the )2, )z, Lz, Lz, S;, and Sz operators follow the same pattern as 
other angular momenta: 

,)2W - hZJ(J + 1)qJ (16.3-42) 

)ztP = hMjW (16.3-43) 

L 2 ~  - -  h2L(L + 1)W (16.3-44) 

Lye  - h MLUe (16.3-45) 

~ 2 ~ r / ~  _ _  h2S(S + 1)qj (16.3-46) 

Sz ~ - hMsW (16.3-47) 

Figure 16.14 illustrates how angular momentum vectors can add vectorially to produce 
some particular values of the quantum numbers L, ML, S, and M s. In each diagram, the 
tail of the second vector is placed at the head of the first vector, as is done in the 
geometric representation of vector addition. 

In Russell-Saunders coupling, the energy levels are characterized by the values of L 
and S. The orbital angular momentum quantum number L is a nonnegative integer. The 
spin angular momentum quantum number S is a nonnegative integer or half-integer. 
Each set of states corresponding to a particular value of L and a particular value of S 
is called a term. A Russell-Saunders term symbol is assigned to each term. The 
principal part of the symbol is a letter giving the value of L, as follows: 
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A left superscript is attached that has the value 2S + 1. For our two sets of states we 
will show that we have 3S and 1S (pronounced "triplet S" and "singlet S.") In addition 
to the terms "singlet" for S = 0 and "triplet" for S = 1, we use "doublet" for S = 1/2, 
"quartet" for S = 3/2, etc. The value of the left superscript is called the multiplicity of 
the term, and is equal to the number of values of M s that occur since M s ranges from S 
to -S .  A fight subscript giving the value of J is also sometimes used. 

We now investigate the values of the quantum numbers for particular configurations. 
Since the angular momenta are vectors, their operators are expressed as vector sums. 
For two electrons, 

L2 = Jxl § lx2) 2 + Jyl + ly2) 2 + Jzl + lz2) 2 (16.3-48) 

Zz -- lzl + lz2 (l 6.3-49) 

~2 _ (Sxl + sx2) 2 + (Syl + Sy2) 2 + (Szl + Sz2) 2 (16.3-50) 

Sz - Szl + Sz2 (16.3-51) 

The L 2 and ~2 expressions are not easy to use because they contain terms that do not 
commute with each other, and we will not obtain explicit expressions for them. 5 We can 
find the values of ML and M s, and from these infer the values of L and S using the fact 
that ML ranges from +L to - L  and that M s  ranges from +S to -S .  For two electrons, 
since the z components of two vectors add algebraically, 

5 Levine, op. cit., pp. 292ff (Note 3). 
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We have enough states that we can have a 3S term (L = 0, S = 1), with M s = 1, O, 

and - 1 ,  plus a 1S term (L = 0, S = 0) with M s = 0. The wave functions in Eq. 
(16.3-38) are eigenfunctions of the ~2 operator. We state the eigenvalues without proof: 

~2 e(1)e(2) = 2h 2 ct(1)e(2) (16.3-54) 

S2fl(1)f l (2)-  2h2fl(1) f l (2)  (16.3-55) 

,~2[e(1)fl(2) + fl(1)ct(2)] - 2h2[ct(1)fl(2) + fl(1)ct(2)] (16.3-56) 

S'2[~(1),B(2) - fl(1)~(2)] - 0 (16.3-57) 

The first three functions correspond to the triplet term and the fourth corresponds to the 
singlet term. The symmetric spin factor in Eq. (16.3-56) belongs to the triplet, and the 
antisymmetric spin factor in Eq. (16.3-57) is the singlet. This is the general pattern. 

We can infer the values of L and S as follows: Since the only value of M L is zero, 
there are only S states, with L = 0. We begin with the largest value of Ms,  which is 1 in 
this case. This means that the largest value of S is 1. A value of S equal to 1 requires 
values of M s equal to 1, 0, and - 1 .  We assign three states with these values to a 3S 
(triplet S) term. There is only one state remaining, with M s -- 0. We assign it to a 1S 
(singlet S) term. We always begin with the largest values of M L and M s and assign the 
states to the largest values of L and S first. 



16.3 The Helium Atom in the "Zero-Order" Orbital Approximation 609 



610 16 The Electronic States of Atoms. I. The Hydrogen Atom and the Simple Orbital Approximation for Multielectron Atoms 

In order to finish characterizing our electronic states, we can give the values of J ,  the 
quantum number for the total angular momentum, and Mj, the quantum number for its z 
component. Since J is the sum of L and S, 

)z -- I,z + 5'~ (16.3-60) 

Therefore, 

(16.3-61) 

The possible values of d can be deduced by using the rule that for each value of J ,  the 
values of Mj range from ÷ J  to - J .  Since the largest value of Mj equals the largest 
value of ML plus the largest value of M s, the largest value of J is 

Jmax = L + S (16.3-62) 

The smallest value of J is 

Jmin = I t -- S[ (16.3-63) 

J must be nonnegative. 

*Exercise 16.20 
Tabulate the M L and M s values of the 12 states of Example 16.8. Show that the following terms 
occur: 

Ip1, 3P1, 3P2, 3P 0 

Hint: Use the list of quantum numbers in Table 16.4 and assign values of Mj. The largest value of 
Mj is equal to the largest value of J. Assign the states to the different values of J in the same way 
as was done in Example 16.8 with L and S. 

Atoms with More Than Two Electrons 

Our discussion of larger atoms will be similar to that of the helium atom, neglecting the 
electron-electron repulsion, in Chapter 17 we will describe the approximate inclusion 
of this repulsion. 

The Lithium Atom in Zero Order 
A lithium atom has three electrons and a nucleus with three protons. The Hamiltonian 
operator for a lithium atom with stationary nucleus is 

h 2 
/2 /_  _ 2---m (V~ + V 2 + V 2) 

1 [ 3~ 2 3~ 2 

÷ ~ ~ rl r2 

3 ~2 ~2 g2 ¢2 "~ 
~ - - - + ~ + ~ )  (16.4-1) 

?'3 /"12 F13 ?'23 

As in the helium atom treatment, the zero-order Hamiltonian omits the electron- 
electron repulsion terms, giving 

/r?/(0) _ [7tilL(l) + [/HL(2 ) +/QHL(3 ) (16.4-2) 
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where the hydrogenlike Hamiltonians correspond to Z = 3. The zero-order approxima- 
tion always leads to a wave function that is a product of orbitals: 

tp(o) = ~tl(1)O2(2)~t3(3 ) (16.4-3) 

The three orbitals are hydrogenlike orbitals with Z = 3, so that the zero-order wave 
function without antisymmetrization but with inclusion of spin is 

~./(0) _ .  ~ln,l,m,ms,(1)~tn212m2ms2(2)On313m3ms3 ( 3 )  (16.4-4) 

The subscripts on the subscripts indicate the fact that the quantum numbers do not 
necessarily have the same value for each orbital. 

The electronic energy of the atom is the sum of three hydrogenlike energy 
eigenvalues with Z = 3. From Eq. (16.2-19), 

E(O) __ Eal'llL-'(O)nzn3 = EB1 (HL) + En2 (HL) + En3 (HL) 

= - (13 .60  eV) + n-- v + (16.4-5) 

Exercise 16.21 
Carry out the steps to obtain Eqs. (16.4-4) and (16.4-5). 

Antisymmetrization 
The orbital wave function of Eq. (16.4-4) can be antisymmetrized by including one term 
corresponding to each possible order of the orbital labels for a fixed order of particle 
labels. Each term that is generated from the first term by one permutation of a pair of 
indexes has a negative sign, and each term that is generated by two permutations of 
pairs of indexes has a positive sign. The antisymmetrized function is 

1 
- ~ [~t1(1)02(2)~3(3 ) -- 02(1)01(2)03(3) -- 01(1)03(2)02(3) 

-- ~3(1)~2(2)~1(3) -Jr- ~3(1)~t1(2)~2(3) n t- ~2(1)~3(2)~1 (3)] (16.4-6) 

where we abbreviate the quantum numbers by writing 1 instead of n 1 , l 1 , m 1 , ms1, etc. 

Exercise 16.22 
Show that the function produced by exchanging particle labels 1 and 3 in Eq. (16.4-6) is the 
negative of the original function. Choose another permutation and show the same thing. 
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If a spin orbital occurs more than once in each term in the wave function, the wave 
function vanishes (this is the Pauli exclusion principle). 

Exercise 16.23 
Show that the wave function of Eq. (16.4-6) is normalized if the orbitals are normalized and 
orthogonal to each other. The normalization integral is an integral over the coordinates of all three 
electrons. Each term will factor, but there will be 36 terms. Look for a way to write down the 
result of integrating each term without having to write all of the integrands, using the 
orthogonality and normalization of the orbitals. 

The Slater determinant is named after 
John C. Slater, 1900-1976, a 
prominent American physicist who 
made various contributions to atomic 
and molecular quantum theory. 

Slater Determinants 

There is another notation that can be used to write the antisymmetrized wave function 
of  Eq. (16.4-6). A de te rminan t  is a quantity derived from a square matrix by a certain 
set of  multiplications, additions and subtractions. If the elements of  the matrix are 
constants, the determinant is equal to a single constant. If the elements of  the matrix are 
orbitals, the determinant of  that matrix is a single function of  the coordinates on which 
the orbitals depend. The wave function of  Eq. (16.4-6) is equal to the determinant: 

1 @1(1) 01(2) 01(3) 
- ~,2(1) ~,2(2) ~,2(3) (16.4-7) 

~lJ ~ I//3(1 ) 03(2) 03(3) 

which is called a Slater determinant. There is a brief introduction to matrices and 
determinants in Appendix B. 

Exercise 16.24 
Use the rule of Eq. (B-89) of Appendix B for expanding a three-by-three determinant to show that 
the function of Eq. (16.4-7) is the same as that of Eq. (16.4-6): 

Two properties of  determinants presented in Appendix B relate to the properties of  
antisymmetrized orbital wave functions: 

1. If one exchanges two columns or two rows of  a determinant, the resulting 
determinant is the negative of  the original determinant. Exchanging the locations 
of  two particles is equivalent to exchanging two columns, so that the Slater 
determinant exhibits the necessary antisymmetry. 
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2. If two rows or two columns of a determinant are identical, the determinant vanishes. 
If two electrons occupy identical spin orbitals, two rows of the determinant in Eq. 
(16.4-7) are identical, and the determinant vanishes, in agreement with the Pauli 
exclusion principle. 

For the ground state, we must choose three different spin orbitals with the minimum 
possible sum of orbital energies, since the zero-order energy is equal to the sum of the 
orbital energies. This practice of choosing the ground-state configuration with the 
minimum sum of orbital energies is called the Aufbau principle, from the German 
word for "building-up". For the lithium atom, we choose the two ls spin orbitals and 
one spin orbital from the second shell. In zero order, all of the 2s and 2p orbitals have 
the same energy, but we anticipate the fact that higher-order calculations will give a 
lower energy for the 2s subshell than for the 2p subshell and choose one of the 2s spin 
orbitals. The zero-order energy of the ground state is, from Eq. (16.2-21), 

E~t~ ) - -  P-'lslsZs'-'(°! - -  2E 1 (HL) + E2(HL ) 

( 3 2 3 2  ) 
-- ( -13 .60eV)  2 ~ + f f  -- -275 .4eV (16.4-8) 

This value is seriously in error, as was the zero-order value for helium. It differs from 
the experimental value of - 203.5 eV by 35%. 

The antisymmetrized zero-order wave function can be written 

,p(0)_ 1 t//ls(1)~(l) t/"ls(2)~(2) ~1s(3)°~(3) 
- / g  t/Jl.~(1)fl(1) ~k1,(2)/3(2) 0~.,.(3)fi(3) (16.4-9) 

02.,.(1)~(1) Oz,.(2)e(2) ~z,.(3)~(3) 

The 2s-spin-down orbital could have been chosen instead of the 2s-spin-up orbital. We 
therefore have two states of equal energy instead of a single ground state. This doubly 
degenerate ground level corresponds to S = 1/2 (a doublet term), since the possible 
values o fM s are + 1/2 and - 1/2. Since M L = 0, the value of L is 0, the only value of J 
is 1/2, and the ground term symbol of lithium is 2SI/2. 

Excited states of the lithium atom can correspond to various choices of orbitals. The 
values of M L and M s for these excited states can be calculated by algebraic addition. 
Using the rules that M L ranges from +L to - L  and that M s, ranges from +S  to - S ,  one 
can deduce the values of L and S that occur and can assign term symbols. Higher-order 
calculations must be used to determine the order of the energies of the excited states. 

Exercise 16.25 
Consider the excited-state configuration (ls)(2s)(3s) for a lithium atom. 

a. Show that quartet states with S = 3/2 can occur. 
*b. Write the term symbols for all terms that occur. 
*c. Find the zero-order energy eigenvalue for this configuration. 

Atoms with More Than Three Electrons 

The treatment of the other atoms in zero order is similar to the helium and lithium 
treatments. For an atom with atomic number Z (Z protons in the nucleus and Z 
electrons), the stationary-nucleus Hamiltonian operator is 

[ / - -  2m ~-~ V~ - +  (16.4-10) 4~.o i =  1 ri ~ = = r~ 
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where r i is the distance from the nucleus to the ith electron and %. is the distance from 
the ith electron to the jth electron. 

The first two sums in Eq. (16.4-10) are a sum of hydrogenlike one-electron 
Hamiltonian operators, and the double sum is a sum of terms like those that we have 
neglected with helium and lithium. The zero-order Hamiltonian operator is sum of 
hydrogenlike Hamiltonians (with those terms neglected): 

Z 
/2/(0) _ ~ / 2 / H  c (i) ( 16 .4 - 11 )  

i=1 

The time-dependent SchrSdinger equation corresponding to this Hamiltonian can be 
solved by separation of variables, using the trial function 

Z 
tIJ(0) = IPl(1)~z(Z)IP3(3)IP4(4)""" ~ Z ( Z )  = I-I ~ti(i) (16.4-12) 

i=1 

where the symbol 1--I stands for a product of factors, just as the ~ symbol stands for a 
sum of terms. Since the terms in the zero-order Hamiltonian are hydrogenlike 
Hamiltonians, the factors ~Pl(1), ~2(2), ~t3(3 ), etc. are all hydrogenlike orbitals and 
the energy eigenvalue is a sum of hydrogenlike orbital energies: 

~ti(i ) -- ~tnfl~m~ms~(i) (16.4-13) 

Z 
E (~ -- E,I (HL) + En2 (HL) + . . . .  y~ En,(HL ) (16.4-14) 

i=1 

where ni, li, etc., are values of the quantum numbers for hydrogenlike orbitals. Just as 
with the helium and lithium atoms, the zero-order wave functions and energies of Eqs. 
(16.4-13) and (16.4-14) are very poor approximations. 

We must antisymmetrize the orbital wave function of Eq. (16.4-12). This can be done 
by writing a Slater determinant with one row for each spin orbital and one column for 
each electron: 

1 

01(1)  01(2) 01(3)  01(4) . . .  ~ l ( Z )  
02(  1 ) 02( 2 ) 02(  3 ) I//2(4) . . .  I]/2(Z ) 
~3(1) ~3(2) ~3(3) ~3(4) . . .  ~3(Z) 
~t4(1) I//4(2) I//4(3) ~4(4) . . .  I//4(g ) 

Oz(1) Oz(2) Oz(3) Oz(4) ..- ~z(Z) 

(16.4-15) 

where the 1/~/~. factor normalizes the wave function, assuming that all orbitals are 
normalized and orthogonal to each other, and where we have abbreviated the quantum 
numbers. The Pauli exclusion principle must be followed. No two spin orbitals can be 
the same, or two rows of the determinant would be identical, causing the wave function 
to vanish. 

The values of ML, Ms, L, and S can be computed in the same way as with the helium 
and lithium atoms. The computation can be simplified by noting that the contributions 
to ML and M s for any completely filled subshell vanish. For example, the only term 
symbol that occurs for the ground state of an inert gas (He, Ne, Ar, etc.) is 1S. Since the 
hydrogenlike orbitals in the same shell all have the same energy, many of the terms are 
degenerate in zero order, but will have different energies when better approximations 
are used. 

In the next chapter, we will discuss approximations beyond the zero-order approx- 
imation that will give better values of atomic energies. We will usually use the orbital 
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approximation. We will find that the orbitals in different subshells in the same shell do 
not correspond to the same energy, and will use the facts about the orbital energies to 
understand the periodic chart of the elements. 

Summary of the Chapter 

The time-independent Schr6dinger equation for a general two-particle central-force 
system was separated into a one-particle Schr6dinger equation for the motion of the 
center of mass of the two particles, and a one-particle Schr6dinger equation for the 
motion of one particle relative to the other. 

The Schr6dinger equation for the relative motion was solved by separation of 
variables in spherical polar coordinates, assuming the trial function 

Onlm(F, O, ~)  -- enl(F)Ylm(O , ~ )  -- enl(t ')Olm(O)f~m(~) 

The angular functions Ylm(O, ~) are a set of functions called spherical harmonic 
functions. These functions are also eigenfunctions of the operator for the square of 
the orbital angular momentum and its z component, with eigenvalues given by 

Z2Ylm -- h l ( l  + l)Ylm 

and 

ZzYlm - hmYlm 

The solution to the equation for the radial factor R(r) was presented for the hydrogen 
atom, giving a set of wave functions with two quantum numbers: n, the principal 
quantum number, and l, the same quantum number as in the spherical harmonic 
functions. The hydrogenlike atom was defined, with a single electron, but with Z 
protons in the nucleus. The energy eigenvalues of the hydrogenlike atom depend only 
on the principal quantum number: 

E - - E n = -  
(13.60 eV)Z 2 

n 2 

where Z was the number of protons in the nucleus. 
An intrinsic electronic angular momentum of the electron was introduced. This 

angular momentum corresponds to a spinning motion of the electron in addition to its 
orbital motion. It corresponds to fixed magnitude and two possible z projections, h/2 
and -h/2. 

In the "zero-order" approximation, the repulsions between electrons were neglected. 
The energy eigenfunctions of the helium atom were products of one hydrogenlike 
orbital for each electron. These orbital wave functions were antisymmetrized to 
conform to the physical indistinguishability of the electrons, producing the Pauli 
exclusion principle, which states that no two electrons can occupy the same orbital 
in any orbital wave function. Similar wave functions were discussed for multielectron 
atoms. By utilizing the Pauli exclusion principle, possible electron configurations and 
term symbols can be computed. 
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for angular momentum components instead of the z axis. 
e. The energy eigenvalues for the H atom in the Schr6- 

dinger equation are identical with those in the Bohr theory. 
fi The angular momentum eigenvalues for the H atom in 

the Schr6dinger equation are identical with those in the Bohr 
theory. 

g. There is a one-to-one correspondence between the states 
of the H atom in the Bohr theory and the states of the H atom 
in quantum mechanics. 

h. Electrons in a multielectron atom move exactly like 
electrons in a hydrogenlike atom with the appropriate nuclear 
charge. 



The Electronic States of Atoms. 
II. Higher-Order Approximations for 
Multielectron Atoms 

1. The interelectron repulsions are included in approximation methods that 
go beyond the zero-order orbital approximation. 

2 The variation theorem allows calculation of upper bounds to ground-state 
energies. 

3. The perturbation method allows approximate calculations of energies and 
wave functions for any states. 

4. The self-consistent field method allows generation of the best possible 
orbital wave function, leaving only the error due to neglect of electron 
correlation. 

5. The electronic structure of multielectron atoms can be described in terms 
of the approximation schemes. 

6. The structure of the periodic table of the elements can be understood in 
terms of higher-order orbital approximations. 
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The Variation Method and Its Application to the 
Helium Atom 

The zero-order orbital approximation that was employed in Chapter 16 neglects the 
interelectron repulsions, with the result that each electron is independent of the other 
electrons and occupies a hydrogenlike orbital in a product wave function. There are 
three principal approximation schemes that go beyond this approximation. The first 
scheme is the variational method, which is based on the variation theorem. 

The Variation Theorem 

The expectation value of the energy for a state corresponding to a wave function ~ is 
given by Eq. (15.4-1): 

(E) _ ~ ~*H~/ dq (17.1-1) 
~ * ~ d q  

where [ / i s  the correct Hamiltonian operator for the system and where the coordinates 
of all of the particles of the system are abbreviated by q. The integration is to be done 
over all values of all coordinates. 

The variation theorem states: The expectation value of  the energy calculated with any 
function q~ obeying the same boundary conditions as the correct system wave functions 
cannot be lower than Eg s, the correct ground-state energy eigenvalue of  the system: 

(17.1-2) 

where q~ is any function obeying the same boundary conditions as the correct wave 
functions and depending on the same coordinates and where /2 /must  be the correct 
Hamiltonian. The expectation value is equal to Eg s if and only if the function q~ is the 
same function as the correct ground-state energy eigenfunction. The proof of the 
theorem is assigned in Problem 17.10. 

The Variation Method 

The variation theorem suggests the variation method for finding an approximate 
ground-state energy and wave function. First choose a family of possible approximate 
wave functions. The second step is to calculate the expectation value of the energy 
using the different members of the family of functions. This expectation value is called 
the variational energy, and is usually denoted by W. Next, find the member of the 
family that gives a lower (more negative) value of W than any other member of the 
family. Since W can never be more negative than the correct ground-state energy, this 
value of W is a better approximation to the ground-state energy than is obtained from 
any other member of the family of functions. The theorem does not guarantee that this 
function is a better approximation to the correct wave function than any other member 
of the family, but it is likely to be so. A typical application of the variation method uses 
a family of functions that can be represented by a single formula containing one or more 
variable parameters. Such as family of functions is called a variation function or a 
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variation trial function. The variational energy W is calculated as a function of the 
parameters, and the minimum value of W is found by the methods of calculus. 

Application of the Variation Method to the Helium Atom ~ 

Let us first use the zero-order orbital wave function of Eq. (16.3-28) as a variation trial 
function. This is a single function, so no minimization can be done. It is normalized so 
that the variational energy is 

1 I 
W -- ~ 01oo(1)*01oo(2)*[c~(1)fl(2) - fl(1)e(2)]*/~01oo(1)0~oo(2 ) (17.1-3) 

x [c~(1)fi(2) - fi(1)c~(2)] dq' 1 dq~2 

where /2/ is the correct Hamiltonian operator, and where dq' 1 and dq' 2 indicate 
integration over space and spin coordinates. The space orbital ~100 is a hydrogenlike 
ls orbital with Z = 2. 

Since the helium-atom Hamiltonian operator is independent of the spin coordinates, 
the spin factor is not operated on and the integral over the spin coordinates can be 
factored from the space coordinate integration. Because of the normalization and 
orthogonality of the spin functions, integration over the spin coordinates gives a factor 
of 2, which cancels the normalizing constant 1/2. We could have omitted the spin factor 
and the spin integration from the beginning. The result is 

W -- 01oo(1)'01oo(2)* I)HL(1 ) +HHL(2 ) + 4neor12 01oo(1)01oo(2)dq (17.1-4) 

where we use the symbol dq to stand for d3rl d3r2 . The entire Hamiltonian, not the 
zero-order^ approximate Hamiltonian, must be used in Eq. (17.1-4). 

The HHL(1 ) and HHL(2) terms in the Hamiltonian operator give ground-state energy 
eigenvalues for a hydrogenlike atom. 

Exercise 17.1 
Show that the//HE (1) term in Eq. (17.1-4) yields a contribution to W equal to E 1 (HL) and that the 
//HE(2) term yields an equal contribution. 

We now have 

W -  2EI(HL ) + ~100(1)*~100(2)* ~100(1)~100(2)dq (17.1-5) 
4ne0r12 

Evaluation of the integral in this equation is tedious and we given only the result: 2 

5 Z ~  2 5 
W -  2EI(HL ) + 8(4ne0a--------- ~ = 2EI(HL ) - ~ (~/S)HL(ls) (17.1-6) 

where (~U)nL(ls) is the expectation value of the potential energy for the hydrogenlike 
atom in its ground state. The variational energy is, using Eq. (16.2-12), 

Z 2 ~  2 5 Z ~  2 
W -- - 2  ~ + ~ -- - 108.8 eV + 34.0 eV -- - 7 4 . 8  eV (17.1-7) 

2(4ne0a) 8(4ne0a) 

1Our treatment follows that in J. C. Davis, Jr., Advanced Physical Chemistry, The Ronald Press, New 
York, 1965, pp. 221 ff. 

2 I. N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, N. J., 1991, pp. 230ff. 
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where we have put in the value Z = 2 in the calculation of the numerical value. This 
result is more positive than the correct value o f - 7 9 . 0 e V ,  as the variation theorem 
guaranteed. The error is approximately 4 eV, which is much better than the error of 
- 3 0  eV obtained with the zero-order approximation. This improvement in the energy 
value was not obtained by changing the wave function. Our wave function is still the 
zero-order wave function obtained by complete neglect of the interelectron repulsion. 
The improvement came from using the complete Hamiltonian operator in calculating 
the variational energy. The zero-order energy was calculated using only the zero-order 
Hamiltonian, and is not required to conform to the variation theorem. 

We now use a variational trial function that represents a family of functions. We 
replace the nuclear charge Z in the hydrogenlike ls orbitals by a variable parameter, Z'. 
The modified ls space orbital is 

1 ( _ ~ )  3/2 
__ e - Z ' r / a  0'100 -- I/J;o0(Z,) ~ (17.1-8) 

where a is the Bohr radius. The orbital depends on the value of Z', and we label it with a 
prime ('). It is still normalized. The variation trial function is 

1 
q0 -- q0(Z') -- 0 ' ( 1 ) 0 ' ( 2 ) ~ [ ~ ( 1 ) f l ( 2 ) -  fl(1)0~(2)] (17.1-9) 

where we omit the subscripts on the orbital symbols. There is a physical motivation for 
choosing this variation function. As an electron moves about in the atom, there is some 
probability that the other electron will be somewhere between the first electron and the 
nucleus, "shielding" the first electron somewhat from the full nuclear charge and 
causing it to move as though the nucleus had a smaller charge. Therefore, a value of Z' 
smaller than 2 should produce a better approximation than the value Z = 2 used to 
obtain the value o f - 7 4 . 8  eV in Eq. (17.1-7). 

The wave function of Eq. (17.1-9) is substituted into Eq. (17.1-1) to calculate the 
variational energy. The correct number of protons, Z = 2, not the value of Z', must be 
used in the Hamiltonian operator. The variational energy is 

W - J r 

Z~ 2 
x ~f'(1) 4~zeorl 

F ~(2 )  Ze2 e2 ] 
47C8or2 t 4~8or12 d/(1)d/(2)dq (17.1-10) 

where J l  is the kinetic energy operator for one electron. The kinetic energy operator of 
electron 1 operates only on the coordinates of electron 1, so that 

I[~ O'(1)*O'(2)*~(1)Of(1)l/t'(2)d3rl d3r2 -- J OI(1)*~"(1)l//(1) d3rl 

~-- Z'2 ( J~((~H )ls -- -Zt2E1 (H) 
(17.1-11) 

where (~rH)ls  is the expectation value of the kinetic energy of the hydrogen (not 
hydrogenlike) atom in the ls state, and where we have used the fact that the expectation 
value of the kinetic energy equals the negative of the total energy (see Section 16.2). We 
have used the fact that the integral over the coordinates of particle 2 can be factored out, 
and the assumption that the orbital tp'(2) is normalized so that this integral equals unity. 
The factor Z '2 comes from the fact that the orbital ~,'(1) is the ls orbital for an effective 
nuclear charge equal to Z'e. 
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The second term in the Hamiltonian operator in Eq. (17.1-10) gives 

J Ze 2 O,(1)O,(2) d q 
Contribution to W -  q/(1)*O'(2)*4rce0r 1 

(17.1-12) 

- -  Z Z t  ( ~ H ) ( l s )  - 2ZZ'EI(H ) 

where (~r)H(ls) is the expectation value of the potential energy of a hydrogen (not 
hydrogenlike) atom in the ls state. We have a factor of Z from the original factor Z in 
the Hamiltonian, and a factor of Z' from use of the ls orbital that corresponds to a 
nuclear charge of Z'e. The final equality comes from Eq. (16.2-27). 

Exercise 17.2 
Show that Eq. (17.1-12) is correct. 

The next two terms in the Hamiltonian operator in Eq. (17.1-10) are just like the first 
two, except that the roles of particles 1 and 2 are interchanged. After the integrations are 
done, this interchange makes no difference, and these two terms give contributions 
equal to those of the first two terms. The last term is the same as in Eq. (17.1-6) except 
that the orbitals correspond to the nuclear charge of Z'e instead of Ze, so that its 
contribution is 

I ( ~2 ) 4rc~orl2 5 ~'(1)*~'(2)* O' (1)~' (2)dq -- - ~ Z'EI (H ) (17.1-13) 

The final result is 

W--EI(H)( -2Z '2+4ZZ' -5Z  ') (17.1-14) 

The variational energy is a function of a parameter, because our variation function was a 
family of functions expressed by a formula with a parameter. 

Exercise 17.3 
Verify eq. (17.1-14). 

We find the minimum value of W by differentiating with respect to the variable 
parameter Z' and setting this derivative equal to zero: 

0 -  E I ( H ) ( - 4 Z '  + 4 Z  - 5 )  

This equation is satisfied by 

5 Z ' - - Z - - -  (17.1-15) 
16 

For Z -  2, Z ' =  2 7 / 1 6 -  1.6875. Our optimized helium atom wave function corre- 
sponds to a shielding of the nucleus so that an electron moves as though there were an 
effective nuclear charge of 1.6875 protons instead of 2 protons. This is equivalent to 
saying that one electron has a 31.25% probability of being between the nucleus and the 
other electron. This electron density acts as though it were located at the nucleus, since 
a theorem of electrostatics asserts that a spherically symmetric distribution of charge 
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produces an electric field outside of the charge distribution exactly like that of a point 
charge of the same size as the total distributed charge. Figure 17.1 shows the zero-order 
ls orbital (with Z = 2) and the variational orbital we have just obtained, with 
Z ' =  1.6875. The variable on the horizontal axis is the distance from the nucleus 
divided by the Bohr radius a. 

The minimum value of W is 

5 
W -- ( -13 .60  eV)[-2(1.6875) 2 + 4(2)(1.6875) - ~ (1.6875)] 

= -77 .5  eV 
(17.1-16) 

This value differs from the experimental value o f -  79.0 eV by 1.5 eV, an error of 2%, 
corresponding to 145 kJ m o l -  1. Our result is still not accurate enough for quantitative 
chemical purposes. More accurate values can be obtained by choosing more compli- 
cated variation functions. Hylleraas used the variation function 3 

q~ = Ce-Z"rl /ae-Z%/a(1 + brl2) (17.1-17) 

This is not an orbital wave function because of the dependence of the final factor on r12, 
the distance between the electrons. This function gave a variational energy equal to 
- 78.7 eV with a value of Z" equal to 1.849 and a value of b equal to 0.364. This energy 
is in error by 0.3 eV, or about 0.4%. More elaborate variational functions have been 
used, and have given excellent agreement with experiment. 4 

The presence of the factor (1 + br12 ) introduces a dependence on the interelectron 
distance. In a one-term orbital wave function, the probability density of each electron is 
independent of the position of any other electrons as in Eq. (16.3-24), and there is no 
electron correlation. The wave function of Eq. (17.1-17) gives a larger probability 
density for larger separations of the electrons. This inclusion of explicit dependence on 
interelectron distance is called dynamical electron correlation. An antisymmetrized 
orbital wave function can also exhibit correlation if it has an antisymmetric space 
factor like the triplet wave functions of Eq. (16.3-38) or Eq. (16.3-59), since an 
antisymmetrized space factor vanishes if two electrons are at the same location and has 
a small magnitude if they are near to each other. This effect is called statistical 
correlation. 

Exercise 17.4 
Consider the antisymmetrized orbital wave function 

= C[~'1(1)~,2(2 ) - ~,2(1)~,1(2)] 

where It/1 and ~2 are any two different space orbitals. Show that the wave function vanishes if 
both electrons are at the same location. 

3 E. A. Hylleraas, Z Physik, 65, 209 (1930). 
4T. Koga, J Chem. Phys., 94, 5530 (1991). 
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The Perturbation Method and Its Application to the 
Helium Atom 

This method is the second of the three most commonly used approximation schemes. It 
is applied to a problem in which the Hamiltonian operator can be separated into two 
terms. 

/2/_/2/(0) +/2/, (17.2-1) 

such that ~(o) gives a Schr6dinger equation that can be solved: 

[/(o~(o) _ E(O)~p(o) (I 7.2-2) 

This equation is called the unperturbed equation or the zero-order equation. The 
wave function ~(0) and the energy eigenvalue E (~ are called the zero-order wave 
function or the unper turbed wave function and the zero-order energy eigenvalue or 

9' the unper turbed energy eigenvalue. The term in the Hamiltonian operator is called 
the perturbation. The best results are obtained if the perturbation term is small 
compared to other terms in the Hamiltonian operator. 

For the helium atom,/2/(0) is the same as the zero-order Hamiltonian in Chapter 16, 
and/_7/' represents the interelectron repulsion energy. This energy in a helium atom is 
not small compared with the total energy, but we proceed. We first construct a new 
Hamiltonian operator in which the perturbation terms is multiplied by a fictitious 
parameter, 2: 

= ~(0) + 2/2/, (17.2-3) 

The new Schrbdinger equation is 

~(2)~p(2) -- E(2)~p(2) (17.2-4) 

where the energy eigenvalue and the energy eigenfunction now depend on 2. It seems at 
first that we are further complicating an already intractable problem by introducing a 
new independent variable. However, we will express energies and wave functions as 
power series in 2, and will sometimes obtain useful information by using only a few 
terms in the series. 

Consider a particular energy eigenfunction ~Pn and its energy eigenvalue En, assumed 
to be nondegenerate. We assume that the energy eigenvalues and energy eigenfunctions 
can be represented by a power series in 2: 

E n ~- f (0) + f (1)~ -Jr- f ( 2 ) ~ 2  _3t_ . . " ( 1 7 . 2 - 5 )  

~n = ~IJ(n0) -+- ~[J(1)2 -+- ~(n 2)22 -+- " " " (17.2-6) 

We use superscripts on the coefficients instead of subscripts because we already have 
subscripts on our eigenvalues and eigenfunctions. The idea of the perturbation method 
is to obtain only a few coefficients (often just two) in Eqs. (17.2-5) and (17.2-6) and to 
hope that a partial sum containing these terms gives a useful approximation to the entire 
series when we let 2 = 1. Figure 17.2 shows schematically a typical energy eigenvalue 
as a function of 2 and as represented by the first two partial sums of the series for values 
of 2 between zero and unity. 
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Appendix G contains a derivation of the formula for the first-order correction to the 
energy, E(n 1). The result contains only the zero-order wave function: 

(17.2-7) 

We now apply first-order perturbation to the ground state of the helium atom, for which 

/2/(o) _ [/HL(1 ) + [/HL(2 ) (17.2-8) 

t _ ~2 
-- (17.2-9) 

4rte0r12 

�9 (0) is given by The zero-order ground-state energy ,~(0! is given by Eq. (16.3-12) and -1-isis P-51s ls 

Eq. (16.3-28). Integration over the spin coordinates in Eq. (17.2-7) yields 

JtT'(1) (17.2-10) �9 ~ l s l s  - ff100(1)*~100(2) * ffl00(1)ffl00(2)d3rl d3r2 
4 n e o r l 2  

This result is the same as the integral in Eq. (17.1-5), so that our perturbation method 
result to first order is the same as the result we obtained with the variation method using 
the unmodified zero-order wave function as our variation function: 

E( 0) K,(1) -108 .8  eV + 34.0 e V -  -74 . 8  eV (17.2-11) i s i s  -]- " - ' i s is  - -  

The first-order correction to the wave function and the second-order correction to the 
energy eigenvalue are more complicated than the first-order correction to the energy 
eigenvalue, and we do not discuss them. No exact calculation of the second-order 
correction to the energy of the helium atom has been made, but a calculation made by a 
combination of the perturbation and variation methods gives an accurate upper bound: 5 

(2) _ - 4 . 3  eV (17.2-12) 
i s i s  

5 C. W. Scherr and R. E. Knight, Rev. M o d .  Phys . ,  35, 436 (1963). 
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so that the second-order value of the energy is -79.1 eV, within 0.1 eV of the 
experimental value, -79.0eV. Since the perturbation method is different from the 
variation method, the second-order energy can be lower than the correct energy. 
Approximate calculations through thirteenth order have been made, and have given 
values that agree with experiment nearly as well as the best results of the variation 
method. 6 

The Self-Consistent Field Method 

The third general approximation method is the self-consistent field method (abbre- 
viated SCF) introduced in 1928 by Hartree. 7 The goal of this method is similar to that 
of the variation method in that it seeks to optimize a wave function. It differs in two 
ways: first, the search is not restricted to any particular family of functions; second, it 
deals only with orbital wave functions. It allows the form of the orbital functions to be 
varied, and is capable of finding the best possible orbital approximation. The SCF 
method is extensively used in modem quantum chemistry. We do not discuss this 
method in detail, but illustrate its use by applying it to the ground state of the helium 
atom. The ground state of helium is a singlet state, and the antisymmetrization is in the 
spin factor of the wave function. We can proceed with the space factor of the wave 
function, omitting the spin factor, since the Hamiltonian contains no spin dependence. 

The zero-order orbitals satisfied Eqs. (16.3-10) and (16.3-11), which omit the 
potential energy of electron-electron repulsion. We add a correction term to Eq. 
(16.3-10) to represent this potential energy. If electron 2 were fixed at location r 2. 

h2 Z~2 ~2 
V20(1) - ~ 0 1 ( 1 )  + 01(1) --  El01(1) (17.3-1) 

2m 47r%r 1 47~80r12 

where r12 is the distance between the fixed position of electron 2 and the variable 
position of electron 1 and where E 1 is a new orbital energy. If electron 2 is not at a fixed 
position, but occupies the normalized orbital ~2(2), then its probability of being found 
in the volume element d3r2 is 

(Probability) = 02 (2) * ~2 (2) d3r2 = 102(2)[ 2 d3r2 (17.3-2) 

We now replace the electron-electron repulsion term in the Hamiltonian of Eq. (17.3-1) 
by a weighted average over all positions of electron 2, obtaining 

-2-- -m -4neor---~l~l(1)+ 4neorx2]~2(2)]2d3r 2 ~ 1 ( 1 ) - E 1 ~ 1 ( 1 )  (17.3-3) 

This is an integrodifferential equation, since it has both derivatives and an integral in 
it. After the integration, the integral term depends only on the coordinates of electron 1, 
so that the equation has a solution if the orbital for electron 2 is a known function. 
However, at this point both ~1(1) and ~2(2) are unknown functions (both are ~1s 
function if we are discussing the ground state). 

The integrodifferential equation is solved by iteration (successive approximations). 
The first step is to replace the orbital under the integral by the zero-order function or 

6 C. Wo Scherr and R. E. Knight, loc. cit. (Note 5). 
7 D. R. Hartree, Proc. Cambridge Phil Soc., 24, 89, 111,426 (1928). 



628 17 The Electronic States of Atoms. II. Higher-Order Approximations for Multielectron Atoms 

The Slater-type orbitals are named 
after the same John C. Slater after 
whom the Slater determinants are 
named. 

some other known function. The ~p ls(1) orbital that results from solving this equation is 
called the first-order solution ~ ) ( 1 ) .  The equation that it obeys is 

h 2 

2m V2~) (1 )  
z~2 ,~/~)~1) + [J ~2 

4neor1 'els ~ 4ns0rl 2 
d~(0) 12 ],/,(1) __ p(1)}/~(1) IV'is (2) dar2 (1) 7" ls " '  ls 't" ls 

(17.3-4) 

where p(1) is a new approximation to the orbital energy. It is found that the integral in J-" ls 
this equation depends only on r 1, not on 01 and 4)1, so the 01 and 4)1 dependence can be 
separated from the r 1 dependence. It is ordinarily not possible to solve Eq. (17.3-4) 
analytically, but an accurate numerical representation of ,/,(1) ~" is (1) can be obtained. 

(0) The next iteration (repetition) is carried out by replacing ~1 (2) under the integral 
sign by ~p~)(2) and denoting the new unknown function by ~2)(1). This equation is 
solved, and the resulting solution is used under the integral for the next iteration, and so 
forth. The equation for the j th iteration is 

J 2m "iv" is (1) - 4neor------~l 4neorl2 
[001-1)(2)[ 2 d3r21010s)(1 ) -- E10s)010s)(1 ) 

(17.3-5) 

Successive approximations converge to the best possible orbital approximation. When 
additional iterations produce only negligible changes in the orbital function and the 
energy, we say that the integral term provides a self-consistent contribution to the force 
on electron 1, or a self-consistent field. At this point, the iteration is stopped and we 
assume that we are close to the best possible orbitals. 

In the SCF method, the expectation value of the energy is not the sum of the orbital 
energies, because the potential energy of electron-electron repulsion has been included 
in Eq. (17.3-3) for each electron. Since both orbitals are obtained from this equation, 
the sum of the two orbital energies includes the interelectron repulsion energy twice. 
We correct for this double inclusion by subtracting the expectation value of the 
interelectron repulsion energy from the sum of the orbital energies. If n iterations 
have been carried out, the expectation value of the energy is 

_ ,/,(")rl)121~(1~)(2)12 d 3 d 3 E(atom) - 2E(l~ ) 4ne0rl 2 I,e ls~ rl r2 (17.3-6) 

= 2E(1 n) - Jl.~.ls 

The integral Jlsls is called a Coulomb integral because it represents at approximate 
expectation value of a Coulomb (electrostatic) repulsion energy between two electrons. 

Roothaan modified the Hartree-Fock method by representing the orbitals by linear 
combinations of functions similar to Eq. (15.2-13) instead of by numerical representa- 
tions. 8 Clementi and Roetti expressed the unknown orbitals as a linear combination of 
Slater-type orbitals (STOs). Each Slater-type orbital is a product of r raised to some 
power, an exponential factor, and the correct spherical harmonic angular functions. 
Using this expression instead of a numerical representation to evaluate the integrals in 
the self-consistent-field method, they obtained an energy for the ground state of the 
helium atom equal to -77 .9  eV. 9 

The self-consistent field method converges to the best orbital wave function, but it 
does not include any dynamical electron correlation. The difference between the best 

8 C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951). 

9E. Clementi and C. Roetti, At. Data Nucl. Data Tables, 14, 177 (1974). 
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energy calculated with an orbital wave function and the correct nonrelativistic energy is 
called the correlation energy or the correlation error. The 1.1 eV error of Clementi 
and Roetti is presumably an approximation to the correlation error. The "configuration 
interaction" method eliminates part of the correlation error by constructing a wave 
function that is a sum of terms, each of which corresponds to a different electron 
configuration. We discuss this method briefly later in this chapter and in the next 
chapter. 

Excited States of the Helium Atom 

Excited states of atoms are generally harder to treat than ground states. The variation 
theorem applies only to ground states, so it cannot be used for excited states in its 
original form. There is an extended variation theorem, which states that the calculated 
variational energy will be no lower than the correct energy of the first excited state if the 
variation trial function is orthogonal to the correct ground-state energy eigenfunction. It 
will be no lower than the energy of the second excited state if the variation trial function 
is orthogonal to both the ground state and the first excited state, etc. 1~ Unfortunately, the 
correct ground-state energy eigenfunction is not generally known, so that a family of 
functions exactly orthogonal to it cannot be chosen. Some calculations have been made 
in which a family of functions is chosen that is orthogonal to an approximate ground- 
state variation t~anction. This family of l~anctions might be nearly orthogonal to the 
correct ground-state function and the minimum variational energy from this family 
might be a good approximation to the energy of the first excited state. In other cases, 
even if the ground-state wave function is not known, some known property, such as 
being a spherically symmetric function, might permit construction of a trial function 
that is exactly orthogonal to it. 

Degenerate Perturbation Theory 
The perturbation method as described earlier in this chapter does not apply to a zero- 
order state that has the same energy as other zero-order states of the system (the 
degenerate case). For example, the zero-order orbital energies of the 2s and 2p 
hydrogenlike orbitals are all equal, to that all of the zero-order states of the (ls)(2s) 
and (ls)(2p) helium configurations have the same energy. A version of the perturbation 
method has been developed to handle the degenerate case. We will describe this method 
only briefly and present some results for the first excited states of the helium atom. 11 

There is no guarantee that the wave functions that we first obtain with the zero-order 
solution are in correspondence with the correct wave functions in the degenerate case. If 
not, the smooth dependence on the parameter 2 depicted in Figure 17.2 will not occur. 
The first task of the degenerate perturbation method is to find the correct zero-order 
wave functions, the ones that are in one-to-one correspondence with the exact wave 
functions. As the fictitious parameter 2 is increased from a value of zero to a value of 
unity, each correct zero-order function smoothly turns into one of the exact functions 

l~ op. cit., pp. 193ff (Note 2). 
11Levine, op. cit., pp. 241ff (Note 2). 
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without getting mixed up with other functions. We express the correct zero-order wave 
functions as linear combinations of the degenerate "initial" zero-order wave functions: 

j•l- ,.(o) (17.4-1) ~(n~)new) = Cnj ~ j 

In order to find the Cnj coefficients that define the correct zero-order functions, one must 
solve a set of homogeneous linear simultaneous equations that are somewhat similar to 
a set of equations described in Appendix H. Every equation of such a set consists only 
of terms each of which is proportional to one of the coefficients to be found. These 
equations are "trivially" satisfied if all of the coefficients equal zero. An equation that 
must be satisfied for a nontrivial solution of these equations to exist is called a secular 
equation. 12 Solution of the secular equation gives the first-order corrections to the 
energies as well as allowing solution of the equations for the c,v. coefficients for each 
correct zero-order function. It turns out that the wave functions of Eq. (16.3-38) are the 
correct zero-order functions for the (ls)(2s) configuration, and three sets of similar 
functions are the correct zero-order functions for the (ls)(2p) configuration. 

Figure 17.3 shows the results of calculations to first order and to third orders for the 
energies of the four levels that result from the (ls)(2s) and the (ls)(2p) configurations. 13 
We observe the following facts: (1) Each triplet state has a lower energy than the 
corresponding singlet state. (2) The (ls)(2s) configuration gives states of lower energy 
than the (ls)(2p) configuration. That is, the orbital energies of the 2p subshell are higher 
than the orbital energies of the 2s subshell. The same behavior is found by experiment 
generally to be true for atoms with more than two electrons, and it is also found in 
higher shells that the orbital energies of a d subshell lie higher than those of the orbital 
energies of the p subshell in the same shell, etc. 

It is possible to explain the difference in the subshell energies on the basis of 
shielding. An electron in the ls orbital of a ground-state helium atom moves as though 
the nuclear charge were reduced, due to the shielding of the positive nuclear charge by 
the negative charge of the other electron. Electrons in other shells are similarly shielded 
by other electrons that are present. An electron in a 2s orbital spends more time close to 
the nucleus than one in a 2p orbital, as shown in the radial distribution functions of 
Figure 16.13b. An electron in a 2s orbital will experience less shielding and its energy 
will be lower than one in a 2p orbital, in agreement with the results shown in Figure 
17.3. 

It is possible to explain the difference in the energies of the singlet and triplet states 
on the basis of statistical correlation. The singlet state wave functions have symmetric 
space factors, since the spin factors are antisymmetric. Statistical correlation is not 
found in symmetric space factors. In the triplet state wave functions, the spin factor is 
symmetric, so the space factor is antisymmetric, giving statistical correlation, as in 
Exercise 17.4. The electrons have lower probability of being found close together than 
of being far apart when the system is in a triplet state. Since close proximity of two 
electrons corresponds to higher potential energy, a triplet state has a lower energy than a 
singlet state with the same space orbitals. We will use these explanations involving 
shielding and statistical correlation again in discussing multi-electron atoms, although 
this analysis is oversimplified. It also is found that the antisymmetric space factor 
corresponds to lower probability that the electrons will be far apart, as well as to a lower 

12 Levine, op. cit., pp. 238ff (Note 2). 
13 Levine, op. cit., pp. 247ff (Note 2). 
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probability that they will be close together. There is also a higher probability that the 
electrons will be found close to the nucleus, and this fact may be a controlling factor. 14 

Exercise 17.5 
Sketch a qualitative energy level diagram for the excited states of the (ls)(3s), (ls)(3p), and 
(ls)(3d) configurations for the helium atom. 

The self-consistent-field method must also be modified in order to treat excited states 
of the helium atom, because two different space orbitals can be involved. In this case 
two simultaneous integrodifferential equations must be solved by iteration. Further- 
more, an antisymmetrized wave function requires two terms in the space factor of the 
wave function. The original self-consistent-field method of Hartree did not provide for 
antisymmetrization. The method was modified by Fock 15 to include antisymmetriza- 
tion. 

14 Levine, op. cit., pp. 303ff (Note 2). 
15V Fock, Zf Phys., 61, 126 (1930). 



632 17 The Electronic States of Atoms. II. Higher-Order Approximations for Multielectron Atoms 

Atoms with More Than Two Electrons 

The discussion of other atoms is similar to that of helium. In zero order, electron- 
electron repulsions are neglected, and in higher-order calculations these repulsions are 
treated with the same approximation methods as in the helium atom. 

Higher-Order Approximations for the Lithium Atom 
The zero-order wave function for the ground state of the lithium atom was written in 
Section 16.4. An application of the variation method to the lithium atom ground state 
uses an orbital wave function containing hydrogenlike orbitals with variable orbital 
exponents (variable effective nuclear charges) similar to that used with helium except 
that different effective nuclear charges are used in the ls and 2s orbitals. The minimum 
in the variational energy, -201.2  eV, is found to occur with effective nuclear charges of 
2.686 protons for the ls orbitals and 1.776 protons for the 2s orbital. 16 This variational 
energy differs from the correct value o f - 2 0 3 . 5  eV by 1%. The difference in the two 
effective nuclear charges corresponds to the fact that an electron occupying a 2s orbital 
is on the average farther from the nucleus than an electron occupying a ls orbital, so 
that there is a larger probability that other electrons are found between it and the 
nucleus than is the case with a ls electron. The effective charge for the 2s orbital 
corresponds to 1.224 electrons being found between the nucleus and the 2s electron, 
while a ls electron appears to have 0.314 electron between itself and the nucleus. 

The effective nuclear charge seen by the ls electrons is nearly the same as would be 
seen by the ls electrons in a heliumlike atom with three protons in the nucleus, since 
the minimum in the variational energy of Eq. (17.1-14) occurs at Z' = 2.6875 i fZ  = 3. 
A ls electron in a lithium atom is shielded primarily by the other ls electron, and sees 
almost no shielding due to the 2s electron. Since the 2s electron on the average is found 
farther away from the nucleus than the ls electron, this result is plausible. 

*Exercise 17.6 
a. Find the value of (r) for an electron in a hydrogenlike ls orbital with Z = 2.686. 
b. Find the value of (r) for an electron in a hydrogenlike 2s orbital with Z -- 1.776. 

In further variational calculations, the 2p orbital is found to be higher in energy than the 
2s orbitals, so that the ground configuration is (ls)Z(2s), not (ls)Z(2p). The 2p electron 
is more effectively screened from the nuclear charge than is a 2s electron. However, an 
electron in a 2p orbital is not on the average farther from the nucleus than one in a 2s 
orbital for the same nuclear charge (see Problem 16.35). It is not just the average 
distance from the nucleus, but the entire radial probability distribution that determines 
the effectiveness of the shielding. The 2s orbital is nonzero for r = 0, while the 2p 
orbitals vanish for r = 0, so an orbital in a 2s orbital has a greater probability of being 
found close to the nucleus, where the shielding is least effective, than does an electron 
in a 2p orbital. Figure 16.10b shows that the radial probability distribution for the 2s 
orbital has a "hump" close to the nucleus that the 2p orbital does not have. We say that 
the 2s orbital is more "penetrating" toward the nucleus than are the 2p orbitals. 

16Levine, op. cit., pp. 274ff (Note 2). 
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The ionization potential can be used to obtain an estimate of the effective nuclear 
charge for the outermost electron in an atom. The first ionization potential is defined as 
the energy required to remove one electron from an isolated neutral atom. If the orbitals 
for the other electrons are not changed much by the removal of one electron, the 
ionization potential is nearly equal to the magnitude of the energy of the orbital 
occupied by the outermost electron. 17 In the case of lithium, we have already seen that 
the effective charge seen by the ls electrons is nearly unaffected by the presence of the 
2s electron, so this condition is fairly well met. 

When the perturbation method is applied to the lithium atom, the first-order 
correction to the ground-state energy is equal to 83.5 eV, resulting in an energy through 
first order equal to -192 .0  eV. This value is considerably less accurate than the value 
obtained by the simple variational calculation. 18 The Hartree-Fock method is the most 
successful of the three common approximation methods. A careful Hartree-Fock- 
Roothaan calculation leads to a ground-state energy o f - 2 0 2 . 3  eV, differing from the 
correct value by only 0.6%. 19 This error is presumably a good approximation to the 

correlation error. 
One way to include dynamical electron correlation in an orbital wave function is to 

construct a wave function that is a linear combination of several Slater determinants 
corresponding to different configurations, a method that is known as configuration 
interaction, abbreviated CI. For example, for the ground state of the lithium atom, one 

could use 

--- Clff/~lsls2s -~- C21q~ls2s2s + C3VkJlsls3s + . . .  (17.5-1) 

where c 1, c 2, and c 3, etc., are variable parameters and the q's represent Slater- 
determinant wave functions with the given configurations. The variational energy is 
minimized with respect to these parameters. Although it is not obvious from inspection 
of Eq. (17.5-1) that qJ includes dynamical correlation, it does in fact depend on 

17 Levine, op. cit., p. 475 (Note 2). 
18 Levine, op cit., p. 274ff (Note 2). 
19E L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, New York, 1968, p. 336. 
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interelectron distances, a fact that we discuss briefly in the next chapter. Unfortunately, 
the process converges slowly, so that many configurations must be used to get good 
accuracy. Using large computers, atomic and molecular calculations have been 
constructed with as many as a million configurations. 

Atoms with More Than Three Electrons 

The higher-order approximate treatment of the other atoms is similar to the helium and 
lithium treatments. All three approximations schemes can be applied, but the most 
accurate work has been done with the Hartree-Fock-Roothaan method and configura- 
tion interaction. The optimum orbitals appear to be in one-to-one correspondence with 
the hydrogenlike orbitals. Figure 17.4 shows approximate orbital energies in neutral 
atoms, obtained by an approximation scheme called the Thomas-Fermi method. This 
method gives orbital energies that generally agree with those from the Hartree-Fock 
method. Notice that logarithmic scales are used in the figure. Several things are 
apparent: First, the orbitals in the same shell but in different subshells have different 
energies, with higher values of l corresponding to higher energies; second, all of the 
orbitals in a given subshell have the same energy; third, the energies depend strongly on 
the nuclear charge, with some pairs of curves crossing and recrossing as a function of 
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the nuclear charge. The energy differences between subshells in the same shell can be 
ascribed to differences in shielding. An electron in an s orbital spends more time close 
to the nucleus than an electron in a p orbital and is less effectively shielded from the 
nucleus by other electrons, giving it a lower orbital energy. Similarly, an electron in a p 
orbital is less effectively shielded than an electron in a d orbital, and so on. All of the 
orbitals in a subshell have the same orbital energy because they all contain the same 
radial factor. 

Using Figure 17.4 or some equivalent source of orbital energies, it is now possible to 
determine the ground-level configuration for any neutral atom, using the Aufbau 
principle that was introduced in Chapter 16. This principle states that the ground- 
state configuration is obtained by choosing the lowest-energy set of orbitals compatible 
with Pauli exclusion. For the first 18 elements, the subshell energies lie in the increasing 
order ls, 2s, 2p, 3s, 3p. For example, the subshell configuration of the ground state of 
argon is (ls)Z(2s)Z(2p)6(3s)Z(3p) 6. From Figure 17.4 we see that beyond atomic number 
15, the 3d orbital energy is higher than that of the 4s. Therefore, elements 19 
(potassium) and 20 (calcium) in their ground states have the 4s orbitals occupied in 
preference to the 3d orbitals. Beyond atomic number 23, the figure shows the 4s energy 
above the 3d energy. However, it is found experimentally that most of the transition 
elements from scandium (element 23) through zinc (element 30) have two electrons 
occupying the 4s spin orbitals in their ground levels, although chromium (element 24) 
and copper (element 29) have only one 4s electron. Assuming the energies in the figure 
to be essentially correct, it appears that other factors besides orbital energy, principally 
the correlation energy, are important in determining the ground-level configuration. 

The correct ground-level configuration for most elements can be obtained from the 
scheme of Figure 17.5, which shows the "diagonal mnemonic device" or the 
"diagonal rule." To determine the order of orbitals for the Aufbau principle, one 
follows the diagonal paths from upper right to lower left, moving top to bottom from 
one diagonal to the next. The number of spin orbitals in each subshell is listed at the top 
of the figure, so that one can tell when enough subshells have been chosen to be 
occupied by the electrons of a given atom. The diagonal mnemonic device is equivalent 
to the "n + 1 rule," which states that subshells of a given value of n + l are occupied 
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before those of the next higher value of n + l, and that within a given value of n + 1, the 
subshells are occupied in the order of increasing n. 

*Exercise 17.7 
Give the ground-level configuration of the elements: (a) S, (b) Ta, (c) Hg. 

Table 17.1 lists the known exceptions to the diagonal rule through element 103. 
Some of the prominent exceptions are Cr, Cu, Mo, Ag, and Au. In each of these cases, 
there is d subshell having 5 or 10 electrons instead of having 4 or 9 electrons. These 
exceptions to the rule apparently correspond to the fact that a half-filled or filled 
subshell is more stable than otherwise expected, possibly because the orbital regions of 
the real d orbitals are well separated from each other, allowing electrons to have a fairly 
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low energy of repulsion when occupying these orbitals in preference to another choice 
of orbitals. There has been some discussion about whether lanthanum and actinium are 
also exceptions to the diagonal mnemonic rule. Lanthanum has sometimes been 
assigned a 5d electron in the ground level, and actinium has been assigned a 6d 
electron. However, from an analysis of spectroscopic observations, it appears that 
lanthanum has a 4f electron in its ground state and that actinium has a 5f electron, as 
predicted by the diagonal rule. z~ 

The diagonal mnemonic rule does not necessarily apply to ions, since the shielding is 
different for ions than for neutral atoms. For example, the iron atom has six 3d electrons 
and two 4s electrons, in conformity with the diagonal rule. The Ni 2+ ion, with the same 
number of electrons, has eight 3d electrons and no 4s electrons. The correct electron 
configuration for positive ions can usually be obtained by finding the configuration of 
the neutral atom and then removing electrons from the outer shell instead of the 
subshell to which the last electrons were added. 

For those elements with partially filled subshells, the detailed configuration and the 
values of the quantum numbers L and S of the ground level can be predicted, using rules 
due to Hund. Hund's first rule is: For the same value o f  L, the level with the largest 
value o f  S has the lowest energy. Hund's second rule is: For a given value o f  S, the 
level with the largest value o f  L has the lowest energy. Hund's second rule is applied 
only after the first rule has been applied. These rules are quite reliable for ground levels, 
but less reliable for other levels. 21 There is also a third rule, which states that for 
subshells that are more than half filled, higher values of J correspond to lower energies, 
and that for subshells that are less than half filled, lower values of J correspond to lower 
energies. 

With several electrons, the operators for the squares of the total orbital and spin 
angular momentum are complicated, since the angular momenta are vector sums. We 
will not discuss them, but will work with the z components. The operators for the z 
components are algebraic sums of the one-electron operators: 

Z ,, Z 

L z -  Z liz, S z -  Y~ Siz (17.5-2) 
i--1 i=1 

The quantum numbers ML and M s are also algebraic sums: 

(17.5-3) 

(17.5-4) 

For any given detailed configuration, the possible values of ML and Ms can be 
determined by algebraic addition as was done in Chapter 16. The addition is simplified 
by the fact that contributions to both ML and M s from filled subshells vanish. The 
possible values of L and S and the Russell-Saunders term symbols can be found from 
the fact that ML ranges from - L  to +L, and that M s ranges from - S  and +S. The 
ground-level term can then be determined from Hund's rules. 

2~ B. Jensen, J. Chem. Educ., 59, 635 (1982). 
21Levine, op. cit., pp. 303ff (Note 2). 
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i i3 

*Exercise 17.8 
Find the ground-level term symbols for (a) Be, (b) B, (c) C, (d) O, and (e) E 

The explanation of Hund's first rule is the same as the explanation for the fact that the 
triplet levels were lower in energy than the singlet levels in helium, discussed in Chapter 
16. The higher values of S correspond to more electrons occupying states of parallel 
spins, which means that they occupy a larger number of space orbitals. Occupying 
different orbitals lowers the probability that the electrons will be found close together, 
thus lowering the potential energy. 

Dmitri Mendeleev, 1834-1907, was 
a Russian chemist who correlated 
valence with atomic mass. Julius 
Lothar Meyer, 1830-1895, was a 
German chemist who correlated 
atomic volume with atomic mass. 

The Periodic Table of the Elements 

The periodic table was invented independently by Mendeleev and Meyer. Both noticed 
that if the elements were listed in increasing order of atomic mass, there was a 
repetition, or periodicity, of chemical and physical properties. For example, lithium, 
sodium, potassium, rubidium, and cesium all form oxides with the formula M20 and 
chlorides with the formula MC1, while beryllium, magnesium, calcium, strontium, and 
barium all form oxides with the formula MO and chlorides with the formula MC12, 
where we abbreviate the symbol for the metal with the letter M. 

Inside the front cover of this book is a modern periodic table. The elements are listed 
in order of atomic number, instead of atomic mass, except that some elements are listed 
separately at the bottom of the table. Elements in any given column exhibit similar 
chemical properties. There are several ways of numbering the columns, and the two 
most common ways are shown. One scheme, which is supposed to become the standard 
scheme, is to number the 18 columns from 1 to 18. The other is to number the columns 
1A through 8A and 1B through 8B, as indicated. Three columns are grouped together 
as column 8B. This numbering corresponds closely to the numbering scheme used by 
Mendeleev, although the A and B columns were not distinguished in his table, which 
had only eight columns, with iron, cobalt and nickel together in one column. There is 
also another numbering scheme in which some of the A and B designations are 
interchanged. The elements in the columns labeled A are called representative 
elements, and those in the columns labeled B are called transition elements or 
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transition metals. The two sets of 14 elements at the bottom of the chart are called 
inner transition elements or inner transition metals. Figure 17.6 shows a periodic 
table in which all elements are listed in order of increasing atomic number. 

The elements following uranium (U, element 92) in the table do not occur in the 
earth's crust, but have been synthesized in nuclear reactors. 22 The elements after 
lawrencium, element 103, were given temporary names: element 104 was unnilquad- 
rium, element 105 was unnilpentium, etc., based on the Latin version of the atomic 
numbers. Some of these names have been replaced, although there has been disagree- 
ment about what the names should be. The names of elements 104-109 that have been 
accepted by the International Union of Pure and Applied Chemistry are 23 

Atomic number Symbol Name 
104 Rf Rutherfordium 
105 Db Dubnium 
106 Sg Seaborgium 
107 Bh Bohrium 
108 Hs Hassium 
109 Mt Meitnerium 

22 Chem. Eng. News, March 13, 1995, p. 35. 
23 Chem. Eng. News, August 21, 1995, p. 4, IUPAC news release, August 30, 1997. 
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Many elements were unknown at the time of Mendeleev. These elements included the 
inert gases, most of the inner transition elements, and others scattered about the table, 
such as scandium, gallium, and germanium. However, Mendeleev had sufficient 
confidence in the periodicity principle that he left blank spaces in the table for 
undiscovered elements. Mendeleev listed the elements in order of atomic mass, because 
the concept of atomic number was unknown. There are cases in which a larger atomic 
mass occurs before a small atomic mass (Ar and K, Co and Ni, Te and I). However, 
Mendeleev had an incorrect value for the atomic mass of tellurium, he listed Fe, Co, 
and Ni together in his column 8, and argon had not been discovered. He might have 
been unaware of these reversals of order. 

The form of the periodic table was first explained by Niels Bohr, who also introduced 
the modem "long" form of the chart with 18 columns. The similarity of chemical 
properties of the elements in a given column is due to the similarity of their electron 
configurations in the outermost shell (the valence shell). For example, sodium and 
potassium both easily lose one electron because sodium has only one electron in its 
valence shell (the third shell) and potassium has only one electron in its valence shell 
(the fourth shell). The eight columns of representative elements occur as two columns 
on the left and six columns on the fight, corresponding to the two spin orbitals of an s 
subshell and the six spin orbitals of a p subshell. The transition elements occur in 10 
columns, corresponding to the 10 spin orbitals of a d subshell, and the inner transitions 
elements occur in 14 columns, corresponding to the 14 spin orbitals of an f subshell. 

The general chemical behavior of an element can be predicted from its first ionization 
potential and its electron affinity. The ionization potential (also called ionization 
energy) is the energy required to remove one electron. The electron affinity is the 
energy required to remove the extra electron from a singly charged negative ion of the 
element. It is therefore equal to the amount of energy given off in forming a negative 
ion, and is positive if a gaseous atom spontaneously attracts an electron. Those with 
relatively high ionization potential will also have relatively high electron affinities 
(except for the inert gases). Those elements with relatively small values of the 
ionization potential will tend to lose electrons when combining chemically. Those 
elements with high electron affinities will tend to gain electrons when combining 
chemically. 

Figure 17.7 shows the first ionization potential of the elements as a function of 
atomic number. The elements with the highest ionization potentials are the inert gases, 
which have eight electrons in the valence shell (except for helium). A similar graph of 
the electron affinity would show that the elements of column 7A, the halogens, have the 
greatest electron affinity. In other words, if the halogen achieves the same configuration 
as an inert gas by gaining an electron, it becomes relatively stable. The elements with 
the lowest ionization potentials are the elements in column 1A, the alkali metals, which 
have a single electron in the s subshell of the valence shell. It is relatively easy to 
remove an electron from an atom of an alkali metal, giving the inert gas configuration in 
the shell just below the valence subshell. 

Figure 17.7 shows several additional elements, such as beryllium, nitrogen, magne- 
sium, phosphorus, zinc, and mercury, which have higher ionization potentials than their 
immediate neighbors. All of these elements have ground-level configurations with all 
subshells completely filled (beryllium, magnesium, zinc, and mercury), or with all 
subshells filled except for a half-filled valence subshell (nitrogen and phosphorus). We 
conclude that not only is a filled subshell relatively stable, but also that a half-filled 
subshell is relatively stable. We have already mentioned this behavior in some 
exceptions to the diagonal rule, such as chromium and copper. 



17.5 Atoms with More Than Two Electrons 641 

By Hund's first rule, a subshell that is half full or less than half full in the ground 
level will have each electron occupying a different space orbital, in order to have 
parallel spins, resulting in the state of maximum M s. A half-filled subshell therefore has 
one electron occupying each space orbital, and has the same electron charge distribution 
as a full subshell except for having only half as much total charge. Unsiild's theorem 
asserts that the charge distribution in a filled hydrogenlike subshell is spherically 
symmetric (independent of 0 and 4)). This theorem also must hold for a half-filled 
subshell. 

Exercise 17.9 
For hydrogenlike orbitals, show that 

1r 12 + 1r -4- [~t2p_ 112 
is independent of 0 and ~, as asserted by Uns61d's theorem. 

There are a number of additional chemical and physical properties, including atomic 
size, melting temperature, and electronegativity, that can be correlated with electron 
configuration and thus with position in the periodic table. 

Summary of the Chapter 

This chapter introduced three approximation schemes and discussed their application to 
atoms with two or more electrons. The first approximation scheme was the variation 
method, in which a variation trial function is chosen to minimize the approximate 
ground-state energy. A simple orbital variation trial function was found to correspond to 
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a reduced nuclear charge in the helium atom. This result was interpreted to mean that 
each electron in a helium atom shields the other electron from the full charge of the 
nucleus. A better approximation corresponds to introduction of electron correlation, a 
dependence of the wave function on the interelectronic distance. 

The next approximation method discussed was the perturbation method. To apply 
this method, the Hamiltonian must be written as ~(0) +/2/,, where/2/(0) represents a 
Hamiltonian of a Schr6dinger equation that can be solved. The term [/ '  is called the 
perturbation term. The perturbation term is arbitrarily multiplied by a fictitious 
parameter 2, so that 2 = 1 corresponds to the actual case. The method is based on 
representations of the energy eigenvalues and energy eigenfunctions as power series in 
2 and approximation of the series by partial sums. In the helium atom treatment the 
interelectronic repulsive potential energy was treated as the perturbation term in the 
Hamiltonian operator. The method gave useful results for excited states. 

The third approximation scheme was the self-consistent-field method of Hartree and 
Fock. In this method an optimum orbital wave function is sought without restricting the 
search to a single family of functions. For the helium atom the interelectronic replusive 
energy is represented by assuming the probability density for the second electron to be 
given by an earlier approximate orbital and solving the resulting integrodifferential 
equation by iteration. 

In the orbital approximation, the energies of the orbitals in multielectron atoms 
depend on the angular momentum quantum number as well as on the principal quantum 
number, increasing as l increases. The ground state is identified by the Aufbau 
principle, choosing orbitals that give the lowest sum of the orbital energies consistent 
with the Pauli exclusion principle. 

Hund's first rule is that the largest value of S corresponds to the lowest energy in a 
configuration. The second rule is that for fixed value of S, the largest value of L, the 
quantum number for the total orbital angular momentum, corresponds to the lowest 
energy. The first rule correlates with the fact that the larger values of S correspond to 
lower probability for small interelectron distances, lowering the potential energy. 

The form of the periodic table is determined by electron configurations. Elements 
with the same number of electrons in the outer (valence) shell have similar chemical 
properties. For example, all of the inert gases have eight electrons in the outer shell, 
corresponding to the stable configuration with fully occupied s and p subshells. 
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hydrogen atom in an electric field in the z direction with 
magnitude g. Explain any difference between your result and 
that of part (a). 

Identify each statement as either true or false. If a 
statement is true only under special circumstances, label it as 
false. 

a. The orbital energy of a 4s subshell is always lower than 
that of a 3d subshell in the same atom. 

b. The ground state of every inert gas corresponds to a 
filled valence shell. 

c. The inert gases are the only elements with spherically 
symmetric electron charge distributions. 

d. An electron configuration that contains only filled 
subshells can correspond to only one term symbol. 

e. Orbital occupations that do not correspond to Hund's 
first rule cannot occur. 

f. The self-consistent theory can deliver the best possible 
orbital wave function for a multielectron atom. 

g. A second-order perturbation result is always more nearly 
correct than a first-order result. 

h. An electron configuration with two unpaired electrons 
cannot correspond to a doublet term symbol. 

i. An antisymmetrized orbital wave function contains no 
electron correlation. 

j. An antisymmetrized orbital wave function contains no 
dynamical correlation. 

k. If a variational energy equals the correct ground-state 
energy, the variational trial function must be equal to the 
correct ground-state wave function. 



The Electronic States of Molecules 

, 

, 

In the Bom-Oppenheimer approximation, the nuclei are assumed to be 
stationary when the electronic states are studied. 

The Schr6dinger equation for the hydrogen molecule ion, H2 +, can be 
solved in the Born-Oppenheimer approximation without further 
approximations. 

Molecular orbitals can be represented approximately as linear combinations 
of atomic orbitals (LCAO-MOs). 

4. The electronic states of homonuclear diatomic molecules can be described 
with a common set of LCAO-MOs. 

5. The valence bond method is an alternative to the molecular orbital method. 

, Heteronuc!ear diatomic molecules are described with molecular orbitals 
that differ from those of homonuclear diatomic molecules. 

~ Qualitative descriptions of the electronic states of molecules can be 
obtained by using general criteria for forming good bonding LCAO 
molecular orbitals. 

~ The electronic structure of polyatomic molecules can be described with 
LCAO molecular orbitals. 

, Group theory can be used to obtain useful information about molecular 
orbitals and wave functions. 

10. Various semi-empirical and ab initio techniques exist for carrying out 
molecular orbital calculations. 
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The Born-Oppenheimer Approximation. 
The Hydrogen Molecule Ion 

In a two-particle system such as the hydrogen atom, the Schr6dinger equation can be 
solved in closed form (with solutions that can be represented by formulas). This is done 
as in Chapter 16 by separating the Schr6dinger equation for two particles into one 
equation for the motion of the center of mass and another for the relative motion. For 
atoms with more than one electron we had to resort to approximations, including the 
assumption that in studying the electronic motion in atoms the nucleus was stationary. 

Our study of the electronic motion in molecules is based on a similar assumption, the 
Born-Oppenheimer  approximation, 1 which is the assumption that the nuclei are 
stationary when the electronic motion is studied. Fixed bond distances and bond angles 
are assumed and a Hamiltonian operator is written for electronic motion only. This is a 
good approximation, since electrons move so rapidly that they adapt to a new electronic 
wave function as soon as the nuclei move to a new location or conformation. 

The energy of the molecule with stationary nuclei is called the Born-Oppenheimer 
energy. Figure 18.1 shows schematically the ground-state Born-Oppenheimer energy of 
a diatomic molecule, which depends only on the internuclear distance, R. With 
polyatomic molecules, the Born-Oppenheimer energy depends on all of the inter- 
nuclear distances and bond angles. Since the Born-Oppenheimer energy is a function 
of nuclear positions but not their velocities, it acts as a potential energy for molecular 
vibrations. Molecular rotations are usually studied with the assumption that the 
molecule is locked in the conformation of lowest energy (the equilibrium conforma- 
tion). To a good approximation, the kinetic energy of nuclear motion can be added to 
the Born-Oppenheimer energy to obtain the total energy of the molecule. We return to 
study of the nuclear motions in Chapter 19. 

The Schr6dinger Equation for the Hydrogen Molecule Ion 
The simplest molecular system is the hydrogen molecule ion, H2 +, consisting of two 
nuclei and a single electron, as depicted in Figure 18.2. We apply the Born- 
Oppenheimer approximation, assuming that the nuclei are stationary with one nucleus 
at position A on the z axis and the other nucleus at position B on the z axis and with the 
origin of coordinates midway between the nuclei. The Born-Oppenheimer Hamiltonian 
operator for the hydrogen molecule ion is 

/ -~ -  h2 V 2 -n t- ( 1 8 . 1 - 1 )  
2m 4-~e 0 r A 

where V 2 is the Laplacian operator for the electron's coordinates, m is the electron mass, 
R is the internuclear distance, r A is the distance from the electron to the nucleus at 
position A, and r B is the distance from the electron to the nucleus at position B. There 
are no kinetic energy terms for the nuclei because they are assumed to be fixed. Since 

1Max Born and J. Robert Oppenheimer, Ann. Phys., 84, 457 (1927). 
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the internuclear distance R is constant in the Born-Oppenheimer approximation, the 
potential energy ~Unn of internuclear repulsion is a constant: 

~2 

4 rceoR 
-- ~nn -- constant (18.1-2) 

We exclude ~/'nn from the electronic energy and write 

- :/e, + Cnn (18.1-3) 

/2/el_ _ mh2V2 +4--~80~2 ( 1 rA rB1) (18.1-4) 

The electronic Schrrdinger equation is 

/2/el@e 1 -- Eel@e 1 (18.1-5) 

where Eel is the electronic energy eigenvalue. A constant added to a Hamiltonian 
operator does not change the energy eigenfunctions and results in adding that constant 
to the energy eigenvalues. (See Exercise 14.22.) We can write 

EBo -- Eel + ~//'nn (18.1-6) 

where EBo is the Bom-Oppenheimer energy. 
The variables can be separated in Eq. (18.1-5) by transforming to a coordinate 

system that is called confocal polar elliptical coordinates. We will not discuss the 
solution, 2 but will present some facts about the ground state and first excited state. We 
call the energies and orbitals of these states the "exact Bom-Oppenheimer" energies 
and orbitals. They contain no approximations other than the Born-Oppenheimer 
approximation. 

Figure 18.3 shows the Born-Oppenheimer energy as a function of R for the two 
states. The lower curve has a minimum at R -- 1.06 x 10 -1~ m -  106 pm. This value 
of R is denoted by R e and is called the equilibrium internuclear distance. We consider 
the molecule to be chemically bonded in the ground state with a bond order of 1/2, 
since there is one shared electron. For large values of R the energy approaches a 
constant value. The difference in energy between this constant value and the value of 
the energy at R -  R e is denoted by D e and is called the dissociation energy of the 
molecule. For the H2 + ion, D e is equal to 2.8 eV. The first excited state has an energy 
that decreases monotonically as R increases. If the molecule is in the first excited state it 
will dissociate, forming a hydrogen atom and an H + ion. 

Molecular Orbitals 

The eigenfunctions of the Hamiltonian of Eq. (18.1-5) are one-electron wave functions 
that correspond to electronic motion around both nuclei. They are molecular orbitals. 
Figure 18.4 shows qualitatively the orbital regions for the ground state and first excited 
state. There is some similarity between the ground-state orbital region and that of the ls 
orbital region for the hydrogen atom and between the orbital region of the first excited 
state and that of the 2pz orbital of the hydrogen atom. If the mathematical limit is taken 
as R approaches zero, a hypothetical single atom called the united atom is obtained. 
The united atom for H2 + is the He + ion with a single electron and Z = 2. In this limit 

2 D.R. Bates, K. Ledsham and A. L. Stewart, Phil. Trans. Roy. Soc. A246, 215 (1963). 
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the ground-state molecular orbital tums into the united-atom ls He + orbital, and the 
first excited-state molecular orbital tums into the united-atom 2pz He + orbital. 

The ground-state orbital has no nodes except at infinite distance from the nuclei, 
while the first excited-state orbital has a nodal surface between the nuclei. A wave 
function with more nodes generally corresponds to a higher energy than one with fewer 
nodes. A molecular orbital without a nodal surface between the nuclei generally 
corresponds to an electronic energy with a minimum value as a function of R and it 
is called a bonding molecular orbital. An orbital with a nodal surface between the 
nuclei generally corresponds to an electronic energy that decreases monotonically as R 
increases and is called an antibonding molecular orbital. 



18.1 The Born-Oppenheimer Approximation. The Hydrogen Molecule Ion 651 

The orbital angular momentum operators ]2 and Lz commute with the electronic 
Hamiltonian of the hydrogen atom, and energy eigenfunctions could be found that were 
eigenfunctions of these two operators. The operator/~2 does not commute with the 
electronic Hamiltonian of the H2 + molecule because all directions are not equivalent 
due to the two fixed nuclei. However, Lz does commute with the electronic Hamiltonian 
operator if the nuclear axis is chosen as the z axis. The energy eigenfunctions can be 
eigenfunctions of Lz, although not necessarily of ~,2. The eigenvalues of/~z follow the 
same pattern as in the atomic case: 

L, zJ/ - h m J /  (18.1-7) 

where the quantum number m equals any integer and where ~ represents an energy 
eigenfunction. The magnitude of m is not bounded by any quantum number l as for 
atoms. For molecular orbitals, we define a nonnegative quantum number 2: 

: Iml (18.1-8)  

A nonzero value of 2 corresponds to two states because m can be either positive or 
negative. Each level for 2 r 0 has a degeneracy equal to 2 (is "doubly degenerate"). 

Atomic orbitals corresponding to l = 0 were called s orbitals, orbitals with l = 1 
were called p orbitals, etc. For molecular orbitals we use the following Greek-letter 
designations: 

Value of 2 Symbol 
0 a 
1 rc 
2 & 
3 q~ " 

etc. 

Both the ground-state orbital and the first excited-state orbital of the hydrogen 
molecule ion are a (sigma) orbitals. 

Symmetry Properties of the Molecular Orbitals 
There is an important class of operators that can commute with the Born-Oppenheimer 
electronic Hamiltonian operator for a molecule and can be used to characterize the 
symmetry properties of molecules and of molecular orbitals. These operators are 
symmetry operators, which move points from one location to another in three- 
dimensional space. Each symmetry operator is classified and named by the way it 
moves a point. For each operator, there is a symmetry element, which is a point, line, 
or plane with respect to which the symmetry operation is performed. 

The symmetry operators that commute with the Born-Oppenheimer Hamiltonian of a 
given molecule are said to belong to the molecule. The electronic energy eigenfunctions 
of the molecule can also be eigenfunctions of these operators. For diatomic molecules, 

^ 

we consider several symmetry operators. The inversion operator, i, is defined to move 
a point on a line through the origin of coordinates to a location that is at the same 
distance from the origin as the original location. If the cartesian coordinates of the 
original location are (x, y, z), the inversion operator moves the point to ( - x , - y , - z ) .  
For a general operation, we denote the final coordinates by (x', y', z'), so that for the 
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inversion operator x ' = - x ,  y ' = - y ,  and z ' - - z .  We denote the operation by the 
equation 

i(x, y, z) -- (x', y', z') -- ( -x ,  -y ,  - z )  (18.1-9) 

The symmetry element for the inversion operator is the origin. Since there is only one 
origin, there is only one inversion operator. Point symmetry operators are symmetry 
operators that leave a point at its original location if that location is at the origin. The 
inversion operator is an example of a point symmetry operator. The symmetry elements 
of point symmetry operators always include the origin. 

A reflection operator is defined to move a point along a line perpendicular to a 
specified plane to a location on the other side of the plane at the same distance from the 
plane as the original location. It is said to "reflect" the point through the plane, which is 
the symmetry element. The reflection operator 6h reflects through a horizontal plane" 

6 h (x, y, z) = (x', y', z') = (x, y, - z )  (18.1-10) 

There is only one horizontal plane through the origin, so there is only one ~ operator 
among the point symmetry operators. A symmetry operator that reflects through a 
vertical plane is denoted by 6v. Since there are infinitely many vertical planes 
containing the origin, there are infinitely many g'v operators among the point symmetry 
operators. It is convenient to attach subscripts or other labels to distinguish them from 
each other. 

*Exercise 18.1 
Find the coordinates of the points resulting from the operations: 
a. i (1,2,  3) 
b. O'h(4,--2,--2) 
e. 6vyz(7, -6, 3) where ~vyz is the reflection operator that reflects through the yz plane. 

Rotation operators cause a point to move as it would if it were part of a rigid body 
rotating about a specified axis, which is the symmetry element. The point moves around 
a circle that is centered on the axis of rotation and perpendicular to it. By convention, 
all rotations are counterclockwise when viewed from the end of the rotation axis that is 
designated as the positive end. There are infinitely many lines that pass through the 
origin, and for each rotation axis there can be rotations by infinitely many different 
angles. We consider only rotation operators that produce a full rotation (360 ~ when 
applied an integral number of times. A rotation operator that produces one full rotation 
when applied n times is denoted by C,. It is convenient to add subscripts to denote the 
axis. For example, the (?4z operator rotates by 90 ~ about the z axis, and its effect on a 
point at (x, y, z) is 

C4z(X, y, z) - (x', y ' ,  z') - ( - y ,  x, z) (18.1-11) 

Figure 18.5 shows the effect of the operators/, 6h, and t~4z on a point in the first octant. 

*Exercise 18.2 
Find the following locations: 
a. ~2~(1, 2, 3) (the axis of rotation is the x axis). 
b. Cay (1, 1, 1) (the axis of rotation is the y axis). 
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In addition to the above operators there is the identity operator, which does nothing. It 
is denoted by L'. The letter E is used because it is the first letter of the German word 
"Einheit," meaning "unity." 

E(x, y , z )  -- (x, y , z )  (18.1-12) 

The Operation of Symmetry Operators on Functions 
Ordinary mathematical operators operate on functions, not on isolated points. We define 
a mode of operation so that symmetry operators also operate on functions. Letf(x,  y, z) 
be some function of the coordinates x, y, and z, and let O be some symmetry operator 
that carries a point at (x, y, z) to a location (x', y', z'): 

~)(x, y , z )  - (x', y ' , z ' )  (18.1-13) 

When the operator ~) operates on the functionf it produces a new function g, defined to 
be the function that has the same value at the location (x', y', z') that the functionf has 
at the location (x, y, z). If 

then 

Of(x,  y, z) -- g(x, y, z) (18.1-14) 

g(x' ,  y ' ,  z') = f ( x ,  y, z) (18.1-15) 

A function can be an eigenfunction of a symmetry operator. The only eigenvalues that 
occur are + 1 and - 1. 
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Exercise 18.3 
*a. Determine the spherical polar coordinates of iP and 6hP if P represents a point whose 

location is (r, 0, ~b). 
b. Show that the ~2p: hydrogenlike orbital is an eigenfunction of the 3- h operator with 

eigenvalue - 1. 

The equilibrium nuclear conformations of many molecules are symmetrical. Our first 
use of symmetry operators is to apply them to the nuclei of a molecule in their 
equilibrium conformation. Our second use is to apply them to the electrons of the 
molecule or to an orbital function, leaving the nuclei fixed in their equilibrium 
positions. If a symmetry operator moves every nucleus to a location previously 
occupied by a nucleus of the same kind (same isotope of the same element) it belongs 
to the molecule. A symmetry operator that belongs to the molecule will not change the 
value of the potential energy when it is applied to the electrons with the nuclei fixed. It 
will bring every electron to a point in which it either is at the same distance from each 
nucleus as it was in its original position or is at the same distance from a different 
nucleus of the same kind. The operation of the inversion operator on the electron of an 
H2 + molecule ion is illustrated in Figure 18.6. This motion brings the electron to the 
same distance from nucleus A as it originally was from nucleus B and vice versa, and 
thus does not change the potential energy. Any symmetry operator that belongs to 
a molecule will not change the potential energy when it is applied to its electrons and 
will commute with the Born-Oppenheimer electronic Hamiltonian operator of that 
molecule. 

Exercise 18.4 
Show that the symmetry operators i, 3" h, C,z, and C2, belong to the H2 + molecule, where n is any 
positive integer and where a stands for any axis in the x-y plane. Show also that if these operators 
are applied to the electron position with fixed nuclei, the potential energy is unchanged. 

A symmetry operator can operate on electronic wave functions as defined in Eq. 
(18.1-15), and electronic wave functions can be eigenfunctions of symmetry operators 
that commute with the electronic Hamiltonian operator. The ground-state electronic 
orbital of H2 + is an eigenfunction of each of the symmetry operators in Exercise 18.4, 
and each eigenvalue is equal to +1. The orbital of the first excited state is also an 
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eigenfunction of these operators, but the eigenvalues of i, Gh, and (~2a are equal to - 1 .  
An eigenfunction having an eigenvalue of i equal to + 1 is denoted b y  a subscript g 
(from the German gerade, meaning "even") and an eigenvalue of i equal to - 1  is 
denoted by a subscript u (from the German ungerade, meaning "odd"). An eigenvalue 
of 3- h equal to - 1  is denoted by an asterisk (*). Orbitals with asterisks are antibonding 
since they have a nodal plane through the origin perpendicular to the bond axis. No 
superscript or subscript is used to denote an eigenvalue of 3- h equal to + 1, correspond- 
ing to a bonding orbital. The sigma orbitals are generally numbered from the lowest to 
the highest orbital energy, so the ground-state orbital of the hydrogen molecule ion is 
denoted by Ol~g and the first excited state is denoted by ~2~:. 

The exact Born-Oppenheimer solutions to the Schr6dinger equation for the hydrogen 
molecule ion are expressed in an unfamiliar coordinate system, and we did not 
explicitly display them. It will be convenient to have some easily expressed approx- 
imate molecular orbitals. We define molecular orbitals that are linear combinations 

of atomic orbitals, abbreviated LCAO-MO. If~ ,j~,f3, . . .  are a set of functions, then g 
is called a linear combination of these functions if it equals a sum of these functions 
times constant coefficients: 

g = c l f  1 + c2f2 -+- c3A + . . .  (18.2-1) 

We say that the function g is expanded in terms of the set of basis fnnctionsfl ,f2 . . . . .  
The coefficients c 1 , c2 . . . .  are called expansion coefficients. If the linear combination 
can be an exact representation of an arbitrary function obeying the same boundary 
conditions as the basis set, the basis set is said to be a complete set. In Chapter 15 we 
introduced the assumption that the set of all eigenfunctions of a hermitian operator is a 
complete set for expansion of any function obeying the same boundary conditions as 
the eigenfunctions. We will not attempt to use a complete set of functions for our 
LCAO-MOs, but will begin with a basis set consisting of two atomic orbitals centered 
on two different nuclei. 

LCAO-MOs for the First Two States of the H2 + Molecule Ion 

We seek LCAO-MO representations for the ~l~g and 1]/2au, molecular orbitals. Let r A be 
the distance from nucleus A to the electron, and let r B be the distance from nucleus B to 
the electron. We take two hydrogenlike orbitals as our first basis set: one with r A as its 
independent variable and one with r B as its independent variable. We use the 
abbreviations: 

0 lsA -- I//ls(rA) (18.2-2a) 

01sB "~ ~ls(rB) (18.2-2b) 
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The orbital OlsA has its orbital region centered at location A and the orbital OlsB has its 
orbital region centered at location B. We now form molecular orbitals that are linear 
combinations of the basis functions: 

I/tMO -- c A ~t lsg 4- CB I/t lsB (18.2-3) 

The number of possible independent linear combinations is always equal to the number 
of independent basis functions. We have two basis functions so it is possible to make 
two independent linear combinations. We seek two molecular orbitals that are 
approximations to the ground state orbital and the first excited state orbital of the 

HE + ion. 
There are at least two ways to find the appropriate values of c A and c B for the ground 

state. One procedure is to regard ~MO as a variational trial function and to minimize the 
variational energy as a function of c A and c B. We do not present this calculation, but the 
result is that the variational energy is minimized when CA -- CB. An approximation to 
the first excited state is obtained when the energy has its maximum value, and this 
corresponds to c = --cB. 3 Another procedure is to choose values of c A and c B so that 
the approximate orbital is an eigenfunction of the same symmetry operators as the exact 
orbitals. The ground-state exact Born-Oppenheimer orbital is an eigenfunction of the 
inversion operator with eigenvalue 4-1. In order to obtain an LCAO-MO with this 
eigenvalue, we choose 

C A "- C B (18.2-4) 

Since the origin is midway between the two nuclei, inversion from any point leads to a 
point that is the same distance from nucleus B that the original point was from nucleus 
A and vice versa. If CA = cB each term in the linear combination becomes equal to the 
original value of the other term, so that the molecular orbital is an eigenfunction of the 
inversion operator with eigenvalue 1 if CA = cB. 

In order to obtain a molecular orbital with the same symmetry properties as the exact 
Born-Oppenheimer orbital of the first excited state, we must choose 

c A = - c  B (18.2-5) 

The symmetry properties are sufficiently fundamental that choosing the molecular 
orbitals to be their eigenfunctions leads to the same LCAO-MOs as the variation 
procedure. These LCAO-MOs are eigenfunctions of the other symmetry operators that 
belong to the H2 + molecule. 

Exercise 18.5 
a. Argue that c A - c B leads to an eigenvalue of + 1 for the 3 h operator and for the C2a operator, 

where CEa is a rotation operator whose symmetry element lies somewhere in the x-y plane. 
b. Argue that c A - - c  B leads to an eigenvalue of -1 for the O'h operator and for the C2a 

operator. 

We introduce the symbols for our two LCAO-MOs: 

i//agls - Cg[I//lsA -1- I//lsB] 

~ta:ls = Cu[I/tlsm -- ~r 

(18.2-6) 

(18.2-7) 

3 j. C. Davis, Jr., Advanced Physical Chemistry, The Ronald Press, New York, 1965, p. 404. 
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where the ls subscripts indicate the atomic orbitals from which the LCAO-MOs were 
constructed. The value of the constants Cg and C u can be chosen to normalize the 
molecular orbitals. 

Figure 18.7 schematically shows the orbital regions for the agls LCAO- MO and 
the a~ls LCAO-MO, as well as the orbital regions for the ls atomic orbitals. The 
intersection of the two atomic orbital regions is called the overlap region. This is the 
only region where both atomic orbitals differ significantly from zero. For the ~rgls 
orbital the two atomic orbitals combine with the same sign in the overlap region, 
producing an orbital region characteristic of a bonding orbital with no nodal surfaces. 
For the a~ls orbital the atomic orbitals combine with opposite signs in the overlap 
region, canceling to produce a nodal surface between the nuclei, characteristic of an 
antibonding orbital. This addition and cancellation are similar to constructive and 
destructive interference of waves, but should not be interpreted as actual interference. 

Figure 18.8 shows the electronic energy for each of these LCAO molecular orbitals 
along with the exact Born-Oppenheimer energies. The value of D e for the ag ls orbital 
is equal to 1.76 eV, with a value of R e equal to 1.32 x 10-10 m. As we expect from the 
variational theorem, the approximate energies lie above the exact energies for all values 
of R. The energies can be improved by "scaling" the atomic orbitals: that is, by 
replacing the atomic number Z in the orbital exponent by a variable parameter. 

LCAO-MOs can be constructed that are linear combinations of more than two atomic 
orbitals. For example, for the ground state of the hydrogen molecule ion, we could write 

~MO = ClsAI[IlsA + ClsBI/llsB -'1- C2sAI[12sA 
(18.2-8) 

-Jr- C2sB~2s B -Jr" C2p2A@2pz A + C2pzB~2pz B 

When the variational energy is minimized with respect to the c coefficients, a better 
(lower) value is obtained than with the agls orbital. However, we will use linear 
combinations of only two atomic orbitals as much as possible, since we will content 
ourselves with qualitative description rather than quantitative calculation. The 2px and 
2py atomic orbitals are not included in Eq. (18.2-8) because they have different 
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symmetry about the bond axis than does the exact ground-state orbital. If they were 
included with nonzero coefficients, the LCAO-MO would not be an eigenfunction of 
the same symmetry operators as the exact orbitals. 

Exercise 18.6 
Argue that the 2px and 2py atomic orbitals are eigenfunctions of the C2z operator with eigenvalue 

- 1, while the 2pz orbital is an eigenfunction with eigenvalue+ 1. Argue that a linear combination 
of all three of these orbitals is not an eigenfunction of the Czz operator. 

LCAO-MOs for Additional Excited States of H2 + 

The wave functions for additional excited states of H2 + are approximated by LCAO- 
MOs using higher-energy hydrogenlike orbitals. For example, two linear combinations 
of 2s orbitals that are eigenfunctions of the appropriate symmetry operators are 

I/Yag2S - -  Cg[I/t2s(fA) q- I//2s(rB)] - -  Cg[02sA q- @2sB] (18.2-9) 

I [ la*2s  - -  Cu[IP2s(rA) - I//2s(FB)] - -  Cu[O2sA -- 02sB] (18.2-10) 

The ag2S orbital is a bonding orbital, and the a~2s orbital is an antibonding orbital. The 
ag2S orbital energy is higher than that of the a*ls antibonding orbital since the 
molecule dissociates from the ag2S state to a hydrogen nucleus and a hydrogen atom in 
the 2s state, as shown schematically in Figure 18.9. 

Exercise 18.7 
Draw sketches of the orbital regions for the functions in Eq. (18.2-9) and (18.2-10). Argue that 
the designations ag and a~ are correct. 
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Normalization of the LCAO-MOs 

To normalize the agls orbital we write 

1 -- [Cgl 2 J(I//A -JI- @B)*(0A -[- I]/B) d3r (18.2-11) 

where we abbreviate the lsA and lsB subscripts by A and B. The ls atomic orbitals are 
real functions, so the complex conjugate symbol can be omitted. We will choose the 
normalization constant Cg to be real so that 

1 -- C 2 J(~t 2 + 2~tA0 B + 0 2) d3r (18.2-12) 

The atomic orbitals ~t A and OB are normalized, so that the first term and the last term in 
the integral will each yield unity when the integration is done. The second term gives an 
integral that is denoted by S: 

J I/tA@ B d3r -- S (18.2-13) 
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The integral S is called the overlap integral because the major contribution to its 
integrand comes from the overlap region. In other regions at least one of the factors in 
the integrand is small. Since the ls orbitals are positive everywhere the overlap integral 
for two ls orbitals is positive. Its value depends on R, approaching zero if the two nuclei 
are very far apart and approaching unity when R approaches zero since it then 
approaches a normalization integral. Similar overlap integrals can be defined for 
other pairs of atomic orbitals, and it is convenient to attach two subscripts to the 
symbol S to indicate which two orbitals are involved. The overlap integral in Eq. (18.2- 
13) would be denoted as Sis,1 s. For any normalized atomic orbitals, the values of 
overlap integrals must lie between - 1  and 4-1, and approach zero as R is made large. If 
we had an overlap integral between a ls and a 2pz orbital on different nuclei, it would 
approach zero as the nuclei approach each other, because it would approach an 
othogonality integral instead of a normalization integral. 

We now have 

1 - C2(1 + 2 S +  1) (18.2-14) 

so that the normalized LCAO-MO is 

I//agls- x/2 + 2-------------~ (I//A 4- I//B) (18.2-15) 

Exercise 18.8 
Show that the normalization constant for the o'~, ls LCAO-MO is 

1 
C u = ~ (18.2-16) 

~/2 - 2S 

Homonuclear diatomic molecules have two nuclei of the same kind. We discuss the 
homonuclear diatomic molecules of the first and second rows of the periodic table, and 
will base our discussion on the H2 + molecular orbitals in much the same way as we 
based our discussion of multielectron atoms on the hydrogen atom atomic orbitals in 
Chapters 16 and 17. 

The Hydrogen Molecule 
Figure 18.10 shows the hydrogen molecule, consisting of two nuclei at locations A and 
B and two electrons at locations 1 and 2. With its two electrons the hydrogen molecule 
bears the same relationship to the hydrogen molecule ion that the helium atom does to 
the hydrogen atom, and our treatment of it resembles that of the helium atom. We apply 
the Born-Oppenheimer approximation, assuming the nuclei to be fixed on the z axis 
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with the origin at their center of mass. The distances between the particles are labeled as 
shown in the figure. The Born-Oppenheimer Hamiltonian operator is 

G r,A rib r2A r2B rl2 ) 
A A l )  

= HHMI( 1 ) -+- HHMI(2 ) -+- 4-~g 0 -+- ~ (18.3-1 ) 

where [/HMI(1) and /2/HMI(2 ) are hydrogen-molecule-ion electronic Hamiltonian 
operators denoted by/-/el in Eq. (18.1-4). The nuclear repulsion term (proportional to 
1/R) is included because the HMI Hamiltonian operators do not contain this term. This 
term is a constant in the Born-Oppenheimer approximation, since R is fixed. We omit it 
during the solution of the electronic Schr6dinger equation and add it to the resulting 
electronic energy eigenvalue to obtain the total Born-Oppenheimer energy, as in Eq. 
(18.1-6). 

The LCAO-MO Treatment of the Hydrogen Molecule 
The final term in the Hamiltonian operator, representing interelectron repulsion, 
prevents separation of the equation into two one-electron equations. We neglect this 
term as we did in the zero-order helium atom treatment, obtaining the zero-order 
electronic Hamiltonian operator: 

/2/(0) __/_2/HMI(1 ) _1._/QHMI(2) (18.3-2) 

This zero-order Hamiltonian leads to a separation of variables with a trial function that 
is a product of two hydrogen-molecule-ion orbitals: 

~ ( o ) _  ~P1(1)~2(2 ) (18.3-3) 

The zero-order Born-Oppenheimer energy is a sum of two hydrogen-molecule-ion 
electronic energies plus ~//~n,~. 

E(~ -- EHMI(1) + EHMI(2) + ~/'nn = EHMI(1) + EHMI(2) + 
~2 

4n%R 
(18.3-4) 

We could use the exact Born-Oppenheimer H2 + orbitals in this wave function. 
However, the zero-order orbital approximation is crude enough that no appreciable 
further damage is done by using the LCAO-MO orbitals instead of the exact Born- 
Oppenheimer orbitals. 

To find the ground-state wave function we apply the Aufbau principle, choosing the 
lowest-energy LCAO-MOs compatible with the Pauli exclusion principle. Including the 
spin factor, the antisymmetrized and normalized zero-ground state wave function is 

~t(0 ) _ 1 
~/~ 0ag is (1)0ag is (2) [cx(1)fi(2) -/3(1)~ (2)] (18.3-5) 

Electron configurations are assigned in much the same way as with atoms. This function 
corresponds to the electron configuration (o-gls) 2, with two electrons occupying the 
O'g 1S bonding molecular space orbital. We say that the hydrogen molecule has a single 
covalent bond with one pair of shared electrons. 

When calculations are done, the zero-order wave function gives a dissociation energy 
D e = 2.65 eV and equilibrium internuclear distance R e -- 0.84 x 10-a~ = 84 pm, 
compared with the experimental values of 4.75eV and 74.1 pm. More accurate 
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values can be obtained using the perturbation method, variation method, or self- 
consistent field method. A variation function with variable orbital exponents in the 
atomic orbitals in the LCAO-MO wave function gives D e -- 3.49 eV and R e = 73.2 pm 
with an orbital exponent corresponding to an apparent nuclear charge of  1.197 protons. 
A Hartree-Fock-Roothaan calculation gives D e - - 3 . 6 4 e V  and R e = 74pro. 4 The 
Hartree-Fock orbitals can be the best possible orbitals (no error except for the 
correlation error). The correlation error is approximately equal to 1.11 eV, assuming 
that this Hartree-Fock-Roothaan calculation approximates the best Hartree-Fock 
calculation. 

Just as with atoms, configuration interaction (abbreviated CI) can be used to improve 
our description. A CI wave function using the two electron configurations (ag ls) 2 and 
(o'* ls) 2 is 

~cI  -- CcI[~gls(1)~Ogl~,(2) + C u ~ l s ( 1 ) ~ / ~ l s ( 2 ) ] [ ~ ( 1 ) f l ( 2 )  - fl(1)~(2)] (18.3-6) 

where the value of  c u is chosen to minimize the variational energy, and the value of  CCI 
is chosen to normalize the function. With the optimum value of  the parameter c u, this 
function gives De = 4 .02eV and R e - - 7 5 p m .  The inclusion of  a single additional 
electron configuration has thus removed about one-third of  the correlation error. 5 Table 
18.1 summarizes some of  the numerical results of  calculations on the ground state of  
the hydrogen molecule. 

Excited states of  the hydrogen molecule correspond to electron configurations other 
than (o'glS) 2. Some of  these states are not bound states. In the electron configuration 

4 Ira N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, N. J., 1991, pp. 385 ft. 
5 Levine, op. cit., pp 385 ff (Note 4). 
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(O'g 1S)(O'* 1S) there is one electron in a bonding orbital and one in an antibonding orbital. 
The antibonding effect of one electron approximately cancels the bonding effect of the 
other electron, and the molecule will dissociate into two hydrogen atoms if placed in 
such a state. 

Term Symbols for Homonuclear Diatomic Molecules 
As with atoms, term symbols are used to designate electronic energy levels of 
homonuclear diatomic molecules. In the atomic case the main part of the term 
symbol was determined by the magnitude of the orbital angular momentum: the 
letter S stood for L = 0, the letter P for L = 1, D for L = 2, etc. The energy 
eigenfunctions of diatomic molecules are not necessarily eigenfunctions of/~2 since 
this operator does not commute with the electronic Hamiltonian operator. We say that L 
is not a good quantum number or sometimes that/~2 is not a good ^quantum number 
(even though it is an operator and not a quantum number). However, L z does commute 
with the electronic Hamiltonian operator, and an energy eigenfunction can be an 
eigenfunction of Lz: 

[,z ~ -- hMc W (18.3-7) 

where ML is the same quantum number as in the atomic case. In the orbital 
approximation, M L is equal to the algebraic sum of the values of m for each occupied 
orbital, just as with atoms. We define a nonnegative quantum number A, equal to IML I. 
The main part of the molecular term symbol is a capital Greek letter, assigned 
according to the value of A: 

Value of A Symbol 

0 E 
1 VI 
2 A 
3 

etc. 

In the ground state of diatomic hydrogen, both of the electrons occupy sigma orbitals so 
that the value of Mc is zero as is the value of A. The ground state corresponds to a Z 
(sigma) term. 

Since the nonrelativistic electronic Hamiltonian operator contains no spin, all of the 
spin angular momentum operators commute with it, and the energy eigenfunctions can 
be eigenfunctions of ~2 and Sz- The quantum number for the eigenvalue of ~2 is called 
S (as with atoms) and is equal to a nonnegative integer or half-integer. A left superscript 
equal to 2S + 1 is used on the term symbol just as in the atomic case. There will often 
be several degenerate states with the same values of A and S. These states make up a 
term, and the term symbol applies to all of them. The ground state of the hydrogen 
molecule is nondegenerate and constitutes a 1Z (singlet sigma) term. 

