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Preface

Nucleotide sequences of nucleic acids (DNA or RNA) and amino acid sequences of proteins
are the most widely used type of biological information. Nucleic acid sequences are
relatively easy to determine experimentally, and can be used to predict the sequences
of proteins they encode. Thanks to advances in high-throughput DNA sequencing, the
number of sequences in public databases grows exponentially. Thereby, sequence databases
became one of the largest data resources in biology, providing researchers with a wealth of
information, and challenging computer scientists to develop tools that would allow for rapid
discrimination between relevant and irrelevant information for various types of analyses.
While DNA sequence is mostly a carrier of genetic information, genes typically exert their
function through the RNA and protein molecules they encode. A growing body of evidence
points toward the importance of various RNA molecules that do not encode proteins, but
fulfill various regulatory and/or catalytic roles. However, proteins that are produced by
translation of coding RNAs remain the most important type of macromolecules required
for the vital functions of the cell. Therefore, this book focuses on computational analyses of
proteins, although many of these analyses are relevant also to nucleic acids (e.g. sequence
alignment and prediction of protein-nucleic acid complexes).

Proteins perform most essential structural, enzymatic, transport, and regulatory functions
in the cell. Protein functions are strictly determined by their structures, which can be orga-
nized into four levels of hierarchies with increasing complexity. These levels are: primary,
secondary, tertiary, and quaternary structure. Above the structure of individual proteins
and complexes there is another level of complexity, namely networks of interactions. The
description of this hierarchy extends beyond the area of traditional structural bioinformatics
and enters the realm of systems biology. The chapters in this book are meant to provide
summaries of the concepts underlying protein sequence-structure-function relationships at
these different levels of organization, and to serve as a comprehensive resource of state-of-
the-art methods (as of 2008) for the corresponding bioinformatics analyses. The book is
aimed at advanced graduate students, postdocs and faculty members. Although individual
chapters have been written by several different authors and each can stand on its own,
the book has been designed as a cohesive whole rather than a collection of independent
reviews.

The primary structure corresponds to a linear sequence of amino acid residues linked
together by peptide bonds into a polypeptide chain. The C-α atoms and peptide bond atoms
form the main chain backbone, and other atoms protrude away as side chains. Functionally
and evolutionarily relevant elements of primary structure are sequence motifs, domains and
modules. In this volume, the bioinformatic tools for protein sequence analysis, including
detection of motifs and domains, are reviewed in Chapter 1 by Kaminska et al., while

xiii
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tools for protein function prediction from sequence are reviewed in Chapter 3 by Chitale
et al. The level above primary structure is the secondary structure, defined as the local
conformation of a polypeptide chain. It is characterized by the presence of recurring
elements stabilized by hydrogen bonds between the main chain carboxyl and amino groups
of different residues. Two very common types of secondary structures are corkscrew-like
helices and extended strands; these regular elements are connected by loops that exhibit
a plethora of different conformations. Further, some regions of polypeptide chain may
exhibit no stable conformation and appear intrinsically disordered. Bioinformatics methods
for predicting secondary structure and regions of disorder are reviewed in Chapter 2 by
Majorek et al. The next level up is tertiary structure, which describes the three-dimensional
arrangement of secondary structural elements and connecting regions within individual
protein domains. Two different approaches for tertiary structure prediction, by ‘template-
based’ and ‘template-free’ methods, have been reviewed in Chapter 4 by Kosinski et al.
and in Chapter 5 by Gront and Kolinski, respectively. Methods for quality assessment of
protein models (i.e. MQAPs) have been reviewed by Wallner and Elofsson in Chapter 6.
Methods for predicting possible sites of interactions with other molecules and potential
enzymatic functions from protein structure are reviewed in Chapter 7 by Kinoshita and
coworkers, and Chapter 8 by Torrance and Thornton, respectively. Beyond the tertiary
structure is the quaternary structure, which usually refers to the non-covalent association
of two or more polypeptide chains into a protein complex. Here, this term will be also used
to describe non-covalent interactions between domains within a single polypeptide. The
so-called docking methods for prediction of the structure of protein-protein and protein-
nucleic acid complexes from the structure of the isolated subunits are reviewed in Chapter
9 by de Vries and coworkers. The relationship of protein networks to protein function is
reviewed in Chapter 10 by Nabieva and Singh, while Chapter 11 by Tress and coworkers
integrates the whole spectrum of studies, from sequences to structures and networks, and
places them in the context of systems biology.

The successful publication of this book would not have been possible without much
appreciated support of many people. First, I owe an enormous debt to the various authors
who contributed to this volume. Their hard work, dedication, expertise have made this book
something we can all be very proud of. Thank you! Sincere thanks are extended to Paul
Deards and Richard Davies, along with everyone else at Wiley who helped to manage this
publication project. Thanks are also owed to members of my laboratory, both in Warsaw and
in Poznań, for tolerating my prolonged absence during the major writing and editing phase.
I must thank Ichizo Kobayashi and the Univeristy of Tokyo for hosting and supporting me
while this work has been carried out, and all members of the Kobayashi laboratory for their
hospitality (and nourishing me with sushi, sashimi, tempura, okonomiyaki, fugu, soba,
udon, dried octopus, and yes of course, sake and shochu).

Janusz M. Bujnicki
Warsaw-Poznań-Tokyo

2007–08
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1
The template that the program will
search for is represented by a set
of features.

2
The protein structure which is to be
searched is represented within the
program using a data structure
which facilitates searching.

3
An algorithm is used to locate
matches to the template.

4
The quality of each match
detected by the algorithm must be
scored.

Figure 8.1 Components of a template matching method. This figure was prepared using
Pymol (www.pymol.org)
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Figure 11.3 Integration of different prediction approaches and experimental data. Genomic
context and network analyses can be used to identify various types of interactions and sug-
gesting cellular pathways the protein participates in, rather than by suggesting a specific
biochemical activity. On the other hand, homology-based predictions can be used to make
complementary predictions about biochemical details, starting from identification of putative
active sites of enzymes and suggesting potential reaction types to be catalyzed. De novo meth-
ods are capable of identifying structural and functional analogies between unknown systems
and previously studied systems, regardless of the presence or absence of evolutionary rela-
tionships. Combination of context-based methods with homology-based methods and de novo
predictions (e.g. macromolecular docking of models guided by restraints) can be used to pre-
dict not only which proteins interact, but also how, e.g. what is the structure of the complex,
allowing further inferences to be made about the spatial and temporal aspects of biological
processes

2
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1
The Basics of Protein Sequence

Analysis

Katarzyna H. Kaminska, Kaja Milanowska and Janusz M. Bujnicki

1.1 Introduction

Genes and proteins are products of evolution. Over the course of evolution, the nucleotide
sequences of genes undergo numerous changes. First, duplications (or deletions) may lead
to creation of additional copies (or removal) of genes or gene fragments. Second, local
mutations: substitutions, insertions and deletions within genes may result in changes to
the amino acid sequence of proteins they encode. Thus, the initially identical copies of
duplicated genes over time accumulate divergent mutations that make their sequences pro-
gressively dissimilar. Not all positions of protein-encoding genes are equally susceptible to
mutation, as some amino acid residues may be very important for protein function, stabil-
ity, or folding and may thus be more constrained in the residue types allowed. Therefore,
although mutations are random, in nature we observe only such protein variants, in which
sequence changes have been ‘accepted’ by the evolutionary pressure. Proteins with muta-
tions that cause detrimental changes in structure and/or function are usually eliminated. If
the protein is important to the integrity of the organism, the organism that bears the mutant
gene dies, and the structurally/functionally compromised variant ceases to exist; or if it
is not important, then the inactivated gene may be eventually ‘purged’ from the genome
by random deletions. On the other hand, if the mutant variant brings an additional and
beneficial new function to the organism, it is likely to be retained and further ‘optimized’
towards the activity favored by the selective pressure.

The above-mentioned evolutionary mechanisms have given rise to families of evolution-
arily related proteins (homologs), which share a common ancestor. Duplicated proteins are

Prediction of Protein Structures, Functions, and Interactions   Edited by Janusz M. Bujnicki
©    2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-51767-3
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2 The Basics of Protein Sequence Analysis

Figure 1.1 In the course of the evolution, protein-encoding genes undergo duplications, and
the resulting copies accumulate differentiating mutations (substitutions, insertions, deletions).
As long as a small subset of residues important for internal stability and interactions with key
partner molecules is preserved, the overall structure and mode of action of diverging homol-
ogous proteins is likely to remain similar. As a result, we observe that extant homologous
proteins retain similar tertiary structure, while sequence similarity becomes less and less evi-
dent. Mutations may cause the protein or one of its paralogous copies to lose its function (and
be eliminated), or to develop a new function, usually by somehow modifying the previous
function. Example: a family of cytosine-C5 methyltransferases. Most members methylate cyto-
sine in DNA; however, DNMT2 has apparently changed its specificity and acts on tRNA, and
DNMT3L has lost the original catalytic activity, but instead gained a new regulatory activity

described as paralogs, and in these relatives the sequences and functions can diverge con-
siderably from the original variant (see Figure 1.1). A general function of paralogs (such
as the ability to bind a certain type of molecule or to catalyze a certain type of chemical
reaction) often remains conserved, but they tend to specialize in different specific roles
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Introduction 3

(e.g. catalysis of a similar reaction on different substrates, different mode of regulation, or
being directed to different cellular compartments etc.). It has been found that new activities
and entire biochemical pathways evolve by recruitment and ‘tinkering’ of enzymes that
are already capable of performing the desired chemistry, rather than by developing new
functions from scratch.1 Thus, paralogous enzymes are often found to carry out similar
reactions in different pathways. Examples of large groups of paralogous proteins include:
different kinases or different helix-turn-helix transcription factors encoded in the human
genome. On the other hand, proteins from different organisms that have diverged from the
ancestral gene present in the last common ancestor of these organisms (i.e. copies of ‘the
same protein in different organisms’) are called orthologs. They tend to retain very similar
functions and their sequences usually show higher conservation than between paralogs
(for a detailed review on orthology and paralogy and discussion of several caveats, see
ref. 2). Thus, members of a protein family exhibit divergence, but usually share a specific
biological function despite high sequence diversity.

As the number of known protein structures solved by X-ray crystallography and NMR
techniques increased, it became clear that protein structure is much more highly conserved
throughout evolution than protein’s sequence.3 While in many families sequence identity
between members can drop below 5% identical residues, they tend to retain most of their
common structural scaffold, mainly in the core of the protein. Structure is also more
conserved than function; remote paralogs that retain common fold but replace functionally
important residues may fulfill completely different roles in the cell (examples include
a non-enzymatic heme-binding protein nitrophorin of a bedbug, which is related to an
enzyme inositol polyphosphate 5-phosphatase4). Counterexamples may be found: proteins
that exhibit high sequence similarity but different functions and/or structures (for a review
see ref. 5), however they are relatively rare. This suggests that structure comparison is the
best method to detect remote evolutionary relationship.6 Unfortunately, protein structure
determination is considerably more costly and time consuming than gene sequencing,
therefore the sequence databases have always been several orders of magnitude larger than
the structure databases. There has been an exponential increase in the sizes of both types
of data since the early 1970s but the largest sequence database GenBank7 doubles in size
roughly every 18 months, while the number of protein structures deposited in the Protein
Data Bank8 doubles roughly every three years, hence the gap keeps growing and is unlikely
to be closed in the near future.

Not only have the structures lagged behind sequences, but also functional characteri-
zation. With the current pace of data generation by high-throughput sequencing projects,
it is an impossible task to study all proteins by experiment. Thus, it is imperative to de-
velop methods that use sequence information to identify evolutionary relationships and/or
predict common structures and functions (or at least some aspect thereof). In this chapter,
we discuss bioinformatic approaches for analyzing protein sequences, in particular aiming
at identification and basic characterization of evolutionary relationships. The following
chapters in this volume focus on direct prediction of functional properties from sequence
(Chitale et al.), prediction of local conformation (Majorek et al.), and construction of
three-dimensional structural models based on sequence analyses (Kosinski et al.). Here,
we first define the primary functional units in protein sequence (domains and motifs)
and describe how domains are duplicated and combined in various ways to give different
protein families. We then briefly describe the major classifications and databases of protein
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4 The Basics of Protein Sequence Analysis

families, domains, and motifs. In the main part of the chapter we review algorithms for pro-
tein sequence analyses, with the particular focus on their implementations that have been
made freely available as web servers or downloadable computer software. We concentrate
on methods for database searches and identification of sequence similarities, clustering
of sequences into homologous families, multiple sequence alignment, and inference of
evolutionary relationships. Finally, we consider an iterative procedure utilizing these meth-
ods for identification of domains and motifs in the protein sequence and their functional
characterization.

1.2 Domains: Primary Functional Units in Protein Sequence

Proteins are modular, containing discrete regions that perform different roles. The primary
modular unit is called a domain. Regrettably, there is no standard definition of what a
domain really is. Structural biologists put emphasis on structural autonomy, biochemists
and geneticists refer to regions with autonomous function detectable in their experimental
assays, while evolutionary biologists focus on regions that are conserved throughout
the evolution. Here, we adapt a definition based mostly on structural and evolutionary
criteria.

The structural domain has been first defined in the 1960s with the advent of the first
structures of water-soluble globular proteins determined by X-ray crystallography (for
review see ref. 9). Globular domains are characterized by ellipsoidal or spherical shape,
and a relatively stable internal structure, which is defined by the amino acid sequence.
In structural domains the backbone of a polypeptide chain exhibits elements of regular
secondary structure (α-helices and/or β-strands) that forms a unique three-dimensional
arrangement called a ‘fold’, which serves as a scaffold for functionally important side chains
of amino acid residues. Some amino acid residues form a hydrophobic core, from which
water molecules are excluded, while others are exposed at the hydrophilic surface, where
they form sites of interactions with other molecules. In order to satisfy these requirements,
protein domains are typically formed by amino acid sequences of high informational
complexity. Globular domains typically range from 50 to 300 residues with a few larger
and smaller exceptions (review: 6). Domains located within biological membranes exhibit
similar structures, with a few exceptions: they are usually barrel-shaped, with a hydrophobic
‘belt’ on the outside that ensures a seamless fit to the hydrocarbon tails of the lipid bilayer.
One type of transmembrane (TM) proteins is composed exclusively of α-helices, while
the other contains only β-strands; the latter type of structures form pores, and contain an
internal hydrophilic channel instead of the hydrophobic core (review: 10).

Since 1970 it emerged that structural domains may recur in different structural contexts
or in multiple copies in the same polypeptide chain. More recent comparative analyses
of large numbers of protein sequences and structures confirmed that a structural domain
is also a fundamental unit in evolution (reviews: 6,11). The same domains can be found
in different proteins in all three forms of life, Archaea, Bacteria and Eukaryota, as well
as in viruses that infect them. Examples of frequently recurring domains include: a helix-
turn-helix domain often found in DNA-binding proteins (20∼100 residues), a TIM-barrel
domain present in many enzymes (∼200 residues), or a transmembrane domain found in
G-protein coupled receptors (∼250 residues).
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Gene fragments encoding domains may undergo duplication (e.g. leading to proteins
with tandem copies of the same domain), fusion with other genes or gene fragments
(leading to multi-domain proteins). Protein families are usually defined based on a pres-
ence of one common domain, which does not exclude the possible presence of additional
domains. For example in enzyme families, the common homologous domain is usually
responsible for performing catalysis, while the auxiliary domains may be responsible for
recognition of various substrates. (e.g. in enzymes acting on DNA, they may recognize dif-
ferent specific DNA sequences). These auxiliary domains may formally belong to different
families or even exhibit different folds. Thus, it is important to remember that proteins
may comprise multiple domains, of which some may be homologous, while other may
be non-homologous. Certain combinations of domains that are found recurring in diverse
proteins are often referred to as modules or supradomains. They duplicate and are selected
as one evolutionary unit either because it is functionally beneficial to have both activities
present in one polypeptide or because the functional site is created between the domains.12

Examples of such modules can be found e.g. in nucleic acid polymerases, which often have
the polymerization domain fused to an exonuclease proof-reading domain or in proteins
involved in signal transduction, which have a nuclear receptor ligand-binding domain fused
to a DNA-binding domain.

It is important to remember that a conserved 3D structure in the different context does
not guarantee the same amino-acid sequence or function; in fact these features may differ
substantially for remotely related proteins and domains. An insertion of one domain into
another may cause the latter domain to become discontinuous in sequence, even though
its original three-dimensional fold is preserved, with distant sequence elements brought
together to form a stable structure. Another example of a complex rearrangement is circular
permutation (review: 13), when a sequence fragment from one terminus is transferred to
the other terminus, thereby changing the order of sequence motifs within the domain. A
circularly permuted sequence may still form the same three-dimensional fold, albeit with
a different connectivity of the polypeptide chain (N- and C-termini of a protein appear in a
different position in the structure). Sequence rearrangements that do not preserve the order
of primary sequence make detection of structurally conserved domains a very difficult task
(see the final section of this chapter).

In addition to stably folded domains, many proteins possess segments that are
non-globular in the sense that they lack a tightly packed hydrophobic core. They are often
formed by compositionally biased sequences that are poor in hydrophobic residues and
enriched in charged residues, and exhibit different types of ‘low complexity’ regions,
e.g. short-period repeats, near-homopolymeric residue clusters, or aperiodic mosaics of
only a few residue types.14,15 Such segments may form fibrous or filamentous structures
(e.g. in collagen or keratins) or exhibit conformational heterogeneity, so called ‘intrinsic
disorder’ (see refs. 16,17). Some of these regions form linkers that permit the correct
spacing between globular domains, but others play more specific roles, in particular harbor
sites for interactions with other molecules, including proteins and nucleic acids. The
review of the variety of structures assumed by non-globular regions is beyond the scope
of this chapter; here, we will discuss only those of their features that are directly related
to sequence–function relationships. For recent reviews on structure–function relationships
of fibrous and intrinsically disordered proteins (IDPs) proteins the reader should consult
ref. 18 and refs 19–21, respectively. Bioinformatics methodology for prediction of
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regions of disorder is reviewed in detail in the chapter by Majorek et al. in this
volume.

1.3 Sequence Motifs

While essentially all protein sequences can be subdivided into globular domains and non-
globular segments, the most basic functional unit in protein sequence is called a motif.
Motifs usually correspond to short sequence fragments (a few, typically up to 10 amino
acids) that reflect some vital biological role in terms of structure or function (e.g. are
responsible for stabilizing interactions or promote a particular conformation within a
protein molecule or take part in binding of another molecule). Motifs occur frequently both
in globular and non-globular sequence segments, but depending on the structural context,
they fulfill different roles. Structured motifs (SMs) are fingerprints of globular domains.
They are conserved in the evolution because of critical involvement in activity, for which
the entire domain is selected, e.g. binding of the ligand that serves as a cofactor in the
enzymatic reaction catalyzed by the enzyme. They are usually conformationally rigid (or
at least their fragments are, while some parts may show mobility required for function).
Examples of SMs include Walker A GXXGXGK(T/S) and Walker B ‘(R/K)X(6-7)Lh(4)D’
motifs involved in ATP-binding in a large group of ATP-utilizing enzymes.22 Other SMs
may be required for structural stability, e.g. contain Zn-binding Cys and His residues in
e.g. C2H2–type Zn-finger domains: ‘CX(2-4)C. . .HX(2-4)H’.23 The presence of a common
SM in a particular set of domains suggests the presence of a similar well-defined structure
required for binding of a ligand, but may or may not indicate homology. In particular,
motifs involved in binding of widespread ligands are found in several protein families that
are unrelated to each other. Thus, caution must be exerted when identification of a single
common SM is used to infer evolutionary relationship, and it should be accompanied by
analysis of global sequence similarity (see below) and preferably, also global structural
similarity.

Linear motifs (LMs) are a different group of functionally heterogeneous sites. They me-
diate interactions of proteins with other molecules, are responsible for cell compartment
targeting, or represent the sites of post-translational modification, such as phosphorylation,
glycosylation, fucosylation, methylation etc. (review: 24). Motifs of this kind are typi-
cally embedded in locally unstructured regions, but possess a few specificity-determining
residues favoring disorder-order transition upon binding. LMs have a unique amino acid
composition, dissimilar to either globular domains or non-globular segments; they are en-
riched in Pro, hydrophobic residues Trp, Leu, Phe, and Tyr, as well as charged residues
Arg and Asp.25 Examples of LMs include the PXXP motif for binding to SH3 domains, the
NPXY motif for the interaction with PTB domains, the WXXW C-mannosylation site, and
the WXXX(Y/F) peroxisomal targeting signal. LMs rarely occur in ‘conventional’ glob-
ular domains, but if they do, these domains almost invariably undergo posttranslational
modifications. LMs also show completely different conservation patterns than SMs. SMs
are evolutionarily constrained by many interactions within the globular domains and/or
stable binding to high-affinity ligands, therefore they are often conserved in entire protein
families or superfamilies. LMs are typically involved in transient interactions, rely on a
very few specific interactions and their structure is loosely constrained, therefore they may
be easily created as well as removed due to few accidental mutations. If they appear in
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locations that confer selective advantage, e.g. due to introducing a regulatory switch, they
may be preserved in the course of the evolution. However, due to the relative redundancy of
LMs, removal of a single site (e.g. one of many phosphorylation sites within a regulatory
region of a particular protein) rarely has as drastic effects as removal of an individual SM
(e.g. a catalytic motif in the enzyme). As a result LMs tend to be conserved only among
very close homologs, and are frequently in non-homologous proteins that nonetheless share
the same functionality (e.g. the ability to be phosphorylated by the same protein kinase).
Thus, Nature appears to use LMs as evolutionary interaction switches.24

1.4 Databases of Protein Families, Domains, and Motifs

The importance of domains as structural building blocks, basic elements of biochemical
function, and elements of evolution, has brought about many automated methods for their
identification and classification in proteins of known structure. However, as mentioned
before there is no standard definition of what a domain really is, therefore assigning domain
boundaries even for proteins with known structures is not a trivial task. While human experts
disagree for approximately 10% of structures, automatic methods for domain assignment
show much larger discrepancy even for structures that the human experts agree on.26

Expectedly, assignment of domains for proteins in the absence of structural information
varies enormously; hence prediction of domains from sequence remains a challenging
problem. However, before we describe bioinformatic methods that approach this problem,
we will describe databases of protein families and domains, and tools for database searches
and multiple sequence alignments.

A number of databases have been created to facilitate classification and identification of
domains and motifs, and using them for protein function prediction. They usually classify
proteins based on the presence of conserved domains (defined according to many different
criteria) and/or motifs and group them according to sequence or structural similarity or
based on predicted evolutionary relationships, such as orthology. Table 1.1 lists some of
the most comprehensive and well-established databases of families, domains, and motifs,
whose entries have been created and are curated at least partially by protein experts.

The most popular databases that classify protein domains based on structural compar-
isons are SCOP 27 and CATH.28 Domain definitions used by these databases are based
on very similar geometric criteria and therefore usually coincide with each other. Both
databases are organized hierarchically, with the top level corresponding to structural class
of a domain, i.e. the proportion of residues adopting α-helical or β-strand conformation
(see the chapter by Majorek et al. for the discussion on secondary structure assignment).
Within each class, domains are classified into folds, which group together proteins ex-
hibiting significant structural similarity, both in terms of the arrangement of structures in
three dimensions, and connectivity between them (as a result, circularly permuted variants
that differ in connectivity should fall into different folds, hence this criterion is sometimes
relaxed). Further, proteins with the same fold and evidence for evolutionary relationships
are classified into homologous superfamilies. Within superfamilies proteins with clear
sequence similarity are grouped into families. SCOP is maintained by mostly manual
analysis for recognizing relationships to generate superfamilies, while CATH uses a com-
bination of automatic and manual analysis.
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Among protein family/domain databases that classify protein sequences, there are two
comprehensive meta-databases developed at the EBI in the UK and at the NCBI in the USA
EBI’s INTERPRO29,30 is a major resource for protein families, domains and functional
sites, which integrates the protein sequence database UniProt (which itself is a meta-
database of Swiss-Prot, TrEMBL, and PIR) with databases of protein structure (MSD,
SCOP, and CATH) and databases of families, domains, and patterns: Pfam, PROSITE,
PRINTS, ProDom, SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D, and PAN-
THER (see Table 1.1). Among the latter class of databases, particularly important are
Pfam,31,32 currently the most comprehensive primary protein family/domain resource
based on sequence data, and PROSITE,33,34 which focuses on motifs. Pfam-A entries
are high quality, manually curated families, which are further grouped into higher order
clans (based on sequence or structure similarity). Pfam-B entries are additional entries
generated automatically by referring to the ProDom database.

Conserved Domain Database (CDD) is a sequence database meta-resource within
NCBI’s Entrez database system.35,36 The CDD collection contains MSAs of protein fami-
lies and domains imported from Pfam, SMART and COG databases, as well as additional
domains curated at NCBI. CDD-specific domains are organized into evolutionary hierar-
chies. The Clusters of Orthologous Groups (COG/KOG) database37 groups together fam-
ilies of entire proteins and evolutionarily conserved modules from completely sequenced
genomes, which are predicted to form orthologous clusters. The database is split into a two
components: COGs group together proteins encoded by numerous bacterial and archaeal
genomes and two yeast genomes, while KOGs group together a relatively smaller num-
ber of eukaryotic genomes (including yeasts). COG and Pfam definitions of families are
the most commonly referred to in the scientific literature to describe yet uncharacterized
proteins or domains.

In addition to databases of protein families curated by experts, a number of studies
have reported databases resulting from fully automatic clustering of protein sequences,
where ‘families’ indicate groups of proteins classified according to certain numerical value
of sequence similarity. Examples among recently created or updated databases include:
CluSTr (http://www.ebi.ac.uk/clustr/),38 ProtoNet (http://www.protonet.cs.huji.ac.il/),39

SYSTERS (http://systers.molgen.mpg.de/),40 eggNOG (http://eggnog.embl.de),41 InPara-
noid (http://InParanoid.sbc.su.se/),42 OrthoDB (http://cegg.unige.ch/orthodb),43 SIMAP
(http://mips.gsf.de/simap/).44

While protein databases contain thousands of domain families and associated SMs,
known LMs are limited in number. There are also only a few general LM databases such
as ELM45 or Scansite.46 A number of programs specialize in cataloging and predicting
motifs with narrowly defined function and distribution, e.g. sites of different posttransla-
tional modification, often restricted to particular taxonomic groups (see ref. 47 for review).
Table 1.2 lists some of the databases and predictive servers; however a comprehensive
review of such databases is beyond the scope of this chapter.

1.5 Database Searches and Pairwise Alignments

The key step in analyzing our sequence of interest (hereafter referred to as ‘query’ or
‘target’) is to determine whether it shows any similarity to other protein sequences. The
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12 The Basics of Protein Sequence Analysis

determination of sequence similarity, from which functional similarity and/or homology
is inferred, may be carried out in two independent (and complementary) ways, namely
searches for patterns of characters or applying statistical models such as profiles of Hid-
den Markov Models (HMMs). Typically, searches against a database of motifs and full
sequences are employed in parallel to see whether the query protein exhibits known LMs,
SMs and domains.

Motifs can be represented as strings of characters from a specific alphabet, which dis-
criminates between invariant residues, alternative conserved residues, unspecified residues,
excluded residues, repetitions, and other features. A motif can be written as a regular ex-
pression such as ‘Y.A(4){C}[DE]$’, which can be interpreted as Y followed by any residue,
followed by four As, followed by a non-C residue, followed by D or E, followed by C-
terminus. With this representation, identification of exact matches between the sequence
and a database of motifs is fairly simple, as the regular expression either is present in the
sequence or not. However, this way of searching is likely to miss relevant motif variants
that exhibit slight variations. Allowing for approximate matches allows for detection of
more variants, but inevitably causes appearance of false positives. The major limitation of
regular expressions is that they do not take into account the information about the relative
frequency of residues at different positions. Statistical models such as profiles (also called
positional weight matrices, PWMs) give the probability of observing each amino acid in
each position. They allow for partial matches and in general have stronger predictive power,
i.e. enable detection of diverged but genuine motifs. Some popular software tools for detec-
tion of known motifs and ‘de novo’ discovery of previously unknown motifs in functionally
related sequences are summarized in Table 1.2. Once sequences sharing a common motif
are identified and the motif variants are aligned with each other (see below for explana-
tion of alignment techniques), they can be represented as Sequence Logos66 for visual
inspection (e.g. using the WebLogo server67 at http://weblogo.berkeley.edu/logo.cgi).

Recognition of very short motifs (e.g. most of LMs) remains problematic, as they are
often presented in many sequences solely to the sequence composition of the proteome.
Thus database searches with most method yield many false positives that have to be
filtered out by considering additional information, e.g. presence of globular domains,
which usually contain SMs but are depleted in functionally relevant LMs. On the one
hand, presence of non-globular, e.g. disordered regions, can be exploited to detect certain
LMs, such as phosphorylation sites; this rule has been implemented in the DisPhos
server68 (http://www.ist.temple.edu/DISPHOS/). On the other hand, homologous globular
domains often contain conserved sets of SMs, e.g. in spatially adjacent regions involved in
formation of binding sites. Typically, the order of SMs is preserved and a pattern of motifs
may be exploited to build a diagnostic tool for detection of new members of a protein
family. Nonetheless, because of problems with assessment of statistical significance of
short motifs, it is recommended that homology predicted via motif searches is confirmed by
one of the tools that provides a more global estimate of sequence similarity, e.g. sequence
alignment.

Sequence alignments usually assume (or search for) evolutionary conservation, as op-
posed to similarity of short motifs that may result from convergent evolution. The statistical
significance of alignment can be established by estimating the likelihood that the similarity
between two sequences is due to their divergence from a common ancestor, rather than pure
accident. First, the query sequence and the potentially homologous sequence are searched
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for a series of similar amino acid residues or residue patterns that are in the same order.
Then, gaps are inserted between the residues and sequence fragments are shifted so that
residues with identical or similar characters in both sequences are aligned in successive
columns. If two sequences are indeed homologous (i.e. they diverged from a common
ancestor), matches in the alignment represent residues that have been conserved in the
evolution, while mismatches can be interpreted as point mutations and gaps as indels (that
is, insertion or deletion mutations) introduced in one or both lineages in the time since they
diverged from one another. The biological relevance of sequence alignment is usually as-
sessed by comparison with a structure-based alignment, in which residues are considered
homologous if they are spatially superimposable. Structural alignments are considered
a ‘gold standard’ in bioinformatics (review: 69). Since only a small fraction of protein
sequences have known structures, the accuracy of sequence alignment measured on the
references is merely an estimation of how well a given algorithm reproduces a structurally
correct alignment for a collection of standard datasets.

There are two types of algorithms for sequence alignment based on dynamic program-
ming: global Needleman-Wunsch70 and local Smith-Waterman.71 In global alignment, an
attempt is made to align the entire sequence, using as many matching amino acid residues
as possible, up to both ends of each sequence. Thus, best candidates for global alignment
are sequences that are approximately the same length. In local alignment, stretches of
sequence with the highest density of matches are aligned, thus generating one or more
‘islands’ of matches or subalignments in the aligned sequences. Local alignments are more
suitable for aligning sequences that are similar along some of their lengths but dissimilar
in others and/or sequences that differ in length. Local alignment is particularly useful for
identification of regions of homology between proteins composed of different domains,
i.e. sequences that are only partially homologous. Such multidomain proteins are very
common in Eukaryota, in contrast to Prokaryota (Bacteria and Archaea), which are more
frequently composed of single domains and exhibit ‘global’ homology.

The above methods of establishing sequence relationships have been utilized in database
similarity searches. In the initial step the query sequence is compared to every sequence in
the selected database, and similar sequences are identified. Pairwise alignments between
the target sequence and the best-matching database entries are constructed, typically using
dynamic programming algorithms, and scored. Although percent identity of amino acid
residues between two sequences is intuitive and easy to calculate, it is a poor measure
of protein similarity, especially for more diverged sequences. Protein alignments are typ-
ically aligned and scored using substitution matrices that reflect statistical probabilities
of one residue being substituted by another. PAM72 (and its newer versions Gonnet73 or
Jones-Taylor-Thornton/JTT74) and BLOSUM75 are the two most commonly used types of
matrices, with PAM being based on an evolutionary model and extrapolation of probabil-
ities calculates for closely related sequences and BLOSUM based on alignments of more
remotely related sequences. Different matrices allow for detecting sequences with varying
levels of divergence. A scoring function includes also penalties for the introduction of gaps
corresponding to insertion or deletion (indel) mutations. Finally, statistical methods are
used to determine the likelihood of a particular alignment between sequences or sequence
regions arising by chance, given the size and composition of the database being searched.
Alignments that have a low probability of occurrence by chance are interpreted as likely
to indicate homology. However, the likelihood of finding a given alignment by chance can
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vary significantly depending on the size and composition of the database. For the search
for homologs to be effective and the score to be accurately estimated, the database must
contain many unrelated sequences. It is important to remember that pairwise similarities
(especially if confined to very short regions) can also reflect convergent evolution or simply
coincidental resemblance. Thus, repetitive sequences in the database or query can distort
both the search results and the assessment of statistical significance.

The most popular methods for sequence database searches (Table 1.3) are FASTA76

and BLAST.77 They identify a series of short non-overlapping subsequences in the query
sequence that are then matched to candidate database sequences. Query-database matches
are subsequently extended and combined into a local pairwise alignment using a varia-
tion of the Smith-Waterman algorithm. Both FASTA and BLAST employ extreme value
distributions to estimate the distribution of the scores between the query and the database
entries and a probability of a random match.78,79 The result of a database search is a list of
pairwise alignments ranked according to the expectation value (E) that represents a number
of sequences that are not related to the query sequence and are predicted to produce as good
an alignment score as the query sequence. As a rule of thumb, alignments that exhibit small
E value (<0.001 for large databases), presence of long stretches of aligned regions without
gaps, and absence of low-complexity regions are likely to indicate homology. Nonetheless,
homologous sequences can be so diverged that their pairwise similarity scores are in the
range of random noise.