The energy eigenfunctions of homonuclear diatomic molecules can be chosen to be 
eigenfunctions of the symmetry operators belonging to the molecule in the same way as 
can the individual orbitals. If the wave function is an eigenfunction of the inversion 
operator with eigenvalue + 1 a right subscript g is attached to the term symbol. If it is an 
eigenfunction of the inversion operator with eigenvalue - 1 ,  a fight subscript u is 
attached. With sigma terms, if the wave function is an eigenfunction of a 9v operator 



664 18 The Electronic States of Molecules 

with eigenvalue 4-1 a right superscript + is added, and if it is an eigenfunction of this 
operator with eigenvalue - 1  a right superscript - is added. 

The excited electron configuration (crgls)(Cru*ls) can correspond to two different 
terms, with the spins either paired or unpaired. The eigenvalue of the inversion operator 
is --1 for both terms ,~ince one orbital i,~ ~ and the other i,~ 11 One term i,~ a trinlet while 

_ . 

5 , i  the other is a slnglet, and the term symbols tor this contiguratlon are ;Zu and Zu. 

The Valence Bond Method for the Hydrogen Molecule 

Orbital wave functions are not the only type of approximate wave functions that have 
been used for molecules. In 1927 Hitler and London 6 introduced a type of approximate 
wave function for the ground state of  the hydrogen molecule that is now called the 
valence bond function: 

WVB -- C[~tlsA(1)~tlsB(2) 4- OlsB(1)~tlsA(2)][O~(1)fl(2) --/~(1)C~(2)] (18.3-8) 

where C is a normalizing factor. This wave function expresses the sharing of electrons 
in a different way from an orbital wave function. It contains one term in which electron 
1 occupies an atomic orbital centered on nucleus A while electron 2 occupies an atomic 
orbital centered on nucleus B and another term in which the locations are switched. The 
two terms make a symmetric space factor, which must be multiplied by an antisym- 
metric spin factor. 

When the valence bond function of Eq. (18.3-8) is used to calculate the variational 
energy, the values D e = 3.20eV and R e - - 8 0 p m  are obtained. These values are in 
better agreement with experiment than the values obtained from the simple LCAO-MO 
wave function of Eq. (18.3-5). In order to compare the simple LCAO-MO wave 
function with the simple valance bond wave function, we express the molecular orbitals 
in the wave function of Eq. (18.3-5) in terms of atomic orbitals. The space factor in the 
simple LCAO-MO function of Eq. (18.3-5) is 

1 
~/~ 0%ls(1)0agls(2) -- C2[OlsA(1) 4- @lsB(1)][OlsA(2) "4- ~JlsB(2)] 

= C2[~tlsA(l)~tlsA(2) 4- 01sB(1)l/tlsB(2) 

4- 01sA(1)OlsB(2) 4- 01sB(1)OlsA(2)] (18.3-9) 

The last two terms on the fight-hand-side of Eq. (18.3-9) are the same as the space 
factor of the simple valence bond wave function. These terms are called covalent 
terms. The other two terms are called ionic terms since one term has both electrons on 
nucleus A while the other has them on nucleus B. The simple LCAO-MO wave function 
gives the ionic terms equal weight with the covalent terms, while the simple valence- 
bond function omits them completely. It is apparent that it is better to omit them 
completely than to include them with the same weight as the covalent terms. It is even 
better to include the ionic terms with reduced weight. A modified valence-bond wave 
function is: 

I'PMv B = CVBt~/VB 4- Cit~/I (18.3-10) 

where CVB and ci are variable parameters and where ~PI contains the ionic terms: 

tIJ I -- [OlsA(1)lPlsA(2 ) 4- 01sB(1)01sB(Z)][e(1)/3(2) --/3(1)C~(2)] (18.3-11) 

6W. Heitler and E London, Z Physik, 4, 455 (1927). 
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When the coefficients CvB and c I are optimized, this wave function is identical to the 
optimized configuration-interaction function of Eq. (18.3-6). This fact enables us to 
understand why configuration interaction can introduce dynamical electron correlation. 
Combining the two configurations in Eq. (18.3-6) introduces some cancellation of parts 
of the wave function corresponding to electrons being close together, producing the 
same wave function as in Eq. (18.3-10), which includes some electron correlation 
because qJvB contains only terms in which the electrons are on different atoms and are 
thus fairly far apart. 

*Exercise 18.9 
By expressing the function of Eq. (18.3-6) in terms of atomic orbitals, show that it can be made to 
be the same as the function of Eq. (18.3-10). Express the parameters Cvs and c I in terms of Cci 
and Cu- 

The distinction between the valence bond method and the LCAO-MO method at least 
partially disappears when improvements are made to the simple functions. However, the 
valence bond method has become less popular than the molecular orbital method. One 
reason is that it is possible to make further improvements to the molecular orbital 
method by adding more configurations, while additional improvements beyond addition 
of ionic terms to the simple valence bond functions are more difficult to design. 

Diatomic Helium 

The zero-order Born-Oppenheimer Hamiltonian operator for diatomic helium consists 
of four hydrogen-molecule-ion-like (HMIL) Hamiltonian operators with Z = 2 (the 
interelectron repulsions and constant internuclear repulsion are omitted): 

f_/(0) __ /QHMIL(1 ) ~_/QHMIL(2 ) -Jr-/QHMIL(3) -Jr-/~/HMIL(4) (18.3-12) 

The constant nuclear repulsion term ~F~nn will be omitted now, but must be added to the 
energy eigenvalue at the end of the calculation. This molecular Hamiltonian leads to 
separation of variables with a wave function that is a product of four hydrogen- 
molecule-ion-like orbitals. Including spin functions, the non-antisymmetrized zero- 
order LCAO-MO ground state wave function is 

~(o) _ ~P%ls(1)~%gls(2)d/,r~,ls(3)~r~,ls(4)~(1)fi(2)~(3)fl(4) (18.3-13) 

This wave function can be antisymmetrized without vanishing. 

Exercise 18.10 
Antisymmetrize the function of Eq. (18.3-13) by writing it as a 4-by-4 Slater determinant. 

The wave function of Eq. (18.3-13) corresponds to the electron configuration 
(agls)2(au*ls) 2, with two electrons occupying bonding orbitals and two occupying 
antibonding orbitals. The repulsive effect of the antibonding orbitals roughly cancels 
the attractive effect of the bonding orbitals. The molecule does not exist in the ground 
state, but has been observed in excited states. 

We define a bond order: 

Bond order - BO -- 1 (t/bonding _ nantibonding ) (18.3-14) 
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where nbonding is the number of electrons occupying bonding orbitals and nantibonding is 
the number of electrons occupying antibonding orbitals. The division by 2 makes the 
bond order conform to the traditional definition of a single bond as having a pair of 
shared electrons, a double bond as having two pairs, and so on. The bond order of the 
diatomic helium molecule in its ground state is 0. 

Homonuclear Diatomic Molecules with More Than 
Four Electrons 

For homonuclear diatomic molecules of elements with more than four electrons, we will 
require additional molecular orbitals beyond the o-gls and a*ls orbitals. We now 
construct a set of additional approximate LCAO-MOs, as follows: (1) each LCAO-MO 
is a combination of two atomic orbitals of the same type centered on each of two nuclei; 
(2) each LCAO-MO is an eigenfunction of the symmetry operators belonging to the 
homonuclear diatomic molecules. For a given element, we will use the atomic orbitals 
for that element, since these orbitals correspond to the appropriate number of protons in 
each nucleus. 

From each pair of atomic orbitals, two independent LCAO molecular orbitals can be 
constructed. In one of them (a bonding orbital) the two atomic orbitals will add in the 
overlap region, and in the other (an antibonding orbital) the two atomic orbitals will 
cancel in the center of the overlap region. We have already created the O-g2S and the 
a~2s orbitals from the 2s atomic orbitals in Eq. (18.2-9) and Eq. (18.2-10). The electron 
configuration of diatomic lithium in the ground state is 

(O'g 1S)2 (O'u l s ) 2 ( f g 2 S )  2 

and that of diatomic beryllium is 

(6g ls)2(O "* l s ) 2 ( 6 g 2 S ) 2 ( 6 u 2 S )  2 

The bond order for Li2 equals unity, and the bond order for Be2 is zero, explaining why 
Be2 does not exist in its ground state. 

There are six 2p atomic space orbitals on two nuclei, and six LCAO molecular space 
orbitals can be constructed from them. We use the real atomic orbitals, O2p, O2p,, and 
02p., in order to make the orbital regions more compact. In order to obtain~eigenfunc - 
tions of the symmetry operators, the two 2pz orbitals can be combined, the two 2px 
orbitals can be combined, and the two 2py orbitals can be combined. We obtain the 
LCAO-MOs: 

0%2p: - -  C(02p..A -- 02p_.B) 

0~:2p~ = C(02p.A + 02p:B) 

Onu2P x = C(02px  A -~- 02pxB) 

Onu2Py - -  C(~2pyA + 02p),B) 

On~2py --  C ( 0 2 p y A  -- 02pyB) 

(18.3-15a) 

(18.3-15b) 

(18.3-15c) 

(18.3-15d) 

(18.3-15e) 

(18.3-15f) 

where the normalizing constant C can have a different value in each case. If we want to 
determine molecular term symbols, we use the complex 2p  atomic orbitals instead of 
the real 2p orbitals because they are eigenfunctions of the L z operator. 
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Figure 18.11 shows the orbital regions of the atomic orbitals and the LCAO-MOs. 
The 2pz atomic orbitals produce a sigma molecular orbital since they correspond to 
m = 0 (they are the same as 210 orbitals). A difference of the 2pz atomic orbitals 
produces the bonding orbital, while a sum produces an antibonding orbital. This comes 
from the fact that the orbital function has different signs in the two lobes of the atomic 
orbital region so that the negative lobe of one 2pz orbital region points toward the 
positive lobe of the other. Some authors reverse the sign of one orbital or reverse the 
direction of the z axis for one orbital in order to write a positive sign in the bonding 
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orbital. The important thing is that the atomic orbitals must add and not cancel in the 
overlap region to make a bonding orbital. 

The LCAO-MOs made from the 2px and 2py atomic orbitals are called rc (pi) orbitals, 
even though they are not eigenfunctions of the Lz operator, because the 2px and 2py 
atomic orbitals are equivalent to linear combinations of the 211 and 21, - 1  orbitals, 
which are eigenfunctions of the L z operator. The bonding rt orbitals are "u" instead 
of "g" because the two lobes of the 2p atomic orbitals have opposite signs, making 
the bonding orbitals eigenfunctions of the inversion operator with eigenvalue - 1 .  If 
LCAO-MOs were constructed from the 211 and 21, -1  orbitals, the bonding orbitals 
would be designated as rtu211 (or rtu2pl ) and rtu21,- 1 and the antibonding orbitals 
would be designed as zt~211 and rc~21,- 1. 

Figure 18.12 shows a correlation diagram, in which the energies of the atomic 
orbitals and the simple LCAO molecular orbitals are shown schematically with line 
segments connecting the LCAO-MOs and the atomic orbitals from which they were 
constructed. From Figure 17.4 it is apparent that the atomic orbital energies depend on 
nuclear charges, so that the LCAO-MO energies also depend on nuclear charge as well 
as on intemuclear distance. Although the 2px, 2py, and 2pz atomic orbitals are at the 
same energy, the overlap for the a2p LCAO-MOs is different from that of the rc2p 
LCAO-MOs, and the a2p energy is not equal to the rCu2px and rCu2py energies, although 
the rCu2px and rCu2py energies are equal to each other. The order of the LCAO-MO 
energies in the figure is correct for elements up through nitrogen for distances near the 
equilibrium intemuclear distance. For oxygen and fluorine the ag2pz bonding orbital is 
lower in energy than the rcu2px and 7Zu2py bonding orbitals. This difference in the 
relative energies of the ag2pz orbital and the zt u orbitals is reasonable since in a sigma 
orbital the electron moves in a region more directly between the nuclei and would be 
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more effective in screening the nuclear charges from each other than in arc orbital. With 
the larger nuclear charges of the O and F atoms this screening is apparently more 
important than with the other atoms. 

We can now write the ground-state electron configuration for all of the homonuclear 
diatomic molecules of elements of the first and second rows of the periodic chart, using 
the LCAO-MOs in Figure 18.12 and the Aufbau principle. These electron configura- 
tions are shown in Table 18.2. In boron and oxygen the final two electrons are assigned 
to different degenerate space orbitals with parallel spins in accordance with Hund's first 
rule, which applies to molecules as to atoms. This agrees with the experimental fact that 
both diatomic boron and diatomic oxygen have triplet ground levels (two unpaired 
electrons). The detailed electron configurations in Table 18.2 convey all of the 
information conveyed by a non-antisymmetrized wave function. Two degenerate 
orbitals are analogous to a subshell and could be lumped together. The ground-state 
electron configuration of diatomic oxygen would then be written 

(fig 1S) 2 (0"* 1S) 2 (O'g 2S) 2 (O'u 2S) 2 (O'g 2p) 2 (TCu2p) 4 (TZg 2p) 2 

This electron configuration does not explicitly show that the final two antibonding 
electrons occupy different orbitals. 
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Exercise 18.11 
Write an orbital wave function without antisymmetrization for: 
a. Diatomic oxygen in its ground level 
b. Diatomic helium in the excited-state electron configuration (agls)Z(a*ls)(ag2S). What is the 

bond order for this molecule? Do you think it could exist? 

Term symbols can be written for the ground states of homonuclear diatomic 
molecules from inspection of their electron configurations and use of Hund's first 
rule. For example, in the ground level of diatomic boron, the electron spins and orbital 
angular momentum projections occur in canceling pairs in the filled subshells. Only the 
electrons in the n orbitals make a contribution. By Hund's first rule, the two electrons 
occupy different space orbitals with unpaired spins. The orbital angular momentum 
projections cancel, making a triplet sigma term. The symmetry operators must be 
applied to all orbitals, and space orbitals occupied by two electrons are operated on 
once for each electron. The effect of operating twice always gives an eigenvalue of 
+ 1, so that we can ignore the orbitals occupied by two electrons. Both of the bonding g 
orbitals have eigenvalue - 1 for the inversion operator, so their product has eigenvalue 
4-1. A vertical mirror plane in the x - z  will give eigenvalue 4-1 for the gu2px orbital and 
eigenvalue - 1 for the rCu2py orbital, so the term symbol is 3 Eg. The eigenvalues would 
be reversed for a mirror plane in the y - z  plane, but the result is the same when both 
orbitals are considered. The same vertical reflection plane must be used for all orbitals 
to determine whether the term is 4- or - .  

An Alternative Set of Wave Functions 

The attractive effect of an electron in a bonding orbital and the repulsive effect of an 
electron in an antibonding orbital approximately cancel, so the variational energy will 
be almost unchanged if we replace a pair of bonding and antibonding orbitals by the 
two atomic orbitals from which the LCAO-MOs were constructed. If this is done, 
electrons occupying atomic orbitals are counted as nonbonding and are omitted from 
bond order calculations. 

Exercise 18.12 
Using as many nonbonding orbitals as possible, give the ground-state electron configurations 
of diatomic boron and diatomic fluorine. Write the corresponding orbital wave function 
without antisymmetrization for each of these molecules. 
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Homonuclear Diatomic Molecules in the Valence Bond 
Approximation 

For some homonuclear diatomic molecules satisfactory simple valence bond wave func- 
tions can be constructed. In this approximation two bonding electrons occupy a bonding 
factor constructed from two atomic orbitals on different nuclei, as in Eq. (18.3-8). 
We make maximum use of nonbonding orbitals since the valence bond theory has 
nothing analogous to antibonding orbitals. We make no attempt to describe the ground 
states of diatomic boron and diatomic oxygen since the bonding factors do not 
accommodate unpaired electrons. 

A bonding factor corresponds to a single covalent bond so the bond order for 
diatomic carbon in the valence bond approximation is equal to 2, as in the LCAO-MO 
description. We have used bonding factors made with p orbitals to represent the double 
bond as two n bonds. The wave function in Example 18.4 is partially antisymmetrized, 
since the bonding factors and associated spin factors provide antisymmetrization 
between electrons 9 and 10 and also between electrons 11 and 12. If an improved 
valence bond wave function is desired, ionic terms can be added to the covalent terms in 
Eq. (18.3-16). 

Exercise 18.13 
a. Write a simple valence bond wave function for the ground state of diatomic fluorine. 
b. Write a modified valence bond wave function for the ground state of diatomic fluorine, 

including ionic terms. 

Excited States of Homonuclear Diatomic Molecules 

Excited states are represented in the LCAO-MO approximation by electron configura- 
tions other than the one arrived at using the Aufbau principle. Term symbols can be 
written for an excited electron configuration in much the same way as for the ground 
electron configuration. 

Exercise 18.14 
*a. Write the term symbols that can occur for the diatomic beryllium electron configuration 

(O'g ls) 2 (6* ls) 2 (O'g2S) 2 (tru* 2S)(tru2P). 
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*b. Which term will have the lowest energy? 
*c. What is the bond order for this electron configuration? 

d. Do you think the molecule could exist in this electron configuration? 

Heteronuclear diatomic molecules do not possess as high a degree of symmetry as 
homonuclear molecules, and we cannot evaluate coefficients in LCAO molecular 
orbitals by requiring that they have the proper symmetry. We illustrate the situation 
by an analysis of the simplest stable heteronuclear molecule, lithium hydride. 

Lithium Hydride 
Like the He2 molecule, the LiH molecule has two nuclei and four electrons. We say that 
these molecules are isoelectronic (have the same number of electrons). Figure 18.13 
shows the LiH system. The Born-Oppenheimer Hamiltonian operator for the LiH 
molecule in zero order (with the internuclear repulsion term omitted and the inter- 
electron repulsion term neglected) is 

/2/(0) _/~/1 (1) +/2/1 (2) +/2/1(3 ) + [/1(4) 

where/2/l(i ) is the one-electron Hamiltonian operator for electron number i: 

(18.4-1) 

Here Rill is the distance from the hydrogen nucleus to electron number i and riL i is the 
distance from the lithium nucleus to electron number i./2/1 is not a hydrogen-molecule- 
ion-like operator because the two nuclear charges are different. The zero-order 
Hamiltonian operator of Eq. (18.4-1) gives a Schr6dinger equation in which the 
variables can be separated by assuming the wave function: 

w(O)_ 01(1)02(2)03(3)04(4) (18.4-3) 

where each factor is a molecular orbital. 
We seek LCAO representations of the molecular orbitals in Eq. (18.4-3). We take a 

basis set consisting of four space orbitals: the lithium Is, lithium 2s, lithium 2pz, and 
hydrogen ls atomic orbitals. This basis set is a minimal basis set, containing as few 
atomic orbitals as possible. These orbitals all have cylindrical symmetry about the bond 
axis (the z axis). This means that they are eigenfunctions with eigenvalue 1 of all 
rotation operators having the z axis as the symmetry element. The basis orbitals all 
correspond to m = 0. Any linear combination of them will be an eigenfunction of the 
symmetry operators that commute with the Hamiltonian operator and will be a a 
orbital. The 2px and 2py lithium orbitals are not included in the basis set because they 
have different symmetry about the bond axis and do not correspond to the same value 
for the quantum number m as the other orbitals. The symmetry operators belonging to 
the molecule are all of the rotation operators about the bond axis and all of the 6- v 
operators. Our LCAO molecular orbitals can be eigenfunctions of these operators but 
would not be if the 2px and 2py orbitals were included. 

(1 3) 
/2/1 (i) -- 2m V2 + 4-~e 0 4- ri~i. (i -- 1,2, 3, 4) (18.4-2) 



18.4 Heteronuclear Diatomic Molecules 673 

Four independent LCAO-MOs can be made from our basis set of four orbitals: 

O j a -  ~(j) .I. ,-,(J) ~h ~(J) ,-,(J) ~lt 
ClsLi~lsLi-'[-'-'2sLiT"2sLi "[- C2pzLi~2pzLi ..at- "lsHV' lsH ( j  = 1, 2, 3, 4) (18.4-4) 

The molecular orbitals are generally numbered from lowest to highest energy. We have 
added arr  subscript to indicate that all of these orbitals are rr orbitals. An additional 
subscript is added to the atomic orbitals and to the coefficients to show which atom the 
atomic orbital is taken from. Optimum values of the coefficients in the LCAO 
molecular orbitals can be obtained by the variation method or by the Hartree-Fock- 
Roothaan method. 7 Table 18.3 shows the results of a Hartree-Fock-Roothaan pro- 
cedure for the four LCAO-MOs, and Figure 18.14 is a correlation diagram showing 
schematically the atomic and molecular orbital energies. By the Aufbau principle, the 
ground-state wave function is (without antisymmetrization) 

qJg~ -- ff1~(1)~(1)01~(2)fl(2)02~(3)~(3)ff2~(4)//(4) (18.4-5) 

Let us now construct an approximate wave function that is qualitatively the same as that 
of Eq. (18.4-5) but contains simpler linear combinations. The 1 a LCAO-MO is almost 
exactly the same as the ls lithium orbital, so we replace this LCAO-MO by the ls 
lithium orbital, a nonbonding orbital. We now find a way to include no more than two 
atomic orbitals in each linear combination by changing our basis functions. 

Hybrid Orbitals 
The coefficients of the 2s lithium and 2pz lithium orbitals in the 2a LCAO-MO are 
roughly the same magnitude. This fact suggests a way to go back to our previous policy 
of including no more than two atomic orbitals in our LCAO-MOs. We define a hybrid 
atomic orbital: 

I[t2sp,1 "-- N1 (-~/2s -'~ ~2pz) (18.4-6) 

where N1 is a normalizing constant. The designation 2sp is used because the new 
atomic orbital is a linear combination of the 2s and a 2p orbital, and the 1 suffix 
indicates that this is the first orbital of this type. There is another independent 2sp 
hybrid orbital that is orthogonal to the first 2sp hybrid orbital: 

ffl2sp2 = N 2 ( - ~ 2 s  - ~2pz) (18.4-7) 
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Exercise 18.15 
a. Using the fact that the 2s and 2pz orbitals are normalized and orthogonal to each other, show 

that N 1 and N 2 both equal ~/1/2 if the hybrid orbitals are normalized. 
b. Show that the 2sp, 1 and 2sp,2 orbitals are orthogonal to each other. 

Figure 18.15 shows cross sections of the orbital regions of the 2s and 2pz orbitals and 
of the 2sp, 1 and 2sp,2 hybrid orbitals. The 2s orbital function is negative in the outer 
part of its orbital region. In the 2sp, 1 hybrid orbital the 2s and the 2pz orbitals add in the 
direction of the positive z axis and partially cancel in the direction of the negative z axis. 
The orbital regions of the hybrid orbitals are therefore "directional," meaning that the 
orbital region extends farther in one direction than in other directions. The orbital 
region of the 2sp,2 hybrid orbital extends in the opposite direction from that of the 
2sp, 1 orbital. 

Using these hybrid orbitals as part of the basis set, we can approximate the two 
occupied LCAO-MOs as linear combinations of no more than two atomic orbitals: 

I//la = I//lsLi (18.4-8a) 

~2~r - -  C2sp,lLi~2sp,lLi -Jl" ClsH~lsH ~ --0-47~t2sp,ILi- 0.881//lsH (18.4-8b) 

where we completely omit the lsLi orbital from the 2a molecular orbital. In the second 
expression for the 2a orbital the values of the coefficients were chosen to maintain 
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approximately the same relative weights of the atomic orbitals as in the Hartree-Fock- 
Roothaan orbital. Figure 18.16 shows schematically the orbital region of the 2a LCAO- 
MO and shows that it is a bonding orbital. Occupying the nonbonding 1 a space orbital 
with two electrons and the bonding 2a space orbital with two electrons gives a bond 
order of 1 for lithium hydride. 

The 3cr molecular orbital has roughly equal coefficients for the 2s and 2p atomic 
orbitals and can be approximated as a linear combination of the 2sp,2 hybrid orbital and 
the hydrogen ls orbital. The 4a orbital can also be represented in this way. Our new 
orbitals only roughly approximate the Hartree-Fock-Roothaan orbitals but can be used 
for a qualitative description of the electronic states of the LiH molecule. 

*Exercise 18.16 
a. Estimate the coefficients to represent approximately the 3a molecular orbital as a linear 

combination of the 2sp,2Li hybrid orbital and the lsH orbital. Is this molecular orbital a 
bonding, an antibonding, or a nonbonding orbital? 

b. Estimate the coefficients to represent the 4a molecular orbital as a linear combination of the 
2sp, 1Li hybrid orbital and the lsH orbital. Is this molecular orbital a bonding, an antibonding, 
or a nonbonding orbital? 
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Dipole Moments 
In the 2r LCAO-MO the coefficient of the lsH orbital is roughly twice as large as the 
coefficient of the 2sp, lLi orbital. There is thus a larger probability of finding an 
electron in the vicinity of the hydrogen nucleus than in the vicinity of the lithium 
nucleus if it occupies this space orbital. The shared electrons are not equally shared and 
we call this kind of chemical bond a polar covalent bond. The ends of the molecule 
possess net charges, giving the molecule a dipole moment.  The dipole moment of a 
collection of n charges at fixed positions is a vector defined by 

Ix - ~ Qiri (18.4-9) 
i=1 

where Qi is the value of charge number i and r i is its position vector. This definition 
applies only if the sum of the charges equals zero. The dipole moment of a molecule is 
a measure of the charge separation in the molecule. If a molecule contains only two 
electric charges + Q  and - Q  separated by a distance r, the magnitude of its dipole 
moment is 

I~1 = ~ = Qr ( 1 8 . 4 - 1 0 )  

The dipole moment vector points from the negative charge to the positive charge. A 
larger dipole moment corresponds to a larger distance between the charges or to larger 
charges or both. 

Exercise 18.17 
For two charges of equal magnitude and opposite signs at arbitrary locations, show that the 
magnitude of the vector in Eq. (18.4-9) is the same as that given by Eq. (18.4-10). 

Exercise 18.18 
A quadrupole consists of a charge +Q at the origin, a charge - Q  at the point (1,0), a charge +Q 
at (1,1) and a charge - Q  at (0,1). Show that if there are no other charges, the dipole moment 
vanishes. 

The classical expression for the dipole moment in Eq. (18.4-9) contains no 
momentum components, so its quantum-mechanical operator is just the multiplication 
operator: 

- p - ~ Qiri (18.4-11) 
i=1 

The expectation value of the electric dipole of a molecule in a state W is 

(p) - I ~* /u~ dq - l p,~p[2dq (18.4-12) 

where q stands for all of the coordinates of all particles in the molecule. The operator 
contains no spin dependence, so spin functions and spin integrations can be omitted. In 
the Bom-Oppenheimer approximation the nuclei are fixed, and we sum their contribu- 
tions algebraically. 

With a one-term orbital wave function in which the orbitals are orthogonal to each 
other, each electron makes its contribution to the probability density independently (see 
Eq. (16.3-24), which also holds for molecular orbitals). In an antisymmetrized orbital 
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The debye unit is named for Peter 
Debye, of the Debye-HOckel theory, 
whose 1936 Nobel Prize was for his 
work on dipole moments. 

wave function, the total electron probability density is the same as in the one-term 
function, as shown in Eq. (16.3-26). The integral in Eq. (18.4-12) is equal to a sum of 
one-electron integrals" 

(I 1') -- [l'nuc -- ~ E f Oi(i)*ri~/i(i)d3ri (18.4-13)  
i--1 

where O i is the ith occupied space orbital and where n~ is the number of electrons. For 
most molecules each space orbital is occupied by two electrons and occurs twice in this 
equation. The contribution of the nuclei is computed with the nuclei at fixed positions: 

//n 

[ l ' nuc-  E ~ZArA (18.4-14)  
A=I 

where nn is the number of nuclei and r A is the position vector of nucleus number A, 
which contains Z A protons. 

The formula shown in Eq. (18.4-13) is the same as if the ith electron were a classical 
"smeared-out" charge with a density distribution equal to I[li*l~t i. It is a theorem of 
electrostatics that a spherically symmetrical distribution of charge has an effect outside 
of the charge distribution as though the charge were concentrated at the center of 
symmetry. Therefore an electron moving in an undistorted and unhybridized atomic 
orbital contributes to the charge density just as though it were at the nucleus. Electrons 
moving in LCAO-MOs that have unequal coefficients make a larger contribution to the 
negative charge at the end of the molecule with the coefficient of larger magnitude, so 
that the LiH molecule has a sizable dipole moment, with the hydrogen end negative. 

The SI unit in which dipole moments are measured is the coulomb-meter (C m). The 
bond length in the LiH is experimentally measured to be 1.596 x 10- lO m, so that if the 
bond were purely ionic with an undistorted Li + ion and an undistorted H-  ion, 

]2ioni c - -  (1.6022 x 1 0  - 1 9  C)(1.595 x 10 -l~ m) - 2.56 x 1 0  - 2 9  C m 

There is a common unit named the debye, which is defined by 

1 debye - 3.335641 x 10 -3~ C m (18.4-15) 

The debye unit was defined in terms of the c.g.s, unit of charge, the electrostatic unit 
(esu), such that 1 debye equals 10-18 esu cm (10-lo esu A). The charge on a proton 
equals 4.80 x 10-lO esu, so that molecular dipole moments generally range from 1 to 
10 debye. The ionic dipole moment of the LiH molecule corresponds to 7.675 debye. 
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Qualitative Description of Bonding in Molecules 
The properties of the LCAO-MOs from the Hartree-Fock-Roothaan treatment of 
lithium hydride conform to a general pattern of results that can be summarized in 
the following rules: 

1. Two atomic orbitals on different nuclei must have roughly equal orbital energies to 
form a good bonding LCAO-MO. If the energies are different, the lower-energy 
(bonding) LCAO-MO constructed from them will have a coefficient of larger 
magnitude for the atomic orbital of lower energy, and the higher-energy (antibond- 
ing) LCAO-MO will have a coefficient of larger magnitude for the higher-energy 
atomic orbital. For greatly different energies the lower-energy LCAO-MO will be 
almost the same as the lower-energy atomic orbital, making it nearly a nonbonding 
orbital. 

2. Two atomic orbitals on different nuclei must have a fairly large overlap region to 
form a good bonding LCAO-MO. 

3. I f  two atomic orbitals on different nuclei do not have the same symmetry around the 
bond axis, they will not form a good bonding LCAO-MO. Two such orbitals cannot 
form an eigenfunction of the proper symmetry operators for a diatomic molecules 
and are similarly unsuitable for polyatomic molecules. 

These three rules are generalizations that we will use as a means of predicting 
qualitatively (without calculation) what would probably result if a calculation were 
carried out. We can relate the results of the lithium hydride calculation to these rules. 
The ls lithium orbital and the ls hydrogen orbital do not form a good bonding LCAO- 
MO because of the large difference in energies and because the overlap region of these 
two orbitals is small (the orbital region of the ls orbital does not extend to the outer part 
of the atom). The result is that the lowest-energy cr orbital is essentially identical with 
the lithium ls atomic orbital. The 2sp, 1 hybrids orbital has better overlap with the ls 
hydrogen orbital than either the 2s or 2pz orbital, since it is directional and its orbital 
region extends farther from the nucleus than either the 2s or 2p orbital so it is a good 
choice to include in a bonding orbital. The 2px and 2py orbitals do not have the 
same symmetry around the bond axis as the other orbitals, so they are included in our 



18.4 Heteronuclear Diatomic Molecules 679 

LCAO-MOs. If they were included in the basis set, they would not end up in linear 
combinations with the other orbitals (they would not "mix" with the other orbitals). 
These orbitals have an overlap region with a ls hydrogen orbital that is composed of 
two parts, with the product of the two orbital functions having a positive sign in one 
part and a negative sign in the other part. This produces a zero value of the overlap 
integral. 

Example 18.6 is the kind of discussion that our crude level of analysis permits. To 
begin such a discussion you need a rough energy level diagram for all of the atomic 
orbitals. The relative energies of atomic orbitals on different atoms can be estimated 
from the effective nuclear charges or from the electronegativities of the atoms. For 
example, the fluorine 2sp hybrids lie lower than the hydrogen ls orbitals, and fluorine is 
known to be more electronegative than hydrogen. 

Exercise 18.19 
Describe the bonding in LiE How much ionic character do you think there will be in the bond? 

Carbon monoxide is an interesting molecule. A qualitative description of the 
chemical bonding is obtained by constructing LCAO-MOs similar to those of N2, 
which is isoelectronic with CO. Oxygen's effective nuclear charge is greater than that of 
carbon so the bonding LCAO-MOs will have somewhat larger coefficients for the 
oxygen orbitals than for the carbon orbitals, and the antibonding LCAO-MOs will have 
somewhat larger coefficients for carbon than for oxygen. The electron configuration of 
the molecule is 

2 2 , 2 2 2 2 (alsl2(a*ls) (a2s) (o- 2st (=2px) (rC2py) (a2pz) 
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The designations g and u are not used since the orbitals are not eigenfunctions of the 
inversion operator, but we keep the * to designate an antibonding orbital. The bond 
order is 3, the same as in N2. The bonding and antibonding effects in the lowest-energy 
four orbitals approximately cancel, so we can also use the alternative electron 
configuration 

(lsC) 2 (lsO) 2 (2sC) 2 (2sO) 2 (Tt 2px) 2 (re 2py) 2 (r 2 

The dipole moment of the CO molecule is rather small, about 0.1 debye. The fact that 
the coefficients of the oxygen orbitals are greater in the bonding orbitals causes the 
bonding electrons to contribute a net negative charge at the oxygen end of the molecule. 
However, the oxygen nucleus is more positive than the carbon nucleus by two protons, 
and this contributes a positive charge at the oxygen end, which slightly more than 
cancels the charge due to the electrons. The carbon end is negative and it is this end that 
coordinates to transition metal atoms in various complexes, including the binding of a 
CO molecule to an iron atom in hemoglobin in cases of CO poisoning. 

*Exercise 18.20 
Assuming the alternate electron configuration with eight electrons occupying nonbonding orbitals 
and making zero net contribution to the dipole moment and assuming that the coefficients of the 
atomic orbitals in all three of the bonding molecular orbitals are the same, estimate the values of 
the coefficients corresponding to the experimental value of the dipole moment of the CO 
molecule. 
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Exercise 18.21 
Give a qualitative description of the bonding of the BN molecule using molecular orbitals. 
Compare it with diatomic carbon. 

The Valence Bond Method for Heteronuclear Diatomic 
Molecules 

A valence bond wave function such as that of Eq. (18.3-8) or Eq. (18.3-16) corresponds 
to equally shared electrons in completely covalent bonds. The two ionic terms in Eq. 
(18.3-11) do not correspond to ionic bonding, since one ionic term corresponds to bond 
polarity in one direction and the other to bond polarity in the opposite direction. In the 
lithium hydride molecule, the hydrogen end of the molecule is negative, and an 
approximate description of the bonding can be obtained in the valence bond method by 
including only one ionic term. We write the modified valence bond function for LiH: 

~['/MVB ~-" CVB I}/VB -Jr- CI~/I (18.4-16) 

where 

qJVB = 0 lsLi( 1)e(1)~p lsLi(2)~(2)[IP2splLi(3)l p lsH(4) + O lsH(3)O2splLi(4)] 
x [e(3)/3(4) -- fl(3)e(4)] (18.4-17) 

and 

tt'lI = 0 lsLi( 1 )~( 1 )01,Li(2)fl(2)O lsH(3)IP lsH(4)[~(3)fl(4) - fl(3)~(4)] (18.4-18) 

Only the ionic term is added that corresponds to both electrons being on the hydrogen 
atom. This term represents purely ionic bonding with a positive lithium ion and a 
negative hydride ion. The wave function WVB represents purely covalent bonding, with 
equally shared electrons. If ICvBI is larger than Iql this corresponds to a bond that is 
primarily ionic and if ICvBI is smaller than IciI this corresponds to a bond that is 
primarily covalent. 

*Exercise 18.22 
Calculate the values of cVB and c I that make the wave function qJMVB equivalent to the LCAO- 
MO wave function in Eq. (18.4-5) if the orbitals of Eq. (18.4-8) are used. Find the percent ionic 
character, defined as [c~/(C~B + c2)] x 100%. 

Linus Pauling, 1901-1994, was a 
prominent American chemist who won 
the 1954 Nobel Prize in chemistry for 
his work on molecular structure and 
the 1963 Nobel Peace Prize for his 
work on nuclear disarmament. 

Electronegativity 

The electronegativity is an empirical parameter than can be used to estimate the degree 
of inequality of electron sharing in a bond between atoms of two elements. It was 
introduced by Pauling, who observed that polar covalent bonds are generally stronger 
(have larger bond dissociation energies) than purely covalent bonds and used this as a 
measure of the bond polarity. If the electronegativity of element A is denoted by X A and 
that of element B is denoted by X B , Pauling defined 

[XA --XB[ = (0.102mol 1/2 Kj-1/2)(AEAB) 1/2 (18.4-19) 
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where AEAB is the difference between the average bond energy of an A-B bond and the 
mean of the average bond energies of A-A and B-B bonds: 

- - � 8 9  + (18.4-20) 

There are other definitions that are used to obtain values of the electronegativity, but 
we do not discuss them. Since only the difference in electronegativity is defined, the 
value for one element is chosen arbitrarily and the other values are relative to it. 
Choosing a value of 4.0 for fluorine makes all electronegativities positive, ranging in 
value from 0.7 to 4.0. Table A.21 in Appendix A gives the values of the electro- 
negativity for several elements. Fluorine is the most electronegative element, followed 
by oxygen and chlorine. The alkali metals are the least electronegative. In any row of 
the periodic chart the electronegativity increases from left to right, and in any column it 
decreases from top to bottom. A rule of thumb is that if the difference between the 
electronegativities of two elements is greater than 1.7, a bond between those elements 
will be primarily ionic. A difference of less than 1.7 corresponds to a polar covalent 
bond, and a pure covalent bond requires a difference of zero. 

We can understand the trends in electronegativity on the basis of the observed fact 
that when a bonding molecular orbital is constructed from atomic orbitals of different 
energy, optimizing the values of the coefficients gives a coefficient of larger magnitude 
for the lower-energy atomic orbital than for the other atomic orbital. With atomic 
orbitals in the same shell, a larger apparent nuclear charge must correspond to a larger 
electronegativity, since a larger apparent nuclear charge corresponds to a lower atomic 
orbital energy, as indicated in Eq. (16.2-12). As one moves from left to fight across a 
row of the periodic chart, the nuclear charge and the effective nuclear charge increase, 
corresponding to the observed increase in the electronegativity. 

*Exercise 18.23 
Using average bond energies from Table A.9 in Appendix A, calculate the differences in 
electronegativity between (a) H and F, (b) C and O, and (c) C and C1. Compare with the 
values in Table A.21. 

*Exercise 18.24 
Classify the bonds between the following pairs of elements as purely covalent, polar covalent, and 
primarily ionic: (a) Li and H, (b) C and O, (c) N and C1, and (d) H and E (e) Li and F, and (f) F 
and E 

Symmetry in Polyatomic Molecules. Groups of 
Symmetry Operators 

In many molecules, the equilibrium nuclear conformation has important symmetry 
properties. In Section 18.1 we introduced several symmetry operators: the identity 
operator, the inversion operator, reflection operators, and rotation operators. For 
polyatomic molecules another set of operators is needed: improper rotations, which 
are equivalent to ordinary rotations followed by a reflection through a plane perpendi- 
cular to the axis of rotation. We consider only point symmetry operators, so the axis and 
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the plane of an improper rotation both pass through the origin. An operator for an 
improper rotation of 360 ~ is denoted by S n. For example, an S 4 operator with the z 
axis as its symmetry element will have the effect on a point at (x, y, z): 

s4~(x, y, z) - (x', y ' ,  z') - ( - y ,  x, - ~ )  (18.5-1) 

Sometimes the presence of one symmetry operator implies the presence of another. If a 
molecule has an $4 axis, it also has a C2 axis. If $4 operates twice, the effect is the same 
as C'2, since the two reflections cancel each other. If the axis of symmetry is the z axis, 

~4 2(x, y, z) - C2(x, y, z) - ( - x ,  - y ,  z) (18.5-2) 

Some improper rotations are equivalent to other operations. The $1 operation has the 
same effect as a reflection operation, and the $2 operation is equivalent to the inversion 
operator (the i notation is preferred). The lowest-order improper rotation that is not 
equivalent to another operator is S 3. If n is an even integer, n applications of S, restore 
the molecule to its original conformation: 

S~ - / ~  (n even) (18.5-3) 

If n is an odd integer, n applications of S~ are equivalent to a reflection through the 
plane perpendicular to the axis of rotation: 

S~ - 6 (n odd) (18.5-4) 

*Exercise 18.25 
Consider the $3 operator whose symmetry element is the x axis. Find the coordinates of the point 
to which the point (1,2, 3) is moved by this operator. 

Groups of Symmetry Operations 
We now apply the symmetry operators to the equilibrium nuclear locations in a 
polyatomic molecule, allowing the operators to move all nuclei simultaneously. If a 
symmetry operator "belongs" to a molecule, it either leaves each nucleus in its original 
location or moves it to the original location of a nucleus of the same type (same isotope 
of the same element). It is not necessary to think of symmetry operators as 
mathematical operators. We will think of symmetry operations as physically moving 
the nuclei in space instead of applying a mathematical operator to the coordinates of the 
nuclei. The effect is the same. A symmetry operation will be denoted by the same 
symbol as a symmetry operator without the caret (^). There are three different but 
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related things: symmetry operators, symmetry operations, and symmetry elements. We 
use the same symbol for the symmetry operation and symmetry element. 

In this example, we have used the standard scheme for orienting a molecule. The center 
of mass goes on the origin, the rotation axis of highest order (largest n) goes on the z 
axis, and as many other symmetry elements as possible are oriented on the x and y axes. 
The rotation axis of highest order is called the principal rotation axis. 

*Exercise 18.26 
List the symmetry operations that belong to the ammonia molecule, NH3. 

The symmetry operations that belong to any specific molecule (or other symmetrical 
object) are an example of a mathematical group. A mathematical group is a set of 
objects that are called members of the group. There must be a single method for 
combining two members of the group to produce another member of the group, and 
other conditions must be met, which we describe below. In our application of group 
theory, the members of the groups are symmetry operators or symmetry operations and 
the method for combining two members of the group is operator multiplication as 
defined in Eq. (15.2-3). This is equivalent to successive application of the two 
symmetry operations with the operation on the right applied first. In mathematical 
group theory, the members of a group are usually called "elements" and the method of 
combining two elements is called an "operation". To avoid confusion with symmetry 
elements, we use the name "member". The members of our groups are operations, and 
calling the method of combination the "operation" would be confusing, so we refer to 
the operator multiplication as a "method" or refer to multiplication. 

The following requirements must be met for the set of members to be a group: 

1. If A and B are members of the group and C is the product AB such that C = AB, 
then C must be a member of the group. 

2. It is not necessary that the members of the group commute with each other. That is, 
it is possible that 

AB # BA (possible, but not necessary) (18.5-5) 

If A and B are operators or operations, AB means that B operates first and A operates 
second, while BA means that A operates first and B operates second. If all the members 
of the group commute with each other, the group is called abelian. 
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Abelian groups are named after Niels 
Henrik Abel, 1802-1829, a great 
Norwegian mathematician who was 
the first to show that a fifth-degree 
algebraic equation does not 
necessarily have a radical expression 
as a solution. 

3. The group must contain the identity, E, such that 

AE = EA = A (18.5-6) 

4. The inverse of every member of the group must be a member of the group. If  A -1 is 
the inverse of A, then A -1 must be a member of the group if A is a member. The 
inverse is defined such that 

AA-  1 _ A -  1A -- E (18.5-7) 

5. The associative law must hold: 

A(BC) = (AB)C (18.5-8) 

We have asserted that the set of symmetry operations that belong to a molecule (or other 
symmetrical object) form a group if we define successive operation to be the group 
method of combining two members. This fact is not obvious, but we can show it to 
apply in every specific case. 
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Exercise 18.27 
Verify several of the entries in Table 18.4, the multiplication table for this group. 

Exercise 18.28 
Show that the group of operations belonging to the water molecule is abelian (all operations 
commute with each other). 
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Schoenflies Symbols for Point Groups 
A group that consists of point symmetry operations is called a point group. Each point 
group is assigned a unique symbol called a Schoenflies symbol. The Schoenflies 
symbol of the point group of the H20 molecule is C2v. This symbol indicates that the 
molecule has a C 2 rotation axis and vertical mirror planes. You can specify the 
symmetry properties of a molecule like H20 or SO2 quickly to a knowledgeable person 
by saying that it has C2v symmetry. The NH3 molecule belongs to the C3v point group, 
which contains the operations E, C3, C 2, and three a v operations. 

Exercise 18.29 
a. Obtain the multiplication table for the C3v point group. 
b. Show that it satisfies the conditions to be a group. 
e. Show that C3 2 must be included in the group. 
d. Show that the group is not abelian. 

There are many different point groups. Table 18.5 shows some common point groups 
with their Schoenflies symbols, a list of the symmetry operations in each group, and a 
representative molecule belonging to each group. A rotation axis of order greater than 2 
implies the presence in the group of more than one operation for that axis. For example, 
a C3 operation corresponds to a counterclockwise rotation of 120 ~ The group must 
include its inverse, which is a rotation of 120 ~ in the clockwise direction. This inverse is 
equivalent to C 2, corresponding to a rotation of 240 ~ in the counterclockwise direction, 
so C 2 must be a member of the group. In the list of operations, it is customary to list 
these two operations as 2C3. Benzene has a six-fold axis so that in order to include all 
the operations and their inverses for this axis, we would have C 6, C 2, C63, C 4, and C~. 
These are listed as 2C 6, 2C 3, and C 2, where 2C 6 indicates C 6 and C~, 2C 3 indicates C 2 
(same as 6'3) and C 4 (same as C2), and C 2 indicates C 3, which is equivalent to a 
rotation of 180 ~ 

The main part of the Schoenflies symbol is a capital C if there are no two-fold axes 
perpendicular to the principal rotation axis (the axis of largest value of n) or a capital D 
if there are such two-fold axes. There is a subscript that denotes the value of n for the 
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highest-order rotation axis. A subscript v indicates the presence of vertical mirror plans, 
and a subscript h denotes the presence of a horizontal mirror plane. For example, the 
group C4v has a C4 axis and four vertical mirror planes as well as the identity operation 
E. The group C1 contains only the identity operation E. The Cs group contains only a 
reflection plane and E. The T d group is the group of tetrahedral molecules, and the O h 
group is the group of octahedral molecules. 

Figure 18.19 presents a scheme for assigning a molecule to a point group. This 
diagram can be called a decision tree or a flow chart. One starts at the top of the 
diagram with knowledge of the equilibrium nuclear conformation. It is assumed that the 
user can recognize linear molecules, tetrahedral molecules, and octahedral molecules 
immediately. After this, at each branching point one answers yes or no to whether a 
particular symmetry element is present and proceeds along the appropriate branch to the 
next question. There are two places where there is a choice between three alternatives, 
which must be considered from left to fight. 

Exercise 18.30 
Using the decision tree of Figure 18.19, assign the following molecules to point groups: 
a. 1,1-Dichloroethene 
b. trans- l ,2-Dichloroethene 

c. cis- l ,2-Dichloroethene 

d. Ethane (staggered) 
e. Ethane (eclipsed) 
f. Cyclohexane (boat conformation) 

Some Elementary Applications of Group Theory 
Once a molecule has been assigned to a point group we can draw some conclusions 
about it. The first conclusion relates to a molecular dipole moment, which is a vector 
pointing from a negative region of the molecule to a positive region, as defined in Eq. 
(18.4-9). If a molecule has a dipole moment, any symmetry operation belonging to the 
molecule will leave the dipole moment unchanged, since it can at most exchange nuclei 
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of the same type. A symmetry operation does not move a point if it lies in the symmetry 
element of the operation so any vector lying in a symmetry element will not be changed 
by the symmetry operation. Only if the dipole moment vector is contained in all of the 
symmetry elements can there be a dipole moment. Any molecule with a dipole moment 
must belong to one of the groups C,, C s, or C,v. A molecule with a center of symmetry 
cannot have a dipole moment since the symmetry element of the inversion operator is a 
single point. 

The other immediate conclusion involves optical activity. Any molecule that cannot 
be superimposed on its mirror image possesses an enantiomorph,  which is an isomer 
that is like the mirror image of the first molecule. The two enantiomorphs will rotate the 
plane of polarized light in opposite directions and are said to be optieany active. Any 
molecule that has no symmetry elements or has only proper rotation axes can be 
optically active. The only groups that meet these criteria are C1, C,, and D,. Any 
molecule with an inversion center, a reflection plane, or an S~ axis cannot be optically 
active. 

There are numerous more advanced applications of group theory. It is possible to 
determine without calculation whether an overlap integral will vanish, what the 
degeneracy of an energy level is, whether a transition between certain electronic or 
vibrational states can be accompanied by emission or absorption of radiation, etc. These 
applications require the use of representations of groups, which are briefly introduced in 
Appendix I. 
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Electronic Structure of Polyatomic Molecules 

As with diatomic molecules, we base our treatment of the electronic structure of 
polyatomic molecules on the Born-Oppenheimer approximation, assuming stationary 
nuclei that are in their equilibrium conformation. The zero-order Born-Oppenheimer 
Hamiltonian operator consists of one-electron operators plus internuclear repulsion 
terms, which are treated as constants. Interelectron repulsion terms are neglected. In this 
approximation the wave function is a product of orbitals. In order for the wave function 
to survive antisymmetrization, the Pauli exclusion principle must be applied, with no 
more than two electrons occupying each space orbital. For the ground state, the wave 
function is constructed according to the Aufbau principle. 

We will now use simple LCAO molecular orbitals constructed according to the same 
policies that we applied to diatomic molecules in Section 18.4: each bonding LCAO- 
MO will be constructed of two atomic orbitals centered on different atoms such that the 
orbitals (1) have orbital energies that are fairly close together in value, (2) overlap 
significantly, and (3) have the same symmetry about a bond axis. As a simple example, 
we consider the H20 molecule. The equilibrium nuclear conformation is known from 
experiment to have a bond angle of 104.5 ~ and a bond length of 95.8 pm. The molecule 
has a dipole moment of magnitude 1.85 debye bisecting the bond angle, with the 
oxygen end negative. Figure 18.20 is a correlation diagram showing schematically the 
energies of the seven lowest-energy atomic space orbitals of one oxygen atom and two 
hydrogen atoms. For our first approximate description, we use these unmodified atomic 
orbitals as our basis set. The ls oxygen orbital is far lower in energy than the other 
orbitals, so we use it as a nonbonding orbital. 
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We first try to use the 2p orbitals in constructing bonding LCAO-MOs. The atomic 
orbitals in an LCAO-MO must have the same symmetry about the bond axis. Since the 
2pz orbital is cylindrically symmetric about the z axis, we place a hydrogen nucleus 
denoted by A on the z axis and construct the bonding molecular orbital 

I11 la = Colll2pzO .qt_ CHI] I lsA (18.6-1) 

where g, lsA is the ls hydrogen orbital centered on hydrogen nucleus A. The 1 a orbital is 
a a orbital because its bond axis is the z axis and because it is a linear combination of 
two atomic orbitals corresponding to m = 0. Figure 18.21 shows the nuclear framework 
in the required position, as well as the orbital region of the l a orbital. This orbital 
region is cylindrically symmetrical. It is an eigenfunction of every C, operator with the 
bond axis as its symmetry element as well as being an eigenfunction of every reflection 
operator whose symmetry plane includes the bond axis. Orbitals that are cylindrically 
symmetrical about a bond axis are a orbitals, which allows us to recognize a orbitals by 
inspection of the orbital regions. 

We place a hydrogen atom denoted by B on the y axis and construct the LCAO-MO: 

1112~ -- CO02py 0 + CHI//ls B (18.6-2) 

Because of the similarity of the 2py and 2pz orbitals, the coefficients in Eq. (18.6-2) will 
be equal to those in Eq. (18.6-1). The 2a orbital bears the same relationship to the y axis 
as the 1 a orbital does to the z axis, so by analogy the projection of the orbital angular 
moment on the y axis for this orbital also vanishes, and it is also a a orbital. We predict 
that optimization of the coefficients will give 

Icol > ICHI (18.6-3) 

because oxygen is more electronegative than hydrogen. Of the ten electrons, two can 
occupy the nonbonding oxygen ls space orbital, 4 can occupy the 2s and 2px oxygen 
orbitals, and 4 can occupy the bonding LCAO-MOs. The ground-state electron 
configuration is thus (lsO)Z(2sO)Z(2pxO)Z(la)Z(2cr) 2. There are two single bonds, 
with a bond angle of 90 ~ The molecule is polar with the oxygen end negative. 

This description needs to be improved, even with our limited goals. The bond angle 
of 90 ~ is in poor agreement with the experimental value of 104.5 ~ One of the unshared 
pairs in the oxygen valence shell is in a 2s orbital, and the other is in a 2p orbital. This 
disagrees with the predictions of the valence shell electron pair repulsion (VSEPR) 
theory. According to this elementary theory, the shared and unshared electron pairs in 
the valence shell of an atom should arrange themselves so that they are as far from each 
other as possible. The two bonding electron pairs and the two nonbonding electron pairs 
around the oxygen atom should arrange themselves in a tetrahedral shape, with a bond 
angle near 109 ~ 

A better wave function for the water molecule is obtained by creating a set of hybrid 
orbitals that are linear combinations of the 2s space orbital and all three of the 2p space 
orbitals. These orbitals are called the 2sp 3 hybrid orbitals: 

02sp3,1 - -  21- [ - - 0 2 s  "n t- 02Px -Jr" 02py _ql_ 02pz ] (18.6-4a) 

~2sp3, 2 __ 1 [ - - ~ 2 s  + ~2Px - -  ~2py --  02pz]  (18.6-4b) 

@2sp3,3 - -  21- [ - -@2s - -  ~2px -Jr- ~2py -- 02pz] (18.6-4c) 

02sp3, 4 __ 1 [ - - ~ 2 s  -- ~2Px -- ~2py + ~2pz] (18.6-4d) 
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Exercise 18.31 
Using the fact that the 2s, 2px, 2py, and 2pz atomic orbitals are all normalized and all orthogonal 
to each other, choose one of the hybrid orbitals in Eq. (18.6-4) and show that it is normalized. 
Choose a pair of orbitals in Eq. (18.6-4) and show that they are orthogonal to each other. 

The orbital regions of the 2sp 3 hybrid orbitals are directional, as were the 2sp 
hybrids. Figure 18.22a shows schematically how the three 2p orbitals combine in the 
2sp 3,1 hybrid orbital. The figure includes a cube centered at the origin and parallel to 
the coordinate planes. In the figure, dots are drawn along the positive coordinate axes 
(the directions of the largest positive values of the 2p orbitals). Since the 2s orbital is 
negative in the outer part of its orbital region, it is included in the linear combinations 
with a negative coefficient so that it will make a positive contribution in this region. The 
four orbitals combine to form the 2sp 3,1 hybrid orbital such that its largest positive 
value lies between the positive axes, toward the upper fight front comer of the cube. 
This direction is an axis of cylindrical symmetry of the hybrid orbital. The symmetry 
axes of the other three hybrid orbitals are shown in the figure, pointing toward alternate 
comers of the cube. 
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Exercise 18.32 
Pick one of the 2sp 3 hybrid orbitals other than 2sp 3 , 1 and argue that its orbital region is directed 
as shown in Figure 18.22a. 

Since connecting the four altemate comers of a cube with line segments constructs a 
regular tetrahedron, the angle between any two of the axes shown in Figure 18.22a is 
called the tetrahedral  angle, equal to 109 degrees, 28 minutes, 16.39... seconds. 

Exercise 18.33 
Using the theorem of Pythagoras and values of trigonometric functions, show that the angle 
between alternate diagonals of a cube is 109 degrees, 28 minutes, 16.39... seconds. 

A cross section of the orbital region of a 2sp 3 orbital in a plane containing its axis of 
symmetry is shown in Figure 18.22b. For comparison, cross sections of the orbital 
regions for the 2s and 2pz unhybridized orbitals are also shown. The orbital region of 
the hybrid orbital extends farther in the direction of its symmetry axis than that of either 
the 2s or 2p orbital, making it possible to form a more strongly bonding LCAO-MO 
using a 2sp 3 orbital than using a 2p orbital. 

We can now construct an approximate wave function for the water molecule using the 
2sp 3 hybrid orbitals, as shown in the correlation diagram of Figure 18.23. In this 
diagram the energies of the unhybridized atomic orbitals are shown with broken lines. 
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We place the two hydrogens on the symmetry axes for two 2sp 3 hybrid orbitals in order 
to satisfy our criteria for making good LCAO bonding molecular orbitals. Hydrogen A 
is placed on the axis of the 2sp3,2 orbital and hydrogen 13 is placed on the axis of the 
2sp3,3 hybrid orbital. We form two bonding LCAO molecular orbitals: 

O~A --- C0~12sp3,2 + CH01sA (18.6-5a) 

00" B --- C01/12sp3,3 + CHI~tls B (18.6-5b) 

From the fact that oxygen is more electronegative than hydrogen we assume that 

Icol > ICHI (18.6-6) 

This indicates that the oxygen 2sp 3 hybrid orbitals are lower in energy than the 
hydrogen ls orbitals. Along with the bonding orbitals aA and aB, there are antibonding 
orbitals a*A and a 'B,  which are heavy on the hydrogen end. These antibonding 
orbitals remain vacant in the ground state. 

By the Aufbau principle, the electron configuration of the ground state is 
(lsO)2(2sp3,1)2(2sp3,4)2(aA)2(aB) 2. The electron configuration is also denoted in 
the energy level diagram of Figure 18.23 by arrows pointing up and down to represent 
electrons occupying a space orbital with spin up and spin down. As with the earlier 
approximate wave function, there are two single bonds and two pairs of valence-shell 
nonbonding electrons, which occupy nonbonding sp 3 hybrid orbitals. The bond angle is 
equal to the tetrahedral angle, 109.5 ~ in fairly good agreement with the experimental 
bond angle of 104.5 ~ and the nonbonding electrons ("lone pairs") are in similar 
orbitals, as expected. Figure 18.24 shows the water molecule structure according to our 
description. Better descriptions of the water molecule can be constructed by using 
LCAO-MOs that are linear combinations of all atomic orbitals in the basis set. Hybrid 
orbitals are then not needed and their use would only restrict the flexibility needed in 
finding the optimum orbitals. 8 Improvements can also be obtained by using a larger 
basis set. 

We can now understand the octet rule of G. N. Lewis. According to this elementary 
rule, atoms tend to have eight electrons in their valence shells, counting both bonding 
and nonbonding electrons. This rule was proposed by Lewis prior to the discovery of 
quantum-mechanical shells and subshells and is remarkably effective in predicting the 
molecular structure of many substances. For the water molecule and other molecules 
made from elements of the second row of the periodic chart, the valence shell is the 
second shell, in which eight spin orbitals (four space orbitals) occur. When linear 
combinations of functions are made, the number of independent linear combinations is 
the same as the number of basis functions used. Two linear combinations can be made 
from two atomic orbitals, and so on. From two atomic orbitals on different atoms, one 
bonding LCAO-MO and one antibonding LCAO-MO will result. If the antibonding 
orbitals remain vacant, the total number of occupied spin orbitals around a given 
nucleus of a second-row element equals eight, including nonbonding atomic orbitals 
and bonding molecular orbitals. This corresponds to the octet rule of Lewis. 

8 Levine, op. cit., pp. 424ff (Note 4). 
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Exercise 18.34 
Give a qualitative description of the bonding in ammonia, NH3, including a statement about the 
dipole moment of the molecule. 

Molecules with Double and Triple Bonds 
In Section 18.2, we discussed several diatomic molecules with double or triple bonds. 
In our approximate wave functions for these molecules, some of the shared electrons 
occupied ~ LCAO-MOs that were constructed from 2p atomic orbitals. We can 
construct similar rc LCAO-MOs for polyatomic molecules. The Lewis electron dot 
formula for ethyne (acetylene), C2H2, is 

H : C  ::: C : H  

The VSEPR theory predicts a linear shape around each carbon atom. The acetylene 
molecule is isoelectronic with N2, which also has a triple bond. In the simple LCAO- 
MO (description of N2, two of the bonding electrons occupy the ag2pz orbital, two 
occupy the ~Cu2px orbital, and two occupy the ~Cu2py orbital. The other eight electrons 
occupy agls, auls, ag2S, and a*2s orbitals. In the description of N2 with nonbonding 
atomic orbitals, the other eight electrons occupy the two Is and two 2s orbitals. 

Let us make a wave function for acetylene similar to the second description of N2. 
Instead of occupying the 2s carbon orbitals with nonbonding electrons, we make a 
bonding LCAO-MO from each 2s carbon orbital and the ls hydrogen orbital on the 
adjacent hydrogen. Call one of these aA and the other one aB. Assuming the C-C bond 
axis to be the z axis, the electron configuration of the molecule is 

(lsA) 2 (lsB) 2 (aA) 2 (aB) 2 (0"g 2pz) 2 (gugpx) 2 (7~u 2py) 2 

There are two C-H single bonds and a C-C triple bond, consisting of a a bond and two 
bonds. The carbon-carbon a bonding orbital is constructed from 2pz orbitals, while 

the two carbon-hydrogen a bonding orbitals are constructed from carbon 2s orbitals 
and hydrogen ls orbitals. The C-H bonds can point in any direction because the 2s 
orbitals are not directional. 
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A better description is obtained by constructing two 2sp hybrids on each carbon from 
the 2s and 2pz orbitals. The orbital regions of the two 2sp hybrids on the same atom 
point in opposite directions. We construct a carbon-carbon a bonding orbital from the 
two 2sp hybrid orbitals that overlap between the carbon atoms. Call this the 1 a bonding 
orbital. On each carbon atom, this leaves a 2sp hybrid orbital with an orbital region that 
is directed away from the C-C bond. From each of these and a hydrogen ls orbital we 
form a carbon-hydrogen a bonding orbital, placing the hydrogens on the same axis as 
the C-C bond (the z axis). Call these two bonding orbitals aA' and aB'. The n bonds 
are constructed from the unhybridized 2px and 2py orbitals, as before. The electron 
configuration is now 

(lsA) 2 (lsB) 2 (aA')2 (aB') 2 ( 1 tr) 2 (nu 2px) 2 (~u 2py) 2 

This electron configuration is similar to the earlier configuration, but the wave function 
corresponding to it provides a lower energy (greater bonding energy) due to the greater 
overlap of the 2sp hybrid orbitals, and it correctly predicts that the molecule is linear. 
The triple bond still consists of a a bond and two rt bonds. The a bond is made from 
two 2sp hybrid orbitals the n bonds are made from unhybridized p orbitals. This is the 
general pattern that will occur with our simple policy of making LCAO molecular 
orbitals from no more than two atomic orbitals. 

Exercise 18.35 
Describe the bonding in N 2 using orbitals similar to those in the second description of acetylene. 

In addition to the sp and sp 3 hybrid orbitals, there are hybrid orbitals constructed 
from one s orbital and two p orbitals. From the 2s, 2px, and 2py orbitals, three 2sp 2 
hybrid orbitals can be constructed: 

~2s/,1 = -W~- ff2s + ~32- ff2px (1 8.6-7a) 

Ilt2sp2,2 -- - -~  llt2S -- ~ lll2px "+" ~ lll2py (18.6-7b) 

(18.6-7c) 

The orbital regions of these 2sp 2 hybrids are directional and lie 120 ~ apart from each 
other in the x-y plane. Figure 18.25a shows the direction of the symmetry axes for the 
three 2sp 2 orbitals and Figure 18.25b shows a cross section of the orbital region for one 
of them. 

The 2sp 2 hybrid orbitals can be used to construct approximate wave functions for 
molecules containing double bonds. For example, ethene (ethylene) has the following 
structural formula 

H H 
\ / 
C = C  / \ 

H H 
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The molecule is planar with a C-C-H bond angle of 122 ~ To describe the bonding in 
this molecule we construct three a bonding orbitals around each carbon from the 2sp 2 
hybrids. Let the plane of the molecule be the x-y  plane and orient the x axis through the 
double bond. The hybrids in Eq. (18.6-7) are appropriate for both carbons if we reverse 
the direction of the x axis for one carbon to make the larger lobes of the two 2sp 2 orbital 
regions point toward each other. We construct a C-C a bonding orbital from the 2sp 2 
hybrid orbitals with orbital regions that overlap between the carbon atoms. Denote this 
molecular orbital by 1 a. The C-C rt bonding orbital is a linear combination of the two 
unhybridized 2pz orbitals. Denote this orbital by lrt. Construct each of four C-H 
bonding orbitals from a 2sp 2 hybrid and a hydrogen ls orbital. Denote them by 2a, 3a, 
4a, and 5a. The electron configuration of the molecule in the ground state is 

(lsA) 2 (lsB) 2 (10-) 2 (17"c) 2 (20") 2 (30") 2 (40") 2 (50") 2 

Since the nuclei must be placed on the symmetry axes of the hybrid orbitals to have 
good a bonds, the C-C-H bond angles equal 120 ~ in fairly good agreement with the 
experimental value of 122 ~ . 

Exercise 18.36 
Describe the bonding in diatomic carbon using orbitals such as those used in ethylene. Do you 
think this description would be superior to that in Section 18.2? 

The Valence Bond Description of Polyatomic Molecules 
In the examples that we have considered so far, no antibonding orbitals were needed. In 
such cases we can obtain a valence bond wave function by replacing each pair of 
bonding molecular spin orbitals with a bond factor such as that of Eq. (18.3-8). The 
same types of hybrid orbitals can be used, and hybrid orbitals were first used in the 
valence bond method. The criteria for forming a good valence bond bonding factor are 
the same as those for forming a good bonding molecular orbital. The two atomic 
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orbitals should have the same symmetry around the bond axis, they should have 
roughly equal energies, and they should have considerable overlap. The nuclei are 
placed to maximize the overlap of the atomic orbitals as in our simple molecular orbital 
treatment. In early applications of the valence bond theory, the strength of a bond was 
assumed to be proportional to the overlap integral. 

For the water molecule a partially antisymmetrized (but unnormalized) valence bond 
wave function is 

~VB = 0 lsO(1)~(1)O lsO(2)fl(2)@2sp3,1 (3)~(3)02sp3,1 (4)fl(4) 

X ~2sp3,4(5)O~(5)~2sp3,4(6)fl(6) 

X [O2sp3,2(7)OlsA(8) + OlsA(7)O2sp3,2(8)][O~(7)fl(8) -- fl(7)C~(8)] 

X [~t2sp3,3(9)OlsB(lO ) -t- ~tlsB(9)O2sp3,3(lO)][C~(9)fl(lO) -- fl(9)~(10)] (18.6-8) 

where the subscript lsA stands for the ls orbital on one hydrogen atom and the 
subscript lsB stands for the ls orbital on the other hydrogen atom. The hydrogen atoms 
are placed on the symmetry axes of the oxygen hybrid orbitals. This wave function 
corresponds to nonpolar covalent bonds. To give a simple description of the bonding in 
the water molecule using the valence bond method it is necessary only to specify that 
two nonbonding electrons occupy the oxygen ls space orbital, four nonbonding 
electrons occupy two oxygen 2sp 3 hybrid space orbitals, and four electrons occupy 
two bonding factors, each constructed from an oxygen 2sp 3 hybrid and a hydrogen ls 
orbital. An ionic term could be added as in Eq. (18.4-16), writing 

~MVB -- CVB~IJvB @ C1 ~I~I (18.6-9) 

where ~JI is the completely ionic wave function, containing only the ionic terms with 
both electrons on the oxygen, and where the value of the coefficients cVB and c I would 
be determined by minimizing the variational energy. 

*Exercise 18.37 
Write the expression for ~IJi in Eq. (18.6-9). 

The ionic character of the bond can also be represented by placing an ionic term in each 
bonding factor. The space factor of the first bonding factor would become 

[l[t2sp3,2(7)lsA (8 ) -Jr- I[t lsA (7)l/12sp3,2(8 ) -t- C02sp3,2(7)l/12sp3,2(8)] (18.6-10) 

with a similar factor for the other bond. Only one ionic term is included, with both 
electrons placed on the more electronegative oxygen atom. The value of the coefficient 
c could be optimized by minimizing the variational energy of the molecule. 

Exercise 18.38 
Using the valence bond method, give a description of the bonding in 
a. Ammonia 
b. Methane 
e. Hydrogen fluoride 
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Valence bond descriptions of multiple bonds are also similar to the LCAO-MO 
description, with a double bond consisting of a a bond and a rc bond and a triple bond 
consisting of a a bond and two rc bonds. Each bonding factor replaces a pair of LCAO 
spin orbitals, but nonbonding orbitals are the same in both methods. There are no 
analogues to antibonding orbitals in the simple valence bond method, so molecules that 
require antibonding orbitals cannot be well described in this method. Molecules with 
unpaired electrons such as O 2 also cannot be well described in this method. 

Exercise 18.39 
Using the valence bond method, describe the bonding in the propene (propylene) molecule. Give 
the bond angles around each carbon. 

Other Types of Hybrid Orbitals 
In addition to the sp, sp 2, and sp 3 hybrid orbitals, there are three common types of 
hybrid orbitals that include d orbitals, either from the same shell as the s and p orbitals 
or from the next lower shell. If one d space orbital is included in addition to the four 
space orbitals of the s and p subshells, five hybrid space orbitals can be constructed, 
which are called dsp 3 hybrids if the d orbital is from the next lower shell or sp3d 
hybrids if the d orbital is from the same shell. The symmetry axis of one orbital points 
along the positive z axis, that of another points along the negative z axis, and three point 
in the xy plane in directions 120 ~ from each other. The sp3d orbitals can be used to 
construct a LCAO molecular orbitals or valence bonding factors for molecules such as 
IF 3, PF 5, SF4, etc., that have five pairs of electrons in the valence shell of a central 
atom. 

Exercise 18.40 
Write the LCAO-MO electron configuration of the iodine trifluoride molecule. Choose arbitrary 
subscripts for the five sp3d hybrids and the a bonding orbitals, but specify the direction of the 
orbital region of each. Apply the VSEPR rule that lone pairs require more space than bonding 
pairs of electrons and are therefore placed in equatorial rather than axial positions. 

Hybrid orbitals can also be formed from two d orbitals, one s orbital, and three p 
orbitals. These orbitals are called d2sp 3 if the d subshell is from the shell below that of 
the s and p orbitals, and sp 3 d 2 if the d subshell is from the same shell. These six orbitals 
have symmetry axes pointing along the positive and negative Cartesian coordinate axes, 
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pointing toward the apices of a regular octahedron. When these hybrids are used in a 
molecule wave function, all of the bond angles are equal to 90 ~ . Examples of molecules 
with this electronic geometry are SF6, XeF4, and various complexes of transition 
metals. The five types of hybrid orbitals we have defined suffice to give all of the 
electronic geometries predicted by the VSEPR theory for up to six pairs of valence shell 
electrons. In addition, the dsp 2 or sp2d hybrids give a square planar electronic 
geometry. 

Exercise 18.41 
Using either the LCAO-MO method or the valence bond method, describe the bonding in the 
following molecules, including a specification of the molecular geometry. 
a. Sulfur hexafluoride, SF 6 
b. Xenon difluoride, XeF2 
c. Phosphorus trichloride, PC13 

Delocalized Bonding 
In all of the cases considered thus far, we have used LCAO molecular orbitals 
constructed from no more than two atomic orbitals or have used valence bond factors 
containing two atomic orbitals. In some molecules this kind of description is 
unsatisfactory. The deficiency is usually that the approximate wave function has 
different kinds of bonds in two locations where the actual molecule has two equivalent 
bonds. In the molecular orbital method this deficiency can be remedied by using 
delocalized LCAO-MOs, which are linear combinations of atomic orbitals centered on 
three or more nuclei. In the valence bond method, it can be remedied by the use of a 
technique called resonance. 

The Valence-Bond Treatment of Delocalized Bonding 
We assume that the benzene (C6H6) molecule is hexagonal with six equivalent carbon- 
carbon bonds. In the valence bond treatment any bond is either a single bond, a double 
bond, or a triple bond, and each bond consists of electrons shared by two atoms. To 
represent benzene, we draw two structural formulas corresponding to different valence 
bond wave functions: 

These structures are called r e s o n a n c e  s t r u c t u r e s .  It is customary to write a double- 
headed arrow between resonance structures. Let the valence bond wave functions 
corresponding to the two structures be called W I and WII. The unhybridized 2pz orbitals 
are used to form the three n bonding factors, and the only difference between the two 
structures is the location of the three n bonds. 
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The wave function of the molecule is a linear combination: 

~I ) = CitlJ I + C I ~ I I  (18.6-11) 

where c I and c n are coefficients whose values can be found by minimizing the 
variational energy. This is the mathematical expression of resonance. Neither formula 
alone represents the structure of the molecule, and the linear combination corresponds 
to "blending" of the two structural formulas. Since the resonance structures differ only 
by the double bond locations, the two coefficients in this case will be equal to each 
other. Various other resonance structures have been constructed for benzene, including 
some with "long bonds" across the ring. Terms in the wave function corresponding to 
such resonance structures would presumably have smaller coefficients, so they are 
usually omitted. 

The difference between the variational energy calculated with a wave function 
including resonance and that calculated with a single resonance structure is called 
the r e s o n a n c e  energy,  but this same term is sometimes applied to the difference 
between the correct nonrelativistic ground-state energy and that calculated with a single 
resonance structure. An experimental estimate of the resonance energy for benzene is 
obtained from the difference between the enthalpy change of hydrogenation of benzene 
and three times the enthalpy change of hydrogenation of ethylene. The value of this 
estimate is 150 kJ mol-  1. 

*Exercise 18.42 
Verify the estimate of the resonance energy by calculating the enthalpy changes of hydrogenation 
of benzene and of ethylene. 

LCAO-MO Treatment of Delocalized Bonding 
In the LCAO-MO method the concept of resonance is not needed to describe 
delocalized bonding. Instead, delocalized LCAO-MOs are constructed that are linear 
combinations of atomic orbitals centered on more than two nuclei. In the case of 
benzene we proceed as follows: We first construct ordinary (localized) ~ bonding 
orbitals for the carbon-carbon bonds and carbon-hydrogen bonds. Since the molecule 
is hexagonal, all bond angles are equal to 120 ~ We choose the x-y plane for the plane 
of the molecule, so that 2sp 2 carbon hybrid orbitals are the appropriate atomic orbitals 
for the ~ LCAO-MOs, turning the x and y axes or changing the coefficients of the 2p 
orbitals in the hybrids as necessary. The 2pz orbitals remain unhybridized. 

The molecule has 42 electrons. Twelve of these will occupy the six nonbonding 
carbon ls space orbitals. Twelve electrons will occupy the six carbon-carbon a bonding 
space orbitals, and 12 will occupy the six carbon-hydrogen ~ bonding space orbitals. 
This leaves six electrons and six unhybridized 2pz carbon space orbitals with orbital 
regions lying above and below the plane of the molecule. We construct delocalized 
LCAO-MOs from these six 2pz orbitals: 

(D i --  c~i) ~t l -+- ~2"(i)'b~ 2 -Jr- c~i) ~t 3 n t- c(i) ~t 4 -Jr- c~i) ~15 -Jr- c~i) ~t 6 (18.6-12) 

where i is an index used to specify which of the delocalized LCAO-MOs is meant, and 
where the six unhybridized 2pz orbitals are denoted by ~1, IP2 . . . .  , ~6. Since there are 
six atomic orbitals, six independent delocalized molecular orbitals can be constructed. 
All six atomic orbitals are included in each LCAO-MO, so an electron occupying such 
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an orbital moves around the entire ring of carbon atoms. These LCAO-MOs are called rc 
orbitals, although we cannot specify an angular momentum projection on a single bond 
axis. 

The HEickel method is named for Erich 
HOckel, 1896-1980, a German 
chemist who was also the co-inventor 
of the Debye-HOckel theory of 
electrolyte solutions. 

The H~ickel Method 

The coefficients in Eq. (18.6-12) can be determined by applying the variational method 
or by the self-consistent field method. However, in most calculations one does not begin 
with the Born-Oppenheimer Hamiltonian operator and carry out the full calculation, 
but uses approximate Hamiltonians and makes other approximations, ultimately using 
empirical data to assign numerical values. Such a procedure is called a semiempirieal 
method. The Hfickel method was the first semiempirical molecular orbital method, and 
was developed in the 1930s. It is applied only to planar molecules with delocalized rc 
bonding and treats only the electrons in these bonds. 

The Hfickel method begins with the assumption that the a bond framework has 
already been treated. The Hamiltonian for the rc electrons is assumed to be separate 
from that for the a framework, and is assumed to be a sum of "effective" one-electron 
Hamiltonian operators that include electron-electron repulsions in some kind of 
unspecified average way. No specific expression for these one-electron operators is 
given, and no integrals are explicitly calculated. The wave function of the r~ electrons is 
a product of one-electron functions (delocalized orbitals) and the energy of these 
electrons is a sum of orbital energies. 

The variational method is applied to minimize the energy of the rc electrons, which is 
the sum of orbital energies. The energy of the molecule can be minimized by separately 
minimizing the orbital energies. The variational energy for the ith delocalized orbital is 

W i = J q~ , /~ f f  q)id3r 
(18.6-13) 

f qg* (Di d3 r 

where I2I~ ff is the effective one-electron Hamiltonian operator for one electron, and 
where d3r stands for the volume element of this electron. 

When the expression of Eq. (18.6-12) is substituted into Eq. (18.6-13), W is given as 
a function of the coefficients c~1 i) (i) etc. and the minimum in W is found by ,C 2 , 
differentiating W with respect to each of the c coefficients and setting these derivatives 
equal to zero. This procedure gives a set of simultaneous equations that can be solved 
for the coefficients. The simultaneous equations are linear homogeneous equations, 
which must obey a certain condition in order to have a nontrivial solution. 9 This 
condition is an equation that equates a certain determinant to zero, and is called a 
secular equation. It can be solved to find the permissible values of W, the orbital 
energy. The number of values of the orbital energy W is equal to the number of orbitals 
in the linear combinations, although some of the values may be equal to each other. A 
different set of c~ it coefficients is obtained by solving the simultaneous equations for 
each value of W. Each set gives a different delocalized molecular orbital, so there are as 
many delocalized orbitals as there are basis functions. The procedure, which involves a 
further set of assumptions, is discussed in Appendix H. 

9 Levine, op. cit., pp. 202ff (Note 4). 



18.6 Electronic Structure of Polyatomic Molecules 703 

We present without derivation some of the results for benzene. The lowest orbital 
energy is 

W = ~ + 2 f l  (18.6-14) 

since fl tums out to be negative. When this value of W is substituted into the 
simultaneous equations, we obtain equal values for all six c's, so that the normalized 
lowest-energy LCAO-MO is 

q91 -- ~--[I//1 + I//2 -+- I//3 "Jl" I//4 -n t- I/15 + I//6] (18.6-15) 

Figure 18.26a shows the orbital energies of this space orbital and the other five rt 
LCAO-MOs. 1~ Three of the orbital energies are relative minima in the energy, and three 
are relative maxima. Note the interesting fact that the pattern of the energy levels has 
the same shape as the molecule. This correspondence occurs in the Hfickel solution for 
all single-ring aromatic molecules. Figure 18.26b shows a view of the orbital regions of 
the six LCAO-MOs, looking perpendicular to the plane of the molecule. The broken 
lines show the nodal planes. 

The general relation between energy and number of nodes is followed. There are no 
nodal surfaces in the lowest-energy orbital, one nodal plane in the next two orbitals 
(which are degenerate), two nodal planes in the next two orbitals (also degenerate), and 
three nodal planes in the highest-energy orbital. Without doing any calculations, we 
could perhaps have guessed the number of energy levels and the number of states in 
each from the facts: (1) no more than three nodal planes can be drawn between the 
atoms in the six-membered ring, (2) there is only one way to have no nodes, (2) there 
are two perpendicular directions in which a single nodal plane can be drawn, (3) there 
are two simple ways to draw two nodal planes between the atoms, and (4) there is only 
one way to draw three nodal planes between the atoms. 

There are six electrons that occupy the it orbitals, so that in the ground state each of 
the lowest three space orbitals is occupied by two electrons, as shown by arrows in 
Figure 18.26a. In the first excited state, an electron in one of the highest occupied 
molecular orbitals will be promoted to one of the lowest unoccupied molecular orbitals, 
increasing the energy of the molecule by 2lfil. This transition can be observed 
spectroscopically, and the value of fi is ordinarily determined from these observations. 

Exercise 18.43 
From the fact that benzene absorbs strongly at wavelengths near 180nm, estimate the value of ft. 

l~ op. cit., pp. 555ff (Note 4). 
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Exercise 18.44 
a. Describe the n LCAO-MOs in the cyclobutadiene molecule, assuming a square structure. Use 

2sp 2 hybrid orbitals for the a bonds, although they do not quite fit. There are two ways to 
make a single node in an LCAO-MO (either horizontal or vertical). Give the electron 
configuration of the ground state of the molecule. 

b. Describe the bonding using the valence bond method, using the resonance structures. 
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c. Describe the bonding using the valence bond method, assuming the single structure with 
alternating single and double bonds (this is the correct structure; the molecule is not 
aromatic). 11 

The Free-Electron Molecular Orbital Method 

The free-electron molecular orbital (FEMO) method is a way of representing deloca- 
lized molecular orbitals that is even simpler than the Hfickel method. The electrons that 
move over several bonds are assumed to move in a one-dimensional box with an 
appropriate length. Repulsions between the electrons are neglected, so that the 
wavefunction for the delocalized electrons contains a product of single-electron 
functions. We discuss 1,3-butadiene, assuming that the a-bond framework has been 
separately treated. The experimental carbon-carbon bond lengths are 146pm for the 
center bond and 134pm for the others. 12 From Figure 18.27a, we see that the orbital 
regions extend beyond the end carbon nuclei, so we assign the length of the box in 
which the n electrons move to be the sum of the three bond lengths plus one additional 
bond length at each end with a length equal to the average of the two bond lengths, 
giving a total box length of 694pm. 

The energy eigenfunctions and energy levels of a particle in a box are given by Eqs. 
(14.5-10) and (14.5-11): 

(n x) 
~ /  - -  ~ / n  - -  sin ---~-/, 

h2 n 2 
E -- E ,  = 8ma2 (18.6-16) 

where a is the length of the box and n is a quantum number (a positive integer). Since 
we have four electrons, the Aufbau principle gives the ground state wave function 
(including only the n electrons) as 

~Ilgs = ~,1(1)~(1)~,1(2)/3(2)02(3)~(3)~,2(4)fl(4 ) (18.6-17) 

The ground-state n-electron energy is 

h 2 10h 2 
Eg s = 8ma2 (1 + 1 + 4 + 4) - 8ma2 (18.6-18) 

11Levine, op. cit., p. 559 (Note 4); T. H. Lowry and K. S. Richardson, MechanL~m and Theory in Organic 
Chemistry, 3d ed., Harper and Row, New York, 1987, pp. 43-44. 

12 K. Kuchitsu, E Tsutomu, and Y. Morino, J. Mol. Struct., 37, 2074 (1962). 
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*Exercise 18.45 
Using the same bond lengths as with 1,3-butadiene, find the reciprocal wavelength of the longest- 
wavelength electronic transition of 1,3,5-hexatriene. Compare with the experimental value, 
24,000cm -1. 

Applications of Symmetry to Molecular Orbitals 
The way in which we have treated the electronic structure of polyatomic molecules thus 
far has not exploited the symmetry properties of the molecules. The reason for this is 
that we have restricted our descriptions of chemical bonding largely to orbitals made 
from no more than two atomic orbitals, and have included hybrid orbitals in our basis 
sets to achieve this goal. The molecular orbitals that we have created are not necessarily 
eigenfunctions of the symmetry operators belonging to the molecule. 

Better LCAO-MOs can be constructed by making linear combinations of all atomic 
orbitals in our basis set. Hybrid orbitals are not needed in the basis set, and the LCAO- 
MOs are linear combinations of all atomic orbitals in the basis set and have orbital 
regions that extend over the entire molecule. These delocalized orbitals can be 
eigenfunctions of the symmetry operators belonging to the molecule. 

Consider the H20 molecule again. We now assume that each molecular orbital is a 
linear combinations of all of the basis orbitals. The minimal basis set contains the 
oxygen ls, 2s, 2px, 2py, and 2pz orbitals and the ls orbitals of the two hydrogen atoms. 
In Section 18.5 we listed the symmetry operators that belong to the H20 molecule" a C2 
operator with its symmetry element bisecting the bond angle and coinciding with the z 
axis, a &v reflection with its symmetry element in the plane of the molecule (the y-z 
plane) and a 3- v operator with its symmetry element perpendicular to the plane of the 
molecule. The oxygen orbitals are eigenfunctions of these operators, but the two 
hydrogen ls orbitals are not eigenfunctions of these operators. We replace these ls 
orbitals by linear combinations that are eigenfunctions of the symmetry operators: 

~/a 1 = LI/lsHa "~- ~/lsHb (18.6-19) 

~/b2 - -  kIJlsHa --  ~tlsHb (18.6-20) 

The labels on these linear combinations are explained in Appendix I. The basis set now 
consists of the oxygen ls, 2s, 2px, 2py, and 2pz orbitals, and I//al and Ob2" 
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*Exercise 18.46 
Find the eigenvalues of each of the basis orbitals for each of the operators that belong to the H20 
molecule. 

The LCAO molecular orbitals are written in the form 

~ll --  ClsO~ ls 0 + C2sO~2s 0 -~- C2pzO~t2pzO --~ C2pyOl[12py 0 -~- C2pxO~2px 0 

+ Ca 11//a 1 -~- Cb2 I//b 2 (18.6-21) 

Only basis orbitals of the same symmetry enter in any one molecular orbital in order for 
the molecular orbital to be an eigenfunction of the symmetry operators. The al basis 
function can combine with the Is, 2s, and 2pz functions on the oxygen. The b2 basis 
function can combine with the 2py function on the oxygen, and the 2px function on the 
oxygen cannot combine with any of the other basis functions. There is no need to 
constrain the bond angle to be equal to 109 ~ or any other value, and an optimum bond 
angle and bond lengths can be found by solving the problem for various bond lengths 
and angles and then choosing the conformation of minimum energy. Table 18.6 
contains the value of coefficients determined by the Hartree-Fock-Roothaan method 
for a number of orbitals. The orbital designations are explained in Appendix I. 

It is possible to take certain linear combinations of the Hartree-Fock-Roothaan 
delocalized LCAO-MOs that have orbital regions concentrated between pairs of atoms. 
These molecular orbitals are constructed such that the energy of repulsion of the 
electrons in one orbital with those in another orbital is minimized. They are called 
energy-localized orbitals. Formation of energy-localized orbitals for the ethylene 
molecule represents a double bond as two equivalent bonds 13 and represents a triple 
bond as three equivalent orbitals. These three orbitals have the same energy and have 
the same shape, with the orbital regions lying 120 ~ from each other around the bond 
axis. These energy-localized orbitals are sometimes called "banana orbitals" because of 
their shape. 14 Since the energy-localized orbitals are linear combinations of the original 

15 LCAO-MOs, it turns out that using them does not change the calculated energy. 

13 Levine, op. cit., pp. 450ff (Note 4). 
14 Levine, op. cit., p. 453 (Note 4). 
15 Levine, op. cit., pp. 481ff (Note 4). 
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More Advanced Treatments of Molecular 
Electronic Structure 

Our discussion of molecular electronic structure has been extremely crude compared 
with current quantum chemistry research. The qualitative description of bonding using 
LCAO-MOs made from only two atomic orbitals is useful for only the most elementary 
applications, even with hybrid orbitals. The Hfickel method and the free-electron 
method were both designed for hand calculation. In the past several decades, modem 
digital computers have made calculations possible that previously could only be 
dreamed of, and a great deal of research effort has been expended in quantum-chemical 
calculations with the goal of calculating wave functions, molecular geometries, and 
molecular energies accurately enough for chemical purposes. 

There are now a number of easily usable software packages that carry out some of the 
established methods. Software packages such as CAChe (an acronym for Computer 
Assisted Chemistry) and Spartan not only deliver numerical results but also graphically 
exhibit orbital regions, total electron density regions, and other results, and also exhibit 
vibrational modes and calculated vibrational frequencies as well as electronic spectra. 

There are two approaches that are commonly used in these calculations, and in both 
approaches the molecular orbitals are represented as linear combinations of basis 
functions (LCAO-MOs). 

1. The semiempirical approach is somewhat similar to the Hfickel method. It begins 
with assumed effective one-electron Hamiltonian operators as in the H/.ickel method, 
but generally adds interelectron repulsion terms. Hartree-Fock-Roothaan calcula- 
tions are carried out, but since the one-electron operators are generally not explicitly 
expressed, some integrals are approximated by zero and empirical data are used to 
assign values to other integrals. 

2. The ab initio ("from the beginning") approach begins with the correct nonrelati- 
vistic Hamiltonian, and requires no inputs of empirical information, although nuclei 
are often placed according to experimental data on bond lengths and angles. 

Dewar and Storch have written a review article comparing the results of different 
semiempirical and ab initio methods in calculating enthalpy changes of reactions. 16 At 
the time this article was published, no method had given accuracy that is adequate for 
quantitative chemical purposes for anything but a few small molecules. However, some 
progress has been made since that time. 

Semiempirical Methods 
There are a number of semiempirical methods, each with its own set of approximations. 
The typical calculation uses the Hartree-Fock-Roothaan self-consistent field method, 
although the extended Hiickel method uses the variational method in the same way as 
the simple Hfickel method. The molecular orbitals are represented as linear combina- 
tions of a set of basis functions. There are numerous integrals to be calculated, 
including matrix elements of one-electron Hamiltonians (see Appendix H), overlap 
integrals, and integrals representing expectation values of interelectron repulsions. Two 
types of approximations are invoked: the first is the assumption that certain integrals 

16M. J. S. Dewar and D. M. Storch, J. Am. Chem. Soc., 107, 3898 (1985). 
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can be approximated by zero, and the second is a scheme to assign values to other 
integrals such that results agree with experimental data. 

The Extended Hiickel Method. This method was pioneered by Wolfsberg and Helm- 
holz 17 It is not restricted to the electrons in rt orbitals and can treat molecules that are 
not planar and that do not necessarily have conjugated systems of bonds. All valence 
shell electrons are included in the treatment. It starts with the same set of equations as 
the simple Hfickel method, representing each orbital with a linear combination like that 
of Eq. (18.6-12) 

lit -- ~ c i f  i ( 1 8 . 7 - 1 )  
i=1 

where f: ,f2 . . . .  are a set of basis functions that includes atomic orbitals from all atoms 
in the molecule. Slater-type orbitals (STOs), introduced in Section 17.3, are usually 
chosen because the computations require less computer time when these functions are 
used. For the extended Hfickel method, a minimal set of basis functions is used that 
includes all atomic orbitals in the valence shell of every atom. In more sophisticated 
methods the basis set also includes the inner-shell atomic orbitals. 

The Hamiltonian for the valence electrons is assumed to be a sum of effective one- 
particle Hamiltonians. No explicit formula is used for the effective Hamiltonians. The 
approximations employed differ somewhat from the simple Hfickel method. The 
interelectron repulsive energy is neglected, but the overlap integrals are explicitly 
calculated. The matrix elements of the effective Hamiltonian, Eq. (H-3) of Appendix H, 
are approximated using formulas that are chosen to give agreement with experiment. 
The elements with a = b (the diagonal elements) are set equal to the valence-state 
ionization potential (VSIP) of the given orbital, which is the energy required to remove 
an electron from the valence shell of the atom. For a hydrogen atom the valence orbital 
is the ls orbital, and the VSIP is 13.6 eV. Wolfsberg and Helmholtz approximated the 
off-diagonal elements by the mean of the VSIP of each orbital times a fixed constant 
times the overlap integral: 

/_/eff~ r Ha b __ 1 K(H~eaff _+_ 11bb/'Jab (18.7-2) 

The constant K has been assigned various values from 1 to 3. A value of 1.75 is 
common. Ballhausen and Gray use the geometric mean instead of the arithmetic 

18 mean. 
The extended H/ickel method is sometimes used to calculate the molecular energy for 

various conformations and to find the conformation of lowest energy. Even though 
electron-electron and nuclear repulsions are omitted, reasonable results are obtained, 
and the results are sometimes used for starting points of more sophisticated calcula- 
tions. 

Exercise 18.47 
Use a software package such as CAChe to find the equilibrium (lowest-energy) conformation for 
the following molecules, using the extended Hfickel method: 
a. HzCO (formaldehyde or methanal) 
b. C2H6 (ethane) 

c. CH 3COCH 3 (acetone or propanone) 

17M. Wolfsberg and L. Helmholz, J. Chem. Phys., 20, 837 (1952). 

18 C. J. Ballhausen and H. B. Gray, Molecular Orbital Theory, W. A. Benjamin, New York, 1964, p. 118. 
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The Pariser-Pople-Parr method. This is the simplest implementation of the self- 
consistent field method. Like the Hiickel method, it treats only the electrons in de- 
localized rt orbitals in planar molecules and represents these orbitals as linear combina- 
tions of basis set of orbitals including only the unhybridized p orbitals perpendicular to 
the plane of the molecule. All overlap integrals are assumed to vanish, as in the Hiickel 
method, but some of the integrals representing interelectron repulsions are included in the 
method. Two notations are used for these integrals: 

These integrals are multiplied by the square of the electronic charge to give the 
repulsion energy. An approximation called zero differential overlap is invoked to set 
many of these integrals equal to zero. This name is somewhat confusing because the 
approximation is not applied to overlap integrals but to these electron-repulsion 
integrals. The approximation sets integrals like that of Eq. (18.7-3) equal to zero 
unless r = t and s = u. 

When the LCAO-MOs are substituted into the Hartree-Fock equations and the above 
approximations are applied, a set of equations called the Roothaan equations is 
obtained. ~9 The Roothaan equations are solved by iteration and the results are the 
orbital energies and the values of the c coefficients for each of the LCAO-MOs. 

Other Semiempirical Methods. There are a number of other methods that use the 
Hartree-Fock-Roothaan self-consistent field approach. They differ from each other in 
the scheme used to decide which integrals to approximate by zero and in the scheme 
used to assign values to the other integrals. Some methods are named according to the 
type of integrals that are assumed to vanish, such as the CNDO method (complete 
neglect of differential overlap), the INDO method (intermediate neglect of differential 
overlap), the NDDO method (neglect of diatomic differential overlap), MNDO 
(modified neglect of differential overlap), and the MINDO method (modified inter- 
mediate neglect of differential overlap). Two common methods that are based on the 
MNDO method are the AM12~ and PM3 21 methods, which are included in a package of 
programs called MOPAC. 22 The CAChe software package contains the MOPAC 
package as well as additional programs. Other methods are named for approximations 
of different sorts, such as the PCILO method (perturbative configuration interaction 
using localized orbitals) and the DIM method (diatomics in molecules). Table 18.7 
summarizes some characteristics of different semiempirical methods. 

Exercise 18.48 
Using a software package such as CAChe or Spartan that contains either the AM1 or PM3 
method, find the equilibrium conformation of the molecules in Exercise 18.47. Construct and 
view the orbital regions and compare your results with the results using the extended Hiickel 
method. 

19 Levine, op. cit., pp. 405ff (Note 4). 
2~ J. S. Dewar, E. G. Zoebisch, E. E Healy, J. J. E Stewart, J. Am. Chem. Soc., 107, 3902 (1985). 
21 j. j. p. Stewart, J. Comput. Chem., 10, 209 (1989); 10 221 (1998). 
22The MOPAC package of programs was originally available from the Quantum Chemistry Program 

Exchange at Indiana University, and is included in the CAChe package. 
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Methods considered: H = H/ickel, EH = extended Hfickel, PPP = Pariser-Pople-Parr, CNDO = complete 
neglect of differential overlap, INDO = intermediate neglect of differential overlap, NDDO =neglect of 
diatomic differential overlap, MNDO= modified neglect of differential overlap, MINDO= modified inter- 
mediate neglect of differential overlap. Note: AM1 and PM3 are MNDO methods that differ only in the way 
constants are chosen to approximate various integrals. 
Characteristics considered 
1. Type of electrons explicitly treated (p = n only, v = valence only) 
2. Molecular geometry that can be treated (p = planar only, g = general) 
3. Is it a seif-consistent field calculation? (y = yes, n = no) 
4. How are matrix elements of H err obtained? (a = approximated by some formula, e = fit from experimental 

data) 
5. Are some off-diagonal matrix elements of H e~ assumed to vanish? (y = yes, n = no) 
6. How are overlap integrals treated? (z = assumed to vanish, c = calculated) 
7. Are electron-electron repulsions included in the Hamiltonian? (y = yes, n = no) 
8. How are electron-electron repulsion terms handled? (n = not included, c = zero differential overlap (ZDO) 
approximation applied to all integrals, i=  ZDO not applied to one-center integrals, d = ZDO not applied to 
one-center integrals nor to a two-center integral if both orbitals of an electron are on the same nucleus) 
9. Can the method be used to optimize molecular geometry? (y = yes, n = no) 

Ab Initio Methods 

The  pr incipal  d i f ferences  be tween  ab initio and semiempi r i ca l  ca lcula t ions  is that ab 

initio ca lcula t ions  use the correc t  Hami l t on i an  opera to r  and calculate  all o f  the integrals  

ins tead o f  re ly ing  on exper imen ta l  i n fo rma t ion  to ass ign values  to integrals.  The  

pr incipal  ab initio m e t h o d s  are based  on the H a r t r e e - F o c k - R o o t h a a n  se l f -consis tent  

field p rocedure ,  wh ich  uses  L C A O - M O s  cons t ruc ted  f rom some  basis  set as in Eq. 

(18.6-1) .  Various kinds  o f  basis  funct ions  are in c o m m o n  use. An  impor tan t  cri terion is 

the speed  wi th  wh ich  compu te r s  can evaluate  the integrals  occur r ing  in the calculation.  

It is found  that  Sla ter - type  orbitals (STOs)  require  less c o m p u t e r  t ime than hydrogen-  

like orbitals.  These  orbi tals  contain the same  spherical  ha rmon ic  funct ions  as the 

h y d r o g e n l i k e  orbitals,  but  their  radial  factors  are exponen t ia l  funct ions  mul t ip l ied  by 

power s  o f  r ins tead o f  by po lynomia l s  in r. There  are rules  for guess ing  appropria te  

va lues  for  the exponents .  23 

In addi t ion  to Sla ter - type orbitals,  g a u s s i a n  o r b i t a l s  have been  wide ly  used.  In these 

funct ions ,  the radial  factor  is 

R ( r )  - -  e -br2 (18.7-4)  

w h e r e  b is a constant .  The  correc t  spher ical  h a r m o n i c  funct ions  are used  for the angular  

factors.  Such  gauss ian  funct ions  are not  v e r y  g o o d  represen ta t ions  o f  radial  factors, 

but  a l low for  even  m o r e  rapid  c o m p u t e r  eva lua t ion  o f  integrals  than Sla ter- type orbitals.  

23 Levine, op. cit., p. 544 (Note 4). 
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Some basis sets contain multiple gaussian functions chosen to simulate Slater-type 
orbitals. For example, in the STO-3G basis set, each Slater-type orbital is represented 
approximately by a linear combination of three gaussian functions. 

Since the best single-configuration product of molecular orbitals still contains the 
correlation error, configuration interaction is used to improve the energies. This means 
that the wave function, instead of being a Slater determinant corresponding to a 
particular electronic configuration, is a linear combination of Slater determinants, each 
corresponding to a different configuration. Up to a million configurations have been 
used, but present-day computers still require a very long time to do a calculation with 
this many configurations. 

Since the energy change in a chemical reaction is a small fraction of the total energy 
of the molecules, the total energies must be calculated to very high accuracy in order 
to approximate the energy change of a reaction. The energy change in a reaction is 
typically near 500kJmo1-1 (about 5eV molecule-l), while the total energies of the 
molecules might be several thousand eV (several hundred thousand kJmol-1). 
Achieving an error of 10% in the energy change of reaction requires an uncertainty 
of less than a tenth of a percent in the molecular energies. 

There are some things that are inherently very difficult to observe experimentally, and 
any quantum-chemical calculation giving information about such a process can be 
useful. For example, the elementary steps in a chemical reaction might take place in 
10 -13 second or less, making experimental study difficult. Quantum-chemical calcula- 
tions giving the energies and geometries (bond angles and lengths) of reactive 
intermediates might be a source of such information. 

Molecular Mechanics 

Molecular mechanics is a branch of calculational chemistry that has achieved some 
degree of success in predicting geometries of molecules and intermediates without 
direct study of the electronic wave functions of a molecule. In this method, approxima- 
tions to Born-Oppenheimer energies as functions of bond lengths and bond angles are 
calculated, using various formulas for the interaction of different atoms and groups of 
atoms in molecules. Such potential energy functions are built into a computer program, 
which then carries out the process of finding the conformations of minimum potential 
energy. With many atoms in a molecule, this minimization can be a difficult problem, 
and various techniques exist for its solution. 24 

Summary of the Chapter 

In this chapter, we have discussed the quantum mechanics of electrons in molecules 
using the Born-Oppenheimer approximation, which is the assumption that the nuclei 
are stationary as the electrons move. In this approximation the time-independent 
Schr6dinger equation for the hydrogen molecule ion, H2 +, can be solved exactly to 
give energy eigenvalues and orbitals dependent on the internuclear distance R. 

Linear combinations of atomic orbitals, called LCAO-MOs, provide an approximate 
representation of molecular orbitals for H2 +. The ground-state LCAO-MO, called the 
o-gls function, is a sum of the ls atomic orbitals for each nucleus, and is called a 

24U, Burkert and N. L. Allinger, Molecular Mechanics. ACS Monograph 177, American Chemical 
Society, Washington, D.C., 1982. 
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bonding orbital. The first excited-state LCAO-MO, called the a*ls  function, is an 
antibonding orbital. 

An approximate wave function for a diatomic molecule is a product of two LCAO 
molecular orbitals similar to those of H2 +. The ground state of the H2 molecule 
corresponds to the electron configuration (agls) 2. A wave function with a single 
configuration can be improved upon by adding terms corresponding to different 
electron configurations. Most of the information about an LCAO-MO wave function 
is contained in the specification of the electron configuration, which is constructed for 
the ground state by the Aufbau principle much as with atoms. Molecular term symbols 
can be assigned much as with atoms. 

In the valence bond method, a bonding factor is included in the wave function. This 
factor represents electron sharing between nuclei by containing two "covalent" terms, 
with each electron occupying an orbital on one nucleus in one term and on the other 
nucleus in the other term. Ionic terms, with both electrons on the same nucleus, can also 
be included. 

An approximate molecular orbital wave function for the LiH molecule was 
constructed using hybrid orbitals, which are a linear combination of atomic orbitals 
on the same nucleus. A bonding molecular orbital made from a 2sp hybrid on the Li 
nucleus and a ls orbital on the H nucleus provides an adequate description of the 
bonding in LiH. 

The criteria for a good bonding LCAO-MO were presented: A good bonding LCAO- 
MO is formed from a pair of atomic orbitals with nearly equal energies, atomic orbitals 
with considerable overlap, and atomic orbitals with the same symmetry about the bond 
axis. 

LCAO-MOs for polyatomic molecules were constructed as linear combinations of 
only two atomic orbitals, conforming to the three general criteria that predict good 
bonding molecular orbitals. In the case of the water molecule, it was found that sp 3 

hybrid atomic orbitals could produce a satisfactory wave function with a bond angle of 
109 ~ The sp 2 hybrid orbitals were useful in constructing LCAO-MOs for molecules 
with double bonds, such as ethene. The sp hybrid orbitals were used in molecules with 
triple bonds, such as ethyne. 

Delocalized bonding was described in the valence bond method by use of the concept 
of resonance. In the molecular orbital description, delocalized LCAO-MOs are used. 
For example, in the benzene molecule, six of the electrons occupy delocalized orbitals. 

A brief survey of some of the modem semiempirical molecular orbital methods was 
presented. These methods can be carried out using commercially available computer 
software that is relatively easy to use. 
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Problems 719 



Translational, Rotational, and 
Vibrational States of Atoms 
and Molecules 

1. Atoms have only translational and electronic energy. 

2. The translational energy of an atom is like that of a structureless particle. 

3. Molecules have rotational and vibrational energy in addition to translational 
and electronic energy. 

4. The Born-Oppenheimer approximation is used to separate the electronic 
motion from the rotational and vibrational motion of molecules. 