Detection of more remote relationships requires taking into account not only individual
sequence pairs, but also analyzing similarities in the context of entire families of homol-
ogous proteins. For instance, PSI-BLAST (Position-Specific Iterated BLAST) allows for
finding very distant relatives of a protein by first invoking regular BLAST and retrieving
statistically significant alignments, calculating a ‘sequence profile’, or a position-specific
score matrix (PSSM) that describes the frequency of amino acids found at each position
in aligned sequences, and then searching the database using this matrix.80 Alternatively
to PSSMs, the set of query-database alignments can be used to create a Hidden Markov
Model (HMM), which also can be iteratively compared with the database to identify new
statistically significant matches (as implemented in methods such as HMMER81). The list
of detected statistically similar (and presumably homologous) sequences aligned to the
query can be then updated with new sequences and searches can be carried out in an
iterative fashion until no new sequences are reported with the similarity score above the
threshold of statistical significance. It must be emphasized that in rounds >1 the similarity
scores are calculated with respect to the whole group of aligned sequences (represented by
PSSM or a HMM) rather than to the single query sequence, therefore erroneous addition of
unrelated sequences at an early stage of the search can lead to further degeneration of the
result and inclusion of many false positives. Thus, e.g. for PSI-BLAST it is recommended
to initialize searches with a stringent E-value threshold for inclusion of database sequences
in the query PSSM (e.g. 10−20-10−3 for typical protein families), and progressive relax-
ation of the threshold (to e.g. 10−3) in subsequent iterations, depending on the number of
reported sequences and their similarity to the query.

The ‘intermediate sequence search’ (ISS) strategy82,83 is an alternative to profile-based
methods. It employs a series of database searches initiated with the query and then con-
tinued in a pairwise manner with its homologs. Saturated BLAST is a freely available
software package that performs ISS with BLAST in an automated manner.84 Since all
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homologs are used as search targets, this strategy is computationally demanding, but it can
identify links to remotely related outliers, which may be missed by MSA-based profile
or HMM searches that preferentially detect typical sequences. A variant of ISS strategy
that includes profile-sequence searches with PSI-BLAST and attempts to extract remote
homologs from alignments reported with scores below the level of statistical significance,
has been implemented in the method SENSER.85

The introduction of profile-based methods, in particular PSI-BLAST, has truly revolu-
tionarized the field of evolutionary bioinformatics, resulting in characterization of numer-
ous conserved domains and detection of remote homologies between many sequences and
sequence families that were undetectable in pairwise searches.86,87 It has also prompted
development of several databases of protein families or protein domains (see below),
accompanied by the appearance of special bioinformatics tools for searching of these
databases. One example is RPS-BLAST (Reverse Position-Specific BLAST) implemented
in the IMPALA package,88 which, as its name implies, reverses the PSI-BLAST approach
by comparing a single query sequence against a collection of PSSMs pre-calculated for
a number of previously characterized protein families, to determine whether the query
sequence is likely to belong to one of these families. Currently the most widely used al-
gorithms for sequence database searches (apart from still extremely popular PSI-BLAST)
belong to the newer generation of methods that carry out profile-profile comparisons and
allow for detection of even more remote relationships than profile-sequence comparisons.
These tools are typically available as web servers; they parse the query sequence pro-
vided by the user, automatically run PSI-BLAST to retrieve a profile corresponding to
reliably identified candidate homologs (i.e. the query family), and compare it with profiles
pre-calculated for a large number of protein families. Examples include PROF SIM,89

COMPASS,90 and HHsearch.91 Profile-profile search methods have been also adapted to
assist in template-based protein structure prediction (described in more detail in chapter
by Kosinski et al.). The last generation of methods for automated database searches is
represented by HHsenser, which combines SENSER-like exhaustive intermediate profile-
sequence searches with HHsearch-like pairwise comparison of HMMs.92

Once an initial search for homologs of the query sequence is performed, the detected
sequences are extracted from the database. Database searches are usually carried out with
local alignment programs and extraction of sequences results in retrieval of full length en-
tries from database. Outside the homologous region that has been detected by a local search
these sequences may contain regions that are non-homologous to the query, or regions that
are homologous to the query but local alignment methods failed to detect them. As men-
tioned earlier, database searches may result in retrieval of false positives, i.e. sequences
that exhibit similarity score above the threshold (e.g. due to biased sequence composition),
but nonetheless are not true homologs of the query. Besides, all major databases contain
redundant multiple copies of the same protein that differ by only a few residues (e.g. vari-
ants with alternative translation codons or results of different sequencing experiments) or
exhibit various errors (e.g. terminal truncations or indels caused by incorrect prediction of
gene boundaries or exon/intron structure). Such incorrect or redundant sequence variants
have to be removed from the preliminary sequence dataset (or corrected, if need be) prior
to any advanced analyses. Identification of erroneous sequences is best done at the level of
global multiple sequence alignment, which facilitates visualization of missing or redundant
regions corresponding to erroneous deletions and insertions. Although there exist a number
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of fully automated methods for multiple sequence alignment (MSA, see below), thus far
no method allows for automated ‘purging’ of the alignment of all incorrect sequences and
this stage has to be done manually, with the aid of methods for graphical representation and
editing of alignments. Such analysis becomes very difficult when the number of sequences
to be analyzed is significantly larger than 100, and the workstation’s screen becomes too
small to display them all. On the other hand, identification of redundant sequences is best
done by clustering analysis which may or may not require prior calculation of the MSA,
and is capable of processing large number of sequences. In our experience, the most useful
procedure is to carry out general clustering first to identify major subgroups (potential fami-
lies) that are possible to handle by alignment editors, followed by calculation and editing of
MSA for each subgroup, followed by merging of all edited sequence groups and repeating
MSA and carrying out final quality checks. Below, we describe in more detail methods for
MSA-independent sequence clustering, MSA construction, and for MSA-based calculation
of phylogenetic trees.

1.6 Sequence Clustering

It is well known that protein families can be classified into subfamilies using phylogenetic
analysis to calculate a hierarchy of relationships. The traditional representation of this
hierarchy is a treelike dendrogram, with individual elements (‘leaves’) at one end and a
single cluster containing every element (‘root’) at the other. Phylogenetic analysis requires,
however, the availability of MSA and intensive calculations to obtain evolutionary distances
and generate an accurate treelike representation of mutual relationships within the protein
family. There have been many attempts to circumvent this problem, in particular by using
various ‘surrogate’ measures of pairwise sequence similarity, rather than evolutionary
distances, and by applying various hierarchical clustering techniques to build treelike
representations.

An important step in clustering is to select a distance measure, which will determine
how the similarity of two elements is calculated. Sequence clustering algorithms typically
employ the value of pairwise sequence similarity, e.g. calculated by BLAST or the Smith-
Waterman algorithm (see above) and aim at identifying groups of sequences that are more
similar to each other than to other members of the input set. Typically, the aim of protein
sequence clustering is to identify groups of homologs exhibiting statistically significant
similarity, thus the threshold value for cutting the tree should correspond to the desired
evolutionary distance (e.g. to split a superfamily into families and then into subfamilies).
An appropriate cutoff should also separate true homologs from non-homologs, which can
be used to purge the initial dataset from potential false positives. Clustering can also be used
to split a group of functionally similar but not necessarily evolutionarily related proteins
into subgroups of homologs that are further analyzed independently from each other. The
presence of well-characterized proteins within a family can then allow one to reliably
assign functions to other family members whose functions are not known or not well
understood. Finding proteins with different functions within the same family may suggest
caution in extrapolating functional information. On the other hand, finding families with
only uncharacterized members may prompt them as sources of interesting candidates for
experimental analyses.
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18 The Basics of Protein Sequence Analysis

Single linkage (SL) clustering is a simple and intuitive algorithm, in which the distance
between two clusters is computed as the distance between the two closest elements in
these clusters. It has been implemented e.g. in the BLASTCLUST method from the pop-
ular BLAST package80 (ftp://ftp.ncbi.nih.gov/blast/, also available via a third-party web
server http://toolkit.tuebingen.mpg.de/blastclust/). The SL algorithm is known to produce
accurate clustering when different subgroups show similar level of internal similarity and
an appropriate threshold is given to separate families from each other. A drawback of this
method is that clusters may be forced together due to single elements being similar to
each other, even though other elements in each cluster may be dissimilar to each other.
Thus, the SL analysis is not appropriate for analyzing sets of largely non-homologous
multidomain proteins, which may be falsely chained to each other (e.g. a cluster of many
proteins comprising domain A and one protein with domains A and B may be chained to a
cluster composed of proteins with domain B and one protein with domains B and C, then
chained to a cluster of domains C and so on). In particular, many proteins possess small,
widespread protein domains (e.g. SH2, WD40, and DnaJ) that are known to have very
different functions. The presence of such a common domain within a group of proteins
does not necessarily imply that these proteins perform the same function. Ideally, these
types of proteins should be classified into a single cluster only if they exhibit highly similar
domain architectures. Another drawback is that in many protein superfamilies the degree
of similarity within different families varies greatly, and e.g. subfamilies within one family
may be more diverged from each other than two other families. Therefore, application
of only one average threshold may produce many too small clusters and a few too large
clusters.

Due to the fact that SL method has difficulty in detecting an appropriate threshold
for identification of clusters, modern protein clustering applications employ other algo-
rithms. In particular graph theory allows the classification of objects into groups based on
a global treatment of all relationships in similarity space simultaneously. Thus, proteins
and their similarities may be represented as vertices and edges of a graph, respectively,
and the initial partition produced, e.g. by SL clustering, may be post-processed by a graph
partitioning algorithm (see Chapter 10 by Nabieva and Singh in this volume for a de-
tailed discussion of different clustering algorithms, in the context of graphs representing
networks of protein–protein interactions). CLANS (CLuster ANalysis of Sequences)93

(ftp://ftp.tuebingen.mpg.de/pub/protevo/CLANS) is a freely available Java application,
which runs all-against-all BLAST searches for all sequences in the input set, and then
applies the Fruchterman–Reingold graph layout algorithm to visualize pairwise sequence
similarities based on BLAST P-values in either two-dimensional or three-dimensional
space. CLANS allows the user to select different thresholds and parameters for calculation
of distances and to carry out clustering using several different algorithms, including single
and multiple linkage, network-based, and convex clustering. LGL94 is a similar clustering
algorithm with a Java front end for visualization, however it requires pre-computed simi-
larity values as an input. ProClust (http://pig-pbil.ibcp.fr/magos)95 is another graph-based
clustering algorithm, which scales similarity values based on the length of the protein
sequences compared, and takes into account the significance of alignment scores to filter
for spurious links. Post-processing to merge clusters is based on comparison of clusters
with each other using profile-HMMs (see further sections in this chapter for review of
methodology for profile-profile comparisons). MCL96 relies on the Markov cluster (MCL)
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algorithm, which finds clusters by calculating the probabilities associated with a transition
from one protein to another within the graph and passing the matrix of probabilities through
iterative rounds of ‘multiplication’ and ‘inflation’ until convergence. The ‘inflation’ value
parameter is used to control the ‘tightness’ of final clusters. The MCL algorithm is relatively
insensitive to the presence of multi-domain proteins, promiscuous domains or fragmented
sequences. Super Paramagnetic Clustering (SPC)97 (http://www.vcclab.org/lab/spc/) is a
different approach that clusters input data based on analogy to the physics of an in-
homogeneous ferromagnet; a stepwise implementation of this algorithm, called global
SPC (gSPC) was shown to be even more robust than TRIBE-MCL. FlowerPower98

(http://phylogenomics.berkeley.edu/cgi-bin/flowerpower/input flowerpower.py) has been
designed specifically for the identification of subfamilies with global homology (e.g. from
a set of sequences with different domain compositions) using the SCI-PHY algorithm based
on HMMs.99 Finally, unlike other methods that calculate their similarity matrices based
on alignments, CLUSS100 (http://prospectus.usherbrooke.ca/CLUSS/) performs clustering
based on a matching amino acid subsequences, which makes it applicable both to alignable
and unalignable sequences, e.g. products of circular permutation etc. A number of other
clustering approaches have been used to cluster various sequence data sets and construct
databases of clusters (see the section on protein family databases); however, the underlying
clustering programs have not been made available as standalone applications.

1.7 Multiple Sequence Alignment

As soon as sets of homologous sequences with similar domain composition are identified,
or the domain subsequences isolated from non-homologous fragments, they can be aligned
together to study sequence conservation across the entire family. Multiple sequence align-
ment (MSA) is an extension of pairwise alignment, in which multiple related sequences
are optimally matched, by bringing the greatest number of similar characters into register
in the same column. In this manner, protein sequences are arranged into a rectangular
array with the goal that residues in a given column are homologous (derived from a single
position in an ancestral sequence), superimposable (in a structural alignment) or play a
common functional role. The advantage of the MSA is that it reveals more biological
information than a set of pairwise alignments, e.g. conserved patterns and motifs that
are common to the whole sequence family and may indicate functionally or structurally
important elements. However, finding an optimal alignment of more than two sequences
that includes matches, mismatches, and gaps, and that takes into account the degree of
variation in all of the sequences at the same time, is very difficult. Usually, an arrangement
of amino acid residues that maximizes the sum of similarities for all pairs of sequences
(the sum-of-pairs, or SP, score) is sought. Unlike in pairwise alignments, the SP score
has no rigorous theoretical foundation for the MSA and, in particular, fails to incorporate
an evolutionary model. Moreover, the dynamic programming algorithm used for optimal
alignment of pairs of sequences can be extended to multiple sequences, but the compu-
tational time and memory required to maximize the SP score has been shown to scale
exponentially with the number of sequences and becomes prohibitively expensive for data
sets larger than a few proteins.101 Thus, approximate alternatives are used. The majority of
programs (Table 1.4) are based on the ‘progressive algorithm’ approach, where the MSA
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22 The Basics of Protein Sequence Analysis

is constructed by a series of pairwise alignments, starting with the most related sequences,
followed by progressively adding less related sequences (to construct partial alignments of
three or more sequences) or aligning partial alignments with each other.102

The knowledge of evolutionary relationships among sequences is a very useful criterion
for selecting the order of pairwise alignments. Although the calculation of a phylogenetic
tree requires the availability of the MSA (see below), an initial tree for construction of
the MSA may be calculated based on preliminary evolutionary distances calculated from
pairwise comparisons of sequences. The major problem with progressive alignment pro-
grams is the dependence of the ultimate MSA on the initial pairwise sequence alignments.
The more distantly related these sequences, the more errors will be made, and these errors
will be propagated to the MSA. Two main techniques are utilized to correct or minimize
mistakes made in the progressive alignment process. One is iterative refinement of the
MSA, e.g. by repeatedly dividing the aligned sequences into subgroups and realigning the
subgroups, as implemented in PRRN.103 The other technique makes a consistency measure
among a set of pairwise sequence alignments before the progressive alignment steps.104

Many methods combine iterative optimization with either progressive algorithm and/or
consistency-based scoring (review: 105). An alternative approach for MSA, which does not
require calculation of trees, relies on identification of locally conserved patterns found in
the same order in the sequences (e.g. as implemented in the DIALIGN method106).

Another possibility is to employ a HMM, a statistical model in which an MSA is rep-
resented as a form of directed acyclic graph (also called a partial-order graph), which
consists of a series of nodes representing possible entries in the columns of an MSA. In
this representation a column that contains the same residue in all sequences is coded as a
single node with as many outgoing connections as there are possible characters in the next
column of the alignment. Sequences are aligned using the Viterbi algorithm, a variant of a
dynamic programming algorithm. Several software programs are available in which vari-
ants of HMM-based methods have been implemented, including SAM and HMMER (see
Table 1.4). Some of these methods allow for the presence of non-alignable (non-
homologous) regions of sequence to be present in the input set. In the approach implemented
in AliWABA the graph may contain cycles, which enables alignment of protein sequences
with shuffled and/or repeated domain structure.107

Currently the best methods for MSA such as SPEM108 or PROMALS109 employ PSI-
BLAST database searches and secondary structure prediction to construct meta-profiles
for all input sequences, then carry out profile-profile alignments (with HMMs or with
regular profile methods), often refine these alignments based on consistency scoring, and
only then combine the input sequences into an MSA. These methods are therefore much
slower than simple (but still very popular) methods like CLUSTAL, but are much more
accurate, at least for individual domains. However, they might be more prone to errors in
case of data sets comprising proteins of uneven length, e.g. some with single domains, and
others with the same domain fused to others. Therefore, comparison of MSAs generated
with different methods may provide hints as to reliability of the results. As with most
bioinformatics methods, algorithms for MSA rarely generate solutions that ideally reflect
the biological reality, especially for large datasets of strongly diverged sequences. However,
expert knowledge concerning relationships within a given protein family can be used to
improve suboptimal MSAs obtained from automatic software packages. A number of
methods exist that allow for graphical visualization and manual editing of MSAs to make
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them agree with observations that cannot be easily incorporated into the scoring function
of most algorithms (e.g. knowledge that particular residues in different sequences that must
correspond to each other or agreement of structural patterns obtained from experiment or
from predictions). Example tools for displaying and editing protein (often also nucleic
acid) sequences and alignments have been listed in Table 1.4.

1.8 Relationship of Multiple Sequence Alignments to Phylogenetic Analysis

A biologically meaningful MSA contains sequences that are all homologous, i.e. derived
from a common ancestor sequence. Further, in an ideal MSA, all columns contain amino
acid residues that were derived from an ancestral residue in the ancestral sequence (if
these conditions are not fulfilled, MSA is ‘biologically wrong’ and cannot be used for
phylogenetic analyses). Within the column are original characters that were present early,
as well as other derived characters that appeared later in evolutionary time. In some cases,
the position is so important for function that mutational changes are not observed. It is
these conserved positions that usually serve as ‘anchor points’ for producing an alignment.
In other cases, the position is less important, and substitutions are observed. Deletions and
insertions are also typically more frequent in the variable regions of the alignment. If the
sequences in the MSA show evident similarities (e.g. >30% identity and relatively few
insertions and deletions), they are likely to be recently derived from a common ancestor
sequence. Conversely, sequences with multiple differences are likely to be remotely related.
Thus, the number and types of changes in the MSA may be used to infer the mutations that
occurred during the evolution of the sequence family. It is also possible to dissect the order
of appearance of the sequences during evolution and to relate the relationships between
sequences to the relationships between their hosts (organisms). A number of packages
for phylogenetic calculations based on user-defined MSAs have been made available,
including PHYLIP (http://evolution.genetics.washington.edu/phylip.html),146 MEGA
(http://www.megasoftware.net/),147 PHYML (http://atgc.lirmm.fr/phyml/),148 PAML
(http://abacus.gene.ucl.ac.uk/software/paml.html),149 TREE-PUZZLE150 (http://www.
tree-puzzle.de), or MrBayes151 (http://mrbayes.csit.fsu.edu). Among web resources, Mul-
tiPhyl (http://www.cs.nuim.ie/distributed/multiphyl.php)152 is a particularly useful site,
which allows the users to carry out computationally very expensive inference of Maxi-
mum Likelihood trees using distributed computing. A review of methods for phylogenetic
calculations is outside the scope of this chapter, interested readers should consult reviews:
e.g. ref. 153–155

The result of phylogenetic analysis can be used as a feedback for revising particularly
challenging MSAs that are suspect of errors (e.g. sequences may be split it into sub-
groups and realigned separately or the tree may be used to guide the progressive alignment
algorithm). As an example, the SCI-PHY server (http://phylogenomics.berkeley.edu/SCI-
PHY/) allows users to upload a MSA for subfamily identification and subfamily HMM
construction.99 Further, analysis of the phylogenetic tree in connection with the known (or
assumed) tree of hosts (organisms) can be used to deduce major evolutionary events in the
protein family, e.g. gene duplications, gene losses, which provide the basis for discrimina-
tion between orthologs and paralogs and may guide functional predictions (review: 156). An-
other application of MSA and phylogenetic analysis is the inference of ancestral sequences,
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with methods such MrBayes or ANCESCON (ftp://iole.swmed.edu/pub/ANCESCON/)157

(review: ref. 158).

1.9 Prediction of Domains

It has been reported that around 65% or eukaryotic and around 40% of prokaryotic proteins
are composed of two or more globular domains.159 In addition, 30–60% of eukaryotic
proteins are predicted to contain long stretches of disordered residues.160 Unfortunately,
many experimental as well as computational techniques work effectively only on single
domains. For instance, experimental structure determination using NMR and in many
cases also X-ray crystallography is more successful for isolated globular domains, devoid of
disordered regions, rather than for complete multi-domain proteins, unless their constituent
parts form a tight complex. Also, many computational methods for protein sequence
alignment, phylogenetic analyses (see above), or three-dimensional structure prediction
(fold recognition and de novo folding – see chapters by Kosinski et al. and by Gront
et al. in this volume) have been designed to work with single domains and may produce
erroneous results when presented with multidomain proteins. Thus, identification of domain
boundaries from amino acid sequence (hereafter referred to as 1D domain prediction) is an
essential step in many protein analyses. However, as mentioned earlier, there is no precise
definition of what constitutes a domain even if the structure is known; therefore 1D domain
prediction from sequence without structural information presents a great challenge and
interpretation of results must consider a certain degree of fuzziness.

Jones and coworkers161 have classified 1D domain prediction methods into three broad
and partially overlapping classes, analogous to 3D structure prediction methods: domain
homology prediction, domain recognition (these two classes can be considered ‘template-
based’), and new domain (‘template-free’) prediction methods. The most effective way of
domain prediction is by detecting its homology to known domain structures (e.g. those
classified in SCOP or CATH databases) or to domains from manually curated sequence
databases, such as Pfam or CDD (Table 1.1). Main problems in predicting homology occur
when the domain is discontinuous (e.g. in the case of insertion of another domain), exhibits
circular permutation or forms an evolutionarily conserved module with another associated
domain. In this context it must be remembered that some of the entries in domain databases
correspond in fact to evolutionarily conserved modules that comprise several structural
domains. For sequence regions that cannot be assigned to known domain ‘by homology’,
domain recognition methods can be used. One approach is to apply 3D fold-recognition
methods that allow for prediction of structural similarity to known domain structures due to
extremely distant homology and sometimes also due to analogy (see Chapter 4 by Kosinski
et al.) Another approach is to predict secondary structure for the query sequence (see
Chapter 2 by Majorek et al.) and search for known domains with similar patterns. Finally,
new domain prediction rely either on machine learning methods for recognition of sequence
features that generally characterize domains or on methods for de novo folding (see Chapter
5 by Gront et al.) that generate a set of possible tertiary structures, in which compact units
are identified. This last class of method is extremely computationally expensive. A list of
currently available web servers is shown in Table 1.5; besides, some of domain databases
mentioned in Table 1.1 have their own search utilities.
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As with most of bioinformatics predictions, the recommended protocol for 1D domain
prediction involves application of the consensus rule. A meta-server for domain predic-
tion Meta-DP has been developed162 that allows for comparison and averaging of results
reported by several algorithms. However, the best results are achieved if 1D domain predic-
tion is carried out hierarchically, starting with the template-based methods, followed by the
more demanding (and more error-prone) de novo methods. This hybrid approach has been
already implemented in a few fully automated methods that were shown to outperform
individual methods within the framework of the CASP competition. Examples include
DOMAC163 (available as a server, see Table 1.5) and DP Hybrid (comprising Ginzu and
RosettaDOM,164 components of the Rosetta suite, not available as a standalone server).

1.10 Summary

In this chapter we discussed methods for primary structure analysis of proteins, including
identification of short motifs, database searches to detect significantly similar sequences
(candidate homologs), sequence clustering to identify protein families regions of homology
to sequences, multiple sequence alignment, and identification of globular domains. We
have not covered the issue of predicting non-globular or disordered regions and secondary
structure prediction, as these analyses are reviewed in depth in another chapter in this
volume (Majorek et al.). In addition to reviewing theory, we provided tables summarizing
different programs dedicated to carry out various types of sequence analyses. These are
mostly web servers, and some standalone packages for local installation. We must mention,
however, that many databases and methods that have been described in the literature and
used to be available as web servers, have now disappeared from the Internet or at least
have not been available during preparation of this chapter, therefore were omitted from
the tables. It is also expected that with time some of the methods mentioned here will also
completely disappear or will move to different websites; on the other hand, new interesting
methods will be made available. The readers / potential users are therefore encouraged to
consult the periodically updated collections of web servers e.g. the annual special issue
of Nucleic Acid Research (http://nar.oxfordjournals.org/) and the Bioinformatics Links
Directory, (http://bioinformatics.ca/links directory/).

There are several considerations in choosing a set of programs to analyze a sequence
of interest, including biological accuracy, complexity of the analysis and time required to
complete it (without asking a sequence analysis expert for help), and software/hardware
usage. In Figure 1.2 we present a flowchart illustrating the recommended protocol of
protein sequence analysis, from basic searches to domain prediction, which can be used
to generate input data for more subsequent computational or experimental analyses. If
the aim is simple, e.g. to obtain an approximate sequence alignment of a few homologs
and illustrate the most obvious motifs (both SMs and LMs), then a simple sequence
search (e.g. with BLAST) of one of protein family/domain databases is often sufficient
to check, whether an annotated data set is already available for download, without the
need to carry out new analyses. However, we suggest that web servers for identification
of motifs should be queried, as they often provide information that is more up to date
than pre-calculated data sets in family databases. In case of novel sequences that are
not yet present in major databases, a PSI-BLAST search of one of sequence databases
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Figure 1.2 Suggested workflow for protein sequence analysis. Basic sequence analyses in-
volve usually some or all of five tasks: (1) identification of locally similar sequences in databases
(here, sequences with decreasing level of similarity are indicated by fading shades of gray)
followed by retrieval of full-length sequences and their clustering to identify families, and fi-
nally MSA of the family; (2) identification of motifs (LMs and SMs); (3) prediction of putative
domains; (4) prediction of secondary structure; (5) prediction of disordered/ordered regions.
Tasks (4) and (5) are reviewed in Chapter 2 by Majorek et al. in this volume. Subsequently,
results from these analyses (as well as useful data and predictions from other sources, if avail-
able) are combined and individual domain families may be subjected to detailed structural
and phylogenetic analyses. Alternatively, predicted domain structure may be used to carry
out another round of basic analyses, with adjusted parameters (e.g. new database searches,
with correction for compositionally biased sequence, and e.g. removed N-terminal region or
protein sequence split into individual domains)

(e.g. nr at the NCBI) is recommended, to be followed by clustering of the extracted
homologs and identification of the putative orthologous family, which may be aligned
using one of the recent methods for MSA calculation. In parallel, domain databases should
be searched by sensitive profile methods to detect potential presence of known domains. If
no evident similarity to known protein families or domains is observed, domain prediction
methods should be used, preferably in connection with prediction of disordered regions
and secondary structure. If the aim of the analysis is an experimental characterization
of protein function, such combination of methods is usually sufficient to delineate major
domains and conserved regions. However, if an advanced comparative analysis is desired,
e.g. calculation of a phylogenetic tree or prediction of protein structure, the MSA must
be carefully refined to remove or ‘mask’ unalignable (e.g. non-homologous) regions.
For multidomain proteins domain boundaries must be judiciously localized, and domains
should be submitted independently for phylogenetic and modeling calculations, unless
there are specific reasons to believe that a set of domains should be analyzed together
(e.g. if it forms an evolutionarily conserved module). At all stages of analysis (perhaps
with the exception of database searches), we recommend using several alternative methods
and comparing their results. As a rule of thumb, consistency between different algorithms
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indicates higher likelihood that a given result is close to optimal. On the other hand,
automatically generated results are seldom ideal and they can be often improved by human
experts. Finally, it must be remembered that uncorrected errors tend to accumulate, and
‘higher level’ methods usually assume that their input is error-free, thus it is very important
to carefully check results returned by all automated methods before submitting them to
next, usually more time-consuming stages.
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2
First Steps of Protein
Structure Prediction

Karolina Majorek, Łukasz Kozłowski, Marcin J
↪

akalski and Janusz M. Bujnicki

2.1 Introduction

The famous hypothesis formulated by the Nobel Prize laureate Christian Anfinsen states
that

The three-dimensional structure of a native protein [. . .] is determined by the totality of
interatomic interactions and hence by the amino acid sequence, in a given environment. In
terms of natural selection through the ‘design’ of macromolecules during evolution, this idea
emphasized the fact that a protein molecule only makes stable, structural sense when it exists
under conditions similar to those for which it was selected – the so-called physiological
state.1,2

On the one hand, essentially all globular domains in proteins studied so far appear to
conform to this rule. Most proteins (or at least their major fragments) have been found
to fold into unique, well-defined, stable three-dimensional structures under very broadly
defined ‘physiological conditions’ that also include ‘laboratory conditions’ under which
protein samples are prepared for biophysical and biochemical characterization. In agree-
ment with Anfinsen’s hypothesis, variations in conditions (e.g. change of pH or addition
of a ligand) or changes in a sequence (e.g. due to proteolytic cleavage and removal of a
sequence fragment) may result in structural changes that are often functionally relevant,
e.g. if a protein’s function requires opening and closing of a cavity that is used for bind-
ing of another molecule. On the other hand, a growing number of protein sequences (or
sequence fragments) have been found to be mostly unstructured (review:3). These ‘intrin-
sically disordered proteins’ (IDPs) may assume a defined structure only under very specific

Prediction of Protein Structures, Functions, and Interactions   Edited by Janusz M. Bujnicki
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conditions, e.g. in the presence of another molecule (e.g. upon binding to another protein
or a ligand). In the absence of a stabilizing factor, these sequences exist as an ensemble
of rapidly interconverting different conformations. Thus, for many IDPs, the Anfinsen’s
‘stable physiological state for which the protein was selected’ is significantly different from
‘standard’ conditions assumed for other proteins.

Anfinsen’s hypothesis implies that the knowledge of amino acid sequence and of a given
environment should be sufficient to infer the native structure of a protein (or to predict the
lack of a stable structure). However, despite seemingly solid theoretical foundations, accu-
rate prediction of protein structure from the primary chemical structure of the polypeptide
chain remains one of the greatest challenges in biology. Thus far, there have been two major
approaches to predict the unknown protein structure from known amino acid sequence: one
relies on our knowledge of ‘first principles’, i.e. the laws of physics, while the other is based
on rules inferred from comparative analysis of experimentally solved protein structures.
Both approaches had some successes, but neither of them has achieved the final goal.

The ‘physical’ approach has been successfully applied already in 1951 by Linus Pauling
and Robert Corey, who predicted the existence of two periodic structural motifs formally
defined by the pattern of hydrogen bonds that may be formed by the protein backbone: the
spiral α-helix with 3.6 amino acid residues per turn4 and the flat β-sheet comprising two or
more β-strands having an extended zigzag conformation.5 These two secondary structure
elements (SSEs) are now known to be major features of protein architecture, with >50% of
residues of an average protein assuming either helical or extended conformation. Helices
and strands provide a natural frame for insightful protein structure visualization (with a
helix often represented as a tube or a spiral and strand as an arrow), and are widely used to
describe protein three-dimensional folds. They are also used by many programs that use
simplified protein structure representation (e.g. SSEs instead of individual amino acids) to
speed up calculations, e.g. for superposition of protein structures.

Secondary structure is much more conserved in the evolution than amino acid sequence;
therefore accurate prediction of SSEs from sequence would be of great benefit in structural
bioinformatics. For instance the knowledge of SSEs can help to guide sequence alignment
or improve existing sequence alignment of remotely related sequences with low sequence
similarity (see Chapter 1 by Kaminska et al. in this volume). Secondary structure predic-
tion is also a good starting point toward elucidating the three-dimensional structure – it
serves as an intermediate step in the protein fold-recognition procedure, i.e. identification
of templates for comparative modeling (see Chapter 4 by Kosinski et al.) and may provide
useful restraints both in comparative modeling and in de novo modeling (see Chapter 5 by
Gront et al.). However, it has been found that it is quite difficult to predict accurately, which
type of secondary structure is assumed by each amino acid residue of a protein.6 Compu-
tational simulations of peptide and protein folding based on the ‘physics-based’ approach
have been carried out in attempt to predict both local structure and global conformation
(review:7). The first applications of force field methods to study peptide conformations
date back to calculations performed by Nemethy and Scheraga.8 However, due to an ex-
tremely large number of degrees of freedom and very complex calculations of energies,
such simulations require extremely large computer resources, such as supercomputers or
massively parallel distributed computing.9 Alas, despite recent advancement in computer
hardware and software, physics-based simulation techniques remain incapable of confi-
dently predicting structures of even moderately sized proteins (>100 amino acid residues).
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As soon as the first protein structures solved by X-ray crystallography have been deter-
mined, it has been observed that secondary structures tend to exhibit regular arrangements
of amino acid residues of certain type. The regularities are due to the local periodicity of
helical and extended conformations (3.6 and 2 residues per repeated segment, respectively),
and the global tendency of a protein to form a well-packed hydrophobic core and to place
hydrophilic residues at the surface (at least in water-soluble proteins). For example, SSEs
buried in the protein core are composed mainly of hydrophobic residues, while SSEs at
the protein surface tend to be amphipathic and show an alternating pattern of hydrophobic
and hydrophilic residues (usually 010101 for strands and 0011011 or 0010011 for helices),
allowing the respective side chains to be buried in the protein core or exposed to the sol-
vent. Thus, as soon as a sufficient number of protein structures have been determined to
make useful statistics, ‘knowledge-based’ methods have been developed, aiming at pre-
dicting SSEs based on calculated tendencies of different residues or peptide fragments
to assume particular conformations. The first attempt of predicting secondary structure
of polypeptides using the ‘knowledge-based’ approach dates back to the same time as
the afore-mentioned physics-based analyses. It was performed in 1965 by Guzzo,10 who
inferred simple rules for preferences of different amino acid residues to form helical and
non-helical regions. With the growing number of available protein structures and sequences
the statistics have quickly improved, and new algorithms have been developed, yielding
methods that are far from perfect, but achieve useful accuracy of about 80%. Currently
the ‘knowledge-based’ approach is used by essentially all methods for secondary structure
prediction, as well as methods for order/disorder prediction and for inference of other
simple structural features from the primary sequence. This chapter aims at providing a
comprehensive overview of these methods. The ‘physical’ approach to protein structure
prediction is beyond the scope of this chapter and will not be reviewed here – instead, it
will be referred to in other chapters, in particular Chapter 5 by Gront et al. Because of
significant differences between proteins that function as water-soluble and those that are
embedded in biological membranes, secondary structure prediction methods for each of
two types are different and will be discussed separately. We will also discuss prediction
of higher order motifs formed by certain types of SSEs, the so called ‘supersecondary’
structures (e.g. coiled coils or β hairpins), and prediction of contacts between residues that
are remote in primary structure.

2.2 Definition of Secondary Structure and Its Assignment
for Known Protein Structures

One caveat of the knowledge-based structure prediction is the requirement of unambigu-
ous definition of secondary structure elements or ordered vs. disordered regions. Statistical
methods and machine learning methods require the input data to be appropriately clas-
sified in order to make meaningful predictions. Unfortunately, defining the boundaries
between disordered and ordered regions or between helix, sheet, and coil structures is
arbitrary, and commonly accepted standard assignments do not exist. Therefore, various
researchers employed different criteria that in some cases have lead to considerably different
assignments.



P1: OTA

chap02 JWBK331-Bujnicki November 13, 2008 8:10 Printer: Yet to come

42 First Steps of Protein Structure Prediction

Secondary structure is formally defined by the hydrogen bonds, but the hydrogen bonding
is correlated with other features, such as dihedral angels generally adopted by particular
types of secondary structure, which has given rise to less formal definitions of SSEs.
To standardize secondary structure assignment, the Dictionary of Secondary Structure in
Proteins (DSSP) was designed.11 It was the first method for protein secondary structure
assignment available as a computer program, and has remained most popular until now.
DSSP classifies each amino acid residue in a protein with known 3D structure into one
of 8 types of secondary structure, based on recognition of hydrogen bonding patterns and
geometrical features defined in terms of the concepts torsion and curvature of differential
geometry. The 7 types of SSEs include the α-helix (H), the β-strand (E, for ‘extended’),
and less frequent types of secondary structure namely non-α helices: 3/10 (G) and π (I),
isolated β-bridge (B), highly curved bend (S) and hydrogen-bonded turn (T), while the
remaining residues are classified as outside of SSEs.11

Another quite popular method for secondary structure assignment named STRIDE was
proposed later by Frishman and Argos.12 STRIDE is based on the combined use of hy-
drogen bond energy and statistically derived backbone torsional angle information, with
parameters of the pattern recognition procedure optimized to improve (compared to DSSP)
agreement with manual designations provided by the crystallographers as a standard-
of-truth. More recently developed methods for secondary structure assignment include
P-SEA,13 SECSTR,14 KAKSI,15 SEGNO,16 and PALSSE.17 These methods are based on
either the hydrogen-bond pattern, geometric features, expert knowledge or their combi-
nations. However, they often disagree on their assignments, up to 25%. The discrepancy
among different methods is caused by nonideal configurations of helices and sheets in
experimentally solved structures and by different definitions of helices and strands. Of
particular interest is PALSSE, which identifies only two types of SSEs that can be ap-
proximated by vectors: helix and strand. In contrast to other algorithms, which identify a
secondary structure state for every residue in a protein chain, PALSSE attributes residues to
SSEs in such a way that consecutive elements may overlap, thus allowing residues located
at the overlapping region to have more than one secondary structure type. This method
is robust to coordinate errors and can be used to define SSEs even in poorly refined and
low-resolution structures (e.g. if only C-α atoms are available, thus if no hydrogen-bonds
are present). PALSSE usually assigns a larger fraction of residues to SSEs as compared to
other methods, e.g. 80% vs. 53% in the case of DSSP.17

Discrepancies with structural assignment concern not only algorithms. Protein structures
are dynamic objects with some regions more mobile than others. Local conformations near
the ends of secondary structures vary under native conditions, but may be forced to assume
a single conformation in crystals due to packing constraints, hence secondary structure
assignments differ by about 5–15 percentage points between different X-ray versions or
different NMR models for the same protein6 (Figure 2.1). This inherent protein flexibil-
ity is the main reason why the theoretical upper limit of secondary structure prediction
accuracy is about 90%, for a particular SSE assignment method. Recently it has been
proposed that instead of relying on single structures, structure assignment methods should
be assessed based on the similarity of the secondary structures assigned to established pair-
wise sequence-alignment benchmarks, where these benchmarks are determined by prior
structural alignments of the protein pairs. The use of this criterion has led to identification
of STRIDE and KAKSI as the most robust methods (PALSSE was not included in that
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Figure 2.1 Illustration of secondary structure, conformational variability, and order vs disor-
der. Three-dimensional structure of small protein SUMO-1 solved by NMR (1a5r in Protein
Data Bank), 10 alternative models shown in the ‘cartoon’ representation. Black spirals indicate
α-helices, dark grey arrows indicate β-strands, white coils indicate loops. While the central part
shows relatively ordered structure (with only some fluctuations at one end of the helix), the
N- and C-terminal regions (left and right, respectively) show ‘intrinsic disorder’. Interestingly,
a short helical region persists in the disordered N-terminal tail, demonstrating the presence of
secondary structure despite the absence of stable tertiary structure

comparison), and to development of a consensus of STRIDE, KAKSI, SECSTR, and
P-SEA, called SKSP, which is 2–3% higher in agreement with structurally aligned residues
than DSSP for three established alignment benchmarks.18

Summarizing, assignments of secondary structure for one particular protein may vary,
depending on the method used. Thus, in theoretical protein structure prediction it is im-
portant to select, which type of assignment is going to be predicted. Thus far, DSSP has
been used as the ‘golden standard’ because of its popularity among crystallographers,
but it is likely that methods for secondary structure assignment that are more consistent
with the 3D structure alignments (e.g. SKSP) may lead to improved secondary struc-
ture prediction. Another caveat of secondary structure prediction methods is that they are
aimed at predicting only the three basic classes of local structure: (H)elix, (E)xtended, and
(C)oil; thus, e.g. an 8-letter ‘structural alphabet’ used in the DSSP notation is reduced to a
3-letter alphabet. In different algorithms it is done according to different conversion rules,
which may yield an apparent increase of accuracy, but cause errors when the predicted
secondary structure is used to predict 3D structure.6 Karplus and coworkers found that the
replacement of simple alphabets of secondary structure with highly informative, detailed
alphabets can improve detection and alignment of structurally similar, but remotely related
proteins.19 Examples of such alphabets include STR, an enhanced version of DSSP that
subdivides DSSP letter E (strand) into six letters, according to properties of a residue’s rela-
tionship to its strand partners (number of partners and their parallel/antiparallel character)
or Protein Blocks, a set of overlapping protein backbone fragments of length 5 amino acid
residues.20 HMMSTR21 implements yet another solution to this problem: in this method
protein structure is represented by short structural fragments taken from the database of
known structures; for secondary structure it uses an alphabet of 11 conformation states, 10
corresponding to �-� angle regions and one for cis-peptide bonds. A recently developed
method Real-SPINE22,23 predicts real values of torsion angles from a given sequence.
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2.3 Prediction of Secondary Structure and Solvent Accessibility
for Water-soluble Proteins

The first empirical prediction system aiming at predicting SSEs from protein sequence,
based on statistics calculated from structures solved by X-ray crystallography, was devel-
oped by Fasman and Chou.24,25 This very simple method is based on analysis of the relative
frequency of each amino acid in helices, strands and coils and on assumption that single
residue individually influences secondary structure. Subsequently, a more sophisticated
GOR method has been developed, which is based on information theory and Bayesian
statistics, and takes into account not only one residue but also adjacent positions in the
sequence. These methods have been built-in into commercial software packages for protein
sequence analysis and structure modeling and have become very popular among biologists
despite their accuracy was only slightly better than random. The main limitation of these
early methods was a small amount of known 3D structures, from which parameters could
be derived. Besides, these methods did not utilize any evolutionary information and were
applicable to single sequences rather than to multiple sequence alignments (MSAs) of
homologous sequences.26 Although over the years, both the Chou-Fasman27 and the GOR
methods28 have been improved, the level of their accuracy is inferior to the best modern
methods.

A significant improvement in prediction accuracy (>70%) has been achieved by ‘sec-
ond generation’ methods such as PHD,29 SAM-T98,30 and PSIPRED,31 which utilized
MSA-derived information concerning sequence conservation, often combined with ma-
chine learning techniques such as artificial neural networks (ANNs), nearest-neighbor
search (NNS) methods, and support vector machines (SVMs), or advanced statistical
methods such as Hidden Markov Models (HMM) (review:32). These methods were also
made available as web servers (Table 2.1). MSA, provided by the user or generated by
an internal routine of an algorithm, is usually based on identification of homologs by
searches of protein sequence databases (see Chapter 1 by Kaminska et al. in this volume).
It is important to note that PSIPRED was the first method, in which iterative PSI-BLAST
sequence searches have been introduced, compared to single-pass searches in earlier meth-
ods. Currently, iterative database searches to obtain the input MSA for prediction methods
are considered a standard. Typically, patterns in sequence variability observed in MSA
provide information on conservation of core elements (hydrophobic core and regions
important for protein function), while the location of insertions and deletions (indels)
hints at a position of surface-exposed loops. Incorporated machine learning techniques
allow training the methods on known structures to learn characteristic sequence-structure
patterns and then use those patterns to predict the secondary structure of the query pro-
tein. Most of the SSE prediction methods of the above-mentioned generation, or their
derivatives developed later, have been associated with predictors of solvent accessibil-
ity used to identify residues that are buried to different extents in the hydrophobic core
(Table 2.2).

In addition to methods for predicting the three main types of SEEs, there are several
methods based on sequence profile analysis for predicting certain types of local structure,
including various hairpin structures,52 or specialized in α-turns,71,72 β-turns,51,73 γ -turns,50

and π -turns.74 There are also methods to predict conformation of individual residues, e.g.
the trans/cis state of Pro.75,76 To our knowledge, these types of methods have not yet been
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Table 2.1 Software for secondary structure prediction

Program URL (http://)

Three-state (Helix/Extended/Coil) prediction
IPSSP33 (for single sequences) exon.gatech.edu/genemark/ipssp/webIPSSP.cgi
PSIPRED31 bioinf.cs.ucl.ac.uk/psipred/
SSPRO34 scratch.proteomics.ics.uci.edu/
PHD29 www.predictprotein.org/
PROFsec35 www.predictprotein.org/
PRED2ARY36 alexander.ucsf.edu/∼jmc/pred2ary/
APSSP237 www.imtech.res.in/raghava/apssp2/
PREDATOR38 ftp://ftp.ebi.ac.uk/pub/software/unix/predator/
HMMSTR21 www.bioinfo.rpi.edu/∼bystrc/hmmstr/
NNPREDICT39 www.cmpharm.ucsf.edu/∼nomi/nnpredict.html
PORTER40 distill.ucd.ie/porter/
HYPROSPII41 bioinformatics.iis.sinica.edu.tw/HYPROSPII/
SAM-T0642 www.soe.ucsc.edu/compbio/SAM T06/T06-query.html
JNET43 www.compbio.dundee.ac.uk/Software/JNet/jnet.html
SABLE44 sable.cchmc.org/
YASSPP45 glaros.dtc.umn.edu/yasspp/
YASPIN46 ibivu.cs.vu.nl/programs/yaspinwww/
CRNPred47 ftp.bioinformatics.org/pub/crnpred/
JUFO3D48 www.meilerlab.org/index.php
SPINE22 sparks.informatics.iupui.edu/SPINE/spine.html

Other types of secondary and supersecondary structure, and other types of local
conformation

TURNS (α, β, γ )49,50 imtech.res.in/raghava/
β-Turn51 serine.umdnj.edu/∼zhangq3/betaturn/prediction.htm
TURNPRED52 www.meilerlab.org/index.php
COILS53 www.ch.embnet.org/software/COILS form.html
MARCOIL54 www.isrec.isb-sib.ch/webmarcoil/webmarcoilC1.html
PCOILS55 toolkit.tuebingen.mpg.de/pcoils
PairCoil256 groups.csail.mit.edu/cb/paircoil2/paircoil2.html
MultiCoil57 groups.csail.mit.edu/cb/multicoil/cgi-bin/multicoil.cgi
LearnCoil58 groups.csail.mit.edu/cb/learncoil-vmf/cgi-bin/vmf.cgi

‘Meta-servers’ for secondary structure prediction
JPRED59 www.compbio.dundee.ac.uk/∼www-jpred/
NPS@60 npsa-pbil.ibcp.fr
META-PP61 www.predictprotein.org/meta.php
PROTEUS62 wishart.biology.ualberta.ca/proteus
DISTILL63 distill.ucd.ie
GeneSilico64 genesilico.pl/meta2/

integrated into metaservers for secondary or tertiary structure prediction and their practical
utility for protein modeling and function prediction remains to be established.

Currently the recommended approach to secondary structure prediction involves combin-
ing the results of different methods; it may involve advanced machine learning approaches,
such as voting, linear discrimination, neural networks or decision trees77 or even simple
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Table 2.2 Software for solvent accessibility prediction

Program URL (http://)

Jnet43 www.compbio.dundee.ac.uk/Software/JNet/jnet.html
PHDacc35 www.predictprotein.org/
PROFacc35 www.predictprotein.org/
SABLE65 sable.cchmc.org
NETASA66 www.netasa.org
MLRprdsec67 spg.biosci.tsinghua.edu.cn/
WESA68 pipe.scs.fsu.edu/wesa.html
ACCpro69 scratch.proteomics.ics.uci.edu/
SARpred70 www.imtech.res.in/raghava/sarpred/
SPINE22 sparks.informatics.iupui.edu/SPINE/spine.html
PaleAle63 distill.ucd.ie/paleale/

consensus.78 The idea of combining different prediction methods was first implemented
in JPRED,59 a consensus meta-server that standardizes input and output requirements of a
range of secondary structure prediction algorithms, each representing a different prediction
strategy, and computes a consensus of PHD, NNSSP, DSC, and PREDATOR secondary
structure predictions. In addition, the output of the JPRED server includes predictions of
solvent accessibility by the JNET method,43 as well as predictions of coiled-coil regions
and transmembrane helices (see below), which however are not directly incorporated in
the calculation of the secondary structure.

The most recent class of meta-approaches, exemplified by PROTEUS62 exploits the
observation that if an experimentally determined three-dimensional structure of a closely
related protein is known, then copying the secondary structure assignment from the known
structure provides a better result than by predicting it de novo. PROTEUS initially carries
out a sequence similarity search against the PDB database in order to determine if the
whole or a part of the query sequence is significantly similar to a known structure, and if
such a template structure is found, secondary structure mapping is carried out from the
template to the query based on a sequence alignment. For the sequence segments that
are not covered by template structures, de novo secondary structure prediction is carried
out with three different, high quality neural network approaches (PSIPRED, JNET and
TRANSSEC), whose results are combined into a consensus prediction by the fourth neural
network. Merging template-based predictions and de novo predictions allows PROTEUS
to yield a full sequence prediction, regardless of the extent of sequence overlap to a PDB
hit (when complete 3D-to-2D mapping is achieved, when only partial coverage is provided
and when no homolog with known structure can be found), and to achieve high average
accuracy of >80% per residue. A similar approach of merging template-based and de novo
predictions of secondary structure and solvent accessibility has been implemented in the
DISTILL suite.63

While the early methods of secondary structure prediction were about 60–65% accurate,
with accuracy for β-strands only slightly better than random,6 the best modern methods
reach about 80% accuracy per residue,22 with ∼10% lower accuracy for β-strands. The
difference between theoretical upper limit of prediction accuracy and actual secondary
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structure prediction accuracy, and between level of prediction accuracy of α-helices and
β-strands, is mainly due to difficult to detect long-range interactions that may influence
secondary structure formation. It has been shown that the same amino acid sequence of
substantial length may fold as α-helix when in one position in primary protein sequence
but as β-sheet when in another sequence context.79 Besides, during the folding process,
a certain fragment of a protein might first adopt a secondary structure preferred by the
local sequence and later, because of non-local interactions, be transformed to another
secondary structure. The latter concern has been addressed in the method 3D-JUFO,48

which combines iterative de novo secondary structure prediction using an approach similar
to PSIPRED with tertiary structure prediction with the ROSETTA method (see Chapter
5 by Gront et al.), followed by re-prediction of SSEs based on local environment of
particular residues observed in models of tertiary structure. 3D-JUFO achieves remarkable
accuracy of 80%, with notable improvement of accuracy for β-strand prediction (76%)
over sequence-only methods. Another interesting recently developed method that brings
the accuracy of secondary structure prediction close to the theoretical limit combines
bioinformatics methodology with experimental techniques of circular dichroism (CD)
and Fourier transform infrared (FTIR) spectroscopy for assessing the overall secondary
structure content.80

2.4 Prediction of Secondary Structure for Transmembrane Proteins

Membrane proteins are different from water-soluble proteins in that a large fraction of
their surface is hydrophobic to enable stability in the environment of a lipid bilayer. They
constitute about 20–30% of all proteins in the fully sequenced genomes, and are typically
involved in cell signaling, molecular pumping and energy transduction. Integral membrane
proteins consist of one or more transmembrane (TM) segments and can be divided into
two structural classes: the α-helical TM proteins and the β-barrel TM proteins, varying
in structure, localization and physicochemical features. Typical TM proteins of the more
abundant α-helical class are present in all types of biological membranes including outer
membranes. They comprise one or more hydrophobic α-helical membrane spanning regions
separated by hydrophilic loops that are exposed into the solvent (review:81). TM β-barrel
proteins are found only in outer membranes of Gram-negative bacteria, cell wall of Gram-
positive bacteria, and outer membranes of mitochondria and chloroplasts. They consist of
different number of antiparallel, membrane spanning β-strands with a simple up-and-down
topology.82

TM proteins aggregate and precipitate in water and require detergents or nonpolar sol-
vents for extraction, therefore they are much more difficult to analyze experimentally than
their soluble counterparts, in relation to all steps from overexpression to high-resolution
structure determination. Although TM proteins represent the most important drug targets,
their structure determination has lagged behind that for soluble proteins; currently they
represent less than 1% of available crystal structures.83 On the one hand, this situation
generates a great deal of pressure to develop effective methods for predicting the structure
of TM proteins. On the other hand, the paucity of structural data hampers the development
of knowledge-based approaches. Nonetheless, for both types of TM proteins specialized
structure predictors have been designed, but due to the relatively easily detectable patterns
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of hydrophobic residues forming α-helical TM segments and much smaller amount of
known β-barrel TM proteins structures, the majority of them was focused on the α-helical
TM proteins until quite recently (review:84).

Prediction of TM helices should be intuitively easy due to their hydrophobic nature. How-
ever, predictions based solely on hydrophobicity profiles have high error rates. Besides,
hydrophobic signal peptides may be confused with TM helices. It is also a consecutive chal-
lenge to predict TM proteins topology. Prediction of the way in which TM segments cross
the membrane (inside-out or outside-in) is done mainly by considering the different charge
distribution between the inside (cytoplasmic) and outside (extracellular) regions connect-
ing TM segments, and by application of the so-called ‘positive-inside rule’85 based on the
observation that there is an overrepresentation of positively charged residues in the intra-
cellular loops of TM proteins. Contemporary approaches usually predict both localization
of TM segments and their orientation (topology). The best methods such as PHOBIUS86

or MEMSAT387 utilize evolutionary information as well as discriminate against signal
peptides. Prediction of TM segments for β-barrel proteins is more difficult, because the
strands are amphipathic. They contain 10–22 residues with alternating hydrophobic side
chains facing the lipid bilayer and hydrophilic side chains facing the internal pore. To
predict the β-barrel type of TM proteins a small number of specialized algorithms have
been developed based on standard statistical and machine learning techniques including
HMMs, ANNs, or SVMs (Table 2.3).

As in the case of secondary structure prediction for globular soluble proteins, consensus
methods perform much better compared to each individual prediction method separately
and the recommended strategy for identification membrane spanning segments and their
orientation in membranes is to use many different methods and combine results into a
consensus prediction. Examples of ‘metaservers’ that combine the results of several indi-
vidual methods, providing a more accurate consensus prediction, include BPROMPT,100

ConPredII,110 and PONGO111 for α-helical TM proteins, and ConBBPRED114 for β-barrel
TM proteins. The newest trends in TM structure prediction include meta-predictions that
utilize predictions of solvent accessibility and secondary structure propensity typical for
globular proteins in the form of ‘structural profiles’.102 There have also been attempts
to make concurrent prediction of secondary and tertiary structure by simulating folding
in lipid membranes, e.g. with modified versions of de novo structure prediction methods
FRAGFOLD115 and ROSETTA.116,117

In addition to predictors specific for TM proteins, a new method MeTaDoR has been
recently proposed that predicts membrane-binding peripheral proteins that do not form an
integral part of the membrane, but bind to it mostly in a reversible manner and thereby func-
tion in various important processes, including cell signaling and membrane trafficking.113

2.5 Prediction of Supersecondary Structure

Individual SSEs may be arranged in simple geometrical shapes forming recurring super-
secondary structures. There is a number of well-defined α–α, β–β, α–β and β–α structural
motifs that serve as ‘building blocks’ of tertiary structure. Prediction of supersecondary
structures can be an important step toward building a tertiary structure from the speci-
fied secondary structure elements.118 The β–hairpin, comprising two adjacent antiparallel
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Table 2.3 Software for prediction of TM regions in proteins

Program URL (http://)

α-TM proteins
HMMTOP88 www.enzim.hu/hmmtop/
DAS89 www.sbc.su.se/∼miklos/DAS/
PHDhtm90 www.predictprotein.org/
TMAP91 bioinfo4.limbo.ifm.liu.se/tmap/index.html
TMHMM92 www.cbs.dtu.dk/services/TMHMM/
Tmpred93 www.ch.embnet.org/software/TMPRED form.html
MEMSAT387 bioinf.cs.ucl.ac.uk/memsat
TopPred294 bioweb.pasteur.fr/seqanal/interfaces/toppred.html
WHAT95 saier-144-37.ucsd.edu/what.html
THUMBUP96 sparks.informatics.iupui.edu/Softwares-Services files/thumbup.htm
UMDHMM96 sparks.informatics.iupui.edu/Softwares-Services files/umdhmm.htm
PRED-TMR97 athina.biol.uoa.gr/PRED-TMR/
HMM-TM98 biophysics.biol.uoa.gr/HMM-TM/
ORIENTM99 athina.biol.uoa.gr/orienTM/
BROMPT100 www.jenner.ac.uk/BPROMPT
LOCALIZOME101 localizome.org
PHOBIUS86 phobius.sbc.su.se/
MINNOU102 minnou.cchmc.org

β-Transmembrane proteins
BBF*103 www-biology.ucsd.edu/∼msaier/transport/software/bbfsource.tar.gz
HMM-B2TMR**104 gpcr.biocomp.unibo.it/biodec/
MINNOU102 minnou.cchmc.org
B2TMPRED105 gpcr.biocomp.unibo.it/cgi/predictors/outer/pred outercgi.cgi
PRED-TMBB106 bioinformatics.biol.uoa.gr/PRED-TMBB/
PROFtmb107 cubic.bioc.columbia.edu/services/proftmb/
TMBETA-NET108 psfs.cbrc.jp/tmbeta-net/
BOMP109 www.bioinfo.no/tools/bomp

Metaservers
BPROMPT (α)100 www.jenner.ac.uk/BPROMPT
ConPredII (α)110 bioinfo.si.hirosaki-u.ac.jp/∼ConPred2/
PONGO (α)111 pongo.biocomp.unibo.it/pongo/
TUPS (α)112 sparks.informatics.iupui.edu/Softwares-Services files/tups.htm
ConBBPRED (β)106 bioinformatics.biol.uoa.gr/ConBBPRED/

Membrane-binding peripheral proteins
MeTaDoR113 proteomics.bioengr.uic.edu/metador

∗The BBF program is freely available to academic users upon request to the corresponding author.
∗∗HMM-B2TMR is a commercial program, demo version is available.

hydrogen bonded β-strands, is an example of the frequently occurring motif for which
predictors have been developed. BhairPred119 is an example of a method for discriminating
hairpins from non-hairpins; obviously it achieves high accuracy only if the prediction of
secondary structure is correct. Coiled coils are another type of super-secondary structure
characterized by a bundle of two or more α-helices wrapping around each other. Coiled
coil structures have been implicated in inter- and intraprotein interactions, and may be
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formed by helices formed by segments of sequence distant in the primary structure or
even contributed by different proteins. Thus, coiled coils allow monomeric building blocks
to form complex assemblages that can serve as molecular motors and springs (review:
ref.120). The helices forming coiled coils have a unique pattern of hydrophobicity, which
repeats every seven residues (five hydrophobic and two hydrophilic). This sequence pe-
riodicity has prompted the development of special algorithms to predict the location of
α-helices that form coiled coils. According to the recent benchmark, the two best compu-
tational methods are a HMM-based MARCOIL54 and PCOILS,55 followed by PairCoil256

(Table 2.2).

2.6 Disorder Prediction

During the past decade, the literature has exploded with reports on intrinsically unstruc-
tured proteins (IDPs). Currently it is estimated that 30–60% of proteins are predicted to
contain long stretches of disordered residues. Many of the disordered regions have been
confirmed experimentally; they have been often found to be essential for protein function.
Interestingly, intrinsic disorder appears to be significantly correlated with certain terms
from functional ontologies and with specific functional motifs.121–124 In particular, linear
motifs125 that harbor sites of posttranslational modification, such as phosphorylation, or
sites of protein–protein interactions, often fall into regions that are locally disordered or
undergo order-disorder transition in different, biologically relevant situations.126,127 (see
Chapter 1 by Kaminska et al. in this volume). With respect to molecular/biochemical
function, IDPs have been frequently implicated in protein-nucleic acid interactions as tran-
scription factors or in protein–protein interactions as e.g. regulators of enzyme activity.
With respect to cellular roles, they have been implicated in regulatory processes, in particu-
lar in regulation of gene expression on the level of transcription and RNA processing, and in
cellular signaling. On a more general level, IDPs are crucial for cell survival, proliferation,
differentiation and apoptosis. Dysfunctions of IDPs may therefore lead to cancer, which
makes them particularly important from a biomedical point of view. On the other hand, dis-
ordered regions often prevent crystallization of proteins, or the generation of interpretable
NMR data, and in protein bioinformatics – they introduce compositional biases that ham-
per comparison of sequences of ordered regions. Recognition of disordered regions in a
protein is therefore important for delineating boundaries of stably folded protein domains
for structural and functional studies and for reducing bias in sequence similarity analyses
by avoiding alignment of disordered regions against ordered ones (reviews:128,129). De-
tection of disordered regions may also facilitate identification of domains (see Chapter
1 by Kaminska et al.). A very important resource for disorder is the DISPROT database
(http://www.disprot.org).130 It links structure and function information for proteins that
contains at least one experimentally determined disordered region.

The relatively frequent occurrence of IDPs and their importance in understanding pro-
tein structure-function relationships and cellular processes make it worthwhile to develop
predictors of protein disordered regions. Since the SEG algorithm for identification of low-
complexity regions that are typically associated with molecular disorder was developed
in 1994,131 an increasing number of groups have been developing such methods. How-
ever, as with secondary structure, it is not immediately clear how to unambiguously define
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‘disorder’. The lack of stable structure and conformational heterogeneity can manifest
itself either at the secondary or tertiary level, and may include sites with varying extent
of residual secondary structure and conformational mobility: molten globules, pre-molten
globules, liquid-like collapsed-disordered state, or gas-like extended-disordered state.132

Various researchers employed different criteria for defining disorder, resulting in numer-
ous predictors that attempt to identify different features. Thus, depending on a research
question being asked, using a single disorder predictor may be insufficient to achieve a
meaningful prediction. Ferron et al.128 presented an informative review of a number of
methods published until 2006, highlighting their advantages and drawbacks. Table 2.4
presents succinct descriptions of disorder predictors, taking into account also the most
recently published methods.

According to our own benchmark focused at accuracy of predicting regions of short dis-
order (using the criterion employed in CASP-7, i.e. the absence of resolved coordinates in
crystal structures153), the best methods include POODLE,147 DisPSSMP,138 and iPDA.142

We have developed a meta-predictor that reports the results of two primary coiled-coil pre-
dictors (COILS and Marcoil; see above and Table 2.2), and 10 primary disorder predictors
(DISOPRED2, GlobPlot, Spritz, DISPROT (VSL2), IUPred, POODLE-L, POODLE-S,
iPDA, PrDOS, and DisPSSMP, see Table 2.4). It also calculates a consensus prediction.
The disorder meta-predictor is available via the gateway of the GeneSilico metaserver64 at
http://genesilico.pl/meta2/.

2.7 Prediction of Long-range Contacts between Amino Acid Residues

In addition to predicting local structure, a number of methods have been developed to predict
contacts between residues that are remote in primary structure. This type of information is
of particular interest, because it has been shown that it is possible to directly infer three-
dimensional protein structures, if a sufficiently large number of contacts are known with
sufficient accuracy. It has been estimated that as few as one contact on average per seven
residues may be sufficient.154 Various measures of distance and various thresholds may be
used to define a contact between two residues (see e.g. ref.155), however the most common
definition of contact used in prediction methods is as a Cβ-Cβ pair (Cα in the case of Gly
residue) less than or equal to 8 A

◦
apart.156 According to the recent benchmark within the

framework of the CASP7 experiment, the best contact predictor is an ANN associated with
the SAM-T06 structure prediction server.157 Other well-performing programs (according
to the CASP7 benchmark or to other tests published by their authors) that are available as
web-servers have been summarized in Table 2.5.

Special kinds of methods for long-range contact prediction are those for identification
of Cys residues involved in disulfide bond formation (review: ref.158). Disulfide bonds are
primary covalent cross-links between two Cys residues in proteins that play critical roles
in stabilizing the protein structures. They can impose a substantial distance and angular
constraint on the backbone of protein, thus making a large contribution to the stabilization
of protein tertiary structures. A number of proposed algorithms for prediction of disulfide
bonding states of Cys (involved in disulfide formation or not), as well as prediction of
disulfide connectivity patterns (with the prior knowledge of disulfide bonding states) have
been implemented as freely available web servers (Table 2.5). Most of these methods
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Table 2.4 Software for disorder prediction

Program URL (http://) Short description

DisEMBLTM133 Dis.embl.de/ ANN trained to predict classic loops
(DSSP), flexible loops with high
B-factors, missing coordinates in
X-ray structures, regions of
low-complexity and prone to
aggregation.

DISOPRED2134 bioinf.cs.ucl.ac.uk/disopred/
disopred.html

SVM trained to predict residues with
missing coordinates. Standalone
version available.

DISpro135 www.ics.uci.edu/∼baldig/
dispro.html

Recursive neural networks (RNNs)
trained to predict missing
coordinates.

DISPROT136,137 www.ist.temple.edu/disprot/
predictor.php

VL2 (least-squares regression) and
VL3 (ANN) predict long disorder,
VSL2 predicts both short and long
disorder. Standalone version
available.

DisPSSMP138 biominer.bime.ntu.edu.tw/
dispssmp/

Radial Basis Function Network
(RBFN) trained to predict missing
coordinates.

DRIP-PRED139 sbcweb.pdc.kth.se/cgi-bin/
maccallr/disorder/submit.pl

Self-organizing maps (SOMs) trained
to predict missing coordinates.

FoldIndex C©140 Bip.weizmann.ac.il/fldbin/findex Simple method to predict whether a
given protein will fold or not, based
on average hydrophobicity and net
charge.

FoldUnfold141 skuld.protres.ru/∼mlobanov/
ogu/ogu.cgi

A statistical method to predict regions
of weak packing density (less than
8 A

◦
between heavy atoms of

non-adjacent residues).
GlobPlot2133 globplot.embl.de/ A simple method based on several

hydrophobicity scales to predict
regions of missing coordinates and
loops with high B-factors.

iPDA142 biominer.cse.yzu.edu.tw/ipda A successor of DisPSSMP.
Incorporates information about
sequence conservation, predicted
secondary structure, sequence
complexity and hydrophobic
clusters.

IUPred143 iupred.enzim.hu/ Estimates pairwise interaction
energies using a statistical potential.
Disordered regions tend to exhibit
poor inter-residue contact capacity.

NORSp144 www.rostlab.org/services/NORSp/ Predicts long regions exposed to the
solvent, with no regular secondary
structure.

PONDR R©145 www.pondr.com/ A commercial package containing
several predictors based on FFNNs.
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Table 2.4 (continued)

Program URL (http://) Short description

POODLE
(S,L,W)146,147

mbs.cbrc.jp/poodle/poodle.html L predicts long disorder using an
SVM. S adds analysis of PSSMs
generated by PSI-BLAST to detect
short disorder. W uses Joachims’
spectral graph transducer (SGT) to
classify entire proteins as either
disordered or ordered.

PrDOS148 prdos.hgc.jp Predicts missing coordinates using
SVM and PSSMs from PSI-BLAST.

PreLink149 genomics.eu.org/prelink/ Identifies regions with biased
composition and poor in
hydrophobic clusters to predict
regions with missing coordinates.

RONN150 www.strubi.ox.ac.uk/RONN Predicts missing coordinates using an
ANN.

SEG131 mendel.imp.ac.at/METHODS/
seg.server.html

Ancient precursor of modern disorder
predictors, identifies regions of low
sequence complexity.

SPRITZ151 distill.ucd.ie/spritz/ Predicts long and short disorder
(missing coordinates) using two
separate SVMs. Utilizes secondary
structure predicted by PORTER.