5. Translation, rotation, and vibration of diatomic molecules can be discussed 
separately from the electronic structure. 

6. In homonuclear diatomic molecules, only half of the values of J, the 
rotational quantum number, are permitted. 

7. The equilibrium populations of the energy levels of molecules are governed 
by the Boltzmann probability distribution. 

8. The rotational and vibrational energies of polyatomic molecules can be 
discussed in the Born-Oppenheimer approximation. 
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Translational Motions of Atoms 

Chapter 16 focused on solution of the Schr6dinger equation for atoms, beginning with 
the hydrogen atom. The wave function (energy eigenfunction) of a hydrogen atom is 
given by Eq. (16.1-14) as a product of the center-of-mass factor q/c and the relative 
factor Or: 

= Y, y,  z) 

The factor Oc is the same as the wave function of a moving particle with mass equal to 
the total mass of the atom. We now denote this factor by Otr and call it the t r a n s l a t i o n a l  

f a c t o r .  The factor I/t r corresponds to the relative motion of the electron and the nucleus 
around the center of mass. Since the nucleus is much more massive than the electron, 
the center of mass is close to the nucleus, and the relative motion is almost the same as 
electronic motion about the nucleus. We now denote the relative factor by Oel and call it 
the e l e c t r o n i c  f a c t o r .  

~ / =  I//tr(Y, Y, Z)~//el(X, y, z) (19.1-1) 

The total energy of a hydrogen atom is given by Eq. (16.1-14) 

Etota 1 = E c + E r = Etr + Eel (19.1-2) 

where Err is the translational energy (previously called E c, the center-of-mass energy), 
and Eel is the electronic energy (previously called the relative energy Er). For multi- 
electron atoms, we have treated the electronic motion with the assumption that the 
nucleus is stationary. This is a good approximation because the nucleus is much more 
massive than the electrons, and the electrons follow the nucleus, adapting to each new 
position of the nucleus almost as though the nucleus had always been there. Equations 
(19.1-1) and (19.1-2) can be used as a good approximation for all atoms. 

If the atom is not confined in a container, its center of mass obeys the time- 
independent Schr6dinger equation of a free particle, Eq. (14.5-32). The solution of this 
Schr6dinger equation for the center-of-mass motion is given by Eq. (14.5-33). The 
translational energy is given by Eq. (14.5-35), and is not quantized. Now assume that an 
atom is confined in a rectangular box like that of Section 14.5, located in the first octant 
of a cartesian coordinate system with its lower left rear comer at the origin. Its length in 
the x direction is a, its length in the y direction is b, and its length in the z direction is c. 
If the atom were a mass point confined in this box, the potential energy would be 
represented by 

- ~ e x t ( X , y , z ) -  l 0  i f 0 < x < a ,  0 < y < b ,  a n d 0 < z < c  (19.1-3)  ex, / oo otherwise 

This potential function does not exactly apply to an atom. The center of the atom cannot 
move completely up to the wall because of the presence of the electrons in the atom. 
However, if the box is much larger than the size of an atom Eq. (19.1-3) will be a good 
approximation. 

With this approximation, the solution of the time-independent Schr6dinger equation 
for the translation of the center of mass of an atom in a box is the same as that of a mass 
point in a rectangular box, Eq. (14.5-17): 

~tr ]-~csin(nxnX] " [nyny\ (nznZ) - -  \ a / s l n ~ - - ~ )  s i n , 7 /  (19.1-4) 
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where n x, ny, and nz are three positive integral quantum numbers, the t rans la t ional  
q u a n t u m  numbers .  The translational energy is given by Eq. (14.5-18): 

h2 ( 2 2 2) //x //y Hz 
Etr 8M a-2 + b-~ + ~ -~ (19.1-5) 

where M is the total mass of  the atom. The translational energy levels lie very close 
together for a box of  macroscopic size, and in the limit that the box becomes infinitely 
large, adjacent energy levels approach each other, like those of  a free panicle. 

*Exercise 19.1 
Calculate the difference in energy between the ground state and the first excited translational level 
of a xenon atom in a box 0.100 m on each side. Express it in joules and in electronvolts. Compare 
it with the corresponding value for a hydrogen atom in Example 19.1, and also compare it with 
the excitation energy to the first excited electronic level of the xenon atom, 8.315 eV. 

Since the translational energy levels are very close together, the translational 
quantum numbers of  an atom can be very large. In Chapter 10, we found that in a 
macroscopic system of  point mass molecules the average translational energy is equal 
to 

3kBT 
(Etr) -- 2 (19.1-6) 

where kB is Boltzmann's constant, equal to 1.3807 • 10 -23 J K -1, and where T is the 
absolute temperature. We now change notation and denote a molecular energy by a 
capital E instead of  a lower-case e. This formula for the energy was obtained classically, 
but it is an accurate value for atoms. 
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*Exercise 19.2 
a. For a xenon atom in a cubical box with side 0.100m, find the values of the translational 

quantum numbers (assumed equal) if the energy is equal to 3kB T/2 at 300 K. Compare your 
values with those of Example 19.2. 

b. Find the change in energy if one of the translational quantum numbers is increased by unity 
from its value in part (a). Find the ratio of this change to the translational energy. Compare 
your values with those of Example 19.2. 

The Nonelectronic States of Diatomic Molecules 

In addition to translation, molecules have rotational and vibrational motion. This 
section focuses on diatomic molecules, but we first write some equations that apply to 
all molecules. 

Equations for All Molecules 
In the Born-Oppenheimer  approximation, the Schr6dinger equation for the electronic 
motion is constructed with the nuclei assumed to be stationary. We now assume that the 
Schr6dinger equation for the electrons has been solved in the Born-Oppenheimer 
approximation, giving the energy for a given electronic state as the electronic energy 
eigenvalue plus the energy of  internuclear repulsions, as in Eq. (18.1-6)" 

EBO -- Eel -k- ~/Fnn (19.2-1) 

The nuclear repulsion energy ~U~n is given by 

A-l ZAZB 
= ~ ~ , (19.2-2) 

~ n  4~ze0 A=2 B=I EAB 
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where Z A is the number of protons in nucleus A, Z B is the number of protons in nucleus 
B, rAB is the distance between these two nuclei, and n is the total number of nuclei. The 
limits of the sums are chosen so that the indexes A and B are never equal to each other 
and each pair of nuclei is included only once. 

The Born-Oppenheimer energy, EBO, is independent of the location of the molecule's 
center of mass, and depends only on the relative coordinates of the nuclei. It acts like a 
potential energy for nuclear motion. We denote it now as ~/F: 

~ ( r l ,  r2 . . . . .  rn) = EBO (19.2-3) 

where r l, r 2 . . . . .  r n are the nuclear position vectors. The Hamiltonian operator for 
nuclear motion is now 

/Qnuc -- - h 2  L 1 (19.2-4) A=I ~ v2  -~- ~//'(rl '  r2 . . . . .  rn) -~- ~/'ext 

where V 2, V2 , . . . ,  vZn are the Laplacian operators for the nuclear positions. For a 
molecule that can move anywhere in space, ~/#ext can be set equal to zero. If the 
molecule is confined in a rectangular box, ~ext is the potential function that confines it, 
shown in Eq. (19.1-3). As with atoms, this use is in approximation, since the closeness 
of approach of the center of mass of molecule to the wall of a box will depend on the 
electronic, rotational and vibrational state of the molecule. For a box of macroscopic 
size, Eq. (19.1-3) will be a good approximation. 

Diatomic Molecules 

The Born-Oppenheimer energy of a diatomic molecule with nuclei A and B depends 
only on the internuclear distance rAB, which we now denote by r since there are only 
two nuclei. The nuclear Hamiltonian operator for a diatomic molecule is 

 nuc ' ] V 2 --~- 2--~/B V 2 + Y/(F)+ Y/'ext (19.2-5) 

where m a and m B are the nuclear masses and where we now denote the internuclear 
distance by r instead of by R as in Chapter 18. Since Y/'ext does not depend on the 
relative coordinates, [/nu~ is the Hamiltonian operator for a central-force system, and 
can be transformed into the same form as Eq. (16.1-10): 

#nuc -- /!}2 /!}2 
2M v2 + "~ext -  2---~ v2 + ~ ( r ) -  Hc + #r  (19.2-6) 

The difference between this Hamiltonian and that for the hydrogen atom is that here the 
two particles are both nuclei and that the potential energy is the Born-Oppenheimer 
energy instead of the Coulomb energy. The center-of-mass (translational) Hamiltonian 
is 

/2/c --/Qtr -- ~ V2 + ~'ext (19.2-7) 

The relative Hamiltonian is given by Eq. (16.1-12): 

h 2 
/2/r - -  Vr 2 + Y/~(r) (19.2-8) 

2/, 
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Here Vc 2 is the Laplacian operator for the center of mass of the two nuclei and V 2 is the 
Laplacian operator for the relative coordinates. M is the sum of the masses of the two 
nuclei, and/2 is their reduced mass: 

mAmB 
M - m A -Jr- roB; /2 -- (19.2-9) 

m A -4- rrt B 

All of the analysis of the central-force problem in Section 16.1 applies to the 
Hamiltonian operator of Eq. (19.2-6) until we get to the part that depends on the form of 
~ .  The variables separate to give two separate Schr6dinger equations: 

and 

/2/trl//tr - -  Etrl//tr ( 1 9 . 2 - 1 0 )  

/2/r0r - -  E r 0  r ( 1 9 . 2 - 1 1 )  

The translational Schr6dinger equation, Eq. (19.2-10) is the same as for atoms or for 
a structureless particle. The translational wave function for a diatomic molecule in a 
rectangular box will be given by Eq. (19.1-4) and the translational energy levels will be 
given by Eq. (19.1-5). The relative Schr6dinger equation for a diatomic molecule is 
given in spherical polar coordinates by Eq. (16.1-18). This equation is solved by the 
trial function of Eq. (16.1-20): 

I//r(r, 0, ~ )  = R(F)Y(O, dD) -- R(F)O(O)c~(dD) (19.2-12) 

The | and (I) factors are the same as in Chapter 16. The equation for the radial factor R 
is Eq. (16.1-21): 

"2 
2/2 --r 2 ~ ~ + Y + ( f "  - Er)RY - 0 (19.2-13) 

The Rigid Rotor 
The rigid rotor is a model system that approximately represents the rotation of a 
diatomic molecule. It is a central-force system consisting of two masses with fixed 
interparticle distance (no vibration is possible). Since r is fixed and r depends only on 
r, the potential energy has a constant value that can be chosen to equal zero: 

r = r e (fixed), ~ = 0 (fixed) (19.2-14) 

Since r is constant, the derivatives with respect to r are omitted, and Eq. (19.1-13) 
becomes 

1 /2 R ~ Y - -  ErRY (19.2-15) 

The radial factor R can be canceled. The equation is now the same as the angular 
momentum eigenvalue equation except for the constant factor 1/(2/2r2), so that the 
energy eigenfunction is the same as the spherical harmonic function that is the 
eigenfunction of L 2 in Eq. (16.1-39): 

I//ro t --- YjM(O, dD) = OjM(O)(DM(~) ( 1 9 . 2 - 1 6 )  

where we call the eigenfunction I//ro t. We use different letters for the quantum numbers, 
but they are the same as I and m and obey the same relations as l and m. The use of the 
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*Exercise 19.3 
a. The internuclear distance of the carbon monoxide molecule is 1.128 x 10 -1~ m. Assume that 

it rotates like a rigid rotor and find the value of the rotational energy in the J = 0 and J = 1 
energy levels. 

b. Find the frequency and wavelength of the radiation absorbed if a carbon monoxide molecule 
makes a transition from the J = 0 state to one of the J = 1 states. 

Rotating and Vibrating Diatomic Molecules 
In order to discuss vibration as well as rotation, we now return to Eq. (19.2-13) without  

assuming a fixed internuclear distance. Equation (16.2-2) is the equation for the radial 

factor R obtained by separation of  variables: 

d r2 dR 2/xr 2 
dr -~r + - - ~  ( ~  - E)R + J ( J  + 1)R -- 0 (19.2-19) 

where we drop the subscript on the relative energy E r and where we replace l by J. 

For a typical diatomic molecule,  the function ~U(r) is a function such as the one 

depicted in Figure 19.2. We express ~//'(r) as a Taylor series in the variable x = r -  re, 

where r e is the value of  r at the min imum in ~U: 

x + ~. \ dr 2 ) x 2 + . . .  (19.2-20) ~(r) - ~ ( r e )  + --dTr ~o re 

where the subscript r e means that the derivative is evaluated at r = r e. The function ~/" 

is at a min imum at r = r e, so the first derivative vanishes. To a fairly good approxima- 

tion, we truncate the series at the quadratic term and write 

1 1 (d2~//~ x2 - if/re-'t-~ kx 2 ~U(r) ~/~e 
+~: \ d~2 l~e 

(19.2-21) 

where ~'e = ~(?'e) and where we denote the second derivative evaluated at r = r e by k, 

which is the same kind of  force constant as was introduced for the harmonic  oscillator 

in Eq. (14.1-13) and Eq. (14.6-1). The potential function of  Eq. (19.2-21) is called a 
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h a r m o n i c  potential. It will lead to vibrational energy levels identical to those of a 
harmonic oscillator. There will be different values of k, of Y/~e, and of r e for different 
molecules, and even for different bound electronic states of the same molecule. A 
double or triple chemical bond will generally have a greater dissociation energy and a 
larger value of k than a single bond. Figure 19.2 shows schematically the function 
and the truncated power series representations for two electronic states of a typical 
diatomic molecule. 

The radial Schr6dinger equation is now 

d r2 dR 2 # r 2 ( - ~ )  
~r - ~ r -  J (J  + 1)R + - - ~ -  E -  V e - R - 0 (19.2-22) 

We define a new dependent variable 

S(r) = rR(r) (19.2-23) 

When this variable is substituted into Eq. (19.2-22), the result is 

h2 ( d2S J (J4- I 'S )  4- ( E -  "Cite - ~--~2)S-0 
~, dr 2 r 2 

To express this equation in terms of x, we write 

(19.2-24) 

1 1 1 (  2x 3x 2 ) 
r -5 = (r e 4 -  X) 2 ---- r~ 1 -- --re + --r2 + . . .  (19.2-25) 

If x is quite small, it is a fairly good approximation to keep only the first term of this 
series: 

1 1 
--  ~ --  (19.2-26) 
r 2 r 2 

t- --~- S -- E - ~ / "  e 
,2 ) 

2#r2 J (J  4- 1) S (19.2-27) 

Equation (19.2-24) becomes 

h 2 d2S 
2p dx 2 

Exercise 19.4 
Carry out the mathematical steps to obtain Eq. (19.2-27) from Eq. (19.2-22). 

Equation (19.2-27) is the same as the harmonic oscillator Schr6dinger equation of 
Eq. (14.6-1) except for the presence of the two constant terms subtracted from the 
energy eigenvalue. The function S is therefore the same as the harmonic oscillator 
energy eigenfunction, given by Eqs. (14.6-4), etc., and the energy eigenvalue E is the 
harmonic oscillator energy eigenvalue of Eq. (14.6-6) plus the two constant terms. (See 
Exercise 14.22) for the effect of adding a constant to a potential energy function.) 

( E -- Evj - hv e v 4- + - ~ e J ( J  4- 1)+~//" e (19.2-28) 

where v e is the oscillator frequency predicted by classical mechanics in Eq. (14.1-10): 

Ye - -  (19.2-29) 
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We have introduced the symbol I e for the equilibrium moment of inertia of the 
diatomic molecule: 

I~ = / . t~  (19.2-30) 

The subscript e denotes the equilibrium value. The quantum number v can equal 
0, 1 , 2 , . . . ,  and the quantum number J can also equal 0, 1,2 . . . . .  The energy 
eigenvalue is now that of a harmonic oscillator plus that of a rigid rotor plus a 
constant, ~e .  

We have now completed our solution of the Schr6dinger equation for the motion of 
nuclei in a diatomic molecule. The wave function for the relative motion of the nuclei is 

I//r -- OjM(O)(~M( r ) 
S v ( r -  re) 

= @rot,jMl[tvib,v (19 .2-31)  

The rotational wave function 

0rot -- OjM(O)f~M(~)  -- YJM (19.2-32) 

is the same as the spherical harmonic function of Section 16.1, and has the same two 
quantum numbers, which we now call J and M instead of l and m. The radical factor R 
is the vibrational wave function, equal to a harmonic oscillator (HO) wave function 
divided by r, the internuclear distance. 

~tvi b -- R(r) -- Sv = ~HO (19.2-33) 
r r 

We sometimes sketch vibrational wave functions as though they were harmonic 
oscillator functions. This practice is acceptable if r remains nearly equal to r e. 

The total wave function is given in the Born-Oppenheimer approximation by the 
wave function for relative nuclear motion times the translational wave function times 
the electronic wave function: 

~ t o t -  ~ t r ~ r -  ~tr~rotl/tvib~el (19.2-34) 

For a diatomic molecule, the total energy is the translational energy plus the relative 
energy in Eq. (19.2-28). The second term in the fight-hand side of Eq. (19.2-28) is the 
same as the energy of a rigid rotor, Eq. (19.2-17), and we call it the rotational energy: 

h 2 
Erot = Je2---zJ(J + 1) (J - 0, 1, 2 . . . .  ) (19.2-35) 

The degeneracy is also the same as that of the rigid rotor, Eq. (19.2-18)" 

gj  -- 2J + l (19.2-36) 

The J -- 0 energy level consists of one state, the J - 1 level consists of three states, etc. 
The first term in the fight-hand side of Eq. (19.2-28) is the energy of a harmonic 

oscillator, and we call it the vibrational energy: 

-- hve (v  -F l )  ( v - - 0 ,  1 ,2 ,3  . . . .  ) (19.2-37) Evib 
k z /  

The energy levels of a harmonic oscillator are nondegenerate, so that there is only one 
vibrational state for each value of v. 

The final term is the value of the Born-Oppenheimer (electronic) energy at the 
minimum, and we call it the electronic energy: 

Eel = "~/'e = "~(Fe) (19 .2-38)  
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This electronic energy is a different constant for each electronic state. It is equal to the 
Born-Oppenheimer energy at r -  r e. The rest of the Born-Oppenheimer energy 
depended on r, and was taken as the potential energy of vibration. Sometimes the 
zero-point vibrational energy is included in the electronic energy, so that 

h~ e 
E e l -  ~//~e "+---~- (alternate version) (19.2-39) 

and 

Evi b --  hvev (alternate version) (19.2-40) 

The total energy is unchanged by this choice. The center-of-mass (translational) energy 
is given by Eq. (19.1-5): 

h 2 (n 2 n 2 n2'~ 
Etr--Enxnynz = 8M \ ~ + ~ + ~  -] (19.2-41) 

We can write the total energy as a sum of translational, vibrational, rotational, and 
electronic contributions: 

Eto t =-- Etr + Evi b + Ero t -k- Eel (19.2-42) 

The translational energy is independent of the rotational, vibrational, and electronic 
states. The electronic energy Eel is a different constant for each electronic state, and the 
quantities v e, I e are different for each electronic state. The electronic energy Eel is often 
chosen to equal zero for the electronic ground state, which makes Eel equal to a 
different positive constant for each excited level. The spacings between the different 
quantized values of the energy contributions are widely different. 
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The results of  Example  19.3 are typical. For most  molecules,  the translational levels are 
much closer together than the rotational levels, which are quite a bit close together than 
the vibrational levels, which are in turn quite a bit closer together than the electronic 

levels. 

*Exercise 19.5 
Compare the energy level spacings for a C12  molecule in a cubical box 0.200m on a side. Its 
vibration frequency is 1.694 x 1013 s -1 and its equilibrium length for the ground electronic state 
is 1.988 x 10 -1~ m. The energy of the first excited electronic state observed in the gas phase is 
2.208 eV above that of the ground electronic state. 

The energy level expression of  Eq. (19.2-28) is only a first approximation. The power 

series expression for the vibrational potential function ~ was truncated at the quadratic 
term. One additional term of  this expansion can be kept 1 or an alternate representation 
of  the potential energy can be used. The most  commonly  used representation is the 

Morse function 

~//'(r) -- ~ ( r e )  + De(1 - e--a(r--re)) 2 (19.2-43) 

where D e is the dissociation energy, or the energy required to dissociate the molecule 
from the state of  min imum ~//~. The parameter a determines the curvature of  the function 
and is equal to k/(2De).  The values of  these parameters must  be determined for each 
molecule. Figure 19.3a depicts the Morse potential function for the CO molecule. The 
Schr6dinger equation for the Morse potential has been solved. 2 It also provides an 

instructive application of  second-order perturbation theory. 3 

Exercise 19.6 
*a. Using the general relation between potential energy and force, Eq. (D-6) of Appendix D, 

obtain a formula for the force on a nucleus in a diatomic molecule described by the Morse 
potential function. 

b. Show that De is equal to the difference in potential energy between the minimum and the 
value for large r. 

e. Show that r e is the value of r at the minimum and show that there is no force if r = r e. 

1 Jeff C. Davis, Jr., Advanced Physical Chemistry, The Ronald Press, New York, 1965, p. 285. 
2p. M. Morse, Phys. Rev., 34, 57 (1929). 
3 B. A. Pettit, J. Chem. Educ., 75, 1170 (1998). 
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Corrections for anharmonicity, for centrifugal stretching, and for interaction between 
vibration and rotation can be added to the energy level expression, giving for the energy 
of vibration and rotation 

E v j  - -  hv e v -a t- - -  hvex e v + +hBeJ (J  + 1) 

- h ~ j 2 U + l )  2-hc~ v + ~  J U + I )  

(19.2-44) 

The constant parameters in this expression are given for the Morse potential by 4 

0~- 16rc2/tr2D e are aZ-r2 (19.2-45) 

hve (19.2-46) 
x e -- 4D e 

h h 
Be - 4 rtI e = r e r e  2-------~8 ( 19.2-47) 

- 4B3 (19.2-48))  
v 2 

The term containing the parameter ~ causes the corrected levels to be more closely 
spaced for larger values of J than are the uncorrected levels, and corresponds to 
centrifugal stretching of the molecule, which increases the value of the moment of 
inertia. (Do not confuse the parameter ~ with the dissociation energy De). This effect is 
typically small, and the term in ~ can be neglected except for highly accurate work. 
The term containing the parameter x e causes the corrected energy levels to be more 
closely spaced for larger values of the vibrational quantum number and is a correction 
for the anharmonicity of the potential energy function. Figure 19.3b shows the 
vibrational energy levels of the CO molecule, including the anharmonicity correction. 
The dissociation energy D e is sometimes related to v e and x e by determining the energy 
at which the energy difference between two successive levels shrinks to zero (see 
Problem 19.25). The term containing the parameter c~ contains both the vibrational and 
rotational quantum numbers, and expresses the interaction of vibration and rotation. 
The physical origin of this interaction can be seen in Figure 19.3, which shows that for 
larger values of v the classically allowed region of the vibrational coordinate moves to 
the right in the figure, so that the moment of inertia is larger for larger values of v, 
lowering the rotational energy below that of the uncorrected level expression. 

4 Davis, op. cit., p. 351 (Note 1). 
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The energy levels are also sometimes given in terms of energies divided by hc, where 
c is the speed of light. This quantity has the dimensions of reciprocal wavelength, and 
its difference for two levels is equal to the reciprocal of the wavelength of the photon 
emitted or absorbed in the transition between these levels. It is sometimes called the 
"term" of the level, and denoted by T. The terms are commonly given in reciprocal 
centimeters, sometimes called "wave numbers." 

Tvj -- Evj/hc -- Ve (V nt- ] )  - ~eXe (l) .-~ 2) 2--~-BeJ(J --~ - 1) 

- ~J2(J + l)2 - ~(v + l ) J ( J  + l) (19.2-49) 

The parameters in this equation are marked with a tilde (,~) to distinguish them from the 
parameters in Eq. (19.2-44). These parameters are equal to the other parameters divided 
by c, the speed of light. Table A.22 in Appendix A gives the values of parameters for 
several diatomic molecules. Some reference books use the same letters without a tilde 
to represent the parameters in Eq. (19.2-49). 

*Exercise 19.7 
a. Using the expression of Eq. (19.2-49), find the wavelength and frequency of the light absorbed 

when carbon monoxide molecules make the transition from the v -  0, J = 0 state to the 
v = l , J = l  state. 

b. Find the wavelength for the same transition, neglecting the terms in fi and ~. 
c. Find the wavelength for the same transition, neglecting the terms in Xe, fi, and ~. 

Nuclear Spins and Wave Function Symmetry 
For the special case of homonuclear diatomic molecules (molecules with two nuclei of 
the same kind), we return to the wave function of Eq. (19.2-34) and determine the 
consequence of complying with the requirement that the wave function must not 
pretend to distinguish between two identical nuclei, which are just as indistinguishable 
from each other as are two electrons. As is the case with electrons as discussed in 
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Section 16.3, the interchange of two identical nuclei must not change the probability 
density, which is the square of the magnitude of the wave function. 

For our purposes, a nucleus can be considered to be made up of protons and 
neutrons, collectively called nucleons. Protons and neutrons have a spin quantum 
number of 1/2, as do electrons, and therefore are fermions. If a nucleus contains an odd 
number of nucleons, the nucleus is a fermion, since exchanging two such nuclei 
changes the sign of the wave function once for each nucleon. If a nucleus contains an 
even number of nucleons, it is a boson, since exchanging two such nuclei changes the 
sign of the wave function an even number of times, leaving the original sign. 

The wave function for nuclear motion in Eq. (19.2-21) must be multiplied by a 
nuclear spin wave function to be a complete wave function. The nuclear spin angular 
momentum I has the same general properties as any angular momentum. Its magnitude 
takes on the values 

]I] = h v / I ( I  + 1) (19.2-50) 

The projection of the spin angular momentum on the z axis takes on the values 

I~ = hMz  (19.2-51) 

where M t is a quantum number ranging from + I  to - I  in integral steps. If I is an 
integer, so is M I, and if I is a half-integer, so is M I. 

The vector I is the vector sum of the spin angular momenta of all of the nucleons in 
the nucleus. The nuclear spin quantum number I is an integer if the nucleus contains an 
even number of nucleons, and is a half-integer if the nucleus contains an odd number of 
nucleons. Its value depends on how the nucleon angular momenta add vectorially in the 
particular nuclear state. A given nucleus can have different spin states, just as an atom 
can have different electronic spin states. Very large energies are required to raise nuclei 
to excited states, so that chemists ordinarily encounter nuclei only in their ground states. 
Table A.23 in Appendix A lists the spin quantum numbers for the nuclear ground states 
of several common nuclei. 

If I = 0, there is a single symmetric spin function. The total wave function of a 
homonuclear diatomic molecule with I = 0 must be symmetric with respect to 
exchange of the nuclei, since they must contain an even number of nucleons and 
therefore are bosons. The space factor must be symmetric. If I = 1/2, as with H2, the 
nuclear spin wave functions are like those of two electrons, with singlet and triplet 
states. The triplet nuclear spin functions for such a diatomic molecule are symmetric, 

c~(1)~(2), fl(1)fl(2), ~[~(1)/3(2) +/J(1)c~(2)] 

and the singlet spin function is antisymmetric, 

2 1 - [ ~ ( 1 ) f l ( 2 )  - f l ( l ) ~ ( 2 ) ]  

The space part of the total wave function must be antisymmetric if it is combined with a 
triplet nuclear spin function and must be symmetric if it is combined with the singlet 
spin function. For values of I greater than 1/2, the spin functions are more complicated 
than those of two hydrogen nuclei, and we will not discuss them. The total wave 
function must be symmetric if I is an integer or antisymmetric if I is a half-integer. 

The space factor of the total wave function of a homonuclear diatomic molecule 
could be symmetrized or antisymmetrized by constructing a two-term wave function, as 
we did with a two-electron wave function. However, the wave functions we have 
constructed are generally eigenfunctions of spatial symmetry operators, and this fact 
makes them either symmetric or antisymmetric with respect to exchange of the nuclei. 
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If the entire wave function is operated on by the inversion operator and then the 
electronic factor is operated on again by the inversion operator, the effect is to exchange 
the nuclei but not the electrons. If the entire molecule rotates by 180 ~ around an axis 
perpendicular to the internuclear axis and if the electrons are then reflected through a 
plane perpendicular to the axis of rotation and finally inverted, the nuclei are exchanged 
and the electrons are back where they started. We can determine the effect of such 
operations on each factor of the total wave function. 

Exercise 19.8 
Assume that a homonuclear diatomic molecule is located with the nuclei at (0, 0, z,) and 
(0, 0, -zn) and that one electron is at (x, y, z). Show that the above listed operations exchange the 
nuclei and put the electron back at its original location. 

As described in Chapter 18, electronic wave functions are denoted by g if they are 
eigenfunctions of the inversion operator with eigenvalue + 1 and by u if the eigenvalue 
is - 1 .  Functions with eigenvalue § 1 are said to have even parity, and those with 
eigenvalue - 1  are said to have odd parity. A superscript § is used to denote 
eigenfunctions of 3- v with eigenvalue §  and a superscript - is used to denote 
eigenfunctions of 6 v with eigenvalue - 1 .  The rotational factor of  the wave function of a 
diatomic molecule is a spherical harmonic function. The spherical harmonic functions 
for even value of J are eigenfunctions of the inversion operator with eigenvalue + 1 (are 
"gerade"), and for odd values of J are eigenfunctions with eigenvalue - 1  (are 
"ungerade"). The same eigenvalues apply to a rotation of 180 ~ around an axis 
perpendicular to the bond axis, since this operation has the same effect as inversion. 

Exercise 19.9 
Show that the spherical harmonic function Y00 is an eigenfunction of the inversion operator with 
eigenvalue 1, while the spherical harmonic function I111 is an eigenfunction with eigenvalue -1.  
In spherical polar coordinates the inversion operator replaces 0 by rc - 0 and replaces 4~ by rc + ~b. 
Show that rotation of 180 ~ around an axis perpendicular to the bond axis gives the same result. 

The vibrational factor depends only on r, which is a scalar quantity that remains 
unchanged under inversion. The vibrational factor is an eigenfunction of the inversion 
operator with eigenvalue + 1 for all values of the quantum number v. For any diatomic 
molecule, we must choose wave functions such that the outcome of a set of  symmetry 
operations that exchanges the nuclei changes the sign of the wave function for fermion 
nuclei, and does not change the sign of the wave function for boson nuclei. 
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In Example 19.5, we have seen that for each of the forms of hydrogen, only half of 
the rotational wave functions occur. This is a general occurrence for homonuclear 
diatomic molecules, since a given electronic wave function will always demand either a 
symmetric or antisymmetric nuclear function. Therefore, for a given electronic state and 
a given nuclear spin state in a homonuclear diatomic molecule, either odd values of J 
will occur or even values of J will occur, but not both. The restriction that either even J 
occurs or odd J occurs does not apply to a heteronuclear molecule, since the nuclei are 
not identical. 

*Exercise 19.10 
For 2~176 I - 0 and the electronic ground state is g and +. What values of J can occur 
with 2~176 

Rotation and Vibration in Polyatomic Molecules 

Rotation and vibration are more complicated in polyatomic molecules than in diatomic 
molecules, and we consider only an approximation that is equivalent to the uncorrected 
energy level expression of Eq. (19.2-28) for diatomic molecules. To study the rotation 
of a polyatomic molecule, we pretend that the molecule is somehow prevented from 
vibrating. To study the vibration of a polyatomic molecule we pretend that the molecule 
is prevented from rotating. We could have obtained Eq. (19.2-28) for the energy of a 
diatomic molecule by adopting this policy, since the result was that the energy was that 
of a nonrotating harmonic oscillator plus that of a nonvibrating rigid rotor. 

Rotation of Polyatomic Molecules 
We assume that all bond lengths and bond angles of a polyatomic molecule are locked 
at their equilibrium values, so that the molecule rotates as a rigid body. For example, we 
assume that a methane molecule rotates with all bond angles held at the tetrahedral 
angle of 109.5 ~ and with all bond lengths held fixed at the equilibrium length of 
111 pm. This is a fairly good approximation for small values of the rotational and 
vibrational energies. 

The classical rotation of a rigid body is described in terms of moments of inertia 
taken relative to three mutually perpendicular axes. For an object consisting of n point 
masses, the moment of inertia about an axis is defined to be 

/axis ~ 2 (19.3-1) 
- -  miri(axis ) 

i=1 
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where m i is the mass of the ith point mass and ri(axis ) is the perpendicular distance from 
this point mass to the specified axis. For example, the moment of inertia about the z axis 
is 

I z - ~ mi( ~ + ~) (19.3-2) 
i=1 

The moments of inertia about the x and y axes are defined similarly. There are six 
additional quantities, which are called products of inertia: 

n 

[xy -- [yx -- Z mixiYi ( 1 9 . 3 - 3 )  
i=1 

The other two distinct products of inertia, Iy z = I~y and Ixz = Izx, are defined analo- 
gously. For both the moments of inertia and the products of inertia, we neglect the 
masses of the electrons and include only the nuclei in the sums. 

There is a theorem that states for any rigid object it is possible to choose a set of 
perpendicular axes with the origin at the center of mass of the molecule such that all 
products of inertia vanish. Such axes are called principal axes, and the moments of 
inertia relative to them are called principal moments of inertia. For a symmetrical 
molecule, it is usually possible to assign a set of principal axes by inspection. One first 
decides on the symmetry operators that belong to the molecule. Principal axes are then 
obtained by placing the axes along symmetry elements as much as possible. If there is 
an axis of symmetry that is at least a three-fold rotation axis, a set of principal axes is 
obtained simply by choosing this rotation axis as one of the axes. If there is a two-fold 
rotation axis, as with a molecule that has C2v symmetry, a set of principal axes is 
obtained by choosing this axis as one of the principal axes and placing the other two 
axes in planes of symmetry. 

Since the principal axes are defined relative to the molecule and rotate with it, it is 
customary to call the axes by the letters A, B, and C instead of x, y, and z. By 
convention, the axes are ordered so that 

I A < 18 < I c (19.3-4) 

If all three of its principal moments are equal, an object is called a spherical top. The 
name "top" is apparently chosen because of the rotating toys by that name. Any kind of 
a smooth spherical ball such as a billiard cue ball is a spherical top, and a tetrahedral 
molecule such as methane or an octahedral molecule such as sulfur hexafluoride is also 
a spherical top. Any mutually perpendicular axes passing through the center of mass 
are principal axes. If two of the principal moments are equal, the object is called 
a symmetric top. A prolate symmetric top has a unique moment of inertia that 
is smaller than the other two. An American football and a rugby ball are prolate 
symmetric tops if the lacing is ignored. An oblate symmetric top has a unique moment 
that is larger than the other two. A discus is an oblate symmetric top. Any molecule 
with at least a three-fold rotation axis is a symmetric top or a spherical top. If all three 
principal moments of inertia are unequal, the object is called an asymmetric top. A 
boomerang is an asymmetric top, as is a bent triatomic molecule such as sulfur dioxide 
or water. 
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These principal axes are identified by 
inspection. All must pass through the 
center of mass, and one must coincide 
with the three-fold rotational axis. The A 
and B axes could be placed anywhere in 
the horizontal plane with no change in 
the moments of inertia. 

Exercise 19.11 
Show that methane is a spherical top. 

The total angular momentum L of any object is the vector sum of the angular 
momenta of all the particles making up the object. The classical rotation energy of a 
rigid object is given in terms of its angular momentum and its principal moments of 
inertia by 

Eclassical --  ~ A  "+- ~ B  "+- 2Ic (19.3-5) 

where LA, LB, and L c are the instantaneous components of the vector L on the A, B, and 
C axes. We can write the quantum-mechanical expression for the rotational energy from 
Eq. (19.3-5) by replacing the classical variables by their quantum-mechanical eigen- 
values. Consider first the case of a diatomic molecule or linear polyatomic molecule, for 
which 1,4 vanishes and for which the other two moments are equal. There can be no 
component of angular momentum on the A axis, because there are no nuclei that are not 
on this axis (the contributions of the electrons are very small and we neglect them). 
Equation (19.3-5) becomes 

1 L 2 
Eclassica I -- g_;__ (L 2 + L 2) = 

2IB zlB 
(19.3-6) 

From Eq. (16.1-40) we have the values that a general angular momentum can assume in 
quantum mechanics. Substitution of this formula into Eq. (19.3-6) gives 

/1}2 
Eqm - E j  -- -~B J ( J  -'F 1) (19.3-7) 

which agrees with Eq. (19.2-17) for a diatomic molecule, but also applies to a linear 
polyatomic molecule such as C2H2. The possible values of L z are given by Eq. 
(16.1-43). 

L z = h M ( M  = O, +1,  +2  . . . . .  i J )  (19.3-8) 

The energy does not depend on the quantum number M, so the energy level for a 
particular value of J has a degeneracy of 2J  + 1 (one state for each value of M). 
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Consider next a spherical top, for which I A = I~ = I c. For this case 

1 1 L2 
Eclassical = ~A (L2 + L2 + L~) -- ~A (19.3-9) 

The quantum-mechanical energy is 

h 2 
Eqm -- E j  -" ~ A  J ( J  + 1) (19.3-10) 

This formula is the same as that for the energy of the linear molecule, with the energy 
depending only on the quantum number J. The degeneracy is not the same as for a 
linear molecule. In both cases, there is a quantum number M that specifies the 
projection of the angular momentum on one of the coordinate axes, which we 
choose as the z axis. When there are three independent variables in the expression 
for the classical kinetic energy, such as the three components of the angular momentum, 
there are three quantum numbers. In this case, the third quantum number is for the 
projection of the angular momentum on one of the principal axes, say the A axis. This 
projection can take on the values 

L A = h K  (K -- 0, 4-1, 4-2 . . . .  , i J)  (19.3-11) 

The quantum number K has the same range of values as M. For a given value of J ,  there 
is one state for each value of M and for each value of K, so that the degeneracy is 

g j  -- ( 2 J  -+- 1) 2 (spherical top) (19.3-12) 

The energy levels of symmetric tops and asymmetric tops are quite complicated, and we 
do not discuss them. 5 In all cases, the three quantum numbers J ,  M, and K occur. The 
energy levels can depend on the values of all three quantum numbers. 

In Section 19.3, we found that only half of the values of the rotational quantum 
number J occurred for a homonuclear diatomic molecule. In the case of polyatomic 
molecules, the situation is more complicated. We assert without proof that the fraction 
of the conceivable rotational states that can occur is l / a ,  where a is called the 
symmetry number  of the molecule. It is defined as the number of equivalent 
orientations of the molecule, which means the number of rotational positions in 
which a model of the nonvibrating molecule can be placed and have each nuclear 
location occupied by a nucleus of the same kind as in the first orientation. No inversion 
or reflection operations are used in determining a symmetry number. 

The symmetry number of any homonuclear diatomic molecule equals 2, correspond- 
ing to the result that only half of the conceivable values of J can occur. The symmetry 
number of a heteronuclear diatomic molecule equals unity, as does that of some 
polyatomic molecules, so that all values of the rotational quantum numbers can occur in 
these cases, The symmetry number of boron trifluoride is 6 (three positions with one 
side of a model upward, and three more positions with the other side up). For this 
molecule, only one-sixth of the conceivable sets of values of J ,  K, and M can occur. 
The symmetry number of methane is 12 (three positions with each of the four 
hydrogens upward). Only one-twelfth of the conceivable sets of values of J ,  M, and 
K can occur for methane. 

5 G. Herzberg, Infrared and Raman Spectra, Van Nostrand Reinhold, New York, 1945, pp. 42ff. 
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*Exercise 19.12 
Find the symmetry numbers of the molecules: 

a. Chloroform, CHC13 
b. Water, H20 
c. Benzene, C6H6 
d. Dichloromethane, CH2C12 
e. Toluene, C6HsCH3 
f. Sulfur hexafluoride, SF6 

Vibrations of Polyatomic Molecules 
In a polyatomic molecule there are several bond lengths and bond angles that can 
oscillate about their equilibrium values. However, each bond length or bond angle does 
not oscillate independently of the others. An observed vibration consists of concerted 
motions of all or part of the nuclei. The first problem in analyzing the vibrations is to 
determine the vibrations that the molecule would undergo if governed by classical 
mechanics. This is a complicated process, and we will give only a cursory summary of 
the starting point. 6 Some software packages such as CAChe and Spartan carry out the 
process automatically. We assume that the molecule is not rotating but that the nuclei 
can be displaced from their equilibrium positions. For the first nucleus, let ql be the 
displacement of the nucleus from its equilibrium position in the x direction, let q2 be its 
displacement in the y direction, and let q3 be its displacement in the z direction. For the 
second nucleus, let q4, qs, and q6 be similar displacements, and so on. There are 3n 
such variables if there are n nuclei. 

We assume that the Born-Oppenheimer electronic energy (the vibrational potential 
energy) depends quadratically on these displacements: 

3n i 
U" = ~r + Y~ Y~ bijqiqj (19.3-13) 

i=lj=l 

where the b's are constants and where the limits of the sums are chosen such that there 
is only one term for a given i and a given j. In addition to terms with i = j ,  "cross 
terms" can occur in which i ~ j. Equation (19.3-13) is analogous to Eq. (19.2-21) and 
will be a good approximation for small values of the q's. We refer to it as a harmonic 
potential energy function. The presence of the cross terms makes the q coordinates 
interfere with each other so that they do not vibrate independently. 

We now find a transformation to a new set of coordinates such that each new 
coordinate can oscillate independently from the other new coordinates. In order to do 
this, we must find new coordinates such that the potential energy function is given by a 
formula like that of Eq. (19.3-3) but without cross terms. The number of such 
coordinates turns out to be smaller than 3n. Three coordinates can be used to specify 
the location of the center of mass of the molecule. For a linear or diatomic molecule, 
two angular coordinates specify the orientation of the molecule. For a nonlinear 
molecule, three angular coordinates are required to specify the orientation of the 
molecule, as shown in Figure 19.5. The Born-Oppenheimer energy is independent of 
the location of the center of mass of the molecule and the orientation of the molecule. 
This energy, which acts as a potential energy for nuclear motion, therefore depends on 

6E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York, 1955. 
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only 3n - 5 of the new coordinates for a linear molecule, and on 3n - 6 of them for a 
nonlinear molecule. 

We will not discuss the procedure, but new coordinates can be found that are linear 
combinations of the q's: 

3n 

w i = y~ co qj (19.3-14) 
j = l  

where the c's are constants, such that 

1 3n-5(6) 
~U -- ~//~e + 5 y~ ~c i w2 (19.3-15) 

i=1 

These coordinates are called normal  coordinates. The tc's are constants (effective force 
constants for the new coordinates). The upper limit of the sum indicates that there are 
3n - 5 terms for a linear molecule and 3n - 6 terms for a nonlinear molecule, and we 
will use this notation in the future. 

The classical vibrational energy can be written 

13n~(6)I(dwi)2 1 
= Mi \ dt J + tgiW2 "~ ~ ( 1 9 . 3 - 1 6 )  Evib - -  J~("vib "+- ~/'vib 2 i=1 e 

where the M's are constants (effective masses for the new coordinates). Equation 
(19.3-16) is a sum of harmonic oscillator energy expressions. According to classical 
mechanics, each normal coordinate oscillates independently with a characteristic 
classical frequency given by 

l Yi -- "~ ( 1 9 . 3 - 1 7 )  

The motions of the normal coordinates are called normal  modes of motion. Since each 
normal coordinate is a linear combination of the cartesian coordinates of the nuclei, 
each normal mode corresponds to a concerted motion of some or all of the nuclei. 

When the quantum-mechanical Hamiltonian is written, there are 3 n -  5 or 3 n -  6 
terms, each one of which is a harmonic oscillator Hamiltonian operator. The variables 
can be separated, and the vibrational Schr6dinger equation is solved by a vibrational 
wave function that is a product of 3 n -  5 or 3 n -  6 factors: 

~tvi b --" @ l ( W 1 ) @ 2 ( W 2 )  �9 �9 �9 - -  

3n-5(6) 

1--[ ~'i(wi) (19.3-18) 
i=1 

where each factor is a harmonic oscillator wave function. The energy is a sum of 
harmonic oscillator energy eigenvalues: 

Evib - -  H hvi vi + (19.3-19) 
i=1 

where v 1, v 2 . . . .  are vibrational quantum numbers, one for each normal mode, and 
v I , v2 , . . ,  are the classical frequencies. The quantum numbers are nonnegative integers, 
and are not required to be equal to each other. Just as in classical mechanics, each 
normal mode oscillates independently of the others. 

Figure 19.6 shows schematically the motion for the four normal modes of carbon 
dioxide (linear) and the three normal modes of sulfur dioxide (nonlinear), and shows 
the frequencies divided b y  the speed of light. These values are generally called 
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"frequencies." The common unit is cm -1, although the SI unit would be m -1. The 
arrows in the diagrams show the direction of motion of each nucleus away from its 
equilibrium position. Each nucleus oscillates, returning to its equilibrium position and 
passing through it. In each of the triatomic molecules there is a normal mode called a 
symmetric stretch in which both bonds shorten and lengthen together. There is also a 
mode called an asymmetric stretch in which one bond lengthens while the other 
shortens. There is also a mode called a bend in which the bond angle oscillates. A 
linear triatomic molecule such as carbon dioxide can bend in two perpendicular 
directions, so there are two bending modes with the same frequency. A nonlinear 
triatomic molecule can bend only in the plane of the molecule. A motion perpendicular 
to the plane of the molecule would have no restoring force to make it oscillate, and 
therefore corresponds to a rotation. 

There is a common pattern of frequencies for triatomic molecules, which we see in 
these examples: Asymmetric stretches have the highest frequency, symmetric stretches 
are a little lower in frequency, and bends are considerably lower in frequency. For a 
molecule with more than three atoms there are numerous normal modes, and we do not 
attempt to describe all of them for other molecules. Benzene, with 12 nuclei, has 30 
normal modes, including a "breathing mode" in which the ring alternately contracts 
and swells, and a "pseudorotation" in which a kind of puckered wave moves around the 
ring. Advanced techniques, including group theory, are used in studying the normal 
modes of polyatomic molecules. 7 

In some large molecules, a few of the normal modes correspond to fairly large 
oscillations of one bond length or bond angle while other bond lengths and bond angles 
remain nearly constant. The frequency of such a normal mode is often nearly the same 
for the same pair of elements in different compounds. For example, most hydrocarbons 
exhibit a C-H stretching frequency in the 2850cm -1 to 3000cm -1 range, and 
compounds with an O-H bond usually exhibit an O-H stretching frequency in the 
3600cm -I to 3700cm -1 range. Table A.24 of Appendix A lists a few such character- 
istic frequencies and organic chemistry textbooks give longer lists. 

7 Ira N. Levine, Molecular Spectroscopy, Wiley, New York, 1975, pp. 427ff. 
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Exercise 19.13 
Using a software package such as Spartan or CAChe, find the normal modes and their predicted 
frequencies for carbon dioxide, sulfur dioxide, and water. Compare the predicted frequencies with 
the experimental frequencies. The Spartan software package shows movies of classical normal 
mode motions. The frequencies for carbon dioxide and sulfur dioxide are in Figure 19.6, and 
the frequencies (divided by the speed of light) for water are 3657cm -1, 1595cm -1, and 
3756 cm -1 . 

The Equilibrium Populations of Molecular States 

We have derived formulas for the energy eigenvalues for vibrational, rotational, and 
translational energy for molecules. These eigenvalues correspond to the states that are 
available to molecules in a dilute gas. At thermal equilibrium, the states are occupied 
by numbers of molecules proportional to the Boltzmann factor of Eqs. (1.5-17) and 
(10.2-35): 

(Population of state of energy E) (x e -E/kBT (19.4-1a) 

where kB is Boltzmann's constant, equal to 1.3807 x 10 -23 J K -1, and T is the absolute 
temperature. Each state in an energy level will have the same population, so that if g is 
the degeneracy of the level, 

(Population of energy level) (x ge -E/kBr (19.4-1b) 

Populations of Rotational Energy Levels of Diatomic 
Molecules 
To the approximation of Eq. (19.2-42), a diatomic molecule has a rotational energy 
eigenvalue that is independent of the vibrational energy. A rotational level has an 
energy eigenvalue 

Ej - -  hBeJ(J + 1) = hcBeJ(J + 1) (19.4-2) 

and a degeneracy 

gj = 2J + 1 (19.4-3) 

Therefore, for the vibrational quantum number equal to J,  

Population of rotational~ 
energy level J ,] cr (2J + 1)e -EJ/kB r (19.4-4) 
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For a typical molecule at room temperature, several of  the rotational energy levels are 
significantly populated. Molecules with smaller reduced masses have fewer occupied 
rotational levels, and molecules with larger reduced masses have more occupied 
rotational levels. 

*Exercise 19.14 
Find the rotational level with the largest population for HF molecules at 500.0 K. The internuclear 
distance equals 0.9168 x 10 -10 m. 

Since the vibrational levels of  a diatomic molecule are nondegenerate, we have for 
the population of  a vibrational energy level with quantum number v 

(Population of  vibrational level) c (  e -E~/kBT (19.4-5) 
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Since the vibrational energy levels are much more widely spaced than the rotational 
energy levels, the population of  the excited vibrational states is very small at room 
temperature for typical diatomic molecules, as seen in this example. However, the 
difference is smaller with molecules that have larger reduced masses or smaller 
vibrational frequencies. 

*Exercise 19.15 
Find the ratio of the population of the v = 1 vibrational level to that of the v = 0 vibrational level 
for the I2 molecule at 500.0 K. The required information is found in Table A.22 of Appendix A. 

It is a fact of  probability theory that the probability of  the occurrence of  two 
independent events is the product of  the probabilities of  the two events. If we denote the 
probability of  a vibrational level v by Pvib(V) and the probability of  a rotational level by 
Prot(J), the probability that these two levels are occupied by the same molecule is 

Pvib,rot(  v, J)  = Pvib (V)Prot(J) (19.4-6) 

The same result can be obtained by combining the two contributions to the energy. 

Exercise 19.16 
Use the energy of the level with v = 1, J - -  2 directly in the Boltzmann formula of Eq. (19.4-1b) 
to obtain the result of Example 19.9 by a different calculation. 

The probabilities of  electronic energy levels are also governed by the Boltzmann 
probability distribution. Since most electronic states are even more widely spaced than 
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vibrational states, excited electronic states of  most molecules are almost unpopulated at 
room temperature. 

*Exercise 19.17 
Calculate the ratio of the population of one of the states of the first excited electronic level of the 
C12 molecule to that of the ground state at 298 K. The energy of the first excited level is 2.128 eV 
above the ground state. 

Summary of the Chapter 
The motion of  the nuclei of  molecules consists of  translational, rotational, and 
vibrational motions. To a good approximation, these three types of  motion make 
separate contributions to the molecular energy of  a diatomic molecules. The transla- 
tional energy for a molecule confined in a box is the same as that of  a point mass 
particle in the same box. 

To a first approximation, the vibrational energy of  a diatomic molecule is that of  a 
harmonic oscillator, and the rotation is that of  a rigid rotor. Correction terms can be 
included if high accuracy is necessary. The rotational energy of  a polyatomic molecule 
is taken to be that of  a rigid rotating body. The vibrational energy is taken to be that of  
normal modes, each one of  which oscillates like a harmonic oscillator. 

The populations of  rotational, vibrational, and electronic states of  molecules are 
described by the Boltzmann probability distribution. 

(Population of  vibrational level) o~ e -Ev/kBT 

P R O B L E M S  
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vibrational energies of an HC1 molecule if 
a. 35C1 is replaced by 37C1, 

b. I H is replaced by 2H, 
c. 35C1 is replaced by 37C1 and 1H is replaced by 2H. 

spherical top, prolate symmetric top, oblate symmetric top, or 
asymmetric top: 

a. C6C 6 b. C2H6 c. C2H5C1 
d. C2H 4 e. C2H 2 f. trans-C2H2F2 
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level of chloromethane to the population of the rotational 
ground state at 298.15 K. 

General Problems 
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levels to be further apart than the uncorrected energy 
levels. 

i. The corrections for centrifugal stretching in the rota- 
tional energy levels of a diatomic molecule cause the energy 
levels to be closer together than the uncorrected energy levels. 

j. The corrections for the interaction of rotation and vibra- 
tion cause the energy levels to be closer together than the 
uncorrected energy levels. 

k. Every diatomic molecule can exhibit only even values of 
J or odd values of J.  



Spectroscopy and Photochemistry 

1. Spectroscopy is the study of the interactions of matter with electromagnetic 
radiation and the extraction of information about molecular structure from 
this interaction. 

2. Emission/absorption spectroscopy is based on the Bohr frequency rule: 

hc 
E p h o t o n  - -  hv - - ~  - -  E u p p e  r - E l o w e  r 

where the E's are energy eigenvalues of two energy levels. 

3. Measurement of the wavelengths of emitted or absorbed light allows the 
determination of energy level differences. 

4. Selection rules predict which transitions between pairs of levels will occur 
with absorption or emission of radiation. 

5. Concentrations can be determined spectroscopically using the Beer- 
Lambert law. 

6. The spectroscopy of atoms involves electronic energy levels. 

7. Transitions between rotational states of molecules produce spectra in the 
microwave region. 

8. Transitions between vibrational states of molecules produce spectra in the 
infrared region. 

9. Transitions between electronic states of molecules produce spectra in the 
visible and ultraviolet regions. 

10. Photochemistry is closely related to spectroscopy and involves chemical 
reactions that are initiated by absorption of radiation. 

11. Other types of optical spectroscopy such as Raman spectroscopy, can 
supplement emission/absorption spectroscopy. 

12. Magnetic resonance spectroscopy involves transitions between states that 
have different energies in a magnetic field. 

13. Some modem spectrometers use Fourier transform techniques. 
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Emission/Absorption Spectroscopy and Energy 
Levels 

In Chapters 14 through 19, we studied the energies and wave functions of atoms and 
molecules theoretically. These energy levels can be studied experimentally by measur- 
ing the wavelengths of the light that is emitted, absorbed, or scattered in processes that 
involve transitions between energy levels. We begin with a discussion of optical 
spectroscopy, involving the emission and absorption of photons by atoms or molecules. 

The Bohr Frequency Rule 
According to the Planck-Einstein relation of Eq. (14.3-8), the energy of a photon is 

hc 
E p h o t o n  - -  h v - 2 (20.1 - 1) 

where h is Planck's constant, v is the frequency of the radiation, c is the speed of 
propagation of electromagnetic radiation and 2 is the wavelength. Since wavelengths of 
radiation can be measured very accurately, photon energies can be determined with 
great accuracy. The fundamental idea of optical spectroscopy is that if a photon is 
emitted or absorbed by an atom or molecule, the atom or molecule makes a transition 
between levels whose difference in energy is equal to the energy of the photon. This is 
an expression of the conservation of energy and is expressed by the Bohr frequency 
rule, 

(20.1-2) 

where Euppe r and Elowe r are  the energy values for the upper and lower levels of the atom 
or molecule. If a photon is absorbed, the upper level is the final level and the lower level 
is the initial level. If a photon is emitted, the lower level is the final level and the upper 
level is the initial level. In either event, Eq. (20.1-2) applies as written. The Bohr 
frequency rule is based on the assumption that only one photon is absorbed or emitted 
at a time. Multiphoton transitions can be studied, but we do not discuss them. 1 

The spectrum of electromagnetic radiation is arbitrarily divided into several regions, 
as shown in Table 20.1. Typical spacings between electronic energy levels are roughly 
2 eV to 10 eV, corresponding to photon energies in the visible and ultraviolet region. 
Spacings between vibrational energy levels correspond to photon energies in the 
infrared region, and spacings between rotational energy levels correspond to photon 
energies in the microwave region. Spacings between translational energy levels of 
molecules are too small to observe spectroscopically. The absorption of photons can 
also break chemical bonds or cause transitions to reactive excited states, which is the 
basis of photochemistry. Bond energies are usually expressed in kilojoules per mole, 

1 See for example C. K. Rhodes, Science, 229, 1345 (1985). 
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An einstein is a mole of photons. 

*Exercise 20.1 
Find the energy per photon and per einstein for 
a. Microwave radiation with 2 = 1.0 cm 
b. X-radiation with 2 = 1.0 x 10 -l~ m 

The Quantum Mechanics of Spectroscopic Transitions. 
Selection Rules 
Our discussion of quantum mechanics has focused on stationary states of atomic and 
molecular systems as described by the time-independent SchrSdinger equation. Spec- 
troscopy involves a time-dependent process, the evolution of  the state of a system 
containing an atom or a molecule plus radiation. The standard approximate treatment 
uses a time-dependent version of perturbation theory that treats the atom or molecule 
quantum mechanically but treats the radiation as a classical wave consisting of an 
oscillating electric field and an oscillating magnetic field (see Section 14.2). 2 If the 
radiation is plane polarized, the electric field oscillates in a plane containing the 

2 Jeff C. Davis, Advanced Physical Chemistry, The Ronald Press, New York, 1965, pp. 243ff. 
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direction of propagation, and the magnetic field oscillates in the plane perpendicular to 
this plane and also containing the direction of propagation, as in Figure 14.9. 

Since an electric field exerts a force on any charged particle and a magnetic field 
exerts a force on any moving charged particle, both of these fields interact with the 
nuclei and electrons of an atom or molecule, and both can cause absorption or emission 
of energy. A transition produced by the electric field is called an electric dipole 
transition, and a transition due to the magnetic field is called a magnetic dipole 
transition. The electric field is many times more effective in causing atomic and 
molecular transitions than the magnetic field, and is more important in optical 
spectroscopy. However, the transitions between nuclear spin states in NMR spectros- 
copy are magnetic dipole transitions. 

In the time-dependent perturbation treatment of electric dipole transitions, the 
Hamiltonian operator of the molecule in the presence of radiation is written in a way 
somewhat similar to Eq. (17.2-1): 

/2 /_  f/(0) +/~/, (20.1-3) 

This differs from Eq. (17.2-1) in that/2/(o) is the complete time-independent Hamilto- 
nian operator of the molecule in the absence of radiation. The time-dependent 
perturbation term/2/, describes the interaction between the molecule and the electric 
field of the radiation. We now assume that the zero-order time-independent Schr6dinger 
equation has been solved to a usable approximation: 

/2/(O)~h!O)Tj -- t~)'-'(~ ~ (20.1-4) 

The wave function (p)0) is the coordinate wave function (energy eigenfunction) of the 
molecule in the absence of radiation. We would usually approximate it as a product of a 
translational factor, a rotational factor, a vibrational factor, and an electronic factor. 

Inclusion of the perturbation produces a time-dependent wave function, which is 
written as a linear combination of the zero-order functions as in Eq. (15.2-14): 

T(q, t) - -  y~  a j ( t ) ~ ~  (20.1-5) 
J 

where q stands for all of the coordinates of the particles in the molecule and where a 
scheme must be found to determine the coefficients al, a2 . . . . .  Since the zero-order 
wave functions are time-independent, these coefficients contain all of the time 
dependence of the wave function, and we obtain approximate expressions for them 
using perturbation theory. 

In order to observe transitions we specify that at time t = 0 the wave function is equal 
to one of the zero-order functions, ~(0), 

T(q, 0) - ~(0)(q) (20.1-6) 

so that at t - 0 ,  

1 i f j  -- n (20.1-7) 
ay(O) --  6), - -  0 if j C n  

where 6j, is the Kronecker delta, introduced in Eq. (15.4-29). Its definition is exhibited 
in the second equality of Eq. (20.1-7). If at later times another coefficient, aj, becomes 
nonzero, this corresponds to a nonzero probability of a transition from the state ~p~0) to 
the state ~/,{0) More than one coefficient can become nonzero. For a new student of T j  " 

quantum mechanics, it is sometimes difficult to accept the fact that a single wave 
function can describe different possible outcomes. We already found this kind of 
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behavior in Chapter 14 in the discussion of a free particle. In that chapter, we had a 
single wave function that corresponded to a certain probability that a traveling wave was 
moving from left to fight and another probability that it was moving from fight to 
left. In this case we have a single wave function corresponding to a certain probability 
that the molecule makes a transition from state n to state j and at the same time 
corresponding to another probability that it makes a transition to another state or 
remains in state n. It is possible to think of a wave function as representing a large 
number of identical systems (an ensemble of systems) instead of one system. All of the 
systems in the ensemble are in the same zero-order state at time zero, but at a later time 
the systems can occupy different zero-order states. 

Time-dependent perturbation theory allows a formula to be derived that gives the 
coefficients as functions of time. The probability that the system is in the state 
corresponding to ~0) is proportional to lajl 2. If the radiation is polarized in the z 
direction, [aj(t)l 2 is proportional to the intensity of the radiation of the wavelength that 
satisfies the Bohr frequency rule and is also proportional to the square of the integral 3 

(Yz)jn -- I ~ ~  fiz~~ dq (20.1-8) 

where /~z is the z component of the operator for the electric dipole of the atom or 
molecule, as in Eq. (18.4-9). The integration is over all values of all of the coordinates 
of the system, abbreviated by the symbol q. The integral in Eq. (20.1-8) is the z 
component of a vector quantity, (/z)jn, called the transition dipole moment  for the 
transition from state n to state j. 

For two states that have a nonzero transition dipole moment, a transition between 
them can occur with the absorption or emission of a photon. Such a transition is called 
an allowed transition. A transition between two states that have a zero transition dipole 
moment is predicted not to occur, and is called a forbidden transition. A rule that tells 
which transitions are allowed is called a selection rule. The selection rules that we give 
in this chapter are generally obtained with approximate wave functions. Only the 
electric dipole transitions are considered, and the perturbation theory is an approximate 
theory. Most of the selection rules are therefore not exactly obeyed. Forbidden 
transitions occur, but with lower probabilities than allowed transitions, so that spectral 
features corresponding to them have low intensities. 

Inspection of Eq. (20.1-8) shows that the value of the transition dipole moment is 
unchanged if the initial and final states' wave functions are switched. This means that 
incident radiation will induce transitions from a lower-energy state to a higher-energy 
state with the same probability as it will induce transitions in the other direction. A 
transition that raises the energy of the atom or molecule corresponds to absorption, 
while one that lowers the energy corresponds to emission of a photon. This emission is 
called stimulated emission, since it is stimulated (caused to occur) by the radiation 
field. Radiation emitted in stimulated emission has the same wavelength as the incident 
photons, moves in the same direction, and is in phase with the incident radiation. That 
is, the crests and troughs of its waves coincide with those of the waves of the incident 
radiation. With many atoms or molecules emitting radiation, a strong beam of 
undirectional radiation can result, with all of its waves in phase. Such radiation is 
said to be coherent, and this kind of radiation is emitted by lasers, which amplify 
electromagnetic radiation by adding radiation to an incident beam by stimulated 

3 Davis, loc. cit. (Note 2). 
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emission. ("Laser" is an acronym for "light amplification by stimulated emission of 
radiation.") Transitions resulting in emission of photons can also occur in the absence 
of stimulating radiation. Such emission is called spontaneous emission. The prob- 
ability of such transitions is also proportional to the square of the transition dipole 
moment, but is independent of the intensity of any radiation. Since there is no inducing 
radiation to specify a direction and phase, spontaneously emitted radiation emitted by a 
collection of many molecules is emitted in all directions and is not coherent. 

Optical spectroscopy is of two principal types. In absorption spectroscopy the 
attenuation of an incident beam due to absorption is observed. In emission spectros- 
copy spontaneously emitted radiation from excited atoms or molecules is observed. The 
intensity of absorption of radiation due to a given transition depends on three factors: 
the intensity of the radiation, the inherent probability that the transition will take place, 
and the numbers of molecules in the upper and lower states (the "population" of the 
state). If the lower-energy state has a greater population absorption will be observed, 
but if the two states are equally populated the absorption and the stimulated emission 
will cancel and nothing will be observed. The intensity of spontaneous emission 
depends only the inherent probability of the transition and on the number of molecules 
in the upper state. 

In a system of many atoms or molecules at thermal equilibrium, the number of atoms 
or molecules occupying a given state of energy E is proportional to the Boltzmann 
factor of Eq. (1.5-17) or Eq. (10.2-35): 

(Number of molecules with energy E) (x e -E/k~r (20.1-9) 

where k B is Boltzmann's constant (1.3807 x 10 -23 J K - l )  and T is the absolute 
temperature. The number of atoms or molecules occupying excited states drops rapidly 
with increasing energy so that states of energy values much higher than kBT will at 
equilibrium be occupied by very few atoms or molecules. Absorptive or emissive 
transitions from such states cannot be observed unless these states are significantly 
populated by an input of energy that raises the effect temperature. For emission 
spectroscopy, these states can be populated with an electric arc, a spark, or a flame. 

*Exercise 20.2 
For hydrogen atoms at thermal equilibrium at 298 K, find the ratio of the number of hydrogen 
atoms in one of the n = 2 states to the number in one of the n -- 1 states. Take E l - -  0 ( f o r  the 
ground level), so that E 2 = 10.2 eV. 

The classical way to observe emission or absorption spectra is to disperse the 
radiation, which means separating the different wavelengths from each other. A 
triangular prism of transparent material was first used for this purpose since light is 
transmitted in a medium at a speed that depends on wavelength and on the material of 
the medium. Light that strikes a boundary between two materials is refracted (has its 
path bent) if it strikes the boundary at an angle other than a fight angle. Different 
wavelengths are refracted by different amounts, so that the radiation is dispersed when 
it passes through a triangular prism. 

Diffraction gratings are also used to disperse the radiation. Figure 20.1a shows 
schematically how radiation is dispersed by a prism and Figure 20.1b shows how it is 
dispersed by a transmission grating, which passes radiation through a set of equally 
spaced parallel slits at which the radiation is diffracted. Figure 20. l b is very similar to 
Figure 14.6b. In the radiation that passes through the grating, crests that are in 
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constructive interference produce a beam in a direction determined by the wavelength 
of the radiation and the slit spacing, so that different wavelengths produce beams at 
different angles. A reflection grating functions in a similar way. 

In a simple spectroscope, the wavelengths of emitted light are observed by viewing 
the locations of bright images of the slit. If only narrow bands of wavelengths are 
emitted, the slit images look like line segments and these features are called spectral 
lines. In a spectrograph the dispersed light falls on a photographic film or plate and a 
permanent record of the spectrum is obtained, which allows accurate measurement of 
the line positions. Figure 20.2 shows a simulation of the visible portion of the emission 
spectrum of atomic hydrogen at low pressure. 

Absorption Specroscopy. The Beer-Lambert Law 
Absorption spectroscopy has been carried out in a spectrophotometer such as the one 
shown schematically in Figure 20.3. The light is dispersed by a prism or grating, 
collimated into a beam of nearly parallel rays, and passed through a cell containing the 
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sample. Only a narrow band of wavelengths passes at one time and the bandwidth 
determines the resolution of the instrument. The wavelength can be chosen by turning 
the prism or grating, and this is done automatically in a scanning instrument. A 
photocell or other detector determines the intensity of transmitted radiation. In a single- 
beam instrument, the cell containing the sample substance and a "blank" cell not 
containing this substance are placed alternately in the beam. In a double-beam 
instrument, the beam is divided and passed simultaneously through the sample cell 
and the blank cell. In a diode-array instrument, a number of detectors in different 
locations are used, and the entire spectrum is taken at one time. More modem 
instruments use a Fourier transform technique, which we will discuss later in the 
chapter. 

The intensity of a collimated beam of radiation is defined as the energy passing unit 
area per unit time. We define a total intensity,/tot, which is the energy of all wavelengths 
per unit area per unit time, and an intensity per unit wavelength interval, I(2), such that 
the energy carried by radiation with wavelengths in the infinitesimal wavelength range 
between 2 and 2 + d2 is 

(Energy in range d2 per unit time per unit area) = 1(2) d2 (20.1-10) 

A variable that is commonly plotted to represent an absorption spectrum is the 
transmittance, T, usually expressed in percent: 

\ i ( 2 ) i n ]  x 100% (definition) (20.1-11) 

where I(2)out is the intensity after the light beam passes through the cell and I(2)i n is the 
incident intensity. 
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Figure 20.4 shows an absorption spectrum for a sample in liquid solution, plotted as 
a function 1/2, measured in cm -1 . This spectrum shows absorption over broad ranges 
of wavelength, and not just at a few wavelengths. This is common for absorbing 
substances dissolved in liquid solvents. The interactions with solvent molecules 
broaden the spectral lines due to several effects, including the coupling of vibrational 
and electronic transitions, Doppler shifts from the translation of molecules and 
the uncertainty broadening due to the finite lifetime of the states, introduced in Eq. 
(15.4-25). 4 If the absorption spectrum of the same substance were taken in the gas 
phase instead of in a solvent, the regions of absorption would be much narrower. 
However, every spectral line has an inherent nonzero range of wavelengths that are 
absorbed (a nonzero linewidth). In addition, no spectrograph or spectrophotometer can 
disperse radiation so completely that a single wavelength is separately detected. A 
spectral line with a very narrow inherent width appears to have a larger line width due 
to the limitations of the instrument. The difference in wavelength of the most closely 
spaced narrow spectral lines that an instrument can resolve is called the resolution of 
the instrument. 

Absorption spectroscopy can be used to measure the concentration of a substance. 
Figure 20.5 shows a cell containing an absorbing substance with concentration c and 
with a beam of light passing through it in the x direction. Consider a thin slab of unit 
area within the cell, lying between x and x + dx. The volume of the slab is dx times unit 
area, so the amount of absorbing substance in this portion of the slab equals c dx  times 
unit area. Let the intensity of light in the small range of wavelengths d2 be denoted by 
1(2, x) d2. This intensity depends on x because the light becomes less intense the farther 
it travels into the cell, because of absorption. The amount of light absorbed in the slab 
per unit time is proportional to the intensity of light and to the amount of absorbing 
substance, so the change in I from one side of the thin slab to the other is 

- d I  --  k (2 ) Ic  dx  (20.1-12) 

4V B. E. Thomas, J. Chem. Educ., 72, 616 (1995). 
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The proportionality factor k is a function of wavelength but not of concentration. It will 
be different from zero only for wavelengths such that the photon energy equals the 
energy difference between a significantly occupied molecular energy level and a higher 
level. 

Equation (20.1-12) is a differential equation that can be solved for the intensity of 
light as a function of position. Division by I separates the variables, giving 

dI - - - =  k(2)c dx (20.1-13) 
I 

This differential equation is solved by a definite integration, letting x - 0 be the front of 
the cell and x - b be the back of the cell. Assuming that the concentration is uniform, 

in \. (2,,(1(2 b))_0) In (1(2',1(2, 0)) -k(2)cbb)  (20.1-14) 

The absorbance A (formerly called the optical density) is defined as the common 
logarithm of the same ratio as in the second natural logarithm in Eq. (20.1-14). 
Equation (20.1-14)can be transformed into the Beer-Lamber t  law: 

(20.1-15) 

where a(2) is the absorptivity (formerly called the extinction coefficient)" 

a(2) - ~ -- (20.1-16) 
ln(10) 2.302585 

The absorptivity depends on the wavelength of light as well as on the identity of the 
absorbing substance and the identity of the solvent (if any). If the concentration is 
measured in mol L -1, the absorptivity is called the molar absorptivity. The Beer- 
Lambert law is well obeyed by many substances at low concentrations. Deviations 
occur at higher concentrations, corresponding to an absorptivity that depends on 
concentration. These deviations can be caused by specific chemical effects such as 
association of the molecules of the substance, which provides one way to study 
molecular association. 

*Exercise 20.3 
A solution of a certain dye has a concentration of 0.000100 molL -1 and gives an absorbance of 
1.234 at a wavelength of 587 nm in a cell of length 1.000 cm. Find the molar absorptivity at this 
wavelength. 
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The Spectra of Atoms 

The only energy levels o f  atoms that can ordinarily be studied experimentally are 
electronic levels. For a hydrogen atom, when the orbitals are substituted in the integral 
of  Eq. (20.1-8) the following selection rules are found: 5 

Hydrogen Atom Selection Rules 

Am = mfinal -- minitia 1 : 0,-4-1 

Al =/final-/initial : ~ 1 

An - no restrictions 

(20.2-1a) 

(20.2-1b) 

(20.2-1c) 

These selection rules correspond to conservation of  angular momen tum in the a tom-  
radiation system, since the angular momen tum of  a photon is +h .  Since Al = 4-1, a 
hydrogen atom in an s subshell can make a transition only to a p subshell, while an 
atom in a p subshell state can make a transition to an s subshell or to a d subshell, and 
so on. All states in the same shell have the same energy in hydrogen atoms, and a 
simple spectrum is obtained as was shown in Figure 20.1. Figure 20.6 shows 
schematically some of  the transitions that take place, with line segments connecting 

each pair o f  states between which transitions can occur. 

*Exercise 20.4 
From the expression for the energy of a hydrogen atom in Eq. (16.2-19), find the wavelength and 
frequency of the photons emitted by a hydrogen atom undergoing the n = 2 --+ n - 1 transition, 
the n -- 3 --+ n = 2 transition, and the n - 4 --+ n -- 3 transition. In what spectral range (visible, 
ultraviolet, or infrared) does each lie? 

For multielectron atoms, most  spectra can be unders tood in terms of  orbital wave 
functions made up of  hydrogenlike orbitals. I f  such wave functions are used to calculate 
transition dipole moments ,  the following selection rules result: 6 

Selection Rules for Multielectron Atoms 

AL -- i l  

AS = 0 

A J  = 0, 4-1 (0 --~ 0 not allowed) 

AMj = 0, •  (0 -+ 0 not al lowed for AJ  = 0) 

(20.2-2a) 

(20.2-2b) 

(20.2-2c) 

(20.2-2d) 

where J is the quantum number  for the total electronic angular momen tum and M j  is 
the quantum number  for its z component.  The most  important  o f  these selection rules is 
that of  Eq. (20.2-2b), that AS -- 0. Transitions between singlet and triplet states, etc., 
are forbidden. Forbidden transitions do occur (with low probabilities) and we will later 
discuss the forbidden transitions from triplet excited states to singlet ground states that 

account for phosphorescence.  

5 Davis, op. cit., pp. 256-257 (Note 2). 
6Davis, op. cit., pp. 256-257 (Note 2). 
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Rotational and Vibrational Spectra of Diatomic 
Molecules 

Transitions between rotational, vibrational, and electronic states of diatomic molecules 
can be observed. All three kinds of transition can occur simultaneously, but the 
selection rules also allow transitions to occur in which only the rotational and 
vibrational states change, as well as transitions in which only the rotational states 
change. Transitions in which only the vibrational states change are forbidden. 

Rotational Spectra of Diatomic Molecules 
If a diatomic molecule can be represented as a rigid rotor, the transition dipole moment 
integral for a rotational transition is 

([2)J"M"'J'M' = I Y~*'M"]2YJ'M' sin(0) dO dd~ (20.3-1) 

The Y functions are the rotational wave functions (spherical harmonic functions) and 
# = #(r, 0, ~b) is the dipole moment operator of the molecule in the Born-Oppenheimer 
approximation. The selection rules that result are 7 

AJ - 4-1 for nonzero permanent dipole moment 

All AJ values forbidden for zero permanent dipole moment 

(20.3-2a) 

(20.3-2b) 

where J is the quantum number for the magnitude of the rotational angular momentum 
and M is the quantum number for its z component. The rotational selection rules are 
well obeyed by diatomic molecules with 1E electronic states. The selection rule of Eq. 
(20.3-2b) can be understood qualitatively by considering what would happen if the 
molecules obeyed classical mechanics. In order for an interaction to occur between the 
molecule and the radiation, the molecule must exhibit a periodically varying electric 
dipole moment as it undergoes the classically pictured motion. If a diatomic molecule 
has a permanent dipole moment, rotation does present a periodically varying dipole to 
the radiation, since the dipole's direction is changing, even though its magnitude is not. 
A homonuclear diatomic molecule has no permanent dipole moment so it has no 
rotational spectrum. 

Rotational transitions give photon wavelengths in the microwave region. The 
radiation sources in microwave spectrometers are klystron tubes, which were originally 
designed for radar apparatuses in World War II. Hollow metal wave guides carry the 
radiation to the sample cell, which is a hollow metal cavity, and the resonant radiation in 
the cavity is sampled to detect absorption. Microwave spectroscopy has played an 
important role in identifying molecules in interstellar space, but is usually employed by 
specialists rather than as a routine laboratory technique. 

From the selection rule, the photon energy for an allowed transition is 

hc  
Ephoton -- hv  - -  --~ - -  E v , j +  1 - E~j  (20.3-3) 

7 Ira N. Levine, Molecular Spectroscopy, Wiley, New York, 1975, pp. 162ff. 
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where J is the value of the rotational quantum number for the lower-energy state and 
the vibrational quantum number v has the same value for both states. The reciprocal of 
the wavelength is 

1 1 
- --s - h--7(E~,a+l - E ~ j )  (20.3-4) 

where we introduce the symbol ~ for the reciprocal wavelength. The reciprocal 
wavelength is usually expressed in cm -a, and is sometimes called a "frequency," 
since it is proportional to the frequency of the light through the relation c / 2  - v. 

Equation (19.2-44) gives t he  required energy levels. For a first approximation, we 
neglect the terms in ~ and ~,  obtaining the result corresponding to a rigid rotor: 

1 
- ~ - Be[(J + 1)(J + 2) - J ( J  + 1)] 

--"/~e[J 2 -]- 3J Jr_ 2 - j 2  _ j ]  __ 2/~e(j + 1) (20.3-5) 

Since J can take on values 0, 1,2 . . . .  , this corresponds to a set of equally spaced 
spectral lines with reciprocal wavelengths equal to 2B e, 4B e, etc. Figure 20.7a shows the 
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energy levels with the allowed transitions and Figure 20.7b shows a simulated spectrum 
for carbon monoxide. 

The expression in Eq. (20.3-5) can be improved on by including the correction terms in 
the energy level expression of Eq. (19.2-47). 

Exercise 20.5 
a. Find an expression for the reciprocal wavelengths of the microwave spectrum of a diatomic 

molecule including all of the terms in Eq. (19.2-47). Assume that v = 0. 
b. Find the reciprocal wavelengths and the wavelengths for the first four lines in the microwave 

spectrum of CO using your expression of part (a). Assume that v = 0. The values of the 
parameters are in Table A.22 of Appendix A. Compare your values with those obtained with 
the approximation of Eq. (20.3-5). 

*Exercise 20.6 
The equilibrium internuclear distance of HC1 is 1.275 x 10 -l~ m. Find the spacing between the 
lines in the microwave spectrum for both ~H35C1 and 1H37C1. The chlorine atomic masses are 
34.96885 amu and 36.96590 amu and the IH atomic mass is 1.007825 amu. 

The intensity of a given line in a spectrum is determined by the magnitude of the 
transition dipole moment for the transition or transitions producing the line and by the 
number of molecules occupying the initial state or states for the spectral line. The 
rotational levels have a degeneracy of 2J  + 1. At equilibrium the rotational states have 
population proportional to the Boltzmann factor of Eq. (1.5-17). Therefore, 

(Population of energy level J )  ~ (2J -k- 1)e -EJ/kBr (20.3-6) 

The degeneracy increases and the Boltzmann factor decreases as J increases, so the 
population rises to a maximum and then decreases as J increases. In Example 19.7 of 
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the previous chapter, we found that the most populated rotational level for the CO 
molecule at room temperature is the J = 7 level. If the transition dipole moments for 
different rotational transitions in the same molecule are roughly equal, the level with the 
largest population is the one with the largest absorption intensity. 

*Exercise 20.7 
a. Find the rotational level with the largest population for HC1 molecules at 298 K. The 

internuclear distance equals 1.275 x 10 -l~ m. 
b. Find the rotational level with the largest population for Br2 molecules at 298 K. The 

internuclear distance equals 2.281 x 10 -l~ m. 

Vibration-Rotation Spectra of Diatomic Molecules 
When transitions are observed between vibrational levels, the emitted or absorbed 
radiation is in the infrared region of the spectrum. Vibrational transitions do not occur 
without rotational transitions since AJ = 0 is forbidden for diatomic molecules. The 
infrared spectrum is a vibration-rotation spectrum and information about rotational 
levels as well as vibrational levels can be obtained. The vibrational selection rules are 
derived in the Born-Oppenheimer approximation by evaluating the transition dipole 
moment integral 

(20.3-7) 

where ~ ,  and ~, ,  are two vibrational wave functions, expressed in terms of x - r - re, 
and where ~t(x) is the operator for the molecular dipole moment. Since the vibrational 
wave functions approach zero rapidly for large magnitudes of x, taking the limits of the 
integral as infinite products no significant numerical error, but does contribute to the 
fact that vibrational selection rules are only approximately correct. 

The expression for the dipole moment would be determined by solution of the 
electronic Schr6dinger equation in the Born-Oppenheimer approximation. We repre- 
sent the expression for the dipole moment by the truncated Taylor series: 

#(x) - #(0) + x + . . .  (20.3-8) 
o 

where #(0) is the value of the dipole moment at x = 0 and where the subscript 0 on the 
derivative means that it is evaluated at x = 0. Using harmonic oscillator wave functions 
and the two terms included explicitly in Eq. (20.3-8), the selection rule is 

Av = 0, + 1 for nonzero dipole moment (20.3-9a) 

All Av values forbidden for zero dipole moment (20.3-9b) 

Transitions for which Av = 0 give the pure rotational spectrum in the microwave 
region. Transitions for which Av = +1 give the vibration-rotation spectrum in the 
infrared region. The transition dipole moment vanishes for homonuclear diatomics 
because the dipole moment #(x) vanishes for all values of x. 
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Exercise 20.8 
Using the v = 0 harmonic oscillator function of Eq. (14.6-8), show that a nonzero value of the 
#(0) term on the fight-hand side of Eq. (20.3-8) leads to a nonzero value of the transition dipole 
moment for the v = 0 to v = 0 transition. Use the v = 0 function and the v = 1 function from Eq. 
(14.6-9) to show that a nonzero value of the second term on the fight-hand side of the equation 
leads to a nonzero value of the transition dipole moment for the v = 0 to v = 1 transition. 

It is possible to understand qualitatively the selection rule of  Eq. (20.3-9b) by assuming 
a diatomic molecule described by classical mechanics. In order for such a vibrating 
molecule to interact with electromagnetic radiation, the molecule must present a 

fluctuating dipole to the radiation as the molecule vibrates, and the molecule must be 
differently charged at its two ends in order to do this. 

Figure 20.8 shows the allowed transitions that occur between the ground vibrational 
state (v -- 0) and the first excited vibrational state (v = 1). The resulting set of  spectral 
lines is called a band,  and the band corresponding to the allowed transitions shown is 
called the f u n d a m e n t a l  band .  Those spectral lines for which the value of  J in the 

upper state is larger than the value of  J in the lower state constitute the R b r a n c h  of  the 
band, and the spectral lines for which the value of  J in the upper state is smaller than 

that in the lower state constitute the P b ranch .  If  lines occurred for which the values of  
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J in both states were the same, they would constitute the Q branch. The rotational 
selection rules forbid this branch for diatomic molecules, but the location that the Q 
branch would have if it were present is the band center. Vibrational selection rules are 
less well obeyed than rotational selection rules, and forbidden vibrational transitions are 
frequently observed, although with lower intensities than the allowed transitions. A 
forbidden spectral band with Av = -+-2 is called a first overtone, one with Av -- 4-3 is 
called a second overtone, and so on. 

If we neglect the x e, ~, and 33 terms in the energy level expression of Eq. (19.2-47), 
the reciprocal wavelength of a line of the R branch of the fundamental band is given 
by 

1 E o j ) / h c  - Ve + 2 / ~ e ( J  -q- 1) VR --" ~RR = ( E I ' J + I  --  ' (J  = 0, 1,2 . . . .  ) (20.3-10) 

where J is the value of the rotational quantum number in the lower (v = 0) state. The R 
branch consists of a set of equally spaced lines with spacing 2B e. It looks like the 
rotational spectrum except that these lines start from the band center instead of from 
zero reciprocal wavelength. 

The reciprocal wavelengths of lines of the P branch are given by 

1 --  E o , j ) / h c  - -  ~e 2 / ~ e J  ~p = ~pp "-  ( E l , j _  1 (J  = 1, 2, 3 . . . .  ) (20.3-11) 

where J is the value of J in the lower (v = 0) state, which must be at least as large as 
unity since the transition is to a lower value of J.  The P branch consists of a set of 
equally spaced lines with spacing 2/Y e as does the R branch, but the lines are on the 
other side of the band center. The splitting between the first line of the P branch and the 
first line of the R branch is 4B e. 

Exercise 20.9 
Show that Eqs. (20.3-10) and (20.3-11) are correct. 
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Figure 20.9 shows the fundamental band of the HC1 molecule. The double lines are 
due to the two isotopes of chlorine that are present. The lines are not equally spaced, 
mostly due to the effect of the ~ term in the energy level expression of Eq. (19.2-47). In 
HC1, as in most molecules, the ~ term is small and its effect is negligible. The v e x e 
term does not affect this spectrum because all lines in this spectrum correspond to the 
same vibrational transition, from v - 0 to v = 1. Transitions from the v = 1 and higher 
levels are generally not seen in absorption spectra near room temperature due to the 
small population of excited vibrational states (see Example 19.8). 

Using the energy level expression of Eq. (19.2-47), the reciprocal wavelength of the 
band center of the fundamental band is 

1 
VBC - -  = Ve - -  VeXe[(  3 / 2 )  2 - -  ( 1 / 2 )  2] 

2BC 

= Ve -- 2VeXe (center of the fundamental band) (20.3-12) 

and the reciprocal wavelength of the band center of the first overtone is 

1 
~ ~ . -  2 ~  e - -  6 ~ e X  e VBC ~ ~ B C  

(center of the first overtone band) (20.3-13) 
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If  the overtone band can be observed, it is possible to evaluate the anharmonicity 

parameter FeXe f r o m  it. 

Exercise 20.10 
a. Using the expression for the energy levels in Eq. (19.2-49) obtain the expression for the 

reciprocal wavelengths of the lines in the P and R branches of the fundamental band of a 
diatomic molecule. 

b. Use the expression derived in part (a) to find the reciprocal wavelength of the first line of the 
P branch and the first line of the R branch of the fundamental band of CO. 

%. Obtain the expression for the reciprocal wavelength of the band center of the (n + 1)th 
harmonic (nth overtone) and find the reciprocal wavelength of the band center of the third and 
fourth overtones for the CO molecule. 

Exercise 20.11 
If the energy level expression of Eq. (19.2-49) is used, the reciprocal wavelength of a line in the R 
branch of the first overtone band is 

1 
VR -- -;--- -- 2re -- 6VeXe + 2/~e(J + 1) - 4~)(J + 1) 3 -- ~(2J 2 + 7J + 4) 

,t R 
(20.3-14) 

a. Verify Eq. (20.3-14). 
b. Obtain the analogue of Eq. (20.3-14) for the P branch of the first overtone band. 

%. Find the reciprocal wavelength of each of the first three lines in the R branch of the first 
overtone of the CO molecule. 

Electronic Spectra of Diatomic Molecules 

The electronic energy levels o f  typical molecules are even more widely spaced than the 
vibrational energy levels, so that the electronic spectra for most  diatomic molecules are 
found in the ultraviolet or visible region. Transitions of  a diatomic molecule from one 
electronic state to another are complicated by the fact that rotational and vibrational 
transitions take place simultaneously with the electronic transitions. The selection rules 
for these transitions are derived much as in the other cases we have considered, by 
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determining which transitions correspond to nonzero transition dipole moments. The 
following selection rules are obtained: 8 

AA = 0, 4-1 (20.4-1 a) 

AS = 0 (20.4-lb) 

Parity of electronic state changes: (u ~ g or g --+ u) (20.4-1c) 

AJ - 4-1 (20.4-1 d) 

Av--not restricted (20.4-1e) 

where A is the quantum number for the magnitude of the projection of the total 
electronic orbital angular momentum on the internuclear axis, S is the total electron 
spin quantum number, J is the rotational quantum number (not the quantum number for 
the total electronic angular momentum), and v is the vibrational quantum number. 

*Exercise 20.12 
The lowest-lying excited singlet state of the CO molecule lies 8.0278 eV above the ground state. 
Find the wavelength of the light absorbed in the transition to this state from the ground state, 
neglecting changes in rotational and vibrational energy. 

Each electronic transition produces a number of bands, with one band for each 
vibrational transition and with the lines of each band corresponding to different 
rotational transitions. Measurement and interpretation of such an electronic band 
spectrum can yield not only the energy differences between electronic levels, but 
also between vibrational and rotational levels. It is possible to use electronic spectra to 
determine rotational and vibrational properties of homonuclear diatomic molecules, 
which have no infrared or microwave spectrum. Figure 20.10 depicts an electronic 
transition for a typical diatomic molecule. The two curves are the Born-Oppenheimer 
electronic energies of two different electronic states. The vibrational energy levels are 
superimposed on the graph in the appropriate positions, and a graph of the square of 
each vibrational wave function (probability density for internuclear distance) is drawn 
on the line segment representing its energy level. The vertical scales of these wave 
function graphs are separate from the energy scale. 

In order to understand electronic spectra we apply the Franck-Condon principle, 
which states that the nuclei do not move appreciably during an electronic transition. 
This principle is closely related to the Born-Oppenheimer approximation. In Figure 
20.10 a line segment is drawn to represent a typical electronic transition. The line is 
vertical, corresponding to the Franck-Condon principle. The probability of a transition 
is proportional to the square of the transition dipole moment. One factor in the 
transition dipole moment is the overlap integral of the vibrational wave functions in 
the initial and final states. The square of this overlap integral is called the Franck-  
Condon factor. The value of this overlap integral will be small unless there is a range 
of internuclear distance over which both vibrational wave functions are appreciably 
different from zero. For a highly probable transition the vertical line segment must be 
drawn from one of the regions of relatively large value of a vibrational wave function to 
another region of relatively large value. Since the equilibrium internuclear distance of 
the upper electronic state in Figure 20.10 is somewhat larger than that of the lower state, 
the most probable transitions will take place to excited vibrational states of the upper 
electronic state. Figure 20.11 shows the electronic band spectrum of nitrogen. 

s Levine, op. cit., pp. 298ff (Note 7). 
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As with atoms, there is a selection rule forbidding transitions that change the value of 
S. Since our selection rules are approximate, forbidden transitions between triplet 
(S = 1) states and singlet (S = O) states do occur, but with low probabilities and 
corresponding low intensities compared with singlet-singlet transitions. If the electro- 
nic wave functions are represented by orbital approximations, an electronic transition 
corresponding to the transition of a single electron from one orbital to another can be 
characterized by specifying the initial orbital and the final orbital. For example, if the 
electron makes a transition from a ~z bonding orbital to arc antibonding orbital, the 
transition is called arc -+ re* ("pi to pi-star") transition. If the electron goes from a 
nonbonding orbital to arc antibonding orbital, the transition is said to be an n --+ ~z* 
("n to pi-star") transition. 

Spectra of Polyatomic Molecules 

The spectra of polyatomic molecules are more complicated than those of atoms or 
diatomic molecules. As with diatomic molecules, rotational transitions can occur 
without vibrational or electronic transitions, vibrational transitions can occur without 
electronic transitions but are generally accompanied by rotational transitions, and 
electronic transitions are accompanied by both vibrational and rotational transitions. 

Microwave Spectra of Polyatomic Molecules 
The rotational transitions of polyatomic molecules produce a microwave spectrum as 
described for diatomic molecules. As in that case, we assume that a rotating molecule is 
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rigid and cannot vibrate. We have already divided polyatomic molecules into four 
classes: linear molecules, spherical top molecules, symmetric top molecules, and 
asymmetric top molecules. As is the case with diatomic molecules, a permanent 
dipole moment is required for a molecule to produce a microwave spectrum. 

Linear polyatomic molecules have rotational wave functions exactly like those of 
diatomic molecules, so their rotational selection rules and spectra are the same as those 
of diatomic molecules. Analysis of a spectrum yields the value of the two equal 
moments of inertia, but not necessarily the values of individual bond lengths. Spherical 
top molecules are so symmetrical that they cannot have a nonzero dipole moment, 
which forbids all rotational transitions and no spectrum is observed. A rotational 
spectrum is always observed for an asymmetric top molecule, because it has so little 
symmetry that it must have a dipole moment. We will not discuss the microwave spectra 
of symmetric top molecules and asymmetric top molecules. 9 

Vibrational Spectra of Polyatomic Molecules 
As with diatomic molecules, vibrational transitions are accompanied by rotational 
transitions, giving bands of lines. The vibration of polyatomic molecules is that of 
normal modes, each acting approximately like an independent harmonic oscillator. We 
number the normal modes with an index i, ranging from 1 to 3n - 5 (linear molecules) 
or 3n - 6 (nonlinear molecules). The selection rules for vibrational transitions are: 

AU i = 0 ,  ~ 1 for some one value of i, Av = 0 for all other values 

The motion of the normal mode i must modulate the 

molecule's dipole moment 

(20.5-1a) 

(20.5-1b) 

The rule of Eq. (20.5-1a) means that only one normal mode changes its quantum 
number at a time. The case in which all Av's vanish corresponds to a rotational 
spectrum. The statement that the motion must modulate the dipole moment of the 
molecule means that the classically pictured motion must cause the dipole moment to 
oscillate in value. These selection rules lead to a fundamental band in the infrared 
region for each normal mode that modulates the molecule's dipole moment. If a 
polyatomic molecule possesses a permanent dipole moment, all of its normal modes 
can modulate the dipole and give rise to vibrational bands. For example, in a nonlinear 
triatomic molecules such as H20 or SO2, all three of the normal modes shown in Figure 
19.5 will give fundamental bands in the infrared spectrum. Transitions that violate the 
selection rules do occur, but with small probabilities. There are overtones like those of 
diatomic molecules, and also combination bands, in which two (or more) normal 
modes change their quantum numbers at once. These forbidden bands are generally less 
intense than the fundamental bands. 

9Davis, op. cit., pp. 322ff (Note 2). 
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In Example 20.6 we see a general pattern for triatomic molecules stated in Section 
19.3: The bend has the lowest frequency, the symmetric stretch has an intermediate 
frequency, and the asymmetric stretch has the highest frequency. The weak bands are 
identified by trial and error, seeing whether their frequencies approximate a multiples of 
a fundamental frequency or a sum of two fundamental frequencies. 

Even in molecules without a permanent dipole, some of the normal modes can 
produce a fluctuating dipole that oscillates about zero magnitude, and thus produce 
spectral lines. For example, the CO2 molecule is linear and therefore has no permanent 
dipole moment, although each C=O bond is polar. The normal modes of CO2 were 
shown in Figure 19.5. The two bending modes, which have the same frequency, 
produce temporary dipoles that are perpendicular to the molecule axis and fluctuate 
about zero magnitude. They correspond to a single vibrational band that is called a 
perpendicular band. The asymmetric stretch produces an oscillating dipole parallel to 
the molecule axis since it stretches one bond as it compresses the other. The spectral 
band that it produces is called a parallel band. The symmetric stretch increases and 
then decreases both bond dipoles simultaneously, not changing the dipole moment and 
not giving rise to a spectral line. The infrared spectrum of carbon dioxide contains only 
two fundamental bands, the parallel band at 1340 cm -1 and the perpendicular band at 
667 cm -1 . 

The perpendicular band of a linear molecule like carbon dioxide exhibits a Q branch 
in addition to P and R branches. The two bending modes together can produce a motion 
in which the center atom moves around in a circle perpendicular to the axis of the 
molecule. This motion is similar to a rotation of a bent molecule, which turns out to 
permit A J - - 0  as well as AJ =-+-1.11 Figure 20.12 shows the carbon dioxide 
perpendicular band at 667 cm -1, containing P, Q, and R branches. The line widths 
are such that the lines are not completely resolved from each other. The situation with 
nonlinear molecules is similar. If there is a single symmetry axis, vibrational motions in 
which the dipole oscillates perpendicular to the axis correspond to a band with a Q 
branch as well as P and R branches. 

With larger polyatomic molecules the determination of which normal modes will be 
infrared active is harder than with triatomic molecules. There are more normal modes 
and each normal mode involves a more complicated motion. In order for a given normal 
mode of a polyatomic molecule to give rise to a vibrational band (be "infrared active"), 
the transition dipole moment integral for the two vibrational wave functions of the 

lo G. Herzberg, Molecular Spectra and Molecular Structure, Vol. II, Infrared and Raman Spectra of 
Polyatomie Molecules, Van Nostrand Reinhold, New York, 1945, p. 283. 

1 Levine, op. cit., pp. 255ff (Note 7). 
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normal modes needs to be nonzero. This integral is somewhat similar to an overlap 
integral, except for the occurrence of the dipole moment operator, and the transition 
dipole moment integrals can be studied by group theory in a way similar to overlap 
integrals. 12 However, it is often possible by inspection of the normal modes to identify 
those that modulate the dipole moment of the molecule. 

*Exercise 20.13 
One of the normal modes of the benzene molecule is the "breathing mode," in which the entire 
molecule alternately expands and contracts. Will this mode be infrared active? 

Electronic Spectra of Polyatomic Molecules 
Electronic transitions in polyatomic molecules are similar to those in diatomic 
molecules. Vibrational and rotational transitions take place along with electronic 
transitions. The Franck-Condon principle applies as in diatomic molecules so that 
the final state will usually be an excited vibrational state as well as an excited electronic 
state. Since there are several normal modes in any polyatomic molecule, the simulta- 
neous electronic, vibrational, and rotational transitions can give very complicated 
spectra. The selection rules for electronic transitions in polyatomic molecules are also 
more complicated than in diatomic molecules, and we will not discuss them. However, 
one rule is the same for all molecules and atoms: the total spin quantum number is the 
same for the final as for the initial state: 

AS = 0 (rule for all molecules and atoms) (20.5-2) 

The selection rules for the space part of the electronic wave function can be derived 
using group theory to investigate the effects of  wave function symmetry, much as it is 
used to determine which overlap integrals vanish. 13 We state only the general rule: The 
symmetry of the electronic wave function in the final state must be different from the 

12 p W. Atkins, Molecular Quantum Mechanics, 2d ed., Oxford University Press, Oxford, 1983, pp. 303ff. 
13B. S. Tsukerblat, Group Theory in Chemistry and Spectroscopy, Academic Press, San Diego, 1994, 

pp. 223ff. 
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symmetry of the initial state. For example, a transition from a u state to a g state is 
ordinarily allowed (and vice versa), while a transition from a g state to another g state or 
from a u state to another u state is not allowed. 

The molecular electronic selection rules are not exact since they are derived with 
approximate wave functions. "Forbidden" transitions are often observed, but they 
usually have smaller probabilities. For example, a transition from an excited singlet 
state to a singlet ground state with emission of a photon is allowed and will generally 
occur with a mean lifetime of the excited state of a microsecond to a millisecond. A 
transition from an excited triplet state to a singlet ground state is forbidden, and if it 
occurs it will have a smaller intensity and a longer mean lifetime of the excited state 
(sometimes as long as 10 seconds). 

If orbital wave functions are used for a polyatomic molecule, the electronic 
transitions can be classified by specifying the initial and final orbitals. As with diatomic 
molecules, if an absorption corresponds to a transition from a nonbonding to an 
antibonding rc orbital, we call it an "n to pi-star" (n --~ re*) transition, and similarly for 
a "pi to pi-star" (~z ~ re*) transition. In many cases a whole class of compounds will 
exhibit similar spectral lines that can be attributed to a functional group or other group 
of atoms within a molecule. Such a group that exhibits a characteristic absorption is 
called a chrornophore. For example, most organic compounds containing a carbonyl 
group have an absorption near 200nm corresponding to a ~z ~ re* transition and 
another absorption near 300 nm corresponding to an n --+ re* transition. 

Fluorescence, Phosphorescence, 
and Photochemistry 

In this section we discuss various processes that involve emission or absorption of 
photons. The material in this section is somewhat separate from spectroscopy, and the 
entire section can be skipped without loss of continuity. We use the benzophenone 
molecule as a typical example, and include photochemical processes, which are 
chemical reactions that occur only after the absorption of a photon. 

Fluorescence and Phosphorescence 
Benzophenone (Ph2C=O, where Ph stands for the phenyl group, C6H5) is a substance 
that exhibits fluorescence and phosphorescence as well as undergoing a photochemical 
reaction. Figure 20.14 shows schematically some low-lying electronic energy levels of 
benzophenone. The excited levels correspond to excitation of electrons in the carbonyl 
group. An excited level that is reached from the ground level by an n --+ re* transition is 
labeled (n, re*) and an excited level that is reached by a zt --+ rt* transition is labeled 

There are two levels labeled (n, re*) and two levels labeled (re, re*). These differ in the 
value of the total spin quantum number S, with singlet levels corresponding to S -- 0 
and with triplet levels corresponding to S = 1. The ground level is a singlet level, and 
the selection rules allow transitions only to excited singlet levels. Transitions to the two 
excited singlet levels give rise to two absorptions, one near 330nm (n --+ re*) and one 
near 260nm (zt--+ re*). Transitions to the triplet levels from the ground level are 
forbidden and we can ignore them. Polyatomic molecules do not have the same kind of 
term symbols as do diatomic molecules, so we follow a common notation and label the 
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singlet levels as So, $1, $2, etc., in order of increasing energy, and the triplet levels T1, 
T2, etc. in order of increasing energy. We reserve the subscript 0 for the ground level 
(the So level) so that there is no To level. 

If a molecule absorbs a photon to make a transition to an excited singlet level, there is 
some probability that the molecule will make the reverse transition and emit a photon of 
the same wavelength as the photon originally absorbed, but this is not the only thing that 
can happen. The molecule will probably be in an excited vibrational state after the 
upward transition (see the discussion of the Franck-Condon principle in Section 20.4), 
so that the molecule can make a transition to a lower-energy vibrational level within the 
excited electronic level, thus losing some vibrational energy. This energy can be emitted 
as a photon, which would be in the infrared region. A radiationless transition can also 
occur. The vibrational energy lost by the molecule can be transferred to other 
vibrational modes in the molecule or to rotation or translation of the molecule or to 
other molecules. 

Once the molecule is in a lower vibrational level of the excited electronic level, it can 
emit a photon and retum to the ground electronic level. Such a radiative transition to the 
ground level from an excited level with the same value of S is called fluorescence. 
Since vibrational energy was lost, the emitted photon will be less energetic than the 
photon originally absorbed and the emitted light will have a longer wavelength than the 
absorbed light. Many common objects, including human teeth, certain minerals and 
"black-light" posters can fluoresce, emitting visible light when irradiated with ultra- 
violet light. 

Another possibility is that the molecule might make a radiationless transition to the 
ground level or to a lower-energy electronic level with the same value of S. Such a 
radiationless transition is called an internal conversion. In our example of a carbonyl 
compound, an intemal conversion could occur from the singlet (n, n*) level to the 
singlet (n, n*) level, followed by fluorescence to the ground level. Still another 
possibility is a radiationless transition to an electronic level with a different value of 
S. A radiationless transition in which the value of S changes is called an intersystem 
crossing. To each of the excited singlet levels in Figure 20.14 there corresponds a 
triplet level with the same electron configuration and a lower energy that can be reached 
with an intersystem crossing. If a molecule is in an excited state with a value of S 
different from that of the ground state, it might make a forbidden radiative transition to 
the ground state. This process is called phosphorescence. A typical mean time for 
phosphorescence is longer than for fluorescence (typically 1 ms to 10 s). In Figure 
20.14, the approximate values of mean transition times are indicated near each arrow. 

Photochemistry 
A molecule in an excited state can often undergo chemical reactions that are 
inaccessible to a molecule in the ground level. If the excited state was reached directly 
or indirectly by absorption of radiation, the reaction is a photochemical reaction. We 
have already discussed the rate of a photochemically initiated reaction in Section 13.5. 
Most photochemical reactions are governed by the Stark-Einstein law of photo- 
chemistry, which states that absorption of one photon causes the reaction of one 
molecule. This is similar to the statement of the Bohr frequency rule of spectroscopy, 
that the absorption or emission of a single photon accompanies a transition between 
atomic or molecular energy levels. 