Grishin Lab
Disorder
Predictor152

prodata.swmed.edu/disorder/
disorder prediction/predict.cgi

Predicts missing coordinates based on
a PSSM and optimized propensities
of amino acid residues toward
disorder.

GeneSilico64 genesilico.pl/meta2/ A metaserver that predicts different
types of disorder using weighted
consensus of several methods.

employ combinations of various machine-learning techniques and utilize information from
multiple sequence alignments (e.g. to identify correlated Cys pairs) and predicted secondary
structure. Their reported prediction accuracy reaches 80%, but different methods have not
been compared directly with each other on the same test set.

2.8 Summary

To obtain better quality of secondary structure prediction, when no related structures are
known, it is advisable to follow some general rules:

First, it is important to use multiple sequence information, but if target sequence shows
high similarity to none or to only a few other proteins it is worth trying to search dif-
ferent databases (e.g. not only the non-redundant database at the NCBI, but also protein
sequences deduced from unfinished genomes and environmental sequencing projects) to
find moderately divergent sequences that can be used to build MSA (see also Chapter 1
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Table 2.5 Software for prediction of long-range contacts and disulfide bonds

Program URL (http://)

SAM-T06157 www.soe.ucsc.edu/research/compbio/SAM T06/T06-query.html
GPCPred159 sbcweb.pdc.kth.se/cgi-bin/maccallr/gpcpred/submit.pl
PROFcon160 www.predictprotein.org/submit profcon.html
CONpro161 www.ics.uci.edu/∼baldig/scratch/
SVMcon162 www.bioinfotool.org/svmcon.html
CRNPRED47 ftp.bioinformatics.org/pub/crnpred/
CMAPpro69 scratch.proteomics.ics.uci.edu/
Distill151 distill.ucd.ie/distill/
PoCM163 foo.maths.uq.edu.au/∼nick/Protein/contact.html
CMA164 ligin.weizmann.ac.il/cma/
HMMSTR-CM165 www.bioinfo.rpi.edu/∼bystrc/hmmstr/server.php
BETApro (β)166 www.ics.uci.edu/∼baldig/betasheet.html
DiANNA (C-C)167 clavius.bc.edu/∼clotelab/DiANNA/
DIpro 2.0 (C-C)168 contact.ics.uci.edu/bridge.html
DISULFIND (C-C)169 cassandra.dsi.unifi.it/disulfind/index.php
GDAP (C-C)170 www.doe-mbi.ucla.edu/∼boconnor/GDAP/
DCON (C-C)171 gpcr.biocomp.unibo.it/cgi/predictors/cys-cys/pred dconcgi.cgi
DISULFIDE (C-C)172 foo.maths.uq.edu.au/∼huber/disulfide/

by Kaminska et al.). If the sequence is a true ‘ORFan’ with no homologs, a specialized
method IPSSP33 (Table 2.1) may be used. Alignments that include remotely related se-
quences should be inspected in the most divergent regions, and sequences that cannot
be aligned with confidence should be removed. In case of secondary structure prediction
algorithms that do not accept an MSA as an input (but e.g. construct one from scratch by
themselves), secondary structure may be predicted independently for a few homologous
sequences and checked for mutual consistency. Correctly aligned positions should display
similar structure; therefore regions of low sequence similarity with different predictions
should be checked for possible errors in MSA.

Second, we recommend using meta-servers for disorder and secondary structure pre-
diction, because combining results of several best prediction methods into a consensus
prediction is more reliable than relying on any individual method alone. Agreement be-
tween methods usually indicates confident prediction, while disagreement may indicate
various things: different peculiarities of methods used, poor alignment in the input data,
and/or non-standard type of secondary structure, such as surface-exposed β-strands with
bulges that are often mispredicted as helices due to their irregular pattern of hydrophobic
and hydrophilic residues. It is also important to remember that specialized methods are
usually better for predicting particular types of structure than general-purpose methods for
secondary structure prediction. Therefore, it may be useful to use methods for prediction
of TM regions to pre-screen sequence for non-globular elements and ‘mask’ them before
considering regular secondary structure prediction.

Third, when selecting ‘best’ methods for consensus prediction it is important to remem-
ber that many authors use different benchmarks to assess their methods and that many



P1: OTA

chap02 JWBK331-Bujnicki November 13, 2008 8:10 Printer: Yet to come

References 55

published accuracies have been shown to be overestimated, when these methods were as-
sessed in rigorous blind tests on standard benchmarks, such as within CASP173 or EVA.174

Although secondary structure predictions are no longer assessed in CASP, the EVA website
(http://cubic.bioc.columbia.edu/eva/) is updated automatically each week, to cope with the
large number of existing prediction servers and the constant changes in the prediction meth-
ods. EVA currently assesses servers for secondary structure prediction, contact prediction,
comparative protein structure modeling and threading/fold recognition. The identity of the
test set assures that the competition is fair, while a large sample of targets assures that
methods are compared reliably.

Fourth, we recommend making simultaneous predictions of secondary structure, solvent
accessibility, and disorder, as they usually reinforce each other (e.g. regions of disorder
usually exhibit little tendency to form secondary structure and their residues are predicted
to be largely solvent-exposed). However, discrepancies in this regard (i.e. presence of
confidently predicted secondary structure and/or buried residues within regions of disorder)
may indicate interesting structural and functional elements, such as partially folded molten
globule-like structures or candidates for linear motifs (see Chapter 1 by Kaminska et al.
in this volume). Thus, again we recommend using meta-servers for making predictions
on the level of primary and secondary structure, in particular if they are going to be used
as restraints for modeling of protein tertiary structure (see articles by Kosinski et al. and
Gront et al. in this volume).
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3
Automated Prediction of Protein

Function from Sequence

Meghana Chitale, Troy Hawkins and Daisuke Kihara

3.1 Introduction

Investigation of protein gene function is a central question in molecular biology, biochem-
istry, and genetics. Because genes evolved from the same ancestral gene retain similarity
in their function in most cases, finding known genes which have sufficient sequence sim-
ilarity is a powerful way for predicting function. In this chapter we review computational
techniques and resources for gene function prediction from sequence. We start with an
overview of widely used homology search tools, such as BLAST, and extend discussion to
more recently developed methods.

3.2 Principle of Inferring Function from Sequence Similarity

The driving forces of the evolution of life include complete or partial genome duplication
and rearrangement,1 and also duplications which occur on a gene basis,2,3 that lead specia-
tion of organisms. While active exchange of a portion of genomes between organisms such
as lateral gene transfer makes ancestral relationship of organisms far more complicated
that previously thought,4,5 on the individual gene level it is generally true that duplicated
or transferred genes within or between organisms retain significant sequence similarity.
Genes that have evolved from a single ancestral gene are referred as homologous with
each other.6 Two types of homology are distinguished. Orthologous genes are those are
diverged from speciation events of a common gene of an ancestral organism and thus reside
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in different organisms. In contrast, paralogous genes refer to those which are duplicated
in a same organism thus locate at different positions in a same genome. Thus sequence
similarity is an effective way to detect homology between genes (reviewed in detail in
Chapter 1 by Kaminska et al. in this volume).

A pair of genes which share significant sequence similarity may have diverged quite
recently in the history of the evolution, or there may have been an evolutionary pressure
which kept the sequence unchanged over the course of a long evolution time. Another pos-
sibility is that the two sequences converged to be similar because of structural or functional
constraints. In either case, functions of such two genes usually share significant similarity
considering the evolutionary scenario behind it. Thus sequence similarity between two
genes strongly indicates homology, which implies functional similarity in most of the
cases. However, caution is needed because there are exceptions that homologous proteins
have very different functions. Recent works discuss such interesting examples.7,8

The relationship between the sequence similarity and function similarity is also well
understood in the light of the tertiary structure of proteins (reviewed in detail in chap-
ters by Majorek et al. (Chapter 2) and Kosinski et al. (Chapter 4) in this volume). The
widely accepted Anfinsen’s dogma claims that the protein sequence determines the tertiary
structure of the protein.9 Moreover, from the observation of a growing number of solved
protein structures, it is well established that proteins with a similar sequence generally have
a similar overall fold.10,11 Considering that the structure of a protein has crucial roles in
realizing function, e.g. to catalyze chemical reaction at an active site binding a substrate or
to interact with other proteins, having the same fold can be strong evidence that the proteins
share functional similarity. (But there are notable counter examples, e.g. superfolds, which
are protein folds adopted by different protein families.12)

3.3 Homology Search Methods

The strategy of a sequence-based protein function prediction for a target protein is to
find known protein genes which share a significant sequence similarity from a database
(reviewed in detail in Chapter 1 by Kaminska et al. in this volume) and make prediction
with function terms associated with the protein genes found. The sequence similarity of
two proteins is effectively and rigorously computed by using a dynamic programming
algorithm.13,14 The SSEARCH program15 performs rigorous local sequence alignment
by the Smith-Waterman algorithm14 between a target sequence and each sequence in
a database and lists retrieved sequences sorted by their statistical significance score, E-
value. As computing rigorous local sequence alignments against a current large database by
SSEARCH take a considerable amount of time on a regular desktop computer, FASTA15 and
BLAST,16 both of which employ faster algorithms than dynamic programming algorithm
for computing alignments, are more widely used. FASTA reduces computational time
by restricting computation of a pairwise alignment only within highly similar regions
using a lookup table, while BLAST starts with finding precomputed similar ‘words’ of
a fixed length taken from a target sequence in the framework of the finite automaton.
Benchmark studies show FASTA and BLAST deteriorate the sensitivity of database search
in the tradeoff for the speed compared to SSEARCH,11,17 but all three methods will not
miss obvious homologous sequences with significant sequence similarity. A search result
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will also depends on parameters used, such as the amino acid similarity matrix and gap
penalties.18

The conventional way of using these homology search tools is to extract function annota-
tion from top hit sequences which have a significant score either in terms of the E-value or
the Smith-Waterman (SW) alignment score. The commonly used threshold for the E-value
is 0.01 (or 0.001), and 200 for the SW score, which were originally established on bench-
mark datasets of a limited size.19,20 This strategy is commonly used in gene function annota-
tion in genome sequencing projects.21,22 The advantage of using a unique threshold value is
that it is easy to process automatically for a large number of genes. On the other hand, prob-
lems of this strategy include that it does not take into account that each protein family has
a different degree of sequence conservation7 and also a large portion of genes in a genome
are usually left as unknown because of the rather conservative function assignment.23

Several interesting ideas have been proposed to identify further distantly related ho-
mologs using the homology search tools. For example, an intermediate sequence found in
an initial search is used to reach further distant homologs in the second run of the search24,25

and consensus of different methods is shown to improve search performance.26,27

The three homology search methods introduced above perform sequence-to-sequence
comparisons. In contrast, PSI-BLAST performs profile-to-sequence comparisons, making
a very sensitive database search possible.28 PSI-BLAST iterates searches, at each time
constructing a profile (multiple sequence alignment, MSA) with a target and retrieved
sequences, which is used for a search in the next iteration. The iteration is halted to make the
final function prediction when retrieved sequences are saturated or the predefined maximum
time of iterations is reached. A profile can enhance family specific conserved sequence
information in a query sequence. The flip-side of PSI-BLAST’s extreme sensitivity is that it
occasionally produces false positives.29 Thus, PSI-BLAST is often used with a conservative
(strict) parameter setting.30

Profiles can also be precomputed for sequences in a database, and a target sequence
is matched against them (sequence-to-profile comparison).31 BLOCKS32 and ProDom33

are databases of profiles of protein domains, where a user can search known functional
domains in a sequence. A protein fingerprint is a group of conserved regions used to char-
acterize a protein family. PRINTS34 is a collection of such protein fingerprints. Pfam35 and
SUPERFAMILY36 are databases which store profiles of protein domains in the form of hid-
den Markov models (HMMs), which are statistical representations of sequence profiles.37

Finally, both a target sequence and database sequences are precomputed into profiles and
the target profile is aligned with profiles in the database. Profile-to-profile comparison
methods have been shown to be very sensitive and used not only for protein function
prediction38 but also for protein structure prediction (i.e. predicting protein fold).39,40 Nu-
merous methods for constructing and comparing profiles have been proposed, including
ways to select sequences to be included in a profile, ways to score an alignment of two
profiles, and how to handle gaps.39–41

3.4 Predicting Function from the Other Types of Information

Besides using sequence, various other features of genes can be used for function prediction.
The global tertiary structure of proteins can indicate very distant evolutionary relationships
between proteins,42 and detecting local structure similarity is aimed to predict function
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by identifying functionally importance sites, such as active sites of enzymes.43,44 Known
pathway information is used as a template for finding missing genes which fit to holes in
known pathways.45 Use of Microarray gene expression data46 and protein–protein interac-
tion data47 is actively investigated in function prediction. Now that many different types of
databases are established and more new experimental data are made available, combina-
tion of heterogeneous data has become an interesting and promising direction for function
prediction. However, as the focus of this chapter is sequence-based approaches, refer to
recent review articles23,48 49 and also the other chapters of this book for more information.

3.5 Limitations and Problems of Function Prediction from Sequence

A practical convenience of predicting function from sequence is that most of the function
information of genes resides in sequence databases, such as UniProt,50 Pfam,35 and also
protein domain and motif databases (reviewed in Chapter 1 by Kaminska et al. in this
volume), e.g. PROSITE,51 BLOCKS,32 and PRINTS.34 A consequent intrinsic limitation is
that any method can essentially only extract function information which exists in a database
and it is very difficult to make a prediction which goes beyond available function description
of retrieved sequences. By the same reason, if function information of a gene in a database
is wrong, that wrong information will be transferred to a target gene. Thus, erroneous
annotation may be propagated by being reused in subsequent function assignments.52,53

Incorrect function prediction can happen even with having genes with correct function
description because of various reasons, such as ignoring multi-domain organization of
genes and non-orthologous gene displacement.54 Indeed erroneous function annotations are
frequently reported.55 To amend wrong annotations, the research community of Escherichia
coli has held a meeting to manually curate gene annotations.56 A recent interesting approach
is a community based annotation using wiki, allowing any researcher to participate in
annotating genes.57

3.6 Controlled Vocabularies for Gene Function Annotation

Automation of protein function prediction requires a well-established controlled vocab-
ulary describing the annotations, which is unified across different species and research
communities. If arbitrary terms are used for describing a biological function, for example,
if a gene involved in ‘bacterial protein synthesis’ is described as involved in ‘translation’
in one database and as ‘protein synthesis’ in another, an automatic procedure would easily
miss the similarity between the two annotations. Even for manual annotation, non-critical
use of annotations from existing database entries is a major cause of erroneous function
assignment.54 Thus we need a universal way to describe gene function in structured manner
which avoids ambiguity. To allow uniform referencing for functional annotations across
databases several ontologies (vocabularies) have been developed. Those ontologies in-
clude Gene Ontology (GO),58 Enzyme Commission (EC) number59 and MIPS functional
catalogue (FunCat).60 These ontologies provide the basis for computational prediction of
protein functions as they constitute the exhaustive organized space that will be searched in
order to assign the most probably function to an un-annotated protein.
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Figure 3.1 Hierarchical organization for term GO:0019319 in Gene Ontology as displayed
by Amigo(http://www.geneontology.org/) tool for searching and browsing Gene Ontology.

3.7 Gene Ontology

GO consists of hierarchically structured vocabulary divided into three basic subcategories:
molecular function, biological process and cellular component. Each term in GO is re-
ferred by an identifier of the form GO:xxxxxxx, a subcategory, and an associated textual
description for that term. For example, the identifier GO:0019319 is of subcategory bio-
logical process and has short description as ‘hexose biosynthetic process’ (Figure 3.1). GO
organizes the terms in a directed acyclic graph (DAG) structure where terms are associated
by is a or part of relationships. The is a classifier represents a subclass relationship where
‘A is a B’ means A is description of B but at higher depth or more narrower description.
‘A part of B’ indicates that whenever A is present it is part of B.

A gene can be described as performing one or more molecular functions, being part of
one or more biological process and located in one or more cellular components. Another
important feature of GO is that it supports association of an evidence code with each
annotation indicating the nature of evidence sources that are used to support that annotation.
Examples of the evidence codes are IDA (Inferred from Direct Assay), which indicates
that a direct assay was carried out to determine the function, and ISS (Inferred from
Sequence or Structural Similarity), which clarifies that any analysis based on sequence
alignment, structure comparison, or evaluation of sequence features such as composition is
performed.

3.8 Other Functional Ontologies

EC numbers are used for classifying enzymes based on the reactions they catalyze. The
nomenclature of enzyme number has the form of EC x.x.x.x, consisting of four level hi-
erarchies describing the activity of the enzyme. Partial EC numbers with only initial parts
out of the four subparts will be used to refer to a class of enzymes describing a biochemical
activity at a broader level. The FunCat scheme for functional description of proteins divides
the annotations into 28 main categories that cover general fields. The FunCat version 2.1
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includes 1362 functional categories where main categories are further subdivided up to
six levels with increase in the specificity. A difference between FunCat and GO is that
FunCat is organized in a hierarchical tree, while GO is structured into a DAG. A difference
of enzymatic function description between FunCat and EC number is that EC number
classifies catalytic activities based on the chemical reaction, while FunCat classification is
based on the pathway where an enzyme acts. TCDB (Transport classification database)61

is a database of Transporter Classification (TC) system that gives detailed comprehensive
IUBMB (International Union of Biochemistry and Molecular Biology) approved classifi-
cation system for membrane transport proteins. The TC system is analogous to the Enzyme
Commission system for classification of enzymes, but additionally incorporates phyloge-
netic information. It consists of a set of representative protein sequences, most of which
have been functionally characterized. These transporters are classified with a five-character
designation, as follows: D1.L.D2.D3.D4. The letters in sequence correspond to transporter
class, subclass, family, subfamily and transporter itself. The TCDB website also offers
several tools specifically designed for analyzing the unique characteristics of transport pro-
teins. The KEGG orthology (KO)62 is both an ontology arranged around binary relations
and an ontology giving annotations of class of gene products. KO decomposes the uni-
verse of all genes in all organisms into groups of functionally identical genes (orthologs).
They define relationships between KEGG database objects such as reactions, substrates
and products; relationships between enzyme and its location in the pathway; relationship
between enzyme and protein super family to which it belongs.

3.9 Quantifying Functional Similarity

To compute the prediction accuracy of a function prediction we need to compare the
similarity of predicted and actual ontology terms. The hierarchical nature of GO provides
natural mechanism for comparing the terms. The basic idea is to consider the closest
common parental node between predicted and correct GO terms. The scoring scheme
used in the function prediction category in Critical Assessment of Techniques for Protein
Structure Prediction 7 (CASP7) computes fraction of the path depth of the common parent
compared with the path depth of the correct annotated GO term.63 Resnik uses the maximum
information content computed as maximum negative logarithm of any common ancestor
term probability for pair of GO terms being compared.64 Probability of occurrence of each
term is defined as frequency of its occurrence in the annotation database as compared to
the frequency of root term in the GO. Lord et al.65 were first ones to compute the semantic
similarity between a pair of proteins using Resnik’s measure. Semantic similarity between
two proteins was computed as the average similarity of the GO terms that annotate both
the proteins. Schlicker et al.66 further extend the Resnik’s measure to include probabilities
of both terms being compared for normalizing the semantic similarity score and also use
the relevance (that decreases with probability) of the common ancestor term. Poze et al.67

take a completely different approach to compute a functional distance between a pair of
GO terms based on co-occurrence of terms in a same set of Interpro entries. A profile is
constructed for GO terms representing its association with a set of Interpro domains taking
into account the is a relationships for GO terms and its ancestors. The profiles are used to
generate a matrix of co-occurrences between GO terms.
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3.10 Automated GO Term Prediction Methods

Recent years have observed development of new generation of function prediction algo-
rithms. It is triggered by the growing need of function annotation of genes in an increasing
number of newly sequenced genomes and newly solved protein tertiary structures. More-
over, large scale experimental data, such as protein–protein interaction and gene expression
data, further add the urgency of developing different techniques to predict reliable annota-
tions even at broad levels of detail for new genes. Many of the new generation of function
prediction algorithms have some common features. First, they take advantage of controlled
vocabulary of Gene Ontology, which facilitates computational handling of function terms.
Second, most of them use BLAST or PSI-BLAST search results as the primary source of
function information, realizing (or expecting) that homology search results contain more
information than conventionally extracted by applying a unique E-value threshold to select
significant hits. Third, some of the methods employ machine learning techniques, such
as Support Vector Machines (SVM), that have recently become popular in bioinformatics
area. Below we will discuss some of such methods.

Goblet68,69 provides a web platform which assists users to analyze a BLAST search
result of an input protein sequence in terms of GO terms. GO terms of retrieved sequences
are displayed on the GO tree, which facilitates comparison of the GO terms. GOFigure70

uses an idea of a minimum covering graph (MCG), which is a graph on the GO tree
rooted at the GO terms that subsumes all extracted GO annotations from BLAST hits for
a query sequence. The score assigned to each GO term is a weighted score of all the hits
that map to it as well as the scores of all its children term. As a consequence of using
MCG, not only the GO terms which directly associate to the retrieved BLAST hits but also
their children terms have possibility of being final GO prediction to the query sequence.
Verspoor et al.71 use an ontology categorizer named POset Ontology Categorizer, which
summarizes weighted collection of GO terms taken from PSI-BLAST hits. The weight of
a GO term reflects the E-value of the sequence hit. For an evaluation metric of prediction,
they introduce hierarchical precision and recall, which considers accuracy at each ancestral
node of predicted and actual GO term.

GOtcha72 runs BLAST for a query sequence, and GO terms are extracted from each
BLAST hit. The set of GO terms and all ancestral terms are assigned a score of negative
logarithm of the E-value of the BLAST hit (R-score). The sum of the R-score for all
matches is normalized to the total R-score of the root node of each category in the GO tree.

GOPET73 employs SVMs to analyze a BLAST search for a query sequence. GO terms
are extracted from each retrieved sequence with attached features, including the E-value,
the bit-score, the sequence identity, the coverage score, the alignment length, GO term fre-
quency, and the evidence code of GO annotation, all of which are used as input parameters
to SVMs. 99 SVM classifiers, each of which predicts a particular GO term, are constructed.
An advantage of using SVM is that many different properties of retrieved sequences can
be considered. On the other hand, a drawback is that a limited number of GO terms can
be predicted by this implementation because a SVM needs to be constructed for individual
GO term, and a sufficient number of instances (sequences) are needed for training a SVM.

ProtFun74 is an interesting method of protein function prediction that is not based on
sequence similarity but on sequence based protein features such as predicted post transla-
tional modifications, protein sorting signals, and physical/chemical properties calculated
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from amino acid composition. They use the InterPro database which maps protein families
to GO terms. For each GO class a standard feed-forward neural network with a single layer
of hidden neurons was trained with different combinations of sequence derived features.

JAFA75 is protein function meta-server that provides joint assembly of function pre-
dictions from five different prediction servers, namely, GOFigure,70 Gotcha,72 Goblet,68

InterProScan,76 and PhydBac2.77 The score provided with each GO terms is the prod-
uct of the GO level multiplied by the fraction of agreeing servers. Hence the scor-
ing function rewards the predictions that are more specific and predicted by multiple
servers.

SIFTER78 models a phylogenomics procedure of annotating molecular function of genes
in a probabilistic method. For a given query protein, a rooted phylogenetic tree is con-
structed using homologs taken from the Pfam database. Annotated GO terms to the proteins
in the tree are represented as a vector, and the probabilities with which known GO terms
are propagated to descendants are computed.

Another approach by Cai et al.79 for predicting enzyme subclasses is based on the amino
acid composition of a protein sequence. This is particularly useful when it is not possible
to identify a subfamily class for protein using the sequence similarity approach. They
have developed FunD-PseAA Intimate Sorting (ISort) predictor using domain information
obtained from InterPro database and amino acid frequencies in the sequence.

Pattern analysis of the distributions of disordered regions has shown that functions of
intrinsically disordered proteins are both length and position dependent. Lobley et al.80 used
location descriptors to encode the position of disordered regions in proteins and showed
their correlations with GO categories by calculating the average frequency of disordered
residues within different location windows for proteins sequences annotated by GO term.
Their results suggest that disorder regions are more indicative of biological process than
the molecular function and the information content of disorder feature set is comparably
lower than that for secondary structure or amino acid composition.

3.11 Protein Function Prediction (PFP) Algorithm

Our group has developed PFP algorithm for function prediction which extends a conven-
tional PSI-BLAST search81 (Figure 3.2). Along with strong PSI-BLAST hits which have
significant E-value, PFP also uses weak hits that are not generally considered for transfer-
ring annotations. Weakly similar hits that are not recognized as homologous to the query
sequence are also used in PFP because they often share common functional domains or
some functional similarity at a broader level. GO terms extracted from retrieved sequences
are ranked according to the following equation considering the E-value assigned to the
retrieved sequences. Currently sequences of an E-value of up to 100 are used:

s( fa) =
N∑

i=1

Nfunc(i)∑
j=1

(
(− log(E value(i)) + b)P( fa| f j )

)
, (3.1)

where s( fa) is the final score assigned to the GO term, fa , N is the number of the similar
sequences retrieved by PSI-BLAST, Nfunc(i) is the number of GO terms assigned to
sequence j , E value(i) is the E-value given to the sequence i , f j is a GO term assigned to
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Figure 3.2 Flowchart describing prediction method of PFP.

the sequence i , and b is the constant value, 2 (=log10100), which keeps the score positive.
P( fa| f j ) is the conditional probability that fa is associated with f j . This conditional
probability is computed from co-occurrence of GO terms in single sequences in the UniProt
database and stored in a two dimensional matrix named Function Association Matrix
(FAM):

P( fa| f j ) = c( fa, f j ) + ε

c( f j ) + µ · ε)
, (3.2)

c( fa, f j ) is number of times fa and f j are assigned simultaneously to each sequence in
UniProt, and c( f j ) is the total number of times f j appeared in UniProt, µ is the size
of one dimension of the FAM (i.e. the total number of unique GO terms), and ε is the
pseudo-count.

The pre-computed FAM allows PFP to extract information about strongly associated
terms in the database across the categories of GO which may be intuitive for biologists
but not directly retrieved from the sequence database searched. For example, the (GO:
0008234) ‘cysteine-type peptidase activity’ in the molecular function category shows
high association score with biological process term (GO:0006508) ‘proteolysis’ in the
biological process. And molecular function (GO:0015662) ‘ATPase activity, coupled to
trans-membrane movement of ions, phosphorylative mechanism’ is highly associated with
the cellular component term (GO:0016020) membrane.

Moreover, scores given to each GO term are propagated to parent terms in the GO tree
according to the number of genes associated to the predicted term relative to the parent
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term:

s( f p)
Nc∑

i=1

(
s( fci )

(
c( fci )

c( f p)

))
. (3.3)

where s( f p) is the score of the parent term f p, Nc is the number of child GO term which
belong to the parent term f p, s( fci ) is the score of a child term ci , and c( fci ) and c( f p) is
the number of known genes which are annotated with function term fci and f p in the Gene
Ontology Annotation (GOA) database released at the European Bioinformatics Institute
(EBI).

Since prediction crucially depends on available GO term annotations assigned to se-
quences in the database to be searched, we enriched annotated GO terms in the GOA
database by adding GO terms from other databases including HAMAP, InterPro,82 Pfam,35

PRINTS,34 ProDom,33 PROSITE.51 SMART,83 and TIGRFam84 as well as SwissProt Key
Words.

Once a raw score of a GO term is obtained according to the equations above, its statistical
significance is computed in terms of the P-value by considering the score distribution of
that GO term taken from a benchmark dataset. And finally, predicted GO terms are ranked
by their P-value in each of the three categories. It is important to consider the P-value
rather than a raw score because some GO terms occur more frequently in a database, and
thus tend to have a high raw score. For example, GO terms at a higher level in the GO tree
(thus have more general function) have a high score also because scores given to its child
terms are propagated to it.85

3.12 PFP Benchmark Results

In the paper published in 2006, we have benchmarked PFP on a set of randomly selected
2000 proteins from UniProt81 (Figure 3.3). Three methods are compared: PFP using FAM
to incorporate the GO term associations, PFP without using FAM, and transferring GO
annotations from the top PSI-BLAST hit (top PSI-BLAST method). For the PFP predic-
tions, five GO terms with the highest raw scores are predicted, and the top PSI-BLAST
method predicts all the GO terms assigned to the top hit sequence. The performance was
compared in terms of the sequence coverage, which reports the percentage of sequences
for which correct biological process (sharing a common parent with a target annotation at
GO depth ≥ 4) were predicted. To mimic a realistic situation that no significant homologs
are found for a query protein sequence, the most significant sequence hits up to several
E-value cutoffs in a PSI-BLAST search are ignored and only sequences with an E-value
of the cutoff or larger (E-value > 0, 0.01, 0.1, 1, 2, 3, 5,10, 15, 20, 25, 50, 100) were
used.

When all retrieved sequences are used, PFP with FAM correctly predicted biological
process over 80 % of the tested query sequences, while PFP without FAM and top PSI-
BLAST method made correct prediction to approximately 72 % of the query sequences.
The strength of PFP is more evident when top hit sequences up to a certain E-value are not
used. When only retrieved sequences with an E-value of 10 or higher are used, PFP with
FAM made correct predictions to around 50 % of the query sequences, which is about five
times larger than the top PSI-BLAST method. Interestingly, the sequence coverage by PFP
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Figure 3.3 Benchmark of PFP on a data set of 2000 sequences. Three methods are compared,
PFP with FAM, PFP without FAM, and the top PSI-BLAST method. The data used in Figure 1
of our paper in 200681 is replotted.

with FAM stays almost the same when the sequence hits of even larger E-value > 10 are
used.

A characteristic advantage of PFP is that it can often predict a broader function or a ‘low-
resolution’ function by identifying consensus GO terms which occur in retrieved sequences
with a wide range of E-value by PSI-BLAST. Note that it is not trivial for conventional
methods to make this kind of low-resolution function prediction, because there are no
apparent sequence patterns for low-resolution functions. Conventional ways of using (PSI-
)BLAST or motif searches are rather yes/no type prediction methods, meaning that a
prediction is made when a clear functional sequence pattern is found, but no prediction
is made otherwise. In contrast, PFP is able to make low-resolution function prediction
when detailed function prediction cannot be made by taking consensus between function
annotations of weakly similar sequences. In other words, PFP tries to give some functional
clue to a query sequence by lowering resolution of function when necessary without
sacrificing accuracy. An important point revealed by the benchmark study (Figure 3.3) is
that the top hit by PSI-BLAST is not necessarily accurate and PFP outperforms the top
PSI-BLAST method even when all retrieved sequences (with an E-value ≥ 0) are used.
The pitfall of relying on only the top hit sequence has been pointed out by Galperin and
Koonin.54 PFP can often avoid transferring irrelevant annotations of the top hit sequence
in a search by summarizing consensus GO terms which occur in a large number of hits in
a PSI-BLAST search.
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Figure 3.4 Distribution of predictions done by PFP for four genomes classified based on the
confidence score for the predicted annotations. A. thaliana, H. sapiens, D. melanogaster, and
P. falciparum. Annotations of theses genomes are taken from the GOA database.

A practical strength of PFP is that it can give function annotation to a larger number of
genes in a genome by predicting low resolution functions, while typically BLAST searches
can cover up to half of genes in a genome.23 Very general function, e.g. transporter or
enzyme, is not very helpful for designing biochemical experiments, but may be helpful for
interpreting a large-scale data, such as gene expression data or protein–protein interaction
data.86 In Figure 3.4, fractions of genes with PFP annotations along with annotated genes
in the GOA database for four organisms are shown. Predictions made by PFP are classified
into three groups according to confidence level of the predictions, which are estimated by
the correlation with the P-value and the accuracy in a benchmark dataset used.85 For these
genomes, PFP can provide function predictions to an additional 30–50 % of the total genes
in a genome with a high confidence.

3.13 Comparative Genomics Based Methods

Completely different approaches for sequence-based function prediction use the ge-
nomic context of genes, taking advantage of the increasing number of available complete
genomes. There are three major methods for this category. The first approach is to examine
conservation of gene clusters in multiple genomes. Because gene locations tend to be
dynamically shuffled during evolution,87 if proximity between genes is evolutionarily
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conserved across species (conserved gene clusters), there is a high likelihood of functional
association between the genes.88,89 Bacterial genomes have operon structures, which is
a transcription unit with multiple genes,90 but more conserved gene clusters are found
which are not known operons. Another evidence of functional association of genes is do-
main fusion events.91 If two separate genes in one organism are seen as fused domains
occurring in a single protein in another organism, apparently the fusion does not interfere
with function of the two genes, and most likely the two genes are involved in the same
functional context. Similarity in the pattern of existence and absence of orthologous genes
in genomes, which is called phylogenetic profiles,92 also indicates functional association of
genes. Bork’s group has implemented these three comparative genomics based approaches
in the STRING server.93

These comparative genomics-based methods will become more useful as the number
of sequenced genomes will further increase. However, what can be predicted by these
methods is functional association of genes but not functional terms of each gene. Thus,
homology-based function prediction is still needed for the starting point of a genome scale
annotation.

3.14 Subcellular Localization Prediction

Subcellular localization can be considered as a type of gene function. Indeed the Gene
Ontology organizes terms for describing localization in a DAG named cellular component.
Some proteins have a signal peptide typically at its N-terminal region, which are recognized
by a transporting protein and later often cleaved off. Therefore a direct way to predict
subcellular localization is to recognize these signals.94 Since molecular protein sorting
mechanism differs in prokaryotes and eukaryotes, prediction methods is usually specifically
designed for either one of them or for a sub-category, such as plants. PSORT is one of
the earliest prediction methods, which uses multiple sequence features including signal
peptides, amino acid composition, sequence motifs, and predicted trans-membrane domains
in the form of a decision rule or a classifier.95,96 They have an extensive collection of links
to prediction methods and related resources at their web site, http://www.psort.org,97 Nair
et al.98 demonstrate that cellular localization is an evolutionarily conserved property and
homologs tend to occur at the same cellular sites. Proteome Analyst99 obtains annotations
corresponding to homologous sequences detected using BLAST and then uses them with
an organism specific Bayesian classifier to classify the query protein to localization sites.
Some methods100–102 use SVM to classify proteins across different cellular components
based on the frequency of twenty amino acids. The phylogenetic profile can be also used
to predict localization.103

3.15 Identification of Functionally Important Residues

Usually molecular function of proteins, such as catalytic activity of enzymes, is carried
out by a small number of residues in a protein sequence. These functionally indispensable
residues are identified experimentally by constructing point mutation/deletion or domain
deletion mutants, or from the tertiary structure in a ligand bound form solved by X-ray
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crystallography or NMR. Databases such as PROSITE51 and ELM104 (for eukaryotes) store
such short sequence motifs. Since a local alignment of these short motifs does not result in
an alignment score which yields a significant E-value in a BLAST search, searching against
a motif database is a complementary method to homology search for function prediction. If
the tertiary structure of the target protein is known, conservation of residues which are not
close on the sequence but locate in spatial proximity can be further detected and compared
against a database of three-dimensional motifs.44,105–107 See Chapter 7 by Kinoshita in this
volume for more details on structure-based function prediction.

Functionally important residues are generally well conserved among orthologous pro-
teins, thus, selecting conserved residues from a carefully constructed MSA of a protein
family is a fundamental procedure of identifying functionally important residues.108–112

Besides sequence conservation, combining local structure information helps accurately
identifying functionally important residues.113 Some methods are developed that identify
residue positions in a MSA which discriminate predefined subfamilies thus considered
to be functional residues specific to subfamilies.114–116 In contrast, Pei’s method starts
with constructing a phylogenetic tree for a given set of sequences, and identifies residue
positions in the MSA which have a high likelihood that follows evolution along the tree.117

Casari et al.118 apply principal component analysis to a matrix representing sequences of
a family to identify groups of residues that are conserved in the whole family and also
those which are specific to subfamilies. MINER is based on the finding by La and Livesay
that sequence regions which show a mutation pattern that conserves the overall familial
phylogeny correspond to functional sites.119,120

3.16 Function Prediction Competitions

Responding to the increasing need of automatic function prediction, the bioinformatics
community has held function prediction contests in the last few years. Friedberg, Godzik,
and their co-workers have held the Automated Function Prediction Special Interest Group
meeting at ISMB 2005,121 where they summarized the results of a blind prediction contest
of protein gene function. The participants were required to set up an automatic web server
which accepts protein sequences, to which the organizers submitted target sequences and
evaluated returned predictions. The Critical Assessment of Techniques for Protein Struc-
ture Prediction (CASP) competitions included a function prediction category in CASP6
(2004)122 and CASP7 (2006).63 Target protein sequences were given to predict EC num-
bers, GO terms or active site/ligand binding site residues. In both AFP-SIG and CASP7,
PFP had the highest overall score63 (no ranking was given in CASP6). Objective evaluation
of existing methods is essential for enhancing continuous improvements of the methods
and for keeping the field active. A larger number of participants are expected to participate
in these competitions in the future.

3.17 Summary

We have reviewed recent advances of sequence-based function prediction methods.
Figure 3.5 summarizes different techniques for predicting function from sequence. The
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Query Protein

Sequence based Protein
function prediction methods

Sequence homology search 
(BLAST, FASTA etc)

Subcellular localization,
structure class prediction

(PSORT etc)

Comparative genomics based
methods (genomic proximity, gene

fusion, phylogenetic profile)

Advanced methods based on
homology search (PFP, GOtcha, 
Goblet, GOPET, GOFigure etc)

Motif search in databases of
protein families, domains

(Pfam, PROSITE, PRINTS etc)

Identification of functional
residues (MINER, FRpred etc)

Structure based Protein
function prediction methods

Figure 3.5 Summary of sequence-based function prediction methods.

first step is to perform homology search using BLAST, PSI-BLAST or FASTA. Also it
is recommended to perform motif and domain searches, such as Pfam and PROSITE. If
significant hits are not found, some of recent methods which expand homology search,
such as PFP, could be performed. If reasonable results are still not obtained, we recommend
the STRING server, which performs comparative genomics based approaches. However,
note that comparative genomics methods don’t predict specific functional terms of a query
protein, rather shows a set of proteins which are predicted to be functionally related to
the query protein. If knowing a broad class of protein is useful, subcellular localization
prediction and some local structure class predictions, such as prediction of transmembrane
proteins123 will be worthwhile to try. Finally, functional residue prediction methods, e.g.
MINER, will be informative for some purposes, but note that these methods are aimed to
select residues for function, not to predict functional terms. Refer to Table 3.1 for available
online tools.

The need of function prediction is increasing, especially for interpreting large-scale
omics data. This situation is very different from more than ten years ago when BLAST,
FASTA, and PSI-BLAST were developed. Automatic function prediction methods will
evolve in harmony with new developments of experimental methods by incorporating
those experimental data in prediction algorithms and by helping biological reasoning
of experimental data. More advances in this field are expected in the near future keep-
ing pace with the other bioinformatics areas described in the other chapters in this
book.
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4
Template Based Prediction

of Three-dimensional Protein
Structures: Fold Recognition
and Comparative Modeling

Jan Kosiński, Karolina L. Tkaczuk, Joanna M. Kasprzak and Janusz M. Bujnicki

4.1 Introduction

The protein structure is intrinsically connected to the protein function. In particular, a cat-
alytic activity of enzymes is determined by a specific orientation of appropriate amino
acid residues in the three-dimensional space. Likewise, a substrate specificity of the
enzymes and transport proteins depends on how their structures can accommodate to
geometrical and electrostatic features of the substrates and ligands. In the case of struc-
tural proteins, their three-dimensional shape directly determines the way in which they
can be used in building the cellular components. Therefore, it is undisputable that the
knowledge of a protein structure can help in determining and understanding the protein
function.

With the three-dimensional structure in hand a scientist can often infer what activity
the protein has and what substrate it processes or which ligand it must bind to perform its
function. The efforts aimed at revealing the structures of proteins started about 1935, when
the first X-ray diffraction pattern of a protein crystal was reported.1 Twenty-two years later
the first protein structure has been solved (the structure of a myoglobin at 6A

◦
resolution2).

Today, after 50 years from the release of that first protein structure, about 45,000 structures
are known. However, this set corresponds only to about 16,000 unique proteins, because
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multiple structures are often available for the same protein. At the same time, there are
over 6,600,000 of known and predicted proteins in the UniProtKB database (as of October
2008) and sequences of millions of other predicted proteins are already deposited in other
public databases.

This increasingly large gap between the number of structures and protein sequences
results from limitations of present structure determination techniques. The structure de-
termination by X-ray crystallography is impeded by the requirement of the high-level
expression, efficient purification and successful crystallization of the target proteins. NMR
techniques are able to overcome some of these difficulties, but are still limited with re-
spect to the size of protein that can be tackled on a routine basis. Moreover, both X-ray
crystallography and NMR methods are very expensive, time-consuming and require highly
specialized equipment.

The alternative approach assumes that protein structures can be modeled using computer
programs. This idea is based on Anfinsen’s hypothesis3 that protein structure in a given
environment is determined by protein sequence and the protein folding is a process of
assuming the conformation of the lowest free energy that we should be able to simulate
with accurate knowledge of laws of physics. However, mainly due to limited computational
power of current computers and the high cost of precise free energy calculations, the pro-
tein folding problem has not been solved yet. Fortunately, it was found that evolutionary
related proteins tend to have similar structures,4 which suggested that many protein struc-
tures can be modeled based on already known structures of related proteins (Figure 4.1).
This technique, referred to as comparative or homology modeling, has become the most
successful protein structure modeling method, which often leads to accurate models suitable
for detailed functional analyses. The term ‘comparative modeling’ refers to all techniques
that model protein structures based on the coordinates of known structure under the as-
sumption that the structure of the target (i.e. the protein we want to model) is similar to
the structure of the template (i.e. the structure that will serve a framework for modeling
the target). The specific case of comparative modeling is ‘homology modeling’, which is
technically the same as comparative modeling but additionally implies that target and the
template are evolutionary related (i.e. homologous).

The prerequisite to obtain a comparative model of high accuracy is the availability of a
known structure of a structurally similar protein that can be used as a modeling template.
This is not guaranteed, because the number of solved structures is still limited, and thus
far we have not yet obtained structural representatives for all protein families. The paucity
of structures was one of the major driving forces for emergence of a new field: structural
genomics. The main goal of the structural genomics initiative is to provide an exhaustive
structural coverage of diverse protein structure universe to enable modeling any other
structure using comparative modeling tools. Therefore, structural genomics consortia aim
at selecting the most representative proteins from structurally uncharacterized sequence
families for experimental structure determination. Other proteins may then be modeled
with computer programs based on the already solved structures. It is expected that with
the advance of structural genomics projects, the coverage of protein structure universe will
get more complete, the number of proteins unrelated to any protein with known structure
will decrease significantly and the comparative modeling will become easier and more
accurate, thus becoming fully complementary to experimental structure determination
techniques.
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Figure 4.1 Evolutionary principles of comparative modeling

4.2 Steps of Comparative Modeling

Comparative modeling is a multi-step procedure involving a variety of programs and alter-
native approaches (Figure 4.2). It starts from a prediction of the target fold and identification
of the best template structure(s) bearing this fold. A single template or multiple templates
(if available) are then used as a source of coordinates for modeling the target protein.
Modeling is usually an iterative process including model building, model refinement and
model evaluation. The following sections review in detail these steps, starting from protein
fold recognition and ending with model quality assessment.

4.2.1 Fold Recognition

Fold recognition (FR) is the first step of the comparative modeling process. It is defined
as the prediction of a structural fold of the target protein from its amino acid sequence
by detecting of proteins of known three-dimensional structure that are likely to have a
similar fold to the target. FR is accomplished by searching a database of known protein
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90 Template Based Prediction of Three-dimensional Protein Structures

Figure 4.2 Steps of comparative modeling

structures (PDB or its non-redundant subset) for structures that are the most ‘compatible’
with the target sequence. This sequence-structure compatibility can be evaluated by various
means depending on the method (see below). Typically, FR methods produce rankings of
templates and provide target-template alignments and various scores describing the level
of sequence-structure compatibility. This information can be directly used for template
selection and comparative modeling (see sections below). FR methods can be generally
divided into two general categories: (1) sequence-only based methods and (2) methods that
use both sequence and structural information. Publicly available FR programs are listed in
Table 4.1 along with description of their characteristic features.

Sequence-based methods for protein fold recognition rely on traditional approaches
for remote homology detection that are comprehensively reviewed in Chapter 1 in this



P1: OTA

chap04 JWBK331-Bujnicki November 25, 2008 7:18 Printer: Yet to come

Ta
bl

e
4.

1
Su

m
m

ar
y

of
pu

bl
ic

ly
av

ai
la

bl
e

pr
og

ra
m

s
fo

r
pr

ot
ei

n
Fo

ld
R

ec
og

ni
tio

n.
B

rie
fd

es
cr

ip
tio

ns
of

m
et

ho
ds

ar
e

in
cl

ud
ed

.I
n

ea
ch

se
ct

io
n

pr
og

ra
m

s
ar

e
lis

te
d

in
th

e
al

ph
ab

et
ic

al
or

de
r.

Th
e

de
sc

rip
tio

n
of

m
et

ho
do

lo
gy

us
ed

fo
r

co
ns

tr
uc

tio
n

of
pr

ofi
le

s
or

fo
r

sc
or

in
g

ha
s

be
en

pr
ov

id
ed

w
he

re
ap

pl
ic

ab
le

M
et

ho
d

Se
ar

ch
st

ra
te

gy
D

es
cr

ip
tio

n

Se
qu

en
ce

-b
as

ed
m

et
ho

ds
:

FF
A

S15

ffa
s.

ljc
rf

.e
du

/
Pr

ofi
le

-p
ro

fil
e

Pr
ofi

le
C

on
st

ru
ct

io
n:

Pr
ofi

le
s

ar
e

ca
lc

ul
at

ed
fr

om
al

ig
nm

en
ts

re
tu

rn
ed

by
PS

I-
B

LA
ST

,5
se

qu
en

ce
s

ar
e

w
ei

gh
te

d
ba

se
d

on
th

ei
r

di
ss

im
ila

ri
ty

w
ith

re
sp

ec
tt

o
th

e
w

ho
le

fa
m

ily
.

C
om

pa
ri

so
n

Sc
or

e:
a

do
tp

ro
du

ct
of

co
rr

es
po

nd
in

g
ve

ct
or

s.
FO

RT
E16

w
w

w
.c

br
c.

jp
/fo

rt
e/

Pr
ofi

le
-p

ro
fil

e
Pr

ofi
le

C
on

st
ru

ct
io

n:
A

pr
ofi

le
is

a
re

-f
or

m
at

te
d

PS
SM

fr
om

a
PS

I-
B

LA
ST

5

se
ar

ch
C

om
pa

ri
so

n
Sc

or
e:

co
rr

el
at

io
n

co
ef

fic
ie

nt
be

tw
ee

n
ea

ch
tw

o
pr

ofi
le

co
lu

m
ns

(v
ec

to
rs

)
PD

B
-B

LA
ST

E.
g.

at
ge

ne
si

lic
o.

pl
/m

et
a

Pr
ofi

le
-s

eq
ue

nc
e

Ta
rg

et
se

qu
en

ce
is

us
ed

as
a

se
ed

to
co

ns
tr

uc
ta

se
qu

en
ce

pr
ofi

le
by

a
PS

I-
B

LA
ST

5
se

ar
ch

ag
ai

ns
tt

he
pr

ot
ei

n
se

qu
en

ce
da

ta
ba

se
.T

he
n,

th
e

pr
ofi

le
is

us
ed

to
se

ar
ch

ag
ai

ns
tt

he
se

qu
en

ce
s

fr
om

th
e

PD
B

da
ta

ba
se

to
id

en
tif

y
po

ss
ib

le
te

m
pl

at
es

SU
PE

R
FA

M
IL

Y
81

su
pf

am
.o

rg
/S

U
PE

R
FA

M
IL

Y
/

Sc
or

in
g

w
ith

H
M

M
s

Sc
or

es
th

e
ta

rg
et

se
qu

en
ce

w
ith

H
M

M
s

fr
om

th
e

Su
pe

rf
am

ily
lib

ra
ry

of
H

M
M

s
bu

ilt
fo

r
st

ru
ct

ur
al

ly
ch

ar
ac

te
ri

ze
d

su
pe

rf
am

ili
es

de
riv

ed
fr

om
SC

O
P82

Se
qu

en
ce

/S
tr

uc
tu

re
-b

as
ed

m
et

ho
ds

:
FU

G
U

E28

w
w

w
-c

ry
st

.b
io

c.
ca

m
.a

c.
uk

/∼
fu

gu
e

Se
qu

en
ce

/p
ro

fil
e

–
pr

ofi
le

Pr
ofi

le
C

on
st

ru
ct

io
n:

A
pr

ofi
le

fo
r

th
e

ta
rg

et
is

ca
lc

ul
at

ed
fr

om
a

us
er

-p
ro

vi
de

d
or

PS
I-

B
LA

ST
-d

er
iv

ed
M

SA
(s

eq
ue

nc
es

w
ei

gh
te

d
us

in
g

th
e

V
A

sc
he

m
e83

).
A

pr
ofi

le
fo

r
th

e
te

m
pl

at
e

co
nt

ai
ns

tw
o

m
at

ri
ce

s:
a

sc
or

in
g

m
at

ri
x

de
riv

ed
fr

om
en

vi
ro

nm
en

t-
sp

ec
ifi

c
su

bs
tit

ut
io

n
ta

bl
es

an
d

a
ga

p
pe

na
lty

m
at

ri
x

de
riv

ed
fr

om
st

ru
ct

ur
al

al
ig

nm
en

ts
fr

om
H

O
M

ST
R

A
D

84

C
om

pa
ri

so
n

Sc
or

e:
sc

or
e

fr
om

sc
or

in
g

m
at

ri
x

pr
e-

ca
lc

ul
at

ed
fo

r
ea

ch
te

m
pl

at
e

fa
m

ily
,g

ap
pe

na
lti

es
fr

om
th

e
ga

p
pe

na
lty

m
at

ri
x

H
H

PR
ED

24

to
ol

ki
t.t

ue
bi

ng
en

.m
pg

.d
e/

hh
pr

ed
H

M
M

-H
M

M
Ta

rg
et

se
qu

en
ce

or
M

SA
is

us
ed

fo
r

bu
ild

in
g

a
H

M
M

,w
hi

ch
is

al
ig

ne
d

w
ith

al
lH

M
M

s
re

pr
es

en
tin

g
an

no
ta

te
d

pr
ot

ei
ns

or
do

m
ai

ns
w

ith
kn

ow
n

st
ru

ct
ur

e.
H

M
M

s
ca

n
in

cl
ud

e
SS

in
fo

rm
at

io
n

(e
xp

er
im

en
ta

lly
de

te
rm

in
ed

or
pr

ed
ic

te
d)

(c
on

tin
ue

d
ov

er
le

af
)



P1: OTA

chap04 JWBK331-Bujnicki November 25, 2008 7:18 Printer: Yet to come

Ta
bl

e
4.

1
(C

on
tin

ue
d)

M
et

ho
d

Se
ar

ch
st

ra
te

gy
D

es
cr

ip
tio

n

IN
U

B
(b

io
in

bg
u)

26

in
ub

.c
se

.b
uf

fa
lo

.e
du

/q
ue

ry
.h

tm
l

Se
qu

en
ce

/p
ro

fil
e

–
pr

ofi
le

IN
U

B
is

ne
w

ve
rs

io
n

of
bi

oi
nb

gu
.B

io
in

bg
u

se
le

ct
s

co
ns

en
su

s
pr

ed
ic

tio
n

fr
om

fiv
e

co
m

po
ne

nt
s

th
at

us
e

th
e

sa
m

e
al

ig
nm

en
ta

lg
or

ith
m

bu
tw

ith
di

ffe
re

nt
se

qu
en

ce
si

m
ila

ri
ty

sc
or

in
g

fu
nc

tio
ns

.
Pr

ofi
le

C
on

st
ru

ct
io

n:
us

es
M

SA
s

or
PS

SM
s

fr
om

PS
I-

B
LA

ST
5

se
ar

ch
es

C
om

pa
ri

so
n

Sc
or

e:
a

lin
ea

r
co

m
bi

na
tio

n
of

SS
si

m
ila

ri
ty

sc
or

e
an

d
on

e
of

fiv
e

se
qu

en
ce

si
m

ila
ri

ty
sc

or
es

(d
er

iv
ed

fr
om

bi
-d

ir
ec

tio
na

l
se

qu
en

ce
-s

eq
ue

nc
e,

se
qu

en
ce

-P
SS

M
,s

eq
ue

nc
e-

M
SA

an
d

M
SA

-P
SS

M
co

m
pa

ri
so

ns
)

M
et

a-
BA

SI
C

85

m
et

a.
bi

oi
nf

o.
pl

Pr
ofi

le
-p

ro
fil

e
R

un
s

se
ve

ra
lp

ro
fil

e-
pr

ofi
le

co
m

pa
ri

so
n

m
et

ho
ds

th
at

us
e

di
ffe

re
nt

pa
ra

m
et

er
s

of
pr

ofi
le

co
ns

tr
uc

tio
n

an
d

m
et

ho
ds

fo
r

ca
lc

ul
at

io
ns

of
al

ig
nm

en
ts

co
re

s.
Pr

ofi
le

C
on

st
ru

ct
io

n:
M

et
a-

pr
ofi

le
de

riv
ed

fr
om

PS
I-

B
LA

ST
5

se
ar

ch
es

w
ith

di
ffe

re
nt

nu
m

be
rs

of
ite

ra
tio

ns
,p

ro
fil

es
in

cl
ud

e
SS

pr
ed

ic
tio

ns
by

PS
IP

R
ED

86
.

C
om

pa
ri

so
n

Sc
or

e:
do

tp
ro

du
ct

of
co

rr
es

po
nd

in
g

pr
ofi

le
ve

ct
or

s
or

m
ul

tip
lic

at
io

n
of

th
e

fir
st

ve
ct

or
by

B
LO

SU
M

32
m

at
ri

x
an

d
th

en
by

th
e

se
co

nd
ve

ct
or

m
G

en
Th

re
ad

er
19

bi
oi

nf
.c

s.
uc

l.a
c.

uk
/p

si
pr

ed
/

Pr
ofi

le
-p

ro
fil

e
Ev

al
ua

te
s

pr
ofi

le
-p

ro
fil

e
al

ig
nm

en
ts

us
in

g
st

ru
ct

ur
e

ba
se

d
sc

or
in

g
fu

nc
tio

n
(in

cl
.S

S,
pa

ir
w

is
e

co
nt

ac
ts

st
at

is
tic

al
po

te
nt

ia
ls

an
d

so
lv

at
io

n
te

rm
s)

.
Pr

ofi
le

C
on

st
ru

ct
io

n:
PS

I-
B

LA
ST

se
ar

ch
ag

ai
ns

ts
eq

ue
nc

e
da

ta
ba

se
,u

se
s

PS
SM

s
di

re
ct

ly
fr

om
PS

I-
B

LA
ST

.
C

om
pa

ri
so

n
Sc

or
e:

do
tp

ro
du

ct
of

co
rr

es
po

nd
in

g
ve

ct
or

s
(b

ut
us

in
g

on
ly

po
si

tiv
e

sc
or

es
fr

om
ta

rg
et

PS
SM

)87

nF
O

LD
287

w
w

w
.b

io
ce

nt
re

.r
dg

.a
c.

uk
/

bi
oi

nf
or

m
at

ic
s/

nF
O

LD
/

Pr
ofi

le
-p

ro
fil

e
A

n
ex

te
nd

ed
ve

rs
io

n
of

m
G

en
Th

re
ad

er
19

th
at

ta
ke

s
m

od
el

s
ge

ne
ra

te
d

by
m

G
en

Th
re

ad
er

an
d

sc
or

es
th

em
w

ith
se

ve
ra

lM
Q

A
Ps

,a
se

co
nd

ar
y

st
ru

ct
ur

e
el

em
en

ta
lig

nm
en

ts
co

re
an

d
fu

nc
tio

na
ls

ite
de

te
ct

io
n

sc
or

e
PH

Y
R

E25

w
w

w
.s

bg
.b

io
.ic

.a
c.

uk
/∼

ph
yr

e/
Pr

ofi
le

-p
ro

fil
e/

m
et

as
er

ve
r

R
un

s
se

ve
ra

ls
eq

ue
nc

e,
pr

ofi
le

an
d

SS
co

m
pa

ri
so

n
m

et
ho

ds
to

ge
ne

ra
te

a
se

to
fm

od
el

s,
fr

om
w

hi
ch

be
st

m
od

el
s

ar
e

se
le

ct
ed

us
in

g
th

e
3D

-C
ol

on
y

m
et

ho
d

(th
e

3D
-Ju

ry
al

go
ri

th
m

w
ith

m
od

el
s

w
ei

gh
te

d
ac

co
rd

in
g

to
sc

or
es

pr
ov

id
ed

by
th

e
se

rv
er

s
us

ed
to

ge
ne

ra
te

th
em

)



P1: OTA

chap04 JWBK331-Bujnicki November 25, 2008 7:18 Printer: Yet to come

PR
O

SP
EC

TO
R

/T
A

SS
ER

-L
it

e88
,8

9

cs
sb

.b
io

lo
gy

.g
at

ec
h.

ed
u/

sk
ol

ni
ck

/
w

eb
se

rv
ic

e/
ta

ss
er

lit
e/

Pr
ofi

le
-s

eq
ue

nc
e/

th
re

ad
in

g
M

ul
ti-

pa
ss

pr
oc

ed
ur

e
st

ar
tin

g
fr

om
a

se
qu

en
ce

pr
ofi

le
fo

r
th

e
ta

rg
et

.
Sc

or
es

te
m

pl
at

es
w

ith
th

is
pr

ofi
le

to
ge

tt
ar

ge
t-

te
m

pl
at

e
al

ig
nm

en
ts

,
w

hi
ch

ar
e

ev
al

ua
te

d
by

va
ri

ou
s

pa
ir

w
is

e
po

te
nt

ia
ls

in
th

e
ne

xt
pa

ss
es

.
Pr

ofi
le

C
on

st
ru

ct
io

n:
tw

o
FA

ST
A

90
se

ar
ch

es
to

ge
ne

ra
te

cl
os

e
an

d
di

st
an

t
pr

ofi
le

s
(th

e
la

tte
r

co
nt

ai
ni

ng
m

or
e

di
st

an
th

om
ol

og
s)

,c
an

in
cl

ud
e

SS
pr

ed
ic

tio
ns

C
om

pa
ri

so
n

Sc
or

e:
Sc

or
e

fr
om

th
e

ta
rg

et
pr

ofi
le

R
A

PT
O

R
91

w
w

w
.b

io
in

fo
rm

at
ic

ss
ol

ut
io

ns
.c

om
/

ra
pt

or
on

lin
e/

Th
re

ad
in

g
Pe

rf
or

m
s

th
re

ad
in

g
us

in
g

ef
fic

ie
nt

lin
ea

r
pr

og
ra

m
m

in
g

m
et

ho
do

lo
gy

.T
he

th
re

ad
in

g
sc

or
in

g
fu

nc
tio

n
co

ns
is

ts
of

sc
or

es
th

at
ta

ke
in

to
ac

co
un

t
re

si
du

e
so

lv
en

ta
cc

es
si

bi
lit

y,
se

co
nd

ar
y

st
ru

ct
ur

e,
am

in
o

ac
id

su
bs

tit
ut

io
n

m
at

ri
x

an
d

pa
ir

w
is

e
in

te
ra

ct
io

n
sc

or
e

(b
as

ed
on

st
at

is
tic

al
po

te
nt

ia
l).

M
od

el
s

ar
e

ra
nk

ed
us

in
g

SV
M

SA
M

-T
06

27

w
w

w
.s

oe
.u

cs
c.

ed
u/

re
se

ar
ch

/
co

m
pb

io
/S

A
M

T0
6/

T0
6-

qu
er

y.
ht

m
l

Sc
or

in
g

w
ith

H
M

M
s

H
M

M
s

ar
e

co
ns

tr
uc

te
d

fo
r

bo
th

th
e

ta
rg

et
an

d
te

m
pl

at
es

.T
he

n
bo

th
th

e
ta

rg
et

an
d

te
m

pl
at

es
ar

e
sc

or
ed

us
in

g
ta

rg
et

-
an

d
te

m
pl

at
e-

de
riv

ed
H

M
M

s
to

gi
ve

co
m

bi
ne

d
sc

or
es

fo
r

te
m

pl
at

es
.H

M
M

s
in

cl
ud

e
SS

an
d

ot
he

r
lo

ca
ls

tr
uc

tu
re

pr
op

er
tie

s
in

cl
.b

ur
ia

l(
ob

se
rv

ed
fo

r
th

e
te

m
pl

at
es

,
pr

ed
ic

te
d

fo
r

th
e

ta
rg

et
)

SP
41

8

sp
ar

ks
.in

fo
rm

at
ic

s.
iu

pu
i.e

du
/S

P4
/

Pr
ofi

le
-p

ro
fil

e
Pr

ofi
le

C
on

st
ru

ct
io

n:
PS

SM
s

fr
om

PS
I-

B
LA

ST
fo

r
ta

rg
et

an
d

te
m

pl
at

e,
re

si
du

e-
de

pt
h

de
pe

nd
en

t,
st

ru
ct

ur
e-

de
riv

ed
se

qu
en

ce
pr

ofi
le

fo
r

te
m

pl
at

e,
SS

pr
ofi

le
s

an
d

SA
pr

ofi
le

s
C

om
pa

ri
so

n
Sc

or
e:

lin
ea

r
co

m
bi

na
tio

n
of

w
ei

gh
te

d
do

tp
ro

du
ct

s
of

co
rr

es
po

nd
in

g
pr

ofi
le

ve
ct

or
s

an
d

w
ei

gh
te

d
sc

or
in

g
fu

nc
tio

ns
fo

r
SS

an
d

SA
m

at
ch

es
,g

ap
pe

na
lti

es
ar

e
SS

-d
ep

en
de

nt
TH

R
EA

D
ER

20
,2

3

bi
oi

nf
.c

s.
uc

l.a
c.

uk
/th

re
ad

er
/

Th
re

ad
in

g
A

lig
ns

ta
rg

et
an

d
te

m
pl

at
e

se
qu

en
ce

s
us

in
g

do
ub

le
dy

na
m

ic
pr

og
ra

m
m

in
g

al
go

ri
th

m
th

at
ca

n
ta

ke
in

to
ac

co
un

tp
ai

rw
is

e
co

nt
ac

t
po

te
nt

ia
ls

an
d

so
lv

at
io

n
en

er
gi

es
as

w
el

la
s

se
qu

en
ce

an
d

SS
si

m
ila

ri
ty

W
U

R
ST

92

w
w

w
.z

bh
.u

ni
-h

am
bu

rg
.d

e/
w

ur
st

/
Pr

ofi
le

-s
eq

ue
nc

e
Pr

ofi
le

co
ns

tr
uc

tio
n:

pr
ofi

le
fr

om
PS

I-
B

LA
ST

se
ar

ch
.

C
om

pa
ri

so
n

Sc
or

e:
lin

ea
r

co
m

bi
na

tio
n

of
fr

ag
m

en
t-

ba
se

d
se

qu
en

ce
-t

o-
st

ru
ct

ur
e

co
m

pa
tib

ili
ty

sc
or

e
an

d
se

qu
en

ce
si

m
ila

ri
ty

sc
or

e
ba

se
d

on
a

su
bs

tit
ut

io
n

m
at

ri
x

de
riv

ed
fr

om
su

pe
rp

os
iti

on
s

of
kn

ow
n

st
ru

ct
ur

es
.

M
od

el
s

ba
se

d
on

di
ffe

re
nt

te
m

pl
at

es
ar

e
ad

di
tio

na
lly

sc
or

ed
us

in
g

a
ps

eu
do

-e
ne

rg
y

fu
nc

tio
n



P1: OTA

chap04 JWBK331-Bujnicki November 25, 2008 7:18 Printer: Yet to come

Ta
bl

e
4.

1
(c

on
tin

ue
d)

M
et

ho
d

Se
ar

ch
st

ra
te

gy
D

es
cr

ip
tio

n

M
et

as
er

ve
rs

(w
it

h
as

so
ci

at
ed

M
et

a-
pr

ed
ic

to
rs

):
B

io
nf

o.
PL

30

m
et

a.
bi

oi
nf

o.
pl

M
et

as
er

ve
r

Pr
ov

id
es

:U
ni

fie
d

vi
ew

of
ou

tp
ut

s
fr

om
di

ffe
re

nt
se

rv
er

s;
FR

se
rv

er
s;

SS
se

rv
er

s;
fu

ll
at

om
m

od
el

s;
in

te
ra

ct
iv

e
sc

or
in

g
of

al
ig

nm
en

ts
w

ith
V

er
ify

3D
3D

-J
U

RY
93

bi
oi

nf
o.

pl
/m

et
a

C
on

se
ns

us
m

et
ho

d
In

te
ra

ct
iv

e
m

et
a

pr
ed

ic
to

r
th

at
ta

ke
s

an
y

se
to

fm
od

el
s

as
an

in
pu

ta
nd

co
m

pa
re

s
th

em
al

la
ga

in
st

al
l.