The Stark-Einstein law does not imply that every photon necessarily leads to the 
reaction of one molecule, since some of the excited molecules might undergo intemal 
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conversion, intersystem crossing, fluorescence, or phosphorescence processes leading 
to unreactive states. A chain reaction might occur in which the reaction of one 
molecule can lead to the reaction of other molecules without absorption of further 
radiation, as in the reaction of H2 and Br2 discussed in Section 13.5. The quantum 
yield of a photochemical reaction, ~, is defined by 

total number of molecules reacted 
= (20.6-1) 

number of photons absorbed 

In a chain reaction, ~ can exceed unity, but in a non-chain reaction unity is its 
maximum value. Equation (20.6-1) can be restated in terms of moles of reactant and 
moles of photons. One mole of photons is called an einstein, so that 

amount reacted in moles 
(I) -- (20.6-2) 

amount of photons absorbed in einsteins 

An example of a photochemical reaction involves benzophenone. 14 Its energy level 
diagram has already been presented in Figure 20.14. Upon irradiation with ultraviolet 
light of 300nm to 350nm wavelength, benzophenone undergoes reaction with 2- 
propanol to form benzpinacol and acetone: 

HO OH 
hv I I 

Ph2C=O + H(CH3)2COH ---) Ph2CmCPh2 + (CH3)2C--O (20.6-3) 

Since radiation of 300 nm wavelength has photons of insufficient energy to reach the 
singlet 0z, re*) level, and since the radiative transition to a triplet level is forbidden, the 
first step in the mechanism for this reaction must be absorption of radiation to excite the 
benzophenone to the singlet (n, re*) level: 

Ph2C--O + hv --) Ph2C--O ($1) (20.6-4) 

where the electron remaining in the nonbonding orbital is represented by a dot over 
the oxygen atom and the electron that has made the transition to the antibonding rc 
orbital is represented by a dot over the double bond (which is now a bond with order 
3/2). 

The next step in the mechanism is an intersystem crossing: 

Ph2C-- O(S 1)--> Ph2C--O(T1) (20.6-5) 

This step is followed by the abstraction of a hydrogen atom (complete with one 
electron) from a 2-propanol molecule: 

CH3 CH3 
I I 

Ph2C--O(T1) + t b - C - - O H  --, Ph2C--OH +" C--OH 
I I 

CH3 CH3 

(20.6-6) 

14 D. L. Pavia, G. M. Lampman, and G. S. Kriz, Jr., Introduction to Organic Laboratory Techniques, 2d 
ed., Saunders College Publishing, Philadelphia, 1982, pp. 362ff. 
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The next step is the abstraction of a second hydrogen atom from the 2-propanol 
molecule by another excited benzophenone molecular, forming another molecule of the 
radical and an acetone molecule: 

CH3 
I 

Ph2C--O(T1) + HO--C" --~ Ph2C--OH + O=C(CH3)2 
I 

CH3 

(20.6-7) 

The final step is combination of two radicals: 

HO OH 
I I 

2Ph2C--OH -~ P h - - C - - C ~ P h  
I I 
Ph Ph 

(20.6-8) 

The photochemical reaction can be carried out by use of an ultraviolet lamp, but 
sunlight contains enough ultraviolet light to produce a significant amount of product in 
a few days. The reaction will proceed in a borosilicate glass flask. 

E x e r c i s e  2 0 . 1 4  
Borosilicate glass blocks almost all radiation of wavelength less than 300nm. Calculate the 
energy per photon and per einstein for radiation of wavelength equal to 300 nm. 

If naphthalene is placed in the reaction mixture, no reaction takes place (the reaction 
is quenched). The explanation is that intermolecular energy transfer from an excited 
benzophenone molecule to a naphthalene molecule retums the benzophenone molecule 
to its ground level before it can react chemically. Naphthalene has a singlet ground 
level, a singlet (re, re*) level 4.1 eV above ground level and a triplet (re, re*) level 2.7 eV 
above the ground level. There is a well-obeyed selection rule that requires that in an 
intermolecular energy transfer the sum of the two electron spin quantum numbers 
remains constant. This means that if the benzophenone molecule makes a transition 
from a triplet excited level to a singlet ground level, the naphthalene molecule must 
make a transition from its singlet ground level to a triplet excited level, and that if the 
benzophenone molecule makes a transition from a singlet excited level the naphthalene 
molecule must make a transition to a singlet excited level. 

Since the (rt, 7t*) singlet excited level of the naphthalene lies higher than the (n, re*) 
singlet excited level of benzophenone by 0.8 eV, this level cannot be reached by energy 
transfer from benzophenone molecule in its (n, rt*) level. However, the (rt, 7r*) triplet 
excited level of the naphthalene molecule lies lower than the (n, rt*) triplet level of 
benzophenone, so that this level can be reached by energy transfer from a benzophe- 
none molecule. The fact that the naphthalene quenches the reaction shows that the 
triplet (n, re*) level of benzophenone must be the reactive level. 

Photosynthesis 
The process of photosynthesis is an important set of photochemical reactions occurring 
in plants, "fixing" carbon dioxide and producing carbohydrates and O2. In the cells of 
photosynthetic plants are found organelles called chloroplasts, in which are found 
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several chromophores called chlorophylls. Chlorophyll molecules absorb blue and red 
light, giving the chloroplasts their characteristic green color. Chlorophyll molecules 
have four pyrrole rings, quite similar to the heme groups in hemoglobin, myoglobin, 
and the cytochromes. However, the chlorophylls contain a magnesium atom instead of 
the iron atom found in the heine group. It is important to the functioning of the 
cytochromes that the iron can be oxidized to iron(III) and reduced to iron(II). It is 
important to the functioning of the chlorophyll that the magnesium occurs in only one 
oxidation state. 

The accepted mechanism of the initial photochemical reaction is as follows: 15 First, 
the chlorophyll molecule absorbs a photon of red light, making a transition to an excited 
singlet state from its singlet ground state. Second, the excited chlorophyll molecule 
loses an electron to some other substance involved in the chain of reactions that 
eventially produces carbohydrates and oxygen. Since the magnesium atom possesses 
only a single oxidation state, this electron comes from a delocalized orbital in the ring 
system, producing a radical cation. Third, some electron donor gives an electron to the 
chlorophyll. This electron goes into the orbital from which the first electron made its 
original transition, so that the chlorophyll is restored to its ground state. 

The whole process depends on the fact that the excited singlet chlorophyll is a much 
stronger reducing agent than the ground-state chlorophyll, which has a half-cell 
reduction potential under biological conditions of about 0.5 V. Since the excitation 
energy is about 1.5 eV, the effective half-cell potential of the excited chlorophyll is 
about -1 .0  V. However, the chlorophyll radical cation is easy to reduce, since it is 
reduced to form the ground state of the chlorophyll molecule, not the excited state. 

The chlorophyll does not react directly with carbon dioxide, and in fact at least eight 
photons are required for each oxygen molecule evolved in the photosynthetic process, 
so that the chlorophyll cycles repeatedly from its ground state to its excited state to its 
oxidized state and back to its ground state in order to produce one oxygen molecule. 
The later steps in the process occur in the liquid outside of the membrane in which the 
chlorophyll is bound. 

Linear polyenes called carotenoids occur in the chloroplasts. In addition to other 
functions, they prevent the formation of singlet O2, which is extremely toxic to the plant 
cells. The ground level of O2 is a 3Eg level, and 0.98 eV is required to excite oxygen 
molecules to a lag excited level. The excited chlorophyll molecule has absorbed 1.5 eV 
from a photon of red light, and can undergo intersystem crossing to a triplet state of 
slightly lower energy. Because of the selection rule requiring constancy of the sum of 
the spin quantum numbers, the excited singlet state of the chlorophyll cannot excite the 
oxygen to its singlet state, but the triplet state can do so. The carotenoid molecules have 
an excited triplet state that is lower in energy than the excited triplet state of chlorophyll, 
and accept the energy from any chlorophyll molecules that have undergone intersystem 
crossing before significant numbers of singlet oxygen molecules can be produced. The 
excited triplet states of the carotenoids do not have enough energy to excite the oxygen, 
thus preventing formation of singlet oxygen. 

Vision 

Another interesting set of photochemical reactions is involved in vision in vertebrates. 16 
There are two kinds of light-sensitive cells in the retina of the vertebrate eye, called 

15 G. Zubay, Biochemistry, Addison-Wesley, Reading, MA, 1983, pp. 409ff. 
16 Zubay, op. cir., pp. 169ff (Note 15). 
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rods and cones. The rods provide for vision in dim light but do not give color vision. 
Color vision is provided by three varieties of cone cells that are sensitive to red, green, 
and blue light, respectively, and these require greater illumination than do the rod cells. 

In the rod cells there is a protein called rhodopsin, which consists of a protein 
moiety called opsin and a polyene called retinal. Retinal is related to retinol, which is 
known as vitamin A, and which is depicted in Figure 20.15a. Retinal occurs in the eye 
as the all-trans isomer and as the 11-cis isomer. The structural formulas of these 
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isomers are shown in Figures 20.15b and 20.15c. The 11-cis form attaches to the free 
-NH2 group of a lysine residue, forming a Schiffbase, as shown in Figure 20.15d. The 
all-trans isomer does not bond to the opsin. Each variety of cone cell has one of three 
proteins that are similar to rhodopsin, but absorbs light only in either the red, green, or 
blue wavelength region. Rhodopsin has a broad absorption ranging from 400nm to 
600 nm, with maximum absorption around 500 nm. The corresponding absorption band 
of 11-cis retinal is centered at 380nm, in the ultraviolet, so that the unbound retinal 
cannot be responsible for vision in the visible region. 

Exercise 20.15 
a. Using the structural formulas in Figure 20.15 and the free-electron molecular orbital 

(particle-in-a-box) model for a conjugated polyene, explain why the absorption maximum 
of the Schiff base form of rhodopsin is at longer wavelength than that of 11-cis retinal. 

*b. Using the free-electron model, calculate the wavelength of maximum absorbance for 11-cis 
retinal and for rhodopsin, taking an average bond length of 1.39 • 10-1~ m and adding one 
bond length to each end of the conjugated system of bonds. Remember to count the n 
electrons and assign two to each space orbital according to the Aufbau principle. 

The accepted mechanism of the photochemical process in rod cells is as follows: 
First, the rhodopsin absorbs a photon, raising it to an excited state in which a 90-degree 
rotation has occurred about the double bond between carbons 11 and 12 of the retinal, 
making the molecule intermediate in shape between the all-trans isomer and the 11-cis 
isomer. Some of these molecules (about two-thirds) convert into the all-trans form 
called bathorhodopsin. The retinal is still attached to the opsin and this protein now 
undergoes a sequence of transformations, producing a sequence of identifiable proteins 
called lumirhodopsin, metarhodopsin I, and metarhodopsin II. Over a period of several 
minutes, the metarhodopsin II dissociates into a opsin and free all-trans retinal, which 
can be converted to the 11-cis form and attached again to opsin. The length of time 
required for this process is related to the time required for eye to become dark-adapted 
but is much too slow to be involved in the actual process of vision. The process by 
which a signal is sent into a fiber of the optic nerve is somehow associated with the 
conformational changes in the protein that result from the isomerization of the retinal, 
and apparently occurs with metarhodopsin II. 

Other Types of Spectroscopy 

The spectroscopy that we have discussed involves the emission or absorption of 
ultraviolet, visible, or infrared radiation. There are a number of types of spectroscopy 
that utilize different processes, and we discuss a few of them in this section. 

Raman spectroscopy was invented by 
Chandrasekhara Venkata Raman, 
1888-1970, an Indian physicist who 
received the 1930 Nobel Prize in 
physics for this work. 

Raman Spectroscopy 
In Raman spectroscopy, radiation is inelastically scattered by the sample substance, 
either giving up or accepting energy from the sample in the scattering process. 
Radiation of one wavelength is incident on the sample and radiation of a different 
wavelength comes out from the sample. You can also think of the process as consisting 
of absorption of photons of one frequency accompanied by immediate emission of 
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observe transitions that are forbidden in emission or absorption spectroscopy. The 
Raman selection rules for rotational and vibrational transitions are: 

Raman Selection Rules 

AJ = 0,-+-2 (+1 also allowed for nonlinear molecules) (20.7-3a) 

Av -- 0, +1 (20.7-3b) 

The nuclear motion must modulate the polarizability of the molecule (20.7-3c) 

The polarizability is a measure of the tendency of a molecule to acquire an electric 
dipole in the presence of an electric field (see Problem 17.37). For a molecule with the 
same properties in all directions (an isotropic molecule) the induced moment /~ind is 
proportional to the electric field d" and in the same direction as the electric field: 

~Lin d = ~ (20.7-4) 

where ~ is the polarizability, and where $' is the electric field (a vector quantity). A 
symmetric top molecule such as methane or sulfur hexafluoride obeys Eq. (20.7-4). For 
an anisotropic molecule (with different properties in different directions) the x 
component of the induced moment is given by 

/2x, in d ~ ~xx~x + ~xy~y + O~xz~ z ( 2 0 . 7 - 5 )  

with similar equations for the y and z components. The polarizability is now a matrix 
with nine components (a tensor) with components that have two subscripts. Equation 
(20.7-5) and its analogues become the same as Eq. (20.7-4) if 

~xx = ~yy - -  ~zz (20.7-6) 

and if the other components vanish. 
Just as principal axes for rotation of a molecule could be found, principal axes for the 

polarizability of a molecule can be found such that the polarizability "cross-terms" with 
two different indexes vanish. The components of the induced dipole are then given by 

/~x',ind = ~x'x'~ ' (20.7-7a) 

~y',ind - -  ~y'y'~y' (20.7-7b) 

/~z',ind = ~ z ' z ' E z  ' (20.7-7c) 

where we label the principal axes by x', y', and z'. The principal axes will generally lie in 
the symmetry elements of the molecule. The polarizability can be described by an 
"ellipsoid of polarizability. ''17 This ellipsoid is a surface such that the distance to the 
surface from the origin in any direction is proportional to ~-1/2 in that direction. The 
ellipsoid of polarizability will generally possess all of the symmetry elements of the 
molecule. If a rotational or vibrational motion modulates the polarizability, the value of 
the polarizability in some direction varies periodically as the motion occurs. This 
corresponds to changes in the shape or orientation of the ellipsoid of polarizability due 
to the motion. 

There are two contributions to the polarizability of a molecule: the distortion of the 
electronic wave function and the distortion of the nuclear framework. In most molecules 
the major contribution is from the electrons. The electronic polarizability parallel to a 
bond is different from the polarizability perpendicular to the bond. As a diatomic 
molecule or linear polyatomic molecule rotates, all of the bonds rotate in the same way 

17 N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3d ed., 
Academic Press, San Diego, 1990, pp. 65ff. 
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and the components of the polarizability fluctuate periodically. The rotation will be 
Raman active (produce a Raman spectrum). For a nonlinear polyatomic molecule, the 
polarizabilities of the individual bonds add vectorially to make a total polarizability. If 
the molecule is sufficiently symmetrical, the total polarizability is the same in all 
directions and the ellipsoid of polarizability is a sphere. This is the case with a spherical 
top molecule, which has no rotational Raman spectrum. Symmetric tops and asym- 
metric tops have anisotropic polarizabilities and have rotational Raman spectra. 

The stretching or compression of a bond changes the electronic wave function, so 
that the vibration of a diatomic molecule will be Raman active. A vibrational normal 
mode in a polyatomic molecule will be Raman active if it produces a periodic change in 
the shape of the ellipsoid of polarizability or in the case of a nonspherical ellipsoid if it 
changes the orientation of the ellipsoid of polarizability. The normal modes of carbon 
dioxide are shown in Figure 19.5. The asymmetric stretch, which is seen in the infrared, 
is not seen in the Raman spectrum. The stretching of one bond is accompanied by the 
compression of the other bond. One end of the molecule moves inward while the other 
end moves outward, and the ellipsoid of polarizability does not change. In the 
symmetric stretch, the whole molecule stretches and compresses. The ellipsoid of 
polarizability also stretches and compresses, and is thus modulated by the motion. The 
bending modes, which are seen in the infrared, are not seen in the Raman spectrum, 
since the bonds do not stretch appreciably as the bond angle bends. The ends of the 
molecule remain at the same distance from each other and move up and down together, 
as do the ends of the ellipsoid of polarizability. There is a rule of mutual exclusion, 
which states: In a molecule with a center o f  symmetry, a normal mode that is seen in the 

infrared will not be seen in the Raman,  and vice versa. TM The normal modes of carbon 
dioxide illustrate this rule. In molecules with more than three atoms, the analysis can be 
more complicated, and group theory is often used to simplify the analysis. 

18 Levine, op. cit., p. 268 (Note 7). 
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From the vibrational selection rule, Av - 4-1, the Raman shift of the band center in a 

vibrational spectrum of a heteronuclear diatomic molecule will be the same as the 
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frequency of the band center in an infrared spectrum. A homonuclear diatomic 
molecule has no infrared or microwave spectrum, so the Raman spectrum can be 
used to determine the intermolecular distance and the vibrational frequency. A band in 
the vibrational Raman spectrum of a diatomic molecule has three branches. For the 
Stokes band, there is the Q branch corresponding to AJ = 0, the O branch correspond- 
ing to AJ = - 2 ,  and the S branch corresponding to AJ = -+-2. These branches consist 
of sets of lines with the same spacings as the lines in the rotational Raman spectrum. 

Exercise 20.17 
*a. From data in Table A.22 of Appendix A find the Raman shift in reciprocal wavelength for the 

band center of the Stokes vibrational fundamental band of diatomic oxygen. If the incident 
light has wavelength 253.7 nm, find the wavelength of this band center. 

b. Find the splitting in cm -1 between the band center (the Q branch) and the first line of the S 
branch. 

c. Find the splitting in cm -1 between adjacent lines in the S branch. How does this compare to 
the splittings between the lines of the O branch? 

Photoelectron Spectroscopy 
In photoelectron spectroscopy, high-energy ultraviolet radiation is absorbed by the 
sample substance, causing ejection of an electron: 

M + photon --+ M + + e -  (20.7-10) 

where M represents a molecule (or atom) of the sample substance. The kinetic energy 
of the ejected electron is measured, and the difference in energy between a photon of the 
incident radiation and the kinetic energy of the electron is taken to be the ionization 
energy of the particular electron ejected. 

Several different energies are observed. If the electronic wave function is approxi- 
mated as an orbital wave function, we can identify the orbitals from which electrons are 
ejected. The wave function of the ion will be like that of the molecule except that one 
spin orbital will be vacant that is occupied in the molecule. If the other orbital energies 
do not change appreciably, the ionization energy will be equal to the magnitude of the 
orbital energy of this spin orbital, so that photoelectron spectroscopy affords a direct 
means for measuring the orbital energies. This is the content of Koopman's  theorem. 19 

Figure 20.19 shows the photoelectron spectrum of N2, using 58.4 nm ultraviolet 
radiation from a helium arc. The kinetic energy of the electrons increases from left to 
right so that the ionization energy increases from fight to left. There are three sets of 
lines, each corresponding to ionization from a different orbital. Since the sample is at 
room temperature, only the ground vibrational state of the molecule is significantly 
occupied in the initial state, so the separate lines within each set correspond to different 
vibrational states of the ion produced by the ionization. The ground-level electron 
configuration of N2 is 

(ag ls) 2 (a* ls) 2 (agZs) 2 (0"* 2s) 2 (rcuZp) 4 (O'g 2p) 2 

The rightmost set of lines arises from removal of an electron from the Crg2p bonding 
orbital, the center set of lines arises from removal of an electron from a ~Zu2 p bonding 

19T. C. Koopman, Physica, 1, 104 (1933). 
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Exercise 20.18 
Explain why the spacing between the lines in the leftmost set in Figure 20.19 is greater than 
2359 cm -1 , the vibrational spacing of the ground level, while the spacing between the lines in the 
other two sets is smaller than 2359 cm -1 . 
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Photoacoustic spectroscopy was 
originated by Alexander Graham Bell, 
184 7-1922, the inventor of the 
telephone. The method has not been 
extensively exploited until fairly 
recently. 

Photoacoustic Spectroscopy 
Photoacoustic spectroscopy is a type of absorption spectroscopy in which absorption of 
energy is detected by the generation of sound waves. A beam of monochromatic 
radiation is directed on the sample through a "chopper," which is usually a rotating disk 
with several notches cut in the edge so that the beam is alternately passed and 
interrupted (chopped). 

If the radiation is absorbed by the sample, it will heat the surface of the sample and 
the air next to it during the time that the beam is passed by the chopper. During the time 
that the beam is interrupted, the sample and the air will cool off. The air will thus 
alternately expand and contract with the frequency of the chopper, producing a sound 
wave that can be detected by a microphone. If the radiation is not absorbed, no sound 
wave is generated. The intensity of the sound wave can be measured electronically as 
the wavelength of the light is varied, giving an absorption spectrum. The frequency of 
the chopper must be slow enough so that the air has time to cool off during the period of 
beam interruption, but fast enough to make a detectable sound wave. A chopper 
frequency of around 50 hertz is common. The principal advantage of the method is that 
an opaque sample can be used, such as a strongly colored liquid or solid. 

Circular Dichroism and Optical Rotatory Dispersion 
These two types of spectroscopy involve study of optically active substances. An 
optically active substance is one that rotates the plane of plane-polarized light, and is 
generally one that has molecules without a plane of symmetry and without an improper 
rotation axis. Plane-polarized light was described in Figure 14.4 as an oscillating 
electric field remaining in one plane containing the direction of propagation and an 
oscillating magnetic field in a plane perpendicular to the first plane. To understand 
optical activity one must consider circularly polarized light, which is equivalent to two 
plane polarized rays of equal amplitude and wavelength that are polarized in perpendi- 
cular directions and out of phase by a fourth of a wavelength as depicted in Figure 
20.20, which shows the electric field. The sum of the two electric fields follows a helix, 
and the light is said to be circularly polarized. If the wave shown in the figure 
propagates to the right of the figure, a stationary observer facing the source of radiation 
observes an electric field that rotates clockwise. Such radiation is called right- 
polarized radiation, while radiation that gives a field rotating counterclockwise when 
looking into the source is called left-polarized radiation. Individual photons corre- 
spond to circularly polarized light rather than to plane polarized light. The projection of 
the spin angular momentum of a photon can equal either h (parallel to its direction of 
propagation) or - h  (antiparallel to it) and these two possibilities correspond to the two 
directions of circular polarization. 

Although we depicted a ray of circularly polarized light as being the sum of two 
plane-polarized rays, it is also possible to depict plane-polarized light as being the sum 
of two circularly polarized rays. Figure 20.21 a shows the rotation of the electric fields of 
a fight-polarized ray and a left-polarized ray at a fixed location. As the two electric field 
contributions rotate in opposite directions, their sum will remain in a plane if they have 
the same frequency and the same amplitude. Plane-polarized light should be visualized 
as being made up of equal numbers of left circularly polarized photons and fight 
circularly polarized photons. 

As light passes through a transparent or translucent medium, its speed is less than the 
speed of light in vacuum. This can be thought of as absorption of the light by the 
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The refractive index depends on the wavelength of light as well as on the identify of the 
medium. 

Molecules that have a plane of symmetry are identical to their enantiomorphs. They 
interact with photons of both circular polarizations in the same way. A molecule without 
a plane of symmetry appears different to the two kinds of photons, and the speed of 
light of the two kinds of photons can be different. The rotation of one circularly 
polarized electric field contribution lags behind the other, and the plane of polarization 
is rotated as shown in Figure 20.21b. This phenomenon is called circular birefrin- 
gence and the substance is said to be optically active. The angle ~ through which the 
plane is rotated is proportional to the length of the sample and to the difference between 
the refractive indexes of fight- and left-polarized light. It is given by 

n(nR -- nL)L 
= (20.7-12) 

2 

where n R is the refractive index for right-polarized light and n L is the refractive index 
for left-polarized light of the wavelength 2 and where L is the length of the sample. 

The rotating power of an optically active substance is commonly expressed as the 
specific rotation, [~], defined by 

[~] -- ~ (definition) (20.7-13) 

where ~ is the angle of rotation, p is the density of the substance, and L is the length of 
the sample. If, instead of a pure substance, one has a solute in solution, the density is 
replaced by the concentration of the substance. The specific rotation depends on the 
identity of the substance, the identity of the solvent (if any), the temperature, and the 
wavelength of light. 

The specific rotation often has different signs for two wavelengths between which a 
spectral line occurs. Specific rotations of many substances have often been tabulated for 
a single wavelength, usually the yellow sodium "D lines" at 589.0 and 589.6 nm, and 
the wavelength dependence has often been ignored. However, additional information 
about the stereochemical configuration of molecules can be obtained from the 
dependence of the specific rotation on wavelength, which is called optical rotatory 
dispersion (ORD). 

The absorptivity of an optically active substance can also differ for right-polarized 
and left-polarized photons. This phenomenon is called circular dichroism (CD), and is 
also studied as a function of wavelength. Until the 1970s, only ultraviolet and visible 
light were used for ORD and CD. Since then, however, techniques have been developed 
for infrared circular dichroism spectroscopy, which is usually called vibrational 
circular dichroism (VCD). In addition, techniques have been invented for determining 
the differences in scattering of left- and right-polarized light, and Raman optical activity 
(ROA) is now being studied. 2~ 

In addition to the types of spectroscopy that we have discussed, many other types and 
techniques of spectroscopy have been developed. A lot of work is being done in making 
rapid spectroscopic observations to study molecular species that have short lifetimes. 
Almost any issue of The Journal of  Chemical Physics or the Journal of Physical 
Chemistry contains one or more articles reporting on spectroscopic techniques that we 
have not discussed. 

208. C. Stinson, Chem. Eng. News, 63(45), 21 (Nov. 11, 1985). 
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When an atom or molecule is in a magnetic field, different spin states of electrons or 
nuclei have different energies. Transitions between the spin states give rise to 
absorption of radiation at characteristic frequencies depending on the magnetic field 
and on the properties of the molecule, allowing information about the molecular 
structure to be deduced. The spectroscopy that exploits transitions between different 
electronic spin states is called electron spin resonance (ESR) spectroscopy or electron 
paramagnetic resonance (EPR) spectroscopy, and the spectroscopy that exploits 
transitions between different nuclear spin states is called nuclear magnetic resonance 
(NMR) spectroscopy. Nuclear magnetic resonance is also used in medicine to obtain 
images of internal organs of patients (or at least their densities of hydrogen atoms) by 
focusing on the NMR absorption of hydrogen nuclei and creating images of the density 
of hydrogen atoms. This is generally called magnetic resonance imaging (MRI). 

M a g n e t i c  F i e l d s  

The strength of a magnetic field is commonly specified by the magnetic induction B or 
the magnetic field strength H. These two quantities are proportional to each other. We 
use the magnetic induction B and will follow the common terminology of chemists and 
call it the magnetic field. Amp~re's law gives the magnitude of the magnetic field in a 
vacuum at a perpendicular distance r from a long straight wire carrying an electric 
current I: 

#~ (20.8-1) B - IBI - 

where/t o is the permeability of a vacuum, introduced in Section 14.2: 

/t o = 4n • 10 -7  T m A -1 (exactly, by definition) (20.8-2) 

The current is measured in amperes (A, equal to coulombs per second), the distance is 
measured in meters and the magnetic field is measured in teslas (T). There is another 
unit of magnetic field, called the gauss, defined by 

1 x 104 gauss = 1 T (exactly) (20.8-3) 

The earth's magnetic field is roughly equal to 1 gauss at most locations on the earth's 
surface. The direction of the magnetic induction can be obtained from a fight-hand rule: 
If the fight thumb points in the direction of the current, then B points in the direction of 
the curled fingers, tangent to a circle perpendicular to the wire and centered on it. The 
conventional direction of an electric current is the apparent direction of motion of 
positive charges. In a current of electrons, the electrons are moving in the opposite 
direction. 

If a particle of charge Q is moving with velocity v through a magnetic field B there is 
a force on the particle given by 

F = Qv x B (20.8-4) 

where x stands for the vector product (cross product) of the two vectors, defined and 
discussed in Appendix B. The direction of the force is given as in Appendix B and 
corresponds to another fight-hand rule: If the thumb points in the direction of v and the 
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index finger points in the direction of B, the middle finger points in the direction of F 
when perpendicular to the other two digits. 

Magnetic Dipoles 
Magnetic dipoles are like bar magnets, with a "north-seeking" pole at one end and a 
"south-seeking" pole at the other. Just as an electric field applies a torque to an electric 
dipole, a magnetic field applies a torque to a magnetic dipole. An electric dipole can be 
made up of a positive and a negative charge (two electric monopoles) separated from 
each other in space. It is not yet certain whether magnetic monopoles can exist 
separately. 21 If they do exist, they are not commonly observed. 

According to classical electromagnetic theory, a magnetic dipole can be produced by 
an electric current flowing in a closed loop of a conducting material, as shown in Figure 
20.22a. The magnetic dipole ~ is a vector whose magnitude is given by the product of 
the current, I, and the area of the loop, s~': 

I ~ 1 -  ~ - I d  (20.8-5) 

Do not confuse the symbol # for the magnitude of a magnetic dipole with the same 
letter used for the permeability. The direction of the magnetic dipole vector is as shown 
in the figure, perpendicular to the plane of the loop. If the fingers of the fight hand point 
in the direction of the current the thumb points in the direction of the magnetic dipole. 

The potential energy of a magnetic dipole in a magnetic field is given by 

(20.8-6) 

where the dot (.) stands for the scalar product (dot product) of the two vectors, defined 
in Appendix B, and where c~ is the angle between the dipole and the field. The energy is 
at a minimum if the dipole and the field are parallel, and is at a maximum if the dipole 
and the field are antiparallel. A compass needle approximates a magnetic dipole and 
tends to orient itself in the direction of minimum potential energy. 

If a particle of charge Q is moving in a circular orbit as in Figure 20.22b, its motion is 
equivalent to an average electric current with magnitude equal to the particle's charge 
divided by torbit, the time required to make one circuit of the orbit: 

Q Qv 
I = ~ = (20.8-7) 

torbi t 2rcr 

where r is the radius of the particle's orbit and v is its speed. Combining Eqs. (20.8-5) 
and (20.8-7) gives 

rtr2Qv Qvr 
- - I l x l -  = ~ (20.8-8) 

2nr 2 

This can be restated in terms of the angular momentum, which for a circular orbit is 
given by Eq. (D-18) of Appendix D as 

L - I L l -  mvr (circular orbit) (20.8-9) 

21 j. E. Dodd, The Ideas of Particle Physics, Cambridge University Press, New York, 1984, pp. 169ff. 
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so that 

Q ILl (circular orbit) (20.8-10) #-I~1-From 
The same relation holds for the vector quantities as for their magnitudes, even for orbits 
that are not circular (although we do not prove this fact): 

(20.8-11) 

Electronic and Nuclear Magnetic Dipoles 
Equation (20.8-11) is a convenient form to use in discussing quantum-mechanical 
magnetic moments. The operators and eigenvalues for the angular momentum of an 
orbiting particle are known from Chapters 15 and 16 and allow the operators for the 
magnetic dipole to be constructed. For an orbiting electron, the charge Q is equal to - 6 ,  
and the operator for the magnetic dipole is 

_ ___~6 ~, (20.8-12) 
2m~ 

where m~ is the mass of the electron, 9.10939 x 10 -31 kg. 
Equation (20.8-12) must be modified to hold for spin and angular momenta. The 

operator of the magnetic dipole due to the spin angular momentum of an electron is 

e ~ (20.8-13) 
- - g 2 m ~  

where S is the spin angular momentum operator. The quantity g is a correction factor 
that accounts for the failure of the electron to obey nonrelativistic mechanics, and is 
known as the anomalous g factor of the electron. Its value is 2.0023 . . . .  The only 
eigenvalue that the operator ~2 possesses is h2(1/2)(3/2), so that the magnitude of the 
magnetic dipole due to the spin of an electron is 

I ~ l -  g-~m--~ h[(1/2)(3/2)] 1/2 - gfl~[(1/2)(3/2)] 1/2 (20.8-14) 

The constant fl~ is called the Bohr magneton: 

(20.8-15) 

If a magnetic dipole is placed in a magnetic field, its energy is given by Eq. (20.8-6). 
For a magnetic field in the direction of the z axis, 

Emag = - ]2zB z 

For an electron, Sz has two eigenvalues, +h/2 ,  so that 

(20.8-16) 

(20.8-17) 

The difference between the two energies is exploited in ESR spectroscopy. 
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Exercise 20.19 
*a. Find the frequency and wavelength of photons with energy equal to the energy difference in 

Example 20.11. 
b. Find the ratio of the populations of the two energy levels in Example 20.11 at 298.15 K. 

Many nuclei have nonzero spin angular momenta and possess magnetic moments. 
For a proton the magnetic dipole operator is analogous to that of the electron, 

1~ --  gP~mp I ( 2 0 . 8 - 1 8 )  

where I is the spin angular momentum operator of the proton. The proton has the same 
spin angular momentum properties as the electron. The only magnitude that ~ can have 

is 

h[(1/2)(3/2)] 1/2 I~1 - ~ - gp 2mp -- gpfiN[(1/2)(3/2)] 1/2 

--  ~/~ / 4 g p f i  N (20.8-19) 

The factor gp is analogous to the g factor of the electron, and is called the nuclear g 
factor of the proton. Its value is 5.58569. The constant fin is analogous to the Bohr 
magneton, and is called the nuclear magneton: 

(20.8-20) 

The magnitude of p. for the proton is equal to 2.44 x 10 -26 J T -1 . In some tabulations 
(such as CODATA 63) the value given for the magnetic moment of the proton is the 
magnitude of the z component, equal to gpfiN(1/2) -- 1.41 x 10 -26 J T -1 . 

Exercise 20.20 
a. Verify the value of the magnitude of the magnetic moment of the proton. 

*b. Find the difference in the energies of the two spin states of a proton in a magnetic field of 
0.500 T. Compare with the result of Example 20.11 for the electron. 

c. Find the ratio of the populations of the two energy levels in part (a). 
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There are other nuclei besides the proton that have nonzero spin angular momentum. 
Chemists ordinarily encounter nuclei only in their ground states, so a given nucleus (a 
given nuclide) can be taken to have a fixed magnitude of its spin angular momentum: 

III - h v /I (I  + 1) (20.8-21) 

where I is a fixed quantum number for a given nucleus. For example, I = 1 for 2H, 
I -- 1/2 for 13C, and I = 0 for 12C and 160. Each nucleus has a characteristic magnetic 

dipole moment: 

I~1 = IgNI~Nv/I(I + 1) (20.8-22) 

where gy is a characteristic factor for the given nucleus, called the nuclear g factor. 
The nuclear magneton fly of Eq. (20.8-20) contains the mass and charge of the 

proton but is used for all nuclei. The necessary correction for different masses and 
charges is incorporated into the nuclear g factor gy of the specific nucleus. Table A.23 
of Appendix A lists the nuclear g factors and spin quantum numbers of some common 
nuclides. It is remarkable that some nuclides have negative values of the nuclear g 
factor. In these cases the magnetic dipole of the nucleus has the direction that would be 
expected for a negative particle. 

The values that I z can take on are 

I z = h M  I = h i ,  h ( I -  1), h ( I -  2) . . . . .  - h i  (20.8-23) 

where M I is a quantum number that ranges in integral steps from I to - I .  For a proton, 
M t can equal 1/2 or - 1/2. For a 2H nucleus MI can equal 1, 0, or - 1, and other nuclei 
follow the standard pattern determined by their values of I. The number of values o fM I 
is 21 + 1. The z component of the magnetic dipole can take on values 

la z = g y ~ y M  I (20.8-24) 

If a nucleus is placed in a magnetic field B~, the magnetic energy is proportional to Bz: 

(20.8-25) 

A proton could be in either of two energy states, as could a ~3C nucleus. A deuterium 
nucleus could be in any of three energy states, and so on. Transitions between such 
states are observed in NMR spectroscopy. 

Electron Spin Resonance Spectroscopy 
In ESR spectroscopy, electrons are placed in a magnetic field and transitions are 
observed between the two possible spin states. These are magnetic dipole transitions 
and the selection rule is 

(20.8-26) 

Transitions between the two possible states, m S = 1/2 and m s = - 1/2, are allowed. The 
frequency of radiation absorbed or emitted is 

Emag gfleBz (20.8-27) 
h h 

Radiation that can be absorbed or emitted is said to be in "resonance" with the 
electrons. The "resonance" terminology will seem reasonable if we compare the 
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radiation frequency and the frequency of precession of the angular momentum about its 
cone of possible directions (see Problem 20.65). 

It might seem that every substance would absorb radiation at the same frequency if 
placed in the same magnetic field since all substances contain electrons. However, most 
substances do not absorb at all because all of their electrons occupy space orbitals in 
pairs with opposite spins. Such electrons cannot change their spins unless both 
members of a pair change simultaneously because of the Pauli exclusion principle. 
One electron gains the same amount of energy that the other electron loses and no 
absorption takes place. Only a substance containing unpaired electrons will exhibit an 
electron spin resonance spectrum. It would still seem that no useful information about 
the substance would be obtained except to find out whether it contains unpaired 
electrons. However, the magnetic field to which an electron is exposed is a vector sum 
of the externally applied field, B 0, and the contribution from the nuclei in the molecule, 
Bintema 1. If the applied field is in the z direction and the molecule has n nuclei, the z 
component of the field is 

8z - Bo + 8,n, ema,,  - -  80 + 
j=l 

(20.8-28) 

where aj is called a coupling constant for thejth nucleus and where M 0 is the quantum 
number for the z component of the nuclear spin angular moment of nucleus number j. 
The coupling constants for nuclei in many molecules have values near 1 gauss 
(1 x 10 -4 T), but they depend on the orbital in which the electron is found as well 
as on the identity of the nucleus. 

It is found that Bintema 1 is a short-range interaction and is known as the Fermi contact 
interaction. It has an effect only if the electron approaches very closely to the nucleus. 
If an unpaired electron occupies an orbital with a nodal surface at a particular nucleus, 
its probability of being found at that nucleus is very small and the coupling constant for 
that nucleus and that orbital will be negligibly small. Since atomic orbitals with l = 0 
(s orbitals) are the only atomic orbitals without nodal surfaces passing through the 
nucleus, the coupling constant at a specific nucleus is sometimes said to be a measure of 
the "s character" of the orbital at that nucleus. 

An ESR spectrometer uses microwave radiation with wavelengths around 1 cm. The 
microwaves are conducted by wave guides to the sample chamber, which is a cavity 
with conducting walls in which standing electromagnetic waves can occur. Absorption 
by the sample is detected by its effect on these standing waves. Since a particular cavity 
can support standing waves of only a few frequencies, the frequency of the radiation is 
kept fixed and the applied magnetic field is varied. Absorption will occur when the 
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magnetic field actually "felt" by an unpaired electron reaches the value Bres, the value 
such that Eq. (20.8-27) is satisfied for the frequency being used: 

B 0 -Jr- Binternal -- B 0 + ~ ajMij -- Bre s - -  h___~v (20.8-29) 
j = l  gfle 

A sample of a substance with several nuclear dipoles in its molecules can have several 
spectral lines, or values of B 0 at which resonance occurs, since a variety of nuclear spin 
states will be found in different molecules in the sample. In a symmetrical molecule, an 
unpaired electron will often occupy an orbital that has equal magnitudes at two or more 
nuclei of the same element. In this case the coupling constants are equal. For example, 
consider a hydrogen molecule ion, H +, with an unpaired electron that couples equally 
with two protons. The molecule could be in a state with both proton spins up (M I = 1), 
in either of two states with one proton spin up and one down (M I = 0), or in a state with 
both proton spins down ( M  I -- -1) .  Since the sum of the M I values has three different 
values, we obtain a spectrum with three lines. Each molecule produces only one line in 
the spectrum, and the three lines are produced by three sets of molecules. The 
differences between the energies of the different nuclear spin states are so small that 
the populations of the different nuclear spin states are very nearly equal. The middle 
line will be twice as intense as the other two, since there are two states with one spin up 
and one spin down. 
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Figure 20.23 shows another way of arriving at the spectrum of Example 20.13. 
Starting with the spectral line that would occur without any splitting by proton spins, 
the effect of the first proton is represented by a splitting into two lines as shown at the 
top of the diagram. Each of these lines is then split into two lines, representing the effect 
of the second proton. Since all splitting constants are equal this gives three lines with 
relative intensities of 1 :2 :  1, as shown at the second level of the diagram. The third 
level of the diagram represents the effect of the third proton, and so on. The relative 
intensities at each level are obtained by adding the relative intensities of the two lines at 
the previous level that combine to produce a given line. The result at each level gives 
relative intensities proportional to binomial coefficients. 

Exercise 20.21 
Predict the ESR spectrum of the hydrogen atom. 

If an unpaired electron is affected by a nucleus with a spin quantum number other 
than 1/2, a single nucleus will produce more than two lines. For example, a deuterium 
nucleus (2H) has I - -  1 so that M I = 1, 0, or -1 .  Deuterium atoms will produce a 
spectrum with three lines. However, unlike the spectrum of H +, the three lines will be 
of equal intensity, since there is only one state with each value of M I. A nucleus with 
I = 3 would produce seven lines of equal intensity. 

Nuclear Magnetic Resonance Spectroscopy 
In NMR spectroscopy, transitions of nuclei from one spin state to another are observed 
in a magnetic field. Earlier NMR instruments were "continuous-wave" NMR instru- 
ments (or "scanning" instruments), similar to the ESR instruments previously 
described. A fixed-frequency source of radiation is used and the magnetic field is 
varied (scanned). The frequency is smaller than in ESR spectroscopy, and the radio- 
frequency energy is conducted by coaxial cable to the probe in which a liquid or solid 
sample is placed in the magnetic field. Every type of nucleus that has a nonzero spin has 
its characteristic g factor. Since presently available magnets cannot scan over a very 
large range of magnetic fields without losing the necessary field homogeneity, a single 
scanning instrument is usually built to take the spectrum of only one type of nucleus. 
The most common scanning instruments obtain NMR spectra only of protons. 

Modem NMR instruments are Fourier- transform NMR spectrometers, which use 
pulses of radiofrequency energy that cover a band of frequencies. Such instruments can 
obtain spectra of more than one kind of nucleus, and can obtain a spectrum more 
quickly than can a scanning instrument. They can also perform specialized experiments 
that are impossible with scanning instruments. The simple spectra that we now discuss 
are the same whether they are generated by a continuous-wave or a Fourier-transform 
instrument. 

The selection rule for transitions of nuclear spins with absorption or emission of 
radiation is 

AM/ = -t'- 1 (20.8-31) 

so that from Eq. (20.8-25), 

Ephoton - -  h v  = [ g N [ f l N g z  (20.8-32a) 
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If absorption is to occur the magnetic field at the nucleus must equal the value required 
for the radiation being used: 

hY 
B z - -  B r e  s = ~ ( 2 0 . 8 - 3 2 b )  

gNf lN  

where gN is the nuclear g factor for the particular type of nucleus. 

*Exercise 20.22 
Find the magnetic field necessary for 13C nuclei to absorb at 200.00 MHz. 

If the externally applied field were the only contribution to the magnetic field at the 
nucleus, every proton would absorb at a fixed value of the field, every 13C nucleus 
would absorb at another fixed value of the field, and so on. No information could be 
obtained except to identify which nuclei with nonzero spins were present. However, 
there are two additional contributions to the magnetic field at a nucleus. The first 
molecular contribution to the magnetic field at a nucleus comes from the electrons 
around the nucleus. The externally applied magnetic field, B 0, induces a net current in 
the electrons of the molecule, which produces a contribution to the magnetic field that is 
in the opposite direction to the externally applied field. This phenomenon is called 
diamagnetism. The diamagnetic contribution to the magnetic field at a given nucleus is 
proportional to the applied field and depends on the electron density around the 
nucleus. For the jth nucleus, 

Bjdiamagneti  c ~--- - a j B  o (20.8-33) 

where oj is called the shielding constant of the jth nucleus. It has a larger value when 
the probability of finding electrons around the nucleus is larger. Typical values for o 
range from 15 x 10 -6 to 35 x 10 -6 (15 to 35 parts per million). 

We will later discuss the second contribution to the field at a given nucleus, known as 
spin-spin coupling and due to the other nuclei in the molecule. A spectrum with 
sufficient resolution to give information about the shielding constants but not the spin- 
spin coupling is called a low-resolution NMR spectrum. If we ignore the spin-spin 
coupling, the magnetic field at the j th nucleus is 

Bj -- (1 - aj)B o (20.8-34) 

and the applied magnetic field at which absorption by the jth nucleus occurs is 

hY 
Boj = gyfl----~ + ojBoj (20.8-35) 
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An NMR spectrum is observed with a continuous-wave instrument by scanning B 0 over 
a range of 10 or 20 parts per million and observing the values of B 0 at which absorption 
occurs .  

It is not possible to use a system of bare nuclei as a reference, so it is customary to 
choose a reference substance to serve as a zero point for our NMR spectra. For proton 
NMR, the standard reference substance is tetramethylsilane, Si(CH3)4, abbreviated 
TMS, which has a single sharp spectral line and a rather large shielding constant, 
31 ppm. In a later discussion of spin-spin splitting, we will be able to see why TMS has 
a single spectral line, making it a good choice for a reference compound. 

The difference between the applied field necessary for the reference substance to 
absorb and that necessary for a given nucleus to absorb is called the chemical shift of 
that nucleus. One variable used to specify the chemical shifts is 5, which is usually 
expressed in parts per million (ppm). For nucleus number j, 

B~ - B~ x 10 6 ppm (20.8-36) 
t~j ~ B0ref 

Since the first term on the fight-hand side of Eq. (20.8-35) is the same for both B0ref and 

Boj, 

6j - -  - -  ~ 1 7 6  - crjB~ x 1 0  6 ppm ,~ (are f - crj) x 1 0  6 ppm (20.8-37) 
B0ref 

The variable 5 ordinarily lies between 0 and 15 ppm for proton NMR, but there 
are some substances containing protons with negative values of 5 (larger shielding 
constants than TMS). The approximate equality in Eq. (20.8-37) holds to four 
significant digits because the different values of the applied field will differ only 
by 10 or 20 parts per million. A second variable used to specify the chemical shift 
is z: 

z = 10 ppm - 6 (20.8-38) 

Larger values of z correspond to larger values of the shielding constant and therefore to 
larger values of the magnetic field. 

The values of the shielding constants and of the chemical shifts are related to the 
structure of the molecule since a higher electron density around a given nucleus 
generally corresponds to a larger shielding constant. If a nucleus is close to another 
nucleus of high electronegativity, it will generally have a smaller electron density 
around it and a smaller shielding constant. Its peak will appear "downfield" from the 
TMS peak at a relatively large value of b. Table A.25 of Appendix A provides a list of 
typical values of 5 for different chemical environments for protons. The values will be 
slightly different in different substances with similar functional groups, but the values in 
the table are useful as a general guide. 

An NMR spectrum is ordinarily a graph in which a spectral line corresponding to 
absorption is represented by a peak and in which the intensity of the line is proportional 
to the area under the peak. The area under the peak is proportional to the number of 
nuclei producing the spectral line. 
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Exercise 20.23 
Sketch the low-resolution proton NMR spectrum you would expect from propanal (propion- 
aldehyde). 

The second molecular contribution to the magnetic field at a given nucleus is due to 
the presence in the molecule of other nuclei with magnetic dipoles. The direct 
interaction between one nuclear dipole and another is unimportant. The important 
interaction occurs because a magnetic dipole in one nucleus induces a current in the 
electrons of the molecule that move close to both this nucleus and a second nucleus, and 
this produces a contribution to the magnetic field at the second nucleus. The effect is 
called spin-spin coupling. The field at the jth nucleus due to this effect is given by 

Bspin_spin J - ~ 4"iMIi 
i=1 

(20.8-39) 

where the sum includes a term for each other nucleus with nonzero spin. Mii is the 
quantum number for the z projection of the spin angular momentum of nucleus number 
i, and the coefficient Jo is called the spin-spin coupling constant for nuclei numbers i 
and j. The spin-spin coupling constant depends on the electronic environments of both 
nuclei. It is found that nucleus j affects nucleus i in the same way that nucleus i affects 
nucleus j ,  so that 

J~ = Jji (20.8-40) 

The spin-spin coupling constants are sometimes expressed in terms of frequency. The 
ratio o f J  O. expressed in hertz to the instrument's frequency is the same as the ratio o f J  0 
expressed in tesla to the field used in the instrument. 

In the case of proton NMR in organic molecules, almost all of the carbon atoms are 
carbon-12 atoms, which have no magnetic dipole. Almost all of the oxygen atoms are 
oxygen-16 atoms, which also have no magnetic dipole. If no other atoms with spin are 
present, only the other protons provide a spin-spin coupling for a given proton. 

The spin-spin coupling leads to a splitting of spectral lines into multiple lines that 
can be seen in a high-resolution spectrum. For example, in a molecule that contains no 
magnetic nuclei except for two protons, the field at the first proton is 

B 1 = Bo(1 - (7"1) --[- J12Mi2 (20.8-41) 
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There will be one value of B 0 at which the molecules with MI2 = 1/2 will resonate and 
another value at which the molecules with mi2 = - - 1 / 2  will resonate. Since the energy 
difference between these states is small compared with kB T, the numbers of molecules 
in the two sets will be nearly equal to each other. If the chemical shifts of the two 
protons differ by an amount that is somewhat larger than J12, both transitions will be 
observed and two spectral lines will be observed, with a difference in B 0 at resonance 
equal to J12. This is the spin-spin splitting that arises from the spin-spin coupling. The 
spin-spin splitting is a reciprocal effect, as indicated in Eq. (20.8-40). The proton that 
produces the splitting in the first proton's line will exhibit two lines with the same 
splitting as the first proton. 

If the difference in chemical shift between protons on two different atoms is not large 
compared with the splitting constant, one does not get a splitting exactly equal to J12, 
and the two lines are not of equal intensity. In the limit that the two protons have exactly 
the same chemical shift, although spin-spin coupling occurs, the transitions are 
governed by a selection rule that forbids transitions in such a way that spin-spin 
splitting is not observed. 22 Some nuclei exhibit spin-spin coupling but do not produce 
spin-spin splitting in the spectrum. For example 35C1 nuclei and protons couple, but do 
not produce spin-spin splitting. 

The spin-spin coupling is a short-range phenomenon, and two nuclei must be fairly 
close to each other to have an appreciable coupling constant. Two protons that are 
bonded to a pair of atoms that are bonded directly together will ordinarily exhibit spin- 
spin splittings, and protons that are more distant from each other than this will not 
usually exhibit significant spin-spin splitting if the substance is an aliphatic compound. 
In aromatic compounds, spin-spin splitting from meta or para protons is observed, due 
to the delocalized bonding. Another way of stating the rule for aliphatic compounds is 
that two protons will have appreciable spin-spin splitting if the number of bonds from 
one to the other is no greater than three. 

If there are n protons on the second carbon atom, there are n + 1 possible values for 
the sum in Eq. (20.8-39). There can be n protons with spin up, there can be n - 1 with 
spin up, and so on down to no protons with spin up. This means that the spectral line of 
protons on the first carbon atom will be split into n + 1 lines. Since the energy 
differences are much smaller than kBT, all of these states will be nearly equally 
populated, and the intensities of the lines will be proportional to the degeneracies of the 
levels. The degeneracy of the level with m protons having spin up out of a set of n 
protons is the number of ways of choosing a subset of m members out of a set of n 
members: 

n~ 
Degeneracy = ( 2 0.8-42) 

m!(n-m)! 

which is the formula for the binomial coefficients. Two protons on the first atom will 
thus cause the line of a proton on an adjacent atom to be split into three lines with 
intensities in the ratios 1 :2 :  1, three protons will produce four lines with intensities in 
the ratios 1 : 3 : 3 :  1, and so on. 

If a proton is bonded to an atom that is bonded to two or three adjacent atoms to 
which protons are bonded, more than one value of the splitting constant can be 
involved, since the splitting constants depend on the electronic environment of both 
protons and on the distance between the protons. One way to predict the effect of the 

22 John D. Roberts, Nuclear Magnetic Resonance, McGraw-Hill, New York, 1959, pp. 55ff. 
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spin-spin coupling in such a case is to divide the other protons into sets of equal 
coupling constants. First determine the splitting due to the protons in one set. Then split 
each resulting line according to the splittings of the protons in the next set, and 
SO o n .  
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Fourier transform spectroscopy is a technique that is used in both infrared and NMR 
spectroscopy. A spectrum is obtained without having to disperse radiation or to scan 
over different frequencies or magnetic fields. There are several advantages over the use 
of continuous-wave instruments. Since it is not necessary to spend time scanning, an 
instrument can take a spectrum repeatedly in a short period of time and average the 
separate spectra, allowing weak spectral lines to be seen and allowing random "noise" 
to be reduced by the averaging procedure. In 13C NMR, 13C atoms constitute only 1% 
of the carbon atoms in ordinary carbon and therefore give only a weak spectrum in 
scanning techniques, but averaging several repeated spectra allows a good spectrum to 
be obtained with Fourier transform instruments. Furthermore, advanced techniques 
involving two-dimensional spectra, etc. are essentially impossible with continuous- 
wave techniques but can be carried out routinely with high-field Fourier transform 
NMR instruments. Magnetic resonance imaging for medical diagnosis would be 
impossible with continuous-wave techniques. In this technique, the patient is placed 
in a large superconducting magnet, and the density of protons is determined as a 
function of position from the NMR signal and processed into an image. 

In a Fourier transform infrared spectrometer a pulse of infrared radiation containing 
many frequencies is passed through an interferometer, as depicted in Figure 20.27. 23 
The beamsplitter divides the beam into two beams of equal intensity, which are 
recombined after being reflected by separate mirrors, one of which is movable. As 
this mirror moves, the detector responds to changes in the intensity as the two beams 
interfere constructively or destructively. The intensity of the pulse as a function of time 
is called an interferogram. As depicted in the figure, a single frequency produces a 
sinusoidal interferogram, and an interferogram corresponding to a number of frequen- 
cies encodes the intensities of the various frequencies. 

An interferogram is taken without a sample in position and another is taken with a 
sample in position, and the difference between the two interferograms contains the 
information corresponding to the absorption spectrum. An interferogram can be taken 
in less than one second using a deuterated triglycine sulfate (DTGS) detector, and as 
many as 20 or 30 interferograms can be taken in a second with a mercury cadmium 
telluride detector. The intensity of radiation as a function of time can be written as a 
Fourier transform: 

I ( t )  - - ~  - ~  c(og)e i~'t do9 (20.9-1) 

Equation (20.9-1) is a kind of linear combination of basis functions, e i~ but with an 
integration instead of a sum. The basis functions are oscillatory functions with 
frequencies given by 

O9 
v = J (20.9-2) 

2~z 

The variable co is sometimes called the "circular frequency." The function c(og) plays 
the same role as the expansion coefficients in a linear combination and is called the 
Fourier transform o f  I(t). 24 It contains the same information as I( t ) ,  but encoded as a 

23W. D. Perkins, J. Chem. Educ., 63, A5 (1986), 64, A269 (1987), and 64, A296 (1987). 

24 See L. Glasser, J. Chem. Educ., 64, A261 (1987) and J. Chem. Educ., 64, A306 (1987) for an 
introduction to Fourier series and transforms. 
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25 H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed., Macmillan, New York, 1961. 
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Exercise 20.24 
*a. Find the Fourier transform c(o~) of the function 

I(t) - Ae -(t-t~ 

where A, t 0, and D are constants. 
b. Sketch graphs of I(t) and c(o~). 
e. Explain in physical terms what c(o~) represents if I(t) represents the intensity of a pulse of 

radiation as a function of time. Explain why c(o~) depends on t o as it does and describe what 
happens if t o = O. 

Fourier transform NMR spectroscopy can be described qualitatively in terms of the 
semiclassical picture of Larmor precession. 26 In a magnetic field, each nuclear spin 
precesses like the motion of the gyroscope depicted in Figure D.3 of Appendix D. The 
possible directions of the nuclear spin of a proton are like those of an electron, depicted 
in Figure 16.11, so a proton spin precesses about one of two possible cones. A 
calculation of this precession frequency is assigned in Problem 20.65. In the presence 
of the external magnetic field, more of the protons' magnetic dipoles will be in one cone 
than the other, according to the Boltzmann distribution, but will be randomly 
distributed about the cone. The vector sum of the magnetic dipoles is a macroscopic 
magnetization vector pointing parallel to the external field. A strong pulse of radio- 
frequency radiation is delivered to the sample, much like the pulse of infrared radiation 
used in Fourier transform infrared spectroscopy. The direction of the radiation and the 
length of the pulse are carefully controlled so that the magnetization vector rotates to 
become perpendicular to the z axis (the direction of the external magnetic field) at the 
end of the pulse. 

After the end of the pulse, the magnetization vector precesses in a plane perpendi- 
cular to the external magnetic field, with equal numbers of spins up and spins down. 
This vector decays as the individual spins return to their original Boltzmann distribution 
and the magnetization vector again becomes parallel to the external magnetic field. 
There are two mechanisms of decay, each of which leads to an exponential decay with a 
characteristic relaxation time. The first mechanism is interaction of the spins with their 
surroundings and its relaxation time is known as the longitudinal relaxation time or 
spin-lattice relaxation time, denoted by T 1. The second mechanism is interaction of 
the spins with each other, and its relaxation time is known as the transverse relaxation 
time or spin-spin relaxation time, and is denoted by T 2. These relaxation times are 
related to line widths and can be used to gain information about the systems being 
studied. 

The precessing magnetization vector induces an alternating voltage in a coil around 
the sample. The detected signal is called the free induction decay spectrum 
(abbreviated FIDS). Since the different nuclei experience different total fields due to 
different chemical shifts and different spin-spin couplings, they precess at slightly 
different frequencies. The free induction decay spectrum is like an infrared interfero- 
gram, encoding the NMR spectrum as a function of time. The Fourier transform of the 
free induction decay spectrum provides the spectrum. 

Various special techniques have been devised that are carried out with carefully 
controlled pulses of radiation, including various pulse sequences that result in spectra 
that are plotted in two dimensions instead of one dimension. The interested reader can 

26R. S. Macomber, J. Chem. Educ., 62, 212 (1985). 
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read more about Fourier transform infrared and NMR spectroscopy in some of the 
works listed at the end of the book, as well as in the references listed in the article of 
footnote 23. 

Summary of the Chapter 

Electromagnetic radiation that is absorbed or emitted by atoms or molecules gives 
information about energy level differences through the Bohr frequency rule 

hc 
Ephoton  - -  h v - -  ~ - -  Euppe  r - E lowe  r 

Each pair of energy levels does not necessarily lead to a spectral line for emission or 
absorption. Selection rules tell whether a transition with emission or absorption of 
radiation can occur between a given pair of energy levels. 

Transitions between rotational states lead to emission or absorption in the microwave 
region. For diatomic and linear polyatomic molecules with permanent dipole moments, 
the selection rule is 

A J = + I  

which leads to a spectrum of equally spaced lines with a spacing in terms of reciprocal 
wavelength equal to 2B e. Molecules with no permanent dipole moment give no 
microwave spectrum. The microwave spectra of nonlinear polyatomic molecules are 
more complicated but the presence of a permanent dipole moment is required for a 
microwave spectrum to occur. 

Transitions between vibrational levels lead to spectra in the infrared region. For 
diatomic molecules with permanent dipole moments, the selection rule is 

Av = =El 

leading to a "fundamental" band centered at a reciprocal wavelength equal t o  ~e" Since 
the selection rule is only an approximation, "overtone" bands at multiples of this 
reciprocal wavelength also occur. 

The infrared spectra of polyatomic molecules contain one fundamental band for each 
normal mode whose motion modulates the dipole moment of the molecule. Normal 
modes that do not modulate the dipole moment of the molecule are not seen in the 
infrared spectrum. Overtone bands occur as with diatomic molecules, along with 
combination bands, which are produced when two normal modes make simultaneous 
transitions. 

Atomic and molecular spectra in the visible and ultraviolet regions arise from 
transitions from one electronic state to another. Vibrational and rotational transitions 
occur simultaneously with the electronic transitions, producing complicated band 
spectra. The electronic transitions take place rapidly compared with rotational and 
vibrational periods, and conform to the Franck-Condon principle: the nuclei remain 
stationary during the transition. 

Raman spectroscopy involves inelastic scattering of light instead of absorption or 
emission. The selection rules for Raman transitions are different from those of 
absorption and emission spectroscopy, so that many transitions that are forbidden in 
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absorption and emission occur in Raman scattering. Raman scattering requires that the 
motion modulate the polarizability of the molecule. For rotational Raman transitions in 
diatomic and linear polyatomic molecules, 

AJ - 0, 4-2 

which leads to a rotational Raman spectrum with lines whose reciprocal wavelengths 
are equally spaced with a spacing of 4B e. 

Almost every diatomic molecule has a vibrational Raman spectrum. The vibrational 
selection rule for diatomic molecules is 

A v = + l  

A nonlinear polyatomic molecule will exhibit a rotational Raman spectrum only if it 
has different values of the polarizability in different directions. Most molecules exhibit 
a rotational Raman spectrum, except for highly symmetric molecules such as spherical 
tops. 

A normal mode must modulate the polarizability to be seen in the vibrational Raman 
spectrum. The "rule of exclusion" states that in a molecule with a center of symmetry, 
those normal modes not seen in the infrared spectrum will be seen in the Raman 
spectrum, and those seen in the infrared spectrum will not be seen in the Raman 
spectrum. 

Magnetic resonance spectroscopy is absorption spectroscopy in which the sample 
substance is placed in a magnetic field, causing spin states that are degenerate in the 
absence of the field to have different energies. The two principal types of magnetic 
resonance spectroscopy are electron spin resonance (ESR) and nuclear magnetic 
resonance (NMR). In ESR spectroscopy, a substance with unpaired electrons absorbs 
radiation of a fixed frequency when the externally applied magnetic field is such that the 
magnetic field is 

h v  
Bres - - -  

where g is known as the g factor of the electron, and fl~ is called the Bohr magneton. 
Since the magnetic field "felt" by the electrons includes a term due to nuclear spins in 
the molecule, structural information can be obtained from the ESR spectrum. 

NMR spectroscopy involves transitions of nuclear spins from one state to another in 
a magnetic field with absorption of radiation. The applied magnetic field must be such 
that the magnetic field at a given nucleus is 

Bre s = 
hv 

g~N 

where gN is the nuclear g factor for the particular nucleus, and fin is the nuclear 
magneton (same for every nucleus). 

The field at a given nucleus contains two contributions in addition to the extemally 
applied field. One is due to shielding of the electrons around the nucleus, and is 
expressed by the chemical shift. The other is due to the presence of other spins in the 
molecule, and gives rise to spin-spin splitting of spectral lines. Interpretation of the 
chemical shifts and spin-spin splittings gives structural information. 
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General Features of Solids 

Section 22.1 is a brief review of 
material included in general chemistry 
courses, and can be skipped without 
loss of continuity. 

In both liquid and solid phases, the molecules or other formula units (such as atoms or 
ions) are close together. Because of this proximity, the intermolecular forces are strong, 
with a balance between attractive and repulsive forces holding the substance at an 
almost constant volume. Several forces are known: gravity, the strong and weak forces 
in nuclei, and electromagnetic forces. The most important electromagnetic force for 
chemistry is the Coulomb force (electrostatic force) that corresponds to repulsions 
between like charges and attraction unlike charges. It is common practice in chemistry 
to subdivide the effects of electrostatic forces into several classes: ionic chemical bonds, 
covalent chemical bonds, ion-dipole forces, dipole-dipole forces, hydrogen bonds, ion- 
induced dipole forces, London dispersion forces, interatomic repulsions, etc. We group 
solids ito four classes according to the principal cohesive (attractive) force that holds 
the solid together. The first class is molecular solids, which consist of atoms or 
molecules that are attracted to each other by forces other than chemical bonds. 
Examples of molecular solids are solid water (ice), solid carbon dioxide (dry ice), 
and solid argon. The usual attractive intermolecular force in molecular solids is the 
London dispersion force, but in solid water the principal intermolecular attraction is 
hydrogen bonding. The melting temperature of a solid is a rough measure of the 
strength of its cohesive forces. The stronger the attractions, the higher the melting 
temperature. Because of the relative weakness of their intermolecular attractions, 
molecular solids generally melt at low temperatures. 

The second class is ionic solids, which contain positive and negative ions. The ions 
are always arranged so that a given ion is closer to ions of the opposite charge than to 
ions of the same charge. The attractive electrostatic forces thus exceed the repulsive 
electrostatic forces in magnitude, and provide the cohesive force that holds the solid 
together. The net cohesive force is a sum of attractive and repulsive electrostatic forces, 
and there is considerable variation in melting temperatures among ionic solids, although 
melting temperatures are generally higher than those of molecular solids. Sodium 
chloride melts at 801~ and ammonium nitrate melts at 170~ 

The third class is network covalent solids, in which the principal cohesive forces are 
provided by covalent bonds. A sample of a covalent solid can be considered to be one 
giant molecule. Solid carbon in either of its naturally occurring allotropic forms, 
diamond and graphite, is a network of atoms bonded together by covalent bonds. In 
diamond, each carbon atom is bonded to four other carbon atoms in a tetrahedral 
geometry. In graphite, the atoms are arranged in sheets, in which each carbon is bonded 
to three other carbons at bond angles of 120 ~ forming a sheet of hexagons. There are 
weaker London forces between the sheets, which can fairly easily be cleaved from each 
other. Quartz (one of the forms of silica, or silicon dioxide) is a network of silicon 
atoms each of which is covalently bonded to four oxygen atoms in a tetrahedral 
conformation. Each oxygen atom is bonded to two silicon atoms, and holds the crystal 
in a rigid lattice. Due to the strength of the covalent bonds, network covalent solids 
generally melt at very high temperatures. Graphite sublimes at 1 atm at 3367~ (its 
triple point is at a higher pressure than 1 atm, like that of carbon dioxide). One of the 
forms of quartz melts at 1610~ 

The fourth class of solids consists of metallic solids. The bonding in metallic solids 
is primarily delocalized covalent bonding. This bonding can be represented by 
molecular orbitals that are linear combinations of atomic orbitals from many atoms. 
The electrons occupying these orbitals move over large regions of the solid, and can 
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easily conduct electrical currents. There are large variations in the melting temperatures 
of metals. Mercury melts at -38~ but most metals melt at temperature considerably 
above room temperature, although generally not at temperatures as high as covalent 
solids. 

A crystalline solid consists of a regular geometric array of repeating identical 
molecular units. Most common samples of crystalline substances are polycrystalline 
and are made up of many pieces of crystal lattice struck together in various orientations. 
If you look at a broken piece of cast iron you can usually see grains that might be single 
crystals. If a single crystal can be grown, it usually has a greater mechanical strength 
than a polycrystalline sample of the same material. 

Solids that are not crystalline are amorphous. They do not have a regular array of 
many repeating identical units, but have a more disordered structure. Glasses are 
amorphous materials that soften gradually as they are heated, becoming liquid without a 
definite melting temperature. They are often considered to be supercooled liquids, 
although they can be very rigid. Silica readily forms a glass called "fused silica" or 
"fused quartz." Fused silica is an amorphous solid, in which the silicon tetrahedra are 
disordered instead of being in a repeating lattice as in quartz. Some of the silicon atoms 
may be bonded to fewer than four oxygen atoms, and voids may exist in the structure. 
There are vestiges of a crystal lattice at short range, but the geometric regularity is not 
complete, and does not persist over large distances. 

Exercise 22.1 
a. Without trying to represent the correct three-dimensional structure, sketch a section of a 

network of Si and 0 atoms in which every silicon atom is bonded to four oxygen atoms and 
every 0 atom is bonded to two Si atoms. 

*b. What kind of hybrid orbitals on the silicon atoms and on the oxygen atoms would be used to 
construct localized molecular orbitals to represent the bonding in crystalline silicon dioxide? 

Crystal Lattices 
Crystals are solid phases with a lattices consisting of repetitive geometric arrays of 
identical units or atoms, molecules, or ions. The basis of a crystal is the smallest set of 
atoms, ions, or molecules with fixed bond distances and angles and with identical 
orientation and molecular environment that repeats again and again to make up the 
crystal. For example, the basis of the sodium chloride crystal consists of one sodium ion 
and one chloride ion with a fixed interionic distance and a fixed orientation. The crystal 
could be reproduced by stacking the replicas of the basis with the same orientation. The 
basis is not necessarily the same as the formula unit of the substance. For example, the 
basis of a carbon dioxide crystal contains four molecules. Even though the molecules 
all have the same bond distances and angles, the four molecules have different 
orientations and environments. 

The crystal lattice is a set of points generated by placing a lattice point at the same 
location in each basis. Usually a point at the center of an atom or ion is chosen, but any 
point will do. Each lattice point must reside in the same kind of atom or ion. The crystal 
lattice is not the same as the crystal, which is a real piece of matter. The crystal lattice 
can be divided into identical unit cells. The unit cell is the smallest region in space that 
can reproduce the lattice by translations in three directions. That is to say, the lattice is 
reproduced by stacking replicas of the unit cell in straight rows, files, and columns, with 
no spaces between them. The contents of the unit cell must have the same stoichiometry 
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as the whole crystal, and must have the same symmetry properties as the entire lattice. 
A unit cell is always bounded by planes such that the planes on the opposite sides of the 
unit cell are parallel to each other. 

Figure 22.1 shows the unit cell of the sodium chloride lattice. This unit cell is a cube 
with side equal to 5.63 x 10 -1~ m. it contains four sodium ions: one-eighth share of 
each of eight sodium ions at the comers of the unit cell, and a one-half share of each 
of six sodium ions in the faces. It also contains four chloride ions: a one-fourth share of 
the 12 ions at the centers of the edges, plus the chloride ion at the center of the cell. It 
contains four basis units. The edges of a unit cell and their lengths are denoted by the 
letters a, b, and c. The angle between a and b is called 7, the angle between a and c is 
called fl, and the angle between b and c is called c~. The directed line segments a, b and c 
define the axes along which the unit cell is translated repeatedly to reproduce the lattice. 
In some lattices, these axes are not perpendicular to each other. 

There are seven different crystal systems, or unit cell shapes, which are listed in 
Table 22.1. The unit cells are depicted in Figure 22.2 with the lattice points indicated. 
The hexagonal unit cell can be cut into three parallelepiped units cells, one of which is 
shown. Some of the crystal systems correspond to more than one kind of lattice. A 
primitive lattice (denoted by P) is one in which lattice points occur only at the comers 
of the unit cell. It is also called a simple lattice. A unit cell of a primitive lattice 
contains one basis unit (one eighth of the basis unit at each comer). A body-centered 
lattice (denoted by I, for German innenzentriert), is one in which there is a lattice point 
at the center of the unit cell as at the comers. A face-centered lattice (denoted by F) is 
one in which there is a lattice point at the center of each face of the unit cell as well as at 
the comers. A base-centered lattice or end-centered lattice (denoted by C) is one in 
which there is a lattice point at the center of only one pair of opposite faces as well as at 
the comers. The table and figure show the 14 possible lattices, which are called Bravais 
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lattices. The sodium chloride lattice is a face-centered cubic lattice. In Figure 22.1, the 
lattice points are at the centers of the sodium ions. If the center of the chloride ions had 
been chosen, there would be another lattice of exactly the same properties, with the 
comer of the unit cell for one lattice at the center of the unit cell or at the center of an 
edge of the unit cell of the other lattice. 

*Exercise 22.2 
For each of the 14 Bravais lattices, list the number of basis units in the unit cell. 

The location of a point within a unit cell is specified by three fractions, which 
indicate the distances from the origin in the directions of the three axes. We generally 
take the origin at the lower left rear comer of the unit cell. The fractions are listed in xyz 
order. If the first fraction is l, it means a distance of a/2 along the a axis, and if the 
second fraction is 1, it means a distance of b/4 along the b axis, etc. The center of a unit 

i l l  cell is denoted by 222" 
A number of monatomic substances, including the inert gases and most metals, 

crystallize in close-packed lattices. If a collection of spheres of equal size is packed as 
closely as possible, each sphere is in contact with 12 other spheres. We say that the 
coordination number equals 12. There are two ways to accomplish this closest 
packing, as depicted in Figure 22.3. If one layer of spheres is laid down in a plane 
another layer can be placed on it, as shown in Figure 22.3a (the lower layer is drawn in 
broken curves). There are now two choices for laying down a third layer: either in the 
locations marked h (directly over the spheres of the first layer), or in the locations 
marked c. If the third layer is laid down in the h locations, a lattice with a hexagonal 
unit cell results, as shown in Figure 22.3b. If the third layer is laid down in the c 
locations, a lattice with a face-centered cubic (fcc) unit cell results, as shown in Figure 
22.3c. 

Both the hexagonal and the fcc close-packed lattices give the same packing fraction, 
the fraction of the unit cell volume occupied by the spheres. (It is also called the "filling 
fraction" or the "packing efficiency.") The nearest-neighbor distance and the number of 
nearest neighbors is also identical. However, the neighbors beyond the shell of nearest 
neighbors are not at the same distances in both lattices, and a given substance at 
equilibrium will crystallize in only one of these lattices. Nickel crystallizes in the face- 
centered cubic lattice, while cobalt crystallizes in the hexagonal lattice. All of the inert 
gases crystallize in the face-centered cubic lattice except for helium, which crystallizes 
in the hexagonal lattice. 

Exercise 22.3 
a. From the formula for the volume of a sphere and the fact that the diagonal of the face of the 

unit cell is equal to four times the sphere radius, show that the packing fraction for the fcc 
close-packed lattice is equal to 0.74. 

*b. Iron crystallizes in the body-centered cubic lattice. Give the coordination number for this 
lattice and calculate the packing fraction for this lattice, assuming spheres that touch. 

X-Ray Diffraction 
Since X-rays are electromagnetic radiation with wavelengths of the same general size as 
crystal lattice spacings, crystals can act as diffraction gratings for X-rays. Study of the 



22.1 General Features of Solids 90:3 

angles and intensities of diffracted X-ray beams can allow unit cell dimensions and 
positions of atoms within the unit cells to be calculated. In order to describe the 
diffraction of X-rays, it is necessary to specify the directions of planes that fit into a 
crystal lattice in such a way that the plane contains a repeating regular pattern of lattice 
points. The planes in which we are interested intersect with one or more of the axes 
within a unit cell. We consider any plane that intersects with the a axis at a distance a/h 
from the origin, with the b axis at a distance b/k from the origin, and with the c axis at a 
distance c/l from the origin, where h, k, and l are integers. These planes can contain 
repeating patterns of lattice points. 

The set of three integers h, k, and l are called Miller indices and are denoted by their 
values inside parentheses, as in (hkl). The Miller indices are not required to be positive, 
and a zero value for an index means that the plane is parallel to that axis. Negative 
values are often denoted by putting the negative sign above the digit, as in (111). Figure 
22.4 shows a unit cell with several planes and their Miller indices. Some planes are 
parallel to other planes. For example, the (001) plane is parallel to the (002) plane, and 
the (222) plane is parallel to the (111) plane. However, two parallel planes do not 
necessarily contain the same pattern of lattice points. 
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Figure 22.5 shows schematically how a crystal acts like a diffraction grating. Two 
planes of lattice points are shown in which lattice points of the first plane are 
perpendicularly opposed to lattice points of the second plane. We assume that there 
is an atom to act as a scattering center at each lattice point. Each atom diffracts incident 
electromagnetic radiation, sending a spherical electromagnetic wave out in all direc- 
tions. The condition for constructive interference in a particular direction is that two 
waves from adjacent diffraction centers have crests and troughs at the same locations. If 
the distance between the planes is equal to d and the wavelength of the radiation is 2, 
the condition is that the extra distance traveled by the wave diffracted from the second 
layer is an integral number of wavelengths. Trigonometry gives the condition: 

n2 = 2d sin(O) (22.1-1) 
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The Bragg equation is named after Sir 
William Henry Bragg and his son 
William Lawrence Bragg, who 
received the 1915 Nobel Prize in 
physics for their studies in X-ray 
diffraction. 

where 0 is the angle between the plane and the direction of the radiation. Equation 
(22.1-1) is called the Bragg equation. 

At first glance, it would seem that the two angles labeled 0 in the diagram would not 
have to be equal. However, one cannot consider just two atoms as scattering centers. In 
order for the scattering from other pairs of atoms in the same two planes to produce 
constructive interference the two angles must be equal, so that the diffraction condition 
is similar to a reflection from the planes of atoms. Diffracted X-ray beams are therefore 
sometimes called "reflections." 

Exercise 22.4 
By drawing a replica of Figure 22.5 and drawing incident and diffracted rays from other pairs of 
atoms, show that if the two angles labeled 0 in Figure 22.5 are equal, all of the diffracted beams 
interfere constructively if the Bragg condition is satisfied. 

It is not necessary that a plane have lattice points directly across from corresponding 
lattice points in a parallel plane to diffract electrons. Any planes specified by Miller 
indices can diffract X-rays, so we specify the Miller indices of the plane in Eq. (22.1-1) 

This equation is the same as 

n2 = 2dhk l sin(0) (22.1-2) 

- -  2 d n h , n k , n l  sin(0) (22.1-3) 

For example, the distance between the (200) planes is half as great as the distance 
between the (100) planes, so that the second-order (n = 2) diffraction from the (100) 
planes is at the same wavelength as the first-order (n = 1) diffraction from the (200) 
planes. 

The diffraction of X-rays by a crystal is more complicated than we have indicated. In 
some cases the diffracted beams interfere destructively and are not seen. This 

1 destructive interference is called extinction. Some extinction rules are: 

1. For a primitive lattice: no extinctions. 
2. For a face-centered lattice: all three Miller indices must be even or all three must be 

odd to avoid extinction. 
3. For a body-centered lattice: the sum of the three Miller indices must be an even 

integer to avoid extinction. 

The simplest kind of X-ray diffraction experiment is carried out with a finely 
powdered sample of the crystalline material placed in a small container in an X-ray 
beam. Since there are very many small crystals with many different orientations, an 
impinging collimated X-ray beam strikes some crystals at any given angle, and a 
number of diffracted beams come from the sample in cones of directions concentric 
with the incident beam. A photographic plate or film is placed to intercept these beams 
and record their positions, allowing one to calculate the diffraction angles. Analysis of 
the pattern of the diffraction angles allows one to determine from the extinction 
conditions whether one has a primitive lattice, a face-centered lattice, or a body- 
centered lattice. From the wavelength of the radiation and the diffraction angles, one 
can determine the unit cell dimensions. 

1M. J. Buerger, Contemporary Crystallography, McGraw-Hill, New York, 1970, Chapter 5. 
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We have discussed the diffraction of X-rays up to now as though each atom in the 
crystal lattice were a point from which the X-rays are scattered. In fact, the scattering 
takes place over the entire unit cell, and electrons scatter X-rays much more strongly 
than do nuclei. The scattering from the different parts of the unit cell interferes 
constructively and destructively in ways that are determined from the electron density in 
the unit cell. Analysis of the relative intensities of the different diffracted beams allows 
in some cases for the reconstruction of the electron density as well as determination of 
the unit cell size and shape. This is a complicated process, which we cannot describe in 
detail. The first such structure determinations were done before the advent of 
computers, with many hours of hand calculation. Present-day calculations are done 
almost automatically by sophisticated computer programs, using intensity data taken 
with automated computer-driven diffractometers. 

When a crystal grows, it adds more and more basis units in each of three directions. 
The crystal will have the same shape as the unit cell if unit cells are added at the same 
rate in each direction. However, crystals can exhibit various habits, which are shapes 
corresponding to different growth rates in the three lattice axis directions. For example, 
a cubic lattice could give rise to a crystal that is rectangular but not cubic. Furthermore, 
the faces of the crystal do not have to be the (001), (010), and (100) planes that 
correspond to the faces of the unit cell. Other planes, such as the (111) plane, can form 
boundaries of the crystal. 

Modem studies in surface catalysis often use single crystals with an exposed face 
whose Miller indices are known, 2 and it is sometimes found that different planes have 
different catalytic activities. There can also be a variety of defects in a real crystal, some 
of which are schematically depicted in Figure 22.6 and in Figure 13.3. The presence of 
defects often increases the catalytic activity. 

Crystal Vibrations 

In Section 22.1 we discussed crystal lattices as though the atoms of the crystal were 
permanently fixed at various locations in the unit cell. These positions are actually 
equilibrium positions about which the atoms vibrate. A crystal is like a very large 
molecule and if a crystal consists of N atoms it must have 3 N -  6 vibrational normal 
modes, all of which correspond to collective motions of many atoms. Sound waves in a 
crystal correspond to organized collective vibrations, but all kinds of vibrations occur at 
any nonzero temperature. Crystal vibrations are difficult to study exactly since the 
potential energy of a crystal is a complicated function of all of the atoms' coordinates. 
However, there are simple model systems that represent the vibrations of a crystal in an 
approximate way. 

The Einstein Crystal Model 
This model system corresponds to the assumption that all of the vibrational normal 
modes of a crystal have the same frequency, the value of which can be chosen to give 
the best fit to experimental data. It is further assumed that each normal mode vibrates 
like a hamonic oscillator, as was assumed in Chapter 19 for molecular vibrations. The 

2 D. W. Goodman, Annu. Rev. Phys. Chem., 37, 425 (1986). 
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Einstein model is usually used to represent a crystal made up of atoms, such as 
solidified inert gas, a metal, or a covalent crystal like diamond. In one version of the 
model, it is assumed that the potential energy of each atom depends only on the 
displacement of that atom from its equilibrium position. Each atom vibrates indepen- 
dently in three perpendicular directions as though all of the other atoms in the crystal 
were stationary. A second version recognizes that each normal mode involves many 
atoms but assigns the same frequency to all normal modes. The results are the same for 
both treatments. 

If we assume that the entire crystal is not translating or rotating and if we assume the 
electronic state to be the ground state, the total energy of the crystal is the vibrational 
energy and is given by 

3N-6  3N 

Evi b - -  X ~  o + ~ hviv i ~ N ~  o + y~ hvv i (22.2-1) 
i-- 1 i= 1 

where v i represents the classical vibration frequency of normal mode number i and vi is 
the quantum number for this normal mode. The energy of the crystal in its ground 
vibrational state is represented by N~0, so that ~0 is the ground-state energy per atom. 
In the approximate equation, we have assumed that all normal modes have the same 
frequency and have ignored the difference between 3 N -  6 and 3N, since N is a large 
number. 

The vibrational partition function for the entire crystal is a sum over all values of the 
quantum numbers: 

3N 

- N ~ o  - ~ h v v i  

Z ' v i b -  E E " ' "  E e x p  i:1 (22.2-2) 
121 ~ 0  l)2 >0  /)3N >__0 k B T 

This expression can be factored with one factor for each normal mode and a factor for 
the constant term in the energy expression: 

(-N~~ ~I(~ e-hvvi/kBT ) 
Zvi b -- exp k, kB T i=l vi=0 

__ ( )3N__ (_N,,~o~ aN 
- - e x p (  - N ~ ~  ~ e  -hvv/kBT exp z 

\ kBT J /)-0 ~. kBT J 
(22.2-3) 

where we recognize that after summation all of the factors in the product are equal to z, 
which is the partition function for one vibrational mode. There is no correction for 
indistinguishability, since each normal mode is distinguishable from the others, and 
there is no need to divide by N!. 

The partition function z is the same as that in Eq. (21.4-20): 

1 
z -  ~ e -h~'v/kBr -- (22.2-4) 

v=O ~ 1 --  e -hv/kBT 
with the result 

1 3N 

Z v i  b - -  exp ~, kB T ] 

We use a capital Z for the partition function since it is a partition function for the entire 
crystal (a canonical partition function). 
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We can now write formulas for the thermodynamic functions of the Einstein model 
of a crystal using the equations containing the logarithm of the canonical partition 
function, Eq. (21.8-35): 

N~0 
ln(Zvib) -- -- k B T + 3N ln(z) - 

N~0 
~ r  

( 1 )  
- kB-- 7 + 3N In 1 - e--h~/k~ r 

3N ln(1 - e - h v / k B T )  (22.2-6) 

U -  k B T 2 ( O l n ( Z ) ) - N ~ o +  3NkBT2(  0 ln(z)] 
aT ]v aT } 

3Nhv 
= N ~ 0 +  ehv/kBT ~ 1 

(OU)  _ 3NkB(  h~BT) 2 e hv/kBy 
C v -  - ~  V,U (ehV/k"r--1) 2 

S -  U N ~ o 3 Nh v N ~ o 
7 + kB In(z) -- ----f-- + ehv /k .  T _ 1 k B T 

3Nhv 
= e hv/kBT - -  1 - -  3 N k B T  l n ( 1  - e - h v / k B T )  

A -- - k  B T In(z) -- N ~  o - 3Nk B T In(1 - e -hv/kB v) 

p _  kBT(O lnz)'] T(ln(z) ']  
OV J r - -  NkB \ OV JT 

\ 

- -  ~ A N  - -  A N - 1  - -  ~PO -k- 3kB T ln(1 - e -h~/kBr) 
P ~ r,v 

- -  + 3Nk B In(z) 

(22.2-7a) 

(22.2-7b) 

(22.2-7c) 

(22.2-7d) 

(22.2-7e) 

h v  
| -- 7-  (definition) (22.2-8) 

KB 

which has the dimensions of temperature, and which is called the Einstein tempera- 
ture or the characteristic temperature. Figure 22.7 shows the heat capacity of 
diamond as a function of temperature as well as the heat capacity of the Einstein 

so that G -- A, and PV is predicted to vanish, since G equals A + PV. Furthermore, the 
model does not include any simple way to evaluate the derivative in Eq. (22.2-7e) for 
the pressure. This result is a shortcoming of a crude model, but for a crystal the value of 
PV is small compared with G and A, and the numerical effect of this shortcoming is not 
important. 

There is no simple theoretical way to evaluate v, the assumed frequency of the normal 
modes in the Einstein theory. Its value is usually determined by fitting the heat capacity 
formula to experimental data. The formulas for the thermodynamic functions can be 
restated in terms of the parameter 

(22.2-7g) 

G - Np  - N ~  o - 3Nk B T ln(z) 

= N ~  o + 3NkBT ln(1 - e  -hv/k~r) 

We use the chemical potential per molecule as in Chapter 21, not the chemical potential 
per mole. We have replaced a derivative by a finite difference and have recognized that 
A N contains N ~  0 while A N _  1 contains ( N -  1)~0. 

There is a difficulty with the pressure of the Einstein crystal model. For a one- 
component system, G is given by Euler's theorem as: 

(22.2-7f) 
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crystal model with an Einstein temperature of  1320 K, which gives the best fit to these 
experimental data. 

Exercise 22.5 
a. Express the thermodynamic functions of an Einstein crystal in terms of the Einstein 

temperature. 
*b. Find the value of the frequency v corresponding to the Einstein temperature of 1320K 

assigned to diamond. 
*c. Calculate the molar energy of a diamond crystal at 298.15 K and at 500.0 K relative to the 

ground-state energy N~0. 
*d. Calculate the molar Gibbs energy of a diamond crystal at 298.15 K and at 500.0 K relative to 

the ground-state energy N~0. 
e. Calculate the molar entropy of a diamond crystal at 298.15 K and at 500.0 K. 

In the limit of  high temperature, 

lim C v = 3 N k  B (22.2-9) 
T--+ oo 

This formula agrees with the empirical law of Dulong and  Petit, which states that the 
molar heat capacity of  atomic crystals is approximately equal to 3R. Most metals have a 
sufficiently small Einstein temperature that the law of  Dulong and Petit applies quite 
well near room temperature, but it does not apply well to diamond at room temperature 
(see Problem 22.48). 

Exercise 22.6 
a. Show that Eq. (22.2-9) is correct. 
b. Calculate the molar heat capacity of a diamond crystal at 298.15 K, at 500.0 K, and at 1320 K. 

The Debye Crystal Model 
This model is a physically motivated improvement over the Einstein crystal model, 
which assumes a single vibrational, frequency. Real crystals have vibrational normal 
modes of  many different frequencies. Debye assumed that the vibrational normal modes 
could be approximately represented by sound waves that are standing waves with zero 
amplitude at the surfaces of  the crystal. The quanta of  energy of  these sound waves are 
called phonons.  Consider a cubic sample of  the solid with side L. The amplitide of  a 
standing sound wave that vanishes at the boundaries of  the cube is the same function of  
position as the wave function of  a particle in a three-dimensional box: 

SxnX (S zny ' ]  
(Amplitude) - sin (---L--) sin(Syny~ sin (22.2-10) 

\ L /  \ L /  

where s x, Sy, and s z are positive integers that play the same role as n x, ny,  and nz in the 
particle wave function. We let 

s 2 -- s 2 + s 2 + s 2 (22.2-11) 

The wavelength is given by 

2L 
= - -  (22.2-12) 

S 
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and the frequency of the wave is given by 
C CS 

v - 2 - - 2 L  (22.2-13) 

where c is the speed of propagation of the waves in the solid (the speed of sound in the 
solid, assumed to be a constant although different for each substance). 

There is a different wave for each set of integers s x, sy, s z. For fairly large values of 
the integers, the number of sets of integers such that s lie between s and s § ds is 
approximately equal to 

gS  2 

[Number of waves in (s, s + ds)] - ~ ds (22.2-14) 

In a solid there can be longitudinal waves in which the oscillation is parallel to the 
direction of the wave, and transverse waves in which the oscillation is perpendicular to 
the direction of the waves. The result in Eq. (22.2-14) must be multiplied by a factor of 
3 since in a given direction in a continuous solid there can be two transverse waves 
(polarized at fight angles to each other), and one longitudinal wave. If the speed of 
sound depends on the frequency and if the longitudinal and transverse waves to not 
move at the same speed we regard the constant value of c as an average speed that can 
be different for each solid substance. 

Exercise 22.7 
Show that Eq. (22.2-14) is correct by constructing a space in which s x, Sy, and s z are plotted on 
three cartesian axes. The number of points inside a given region of this space corresponding to 
sets of integral values is nearly equal to the volume of that region, since there is one such point 
per unit volume. Consider a spherical shell of thickness ds. Only one octant of the coordinate 
system is included, corresponding to the requirement that all of the integers are positive. 

Equations (22.2-13) and (22.2-14) can be combined: 

(Number of waves in ds) - -~- - -  ds 

---~- ---3r t(2Lv) 22L~ d v - 1 2 r t V v 2 d v - g ( v ) d v ~  (22.2-15) 

The function g(v )  is called the frequency distribution. 
In a crystal of N atoms the total number of vibrational modes is equal to 3 N -  6, 

approximately equal to 3N since N is large. All possible frequencies cannot be 
included, since this would give infinitely many normal modes. Debye chose a maximum 
frequency v D such that he had the correct number of modes: 

I0 o c3 3 N -  g (v )  d v -  12rcV V 2 dv  = 4rcVv----~3 (22.2-16) 

v 3 -- 3Nc3 (22.2-17) 
4rcV 

Debye's frequency distribution is shown in Figure 22.8 along with the experimental 
distribution of frequencies for copper. The Debye temperature, | is a parameter 
with the dimensions of temperature. It is defined by 

| = hvD (definition) (22.2-18) 
kB 
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The appropriate value of {~D for a given crystal is usually chosen by fitting heat 
capacity data to the Debye formula in Eq. (22.2-21). 

The logarithm of the partition function of the Debye model of a crystal is given by 
the analogue of Eq. (22.2-6) where we must integrate over the normal modes: 

-- Iit'(1 - r)g(v) dv (22.2-1 In(Z) NV~ e -hv/kB 9) kBV 

The vibrational energy in the Debye model of a crystal is given by the analogue of Eq. 
(22.2-7a): 

I~ ~ hv 9N IiO hV3 dv 
U -  N ~  o + ehv/kBv _ l g ( v ) d v -  N ~  o + V---~D ehv/kB T -  1 

9Nk B T I~ ~ u 3 
= N V ~  u 3 ~,, e u - 1  du (22.2-20) 

where u = hv/kB T and UD = hvD/kBT = |  The integral in Eq. (22.2-20) cannot 
be evaluated in closed form, but it can be evaluated numerically. 

The heat capacity is given by 

9NkBI iD(  hv )2  ehv/kBTV 2 
Cv = v---~- D ~B T ehv/kB r -- 1 dv =- 3NkBD(|  ) (22.2-21) 

which defines the Debye function, D, which depends on the ratio OD/T.  Tables of 
values of this function are available 3 and a computer program can easily be written to 
evaluate the integral. 

Formulas for the other thermodynamic functions can be obtained as integrals over the 
frequencies, analogous to sums over the normal modes of polyatomic molecule. The 
Helmholt energy is given by 

A -- N ~  0 - kB T In 1 - e-h~/kB ~" g(v) dv 

Ii ~ = N~o + kBT ln(1 - e-hv/k~r)g(v) dv (22.2-22) 

Exercise 22.8 
a. Verify Eq. (22.2-21). 
b. Write a formula for the vibrational entropy of the Debye model of a crystal. 

The Debye function generally fits experimental data on the heat capacity of atomic 
solids quite well if an optimum choice of l~) D is chosen. Figure 22.9 shows the heat 
capacities of several elements, along with curves representing the Debye function for 
the Debye temperatures given. At high temperatures, the Debye expression conforms to 
the law of Dulong and Petit. 

Exercise 22.9 
Show that the energy expression in Eq. (22.2-20) reduces to U = 3Nk B T for high temperatures, 
so that C v = 3Nk a. Use the fact that for high temperatures, e u can be approximated by 1 + u. 

3N. Davidson, Statistical Mechanics, McGraw-Hill, New York, 1962, p. 359. 
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The Debye temperature of diamond is equal to 1890 K, while its Einstein temperature 
is 1320 K. Since the Einstein temperature ought to be equal to some kind of average 
frequency in the Debye model, these values are reasonable. Modifications to the Debye 
theory have been devised that use a temperature-dependent Debye temperature and give 
improved agreement with experiment. 4 

*Exercise 22.10 
Obtain a formula for an average Debye frequency, 

jvo vg(v) dv 

(vl = ~ g(v) dv 

Compare the average Debye frequency for diamond with the Einstein frequency for diamond. 

For small temperatures (T smaller than OD/IO), v D is large, and the upper limit of the 
integral can be extended to infinity without serious error. The integral is then equal to 
~4/15, and 

(22.2-23) 

(22.2-24) 

Heat capacities are hard to measure at low temperatures, and data below 15 K are quite 
rare. Equation (22.2-24) is commonly used as a substitute for experimental data 
between 0 K and 15 K in calculating third-law entropies. (See Section 4.5.) In metals, 
there is also a contribution to the heat capacity from the electronic motion (see Section 
22.3). 

4 See J. S. Blakemore, Solid State Physics, 2d ed., W. B. Saunders, Philadelphia, 1974, pp. 128ff. 
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Exercise 22.11 
Verify Eq. (22.2-23). 

The Electronic Structure of Crystalline Solids 

Molecular crystals can to a first approximation be pictured as separate molecules held 
together by intermolecular forces such as London dispersion forces or hydrogen bonds. 
Ionic crystals can be thought of as separate ions held together by electrostatic 
(Coulomb) forces. The electronic wave function of the crystal can be crudely 
approximated as a product of wave functions of individual molecules, which are 
similar to those of the same molecules in the gas phase. Similarly, the electronic wave 
function of an ionic crystal can be crudely approximated as a product of the wave 
functions of the ions, which are much the same as those of the separated ions. 
Covalently bonded crystals, including metals, can be thought of as giant molecules. 
An approximate description of the electronic structure of these crystals can include 
localized and delocalized covalent bonding similar to that described in Chapter 18. 

Exercise 22.12 
Explain in simple terms why mercury, which has one more electron per atom than gold, melts at a 
low temperature (-38.4~ 

The crude description of the bonding in crystalline gold of Example 22.1 is 
somewhat analogous to a description of the bonding in C2, for which the electron 
configuration is given in Table 18.2. There is a double bond corresponding to the two 
occupied bonding orbitals. The 2px and 2py orbitals also form antibonding orbitals, the 
rc~2px and g~2py orbitals, which remain vacant in the molecule. The bond strength in 
the molecule comes from greater occupation of bonding orbitals than of antibonding 
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orbitals. Similarly, in the delocalized rc bonding of benzene the six it electrons occupy 
the three lowest-energy delocalized rc space orbitals, leaving the other (primarily 
antibonding) orbitals vacant. The occupied molecular orbitals have more bonding 
character than antibonding character, contributing to the stability of the molecule. In a 
gold crystal we also have twice as many orbitals as are needed to accommodate the 
valence electrons, allowing orbitals with bonding character to be occupied and orbitals 
with antibonding character to be left vacant. 

The Band Theory of Solid Electronic Structure 
In a crystal of N atoms, N atomic orbitals of equal energy form N delocalized 
molecular orbitals of different orbital energies. These energies are confined to a fairly 
narrow range, as were the n orbital energies of benzene. This range is called a band. If 
we include all of the orbitals, there is a band from the ls orbitals, another band from the 
2s orbitals, a third band from the 2p orbitals, etc. In many cases these bands will not 
overlap, leaving a band gap between two adjacent bands. Figure 22.10 shows the X-ray 
photoelectron spectrum of a gold foil, in which several of the bands can be seen, as well 
as the ls band from a carbon impurity. The subscript on each band label is the value of 
j ,  the quantum number for the total angular momentum for the electrons. 

If a band is created from orbitals that are filled in the ground state of the separated 
atoms, there are as many electrons to fill the band as there are spin orbitals in the band, 
so that the band is completely filled in the ground state. If the highest occupied band in 
a crystal is completely filled, an electron can move from one orbital to another in the 
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band only if another electron vacates the second orbital. If there is no way to create a 
vacancy the crystal will not conduct electricity (it will be an insulator). If a band is 
created from orbitals that are partly filled in the separated atoms, as in the 6s band of 
gold in Example 22.1, the resulting band is only partly filled. There will be a number of 
vacant orbitals for electrons to move into and the crystal will be an electrical conductor. 

If the highest occupied band contains only a few electrons, there will be many 
unoccupied orbitals but only a few movable electrons, and the crystal will be a 
semiconductor with a fairly large resistance. If the highest occupied band is nearly 
filled, there will be many movable electrons but only a few unoccupied orbitals for the 
electrons to move into, and this crystal will also be a semiconductor. Semiconductors 
with only a few electrons in the highest band are called n-type semiconductors. Those 
with only a few vacant orbitals ("holes") are called p-type semiconductors. The 
designation "p" stands for "positive," since the positive holes are considered to be 
moving, and the designation "n" stands for "negative," since electrons are considered to 
be moving. Figure 22.11 schematically depicts the band occupations in insulators, 
conductors, and semiconductors. 

The behavior of semiconductors is strongly temperature dependent. Electrons are 
fermions, and the probability distributions of noninteracting fermions and bosons are 
given in Section 21.1. From Eq. (21.2-21), the probability of finding a fermion in state i 
with energy ~;i is 

1 
Ni = f (ai) -- e_,+~,  (22.3-1) 
gi + 1 

where gi is the degeneracy of the level. Although this equation applies to noninteracting 
particles, we assume that it applies approximately to the behavior of electrons in a 
crystal. 

We have established that/~ -- 1/kB T. From our discussion of noninteracting particles 
in the case of dilute occupation, Eq. (21.3-2) gives 

c~ = l n ( N / z )  (22.3-2) 

where z is the molecular function. Equation (21.5-17) gives 

It = - k B T  l n ( z / N )  (22.3-3) 

so that 

= I t /k  B T (22.3-4) 

where It is the chemical potential. It is not permissible to use the molecular partition 
function for fermions or bosons if the dilute occupation case cannot be used. However, 
c~ must be the same parameter for all cases, so that Eq. (22.3-4) can be used for 
noninteracting fermions or bosons even if dilute occupation does not apply. The 
distribution for noninteracting fermions now becomes 

1 
f ( e i )  e(~;-~')/kB T + 1 (22.3-5) 

and we ignore the interactions between electrons and assume that we can use this 
equation for electrons in a crystal. 

The value of the chemical potential of the electrons is called the Fermi level, and is 
denoted by e F. At 0 K, all of the states with energies up to the Fermi level are fully 
occupied and those above the Fermi level are vacant. As the temperature is increased, 
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some of the states with energies just below the Fermi level become unpopulated, and 
some of the states just above the Fermi level become populated. The range of energy 
over which the probability distribution changes from approximately unity to nearly zero 
is approximately equal to kB T. Figure 22.12 shows the fermion probability distribution 
for 0 K and for two nonzero temperatures. 

If the Fermi level lies within a band, the crystal will be a conductor. If the Fermi level 
lies at the top of a band or between two bands, the crystal will either be an insulator or a 
semiconductor. If the band gap to the next higher band is small, then at ordinary 
temperature some of the highest-energy states in the filled band will be vacant, some of 
the low-lying states in the first vacant band will be occupied, and the crystal will be a 
semiconductor. If the band gap is large compared with kB T, there will be little chance 
that electrons can move to the vacant band, the highest occupied band will be 
completely filled, and the crystal will be an insulator. 

Silicon is the most widely used semiconductor. The structure of the silicon crystal is 
similar to that of diamond, with each silicon atom covalently bonded to four other 
silicon atoms that are arranged tetrahedrally around it. To a first approximation the 
bonding orbitals in both crystals can be approximated as localized bonding molecular 
orbitals made from two sp  3 hybrid orbitals on adjacent atoms. The vacant antibonding 
molecular orbitals lie somewhat higher in energy. 

In silicon, there is a band made from the 3d orbitals. The band gap between the 
bonding orbitals and the 3d band is small enough so that silicon is a semiconductor at 
room temperature. Diamond is an insulator because there is no 2d subshell. The lowest 
vacant band of diamond is the 3s band, which has a large band gap from the bonding 
orbitals. Figure 22.13 shows an approximate energy level diagram. At 0 K, no electrons 
in the silicon crystal could occupy orbitals in the 3d band and silicon would be an 
insulator like diamond. In some applications, silicon is "doped" with small amounts of 
other substances. For example, if aluminum atoms are introduced into the lattice and 
replace silicon atoms, there are "holes" in the available orbitals since aluminum has 13 
electrons while silicon has 14. This makes the doped silicon into a p-type semicon- 
ductor that would conduct electricity even at 0 K. 

Nickel is ferromagnetic (it can be permanently magnetized). 5 Figure 22.14 shows the 
4s and 3d bands for both nickel and copper. In both elements, the two bands overlap in 
energy (with no band gap) since the 3d and 4s orbitals in the isolated atoms are nearly 
at the same energy. However, the 4s band covers a wider range of energy. In copper, 
which has one 4s electron and ten 3d electrons in the isolated atom, the Fermi level is at 
the middle of the 4s band. The 4s band is 50% occupied and the 3d band is fully 
occupied. In nickel, which has two 4s electrons and eight 3d electrons, the Fermi level 
is lower, and lies below the top of the 3d band. The spin-up states of the 3d band have a 
slightly lower energy than the spin-down states due to "exchange interaction," and at 
0 K there is an average of 0.54 hole per atom in the spin-down states of the 3d band and 
an average of 0.54 electron per atom in the 4s band. The spins of the excess spin-up 
electrons interact strongly with each other, and tend to form domains in the crystal in 
which all of the excess spins are aligned parallel to each other. These domains can be 
aligned to produce a permanent macroscopic magnetic moment, a characteristic of 
ferromagnetism. Above 631 K, the Curie temperature for nickel, thermal energy 
overrides the exchange interaction, and the ferromagnetism disappears, as shown in part 
(c) of the figure. 

5N. B. Hannay, Solid-State Chemistry, Prentice-Hall, Englewood Cliffs, NJ, 1967, p. 38. 
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The Free-Electron Theory 
This simple theory describes approximately the electron states within the occupied 
bands. The electrons are represented as a gas of noninteracting fermions. This 
approximation is similar to the free-electron approximation of Eq. (18.7-16), in which 
the delocalized ~z orbitals for a conjugated chain of carbon atoms were represented by 
one-dimensional particle-in-a-box wave functions. We represent the orbitals for the 
mobile electrons in our crystal by free-particle wave functions, representing traveling 
waves as in Section 14.5: 

- -  e i k ' r  - -  e i ( k x x + k y y + k ~ z )  (22.3-6) 

where the vector k is called the wave vector. 
Consider a cubic region with dimensions L by L by L that is part of a very large 

crystal. We impose "periodic boundary conditions" 

O(x + L, y, z) = O(x, y, z) (22.3-7) 
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with similar equations for y and z. To satisfy this condition, 

2rcnx 27Zny kx = 2rcn z 
k x=L '  k -L' L (22.3-8) 

where nx, ny, and nz are integers. The situation is similar to that of a particle in a three- 
dimensional box, and similar to the Debye crystal model, except that the integers are 
now not required to be positive. 

The vector k that has components k x, ky, and k z is called the wave vector. The kinetic 
energy of a wave is determined by this vector: 

h2k 2 h 2 
= ~ ( k  2 + k 2 + k 2) (22.3-9) 

ek = 2m 2m 

The number of sets of integers in the range dn is similar to that shown in Eq. (22.2-14)" 

[Number of sets in (n, n + dn)] - 4zm 2 dn (22.3-10) 

This number is 8 times as large as that given by Eq. (22.2-14) to account for the 
possibilities that negative integers can occur. There are two possible spin states for each 
electron, so we double this expression to get the number of states. Using Eq. (22.3-8), 
we obtain for the number of states in the range dk, 

L3k 2 
(Number of states in dk)  - g (k)  dk = ~ dk 

Using Eq. (22.3-9), 

L 3 V/-~m3 /2 
(Number of states in de) - g2h3 

Number of states in ) 
de per unit volume - g(e) de = 

/31/2 de (22.3-1 la) 

~/~m3/2 

722h 3 
e 1/2 de (22,3-1 lb) 

This degeneracy is depicted in Figure 22.15. At 0 K, electrons will occupy the available 
states from the state of lowest energy up to the Fermi level. This occupation is shown by 
the shaded area in Figure 22.15. At nonzero temperatures the occupation of states is 
given by Eq. (22.3-5), and the occupation of the levels correspond to a curve similar to 
the curve in the figure. 

The number of electrons per unit volume is 

n - g(e) f (e )  de (22.3-12) 
0 

where f ( e )  is the fermion probability distribution of Eq. (22.3-5). At 0 K, each of the 
states with energy less than the Fermi level is occupied by one electron, and all of the 
states above the Fermi level are vacant. At 0 K the upper limit of the integral can be 
changed from infinity to the Fermi level andf(e) can be replaced by unity without error: 

~/~m3/2 ft0 e 1/2 1 (2m/to)3/2 
n - -  n2h3 J0 d e - ~ ~  h2 ] (22.3-13) 

The Fermi level at 0 K is 

h 2 
- - (22.3-14) ]20 eF0 (37tZn)2/3 2m 

A typical metal has a density of mobile electrons approximately equal to 1028 m -3, 
corresponding to a value of the Fermi level equal to several electronvolts. 



22.3 The Electronic Structure of Crystalline Solids 919 

*Exercise 22.13 
a. Find the value of the constant A when Eq. (22.3-14) is written in the form eF0 - An 2/3. 
b. The density of copper is 8960 kg m - 3 .  Find the density of mobile electrons, assuming one 

electron from each atom, and find the zero-temperature value of the Fermi level in joules and 
in electron volts. 

The Fermi level for nonzero temperature is approximately 6 

p - e  F - e F 0  1 -  i~e~  ~ } (22.3-15) 

For fairly low temperatures, this formula gives roughly the same value for the Fermi 
level as Eq. (22.3-14). 

The energy per unit volume of the free-electron gas at 0 K is 

[eF0 1 ( 2 m )  5/2 3neF0 
U o - -  e g ( e )  d e  - - (22.3-16) ~o ~ -U ~FO 5 

The energy at a nonzero temperature is approximately 7 

nTz 2 k 2 T 2 
U -  U0 + ~ (22.3-17) 

4e F 

if T << e F / k  B. Equation (22.3-17) leads to a formula for the electronic contribution to 
the heat capacity per unit volume 

~z 2 n kB T 
Celec = (22.3-18) 

2eF 

We obtain a formula for the molar heat capacity by replacing n by the number of mobile 
electrons per mole. 

If the electron gas obeyed classical mechanics, the heat capacity would be 3 k B / 2  per 
electron, so that 

722 T 
Celec -- ~ Cclas s (22.3-19) 

Although the classical heat capacity is independent of T, the quantum-mechanical heat 
capacity is proportional to T. The quantum-mechanical electron gas is sometimes called 
the "degenerate electron gas," because its heat capacity is "degenerated" from the 
classical value by the factor given in Eq. (22.3-19). This meaning of the word 
"degenerate" is different from the usage in previous chapters, where it applied to the 
number of states in an energy level. 

*Exercise 22.14 
a. Find the electronic contribution to the heat capacity of copper at 15 K, using the same 

assumptions and data as in Exercise 22.13. 
b. Find the ratio of the electronic contribution to the classical prediction of the electronic 

contribution. 

6Blakemore, op. cit., p. 176 (Note 4). 
7 Blakemore, op. cit., p. 176 (Note 4). 
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c. Find the ratio of the electronic contribution to the lattice vibration contribution for copper at 
15 K, using the Debye theory result with the Debye temperature 15 K. 

The simple free-electron theory has been modified by Bloch. 8 The uniform potential 
energy function of the free-electron theory is replaced by a potential function which is 
periodic with the same period as the crystal lattice. The wave function is like that shown 
in Eq. (22.3-6) except for the presence of another factor u, called the Bloch function: 

~t = e ik 'xu(x)  (22.3-20) 

The energy levels are found to lie in bands, similar to the bands of the LCAO molecular 
orbitals discussed above. Each band is said to correspond to a Briliouin zone. The 
Fermi level is sometimes depicted as a surface in a space in which k x, ky, and k z are 
plotted on the axes. For the free-electron theory, all states below the Fermi surface are 
contained within a sphere, as schematically depicted in Figure 22.16a. For the Bloch 
theory, the Fermi surface is not spherical, as shown in Figure 22.16b for copper. 

The Structure of Liquids 

When a solid melts to form a liquid, a considerable change in properties takes place 
with a small change in temperature. The rigidity of the solid suddenly disappears. The 
molar volume usually increases slightly by 5-15%, although it decreases by about 8% 
in the case of water. The isothermal compressibility increases by a few percent in some 
cases and by a factor of 2-3 in others. The thermal conductivity drops, but diffusion 
coefficients greatly increase. The solid's lattice structure, which extends over long 

8E Bloch, Z. Physik, 52, 555 (1928). See Hannay, op. cit., pp. 27ff (Note 5), or Blakemore, op. cit., 
pp. 204ff (Note 4). 
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distances compared with molecular dimensions, suddenly collapses. Vestiges of this 
structure exist in the liquid, but only at short distances. For example, in most atomic 
solids, each atom has 12 nearest neighbors. When the solid melts, the average nearest- 
neighbor distance changes only slightly, but the average number of nearest neighbors 
decreases. In liquid argon at the melting temperature, the average nearest-neighbor 
distance is only 1% larger than in the solid at the same temperature, but the average 
number of nearest neighbors drops from 12 to a value between 10 and 11. The lower 
density of the liquid is due to the presence of voids around molecules, and "hole 
theories" of liquids have been devised to explain the properties of liquids on this basis. 9 
The void among nearest-neighbor molecules does not necessarily represent one missing 
molecule with all others in the same locations as in the solid. Instead, there are generally 
numerous small vacant spaces that move around and change their sizes as the nearest 
neighbor molecules move. When this disorder is passed on to additional "shells" of 
nearest neighbors, next-nearest neighbors, etc., the long-range order of the solid is 
absent. 

There are three common approaches to the theoretical study of liquids. The first 
approach is by fundamental classical statistical mechanics. When this approach is used, 
the liquid is usually treated as though it were a very dense nonideal gas. The second 
approach is by the use of approximate model systems. When this approach is used, the 
liquid is usually treated as though it were a somewhat disordered solid. The third 
approach is through numerical simulation, in which computer programs calculate liquid 
properties from the velocities and positions of a collection of molecules. 

The Fundamental Statistical Mechanical Approach 
to Liquid Structure 
We consider the simplest model system, a one-component liquid of N atoms that obey 
classical mechanics and do not exhibit electronic excitation. The equilibrium prob- 
ability density of classical statistical mechanics is given by Eq. (21.9-2): 

1 e_[X(p)+~(q)]/kB T (22.4-1) 
f ( P '  q) -- --~1 

where ~l  and U are the kinetic energy and potential energy of the entire system and 
where p and q are abbreviations for the momenta and coordinates of all of the 
molecules. We assume that the potential energy is pairwise additive and depends 
only on the distances between pairs of particles: 

N-1 N 
= y~ y~ u(ro. ) (22.4-2) 

i=1 j= i+ l  

where %. is the distance between atom number i and atom number j. This assumption 
means that the contribution of a pair of molecules to the potential energy is unchanged 
if a third molecule moves close to them. It is apparently a good approximation for dense 
gases, and a fairly good approximation for simple liquids. 

Equation (21.9-5) gives the classical canonical partition function for our system: 

- -  (2rCmkBT) 3N/2 f e -~(q)/kBT dq (22.4-3) Zcl 
J 

9 H. Eyring and M. S. Jhon, Significant Liquid Structures, Wiley, New York, 1969. 
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From Eq. (21.9-25), the ensemble average energy of the liquid is 

U - - ( E ) - k B T 2 (  .0 1%-(Zcl)) - 3NkB T2 d ln(2rCmkB T) + 11 ~t/.e- V / kB1" dq 
v 2 dT -( 

3 
: =NkBT + (#') 

Z 
(22.4-4) 

Exercise 22.15 
Verify Eq. (22.4-4). 

The ensemble average potential energy cannot be computed exactly. We can write 

1 }~ u(r~)e -f/k~r dq (22.4-5) 
('~') -- ~ i=1 j=i+l  

where we have exchanged the order of summation and integration. Every pair of 
particles in our system is just like every other pair, so that all of the N(N - 1)/2 terms 
in the sum of Eq. (22.4-2) will be equal after integration. Therefore, 

("t/') -- N(N2- 1) (1 1 u(r12)e-~/kBr dq (22.4-6) 

The integration in Eq. (22.4-6) is over all of the coordinates of the N particles. We can 
divide up the integrations 

J 
where f . . .  dqu-2 represents the integration over the coordinates of all particles except 
numbers 1 and 2. This much of the integration would be the same if we were averaging 
any quantity that depends only on the coordinates of two particles at a time, so it is 
useful to define the two-body reduced coordinate distribution function: 

1 I e-~P/kB T n(2)(rl, r2) -- n(2)(1,2) -- ~ dqN_ 2 (22.4-8) 

The one-particle reduced coordinate distribution function is defined similarly, with 
integration over the coordinates of N -  1 particles. It is independent of position in an 
equilibrium fluid system: 

1 
n(1)(1) - - ~  (general liquid or gas system) (22.4-9) 

The probability that particle 1 is in a volume element d3rl and that particle 2 is 
simultaneously in a volume element d3r2, irrespective of where the other N -  2 
particles are, is 

(Probability) = n(2)(1, 2) d3rl d3r2 (22.4-10) 

In a dilute gas the intermolecular forces can be neglected and the two-body distribution 
function is 

1 
n (2) -- V---- ~ (dilute gas) (22.4-11) 
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In an equilibrium system in which the potential energy function u depends only on the 
distance between the particles, n (2) depends only on r12, the distance between particles 1 
and 2. 

The radial distribution function, or pair correlation function, g(r), is defined by 

n(2)(1,2) n(2)(1, 2) 
g(r12 ) n(1)(1)n(1)(2) V2 (22.4-12) 

The radial distribution function unfortunately has the same name as the probability 
density for finding an electron at a specified distance from the nucleus in an atom, 
discussed in Chapter 16. 

The pressure can be expressed in terms of the radial distribution function 1~ 

P =~NkBTI1 VkBTN 1(~rr)r g(r) d 3 ]r (22.4-13) 

Exercise 22.16 
Show that Eq. (22.4-13) gives the correct pressure of an ideal gas. 

The radial distribution function, g(r), is the probability of finding a second molecule 
at distance r from a given molecule divided by the probability of finding a molecule far 
from the given molecule. In an ideal gas, g(r) is equal to unity for all distances and the 
positions of the particles are uncorrelated. In a monatomic nonideal gas or in a 
monatomic liquid, g(r) vanishes at r = 0 due to the short-range repulsions between 
molecules and approaches unity at large values of r. At intermediate distances in a 
liquid there are several maxima representing shells of neighboring molecules. 

If one averages over all directions, the radial distribution function can be defined for a 
solid. In a solid, the radial distribution function has large "blips" at distances equal to 
distances between lattice points, and vanishes for other distances. Figure 22.17 shows 
the radial distribution function for liquid and solid mercury. The vestiges of the solid 
structure in the liquid can be seen in the layers of neighbors at very nearly the distances 
between pairs of lattice points. 

We will not discuss them, but there are a number of theories that are used to calculate 
approximate radial distribution functions for liquids. 11 Some of the theories involve 
integral equations satisfied by approximate radial distribution functions. Others are 
"perturbation" theories somewhat like quantum-mechanical perturbation theory (see 
Section 17.2). These theories take a hard-sphere fluid or other fluid with purely 
repulsive forces as a zero-order system, and consider the attractive part of the forces 
to be a perturbation. 

The radial distribution function can be determined experimentally by neutron 
diffraction or X-ray diffraction. When moving at speeds near their thermal average 
speed, neutrons are scattered in much the same way as X-rays, since they exhibit 
deBroglie wavelengths roughly equal to intermolecular spacings in liquids. Neutron 
diffraction is more commonly used to determine radial distribution functions in liquids 
than is X-ray diffraction, since X-rays are scattered primarily by electrons while 
neutrons are scattered primarily by nuclei. 

lOp. A. Egelstaff, An Introduction to the Liquid State, Academic Press, New York, 1967, p. 20. 
l l H. L. Friedman, A Course in Statistical Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1985, Ch. 7, 8 

and 9. D. A. McQuarrie, Statistical Mechanics, Harper & Row, New York, 1976, Chs. 13 and 14. 
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*Exercise 22.17 
a. Find the speed of a neutron such that its deBroglie wavelength is equal to 2.00 x 10 -1~ m. 
b. Find the temperature such that the root-mean-square speed of thermally equilibrated neutrons 

is equal to the speed of part (a), using Eq. (10.3-9). Neutrons that have been equilibrated near 
room temperature are called thermal neutrons. 

Solidlike Model Approaches to Liquid Structure 
There are several model theories that treat a liquid like a disordered solid. These model 
theories are sometimes called "quasi-lattice" theories of liquids. In the cell model 12 

each atom of  a fluid of  atoms is assumed to be confined in a cell whose walls are made 

up of its nearest neighbors. In the simple cell model, this cell is approximated as a 
spherical cavity, inside which the potential energy of the moving atom is constant. Since 
each atom moves independently in this simple model, the classical canonical partition 
function can be written as a product of molecular partition functions. Each atom moves 
in a small cell instead of  in the entire volume of the system, so that the canonical 
partition function is 

Zc 1 _ (2nmkB T)3N/2 ( Vfe--uo/kB T)N (22.4-14) 

where Vf is the "free volume" in which the center of the atom can move and where u0 is 
the constant potential energy of  an atom in a cell. We assume that the atoms in the solid 
at 0 K are hard spheres in contact with each other. The centers of  nearest-neighbor 
atoms are at a distance d from each other, where d is twice the radius of  the atoms (their 

12 Y. L. Hill, StatL~tical Thermodynamics, Addison-Wesley, Reading, MA, 1960, Ch. 16. H. Eyring and M. 
S. Jhon, op. cit., Ch. 2 (Note 9). 
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diameter). At nonzero temperature, the thermal expansion of the lattice moves the 
nearest neighbors to an average distance b that is larger than d. The center of the atom 
can now move about in a small region at the center of the cell, approximated as a sphere 
with radius equal to b -  d. 

The free volume is 

Vf - 4 ~z(b - d) 3 (22.4-15) 

so that the partition function and thermodynamic variables can be found by combining 
Eqs. (22.4-14) and (22.4-15). If we assume a close-packed lattice, the distance b can be 
expressed in terms of the molar volume. 

Exercise 22.18 
In a face centered cubic close-packed lattice, the unit cell dimension is equal to ~ b ,  and there 
are four atoms in a unit cell. Show that 

b 3 _ x/~Vm (22.4-16) 
NAv 

where Vm is the molar volume and NAv is Avogadro's number. 

Using Eq. (22.4-16), the classical canonical partition function of an atomic liquid of 

N atoms is 

' ,  Av, e (22.4-17) 

where Vm, s is the molar volume of the solid at 0 K. The pressure can be calculated from 
Eq. (21.8-35b) using this partition function: 

P - kB T (0 In(Z)'] = Nk B T 
\ OV I v  V 1 - (Vm,  s/Vm) 1/3 

(22.4-18) 

Exercise 22.19 
Carry out the differentiation to obtain Eq. (22.4-18). 

The simple cell theory result for the pressure given in Eq. (22.4-18) approaches the 
ideal gas value for large molar volume, and diverges as the molar volume approaches 
the molar volume of the solid at 0 K. This behavior is qualitatively correct, but the cell 
model does not predict accurate values of the pressure. Lennard-Jones and Devon- 
shire 13 developed an improved version of the cell model, in which they explicitly 
summed up the potential energy contributions for the nearest neighbors, operating 

better results. 
There is a problem with all quasi-lattice theories of the liquid state. In calculating the 

entropy and any entropy-related thermodynamic variables such as the Gibbs energy, 
etc., we must make the semiclassical correction to the partition function of Eq. 
(21.9-19). If we really were discussing a crystal, we would divide by h 3N, where h is 

13j. E. Lennard-Jones and A. E Devonshire, Proc. Roy. Soc. (London), A163, 53 (1937) and A165, 1 
(1938). 
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Planck's constant. There would be no corection for the indistinguishability of the 
particles, since the lattice sites are distinguishable. If we were discussing a gas, as in 
Section 22.4, we would divide by N! as well as by h 3N, as in Eq. (21.9-19). Our present 
model is an intermediate case. There is insufficient order to claim that the quasi-lattice 
sites are distinguishable, but our model is still not so completely disordered as a gas. 
The simplest procedure is to treat the system like a gas and divide by N!, making a 
contribution to the entropy that is called the communal entropy. There has been some 
discussion of whether this procedure is reasonable, but in view of the crudity of the cell 
model and in view of the fact that nearly all current research concentrates on the 
fundamental statistical mechanical approach rather than on quasi-lattice approaches, 
this discussion is not very important. 

Exercise 22.20 
Write expressions for the energy and entropy of the simple cell model, including correction for 
the communal entropy. 

Numerical Simulations of Liquid Structure 
With the advent of fast computers numerical simulations of liquid structure have 
become practicable. There are two principal types of simulation, the Monte Carlo 
method and the molecular dynamics method. The Monte Carlo method is so named 
because it uses a random number generator, reminiscent of the six-sided random 
number generators (dice) used in gambling casinos such as those in Monte Carlo. This 
method was pioneered by Metropolis. 14 It is a modification of the original Monte Carlo 
method, which is used to evaluate integrals by randomly choosing points within the 
interval of integration. The integrand is evaluated at these points, and summing these 
values with equal weight gives an approximation to the integral. 

In the Monte Carlo method a system of several hundred or a few thousand molecules 
is considered. Such a system is of course much smaller than a macroscopic liquid 
sample, but the error so introduced can be estimated. A sample set of coordinate states 
for all of the molecules is generated, and the average of mechanical quantities (energy, 
pressure, etc.) is taken over all of these states. These states are generated as follows: An 
initial coordinate state of the system is assigned in some way. A random number 
generator is used to pick a number, b, between -1  and 1. The particle is moved a 
distance Ax = ab in the x direction, where a is a predetermined maximum displace- 
ment. The change in potential energy of the system, A ~ ,  is then calculated. I f A V <  0, 
the particle is left at the new location. If A ~  > 0, the particle is assigned a probability 
of staying at the new location that is equal to exp(-A~U/kB T). This is done by choosing 
a new random number, c, between 0 and 1. If c > exp(-A~//~/kB T), the particle is left at 
the new location. Otherwise, it is returned to its old location. Similar displacements are 
taken in the y and z directions for the first particle, and then in all three directions for all 
other particles. 

Each time a new set of locations is obtained (including a set obtained by returning a 
particle to its old position), the value of the quantity to be averaged is calculated and 
added to the sum that is producing the average value. It was shown by Metropolis and 

14 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys., 21, 
1087 (1953). 



22.5 Polymer Formation and Conformation 927 

his coworkers that, if sufficient terms are taken, this procedure produces averages that 
are correctly weighted by the canonical probability distribution. In order to make the 
system act somewhat like a piece of a larger system, periodic boundary conditions are 
applied: If a move carries a particle out of the system, which is usually contained in a 
cube, the particle is reintroduced into the system through the same location on the 
opposite side of the cube. 

The second simulation technique is molecular dynamics. In this technique, which 
was pioneered by Alder, 15 the classical equations of motion of all of the particles of a 
system of several hundred particles are numerically integrated by a computer program. 
The method is somewhat similar to the Monte Carlo method, except that the 
displacements of the particles are determined by numerically simulating the classical 
equations of motion for a time step of about 1 fs (one femtosecond). Periodic boundary 
conditions are applied as in the Monte Carlo method. The equations of motion are 
followed for a period of time that is short on macroscopic time scale, perhaps a fraction 
of a second. However, even this much calculation can use a large amount of computer 
time. The first molecular dynamics calculations were done on systems of hard spheres, 
but the method has been applied to systems having intermolecular forces represented by 
the square-well and Lennard-Jones potential energy functions. 

Both equilibrium and nonequilibrium information can be obtained by the molecular 
dynamics technique. If the initial state of the system simulates a specific nonequilibrium 
state, the relaxation of the system toward equilibrium can be studied, giving direct 
information on transport properties. 16 After a sufficient time, the molecules will settle 
into motions that simulate the motions of molecules in equilibrium liquids, and 
equilibrium properties can be calculated. 

Polymer Formation and Conformation 

Polymer molecules are often called macromolecules. The word polymer comes from 
poly, meaning many, and meros, meaning parts. Polymer molecules are formed from 
smaller molecules (monomers) that react to form covalently bonded chains or networks. 
There are many synthetic polymers such as polyethylene, nylon, polyesters, etc. 
Synthetic polymers are found in almost all manufactured products, and polymer 
chemistry is probably the most important area of industrial chemistry. There are also 
many naturally occurring polymers, including natural rubber, proteins, starches, 
celluloses, and nucleic acids. As with all substances, the properties of polymers are 
determined by their molecular structures, and the properties of synthetic polymers can 
often be tailored to specific applications. 

The simplest polymers have linear chainlike molecules. These materials are called 
thermoplastic substances because the material gradually softens as the temperature is 
raised. Other polymers have networks instead of chains. Some of these are made up of 
long chains with short chains (cross links) fastening two or more chains together, and 
others are three-dimensional networks that are bonded in much the same way in all 
three dimensions. Network polymers are sometimes called thermosetting substances, 
because they are commonly cross-linked at elevated temperatures. They usually do not 
soften when they are heated after polymerization. 

15B. J. Alder and T. E. Wainwright, J. Chem. Phys., 31, 459 (1959). 

16See W G. Hoover, Annu. Rev. Phys. Chem., 34, 103 (1983) for a review of work in this field. 



928 22 The Structure of Solids and Liquids 

Synthetic polymers are also classified by the type of reaction that forms them. The 
two major classes are condensation polymers and addition polymers. When a 
monomer unit is added to a condensation polymer chain there is another product 
(often water) besides the lengthened chain. In an addition polymer there is no other 
product, so that the polymer has the same empirical formula as the monomer. Two 
common examples of condensation polymers are nylon and polyester, and two common 
examples of addition polymers are polyethylene and polystyrene. 

Polymerization Kinetics 
We discuss the reaction kinetics of condensation polymerization, but addition poly- 
merization can be discussed in much the same way.17 Consider the formation of a 
polyester from a diacid,, H O O C - X - C O O H ,  and a dialcohol, H O - Y - O H ,  where X 
and Y represent two hydrocarbon chains. The first step in the polymerization is 

H O O C - X - C O O H  + H O - Y - O H  ~ H O O C - X - C O O - Y - O H  + H20 

The resulting dimer has one carboxyl group and one hydroxyl group, so it is available 
for reaction with further monomer units. The next step can be the reaction with a diacid 
or a dialcohol. Two chains of any length can also bond together to from a longer chain. 
In any event, a long chain with the repeating unit - O O C - X - C O O - Y -  is eventually 
formed, which has a carboxyl group at one end and a hydroxyl group at the other. 

To simplify the solution of the rate differential equations for the polymerization 
reactions, we assume that the rate coefficients for all condensation reactions have the 
same value. This approximation is commonly justified by the assertion that the reaction 
is not diffusion-limited and that the behavior of a functional group in a "cage" of 
neighboring molecules or groups is nearly independent of the length of the chain to 
which the functional group is attached. We begin with a stoichiometric mixture that has 
equal concentrations of diacid and dialcohol, and simplify the problem by using a single 
dependent variable, c, the sum of the concentrations of all types of molecules other than 
catalyst or solvent molecules. At t - - 0 ,  when the polymerization reaction begins, 
c -- c o and the diacid concentration is equal to c0/2. There are two carboxyl groups on 
each diacid molecule, so that the initial concentration of carboxyl groups is equal to c o. 
We assume that the water is removed as it is formed, so that each time a condensation 
reaction occurs, one free carboxyl group disappears, and the number of molecules 
decreases by unity, so that as c changes it remains equal to the concentration of free 
(unesterified) carboxyl groups, and also to the concentration of free hydroxyl groups. 

If the polyesterification reaction is carried out with an acid catalyst, we assume that 
the reaction is first order in the diacid (or other molecule with a carboxyl group), first 
order in the dialcohol (or other molecule with a hydroxyl group), and first order in the 
catalyst. We assume that the back reaction and the uncatalyzed reaction can be 
neglected. The forward rate differential equation is 

dc 
dt = - k f [ H +  ]c2 - -k'c2 (22.5-1) 

where 

k ' =  kf[H +] (22.5-2) 

17 See H. R. Allcock and E W. Lampe, Contemporary Polymer Chemistry, Prentice-Hall, Englewood 
Cliffs, NJ, 1981, pp. 245ff, or C. Tanford, Physical Chemistry of Macromolecules, Wiley, New York, 1961, pp. 
588ff for the standard treatments of both types of polymerization. 
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Since the catalyst is not consumed, [H +] is a constant. Equation (22.5-1) is the same as 
Eq. (12.2-8). Equation (12.2-11) gives its solution: 

1 1 
- = - -  + k' t  (22.5-3) 
C C o 

We define the variable p, the fraction of carboxyl groups that have reacted: 

C 
p -  1 (22.5-4) 

CO 

Equation (22.5-3) can be written 

k' cot 
- (22.5-5) 

P 1 + k'cot 

which is equivalent to 

1 - p  
-- 1 + k'cot (22.5-6) 

Exercise  22.21 
Verify Eqs. (22.5-5) and (22.5-6). 

The degree of polymerization, x, is defined as the number of monomer units in a 
molecule. In the present example, if x is even there are x / 2  diacid molecules and x / 2  
dialcohol molecules combined in the polymer molecule. If x is odd, there is an extra 
diacid or an extra dialcohol. The number-average degree of polymerization is called 
2n, and is given by 

c o 1 
2, = - -  = (22.5-7) 

c 1 - p  

This value is a mean value with each molecule given equal weight. Equation (22.5-3) 
can be expressed in terms of 2n: 

X n  - -  1 + k' cot (22.5-8) 

Equation (22.5-8) agrees with experiment fairly well for the later stages of polymeriza- 
tion, although not so well for the early stages. Figure 22.18 shows data for two 
polyesterification reactions, each beginning with 82% of the carboxyl groups esterified. 

Since there is a distribution of degrees of polymerization, there is a distribution of 
molecular masses. If x is even, the molecular mass is 

X 
Mx - ~ Mr + 18 amu - xMo + 18 ainu ~ x M  o (22.5-9) 

where M r is the mass of the repeating unit of the polymer and M 0 is equal to Mr~2. The 
18 amu is added because each molecule has an OH group at one end and an H atom at 
the other end that are not part of the repeating unit. Equation (22.5-9) can be modified 
for odd values of x. For either odd or even x, the final approximate equality is valid for 
large values of x. 
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Let N x be the number of molecules with degree of polymerization equal to x and let 
Xx be the number  fraction of molecules with this degree of polymerization: 

X x = Nx (22.5-10) 
N 

where N is the total number of molecules. The number-average molecular mass is the 
mean molecular mass with each molecule given equal importance in the averaging 
process: 

1 oo  c~  

1(/I n - ~ ~ N x M  x - Y~ X x M  x (22.5-11) 
x=l x=l 

where the sum is over all values ofx  and where we have used an infinite upper limit for 
the sum, which introduces a negligible error. The number-average molecular mass is 
equal to the total mass divided by the total number of molecules. 

A formula for _hT/, can be derived from statistical reasoning. 18 We assume that all rate 
coefficients are equal and that x is even. The polymer molecule consists of x -  1 units 
with esterified carboxyl groups, and one unit with a free carboxyl group. Let the 
fraction of all carboxyl groups that are free be equal to 1 - p ,  and the fraction that are 
esterified be equal to p. The probability of having a given value of x is 

Probability of x - px-l(1 - p) (22.5-12) 

The number-average molecular mass can now be written 

O O  O ~  

l~/ln - -  Z S x x M o  - M0(1 - P ) ~ xP x-1 (22.5-13) 
x=l x=l 

where a term equal to 18 amu has been omitted and where we again use an infinite 
upper limit for the sum. This sum can be found in tables, 19 giving 

M~ (22.5-14) 21~/, -- 1 _ p 

From Eq. (22.5-6) and (22.5-14), we can write an equation for the time dependence 
of M," 

m 

M n --  M0(1 + cok ' t )  (22.5-15) 

where we continue to neglect 18 amu compared with M n. For fairly large values of the 
time, 

giving 

1 + cok't ~ cok't 

)~.I n --  Mocok '  t 

This relation can also be obtained using reaction kinetics. 2~ 
The time dependence of the number fraction of any degree of polymerization can be 

obtained by substituting Eq. (22.5-5) into Eq. (22.5-12). 

(22.5-16) 

18 Allcock and Lampe, op. cit. (Note 17). 
19 See for example H. B. Dwight, Tables of  Integrals and Other Mathematical Data, 4th ed., Macmillan, 

New York, 1961, p. 8. 
2~ op. cit. (Note 17). 



22.5 Polymer Formation and Conformation 931 

*Exercise 22.22 
Obtain an expression for the time dependence of X x. 

The mass fraction of molecules with degree of polymerization x is 

mass of molecules of degree of polymerization x 

Wx = mass of all molecules 
NxMx 

NxMx 
x = l  

(22.5-17) 

The mass -avera g e  m o l e c u l a r  mass  (often called the "weight-average molecular 
weight") is defined by 

O~ 

Z NxM  
Mw - ~2 WxMx _x- i  (22.5-1S) 

x=l ~_, NxMx 
X-"I 

The required sum can be found in tables, 21 giving 

)17/w -- (1 - p ) 2 M  0 ~ x2p x-1 -- M 0 1 + p (22.5-19) 
x = l  1 - p  

The mass-average molecular mass is always equal to or larger than the number- 
average molecular mass since the heavier molecules are given larger importance in the 
mass average. In our case, ifp is nearly equal to unity, the mass-average molecular mass 
is approximately twice as large as the number-average molecular mass. 

The evolution in time of the mass-average molecular mass can be expressed as a 
function of time, as was done for M n in Eq. (22.5-15). Figure 22.19a shows the 
distribution of mass in a polyester, according to Eq. (22.5-12) and Figure 22.19b shows 
the evolution in time of several mass fractions during a condensation polymerization. 

Exercise 22.23 
Show that 

_~I w -- Mo(1 + 2k' cot ) (22.5-20) 

Polymer Conformation 
A typical polymer molecule is relatively flexible since most single covalent bonds are 
able to rotate even if the bond angles are fixed. It can therefore adopt any one of a large 
number of possible conformations. The principal elementary piece of information about 
the conformation of a polymer molecule is the end-to-end distance. Even if we had a 
monodisperse sample of a polymer (one in which all molecules had the same molecular 
mass), there would be a distribution of end-to-end distances because each molecule 
would coil up differently from the others. 

21 Dwight, op. cit., (Note 19). 
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We approximate a polymer molecule by a freely joined chain, which is a set of links 
of fixed length a fastened together end-to-end in a chain such that each joint can rotate 
into any position whatsoever, even folding one link back onto the previous link. To 
simplify the problem even further, let us suppose that each link of the chain can be 
directed in one of only six directions, parallel to the x, y, and z axes of  a cartesian 
coordinate system. We place one end of the chain at the origin, so that the ends of the 
links can fall only on the lattice points of  a simple cubic lattice with lattice spacing a, 
very much like a crystal lattice. The probability that the end of link number n + 1 is at a 
lattice point with cartesian coordinates (x, y, z) is denoted by p(n + 1, x, y, z). This 
probability will give us our distribution of end-to-end distances for a chain of n + 1 
links. If the end of link number n + 1 is at (x, y, z), then the end of link number n can 
be at one of only six possible locations: (x + a, y, z), (x - a, y, z), (x, y + a, z), 
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(x, y - a, z), (x, y, z + a), or (x, y, z - a). We assume that the probabilities of  the six 
possible directions of  a link are equal so that 

p(n + 1,x, y , z )  - ~ [ p ( n , x  + a, y , z )  + p ( n , x  - a, y , z )  + p ( n , x ,  y + a,z)  

+ p(n, x, y - a, z) + p(n, x, y, z + a) + p(n, x, y, z - a)] (22.5-21) 

Equation (22.5-21) is a difference equation that can be solved. 22 We apply the condition 
that the beginning of  the chain is known to be at the origin: 

1 i f x -  0, y -  0 a n d z -  0 
p(O, x, y, z) - (22.5-22) 

0 otherwise 

The difference equation will maintain the normalization 

(30 00 0(3 

Z ~ Z p ( n , x , y , z ) - -  1 (22.5-23) 
x = - o c  y = - o c  z = - o c  

where the summations are over all values of  x, y, and z corresponding to lattice points 
and where we recognize that the lattice is not limited in size (although the probabilities 
for locations very far from the origin will be zero). 

We define a one-dimensional probability by summing p(n + 1, x, y, z) over all values 
of  y and z. We now omit the limits on the sum and write 

p(n + 1, x) = Y~ Z p ( n  + 1, x, y, z) (22.5-24) 
y z 

which is the probability that the end of  link number n + 1 is at x, irrespective of  the y 
and z values. Equation (22.5-21) is now summed over all values of  y and z to give 

p(n + 1, x) = ~ [p(n, x + a) + 4p(n, x) + p(n, x - a)] (22.5-25) 

where we have recognized that the y and z directions are mathematically equivalent so 
that four terms are equal to each other after the summation. 

The principal variable that characterizes the distribution of  end-to-end distances is 
the mean of  the square of  the distance, called the second momen t  of  the distribution, 
equal to the variance or the square of  the standard deviation of  the distribution. The x 
component of  this quantity for link number n + 1 is given by Eq. (22.5-25): 

(X2)n+l - ~ x2p(n + 1, x) 
X 

1 2 1 
~x x2p(n' x + a ) +  -~ +-6 x -- -- -6 ~x x2p(n' x) ~_. x2p(n, x - a) (22.5-26) 

In the first term, let x + a - x', and in the third sum, let x - a - x". The second sum 
is equal to (x2)., so that 

1 2 
( X 2 ) n + l  - - ~  ~ ( X  t2 - -  2ax' + a2)p(n,x ') + -~ ( X 2 ) n  

x t 

1 ~(xt,2 § 2ax" + a2)p(n x") 
+-6x,, 

(22.5-27) 

22E T. Wall, Chemical Thermodynamics, 2d ed., W. H. Freeman, San Francisco, 1974, pp. 341ff. 
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There is no distinction between a sum over x, x', or x" after the summation is done. 
Therefore, we can replace x' or x" by x in the sums. The two sums containing 2ax  
cancel. The two sums containing x 2 give (xZ)n and the two sums containing a 2 can be 
combined: 

(~ 6 )  a2 2 a2 
(X2}n+l -- "}- ( x2)n -'~ -5 Z P ( n ,  x)  = (X2)n ~ 3 

X 

(22.5-28) 

where we have used the fact that the distribution is normalized as in Eq. (22.5-23). 
Equation (22.5-28) is a recursion relation, somewhat analogous to the recursion relation 
used in the solution of the Schr6dinger equation for the harmonic oscillator. If the value 
for n = 0 is known the value of n = 1 can be calculated, and from this the value for 
n = 2 can be calculated, and so on. From the initial condition in Eq. (22.5-22), 

(x2)0 = 0 (22.5-29) 

so that 

a 2 
(x2)1 = -~- (22.5-30) 

Each iteration of Eq. (22.5-28) adds a term a2/3, so that 

na 2 
(x2), = - -~  (22.5-31) 

The three directions are all equivalent so that (x2), = (y2)n = (Z2)n . By the theorem of 
Pythagoras, the mean square end-to-end distance in three dimensions is 

(rZ)n = (xZ)n + (y  Z) n + (ZZ)n = na 2 (22.5-32) 

and the root-mean-square distance is 

rrms = (r 2) 1/2 = nl /2a  (22.5-33) 

As expected, this distance is proportional to the length of a link. However, it is 
proportional to the square root of the number of links in the polymer chain, not to the 
number of links. This behavior arises physically from the fact that a longer chain has 
more ways to coil up than does a short chain, so that adding more links increases the 
root-mean-square distance less rapidly than the number of links. 

The discussion that we have followed for the end-to-end distance in a freely jointed 
chain is analogous to a r andom walk or r a n d o m  flight problem, in which the time t 
plays the same role as n, the number of links. It is applied to various model systems, 
including a model for diffusion in a liquid in which a diffusing molecule is assumed to 
jump a distance equal to a at regular intervals in time. The analysis of this model leads 
to an equation that is the same as Eq. (11.2-16). 

In order to solve for the full distribution of end-to-end lengths, as a function of time, 
we approximate Eq. (22.5-21) by a differential equation. 23 We expand the function p in 

23 Wall, op. cit.; pp 341ff (Note 22). 
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four different Taylor series in n, x, y, and z, treating n as though it could take on 
nonintegral values: 

ap 
p ( n  + 1, x ,  y ,  z )  - -  p ( n ,  x ,  y ,  z )  + -~n + . . . (22.5-34a) 

Op 1 0 2 P a  2 
p ( n , x + a , y , z ) - -  p ( n , x , y , z ) 4- -~x a + -~ -~x 2 zl: . . . (22.5-34b) 

with equations like Eq. (22.5-34b) for y and z. These series are substituted into Eq. 
(22.5-21). The lowest-order terms that do not cancel are kept, and the higher-order 
terms are discarded: 

Vnn--g +b-7+SiJ (22.5-35) 

Equation (22.5-35) is valid in the case that n is large compared with unity and that a is 
small compared with the values of x, y, and z that are important. Compare this equation 
with Fick's second law of diffusion, Eq. (11.2-13). 

We transform the equation to spherical polar coordinates, in which p becomes a 
function of r, 0, and r However, all directions in space are equivalent, so that p cannot 
depend on 0 and r and we write p = p ( n ,  r) .  

Op=a20n 6r  2 OrO (r2 -Orr) (22.5-36) 

The solution to Eq. (22.5-36) is 24 

p(n,r)= ( 3 ) 3/2 2rca 2 e -3rz/zna2 (22.5-37) 

where the constant provides for normalization: 

Ii ~  r ) 4 n r  2 d r -  1 (22.5-38) 

Compare Eq. (22.5-37) to the diffusion equation of Eq. (11.2-16), which can be derived 
from a one-dimensional random walk. 

Exercise 22.24 
a. Carry out the substitution of the Taylor series into Eq. (22.5-21) to obtain Eq. (22.5-35). 
b. Verify that the function of Eq. (22.5-37) satisfies Eq. (22.5-36). 
e. Verify that the function of Eq. (22.5-37) is normalized. 

The freely jointed chain that we have discussed is only a crude first approximation for 
real polymers. Every real polymer has some rigidity built into its bonds so that the chain 
is not freely jointed. We have also ignored the problem of excluded volume, which 
means that the two parts of a polymer chain or of two different polymer chains cannot 
occupy the same location at the same time. In addition, the effect of intermolecular 

24Wall, op. cit., pp. 341ff (Note 22). 
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attractions on the conformation can be considerable. Any of the books on polymer 
chemistry contain discussions of more elaborate theories than the simple freely jointed 
chain theory. 

Most biological macromolecules have far more regular molecular conformations than 
do synthetic polymers. Proteins, which are condensation polymers of amino acids, can 
form intramolecular hydrogen bonds that generally hold the chains in a helical 
conformation or a pleated sheet conformation. The proper conformation is essential 
to the biological function of the molecule. If the molecule is transformed into a more 
random conformation, it loses its biological function and is said to be denatured. 

Nucleic acids are polymers of five-carbon sugars (either ribose or deoxyribose), 
phosphoric acid residues, and certain ring-containing molecules called nitrogen- 
containing bases. Deoxyribonucleic acid (DNA) is held in a double helix of two 
chains by hydrogen bonds between certain pairs of bases: cytosine (C) hydrogen-bonds 
to guanine (G) and adenine (A) hydrogen-bonds to thymine (T) so that in an intact DNA 
molecule a C must be opposite every G on the other chain and a T must be opposite 
every A on the other chain. 

Hermann Staudinger, 1881-1965, was 
a German chemist who received the 
1953 Nobel prize in chemistry for his 
pioneering work in the chemistry of 
macromolecules. 

Charles Goodyear, 1800-1860, was 
an American inventor whose patent 
was widely infringed upon, and who 
died in debt. 

Rubber Elasticity 

Rubber is a naturally occurring polymer, first used as pencil erasers (this use is the 
origin of the name). Rubber was shown by Staudinger to be macromolecular in nature. 
It is an addition polymer of isoprene (2-methyl-l,3-butadiene). Since each molecule of 
the monomer has two double bonds, there remains one double bond per monomer. 
Natural rubber has the cis configuration at all of these bonds. A portion of the structural 
formula for a rubber molecule is (hydrogens have been omitted): 

.... C C--C C~C C~C C .... 
\ I \ I \ I \ I 
C=C C=C C--C C=C 

/ / / / 

C C C C 

Prior to 1955, various kinds of synthetic rubber were invented, but were found to be 
inferior to natural rubber for making automobile tires and most other rubber items. It 
was possible to make polyisoprene, but the double bonds were in a random mixture of 
the cis and trans configurations. In 1955, catalysts were developed that can produce a 
product that is identical to natural rubber, and automobile tires made of synthetic rubber 
are now common. 

In 1839, after 10 years of trial-and-error experimentation in his kitchen, Goodyear 
invented the vulcanization process in which sulfur is reacted with natural rubber. From 
natural rubber, a soft, sticky, and semi-fluid thermoplastic, a more nearly solid and 
elastic product is obtained. Vulcanized rubber can be made in varying degrees of 
hardness, from flexible rubber like that in inner tubes, through the less flexible rubber 
used in tires, to the hard rubber used in combs. In the vulcanization process, the sulfur 
reacts with double bonds in two adjacent chains, forming short chains of sulfur atoms 
between the polymer chains. The extent of this cross-linking and the presence of 
various additives such as "carbon black" (finely powdered carbon) determine the 
physical properties of the rubber. 
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The Thermodynamics of Rubber 
A piece of vulcanized rubber is not a simple system in the thermodynamic sense since 
work other than compression work (P dV work) can be done on it. When it is stretched 
reversibly, work is done on it: 

dw = - P  dV + f dL (22.6-1) 

where L is the length of the piece of rubber and f is the tension force. 
It is found experimentally that the stretching of rubber approximately displays three 

properties: (1) the volume remains constant; (2) the tension force is proportional to the 
absolute temperature; (3) the energy is independent of the length at constant tempera- 
ture. An ideal rubber is defined to be one that exactly conforms to these three 
properties. Since the volume is constant, the first term on the right-hand side of Eq. 
(22.6-1) vanishes and the first law of thermodynamics for reversible processes in a 
closed system made of ideal rubber is 

d U - -  T as + f dL (22.6-2) 

We define an enthalpylike variable, K 

K =  u - U L  (definition) (22.6-3) 

The Helmholtz energy is defined in the standard way: 

A = U -  TS (definition) (22.6-4) 

We denote the analogue to the Gibbs energy by J: 

J = K -  TS= U - f  L -  TS (definition) (22.6-5) 

Just as in Chapter 5, we can write differential expressions: 

d K  = V d S  - L a f  

dA = - S  aT + f dL 

dJ = - S  dT - L df 

(22.6-6a) 

(22.6-6b) 

(22.6-6c) 

and can write Maxwell relations from these. For example, we will need the Maxwell 
relation that can be obtained from Eq. (22.6-6b): 

0(_~)_ ( O f )  (22.6-7) 
T m ~ L 

This Maxwell relation is analogous to the Maxwell relations in Section 5.2. 

*Exercise 22.25 
Write the other three Maxwell relations from Eqs. (22.6-2) (22.6-6a), and (22.6-6c). 

Using Eqs. (22.6-2) and (22.6-7), we can derive a thermodynamic equation of state 
that is analogous to Eq. (5.5-1): 

( )  (OS) -T{Of] + f  (22.6-8) OU _ T -~ + f -- \OT/L 
--~ r r 

We can now show that property (3) of an ideal rubber follows from property (2). I f f  is 
proportional to T we can write 

f = Tq~(L) (22.6-9) 
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where (4) is some function of L but is independent of T. We now have 

_ = s  \OT/L 

so that 

(22.6-10) 

OU) _ _f  + f _ 0 (22.6-11) 

Equation (22.6-11) shows the difference between a rubber band and a spring. When a 
spring is stretched at constant temperature, the energy increases as work is done on the 
spring. When a rubber band is stretched at constant temperature, doing work on the 
rubber band, heat flows out and the energy remains constant. (This behavior is easily 
observed by stretching a rubber band in contact with the upper lip.) Stretching the 
rubber band at constant temperature must decrease its entropy. This fact seems 
reasonable from a molecular point of view since the polymer molecules will be more 
nearly parallel and more nearly ordered in the stretched state than in the relaxed state. 
From Eqs. (22.6-8) and (22.6-11) we can derive a relation for this decrease in entropy: 

OS) (22.6-12) f - - T  - ~  r 

A Molecular Theory of Rubber Elasticity 
We represent an ideal rubber by a model system that has the following properties: 25 (1) 
The equilibrium system is rectangular piece of rubber made up of a set of polymer 
molecules with an equilibrium distribution of end-to-end lengths given by the freely- 
jointed chain formula of Eq. (22.5-37). (2) A certain number, N, of randomly selected 
polymer chains are cross-linked. For simplicity, we assume that they are cross-linked 
only at their ends and that all of the cross-linked molecules have the same number of 
links, n. (3) When the rubber is stretched in the x direction, the y and z dimensions 
change so that the volume remains constant, and the x, y and z components of all end- 
to-end vectors change in the same ratio as the x, y and z dimensions of the rubber. 

At equilibrium, there will be N i molecules with an end-to-end vector r i = (x i, Yi, zi). 

After an elongation in the x direction that preserves the original volume, the end-to-end 
vector of these molecules will be (x~, y~, ~)" 

, , _  Yi ' -  zi (22.6-13) 
Xi - -  GgXi, Yi O~ 1/2 ' Zi O~ 1/2 

where ~ is the degree of elongation, equal to L / L  o, the elongated x dimension divided 
by the original x dimension. The number of molecules with this end-to-end vector is 
still equal to N i. 

To calculate the entropy change on elongation, we use the definition of the statistical 
entropy of Eq. (4.4-1): 

Sst - -  k B ln(~) + const (22.6-14) 

where f~ is the thermodynamic probability or the number of system mechanical states 
that are compatible with the thermodynamic state of the system. To use this formula, we 

25 Wall, op. cit., Ch. 16 (Note 22); E J. Flory, Principles of  Polymer Chemistry, Comell University Press, 
Ithaca, NY, 1953, pp 464ff. 
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calculate the probability, P, that the elongation would occur spontaneously, equal to the 
probability that N 1 chains will have end-to-end vector r' 1, that N 2 chains will have end- 
to-end vector r~ etc. We assume that the chains act independently so that this 
probability is the product of the probabilities of the individual chains. The probability 
is then multiplied by the number of ways to divide the set of polymer molecules into the 
specified subsets: 

l t I 
P' -- N! ~ ~ivp(n, x i, Yi, z~) xi (22.6-15) 

�9 I V  i .  

where the factor N!/ l -KiN i! is the number of ways to divide the N chains into the 
required subsets. Using Stirling's approximation, 

I n ( F )  - N In(N) - N + ~ [N i ln(pl) - N i ln(Ni) + Ni] 
i 

- -  y ~ N  i l n ( p ~ N / N i )  (22 .6 -16 )  
i 

l I ! where we have abbreviated p(n, x i, Yi, z~) by Pi. We now write this equation for the 
equilibrium distribution: 

ln(P) - ~ N i ln(piN/Ni) (22.6-17) 
i 

Since P is proportional to f~ we can write a formula for the entropy change: 

AS - S(stretched) - S(equilibrium) - k[ln(P') - ln(P)] 

= kB ~_. Ni ln(p~/Pi) = NkB ~_.Pi ln(p'i/Pi) (22.6-18) 
i i 

where we have used the fact that Pi - Ni /N,  since the randomly selected cross-linked 
chains obey the equilibrium distribution. 

If we can consider x, y, and z to range continuously to an adequate approximation, we 
can replace the sum by an integral" 

AS - Nk B [ p  ln(p'/p) dx dy dz (22.6-19) 
J 

where the integral is over all values of x, y, and z. From Eq. (22.5-37), 

3 
l n ( p ' / p ) -  2-~-~a2 [ -x2(e  2 -  1 ) - ( y 2  + 2 2 ) (  1 -  1 ) ]  (22.6-20) 

When Eq, (22.6-20) is substituted into Eq. (22.6-19), 

3NkB n n ( 1 ) ]  A S  - -  - -  (x  2) (~z 2 - -  1)  - -  ( ( y 2 )  + (z  2 ) n)  - -  1 

_ NkB c~ 2 + - - 3  (22.6-21) 
2 c~ 

where we have used Eq. (22.5-31) for the equilibrium value of (x2)~, which is also equal 
to (y2), and (z2)~. Using Eqs. (22.6-21) and (22.6-12), we can write an equation of state 
for ideal rubber: 

r - ~  r L0 c~ ~ (22.6-22) 

This equation of state agrees fairly well with experiment for values of c~ up to 3 or 4. 26 

26Wa11, op. cit., p. 348 (Note 22). 
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*Exercise 22.26 
a. Write the formula for the heat transferred in the isothermal elongation of a piece of ideal 

rubber. 
b. For a piece of ideal rubber that is large enough that 1.00 • 10 -6 mol of cross-linked polymer 

chains occur in it, find the value of q and w for stretching it to 3.00 times its original length at 
298.15 K. 

Polymers in Solution 

Polymers such as polyvinyl alcohol can be somewhat soluble in water, and other 
polymers can dissolve in nonpolar solvents. The conformation of polymer molecules in 
solution is similar to that of the pure polymers except that there is an additional effect 
due to intermolecular forces between polymer molecules and solvent molecules and 
between solvent molecules. A nonpolar polymer molecule will attract polar solvent 
molecules less strongly than the polar solvent molecules attract each other and will tend 
to form a tight ball in a polar solvent such as water. Polar polymer molecules will tend 
to form tight balls in nonpolar solvents, but can attract water molecules and can swell in 
aqueous solution. Similarly, nonpolar polymers can swell in nonpolar solvents (try 
placing a rubber object in benzene). 

Just as for a pure polymer, we use the mean-square end-to-end distance as a measure 
of the conformation of the polymer molecules. The expansion coefficient ~ is defined 
such that 

(r 2) __ ~2 (r2)0 (22.7-1) 

where (r2)0 is the mean-square end-to-end distance in the pure polymer and (r 2) is the 
mean-square end-to-end distance in the solution. Do not confuse this expansion 
coefficient with the degree of elongation in the previous section or with the coefficient 
of thermal expansion defined in Chapter 2. A solvent in which polymer molecules 
adopt on the average the same conformation as in the pure polymer is called a theta 
solvent. In a theta solvent, ~ = 1. In a poor solvent for the particular polymer, ~ will be 
smaller than unity, and in a good solvent, which causes the polymer to swell, ~ will 
exceed unity. 

In a typical polymer solution, a polymer molecule and its associated solvent 
molecules will occupy a roughly spherical region in space with a diameter approxi- 
mately equal to the end-to-end distance of the molecule, and will move through a 
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solution in much the same way as a rigid sphere of that size. Einstein solved the 
hydrodynamic equations for flow around a hard sphere in a viscous fluid. If the total 
volume of the spheres in a dilute suspension is denoted by v and the volume of the 
entire suspension is denoted by V, his result is that the viscosity of the suspension is 
given by 27 

( 5 )  
r / - -q0  l + ~ b  (22.7-2) 

where 70 is the viscosity of the pure solvent and ~b is the volume fraction of the spheres 
in the suspension: 

v 
~b - f f  (22.7-3) 

Equation (22.7-2) can be written in the form 

q____ 1 _ r/r _ 1 5 r/s p - -  r/o - -  ~ ~b ( 2 2 . 7 - 4 )  

where t/sp is called the specific viscosity and ~/r is called the relative viscosity. Since the 
volume of a set of spherical particles is proportional to the number of the spheres, the 
specific viscosity of a dilute suspension of spheres is proportional to the concentration 
of the spheres. We define the intrinsic viscosity, [q], also called the limiting viscosity 
number. 

,., 1tl (22.7-5) 

where c is the concentration of the polymer, expressed as mass per unit volume (usually 
grams per deciliter). For a dilute suspension of hard spheres of the same size, the 
specific viscosity divided by c is independent of the concentration: 

1 5 1 v  5 1 4  
[q] - - qsp - -- _ m _  rcr 3 (22.7-6) 

c 2 c V  2 M 3  

where M and r are the mass and the radius of one of the spheres. 

Exercise 22.27 
Verify Eq. (22.7-6). 

We assume that the radius of the sphere occupied by a polymer molecule and 
associated solvent molecules is proportional to the root-mean-square end-to-end 
distance and is thus proportional to the square root of the molecular mass. Therefore, 
the volume of the sphere is proportional to M 3/2 and the intrinsic viscosity is 
proportional to M1/2: 

It/]-- K ' M  1/2 (22.7-7) 

where K' depends on temperature and on the identities of the solvent and polymer, but 
not on M. Equation (22.7-7) is called the Mark-I-Iouwink equation. It is considered to 

27A. Einstein, Ann. Physik. 19, 289 (1906). 
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be valid for a polymer in a theta solvent. For other solvents we can write a modified 
version of the Mark-Houwink equation: 

[F]] -- KM a (22.7-8) 

where the constant K and the exponent a are determined by experiment. Flory and 
Leutner prepared monodisperse samples (samples with molecules of nearly the same 
molecular mass) of polyvinyl alcohol, and found that for aqueous solutions at 25~ 28 

[r/] -- (2.0 x 10 -4 dL g-1)(M/1 amu) ~ (22.7-9) 

For a typical polydisperse sample of a single polymer, one can apply Eq. (22.7-8) to 
each molecular mass that is present, multiply each equation by W/, the mass fraction for 
molecular mass M i, and sum the equations over all possible molecular masses. 
Recognizing that the intrinsic viscosity is a sum of all contributions (since it applies 
to infinite dilution) and that K has the same value for all molecules of a given polymer, 
we can write 

[ r / ] -  K ~ W/M a (22.7-10) 
i 

where the sum is over different molecular masses. We define the viscosity-average 
molecular mass" 

( (22.7-11) 
i 

Combining Eq. (22.7-10) and Eq. (22.7-11) gives 

[q] -- K M  a (22.7-12) 

The viscosity-average molecular mass is not defined in the same way as the number- 
average and mass-average molecular weights, being more like a geometric mean than 
an arithmetic mean. However, it can be shown that if a -  1 the viscosity-average 
molecular mass is the same as the mass-average molecular mass. It can also be shown 
that the viscosity-average molecular mass is the same as the number-average molecular 
mass if a - - 1. It is conceivable that a - 1, but not that a - - 1. The viscosity-average 
molecular mass is more nearly equal to the mass-average value than to the number- 
average value. 

Exercise 22.28 
Using the fact that the mass fractions sum to unity, show that the viscosity-average molecular 
mass is the same as the mass-average molecular mass in the case that a = 1. 

Summary of the Chapter 

In this chapter, we have studied the structure of solids and liquids. Many solids are 
crystalline, with molecular units arranged in a regular three-dimensional lattice. We 
have discussed the principal types of solid lattices. 

28p. j. Flory and E S. Leutner, J. Polymer. Sci., 5, 267 (1950). 
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There are two principal theories for the vibrations of lattices of atoms, the Einstein 
and the Debye theories. In the Einstein model, each atom is assumed to vibrate 
independently of the other atoms, with all atoms vibrating with the same frequency. In 
the Debye model, the lattice is assumed to vibrate with the same distribution of 
frequencies as would a structureless solid. In each theory, the principal result is a 
formula for the heat capacity of the solid lattice. In each case, the high-temperature 
limit of the formula conforms to the law of Dulong and Petit. 

The electronic structure of solids was discussed through the band theory, in which the 
electrons are assumed to occupy delocalized orbitals that comprise bands of energy 
levels. The differences between conductors, semiconductors, and insulators were 
discussed in terms of the band theory. 

The structure of liquids is more difficult to discuss than is the structure of solids, 
since the liquids are more disordered than solids, but not completely disordered as are 
gases. Some elementary comments on the structure of liquids were presented, including 
the definition of the radial distribution function, which gives the probability of finding 
another molecule at a given distance from a molecule. 

The kinetics of the formation of condensation polymers was discussed. An approx- 
imation solution of the rate law was presented, and distributions of molecular mass 
were discussed. The conformation of a simple polymer model, a freely jointed 
chain, was also presented. Rubber elasticity was discussed at the same level of 
approximation. 
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Theories of Unimolecular Chemical Reactions 

Unimolecular reactions are fairly rare, and many reactions once thought to be 
unimolecular actually occur by multistep mechanisms that produce first order kinetics. 
Three reactions accepted as unimolecular are 1 

Br 2 --+ 2Br 

SO2C12 ---+ SO 2 -~- C12 

cyclo-C 3H 6 --+ C H  3 C H = C H  2 

In addition, the cis-trans isomerization at a C--C double bond appears to be 
unimolecular. 

The Lindemann-Christiansen mechanism discussed in Section 13.3 apparently 
applies to most unimolecular reactions. For the unimolecular reaction of a substance 
C, this mechanism is given in Eq. (13.4-13): 

(1) C + M ~ C* + M (23.1-1a) 

(2) C* --+ products (23.1-1b) 

where C* stands for a molecule of C that is excited or activated by an inelastic collision 
with a molecule of the substance M. (The first C molecule could also collide with 
another molecule of C). From Eq. (13.4-18), 

d[c] 
dt 

= -ku,i[C ] (23.1-2) 

where 

klk2[M] k2kl 
k~"i - k 2 + k; [M] = k2 , (23.1-3) 

-t- kl [M] 

This quantity kun i is not a constant since it depends on [M], but in the limit of large 
concentration of M, kun i becomes nearly constant and the reaction is first order. This is 
the assumption that was used in Chapter 13 in the analysis of reaction mechanisms. 

The Activated Complex Theory of Unimolecular Reactions 
The activated complex theory can be applied to a unimolecular reaction in the limit of 
large concentration (the region in which the reaction is first order). As an example 
unimolecular reaction, consider a cis-trans isomerization at a carbon-carbon double 
bond. The reaction is a 180 ~ internal rotation of the atoms at one end of the double bond 
relative to those at the other end. In the orbital approximation the overlap between the 
unhybridized p orbitals from which we construct the n bonding orbital is at a maximum 
in the planar conformation (either cis or trans). Upon a rotation of 90 ~ the overlap 
between the p orbitals on the two carbon atoms vanishes, and the carbon-carbon bond 
becomes a single bond instead of a double bond. The molecule is in a transition state 
with an activation energy roughly equal to the difference between the C - C  single bond 
energy and the C=C double bond energy. 

1 K. J. Laidler, Chemical Kinetics, 3d ed., Harper and Row, New York, 1987, p. 151. 
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Application of the activated complex theory to the unimolecular process gives an 
expression analogous to Eq. (21.7-11) for the rate constant: 

k u T e_A~/kB r zt (23 1-4) - - - a -  

where ' r  is the partition function of the reactant and z~ is the partition function of the 
transition state without the factor for the reaction coordinate. Since the activated 
complex and the reactant molecule have the same atoms and nearly the same chemical 
bonding, all factors in the partition function might nearly cancel except for the factor of 
the "missing" vibrational normal mode. Since vibrational partition functions near room 
temperature are generally nearly equal to unity, the ratio z ~ / z  r will nearly equal unity in 
those cases in which the activated complex resembles the reactant molecule. In this 
case, the preexponential factor in the rate constant is roughly equal to kB T / h ,  which at 
room temperature is approximately equal to 6 x 1012 s -1. In other cases, the activated 
complex is "looser" than the reactant molecule, having lower vibrational frequencies 
and larger moments of inertia, and in this case the preexponential factor is larger than 
6 x 1012 s -1 , since z* is then larger than z r. 

*Exercise 23.1 
Estimate the rate constant and the half-life of a cis-trans isomerization at 300 K. State any 
assumptions. 

Other Theories of Unimolecular Reactions 

Modern theories of unimolecular reactions are generally based on a theory due to Rice, 
Ramsperger, and Kassel, 2 which predated the activated complex theory. It begins with 
the Lindemann-Christiansen mechanism, discussed in Chapter 13 and summarized at 
the beginning of this chapter. Once a molecule becomes activated by an inelastic 
collision, even though it has enough energy to dissociate or to isomerize, this process 
does not occur immediately. If it did, the process would be an elementary bimolecular 
process and would be second order. One picture of what happens is that an inelastic 
collision excites some or all of the vibrational normal modes of the reactant molecule. 
This excited vibration goes on for a time, during which the normal modes exchange 
energy or change their relative phases until a vibrational amplitude of a specific bond 
becomes so large that the molecule reacts. This is sometimes referred to as "energy 
storage." It is assumed that the energy of a particular vibrational normal mode must 
have at least a threshold energy %* in order to react. That is, if a molecule undergoes a 
strong collision such that its vibrational energy after the collision is equal to e*, then 
there is a chance for reaction to occur if e* is at least as large as %* and if that energy 
can become concentrated in the reactive normal mode before deactivation occurs by 
another collision. 

2 O. K. Rice and H. C. Ramsperger, J. Am. Chem. Soc., 49, 1616 (1927); 50, 617 (1928); L. S. Kassel, 
J. Phys. Chem., 32, 225 (1928). See K. J. Laidler, op. cit., pp. 150 if, (Note 1) for a clear discussion. 
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The expression for the rate constant in the Lindemann-Christiansen mechanism is 
modified by assuming a different rate constant for each value of e*, 

dkun i k2(e*)f(e*) = k2 (e,) de* (23.1-5) 
1-~ , 

kl[M] 

and writing the total rate constant as the integral over all values of e* that are at least as 

large as e0*" 

l I -- dkun i -- k2(e*)f(e*) 
kuni e~ e~ 1 -~ , k2(~*) de* 

kl[M] 

(23.1-6) 

where we have replaced the quotient kl/k '  1 by f(e*). This quantity is the equilibrium 
constant for step 1, and it is taken as equal to the Boltzmann probability for energy e*. 
When this is expressed as a function of e*, the result for s vibrational normal modes is 3 

1 ( e * ] S - l l  r 
f (e*) de* = ( s -  1)! \kBT J ~BT e-~*/kB de* (23.1-7) 

The rate constant k 2 is the rate constant for the vibrational energy of excitation to 
accumulate in the reactive degree of freedom and for the reaction to occur. Rice, 
Ramsperger, and Kassel used the approximation that all of  the vibrational degrees of 
freedom have the same frequency, so that their quanta of energy are of the same size. 
Consider a molecule with s vibrational normal modes. The number of ways to distribute 
j quanta of energy among s oscillators, with no restriction on the number of quanta in 
each oscillator, is 

w - -  ( j  + s - 1)! ( 2 3 . 1 - 8 )  
j!(s - 1)! 

and the number of ways to have m quanta in one oscillator if there are j -  m quanta in 
the other oscillators is 

w, 1)! 
( j -  m)!(s - 1)! 

(23.1-9) 

The probability of having m quanta in one oscillator if there are j quanta in all s 
oscillators is the ratio of these quantities" 

W ! 
r ~ ~  

w 

( j  - m 4- s - 1)~'! (23.1-10) 
( j -  m)!(j + s -  1)! 

where we denote the ratio by the letter r. 
If we apply Stirling's approximation in the form 

n ! -  (n)  n (23.1-11) 

3 K. J. Laidler, op. cit., pp. 77, 159 (Note 1). 
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the factors of e cancel. If we then make the assumption that j -  m >> s - 1, we get the 
result )Sl 

- m e*  - e~ ( 2 3 . 1  1 2 )  
j ~* 

where we have used the fact that the number of quanta is proportional to the vibrational 
energy. The rate constant k 2 is now written in the form 

k2 - k* ( 1 -- t?'~s-lc,*J (23.1-13) 

where k* is the rate constant for "free passage" over the "dividing surface" that marks 
the locations on the potential energy surface beyond which reaction is certain. 

When Eq. (23.1-13) is substituted into Eq. (23.1-7), the result is 

k~; e-e;/kBT IO xs-l e-x 
kuni-- ( S - - l ) !  

1 +  k* x 
ki[M] + b 

dx (23.1-14) 

where the substitution 

x - e* - e~ (23.1-15) 
kBr  

has been made. 
In the limit of high pressure (large values of [M]), the rate constant approaches the 

limit: 

lim kun i - k Se -~;/kBT 
c------+ OO 

(23.1-16) 

Exercise 23.2 
Verify Eq. (23.1-16). 

In the original RRK theory, k* was considered to be a constant. However, the results 
of numerical calculations with Eq. (23.1-14) did not always agree well with experiment, 
often giving a value for the preexponential factor that was too small. However, if the 
high-pressure limit is made to agree with the activated complex result, Eq. (23.1-4), 
then 

k~ = ks T z~ (23.1-17) 
h z r 

This allows for large preexponential factors in the case that the activated complex is 
"looser" than the reactant. 

The RRK theory has been modernized by Marcus. 4 The resulting theory is called the 
RRKM theory, and this theory is the principal modem theory of unimolecular reactions. 

4 R. Marcus, J. Chem. Phys., 20, 359 (1952). 
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The Molecular Case History of a Chemical Reaction 

A reaction that has been thoroughly studied is 5 

F + H 2 --+ H + HF (23.2-1) 

Figure 23.1a shows the potential energy along the reaction coordinate, based on a 
semiempirical London-Eyring-Polanyi-Sato (LEPS) calculation. The molar energy 
change of the reaction from ground state to ground state is AE 0 = -29 .2  kcal mo1-1 
( -122  kJ mol-1). The height of the energy barrier (Eb) is small, 0.9kcalmo1-1 
(4kJmol- l ) ,  while the zero-point energies of the H 2 and HF are fairly large, 
respectively equal to 6.2 kcal mo1-1 and 5.85 kcal mo1-1 (26 kJ mo1-1 and 
24.5 kJmol-1). The zero-point energy of the activated complex is 6.9 kcalmo1-1 
(29kJmol-1), so that the molar activation energy AE0* is equal to 1.6kcalmo1-1 
(6.7kJmol-1). The smallness of the activation energy correlates with an activated 
complex that is similar in structure to the reactants, in agreement with Hammond's  
postulate, which states that "the more exoergic the reaction, the more the transition 
state will resemble the reagents." The reaction is sufficiently exoergic that the first four 
vibrational states of the product HF can be populated, as shown in Figure 23.1b. 

Levine and Bernstein review the experimental and theoretical study of this reaction 
up to the time of publication of their book. The first investigation was a chemical laser 
study, in which it was verified that there is a population inversion in the products, with 
the v = 2 vibrational state more highly populated than the other states, so that laser 
action can occur from the v = 2 state to the v = 1 state or the v = 0 state. The next 
investigation was a crossed molecular beam study, in which the angular distribution of 
products was determined, and in which it was found that most of the products were 
"back-scattered" (scattered generally in the direction from which the reactants had 
come). 

Next came a classical trajectory calculation, in which the large back-scattering was 
also found to occur. After this, an ab initio calculation of the potential energy surface 
was carried out, giving a surface in fairly good agreement with the LEPS surface from 
which Figure 23.1 was drawn. There followed a quantum-mechanical calculation, in 
which it was found that "resonances" or "quasi-bound states" occurred at the transition 
state, which means that the activated complex existed for a longer period of time than 
expected, as it would if there were a "basin" in the potential energy surface at the 
transition state. This phenomenon was explained by the fact that the potential energy 
surface has a saddle that is fairly broad in the direction of the symmetric stretch, 
lowering the energy of the activated complex and causing its relative persistence. 

Finally, a detailed chemiluminescence study gave the distribution of product states, 
showing the most back-scattering in the lower four vibrational states, but a significant 
forward scattering in the v = 4 vibrational state, and determining that on the average, 
66% of the energy of reaction goes into vibrational energy, 8% into rotational energy, 
and the remainder into translational energy. The calculations did not agree well with the 
new experimental results. 

Since the publication of the book by Levine and Bernstein, detailed quantum- 
mechanical calculations of state-to-state reaction probabilities have been carried out. 6 

5 R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity, Oxford 
University Press, New York, 1987, pp. 306ff, 396ff. 

6 C. Yu, Y. Sun, O. J. Kouri, P. Halvick, D. G. Truhlar, and D. W. Schwenke, J. Chem. Phys., 90, 7608 
(1989); C. Yu, D. J. Kouri, M. Zhaoo, D. G. Truhlar, and D. W. Schwenke, Chem. Phys. Letters, 157, 491 
(1989). 
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Several different potential energy surfaces were used in these calculations, but only 
states of zero angular momentum were included. Better agreement with experiment was 
attained. Further research is focused on finding better potential energy surfaces. A 
recent calculation gave a barrier height of 0.089 eV, corresponding to 8 .6kJmol-1.  7 
Gimenez et  al. carried out a detailed comparison between their three-dimensional 
quantum-mechanical calculations, and found good agreement with experiment. 8 Aoiz 
and co-workers carried out a quasi-classical trajectory study and found significant 
discrepancies between recent experimental results and the theory. 9 Persky and Korn- 
weitz published a critical review of the experimental data on this reaction. 1~ They 
recommend the following experimental values for the Arrhenius parameters for the 

reaction between 190 K and 376 K: 

A = (1.1 + 0.1) x 10 -1~ cm 3 molecule -1 s -1 

E a = 3.7 -4- 0.4 kJ mo1-1 

The F + H 2 reaction is one of the most thoroughly studied of  all chemical reactions, but 
study of it continues as both calculations and experiments become more sophisticated. 

7 G. E. Scuseria, J. Chem. Phys., 95, 7426 (1991). 
8 X. Gimenez, J. M. Lucas, A. Aguilar, and A. Lagana, J. Phys. Chem., 97, 8578 (1993). 
9 E J. Aoiz, L. Banares, V. J. Herrero, V. S. Rabanos, K. Stark, and H.-J. Werner, J. Chem. Phys., 102, 9248 

(1995). 
10 A. Persky and H. Komweitz, Int. J. Chem. Kinetics, 29, 67 (1997). 
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Theories of Transport Processes in Fluid Systems 

Chapter 11 presented an elementary kinetic theory of transport processes in gases, 
based on formulas for collision rates and mean free paths. The activated complex theory 
of Eyring and Polanyi was applied to chemical reactions in Chapter 21. We now apply 
the same theory to diffusion, illustrating the fact that physical and chemical processes 
are not fundamentally different from each other from a theoretical point of view. We 
assume a quasi-lattice model system that resembles a disordered crystal, much as in the 
cage model described in Chapters 10, 11, and 13. We assume that fluctuating vacancies 
occur in the liquid, and that a molecule can occasionally move into a vacancy. As it 
does so, it must push some neighboring molecules aside, moving through a state of high 
potential energy, as depicted schematically in Figure 23.2. This potential energy 
maximum is analogous to the maximum along the reaction coordinate for a chemical 
reaction. We treat the coordinate representing motion into the vacancy as a reaction 
coordinate and treat the transition state of high potential energy as an activated 
complex. In the thermodynamic formulation of the activated complex theory, the rate 
constant is given by 

kB T e-AC~~ /Rr (23.3-1) 
k - ---h-- 

where AG ~~ is the Gibbs energy change per mole to form the activated complex in its 
standard state, not including motion along the reaction coordinate. 

Assume a two-component liquid system in which the concentrations depend on the 
vertical coordinate z, with a larger concentration of component 2 at the bottom of the 
system. We assume that component 2 is fairly dilute, so that most of its neighbors are 
molecules of component 1. Consider a vacancy at height z = z'. On the average, there 



23.3 Theories of Transport Processes in Fluid Systems 955 

will be slightly smaller concentration of  component 2 above the vacancy than below. 
The rate at which molecules move into the vacancy from below is equal to 

Rate b = k c 2 ( z ' -  a) (23.3-2) 

where a is an average z component of  the displacement into the vacancy, and where 
c2(z' - a) is the concentration of  component 2 evaluated at z' - a. The distance a will 
presumably be roughly equal to the nearest-neighbor distance, since some of the 
displacements are not parallel to the z axis but since the magnitude of  some of  the 
displacements will be greater than the nearest-neighbor distance. The rate at which 
molecules move into the vacancy from above is equal to 

Rate a -- kc2(z' 4- a) (23.3-3) 

We assume that the molecules coming from above on the average have the same z 
component and the same rate constant as those coming from below. 

The net contribution to the diffusion flux is 

J2z  = k [ c 2 ( z '  - a) - c 2 ( z  t 4-  a)]a (23.3-4) 

Let us write c2(z' 4- a) as a Taylor series around the point z' - a: 

Oc 2 
c2(z' 4- a) -- c2(z' - a) 4- ~ (2a) 4- - - .  (23.3-5) 

where the derivative is evaluated at z = z' - a. If we neglect the terms not shown in Eq. 
(23.3-5), Eq. (23.3-4) becomes 

J2z  = - kBT (za2)e-AG++~ (OC2~ (23.3-6) 
h \a~/ 

Comparison with Fick's law, Eq. (11.2-4), gives an expression for the diffusion 
coefficient, 

k B T a2 e_Aa~o/R r (23.3-7) D - - 2 - ~  
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The diffusion coefficient is sometimes written in the Arrhenius form, analogous to 
Eq. (13.3-1): 

D = Ad e-AEad/RT (23.3-8) 

where E a d  is the activation energy and A d is the preexponential factor for the diffusion 
process. To compare Eq. (23.3-7) with this equation, we recognize that the enthalpy 
change of  activation and the energy change of  activation are nearly equal, since there is 
little change in PV in a liquid-state process. Therefore, 

D - -  2 kB T 2 -AS~~ -AU~~ 
h a e e (23.3-9) 

and if we identify A U *~ with E a, 

kB T a2 e_AS>/R Ad -- 2---~- (23.3-10) 

This preexponential factor is temperature-dependent, but its temperature dependence is 
much weaker than that of  the exponential factor. 

*Exercise 23.3 
The diffusion coefficient for 1,1,1-trichloroethane in a mixed solvent of 2,2-dichloropropane and 
carbon tetrachloride was measured to be 1.41 x 10 -9 m 2 s -1 at  25~ and 2.02 x 10 -9  m 2 s -1 at 

45~ 
a. Find the value of the apparent energy of activation. 
b. Estimate the value of AS ;t, assuming that a = 4 x 10 -l~ m. Comment on the magnitude and 

sign of your answer. 

The motion of  a single molecule into a molecule-size hole is not the only simple 
molecular diffusion process that can be treated in a simple model theory. A variety of  
processes, including the exchange in position of  two molecules of  different species, 
have been considered, ll This exchange would correspond to a very high activation 
energy unless there were a vacancy adjacent to the pair of  molecules, in which case the 
activation energy could be small enough that this process might make a significant 
contribution. The exchange in position of  two molecules of  different solute species 
moves a molecule of  one species in one direction and a molecule of  another species in 
the opposite direction. Other processes could correspond to one molecule dragging 
another along with it. Such process can lead to "cross-effects," so that Fick's law must 
be written in an extended form in which the concentration gradient of  one species 
makes a contribution to the diffusion flux of  another species: 

J; - - k D,jVca. (23.3-11) 
j=l 

In the theory of  nonequilibrium thermodynamics, such cross-effects are systematically 
studied, and thermodynamic theorems relating the cross-coefficients are proved. 12 

11R. G. Mortimer and N. H. Clark, Ind. Eng. Chem. Fundam., 10, 604 (1971). 
12 S. R. DeGroot and P. Mazur, Nonequilibrium Thermodynamics, North Holland, Amsterdam, 1962. 
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Viscosity 
In viscous (shearing) flow in a liquid, one layer of molecules flows at a greater speed 
than an adjacent layer. If we use a moving coordinate system, one layer of molecules 
can be considered stationary, with the adjacent layer moving relative to it. In the simple 
model theory of transport processes, this motion is accomplished by the motion of 
individual molecules into holes in the liquid, rather than by concerted motion of a 
whole sheet of molecules at once. Therefore, the rate of shear is proportional to the rate 
constant in Eq. (23.3-1). By Eq. (11.2-20), the viscosity is inversely proportional to the 
rate of shear, so that a formula of the Arrhenius type is 

r I - An e+Ea"/RT (23.3-12) 

where Ean is an activation energy and A n is a preexponential factor for viscous flow. 
This activation energy should nearly equal that for diffusion in the same liquid. 

Exercise 23.4 
The viscosity of carbon tetrachloride at 20~ is equal to 9.69 x 10 -4  kg m -1 S -1 ,  and is equal to 
6.51 x 10 - 4  kg m -1 s -1 at 50~ Calculate the Arrhenius activation energy for viscosity, and 
compare it with the value for the activation energy for diffusion in Exercise 23.3a. Try to explain 
any difference in the activation energies. 

There are various other theories of transport coefficients in liquids. In an approach 
that was pioneered by Kubo and by Green, formulas for transport coefficients are 
derived that contain time-correlation functions. For example, the coefficient of self- 
diffusion is given by 13 

D - 5 (v(0). v( t ) )d t  (23.3-13) 

where v is the velocity of a molecule, and where (v(0). v(t)) is the time-correlation 
function of the velocity. Time-correlation functions are ensemble averages of a quantity 
evaluated at time 0 and the same quantity or a different quantity evaluated at time t. At 
t = 0, the time-correlation function in Eq. (23.3-13) is equal to the average of the 
square of the velocity, which in a classical system is 3k B T / m .  As time passes, the time- 
correlation function approaches zero, representing the decay of the correlation of the 
velocity of a molecule with its initial velocity. In a system of free noninteracting 
particles, the velocities would not change and the time-correlation function would 
remain constant. The decay of the time-correlation function allows the integral in Eq. 
(23.3-13) to converge. Frequency-dependent transport coefficients are given as Fourier 
transforms of the time-correlation functions instead of as time integrals of the time- 
correlation functions, which are equivalent to zero-frequency Fourier transforms. 

13 D. A. McQuarrie, Statistical Mechanics, Harper and Row, New York, 1976, pp. 467ff. 
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If the products and reactants in Example 23.3 were not at unit activity, the Nernst 
equation would be used to find the voltage required to produce each possible product. 

Exercise 23.6 
a. Determine what products will be formed if an aqueous solution of sodium chloride with 

activity on the molality scale equal to 5.000 is electrolyzed with an infinitesimal current, and 
find the voltage required. Assume that any gaseous products are maintained at pressure P~ 
Write the half-reaction equations and the cell reaction equation. 

b. Pure sodium chloride can be electrolyzed above its melting temperature of 801 ~ Write the 
half-reaction equations and the cell reaction equation. 

The Electrical Double Layer 
In order to discuss electrochemical cells with finite currents, we must investigate the 
molecular processes at the surfaces of the electrodes. If a metallic phase such as an 
electrode is negatively charged, the extra electrons will repel each other and move to the 
surface of the phase in order to be as far from each other as possible. Similarly, any 
excess positive charges will be found at the surface of a positively charged conductor. 
Ions and neutral molecules can also be adsorbed on an electrode surface. Adsorbed ions 
are divided into two classes. If the ion is adsorbed directly on the surface, it is said to be 
specifically adsorbed. Specifically adsorbed ions are generally adsorbed without a 
complete "solvation sphere" of attached solvent molecules. Every electrolyte solution 
contains at least one type of cation and one type of anion, and the cations will generally 
not be adsorbed to exactly the same extent as the anions, so that adsorbed ions 
contribute to the charge at the surface. 

In addition to specifically adsorbed ions, a charged electrode surface will attract an 
excess of oppositely charged ions. If they are not specifically adsorbed, these non- 
specifically adsorbed ions are fully solvated and will not approach so closely to the 
surface as specifically adsorbed ions. 

The region near an electrode surface thus contains two layers of charge, the electrode 
surface (including specifically adsorbed ions) with one sign of charge and a more 
diffuse layer made up of nonspecifically adsorbed ions of the opposite charge, as shown 
schematically in Figure 23.4a. This structure is called the electrical double layer, or 
sometimes the diffuse double layer. The layer of specifically adsorbed ions is called the 
compact layer, the Helmholtz layer, or the Stern layer. The plane of closest approach 
of nonspecifically adsorbed ions is sometimes called the outer Helmholtz plane, or the 
Guoy plane. 
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Guoy and Chapman developed a theory of the charge distribution in the diffuse 
double layer about 10 years before Debye and H/ickel developed their theory of ionic 
solutions, which is quite similar to it. 15 If one neglects nonelectrostatic contributions to 
the potential energy of an ion of valence z, the concentration of ions in a region of 
electric potential q9 is given by the Boltzmann probability formula, Eq. (1.7-25): 

c - -  Co e-ze~~ = Co e-zF~~ (23.4-1) 

15 G. Guoy, J. Phys. (Paris), 9, 457 (1910); D. L. Chapman, Phil. Mag., 25, 475 (1913). 
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where c is the concentration of the particular type of ion and c o is the concentration at a 
location where q~ = 0. In the second version of the equation, F is Faraday's constant, 
equal to NAv e -- 96,485 C mo1-1. 

Guoy and Chapman combined Eq. (23.4-1) with the Poisson equation of electro- 
statics, and found (by an analysis similar to that of Debye and Htickel) that if the 
potential as taken equal to zero at large distances, the electric potential in the diffuse 
double layer is given by 

q 9 -  qg0 e - ~  (23.4-2) 

where q90 is the value of the potential at the surface of the electrode. The parameter rc is 
the same parameter as in the Debye-Hiickel theory, given by Eq. (7.4-3): 

- -  ~ (23.4-3)  

where the symbols are defined in Section 7.4. Figure 23.4b shows this potential as a 
function of distance from the electrode surface for an ionic strength of 0.010 mol kg -1 
and a temperature of 298.15 K. The Debye length is defined to equal to 1/K. It is the 
distance from the surface of the electrode to the location at which the potential is equal 
to 1/e (about 0.37) of its value at the surface, and is a measure of the effective thickness 
of the diffuse double layer. 

The electrical double layer resembles a capacitor, which is a pair of parallel 
conducting plates separated by a dielectric medium or a vacuum and which can carry 
charges of opposite sign on the two plates. Typical values of the capacitance of the 
electrical double layer range from 10 to 40 microfarads per square centimeter. 16 

*Exercise 23.7 
Find the Debye length for a solution of HC1 with a molality of 0.0200 mol kg -1 . 

The charge density (charge per unit volume) Pc is given by 

Pc -- F(z+c+ + z_c_ )  (23.4-4) 

where z+ and z_ are the valences of the cation and anion, respectively, and c+ and c_ 
are the concentrations of the cation and anion, respectively. In a neutral electrolyte 
solution far from a charged surface, the charge density equals zero. The charge density 
near a charged surface can be obtained by combining Eqs. (23.4-1), (23.4-2), and 
(23.4-4). 

Exercise 23.8 
Write the equation for the charge density in the Guoy-Chapman theory. 

Figure 23.5 shows the charge density in an aqueous 1-1 electrolyte solution of 
molality equal to 0.010 mol kg -1 at 298.15 K in the vicinity of a positive electrode with 
q90 - 10 mV, according to the Guoy-Chapman theory. Compare this figure with Figure 
7.11 for the charge density near a negative ion in an electrolyte solution. 

16 A. J. Bard and L. R. Faulkner, Electrochemical Methods--Fundamentals and Applications, Wiley, New 
York, 1980, p. 8. 
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Rates of Electrode Processes 

When any chemical reaction comes to equilibrium, the forward and reverse processes 
cancel. The chemical reaction at an electrode is a half-reaction, so the forward reaction 
is an oxidation (anodic) half-reaction and the reverse reaction is a reduction (cathodic) 
half-reaction (or vice versa). Either of these half-reactions if occurring alone would 
correspond to a current passing through the electrochemical cell, and the half-reactions 
can be thought of as producing anodic and cathodic currents that cancel at equilibrium. 
The exchange current  is defined as the equilibrium magnitude of each of these 
currents. The exchange current per unit area is denoted by i 0 and is commonly 
expressed in A cm -2 (amperes per square centimeter). In SI units it is expressed in 
A m -2. 

If the exchange current is large, a relatively small change in either the anodic or 
cathodic current can produce a sizable net current, so that the electrode can approximate 
a nonpolarizable electrode. However, if the exchange current is small, only a small net 
current is likely to occur, and the electrode can approximate an ideal polarizable 
electrode. The magnitude of the exchange current depends on the temperature, and is 
different for different electrode materials and different solution compositions. Typical 
values range from 5.4 x 10 -3 A cm -2 for 0.02 mol L -1 Zn 2+ against a Zn amalgam 
with mole fraction 0.010, down to 10-1~ A cm -2 for the oxygen electrode with a 
platinum surface in acid solution. 17 The zinc electrode is said to be a reversible 
electrode, since it is possible in practice to reverse the direction of the net current at this 
electrode with a small change in potential. The oxygen electrode is called an 
irreversible electrode, since a small change in potential produces a negligible 
change in net current, because of the small size of the exchange current. 

The Overpotential 

There are three sources of back e.m.f, that oppose the passage of a current through an 
electrolytic cell. The first is the reversible back e.m.f, due to the cell reaction. For 
example, in a Daniell cell with unit activities, the reversible back e.m.f, is the 
equilibrium standard-state cell potential of 1.100 V. For activities other than unit 
activities, the reversible back e.m.f, can be calculated from the Nernst equation. For 
the passage of an infinitesimal current, the reversible back e.m.f, is the only contribu- 
tion to the back e.m.f. For a finite current, there is also a second source of back e.m.f., 
the "IR  drop" in the voltage across the electrolyte solution due to its electrical 
resistance. In many cases, we will be able to neglect this contribution. The third 
source of back e.m.f, for a finite current is the overpotentiai, which is a measure of the 
polarization of the electrode. 

There are two principal contributions to the overpotential. 18 The first contribution is 
the concentration overpotential, which is due to changes in concentration near the 
surface of the electrodes due to the passage of the current. The second contribution is 
the activation overpotential, related to the activation energy of the chemical reaction at 
the electrode. It exists in at least some systems because the reactive species have to pass 
through a transition state of high potential energy in order to react at an electrode. 

17 H. A. Laitinen and W. E. Harris, Chemical Analys&, 2d ed., McGraw-Hill, New York, 1975, p. 233. 
18 H. A. Laitinen and W. E. Harris, op. cit., p. 258ff (Note 17). 
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The Concentration Overpotential 
If electrolysis (charging) is occurring in a Daniell cell at a nonzero rate, zinc ions are 
being reduced at the surface of the zinc electrode. If there is no stirring, the zinc ions are 
replaced from the bulk solution only by diffusion. As an oversimplification, let us 
assume that the concentration of zinc ions near the zinc electrode is as represented in 
Figure 23.6, where d is the effective thickness of a boundary layer. The value of d 
depends on the shape of the electrodes, the concentration of the solutes, the value of the 
diffusion coefficient, etc., so we will not attempt to evaluate it directly, but will express 
it in terms of a limiting current. 

For a planar electrode and for the assumed concentration profile of Figure 23.6, 
Fick's law of diffusion, Eq. (11.2-4), gives the diffusion flux of zinc ions as 

[Zn2+]b -- [Zn2+]s 
Jzn2+ -- D d (23.4-5) 

where D is the diffusion coefficient of Zn 2+ ions, where [Zn2+]b is the concentration in 
the bulk of the solution, and where [ZnZ+]s is the concentration at the surface. The 
current density j (current per unit area of electrode surface) is 

j - nFD [Zn2+]b -- [Zn2+]s (23.4-6) 
d 

where n is the number of electrons reacting per ion (n = 2 in the case of Zn 2+ ions). 
As a larger electrolytic current flows, the concentration of zinc ions at the surface 

becomes smaller as they are reduced more rapidly. The current density approaches a 
limit for large counter e.m.f., when the surface concentration approaches zero: 

nFD[ZnZ+]b (23.4-7) 
Jlim -- d 

Of course, if the potential is increased enough, water can be reduced to form hydrogen 
gas, so the limiting value in Eq. (23.4-7) must be estimated from potentials that are not 
sufficient to reduce water or any reducible species other than zinc ions. 

If there is stirring, the zinc ions are brought to the electrode by convection as well as 
by diffusion. If convection predominates, the quotient D/d in Eq. (23.4-7) is replaced 
by the rate of convection (volume of solution brought to unit area of electrode per 
second) called m, the mass transport coefficient. With a combination of convection 
and diffusion, D/d is replaced by a weighted sum of D/d and the rate of convection. 

If we regard the boundary layer as a concentration cell, the analogue of Eq. (9.3-7) 
gives the electric potential difference across the boundary layer. This potential 
difference is the concentration overpotential, denoted by ~/conc: 

RT ln{[Zn2+]b) RT l n ( l j  ) (23.4-8) 
r/c~ = nF ~[Zn:~+]s J -- nF J~im 

where we have used Eqs. (23.4-6) and (23.4-7). We assume activity coefficients equal to 
unity and use the concentration description instead of the molality description. 

Exercise 23.9 
a. Show that Eq. (23.4-8) follows from Eqs. (23.4-6) and (23.4-7). 

*b. Evaluate the concentration overpotential at a cadmium amalgam electrode, the diffusion flux 
of Cd 2+ ions, and the current per square centimeter for 298.15 K and the assumptions that 
d--200~m, that the concentration at the electrode is 0.0100molL -1, and that the 
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concentration in the bulk is 0.0200 mol L - 1  . The diffusion coefficient for Cd 2+ ions equals 
8.7 • l 0  - 1 0  m 2 S-1.19 

Equation (23.4-8) gives the concentration overpotential for one electrode. The concen- 
tration overpotential of the Daniell cell contains also a contribution from the other 
electrode, from which newly formed copper ions diffuse into the bulk of the solution. It 
is sometimes possible to study the behavior of a single electrode by use of a reference 
electrode and a third electrode, called a counter electrode. A common choice for a 
reference electrode is a silver/silver chloride electrode in a saturated potassium chloride 
solution. The electrode is built with a porous plug at the end, forming a liquid junction. 
The liquid junction potential is presumably fairly small, and should be very nearly 
constant if the KC1 solution is much more concentrated than the cell solution. The 
liquid junction is placed close to the surface of the electrode to be studied (the working 
electrode), as in Figure 23.7. The potential difference between the reference electrode 
and the working electrode is measured without allowing a current to pass between the 
reference electrode and the working electrode, but allowing a controlled current to pass 
between the working electrode and the counter electrode. 

The Activation Overpotential 
This part of the overpotential is due to chemical processes at the electrode. For example, 
consider a cation of valence z that can be oxidized by losing n electrons at an inert 
electrode such as a platinum electrode. An example of such a half-reaction is 

Fe z+ ~ Fe 3+ + e -  

We write the general version of such a half-reaction equation: 

R z+ ~ O (z+n)+ + n~- 

where R z+ stands for the reduced species and O (z+")+ stands for the oxidized species. In 
the Fe 2+/Fe 3+ half-reaction, z = 2 and n = 1. 

We assume that the progress of the reaction can be represented by a potential energy 
depending on a reaction coordinate as shown in Figure 23.8a. Increase in the value of 
the reaction coordinate (from left to fight in the diagram) represents a complicated 
process: the ion moves toward the electrode, the electrons detach from the ion, and the 
electrons move into the electrode. The region near an electrode surface can be a region 
of very high electric fields. A potential difference of 1 V across an interface region with 
a thickness of 10 nm corresponds to a field of 1 • 108 V m -1 . 

The maximum in the potential energy is partly due to the increase of the potential 
energy of the positive ion as it approaches the positive electrode, and partly due to the 
energy required to remove n electrons from the ion. This increase in potential energy is 
related to the ionization potential of the ion, but differs in that the electron is not 
removed into a vacuum but is transferred into the electrode. The decrease of potential 
energy as the reaction proceeds past the maximum in Figure 23.8a is due to the binding 
of the electrons into the electrode. This amount of energy is related to the negative of 
the work function of the electrode material, which is the minimum energy required to 
remove an electron from the electrode material into a vacuum, but differs since the 
electrons move into the electrode from ions instead of from a vacuum. 

19 A. J. Bard and L. R. Faulkner, op. cit., p. 154 (Note 16). 
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We regard the state of high potential energy as a transition state, and interpret the 
potential energy to reach the maximum from the left as the activation energy for the 
forward (oxidation) half-reaction. The potential energy required to reach the maximum 
from the fight is the activation energy for the reverse (reduction) half-reaction. We write 
the forward and reverse rate constants for our unimolecular reaction in the "thermo- 
dynamic form" analogous to Eq. (21.7-12) 

k B T eAS,O/Re_A/_/,o/R r k B T eAS,O/Re_AU,O/R r (23.4-9) 
k---U - h  

where we neglect the difference between AH; and AU~. As in Eq. (21.7-18), we 
identify A U J; with the Arrhenius activation energy, Ea, and identify the preexponential 
factor as 

kB T eAS, O/R (23.4 10) A--- U 

The rate constants of the forward and reverse half-reactions can be written in the 
Arrhenius form: 

kox - A ox e-Ea(~ T 

kre d - -  Arede--E~(red)/RT 
(23.4-11 a) 

(23.4-1 lb) 

If the system is at equilibrium and if each half-reaction is first order in its reactant, we 
can write for unit area of the electrode 

(Oxidation rate per unit area) - kox[R]eq 

= (reduction rate per unit area) - k r e d [ O ] e q  

where [O] is the concentration of the oxidized species (Fe 3+ in our example) and [R] is 
the concentration of the reduced species at the surface of the electrode (we omit the 
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subscript s). At equilibrium at the standard-state voltage, the concentrations are equal 
and kre d -- kox. We denote this value of the rate constants by k~ 

( Ea~ ( Eared~ 
k ~ - Aox exp - RT ] - -  A r e d  exp ---R--T-] (23.4-12) 

where the superscript ~ means that the values apply in the standard state at equilibrium. 
Let us now change the counter e.m.f, in the external circuit, thus changing the electric 

potential in the electrode from q~~ (the value of q~ when E = E ~ to a new value q~. The 
potential energy of n moles of electrons in the electrode is changed by an amount equal 
to - n F ( q ) -  q~~ If the maximum in the potential energy curve remains at the same 
position, the activation energy for the reduction increases by nF(q~- q~~ while the 
activation energy of the oxidation remains unchanged. However, the ordinary case is 
that, as shown schematically in Figure 23.8b, the position of the maximum is lowered, 
but by a magnitude smaller than [nF(q~ - ~0~ 

We define a parameter e such that the position of the minimum is lowered by 
( 1 -  ~)nF(q~- ~0~ lowering the activation energy of the oxidation by the same 
amount. The activation energy of the reduction is increased by the amount 
~nF(q~- ~p~ The parameter ~ is called the transfer coefficient or the symmetry 
factor. The name "symmetry factor" is used because its value, which generally lies 
between 0 and 1, is related to the shape (symmetry) of the curve in Figure 23.8a. 

Figure 23.8c shows in an oversimplified way how the shape of the curve affects the 
value of ~. For this illustration we assume that the position of the right side of the curve 
is determined solely by the electric potential at the electrode, while the left side of the 
curve is determined solely by chemical factors that are unaffected by the potential of the 
electrode, and assume also that the two sides of the curve meet at a cusp. When the 
electric potential is increased by an amount ~p - q~~ the entire right side is lowered by 
an amount nF(q~ - ~p~ The peak drops by an amount nF(q~ - ~p~ (corresponding to 

= 1/2) if the slopes of the two sides are equal in magnitude, and by a different 
amount if the slopes have different magnitudes. The parameter ~ is thus a measure of 
the asymmetry of the curve in the diagram. 

Exercise 23.10 
Show by sketching graphs similar to Figure 23.8c that e < 1/2 if the left side of the curve is 
steeper than the right, and that e > 1/2 if the fight side is steeper. 

Assuming that the preexponential factors in Eq. (23.4-11) do not depend on the 
electric potential in the electrode, we write 

kox-Aox exp( -Ea~176  

= k ~  exp(  (1 - ~)nF(q~ - q ~ ~  (23.4-13a) 

Similarly, 

kred- k~ exp(  -c~nF(~~ - q ~ ~  (23.4-13b) 
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Let us now investigate the case of equilibrium at a potential not necessarily equal to 
q9 ~ The magnitudes of the anodic and cathodic currents per unit area of electrode are 
given by 

IJal = nFkox[R] (23.4-14a) 

IJc I -- nFkred[O] (23.4-14b) 

At equilibrium, the net current is zero and the surface concentrations are equal to the 
bulk concentrations, so that 

nFk o exp ((1 - e)nF(qgeq -q~~ 
RT " [Rlb 

( ~nF((Pe q - (P~ 
= nFk ~ exp - RT [Olb (23.4-15) 

Each side of Eq. (23.4-15) is equal to the exchange current density, the exchange 
current per unit area. When equal factors on the two sides of this equation are canceled, 
the symmetry factor disappears from the equation: 

exp(.nF(q~RT q~~ ) _[O]b[Rlb (23.4-16) 

This equation is equivalent to the Nemst equation if the reactants and products at the 
counter electrodes are at unit activities, which means that our treatment is consistent 
with equilibrium electrochemical theory. 

Exercise 23.11 
Carry out the algebraic steps to put Eq. (23.4-16) into the standard form of the Nernst equation. 

If both sides of Eq. (23.4-16) are raised to the - ~  power, we obtain 

( - ~ n f ( q g e q -  (/9~ _ ([O]b'~ -~ 
exp \  ~ ~,[Rlb ] (23.4-17) 

When Eq. (23.4-17) is substituted into Eq. (23.4-15), we obtain an expression for the 
exchange current density, J0: 

Jo -- nFk~ (23.4-18) 

If the voltage is changed from the equilibrium value, the resulting current density is 

J = Ja - IJcl 

=nFk~ exp( (1 -~)nF(qg-qg~  [ R ] - n F k ~  exp(-~nF(q9 - q g~ [ O ] R T  
(23.4-19) 

where we count the current as positive if the electrode half-reaction proceeds in the 
oxidation direction. 

Equation (23.4-19) gives the dependence of the current on the potential for any value 
of the potential. We now express this dependence in terms of the overpotential, q, 
defined by 

/7 --  q9 -- (Peq (23.4-20) 
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We divide the first time on the right-hand side of Eq. (23.4-19) by the left-hand side of 
Eq. (23.4-15) and divide the second term by the fight-hand side of Eq. (23.4-15) and 
obtain 

(23.4-21) 

Exercise 23.12 
Carry out the steps of algebra to obtain Eq. (23.4-21). 

Equation (23.4-21) is a fundamental equation of electrode kinetics. It indicates that 
the current is proportional to the exchange current, but that it has a fairly complicated 
dependence on the overpotential. Figure 23.9 shows the anodic current, the cathodic 
current, and the net current for a hypothetical electrode reaction. Ohm's law is not 
obeyed except for small values of the overpotential. 

If stirring is so efficient that the bulk and surface concentrations are equal, the 
concentrations cancel out of Eq. (23.4-21), which is then known as the Butler-Volmer 
equation: 
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can be used. Application of this approximation to the Butler-Volmer equation gives 

(1 - ~)nFrl ~nFrl~ jonFrl 
J '~Jo  1 +  R T  - 1 +  RT  J ~ RT  (23.4-23) 

so that Ohm's law is obeyed. The factor R T / ( j o n F  ) has the dimensions of resistance, 
and is sometimes called the charge transfer resistance. 

The second limiting case is that of large overpotential. Consider the case that the 
overpotential is large and negative. The second term on the fight-hand side of the 
Butler-Volmer equation, Eq. (23.4-22), is much larger than the first term, and 

[j[ ~ jo e-anFq/RT (23.4-24) 

Solving this equation for q gives 

R T  RT  
r/--  a--n--ff in(j~ - ~ ln(ljl) (23.4-25) 

Equation (23.4-25) is of the form of the Tafel equation, an empirical equation of the 
form 

I~/I = a + b lOgl0(Ijl ) (23.4-26) 

Exercise 23.13 
Derive the version of Eq. (23.4-25) that applies for large positive values of the overpotential. 

The reduction of hydrogen ions at various metal electrode surfaces has been 
extensively studied. The mechanism of the electrode reaction can depend on the 
material of the electrode. One possible mechanism is 2~ 

(1) H + + e -  + M ~ M-H (23.4-27a) 

(2) 2M-H ~ 2M + H 2 (23.4-27b) 

where M denotes the metal of the electrode, and M-H denotes a chemisorbed hydrogen 
atom. Another possible mechanism is 21 

(1) H + + ~-  + M ~ M-H (23.4-28a) 

(2) M-H + H + + e -  --+ M + H2 (23.4-28b) 

In either of these mechanisms, it is possible for different metals that either the first 
step or the second step is rate-limiting. If the first step of the mechanism of Eq. (23.4- 
27) is rate-limiting in both directions, 

(Forward rate) = k 1 [H+]a(1 - 0) (23.4-29) 

where [H+]c denotes the concentration of hydrogen ions at the Guoy plane (outer 
Helmholtz plane) and 0 denotes the fraction of surface sites occupied by hydrogen 
atoms. If the electric potential in the bulk of the solution is called zero, then by the 
Boltzmann probability distribution 

[H+]c = [H+]b e-Fq~a/RT (23.4-30) 

20 K. J. Laidler, J. Chem. Educ., 47, 600 (1970). 
21K. J. Laidler, op. cit. (Note 20). 
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where [H+]b denotes the concentration of H + in the bulk of the solution and where (/91 
is the electric potential at the Guoy plane. 

The rate at equilibrium gives the exchange current. Using Eq. (23.4-13a) for the rate 
constant, 

(23.4-31) 

With the expression in Eq. (23.4-31) for the exchange current, the Butler-Volmer 
equation, Eq. (23.4-22), and Eqs. (23.4-23) through (23.4-25) can be used, since it is of 
the same form for a reduction as for an oxidation half-reaction. 

For a current density of 0.01 A cm -2 and a hydrogen ion concentration of 1.0 mol 
L -1, the overpotentials for the reduction of hydrogen ions at several electrodes 
are 22 

0.035 V for platinized platinum 
0.56 V for iron 
0.76 V for silver 
1.10 V for mercury 

Overpotentials for different reactions at the same electrode will also differ from each 
other in different ways, and it is even possible to react one substance at a nonzero 
current when another substance in the solution would preferentially react at an 
infinitesimal current. An example that is exploited in polarography is the reduction 
of a fairly active metal onto a mercury electrode. The overpotential for production of 
hydrogen from water on a mercury electrode is so large that almost no hydrogen is 
evolved at a potential difference sufficient to plate out the metal, even if hydrogen 
would preferentially be evolved at an infinitesimal current. 

Electrical Conductivity in Solids 

The Drude model system 23 represents the conduction of electrical currents in metallic 
conductors. The system consists of conduction electrons and positively charged 
"cores," which are the ions produced if the conduction electrons are removed from 
the atoms of the crystal. The electrons are assumed to obey classical mechanics, which 
is obviously a bad approximation for the motion of one electron, but which might be a 
usable approximation for the average motion of many electrons. 

Since electrons are fermions, it is necessary to assume dilute occupation, so that most 
of the available electron states are vacant. At zero temperatures, all states of non- 
interacting fermions with energies up to the Fermi level are occupied and none 
with energies above the Fermi level are occupied, as discussed in Section 22.4. The 
Drude model must assume a high temperature in order for dilute occupation to be 
achieved. 

22 W. C. Gardiner, Jr., Rates and Mechanisms of Chemical Reactions, W. A. Benjamin, New York, 1969, 
p. 197. 

23 See J. S. Blakemore, Solid State Physics, 2d ed., W. B. Saunders, Philadelphia, 1974, pp. 158ff, and 
D. Tabor, Gases, Liquids and Solids, 2d ed., Cambridge University Press, Cambridge, UK, 1979, pp. 188ff. 
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As the electrons move about in the crystal, they will interact with the nuclei. An 
accurate description of this interaction would treat the electrons quantum-mechanically 
and would include diffraction effects. However, the Drude model assumes that this 
interaction can be described adequately as a sequence of classical collisions with the 
nuclei. We define 

1 
(Collision probability per unit time) - - (23.5-1) 

r 

The quantity 1/r is like a first-order rate constant, and the rate of collisions per unit 
volume is the number of electrons per unit volume times 1/~, so that by analogy with 
the first-order chemical kinetics result, 

n ( t ) -  n(O)e -t/~ (23.5-2) 

where n(t) is the number of electrons per unit volume that have not yet collided with a 
core at time t. 