3D
-J

U
RY

sc
or

es
be

st
m

od
el

s
th

at
ap

pe
ar

to
co

nt
ai

n
th

e
la

rg
es

tr
ec

ur
re

nt
su

bs
et

of
co

m
m

on
co

or
di

na
te

s
G

en
eS

ili
co

31

ge
ne

si
lic

o.
pl

/m
et

a
M

et
as

er
ve

r
Pr

ov
id

es
:U

ni
fie

d
vi

ew
of

ou
tp

ut
s

fr
om

di
ffe

re
nt

se
rv

er
s;

FR
se

rv
er

s;
SS

se
rv

er
s;

so
lv

en
ta

cc
es

si
bi

lit
y

pr
ed

ic
tio

n;
D

is
or

de
r

pr
ed

ic
tio

n;
tr

an
sm

em
br

an
e

he
lix

pr
ed

ic
tio

n;
fu

ll
at

om
m

od
el

s
PC

O
N

S5
94

w
w

w
.s

bc
.s

u.
se

/∼
bj

or
n/

Pc
on

s5
C

on
se

ns
us

m
et

ho
d

A
lo

ca
lc

op
y

of
PC

O
N

S5
se

rv
er

ru
n

on
m

od
el

s
ge

ne
ra

te
d

by
G

en
es

ili
co

M
et

as
er

ve
r

3D
C

O
N

SE
N

S
ge

ne
si

lic
o.

pl
/m

et
a

C
on

se
ns

us
m

et
ho

d
A

lo
ca

li
m

pl
em

en
ta

tio
n

of
th

e
3D

-Ju
ry

al
go

ri
th

m

LO
M

ET
S95

zh
an

g.
bi

oi
nf

or
m

at
ic

s.
ku

.e
du

/
LO

M
ET

S/

M
et

as
er

ve
r

Pr
ov

id
es

:U
ni

fie
d

pr
es

en
ta

tio
n

of
ou

tp
ut

s
fr

om
di

ffe
re

nt
se

rv
er

s;
FR

se
rv

er
s

on
ly

;N
o

co
ns

en
su

s
m

et
ho

d;
fu

ll
at

om
m

od
el

s;
A

dd
iti

on
al

re
st

ra
in

tfi
le

s
in

th
e

ou
tp

ut
M

et
aP

P96

w
w

w
.p

re
di

ct
pr

ot
ei

n.
or

g/
m

et
a.

ph
p

M
et

as
er

ve
r

Pr
ov

id
es

:F
R

se
rv

er
s;

SS
se

rv
er

s;
H

om
ol

og
y

m
od

el
in

g
se

rv
er

s;
co

nt
ac

t
pr

ed
ic

tio
n;

tr
an

sm
em

br
an

e
he

lix
pr

ed
ic

tio
n;

si
gn

al
pe

pt
id

es
;

po
st

tr
an

sl
at

io
na

lm
od

ifi
ca

tio
ns

;N
o

co
ns

en
su

s
m

et
ho

d
Pc

on
s.

ne
t32

pc
on

s.
ne

t/
M

et
as

er
ve

r
Pr

ov
id

es
:U

ni
fie

d
pr

es
en

ta
tio

n
of

ou
tp

ut
s

fr
om

di
ffe

re
nt

se
rv

er
s;

FR
se

rv
er

s
on

ly
;f

ul
la

to
m

m
od

el
s

PC
O

N
S5

94

w
w

w
.s

bc
.s

u.
se

/∼
bj

or
n/

Pc
on

s5
C

on
se

ns
us

m
et

ho
d

M
ak

es
su

pe
rp

os
iti

on
of

to
p

m
od

el
s

pr
od

uc
ed

by
di

ffe
re

nt
FR

se
rv

er
s

an
d

ra
nk

s
th

e
m

od
el

s
ac

co
rd

in
g

to
th

ey
av

er
ag

e
si

m
ila

ri
ty

to
th

e
en

tir
e

en
se

m
bl

e
of

th
e

m
od

el
s

Pm
od

el
le

r97

pc
on

s.
ne

t/
C

on
se

ns
us

m
et

ho
d

R
un

s
PC

O
N

S
bu

ta
dd

iti
on

al
ly

bu
ild

s
m

od
el

s
w

ith
M

O
D

EL
LE

R
an

d
sc

or
es

th
em

w
ith

Pr
oQ

m
et

ho
d98

.T
he

fin
al

ra
nk

in
g

is
m

ad
e

ba
se

d
on

th
e

sc
or

e
co

m
bi

ni
ng

PC
O

N
S

an
d

Pr
oQ

sc
or

es
@

TO
M

E99

bi
os

er
v.

cb
s.

cn
rs

.fr
/H

TM
L

B
IO

/
fr

am
e

m
et

a.
ht

m
l

M
et

as
er

ve
r

Pr
ov

id
es

:U
ni

fie
d

pr
es

en
ta

tio
n

of
ou

tp
ut

s
fr

om
di

ffe
re

nt
se

rv
er

s;
FR

se
rv

er
s;

si
ng

le
SS

se
rv

er
;f

ul
la

to
m

m
od

el
s;

N
o

co
ns

en
su

s
m

et
ho

d



P1: OTA

chap04 JWBK331-Bujnicki November 25, 2008 7:18 Printer: Yet to come

M
et

a-
pr

ed
ic

to
rs

/f
ra

gm
en

t
as

se
m

bl
y

m
et

ho
ds

:
3D

-S
H

O
TG

U
N

10
0

ht
tp

://
in

ub
.c

se
.b

uf
fa

lo
.e

du
/

M
et

a-
pr

ed
ic

to
r/

fr
ag

m
en

t
as

se
m

bl
y

Fo
r

ea
ch

FR
m

od
el

in
th

e
in

pu
ts

et
,a

hy
br

id
m

od
el

is
cr

ea
te

d
by

m
er

gi
ng

it
w

ith
th

e
m

os
tf

re
qu

en
tly

re
cu

rr
in

g
fr

ag
m

en
ts

fr
om

ot
he

r
at

le
as

t
pa

rt
ia

lly
su

pe
ri

m
po

sa
bl

e
m

od
el

s.
Th

en
,t

he
be

st
m

od
el

s
is

se
le

ct
ed

ba
se

d
on

th
e

or
ig

in
al

sc
or

es
of

in
iti

al
m

od
el

s
an

d
a

sc
or

e
re

fle
ct

in
g

si
m

ila
ri

ty
be

tw
ee

n
th

at
m

od
el

an
d

ot
he

r
hy

br
id

m
od

el
s

fr
om

th
e

en
se

m
bl

e.
3D

-S
H

O
TG

U
N

is
no

w
a

pa
rt

of
th

e
IN

U
B

se
rv

er
FR

an
ke

ns
te

in
’s

M
on

st
er

37

1.
ge

ne
si

lic
o.

pl
/to

ol
ki

t/u
ni

m
od

?
m

et
ho

d=
Fr

an
ke

ns
te

in
W

eb
O

pt
im

iz
eA

lig
nm

en
t

2.
ge

ne
si

lic
o.

pl
/m

et
a

M
et

a-
pr

ed
ic

to
r/

fr
ag

m
en

t
as

se
m

bl
y

A
hy

br
id

m
od

el
is

co
ns

tr
uc

te
d

by
m

er
gi

ng
th

e
co

ns
en

su
s

an
d

be
st

sc
or

in
g

(a
cc

or
di

ng
to

M
Q

A
P)

fr
ag

m
en

ts
of

m
od

el
s

fr
om

FR
se

rv
er

s.
Th

is
hy

br
id

m
od

el
is

su
pe

ri
m

po
se

d
on

th
e

te
m

pl
at

es
to

ge
ne

ra
te

a
ta

rg
et

-t
em

pl
at

e
al

ig
nm

en
t,

w
hi

ch
is

th
en

us
ed

to
bu

ild
a

ne
w

m
od

el
.I

ft
hi

s
m

od
el

co
nt

ai
ns

po
or

ly
sc

or
in

g
re

gi
on

s,
sa

m
pl

in
g

of
al

te
rn

at
iv

e
ta

rg
et

-t
em

pl
at

e
al

ig
nm

en
ts

is
ca

rr
ie

d
ou

ta
nd

ad
di

tio
na

lg
en

er
at

io
n

of
m

od
el

s
ar

e
bu

ilt
an

d
re

co
m

bi
ne

d
I-

TA
SS

ER
39

ht
tp

://
zh

an
g.

bi
oi

nf
or

m
at

ic
s.

ku
.e

du
/

I-
TA

SS
ER

/

M
et

a-
pr

ed
ic

to
r/

fr
ag

m
en

t
as

se
m

bl
y

R
un

s
se

ve
ra

lp
ro

fil
e-

pr
ofi

le
al

ig
nm

en
tm

et
ho

ds
th

at
di

ffe
r

in
th

e
w

ay
of

pr
ofi

le
co

ns
tr

uc
tio

n
an

d
al

ig
nm

en
ta

lg
or

ith
m

.A
lig

ne
d

re
gi

on
s

ar
e

us
ed

as
fr

ag
m

en
ts

,f
ro

m
w

hi
ch

a
po

ol
of

m
od

el
s

is
as

se
m

bl
ed

w
ith

m
is

si
ng

fr
ag

m
en

ta
dd

ed
de

no
vo

.T
he

m
od

el
s

ar
e

th
en

cl
us

te
re

d
an

d
re

pr
es

en
ta

tiv
e

st
ru

ct
ur

es
un

de
rg

o
se

co
nd

ro
un

d
of

re
-a

ss
em

bl
y/

re
fin

em
en

t.
C

on
fo

rm
at

io
n

of
th

e
lo

w
es

te
ne

rg
y

is
se

le
ct

ed
as

th
e

fin
al

m
od

el
PR

O
TI

N
FO

10
1

pr
ot

in
fo

.c
om

pb
io

.w
as

hi
ng

to
n.

ed
u/

pr
ot

in
fo

ab
cm

fr
/

M
et

a-
pr

ed
ic

to
r/

fr
ag

m
en

t
as

se
m

bl
y

Ta
ke

s
a

se
to

fF
R

m
od

el
s

an
d

pe
rf

or
m

s
ex

ha
us

tiv
e

re
co

m
bi

na
tio

n
of

th
e

m
od

el
s

us
in

g
a

gr
ap

h-
th

eo
re

tic
cl

iq
ue

fin
di

ng
(C

F)
ap

pr
oa

ch
an

d
al

l-
at

om
co

nd
iti

on
al

pr
ob

ab
ili

ty
di

sc
ri

m
in

at
or

y
fu

nc
tio

n
(R

A
PD

F)
10

2

fo
r

se
le

ct
in

g
be

st
co

m
bi

na
tio

ns
R

O
B

ET
TA

43

ro
be

tta
.b

ak
er

la
b.

or
g

M
et

a-
pr

ed
ic

to
r/

fr
ag

m
en

t
as

se
m

bl
y

Se
le

ct
s

be
st

te
m

pl
at

es
in

di
ca

te
d

by
PS

I-
B

LA
ST

5
an

d
3D

-Ju
ry

93
an

d
ge

ne
ra

te
s

a
po

ol
of

ta
rg

et
-t

em
pl

at
e

al
ig

nm
en

ts
us

in
g

K
* S

yn
c43

.T
he

en
se

m
bl

e
of

m
od

el
s

is
th

en
ge

ne
ra

te
d

ba
se

d
on

th
es

e
al

ig
nm

en
ts

w
ith

m
is

si
ng

fr
ag

m
en

ts
ad

de
d

de
no

vo
.T

he
fin

al
m

od
el

s
ar

e
se

le
ct

ed
ba

se
d

on
en

er
gy

sc
or

in
g

an
d

st
ru

ct
ur

e
cl

us
te

ri
ng



P1: OTA

chap04 JWBK331-Bujnicki November 25, 2008 7:18 Printer: Yet to come

96 Template Based Prediction of Three-dimensional Protein Structures

volume (Kaminska et al.), therefore here they will be discussed only briefly. The sim-
plest sequence-only based FR approach uses a pairwise sequence alignment algorithm (for
instance BLAST5) to search a database of protein sequences from PDB for potential tem-
plate proteins that exhibit significant sequence similarity to the target protein. However, in
this approach distantly related templates are often missed due to low sensitivity of simple
sequence searches.5–8 More sensitive methodology includes construction of a sequence
profile representing a whole protein family and using this profile to search against the se-
quence database that includes sequences of proteins with known structure (as implemented
in PSI-BLAST5). However, sequence profiles may miss templates significantly similar to
few family representatives but not significantly similar to the entire family as a whole.
This problem may be solved by engaging the intermediate sequence search method (ISS)
strategy,9–12 where sequences of homologs identified in one round of a search are used as
queries for new searches. If a sequence of a protein with known structure is detected during
one of these subsequent searches, it can be used as a template for modeling the target
protein. Although the ISS approach can reveal distant similarities, it is computationally
demanding and usually returns many false positive hits.

Sequence-sequence and sequence-profile comparisons perform well when target-
template sequence identity is above 30–40%. When the sequence identity drops below
30%, methods based on profile-profile and HMM-HMM comparisons become signifi-
cantly more accurate and more sensitive.13,14 Profile-profile approach is in use to detect
homology by comparing profiles calculated both for the target and the template. There
are many programs for remote homology detection and alignment using profile-profile
comparisons (see Chapter 1 by Kaminska et al. about protein sequence analyses) and some
of them, for example FFAS15 and FORTE,16 have been actually designed as FR servers.

To further increase sensitivity and specificity of template searches, one can use algorithms
relying on Hidden Markov Models (HMMs). HMMs are conceptually very similar to
profiles, but they represent a protein family in a specific probabilistic model that includes
not only probabilities of transition of one amino acid to another at a given position of
protein sequence, but also position-specific probabilities of deletions and insertions. Owing
to this feature, FR methods based on HMMs are capable of constructing very accurate
alignments.14,17

Profiles and HMMs have the advantage of incorporating not only sequence information
but also structural information. The template profile or HMM can incorporate structural
information derived from the three-dimensional structure. The target profile or HMM can
be enriched with the structural features predicted from the sequence only (see Chapter
1 by Kaminska et al. about protein sequence analyses). Profiles can easily include such
information as they are represented as matrices and adding more information constitutes
of adding new vectors or dimensions to the sequence-only derived matrix. HMMs can
include structural information for each residue as additional states in HMM. Comparisons
of performance of similar methods with and without structural information indicated that
structural data increases both sensitivity and accuracy.14,18,19

FR methods that use both sequence and structural information can be grouped according
to the amount of structural information they use. Historically, the first type of methods
relied almost exclusively on structural information. In the so-called threading approach,
the target sequence is first aligned to each structure from a database using a double dynamic
programming algorithm and an empirical energy function that assesses contacts between
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residues of the target, mounted on the backbone of the potential template.20–22 Then, the
resulting crude models (with the backbone conformation taken from the template, but with
amino acid residues of the target) are scored according to the energy function, and ranked.
Energy functions used in threading are typically based on pairwise residue-residue contact
potentials derived from statistical analysis of known structures, and may also include a
separate solvation potential to account for interactions of residues with the solvent. The
best known threading program is THREADER20,23 that currently, in addition to statistical
contact and solvation potentials, can use secondary structure predictions and target-template
sequence similarity.

Another variety of methods that turned out to outperform the threading approach use
sequence profiles or HHMs combined with only one structural feature – secondary structure
(e.g. HHPRED,24 PHYRE25 and INUB (new version of BIOINBGU26)). More advanced
methods (e.g. SP418 (a successor of SPARKS and SP4) and SAM-T06 (a successor of
SAM-T0427)) include features like residue accessibility, residue depth and various protein
backbone properties. Generally, the utility of a structural feature (like secondary structure
state or solvent accessibility) for the success of a FR protocol depends on whether this
feature can be confidently predicted for the target. One way to overcome this limitation
is to use structural data derived from known three-dimensional structures to construct
structure-derived substitution matrices (e.g. FUGUE28) or to employ generic statistical
potentials that are applicable to all proteins (e.g. mGenThreader19). Structural substitution
matrices and/or statistical potentials can be used as a scoring function within the alignment
construction algorithm (FUGUE) or to score alignments calculated by a separate, faster
sequence-based algorithm (mGenThreader).

More recently it was found that the best approach to recognize a protein fold is the
so called meta-prediction, i.e. running multiple FR methods, comparing their results and
selecting the most promising model.29 In general, meta-predictors look for predictions
that are most common among the FR results. This can be further enhanced by incor-
poration of model quality assessment methods (see Chapter 6 by Wallner and Elofsson
in this volume) to improve the ranking of models. Meta-predictors are often available
as web servers that provide a single submission facility to query multiple ‘primary’ FR
servers and retrieve their predictions. Additionally, meta-servers often display results of
other predictions, including secondary structure or disordered regions. The most popu-
lar FR meta-servers include Bioinfo.pl MetaServer at http://bioinfo.pl/meta,30 GeneSilico
MetaServer at http://genesilico.pl/meta,31 and Pcons.net at pcons.net/.32

4.2.2 Template Identification and Selection

Once the structural fold of the target protein is predicted using FR programs, the potentially
best modeling template(s) must be selected. Selection of the optimal template is of fun-
damental importance for the quality of a comparative model because different structures
with the same fold may differ from each other as much as they differ from the (unknown)
structure of the protein being modeled. For instance, two similar templates, despite sharing
the common structural core and topologies of secondary structures, can differ in relative
orientation of the secondary structure elements, conformation of loops or even relative
orientation of structural domains. Moreover, templates can contain structurally different
elaborations of the common core that may or may not be present in the target. Thus, the
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objective is to select, from several alternatives, a template that is likely to be most struc-
turally similar to the (unknown) structure of the target. Usually, if one template is much
better than others, most FR servers select this template as the top match in their ranking
list. Therefore, if there is a consensus template among FR predictions, it should be used
as the main (or the only) template. However, if there is no clearly preferred template, a
careful template selection must be performed. The available methods for selecting tem-
plates can be grouped into four categories: sequence-based, evolutionary, structural and
knowledge-based.

Sequence-based methods rely on the assumption that the template with the highest
sequence similarity to the target should also exhibit the highest structural similarity. In
practice, the sequence of the target and potential templates are compared by building
pairwise alignments or by running BLAST or PSI-BLAST5 against the database that
includes sequences of the templates. Matches to sequences of templates are ranked accord-
ing to E-values. BLAST and PSI-BLAST are a method of choice for selecting templates,
when target-template sequence identity is high (above 40% identity).33,34 More sensitive
sequence-based methods for template selection include comparison of profiles or HHMs
built for sequence families of the target and all alternative templates (e.g. HHPRED24).
These methods outperform BLAST programs in template selection when target-template
sequence identity drops below 40%.34

Evolutionary methods rely on the assumption that the template that is closest to the tar-
get on the phylogenetic tree should exhibit the highest structural similarity. This approach
requires calculation of a sequence alignment and a phylogenetic tree for a group of re-
lated protein sequences, including the target and all templates under considerations.35 For
closely related sequences, a phylogenetic inference using current evolutionary models and
maximum likelihood or Bayesian methodologies is a much better estimator of evolutionary
distances than similarity scores from pairwise sequence comparison. Therefore, construct-
ing a phylogenetic tree might be useful especially when there are no significant differences
in sequence similarities of the target to alternative templates. However, phylogenetic calcu-
lations are seldom reliable for distantly related sequences; therefore evolutionary methods
are less universal and can be recommended only when sequence similarity between the
target and alternative templates is high.

Structural methods perform an estimation of a ‘fit’ of the target sequence to each alterna-
tive template. The fit can be assessed based on the Z-scores from FR programs. However,
more accurate template selection may be obtained after building several alternative models,
each based on a different template, and scoring them by Model Quality Assessment Pro-
grams (MQAPs, see Chapter 6 by Wallner and Elofsson). Structural methods for template
selection are recommended for cases of no significant sequence similarity between the
target and the templates.

A knowledge-based approach constitutes a set of rules that should be taken into con-
sideration during template selection, in particular to discriminate between structures of
the same protein solved under different experimental conditions. The most important rule
states that the structure of a template should be solved under similar conditions (in a sim-
ilar environment) to the conditions desired for a model. For instance, for modeling of a
target protein in a ligand-bound conformation, the template structure solved with a ligand
should be used rather than a ligand-free structure. This rule should be followed especially
when ligand-bound and free forms differ substantially in their conformations. Also, if the
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modeled protein in the biologically active form is an oligomer and different templates
exhibit different quaternary structures, an oligomeric template with the same number of
subunits and symmetry as the target should be used, and the model should be also built and
evaluated as an oligomer, not as a monomer. Other rules include a preference for template
structures solved by X-ray crystallography rather than NMR, structures with higher resolu-
tion and better R-factor, and structures with lower B-factor or without missing coordinates
due to intrinsic disorder.

If it is not possible to unequivocally select a single best template from a set of alternatives,
a model can be built based on multiple templates. This is accomplished either by averaging
the coordinates of superposed templates or by modeling different regions of the target based
on different templates. Selection of more than one template was shown to be very effective
and accurate36–39 and provided fundaments for several most successful protein structure
prediction methodologies (e.g. FRankenstein’s monster approach37 or I-TASSER,39 see
Section 4.2.5, ‘Model Refinement’, below).

4.2.3 Target-Template Alignment

After selecting a template or several templates predicted to be optimal for comparative
modeling of the target structure, a target-template sequence alignment must be generated
to specify which residues of the target are to be modeled based on which residues of the
template. A correct alignment is a prerequisite for successful modeling – in the case of
misalignment residues are placed in wrong positions of the structure. Alignment shift of a
single residue along the polypeptide chain corresponds to placement of this residue’s C-
alpha atom at ∼3.8A

◦
away from its correct location – an error that cannot be automatically

corrected by optimization procedures implemented in most model-building programs.
The FR analysis includes both calculation and evaluation of alignments; therefore all

FR methods provide target-template alignments as an output. It is important to emphasize
that these alignments are usually suboptimal and should not be used to construct a final
model, but rather serve as a starting point of the refinement process aiming at localizing
and correcting all potentially misaligned regions. In a traditional approach, the refinement
process starts from discrimination between regions aligned with high confidence and all
other regions. It is not straightforward to identify confident parts of the alignment. As a
rule of thumb, one should take as confident regions where target-template matches returned
by different FR servers are the same and, preferably, where target-template sequence sim-
ilarity is high, e.g. common motifs are present.40 Another rule of thumb is that alignments
should generally preserve the localization of hydrophobic residues in the protein core while
keeping charged residues exposed to the solvent. Besides, all insertions and deletions (in-
dels) should be placed in solvent-exposed regions, preferably outside secondary structure
elements, in loops that show variability between different homologous structures and/or
conformational flexibility in the selected template(s). Indels also should not be introduced
within a protein core or in predicted binding sites (e.g. in an active site or at site of
protein–protein interactions if the protein is an oligomer). These rules rely on the observa-
tion that protein core, secondary structure elements and functional sites usually accumulate
fewer changes than solvent exposed loops. Moreover, they ensure that the overall structure
of the model will not be greatly distorted by the model building program.
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During the optimization of target-template alignments, confident parts of the target-
template alignment are kept as granted (at least initially) and regions with uncertain align-
ment are modified. Subsequently, new models are built for the modified alignments, and
evaluated. Those variants of alignments that yield locally best evaluated structures are
retained and regions with unsatisfactory scores may be rebuilt and evaluated again. This
iterative target-template alignment optimization may be done manually, with the usage
additional information derived from the literature (e.g. about localization of functional
regions, mutagenesis studies etc.) and several experienced modelers proved that it can lead
to very accurate predictions.36,41,42

Because refining the target-template alignment by hand is laborious and time-consuming
and often requires subjective knowledge of an expert structural biologist, several meth-
ods have been developed to automate this process and make it more objective. K*SYNC
program43 generates a large ensemble of alternative alignments by varying the parameters
of alignment algorithm (e.g. using various gap penalties or secondary structure predic-
tions). HMM-KALIGN44 generates so called sub-optimal alignments using generalized
Viterbi algorithm for HMM alignment. Both methods produce large sets of alignments
that then can be evaluated by various means. The final alignment is usually identified as
the one that produces the best-scoring model. A number of model evaluation functions
have been implemented in different programs that take into account the different accuracy
of models.37–39,45,46 The alternative models (or the corresponding alignments) may be
also spliced and recombined to yield new model (or alignment) variants. A progressive
automatic refinement procedure has been implemented e.g. in the MOULDER program,47

which uses a genetic algorithm to recombine and mutate models built from preliminary
alignments. Details of model recombination methods are covered in Section 4.2.5, ‘Model
Refinement’.

4.2.4 Model Building

In comparative modeling, model building is a procedure of creating a three-dimensional
structural model based on a template structure and a target-template alignment. The target-
template alignment is treated as a specification which residues of the target should be
modeled based on particular residues of the template. Model building based on an alignment
is usually fully automated. Model building methods can be grouped into three classes:
rigid-body assembly, segment matching, or coordinate reconstruction and modeling by
satisfaction of spatial restraints48–50(see Table 4.2 for detailed description of individual
model building programs).

Rigid body assembly methods build a structural model from fragments of templates
aligned with the target sequence, supplemented with additional fragments derived from
a structural database for regions where the target is not aligned to any template. There
are various implementations of this procedure including 3D-JIGSAW,51 BUILDER,52,53

COMPOSER54 and SWISS-MODEL55 but the general procedure is similar. These methods
first create a framework by selecting or averaging coordinates of superposed templates,
then select best local segments from templates and superpose them onto the framework.
Second, loops and insertions are added as fragments derived from a database of known
protein structures. Finally, the fully assembled model is energy-minimized to optimize
connections between the fragments and to reduce their potential steric conflicts. The
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above-mentioned programs differ in the way of selecting segments from the templates and
structural database and in side-chain building and model refinement methodology. Another
program usually classified together with rigid body assembly methods48,56 is NEST,57

whose special feature is the implementation of artificial evolution in its modeling scheme.
Modeling by satisfaction of spatial restraints is a process of constructing the structural

model that optimally satisfies restraints derived from the template structure. This approach
is based on an assumption that conformations of homologous residues in both structures are
similar. The modeling methodology is based on procedures used for structure determination
using restraints derived from NMR measurements.58 The most widely used modeling
program in this class is MODELLER.59 In this method, various restraints are derived from
the template and mapped onto the corresponding residues of the target based on a user-
defined target-template alignment. Restraints include bond lengths and angles, planarity
of peptide groups and side-chain rings, chiralities, van der Waals contact distances, bond
angles, dihedral angles etc. and are encoded in the form of conditional probability density
functions (PDFs), which also take into account correlations obtained from a database of
superpositions of known structures and a physical force field. The model is then obtained by
minimization of target function combining the PDFs, using methods of conjugate gradients
and molecular dynamics with simulated annealing. Users may optionally add their own
restraints, such as secondary structure elements or distances between particular residues,
or to include ligands.

Segment matching comprises three steps: (1) generation of a guiding structure of the
target based on the sequence alignment to the template; (2) identification in a database of
known structures short segments that match the guiding structure (based on energetic and
geometric criteria); and (3) assembly of the full atom model from these segments using
atoms of the guiding structure as anchor points. The method is based on the approach
used in X-ray crystallography where segment derived from known structures are used for
building a polypeptide chain based on electron density.60 The segment matching method
has been implemented for comparative modeling in program SEGMOD61 that, despite its
age (not substantially further developed since 1992), still exhibits performance comparable
to state-of-the-art programs.48,56

According to benchmarks,48,56 analyzing the performance of most commonly used
comparative modeling programs (including MODELLER, SEGMOD/ENCAD, SWISS-
MODEL, 3D-JIGSAW, NEST and BUILDER), there is no program that clearly outperforms
the others. Nevertheless, MODELLER, NEST, and SEGMOD/ENCAD perform better than
the others and MODELLER performs best on the average. Taking advantage of the fact
that all these programs are fast and generate models in a time up to a couple of minutes,
it is recommended to use several programs and either select the best model or build
the final model by splicing best parts of models generated by different methods.37,38 In
the experience of the authors of this chapter, MODELLER seems to be best suited for
generating models for protein function prediction, as it offers a possibility for including
ligands and user-defined restraints.

4.2.5 Model Refinement

Comparative modeling, albeit very successful, has severe limitation: it rarely leads to
models that are closer to the native structure than the best single template structure.62
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Therefore, a considerable effort is undertaken to develop refinement methods that could
decrease a deviation of comparative models from the native structures.

Methods for model refinement either try to improve the overall quality of the model or
focus on particular parts of structure. Refinement of loops and side-chains is discussed in
separate sections of this chapter (Sections 4.2.6 (‘Loop Modeling’) and 4.2.7 (‘Side-chain
Modeling’). Methods for refinement of full models aim at generating a model close to the
native structure, starting from comparative models or de novo models. They can be grouped
into two main classes, depending on whether they use physical or knowledge-based sta-
tistical potentials. Methods that use physical potentials usually include refinement with
molecular dynamics or energy minimization. In the methodology developed by Chen and
Brooks,63 replica exchange molecular dynamics with Generalized Born implicit solvent
model is performed, starting from the comparative model. Constraints are introduced to
restrict conformational sampling during simulation, under the assumption that the start-
ing model is close to the native structure. A method by Summa and Levitt64 performs
energy minimization in vacuum of models close to native structure by using physical
or knowledge-based potentials. According to these authors, knowledge-based potentials
perform better than the physical ones. Knowledge-based potentials are also used by the
ROSETTA program65 that can perform full-atom refinement with a Monte Carlo search
procedure.66

A specific type of model refinement consists of selection of fragments from multiple
templates. It is based on the notion that template coordinates optimal for modeling different
regions of the target are often present in different protein structures of the same fold.
Therefore, modeling on these optimal fragments selected from alternative templates should
lead to a model that is closer to the native structure than any model based on a single
template. In the FRankenstein’s monster approach36,37 a set of preliminary models (based
on alignments from various FR servers) is evaluated using model quality assessment
programs and a hybrid model is constructed by merging consensus fragments (i.e. fragments
found in most of the models) and best scoring non-consensus fragments. This hybrid model
is then superimposed onto the templates, from the superposition a new target-template
alignment is derived, and used to construct a new model. If the new model contains
poorly scoring fragments, this procedure can be further iterated (e.g. by building additional
generations of models based on alternative alignments). In the I-TASSER program,39 a set
of preliminary models from FR servers is used as a source of fragments, from which the
model is assembled in the course of a Monte Carlo simulation. The assembly procedure is
done in an iterative way. In the first iteration, the ensemble of models is generated from
aligned fragments, while unaligned regions are modeled de novo. Then, the representative
structures are selected from the ensemble by means of clustering, the cluster centroids
undergo second round of fragment re-assembly/refinement and the lowest energy structures
are chosen as final models.

4.2.6 Loop Modeling

One of the difficulties that a modeler may encounter is the reconstruction of the three-
dimensional structure in regions of low or no similarity to the template(s). These evolu-
tionarily variable regions often encompass insertions, deletions or unstructured regions that
may play a crucial role for biological function of a protein (i.e. constitute a binding site).
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Therefore, not only the overall protein structure has to be modeled reliably for accurate
function prediction, but also its variable regions such as loops.

There are two main approaches to loop modeling: (1) database search methods and (2) de
novo methods. There are also hybrid methods that combine both of them. State-of-the-art
programs for loop modeling are listed in Table 4.3.

Database search methods build loops based on the conformations of loops derived
from a database of known structures. Usually, a database of loops is created first and then,
during modeling loops of the target, it is searched for conformations that fit best to the loops
being modeled. This has been implemented in model building programs BUILDER52,53

and SEGMOD61 (see Section 4.2.4, ‘Model Building’). The ARCHPRED server,67 which
is devoted specifically to loop modeling, searches a pre-existing loops library for loops
that are similar in sequence to the query loop. These candidate loops are attached to
stem regions of the model as to minimize steric clashes with the rest of the structure and
maximize geometry matching propensities for secondary structure and main chain dihedral
angles at the point of loop attachment. The prerequisite for successful loop modeling using
database search is a sufficient coverage of conformations of loops in a database, which
can be fulfilled only for loops of length up to about 10 residues.67 The number of possible
conformations grows exponentially with the loop length.68 and becomes astronomical for
loops longer than 10 residues. For shorter loops that are well represented in the database,
the limitation of database search approaches is however in a scoring function.

De novo methods aim to predict conformations of loops using various conformational
search methods using physical potentials, often in combination with knowledge-based po-
tentials (the fundamentals of de novo modeling of entire proteins is covered in another
Chapter 5 in this book by Gront et al.). Most de novo methods for loop modeling first gen-
erate a large number of alternative initial loop conformations randomly (e.g. MODLOOP69

or LOOPY70 or by exhaustive systematical sampling (e.g. PLOP71). These conformations
are then optimized in physical or pseudo-physical potentials and the lowest energy con-
formations or representatives of largest clusters of similar conformations are selected and
combined with the rest of the model. In theory, there is no limitation on the length of the
loop to be modeled by de novo methods. However, with the increasing loop length, the
number of possible conformations increases rapidly, making the modeling computationally
prohibitive.

Hybrid methods that combine database search and de novo approaches typically use
separate algorithms depending on the situation (e.g. database search for longer loops and
de novo method for short ones (e.g. SWISS-MODEL55)) or generate two populations of
conformations from database searches and de novo modeling (e.g. CODA72). One of the
most successful approaches for structure prediction, ROSETTA,65 first builds loops based
on fragments derived from database of fragments derived from known structures and then
performs a conformational search and Monte Carlo minimization.

4.2.7 Side-Chain Modeling

For a structural model to be useful for functional analyses such as predicting a catalytic site
or ligand binding residues, it is important to accurately predict conformation of individual
side-chains. Side-chains can be built by most comparative modeling programs at the same
time when the backbone is modeled or they can be rebuilt or even added anew to the naked
backbone of the final model. Comparative modeling programs use information about torsion
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angles of side-chains of the template for modeling conserved residues and/or utilize rotamer
libraries for modeling other residues. The majority of programs designed specifically for
side-chains prediction are based on rotamer libraries that contain information about torsion
angles derived from statistical analysis of known structures. Widely used are backbone-
dependent rotamer libraries that contain information on side-chains conformations as a
function of backbone dihedral angels. Various methods have been developed to explore
the spectrum of conformation in an efficient way, from simple combinatorial searches
using rotamer libraries (e.g. SCWRL73), to molecular dynamics optimization of entire
models74,75 (see Table 4.4 for detailed description of some of these methods).

The most successful programs for side-chain modeling are those based on rotamer
libraries.48,49,76 Nevertheless, when the target-template sequence identity is high (>50%)
the best approach is to use comparative modeling programs to model side-chains mainly
based on the information from templates (i.e. to retain the conformation of conserved
residues as close to that in the template as possible). Only when the sequence identity
drops down, it is advisable to use programs that try conformations from rotamer libraries
for non-conserved residues or, in the case of very low sequence identities (below 30%) –
for all residues.48 In general, it is advisable to keep the conformation of conserved residues
as close as possible to the conformation in the template(s) and assign the conformation of
the remaining residues using backbone-dependent rotamer libraries.

4.2.8 Model Quality Assessment

Model quality assessment (MQA) constitutes an inseparable part of all structure prediction
methods. The goal of model quality assessment programs (MQAPs) is to assess the overall
accuracy of the final model and/or a local accuracy of individual fragments of the model. A
variety of MQAPs exist that implement a wide spectrum of methodologies from physical
potentials to knowledge-based scoring functions. A detailed survey of MQAPs is covered
in Chapter 6 in this book by Wallner and Elofsson.

Measures of local structural accuracy are of the particular importance, as they allow
for identifying regions that score poorly and should be remodeled. Remodeling can be
accomplished either by going back to the stage of target-template alignment generation and
trying different versions of target-template alignments, or by refining the poorly scoring
region (with e.g. de novo refinement methods). If the poorly scored region cannot be
improved by any means, it may be taken as indication that this part of the final model is
unreliable and should be taken with caution during functional interpretation of the structure.