Now let us impose an external electric field g on the crystal. The field will accelerate 
the conduction electrons. Since the force on an electron is - e g  (constant), the change 
in velocity of an electron in time t is, from Newton's second law: 

~gt  
Av(t) - (23.5-3) 

m 

where e is the magnitude of the charge on the electron and m is its mass. This change in 
velocity is imposed on whatever velocity the electron originally had. Before the field is 
imposed, no current is flowing, so that the original velocities of the conduction 
electrons vanish on the average. After the change in velocity is imposed on every 
electron, the average velocity is nonzero, and is similar to the drift velocity in the 
discussions of diffusion and ionic conductivity in earlier chapters. We treat the initial 
velocity as zero and take the fight-hand side of Eq. (23.5-3) as the final velocity. The 
distance traveled (in excess of the distance due to the original velocity) from time 0 to 
time t' is obtained by integrating Eq. (23.5-3) from time 0 to time t': 

~St  t2 
r(t t) -- (23.5-4) 

2m 

We assume that with each collision the electron velocity is again randomized, so that on 
the average the velocity returns to zero value after the collision. 

The rate at which electrons are undergoing collisions at time t is 

dn n(t) n(O) -t/~ (23.5-5) 
~ ~ "  e 

dt z z 

The contribution of all electrons to the "electron transport" (equivalent to the electron 
flux times the time of transport) is 

I ~ dn ~ n ( 0 ) z  2 r(t) ~ d t -  t Z e - t / ~ d t - -  (23.5-6) 
0 2mz 0 m 

This formula for the electron transport is the same as if n(0) electrons all had the 
"drift velocity" given by Eq. (23.5-3) for an acceleration time equal to r, 

Vdri~ = (23.5-7) 
m 
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and traveled for a time equal to r. The electric current per unit area, j, is equal to the 
charge on one electron, - e ,  times the electron flux 

/,/~2. c 

m 
~ g  (23.5-8) 

This equation is the same as Ohm's law, Eq. (17.5-5), if the conductivity is given by 

Exercise 23.14 
a. Verify the units of the answer of Example 23.4, obtaining the SI units of ohms from Ohm's 

law. 
b. If a current per unit area of 1.00 • 106 A m -2 is flowing in a sample of gold at 20~ find the 

mean drift speed. Find the ratio of the mean drift speed to the root-mean-square speed of 
electrons (using the classical formula) at this temperature. 

The expression for the conductivity can also be expressed in terms of  the mean free 
path between collisions. The mean free path is approximately given by 

2 = (v)r (23.5-10) 

where (v) is an average speed of  the electrons. This is not the average drift speed, which 
is a small speed superimposed on a large speed. It is an average of  the actual speeds, 
which is nearly the same as the equilibrium value, due to the smallness of  the drift 
velocity. If we use the root-mean-square speed of  Eq. (10.3-9), the conductivity is 

ne22 

cr - ( 3 m k B T ) l / 2  (23.5-11) 
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The Drude model is a crude model, but it contains the accepted mechanism for 
electrical resistance in solids, which is the effect of collisions with the cores of the 
crystal. One problem is that the conductivities of most common metals are found 
experimentally to be nearly inversely proportional to the temperature, instead of being 
inversely proportional to the square root of the temperature as in Eq. (23.5-11). One can 
rationalize this by arguing that the mean free path should decrease as the temperature 
rises, due to the increased vibrational amplitude of the cores, making them larger 
effective targets. There are a number of more sophisticated theories than the Drude 
theory. However, the results of these theories are similar in their general form to Eq. 
(23.5-9). The major differences are in the interpretation of the quantities n, z, and m. 24 

Superconductivity 
This phenomenon was discovered in 1911 by Onnes, 25 who found that the conductivity 
of mercury suddenly rose to a value at least as large as 1015 ohm -1 m -a (and possibly 
infinite) when the mercury was cooled below a transition temperature,  To, of 4.2 K. 
Onnes coined the name "superconductivity" for the phenomenon. Since that time, 
numerous substances have been found to exhibit superconductivity, generally with a 
transition temperature below 23 K. The transition to the superconducting state is a 
second-order phase transition (see Section 6.4). It is also found that a superconducting 
material rejects a magnetic field. That is, within the surface of the sample of material, a 
compensating magnetic field is generated that exactly cancels the magnetic field within 
the material, except for a surface layer of thickness 10-100 nm. This effect is called the 
Meissner effect, and can cause the levitation of a magnet above a superconductor. 
However, if the magnetic field is increased above a certain critical value, which depends 
on temperature and on the substance, the superconductivity disappears. 

There is a generally accepted theory of superconductivity in metals. 26 This theory is 
based on the notion that under certain conditions the electrons interact with the lattice 
of the solid and modify the lattice vibrations in such a way that two electrons form a 
pair with opposite spins having a lower energy than two single uncorrelated electrons. 
The pair of electrons is called a Cooper pair. Unless there is an input of energy to 
break up the pair, it is not possible for one of the electrons to be scattered by a nucleus. 

24 j. S. Blakemore, op. cit., pp. 162ff (Note 23). 
25 H. Kamerlingh Onnes, Akad. van Wetenschappen (Amsterdam), 14, 113 (1911). 
26 j. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., 108, 1175 (1957). This theory is known as the 

BCS theory. 
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At low temperature, there is not enough thermal energy to break up the pair, so that 
scattering does not occur. The electrons remain as a pair, even though they do not 
necessarily remain close to each other. A small voltage can now induce a current of 
Cooper pairs, conducting electrical current without observable resistance. 

Beginning in 1986, a number of ceramic compounds were discovered that exhibit 
superconductivity with transition temperatures as high as 125 K. 27 However, the theory 
of Cooper pairs does not seem adequate to explain the superconductivity of these 
materials. The "high-temperature" semiconductors are oxides, containing copper along 
with two or three other metals, such as barium and yttrium, or thallium, barium, and 
calcium. The first compound to exhibit a transition above that of boiling liquid nitrogen 
was YBa2Cu30 x, where x appears to range in value from about 6.5 to 7.2. If x were 
equal to 9, the substance could have the crystal structure of a "perovskite," with six 
oxygens surrounding each copper and the copper atoms in layers. The crystal structure 
of the superconducting material was determined by X-ray diffraction, and corresponds 
to four oxygen atoms around each copper atom, all in the plane of the copper atoms. 28 

In 1988, T12Ca2Ba2Cu3010+y, where y is smaller than unity, was found to have a 
transition temperature of 125 K. The crystal structure of this compound was deter- 
mined, and found to have planes containing copper and oxygen atoms, as well as planes 
containing thallium and oxygen atoms. 29 The relationship of this structure to the 
superconductivity of the compounds is apparently not yet clear. 

Summary of the Chapter 

In this chapter, we have examined several theories of nonequilibrium processes. The 
principal theory discussed for chemical reactions is the activated complex theory, in 
which it is assumed that the reactants in an elementary process form an activated 
complex that can be assumed to be at chemical equilibrium with the reactants. 

A case history of the gas-phase chemical reaction was presented: 

F + H 2  --+ H + H F  

Although this reaction has been extensively studied on the molecular level, both 
experimentally and theoretically, it is still the subject of ongoing research, and cannot 
be said to be completely understood. 

The activated complex theory was also applied to diffusion in liquids, in which the 
motion of a molecule from one "cage" into an adjacent cage is treated similarly to 
motion along a reaction coordinate of a chemical reaction, and during which an 
activated complex is assumed to form. 

Nonequilibrium electrochemistry was discussed. The important physical fact is that, 
with a finite current flowing, the cell voltage can be different from its equilibrium value. 
The difference is partly due to the overpotential, which was discussed. 

Electrical conduction in metals was briefly discussed in terms of the Drude model, in 
which electrical resistance is assumed to be due to collisions of conducting electrons 
with atomic cores (ions produced when conduction electrons are removed from atoms). 
Superconductivity was discussed briefly. 

27 A. M. Thayer, Chem. Eng. News, 67(48), 9 (Nov. 27, 1989). 
28 R. Dagani, Chem. Eng. News, 65(19), 7 (May 11, 1987). 
29 R. Dagani, Chem. Eng. News, 66(20), 24 (May 16, 1988); S. S. P. Parkin, Phys. Rev. Letters, 61, 750 

(1988). 



Problems 975 



976 23 Some Additional Theories of Nonequilibrium Processes 

a. The usual source of energy to populate the transition 
state in a unimolecular reaction is an inelastic collision. 

b. The RRKM theory of unimolecular reactions is 
outmoded and no longer useful. 

c. The mechanisms of most chemical reactions are not well 
characterized and understood. 

d. Nonequilibrium electrochemical reactions can be under- 
stood with the same theories as other chemical reactions in 
the liquid phase. 

e. By changing the amount of current flowing in an 
electrolytic cell, it is possible to change the products of the 
reaction. 

f. The electrical conductivity of a typical metal increases 
with increasing temperature. 

g. Zinc should be a better electrical conductor than copper 
because it has two 4s electrons while copper has only one. 

h. It is reasonable that the activated complex should 
resemble the reactants more than the products if the reaction 
is highly exoergic. 

i. It is reasonable that the activated complex should re- 
semble the reactants more than the products if the activation 
energy of a given reaction is small. 
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Some Useful Mathematics 

Differential Calculus with Several Variables 

The fundamental equation of differential calculus for a function with independent 
variables x, y, and z is 

Of dx + dy + -~z dz (B-l) 
d f -  -~Xy,z x,z x,y 

where (Of/OX)y,z, (Of/Oy)x, z, and (Of/OZ)x,y are partial derivatives. A partial derivative 
with respect to one independent variable is obtained by the ordinary procedures of 
differentiation, treating all other independent variables as though they were constants. 
An example of Eq. (B-I) is 

OP dT + dV + -~n dn (B-2) 
dP- -  -~  V,n T,n T,V 

This equation represents the value of an infinitesimal change in pressure that is 
produced when we impose arbitrary infinitesimal changes dT, dV, and dn on the 
system. 

An approximate version of Eq. (B-2) can be written for finite increments in P, T, V, 
and n, equal respectively to AP, AT, A V, and An: 

AP ~ AT + AV + An (B-3) 
V,n T,n T,V 

where ~ means "is approximately equal to." Equation (B-3) will usually be more 
nearly correct if the finite increments AT, A V, and An are small, and less nearly correct 
if the increments are large. 

A n  Identity for a Change of Variables The expression for the differential of a 
function U is 

OU aT + a v  + ~ an (B-4) 
d U -  -Of V,n V,n T,V 

if T, V, and n are used as the independent variables. If T, P, and n are used as the 
independent variables, then dU is given by 

dU - OU dT + dP + dn (B-5) 
P,n T,n T,P 
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In a nonrigorous fashion, we "divide" Eq. (B-4) by dT and specify that P and n are 
fixed. Of course, you cannot correctly do this, since dT is infinitesimal, but it gives the 
correct relationship between the derivatives. Each "quotient" such as dU/dT is 
interpreted as a partial derivative with the same variables fixed in each "quotient." 
The result is, holding T and n fixed: 

(oe)  (oe)  (OT)p,n+(O~V) ( O F ) ( O ~ n  ) (On) -- + ~-~ (B-6) 
"-~ P,n -"~ V,n -~ T,n -~ P,n T,V P,n 

The derivative of T with respect to T is equal to unity, and the derivative of n with 
respect to anything is equal to zero if n is fixed, so that 

-- + ~-~ (B-7) 
"-~ P,n V,n T,n P,n 

Equation (B-7) is an example of the variable-change identity. The version for any 
particular case can be obtained by systematically replacing each letter by the letter for 
any desired variable. 

The Reciprocal Identity If the role of the independent and dependent variables are 
reversed, keeping the same variables held constant, the resulting derivative is the 
reciprocal of the original derivative. An example of this identity is 

( 0 V )  _ 1 (B-8) 
-~ r,n-- (OP/OV)r,n 

This identity has the same form as though the derivatives were simple quotients, instead 
of limits of quotients. 

The Chain Rule If the independent variable of a function is itself a function of a 
second variable, this rule can be used to obtain the derivative of the first dependent 
variable with respect to the second independent variable. For example, if U is 
considered to be a function of P, V, and n, while P is considered to be a function of 
T, V, and n, then 

( 0 . ~ ) _  (19..3.~) (00__~~) (B-9) 
V,n V,n V,n 

The same quantities must be held fixed in all of the derivatives in the identity. 
We can also obtain the differential of a quantity which is expressed as a function of 

one variable, which is in turn given as a function of other variables. For example, if 
f = f(u) and u - u(x, y, z): 

(O0~)y,z= (~u) (~XX)y,z (B-10) 

The differential o f f  can be written 

df-  g,,z dx + dy + ~z dz (B-1 1) 
x,z x,y 

Second Derivatives and Euler's Reciprocity Relation A second derivative is the 
derivative of a first derivative. If f is a differentiable function of two independent 
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variables, x and y, there are four second derivatives: 

ax ay ~x -~y x y 

(~ - ( ~  (~  (B-12c) 

( 0 ~ 2 ) x - ( ~ Y  (~-~fY)x)x (B-12d) 

We refer to the second partial derivatives in Eqs. (B-12a) and (B-12b) as mixed second 
partial  derivatives. The Euler reciprocity relation is a theorem of mathematics" I f f  
is differentiable, then the two mixed second partial derivatives in Eqs. (B-12a) and 
(B-12b) are the same function: 

~f  ~f  = ~ (B-13) OyOx OxOy 
For a function of three variables, there are nine second partial derivatives, six of 

which are mixed derivatives. The mixed second partial derivatives obey relations 
exactly analogous to Eq. (B-13). For example, 

(o~TVp),- (o;2VT),, (B-14) 

The same third independent variable is held fixed in both derivatives, as shown by the 
subscript. 

The Cycle Rule If x, y, and z are related so that any two of them can be considered as 
independent variables, we can write the cycle rule: 

Oxx y z Oz x - - - 1  (B-15) 

We obtain this identity in a nonrigorous way. The differential dz can be written 

+ 

We consider the special case in which z is held fixed so that dz -- 0, and "divide" Eq. 
(B-16) nonrigorously by dy. The "quotient" dx/dy at constant z is interpreted as a 
partial derivative at constant z, and the "quotient" dy/dy equals unity. We obtain 

(Oz) (Ox'] +(Oz) (B-17) 
O-- -~x y \ Oy ] z -~Y x 

We multiply by (Oy/OZ)x and apply the reciprocal identity to obtain 

~ z ~z x - - 1  (B-18) 

which is equivalent to Eq. (B-15). 
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Exact and Inexact Differentials Equation (B-l) gives the differential of a function, 
which is called an exact differential. We can also write a general differential in terms of 
dx, dy, and dz: 

du = L(x, y, z) dx + M(x, y, z) dy + N(x, y, z) dz (B-19) 

where L, M, and N are some functions of x, y, and z. A general differential form like 
that of Eq. (B-19) is sometimes called a Pfaffian form. If the functions L, M, and N are 
not the appropriate partial derivatives of the same function, then the differential du is an 
inexact differential, and has some different properties from an exact differential. 

To test the differential du for exactness, we can see if the appropriate derivatives of L, 
M, and N are mixed second derivatives of the same function and obey the Euler 
reciprocity relation: 

OM (O---~~)x,z--(--~X)y,z (exact differential) (B-20a) 

ON (~Z)x,y--(--~X)y,z (exact differential) (B-20b) 

-~z x,y - -~Y x,z (exact differential) (B-20c) 

If any one of the conditions of Eq. (B-20) is not obeyed, then du is an inexact 
differential, and if all of them are obeyed then du is an exact differential. 

Integral Calculus with Several Variables 

There are two principal types of integrals of functions of several variables, the line 
integral and the multiple integral. 

Line Integrals For a differential with two independent variables, 

du = M(x, y) dx + N(x, y) dy 

a line integral is denoted by 

Ic du -- Ic[M(x' y) dx + N(x, y) dy] (B-21) 

where the letter c denotes a curve in the x-y plane. This curve gives y as a function of x 
and x as a function of y, as in Figure B. 1. We say that the integral is carried out along 
this curve (or path). To carry out the integral, we replace y in M by the function of x 
given by the curve and replace x in N by the function o fy  given by the curve. If these 
functions are represented by y(x) and x(y): 

Ic 2 du - M(x, y(x)) dx + N(x(y), y, ) dy 
1 1 

(B-22) 

where x 1 and Yl are the coordinates of the initial point of the line integral and x 2 and Y2 
are the coordinates of the final point. Each integral is now an ordinary integral and can 
be carried out in the usual way. If the differential form has three or more independent 
variables, the procedure is analogous. The curve must be a curve in a space of all 
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independent variables, giving each one of the other independent variables as a function 
of one variable. 

There is an important theorem of mathematics concerning the line integral of an 
exact differential. If dz is an exact differential, it is the differential of a function. If T, V, 
and n are the independent variables, then this function is z - - z ( T ,  V, n) and a line 
integral of dz is equal to the value of z at the endpoint of the integration minus the value 
of z at the starting point: 

E(oz) (oz) 
= z(T2, V2, n 2 )  - z(T1, V1, nl) 

dV + dn 
T,V 

(B-23) 

where T 2, V2, and n 2 are the values of the independent variables at the final point of the 
curve, and T 1, V1, and n 1 are the values at the initial point of the curve. Since many 
different curves can have the same initial and final points, Eq. (B-23) means that the 
line integral depends only on the initial point and the final point, and is independent of 
the curve between these points. It is said to be path-independent. However, the line 
integral of an inexact differential is generally path-dependent. That is, one can always 
find two or more paths between a given initial point and a given final point for which 
the line integrals are not equal. 

Multiple Integrals I f f  =f(x ,  y, z) is an integrand function, a multiple integral with 
constant limits is denoted by 

Ji2 Ji2 Ji 2 
I(al, a2, bl, b2, e l ,  C2) - -  f (x, y, z) dz dy dx (B-24) 

1 1 1 
The integrations are carried out sequentially. The left-most differential and the fight- 
most integral sign belong together, and this integration is done first, and so on. 
Variables not yet integrated are treated as constants during the integrations. In Eq. 
(B-24), z is first integrated from Ca to c 2, treating x and y as constants during this 
integration. The result is a function of x and y, which is the integrand when y is then 
integrated from b 1 to b2, treating x as a constant. The result is a function of x, which is 
the integrand when x is then integrated from a 1 t o  a 2. In this multiple integral the limits 
of the z integration can be replaced by functions of x and y, and the limits of the y 
integration can be replaced by functions ofx. The limit functions are substituted into the 
indefinite integral in exactly the same way as are constants when the indefinite integral 
is evaluated at the limits. 

If the variables are cartesian coordinates and the limits are constants, the region of 
integration is a rectangular parallepiped (box) as shown in Figure B.2. If the limits for 
the first two integrations are not constants, the region of integration can have a more 
complicated shape. 

The integration process can be depicted geometrically as follows: The product 
dx dy dz is considered to be a volume element, which is depicted in Figure B.3 as a 
little box of finite size (the box of dimensions dx by dy by dz is infinitesimal). This 
volume element is also denoted as d3r. If (x, y, z) represents a point in the volume 
element, then the contribution of the element of volume to the integral is equal to the 
value of the function at (x, y, z) times the volume of the volume element: 

(Contribution of the volume element dx dy dz) = f (x, y, z) dx dy dz 
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The integral is the sum of the contributions of all the volume elements in the region of 
integration. 

If an integral over a volume in a three-dimensional space is needed and spherical 
polar coordinates are used, the volume element is as depicted in Figure B.4. The length 
of the volume element in the r direction is equal to dr. The length of the box in the 0 
direction (the direction in which an infinitesimal change in 0 carries a point in space) is 
equal to r dO if 0 is measured in radians, since the measure of an angle in radians is the 
ratio of the arc length to the radius. The length of the volume element in the 4~ direction 
is r sin(0) doS, which comes from the fact that the projection of r in the x-y  plane has 
length r sin(0), as shown in the figure. The volume of the element of volume is thus 

d3r = r 2 sin(O) ddp dO dr (B-25) 
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where d3r is a general abbreviation for a volume element in any coordinate system. An 
integral over all of space using spherical polar coordinates is 

I -- f ( r ,  O, ~b)r 2 sin(0) dd? dO dr (B-26) 
0 0 0 

Since the limits are constants, this integral is carried out in the same way as that of Eq. 
(B-24), with the 4) integration done first and the 0 integration done next. 

For other coordinate systems, a factor analogous to the factor r 2 sin(0) must be used. 
This factor is called a Jacobian. For example, for cylindrical polar coordinates, where 
the coordinates are z, 4) (the same angle as in spherical polar coordinates, and p (the 
projection of r into the x - y  plane), the Jacobian is the factor p, so that the element of 
volume is p dp  dz d~ .  

Vectors 

A vector is a quantity with both magnitude and direction. The vector A can be 
represented by its cartesian components, A x, Ay, and Az: 

A -- iA x + jAy + kA z (B-27) 

where i, j, and k are unit vectors in the x, y, and z directions, respectively. 
The dot product, or scalar product,  of two vectors is a scalar quantity equal to the 

product of the magnitudes of the two vectors times the cosine of the angle between 
them: 

A.  B = IAIIB] cos(a) = A B  cos(c 0 (B-28) 

where c~ is the angle between the vectors. The scalar product is commutative: 

A .  B = B.  A (B-29) 

The scalar product of a vector with itself is the square of the magnitude of the vector: 

A .  A = IAI 2 = A 2 (B-30) 

The scalar products of the unit vectors are 

i . j  - - i . k - - j . k - - O  
i . i - - j . j - - k . k - -  1 

(B-31 a) 

(B-3 lb) 

If the vectors A and B are represented by cartesian components as in Eq. (B-27), Eq. 
(B-31) implies that six of the nine terms in the product A.  B vanish, leaving 

A .  B = AxB x + AyBy + AzB z (B-32) 

The cross product, or vector product, of two vectors is a vector quantity that is 
perpendicular to the plane containing the two vectors with magnitude equal to the 
product of the magnitudes of the two vectors times the sine of the angle between them: 

IA • BI--[ALIBI sin(c0 (B-33) 

The direction of the product vector is the direction in which an ordinary (fight-handed) 
screw moves it if is rotated in the direction which the vector on the left must be rotated 
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to coincide with the vector on the right, rotating through an angle less than or equal to 
180 ~ The cross product is not commutative: 

A x B = - B  x A (B-34) 

The cross products of the unit vectors are 

i x i - 0, j x j - 0, k x k -- 0 (B-35a) 

i x j -- k, i x k -  - j ,  j x k -- i (B-35b) 

In terms of cartesian components, we can deduce from Eq. (B-35) that 

A x B = i[dyB z - d z B y  ] + j [dzB  x - d x B  z] + k[dxBy  - dyBx] (B-36) 

The product of a vector and a scalar is a vector whose magnitude is equal to the 
magnitude of the vector times the magnitude of the scalar. Its direction is the same as 
the direction of the first vector if the scalar is positive, and its direction is the opposite of 
the direction of the first vector if the scalar is negative. 

Vector Derivat ives  The gradient  is a vector derivative of a scalar function. I f f  is a 
function of x, y, and z, its gradient is given by 

V f - i  ~xx + j  + k  -~z 

The symbol for the gradient operator, V, is called "del." At a given point in space, the 
gradient points in the direction of most rapid increase of the function, and its magnitude 
is equal to the rate of change of the function in that direction. The gradient of a vector 
function is also defined, and the gradient of each component is as defined in Eq. (B-37). 
The gradient of a vector quantity has nine components, and is called a dyadic or a 
cartes ian tensor. Each of its components is multiplied by a product of two unit vectors. 

The divergence  of a vector function F is denoted by V. F and is defined by 

v .  F -  ] + + ] 

The divergence is a scalar quantity. If the vector function represents the flow velocity of 
a fluid, the divergence is a measure of the spreading out of the streaming curves along 
which small elements of the fluid flow. A positive value of the divergence corresponds 
to a decrease in density along a curve following the flow. See the discussion of the 
equation of continuity in Section 11.2. 

The curl is a vector derivative of a vector function. The curl of F is somewhat similar 
to the vector product (cross product) of two vectors, and is denoted by V x F and 
defined by 

- \ W )  

The curl of a vector function is a measure of the turning of the vector as a function of 
position, and has also been called the "rotation." The curl of F has also been denoted as 
curl F and rot F. 

The divergence of the gradient is called the laplacian.  The laplacian of a scalar 
function f is given in cartesian coordinates by 

V ~ _  ~ f - ]  ~ f  ~ f  (B-40) 
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The vector derivative operators can be expressed in other coordinate systems. In 
spherical polar coordinates, the gradient of the scalar function f is 

Of l O f  1 Of 
Vf - e r -~r + e~ - + e~ (B-41) 

r ~ r sin(O) O~b 

where e r is the unit vector in the r direction (the direction of motion if r is increased by 
a small amount, keeping 0 and 4~ fixed), e0 is the unit vector in the 0 direction, and eo is 
the unit vector in the ~b direction. In spherical polar coordinates, the laplacian is 

[ 1 1 V 2 f - ~  drr r2 ~rr -~ sin(O) O0 ~ -~ sin2(O) O~b 2 

Solution of a Differential Equation in Chapter 12 

Equation (12.5-5) can be put into the form 

dz - M d[B] + N dt - 0 (B-43) 

where M and N are functions of t and [B], the concentration of substance B. The 
equation shown in Eq. (B-43) is called a Pfaffian differential equation. An equation of 
this type is called an exact differential equation if dz is an exact differential. We can 
determine whether dz is exact by finding out whether M and N conform to the Euler 
reciprocity relation. If dz is exact, M and N must be derivatives of the function z, and 
must obey the Euler reciprocity relation shown in Eq. (B-13): 

OM OZz OZz ON 
. . . . . . .  (B-44) 
at at a[B] a[B] at a[B] 

We multiply Eq. (12.5-5) by dt and recognize that ( d [ B ] / d t ) d t -  d[B] to obtain an 
equation in Pfaffian form: 

d[B] + (kz[B] - k 1 [A]0e, kit) dt - 0 (B-45) 

This equation is not an exact differential equation, since it corresponds to M equal to 1 
and N equal to the expression in parentheses. The derivative of M with respect to t 
equals zero, and the derivative of N with respect to [B] equals k 2. However, if the 
equation is multiplied by the factor e k2t, we get the exact differential equation 

e k2t d[B] + (kz[B]e k2t - k 1 [A]0 e(k2-kl)t) dt - 0 (B-46) 

as can be checked by differentiation. A factor that converts an inexact Pfaffian 
differential equation into an exact differential equation is called an integrating 
factor. Since multiplication of any equation on both sides by the same factor yields 
a valid equation containing the same variables, this equation has the same solution as 
did the original equation. Finding an integrating factor for a particular equation is not 
always easy. However, mathematicians have shown that if one integrating factor exists, 
there is an infinite number of other integrating factors, so that trial and error might lead 
to a usable integrating factor. 

Consider the special case that no B or F is present at time t - - 0 .  We denote the 
differential in Eq. (B-46) by dz and perform a line integral of dz on the path shown in 
Figure B.5. The result of the integration must equal zero, since the differential equals 
zero if it satisfies the differential equation and the function z must therefore have the 
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same value at the two ends of the path. The path of an exact differential depends only on 
the endpoints of the path, so any other path could have been chosen. 

The d[B] term in dz  gives no contribution on the first leg of the path. On the second 
leg we replace t by t' and obtain 

Ii  B]t' d[B] - -  e k z t ' [ B ] t  , (B-47) ek2 t' 

On the first leg of the path we replace [B] by zero, and the result is 

tJl kl [A]~ (e (h-k l ) r  - 1) (B-48) 
--  k 1 [A]0 e(k2-kl)t dt  - -  k2  _ k l  

The dt  term gives no contribution on the second leg of the path since t is constant and dt  

vanishes on this leg. 
The contributions of Eqs. (B-47) and (B-48) are combined and set equal to zero: 

kl [A]~ (e (k2-kl)r - 1) - 0 (B-49) z(t ' ,  [B]t, ) -- z(0, 0) -- e -k2t' [Blr k2 _ kl 

Our only interest in the function z is that it furnishes us with this equation, which is an 
algebraic equation that can be solved for [B] as a function of t', giving the desired 
solution: 

k [ A ] ~  ( e  - k ' t  - e -k2t) ( B - 5 0 )  
[B]I = k2 _ kl 

where we omit the prime symbol on t'. 

Complex and Imaginary Quantities 

Any complex quantity z can be written in the form 

z = x + iy (B-51) 

where x and y are real quantities and where i is the imaginary unit, defined to equal 
1. The quantity x is called the real par t  of z and y is called the imaginary part  ofz. 

Note that y is a real number, although it is called the imaginary part of z. The complex 
conjugate of z is denoted by z* and is defined to have the same real part as z and an 
imaginary part that is the negative of that of z: 

z* = x - iy (definition of z*) (B-52) 

A real quantity is equal to its complex conjugate. 
Any complex expression can be turned into its complex conjugate by changing the 

sign in front of every i in the expression, although we do not prove this fact. For 
example, 

( e i ~ )  * = e - i ~  (B-53) 

as can be shown by using the identity 

e i~ : c o s ( c 0  - k - / s i n ( a )  (B-54) 
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The product of any complex number and its complex conjugate is defined to be the 
square of the magnitude of that complex number, denoted by Iz[ 2, and is always a real 
quantity. The magnitude, or absolute value of z is the positive square root of [z[ 2. 

I z l -  r -  _ z,/ z (B-55) 

where we use the common symbol r for the magnitude of z. If a complex number is 
written in the form of Eq. (B-51), 

Izl 2 = z*z = ( x -  iy)(x + iy) = x 2 + i y x -  ixy -k-y2 _ x 2 + y2 (B-56) 

Complex numbers are sometimes represented by the position of a point in the 
Argand plane, in which the real part ~ is plotted on the horizontal axis, and the 
imaginary part J is plotted on the vertical axis, as shown in Figure B.6. By the theorem 
of Pythagoras, the magnitude of a complex number r is the length of the directed line 
segment from the origin to the point representing the number in the Argand plane. The 
angle ~b is the angle between the positive x axis and this directed line segment: 

~b - arctan( y ]  (B-57) 
\ X /  

By using the identity in Eq. (B-54), we can show that a complex number can be 
represented in terms of r and ~b: 

z = re ick (B-58) 

From this equation, we obtain 

[zl 2 = z*z = (re-iCkre i4)) = r 2 (B-59) 

Some Properties of Hermitian Operators 

In Chapter 15 we asserted several properties of Hermitian operators. We provide proofs 
of two of these properties here: 

Property 4. The eigenvalues of  a hermitian operator are real. 

To establish this property, we take the eigenvalue equation for an arbitrary Hermitian 
operator 

~4fj(q)- ajfj(q) (B-60) 

We multiply both sides by the complex conjugate of the eigenfunction fj, and integrate 
over all values of the coordinates: 

I f~ t f j  dq - aj l f~fj d q (B-61) 

We now apply the definition of a hermitian operator, Eq. (15.2-10) to the left-hand side 
of this equation: 

I f~]lfj dq = I(]4*f~)fj dq (B-62) 
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From the complex conjugate of the eigenvalue equation, Eq. (B-60), we can replace 
A*f~ by a ' f  . * j  j j,  and by using Eq. (B-61) we obtain 

(B-63) 

Therefore, 

a~ = aj (B-64) 

A quantity equals its complex conjugate if and only if it is real. 

Property 5. Two eigenfunctions of a hermitian operator with different eigenvalues are 
orthogonal to each other. 

Two functions f and g are orthogonal to each other if 

J f*g  dq - I g*f dq - 0 
definition of'] (B-65) 
orthogonalityJ 

where f*  is the complex conjugate o f f  and g* is the complex conjugate of g. The two 
integrals in Eq. (B-65) are the complex conjugates of each other, so that if one vanishes, 
so does the other. 

We prove property 5 as follows: Multiply the eigenvalue equation, Eq. (B-60), by J~, 
the complex conjugate of a different eigenfunction, and integrate: 

] ffl A f j dq - aj l f f l f  j dq (B-66) 

Now apply the hermitian property to the left-hand side of this equation: 

J ffff4fj dq - J'(,4*J~)~ dq --a~ I J'~f j dq -alr I j~ f  J dq (B-67) 

where we have replaced ak* by a k because we know a k to be real. The left-hand sides of 
Eqs. (B-66) and (B-67) are equal, so the difference of the fight-hand sides vanishes: 

(aj - ak) J" J~fj dq - 0 (B-68) 

If the two eigenvalues are not equal to each other, the integral must vanish, and we have 
proved the orthogonality ofJ~ and fj: 

l J~fjj dq - 0 (B-69) 

If two eigenfunctions have equal eigenvalues, they are not necessarily orthogonal to 
each other, but linear combinations of the eigenfunctions can be constructed that are 
orthogonal to each other. 
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Matrices and Determinants 

A matrix is an array or list of numbers arranged in rows and columns. If the matrix A 
has m rows and n columns, it is called an m by n matrix and is written 

Al l  A12 A13 . . .  Aln 

A21 A22 A23 �9  A2n 

A -- A31 A32 A33 . . .  A3n 

Aml Am2 Am3 �9 Amn 

(B-70) 

The quantities that are entries in the two-dimensional list are called elements of the 
matrix. If m = n, the matrix is a square matrix. Two matrices are equal to each other if 
both have the same number of rows and the same number of columns and if every 
element of one is equal to the corresponding element of the other. Three-dimensional 
(and higher) matrices also exist, but we will not need to use them. 

Matrix Algebra 
and defined by 

If the matrix C is the sum of A and B, it is denoted by C = A + B 

C O = Aij + B 0 for every i and j  (B-71) 

The matrices A, B, and C must all have the same number of rows and the same number 
of columns. 

The product of a matrix A and a scalar c is denoted by B = cA and defined by 

B 0 = cAij for every i and j  (B-72) 

The product of two matrices is similar to the scalar product of two vectors as written in 
Eq. (B-32). Let the components of two vectors be called F1, F2, F3 and GI, G2, G 3 
instead of F x, Fy, etc. Equation (B-32) is the same as 

3 
F" G = F 1G 1 + F 2 G 2 + F 3 G 3 = ~ F kG k (B-73) 

k=l 

We define matrix multiplication in a similar way. If A, B, and C are matrices such that C 
is the product AB, then 

n 

Cij - ~ AikBkj (B-74) 
k=l 

where n is the number of columns in A, which must equal the number of rows in the 
matrix B. The matrix C will have as many rows as A and as many columns as B. 

We can think of the vector F in Eq. (B-73) as a matrix with one row and three 
columns (a row vector) and the vector G as being a matrix with three rows and one 
column (a column vector). Equation (B-73) is then a special case of Eq. (B-74): 

F ' G - - [ F  1 F 2 F3] G 2 (B-75) 
G3 

If two matrices are square, they can be multiplied together in either order. However, 
the multiplication is not always commutative. It is possible that 

(B-76) 
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However, matrix multiplication is associative: 

The fact that we require E to be the identity matrix when multiplied on either side of A 
requires both A and E to be square matrices. An identity matrix can have any number of 
rows and columns. It has the form 

1 0 0 . . .  0 

0 1 0 . . .  0 
E = 0 0 1 . . .  0 (B-80)  

0 0 0 . . .  1 

The diagonal elements of any square matrix are those with both indices equal. The 
diagonal elements of E are all equal to 1 and are the only nonzero elements: 

1 if i - j  (B-81) 
E0=60-- 0 i f i C j  

The quantity 60. is called the Kroneeker  delta. 
Just as in operator algebra, we do not define division by a matrix, but define the 

inverse of a square matrix. We denote the inverse of  A by A -1 and require that 

(B-82) 

This multiplication of a matrix by its inverse is commutative, so that A is also the 
inverse of A -1 . Finding the inverse of a matrix can involve a lot of computation, but 
BASIC processors such as TrueBASIC contain programs to carry out the calculation 
automatically. 

There are several terms that apply to square matrices. Associated with each square 
matrix is a determinant (see later). If the determinant of a square matrix vanishes, the 
matrix is said to be singular. A singular matrix has no inverse. The trace of a matrix is 
the sum of the diagonal elements of the matrix: 

Tr(A) - ~ Aii (B-83)  
i=1 

The trace of the n by n identity matrix is equal to n. The trace is sometimes called the 
spur, from a German word that means track or trace. 

A matrix in which all the elements below the diagonal elements vanish is called an 
upper  t r iangular  matrix. A matrix in which all the elements above the diagonal 
elements vanish is called a lower t r iangular  matrix, and a matrix in which all the 
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elements except the diagonal elements vanish is called a diagonal matrix. The matrix 
in which all of the elements vanish is called the null matrix or the zero matrix. The 
transpose of a matrix is obtained by replacing the first column by the first row, the 
second columnby the second row of the original matrix, and so on. The transpose of A 
is denoted by A (pronounced "A tilde"). 

(A)/j -- A j/ (B-84) 

If a matrix is equal to its transpose, it is a symmetric matrix. 
The hermitian conjugate of a matrix is obtained by taking the complex conjugate of 

each element and then taking the transpose of the matrix. If a matrix has only real 
elements, the hermitian conjugate is the same as the transpose. The hermitian conjugate 
is also called the adjoint (mostly by physicists) and the associate (mostly by 
mathematicians, who use the term "adjoint" for something else). The hermitian 
conjugate is denoted by A t . 

(At),). -- A~ (B-85) 

A matrix that is equal to its hermitian conjugate is said to be a hermitian matrix. An 
orthogonal matrix is one whose inverse is equal to its transpose. If A is orthogonal, 
then 

A -1 -- A (orthogonal matrix) (B-86) 

A unitary matrix is one whose inverse is equal to its hermitian conjugate. If A is 
unitary, then 

A -1 = A t = ~.* (unitary matrix) (B-87) 

Determinants A square matrix has a quantity associated with it called a determinant. 
If A is a square matrix, we denote its determinant by det(A). When explicitly written, it 
contains the same elements as the matrix, but is written with vertical lines at the left and 
right. If the elements of the matrix are constants, its determinant is a single constant. A 
2 by 2 determinant is defined to equal 

All A12 --AllA22-A12A21 (B-88) 
a21 A22 

Larger determinants can be evaluated by expanding by minors, as follows: 

1. Pick a row or a column of the determinant. Any row or column will do, but one with 
zeros in it will minimize the work. 

2. The determinant equals a sum of terms, one for each element in the row or column. 
Each term consists of an element of the chosen row or column times the minor of 
that element, with an assigned sign that is either positive or negative. The minor of 
an element in a determinant is the determinant that is obtained by deleting the row 
and the column containing that element. The minor of an n by n matrix is an n - 1 
by n - 1 matrix. To determine the sign of a given term in the expansion, count the 
number of steps of one row or one column required to get from the upper left 
element to the element whose minor is desired. If the number of steps is odd, the 
sign is negative. If the number of steps is even (including zero), the sign is positive. 

3. Repeat the entire process with each determinant in the expansion until you have a 
sum of 2 by 2 determinants, which can be evaluated by Equation (B-88). 
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Expanding a 3 by 3 determinant gives six terms, as follows" 

All A12 A13 

A21 A22 A23 

A31 A32 A33 

- A l l  
A22 A23 

A32 A33 
-A12 

A21 A23 

A31 A33 
+A13 

A21 A22 

A31 A32 

~-- A l l (A22A33  - A23A32 ) - A12(A21A33 - A23A31 ) 

--}- A13(A21A32 - A22A31 ) (B-89) 

Expanding larger determinants can be tedious. 
Determinants have a number of important properties: 

Property 1. If two rows of a determinant are interchanged, the result will be a 
determinant whose value is the negative of the original determinant. The same is true if 
two columns are interchanged. 

Property 2. If two rows or two columns of a determinant are equal, the determinant 
has value zero. 

Property 3. If each element in one row or one column of a determinant is multiplied by 
the same quantity c the value of the new determinant is c times the value of the original 
determinant. Therefore, if an n by n determinant has every element multiplied by c, the 
new determinant is c n times the original determinant. 

Property 4. If every element in any one row or in any one column of a determinant is 
zero, the value of the determinant is zero. 

Property 5. If any row is replaced, element by element, by that row plus a constant 
times another row, the value of the determinant is unchanged. The same is true for two 
columns. For example, 

A l l  -+- CA12 A12 A13 All A12 A13 
A21 -+- CA22 A22 A23 -- A21 A22 A23 (B-90) 
A31 ~- CA32 A32 A33 A31 A32 A33 

Property 6. The determinant of a triangular matrix (a triangular determinant) is 
equal to the product of the diagonal elements. For example, 

All 0 0 
Azl A22 0 --  A l lA22A33 (B-91) 
A31 A32 A33 

A diagonal determinant is a special case of a triangular determinant, so it also obeys this 
relation. 

Property 7. The determinant of a matrix is equal to the determinant of the transpose of 
that matrix. 

det(A) - det(A) (B-92) 

These properties can be verified using the expansion of a determinant by minors. 

Fourier Series 

Fourier series are important examples of series that are linear combinations of basis 
functions. Each term of the series is a constant coefficient times one of the basis 
functions. The basis functions in Fourier series are sine and cosine functions, which are 
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periodic functions. Fourier series are therefore used to represent periodic function. A 
Fourier series that represents a periodic function of period 2L is 

o0 (nnx'~ oo . [nnx\ 
f (x) = ao + ~ a,, cos + ~ b, sm~--L- ) 

n= l  \ L / n=l 
(B-93) 

A periodic function of arbitrary shape is thus represented by having different 
amplitudes assigned to the different sine and cosine functions. This is analogous to 
the constructive and destructive interference of waves resulting from the addition of 
their displacements. 

Fourier provided the following facts about Fourier series: (1) any Fourier series in x is 
uniformly convergent for all real values of x; (2) the set of sine and cosine basis 
functions in Eq. (B- 93) is a complete set for the representation of periodic functions of 
period 2L. This means that any periodic function obeying certain conditions such as 
integrability can be accurately represented by the appropriate Fourier series. It is not 
necessary that the function be continuous. 

To find the coefficients in a Fourier series, we use the orthogonality of the basis 
functions, related to equations in Appendix C. If m and n are integers, 

I L ( ]mrcx (nnx~ { L  i f m - - n # O  
-L \ L / 0 if m # n 

I L (mnx] (nnx] { L  if m - - n  
sin sin dx -- Lbmn -- (B-95) 

-L \ L / \ L / 0 i f m # n  

_L COS (--'~---) sin d x - O  (B-96) 

The quantity 6m, is called the Kronecker delta. It is equal to unity if its two indices are 
equal, and is equal to zero otherwise. 

To find a m for m # 0 we multiply both sides of Eq. (B-93) by cos(mnx/L) and 
integrate from - L  to L: 

f (x) cos dx - -  Y ~  a n COS\-~--/COS k--L--/dx 
-L \ L / n=0 -L 

+ Y]~ b, sin cos~----F- ) dx (B-97) 
n= l  - L  

We have incorporated the a 0 term into the first sum, using the fact that cos(0) = 1. We 
have also used the fact that the integral of a sum is equal to the sum of the integrals of 
the terms if the series is uniformly convergent. 

We now apply the orthogonality facts to find that all of the integrals on the fight-hand 
side of Eq. (B-97) vanish except for the term with two cosines in which n = m. The 
result is (unless m -- 0): 

(m=5 
f (x) cos dx - amL (B-98) 

-L \ L /  

o r  

1J L (mnx] 
am -- -L - L f  (x) cos \ L ] dx (m # 0) (B-99) 

This is a formula for finding all of the a coefficients except for a 0. 
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To find a0, we use the fact that 

i i cos(0) cos(0) d x -  d x -  2L 
- L  - L  

which leads to 

(B-IO0) 

IIL 
a~ -- 2-L - L f  (X) dx (B-IO1) 

A similar procedure consisting of multiplication by sin(mrcx/L) and integration from 
- L  to L yields 

I IL (mrcx] 
- -  f ( x )  sin dx (m - 1 2 3 .) (B-102) bm --s -L \ L / . . . . .  

A function does not have to be continuous in order to be represented by a Fourier 
series, but it must be integrable. It can have step discontinuities, as long as the step in 
the function is finite. At a step discontinuity, a Fourier series will converge to a value 
halfway between the value just to the fight of the discontinuity and the value just to the 
left of the discontinuity. 

We can represent a function that is not necessarily periodic by a Fourier series if we 
are only interested in representing the function in the interval - L  < x < L. The Fourier 
series will be periodic with period 2L, and the series will be equal to the function inside 
the interval, but not necessarily equal to the function outside the interval. 

If the function f (x)  is an even function, all of the b, coefficients will vanish, and only 
the cosine terms will appear in the series. Such a series is called a Fourier cosine 
series. Iff(x) is an odd function, only the sine terms will appear, and the series is called 
a Fourier sine series. If we want to represent a function only in the interval 0 < x < L 
we can regard it as the fight half of an odd function or as the fight half of an even 
function, and can therefore represent it either with a sine series or a cosine series. These 
two series would have the same value in the interval 0 < x < L but would be the 
negatives of each other in the interval - L  < x < 0. 

It is a necessary condition for the convergence of Fourier series that the coefficients 
become smaller and smaller and approach zero as n becomes larger and larger. If a 
Fourier series is convergent, it will be uniformly convergent for all values of x. If 
convergence is fairly rapid, it is possible to approximate a Fourier series by one of its 
partial sums. 

The sine and cosine basis functions are closely related to complex exponential 
functions, as shown in Eq. (B-54). One can write 

b,, s in(  nrcx] /nrcx'~ 1 1 \ L / + a, cos~---ff-) - 5(a,, - ib,,)e i'm/L + 5(a,, + ib,,)e - i '~ /L  (B-103) 

It is therefore possible to rewrite Eq. (B-93) as an exponential Fourier series: 

(x) 

f (x) -- ~ .  cne i"~x/L (B-104) 

We have incorporated the terms with negative exponents into the same sum with the 
other terms by allowing the summation index to take on negative as well as positive 
values. The function being represented by a Fourier series does not have to be a real 
function. However, if it is a real function, the coefficients a n and b n will be real, so that 
c~ will be complex. 
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Fourier Integrals (Fourier Transforms) 

Fourier series are designed to represent periodic functions with period 2L. If we allow L 
to become larger and larger without bound, the values of n~x/L become closer and 
closer together. We let 

nT~ 
k = - -  (B-105) 

L 

As the limit L --+ e~ is taken, k becomes a continuously variable quantity if the limit 
n ~ :xD is taken in the proper way. In this limit, the exponential Fourier series of Eq. 
(B-104) becomes an integral, which is called a Fourier integral or a Fourier 
transform. 

1J f (x) -- ~ -~ F(k)e -i~ dk (B-106) 

where the coefficient c n in Eq. (B-104) is replaced by a function of k that is denoted by 
F(k)/~/~. The factor 1/4'2-~ is included to make the formula for determining F(k) 
look like this formula. 

The equation for determining F(k) is analogous to Eqs. (B-98), (B-101), and 
(B-102): 

F(k)-- 1 I ~ x / ~  - ~ f  (x)e -i~ dx (B-107) 

We have introduced a factor of 1 / ~  in front of the integral in Eq. (B- 106) in order to 
have the same factor in front of this integral and the integral in Eq. (B-107). 

The function F(k) is called the Fourier transform off(x)  and the function f(x) is 
also called the Fourier transform of F(k). The function f(k) is no longer required to be 
periodic, because the period 2L has been allowed to become infinite. Since we now have 
improper integrals, the functions f(x) and F(k) must have properties such that the 
integrals converge. For the integral of Eq. (B-107) to converge, the following integral 
must converge: 

J ~ i 2 (B-lOS) If(x) ak < 
- - 0 0  

We say that the function f(x) must be square integrable. The function f(x) must 
approach zero as x - - + - e ~  and as x ~ e~ to be square integrable. If the Fourier 
transform F(k) exists, it will also be square integrable. 

If the function f(x) is an even function, its Fourier transform is a Fourier cosine 
transform: 

F(k) - - ~  -~ f (x )  cos(kx) dx - o f(x) cos(kx) dx (B-109) 

The second version of the transform is called a one-sided cosine transform. Iff(x)  is 
an odd function, its Fourier transform is a Fourier sine transform: 

F(k) - - ~  - ~ f  (x) sin(kx) dx - f (x) sin(kx) dx (B-110) 
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There is a useful theorem for the Fourier transform of a product of two functions, 
called the convolution theorem or the Faltung theorem (Faltung is German for 
"folding"). The convolution of two functions f (x )  and g(x) is defined as the integral 

1 f(y)g(x - y) dx (B-111) 
~ / ~  _~ 

This integral is a function of x, and its Fourier transform is equal to F(k)G(k), where 
F(k) is the Fourier transform off (k)  and G(k) is the Fourier transform of g(x). 1 Since 
the Fourier transform is nearly the same going in both directions, the analogous 
convolution 

i(x~ 1 F ( I ) G ( k -  l) dl (B-112) 

has as its Fourier transform the product f(x)g(x). 

1philip M. Morse and Herman Feshbach, Methods of Theoretical Physics, Part I, McGraw-Hill, New 
York, 1953, pp. 464ff. 



A Short Table of Integrals 

Indefinite Integrals 

I sin2(x) dx - x sin(2x) 
2 4 

I x sin(2x) 
COS2(X) d x  - -  -~ +----~---- 

J cosn(x) sin(x) dx -- 1 cosn+l 
n +  1 (x) n = 1 , 2  . . . .  

J sin n (x) cos(x) -- (x) 
1 sin n+l dx 

n + l  
n - -  1,2 . . . .  

J x sin 2 d x -  xa x sin(2x) cos(2x) (x) 
4 4 8 

J X 2 X sin(2x) COS(2X) 
x cos  2(x) dx - --4 + - - - - U - -  + - - - U -  

X 3 
J x 2 s i n 2 ( x ) d x - - - ~ - ( ~ - 8 ) s i n ( 2 x ) - ~  x cos(2x) 

I e ax d x -  1 ax - e  a 

Definite Integrals 

= / lo sin(mx) sin(nx) dx 2 

0 

c o s ( m x )  cos(nx) dx = 2 

0 

i f m = n  

if m e n  

i f m = n  

if m e n  

(m and n integers) 

(m and n integers) 

1021 
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I i  sin(mx)cos(nx) d x -  

2m 
m 2 _ n 2 

i f m = n  

if m 5~ n (m + n even) 

if m :fin (m + n odd) 

j o~ 1 
e -ax d x - - - ,  

o a 
a > 0  

I o  1 X n e -ax d x  - -  a-U4-- f n! a > 0, n - 0 , 1 , 2  . . . .  

e -ax2 d x - ~  , a > 0  

x e  -ax2 d x  ~ ~  
o 2a ' 

a > 0  

0 x2e-aXz d x - - - ~  , a > 0  

J ~ 1 
X 3 e -axE dx  - -  

o 2a2 ' 
a > 0  

I O  x2n e ax2 dx  - -  

(1)(3)(5). . .  (2n - 1) ~/-~, 
2n+lan+l/2  a > 0  

I O  X2n+ l e-aX2 dx  - -  
n~ 

a > 0  
2an+ 1 ' 

The Error Function 

The error function is defined by 

eft(z) -- ~ e -'2 dt 

So that 

er f (0 )  = 0, 

The following identity is sometimes useful: 

e f t ( ~ )  = 1 

I i  t2e at2 d t -  ~ ef t (w/-dz)-  z e_aZ2 
4a 3/2 2aa 

The error function cannot be expressed in closed form (as a formula with a finite 
number of terms) for values of z other than 0 or 00. The following is a short table of 
values: 
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Classical Mechanics 

Classical mechanics was the accepted version of mechanics prior to the development of 
relativity and quantum mechanics. It is accepted as correct in the limit of large energies, 
large masses, and speeds that are small compared with the speed of light. It is often 
called Newtonian mechanics, since it was largely formulated by Isaac Newton, and is 
summarized by Newton's three laws of motion. 

Newton's Laws of Motion 

The first law is the law of inertia: I f  not acted upon by a force, a stationary object 
remains stationary, and a moving object continues to move in a straight line at a 
constant speed. 

Newton's second law, the most important of the three laws, is the law of accelera- 
tion" 

o r  

dv d2r 
e = m a = m  ~ =  

dt dt 2 

( d2x d2y d2z~ 
i F x + j F y + k F z - - m  i - ~ + j - ~ - + k  dt2} (D-l) 

where m is the mass of the particle and where i, j, and k are unit vectors in the direction 
of the x, y, and z coordinate axes, respectively. The vector a, the time derivative of the 
velocity v and the second time derivative of the position vector r, is called the acceler- 
ation. Newton's second law provides an equation of motion for an object obeying classical 
mechanics. See the example of the harmonic oscillator in Section 10.1. 

Newton's third law is the law of action and reaction: I f  one object exerts a force on a 
second object, the second object exerts a force on the first object which is equal in 
magnitude to the first force and opposite in direction. 

If the force is a known function of position, Eq. (D-l) is an equation of motion, 
which determines the particle's position and velocity for all values of the time if the 
position and velocity are known for a single time. Classical mechanics is thus said to be 
deterministic. 

All mechanical quantities have values that are determined by the values of 
coordinates and velocities. The energy is such a state function and is the sum of the 
kinetic and potential energies. The kinetic energy of a point mass particle is 

fig" __ l ml)2 -- l m ( v2 -}- i) 2 -+- 1) 2) (D-2) 

If the forces on the particles of a system depend only on the particles' positions, these 
forces can be derived from the potential energy. Consider motion in the z direction. If z' 
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and z" are two values of z, the difference in the potential energy ~ between these two 
locations is defined to equal the reversible work done on the system by an external 
agent to move the particle from z' to z". 

J 
'Z2 

"~ (Z n) -- "~  (Z t) = Fext(rev) (z) dz  
1 

(D-3) 

Since only the difference in potential energy is defined in Eq. (D-3), we have the option 
of deciding at what location we want to have the potential energy equal zero. We 
accomplish this by adding an appropriate constant to a formula for the potential energy. 

The external force Fext(rev) must exactly balance the force due to the other particles in 
order for the process to be reversible: 

Fext(rev)(Z ) --  - - F  z (D-4)  

By the principles of calculus, the integrand in Eq. (D-3) is equal to the derivative of the 
function ~ ,  so that 

d ~  
Fz = dz  (D-5) 

In the case of motion in three dimensions, analogous equations for the x and y 
components can be written, and the vector force is given by 

F --  iFx + jFy  + k F z  - - i  -~x - j - k -~z - - V  ~/" (D-6) 

where the symbol V ("del") stands for the three-term gradient operator in the right- 
hand side of the first line of Eq. (D-6). 

A system in which no forces occur except those derivable from a potential energy is 
called a c o n s e r v a t i v e  s y s t e m .  It is a theorem of mechanics that the energy of such a 
system is constant, or conserved. An example of this conservation is seen in the case of 
the harmonic oscillator. See Eq. (14.1-15). 

The Wave Equation for a Flexible String 

Consider a small portion of the string lying between x and x + Ax, as shown in Figure 
D-1. The force on the left end of the string segment is denoted by F1, and the force on 
the fight end is denoted by F 2. Since the string is perfectly flexible, no force can be put 
on any part of the string by bending it. The force exerted on one portion of the string by 
an adjacent portion is tangent to the string at the point dividing the portions, and has a 
magnitude equal to T. If the string is curved, the forces at the two ends of a portion of 
the string will not cancel, but the forces at the two ends of a straight portion do cancel. 

We denote the angles between the x axis and the two tangent lines by c~ 1 and c~ 2. For 
small displacements, the net force on the string segment will lie in the z direction: 

F z = Fzz + Flz  = T s in(~2)  - T s i n ( ~ l )  ~ T[tan(~2)  - tan(el) ] 

T [ ( ~ )  I x + ~ -  ( ~ )  Ixl 
(D-7) 

where the subscripts on the derivatives denote the positions at which they are evaluated. 
We have used the fact that the sine and the tangent are nearly equal for small angles, 
which corresponds to our case of small displacements. The measure of the angle in 
radians is also nearly equal to the sine and the tangent for this small angle. We have also 
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used the fact that the first derivative is equal to the tangent of the angle between the 
horizontal and the tangent line. 

Denote the mass per unit length of the string by p. The mass of the string segment is 
p Ax and its acceleration is (02z/Ot2), so that from Newton's second law, 

02z (D-8) 

We divide both sides of this equation by p Ax and then take the limit as Ax is made to 
approach zero. In this limit, the quotient of differences becomes a second derivative: 

(Oz)l   (Oz)l 
x+Ax . x lim 

A x e 0  A x  

02X 

Ox 2 

This equation is substituted into Eq. (D-8) to obtain the classical wave equation: 

OZz 1 O2z 
OX 2 C 2 0 t  2 

(D-9) 

where C 2 - -  T/p. 

Lagrangian Mechanics 

The method of Lagrange and the method of Hamilton are designed for problems in 
which cartesian coordinates cannot conveniently be used. We denote the positions of 
the particles in a system by the coordinates ql, q2, q3 . . . . .  qn, where n is the number of 
coordinates, equal to three times the number of particles if they are point mass particles 
that move in three dimensions. These coordinates can be any kind of coordinates, such 
as spherical polar coordinates, cylindrical polar coordinates, etc. To specify the state of 
the system, some measures of the particles's velocities are needed in addition to 
coordinates. The Lagrangian method uses the time derivatives of the coordinates: 

dqi (i - 1, 2 . . . . .  n) (D-10) 
q i - -  dt 

We use a symbol with a dot over it to represent a time derivative. 
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The Lagrangian function is defined by 

These equations are equivalent to Newton's second law. The convenient thing about 
them is that they have exactly the same form for all coordinate systems, so that the work 
of transforming Newton's second law into a particular coordinate system can be avoided. 1 

One application of Lagrange's equations of motion is to a particle orbiting about a 
fixed point in a plane. Using plane polar coordinates p and q5 (measured in radians), 
with the origin at the fixed point, the component of the velocity parallel to the position 
vector is /5, and the component perpendicular to this direction is p~, so that the 
Lagrangian is 

~:' - -  l m ~9 2 + l m p 2 ~ 2 - "t/" ( p , c/p) (D-13) 

and the Lagrangian equations of motion are 

0 ~  d(2mp) _ mp~2 + - 0 (D-14) 
at 

a(mp2@) 0~/~ 
d-----------~ + - - ~  - 0 (D-15) 

The second term in Eq. (D-14) produces a rate of change in/5 if r does not depend 
on p. This is due to the centrifugal force, which is not a force, but an expression of the 
natural tendency of an orbiting particle to move off in a straight line. To maintain a 
circular orbit about the origin of coordinates, the second term must be canceled by a 
centripetal force: 

F(centripetal) - - 0 ~  _ _ m p ~  2 _ my 2 (D-16) 
Op p 

where the speed v in a circular orbit equals p~. 
An important quantity for an orbiting object is the angular  momentum around a 

fixed center. This is the vector 

L = mr x v (D-17) 

where r is the position vector from the fixed center to the particle, v is the velocity 
vector, and x stands for the cross product of two vectors. Figure D.2 illustrates the 
angular momentum of a single orbiting particle. For a circular orbit, the angular 
momentum vector has the magnitude 

L -  m p v -  mp2~ (D-18) 

In any system not subject to friction or external forces, the angular momentum is 
conserved (remains constant). The orbit of the moving mass remains in the same plane, 
and the angular momentum remains in a fixed direction with a fixed magnitude. If a 

1 This fact is proved in J. C. Slater and N. Frank, Mechanics, McGraw-Hill, New York, 1947, pp. 69ff, or 
in any other book on the same subject. 
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system consists of several interacting particles, the vector sum of their angular momenta 
is conserved. If the set of particles constitutes a rotating rigid symmetrical body such as 
a gyroscope spinning on its axis, the angular momentum vector of every particle points 
along that axis, and has magnitude proportional to its rate of rotation. The total angular 
momentum of a set of particles is the vector sum of the individual angular momenta. 

Figure D-3 shows a simple gyroscope. If a gyroscope stands on one end of its axis at 
an angle in a gravitational field, the gravitational torque, instead of making the 
gyroscope fall on its side, makes the axis move (precess) around a vertical cone, as 
shown in the figure. In a central-force system, the quantized angular momentum points 
along similar cones. 

Hamiltonian Mechanics 

The aim of the method of Hamilton is similar to that of Lagrange in that it provides 
equations of motion that have the same form in any coordinate system. However, it uses 
variables called conjugate momenta instead of coordinate time derivatives as state 
variables. The conjugate momentum to the ith coordinate qi is defined by 

02 ~ 
(i = 1, 2 , . . . ,  n) (definition) (D-19) 

P i -  Oili 

The momentum conjugate to a cartesian coordinate is a component of the ordinary 
(linear) momentum: 

Px = mVx, py = mVy, Pz = mVz (D-20) 

As with the angular momentum, the vector sum of the momenta of a set of interacting 
particles is conserved if no external forces act on the particles. That is, the total vector 
momentum is conserved. 

The Hamiltonian function, also called Hamilton's principal function, is defined 
by 

~ -- ~ Piqi - ~q~ (D-21) 
i=1 

The Hamiltonian must be expressed as a function of coordinates and conjugate 
momenta. It is equal to the total energy of the system (kinetic plus potential). 2 

= J l  + ~U (D-22) 

The Hamiltonian equations of motion are 

q i -  Op i hi Oq i (i 1 2 n) (D-23) 

There is one pair of equations for each value of i, as indicated. 

The Two-Body Problem 

Consider a two-particle system with a potential energy that depends only on the 
distance between the particles. This case applies to the hydrogen atom and to the nuclei 

2 Slater and Frank, op. cit., p. 74ff (Note 1). 
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of a rotating diatomic molecule. We first examine the case in which there is motion only 
in the x direction. The Lagrangian of the system is 

_ y _ ~f- _ 1 m122 + I m222 - ~ (x 2 - x 1) (D-24) 

where x 1 and m 1 are the coordinate and the mass of the first particle and x 2 and m 2 are 
the coordinate and the mass of the second particle. 

We now change to a different set of coordinates" 

Y = m l X l  -[" m2x2  (D-25) 
m 1 - -bm 2 

X - -  X 2 - -  X 1 (D-26) 

The coordinate X is the c e n t e r  o f  m a s s  c o o r d i n a t e ,  and the coordinate x is called the 
relative coordinate. These two coordinates have separate equations of motion. We 
solve Eqs. (D-25) and (D-26) for Xa and x 2" 

X 1 - -  Y m z x  
M 

m i x  
x 2 - - X - ~ - - - - ~ - -  

where M -  m l + m2. 

a s  

(D-27) 

(D-28) 

Taking the time derivatives of Eqs. (D-27) and (D-28), we can write the Lagrangian 

1 (Y  mMk)2 1 (J( ~ f ) 2  
~ o  __ ~ r n l  _ + ~ r n  2 + - - ~ ' ( X )  

[ j (  A"Sc ( _ ~ ) 2 ]  1 [j(z A"Sc ( ~ f ) 2  
1 2 _ 2rn2 + + m2 + 2rnl + = ml 

1 "2 1 
= -~MX +-;pSc 2 - "~(x) 

z 

- r  

(D-29) 

where we have introduced the reduced mass of the pair of particles, defined by 
m i r a  2 m i r a  2 

p - = ~ ( D - a 0 )  
m 1 - k - m  2 M 

Since the variables are separated, we obtain separate equations of motion for X and x: 

dX a2' 
M d-7 = - ~  = 0 (D-31) 

dk 32 '  d ~/" 
= (D-32) 

P dt Ox dx 

These equations imply that the center of mass of the two particles moves like a particle 
of mass M which has no forces acting on it, while the relative coordinate changes like 
the motion of a particle of mass p moving at a distance x from a fixed origin and subject 
to the potential energy U(x). The motion of the two-particle system has been separated 
into two one-body problems. For motion in three dimensions, the separation is 
completely analogous. The fictitious particle o f  mass p moves around the origin o f  
its coordinate in the same way that particle 1 moves relative to particle 2, while the 
center o f  mass moves like a free particle o f  mass M. 



Some Derivations of Thermodynamic 
Formulas and Methods 

We now present some material that explains or derives some of the things presented 
without derivation in the chapters on thermodynamics. 

Caratheodory's Theorem 

We want to show that the mathematical statement of the second law of thermodynamics 
follows from the physical statements. The first part of the argument is presented in 
Chapter 4, where it is shown that two reversible adiabats (curves representing reversible 
adiabatic processes) cannot cross. The next part is the proof that there exists a function 
y (an integrating factor) such that y dqrev is an exact differential even though dqrev is 
an inexact differential. This theorem was proved by Caratheodory. 1 The final part is to 
show that 1/T is an acceptable integrating factor. 

We will give only a nonrigorous outline of Caratheodory's proof. 2 The main idea is 
that if there is a single curve along which dqrev vanishes there is also a differential of a 
function, dS, which vanishes on the same curve. If dS and dqrev vanish on the same 
curve, we will establish that 

dS = y dqrev (E-l) 

where y is a function that does not vanish in this vicinity. Consider reversible adiabatic 
processes of a closed simple system starting from a particular initial state. Since we 
have established that no two adiabats can cross, let the reversible adiabat in the V - T  
state space be represented mathematically by the function 

T -- f (V)  (E-Z) 

Equation (3.4-22) is an example of such a function, holding for an ideal gas with 
constant heat capacity, but for another system it would be whatever function applies to 
that system. Equation (E-2) is the same as 

0 = f ( V )  - T (valid only on the curve) (E-3) 

Let S be defined by 

S = S(T,  V) ----f(V) - T + C (E-4) 

1C. Caratheodory, Math. Ann., 67, 335 (1909). 
2 j, G. Kirkwood and I. Oppenheim, Chemical Thermodynamics, McGraw-Hill, New York, 1961, pp. 31 if; 

J. deHeer, Phenomenological Thermodynamics, Prentice-Hall, Englewood Cliffs, NJ, 1986, pp. 123ff. 



1032 E Some Derivations of Thermodynamic Formulas and Methods 

where C is a constant. Equation (E-4) applies for all values of T and V, not just values 
on the curve. Since f is a function of V, S is a function of T and V for our closed 
system, and is therefore a state function. For reversible adiabatic processes T is equal to 

f ( V ) ,  and S is equal to the constant C. Therefore, for reversible adiabatic processes, 

dS = 0 (reversible adiabatic processes) (E-5) 

Since reversible adiabatic processes cannot lead away from the curve, dqrev vanishes 
only on the curve. Sincef(V) represents a unique curve, dS vanishes only on the curve, 
and we can write 

dS = y dqrev (E-6) 

where y is a function that is nonzero in the vicinity of the curve. Since S is a function, y 
is an integrating factor, and we have proved the theorem of Caratheodory. 

The line integral of an exact differential is independent of the path between a given 
initial point and a given final point. The converse is also true. If a line integral of a 
differential between two given points is path-independent for all possible paths, then the 
differential is exact. If the initial and final points are the same point (a cyclic path) then 
the line integral of an exact differential must vanish. Conversely, if a line integral 
vanishes for all cyclic paths (not just for a particular cyclic path) then the differential 
must be exact. 

We now show that 1/T is a possible choice for the integrating factor y by showing 
that 

qrev -- 0 (E-7) 
T 

for all reversible cyclic processes. The symbol ~ represents the line integral around a 
closed curve in the state space. We begin with a Camot cycle. From Eqs. (4.1-13) and 
(4.1-23), 

q_L= q3 (E-S) 
7~h Tc 

Since T is constant on the isothermal segments and since dqrev = 0 on the adiabatic 
segments, the line integral for a Carnot cycle is 

~ dqrev q l +  q 3  
T --Th Tcc 0 (E-q) 

So that Eq. (E-7) is established for any Camot cycle. 
Now consider the reversible cyclic process of Figure E.la. Steps 1, 3, and 5 are 

isothermal steps, and steps 2, 4, and 6 are adiabatic steps. We show that the line integral 
of Eq. (E-7) vanishes for this cycle, as follows: Let point 7 lie on the curve from state 6 
to state 1, at the same temperature as states 3 and 4, as shown in Figure E. lb. We now 
carry out the reversible cyclic process 7 --+ 1 ~ 2 --+ 3 --+ 7, which is a Camot cycle 
(although we started in a different comer than previously). For this cycle, the line 
integral vanishes. We next carry out the cycle 7 --+ 4 --+ 5 --+ 6 --+ 7. This is also a 
Camot cycle, so the line integral around this cycle vanishes. 

During the second cycle, on the way from state 7 to state 4, the path from state 7 to 
state 3 was traversed from left to fight. During the first cycle, the path from state 3 to 
state 7 was traversed from fight to left. When the two cyclic line integrals are added, 
these two paths exactly cancel each other and, if we leave them both out, the sum of the 
two line integrals is unchanged. We now have a vanishing line integral for the cyclic 
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process 7 --+ 1 --+ 2 --+ 3 --+ 4 --+ 5 ~ 6 --+ 7, which is the cycle of Figure E.la, 
except for starting in a different place. We have proved that Eq. (E-7) holds for the cycle 
of Figure E. 1 a. 

We can similarly prove that Eq. (E-7) holds for more complicated cyclic processes 
made up of isothermal and adiabatic reversible steps. Consider the process of Figure 
E.2a, which can be divided into three Carnot cycles, just as that of Figure E. la  was 
divided into two Carnot cycles. We can do the same division into Carnot cycles for any 
cycle that is made up of reversible isothermal and adiabatic steps. If each Carnot cycle 
is traversed once, all of the paths in the interior of the original cycle are traversed twice, 
once in each direction, and therefore cancel out when all of the line integrals are added 
together. The exterior curve is traversed once, and the integral of Eq. (E-7) is shown to 
vanish around the cycle. For example, Figure E.2b shows a more complicated cycle 
divided into Carnnot cycles. 

In order to represent an arbitrary cycle we construct isothermal and adiabatic steps 
that are smaller and smaller in size, until the curve of the arbitrary cycle is more and 
more closely approximated, as crudely indicated in Figure E.2c. In the limit that the 
sizes of the steps approach zero, any curve is exactly represented. The line integral of 
Eq. (E-7) still vanishes, since even in the limit, the cycle can be divided into Carnot 
cycles. 

3 E. A. Desloge, Statistical Physics, Holt Rinehart and Winston, New York, 1966, Appendix 10. 
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Euler's theorem states that for such a function 

rnf --~-~n,(~8~i) (E-11) 
i=1 n' 

where the subscript n' means that all of the n's are held fixed except for n i. 
Proof: Differentiate Eq. (E-10) with respect to 2, using the chain rule: 

( Of ) (O(2ni) ~ 
O(2ni) n' /=1 ~ 0(~) In '  

__ m 2  m - l  f ( n l ,  n 2 . . . . .  nc)  (E-12) 

The subscript n' means that all of the n's are held fixed in the differentiation except for 
n i. We use the fact that 

(O(2ni)) 
- n i (E-13)  \ a(,~) j . ,  

and set 2 equal to unity in Eq. (E-12) to obtain Eq. (E-11), and the theorem is proved. 
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Thermodynamic Applications of Euler's Theorem 

If T and P are held fixed, then U, H, A, G, V, etc., are homogeneous of degree 1 in the 
n's. That is, they are extensive quantities. If T and P are held fixed, then the molar 
quantities U m, H m, Am, Gm, Vm, etc. are homogeneous of degree 0. That is, they are 
intensive quantities. For example, 

G = n i - n i p  i (E-14) 
i=1 T,P,n' i=1 

The Method of Intercepts 

The value of the derivative ( O Y m / O x l ) r p  gives the slope of the desired tangent line when 
evaluated at Xl = x~. The derivative of Eq. (5.6-15) with respect to Xl is 

(0~rl '~ (oqY2' ] 
( 3 Y m ' ~  -- Y1 -+- X l --  Y2 "[" x2 (E-15) 
Ik OXl J T,p Ik~Xl J T,p Ik~Xl J T,p 

where we have used the fact that (OX2/OXl) --  - 1 .  The second and fourth terms on the 
right-hand side of Eq. (E-15) sum to zero by the analogue of Eq. (5.6-13), giving 

 m  - 0-~1,] - -  Y1  - f 'e  (E-16) 

If this derivative is evaluated at x 1 -- Xtl, it gives the slope of the tangent line at that 
point. If we let y stand for the ordinate of a point on the line, then 

y [ t l  (Xtl) - t - -  -- Y2(Xl)]Xl + b (E-17)  

where b is the intercept of the tangent line at x 1 = 0, and where we consider both of the 
partial molar quantities to be functions ofx 1, and omit mention of the dependence on P 
and T. 

! The line and the curve must coincide at x 1 - x  1, so that from Eqs. (5.6-16) and 
(E-17), 

}r2 (Xtl) -Jr- Xl[f"l(Xtl) }r2(Xtl) ] [ fr l  (Xtl) - t t ' -- - -  -- Y2(Xl)]Xl--[-b 

Canceling equal terms on both sides of the equation, we get 

}r2(X' l ) -  b (E-18) 

One can repeat the entire argument with the roles of components 1 and 2 reversed to 
show that the intercept at the fight side of the figure is equal to the value of Y1 at 
x 1 - x~. However, it can more easily be shown by evaluating the function represented 
by the line at Xl - 1. 

y ( 1 ) -  [Yl(X'l)- Ye(X'l)] + Y2(x~)- Yl(X'l) 

Thus, the intercept at x 1 - 1 is equal to Y1 (x~). 

(E-19) 



Some Mathematics in Quantum 
Mechanics 

We now give more details about things presented without derivation in Chapters 14 
and 16. 

The Particle in a Three-Dimensional Box 

We have a model system consisting of a single point mass particle absolutely confined 
in a three-dimensional rectangular box. We place a cartesian coordinate system with its 
origin at the lower left rear comer of the box and with the coordinate axes perpendicular 
to the box walls. Denote the length of the box in the x direction by a, the length in the y 
direction by b, and the length in the z direction by c. We choose the potential energy 
function: 

y / ~  {0 i f O < x < a a n d O < y < b a n d O < z < c  
Y/~0 otherwise (outside the box) (F-l) 

and then take the limit that Y/~0 approaches +ec.  
We divide our space into two regions: region I outside the box, and region II inside 

the box. For reasons exactly the same as in the one-dimensional case, the coordinate 
wave function vanishes in region I. The time-independent Schr6dinger equation for the 
interior of the box is 

-~X2 -'t- O ~  "t- OZ2) 

We assume the trial solution: 

2mE 
h2 

0 (F-2) 

O(x, y, z) = X(x)r (y)Z(z)  (F-3) 

Substitution of the trial function into the Schr6dinger equation (F-2) and division by 
XTZ completes the separation of variables: 

1 d2X 1 d2y 1 d2Z 2mE 
2 dx----~-I--Y -~y2-}--Z dz ------~= /1~2 (F-4) 
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Since x, y, and z are independent variables, we can, if we wish, keep and two of these 
variables fixed while allowing the other to vary. Every term must be a constant function: 

1 d 2 X  2 m E  x (F-5) 
X dx 2 - - K x -  h 2 

1 d 2 Y 2mEy 
dy 2 = Ky - h2 (F-6) 

1 d2Z 2 m E  z 
Z dz 2 -- Kz -- h 2 (F-7) 

where E x, Ey, and E z are newly defined constants. To satisfy Eq. (F-2), 

E -- E x + Ey + E z (F-8) 

We multiply Eq. (F-5) by the function X: 

d 2 X  2 m E  x 
dx------~-- h2 Y (f-9) 

This equation is identical with Eq. (14.5-4) except for the symbols used, and has the 
same boundary conditions, so that we can transcribe the solution of the one-dimen- 
sional problem: 

X,x (x) - C x sin (nx~zx) (F-10) 
\ a / 

h 2 
2 (F-11) E x = 8ma 2 nx 

where we use the symbol n x for the quantum number and where C x is a constant. 
The Y and Z equations are identical except for the symbols used, so we can write 

their solutions: 

Y n y ( Y ) -  Cysin(ny-~~ y )  (F-12) 

-- Cz s i n ( ~  ~z) (F-13) Z.~(z) 
h 2 

Ey -- 8mb2 n 2 (F-14) 

h 2 
2 (F-15) 

E z -- 8mc2 nz 

Here ny and nz are positive integers that are not necessarily equal to nx. 

The energy eigenfunction is 

(nx X) (nz Z) 
~nx,v,. (x, y, z) -- C sin \ - - ~  \---~-/ . sm ~--ff--) sin (F-16) 

where we let C = CxCyCz . The energy eigenvalue is 

(F-17) 

We attach the three quantum numbers n x, ny, and nz to the symbols ~ and E. A 
particular energy eigenfunction is specified by giving the values of the three quantum 
numbers, which we sometimes do by writing the three quantum numbers in paren- 
theses: (n x, ny, nz). 
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If a = b - c, we call the box a cubical box. In this case, we can have several states 
that have equal energy eigenvalues (are degenerate). For example, the two sets of 
quantum numbers (1,2, 3) and (3, 2, 1) both correspond to the same energy. The energy 
eigenvalue for a particle in a cubical box is 

h2 (n 2+ 2 + n z  2) (F-18) 
Enxnynz = 8ma--- 5 ny 

Consider the energy level that includes the state with quantum numbers n x = 1, ny = 2, 
and n z = 3. There are six permutations of the three distinct numbers: (1,2, 3), (2, 3, 1), 
(3, 1,2), (3, 2, 1), (1, 3, 2) and (2, 1,3). There are no other sets of three integers whose 
squares add up to 14, so the degeneracy of this energy level is 6. 

The Solution of the Time-Independent Schr6dinger 
Equation for the Harmonic Oscillator (the Hermite 
Equation) 

After we define the constants as in Eq. (14.6-2), 

2 m E  
b - h 2  , a -- ~ (F-19) 

the Schr6dinger equation for the harmonic oscillator becomes 

d2~/t + (b - a2z2)~t - 0 (F-20) 
dz 2 

The first step is to find an asymptotic solution, which is a solution that applies for 
very large magnitudes of z. If z has a very large magnitude, b will be negligible 
compared with aZz 2, so that 

d2~ a2z2~ - 0 (for large magnitudes of z) (F-21) 
dz 2 

The solution to this equation (the asymptotic solution) is 

~oo "~ e+aZ2/2 (F-22) 

There are two possible signs in the exponent in Eq. (F-22). If the positive sign is taken, 
the function would grow without bound as [zl becomes large, violating our boundary 
condition that the wave function is finite. We therefore reject the positive sign. 

In order to find a general solution to Eq. (F-20), we choose a trial solution of the form 

~t(z) - ~too(z)S(z ) - e-azZ/2S(z) (F-23) 

where S(z)  is a power series 

OG 

S(z)  - c o + ClZ + c2 z2 + c3 z3 + . . .  -- ~ c , 2  (F-24) 
n = 0  

with constant coefficients c 0, c 1, c2, c3 . . . . .  We might have tried to represent the 
solution by a power series instead of by a power series multiplied by the asymptotic 
solution, but this turns out to be intractable. 1 

1 Ira N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, NJ, 1991, pp. 64ff. 
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The second derivative of our trial solution is 

d2llt e_aZ2/2(d2S dS ) 
d z  2 - -  ~,,dz 2 - 2az ~ + (a2z 2 - a)S (F-25) 

Substitution of this expression into Eq. (F-20) gives (after cancellation of two terms) 

e_azZ/2 Fd2S dS 1 
L dz2 - 2az -~z + (b - a)S - 0 (F-26) 

The exponential factor does not vanish for any finite real value of z, so the quantity in 
square brackets must vanish. From Eq. (F-24), the first two derivatives of S are 

OO 

dS ~ nCn zn-1 (F-27) 
dz n=l 

OO (X2 OO 

dzS  - - y~. n(n - 1)Cn zn-2 - ~ ( j  + 2 ) ( j  + 1)cj+2 za - ~ ( n  + 2)(n + 1)Cn+2 zn (F-28) 
dz2 n=2 j=0 n=0 

where we let j = n - 2. The index n or the indexj  can be called a "dummy index." The 
symbol used for it is unimportant, since it just stands for successive integral values. We 
can therefore replace j by n without changing the sum, even though n now has a 
different meaning than in the original sum. Also, we can add an n = 0 term to the 
expression for d S / d z  without any change, since the n -- 0 term has a factor of zero. We 
substitute Eq. (F-27) and (F-28) into Eq. (F-26) and cancel a common factor of e -az2/2.  

The result is 

OO 

[(n + 2)(n + 1)Cn+ 2 - 2anc n + (b - a)c,,]z n - 0 (F-29) 
n - - 0  

The quantity in the square brackets must vanish for each value of n, since every power 
of z on the fight-hand side of  the equation has a zero coefficient, and every power of z 
must have the same coefficient on both sides of the equation. Therefore, 

2an + a - b 
c"+2 - (n + 2)(n + 1) c .  (n - 0, 1, 2 . . . .  ) (F-30)  

Equation (F-30) is called a reeursion relation. Given a value of c,, it provides a 
value for Cn+ 2. For example, if c 1 is given, then c3 is determined, and thus c s, etc. If Co 
is known, then c2 is determined, and thus c4, etc. If we pick any value for c o and any 
other value for Cl and let the recursion relation pick the other values, then Eq. (F-23) 
gives a solution to the Schrrdinger equation. 

Our solution must be finite for all values of z, including the limit as [z[ approaches 
infinity. However, if the series is permitted to have infinitely many terms, it is found that 
the series becomes large very rapidly for large values of [z[. It overcomes the rapidly 
decreasing gaussian factor, and the wave function fails to remain finite for large values 
of Iz[. 2 Therefore, the series cannot have infinitely many terms. It obeys the Schrrdinger 
equation if it does, but it does not obey the boundary condition that the wave function 
remain finite for all values of  z. 

If the series does not have an infinite number of terms, then it might have one term, it 
might have two terms, it might have three terms, and so on. Each of these cases can 
occur. However, we cannot simply require all coefficients past a certain point in the 
series to vanish if this violates the recursion relation. The function would then fail to 

2 This assertion is not obvious. See Levine, op. cit., pp. 67-78 (Note 1). 
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satisfy the Schrfdinger equation. We must have a termination of  the series that satisfies 
the recursion relation. Let us say that cv+ 2 is a vanishing coefficient, where cv does not 
vanish. The numerator in the right-hand side of  Eq. (F-30) must then vanish for n - v: 

2mE 
2av + a - b - 2av + a - -  h-- T-  = 0 (F-31) 

If v is an even integer, all of  the odd-numbered coefficients must vanish, because 
there is no second recursion relation to terminate the part of  the series containing odd- 
numbered coefficients. Therefore, a single solution will contain even powers o fz  or odd 
powers of  z, but not both. The series factor in the solution will be a polynomial 
containing one term, two terms, etc. The polynomials are called Hermite polynomials. 
The first three normalized energy eigenfunctions are 

~t 0 - - ( a ) l / 4 e - a Z 2 / 2  (F-32) 

(~_~) 1/4 
O1 -- ze-aZ2 /2 (F-33) 

( a )  1/4 
d/e-- ~ ( 2 a 2 - 1 ) e  -a~2/2 (F-34) 

corresponding to the first three Hermite polynomials: 

Ho(x ) = 1 (F-35) 

H l(x) = 2x (F-36) 

H 2(x) -- 4x 2 - 2 (F-37) 

where, in order to correspond with our wave functions, x = V/-dz. The normalization 
must be accomplished by an additional factor in the formula for the wave function. 

All of  the Hermite polynomials can be generated by the formula: 

or the formula 3 

an 
H n ( x  ) -- (_ l )ne  x2 ~xn(e -x2) (F-38) 

[n/21 ( _  1)m(2x)n-2m (F-39) 
Hn(x ) -- n! m=0E m!(n - 2m)! 

where [n/2] stands for n/2 if n is even and for (n - 1)/2 if n is odd. 
There are a number of  identities obeyed by Hermite polynomials. 4 One useful 

identity is 

1 x H  n (x) -- n H  n_ 1 (x) Jr- ~ nn+  1 (x) (F-40) 

An important fact is that if n is even, then H,(x)  is an even function of  x, and if n is 
odd, then Hn(x ) is an odd function of  x: 

H n ( - x )  = H n (x) (n even) (F-41) 

H n ( - - x  ) --" - H n ( x  ) (n odd) (F-42) 

3 A. Erdelyi, et al., eds., Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953, pp. 
192ff. 

4 m. Erdelyi, op. cit. (Note 3). 
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The Hydrogenlike Energy Eigenfunctions 

The eigenfunctions are written as 

= Rnt( )Y m(0, 4') = Rnt( )O m(O) m(Ck) ( F - 4 3 )  

where the Ylm functions are spherical harmonic functions. The Y functions are the same 
for any central-force system, including the rigid rotor and the rotating diatomic 
molecule in the Born-Oppenheimer approximation, as well as the hydrogenlike atom. 

The ~ functions are 

1 eimr k (F-44) ~m = /~-~ 

where m is an integer. 
The | functions obey the equation 

d dO 
sin(0) ~ sin(0) ~ -  m2| + g sin2(0) | = 0 (F-45) 

where K is a constant. With a change of variables, y = cos(0), P ( y ) =  | the 
equation becomes, after quite a bit of manipulation, 

d2P dP m 2 
(1 _y2)  ~ _  2y dy 1 - y - - - - S  P + KP -- 0 (F-46) 

Equation (F-46) is the same as the associated Legendre equation if K = l(l + 1), 
where l is an integer which must be at least as large as Iml. The set of solutions is 
known as the associated Legendre functions, given for nonnegative values of m by 5 

PT'(Y) - (1 - yZ)m/2 dmpt(Y) (F-47) 
dy m 

where Pt(Y) is the Legendre polynomial 

1 d t )t 
Pt(Y) - 2tl! dyl (y2 _ 1 (F-48) 

With suitable normalization, 

O _ Otm _ ( (2 l  + l ) ( l -  m) ' )  1/2 
�9 2 ( / +  m)! e~'(cos(0))  (V-49) 

This equation is valid only for nonnegative values of the integer m, but Eq. (F-45) 
contains only the square of m, so that the solution of the Schr6dinger equation is the 
same for any integral value of m and for the negative of that value. Therefore, 

{~)lm "~-- {~)l,--m (F-50) 

We insert a comma to avoid confusing two subscripts having values l and - m  with a 
single subscript having a value equal to l -  m. Equations (F-47)-(F-49) can be used to 
construct all of the | functions in normalized form. 

5 j. C. Davis, Jr., Advanced Physical Chemistry, Ronald Press, New York, 1965, pp. 596ff. 
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The R functions obey the equation 

r2 ~r 2d2R dRdr 2przh 2 ( Z~2 ~ + 2r _E + 4geor)R + l(l + 1)R - 0 

We make the following substitutions: 

~2 = 2#E Z ~  2 
h2 , fl 4rce0~h2, p -- 2~r  

The resulting equation is divided by p2, giving the associated Laguerre equation: 

d2R 2 dR R fiR l(l + l )R 
t ~ - ~ + ~ = 0  dp 2 p dr 4 p p2 

This has the solution 

where G(p) is a power series 

(F-51) 

(F-52) 

(F-53) 

R(p) = G(p)e -p/2 (F-54) 

(F-59) 

(F-60) 

(X) 

G(p) - ~ aj[/ (F-55) 
j=l 

with constant coefficients a l, a2, a3 . . . . .  This series must terminate after a finite 
number of terms in order to keep the wave function from becoming infinite for large 
values of p.6 In order for the series to terminate, making it into a polynomial, the 
parameter fl must equal an integer, n. The variable p is given by 

2Zr 
p = 2~r = ~ (F-56) 

na 

where a is the Bohr radius, given by 

h24rce0 
a = ~ (F-57) #~2 

The polynomial G is given in terms of associated Laguerre functions: 

AT ~ l f21+l  a(p) l*nllJ ~n+t (P) (F-58) 

where Nnl is a normalizing factor, 

2 2  3 ( n _ l _  1)! 
N n l  m , 

2n[(n +/)t]  3 

The associated Laguerre functions are 

d s 
= ~ Lu(p )  

L~u(p) dps  

where L u is the Laguerre polynomial 

d u 
Lu(P) - e p dpu (P ue-p) 

The first few R functions for the hydrogenlike atom are given in Table 16.2. 

(F-61) 

6 j. C. Davis, o p .  c i t .  (Note 5). 



The Perturbation Method 

The perturbation method is applied to a problem in which the Hamiltonian operator can 
be separated into two terms: 

/2/_/2/(0) + 2/2/, (G-l) 

where 2 is a fictitious parameter that delivers the actual Hamiltonian when 2 = 1. 
We assume that the energy eigenvalues and energy eigenfunctions of state number n 

can be represented by a power series in 2: 

E n -- E(n O) -a t- E(1)/~ + E(2))~ 2 + . - .  (G-2) 

~i./n __ LId(O ) _.[_ W(1)~ _.[_ tl./(2 )/~2 _.{._ . . . (G-3) 

When the power series of Eqs. (G-2) and (G-3) are substituted into the time- 
independent Schr6dinger equation, we obtain 

+ + + + . . . )  

= (E(n ~ + E(nl)2 + E(n2)2 2 +...)(W(n ~ + kI/(1)/~ -[- ~IJ(2))~ 2 + ' - ' )  (G-4) 

We multiply out the products in Eq. (G-4) and use the fact that if two power series are 
equal to each other for all values of the independent variables, the corresponding 
coefficients in the two series are equal to each other. We equate the constant terms on 
the two sides of the equation, after which we equate the coefficients of the linear terms, 
etc. The constant (zero-order) terms obey the relation: 

- ( G - 5 )  

The coefficients of the linear (first-degree) terms obey the relation: 

/Qtkp(0) ..[_ f/(0)kIJ(1) _ _ g t n ~  n ( 1 )  (0) + E(o)w(2) (G-6) 

To obtain an equation for E(~ 1) we express the first-order correction to the wave 
function as a linear combination of the unperturbed (zero-order) wave functions: 

oG 
~(n 1) - -  ~ a,~Pr ~ (G-7) 

j = l  

where we assume that there are infinitely many zero-order wave functions. Since ~(0) is 
a hermitian operator, its eigenfunctions presumably form a complete set, allowing this 
to be an exact representation if all of the infinitely many eigenfunctions are included. 
This representation is substituted into Eq. (G-6), giving 

(x) (x) 
/_~&IJ(O) __[._ f_/(O) ~ ~ UnJ l'J~ __ E(1)~Ij(#) _+_ E(n O) ~ anj~o)  

j = l  j = l  
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Since qj~o)is an eigenfunction of/2/(o) with eigenvalue Ej(. ~ 

~_itg/~(O) ..[_ ~ Unjr'j- w(0)ur,(0)a_j --g(nl)~I ~(O) -Jr- E(,, ~ Z anjV) ~ (G-9) 
j--1 j=l 

We now multiply each term of Eq. (G-9) by tF(,~ and integrate over all coordinates 
on which the wave function depends. The two sums contain constants multiplied by 
zero-order wave functions. Since the zero-order energy eigenfunctions are orthogonal to 
each other if belonging to different eigenvalues, every integral in the sums vanishes 
except the one for which n = j .  We assume that the zero-order wave functions are 
normalized, so that this integral equals unity. We now have only one term surviving in 
each sum, and with the terms not included in the sums, we now have 

I q~~176 dq + a,,,,E(,, ~ - g (1) -1"- a,,,,E(,, ~ (G-10) 

where we abbreviate the coordinates of the system by q. The second term on each side 
cancels. 

The result for the first-order correction to the energy eigenvalue is 

E~I) -- I V(~ dq (G-11) 

We do not discuss the first-order and higher-order corrections to the wave function, or 
the higher-order corrections to the energy eigenvalue, which are considerably more 
complicated, and cannot be evaluated exactly. 



The Hiickel Method 

The Htickel method is introduced in Section 18.8. It is a semiempirical method of 
determining approximate LCAO molecular orbitals. It treats electrons in delocalized rc 
bonds, and assumes that the framework of a bonds has been treated separately, using 
s p  2 hybrid orbitals. 

As an example, we treat the allyl radical, C H z = C H - C H 2 . .  If the plane of the 
molecule is the x-y plane, the molecule has three unhybridized 2pz orbitals, one on each 
of the carbon atoms, that are not involved in the a bonds. We construct linear 
combinations from these atomic orbitals, as in Eq. (18.7-12): 

,-,(i) ,l, C~ i) ( 4 9 i -  c~i) ~ l 21" ~2 ~ 2 -~- 1113 (H-l) 

where i is an index specifying which LCAO-MO is meant, and where ~1 is the 2pz 
orbital on carbon number 1, etc. From three independent atomic orbitals, three LCAO 
molecular orbitals can be made, so i ranges from 1 to 3. 

We assume that there is some effective Hamiltonian operator for an electron, called 
/-/~ff, in which all attractions and repulsions are expressed in an approximate way that 
allows each electron to move independently of the others. We apply the variational 
method, seeking the lowest value of the variational orbital energy, 

q~i/-/1 fPi d3r = l   'eff 
(H-2) 

q~/(/9i d 3 r  

When the expression of Eq. (H-1) is substituted into Eq. (H-2), we obtain an expression 
for W that contains two types of integrals: 

[ , / , ,  ~reff d 3 (H-3) Hab t k ' a ~ l  ~b r 

= [ O* Ob d3r (H-4) 
J 

where Sa and Sb are two of the 2pz atomic orbitals. The integral Hab is called a matrix 
element of the Hamiltonian. The integral Sab is an overlap integral if a # b, and is a 
normalization integral if a = b. 

When the orbital variational energy is expressed in terms of these integrals, we have 

3 3 

Z �9 -'a "b ~tlab 
1/17 __ a=l b=l 
vv i 3 3 

~a ~b Oab 
a=l b=l 

N 
= (H-5) 
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where we assume that the c coefficients are real, as are the ff functions, so that 
Hab = Hba. We temporarily denote the numerator of this expression by N and the 
denominator by D. We now need to minimize this variational energy with respect to all 
of the c coefficients. To do this, we differentiate W i with respect to each of the c 
coefficients and set these derivatives equal to zero. This gives us three equations for the 
three c coefficients, which would seem to be the fight number of equations to solve for 
the three c coefficients. 

The derivative of W with respect to cj is (where we temporarily omit the superscript 
(i) and the upper limits on the sums) 

OCj -- b CbHjb "nt- ~a Canaj -- ~ Zb cbsjb "~ Ea CaSaj 

) - - f i e  

- - - f i -  (H-6) 

where we use the fact that for real functions nab "--nba and Sab -" Sba. We set the 
expression in Eq. (H-6) equal to zero to find the minimum, and the result is a set of 
three equations, one for each value of j .  We multiply by D/2 and obtain 

3 
0 -- Z (Haj - mgaj)Ca ( j  = 1, 2, 3) (H-7)  

a=l 

This is a set of three simultaneous linear homogeneous equations with a different set of 
c coefficients that satisfies each set of equations. 

By inspection, we can see that the equations are satisfied by the so-called "trivial 
solution" in which all the c's vanish. Furthermore, we can see that there are not really 
three independent c coefficients, since the set of three c coefficients can all be 
multiplied or divided by any constant and the equations are still satisfied. If we 
divide each equation by Cl, we have only two remaining unknown variables. If W is 
arbitrary, the system of equations is therefore overdetermined. That is, there is one 
equation too many to have a solution. In order for a nontrivial solution to exist, a 
condition must be satisfied, that the determinant of the matrix of the coefficients must 
vanish. 1 

det(Hab - WSab) -- 0 (H-8) 

Equation (H-8) is called a secular equation. 
We now introduce some assumptions and approximations that further define the 

Hfickel method. We assume the 2pz orbitals are normalized, so that the normalization 
integrals (Saa) equal unity. We assume that all of the overlap integrals (Sab with a -r b) 
vanish. We assume that naa has one value, called ~, and Hab another value, called t ,  
when a and b represent orbitals on atoms bonded to each other. We assume that Hab 

1 Ira N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, NJ, 1991, pp. 202ff. 
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vanishes when orbitals a and b are on atoms that are not bonded to each other. The 
secular equation for the allyl radical now becomes 

~ - W  /3 0 
/3 ~ - W fl = 0 (H-9) 
0 fl ~ - W  

The secular equation is simplified by dividing each element of  the determinant by 13 and 
letting 

~ - W  
x = (H-10) 

so that 

x 1 
1 x 

0 1 

0 
1 = 0  

x 

(H-11) 

This determinant is expanded by minors using the top row: 

I x 1 1 1 
x - 1  - 0  

1 x 0 x 

x ( x  2 - 1 ) -  l (x  - O) = x 3 - 2 x  = x ( x  2 - 2) = 0 

There are three roots, which we call x l, x2, and x3: 

X 1 = --~q/2, X 2 --  0, 

corresponding to 

X 3 --  ~ / 2  

(H-12a) 

(H-12b) 

(H-13) 

Since fl turns out to be negative, W1 is the lowest energy W2 turns out to correspond 
to a relative maximum in the energy, and W 3 corresponds to a relative minimum. 
However, these are the best approximations to the excited orbitals that can be obtained 
in this method. 

This represents one set of  equations for each value of  x, so that we obtain three orbitals: 

(/91 = r + ~ / 2 ~ 2  "1" !//3) ( H - 1 6 a )  

(/92 - -  r -- ~3 )  ( H - 1 6 b )  

q)3 - -  r -- ~/~1]/2 + I]/3) ( H - 1 6 c )  

For each of  these roots, there is a set of  three equations for the three c coefficients. 
Applying the same approximations as used in the secular equation and dividing these 
simultaneous equations by 13, we obtain 

XCl + c2 = 0 (H-15a) 

Cl + xc2 + c3 = 0 (H-15b) 

c2 + xc3 = 0 (H-15c) 

W 1 = e + ~/-2fl (H-14a)  

W 2 = ~ (H-14b) 

W 3 = e - ~/2fl (H-14c) 
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The orbitals and orbital energies of benzene and 1,3-butadiene described in Chapter 
18 are obtained in an analogous manner. The delocalized rc orbitals in benzene are 
linear combinations of six unhybridized p orbitals: 

c? " 4 o 4 q)i-  c~i)o1 -[- ~2 7~'2 "[- 03 -[" CiO04 "+- 05 "[- 06 (H-17) 

The treatment is exactly analogous to that of the allyl radical except that we must deal 
with six simultaneous equations and a 6 by 6 secular equation: 

~ - w  /~ o 0 o /~ 
/~ ~ - w  /~ o o o 
0 /~ ~ - w  /~ o o 
o o /~ ~ - w  /~ o 
0 o o /~ ~ - w  /~ 
/~ o o o /~ ~ - w  

= 0 (H-18) 

equation is 

x 1 0 0 0 
1 x 1 0 0 
0 1 x 1 0 
0 0 1 x 1 
0 0 0 1 x 
1 0 0 0 1 

1 
0 
0 

= 0  
0 
1 
X 

(H-19) 

We do not go through the solution of this secular equation, but it gives the six values of 
W and the six delocalized orbitals of Figure 18.26. 

Note that there is a fl in the upper right and lower left comers, corresponding to the 
carbons being bonded in a ring. With the same replacement as before, the secular 



Matrix Representations of Groups 

Groups of symmetry operations are introduced in Chapter 18, and matrices are 
introduced in Appendix B. Matrix multiplication has exactly the same characteristics 
as operator multiplication: it is distributive but not necessarily commutative, and the 
product of two matrices is another matrix. Because of this similarity it is possible to find 
a set of matrices that has the same multiplication table as any given symmetry group. 
This set of matrices is a representation of that group. Since the members of a group 
must be capable of being multiplied together in either order, a representation must 
consist of square matrices and all of the matrices in the representation must have the 
same dimension (number of rows and columns). A given group can have a number of 
different representations with various numbers of rows and columns in the matrices. A 
group must contain the identity and the inverse of every member of the group, so a 
representation of a group must include the identity matrix and matrix inverses. 

Representations of the C2v Group 

The Czv group is the group to which the water molecule belongs. We can consider the 
group to consist either of symmetry operators or of symmetry operations. For our 
present purposes, we use the operator notation. The operators in the group are E, C2, 6yz 
and bxz, as labeled in Example 18.8. The effect of the C2 operation is to move a point 
from (x, y, z) to a point (x', y', z') such that 

C2 (x, y, z) = (x', y', z') - ( -x ,  - y ,  z) (I-l) 

This equation can be written as three equations for x', y', and z'" 

x' = - x  + 0y + 0z (I-2a) 

y' = 0x - y  + 0z (I-2b) 

z' = 0x + 0y + z (I-2c) 

These equations can be written in matrix form: 

[_, o ol[il L- I 0 - 1 0 - -  = - y  

0 0 1 z 
(I-3) 

where the matrix multiplication is carried out as described in Appendix B and where the 
vectors (x, y, z) and (x', y', z') are considered to be 3 by 1 matrices, or column v e c t o r s .  
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The 3 by 3 matrix in Eq. (1-3) is a representative of C2, denoted by R(~72). The 
representative matrices of the other three operations in the group are 

I 1 0 0 1 
R(L')-- 0 1 0 (1-4) 

0 0 1 i1001 R(~ryz)-- 0 1 0 (I-5) 

0 0 1 

I -1 
1 0 0 

R(~xz)-- 0 -1  0 (I-6) 

0 0 1 

These matrices, when applied to the cartesian coordinates of an arbitrary point as in Eq. 
(I-3) give the same results as the symmetry operators. They also have the same 
multiplication table as the symmetry operators and form a representation of the group 
Czv. 

Reducible and Irreducible Representations 

The representation of the C2v group that we just obtained is a reducible representa- 
tion. This means that it can be divided somehow into representations with fewer rows 
and columns (smaller dimension). It contains only diagonal matrices. Such matrices 
have elements that act on only one coordinate at a time. Because of this, we can make a 
set of 1 by 1 matrices by taking the upper left element of each of the 3 by 3 matrices, 
and these matrices will have the same multiplication table as the 3 by 3 matrices. The 
same thing is true of the set of center elements and the set of lower right elements. We 
say that the representation can be divided into three irreducible representations, which 
cannot be further subdivided. A representation consisting of 1 by 1 matrices is called a 
one-dimensional representation, a representation consisting of 2 by 2 matrices is called 
a two-dimensional representation, etc. A one-dimensional representation is necessarily 
irreducible. A representation of higher dimension might or might not be irreducible. 

The representation obtained by taking the upper left elements is 

R(/~) -- [1] 

R(~72)- [-1] 

R(~yz) -- [ - l l  

R(rxz)--[1] 

(I-7) 

(I-8) 

(I-9) 

(I-10) 

This set of 1 by 1 matrices consists of the only nonzero elements of the matrices that act 
on the x coordinate. For example, the C 2 operator turns x into -x ,  and R(~72) is the 
constant that multiplies x to tum it into -x .  The other 1 by 1 matrices are similar. 

We can show that these matrices obey the same multiplication table as the symmetry 
operations. For example, 

R(@z)R(C2) --[-1][-1] - [ 1 ] -  R(&xz ) (I-11) 

The other two one-dimensional representations also have the same multiplication table. 
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The representation in Eq. (1-3)-(1-6) consists of diagonal matrices and could 
therefore be identified as a reducible representation. Another type of matrix can 
immediately be identified as belonging to a reducible representation. If a matrix has 
all zero elements except for those in square areas along the principal diagonal the 
matrix is said to be a block-diagonal matrix and can be subdivided in a similar way. 
An example of a block-diagonal 5 by 5 matrix is 

1 0 0 0 0 
0 2 3 0 0 

F -  0 4 3 0 0 (1-12) 
0 0 0 5 6 
0 0 0 7 8 

This matrix contains a 1 by 1 block and two 2 by 2 blocks. All elements outside of the 
blocks on the principal diagonal must equal zero for the matrix to be block-diagonal. 

If a representation consists of a set of matrices that are all block-diagonal with blocks 
of the same sizes in the same orders, it is a reducible representation. A new set of 
matrices obtained by taking the block out of the same position in each matrix is a 
representation. Even if a representation consists of matrices that are not block-diagonal, 
it is a reducible representation if a similarity transformation produces matrices that are 
all block-diagonal in the same way. A similarity t ransformation on the matrix B 
means the carrying out of two matrix multiplications as follows to yield a new matrix C: 

C = A-1BA (I-13) 

The matrix A can be any matrix of the same size as B, but its inverse must be used on 
the left of the expression. If the same similarity transformation is carried out on every 
matrix in a representation, the new set of matrices is also a representation. 