4.3 Accuracy of Comparative Models

4.3.1 Model Accuracy

The resolution and local accuracy of structures determined by X-ray crystallography or
NMR can be estimated by analyzing parameters that are not optimized in the process
of model building, but are correlated with the model quality (e.g. � and � angles on
the Ramachandran plot). Alternatively, a part of the data collected during the structure
determination experiment may be set aside and not used for model building, but only later,
for model verification. On the other hand, the comparative modeling procedure does not
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rely on experimental measurements, but on copying information from the templates (e.g.
the Ramachandran plot of the model reflects the quality of the template rather the accuracy
of the modeling procedure) and usually there is no external data to test the model validity.

The overall accuracy of the model can be roughly estimated based on the notion that
models built based on the template with sequence identity to the target above certain
threshold are very close to the native structure (exhibit high accuracy), while models based
on templates with sequence identity below that threshold become less similar to the native
structures (and their accuracy is usually lower). Currently, models based on templates with
at least 40% sequence identity are expected to be highly accurate (approaching the quality
of NMR models or low resolution X-ray structures) and models from the zone below 40%
are expected to exhibit decreasingly low accuracy49. Global and local accuracy of the
model can be also assessed by statistical methods (MQAPs) that compare the features of
the model to those generally observed in protein structures. Currently, some MQAPs (e.g.
MetaMQAP76a and ProQres77) make it possible to predict deviation of individual residues
from their counterparts in the (unknown) native structures, and these values can be used to
calculate the global accuracy of the model (e.g. the predicted root mean square deviation
from the native structure).

4.3.2 Errors in Comparative Models

It must be emphasized that comparative models almost always contain errors. The type
and magnitude of these errors are different from those seen sometimes in crystallographic
or NMR structures78 and usually depend on the modeling software and the assumptions
of the modeling process. Obviously, these errors may or may not affect the applicability
of the model to further biological investigations, depending on the research question being
asked. Thus, while numerical assessments of model accuracy is essential for understanding
the ‘resolution’ of the model, the awareness of the type and magnitude of errors that
most commonly appear in computational models is very important for proper functional
interpretation of the modeled structures.

Wrong fold. The most severe error in comparative modeling may be matching the target
sequence to a wrong fold. The fold assignment depends on the template selected for
comparative modeling during the FR step. If the template has a different fold than the target,
the resulting model will be definitely erroneous, because the fold cannot be changed during
the model optimization step. In a model with a wrong fold, all conserved functional residues
will almost certainly have biologically irrelevant arrangement in space, thus precluding
any functional inference from the model. The uncertainty in the fold assignment may be
inferred from the lack of consensus among FR servers. Thus, all comparative models based
on uncertain FR results should be taken with extreme caution.

Misalignments. Misalignments to a template with a correct fold lead to the second most
severe type of errors in comparative modeling, namely misthreading of residues along
the protein backbone. Thus, target-template alignment used for model building is, after
template selection, the second most important factor influencing the model correctness.
In the case of a misalignment, residues are placed in wrong positions of the structure,
at a minimum of 3.8 A

◦
(the distance between consecutive residues) from their correct

localization. This may lead to misplacement of functionally important residues along the
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backbone and disruption of residue clusters that form functional sites. Misalignments are
common at the low target-template identity (below 30–40%)49 and are often difficult to
detect. Some misalignments in structural elements located on the protein surface lead to
the placement of hydrophilic residues in a hydrophobic environment and vice versa, and
can be identified by MQAPs, but others (e.g. small shifts in buried β-strands composed
entirely of hydrophobic residues) are unlikely to cause structural disturbance. One solution
to overcome the problem with misalignments is to consider many alternative alignments
during the functional analysis, for instance by generation and detailed inspection of corre-
sponding alternative models for possible problems in packing in protein core or orientation
of surface-exposed side chains that may be important for protein function.

Displacements of local structures. Another class of common errors in comparative models
results from reorientation of secondary structure elements (e.g. minor rotations, transla-
tions, and/or bending), a trend in protein evolution that is not uncommon among distant
homologs. However, this can happen also for elements with conserved sequence, even when
the local residue identity is above 50%.49 In such cases, correct target-template alignments
are usually obtained, but the assumption that sequence-conserved regions do not change
their structure, is violated. A displacement of a structural element can significantly change
the position of its residues with respect to other parts of the protein. Such errors may be
identified by MQAPs, but it is typically impossible to ameliorate them by changing the
alignment. Thus, an inability to obtain a reasonable MQAP score for a given segment
despite trying many alternative alignments may indicate that structures of the target and
the template are locally different. One way to deal with such structural changes is an
additional refinement of the model, in particular within the suspected region (see Section
4.2.5, ‘Model Refinement’, above).

Misfolded loops and insertions. Loops and insertions with no counterpart in the template
are the major source of errors in all comparative models. Insertions may have completely
wrong conformation or despite having correct conformation they may be positioned in a
wrong orientation relatively to the rest of the structure. The modeling of insertions may
fail due to limitations of loop modeling programs and/or due to the insufficient accuracy
of regions that flank the loop in the model. Generally, the conformation of long loops
in comparative models should be regarded as unreliable during the functional analysis,
unless there are particular reasons to believe that they have been modeled correctly. This is
especially the case if the loop belongs to the functional site and its structure is influenced
by the ligand. For instance, modeling of a loop in the absence of a ligand may place the
loop in a conformation that may be incompatible with ligand binding. Errors in loops might
appear regardless the target-template identity, but in general their frequency and magnitude
increases with decreasing overall target-template sequence similarity.

Wrong side-chain conformations. Errors in side-chain conformations are very common in
comparative models. It is generally difficult to predict side-chain conformations correctly,
as small inaccuracies in the conformation of the protein backbone greatly affects the
distribution of allowed side-chain rotamers. When the target-template sequence identity is
high (above 50%) the conformations of side-chains conserved in both target and template
tend to be similar.48 At lower target-template identities, the preservation of side-chain
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conformations is restricted to conserved functional sites and, only to some extent, the
protein core. Therefore, the orientation of side-chains should be considered in functional
investigations only if the target-template sequence identity in a given region is high or if
there are other constraints on side-chain conservation (e.g. binding of the same ligand).

4.4 Protein Structure Modeling and Function Prediction

The model of protein structure is built usually to help in addressing specific biological
questions. These questions usually do not only aim at guessing ‘what is the structure of
my protein’ but also ‘what is the function of my protein’ and ‘how my protein performs its
function’. Ultimately, the amount of information that can be derived from a model depends
on the accuracy of this model.

The assessments of model accuracy, although very approximate, roughly correlate with
a number of expected errors in the model. Therefore, they can be used as convenient
guidelines for determining what kind of information can be derived from the model.

4.4.1 High Accuracy Models

The accuracy of answers the model can provide decreases together with target-template
sequence similarity. Above 50% sequence identity it is generally feasible to obtain a
structurally accurate and functionally interpretable model, as the fold is usually correct,
alignment errors are rare, backbone conformation is typically close to the native one, and
conformations of many side-chains are modeled correctly.35,49 In such case, the functional
characterization of the target can be carried out by comparing it to the template, if the
latter is already functionally characterized. For instance, residues belonging to the catalytic
or ligand binding site can be predicted based on their correspondence to residues of the
template that have been already attributed to this activity. On the other hand, in the struc-
tural genomics era, hundreds of structures are solved without any functional annotations
and without any ligands, thus many potential templates offer little functional information.
Nevertheless, these structures and models of closely related proteins built using ‘func-
tionally uncharacterized’ structures as templates, can serve as good platforms for detailed
bioinformatic function predictions (see Chapter 7 by Kinoshita et al. in this volume).

4.4.2 Low Accuracy Models

When the target-template sequence similarity is low (<40%), the model usually contains
regions of low accuracy that may or may not have been identified in the process of model
quality assessment. Functional analysis of such models becomes more difficult because
functional regions might be built up by e.g. misplaced secondary structure elements with
wrong side-chains conformations. Fortunately, functional sites accumulate mutations, and
therefore structural changes, slower than the rest of the protein, thus if the target and
template bear similar catalytic activity, the catalytic sites often can be modeled with high
accuracy even for targets with 10–20% sequence identity to the template. A good example
can be found among nucleases with the PD-(D/E)XK fold where catalytic residues can
be usually predicted and modeled with high accuracy even if target-template sequence
similarity is very low (even below 10% sequence identity).79,80 Importantly, although these
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catalytic residues are correctly placed on the protein backbone, the exact conformation of
the side-chains is often not accurately predicted (precluding for instance an inference of
the exact geometry of the active site).

In models of low accuracy (e.g. those based on templates of less than 40% sequence
identity) it is also often possible to roughly predict functional regions such as DNA-binding
sites79 or protein–protein interaction sites. For instance, for predicting a DNA binding site
it might be sufficient to map sequence conservation and electrostatic potential onto the
surface of the protein model. The presence of conserved and positively-charged surface
patches, in particular comprising deep clefts, can suggest nucleic acid binding sites. Based
on this prediction it is possible to rationally design a limited set of experiments, with
which to verify the hypothesis about the DNA binding site (for instance by site-directed
mutagenesis of putative binding residues).

4.4.3 Summary

Summarizing, the accuracy of the answer the model can give depends on the accuracy of
the model. In particular, models that are of expected low accuracy should not be used to
address high-resolution questions, e.g. about detailed conformation of residues in the active
site. Therefore, a biologist interested in using a model should carefully assess its potential
accuracy, both globally and locally, and adjust the questions to the estimated accuracy of
the model and its different parts. If the predicted accuracy of the model appears sufficient
to address the desired question, numerous bioinformatics tools for structure analysis and
function prediction (reviewed in other chapters of this book) may be used to formulate new
hypotheses and guide experimental studies of the protein and the biological system it is
involved in.
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5
Template-free Predictions

of Three-dimensional Protein
Structures: From First Principles

to Knowledge-based Potentials

Dominik Gront, Dorota Latek, Mateusz Kurcinski and Andrzej Kolinski

5.1 Introduction

The number of known protein sequences is much larger (by a factor of a thousand) than the
number of experimentally solved protein structures. Depending on genome, for about half
of newly determined sequences protein structure can be predicted by means of comparative
modeling methods.1 For the remaining sequences there is no structurally similar protein
in the databases of protein structures, or the appropriate template cannot be identified by
means of the existing fold recognition methods. In such cases molecular models need to be
constructed using protein sequence as the only target-specific information. This is the case
of de novo protein modeling. De novo protein structure prediction has been the ‘holy grail’
of computational biology for the last forty years, and toward that goal there has been steady
progress. New methods have been developed and the enormous increase of computational
resources have enabled new applications. Nevertheless, de novo (or template free) in silico
protein structure prediction is still limited to relatively small and topologically simple
structures. It should be pointed out that development of de novo methods is important not
only for protein structure prediction, but also for prediction of protein folding pathways
and protein–protein interactions. In this chapter we outline the most typical and the most
successful approaches to de novo in silico protein folding.

Prediction of Protein Structures, Functions, and Interactions   Edited by Janusz M. Bujnicki
©    2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-51767-3



P1: OTA

chap05 JWBK331-Bujnicki November 27, 2008 15:59 Printer: Yet to come

118 Template Based Prediction of Three-dimensional Protein Structures

5.2 Force Fields and Scoring Functions

5.2.1 Quantum Mechanics Applications in de Novo Modeling of Proteins

The mathematical theories of quantum mechanics predated the first computers by many
years. Accordingly, its early applications were restricted to very simple systems: sin-
gle atoms, ions, or small and highly symmetrical molecules. Advances in computational
techniques made it possible to apply quantum mechanics to more demanding problems.
Calculations of geometrical features, electric multipoles and reaction pathways for medium-
size molecular systems have recently become standard procedures. Quantum-mechanical
computation is also a reliable source of various data, of quality comparable to those ob-
tained by experimental techniques. However, long-scale evolution of the time-dependant
Schrödinger’s equation for even a small protein is still far beyond the computing powers of
present-day supercomputers. A molecule of a small protein consists of thousands of nuclei
and tens of thousands of electrons. Adding solvent molecules to the system approximately
double these numbers. The quantum description of such a large molecular system is only
feasible with some serious simplifications.

One modeling approach proposed by Car and Parrinello treats the system classically, save
that after every simulation step the distribution of charges is recalculated using quantum
mechanics methods.2 A different approach is presented by McCammon and Lesyng.3 In
their methodology the whole system is divided into three regions: the active site of the
proteins is subject to quantum mechanical description, the rest of the protein is treated
classically, and water molecules are approximated by a continuous solvent model. There
are a number of other hybrid quantum-classical theories which could be used for protein
modeling, but their applications are still rather limited due to high computing costs, even
despite serious simplifications. The most significant contribution of quantum mechanics
to protein modeling comes from its most basic approximations. Adiabatic and Born-
Oppenheimer approximations separate the movement of nuclei from electrons and lead
straightforwardly to the idea of the force field.

5.2.2 Empirical Force Fields Models

In 1967 Bixon and Lifson published a work entitled ‘Potential functions and conformations
in cycloalkanes’,4 where the idea of the force field was first introduced. This work contains
an analysis of free energy variations with respect to conformation changes in several
cykloalkanes, which was actually a derivation of a simple force field. From the mathematical
point of view, a force field is a function, where the argument is a multidimensional vector
describing the conformation of the given system and the resulting value is the system’s
energy. As most of the known force fields contain components parameterized by various
factors, the definition of a particular force field should also include a parameter set intended
for a particular problem.

There are two basic types of molecular force fields: statistical (or knowledge-based) and
empirical. The first one is derived from observed regularities in certain datasets (i.e. the
protein structure database) and will be discussed in detail in the following sections. The
idea of an empirical force field comes strictly from the Born-Oppenheimer approximation,
where the total wave function is written in the form of a product of nuclear and electronic
factors. In a brute-force approach, one would solve the electronic Schrödinger’s equation
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for every possible nuclei conformation (R), which would give the E(R) function, or in other
words the desired force field. However, this approach is impossible for large systems, due
to the enormous computing costs required. In the potentials obtained in this way, general
and predictable tendencies could be observed, like the attraction of oppositely charged
atoms.

The first fundamental theorem of empirical force fields is the simple assumption that
easily measured structural properties observed in one molecule (such as the C-C bond
length in ethane) can be used to predict similar features in other molecules (the C-C bond
length in polyethylene). Thanks to quickly-developing experimental techniques (especially
spectroscopy), as well as quantum calculations, we are presently capable of measuring the
distances and angles between atoms and bonds with high accuracy. This information can
be easily incorporated in very simple formulas describing bond stretching and bending.
The second fundamental theorem of empirical force field construction assumes that the
total energy of the system is a sum of independent contributions from all atoms, bonds,
etc. Although there is no one exact way to describe certain molecular properties, most
widely used empirical force fields consist of very similar elements, differing only by
sets of parameters. In the next few paragraphs, brief descriptions of the most common
components of empirical force field components are presented.

Bond stretching. The energy curve of a typical bond has one minimum corresponding to
the equilibrium bond length,* from which point a change in the bond length (stretching
or compressing) causes an energy increase. A good analytical approximation of such an
energy curve is the Morse potential in the following form:

Ebond (r ) = De

[
1 − exp

{
−

√
k

2De
(r − r0)

}]2

(5.1)

De is the depth of the minimum, r0 is the reference (equilibrium) bond length and k is the
stretching constant of the bond. This form, however, is rarely used to reproduce the bond
stretching effect, since it requires the calculation of both three parameters for each bond
(De, k, r0), and the relatively expensive exp() function. The most elementary approach is
to use Hook’s law instead, which approximates the bond energy curve by a parabola.

Ebond (r ) = k

2
(r − r0)2 (5.2)

This form has one major inadequacy in that the bond described by it cannot be broken, but
chemical reactions are rarely modeled with empirical force fields.

Angle bending. Variations of angles from their reference values are usually described in a
similar fashion to bond stretching:

Eangle(α) = k

2
(α − α0)2 (5.3)

where α0 is a reference angle value and k is the bending constant.

∗ The bond equilibrium (or reference) length is set when all other terms in potential function are set to zero. The same
condition applies to the reference angle between bonds, dihedral angle, etc.
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Electrostatic interactions. Interactions between charged atoms may be considered at various
levels of accuracy. To a crude approximation, attraction and repulsion of point charges may
be described by Coulomb’s law:

Eelectr (qi , q j , ri j ) = qi q j

4πε0ri j
(5.4)

q i, j are the charges of atoms i and j and r i j is the distance between these atoms. This very
simple model is not sufficient for many tasks that require a more accurate description of
the charge distribution. The most widely used are partial charges and/or central multipole
expansion. According to premises taken from experimental data, one may assign partial
charges to particular atoms. Partial charges can also be determined using quantum me-
chanical calculations. Such an approach renders the charge distribution in a more realistic
way, while electrostatic interactions may still be modeled simply by Coulomb’s formula.
More sophisticated models incorporate the central multipole expansion to include not only
charges, but also the higher multipole moments – dipoles, quadrupoles, etc. – in the interac-
tions. Moreover, in order to account for the mutual fitting of the electrostatic potential and
the molecular conformation the charge distribution may be updated after a certain number
of simulation steps.

Non-bonded interactions. The most important forces dictating the properties of
biomolecules are the non-bonded interactions. Van der Waals forces are most commonly de-
scribed by the Lennard-Jones (LJ) potential, which approximates very well both the strong
repulsion at short distances, reflecting the excluded volume effect, and the weak dispersive
attraction when interacting atoms are far apart. The following form of the Lennard-Jones
potential is also called the 12-6 potential, where 12 and 6 denote the powers of the repulsive
and attractive terms, respectively:

EvdW = 4ε

[(r0

r

)12
−

(r0

r

)6
]

(5.5)

ε is the value of the Lennard-Jones potential at minimum (potential well depth) and r0 is
the collision parameter (at r0 Lennard-Jones potential is equal to zero). Other forms of
m-n LJ potentials besides 12-6 are also used, however the 12-6 potential is most favorable
due to its computing efficiency. r−12 can be quickly obtained by squaring the r−6 term and
thus can be obtained without time-consuming square root calculations. There are no other
particular arguments for using this form of potential, except for the fact that it produces
reasonable results. This property also relates to the other terms in empirical force fields, as
suggested by the name ‘empirical’.

Dihedral angles. The following formula describes the energy change as a function of
dihedral (torsional) angle as a single bond is rotated:

Etorsion =
N∑

n=0

En

2
[1 + cos(nθ − θ0)] (5.6)

Every set of four bonded atoms A-B-C-D contributes a dihedral term to the total energy.
Etorsion changes as atoms or groups of atoms AB are rotated around bond B-C. En is the
barrier height, n is the number of minima on the potential curve as θ ranges from 0◦ to



P1: OTA

chap05 JWBK331-Bujnicki November 27, 2008 15:59 Printer: Yet to come

Force Fields and Scoring Functions 121

360◦, and θ0 is the phase factor indicating the minimum value of the torsional potential.
Although this effect can be modeled using only the bond length, angle, and non-bonded
interaction terms described above, most force fields also include dihedral angle terms,
producing more accurate results.

As mentioned before, most of the currently used force fields assume that the total energy
of a system is a sum of independent contributions from all atoms, bonds, etc. Thus, the
complete formula used to calculate the total energy could be written as follows:

Etotal (R) =
∑

i

Ebond (ri ) +
∑

i

Eangle(αi ) +
∑

i

∑
j

Eelectr (qi , q j , ri j )+

+
∑

i

∑
j

EvdW (ri j ) +
∑

i

Etorsion(θi )
(5.7)

The terms contributing to the energy in this equation are widely used in the most common
biomolecular force fields, including CHARMM,5 AMBER,6 GROMOS,7 and others. Be-
yond this equation some other additional or alternative terms may also be used to cover
both internal and external features of the force field, including higher-order treatments of
bond bending and stretching, cross-terms reflecting the dependence of one vibration on
another, and others.

5.2.3 Exploring the Potential Energy Surface in Classical Molecular Mechanics

Cartographic maps present altitude with respect to geographical coordinates. In the same
way molecular force fields describe variations of a system’s total potential energy as
a function of its atomic coordinates, which is usually referred as the potential energy
surface. But unlike geographic maps, which represent a function of just two coordinates
(latitude and longitude), the potential energy surface (PES) function requires 3N variables
to calculate the energy of a molecular system, where N is the number of atoms. It means
that to model a small protein surrounded by solvent molecules, one requires a function of
many thousands of variables. The fact that we cannot draw a map of such a surface may
be the least important problem.

In molecular modeling we are interested in finding the minima of the PES, especially the
global minimum, which according to Anfinsen’s theorem corresponds to the native structure
of a protein.8 For such a highly dimensional function, one cannot simply apply classical
differential analysis to locate minima or saddle points, which correspond to low-energy
conformations and energy barriers, respectively. Due to the enormous computing cost
required, an exhaustive brute-force search of the conformational space is also practically
impossible. The only reasonable method to explore a potential energy surface is to start
from an initial conformation of a protein molecule and to modify it according to certain
rules, which should lead to conformations producing a lower the potential energy value.

Energy minimization (molecular mechanics). One way to locate a minimum would be
the so-called ‘downhill walking’ method – changing the conformation of a molecule by
moving always towards structures of a lower energy. Using such an approach one finds
only the nearest minimum, which is not necessarily the global one. This is the main idea
of molecular mechanics (MM) minimization, which is often used to improve the quality
of near-native models. Energy minimization algorithms may be divided into three groups:
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the non-derivative (e.g. the simplex method), first-order derivative (the steepest decent and
conjugate gradient methods) and second-order derivative (the Newton-Raphson method).
No single algorithm has proven most suitable for all purposes – one should choose the one
most appropriate for a given task. The process of inverting the Hessian matrix, required for
the Newton-Raphson method, is very simple for small systems, while it remains a very time-
consuming task when the number of atoms is large. On contrary, for the simplex method
no matrix inversion is required, but the total energy must be calculated for a large number
of structures. This requirement restricts the application of the simplex algorithm only to
cases where the energy function is not too complicated and may be quickly evaluated.

Molecular dynamics. While molecular mechanics minimization methods explore the po-
tential energy surface only in the closest vicinity of the starting conformation, molecular
dynamics (MD) can probe a much wider area of the PES. The most basic idea of MD
is to generate successive configurations of the molecule by integrating Newton’s laws of
motion. The negative gradient of the energy function is used to calculate the net force
acting on every atom, which enables calculation of velocities. Assuming a finite time step,
the new positions of the atoms are determined and subsequently used for calculation of the
potential energy of the system. Repeating this scheme produces a trajectory of consecutive
structures which can be further analyzed.

5.2.4 Knowledge-based Force Fields

The advantage of the empirical potentials is that, in principle, they are derived from
the laws of physics. The disadvantage is that the calculation of the free energy is very
difficult because the computation should include atomic level descriptions of both the
protein and the surrounding solvent. Currently this type of computation is too expensive
for protein folding simulations because of too many degrees of freedom treated explicitly
(see Table 5.1). It is also quite complicated to include subtle, but important, multi-body
contributions to the energy function. Usually such effects are modeled by means of cross-
terms that describe correlations between the torsional and planar angles9, 10 and explicit
polarization models.11 These approaches (especially the latter) can substantially increase
the expense of the simulation.

Knowledge-based scoring functions are based on the Anfinsen hypothesis: that proteins
in their native conformation are in thermodynamic equilibrium with their environment.8

Thus the main goal of the parameterization of a knowledge-based force field is to minimize
the energy of a native structure with respect to the misfolded structures, also known as
decoys. In general, the methods for knowledge-based force field derivation can be roughly
divided into two groups.

In the first group are methods based on statistical mechanics or Bayesian statistics. These
methods were first proposed by Tanaka and Scheraga12 and later refined by Miyazawa and
Jernigan13 and Sippl.14, 15 An energy value Ej assigned to an interaction of type j is given
by the Boltzmann-inversion formula:

E j = −kT ln

(
nnative

j

nre f erence
j

)
(5.8)
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where nnative
j is the number of interactions observed in native structures and nreference

j is
the number of similar interactions in a reference population. The same result can be also
derived from Bayesian principles.16

Methods that belong to the second group search for a set of force field parameters where
the native conformation has the lowest energy value among a large set of decoys. Numerous
variants of this approach differ by the criteria for optimization, e.g. achieving the largest
energy gap between the native state and the best of decoy structures,17 maximization of the
average probability of successful prediction, minimization of the free energy of the native
state,18 z-score optimization19 (the energy difference between the average decoy structure
and the native structure in units of standard deviation) and many others.

Xia and Levitt20 recently proposed a formalism that unifies the approaches outlined
above. The authors assumed that the total energy of a given protein conformation may be
calculated as a linear combination of all the energy components involved.

5.3 Reduced Models: Representation and Conformational Sampling

The choice of representation of a protein molecule often depends upon the sampling
methodology and force field employed in structure prediction, ranging from empirical
potentials for coarse-grained models sampled with Monte Carlo and genetic algorithm
methods to complex, atom-based, potentials that directly approximate the physical inter-
actions in the system.

A protein molecule can be represented in a computer program in many different ways.
One of the most important factors is how many degrees of freedom are treated explicitly. In
the most detailed representation, each atom of a macromolecule is treated as an interaction
center. Additionally a macromolecule may be immersed in solvent molecules. Such a
model, usually sampled by means of molecular dynamics, is computationally too expensive
for routine applications. Therefore mesoscopic models are widely employed for protein
structure calculations.

In their classical work Levitt and Warshel21 introduced a protein model based only on
two interaction centers per residue: Cα and a united atom describing the side chain. To
the present day, many mesoscopic protein model approaches have been proposed. In many
cases researchers follow the work of Levitt and Warshel, reducing the protein backbone to
a trace of Cα atoms. The side chain moieties may be represented by single united atoms,
sets of several atoms or ellipsoids. In the Rosetta approach, the backbone is represented
explicitly while the side chains are represented by united atoms. A survey of several
mesoscopic protein models is given in Table 5.2.

The straightforward advantage of a mesoscopic model versus an all-atom model is
that a single simulation step takes less CPU time because the number of degrees of
freedom is smaller. As a consequence, fewer energy terms need to be calculated. Because in
mesoscopic models high-frequency motions are neglected, the time step in MD simulations
can be larger. Another advantage of the coarse-grained mesoscopic approach is that the
force field derived for the united atoms lead to a much smoother energy surface than that for
the all-atom energy function. In other words, coarse-graining removes many local energy
minima in which the system could become trapped during the simulation.



P1: OTA

chap05 JWBK331-Bujnicki November 27, 2008 15:59 Printer: Yet to come

Ta
bl

e
5.

2
O

ve
rv

ie
w

of
th

e
m

os
ts

uc
ce

ss
fu

lp
ro

te
in

st
ru

ct
ur

e
pr

ed
ic

tio
n

al
go

rit
hm

s

C
A

S
P

6
re

su
lt

s

A
ve

ra
ge

 G
D

T
-T

S
 o

f 
al

l
fi

rs
t m

od
el

s 
in

 th
e

ne
w

 f
ol

d 
ca

te
go

ry
 

M
od

el
/n

am
e

of
 a

 g
ro

up
pa

rt
ic

ip
at

in
g

in
C

A
S

P
6

R
ep

re
se

nt
at

io
n

of
 th

e
co

nf
or

m
at

io
na

l
sp

ac
e

C
oo

rd
in

at
es

sy
st

em
S

am
pl

in
g

m
et

ho
d

P
ro

te
in

re
pr

es
en

ta
ti

on

N
um

be
r 

of
fi

rs
t m

od
el

s
in

 th
e 

ne
w

fo
ld

ca
te

go
ry

w
it

h 
G

D
T

-
T

S
 >

 2
5

A
ll

 n
ew

fo
ld

s
ta

rg
et

s

A
ll

se
nt

ne
w

 f
ol

ds
ta

rg
et

s

A
va

il
ab

il
it

y

U
N

R
E

S
/

S
ch

er
ag

a
C

on
ti

nu
ou

s
sp

ac
e 

m
od

el

C
ar

te
si

an
co

or
di

na
te

s
an

d 
to

rs
io

n
an

gl
es

 o
f

th
e

ba
ck

bo
ne

M
ol

ec
ul

ar
dy

na
m

ic
s,

M
on

te
C

ar
lo

2
16

.6
5

24
.9

7

U
N

R
E

S
:

ht
tp

:/
/w

w
w

.c
he

m
.u

ni
v.

gd
a.

pl
/~

ad
am

/l
oc

al
/d

oc
s/

in
de

x.
ht

m
as

 a
 p

ar
t o

f 
P

R
O

T
A

R
C

H
:

ht
tp

:/
/c

bs
u.

tc
.c

or
ne

ll
.e

du
/s

of
tw

ar
e/

pr
ot

ar
ch

R
O

S
E

T
T

A
/

B
ak

er

C
on

ti
nu

ou
s

sp
ac

e 
m

od
el

to
rs

io
n

an
gl

es
 o

f
th

e
ba

ck
bo

ne

M
on

te
C

ar
lo

3
27

.3
8

27
.3

8

R
os

et
ta

:
ht

tp
:/

/w
w

w
.r

os
et

ta
co

m
m

on
s.

or
g

A
ut

om
at

ic
 p

re
di

ct
io

ns
 (

R
ob

et
ta

):
ht

tp
:/

/r
ob

et
ta

.b
ak

er
.la

b.
or

g

C
A

B
S

/
K

ol
in

sk
i-

B
uj

ni
ck

i

L
at

ti
ce

 m
od

el
(g

ri
d=

0.
61

 Å
)

C
ar

te
si

an
co

or
di

na
te

s

R
ep

li
ca

E
xc

ha
ng

e
M

on
te

C
ar

lo

4
25

.1
8

25
.1

8
ht

tp
:/

/w
w

w
.b

io
co

m
p.

ch
em

.u
w

.e
du

.p
l/

se
rv

ic
es

.p
hp

R
E

F
IN

E
R

/
bo

ni
ak

i_
pr

ed

C
on

ti
nu

ou
s

sp
ac

e 
m

od
el

C
ar

te
si

an
co

or
di

na
te

s

R
ep

li
ca

E
xc

ha
ng

e
M

on
te

C
ar

lo

2
17

.4
6

19
.6

4
U

na
va

il
ab

le

F
R

A
G

F
O

L
D

/
Jo

ne
s-

U
C

L
C

on
ti

nu
ou

s
sp

ac
e 

m
od

el
C

ar
te

si
an

co
or

di
na

te
s

si
m

ul
at

ed
an

ne
al

in
g

4
24

.4
3

27
.4

9
U

na
va

il
ab

le

(c
on

tin
ue

d
ov

er
le

af
).



P1: OTA

chap05 JWBK331-Bujnicki November 27, 2008 15:59 Printer: Yet to come

Ta
bl

e
5.

2
(c

on
tin

ue
d)

C
A

S
/

S
ko

ln
ic

k-
Z

ha
ng

L
at

ti
ce

 m
od

el
(g

ri
d=

0.
87

 Å
)

C
ar

te
si

an
co

or
di

na
te

s

R
ep

li
ca

E
xc

ha
ng

e
M

on
te

C
ar

lo

3
23

.9
7

23
.9

7
A

s 
a 

pa
rt

 o
f 

T
A

S
S

E
R

L
it

e 
– 

a 
to

ol
 f

or
 c

om
pa

ra
ti

ve
 m

od
el

in
g

an
d 

th
re

ad
in

g:
ht

tp
:/

/c
ss

b.
bi

ol
og

y.
ga

te
ch

.e
du

/s
ko

ln
ic

k/
fi

le
s/

T
A

S
S

E
R

L
it

e

P
R

O
T

IN
F

O
/

S
am

ud
ra

la
A

B

C
on

ti
nu

ou
s

sp
ac

e 
m

od
el

to
rs

io
n

an
gl

es
 o

f
th

e
ba

ck
bo

ne

M
on

te
C

ar
lo

si
m

ul
at

ed
an

ne
al

in
g

2
14

.0
2

25
.2

4
ht

tp
:/

/p
ro

ti
nf

o.
co

m
pb

io
.w

as
hi

ng
to

n.
ed

u/
pr

ot
in

fo
_a

bc
m

fr

S
im

fo
ld

/
R

ok
ko

C
on

ti
nu

ou
s

sp
ac

e 
m

od
el

to
rs

io
n

an
gl

es
 o

f
th

e
ba

ck
bo

ne

R
ev

er
si

bl
e

fr
ag

m
en

t
as

se
m

bl
y

w
it

h
m

ul
ti

-
ca

no
ni

ca
l

en
se

m
bl

e
M

on
te

C
ar

lo

2
24

.6
5

24
.6

5
U

na
va

il
ab

le

N
ot

e:
Th

e
pr

ot
ei

n
re

pr
es

en
ta

tio
n

fo
r

ea
ch

al
go

ri
th

m
is

pr
es

en
te

d
gr

ap
hi

ca
lly

(U
N

R
ES

:C
α

,S
C

,P
B

;R
os

et
ta

:b
ac

kb
on

e
at

om
s,

SC
;C

A
B

S:
C

α
,C

β
,S

C
,P

B
;R

EF
IN

ER
:C

α
,S

C
1
,

SC
2
;F

R
A

G
FO

LD
:a

ll-
at

om
;C

A
S:

C
α

,S
C

;P
R

O
TI

N
FO

:a
ll-

at
om

;S
im

fo
ld

:b
ac

kb
on

e
at

om
s,

SC
).