If the same similarity transformation when carried out on every matrix in a 
representation produces a set of matrices that are all block-diagonal with the same 
size blocks in the same order, then the original representation is reducible, and each set 
of corresponding blocks in the new set of matrices forms a new representation. If no 
such transformation can be found, then the original representation is irreducible. 

Classes in a Group 

A group can often be divided into classes. If A and B are both members of the same 
group, the similarity transformation as in Eq. 0-13) will yield C, which is another 
member of the group. If the members A and A -1 are replaced in turn by every other 
member of the group and its inverse, it is found in many cases that only certain 
members of the group will occur in the place of C on the left- hand side of this equation 
for a given matrix B. These members constitute a class within the group. Every operator 
of the C2v group is in a class by itself, as is the case with any abelian group. All of the 
operators commute with each other so that if A and B are members of an abelian group 

A-1BA -- A - l A B  -- B (if A, A -1 , and B commute) (I-14) 

The identity element is always in a class by itself, since the identity matrix commutes 
with every other matrix. If a group includes the inversion operator, this operator is also 
in a class by itself. 
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Character Tables 

For many purposes, it is not necessary to use the entire matrices in a representation to 
get useful information. The t r a c e  of a square matrix is defined to be the sum of the 
diagonal elements of the matrix. The set of traces of the matrices in a given 
representation are called the c h a r a c t e r s  of the representation and the list of them is 
called a character table. For example, the character table for the representation of Eqs. 
(I-3)-(I-6) is 

C2v E C 2 ay z axz 

F 3 1 1 1 

In this character table, the letter F is a generic symbol for a representation, and each 
character is listed below the symbol for the symmetry operation. The character table for 
each of the three one-dimensional representations is just the list of the elements of the 
one-by-one matrices, since there is only one term to add up to get each trace. We 
include all three in the same character table: 

Czv E C 2 ay z axz Function 

A1 1 1 1 1 z 
Bl 1 - - 1  - - 1  1 x 
B2 1 - - 1  1 - - 1  y 

The nomenclature attached to these representations is as follows: 1 One-dimensional 
representations are designated by A if they are symmetric to rotation by 2 n / n  radians 
about the principal n-fold rotation axis (n = 2 for 180 ~ rotation in this case) and are 
designated by B if they are antisymmetric to this rotation. The subscripts 1 or 2 
designate whether (in this case) they are symmetric or antisymmetric to reflection in a 
vertical plane. A two-dimensional representation is designated by E (not to be confused 
with the identity operation), and a three-dimensional representation is designated by T. 
Subscripts g and u are sometimes added to specify the symmetry with respect to 
inversion (g = gerade  -- even; u - ungerade = odd). A representation with all characters 
equal to 1, like the A1 representation in this case, is called the totally symmetric 
representation. 

Bases for Representations 

The last entry in each row of the character table for the three one-dimensional 
representations specifies the coordinate that was acted on by the 1 by 1 matrix when 
we generated the representation. To generate each one of these representations we could 
have examined the effect of each of the symmetry operations on one of the cartesian 

1A. W. Adamson, A Textbook of Physical Chemistry, 3d ed., Academic Press, Orlando, 1986, pp. 747ff. 
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coordinates x, y, and z. The C 2 operation changes x to -x ,  and multiplication by - 1  
accomplishes the same thing, so that 1 by 1 matrix representing C 2 has - 1  as its only 
element. 

We say that we used x, y, and z as the basis of the representation. We could have 
examined the effect of the symmetry operators on any other functions of x, y, and z, 
including atomic orbitals or molecular orbitals, and could use these functions as the 
basis of a representation. Since the coordinate z is unchanged by any of the symmetry 
operations in the C2v group, we would get the same results by using the functions xz, yz ,  

and z 2 as the basis of a representation. 
A theorem that we quote later implies that there must be four irreducible representa- 

tions of the Czv group. The fourth representation is obtained by using xy as an 
additional basis function. This function gives the characters 

and this is included in a typical character table for the C2v group. 2 
The hydrogenlike atomic orbitals have definite symmetry properties, and are 

eigenfunctions of specific symmetry operators. When we use the real 2p orbitals on 
the oxygen atom as a basis for a one-dimensional representation of the Czv group, we 
can obtain the characters by determining what the eigenvalue is when each symmetry 
operator in the group is applied to the function, since the eigenvalue is the single 
element of the 1 by 1 matrix. The result is the same character table as obtained with x, y, 
and z as the basis: 

Character tables can be obtained for any group. Table A.26 of Appendix A lists 
character tables for common point groups. The following notation is used: If there are 
C 2 axes perpendicular to the principal rotation axis (this occurs in the D groups), a C2 
operation is labeled as a C~ axis if it passes through outer atoms of the molecule, and as 
a C~' axis if it passes between outer atoms. A vertical mirror plane is labeled as a av 
plane if it passes through outer atoms and as a aa axis if it passes between outer atoms. 
The fight column gives functions of x, y, and z that could be used as bases for the 
representations, as well as some rotations that match the representation. Rz stands for 
rotation about the z axis, etc. 

There are several theorems and facts that give useful information about the 
irreducible representations of groups. They can be used to understand and apply 
character tables. 3 We state a few of them without proof. 

2 Adamson, op. cit., pp. 748ff (Note 1). 
3 G. L. Meissler and D. A. Tart, Inorganic Chemistry, Prentice-Hall, Englewood Cliffs, NJ, 1991, p. 104. 
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1. The totally symmetric representation (the one-dimensional representation with all 
characters equal to 1) occurs with all groups. 

2. If there is more than one operation in a class, all of the operations in a class will have 
identical characters in any representation, and can be lumped together in the same 
column of a character table, as in Table A.26 of Appendix A. 

3. The number of irreducible representations equals the number of classes. Therefore, 
in a complete character table, the number of rows will equal the number of columns. 

4. The sum of the square of the dimensions of the irreducible representations is equal 
to the order of the group. If the dimension of irreducible representation number i is 
called l i and if the order of the group (the number of operators in the group) is h, 
then 

l~ -- h (I-15) 
i 

where the sum is over all irreducible representations of the group. If we denote the 
character of a given operation, O, in the representation number i by zi(O), then Eq. 
(I- 15) can be written 

Z [zi(E)] 2 -- h ( I - 1 6 )  
i 

since the character of the identity operator equals the dimension of the representa- 
tion. 

5. The sum of the squares of the characters in any irreducible representation is equal to 
the order of the group. 

Y~ [z(O)] 2 - h (1-17) 
O 

6. Two irreducible representations of a group are orthogonal to each other. This means 
that if you take the product of the characters of a given operation in the two groups 
and then sum all such products, they will add to zero. If i and j denote two 
irreducible representations of a group, 

Y~. z i ( O ) z j ( O )  - 0 (I-18) 
O 

where the sum is over all members of the group. 
7. The number of times that an irreducible representation occurs in a reducible 

representation is given by 

1 
Number - ~ y~. zi(O)zj(O) 

O 
(I-19) 

where h is the order of the group and where i stands for an irreducible representation 
andj  stands for a reducible representation, and where the sum is over all members of 
the group. 
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If the 3dxz, 3dy z, 3dxy, 3dx2_),2, and 3dz2 orbitals are used as a basis for the C2v group 
(in that order), we get the representation (with R(E) not displayed, since it is just the 
identity matrix): 

- 1  0 0 0 0 

0 - 1  0 0 0 

R ( b : ) -  0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

(I-20) 

1 0 0 0 0 

0 - 1  0 0 0 

R(~xz ) -  0 0 - 1  0 0 (I-21) 

0 0 0 1 0 

0 0 0 0 1 

- 1  0 0 0 0 

0 1 0 0 0 

R(~ryz)-- 0 0 - 1  0 0 (I-22) 

0 0 0 1 0 

0 0 0 0 1 

Applications of Group Theory to Molecular Orbitals 

We can determine something about the molecular orbitals in a polyatomic molecule by 
the use of group theory. In Chapter 18 we first described the bonding in the water 
molecule in terms of hybrid orbitals on the oxygen atom in order to have only LCAO- 
MOs containing two basis functions. In Hartree-Fock-Roothaan calculations, the 
LCAO-MOs are linear combinations of the entire set of basis functions. We described 
a basis set for the water molecules such that the basis orbitals were eigenfunctions of the 
symmetry operators belonging to the molecule. These basis functions have symmetry 
properties like those of the irreducible representations and produce a secular determi- 
nant that is in block-diagonal form, simplifying the calculation. If a basis orbital has the 
same symmetry properties as a representation labeled A1, it is labeled al, etc., and this 
label is called its symmetry species, which identifies the irreducible representation to 
which it corresponds. The two linear combinations of Eqs. (18.6-19) and (18.6-20) were 

~/a 1 ~" ~/lsHa + ~/lsHb (I-23) 

I~b 2 - -  ~/lsHa --  ~/lsHb (1-24)  

where we have labeled these linear combinations with their symmetry species. These 
linear combinations are called symmetry-adapted basis functions. Pitzer and Merri- 
field carried out a Hartree-Fock-Roothaan calculation on H20 using a minimal basis 
set of Slater-type orbitals and obtained the orbitals displayed in Table 18.6. The al 
orbitals are numbered from lower to higher energy, as are the bl and b2 orbitals. 

Only basis orbitals of the same symmetry species enter in any one molecular orbital. 
The al basis function can combine with the Is, 2s, and 2pz functions on the oxygen. 
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The b2 basis function can combine with the 2py function on the oxygen, and the 2px 
function on the oxygen cannot combine with any of the other basis functions. Knowing 
the symmetry species of the basis orbitals and including only those that have the same 
symmetry species shortens the calculation, as did exclusion of the 2px and 2py orbitals 
from the a molecular orbitals that we formed for the lithium hydride molecule in 
Section 18.4. 

A useful application of group theory is the prediction of whether an overlap integral 
will vanish. In various places in earlier chapters, we have occasionally asserted that an 
integral vanishes without actually calculating it, by noting that the positive and negative 
contributions cancel because of some symmetry of the integrand function. Group theory 
provides a systematic means of doing this. 4 Consider an overlap integral 

I fl f2 dq 

where fl and f2 are two orbitals of a given molecule. If the integrand changes sign under 
some symmetry operation belonging to the molecule, this means that positive and 
negative contributions will cancel. This generally means that the product of the two 
functions must have the symmetry species A1 in order not to vanish automatically. We 
determine whether this is the case by forming the direct product, which is a 
representation obtained as follows: Write the characters for the irreducible representa- 
tion for orbital fl and that for orbital f2, one above the other with the symmetry 
operations in the same order. Multiply the two characters for each operator together, to 
obtain a representation of the group that can be reducible or irreducible. If the 
irreducible representation A1 (the totally symmetric representation) is obtained, the 
integral will not vanish. If a reducible representation is obtained that contains the 
totally symmetric representation, the integral will not vanish. The number of times that 
a given irreducible representation is contained in a reducible representation is given by 
Eq. 0o19). 

As an example, we show that the water molecule symmetry-adapted orbital 
~b2 = ~ lsHa -- ~ lsHb has a vanishing overlap with the oxygen 2s orbital. The symmetry 
species of the oxygen 2s orbital is al, and that of the symmetry-adapted orbital is b2. 
From the character table in Table A.26 of Appendix A, 

4 Adamson, op. cit., pp. 762ff (Note 1). 
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quickly determine the dimension of a reducible representation by looking at the trace of 
the matrix representing the identity E, which is equal to the dimension of the 
representation (it is the sum of unity for each diagonal element of the matrix). For 
example, from the character table, we see that there is no irreducible representation with 
dimension greater than 1 for the C2v group. There are no degenerate orbitals for the 
water molecule. 
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Symbol 

D i 
D 
e 
e., 

E 
ec 
er 
E (n) 

E 
E o 

o~ 

e, AB 
Ea 
F 

f 

f 
f 

f~(v) 
f 
f 
f 
f 
F 

g 
g 

gi 
g(2) d2 
g 

gs 
gc 
g(r) 
G 
G 
G 
G(a) 
AGmix 
G E 
h 
fi = h/2n 
h ,k ,  and/  
H 
l-I 
Agint,i 

9if(p, q) 

l 
i 
i 
I 
I 
I 
I 

Quantity 

Diffusion constant of substance i 
Debye function 
The base of natural logarithms, 2.71828182846... 
Charge on a proton 
General symbol for a mechanical energy 
Center-of-mass energy 
Relative energy 
nth-Order perturbation correction to an energy 
Cell voltage 
Cell voltage in the standard state 
Electric field 
Average bond energy of a bond between elements A and B 
Activation energy in the Arrhenius expression for a rate constant 
Faraday constant 
Number of independent intensive variables, or variance, given by the Gibbs 
phase rule 
fugacity 
Usual symbol for a probability density, especially for molecular velocity 
components 
Probability density for molecular speeds 
Friction coefficient 
Electrostatic factor for diffusion-controlled reaction 
Fraction of collisions leading to reaction 
Tension force of a sample of rubber 
Force 
Abbreviation for the chemical formula of substance i 
Probability density for molecular velocity in three dimensions 
Acceleration due to gravity 
Degeneracy of level i 
Number of possible standing waves in wavelength range d2 
Electron g-factor 
Nuclear g-factor 
Coordinate probability distribution 
Radial distribution function 
Probability density for coordinates and velocities 
Newtonian constant of gravitation 
Gibbs energy 
Surface Gibbs energy 
Gibbs energy change of mixing 
Excess Gibbs energy 
Planck's constant 
Planck's constant divided by 2n 
Miller indices 
Enthalpy 
Magnetic field strength 
Integral heat of solution of substance i 
Differential heat of solution of substance i 
Classical Hamiltonian, equal to the energy E, expressed in terms of coordinates 
and conjugate momenta 
Hamiltonian operator 
Inversion operator 
Degree of inhibition 
Unit vector in x direction 
Ionic strength 
Moment of inertia 
Nuclear spin angular momentum 
Quantum number for a nuclear spin angular momentum 
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Symbol 

I 

J 
J 
J 
d 
J 
Ju 
J 

Ji 
J 

ki 
k 
k 
k 
kB 
k (m) 

X 

Xd 
Xb 
Xf 
K 
K 
K 

Xm 
l 

L 
L 
L 
m 

me 
mi 

m• 
m o 

mN 
m 

m s 

M 

M_w 
M~ 
Me 
:Vii 
M 

Me 
Mj 

ML 

Ms 

Quantity 

Electric current 
Unit vector in y direction 
Electric current density 
Total angular momentum 
Quantum number for a total angular momentum 
Quantum number for the rotation of a molecule 
Spin-spin coupling constant for nuclei i and j 
Rate of absorption of photons 
Diffusion flux of substance i 
Analogue to Gibbs energy 
Henry's law constant 
Force constant 
Usual symbol for a rate constant 
Unit vector in z direction 
Boltzmann's constant 

Proportionality constant for the vapor pressure of a volatile electrolyte 
Kinetic energy 
Nernst distribution law constant 
Boiling point elevation constant 
Freezing point depression constant 
Equilibrium constant 
Analogue to enthalpy 
Proportionality constant in relation between intrinsic viscosity and average 
molecular mass 
Acid ionization constant 
Michaelis-Menten constant 
Quantum number for the magnitude of the orbital angular momentum in a 
hydrogenlike atom 
Usual symbol for a length 
Angular momentum, usually the orbital angular momentum 
Quantum number for the magnitude of an orbital angular momentum 
General symbol for a mass 
Electron rest-mass 
Molality of substance i 
Mean ionic molality 
1 molkg -1 (exactly) 
Neutron rest-mass 
Quantum number for the z projection of the orbital angular momentum in a 
hydrogenlike atom 
Quantum number for the z projection of the spin angular momentum of a single 
particle 
Molecular mass of a polymer 
Number-average molecular mass of a polymer 
Number-average molecular mass of a polymer 
Viscosity-average molecular mass of a polymer 
Molar mass of substance i 
Effective mass of normal mode i 
Symbol sometimes used for a sum of masses 
Quantum number for the z component of a nuclear spin angular momentum 
Quantum number for the z component of a total angular momentum of an atom 
or molecule 
Quantum number for the z component of an orbital angular momentum of an 
atom or molecule 
Quantum number for the z component of a spin angular momentum of an atom 
or molecule 
The amount of substance i (measured in moles) 

(continued) 
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Symbol 

nj(,') 
n} 'r) 

n 
n 
n (2) 

NAv 
Ni 
{N} 

P 
P 
P 
Pi 
P 
P 
pH 
pKa 
P 
Pi 
Pc 
Pr 
Pext  
PT 
po 

q 
q 
q 

Q 
O 
/,. 

r 

r 

r 

R 
9~ 

Rnl 
R 
R 

S 
S 
S 
S 
S 
t 

tl/2 
tc 
T 
v~ 
T 

Vr 
u(x, y, z) 
u(r) 

u 

u(x) 

Quantity 

Charge density around a given ion 

Surface amount of substance i 
Principal quantum number of a hydrogenlike atom 
Refractive index 
Two-body reduced distribution fimction 
Avogadro's constant 
Number of molecules of substance i 
Notation for a distribution N1, N2, N3 . . . .  
Number density of substance i 
Momentum vector 
A general abbreviation for conjugate momenta 
A general symbol for a probability 
Probability of state i 
Number of phases 
Fraction of functional groups reacted 
- logl0[a(H+)] 
- logl0(Ka) 
Pressure 
Partial pressure of substance i 
Critical pressure 
Reduced pressure 
Extemally imposed pressure 
Vapor pressure of pure substance i 
Standard pressure, equal to 1 bar 
An amount of heat 
A general abbreviation for coordinates 
Heat flux 
Electric charge 
Activity quotient of a chemical reaction 
Usual symbol for a radius or a scalar distance 
Position vector 
Rate of a chemical reaction 
Resistivity 
Molar gas constant 
Rydberg constant 
Radial factor in the wave function of a hydrogenlike atom 
Electrical resistance 
Internuclear distance (also denoted by r) 
Reynolds number 
Entropy 
Spin angular momentum vector 
Quantum number for the magnitude of a spin angular momentum 
Overlap integral 
Sedimentation coefficient 
Time 
Half-life of a chemical reaction 
Celsius temperature 
Absolute temperature 
Critical temperature 
Tension force on a vibrating string 
Transmittance of an absorbing solution at wavelength 2 
Reduced temperature 
Potential energy of one molecule 
Potential energy function for a pair of molecules as a function of internuclear 
distance 
Flow velocity 
Bloch function 
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Symbol 

U 
u 

v 
(v) 
/)p 

/)rms 
V 
V 
Vm 
Vm~ 
Vr 
/)rel 
V 

w 

Wnet 

Wrev 
w i 
w(~) d,~ 
W({N}) 
w~ 
xi 
x,. 
Xe 
X 

X 
x~ 
Y 

rm 

A f Y ( i )  

~o 

AYmix 

r'(o, r 
Zi(j) 

Zi 
Z* 

Z 
zo 

z 
z 

0~ L 

Quantity 

Thermodynamic energy (also called intemal energy) 
Velocity vector 
Speed (magnitude of a velocity) 
Mean speed 
Most probable speed 
Root-mean-square speed 
Vibrational quantum number 
Volume 
Molar volume 
Critical molar volume 
Reduced volume 
Relative speed 
Voltage 
Potential energy . . . . . . . . . . . . . . . . . . . . . .  
An amount of work 
Work other than compression work 
Reversible work 
Mass of substance i 
Energy per unit volume in wavelength range d2 
Number of system states corresponding to the distribution {N} 
Mass fraction of polymer molecules with degree of polymerization x 
Mole fraction of substance i 
Electronegativity of element i 
Parameter in molecule energy level 
Degree of polymerization 
External force 
Number of fraction of polymer molecules with degree of polymerization x 
Letter used to stand for a general extensive thermodynamic variable such as G, 
H, U, V, etc. 
Symbol used to stand for a general molar or mean molar quantity, such as Gm, 
Vm, etc. 
Symbol used to stand for a general molar quantity of formation, such as AfG(i) 
or AfH(i) 
Symbol used to stand for a general partial molar quantity, such as  ai,._ V/, etc. 
Symbol used to stand for a general partial molar quantity, such as G i, V~, etc., in 
the standard state 
Symbol used to stand for a general molar quantity, such as Gmi, Vmi, etc., in the 
pure state 
Symbol used to stand for a general mixing quantity such as the change in Gibbs 
energy on mixing, A Gmix, etc. 
Spherical harmonic function 
Rate of collisions of one molecule of substance i with molecules of substance j 
Valence of ion i 
Complex conjugage of z 
Molecular partition function 
Compression factor of a gas 
Total rate of collisions per unit volume of molecules of substance i with 
molecules of substance j 
Atomic number; number of protons in a nucleus 
Canonical partition function 
Coefficient of thermal expansion 
Coefficient of linear thermal expansion 
Critical exponent for the heat capacity 
Parameter in Debye-Hiickel theory 
Parameter in hydrogen-atom wave function 

(continued) 
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Symbol 

[~] 

~N 

~, ~,' 
7 

7+ 
6 
6 
A 
/3 

/3 0 

/3 i 

/3 F 

((t) 
( 
r/ 
q 
q 

q 
0 
0 

0 
0 
0(0) 
| 
| 
KS 

K, T 
K 

K 

2 
)~iq) 

2 
2 
Ai 
A 

# 
# 

#i 

Quantity 

Spin function (spin up) 
Parameter in molecule energy level 
Polarizability 
Angle of rotation of polarized light 
Specific rotation 
Lagrange multiplier 
Transfer coefficient or symmetry factor 
Degree of elongation of a sample of rubber 
Critical exponent for the density 
Parameter in Debye-Hfickel theory 
Spin function (spin down) 
Bohr magneton 
Nuclear magneton 
Lagrange multiplier 
Critical exponent for the compressibility 
Surface or interfacial tension 
Activity coefficient of substance i 
Mean ionic activity coefficient 
Critical exponent for the pressure 
Chemical shift in NMR spectroscopy 
Symbol for a difference or an increment 
Permittivity of a medium 
Permittivity of the vacuum 
Energy eigenvalue of molecule state i 
Fermi level 
Time factor in a wave function 
Configuration integral 
Efficiency or coefficient of performance 
Spectral radiant emittance 
Viscosity coefficient 
Specific viscosity 
Intrinsic viscosity 
Overpotential 
Thermodynamic temperature 
Angle coordinate in spherical polar coordinates. Also o~en used for an arbitrary 
angle 
Contact angle 
Fraction of a surface covered by adsorbed molecules 
Angular factor in an atomic wave function 
Debye temperature 
Einstein temperature 
Adiabatic compressibility 
Isothermal compressibility 
Parameter in Debye-Hiickel theory, reciprocal of Debye length 
Thermal conductivity 
Mean free path 
Mean free path between collisions of one molecule of substance i with molecules 
of substance j 
Wavelength 
Perturbation parameter 
Molar conductivity of substance i 
Quantum number for the magnitude of the z component of the orbital angular 
momentum 
Reduced mass 
Usual symbol for the mean value of a distribution 
Chemical potential of component i 
Chemical potential of component i in the standard state 
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Answers to Selected Exercises 
and Problems 

Chapter 1 
Answer to selected exercises 

1.1 

m -- 4.5 x 10 -12 kg 

1.2 

Time ~ 3.8 • 107 years 

1.3 

R = 0.082058 L atm K -1 mo1-1 

R = 1.9872 cal K -1 mo1-1 

R = 82.058 cm 3 atm K -1 mo1-1 

R = 83145 cm bar K -1 mo1-1 

1.4 

a. V -- 97.86 L 

b. P = 2.052 atm 

1.5 

F z = - 9 . 8  N 

1.6 

(w) = 79.4 

1.7 

(w 2) = 6326 

Wrm s = 79.5 

1.8 

P = 0.55 atm 

1.9 

Vz(t ) = - - g t  

x ( t )  = - l gt2 

Answers to selected problems 

1.11 

a. 0.5662 g 0 2 

b. 1.4453 g KC103 

1.13 

c -- 1.802617 • 1012 furlongs fortnight -1 

1.15 
a. g -- 32.3 ft S -2 

b. R -- 22.591 ft-poundals ( ~  mo1-1 

1.17 

Value P r o b a b i l i t y  

1 
2 

36 

2 
3 

36 

3 
4 

36 

4 
5 

36 

5 
6 

36 

6 
7 

36 

5 
8 

36 

4 
9 

36 

3 
10 36 

2 
11 

36 

1 
12 

36 
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1.19 

Ap = - 0 . 0 0 0 0 6 7 9  kg m -3 

Chapter 2 
Answers to selected exercises 

2.1 

V -- nVmo[1 - tc'(P - Po) + ~ ' (T - To) ] 

2.2 

1 
a.  t O T - -  P 

1 

T 

b. x T = 1.000 atm -1 

KT(ideal gas) = 21595 
~:r(water) 

r a - -  16.5 

2.3 

V ( 1 0 0 . 0 ~  2.00154 L 

2.4 

Vm(1.000 bar) - 73.53 cm 3 mo1-1 

Vm(1.000 bar) ~ 72.63 cm 3 mo1-1 

2.5 

a. lim (PVm)_ lim ( RT ~a ) 
~ m ~  ~m-~ V m - b  Vm- ,m Vm = RT 

b. P - 101,250 Pa = 1.0125 bar = 0.9993 atrn 

Ideal value - 101,323 Pa = 0.99998 atrn, for a difference 

o f  - 0 . 0 6 %  

c. PV m - 4.8157 x 106 Pa = 48.157 bar = 47.527 atm 

Ideal value - 4.9579 x 106 Pa - 48.931 atrn, for a difference 

o f  - 2 . 8 7 %  

2.7 
a 

a .  T B o y l e  - -  bR 

b. TBoyle = 505 K 

__ __ a b  = (b  _ ~_T) -1 
c. V m a - R T b  

d. P -  2.14 x 107 Pa = 211 atm 

2.11 

a = 1.56 Pa K1/2 m 6 mol-2  

b - -  2.68 x 10 -5 m 3 mo1-1 

Answers  to selected p rob lems  

2.15 

(~---~-~) = - 4 . 0 3 3 9 4 x  10 -6 P a m  -3 
T,n 

( 0 V )  = 8 . 3 1 4 5 x 1 0 - S m 3 K - 1  
P,n 

( 0 ~ )  = 2 . 9 8 1 5 X  1 0 _ 3 K P a _  1 
V,n 

2.19 

a. = a cos(y/b)  
Y 

(;) 
z ab cos(y/b)  

x = - ax sin0, /b)  

2.21 
AV 

a. ~ -~ - 9 . 7 3 0  x 10 - 4  - -  - 0 . 0 9 7 3 %  

b. A _ V ~ 2 . 4 x  10 - 2 =  2 .42% 
V 

2.25 
a. P = 1.547 atrn 

P(const.  V ) =  1.549 atm 

b. P = 1.5469 atm 

2.27 
~' + 2 f i t  c + 37t~' 2 

a ,  ~ - -  

1 + ~' t  c + f l ' t  2 + 7t~' 3 

b. ~ = 1.208 x 10 -3 K -1 

This compares with 1.237 x 10 -3 K -1 from Table A.2. 

2.31 

a ' ~ =  (Vm-b) ~ ~ 
b. ~c r - 9.857 x 10 .6 Pa -I  

2.33 

C~ " - -  

a 

Vm -- b + VmRT (Vm - b) 

T ( V  m - a(Vm - 
RTVm b)) 



K Answers to Selected Exercises and Problems 1071 

2.37 
Van der Waals; Z -- 1.1434 (0.86% error) 

Dieterici: Z --- 1.1255 (0.71% error) 

Red l i ch -Kwong :  Z = 1.1153 (1.6% error) 

2.41 
R2 T 2 

a . a =  
9(21/3 _ 1)Pc 

(21/3 _ _  1)RT c 
b =  

3Pc 
b. a - 0 .139 Pa m 6 mo1-2 

b = 2.68 x 10 -5 m 3 mo1-1 

2.45 
(cd + 2fl't c + 32't 2 + 46 ' t  3) 

a .  0~ - -  
(1 + ~'t  c + fl't 2 + 2't3c + 6't 4) 

b. From the first set o f  parameters,  V(25~ = 1.00294 cm 3 

From the second set o f  parameters,  V(25~ - 1.00294 cm 3 

dV dV  -..- d. d--T = dt c V~ + 2fl'tc + 3~'t2c + 46't3) = 0 at the min imum 

The min imum is at 3 .9601~ from the first set o f  parameters,  

and at 3 .6066~ from the second set o f  parameters 

e. a - 2 .069 x 10 -4 K -1, in agreement  with the tabulated value o f  
2.07 x 10 -4 K -1 

Chapter 3 

Answers to selected exercises 

3.1 
w = 405 J 

3.3 
a. Ws~ r = 5 0 7 N m = 5 0 7 J  

b. AP = - 3 . 0 6  atm 

3.4 
a. Wre v -- - 9 1 9 7  J 

b. Wre v -- - 9 1 9 7  J 

c. w = - 4 0 5 3  J 

3.5 
a. q - 1 6 9 0 J = 1 . 6 9 k J  

b. T = 296.8 K, t c = 23.6~ 

3.6 
mma x = 719 g 

3.7 
AT = 0.0937 K 

3.8 
a .  E r e s t _ m a s s  - -  3 .5903 x 1015 J 
b. U -  3718 J 

Ratio = 1.036 • 10 -12 

Am = 4.14 • 10 -14 kg 

3.9 
q = 8106 J 

3.12 
a. A U = 8 3 J ,  w = - 1 8 2 4 J ,  q = 1 9 0 7 J  

For an ideal gas, A U - - 0 ,  w - - 1 8 2 4 J ,  q - 1 8 2 4 J  

From Example  3.7, A U  = 83 J, w -- - 5 6 9 0  J, q - 5773 J 

b. AT = - 6 . 6 6  K 

3.13 
a. w = - 5 6 9 0 J  

q = 6708 J 

b. w = - 7 1 3 8 J  

q = 8151 J 

c. A U - 1 0 1 3 J  

3.14 
a. T2 -- 235 K 

b. V -  7.98 L 

3.18 
T 2 -- 316 K, tc, 2 -- 33~ 

3.19 
a. At  298.15 K, C p ,  m - -  29.37 J K -1 mo1-1 

7R = 29.10 J K -1 mo1-1 (0 .93% difference) 

At 1000 K, Cp, m = 34.0 J K -1 mo1-1 

7R -- 29.10 J K -1 mo1-1 (16 .9% difference) 

b. For iron, Cp, m = 25.12 J K -1 mo1-1 

For copper, Ce,m - 24.56 J K -1 mo1-1 

3R = 24.94 J K -1 mo1-1 

There is a 0 .7% difference for iron and a - 1 . 5 %  difference for 

copper. 

3.22 
a. A U  - 935 J 

b. A H = 1 5 5 9 J  

q - 3086 J 

w - - 2 1 5 1  J 

3.23 
A H  ~ = 57.011 kJ mo1-1 

3.24 
AC~ = - 3 . 5 0 8  J K -1 mo1-1 

AH~~ i~ = 56.40 kJ mo1-1 

3.25 
Tf = 5229 K 
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3.26 
ry - 7 2 6 3  K 

3.27 
A(PV) -- - 7 3 4 0  J tool -1 

3.28 
A U  ~ -- 54.532 kJ mo1-1 

3.29 
ATca 1 -- 3.771 K 

3.30 

From average bond energies, A H  ~ A U  ~ - 3 2 3  kJ mo1-1 

From enthalpy changes o f  formation, A H  ~ = -311 .41  kJ mo1-1 

Answers to selected problems 

3.33 

a. w -- n(-RT l n (  V2 - nb) na n_~11 ) 
\V1 nb +-~2 - 

b. w -- 1765 J 

c. w =  - 5 0 7  J 

Wsurr = 507 J 

3.35 

AT = 0.117 K 

3 . 3 7  

q = 81,338 J 

w = - 6 2 0 3  J 

A U  = 74,135 J 

3.39 

P2 -- 0.947 atm 

3.41 

a. T2 = 171.2 K 

b. T 2=170.8K 
3.45 

- z  ~-f c~,~ - c~,~ + ~ P, ~,~ 

3.47 

a. AT ~ - 2 . 6 0  K 

tc(final ) = - 2 . 6 0 ~  

(OHm) ___(OHm~ (OT) :Cp, m 

b. \ ~ / r  \ ~ ]  P ~ H /2JT 

(0/7/) -- - 1.28 J m o l - '  a tm- l  

3.49 
A H  m = - 4 0 , 8 0 2  J mol-1 

3.53 
a. AC~o-- 192.401 J K -1 mo1-1 = 0.192401 kJ K -1 mo1-1 

AH~~ K - - 2 2 1 0 . 4 2  kJ mo1-1 
b. AC~ = - 0 . 0 0 7 8 1  kJ K -1 mo1-1 

AH~~ i~ - - 1 9 8 . 2 4  kJ mo1-1 

3.55 

a. AfH~ K -- --76.56 kJ mo1-1 

AfH(CO2)373 K -- --392.98 kJ mo1-1 

AfH~ K = --283.443 kJ mo1-1 

b. AH~~ K - - 8 8 3 . 3 0 6  kJ mo1-1 

c. AH~~ I~ - - 8 8 3 . 2 8 2  kJ mo1-1 

3.57 
a. AfU~ -- - 3 9 3 . 5 2 2  kJ mo1-1 

AfU~ -- - 111.766 kJ mo1-1 

b. A U  ~ = - 5 6 3 . 5 1 2  kJ mo1-1 

c. A H  ~ , ~ - 5 6 5 . 9 9 1  kJ mo1-1 

3.59 
a. A U  ~ ~ - 2 7 9 6  kJ mo1-1 

A H  ~ ~ - 2 7 9 4  kJ mo1-1 

b. AH~~ K - - 2 8 5 5 . 6 8  kJ mo1-1 
- ~  - 2 8 5 2 . 7 4  kJ mo1-1 AH373 K = 

C. A U  ~ ~ - 6 0 6  kJ mol-1 

zSd-/~ ,~ - 6 0 8  kJ mo1-1 

3.63 

a. Assume that the volume of  the liquid water is constant. 

w - - 0  

A U = O  

q = O  

A H =  180J  

b. Since q = 0 in part (a), everything is the same as in part (a). 

3.65 
a. TRUE 

b. FALSE 

c. FALSE 

d. FALSE 

e. TRUE 

f. FALSE 

g. TRUE 

h. FALSE 

i. FALSE 

Chapter 4 

Answers to selected exercises 

4.2 
r/c = 0.378 

4.3 

a. r /hp= 17.6 

b. ~r -- 15.4 
C. Cost = 4.1 • 10 -9 dollars J-1 

d. Cost = 3.6 x 10 -8 dollars j-1 

4.5 
AS -- 13.43 J K -1 
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4.6 
AS = 124.9 J K -1 

4.7 

('-Tll) nc(-~2 ~-~1) AS = na In T2 + n b ( T  2 - T 1) - -~ - 

4.8 
AS -- 12.26 J K -1 

4.9 
dS/dt = 0.00274 J K - i  s -1 

4.10 
AS = 24.47 J K -1 

ASsurr = 0 
ASuniv = 24.47 J K -~ 

4.11 
a. ASmi x = 5.762 J K -1 

b. ASmi x = 8.644 J K -1 

4.12 
a. The first number  is the number  showing on the first die, and the 

second number is the number  showing on the second die. For 

example, 1,2 is different from 2,1. 

1,1 2,1 3,1 4,1 5,1 6,1 

1,2 2,2 3,2 4,2 5,2 6,2 

1,3 2,3 3,3 4,3 5,3 6,3 

1,4 2,4 3,4 4,4 5,4 6,4 

1,5 2,5 3,5 4,5 5,5 6,5 

1,6 2,6 3,6 4,6 5,6 6,6 

b. N - 1296 

c. N - - 2 1  

4.13 
W = 10 6"61x1024 

4.15 

b. S(T1) = - ~  + bT1 

4.17 
ASsurr = 1898.3 J K -1 

ASuniv • 1725.5 J K -1 

4.18 
Sst  : 14.90 J K -1 mo1-1 

Answers to selected prob lems  

4.19 
a. r / =  0.211 

V2 = 2.10 L 

V4 = 0.714 L 

b. w 1 - - 1 1 2 9 J  

w 2 -- - 2 4 9  J 

w 3 = 890 J 

w 4 --  249 J 

4.21 
P4 = 6.09 atm 

P3 = 1.52 atm 

V1 -- 0.369 L 

V2 = 1.477 L 

V3 = 3.013 L 

V4 = 0.753 L 

4.23 
b. w - -  1.56 kWh 

4.25 
A S  1 = 1.73 J K -1 

AS 3 - - 1.73 J K -1 

AScycl e = 0 

4.27 
q - - 0  

w -  - 8 1 0 . 6  J 

Tf - - 4 6 1  K 

A U - -  - 8 1 0 . 6  J 

AS - 8.15 J 

4.29 
a. AS = 5.763 J K -1 

b. AS = 3.371 J K -~ 

c. The value o f  the increase in volume is immaterial. It is the ratio o f  

the final volume to the initial volume that matters. 

4.31 
AS = 2.159 x 10 -21 J K -1 

4.35 
a. AS ~ = - 3 2 6 . 6 0 7  J K -1 mo1-1 

b. AS ~ = - 8 8 . 8 3 9  J K -1 mo1-1 

c. Assume that the CaCO 3 is calcite, not aragonite: A S ~  
159.1 J K -1 mo1-1 

4.39 
a. A f S ~  - -  89.340 J K -1 mo1-1 

AfS~ - 2.908 J K -1 mo1-1 

b. AS ~ = - 172.864 J K -1 mo1-1 

4.41 
a. Sm(solid, 231.49 K) = 111.04 J K -1 mo1-1 

b. Sm(liquid, 231.49 K ) -  146.80 J K -1 

c. Sm(liquid), 298.15 K ) -  178.75 J K -1 mo1-1 

4.43 
AS = - 1 4 5 . 1 1  J K -1 

A H  = - 4 4 . 0 0 4  kJ mo1-1 

qsu~ 44,004 J 
ASsurr . . . .  

Tsurr 298.15 K 
= 147.59 J K - I  

4.45 
a. z~t/comb - - - 1 . 2 2 5  • 105 kJ 

b. hma x -- 7.08 km 

c. hma x -- 6.03 km 
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Chapter 5 
Answers to selected exercises 

5.1 
dA < - P e x t  dV + dwne t ( if  T is constant) 

dA < dwne t (if T and V are constant) 

dwnet(surr ) < -dA (if T and Vare constant) 

5.2 

a. = 8124 K m -3 
V,n 

b. = 4062 K m -3 
V,n 

c. = 16248 K m -3 
V,n 

5.3 

0(__~) nR ( T )  
8 .  - -  

e,n Cv at- nR 

b :000118  al 
P,n 

c. - 0 .00118 K Pa -1 
e,n 

5.5 
Gm(atm ) - G m = 32.62 J mo1-1 

5.6 
a. f -  4.976 atm -- 504,200 Pa -- 504.2 kPa 

b. f -  4.831 atm = 489 ,500  P a -  489.5 kPa 

5.7 

a. G m - Gm - 7.09 x 10 -2 J mo1-1 

b. G m - G m -- 6.38 J mo1-1 

5.8 
b. AG383.15 K ~ - 1 0 9 0  J mo1-1 

c. AG383.15 K = -- 1090 J mo1-1 

5.12 
a. ~i - -  ~ t  - -  - - 1 1 , 5 5 0  J mo1-1 = - 1 1 . 5 5  kJ mo1-1 

b. [/i - -  ~ ]  - -  0 .326 J mo1-1 - 0 .000326 kJ mo1-1 

5.13 

( O U )  = 3 0 9 J m - 3 - - 3 0 9 P a  
C. - ~  T,n 

5.14 

c. --  - 9 . 0  x 10 -5 J Pa - I  = - 9 . 0  J bar -1 = - 9 . 1  J atm -I  
T , n  

5.15 
a. C v = 74.509 J K -1 mo1-1 

b. Cp,  m - C v ,  m - 0 

d. 7 - -  1.0106 

5.16 
C v -- 0.4418 J K -1 g-1 

Answers to selected problems 

5.21 

a. U = Uo(~-~) 

2U 
b . T = - -  

3nR 

2/3 ( ~ 0 )  5/3 n 

2U nRT 
c . P  . . . .  

3V V 

e x p [ 2  (nS-- - n ~ ) ]  

5.23 
b. ASm = 5.688 J K -1 mo1-1 

5.25 
b. AS -- 23.157 J K -1 

ASidea 1 - 23.053 J K -1 

5.27 

a. AG = 34.68 J 

b. AG = 37.83 J 

c. A G = 0  

d. AG = - 3 . 1 5  J 

5.29 

AA = - n R T  l n ( - ~ )  a. 
\ 1 /  

b. A A = 2 7 2 3 J  

c. AA = 1718 J 

5.31 
b. AM m = - 2 2 6 9  J mo1-1 (ideal gas" - 2271 J mol - l )  

C. AM m -- - 2 2 6 9  J mo1-1 

5.35 

m 

a .  - ~  T,n 
V 2 

b. (0_~U~ = 2 2 9 J m _  3 = 2 2 9 P a  
\ov  / T,n 
P = 1.015 x 105 Pa 

(OU) = 0 . 1 3 6 3 P a m 6 m o 1 - 2  07 
c. ~ r , ,  ( 5 . 0 x  10 - S m  3 m o l - 1 )  2 = 5 " 4 5 x  1 Pa 

P = 8 . 4 7 x  107Pa  

d. ( 0 U )  - 3 1 0 J m - 3 - 3 1 0 P a  -0--~ r,n 

5.37 
b. v s - 3 4 6 m s  -1 

c. v s = 1 0 1 6 m s  -1 

d. For air, ratio = 0.741 

For helium, ratio = 0.809 

5.39 
l im k~jx = 4.3 x 10 -6 K Pa -1 - 0.44 K atm -1 c. 
P-0  
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5.41 
a. Hm(liquid, 20 atm) - Hm(liquid, 1 atm) = 35.3 J mo1-1 

b. Hm(solid, 20 atm) - Hm(solid, 1 atm) -- 35.902 J mo1-1 

c. At 20.00 atm, AfusHm = 6005 J mo1-1 

5.43 
a. Homogeneous, degree 2 

b. Not homogeneous 

c. Not homogeneous 

d. Not homogeneous 
e. Not homogeneous 

5.45 
a. FALSE 

b. FALSE 

c. FALSE 

d. FALSE 

e. FALSE 

f. FALSE 

g. TRUE 

h. TRUE 

5.47 
(1) (2) (3) 

Spontaneous? AG AH 

a. Reversible 0 Positive 

b. Spontaneous Negative Positive 

c. Nonspontaneous Positive Positive 

d. Spontaneous Negative Positive 

e. Reversible 0 Positive 

f. Reversible 
g. Spontaneous 

(4) 

AS 

Positive 

Positive 

Positive 

Positive 

Positive 

0 Negative Negative 
Negative Positive Positive 

(5) 
AHvs .  T AS 

Equal 

Smaller 

Larger 

Smaller 

Equal 

Equal 
Smaller 

Chapter 6 
Answers to selected exercises 

6.2 
a . c = 3  

b . c = 4  
c. c : 2  

d . c = 2  

e. c - - 2  

f. c = l  

g . c = 2  

6.4 
Pe - P 1  -- 1.350 • 106 Pa = 13.32 atm 

6.6 
P2 = 0.450 atm = 342 torr = 0.456 bar 

6.7 
P2 -- 0.678 atm = 515 torr = 68.7 kPa 

6.8 
P~ = 125,000 P a -  1.24 atm = 940 torr 

6.11 
a. ~ ,~ 0.142 J m -2 (Any value near this can be expected.) 
b. Ratio ~ 8.5 • 10 -9 

6.12 
a. h = 0.049 m = 4.9 cm 

b. h = 0.00025 m = 0.25 m m  

6.13 
h = -0 .00655  m = - 6 . 5 5  mm 

6.14 
b. P2 = 23.753 Torr 

Answers to selected problems 

6.17 
G )-GO) =0 
A(m g) - A~  = -3 .101  kJ mo1-1 
H~ ) - H(m s) = 40.66 kJ mo1-1 

U(m l) - U~ ) = 37.56 kJ mo1-1 

SO ) - S~ ) = 109.0 J K-1 mo1-1 

6.19 

a . f - - - - -1  
b . f = l  

c . f - - 4  

d . f = 3  
e . f = 2  

6.21 
With only one component, the largest possible number of  phases is 3, 

in which case f - O. Four phases of  one substance cannot coexist at 

equilibrium. 

6.23 
a. T 2 = 2 3 9 . 5 K ;  t c = - 3 3 . 6 ~  
b. AvapH = 24,400 J mo1-1 

6.25 
a. P -- 1.95 atm 

P(gauge) -- 0.95 atm = 13.9 psig 

b. Tf = 273.145 K 

tcf = -0 .00488~  

6.27 
T -- 367.9 K 

tc = 94.7~ 

6.31 
b. With the modified equation, P2 - 92.44 torr 

With the original Clausius-Clapeyron equation, P2 = 93.91 torr 

From the CRC Handbook, P2 = 92.51 torr. 

6.35 
a. Aslope - - 2 1 . 9 9  J K -1 mo1-1 

b. Aslope = 1.63 x 10 -6 J Pa -1 tool -1 - -0 .163  J bar -1 mo1-1 

c. Aslope = - 1 0 9 . 0  J K -1 mo1-1 
d. Aslope - 0.0306 J Pa -1 mo1-1 = 3060 J bar -1 mo1-1 
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6.39 
h = 0.0490 m = 4.90 cm 

6.41 
F = 0.0021 N 

6.45 
F 2 --  5.7 x 10 -6 mol m -2 for both concentrations 

6.47 

a. FALSE 

b. TRUE 

c. FALSE 

d. TRUE 

e. FALSE 

f. FALSE 

g. FALSE 

h. TRUE 

i. TRUE 

j. FALSE 

k. TRUE 

Chapter 7 

A n s w e r s  to selected exercises 

7.1 

Vm*l(P 1 - P )  - -  - 5 . 6 0 9  J tool -1 

l n ( P * x i ~  _ _  R T  \ P~ / - 8 8 0 4  J mo1-1 

7.6 

Any  two o f  o-xylene,  m-xylene,  p -xy lene  

Ethylbenzene  and toluene 

1-Propanol and 2-propanol 

Any  two o f  naphthalene,  anthracene, and phenanthrene  

2-Methylpentane  and 3-Methylpentane 

3-Pentanone and 2-pentanone 

Propanal  and propanone 

7.8 

x(benzene)  ~ 0.86; T(boil) ~ 357 K. 

7.10 

k 1 ~ 985 torr 

7.11 
. (eq) 

b. ~i(H20) --  0 .000022 

x(eq) --  0 .009978 i(CC14 ) 

7.13 

c 2 = 0.0999 mol L - !  

7.15 

M1 
k~ ppm) - -  k i ~ ( 1 0  - 6 )  

M1 k~ ~176 = k i ~ / / ( 1 0  - 2 )  

V*ml 
k~V% ) .._ k i V,m--~. (10-2)  

7.16 

P -  1.47 • 106 Pa = 14.7 b a r -  14.5 atm 

7.18 
a~ I)- - 0.9513 

71 I) - 1.312 

7.19 
a} I) - -  0 .9232 

71 I) = 1.026 

7.22 
I --  0.600 mol  kg -1 

7.29 

XAu = 0 . 8 8  

7.32 

a. l n ( 1 - x 2 ) - - - x 2 - ~ -  x~ - ~ + . . .  

b. x~ ~ - - 5 •  10 -5 

x__~ = 3.33 • 10 -7 
3 

- - x  2 
- 0 . 1 0 0  
- 0 . 0 1 0 0  

- 0 . 0 0 1 0 0  

-0 .000100  
7.34 
a. Kbl -- 0.513 K kg mo1-1 

b. t b - 100.014~ 

ln(Xl) 
- 0 . 1 0 5 3 6  

- 0 . 0 1 0 0 5 0  

- 0 . 0 0 1 0 0 0 5 0  

- 0 . 0 0 0 1 0 0 5  

7.35 

a. P1 = 0.99947 atm -- 101,272 Pa 

b. APva p - P ] 'M 1 m2 

7.36 
b. H ~ 6.88 x 10 4 P a -  0.679 atm 

% Difference 

5 .36% 

0.50% 

0 .05% 

0 .005% 

Answer s  to selected p r o b l e m s  

7.39 
7~ m) = 0.9275 

~c) = 1.036 

7.43 
a. K~ c) -- 0.01 2 

b. Vthio = 0.0045 L -- 4.5 mL 

7.45 

--k~ ) - 2380 torr 

7.47 
a -  e 0"907 - -  2.48 
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7.49 

? = 1.0044 

7.51 

Ace tone  = subs tance  1 
a. a~ I)- = 0 .669 

7~ I) = 0 .944 

a~ I) = 0 .1892 

y~i) __ 0 .650 

b.  A Gmi x = - 1973 J 
G E --  - 4 2 7  J 

c. a~ II)- = 0 .382 
,(II) 
2 --- 1.31 

7.53 

a. ~r-/~~ --  - 5 7 . 6 1  kJ mo1-1 

b. #~ aq) - G * ( K O H ,  s) --  - 6 1 . 4 3  kJ mo1-1 

7.55 
= 3.89 kg 1/2 m o l - 1 / 2  

fl - -  4.53 x 109 kg 1/2 mo1-1/2 m -1 

7.69 

a. A T  b = 0 .0788 K 

b. ATb = 0 .0786 K (0.3% difference f rom part  (a)) 

c. ATb = 0 .0789 K (0.1.% difference f rom part  (a)) 

7.73 

F r o m  Eq. (7.6-10),  Tf --  253.4  K 

F r o m  Eq. (7.6-7), Tf = 254.2  K 

7.75 

a. 1-I --  3.63 • 105 Pa  = 3.58 atm 

h - -  36.3 m 

b. H = 3.73 • 105 Pa  = 3.70 atm 

h = 3 7 . 5 m  

c. The  result  is the same as in part  (b). 

7 .77 

a. F A L S E  

b. F A L S E  

e. F A L S E  

d. T R U E  

e. T R U E  

f. T R U E  

g. T R U E  

h. T R U E  

i. T R U E  

j. T R U E  

7.79 

a. Kf --  3.14 K kg mo1-1 

b.  Tf = 259.9  K 

e. Tf = 272.85 K 

e. Tf = 247 K 

Volume ratio at the eutect ic  = 2 . 9 4  parts o f  e thylene  g lycol  to 1 part  

o f  water  

C h a p t e r  8 

Answers  to selected exercises 

8.1 

a. AG ~ -- 20.661 kJ mo1-1 

b. zSd-/~ = 71 .488 kJ mo1-1 

AS ~ = 170.473 J K -1 mo1-1 

c. AG ~ --  20.661 kJ mo1-1 

d. A G  ~ --- 20 .665 kJ mol  

8.3 

a. = 22.118 kJ mol -1  
T , P  

b. ( 0 ~ )  : 1 3 . 2 3 5 k J m o l _  1 
T , P  , 

8.4 

a. P(C3H8 ) = 7.4 x 10 .58 Pa 

P(O2)  = 3.7 x 10 -57 Pa 

b. Volume per  molecu le  = 5.5 x 1036 m 3 

8.5 
A G  ~ = - 5 5 8 . 5 1 8  kJ mo1-1 

8.8 
.>,..,_ = (~_.>,~)l,,~-- b. 

_ (m 3 m 2 ~1/5 _ m(3322)1/5 m• ~ + _ j  = 2 . 5 5 0 8 5  m 

8.9 
a. AG ~ = 79 ,885  kJ mo1-1 

K = 1.01 • 10 -14 

b. m(H +) = m ( O H - ) =  1.005 • 10 -7 mol  kg -1 

8.10 

p H  --  1.63 

8.12 

b. p H  = 3.91 

c. p H  --  3.91 

8.16 

Kp (1000.  K)  --  0 .098 

8.17 

b. K = 14.8 

A G  ~ = 8.37 kJ mo1-1 

8.18 
cx = 0 . 1 1 5  

8.20 
(OG/O~)r,p = - 1 0 . 9  kJ mo1-1 

8.21 
a. K =  1 . 8 1 x  104 

b. [ATP] --  0 .00993 mol  L -1 

8.22 
b. A G  ~ --  19.4 kJ mo1-1 

K = 4 8  
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Answers to selected problems 

8.25 
a. A G  ~ = - 1 4 1 . 7 8 2  kJ mo1-1 

c. A G  ~ = - 3 0 0 . 1 2 5  kJ mo1-1 

e. A G  ~ = - 7 0 . 6 9 2  kJ mo1-1 

8.29 
a. K = 5 . 4 3  x 105 

b. P (N2)  = 0 .01555 atm, P (H2)  : 0 .04665 atm, 

P ( N H 3 )  = 0 .9378 atm 

8.31 

a. A G  ~ = - 1 6 2 . 7 1 5  kJ mo1-1 

K = 3.2 x 1028 

c. A G  ~ = 28 .644  kJ mo1-1 

K = 9 . 5 9 •  10 -6 

e. A G  ~ = - 6 8 . 5 5 2  kJ mo1-1 

K - -  1.02 x 1012 

8.35 
a. A H  ~ = - 2 2 3 . 9 4  kJ mol -1  

AS ~ = - 2 1 6 . 5 3 7  J K -1 mo1-1 

A G  ~ = - 1 5 9 . 3 1 6  kJ mo1-1 

A H  ~ - T AS ~ = - 1 5 9 . 3 7 7  kJ mo1-1 

b. A H  ~ = - 7 5 3 . 9 9  kJ mo1-1 

AS ~ = - 1 5 6 . 6 3  J K -1 mo1-1 

A G  ~ = - 7 0 7 . 7 9  kJ mo1-1 

A H  ~ - T AS ~ = - 7 0 7 . 2 9  kJ mo1-1 

8.37 
a. K = 1.77 x 10 -1~ 

b. m(Ag  +) = 1.34 • 10 -5 mol  kg -1 

8.41 

a. pH  = - l o g [ ( 0 . 7 9 1 ) ( 0 . 0 8 3 7 ) ]  = 1.18 

c. p H - - - l o g [ ( 0 . 9 4 6 ) ( 2 . 6 5  • 10-3)] = - 2 . 6 0  

8.43 
A s s u m i n g  unit  activity coefficients,  pH --  2.95 

Us ing  the Davies  equation,  p H  = 2.96 

8.45 
m(HCO3)/m~ 1.25 x 10 -3 

m(H2CO3)/m ~ • 2 .86 x 10 -7 

8.47 
a. 0 .0863 mol  o f  N a O H  

b. 0 .0890  mol  o f  N a O H  

8.49 
pH = 6.72 

8.53 

a. K400 K = 43.6  

b. XN2 = 0.121,  XH2 = 0 . 3 6 3 ,  XNH 3 = 0 . 5 1 6  

8.55 
a. A H  ~ - 151.255 kJ mo1-1 

A G  ~ = 121.175 kJ mo1-1 

K298.15 K = 5 .90 x 10 - 2 2  

b. Klooo K = 2 .34  • 10 -3 

c. T - -  1499 K 

d. Klooo K - -3 .11  • 10 -3 

8.57 

a. K750 K -  9.05 x 103 

b. K750 I( - -  9.7 x 103 

8.62 
K = 262 

8.64 
a. F A L S E  

b. T R U E  

c. T R U E  

d. T R U E  

e. F A L S E  

f. F A L S E  

g. F A L S E  

8.66 
a. A G  ~ = 28 .644  kJ mo1-1 at 298.15 K. 

K e = 9.6 x 10 -6 at 298.15 K 

A G  ~ = 3.021 kJ mo1-1 at 1000 K. 

K e = 0 .695 at 1000 K 

b. A H  ~ = 41 .169  kJ mo1-1 at 298.15 K 

A H  ~ = 34.783 kJ mo1-1 at 1000 K. 

c. High  temperature  favors the product ion  o f  CO. 

Pressure  makes  no difference. 

d. A G  ~ = - 5 . 2 4 8  kJ mo1-1 

Kp = 1.65 at 1259 K 

e.  AG~'259 K - -  - - 5 9 8 8  J mo1-1 

Ke = 1.77 

Chapter 9 
Answers to selected exercises 

9.2 
b. E =  1.091 V 

9.6 
E = 1.1076 V 

9.7 
E = - 0 . 0 4 6 4  V 

9.9 
pH = 1.100 

9.11 
E (II) - E 0) --  0 .325 V 

9.12 
K = 7.6 • 1036 



K Answers to Selected Exercises and Problems 1079 

Answers to selected problems 

9.13 
IVcl : 4 • 107 mol  L -1 m -1 

9.15 
a. E - 0 .3527  V 

b. E = 0 .3517  V 

9.17 

a. Pt A g l A g C l ( s ) l H C l ( a q ) l l P b ( N O 3 ) 2 ( a q ) P b ( s ) l P t  

c. E - - 0 . 4 1 9 5  V 

9.19 

E ~ - - 0 . 7 7 2  V 

9.21 

A s s u m i n g  uni t  act ivi ty coeff ic ients ,  E = 0.083 V 

Us ing  act iv i ty  coeff icients  f rom F igure  7.12, E --  0 .092 V 

9.23 

7+ = 0 .757 

9.25 

E -  1.0424 V 

p H  --  12.88 

9.29 
a. K -  1.42 x 10 -18 

b. K -  1.8 x 10 -52 

9.31 

a. K - - 3 . 2 3  x 108 

b. m(Ce 4+) = m(C1- )  = 0 .00929  m o l  kg  -1 

m(Ce 3+) = 0 .01571 mo l  kg  -1 

9.33 

K -  3.57 x 102 

9.35 
a. F A L S E  

b. T R U E  

c. T R U E  

d. F A L S E  

e. T R U E  

f. F A L S E  

g. F A L S E  

9.37 

a. E ~  

b. w = 2 .013 x 106 kJ  

C. Wma x : 5 5 9 . 2  k W h  

d .  Wma x - -  1 4 1 6  k W h  

Chapter 10 
Answers to selected exercises 

10.1 

b. v -  1 0 4 0 m s  -1 

c. ~ = 7.25 • 10 -20 J 

10.2 

P__L = 1.80 x 10 -6 
P2 

10.4 

a 

b. o - = 2 7 8 m s  -1 

10.5 

a. kB T / ~ '2 

b. 2 .909  • 10 -21 J 

10.6 
a. P robab i l i ty  ~ 4 • 10 -5 

b. P robab i l i ty  ~ 8 • 10 -5 

10.7 

a. F rac t ion  --  0 .683 

b. v ~ = 5 8 3 m s  -1 

c. v' x = 1068 m s  -1 

10.9 

b. Vp = 394 m s -1 

c. vp = 1112 m s -1 

10.10 

Vp = 1112 m s -1 

(v) = 1256 m s -1 

Vrms = 1363 m s -1 

10.11 
(v) 

- - - - , / ? - 1 . 1 2 8 4  
Vp V2rc 

/)rms = ,/J: = 1.2247 
Vp V 2  

10.12 

a. Ra t io  = 0 .103218  

b. Rat io  = 0 .103218  

c. Ra t io  = 0 .103218  

d. Rat io  = 0 .109915  

e. Ra t io  --  0 .109915  

f. Ra t io  = 0 .109915  

10.13 

N = 2.15 • 1027 

10.14 
a. N ~ 2 • 1030 

b. A m o u n t  pe r  s e c o n d -  1.2 • 103 m o l  s -1 

10.15 

abks T 
b. ( : [1 - e -mgc/kBT] 

mg 
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10.17 
d -  2 .94 x 10 -10 m -  294 p m  

10.18 

a. B 2 : ~  
2rCNAv d3 

10.19 
a. L = 3.44 x 10 - 9  m 

b. 2 =  1 . 9 4 •  10 - 7 m  

c. 2 / L  = 56.5 

10.20 
a .  Zl (2)  = 1.34 x 109 S - 1  

Z2(1) - -  5 .34 x 109 S - 1  

Zl(1) = 5.72 • 109 s -1 

z2(2) = 1.25 x 109 s -1 

b. Z12 = 2.63 • 1034 s -1 m -3 

Z l l  = 5.63 x 1034 s -1 m -3 

Z 2 2  - -  3 .08 x 1 0  33 s - 1  m - 3  

c. Total  rate o f  col l i s ions  - 2 .10 • 1033 S - 1  

10.21 
N u m b e r  ~ 9.2 

A n s w e r s  to s e l ec t ed  p r o b l e m s  

10.23 
(sin(x)) --  0 

(sin(x))rms = 
1 

10.25 
Frac t ion  wi th  speed  > c ~ 10 - 2 " l l  x 10 'l 

10.27 
Frac t ion  --  0 .317 

10.29 
a. Frac t ion  --  1.000 - 0 .199 - 0.801 

b. Frac t ion  --  0.801 

10.33 
b. a v = 187.4 m s-1 

10.35 
(v) = 5.72 x 10 -10 m s -1  

10.39 
m ,~ 2.0 x 10 4 kg  - 4 .4 x 10 4 pounds  

10.41 
Mass  lost  = 3 .24 x 10 -5 k g -  32.4 m g  

10.43 
a. ~o2 --  6.5 x 1011 m -3 

J f f N 2 = 2 " 6 X  1 0 1 2 m  -3 

b. Total  n u m b e r  per  second  - 3.8 x 101~ s -1 

10.45 
t = 4 . 3 9 h  

10.47 
a. P robab i l i ty  --  0 . 0 0 0 3 6 9 8  

b. P robab i l i ty  = 0 .0003771  

c. P robab i l i ty  --  0 .0007541  

10.49 
P = 0 .0692 a tm 

Percent  N 2 - 85.3 % 

Percent  0 2 - -  14.7 % 

10.51 
P -  P0 = 0 .014 a tm 

10.53 
2re 4re 

V e x c l -  N 1 -~- d~ + N 2 T d~2 

10.55 
a. Ra t io  = 6.5 x 10 - 4  

b. Ra t io  = 4.0 x 10 - 4  

10.57 
a = 1.05 • 101~ m -1 

b = 2.72 x 10 -19 J 

c - -  1.03 x 10 -77 J m -6 

10.59 

B 2 ---- 27ZNAv C 3 __ 2rmAv (C 3 - -  d3)e-Uo/ka T 
3 3 

10.61 
PVm a. - ~ - =  1 + 4 y +  10y 2 + 18y 3 + . . .  

2NAvrtd 3 
B2 --  3 

10.63 
a. Z c o ( o 2 ) =  1.80 • 109 s - l  

b. Zo2(co) = 3.60 • 109 s -1 

c. T ime  = 3.35 • 1014 s = 1.06 x 107 years  

10.67 

a. p = 3100 k g m  -3 

b. No.  o f  nearest  ne ighbor s  ~ 10.6 

10.69 

a .  /3mp - -  2 .24 • 10 -4 m s -1 

(v) = 2.53 • 10 -4 m s -1  

Vrms = 2.74 • 10 -4 m s -1 

b. Ra t io  -~ 10 -1"7x1~ ( ~  0 to 64 digits)  

C. Z2(2) - -  2.8 x 10 -5 S - 1  

d. Z22 = 1.4 x 104 m -3 s -1 

e .  z2(1)  : 1.8 x 1 0 1 7  s - 1  

10.71 

a .  Jl#pairs ~'~ 4.3 X 1022 m -3 

b. Zpl ~ 3.2 x 1032 m -3 s -1 
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10.73 

a. F A L S E  

b. T R U E  

c. T R U E  

d. T R U E  

e. T R U E  

f. T R U E  

g. T R U E  

h. F A L S E  

i. F A L S E  

j.  F A L S E  

k. F A L S E  

I. T R U E  

Chapter 11 

A n s w e r s  to se lected  exercises  

11.1 

Vc2 = - k  ab sin(bz)e -t/~ 

0c__22 = _ a_ cos(bz)e_t/~ 
Ot z 

11.2 
J z - - 1 . 5 7  x 10 -7 mo l  m -2 s -1 - - - 1 . 5 7  x 10 -11 m o l  cm -2 S - 1  

11.7 

Torque  = 0 .0079  N m 

11.8 

d V  
~ 32 L rain -1 

dt 

11.9 
= 1.2 x 10 -3 

11.10 

= 1.02 

11.11 

At  77.7 K,  d = 4.61 x 10 -1~ m = 461 p m -  4.61 A 

At  273.2 K ,  d = 346 p m  

At  353.2 K,  d = 333 p m  

11.13 

r/ 5 

X m D  6 

cv~ 7 2 - - m  

tom 5 

D c v ~ f  12 

tr 25 

11.14 

a. V m = 7 5 L m o 1 - 1  

b. V m = 5 1 L m o 1 - 1  

11.15 

D(313  K ) =  1.7 x 10 -9 m 2 S - 1  

11.19 

t +  - -  
C + Z + b l +  

t_ -- 

c+z+u+ + c_lz_lu_ 
c_lz_lu_ 

c+z+u+ + c_lz_lu_ 

11.20 

a. For  H +, r i ( e f f )  - -  2 .63 x 10-11" m --  26.3 p m  = 0.263 A 

For  O H - ,  r i , ( e f f  ) - -  4 .66  x 10 -11 m = 46 .6  p m  = 0 .466 A 

b. For  Li  +, ri(eff ) --  238 p m  = 2.38 A 

11.21 

a. A -  3 .907 x 10 -2 m 2 o h m  -1 mo1-1 - 390 .7  cm 2 o h m  -1 mo1-1 

A n s w e r s  to se lected  p r o b l e m s  

11.23 

1 = D2a2 

C. b 2 = 1.00 x 107 s 

11.25 

t = 2.5 x 10 - 6  S - -  2 .5 /~s  

11.27 

a. u (0 .002  m) - -  0 .0382  m N - 1  

b. P2 - P 1  = 7.29 N m -2 --  7 .29 Pa  

d V  
c. - -~  = 1.79 x 10 -6 m 3 s -1 = 1.79 x 10 -3 L s -1 = 1.79 m L  s -1 

d. : ~ =  114 

11.31 

t (H2SO4)  ----- 2970  s 

11.33 

a. (P2 - P1) = 350 Pa  

b. ~ = 2 . 3 x 1 0 4  

11.37 

a. D = 1.01 x 10 -5 m 2 s -1 

b. D -  2.65 x 10 -5 m 2 S - 1  

11.41 

~ ----- 3 .60 x 10 -5 m 2 s -1 

11.43 

A t  100~ d = 4 .18 x 10 -1~ m = 418 p m  

At  200~  d = 3.88 x 10 -1~ m = 388 p m  

11.45 

Ear / = 1.02 • 104 J mo1-1 --  10.2 kJ  mo1-1 

11.47 

M 2 --  17.4 kg  mo1-1 = 17 ,400  g mo l  -x 
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11.49 
a. IFI : 8.37 x 1019 N 

b. m = 8.54 x 10 TM kg = 1.88 • 1019 lb 

11.51 

rK+(eff) = 1.25 x 10-10 m = 125 p m  

/"K+(eff) = 1.21 x 10-1~ m = 121 p m  

11.53 
a. t (Na +) = 0.437 

t (C1-)  = 0.444 

t ( A c - )  = 0.119 

b. x ---- 0 .01720 ohm -1 m -1 

c. R = 5820 o h m  

11.59 
a. T R U E  

b. F A L S E  

c. T R U E  

d. F A L S E  

e. F A L S E  

f. T R U E  

g. F A L S E  

h. T R U E  

Chapter 12 
Answers to selected exercises 

12.2 

a. t l /2  = 1 3 5  s 

z =  1 9 5 s  

12.3 
k = 9.8 x 10 -10 y - l  

t = 2.4 x 10 9 y 

12.5 

a. [A] = 0.026 mol L - l  

b. [A] --  0 .034 mol  L -1 

12.6 

a. tl/2 --  150 min 

b. tl/2 --  380 min 

c. tl/2 = 75.8 min 

12.7 

4 ln(2) 
First order, t - ~  = 4tl/2 

15 
Second order, t = k[A]------o-- 15tl/2 

12.9 
a .  [A] t  = 0.925 mol  L -1  

1.000 mol  L -  1 
b . t -  

0 .0150 mol  L -1 s -1 
= 6 6 . 7  s 

[A]0 
c. tl/2 -- 2kf 

tl/2 = 33.3 s 

12.11 

1 
a.  t l /2  : kb[A]0 

b. tl/e - 0.77 s 

C. t l /2  = 0.015 s 

12.17 

g e q  " -  0.528 

[B]e q - -  0 .0518 mol  L -1 

[A]e  q : 0 .0982 mol  L -1 

tl/2 = 0.0139 min 

z = 0.0200 min 

At  t = 0.100 min,  [A] = 0.0986 mol  L -1, [B] - 0 .0514 mol L -1 

Answers to selected problems 

12.23 
a. Rate = 1.42 x 10 -4 mol  L -1 s -1 

b. d[NO.___~] = - 1 . 4 2  x 10 -4 mol  L -1  S -1  
dt 

d[NOC1] _ 1.42 x 10 -4 mol  L -1 S - 1  

dt 

d [ C 1 2 ] - - 7 . 1  x 10 -5 mol  L -1 S -1  
dt 

12.25 
First order, k = 6.25 x 10 - 4  S - 1  

12.27 
a. [A] = 0.0443 mol L -1 

b. [A] = 0.0357 mol L -1 

12.29 
1 0 - 4 S  -1  ok-pp : 1 . 2 3  x 

12.31 
a. t l /2  = 1.19 x 105 s 
b. t = 3 . 6  x 105 s 

c. t = 2 . 3  x 106 s 

12.37 

a. The reaction is pseudo first order; kf - 4.24 x 10 -4 S - 1  

b. P =  10.64 

12.39 
[A] = 0.110 mol  L-1 

[B] = 0.890 mol  L -1 

12.49 

a. Order  with respect to N O  = 2.1 ~ 2 

Order  with respect  to H 2 = 1.05 ~ 1 

k = 1.7 x 10 -6 kPa -2 s - l  (average o f  four values) 

b. Initial rate = 1.7 kPa s-1 

c. P ( N O )  = P(H2)  = 98 kPa 
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ln(2) 
B 

d .  t l / 2  - -  0 . 0 6 8  S - 1  

e. ll/2 ~ 590. s 

~ =  10. s 

Chapter 13 
A n s w e r s  to se lected  exerc ises  

13.2 
b. f = 1.11 x 10  -11 

13.4 

For 7_,223 = 2, f = 0.174 

For 22z 3 - -  1, f = 0.450 

For z2z 3 = O, f = 1 
For z2z 3 = - 1, f = 1.88 

For z2z 3 = - 2 ,  f = 3.03 

13.5 

a. E a = 51,200 J mo1-1 = 51.2 kJ mo1-1 

b. E a -- 78,000 J mo1-1 = 78.0 kJ mo1-1 

13.8 
q~ = 7.0 x 10 - 3  

13.9 

E a = 10,200 J mo1-1 = 10.2 kJ mo1-1 

13.11 

a. Rate = d i N 2 ]  = k f [ S O 2 ] 2 [ U 2 ]  
dt 

[NO]2[H2] 2 
b. R a t e -  kzK 1 [N2] 

13.16 

b. One possibility is 

(1) H N O  3 ~ HO 4- N O  2 

(2) HO 4- H N O  3 ~ H 2 0  4- NO 3 

(3) N O  3 4- NO 2 ~ 0 2 4- NO 2 4- NO 

(4) 2HO + NO --+ H 2 0  4- NO 2 

13.17 
2A1A2e-(Ea~ +Ea2)/RT 

kap p = AI,e_E,al/R T 4- 2A2e-Ea2/RT 

13.19 

Vmi n = 4.86 x 10 TM S -1 

2ma x = 6.17 x 10 -7 m = 617 nm 

13.20 

d[H2] = k2K1 [I2][H21 a. R a t e -  

b. Rate -- d[H2] = k2kl[I2][H2] 

dt k~ 4- k2[H21 

13.24  

R a t e =  k2K~/2[A]1/2 
1 4- K~/2[A] 1/2 

13.28 

K m - 16.3 ~tmol L -1 

A n s w e r s  to se lected  p r o b l e m s  

13 .29  
k = 6 . 8 x  1 0 9 L m o 1 - 1 8  -1 

13.31 

d23 -- 5.6 x 10 -1~ m 

13.33 
a. k - -  1.1 x 103L mo1-1 s -1 

b. F r a c t i o n -  1.3 x 10 -11 

13.35 
a. E a --  1.94 x 105 J m o 1 - 1 - -  194 kJ mo1-1 

A = 2.38 x 1012 L mo1-1 s -1 

b. k(773 K) -- 0.185 L mo1-1 s -1 

c. tl/2 - 686 s 

13.37 
a. E a = 2 .13  x 105 J mo1-1 --  213 kJmo1-1 

A = 3.46 x 109 L -1 mol s -1 

b. q~ = 0.0077 

13.43 

One possibility is 

(1) IC1 + H 2 ~ HI + HC1 (slow, rate-limiting) 

(2) HI + IC1 --+ HC1 + 12 (fast) 

13.51 

k3K1 [A] 
a. Rate = k30 A = 1 + KI[A ] + K2[C] 

k 3 K I [ A ] (  k3KI[A] ) 
b. Rate = 1 + K2[C ] or K2[C ] if  K2[C ] is large enough 

13.55 

a. ln ( tBl tA]~  = ([A] o + [B]o)kt 
\ [A][B]o]  

b. [A] = 0.4995 

13.57 

[PI klk2 
d . K  . . . .  

[R] k~k~ 

13.59  

a. Ea(reverse ) -- 178 kJ mo1-1 

b. K(373.15 K) = 314 
c. k' = 2.78 • 10 -12 L mo1-1 s -1 

13.61 
b. E a = - 6 . 0  x 103 J mo1-1 = - 6 . 0  kJ mo1-1 

13.63 

a. TRUE 

b. FALSE 

e. FALSE 

d. TRUE 

e. TRUE 
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f. T R U E  

g. F A L S E  

h. F A L S E  

i. F A L S E  

j. T R U E  

Chapter 14 

Answers to selected exercises 

14.1 
c. N u m b e r  o f  nodes = n - 1 (excluding the nodes at the ends o f  the 

string) 

14.4 
To quadruple  the speed, p would  have to be made  smaller  by a factor 

o f  1/16.  

To double the speed, T would  have to be increased by a factor o f  4. 

14.6 
2 -  1.28 m 

14.9 
T --  4450 K 

14.11 
o - -  5.671 x 10 -8 J m -2 s -1 K -4 

14.12 
a .  '~threshold - -  2.5 x 10 - 7  m -  250 nm 
b. /)max - -  6.91 x 105 m s - 1  

14.13 
I F I -  53.4 N 

14.16 
c. 2 --  4 .86272 x 10 -7 m = 486.272 nm 

v - 6 .165119 x 1014 s -1 - 6 .165119 x 10 TM Hz 

14.17 
v -  3.38 x 106 m s - 1  

14.20 
I f  the length o f  the box is doubled, the energy decreases by a factor 

o f  1/4.  

I f  the mass o f  the particle is doubled, the energy decreases by a factor 

o f  1/2. 

14.23 
v = 4.546 x 10 TM S - 1  

2 = 6.594 x 10 - 7  m = 0 .6594 # m  = 659.4 n m  

14.24 
For  the n - 2 state, v -  3.637 x 1014 S - 1  

For  the n = 3 state, v = 8.183 x 1014 S - 1  

14.26 
h 2 

State E divided by 8ma2 Degeneracy  

1,1,1 3 1 

1,1,2; 1,2,1; 1,1,2 6 3 

1,2,2; 2,1,2; 2,2,1 9 3 
1,1,3; 1,3,1; 3,1,1 11 3 

2,2,2 12 1 

14.27 
B - - D + F ,  C - i ( D - F )  

14.29 
dx E 

dt fi~c 

14.32 

v = ~-~ 

14.34 

3 1 V ~  
a .  Vwavefunction(1 ) " -  5 2 - ' ~  

5 1 ~mk-- 
b. Vwave function(2) : ~---X~ 

C. For  the v = 1 s t a t e ,  Vwave function ~-- 3 Voscillato r : 3 Vphoto n 

For  the v = 2 s t a t e ,  Vwave function = 5 %scillator : 5 Vphoto n 

d .  Vwave function(2) - Vwave funct ion(I )  - -  hvoscillator : hVphoton 

14.35 
z t : 1.23 x 10-11 m 

Answers to selected problems 

14.37 
v = 4.282 x 1 0 1 3  s - 1  

14.39 
a. v a --  264 Hz 

v b = 428 Hz 

v c = 792 Hz 

v d = 1056 Hz 

b. 2 =  1 . 2 8 m  

14.43 
c(in w a t e r ) -  2.25 • 108 m s - I  
e = 1.57 • 10 -11 N -1 C 2 m -2 

14.45 
"]'max = 1.06 m m  

14.47 
a. F o r n = 4 ,  v = 5 . 4 7 •  1 0 5 m s  -1 

For  n = 400, v = 5.47 • 10 3 m s -1 

b. For  n = 4, v / c - -  1.82 • 10 -3 

For  n = 400, v/c = 1.82 • 10 -5 
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14.49 
For  n 2 --  3, 2 = 656 .46  n m  (in the red) 

For  n 2 = 4, 2 = 486 .27  n m  (in the green-blue)  

For  n2 --  5, 2 = 434 .17  n m  (in the blue-violet)  

For  n2 --  6, 2 --  410 .29  n m  (in the violet)  

14.51 

a. a ( p o s i t r o n i u m ) - -  1.0584 x 10-1~ m 

b. E l (pos i t ron ium)  = - 6 . 8 0  eV 

c. r = 0 .529  x 10 -1~ m 

14.53 

2 = 2 .307  x 10 -11 m 

14.57 

a. E 1 = 1.247 x 10-19 J 

E2 --  4 .989  x 10 -19 J 

E 3 = 1.1226 x 10 -18 J 

b. v - - 9 . 4 1  x 1014s -1 

2 = 3 .19 x 10 -7 m --  319 n m  

14.59 

E = J ~ F  = 1 3 1 J  

N u m b e r  o f  nodes  = 3.4 x 1035 

2 = 5 . 4 x  10 - 3 5 m  

14.67 

a. # -  1.653 x 10 -27 kg  

b. k - 4 1 1 . 8 k g s  - 2 = 4 1 1 . 8 N m  -1 

14.69 

a. k = 4 . 9  x 1 0 4 N m  -1 

b. z = 0 .070  m --  7.0 cm 

c. ~" = 120 J 

d. v = 7.0 S -1  

"c = 0 .14  s 

e. v = 3 . 1 m s  -1 

f. E ( q u a n t u m ) =  4.6 x 10 -33 J 

g. n --  2 .6  x 10 34 

h. 2 = 4 . 3  x 104 k m  

14.71 

a. a 0 = 2 .34  x 10 -138 m 

b. n = 2.53 x 10 TM 

c. E n = - 2 . 6 6  x 1033 J 

- - - 5 . 3 1  • 1033 J 

J{" = 2 .66  x 1033 J 

d. --ml = 1 .000003 
# 

Chapter 15 

Answers to selected exercises 

15.1 

15.2 
a. (Jr"-- + --~;~)3 = ~ 3  + ~2~ / -  + j~,~/-:~ + Y c r  ~ 

b. (A + b )  3 --  j 3  + 3 j 2 h  + 3 j b 2  + h3 

15.4 

[ x , i  = - i  

15.7 

a. L x = T h ( Y ~ 0 - z f - - - ~ )  

xo) 
i Oxx ~z 

C, L2 __ ~t2(X2 02 02 (9 02 (9 y2 02 ) 

15.8 

a. [px,Py]--O 

15.12 

(x) = a /2  

15.13 

Probabi l i ty  ~ 8.000 x 10 - 6  

15.14 

Probabi l i ty  = 0 .1955 

15.16 

a. (Probabi l i ty)  - 0 .5225 

b. (Probability,) = 0 .4666 

15.17 

Ratio --  0 .36788  

15.22 

At  > 5 x 10 -14 s 

15.23 

3 
b. ( E ) = - ~ h v  

a 2 : 0  

15.24 
h 2 

(E) - -  3 ~ -  3E 1 

h 2 

~ -  v ~  8--~a 2 = J~E, 

15.25 

P l  = 1 /3  

P2 = 2 / 3  

Answers to selected problems 

15.27 

a. No t  linear, not  hermit ian  

b. Linear,  hermit ian  

c. Linear,  hermit ian  
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15.29 

"[-~X X dxx -[ d x  2 

15.33 
b. E i g e n v a l u e -  a 

15.35 
a. The eigenvalue p is equal to bh  where b can take on any real 

value. 
b. The function is not an eigenfunction. 
c. The wave function of  Eq. (14.5-21) is an eigenfunction only if 

D = 0  o r F - - 0 .  

15.41 
h 2 

a. F o r n - -  1, (px 2) 4a 2 

h 2 
For n -- 2, (p2) _ a -~ 

For n -- 3, (px 2) = 9h2 
4a 2 

h2n  2 

b. ( p 2 ) _  4a 2 

c. lim (p2)__+ 
H--C~ 

15.43 
a. A p x  - A p y  - A p z  ~ 5.27 x 10 -26 kg m s -1 
b. AE ~ 5.41 x 10 -20 J 

15.45 

a. ax%=/--f-*fal~/~anx/-~v~ h 

= 5 - ~  
b. For the v = 1 state, the uncertainty product will be larger than for 

the v -  0 state. 

3h 
c. a x a  p 4~z 

15.47 

a. IEI = 3 hv  

b.  a E - -  ~ ~ h v  

C. E 0, El,  and E 2 occur. Each value will occur 1/3 of the time. 

15.49 

The wave function prior to the measurements is ~p - c 101 ~ C2~12 -[- 

C3~t 3 ~ C4~t 4 where C 112 --- 0.25, c212 -- 0.375, ICal 2 -- 0.125, 
C412 ~_. 0 . 2 5 .  

15.51 

(~2 1 )  1/2 
a. o" x -- a 2ngn 2 

a 
b. lim a x = ~  = O . 2 8 8 6 8 a  

h n  
C. aP = 2 a  

1) 
d.  a x a  p = ~ ~,~ 2a:2 

e. o- x = 5 . 2 8 m  
f. ap = 6.16 k g m  s -1 

g. % % = 3 2 . 5 J s  

1/2 

Chapter 16 
Answers  to selected exercises 

16.2 

P 
a. - -  -- 0.99946 

rn~ 

b. Distance from the nucleus to the center of  mass = 5.44 • 
10 -14 m 

Distance from the electron to center of mass = 9.995 • 10 -11 m 

16.7 
Eigenvalue = 0 

16.11 
The percentage error in both quantities is 0.054% 

16.12 

n l m m s n l m m s 

4 0 0 1/2 4 2 - 2  1/2 
4 0 0 - 1 / 2  4 2 - 2  - 1 / 2  
4 1 1 1/2 4 3 3 1/2 
4 1 1 - 1 / 2  4 3 3 - 1 / 2  
4 1 0 1/2 4 3 2 1/2 
4 1 0 - 1 / 2  4 3 2 - 1 / 2  
4 1 - 1  1/2 4 3 1 1/2 

4 1 - 1  - 1 / 2  4 3 1 - 1 / 2  
4 2 2 1/2 4 3 0 1/2 
4 2 2 - 1 / 2  4 3 0 -1 /2  
4 2 1 1/2 4 3 - 1  1/2 
4 2 1 - 1 / 2  4 3 - 1  - 1 / 2  
4 2 0 1/2 4 3 - 2  1/2 
4 2 0 - 1 / 2  4 3 - 2  - 1 / 2  
4 2 - 1  1/2 4 3 - 3  1/2 
4 2 - 1  - 1 / 2  4 3 - 3  - 1 / 2  

16.14 
( 1 / r )  = 1.89 x 10 l~ m -1 
{~U) = - - 4 . 3 6  x 10 -18 J 

16.15 
3a 

a. (r) 2Z 

3a 2 
b. (r 2) -- Z2 

a 
---- n 

C. rmp Z 
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16.20 
Wave funct ion M L M s m j  

(I/Islppl -'[- ~lpl ~ls)(O~fl - flO0 1 0 1 
(~tslPpl --  ~ p l  IPs)O~O~ 1 1 2 
( I/Is l/I p l --  I/I p l ~l s ) ( O~ fl -11- fl O 0 1 0 1 

( I/J s l/I p l -- I/I p l l/J s ) fl fl 1 --1 0 
(I/Jsl/JpO -'[- I/JpOl[Is)(O~ fl -- flO 0 0 0 0 
(d/s~PpO - d/pOd/s)~C~ 0 1 1 
(r - r + ~ )  o o o 
(d/s~PpO - ~/pO~ks)flfl 0 - 1 - 1 
(~/s~p-1 + ~Pp-1 ~/s)(~fl - fl~) - 1 0 - 1 
(~s~/p_l  - ~pp_l~p~)~ - 1  1 0 

( IP s lP p_  1 -- ~tp _ 11/J s ) ( (Z fl  @ fl (Z ) --  1 0 - 1 

( IPs~p-1  -- Ipp-1 ~ s ) f l f l  -- 1 - 1 - 2  

16.25 
b. one 4S term and two 2S terms. 

c. E (~ --  - 166.6 eV 

Answers to selected problems 

16.29 
Eigenvalue --  0 

16.31 
a. Difference o f  0 .027% 

b. Difference o f  0 .027% 

c. Difference o f  0 .004% 

16.33 
35.26 ~ --  0 .61548 radian 

65.91 ~ --  1.1503 radian 

90.00 ~ = 1.5708 radian 

114.94 ~ = 1.9913 radian 

144.74 ~ = 2.5261 radian 

16.35 
6a 

(r)2s = Z 

5a 
(r)2p = Z 

16.37 
For b = a: 

For  b = 2a:  

For b = 3a: 

probabi l i ty  = 0.3233 = 3 2 . 3 3 %  

probabi l i ty  - 0.7619 - 7 6 . 1 9 %  

probabi l i ty  = 0.9380 = 9 3 . 8 0 %  

16.39 

(Px) = 0  

(px 2) -- 1.32228 • 10 kg 2 m 2 s -2 

16.43 
b. fr vanishes at r = 0 and at r --~ c~. 
c. r = 1 2 a -  6.35 x 10 -10 m 

Term 
1P 1 

3P 2 

3P 2 

3P o 

1P 1 

3pl 

3P 1 

3P 1 

1P 1 

3P 2 

3P 2 

3P 2 

16.51 
3F, 1F, 3D, 1D, 3 p, and 1p. 

The 3F te rm probably  has the lowest energy. 

16.53 
2p 

16.55 
a. The only te rm is 1S. 

b. The terms are 3 S and IS. 

c. The terms are 5S, as ,  as ,  as ,  IS, IS, and IS. 

16.57 
a. 5 
b. 4 

c. 0 
d. 0 

16.59 
a. T R U E  

b. F A L S E  

c. F A L S E  

d. T R U E  

e. T R U E  

f. F A L S E  

g. F A L S E  

h. F A L S E  

Chapter 17 
Answers to selected exercises 

17.6 

a. (r)l  s - -  2.95 x 10 TM m -  29.5 p m  

b. (r)2 s --  1.79 x 10-1~ m -  179 p m  

17.7 
a. S: ( l s )2 (2 s )2 (2p )6 (3s )2 (3p )  4 

b. Ta: ( ls)2 (2s)2 (2p)6 (3s)2 (3p)6 (4s)2 (3d)  l~ (4p)6 (5s)2 (4d)  l~ (5p)  6 
(6s)2(5d) 3 

C. Hg: ( 1 s ) 2 ( 2 s ) 2 ( 2 p ) 6 ( 3 s ) 2 ( 3 p ) 6 ( 4 s ) 2 ( 3 d ) l ~ 1 7 6  6 

( 6 s ) 2 ( 4 f ) l a ( 5 d )  10, same as [Xe] (6s )2 (4 f )14 (5d) l~  

17.8 
a. B: 2Pl/2 

b. C: 3P 0 

c. O" 3P 2 

e. F: 2P3/2 

Answers to selected problems 

17.11 
5h 2 

a. W = ~ = 0 . 1 2 6 6 5 ~  
4rcZma e 

6h 2 
b. W = ~ = 0 . 1 5 1 9 8 ~  

4rcema 2 

h 2 

m a  2 

h 2 

m a  2 
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17.15 
a. Zef f = 1.344 
b. Total ionization energy = 78.98 eV ~ 79.0 eV 

17.17 h 2 ba 
a. E ~ E~ ~ + E~ 1) = - - - t  

8ma 2 2 
b. E = 6 . 0 2 •  10 - 2 ~ 2 1 5  10 - 2 1 J - 6 . 2 9 •  10 - 2 ~  

17.19 
3c fi ~ 3ch 2 

E = E (~ + 4a---- 5 = 2 ~/m + 4---~ 

17.25 
a. Fe: (ls)Z(2s)Z(2p)6(3s)Z(3p)6(4s)Z(3d) 6 
b. Rn: [Xe](6s)Z(4f)14(5d)l~ 6 
e. Tc: [Kr](5s)2(4d) 5 
d. Rb: [Kr](5s) 1 

17.27 
a. P: 2D, 2 p, and 4S 
b. Ca: 1S 
c. Cu: 2S 
d. CI: 2p 

17.29 
Zef f - 1.837 

17.31 
H: 1 He: 0 
Li: 1 Be: 0 
Na: 1 Mg: 0 

B" 1 C: 2 N: 3 O: 2 F: 1 Ne: 0 
AI: 1 Si: 2 P: 3 S: 2 CI: 1 Ar: 0 

Chapter 18 

Answers to selected exercises 

18.1 
a. i(1,2,  3) = ( - 1 , - 2 , - 3 )  
b. 6h(4, - 2 , - 2 )  = (4, - 2 ,  2) 

C. t3"vyz(7, --6, 3) -- (--7, --6, 3) 

18.2 
a. ~2x(1, 2, 3) = (1, - 2 ,  - 3 )  
b. C3y(1, 1, 1) - (0.37, 1, - 1.37) 

18.3 
a. fir, 0, qS) -- (r, 180 ~ - 0, 180 ~ + q~) 

6h(r, 0, ~b) : (r, 180 ~ - 0, ~b) 

18.9 

12S ) - cu(2  1 2 S ) ]  

1 2 s ) + C u ( 2  1 2 S ) ]  

18.14 
a. 3IIg and lI-Ig 
b. 31-Ig 

c. Bond order = 1 

18.16 
a. I//3t r ~'~ --0.99@2sp(2)L i -+-0.1236~tls H 
b. I]/4o. "~ --1.34@2sp(1)L i + 1.24~tls n 

18.20 
C c = 0.575 
C o : 0.818 

18.22 
C v B = 0 . 4 1 ,  c 1 = 0 . 7 7  
% Ionic = 78% 

18.23 
a. 1.7 
b. 1.1 
c. 0.6 

18.24 
a. Polar covalent 
b. Polar covalent 
c. Polar covalent 
d. Primarily ionic 
f. Purely covalent 

18.25 
z' = - 3 . 5 9 3  
y' = 0.232 

18.26 
E, C3, C 2, and three a v operations 

18.37 
~ I "-- Cl [ IP 2sp3 2 ( 7 ) lP 2sp3 2 ( 8 ) -'1- IP 2sp3 3 ( 9 ) lP 2sp3 3 (1 0)] 

[oc(1)/3(2) -/3(1)~z(2)] 

18.42 
Resonance energy of  benzene = 3(137.15 kJ mo1-1) - 
206.0 kJ mo1-1 = 205 kJ mo1-1 

18.43 
fl = - 5 . 5  x 10 -19 J, which is equivalent to - 3 3 0  kJ mo1-1 

18.45 
1/2 = 2.23 x 10 6 m-1 = 2.23 x 10 4 cm-1 

18.46 

O l s  1 1 1 1 
O2s 1 1 1 1 

O2px 1 - 1 1 - 1 
02py 1 - 1 - 1 1 
02pz  1 1 1 1 
al 1 1 1 1 
b2 1 - 1  - 1  1 
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A n s w e r s  to selected p r o b l e m s  

18.49 
ibh(X, y, z) = C2z(X, y, z) 

18.51 

IP2py(r , O, 4)) 

18.59 
a. 1H and 3H 

b. 1Z and 3E 

18.61 
1~+ 

Li2 1 ~+  
Be2 - g  
B2 3 Z -  

C2 1]~ g+ 

N2 1 ~g+ 
3 g 

0 2 E -  

F2 1r 
N2 - g  

18.63 
a. Bond  order 3 / 2  

b. Bond  order 5 / 2  

c. Bond  order 3 / 2  

1 unpaired electron 

1 unpaired electron 

1 unpaired electron 

18.75 
41.3% ionic: c I "-0.643 

18.77 
a. 0.63 

b. 0.6 

18.79 
E, C2, and 2b v operators. The group is C2v. 

18.83 
a. 1,4-Dichlorobenzene D2h 

b. 1,2-Dichlorobenzene C2v 

c. Tetrachloroethene D2h 

18.87 
HC104 is polar. 

18.97 
For benzene,  fl = 5.5 x 10 -19 J = 3.4 eV 

For 1,3-butadiene, fl = 7.4 x 10 -19 J = 4.6 eV 

18.99 
2 = 7 . 8 9 •  10 - 8 m  

18.103 
Qcl = - 2 . 9 0  • 10 -20 C - -  --0.18 l e  

QH - - 9 . 7  • 10 -21 C - - 0 . 0 6 0 ~  

18.109 
f. N H  3 belongs to C3v and BH 3 belongs to D3h. 

Chapter 19 

A n s w e r s  to selected exercises 

19.1 
AE = 7.55 x 10 TM J : 4.71 x 10 -22 eV 

Ratio o f  energies = 5.67 x 10 -23 

19.2 
a. n = 9.07 x 10 9 

b. AE = 4.57 x 10 TM J 

AE 
= 7.36 x 10 -11 

E 

19.3 

a. E 0 = 0  
h 2 

E 1 = 8npr2e (1)(2) = 1.206 x 10 -22 J 

b. v = 1.820 x 1011 s -1 = 1.820 x 1011 Hz 

2 = 1.647 x 10 -3 m = 1.647 m m  

19.5 
For translation, g211 - - E l l  1 = 1.42 • 10 -40 J = 8.86 • 10 -22 eV 

For rotation, E 2 - E  0 = 2.90 • 10-23 j : 1.81 • 10 -4 eV 

For vibration, E 1 - E 0 = 1.12 • 10 -20 J : 0.070 eV 

19.6 
a. F r = 2aDe[1 - e-a(r-re)]e -a(r-re) 

19.7 
a. 2 = 4.6576 x 10 -4 cm = 4.6576 # m  

v = 6.4365 x 1013 s -1 

b. 2 = 4.6576 x 10 -4 cm = 4.6576 # m  
v = 6.4365 x 1013 s -1 

c. 2 = 4.6005 x 10 -4 cm = 4.6005 # m  
v = 6.5164 x 1013 s -1 

19.10 
J must  be even. 

19.12 
a .  a = 3  

b. a = 2  

c. a = 1 2  

d . a = 2  

e . a = l  

f. a = 2 4  

19.14 
J m p = 2  

19.15 
Ratio = 0.539 

19.16 
N(2,  

1____~) = 1.34 • 10 -4 
N(0,  0) 
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19.17 
R a t i o -  1.0 x 10 -36 

Answers  to selected p rob lems  

19.19 

n x - -  2.66 • 1011 

19.21 

1 1 
a. ~ -- 243.40 c m -  

2 -- 4.108 x 10 -3 c m -  41.08 #m 

1 1 
b. ~ -- 182.60 c m -  

2 -  5.4765 x 10 -3 c m -  54.765 #m 

19.23 
v ( H D ) -  1.14287 x 1014  s - 1  

v(D2) = 9.3332 x 1013 s -1 

19.25 
D e / h c  ~ 42320 cm -1 

19.27 

a. 2 -- 0.29777 cm 
v = 1.00679 x 1011 S -1  

b. 2 - 0.14888 cm 
v -  2.0136 x 1011 s -1 

19.31 

a. Oblate symmetric top 

b. Prolate symmetric top 

c. Asymmetr ic  top 

d. Linear 

e. Asymmetr ic  top 

f. Asymmetr ic  top 

19.33 

a. 30 b. 18 c. 18 

d. 12 e. 7 f. 12 

19.37 

a .  I z - 4.92 • 10 - 45  kg m 2 - 1 C 

I y  - -  I x = 2.96 • 10 -45 kg m 2 -- I A - -  I B 

19.39 

Number  of  normal modes = 17 

19.41 

a. 15 b. 7 c. 6 

d. 48 e. 6 f. 24 

19.43 
a. Ratio = 4.83 x 10 -7 

b. R a t i o -  5.14 x 10 -7 

c. Ratio = 3.01 x 10 -5 

d. R a t i o -  3.14 x 10 -5 

19.45 

For ortho hydrogen, Jmp = 1 

For para hydrogen, Jmp - 0 

19.49 

a. FALSE 

b. TRUE 

c. FALSE 

d. FALSE 

e. TRUE 

f. FALSE 

g. TRUE 

h. FALSE 

i. TRUE 

j. TRUE 

k. FALSE 

Chapter 20 
Answers  to selected exercises  

20.1 

a .  Ephoton - -  2.0 x 10 - 2 3  J 

Eeinstein - -  12 J mol-1 

b .  Ephoton - -  2.0 x 10-15 j 

Eeinstein - -  1.2 x 109 J mol-1 

20.2 

N2 = 3.2 x 10 -173 
N1 

20.3 
a = 1.23 x 1 0 - 4 L  mo1-1 cm -1 

20.4 

For 2 ~ 1, 2 = 121.568 nm, in the ultraviolet 

For 3 ~ 2, 2 = 656.467 nm, in the visible (red) 

For 4 --+ 3, 2 = 1875.62 nm, in the infrared 

20.6 
For H35C1, 21.17 cm -1 

For H 37C1, 21.13 cm-1 

20.7 

a. J m p = 3  

b. Jmp = 35 

20.10 
For the third overtone, 1/2 = 8413.4 cm -1 

For the fourth overtone, 1/2 = 10450.3 c m -  1 

20.11 

1 1 
c. For J = 0, ~ - 4263.6 c m -  

I X .  

1 
For J = 1, = -  = 4267.3 cm -1 

ZR 
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1 1 
For J --  2, ~ --  4271 .0  c m -  

20.12 

2 -  1.544 x 10 -7 m -  154.4 n m  

20.13 

No  

20.14 
Ephoton = 6.62 X 10-19 j 

Eeinstein - -  399 kJ m o l -  1 

20.15 
b. For  11-c/s retinal, 2 = 7.02 x 10 - 7  m -  702 n m  

For rhodops in ,  2 --  8.31 x 10 -7 m -  831 n m  

20.16 

V 1 R a m a n  active v 2 R a m a n  active 

v3 R a m a n  active v4 R a m a n  active 

v5 R a m a n  active v6 R a m a n  active 

v 7 IR active v 8 R a m a n  active 

v 9 IR active vlo IR active 

Vll IR active v12 IR active 

20.17 

 m-I 
2 -  2.641 x 10 .5 c m -  264.1 n m  

20.19 
a. v = 1.40 x 101~ S -1 

2 = 2 .14  • 10 -2 m 

20.20 
b. AE = 1.41 • 10-26 J 

20.22 

B z --  18.677 T --  186,770 gauss  

20.24 
( O )  1/2 

a. c(o9) - -  A eiOgto e-DO92~4 

- -  A e-D~2/4[COS(OOto) + i sin(o~t0) ] 

Answers to selected problems 

20.25 
a = 9.34 x 103 L mol -1  cm-1  

20.29 
a. 2 - -  1.3122 x 10 -4 c m - -  1312.2 n m  

b. 2 = 9.7201 x 10 -4 c m - - 9 7 2 . 0 1  n m  

c. 2 = 8 .6787 x 10 -4 cm = 867.87 n m  

d. 2 = 8 .2014  x 10 -1 cm -- 820.14 n m  

20.31 

2 - -  1.10 • 1 0 - S m  = 11.0 n m  

a --  box  size - 3.33 x 10 - l ~  m -  333 p m  

20.35 
1 /2  = 22 .027  cm -1,  44 .054  cm -1,  66.081 cm -1,  etc. 

Jmp = 2 

20.37 

(a) CH3C1 and (c) N H  3 

20.41 
712.1 c m - l "  bend  

2089 .0  cm -1" symmetr ic  stretch 

3312 .0  cm -1" asymmetr ic  stretch 

1412.0 cm -1" first overtone o f  the bend  

2116 .7  cm -1" second overtone o f  the bend  

2800.3  cm -1" combina t ion  band:  bend  and symmetr ic  stretch 

4004 .5  cm -1" combina t ion  band:  bend  and asymmet r ic  stretch 

5394 cm -1" combina t ion  band:  symmet r ic  stretch and asymmet r ic  

stretch 

6521 .7  cm -1" first overtone o f  the a symmet r i c  stretch 

20.43 
Over tones  near  1178 cm -1,  2570 cm -1, and  4447 cm -1 

B e n d - s y m m e t r i c  stretch combina t ion  band  near  1874 cm -1 

B e n d - a s y m m e t r i c  stretch combina t ion  band  near  2228 cm -1 

Symmet r i c  s t r e t ch -asymmet r i c  stretch combina t ion  band  near  

3508 cm -1 

20.47 
a. v = 7.97 • 10 TM s -1 

2 = 3.76 x 10 -7 m = 376 n m  

b. v -  7.24 x 1014 s -1 

2 - 4 .14  • 10 -7 m - 414 n m  

20.49 
R e = 7.57 • 10 -11 m = 75.7 p m  --  0 .757  A 

20.51 

B F  3 and C O  2 

20.53 
All  but  CC14 

20.57 
Three  lines wi th  approximate ly  equal  intensit ies 

20.59 
Popula t ion  ratio = 0 .99853 

20.65 
•Larmor = 6 .000 x 107 S-  1 

20.67 

? a  
I ( t )  - -  a 2 -k- t 2 

20.71 
a. 1 /2  = 2143 .2  cm -1 

b. 1 /2  = 4259 .9  cm -1 
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c. 1 /2  = 3.844 cm -1 

d. 1 /2  = 7.688 cm -1 

Chapter 21 
Answers to selected exercises 

21.4. 

c. T -- 
hv 

kB ln(2) 
= (6.9238 x 10 -11 K s)v 

21.5 

a. 3 .09% error  

b. 0 .00030% error  

21.7 

For  N = 10: 0 .05516% error 

For  N -- 60: 0 .00074% error 

For  N -  1 • 109. no difference to 9 significant digits 

21.10 

"~tr - 1.937 x 1029 

21.11 

Term --  J -  = 0 .61609 
A ~ - - -  1.705 x 10 -11 

21.12 

3 
u~ - ~ NkB T 

1 e_3N~i/2 U 
P i  = -  

"~ = Z e - 3 N e i / 2 U  

i 

21.13 

a. Ratio = 2 . 1 2  • 10 -9 at 298.15 K 

R a t i o -  6.74 • 10 -6 at 5 0 0 K  

R a t i o -  2.60 x 10 -3 at 1000 K 

Ratio = 0.304 at 5000 K 

Ratio --~ 1 as T --+ oo 

b. Ratio --  2.451 at 298.15 K 

Ratio --  2 .824 at 1000 K 

Rat io - -~  3 as T --+ oo 

C. Jmp = 3 

21.14 

T = - 5 . 9 5  x 1 0 4 K  

21.18 

a. "trot = 1.703 

b .  " ~ r o t - -  1.88403 

C. "~rot - -  4 2 4 . 8 0 7  

F rom the formula,  ~rot - 424.7.  

21.19 

For  H 2, ~vib - -  1 .0000000006 

For 12, X,vi b = 1.5508 

21.20 

~vib = 0.2778 

21.21 
a. ~ = 1.5052 • 1033 

b. ~ - -  1.4900 • 1033 

21.22 

~rot  - -  36.42 

21.24 

"~vib --- 1.095 

21.25 

3 • ~rot(or tho)+X, ro t (para)- -  3 ( 1 . 8 7 5 5 9 ) +  1.88403 --  7.5108 

4 x X, rot (integral approx.)  = 4(1.703) = 6.812 

21.26 

a. d l n ( x ) / d x - -  1 
b. d ln(x) /dx  = 1.00 x 10 -5 

c. d ln(x) /dx  = 1.00 x 10 -1~ 

21.31 

Nhv Nhv 
b. Uvi b = T -at- e hv/kB T _ 1 

21.32 

a .  ~vib = 0 .005327 

Uvi b -"  12979 J m o l -  1 

b. With the zero o f  vibrational energy taken at the zero-point  

energy:  

A~vi b = 2.1713 

Uvi b = 3 0 0 5  J mo1-1 

With the zero o f  vibrational energy taken at the m i n i m u m  of  the 

vibrational potential  energy:  

"~vib - -  1.595 

Uvi b = 4288 J mo1-1 

21.33 

~elec = 3.1219 

Um,elec = 515.1 J mo1-1 

21.34 

b. Cv,m = 25.466 J K -1 mo1-1 

21.35 

~tr = - 6 . 9 7 8  • 10 -2o J 

/~rot = - 2 . 4 9 1  • 10 -2~ J 

~vib - - - 2 . 8 6  • 10 -2z J 

]2elec ~ 0 

21.36 

K ~ 4 . 2 4  

21.39 
b. A ~ 2.4 • 108 m 3 mo1-1 s -1 = 2.4 • 1011 L mo1-1 s -1 

21.50 
a. S m = - 1 3 0 4  J K -1 tool -1 

b. S m = 146.532 J K -1 mo1-1 
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Answers to selected problems 

21.53 
b. The average dis t r ibut ion is: 

fo = 4 =  0.4 

P l  - - 3 - 0 . 3  

P2 - -  ~ - 0.2 

P3 - 1 -  0 . i  

c. The most  probable  distr ibution is 

P0 = �89 = 0 .3333 

P l  = 
1 

0 .3333 

- ~ - 0 .3333 P2 

P 3 : 0  
d. The Bo l t zmann  distr ibut ion is exactly as in Table 21.2. 

21.55 
b. Average distribution: 

657 
- -  = 0 .16198  

P0 = 4056 

1005 
= 0 .24778  

P l  - -  4056  

1755 
= 0 .43269  

P2 = 4056 

630 
= 0 . 1 5 5 3 3  

P3 = 4056 

9 
= 0 .00222  

P4  - -  4056  

c. Bo l t zmann  dis tr ibut ion 

1 pj  - - ~ ( 2 J  + l)e -yJ(J+I) 
"~rot 

where  y -  hb / kBT  = 0 .0491776  and.%o t = 20.671 

21.57 
a. The difference is 2 .02%.  

b. The difference is 0 .00200%.  

21.59 
= - 1.69 x 10 -4 J mo1-1 

21.61 

x = l ,  y - 1  

21.63 
a. Ratio - 2 .836  x 10 -5 at 298.15 K 

b. Ratio = 1.943 • 10 -3 at 500 K 

c. Ratio --  0 .04408  at 1000 K 

d. Ratio = 0 .5356  at 5 0 0 0 K  

e. In the limit as T --~ c~, the ratio---~ 1. 

21.65 
a. Ratio = 2 .639 at 2 9 8 . 1 5 K  

b. Ratio = 2 .887 at 1000 K 

c. In the limit as T ~ c~, the ratio ~ 3. 

21.67 
Jmp "~ 9 

21.69 
For  V = 0 .00100  m 3, ~ --  2 .44  x 10 29 

For  V = 1.00 m 3, x~ --  2 .44  x 1032 

21.71 

For  hel ium,  ~ = 1.911 x 1029 

For  krypton ,  ~ = 1.815 x 1031 

21.75 
a. "~rot = 1.880 

b.  ~rot -"  424 .8  

21.79 
Distance f rom the N nucleus  to the center  o f  mass  = 

0 .1282 x 10 -1~ m 

I A = 2 .450  x 10 -47 kg  m 2 

18 = I c = 3 .464 x 10 -47 kg  m 2 

The s y m m e t r y  n u m b e r  is 3. 

~rot = 140.0 

21.83 

For  argon,  S m = 154.85 J K -1 mo1-1 

For  hel ium, Sm = 126.16 J K - 1  m o l -  1 

21.85 

H m = 10.393 kJ mo1-1 

F r o m  Table A.8,  H m = 10.393 kJ mo1-1 

21.87 

S m = 197.60 J K -1 mo1-1 

21.89 

Sm = 196.3 J K -1 mo1-1 

21.93 
K = 0 .462 

21.95 
a. K p ~ 6  

b. K p ~ 2  

21 .99  

AS ~t~ = - 100 J K -1 mo1-1 

21.103 
z~ ~,~ 10 4"48x1024 

21 .105 

z = 3 .074 x 1032 

21.109 

5% agreement  at T = 3960 K 

1% agreement  at T --  8985 K 

Chapter 22 
Answers to selected exercises 

22.1 
b. sp 3 hybr ids  
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22.2 

Cubic, P: 1 

C u b i c , / :  2 

Cubic, F: 4 

Tetragonal, P: 1 

Tet ragonal , / :  2 

Orthorhombic,  P: 1 

Orthorhombic,  C: 2 

Or tho rhombic , / :  2 

Orthorhombic,  F: 4 

Monoclinic,  P: 1 

Monoclinic,  C: 2 

Triclinic: 1 

Hexagonal:  1 

22.3  

b. Packing fraction - 0 .680175 

22 .5  

b. v = 2.75 x 1013 s -1  - -  2.75 x 1013 Hz 

c. U -  N ~  o = 398 J mo1-1 at 298.15 K 

U - N~0  = 2530 J mo1-1 at 500. K 

d. G -  N ~  0 - 7350 J mo1-1 at 298.15 K 

= 11,580 J mo1-1 at 500. K 

22 .6  
( _ ~ ) 2  eOE/r 

b. Cv - 3NkB (eOE/r - 1)2 

At  298.15 K, Cv -- 5.983 J K mo1-1 

At  500. K, Cv -- 14.39 J K mo1-1 

At  1320 K, Cv = 22.96 J K mo1-1 

22.10 

Va v __ 3 VD 

V a v -  2 . 9 5  X 1013 S - 1  

v E - - 2 . 7 5  x 1013 s -1  

22.13 
a. A = 2.7236 x 10 -38 J m 2 

b. eV0 -- 5.26 x 10 -19  J -  3.28 eV 

22.14 

a .  Cm, elec - -  0.016 J K -1 mol - l  

b. Ratio - 0.0013 

c. Ratio - 0.077 

22.17 
a. v -  1.98 x 103 m s -1 

b. T - -  1 5 8 K  

22 .22  

Xx = 
(Cok't) x-1 

(1 + cok' t) x 

22.25 

s f 

r f 

22.26 

a. q = - w  = 2 ~,2 +--c~' - 3 

b. q -  - 0 . 0 0 0 8 3  J 

w - 0.00083 J 

A n s w e r s  to s e l ec ted  p r o b l e m s  

22.29 

Molecular: neon, krypton 

Ionic: cesium nitrate 

Covalent: d iamond 

Metallic: copper, sodium 

22 .33  

Unit cell dimension = 269 pm 

22 .35  

Primitive cubic, one basis per unit cell 

a = 4.123 x 10 - I~  m 

22.39 

a. dll  0 = 2.023 • 10 -10 m 

b. 0 = 22.439 ~ = 0.3916 radian 

22.41 

k = 4 4 N m  -1 

22 .43  
a. v = 2.75 x 1012 S -1  

22.49 

a. eF0 = 4.11 x 10 -19 J = 2.57 eV 

22.51 

a. R a t i o -  2.2 x 10 -2~ 

22.53 

Number  ~ 4.4 

22.55 

P = 2 . 9 3 x  1 0 8 P a = 2 . 8 9 x  103a tm 

22.57 

AS/, = 20,000 amu 

M w = 25,000 amu 

22.59 

b. p - 0.987 

c. M n = 1.0 x 104 amu 
_ 

d. X, = 76 

22.63 

a. rrm s - 3  X 10 - 9 m  

Ratio = 0.1 
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b. r r m s - - 3 X  10 - 8 m  

Ratio -- 0.01 

22.69 

2f,/v - 2 . 4 6  x 10 4 a m u  

22.71 

a. FALSE 

b. TRUE 

c. TRUE 

d. FALSE 

e. TRUE 

f. TRUE 

g. FALSE 

h. FALSE 

i. TRUE 

Chapter 23 
Answers to selected exercises 

23.1 
k -  2.7 x 10 -35 s -1 

t 1/2 -- 2.6 x 10 34 S ~ 8 X 1026 years 

23.3 

a. E a -- 14,200 J mo1-1 

b. AS ~~ - - 1 3  J K -1 mo1-1 

23.5 
d = 1.8 x 1 0 - 1 1 m  

23.7 

Debye length - 2.15 • 10 -9 m - 2150 pm - 21.5 A 

23.9 

b. qconc = - - 3 " 6  x 10 - 6  V 

Answers to selected problems 

23.15 

a .  A E  a - -  272 kJ mo1-1 

k(310 K) 
b. ~ = 3 4  

k(300 K) 

23.17 

E a = 15.8 kJ mo1-1 

23.19 
a. a = 6.45 x 10 -14 s 

23.21 

a ( C 1 - ) -  153 

23.23 

a = 1.08 V 

b = 0.090 V 

23.27 

a. TRUE 

b. FALSE 

c. TRUE 

d. TRUE 

e. TRUE 

f. FALSE 

g. FALSE 

h. TRUE 

i. TRUE 
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electrochemistry. This book is available in soft cover for student use at a reduced price. 

H. B. Callen, Thermodynamics, Wiley, New York, 1960. This book is a carefully written text for 
physics students. It presents the laws as postulates instead of as experimental facts. 

M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. 
Syverud, JANAF Thermochemical Tables, Third Edition, Parts I and II, J. Phys. Chem. Ref 
Data, 14, Supplement No. 1 (1985). These volumes are a standard source ofthermochemical 
data. They include data on solutions. 

J. deHeer, Phenomenological Thermodynamics, Prentice-Hall, Englewood Cliffs, NJ, 1986. This 
is a modem text in chemical thermodynamics, and is a thorough theoretical survey. 
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C. Domb and M. S. Green, Phase Transitions and Critical Phenomena, Academic Press, New 
York. This is a whole series of volumes that present theories at a very high level for 
specialists in the field. 

J. D. Fast, Entropy, McGraw-Hill, New York, 1962. This book is a comprehensive discussion of 
thermodynamic and statistical entropy. 

A. Findlay, The Phase Rule and Its Applications, 9th ed., edited by A. N. Campbell and N. O. 
Smith, Dover Publications, New York, 1951. This book was a standard source for informa- 
tion about phase equilibrium for many years. 

W. C. Gardiner, Jr., Rates and Mechanisms of Chemical Reactions, W. A. Benjamin, New York, 
1969. This book is intended for an undergraduate course in chemical kinetics at the level of a 
general physical chemistry course, and includes a discussion of the rates of electrode processes. 

J. Goodisman, Electrochemistry: Theoretical Foundations, Wiley, New York, 1987. This small 
book is a modem presentation of equilibrium and nonequilibrium electrochemistry from a 
physical chemical point of view, and is a very useful source. 

P. Gordon, Principles of Phase Diagrams in Materials Systems, McGraw-Hill, 1968. This book 
is designed for materials scientists, and presents a clear introduction to the thermodynamics of 
phase equilibrium. It contains a useful chapter on order-disorder transitions. 

M. Hansen, The Constitution of Binary Alloys, McGraw-Hill, New York, 1958. This book 
contains a number of phase diagrams and other information about two-component systems of 
metals. 

Mats Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermo- 
dynamic Basis, Cambridge University Press, Cambridge, UK, 1998. This book emphasizes 
theoretical and practical principles of phase diagrams and their applications in materials 
science. It relates phase diagrams to Gibbs energy diagrams, and includes modem computer 
calculations. 

J. O. Hirschfelder, C. E Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, 
New York, 1954. This is a large and useful book. It contains a lot of numerical data and 
carefully presents nearly all of the fluid theory known at the time of its publication. There exists 
a second printing (1965) with corrections and some added material. 

J. G. Kirkwood and I. Oppenheim, Chemical Thermodynamics, McGraw-Hill, New York, 
1961. This book is a theoretically oriented text for graduate students in chemistry. 

C. Kittel and H. Kroemer, Thermal Physics, W. H. Freeman, San Francisco, 1980. This book is 
a textbook for undergraduate students of physics. It contains a discussion of the theory of the 
van der Waals fluid, including critical phenomena, beginning on p. 288. 

H. A. Laitinen and W. E. Harris, Chemical Analysis--An Advanced Text and Reference, 2d ed., 
McGraw-Hill, New York, 1975. This book is designed for a course in analytical chemistry at 
the senior/first year graduate level, and includes a discussion of electrochemistry and 
electrochemical analysis. 

W. E Magie, editor and translator, The Second Law of Thermodynamics, Harper and Brothers, 
New York, 1899. This little book consists of writings of Camot and of Clausius in English 
translation, and of Lord Kelvin. If you can find it, you can read the work of the pioneers in 
English. 

P. V. E. McClintock, D. J. Meredith, and J. K. Wigmore, Matter at Low Temperatures, Wiley, New 
York, 1984. This book is a readable and useful source for information about low-temperature 
properties, including phase diagrams of helium. 

M. L. McGlashan, Chemical Thermodynamics, Academic Press, New York, 1979. This book is 
a text for a chemical thermodynamics course at the graduate level. 

J. Nyvlt, Solid-Liquid Phase Equilibria, Elsevier, Amsterdam, 1977. This book has a practical 
orientation toward the actual construction of phase diagrams. It contains a number of useful 
tables of solubilities. 

K. B. Oldham and J. C. Myland, Fundamentals of Electrochemical Science, Academic Press, San 
Diego, 1994. This is a textbook for advanced undergraduate students and graduate students. 
It treats electrochemistry as a branch of chemistry in its own fight, and not as a part of physical 
chemistry or analytical chemistry. 
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D. R. Owen, A First Course in the Mathematical Foundations of Thermodynamics, Springer- 
Verlag, New York, 1984. This book discusses thermodynamics as a branch of mathematics. 

K. S. Pitzer and L. Brewer, Thermodynamics, McGraw-Hill, New York, 1961. This book is a 
revision of a classic graduate-level book of 1923 by G. N. Lewis and M. Randall, which 
brought thermodynamics into graduate chemical curricula. 

R. C. Reid, J. M. Prausnitz, and Thomas K. Sherwood, The Properties of Gases and Liquid, 3d 
ed., McGraw-Hill, New York, 1977. This book is intended for chemical engineers, and 
contains quite a bit of data, as well as correlations useful in coming up with estimated 
numerical values when data are not available. 

H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University 
Press, New York, 1971. This book is a general theoretical and experimental introduction to 
phase transitions, not only in fluid systems, but also in magnetic systems. 

J. Timmermans, Physicochemical Constants of Binary Systems in Concentrated Solutions, 4 vols., 
Interscience Publishers, New York, 1959-1960. This work is a compendium of data on two- 
component mixtures, including partial vapor pressures, boiling temperatures, freezing tempera- 
tures, refractive indices, densities, etc. Volumes I and II contain information on pairs of organic 
compounds, Vol. III contains information on pairs of metallic substances and of one metallic 
substance with water or an organic compound, and Vol. IV on pairs of inorganic substances and 
on inorganic substances with organic substances. 

D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailery, K. L. Churney, 
and R. H. Schumm, The NBS Table of Chemical Thermodynamic Properties. Selected Values 
for Inorganic and C1 and C2 Organic Substances in SI Units, J. Phys. Chem. Ref Data, 11, 
Supplement No. 2 (1982). 

E T. Wall, Chemical Thermodynamics, 3d ed., W. H. Freeman, San Francisco, 1974. This book 
is designed for a course at the senior/first year graduate level, and includes statistical 
mechanics. 

J. Wisniak, Phase Diagrams. Physical Sciences Data, 10, Elsevier, Amsterdam, 1981. This 
work is a two-volume set containing phase diagrams. 

J. Wisniak and A. Tamir, Mixing and Excess Thermodynamic Properties. A Literature Source 
Book. Physical Sciences Data, 1, Elsevier, Amsterdam, 1978. This book and two supple- 
ments, which appeared in 1982 and 1986, present thermodynamic data on mixtures. 

Gas Kinetic Theory, Transport Processes, and Reaction 
Kinetics 
R. B. Bernstein, Chemical Dynamics via Molecular Beam and Laser Techniques, Oxford 

University Press, New York, 1982. This book is based on a set of lectures given at Oxford 
University in 1980, and was designed to bring advanced undergraduate students up to date with 
research in this area. 

J. N. Bradley, Fast Reactions, Oxford University Press, Oxford, 1975. This is a small book that 
concentrates on experimental techniques for studying fast reactions, both in liquid and gas 
phases. 

P. R. Brooks and E. E Hayes, eds., State-to-State Chemistry, ACS Symposium Series, No. 56, 
American Chemical Society, Washington, D.C., 1977. This book reports on the state of the 
art in state-to-state chemistry as of 1977. 

A. A. Frost and R. G. Pearson, Kinetics and Mechanism, 2d ed., Wiley, New York, 1961. This is 
a useful book containing a number of reaction mechanisms. 

G. G. Hammes, Principles of Chemical Kinetics, Academic Press, New York, 1978. This is a 
text for a one-semester course at the senior/first year graduate level. 

J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, New York, 
1976. This book is a general presentation of liquid theory at an advanced level. Chapter 10 
deals with phase transitions and critical phenomena. 
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J. O. Hirschfelder, C. E Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquid, Wiley, 
New York, 1954. Although it is now over 40 years old, this book is a very useful source of 
information. It contains a lot of numerical data and carefully presents nearly all of the fluid 
theory known at the time of its publication. There exists a second printing (1965) with 
corrections and some added material. 

H. S. Johnston, Gas Phase Reaction Rate Theory, Ronald Press, New York, 1966. This book 
was designed for a one-semester course at the senior/first year graduate level, and is still very 
Useful. 

P. C. Jordan, Chemical Kinetics and Transport, Plenum Press, New York, 1979. This is a clearly 
written text for a course at the senior/first year graduate level, including both reaction kinetics 
and transport processes. 

W. Kauzmann, Thermal Properties of Matter, W A. Benjamin, New York, 1966. This book, 
written by a prominent theoretical chemist, contains a complete discussion of gas kinetic theory. 

E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York, 1938. This book is a classic 
treatment of kinetic theory at the graduate level. 

K. J. Laidler, Chemical Kinetics, 3d ed., Harper and Row, New York, 1987. This is a 
comprehensive and clearly written book at the first-year graduate level. 

K. J. Laidler, Physical Chemistry with Biological Applications, Benjamin/Cummings, Menlo 
Park, CA, 1978. This book is a text for a one-semester course in physical chemistry for 
biologically oriented students, and contains a clear discussion of enzyme kinetics. 

R. D. Levine and R. B. Bernstein, Molecular Dynamics and Chemical Reactivity, Oxford 
University Press, New York, 1987. This book is an excellent source of information about 
the molecular study of reaction kinetics. It is clearly written by authors who are experts in the 
field. 

T. M. Reed and K. E. Gubbins, Applied Statistical Mechanics, McGraw-Hill, New York, 
1973. This book discusses equilibrium and transport processes in fluids for chemical 
engineers at the graduate level. 

R. C. Reid, J. M. Prausnitz, and Thomas K. Sherwood, The Properties of Gases and Liquids, 3d 
ed., McGraw-Hill, New York, 1977. This book is intended for chemical engineers, and 
contains quite a bit of data, as well as correlations useful in coming up with estimated 
numerical values when data are not available. 

D. Tabor, Gases, Liquids and Solids, 2d ed., Cambridge University Press, Cambridge, UK, 
1985. This book, which appears in paperback, is a well-written survey of the theory of all 
three states of matter at an advanced undergraduate level. It concentrates on simple model 
systems. 

R. E. Weston and H. A. Schwarz, Chemical Kinetics, Prentice-Hall, Englewood Cliffs, NJ, 
1972. This book is an undergraduate text in chemical kinetics designed to supplement or 
replace a portion of a comprehensive physical chemistry text. 

Quantum Mechanics, Atomic Structure, and Molecular 
Structure 
E W. Atkins, Molecular Quantum Mechanics, 3d ed., Oxford University Press, Oxford and New 

York, 1997. This book is written at the senior/first year graduate level, and although it 
focuses on molecular quantum mechanics, it also introduces the fundamental theory. 

C. J. Ballhausen and H. B. Gray, Molecular Orbital Theory, W A. Benjamin, New York, 
1964. This paperback book contains notes from series of lectures on molecular orbital theory 
for advanced undergraduates and first-year graduate students, as well as a collection of reprints 
of articles on the subject. 

Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, 
Plenum Press, New York, 1977. This is a book by two well-respected physicists, and gives a 
complete and careful treatment. 

R. L. Carter, Molecular Symmetry and Group Theory, Wiley, New York, 1998. 
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E A. Cotton, Chemical Applications of Group Theory, Wiley, New York, 1990. This is one of 
the most authoritative textbooks on chemical group theory, and has appeared in various 
printings since 1963. 

J. C. Davis, Jr., Advanced Physical Chemistry, Ronald Press, New York, 1965. This is one of 
very few existing textbooks for a general physical chemistry course following the standard one- 
year undergraduate course. It contains a clear and fairly detailed discussion of nonrelativistic 
quantum mechanics. 

M. W. Hanna, Quantum Mechanics in Chemistry, 3d ed., Benjamin/Cummings, Menlo Park, CA, 
1981. This is a fairly small book, available in paperback, which is designed as a supple- 
mentary text for an undergraduate course in physical chemistry, or as a text for part of a course. 
It is quite clear and gives somewhat more detail than most physical chemistry textbooks. 

W E. Hatfield and W E. Parker, Symmetry in Chemical Bonding and Structure, Charles E. 
Merrill, Columbus, OH, 1974. This textbook is an introduction to the subject for senior 
undergraduates and beginning graduate students. 

J. E. House, Fundamentals of Quantum Mechanics, Academic Press, San Diego, 1998. 
M. Jammer, The Conceptual Development of Quantum Mechanics, McGraw-Hill, New York, 

1966. This is a book for physicists, and presents the foundations of quantum mechanics in 
historical context. 

M. Jammer, The Philosophy of Quantum Mechanics, Wiley, New York, 1974. This book is what 
its title suggests, and includes discussion of some controversial aspects, including paradoxes 
that arise in certain interpretations of the postulates. 

S. E A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists, Wiley, New York, 
1995. 

I. N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, NJ, 1991. This is a 
widely used text for a one-semester quantum chemistry course at the senior/first year graduate 
level. It is clear and authoritative. 

J. P. Lowe, Quantum Chemistry, 2d ed., Academic Press, San Diego, 1993. This is a book for a 
course in quantum chemistry at the senior/first year graduate level, and presents basic 
concepts, although it is oriented mostly toward molecular orbital theory. 

E Mandl, Quantum Mechanics, Butterworths, London, 1957. This book is a theoretically 
inclined book for physics students at the graduate level, and presents the basic concepts in a 
careful and rather complete way. Many concepts are unfortunately buried in a welter of detail. 

D. A. McQuarrie, Quantum Chemistry, University Science Books, Mill Valley, CA, 1983. This 
book is a text for a standard course in quantum mechanics at the senior/first year graduate 
level. 

R. McWeeny, Symmetry--An Introduction to Group Theory and Its Applications, Macmillan, 
New York, 1963. This is a standard introduction to the use of group theory, but it appears to 
be out of print at present. 

G. L. Miessler and D. A. Tarr, Inorganic Chemistry, Prentice-Hall, Englewood Cliffs, NJ, 
1991. This is a textbook for a senior-level inorganic chemistry course, and contains a clearly 
written introduction to group theory and its application to chemical bonding and spectroscopy. 

Michael A. Morrison, Thomas E Estle, and Neal E Lane, Quantum States of Atoms, Molecules, 
and Solids, Prentice-Hall, Englewood Cliffs, NJ, 1976. 

E L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, New York, 1968. This is a book for a 
one-year course in quantum chemistry at the first-year graduate level, and contains some things 
not readily found elsewhere in books written for chemists. Most undergraduates will feel that 
the word "elementary" does not belong in the title. 

John A. Pople and David L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, 
New York, 1970. This is a small book that is designed to aid senior and first-year graduate 
students in learning Hartree-Fock and semiempirical molecular orbital methods. 

Donald J. Royer, Bonding Theory, McGraw-Hill, New York, 1968. This is a small book 
designed for advanced undergraduates. It has a clear discussion of Hiickel molecular 
orbitals. 
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J. Simons and J. Nichols, Quantum Mechanics in Chemistry, Oxford University Press, Oxford and 
New York, 1997. This is a comprehensive text at the senior/first year graduate level with a 
large number of exercises and problems with solutions. 

Boris S. Tsukerblat, Group Theory in Chemistry and Spectroscopy, Academic Press, San Diego, 
1994. This book is intended as a practical guide to group theory by chemists involved with 
spectroscopy and molecular structure. It does not emphasize formal mathematics and presents 
material by way of examples as much as possible. 

Spectroscopy 
R. J. Abraham and P. Loftus, Proton and Carbon-13 NMR Spectroscopy, Heyden, London, 

1978. This book is an integrated approach to the two principal types of NMR spectroscopy, 
carbon- 13 and proton NMR. 

Robert G. Bacher and Samuel Goudsmit, Atomic Energy States, McGraw-Hill, New York, 
1932. This book is a compilation of numerical energy level values. 

Gordon M. Barrow, Introduction to Molecular Spectroscopy, McGraw-Hill, New York, 
1962. This is a general introductory text at the senior undergraduate/first year graduate level. 

Alan Carrington and Andrew D. McLachlan, Introduction to Magnetic Resonance, Harper and 
Row, New York, 1967. This book is a clear and authoritative treatment of both ESR and 
NMR spectroscopy. 

D. B. Chase and J. E Rabolt, eds., Fourier Transform Raman Spectroscopy, Academic Press, San 
Diego, 1994. This is a collection of chapters written by various experts in the field, coveting 
the theory and techniques of Raman spectroscopy carried out in Fourier transform instruments. 

Norman B. Colthup, Lawrence H. Daly, and Stephen W. Wiberley, Introduction to Infrared and 
Raman Spectroscopy, 2d ed., Academic Press, New York, 1975. This book includes 
considerable information about instrumentation in addition to spectroscopic theory, and is 
probably well suited for use by analytical chemists. 

Wolfgang Demtroder, Laser Spectroscopy--Basic Concepts and Instrumentation, Springer- 
Verlag, Berlin, 1981. This contains a modem account of various types of spectroscopy 
using lasers as sources of incident radiation. Fourier transform spectroscopy is included, as is 
multiphoton spectroscopy. 

Russell S. Drago, Physical Methods in Chemistry, W. B. Saunders, Philadelphia, 1977. The bulk 
of this book is devoted to spectroscopy of various sorts, but it also includes chapters on 
molecular orbital theory, group theory, and X-ray crystallography. 

Thomas C. Farrar and Edwin D. Becker, Pulse and Fourier Transform NMR, Academic Press, 
New York, 1971. This is a brief book on the subject that includes information about 
instrumentation as well as theory. 

John R. Ferraro and Kazuo Nakamoto, Introductory Raman Spectroscopy, Academic Press, San 
Diego, 1994. This book is an authoritative general introduction to Raman spectroscopy. It 
includes a thorough discussion of the application of group theory to selection rules. 

Gerhard Herzberg, Molecular Spectra and Molecular Structure 
Vol. I, Spectra of Diatomic Molecules, 2d ed., D. Van Nostrand, Princeton, New Jersey, 1950. 
Vol. II, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold, New 
York, 1945. 
Vol. III, Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand 
Reinhold, New York, 1966. 
Vol. IV, Constants of Diatomic Molecules, by K. P. Huber and G. Herzberg, Van Nostrand 
Reinhold, New York, 1979. 

This set of books is the most authoritative information source for molecular spectroscopy, both in 
theory and in critically evaluated experimental data on molecular structure. 

William G. Laidlaw, Introduction to Quantum Concepts in Spectroscopy, McGraw-Hill, New 
York, 1970. This is a book at the level of undergraduate physical chemistry that interprets 
spectroscopy in terms of qualitative quantum-mechanical concepts. 
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Ira N. Levine, Molecular Spectroscopy, Wiley, New York, 1975. This is a text for a graduate- 
level course in molecular spectroscopy, and is clearly written and authoritative. 

J. A. Pople, W. G. Schneider, and H. J. Bemstein, High-Resolution Nuclear Magnetic Resonance, 
McGraw-Hill, New York, 1959. This book presents an authoritative account of NMR theory 
as of the date of its publication, and is still very useful. 

Nicholas J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, CA, 
1978. This is an authoritative account of photochemistry written from the perspective of 
physical organic chemistry. 

Harvey Elliott White, Introduction to Atomic Spectra, McGraw-Hill, New York, 1934. This 
book is now primarily useful only as a source of data on atomic energy levels. 

Statistical Mechanics 

D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University Press, New York, 
1987. This small book is a text for a one-quarter or one-semester course in statistical 
mechanics for chemists at the senior/first year graduate level. It is written by one of the 
prominent practitioners of statistical mechanics, and emphasizes modem applications. 

N. Davidson, Statistical Mechanics, McGraw-Hill, New York, 1962. This book presents a 
complete and clear exposition of the principles of statistical mechanics for chemists at the first- 
year graduate level. 

E. A. Desloge, Statistical Physics, Holt, Rinehart, and Winston, New York, 1966. This is a 
textbook for a senior/first year graduate course in statistical mechanics and kinetic theory for 
physics students. It is clearly written and useful. 

H. L. Friedman, A Course in Statistical Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 
1985. This book is a text for a one-semester course in statistical mechanics for chemists at 
the graduate level. It is mathematically oriented, and emphasizes the liquid state. 

T. Hill, Statistical Thermodynamics, Addison-Wesley, Reading, MA, 1960. This book is a clear 
and useful introduction to equilibrium statistical mechanics for chemistry students at the first- 
year graduate level. 

A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover, New York, 
1949. This book is a highly mathematical treatment of some theoretical aspects of classical 
statistical mechanics. Chapter 3 treats the ergodic hypothesis. 

C. Kittel and H. Kroemer, Thermal Physics, 2d ed., W. H. Freeman, San Francisco, 1980. This 
book is a text for an undergraduate physics course in thermodynamics and statistical 
mechanics. It is clear and useful. 

D. A McQuarrie, Statistical Mechanics, Harper and Row, New York, 1976. This book is a 
complete and carefully written account of statistical mechanics for first-year graduate students 
in physical chemistry. 

L. E. Reichl, Statistical Physics, University of Texas Press, Austin, 1980. This book is a 
rigorous text for a graduate course in statistical mechanics for physicists. 

Norman O. Smith, Elementary Statistical Thermodynamics." A Problems Approach, Plenum Press, 
New York, 1982. This book is a very clearly written work on equilibrium statistical 
mechanics at approximately the level of an undergraduate physical chemistry course. 

Structure of Solid and Liquid Phases 

H. R. Allcock and E W Lampe, Contemporary Polymer Chemistry, Prentice-Hall, Englewood 
Cliffs, NJ, 1981. This is a complete, clearly written and useful textbook for a course in 
polymer chemistry. 

J. S. Blakemore, Solid-State Physics, 2d ed., W. B. Saunders, Philadelphia, 1974. This book is 
one of the standard textbooks for an undergraduate course in solid state physics, and is quite 
clear and readable. 
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C. A. Croxton, Liquid State Physics--A Statistical Mechanical Introduction, Cambridge 
University Press, Cambridge, 1974. This is a reference book in the statistical mechanical 
theory of liquids at an advanced graduate level. 

P. A. Egelstaff, An Introduction to the Liquid State, Academic Press, New York, 1967. This 
book is an introduction to the theory of the liquid state at the level of beginning graduate 
students in physics. Although it grew out of a course, it is more a reference book than a 
textbook. 

P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953. This 
book is a classic textbook in polymer chemistry, and is still very useful. 

N. B. Hannay, Solid-State Chemistry, Prentice-Hall, Englewood Cliffs, NJ, 1967. This is a 
paperback book that is intended for advanced undergraduates. It includes chemical reactions as 
well as structure, and is nicely written and very informative. 

J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, New York, 
1976. This is a reference book, not a textbook. It is at a rather advanced level, and is quite 
complete for its time. 

C. Kittel, Introduction to Solid State Physics, 6th ed., Wiley, New York, 1986. This is one of the 
best-known textbooks of solid state physics at the undergraduate level. 

W Moore, Seven Solid States, W A. Benjamin, New York, 1967. This is a small paperback 
book, written at a fairly elementary undergraduate level, in which the principles of solid state 
chemistry and physics are illustrated by study of seven example solids. 

R. B. Seymour and C. E. Carraher, Jr., Polymer Chemistry--An Introduction, Marcel Dekker, 
New York, 1981. This book is a nonmathematical survey of polymer chemistry. 

D. Tabor, Gases, Liquids and Solids, 2d ed., Cambridge University Press, Cambridge, UK, 
1979. This is a fairly small paperback book. It is a clear and valuable reference, and derives 
approximate formulas for nearly all properties of gases, liquids, and solids from simple model 
systems. 

C. Tanford, Physical Chemistry of Macromolecules, Wiley, New York, 1961. This book is 
written by a prominent biophysical chemist, but gives good coverage of synthetic polymers as 
well as of biological macromolecules. 
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Anode, 295 
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Azimuthal quantum number, 584 

Back e.m.f., 962 
Balmer series, 514 
Band, 766, 914 
Band center, 767 
Band gap, 914 
Band theory of solid electronic structure, 914-20 
Barometric distribution, 344 
Base catalysis, 475 
Base-centered lattice, 900 
Base units, 6 
Basis functions, 655 

minimal set, 710 
Basis of a crystal, 899 
Basis set, 545 
Beattie-Bridgeman equation, 30 
Beckman, Arnold, 312 
Beer-Lambert law, 757-60, 760 
Bell, Alexander Graham, 789 
Bell-shaped curve, 330, 331 
Bend, 742 
Benedict-Webb-Rubin equation, 30 
Benzene, Hfickel molecular orbital calculation, 704 
Bernoulli, Daniel, 320 
Berthelot equation of state, 30, 39, 978 
Berthelot, Pierre Eugene Marcelin, 134 
Berzelius, Jons Jakob, 469 
Bimolecular chemical reactions in dilute gases, 

862-72 
Bimolecular gas reactions, 436-8 

collision theory, 444-50 
Bimolecular liquid-phase reactions, 440-3 
Bimolecular processes, 436 
Binary collisions, 436 
Biological buffering, 276-7 
Biological systems, 280-4 
Black body, 507 
Black, Joseph, 53 
Blackbody radiation, Planck's theory, 507 
Block-diagonal matrix, 1053 
Body-centered lattice, 900 
Bohr frequency rule, 751-3,776, 809 
Bohr magneton, 794 
Bohr, Niels Henrik David, 511 
Bohr radius, 512, 624 
Bohr theory of hydrogen atom, 511-14, 581 
Boiling point elevation, 247-8 
Boltzmann, 95, 116 
Boltzmann constant, 8, 58, 116, 119, 230, 329, 348, 

508 
Boltzmann factor, 743, 764 
Boltzmann, Ludwig, 8 
Boltzmann probability 

distribution, 15-16, 230, 329, 343, 444, 822 
for energy, 950 
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Boltzmann probability (cont.) 
formula, 960 

Bomb calorimeter, 86-8 
Bond energies, 990 

average, 88-9 
Bond order, 665-6 
Bonding 

in hydrogen fluoride, 679 
in molecules, 678-81 
molecular orbital, 650 

Bom-Oppenheimer approximation, 648, 660, 676, 
690, 724, 765, 863, 1042 

Born-Oppenheimer electronic energy, 729-30, 740 
Bom-Oppenheimer energy, 648, 650, 725, 837 
Bom-Oppenheimer Hamiltonian operator, 661, 

665, 672, 702 
Bosons, 600 
Bound states, 583 
Boundary conditions, 500 
Boyle temperature, 29, 31 
Bragg condition, 904 
Bragg equation, 905 
Bragg, William Henry, 905 
Bragg, William Lawrence, 905 
Brahe, Tycho, 5 
Branching-chain reactions, 468-9 
Bravais lattices, 901,902 
Brillouin zone, 920 
Brownian motion, 386 
Buffer solutions, 273-5 
1,3-Butadiene, H/ickel molecular orbital 

calculation, 705 
Butler-Volmer equation, 968-9 

C2v group, 687, 1051-2 
CAChe software package, 709 
Calomel cathode, 301 
Calomel electrode, 300, 311 
Caloric theory of heat, 55 
Calorie (unit), 7 
Calorimetry, 59, 86-8 
Candela (unit), 7 
Canonical ensemble, 872-81 
Canonical partition function, 875 
Canonical Zustandsumme, 875 
Capillary rise or depression, 188 
Caratheodory's theorem, 1031-3 
Carnot cycle, 97, 98, 100, 103, 1032-3 
Carnot efficiency, 100 
Carnot heat engine, 96 
Carnot heat pump, 98, 102 
Carnot, Nicolas Leonard Sadi, 46 
Cartesian coordinates, 591, 1006 
Cartesian tensor, 367, 1008 
Catalysis, 469-81 
Catalyst, 402, 469 
Cathode, 295 
Cell diagram, 294 
Cell model, 924 
Cell potentials, 300-7 
Cell reaction equation, 295 
Cell symbol, 295 
Cells 

with liquid junctions, 303-6 
with transference, 304 

without liquid junction, 294 
Center-of-mass, 574, 576, 1030 
Center-of-mass Hamiltonian, 575, 725 
Center-of-mass (translational) energy, 730 
Central-force problem, 573 
Central-force system, 574-82 
Chain carriers, 463 
Chain length, 463 
Chain propagation steps, 463 
Chain reactions, 463-9, 777 

photochemical, 465-7 
Chain rule, 14, 1002 
Chain termination step, 463 
Character tables, 1054 
Characteristic proton chemical shi~s, 997 
Characteristic temperature, 908 
Charge transfer resistance, 969 
Chemical adsorption (chemisorption), 472 
Chemical bonds, 88-9 
Chemical equilibrium, 417-19 

dilute gases, 858-62 
solution, 264-6 
solutions of strong electrolytes, 266 
thermodynamics, 255-89 

Chemical laser, 484 
Chemical potential, 147-51,212, 218, 221,292-3, 

315 
dilute solution, 211 

Chemical reaction rates, 401-34 
Chemical reactions 

energy changes, 85-9 
enthalpy changes, 77-85 
entropy changes, 122-3 
experimental molecular study, 481-6 
macroscopic description, 402-3 
mechanisms, 435-92 
molecular case history, 952-3 
unimolecular, 948-51 

Chemical shift, 801 
Chlorophylls, 779 
Chloroplasts, 778 
Circular birefringence, 791 
Circular dichroism, 789-91 
Circularly polarized light, 789 
Clapeyron equation, 175-7 
Classes, 1053 
Classical canonical ensemble, thermodynamic 

functions, 886-90 
Classical mechanics, 5, 494-7, 1025-30 
Classical molecular partition function, 884 
Classical one-particle phase integral, 884 
Classical partition function, 883 
Classical rotational partition function, 885 
Classical statistical mechanics, 881-90 
Classical wave theory of light, 505-7 
Classical waves, 497-507 
Clausius-Clapeyron equation, 178-9 
Clausius, Rudolf Julius Emmanuel, 96 
Clausius statement, 96, 99 
Close-packed lattices, 902 
Closed fluid system, work done on, 47-9 
Closed ideal gas system, 59 
Closed simple systems, 60 

fundamental relations, 137-4 1 
Closed systems, 3 

equilibrium criteria for, 134-5 

spontaneous processes in, 132 
Coarse-grained description, 117 
Coefficient of linear thermal expansion, 26-7 
Coefficient of performance, 98-9, 102 
Coefficient of thermal expansion, 25, 26, 154, 977 
Coexistence curves, 32 
Coherent radiation, 755 
Colligative properties, 244-5 
Collision cross section, 350 
Collision cylinder, 350, 354 
Collision diameter, 350, 354, 449 
Collision rate, 440 
Collision theory 

and activated complex theory, 871 
bimolecular gas reactions, 444-50 

Colloids, 194 
Combination bands, 772 
Communal entropy, 926 
Commutator, 542 
Commuting observables, 567 
Compact layer, 959 
Competing (parallel) reactions, 422 
Competitive inhibitor, 480 
Complete orthonormal set, 565 
Complete set, 655 
Complex quantity, 1010-11 
Components, 147 

number in a system, 171-2 
Compressibility factor, 29 
Compressibility, isothermal, 25, 977 
Compression factor, 29-31, 38-40 
Compression work, 48 
Concentration, 223-4 
Concentration cells, 306-7 
Concentration gradient, 367 
Concentration overpotential, 962-4 
Condensation polymers, 928 
Condensed phase, 168 
Conductance, 390 
Conductivity, 393, 395 
Configuration, electronic, 604, 669 
Configuration integral, 344 
Configuration interaction, 629, 633, 634, 662 
Conjugate variables, 559 
Consecutive reactions, 420-2 
Conservation of energy, 496 
Constant of the motion, 605 
Constant-boiling mixture, 236 
Constant-pressure distillation process, 207 
Constant-pressure heat capacity, 184 
Constructive interference, 497 
Continuity equation, 372 
Continuous-flow method, 424 
Continuous spectrum, 522 
Convenience variables, 68 
Convolution theorem, 1020 
Cooling curves, 240 
Cooper pair, 973-4 
Coordination number, 902 
Coriolis, 46 
Correct zero-order wave functions, 629 
Correlation coefficient, 409 
Correlation diagram, 668 

hydrogen fluoride, 680 
water molecule, 690, 693 

Correlation energy, 629 
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Correlation error, 629 
Correspondence principle, 555 
Corresponding limit, 882 
Coulomb, Charles Augustin de, 229 
Coulomb force, 898 
Coulomb integral, 628 
Coulomb's law, 229, 574 
Counter electrode, 964 
Counter e.m.f., 293 
Coupling constant, 797 
Coupling of pairs of reactions, 281 
Covalent bonds, 898 
Covalent terms, 664 
Crest, 497 
Critical constants, 33, 979 
Critical exponents, 183 
Critical molar volume, 33 
Critical opalescence, 183 
Critical point, 32, 35, 183-4 
Critical pressure, 33 
Critical solution point, 237 
Critical temperature, 30, 32 
Cross-effects, 369 
Cross molecular beams, 485 
Cross product, 1007-8 
Crystal defects, 906 
Crystal habits, 906 
Crystal lattices, 899-902 
Crystal systems, 900, 901 
Crystal vibrations, 906-12 
Crystalline solids, 899 

electronic structure, 913-20 
Curie temperature, 916 
Curl, 1008 
Current density, 390, 391 
Cycle rule, 73, 1003 
Cyclic processes, 96 
Cyclobutadiene molecule, LCAO-MO, 705 

Dalton, John, 2, 78 
Dalton's law of partial pressure, 114, 206, 341 
Daniell cell, 304 
Davis equation, 234 
De Broglie, Prince Louis Victor, 514 
De Broglie waves, 514-17 

wave equation for, 525 
Debye (unit), 677 
Debye crystal model, 909-12 
Debye distribution of frequencies, 910 
Debye formula, 911 
Debye frequency, 912 
Debye function, 911 
Debye length, 231, 961 
Debye, Peter J.W., 121,229, 441,677 
Debye temperature, 912 
Debye-H/ickel equation, 233 
Debye-Htickel theory, 229-34, 393,394, 702, 961 
Debye-Hiickel-Onsager theory, 394 
Decision tree, 688 
de Coriolis, Gaspard, 46 
Definite integrals, 1021-2 
Degeneracy, 524, 527, 803, 918 
Degenerate case, 523-4 
Degenerate electron gas, 919 
Degenerate perturbation theory, 629-31 

Degree of freedom, 173 
Degree of inhibition, 480 
Delocalized bonding, 700 

LCAO-MO treatment of, 701-2 
valence-bond treatment of, 700-1 

Denatured molecule, 936 
Density, 24 
Density profile, 192 
Deoxyribonucleic acid (DNA), 936 
Dependent variables, 22 
Derived units, 7 
Desorption rate, 472, 474 
Destructive interference, 497 
Detailed configuration, 604 
Determinants, 612-13, 1015-16 
Diagonal mnemonic device, 635 
Diagonal mnemonic rule, 637 
Diagonal rule, 635, 636 
Diamagnetism, 800 
Diatomic gases, molecular partition function, 

837-42 
Diatomic helium, 665-6 
Diatomic molecules, 725-6, 837-842 

classical partition function, 885-6 
electronic spectra, 769-71 
ground-state electron configurations, 669 
nonelectronic states, 724-7 
partition function, 837-842 
properties, 996 
rotating, 727-33 
rotational energy levels, 727-733,743 
rotational spectra, 762-5 
vibration-rotation spectra, 765-9 
vibrational states, 727-733 

Dielectric constant, 229, 442 
Dieterici equation of state, 30, 38, 978 
Difference equation, 933 
Differential calculus, 1001-4 
Differential equation, 1009-10 

general solution, 494 
linear, 494 
second-order, 494 

Differential heat of solution, 227 
Differential rate law, 412-15 
Diffraction, 497 
Diffuse double layer, 959 
Diffusion, 370-3 

temperature dependence of, 386-8 
Diffusion coefficient, 370-1,382-3,386, 441,442, 

450, 994 
Arrhenius form, 956 

Diffusion-controlled bimolecular elementary 
reactions, 440 

Diffusion equation, 372-3 
Diffusion flux, 368 
Diffusion-limited bimolecular elementary reactions, 

440 
Diffusion-limited reaction rates, 450 
Dilute gas 

bimolecular chemical reactions in, 862-72 
chemical equilibrium, 858-62 
classical partition function, 883 
entropy, 845-8 
model system, 320-4 
pressure, 848-9 
probability distribution, 823-8 

thermodynamic function, 845-58 
Dilute monatomic gas, molecular partition function, 

830-6 
Dilute occupation, 825 
Dilute solution, 210 

chemical potential, 211 
solvent in, 215-16 

Dimensionless groups, 385 
Dipole moments, 676-8 
Dirac equation, 595 
Discrete spectrum, 522 
Displacement, 46-7 
Dissociation energy, 649, 731,732 
Dissociation equilibrium constant, 428 
Distillation process, 207 
Distribution constant, 212 
Distribution of molecular speeds, 333-7 
Divergence, 372, 1008 
Doppler shifts, 759 
Dot product, 1007 
Double cell, 301,307 
Drift velocity, 391 
Driving forces, 369-80 
Drude model, 970-1,973 
Duhem, Pierre-Maurice-Marie, 134 
Dulong, Pierre Louis, 71 
Dyadic, 367, 1008 
Dynamical electron correlation, 624 

E ~ values, 299-300 
Eadie plot, 480 
Edge-type dislocation, 906 
Effective hard-sphere diameter, 993 
Effective radius, 385 
Effusion, 341-3 
Eigenfunctions, 521,545 
Eigenvalue equations, 521-2, 551 
Einstein, Albert, 3, 510 
Einstein crystal model, 906-9 
Einstein (photons), 777 
Einstein temperature, 908, 912 
Einstein's theory of photoelectric effect, 510-11 
Electric charge, 391 
Electric dipole transition, 754 
Electric field, 391,506, 754 
Electric potential, 292-3,297, 315 
Electrical conductivity in solids, 970-4 
Electrical double layer, 959-61 
Electrical neutrality relation, 391 
Electrical systems, thermodynamics, 291-318 
Electrically conducting system, 390 
Electrochemical cells, 293-301,964 
Electrochemical measurements, 308 

thermodynamic information from, 312-15 
Electrochemical potential, 292 
Electrochemistry, nonequilibrium, 958-70 
Electrodes, 294, 958, 959, 962 

(see also specific types) 
Electrolyte solutions, 266-70 

activity coefficient, 228-34, 307-12 
transport processes, 390-6 

Electrolytes, 991 
activity coefficients of, 307-12 
tabulated thermodynamic values, 271 

Electrolytic cells, 293 
near equilibrium, 958-9 
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Electromagnetic radiation, 757 
Electromagnetic spectrum, 752, 753 
Electromagnetic wave, 506-7 
Electron affinity, 640 
Electron configuration, 604, 695-6 
Electron-electron repulsion, 627 
Electron energy, 611 
Electron-nucleus distances, probability 

distribution, 594 
Electron paramagnetic resonance (EPR) 

spectroscopy, 792 
Electron spin resonance (ESR) spectroscopy, 792, 

796-9 
Electron transport, 971 
Electronegativity, 681-2, 996 
Electronic contribution to thermodynamic energy, 

853 
Electronic energy, 729-30 
Electronic factor, 722 
Electronic factor of the partition function 

(electronic partition function), 836 
Electronic magnetic dipoles, 794-6 
Electronic partition function, 836 
Electronic Schr6dinger equation, 765 
Electronic spectra 

diatomic molecules, 769-71 
polyatomic molecules, 774-5 

Electronic states 
atoms, 573-645 
molecules, 647-719 

Electronic structure 
crystalline solids, 913-20 
molecular, 709-11 
polyatomic molecules, 690-5 

Electron(s), 510, 513, 517, 574, 630 
angular momentum, 595-7 
anomalous g factor, 794 
atoms with more than three, 613-15, 634-8 
atoms with more than two, 610-15, 632-41 
homonuclear diatomic molecules with more than 

four, 666-70 
Electrophoresis, 393 
Electrophoretic effect, 393-4 
Electrostatic factor, 441-2 
Electrostatic forces, 898 
Elementary processes, 436-8 

molecularity for, 444 
Elementary reactions in liquid solutions, 438-44 
Emission spectroscopy, 752-60, 756 
Empirical law, 2 
Enantiomorph, 689 
Encounter, 440 
End-centered lattice, 900 
Endothermic reaction, 78 
Energy 

ideal gas, 59-60 
storage, 949 

Energy changes, 58, 60 
calculations, 63-5 
chemical reactions, 85-9 

Energy eigenfunctions, 521,523-4, 527, 532, 546, 
576, 706, 823 

Energy eigenvalues, 521,523-4, 527, 530, 576, 
819 

Energy levels, 527, 605, 706, 752-60, 918 
hydrogen atom, 583-5 

Energy-localized orbitals, 708 
Ensemble, 872 
Enthalpy, 68-74 

calculation, 854-5 
standard state for, 122 

Enthalpy changes 
adiabatic reactions, 83-5 
chemical reactions, 77-85 
irreversible processes, 76-7 
non-chemical processes, 74-7 
non-standard-state reactions, 83 
of combustion, 86 
of formation, 86, 227 
of solution, 226 
reversible phase transitions, 75-6 
standard-state reaction, 79 
various temperatures, 81-3 

Entropy, 95-129, 858 
and randomness, 119 
calculation, 854-5 
dilute gas, 845-8 
mathematical statement, 102-7 
production, 112 
standard state, 122 

Entropy changes 
adiabatic processes, 104-6 
calculation, 107-16 
chemical reactions, 122-3 
irreversible processes starting and ending with 

equilibrium states, 112-14 
irreversible processes, 111-12 
isothermal reversible processes, 108-9 
isothermal volume change of ideal gas, 140 
mixing of ideal gases, 11 4-16 
nonadiabatic processes, 106-7 
processes starting and ending at same 

�9 temperature, 109 
reversible changes in temperature, 111-12 
reversible phase changes, 109-10 

Enzyme catalysis, 469, 477-81 
Equation of motion, 17 

harmonic oscillator, 494 
Equation of state, 5, 22, 30, 978 

hard-sphere fluid, 349 
Equilibrium, 5 
Equilibrium approximation, 452, 457, 460 
Equilibrium constants, 261,422, 467-8 

pressure dependence of, 276-80 
temperature dependence of, 276-80 

Equilibrium criteria 
closed systems, 134-5 
non-simple systems, 135-6 

Equilibrium electrochemical cell, 293 
Equilibrium internuclear distance, 649 
Equilibrium macroscopic states, 21-44 
Equilibrium populations of molecular states, 743-6 
Equilibrium statistical mechanics, 817-96 
Error function, 332, 1022-3 
Euler reciprocity relation, 61, 138, 139, 155, 

1002-3 
Euler's theorem, 156-7, 202, 214, 850, 1033-4 

thermodynamic applications, 1035 
Eutectic halt, 240 
Eutectic point, 240 
Even parity, 735 
Exact differential, 51, 1004 

equation, 1009 
Excess energy, 226 
Excess enthalpy, 226 
Excess entropy, 226 
Excess Gibbs energy, 226 
Exchange current, 962 
Exchange current density, 967 
Excited states, helium atom, 604, 629-31 
Exothermic reaction, 78 
Expansion coefficients, 545, 546, 655, 940 
Expectation value, 550 
Exponential factor, 448 
Extended Hfickel method, 710 
Extensive variables, 23 
Extent of reaction, 256 
Extinction, 905 
Extinction coefficient, 760 
Eyring, Henry, 865 

Face-centered lattice, 900 
Faltung theorem, 1020 
Faraday, Michael, 292 
Faraday's constant, 292, 391,961 
Fast reactions, 424-6, 429 
Fermi contact interaction, 797 
Fermi level, 916, 918, 919, 970 
Fermi surface, 920 
Fermions, 600, 734 

probability distribution, 916 
Ferromagnetism, 916 
Fick, Adolf, 370 
Fick's first law of diffusion, 370, 371 
Fick's second law of diffusion, 371,372 
Fictitious particle of mass/~, 576 
First harmonic, 501 
First law of thermodynamics, 45, 55-8 
First-order reactions, 404-6, 410, 423,429 

rate law, 404-6 
First overtone, 501,767 
Flash photolysis method, 425 
Flexible string, wave equation for, 1026-7 
Flow chart, 688 
Flow techniques, 424 
Flow velocity, 378 
Fluid systems, transport processes, 954-8 
Fluorescence, 775-6 
Forbidden transitions, 755, 775 
Force, 46-7 
Force constant, 494, 495 
Force per unit area, 369 
Formula unit, 7 
Forward rate constant, 428 
Forward reactions, 455 

mechanism, 451 
rate law, 476 
with more than one reactant, 412-17 
with one reactant, 404-12 

Fourier coefficients, 501 
Fourier integrals, 806-807, 1019-20 
Fourier, Jean Baptiste Joseph, 369, 501 
Fourier series, 501, 1016-18 
Fourier transform, 806-807, 1019-20 
Fourier-transform NMR spectrometers, 799 
Fourier-transform spectroscopy, 806-9 
Fourier's law of heat conduction, 369-70 
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Franck-Condon factor, 770 
Franck-Condon principle, 770 
Franck-Condon principle, 770, 774, 788 
Franklin, Benjamin, 390 
Free-electron molecular orbital (FEMO) method, 

706-7 
Free-electron theory, 917-20 
Free induction decay spectrum, 808 
Free particle, 522-38, 576 

one dimension, 528-30 
three dimensions, 530 

Free paths, 354-6 
Free radical intermediates, 482 
Freely joined chain, 932 
Freezing point depression, 245-6 
Freezing point depression constant, 246 
Frequency, 497, 501 
Frequency distribution, 910 
Frequency of oscillation, 495, 497 
Friction coefficient, 385 
Fugacity, 143-5 
Fugacity coefficient, 219 
Fundamental, 501 
Fundamental band, 766, 768 
Fundamental relation of chemical thermodynamics, 

147 

Galvani, Luigi, 293 
Galvanic cells, 293 
Gas constant, 58 
Gas mixture, pressure of, 341 
Gas-phase reactions, 261,436 

bimolecular, 436-8 
collision theory of bimolecular, 444-50 
termolecular, 438 
unimolecular, 438 

Gases, 28-32 
graphical presentation of volumetric data, 29-32 
kinetic theory, 319-64 
molar heat capacities, 980 

Gauss (unit), 792 
Gaussian distribution, 330 
Gaussian orbitals, 712 
Gaussian probability distribution, 331,332 
General acid catalysis, 475 
Generalized Gibbs-Duhem relation, 157 
Geometric progression, 841 
Giauque, William Francis, 120, 121 
Gibbons-Laughton modification of Redlich- 

Kwong-Soave equation, 30 
Gibbs-Duhem equation, surface version, 194 
Gibbs-Duhem relation, 157-8, 224-5, 292 
Gibbs-Duhem relation for constant pressure and 

temperature, 216 
Gibbs-Duhen integration, 309-10 
Gibbs energy, 133, 134, 136-7, 168, 225,257, 850, 

954 
and phase transitions, 180-1 
calculations, 142-6 
ideal gas, 142-3 
liquids, 145 
real gas, 143-5 
solids, 145 
temperature dependence, 145-6 

Gibbs energy change 

fixed composition, 260 
formation, 227-8, 270 
mixing, 202-4 
standard-state reaction, 264, 265 

Gibbs equation, 147, 155 
Gibbs-Helmholtz equation, 277-8 
Gibbs, Josiah Willard, 133 
Gibbs phase rule, 170-4 

derivation, 172-3 
Glass electrode, 312 
Good quantum number, 605 
Goodyear, Charles, 936 
Gradient, 367-8, 1008 

definition, 366-7 
Graham, Thomas, 341 
Graham's law of effusion, 341 
Grand canonical ensemble, 872 
Gravity, 10 
Grotthuss-Draper law, 465 
Ground state 

electron configurations, diatomic molecules, 669 
helium atom, 602-4, 624 

Group theory, 688-9 
molecular orbitals, 1057-9 

Groups, 684 
matrix representations, 1051-9 
specificity, 477 

Guoy plane, 959, 969-70 

Half-cell potentials, 300-7, 303 
Half-life, 405, 409-11,423 

reversible reaction, 419 
Half-reaction, 295, 303 
Hamiltonian function, 1029 
Hamiltonian mechanics, 1029 
Hamiltonian operator, 519, 520, 530, 540, 546, 

547, 562, 574, 575, 625, 725, 818, 823, 
1045 

harmonic oscillator, 741 
helium atom, 621 
heliumlike atom, 597-8 
hydrogen-molecule-ion-like (HMIL), 665 
one-electron, 672, 709 
quantum-mechanical, 741 

Hammond's postulate, 952 
Hard-sphere fluid, equation of state, 349 
Hard-sphere gas, 347-56 

molecular collisions, 349-54 
multicomponent, 354-6 
transport processes, 380-5 

Hard-sphere potential, 346, 347 
Harmonic oscillator, 494-7, 531-3, 558, 818-22, 

1039-41 
energy eigenvalues, 741 
equation of motion, 494 
Hamiltonian operator, 741 
probability density, 559 
Schr6dinger equation, 728 
wave function, 741 

Harmonic potential, 728 
energy function, 740 

Hartree-Fock method, 634 
Hartree-Fock orbitals, 662 
Hartree-Fock-Roothaan calculation, 662, 673, 

1057 

Hartree-Fock-Roothaan method, 634, 708, 709 
Hartree-Fock-Roothaan orbitals, 675 
Heat, 53-5, 857 

alternative definition, 59 
Heat capacity, 53, 59, 912 

constant pressure, 69-71 
constant volume, 60-1 
helium, 185 

Heat conduction, 369 
Heat flux, 368 
Heat measurement, 58-9 
Heat of solution, 226 
Heat transfer 

phase changes, 55 
temperature changes, 53-5 

Heisenberg, Werner Karl, 540 
Heisenberg's uncertainty principle, 559-62 
Helium, heat capacity, 185 
Helium atom, 597-610 

angular momentum, 605-10 
excited states, 604, 629-31 

approximate energies, 631 
ground state, 602-4, 624 
Hamiltonian operator, 621 
perturbation method, 625-7 
variation method, 621-4 

Heliumlike atom, Hamiltonian, 597-8 
Helmholtz energy, 133, 135-7, 855, 937 
Helmholtz, Hermann Ludwig von, 56 
Helrnholtz layer, 959 
Henderson-Hasselbalch equation, 275 
Henry, William, 210 
Henry's law, 210-11,214, 215, 221,245 
Henry's law constant, 210, 212 
Hermite, Charles, 531 
Hermite equation, 1039-4 1 
Hermite polynomials, 531-2, 1041 
Hermitian operators, 1011-12 

commuting, 545 
properties, 543-6 

Hess, Germain Henri, 80 
Hess' law, 80 
Heterogeneous catalysis, 469 

reaction rate, 473-4 
Heterogeneous catalysts, 194 
Heteronuclear diatomic molecules, 672-82 
High-resolution proton NMR spectrum, 804 
Homogeneous catalysis, 469, 475-7 
Homogeneous functions, 156 
Homogeneous nucleation, 191 
Homogeneous of degree k, 156 
Homonuclear diatomic molecules, 660-72 

correlation diagram, 668 
excited states, 671 
more than four electrons, 666-70 
term symbols for, 663-4 
valence bond approximation, 671 

Hooke, Robert, 494 
Hooke's law, 494 
Hfickel, Erich, 229, 702 
Hiickel method, 702-6, 1047-50 
Hfickel molecular orbital calculation 

allyl radical, 1047-50 
benzene, 704 
1,3-butadiene, 705 

Hund's first rule, 637, 641 
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Hund's second rule, 637 
Hybrid orbitals, 673-5, 691-3, 696, 697, 699-700 
Hybridized orbital regions, 675 
Hydrogen atom, 574-82 

Bohr theory, 511-14, 581 
energy levels, 583-5 
time-dependent wave function, 594 
wave function, 582-97 

Hydrogen electrodes, 295, 300-3 
Hydrogen fluoride 

bonding, 679 
correlation diagram, 680 

Hydrogen molecule, 660-663 
Hydrogen molecule ion, 648-660 

LCAO-MOs, 661-3 
additional excited states, 658 
first two states, 655-8 

orbital regions, 650 
Schr6dinger equation, 648-9 
valence bond method, 664-5 

Hydrogen-molecule-ion-like (HMIL) Hamiltonian 
operator, 665 

Hydrogenlike atom, 586-91 
Hydrogenlike energy eigenfunctions, 588, 1042-3 
Hydrogenlike Hamiltonian, 611 
Hydrogenlike orbitals, 611 

normalization of, 591-3 
orbital regions for, 590 
radial distribution functions for, 594 

Ideal depolarized electrode, 958 
Ideal gas, 50, 57-8 

activity, 217-18 
energy, 59-60 
equation of state, 5 
Gibbs energy, 142-3 
mixing, 202 
partial molar quantities, 150-1 
pressure, 337-4 1 
temperature scale, 8 

Ideal gas constant, 5, 329, 448 
Ideal gas law, 8, 9, 22 
Ideal gas property, 59 
Ideal polarized electrode, 958 
Ideal rubber, 937 
Ideal solutions, 200-8 

thermodynamic variables, 202-5 
Identical particles, 600-1 
Identity operator, 541,653 
Imaginary quantity, 1010-11 
Improper rotations, 682-3 
Incongruent melting, 242 
Indefinite integrals, 1021 
Independent intensive variables, number of, 172 
Independent variables, 22 
Inexact differential, 51, 1004 
Inhibition, 463,480 
Initial conditions, 494, 500 
Initial rates method, 411-12 
Initiation step, 463 
Inner transition elements (inner transition metals), 

639 
Instantaneous probability, 555 
Integral calculus, 1004-7 
Integrals, 1021-3 

Integrating factor, 103, 1009 
Integrodifferential equation, 627-8 
Intensive state, 170 
Intensive variables, 23 
Interference, 497, 504 
Interferogram, 806 
Interferometer, 806 
Intermolecular forces, 345-7 
Intermolecular potential energy, 345 
Internal conversion, 776 
Internal energy, 55-8, 60 
Internal pressure, 152 
International system of units, 6-7 
Intersystem crossing, 776 
Intrinsic angular momentum, 595 
Intrinsic viscosity, 941 
Inversion operator, 651 
Ion mobilities, 393, 394, 995 
Ionic solids, 898 
Ionic strength, 230 
Ionic terms, 664 
Ionization potential, 633, 640, 788 
IR drop, 962 
Irreversible adiabatic process, 104 
Irreversible electrode, 962 
Irreversible processes, 18, 76-7 

entropy changes, 111-12 
starting and ending with equilibrium states, 

entropy changes for, 112-14 
Isoelectronic molecules, 672 
Isolated system, 132 
Isopiestic method, 309 
Isothermal compressibility, 25, 184 

of liquids, 977 
Isothermal process, 50 
Isothermal reversible processes, entropy changes, 

108-9 
Isothermal volume change of ideal gas, entropy 

change, 140 
Isotherms, 34, 36 
Isotopic substitution, 482-3 

Jacobian, 592, 1007 
Jeans, Sir James, 508 
Joule (unit), 7 
Joule coefficient, 63 
Joule experiment, 62-3 
Joule, James Prescott, 55, 320 
Joule-Thomson coefficient, 71-4 
Joule-Thomson experiment, 71-4 

Kelvin (unit), 6 
Kelvin statement, 96 
Kepler, Johannes, 5 
Kilogram (kg), 6 
Kinetic energy, 9-10, 323, 328, 496, 513, 575 
Kinetic energy operator, 622 
Kinetic theory of gases, 319-64 
Kohlrausch, 394 
Kohlrausch's law, 395 
Koopman's theorem, 787 
Kronecker delta, 565, 754, 1014 

Lagrange's method of undetermined multipliers, 
826 

Lagrangian mechanics, 1027-9 
Laguerre, Edmund, 582 
Lambda transition, 183, 185 
Laminar flow, 368, 377, 378 
Langmuir constant, 472 
Langmuir-Hinshelwood mechanism, 474 
Langmuir, Irving, 469 
Langmuir isotherm, 470 
Langrnuir-Rideal mechanism, 473 
Langmuir theory of adsorption, 469-72 
Lanthanum, 637 
Laplace equation, 190 
Laplace, Pierre Simon, Marquis de, 373 
Laplacian operator, 373, 521,575, 648, 726, 1008 
Larmor precession, 808 
Laser probe, 485 
Laser pulses, 485 
Laser pump, 485 
Latent heat, 55 
Lattice gas, 116, 117 
Lattice point, 899 
Lavoisier, Antoine Laurent, 2, 55 
Law of acceleration, 1025 
Law of action and reaction, 1025 
Law of conservation of energy, 57 
Law of conservation of mass, 2 
Law of constant composition, 2 
Law of Corresponding States, 39 
Law of definite proportions, 2 
Law of Dulong and Petit, 71 
Law of inertia, 1025 
Law of multiple proportions, 2 
Law of partial pressures, 78 
LCAO-MOs, 655-60, 666-79, 690-1,694, 695, 

700, 703, 707, 708, 711,712, 1047 
additional excited states of H + ion, 658 
cyclobutadiene molecule, 705 
first two states of H + molecule ion, 655-8 
group theory, 707-708, 1057 
hydrogen molecule, 661-3 
normalization, 659-60 
treatment of delocalized bonding, 701-2 

Le Chgtelier, Henri Louis, 278 
Left-polarized radiation, 789 
Legendre, Adrien-Marie, 579 
Legendre polynomials, 579, 1042-3 
Lennard-Jones, J.E., 346 
Lennard-Jones potential, 346, 349, 357, 992 
Lewis electron dot formula, 695 
Lewis, Gilbert Newton, 120, 121,694 
Limiting law, 233 
Limiting molar conductivity, 394 
Limiting viscosity number, 941 
Lindemann-Christiansen mechanism, 950 
Lindemann mechanism, 455-7 
Line integral, 50, 51 
Line spectrum, 511 
Linear combinations, 501,545 
Linear combinations of atomic orbitals (See 

LCAO-MOs) 
Linear laws, 369-80 
Linear operators, 543 
Lineweaver-Burk equation, 479 
Lineweaver-Burk plot, 479 
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Liquid-gas equilibrium, 35 
Liquid junction potential, 304, 307 
Liquid-phase mechanism, rate law, 458 
Liquid-phase reactions 

bimolecular, 440-3 
termolecular, 443-4 
unimolecular, 443-4 

Liquid solutions, elementary reactions in, 438-44 
Liquid-state reactions, 450 
Liquid-vapor critical point, 183 
Liquid-vapor phase diagrams, 234-7 
Liquid-vapor pressure-composition phase diagram, 

206, 236 
Liquids, 25-7 

isothermal compressibilities, 25, 977 
molar heat capacities, 980 
molecular structure of, 357-8 
structure, 385-9, 920-7 

fundamental statistical mechanical approach, 
921-4 

numerical simulations, 926-7 
solidlike model approaches, 924-6 

transport processes, 385-9 
viscosity coefficient, 386-8 

Liter (unit), 7 
Lithium atom 

higher-order approximations, 632-4 
zero-order, 610-11 

Lithium hydride, 672 
London dispersion forces, 345 
London-Eyring-Polanyi-Sato (LEPS) calculation, 

semiempirical, 952 
Long-range forces, 229 
Longitudinal relaxation time, 808 
Low-resolution proton NMR spectrum, 802 

Macromolecules, 927 
Macroscopic equilibrium state, 21-44 
Macroscopic processes, reversible and irreversible, 

18 
Macroscopic state, 1, 4-5, 11-12 

and microscopic state, 11-12 
Macroscopic system, 3 
Magnetic dipole, 793-6 

transition, 754 
Magnetic field, 506, 754, 792-3 

strength, 792 
Magnetic induction, 792 
Magnetic quantum number, 584 
Magnetic resonance spectroscopy, 792-805 
Mark-Houwink equation, 941-2 
Mass-average molecular mass, 931 
Mass fraction, 931 
Mass spectrometry, 482 
Mass transport coefficient, 963 
Mathematical operators, 519, 541-6 

corresponding to mechanical variables, 546-9 
Matrix, 1013-16 

representations of groups, 1051-9 
Maxwell-Boltzmann probability distribution, 329 
Maxwell equal-area construction, 181-2 
Maxwell, James Clerk, 138, 320, 505 
Maxwell probability distribution, 329 
Maxwell relations, 138-41, 152, 155, 937 
Maxwell's equations, 505 

Mayer, Julius Robert, 55 
Mean, 12 
Mean free path, 350, 972-3 
Mean ionic activity coefficient, 232, 268, 269 

of aqueous electrolytes, 991 
Mean ionic molality, 269 
Mean molecular collision rate, 352 
Mean molecular kinetic energy, 324, 328, 329 
Mean relative speed, 354, 355 
Mean speed, 336 
Mechanical energy, 323 
Mechanical equilibrium, 345 
Mechanical equivalent of heat, 55, 56 
Mechanical state, 5 
Mechanical work (See Work) 
Median, 12 
Meissner effect, 973 
Members, 684 
Mendeleev, Dmitri, 638, 640 
Metallic solids, 898 
Metastable state, 5 
Meter (m), 6 
Method of initial rates, 415-16 
Method of intercepts, 159-60, 1035 
Method of isolation, 416-17 
Meyer, Lothar, 638 
Mho, 390 
Michaelis-Menten constant, 478 
Michaelis-Menten equation, 478 
Michaelis-Menten mechanism, 478, 479 
Michelson, Albert A., 505 
Microcanonical ensemble, 872 
Microscopic processes, 16-17 
Microscopic state, 1, 5-6, 9-12 
Microwave spectra of polyatomic molecules, 771-2 
Miller indices, 903, 906 
Millikan, Robert A., 511 
Minimal basis set, 672 
Minimal set of basis functions, 710 
Mirror technique, 482 
Mixed second partial derivatives, 1003 
Mixing of ideal gases, 202 

entropy change for, 114-16 
Mobility, 393 
Mode, 12, 336 
Model system 

dilute gas, 320-4 
potential energy, 343-7 

Molality, 213, 214, 222-3, 265 
Henry's law constant, 213 
standard state, 213 

Molar absorptivity, 760 
Molar concentration, 214 
Molar conductivities, 995 
Molar energy, calculation, 854-5 
Molar gas constant, 5, 8 
Molar Gibbs energy, 180 
Molar heat capacities, 980 
Molar integral heat of solution, 226 
Molar internal energy, 24 
Molar quantities, 24 
Molar volume, 24 
Mole fraction, 264 
Mole (mol), 7 
Molecular beam reactions, 483-6 
Molecular collisions, 354-6 

in hard-sphere gas, 349-54 
Molecular dynamics, 927 
Molecular electronic structure, 709-11 
Molecular gases, 58 
Molecular kinetic energies, 324 
Molecular mechanics, 713 
Molecular orbitals, 649-51 

group theory, 1057-9 
symmetry application, 707-8 
symmetry properties, 651-3 

Molecular partition function, 828-36, 876 
calculation, 836-45 
dilute monatomic gas, 830-6 

Molecular solids, 898 
Molecular speeds, distribution of, 333-7 
Molecular states 

equilibrium populations, 743-6 
probability distribution, 13-16 

Molecular structure of liquids, 357-8 
Molecular theory of rubber elasticity, 938-40 
Molecularity, 436, 438 

elementary processes, 444 
Molecules 

bonding, 678-81 
electronic states, 647-719 
with double and triple bonds, 695-7 

Moment of inertia, 729, 736 
Momentum, 10 
Momentum flux, 369 
Monatomic gases, molecular partition function, 836 
Monolayer, 469 
Monte Carlo method, 926 
Morley, Edward W., 505 
Morse function, 731 
Morse potential, 731,732 
Most probable distribution, 824-8 
Most probable speed, 335 
Multicomponent systems, 146-51, 192, 199-254 

surfaces in, 191 
Multielectron atoms, 761 

higher-order approximations, 619-45 
Multiphase system, 171 
Multiple integrals, 1005-7 
Multiplicity, 607 

n + 1 rule, 635 
Natural independent variables, 148 
Natural philosophy, 2 
Negative deviation, 210 

from Raoult's law, 234 
Nemst equation, 298, 308, 315, 967 
Nemst, Walter Hermann, 119, 298 
Nemst's distribution law, 212 
Nemst's Heat Theorem, 120 
Network covalent solids, 898 
Neutral atoms 

approximate orbital energies in, 634 
Aufbau principle, 635 

Neutrons, 734 
Newton (unit), 7 
Newton, Sir Isaac, 5, 376 
Newton's law of viscous flow, 376, 377 
Newton's laws of motion, 323, 1025-6 
Newton's second law, 323, 338, 369, 499, 971 
Newton's third law, 338, 376 
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Nodal planes, 591 
Nodal sphere, 591 
Node, 497 
Nonadiabatic processes, entropy changes for, 

106-7 
Noncompetitive inhibitor, 480 
Nondenerate case, 523-4 
Nonelectronic states of diatomic molecules, 724-7 
Nonelementary reaction rates, temperature 

dependence, 462 
Nonequilibrium electrochemistry, 958-70 
Nonequilibrium phases, 169-70 
Nonequilibrium processes, 947-76 
Nonequilibrium state, 370 

macroscopic description, 366-8 
Nonhybridized orbital regions, 675 
Nonideal gas 

activity, 219 
activity coefficient, 219 
second virial coefficient, 889 

Nonideal mixtures, phase diagrams, 234-44 
Nonideal solutions 

activity, 219 
activity coefficient, 219 
thermodynamic functions, 225-7 

Nonideal systems, activity, 218-22 
Nonnegative quantum number, 651 
Non-Newtonian fluids, 376 
Nonpolarizable electrode, 958 
Non-simple systems, equilibrium criteria, 135-6 
Non-specifically adsorbed ions, 959 
Nonuniform phase, transport of matter in, 170 
Nonvolatile solutes, activity, 224-5 
Normal boiling temperature, 32 
Normal calomel electrode, 311 
Normal coordinates, 741 
Normal distribution, 330 
Normal freezing temperature, 32 
Normal melting temperature, 32 
Normal modes, 741 
Normal sublimation temperature, 32 
Normalization, 550-1 

hydrogenlike orbitals, 591-3 
LCAO-MOs, 659-660 

Normalized coordinate distribution function, 344 
nth-order reaction, rate law, 408 
Nuclear g factor, 795, 796 
Nuclear Hamiltonian operator, 725 
Nuclear magnetic dipoles, 794-6 
Nuclear magnetic resonance (NMR) spectroscopy, 

792, 799-805, 810 
Nuclear magneton, 795 
Nuclear repulsion energy, 724 
Nuclear spins, 733-6 
Nucleation, 191 
Nucleons, 734 
Nucleus, 574, 734 

properties in ground state, 997 
Nuclide, 796 
Number-average molecular mass, 930 
Number density, 338 
Number fraction, 930 

Oblate symmetric top, 737 
Observables, commuting, 567 

Octet rule, 694 
Odd parity, 735 
Ohm, Georg Simon, 390 
Ohm's law, 390, 391,968-9, 972 
One-body reduced distribution function, 884 
One-component phase diagrams, 173-4 
One-component system, 192 

partial molar quantities, 150 
phase equilibrium in, 174-80 

One-electron Hamiltonian operator, 672, 709 
One mole of reaction, 79 
One-phase fluid system, 24 
One-step mechanism, 467 
One-to-one correspondence, 48, 546 
One-to-one relationship, 540 
Open system, 3, 146-51 
Operator algebra, 541-3 
Operator equation, 541 
Operator, mathematical, 541 
Operator multiplication 

associative, 541 
commutative, 542 

Opsin, 780 
Optical activity, 791 
Optical density, 760 
Optical rotatory dispersion, 789-91 
Optical spectroscopy, 756 
Optically active enantiomorphs, 689 
Orbital energies, 704, 705 
Orbital regions, 588-9, 704, 705 

for hydrogenlike orbitals, 590 
Orbital wave function, 598 
Orbitals 

atomic, 585 
molecular, 549 

Order-disorder transition, 183 
Order with respect to substance A/B, 403 
Orientation dependence, 449 
Ortho hydrogen, 736 
Orthogonal functions, 544 
Osmotic coefficient, 309 
Osmotic pressure, 248-9 
Ostwald, Wilhelm, 3 
Outer Helmholtz plane, 959 
Overall order, 403 
Overlap integral, 660 
Overpotential, 962 

P branch, 766 
Packing fraction, 902 
Pair corrrelation function, 923 
Pair potential energy function, 346 
Para hydrogen, 736 
Parallel band, 773 
Parameter c~, 828-9 
Parameter 13, 829-30 
Pariser-Pople-Parr method, 711 
Partial derivatives, 24-5, 1001 
Partial molar Gibbs energy, 149 
Partial molar quantities, 147-51 

experimental determination, 158-9 
ideal gas, 150-1 
one-component system, 150 

Partial orders, 403 
Partial pressure, 114, 206, 341 

Partial vapor pressure, 200, 221,268 
hydrogen halides in aqueous solution, 991 

Partially diffusion-limited reaction, 443 
Particle collision, 337 
Particle in a box, 522-8, 706, 1037-9 

specification of state, 526 
wave function, 567 

Partition function, 829, 875, 884, 911 
calculation, 836-845, 854-5 

Pascal, Blaise, 7 
Pascal (unit), 7 
Path of state point, 98 
Path-independence, 51, 1005 
Pauli exclusion principle, 601-2, 612, 661,690 
Pauli, Wolfgang, 601 
Pauling, Linus, 681 
Pauling scale of electronegativity, 996 
Period, 497, 501 
Periodic boundary conditions, 927 
Periodic motion, 495 
Periodic table, 638-41 
Peritectic point, 242 
Permeability, 505 
Permittivity, 229, 441,505 
Perpendicular band, 773 
Perpetual motion machine 

first kind, 57 
second kind, 96 

Perrin, Jean Baptiste, 386 
Perturbation, 625 
Perturbation method, 1045-6 

helium atom, 625-7 
Petit, Alexis Therese, 71 
Pfaffian differential equation, 1009 
Pfaffian form, 1004 
pH 

calculation, 272 
changes, 273-5 
definition, 270-1 
determination, 310-12 
human blood, 275-6 
neutral value, 273 

Phase, 32, 168 
Phase changes, heat transfer during, 55 
Phase diagrams, 32 

liquid-vapor, 234-7 
liquid-vapor pressure-composition, 206 
low-temperature, 175 
nonideal mixtures, 234-44 
one-component, 173-4 
pressure-composition, 205 
solid-liquid, 207, 237-41 
three-component, 243-4 
two-component ideal solutions, 205-8 

Phase equilibrium, 167-98, 221 
fundamental fact, 169 
one-component system, 174-80 

Phase integral, 883 
Phase space, 882 
Phase transitions, 32, 36, 37 

and Gibbs energy, 180-1 
classification, 182-3 
first-order, 182 
reversible, 75-6 
second-order, 182 

Phlogiston theory of combustion, 55-8 
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Phonons, 510, 777, 909 
Phosphoenolypyruvic acid, 282-3 
Phosphorescence, 775-6 
Photoacoustic spectroscopy, 789 
Photochemical chain reactions, 465-7 
Photochemical reaction, 776 
Photochemistry, 776-8 

Stark-Einstein law, 465, 776 
Photoelectric effect, Einstein's theory, 51 0-11 
Photoelectron spectroscopy, 787-8 
Photons, 525, 752, 753, 777 
Photosynthesis, 778-9 
Physical adsorption, 472 
Physical chemistry, principal goal, 1 
Planck, Max Karl Ernst Ludwig, 120, 509 
Planck-Einstein relation, 510, 752 
Planck's constant, 509, 560, 886 
Planck's theory of blackbody radiation, 507 
Plane-polarized light, 789 
Plane-polarized wave, 505 
Point groups, 687, 998-9 

Schoenflies symbols for, 687-8 
Point mass, 320 

molecules, 58 
Point symmetry operators, 652 
Poiseuille, Jean Leonard Marie, 377 
Poiseuille's equation, 377-9 
Poisson-Boltzmann equation, 230 
Polar covalent bond, 676 
Polarizability, 783-4 
Polarization, 958 
Polyatomic gases, molecular partition function, 842 
Polyatomic molecules 

electronic spectra, 774-5 
electronic structure, 690-5 
microwave spectra, 771-2 
rotation, 736-9 
spectra, 771-5 
symmetry, 682-9 
valence bond description, 697-9 
vibrational spectra, 772-4 
vibrations, 740-3 

Polycrystalline solids, 899 
Polymerization 

degree, 929 
kinetics, 928-31 
number-average degree, 929 

Polymers, 927-36 
conformation, 931-6 
in solution, 940-2 

Polymorphism, 168, 173 
Position measurement, 552-3, 567 
Position vector, 320, 321 

components, 320, 321 
Positive deviation, 209 

from Raoult's law, 234 
Postulates 

of quantum mechanics, 540-568 
of statistical mechanics, 819, 872 

Potential difference, 297, 307, 964 
Potential energy, 10, 204, 323,324, 496, 513,525, 

574, 864, 964, 965 
model system, 343-7 
surfaces, 862-3 

Potentiometer, 296 
Preequilibria, 453 

Preexponential factor, 444, 448 
Pressure, 22-3 

dilute gas, 848-9 
gas mixture, 341 
ideal gas, 337-41 

Pressure-composition phase diagram, 205, 235 
Pressure dependence of equilibrium constants, 

278-80 
Pressure virial coefficients, 29 
Pressure virial equation of state, 29 
Pressure-jump, 425-6 
Primitive lattice, 900 
Principal axes, 737 
Principal moments of inertia, 737 
Principal quantum number, 584 
Principal rotation axis, 684 
Principle of detailed balance, 467-8 
Principle of Le Ch~telier, 278-80 
Principle of microscopic reversibility, 468 
Principle of superposition, 501 
Prism, 338-9, 757 
Probability averaged over long time, 555 
Probability density, 325, 330, 333, 553-6 

antisymmetrized wave function, 601 
harmonic oscillator, 559 
normalized, 325 
symmetric, 600 
two particles, 599 

Probability distribution, 13, 324, 828-36 
continuously varying quantifies, 325 
dilute gas, 823-8 
electron-nucleus distances, 594 
molecular states, 13-16 

Probability of reaction 
as function of relative kinetic energy, 446 
as function of relative speed, 446 

Processes, 3, 16-17 
Product of inertia, 737 
Product of two operators, 541 
Prolate symmetric top, 737 
Protons, 734, 795, 796 
Proust, Joseph Louis, 2 
Pseudo first-order reaction, 417 
Pseudo second-order reaction, 417 
Pythagoras theorem, 354 

Q branch, 767 
Quantization, 501,507, 509, 512, 531 
Quantum-mechanical energy, 739 
Quantum-mechanical Hamiltonian, 741 
Quantum-mechanical operator, 676 
Quantum mechanics, 6, 518-571, 1037-43 

postulate 1,540 
postulate 2, 540 
postulate 3, 546-9 
postulate 4, 549-65 
postulate 5, 565-8 
postulates, 539-71 
principles, 493-538, 539-71 

Quantum numbers, 6, 509, 512, 527, 637, 706, 907 
angular momentum, 610 
translational, 723 

Quantum statistical mechanics, 818-22 
Quantum theory, 507-14 
Quantum yield, 466, 777 

Quasi-equilibrium processes, 49 
Quasi-static processes, 49 

R branch, 766 
Radial distribution functions, 593, 923 

hydrogenlike orbitals, 594 
Radial factor, 582, 726 

hydrogen atom wave function, 585-6 
hydrogenlike energy eigenfunctions, 589 

Radial Schrrdinger equation, 728 
Radiationless transition, 776 
Raman, Chandrasekhara Venkata, 781 
Raman scattering, 810 
Raman shift, 782 
Raman spectroscopy, 781-7, 809 
Random walk (random flight), 934-5 
Randomness and entropy, 119 " 
Raoult, Frangois Marie, 200 
Raoult's law, 200-1,206, 209, 210, 215-16, 220, 

245 
Rate constants, 403, 416, 423, 441,462, 950, 951 

temperature dependence, 444-50 
Rate law, 404, 429, 473 

and reaction mechanisms, 450-62 
first-order reactions, 404-6 
forward reaction, 403, 476 
integrated, 409 
liquid-phase mechanism, 458 
nth-order reaction, 408 
one-step mechanism, 451 
reverse reaction, 403 
second-order reactions, 406-8 
with definite orders, 403 

Rate-limiting step approximation, 452-3,457, 459 
Rate of change of Gibbs energy per mole of 

reaction, 257 
Rayleigh, Baron (John William Strutt), 508 
Rayleigh-Jeans curve, 508 
Reactants 

more than one, 412-17 
two, 412-15 
two or more, 415-16 

Reaction coordinate, 863 
Reaction cross section, 437, 483 
Reaction diameter, 440, 442 
Reaction intermediates, observation, 481-3 
Reaction mechanisms, 420 

and rate laws, 450-62 
with more than two steps, 457-62 

Reaction order, determination, 409 
Reaction rate, 424, 428 

heterogeneous catalysis, 473-4 
Reaction times, 425 
Reactions 

involving gases and pure substances, 262-5 
involving pure condensed phases and gases, 

263-5 
(see also Chemical reactions) 

Reactive intermediate, 436 
Real gas, Gibbs energy of, 143-5 
Reciprocal identity, 1002 
Recursion relation, 1040 
Redlich-Kwong equation of state, 29, 30, 38, 39, 

979 
Redlich-Kwong-Soave equation, 36 
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Reduced mass, 497, 575 
Reduced pressure, 39, 40 
Reduced temperature, 39, 40 
Reduced volume, 39 
Reduction half-reaction, 295 
Reference electrode, 964 
Reflection operator, 652 
Refractive index, 790 
Relative coordinates, 574 
Relative Hamiltonian, 575, 725 
Relative kinetic energy, 448 

probability of reaction as function of, 446 
Relative motion of two particles, 576 
Relative speed, 352 

probability of reaction as function of, 446 
Relative viscosity, 941 
Relativistic mechanics, 6 
Relaxation effect, 393-4 
Relaxation techniques, 425-9 
Relaxation time, 406, 419, 428, 429, 808 
Representations, 1051-9 
Representative elements, 638 
Residuals, 409 
Resistivity, 390 
Resolution, 759 
Resonance, 700, 796 

energy, 701 
structures, 700 

Response time, 337 
Retinal, 780 
Reverse reaction, 417-19, 422, 423 
Reversible adiabatic process, 104 
Reversible adiabats, 103, 120 
Reversible back e.m.f., 962 
Reversible changes in temperature, entropy changes 

for, 111-12 
Reversible heat engine, 99 
Reversible phase changes, entropy changes for, 

109-10 
Reversible phase transitions, 75-6 
Reversible potential difference, 296 
Reversible processes, 18, 49-51 
Reversible reaction, half-life, 419 
Reversible voltage, 296 
Reynolds number, 379 
Rhodopsin, 780 
Richards, Theodor William, 119, 120 
Right-polarized radiation, 789 
Rigid rotor, 726-7 
Rods and cones, 780 
Root-mean-square distance, 375 
Root-mean-square value, 336 
Rotating diatomic molecules, 727-33 
Rotation of polyatomic molecules, 736-9 
Rotation operators, 652 
Rotational energy, 58 
Rotational energy levels of diatomic molecules, 

743 
Rotational partition function, 840, 842-3 

graphical representation, 839 
Rotational Raman spectrum, 786 
Rotational spectra of diatomic molecules, 762-5 
Rotational wave function, 729 
RRK theory, 951 
Rubber 

elasticity, 936-40 

molecular theory, 938-40 
thermodynamics, 937-8 

Russel-Saunders coupling, 605-10 
Russel-Saunders term symbol, 605 
Rutherford, Ernest (Baron Rutherford of Nelson), 

511 
Rydberg, Johannes Robert, 511 
Rydberg's constant, 511 

Sackur-Tetrode equation, 848 
Salt bridge, 305 
Saturated calomel electrode, 311 
Scalar equations, 323 
Scalar product, 46, 1007 
Scattering states, 583 
Schoenflies symbols for point groups, 687-8 
Schr6dinger equation, 518-22, 550, 574, 576, 583, 

597, 625, 722, 724, 863 
de Broglie waves, 525-6 
electronic, 765 
harmonic oscillator, 728 
hydrogen molecule ion, 648-9 
multiparticle system, 521 
nonrigorous derivation, 518 
radial, 728 
relative, 576-7 
three dimensions, 520-1 
time-dependent, 519, 526, 546, 575 
time-independent, 518, 522, 530, 531-3, 540, 

1039-41 
translational, 726 
vibrational, 741 

Schr6dinger, Erwin, 518 
Schrrdinger theory, 595 
Scientific inquiry, 2 
Screw-type dislocation, 906 
Second derivatives, 1002-3 
Second harmonic, 501 
Second law of thermodynamics, 95-119, 132 

physical statements, 96 
Second moment, 933 
Second-order reactions, 410 

rate law, 406-8 
Second overtone, 767 
Second virial coefficient, 979 

nonideal gas, 889 
'square-well' gas, 890 

Seconds (s), 6 
Secular equation, 630, 702, 1048 
Sedimentation, 388-9 
Sedimentation coefficient, 389 
Sedimentation rate, 389 
Selection rules, 753-7, 755, 761,783, 799, 809 
Self-consistent field (SCF) method, 627-9 
Self-diffusion, 380-3 
Self-diffusion coefficient, 383 
Self-diffusion coefficients, 995 
Semiclassical canonical partition function, 886 
Semiempirical London-Eyring-Polanyi-Sato 

(LEPS) calculation, 952 
Semiempirical method, 702, 709-12 
Separation of variables, 326 
Shear rate, 367 
Shielding constant, 800 
Shock-tube method, 425 

SI units, 6-7 
Siemens (unit), 390 
Silver-silver chloride anode, 301 
Silver-silver chloride electrode, 295 
Simon, Sir Franz Eugen Francis, 120 
Simple lattice, 900 
Simple system, 24, 48 
Simulated spectrum, 763 
Single covalent bond, 661 
Slater determinants, 612-13, 628, 633 
Slater, John C., 612, 628 
Slater-type orbitals (STOs), 628, 710, 712-13 
Soave modification of Redlich-Kwong equation of 

state, 30 
Solid-liquid composition-phase diagram, 245 
Solid-liquid phase diagrams, 207, 237-41 

with compounds, 241-2 
Solid-liquid temperature-composition phase 

diagram, 239, 241,242 
Solid-state compounds, 241 
Solids, 25-7 

electrical conductivity, 970-4 
general features, 898-906 
molar heat capacities, 980 

Solubility of gas in liquid, 215 
Solute distribution between two solvents, 212 
Solute standard state, 222 
Solutes, 200 
Solutions 

ideal, 200-8 
nonideal, 209-224 

Solution components, thermodynamic properties, 
227-8 

Solvent 
in dilute solution, 215-16 
standard state, 222 

Space factor, 609, 630 
Space orbital, 596 
Specific enthalpy changes of fusion and 

vaporization, 980 
Specific heat, 54 
Specific hydrogen-ion catalysis, 475 
Specific rotation, 791 
Specific viscosity, 941 
Specifically adsorbed ion, 959 
Specificity, 477 
Spectra 

of atoms, 761 
of polyatomic molecules, 771-5 

Spectral lines, 511,757 
Spectral radiant emittance, 507, 508 
Spectrophotometer, 757 
Spectroscopic transitions, quantum mechanics, 

753-7 
Spectroscopy, 481, 751-815 
Specular collision, 337 
Speed, 322 
Speed of light, 506 
Spheres, closest packing, 903 
Spherical droplet, 189 
Spherical harmonic functions, 580, 590, 712 
Spherical polar coordinates, 334, 368, 549, 592, 

935, 1006 
Spherical shell, 334 
Spherical top, 737-9 
Spherically symmetric functions, 588 
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Spin, 595-7 
Spin angular momentum, 595, 596, 734 
Spin decoupling, 805 
Spin function, 596 
Spin-lattice relaxation time, 808 
Spin-orbit coupling, 597 
Spin orbital, 596 
Spin-spin coupling, 802, 803 
Spin-spin coupling constant, 802 
Spin-spin relaxation time, 808 
Spin-spin splitting, 803 
Spontaneity, 135-6 
Spontaneous emission, 756 
Spontaneous processes in closed systems, 132 
Square-well gas, second virial coefficient, 890 
Square-well potential, 346 
Standard deviation, 330, 331,556 
Standard rate, 78 
Standard reduction potential, 302, 992 
Standard state, 211 

for enthalpy, 122 
for entropy, 122 

Standard-state enthalpy change of formation, 79, 
228 

Standard-state Gibbs energy change, 258-60 
for one mole of reaction, 258 

Standard-state Gibbs energy of formation, 228, 
264, 270 

Standard-state half-cell reduction potentials, 315 
Standard-state potential difference, 297, 302 
Standard-state reaction, 79 
Standing waves, 497, 498, 504 

in flexible string, 499-502 
Stark-Einstein law of photochemistry, 465, 776 
State functions, 5, 8-11, 23, 56, 540 
State of a system, 3, 565-8 

information prior to measurement, 567-8 
State point, 48 
State space, 48 
State sum, 829 
State variables, 5, 23, 46 
States, 1 
Stationary state, 550 
Statistical entropy, 116-19 

and third law of thermodynamics, 123-4 
Statistical mechanics, 817-96 

liquid structure, 921 
postulate 1, 819-20 
postulate 2, 819-20 

Staudinger, Hermann, 936 
Steady state, 370 
Steady-state approximation, 454-5, 457, 459, 478 
Steady-state system, 112 
Steam distillation, 237 
Steam engine, 97 
Stefan-Boltzmann constant, 508 
Stefan-Boltzmann law, 507, 509 
Stepwise reaction, 422 
Stereochemical specificity, 477 
Steric factor, 449 
Stern layer, 959 
Stimulated emission, 755 
Stirling's approximation, 827, 939, 950 
Stoichiometric coefficient, 79, 80-2, 413, 418, 422 
Stoichiometric molality, 267 
Stoichiometric ratio, 413, 414 

Stokes, George Gabriel, 379 
Stokes' law, 379, 380, 393 
Stokes lines, 782 
Stopped-flow method, 424 
Stress-strain work, 48 
Strutt, John William (Baron Rayleigh), 508 
Subshell configuration, 604 
Sum over states, 829 
Superconductivity, 973-4 
Supercritical fluids, 33 
Supercritical temperatures, 33 
Superposition of two waves, 498 
Supersatured solutions, 218 
Surface concentration, 194 
Surface energy, 185 

as surface tension, 187-91 
Surface excess, 193 
Surface Gibbs energy, 193 
Surface structure and thermodynamics, 184-91 
Surface tension, 187-91,990 
Surfaces in multicomponent systems, 191 
Surfactant, 194 
Svedberg, Theodor, 389 
Svedberg (unit), 389 
Symbols, 1061-7 
Symmetric space factor, 609 
Symmetric stretch, 742 
Symmetric top, 737 
Symmetry 

application to molecular orbitals, 707-8 
in polyatomic molecules, 682-9 

Symmetry elements, 651,686 
Symmetry factor, 965, 966 
Symmetry groups, 1051-9 
Symmetry number, 739, 840 
Symmetry operations, 683-6 
Symmetry operators, 651,682-9 

operation on functions, 653-5 
Symmetry properties, molecular orbitals, 651-3 
Symmetry species, 1057 
Systems, 3-4 

Tafel equation, 969 
Taylor series, 765, 935 
Temperature changes, heat transfer during, 53-5 
Temperature-composition phase diagram, 207, 235, 

237, 244 
Temperature dependence 

diffusion, 386-8 
equilibrium constants, 277-81 
Gibbs energy, 145-6 
nonelementary reaction rates, 462 
rate constants, 444-50 

Temperature-dependent coefficients, 456 
Temperature gradient, 366-7, 369, 370 
Temperature-jump, 425-6 
Tension, 48, 937 
Term, 605 
Term symbols for homonuclear diatomic 

molecules, 663-4 
Termolecular gas-phase reactions, 438 
Termolecular liquid-phase reactions, 443-4 
Termolecular processes, 436 
Termolecular reactions, activated complex theory, 

871-2 

Tetrahedral angle, 693 
Theorem of equipartition of energy, 887 
Theoretical plate, 207 
Thermal conduction, 384 
Thermal conductivity, 369, 993 
Thermodynamic energy, electronic contribution, 

853 
Thermodynamic entropy, 118-19 
Thermodynamic equation of state, 152 
Thermodynamic equilibrium constant, 262 
Thermodynamic functions, 315, 981-9 

classical canonical ensemble, 886-90 
dilute gases, 845-58 
nonideal solutions, 225-7 

Thermodynamic information from electrochemical 
measurements, 312-15 

Thermodynamic limit, 825 
Thermodynamic probability, 116 
Thermodynamic properties, solution components, 

227-8 
Thermodynamic state, 4 
Thermodynamic temperature, 100 
Thermodynamics, 45, 46 

chemical equilibrium, 255-89 
electrical systems, 291-318 
real systems, 131-66 
rubber, 937-8 

Thermoplastic substances, 927 
Thermosetting substances, 927 
Theta solvent, 940 
Third law of thermodynamics, 119-24 
Third-order reactions, 410 
Thixotropic fluids, 376 
Thomas-Fermi method, 634 
Thompson, Benjamin (Count Rumford), 55 
Thomson, William (Lord Kelvin), 71 
Three-body collision, 438 
Three-component phase diagrams, 243-4 
Three-dimensional graph, 36 
Three-dimensional liquid-vapor phase diagram, 

208 
Tie lines, 34, 207, 208 
Tie triangle, 243 
Time average, 338 
Time-correlation function, 957 
Time-dependent Schr6dinger equation, 519, 526, 

546, 575 
Time-dependent wave function, 519, 526, 545, 575 

hydrogen atom, 594 
Time-energy uncertainty relation, 562-5 
Time-independent Schr6dinger equation, 518, 522, 

530, 531-3, 540, 1039-41 
Titration curves, 274 
Tracer diffusion, 380 
Trajectory calculations, 864 
Transfer coefficient, 966 
Transference number, 305, 392 
Transition dipole moment, 755 
Transition elements, 638-9 
Transition metals, 638-9 
Transition state, 863, 865 

theory (See Activitated complex theory) 
Transition temperature, 973 
Translational factor, 722 
Translational motions of atoms, 722-4 
Translational partition function, 830 
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Translational quantum numbers, 723 
Translational SchrSdinger equation, 726 
Transmission coefficient, 867 
Transmission grating, 757 
Transport of matter in nonuniform phase, 170 
Transport processes, 365-400 

electrolyte solutions, 390-6 
fluid systems, 954-8 
hard-sphere gas, 380-5 
liquids, 385-9 
variables to specify rates of, 368-9 

Transverse relaxation time, 808 
Traveling waves, 497, 498, 502-4, 562 
Trial solution, 499 
Triple eutectic, 243 
Triple point, 32, 173 
Trough, 497 
Trouton's rule, 124 
Tunneling, 532, 556 
Turbulent flow, 368 
Turnover number, 479 
Two-body collisions, 436 
Two-body problem, 1029-30 
Two-body reduced coordinate distribution function, 

922 
Two-component ideal solutions, phase diagrams, 

205-8 
Two-component nonideal systems, 234-7 
Two-component system, 192 
Two-phase simple closed system, 168 
Two-step mechanism, 467 
Two-substance reaction, 437 
Type 1 molecules, 446 
Type 2 molecules, 440, 443,446 
Type 3 molecules, 440, 443 

Uncertainty, 557-9 
broadening, 562 
product, 559-60 

Undetermined multipliers, 827 
Uniform harmonic motion, 495 
Unimolecular chemical reactions, 948-51 
Unimolecular gas-phase reactions, 438 
Unimolecular liquid-phase reactions, 443-4 
Unimolecular processes, 436 
Unimolecular reactions 

activated complex theory, 948-9 
modem theories, 949-51 

Unit cell, 899-901 
United atom, 649 
Units of measurement, 6-7 
Unperturbed energy eigenvalue, 625 
Unperturbed equation, 625 
Unperturbed wave function, 625 
Unsrld's theorem, 641 
Upper consolate point, 237 
Upper critical solution point, 237 

V-P plane, 98 
V-T plane, 98 

Valence, 230, 441 
Valence bond 

approximation, homonuclear diatomic 
molecules, 671 

description of polyatomic molecules, 697-9 
treatment of delocalized bonding, 700-1 

Valence bond function, 664 
Valence bond method, 681 

hydrogen molecule, 664-5 
Valence shell, 640 
Valence-state ionization potential (VSIP), 710 
van der Waals equation of state, 28, 36, 37, 39, 348, 

978 
van der Waals forces, 345 
van der Waals gas, 31, 38 
van der Waals, Johannes Diderik, 28 
van't HolT equation, 249 
van't Hoff, Jacobus Henricus, 249 
Vapor phase, 168 
Vapor pressure, 173,206, 218 

effect of total pressure, 179-80 
lowering, 248 

Variable-change identity, 1002 
Variance, 173, 556 
Variation function, 620-1 
Variation method, 620 

helium atom, 621-4 
Variation theorem, 620 
Variation trial function, 621 
Variational energy, 620, 622 
Variationally obtained orbitals, 624 
Vector addition, angular momenta, 606 
Vector derivatives, 1008 
Vector equation, 323 
Vector product, 1007-8 
Vectors, 1007-9 
Velocity probability distribution, 324-33 
Velocity space, 322, 326, 333-5 
Velocity states, 333 
Velocity vector, 321,322, 326 
Vibrating diatomic molecules, 727-33 
Vibration, 58 

polyatomic molecules, 740-3 
Vibration-rotation spectra of diatomic molecules, 

765-9 
Vibrational circular dichroism (VCD), 791 
Vibrational frequencies, 997 
Vibrational normal modes, 742 
Vibrational partition function, 841,843-5, 907 
Vibrational quantum number, 743 
Vibrational Schrrdinger equation, 741 
Vibrational spectra of polyatomic molecules, 772-4 
Virial coefficients, 29, 979 

nonideal gas, 889 
pressure, 29 
square-well gas, 890 

Virial equation of state, 29, 348 
pressure, 29 

Viscosity, 442, 443, 957 
Viscosity-average molecular mass, 942 
Viscosity coefficient, 376, 384, 386-8, 994 
Viscous flow, 368, 384-5 

Vision, 779-81 
Volume element, 326, 334, 1005'7 
Volume rate of flow, 377 
VSEPR theory, 695, 700 
Vulcanization, 936 

Wall collisions, 341-3 
Water 

equilibrium vapor pressure, 173 
phase diagram, 174 

Water molecule, 707-8 
correlation diagram, 690, 693 

Waterston, John James, 320 
Wave equation 

de Broglie waves, 525 
flexible string, 1026-7 

Wave function, 501,502, 522, 528-30, 532-3,540, 
545 

alternative set, 670 
angular factors in, 577 
antisymmetric, 600 
antisymmetrized, 601 
correct zero-order, 629 
harmonic oscillator, 741 
hydrogen atom, 582-97 
particle in box, 567 
symmetric, 600 
symmetry, 733-6 
time-dependent, 519, 526, 545, 575 
zero-order, 625 

Wave vector, 917, 918 
Wave-particle duality, 511 
Wavelength, 497, 504 
Waves in flexible string, 498-9 
Wien's law, 509 
Work, 46-53, 136-7, 857 
Work done 

on closed fluid system, 47-9 
on ideal gas in reversible process, 50-1 

Work function, 511 

X-ray diffraction, 902--6 
X-ray photoelectron spectrum, 914 

Zero differential overlap, 711 
Zero-order Born-Oppenheimer Hamiltonian 

operator, 665 
Zero-order energy eigenvalue, 625 
Zero-order equation, 625 
Zero-order lithium atom, 610-11 
Zero-order orbitals, 598-9, 624, 627 
Zero-order reactions, 409, 410 
Zero-order wave function, 625 
Zero-point energy, 524 
Zeroth law of thermodynamics, 100 
Zone refining, 239 
Zustandsumme, 829 
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