Th
e

fo
llo

w
in

g
ab

br
ev

ia
tio

ns
ar

e
us

ed
:C

α
–

al
ph

a
ca

rb
on

at
om

,C
β

–
be

ta
ca

rb
on

at
om

,
SC

–
a

ps
eu

do
at

om
w

hi
ch

is
lo

ca
te

d
in

a
si

de
-c

ha
in

ce
nt

er
of

m
as

s
an

d
re

pr
es

en
ts

si
de

-c
ha

in
at

om
s,

SG
–

a
ps

eu
do

at
om

w
hi

ch
is

lo
ca

te
d

in
a

si
de

-c
ha

in
ce

nt
er

of
m

as
s

an
d

re
pr

es
en

ts
al

l
si

de
-c

ha
in

at
om

s
ex

ce
pt

th
e

C
-b

et
a

at
om

,
PB

–
a

ps
eu

do
at

om
w

hi
ch

is
lo

ca
te

d
in

a
ge

om
et

ri
ca

l
ce

nt
er

of
a

ps
eu

do
bo

nd
be

tw
ee

n
tw

o
co

ns
ec

ut
iv

e
C

-a
lp

ha
at

om
s

an
d

re
pr

es
en

ts
a

pe
pt

id
e

bo
nd

.S
C

1
an

d
SC

2
st

an
d

fo
rt

w
o

un
ite

d
at

om
s

re
pr

es
en

tin
g

tw
o

fr
ag

m
en

ts
of

a
si

de
ch

ai
n

in
R

EF
IN

ER
.C

A
SP

6
(th

e
si

xt
h

ed
iti

on
of

th
e

C
ri

tic
al

A
ss

es
sm

en
to

fT
ec

hn
iq

ue
s

fo
r

Pr
ot

ei
n

St
ru

ct
ur

e
Pr

ed
ic

tio
n)

is
a

w
or

ld
w

id
e

bi
en

ni
al

co
m

pe
tit

io
n

in
w

hi
ch

di
ffe

re
nt

gr
ou

ps
pr

ed
ic

ts
tr

uc
tu

ra
lm

od
el

s
of

ty
pi

ca
lly

m
or

e
th

an
on

e
hu

nd
re

d
pr

ot
ei

ns
fo

r
w

hi
ch

on
ly

th
e

se
qu

en
ce

is
pu

bl
is

he
d.

To
de

sc
ri

be
th

e
C

A
SP

6
re

su
lts

w
e

us
ed

th
e

G
D

T-
TS

(G
lo

ba
lD

is
ta

nc
e

Te
st

To
ta

lS
co

re
)

m
ea

su
ri

ng
th

e
av

er
ag

e
pe

rc
en

ta
ge

of
re

si
du

es
fo

r
w

hi
ch

al
ld

is
ta

nc
es

be
tw

ee
n

th
e

m
od

el
an

d
th

e
ta

rg
et

ar
e

sh
or

te
r

th
an

th
e

ch
os

en
cu

to
ff

di
st

an
ce

s.
Th

e
di

ffe
re

nc
es

in
th

e
la

st
tw

o
co

lu
m

ns
re

fle
ct

th
e

fa
ct

th
at

so
m

e
gr

ou
ps

at
te

m
pt

ed
pr

ed
ic

tio
ns

of
a

se
le

ct
ed

su
bs

et
of

ne
w

fo
ld

ta
rg

et
s.



P1: OTA

chap05 JWBK331-Bujnicki November 27, 2008 15:59 Printer: Yet to come

Successful Approaches to de Novo Protein Modeling 127

Once a protein model representation has been selected, and a suitable energy function
defined, one may try to find the global energy minimum for a given amino acid sequence.
Such an attempt relies on the Anfinsen hypothesis and on the assumptions that the simpli-
fications introduced to the model (e.g. neglecting posttranslational modification, using a
simplified representation, applying a continuous solvent etc.) do not alter the native state
drastically.

Unfortunately, to find the lowest energy conformation one has to overcome the multiple
minima problem. In the few past decades of extensive research many methods have been
devised for the global optimization of protein structures, clusters or crystals.22 Among the
most successful approaches are Monte Carlo plus Minimization (MCM),23 Conformational
Space Annealing24 and the Diffusion Equation Method.25 Genetic algorithms have been
also employed in de novo protein structure prediction.26–28

In many approaches minimization is performed by wandering around on the potential
energy surface. This is especially important for protein structure prediction because the
simplified (and thus computationally tractable) force fields are only approximations of
the true energy function of biomolecules. Therefore it is crucial to locate multiple energy
minima. For example, in multi-scale approaches low resolution models are expected to
visit as many low energy states as possible. Then a more precise energy evaluation is
performed for only these states. A number of methods based on Monte Carlo dynamics
have been proposed for this purpose.29 Parallel Tempering (PT),30–32 known also as Replica
Exchange Monte Carlo, is probably the most widely used method. In this approach several
independent copies of the same system are simulated in parallel. The simulations are
usually conducted by means of an isothermal Metropolis algorithm, although a molecular-
dynamics-based PT method has also been proposed.33 Each copy of the modeled system is
simulated at a different temperature. For adjacent replicas configurations can be exchanged
(swapped) between temperatures. The high temperature systems are generally able to
sample large volumes of the energy surface, whereas energy minimization is performed
by the low-temperature replicas. The exchange mechanism prevents the low-temperature
replicas from becoming trapped in local energy minima. The PT method has proven to
be general and very robust. One provides only a set of temperatures as the controlling
parameters of the simulations. Several methods have been proposed to choose optimal
temperature sets, e.g. 34–36.

5.4 Successful Approaches to de Novo Protein Modeling

Continuous-space models based on all-atom representations lack the ability to find a
global free energy minimum of a typical protein in a tractable period of time. The most
straightforward solution to this problem is to reduce the large number of degrees of freedom
by employing a reduced representation of a protein chain or/and simplified interaction
scheme.

5.4.1 Continuous Space Reduced Models

The classical work by Levitt and Warshel21 assumed a two-center approximation of a single
residue of a polypeptide chain: the Cα atom and a spherical united atom representing
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the side group. The only degrees of freedom were the torsion angles defined by four
consecutive Cα atoms. This representation of a protein is also used with some alterations
in the definition of side-chains in UNRES, a recently developed continuous-space reduced
model.37 UNRES assumes the form of ellipsoids for the side chains. Additionally, peptide
bonds are represented as united atoms located in the middle of two consecutive Cα atoms.
The free energy function accounts explicitly for the interactions of only two types of
united atoms: the united side chain atoms and the peptide groups. The Cα atoms are
used only for precise definition of the chain geometry during the simulation. The virtual
Cα-Cα bonds are of a fixed length of 3.8 A

◦
. The only degrees of freedom in continuous

space are the bond and torsion pseudoangles defined in the Cα-based local coordinate
systems. The free energy function of a given conformation includes hydrophobic (or
hydrophilic) interactions between the side chains, steric repulsion between side chains
groups and peptide groups, and electrostatic interactions between peptide groups. Local
conformational propensities of a polypeptide are described by torsional and angle-bending
potentials. The multibody correlations between local interactions and electrostatics, which
are the most important for reproducing regular secondary structure elements, are described
by higher order terms. It should be pointed out that the weighting factors of the free energy
terms of the UNRES force field were optimized using a sophisticated method based on a
hierarchical classification of decoys according to their content of native-like elements.38

The conformational space is sampled by a variety of methods, including simple Monte
Carlo schemes, CSA (Conformational Space Annealing – a combination of a genetic
algorithm and local minimization), variants of molecular dynamics (such as MREMD –
Multiplexing Replica Exchange Molecular Dynamics), and other elaborate techniques of
global minimization. The UNRES approach to protein structure prediction proved its high
modeling efficiency in several Critical Assessment of Techniques for Protein Structure
Prediction (CASP) competitions (see Table 5.2), providing (for example) the best model
for the T0215 target (the fold-recognition analogy category) in CASP6. CASP is a biannual
competition, in which competitors from all over the world predict models for sequences of
proteins with unpublished structures. After the competition is closed the native structures
are released and all previously sent models are assessed.

Another recently developed protein model is REFINER, which increases the resolution
of side chain representation (as compared to UNRES) by adding another united atom
(so that the side chains of most residues are represented by two united atoms, excepting
glycine and alanine).39 The radii of both united atoms are correlated with the chemical
structure of the side-chain. The energy terms include short-range potentials, long-range
contact-type potentials dependent on the mutual orientation of interacting side-chains,
and the main chain hydrogen-bonding potential. The force field was derived similarly to
the CABS model (described below), using structural statistical regularities extracted from
known protein structures. The REFINER approach performed well not only in CASP (see
Table 5.2), but also in simulations of autocatalytic misfolding followed by aggregation
of the model peptides. These computational experiments provided a simplified molecular
explanation of ‘conformational’ diseases.40

A different approach to the reduced representation of proteins has been employed in the
Rosetta model developed by Baker and co-workers.41 The Rosetta representation of a pro-
tein structure includes all non-hydrogen backbone atoms but reduces side chains to single
united atoms located in the side chain centers of mass. For higher-resolution modeling,
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discrete all-atom side chain conformations may be added from a rotamer library,42 using
Monte Carlo simulated annealing protocols. All bonds lengths and angles in the backbone
are set to the ideal values for a polyalanine peptide chain. The only degrees of freedom are
the backbone torsion angles, which change continuously. The Rosetta strategy differs from
one protein-modeling application to another, but the main idea remains the same. Namely,
short fragments of known protein structures are assembled using the Monte Carlo method,
and from those fragments native-like protein conformations are usually obtained. This
approach mimics real protein folding by sampling fluctuations of different local structures
accessible for a given sequence that finally lead to compact global conformations, which
is consistent with the model of local and non-local interactions. Usually, a Monte Carlo
conformational search starts from an extended conformation, where nine-residue windows
from the query sequence are randomly selected. By using a fragment library derived from
a non-redundant database of protein structures, the best fitting structural fragments to the
given sequence windows are determined. Fragment assembly is divided into several steps,
including comparison of PSI-BLAST-constructed profiles of the database fragments and
the query sequence windows, and calculations of similarity between the DSSP-derived
secondary structure of the assembled fragments and the predicted secondary structure for
the query sequence. After a random selection of the best fitting fragments, all torsion
angles in the windows of the query protein chain are replaced with these from the selected
fragments. Such a change of the torsion angles is called a ‘move’. Alternatively, the move
may be carried out by random perturbation of the torsion angles. After the move, the
energy of the entire chain is evaluated and the standard Metropolis criterion is applied. For
applications in de novo modeling, a simplified energy function has been designed using
Bayes’ theorem. The simplified interaction scheme includes several sequence-dependent
and sequence-independent terms consistent with the coarse-grained representation. The
sequence-specific terms correspond to solvation and electrostatic effects. Electrostatics
and disulfide bonding are evaluated by a distance-dependent residue-based pair potential.
The sequence-independent energy terms include the van der Waals attraction and steric re-
pulsion of the backbone atoms and the side-chain centroids. The global arrangement of the
secondary structure elements is moderated by both strand-strand and helix-strand packing
potentials. In simplified versions of the Rosetta model, hydrogen bonding is accounted
for only implicitly as a knowledge-based strand-pairing potential. Except for the van der
Waals interactions, all the remaining force field components were derived via an elaborate
statistical analysis of known protein structures. The Rosetta strategy proved to be very
successful in all editions of CASP (see an example from CASP6 in Table 5.2).

Since Rosetta was published, many other de novo methods based on fragment assembly
has been developed,43 many of which are available as web servers (see Table 5.2). For
example, the FRAGFOLD method developed by Jones44 forms a protein conformation from
both the best fitted super-secondary structures (two or three sequential secondary structure
elements) and short tri-, tetra- and pentapeptides from a library during the simulated
annealing process. It is worth noticing that simulations based on conventional fragment
assembly lack reversibility and detailed balance. Consequently, not all efficient sampling
methods can be used in such simulations. SimFold, developed by Takada et al.,45 deals
with this problem by a reversible fragment assembly approach combined with a powerful
conformational sampling method – Multicanonical Ensemble Monte Carlo. A different
approach to fragment assembly is used by Samudrala in PROTINFO.46 Instead of copying
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angles or coordinates directly from the best fitting fragments from known protein structures,
these fragments are used to generate the binned distribution of backbone torsion angles
for the given sequence. During the simulated annealing, every change of torsion angles is
based on this distribution.

A detailed representation of the main chain and a reduced description of the side-chains,
which is characteristic for the Rosetta method and other fragment assembly methods, is
also employed by Betancourt in his protein model.47 For the definition of a knowledge-
based potential based on dihedral � and � angles, which reflects correlations of local
conformations of consecutive residues, an all-atom representation of the backbone was
used. For the definition of other knowledge-based potentials, e.g. the pairwise potentials
that depend on distance and mutual positions along the sequence, a reduced representation
of the backbone and the side-chains is used. The coarse-grained representation of a residue
is defined by one to three pseudoatoms (depending on a residue type). Backbone atom
positions, and side chain sizes and orientations are used for the definition of interaction
centers. Side chain atoms of a residue are grouped into united atoms according to their radial
distances from the average position of the backbone atoms. Namely, the first pseudoatom
is formed by the backbone atoms and the side chain α and β atoms (for example Cα or
Cβ), the second approximates γ and δ atoms, and the third pseudoatom replaces distal (ε,
ζ and η) atoms. Positions of pseudoatoms are defined by spherical coordinates using the
backbone geometry as a reference system with Cα atom at the origin. Controlled by the
Monte Carlo scheme, the conformation is updated by changes in a continuous space of
torsion � and � angles of a fragment of a protein (so-called ‘pivot’ moves and ‘fixed end’
moves). The described model has been used mainly in threading applications and protein
folding with the Go contact potential, but its innovative approach could be very successful
in de novo structure prediction.

5.4.2 High Resolution Lattice Models

High resolution lattice models have proven to be very effective not only in protein struc-
ture prediction,48 but also in prediction of protein interactions49, 50 and protein folding
mechanisms.51, 52 The CABS (Cα, Cβ, Side chain) model is probably the most represen-
tative example of such approach. In this model the main chain is reduced to an alpha
carbon trace restricted to a cubic lattice with a grid spacing equal to 0.61 A

◦
. By slightly

fluctuating around the equilibrium length of 3.8 A
◦

, Cα-Cα virtual bonds can adapt 800
different orientations. The Cα-trace is used as a reference frame for the definition of the
beta carbon and the centers of the remaining portions of the side chains, both of which have
coordinates off the lattice. A two-rotamer approximation (two possible rotational isomers
of a side chain) of the conformations of the side chains is used to speed up computations.
The force field is entirely statistical and knowledge-based, and contains short-range generic
and sequence-specific terms. These terms provide conformational biases for 4-residue frag-
ments, a model of the main-chain hydrogen bonds (defined by the local Cα-trace geometry
of the interacting fragments), and context-specific long-range interactions between the side
chains. The side chain interactions account in an implicit fashion for the solvent effects
and complex multibody correlations. Sampling of the CABS energy surface is performed
by means of various Monte Carlo techniques, including simulated annealing, parallel tem-
pering, and other multi-copy techniques. Due to ‘prefabricated’ local moves stored in
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large reference tables, pre-computed interactions for various local geometries, and the
smoothed energy surface due to the lattice approximation, the CABS simulations are much
more efficient than an otherwise equivalent continuous space model. Starting from an ear-
lier version of CABS, Zhang and coworkers53–55 developed a very efficient hierarchical
method for automated modeling of proteins based on fragmentary and structurally remote
templates.

A unique approach to a reduced representation of conformational space is represented
by the SICHO (SIde Chain Only) model. In SICHO,56 only the centers of mass of side
chains are modeled explicitly, and are restricted to a cubic lattice with a grid spacing equal
to 1.45 A

◦
. The distribution of distances between consecutive side chains is amino-acid-

specific and mimics the distribution seen in known protein structures. The virtual bonds
between subsequent side chains belong to a set of 646 lattice vectors. The positions of
the alpha carbons (used for the definition of the main chain hydrogen bond patterns) are
approximated from the positions of the side chains, using a set of simple knowledge-based
rules. The force field of SICHO is similar in spirit to that of CABS. Although somewhat
less accurate, the SICHO model is computationally more efficient than CABS. The cost of
simulations for very small proteins is the same as for CABS model, although the scaling
of the computing time as a function of chain length is much better. For this reason the
SICHO algorithm is more suitable for modeling of large proteins and macromolecular
assemblies. The predictive strength of SICHO was successfully tested during the earlier
CASP competitions.57, 58 The SICHO and CABS models could easily be combined into a
single hierarchical, multiscale modeling pipeline.

5.5 Multiscale Modeling

Multiscale approaches to protein structure modeling employ a few (at least two) distinct
models of protein chains. A low resolution representation is used to effectively search
low-energy regions in the conformational space. A higher-resolution model, usually an
all-atom representation, is devoted to accurate assessment of the best protein conforma-
tions generated in the low-resolution search. The first high-accuracy multiscale modeling
was conducted for the GCN4 leucine zipper dimmer.59 Low resolution simulations were
performed by means of a very simplified lattice model called ‘310 Hybrid’. The simula-
tions started from random conformations of the two spatially separated monomers. The
only prior knowledge introduced into the simulation was the amino acid sequence and a
secondary structure assignment providing a weak bias towards the known helix-like geom-
etry. From low resolution simulations the five models of lowest energy were selected. The
coordinate root-mean-square distances after the best superimposition (CRMSD) between
the models and the native structure ranged from 2.3 A

◦
to 3.7 A

◦
. In the second stage of

the multiscale modeling, an all-atom CHARMM5 force field with explicit solvent was
used to refine and assess the models. After energy minimization, the resulting models had
CRMSDs of 0.81–2.29 A

◦
from the native structure, and the best structures could be easily

selected based on objective geometrical and energetic criteria.
A very interesting multiscale procedure has been proposed by Levitt and coworkers.20, 60

First a large number of compact, diamond lattice polymers are generated, assuming that a
single lattice site may correspond to more than one residue of the modeled protein chain.
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Then the obtained lattice scaffolds were used for construction of detailed models from small
protein fragments excised from the structural database. The large set of models generated
was scored with a simplified energy function and then refined using molecular mechanics.
Frequently quite reasonable models were generated by this hierarchical approach.

In another example of multiscale modeling,61 de novo models were computed for 16
small globular proteins. For each of these sequences, 20,000 to 30,000 trial conformations
were generated with the Rosetta modeling tool.41 Then all-atom representations were built
for each of the models and the all-atom energy was minimized. The final models were
selected by means of structural clustering. The method employed in this work demanded
a lot of computational resources. The authors presented results for protein sequences
having 69 amino acids on average. For each of these sequences, the calculations took
approximately 150 CPU days. The authors identified conformational sampling as the
computational bottleneck of their approach.

Yet another successful approach to all-atom refinement of mesoscopic models was
presented by Kmiecik et al.51 Contrary to the method by Bradley et al.,61 in this work
the authors optimized all non-hydrogen atoms of a model except for the Cα trace, which
remained frozen. This made the minimization step much shorter. Another consequence of
keeping the Cα atoms restricted to their initial positions is that the conformational space
is explored only in the nearest neighborhood of the energy hyper-surface. A global search
was performed with the CABS modeling tool.

The approaches described above utilize an all-atom protein model only at the final stage
of modeling as a tool for structure refinement and highly accurate energy evaluation. In the
approach proposed by Brooks et al.62 a multiscale simulation is conducted at two levels of
accuracy. The mesoscopic lattice-based model SICHO is used for efficient sampling of con-
formational space. After a short SICHO simulation, the resulting structures are subjected
to all-atom energy minimization with the CHARMM force field. The optimized confor-
mations are accepted or rejected according to the Metropolis criterion. Both simulation
layers may utilize parallel tempering for further sampling enhancement. This modeling
procedure is a part of the MMTSB (Multiscale Modeling Tools for Structural Biology)
protein modeling package, consisting of several simulation programs and Perl scripts for
maintaining the pipeline. The programs are publicly available from the MMTSB webpage:
http://mmtsb.scripps.edu/software/mmtsbToolSet.html.

A necessary component of multiscale modeling is a tool for fast and reliable recon-
struction of an all-atom protein representation of a mesoscopic model. For example, in
the MMTSB protocol described above, such a reconstruction routine must be called for
every Monte Carlo step of the high-resolution simulation layer. Usually the all-atom re-
construction is performed in two steps. Firstly, positions of non-hydrogen atoms of protein
backbone are retrieved. The accuracy of the first step is important because the rebuild-
ing of side chains is usually based on the ϕ and ψ dihedral angles, calculated from the
reconstructed backbone. Several algorithms have been proposed for the backbone recon-
struction. They can be roughly divided in two groups: a rigid fitting of short peptides and
statistics-based approaches. Methods from the first group63–65 utilize short (usually 3 to 10
residue long) fragments (or ‘spare parts’) extracted from high-resolution protein structures.
These methods can be very accurate, as is the algorithm by Claessens et al.,63 although
recently conducted large-scale tests66 have shown that they fail to reconstruct a fraction of
the proteins from the test set. Methods that rely on structural statistics extracted from the
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Table 5.3 Summary of the results of the reconstruction of backbone in a set of 81 native
protein structures

Average results for 35 proteins rebuilt
by various methods

Method
% of successfully
rebuilt structures

Average
CRMSD on
backbone

�
correlation

�
correlation

Average running
time per protein [s]

MaxSprout 46.25% 0.47 A
◦

0.75 0.82 1.71 s
BB 100% 0.64 A

◦
0.52 0.65 56.98 s

Pulchra 100% 0.59 A
◦

0.65 0.78 1.06 s
Sybyl 91.25% 0.39 A

◦
0.77 0.86 172.6 s

BBQ 100% 0.42 A
◦

0.81 0.84 0.37 s

PDB62, 66–70 are usually more robust. A comparison of the performance of several methods
for main chain reconstruction is given in Table 5.3.

In the second stage of all-atom reconstruction, i.e. side chain rebuilding, backbone-
dependent rotamer libraries are commonly used.71, 72 Typically, de novo protein structure
calculations generate a large number of decoys. Correct identification of the native-like
structures among the decoys still remains a challenging task. The force fields used in protein
simulations usually reflect only the energy terms. For estimation of the entropic effects
a clustering algorithm may be employed.73–76 Clustering procedures combine elements
into groups according to a defined distance measure. A size of a given group of similar
structures combined with their average conformational energy can provide valuable hints
for the final model selection.

5.6 Experimental and Predicted Restraints in Guided de Novo Modeling

De novo methods provide theoretical models of reasonable resolution for proteins of a
maximum length of 150 residues. This barrier of protein length on a reachable resolution
could be overcome with the use of some sparse and non-specific experimental data in the
folding simulations, which is much easier to obtain in comparison to the time- and effort-
consuming experimental determination of complete protein structures. If we combine de
novo methods with such simple experiments we could accelerate the process of solving a
protein structure without decreasing the resolution of the resulting molecular models.

5.6.1 Structure Prediction Supported by Sparse Experimental Data

As discussed above, successful de novo methods can employ experiment-based restraints
in their algorithms. The Rosetta method was enhanced with scoring potentials satisfy-
ing various experimental constraints, and the new server Rosetta-NMR was developed.77

Rosetta-NMR takes advantage of the data from NMR measurements which are provided
additionally by the user. It is possible to supply chemical shifts (CS), residual dipolar cou-
plings (RDC) and NOEs. Briefly, chemical shifts are used in the Rosetta model as a source
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of local information about torsion angles � and � obtained by a modified version of the
TALOS program,78 while NOEs are used in the form of simple distance constraints. RDCs,
which define the degenerated orientations of internuclear vectors (typically 15N-1H) with
respect to a specific reference frame (a molecule alignment tensor), are used in the same
way as CSs and NOEs in the scoring function, which is used in the selection of fragments
from the database.

It is worth mentioning that most standard NMR structure determination programs can
deal with ambiguous NOE signals, but the degeneracy of the RDC data is still an im-
pediment for many programs, requiring at least enough data to reduce or eliminate the
ambiguities.77 Consequently, RDCs are used commonly in structure refinement but rarely
in the beginning stages of structure determination. For de novo structure prediction pro-
tocols such as Rosetta-NMR, which do not act in a deterministic way, the effects of
degeneracy of the RDCs could be reduced by the fact that the model force field could
discriminate against false or unsuitable constraints, thereby allowing the incorporation of
such data in the early stages of in silico folding. Moreover, due to its frequent degeneracy
and non-specificity, sparse experimental data should be used during the modeling in a
complementary (with respect to the force field employed) fashion, as it is implemented in
the Rosetta-NMR or CABS models. What is perhaps more important for experimentalists
(potentially saving them time), is the fact that Rosetta-NMR is also capable of providing
reasonable protein models even in cases when the NMR signals have not been assigned yet
to specific residues.79

Chemical shift data were also exploited in the CABS de novo method in the form
of secondary structure bias and angular constraint potentials as supplementary terms in
the energy function. Even such local information on the protein conformation enables a
significant reduction of the explored conformational space, and therefore accelerates the
prediction procedure without decreasing the resolution of the final models.80

5.6.2 Combining Experimental and Theoretical Restraints in de Novo Modeling

De novo modeling can also be enhanced with some additional data from other theoretical
methods. The most successful approaches in de novo modeling are based on combinations
of different kinds of data and methods to obtain the most probable consensus solution. In
CASP6 one of the most successful methods in the ‘new fold’ category was a combined
approach involving two diametrically different methods: the CABS model by Kolinski
and the Frankenstein3D model by Bujnicki.48 The latter method was treated as a source of
spatial constraints which guided de novo protein folding carried out by the former. Franken-
stein3D, originally developed for comparative modeling or fold-recognition applications,
uses an optimized procedure of selecting and scoring pairwise target-template alignments
to build a hybrid model. The hybrid model is obtained from the best fitted fragments from
preliminary models which are assessed by statistical potentials, structural comparison and
an external method (previously Verify3D and currently MetaMQAP81).

Multiple sequence alignments provide various data which can be used not only in
comparative or fold-recognition modeling, but also in de novo approaches. The various
methods that supply information from sequence alignments most commonly employ neural
networks, Support Vector Machines (SVM) or Hidden-Markov Models (HMM,). These
methods change input or optimize parameters according to the type of information they
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would finally provide, yielding valuable sets of ‘fuzzy’ structural constraints of both local
and global nature.

Information about a local conformation of a protein can be obtained much more precisely
than about global arrangements. For example, predictions of secondary structure, which
are based on the analysis of position-specific sequence profiles, are 70–80% accurate.82

Secondary structure prediction methods are used most commonly as a bias in folding
simulations.83 Various methods are applied for secondary structure prediction,84 e.g.
PSIPRED and PROFsec employ neural networks, and SAM-T06 uses an HMM based
method.85, 86

Multiple sequence alignments are also a source of information about solvent accessibility,
which is especially useful in structure-based prediction of protein function, because residues
in active sites are typically exposed to solvent. Usually, residue hydrophobicity is also taken
into account in accessibility predictions.87, 88 Separate predictions of solvent accessibility
from servers are rarely used in de novo methods, because corresponding statistical potential
terms are already introduced into many force fields.41, 89 Such burial potentials, implicitly
describing interactions with solvent, typically include distributions of the number of inter-
residue contacts for a given amino acid type.

Before applying any de novo methods for structure prediction it is important to find out
if a query protein is globular, because most of these methods are not suited for predictions
of the structure of proteins with transmembrane, disordered or coiled-coil regions. The first
step in de novo protocols should be to predict if the query protein contains any of these
regions. Such prediction is also based on analysis of multiple sequence alignments together
with the distributions of hydrophobic and of positively charged amino acids (the ‘positive-
inside-rule’ for prediction of transmembrane regions),87, 90 or together with the distributions
of hydrophobic and hydrophilic residues (for coiled-coil predictions).91 In the prediction
of disordered regions (which are frequently located at the N- and C-termini and typically
have a biased composition of amino acids), PSI-BLAST profiles, secondary structure
predictions, average hydrophobicity, net charges, particular amino acid frequencies and
sequence complexity are involved.92 In CASP7 the most successful prediction methods
employing this information were VSL2.93 POODLE94 and DISOPRED95 servers.

Most de novo methods are used for the prediction of single domain proteins. Conse-
quently, reliable division of a query sequence into separate domains is crucial. Typically,
each domain is folded by de novo methods separately, and the final orientation of the
domains (an extremely difficult task), is predicted by other methods, often including evo-
lutionary data.48 Domain boundaries are usually detected based on multiple sequence
alignment analysis,96 or by using only the statistics of the appearance of amino acids at the
boundaries, which could be especially useful for new folds.97

Apart from the local information obtained from multiple sequence alignments, some
spatial constraints of much lower accuracy can be derived from the prediction of Cβ-
Cβ contacts (defined as a contact when two Cβ atoms are closer in space than 8 A

◦
). Such

probable contacts are derived from multiple alignments, solvent accessibility and secondary
structure correlations. In CASP6 the methods for contact prediction provided data high
above random (20%) distributions and were quite useful in modeling new folds in the cases
where the meta-predictors did not find any reliable templates. However, excepting rare
examples,98 most de novo structure prediction protocols still lack regular implementation
of predicted contacts in the modeling pipelines. Information about residues which are
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close in space, if correct, is crucial for successful de novo methods mimicking protein
folding. Particularly, in the folding of proteins the distance between cysteine residues plays
the most important role in whether disulfide bonds form. Information about the disulfide
bridges can be obtained either from NMR and mass spectroscopy experiments, or from
theoretical predictions involving SVM or neural networks with profiles, often including
solvent accessibility and secondary structure as additional inputs.99 Disulfide bonds data
is typically used in de novo modeling in the form of distance constraints between cysteine
residues. Some de novo methods employ statistical contact-type potentials which favor
interactions between every two cysteines,89 but more precise information about possible
disulfide bridges, as predicted by other methods, could be critical.

5.7 Perspectives

Although quite successful in application to small, single domain proteins, routine de novo
protein structure prediction remains one of the most challenging unsolved problems of
computational biology. It is clear that in the near future the problem will not be solved by
the brute force of rapidly increasing computer power. The most promising methods appear
to be various multiscale, hierarchical procedures, where crude models are built by means
of mesoscopic algorithms and then refined by all-atom molecular mechanics. If needed,
good quality de novo models could be bootstrapped with quantum mechanical simulations.
Cascades of mesoscopic models at various resolution could be very useful, especially
when applied to large systems. It is also clear that successful procedures need to be divided
into two (or three) partially separated tasks: fold generation, fold selection and structure
refinement. In this context, a very promising approach could be atomic-level knowledge-
based statistical scoring functions. Finally, what is very important for molecular biology
is to move a few steps beyond single protein structure prediction: designing efficient
computational tools for protein folding pathway prediction and for modeling protein-
protein/nucleic acid/lipid/peptide interactions. Progress in these areas will be extremely
beneficial for understanding metabolic and signaling pathways, mechanisms of molecular
transport, and other processes taking place in a living cell. It is also worth to note that
even low resolution models are often sufficient for functional annotation by means of the
fold assignment, enable finding binding/active sites by methods of three-dimensional motif
searching, can be very helpful in refining/guiding the results of protein NMR experiments
and in supporting site-directed mutagenesis experiments.100 All of these aspects of structure
prediction are extremely important for high-level computer-aided drug design and for
modern biotechnology.
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6
Quality Assessment of Protein Models

Björn Wallner and Arne Elofsson

6.1 Introduction

When building a protein model, with or without the aid of experimental information, it is
often necessary to use an independent measure to evaluate the correctness of the model.
This is the role of Model Quality Assessment programs (MQAPs). Different types of
MQAPs have been developed during the last decades. The goal of all these methods is to
assess the quality of protein models. However, the definition of quality differs depending
on the problem, thus it is always important to consider the specific problem to be solved
when using an MQAP.

Traditionally MQAPs are methods that evaluate the quality of a protein model. However,
during recent years other types of MQAPs, including consensus based MQAP, has increased
in importance. Until recently most work has been focused on the development of methods
aimed at detecting the native structures and to separate these from incorrect models.
However, today one of the most important uses of MQAPs is to select the best out of a set
of models built by homology or by other methods. Although these two problems clearly
are related, there is no guarantee that a method that works well on the first problem works
well on the other, in particular when all of the plausible models are of low quality.

In this chapter we will first discuss how MQAPs have been used in the past and how
they are used today and finally we will present an analysis of how MQAPs performed in
CASP7.1

The first use of MQAPs was to detect erroneous models from X-ray crystallography.
X-ray based models might be wrong, in particular when the resolution of the diffraction
data is quite low, but other types of errors, including tracing a chain backwards through
the electron density also occurs. Here, the number of residues in disallowed regions in the
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Ramachandran plot can often be used as an indicator for the quality of the X-ray model.
This so called ‘stereochemical correctness’ could for instance have detected the wrongly
built small subunit of Rubisco by Eisenberg and coworkers.2 In the early 1990s a number
of MQAPs were developed to identify wrongly built models using Ramachandran plots
and other measured of ‘stereochemical correctness’ as the main source of information.
The best known of these methods are PROCHECK3 and WHATCHECK.4 Today with
improved refinement methods the ‘stereochemical correctness’ of X-ray models is almost
always very good. Also, with the introduction of the R-free method5 where a fraction of
the data is only used for testing the need for MQAPs to validate protein models built from
crystallographic constraints has decreased. However, the recent discovery that a number
of globular6 and membrane7 protein models were wrong indicated that their days are not
completely over.

Besides the ‘stereochemical’ MQAP a number of ‘statistical’ MQAPs were also devel-
oped in the 1990s, e.g. Verify3D8 and ProsaII.9

Several of these methods were developed with a dual purpose, the identification of
erroneous structures and the identification of proteins that share the same fold. These
methods were based on statistical features of correct protein structures therefore, they are
therefore also often referred to as knowledge-based energy functions. The general idea is
that features that commonly seen in known structures will yield good scores and unusual
features will yield bad scores. Different methods utilize different features, Sippl pioneered
the use of pairwise contacts both for fold recognition and as an MQAP, while Eisenberg
and co-workers developed similar methods using 3D-1D-profiles, i.e. calculations on the
probability to find a certain amino-acid type in a particular structural environment.

The second use of MQAPs is in molecular modeling. Protein modeling by homology
used to be a time-consuming art, where hours of CPU and user time were used to create
a single model. However, with the computing power of today it is possible to generate
hundreds of alternative models for a given target with just a single click on a meta-server,
such as Pcons.net,10 bioinfo.pl11 or genesilico.pl.12 Here, with the increasing number of
models it has become increasingly more important to use an MQAP that can identify the
most accurate model.

Here, the ultimate goal of a MQAP is to select the most accurate model from a set of
many alternative models and also to provide a reasonable estimate of the accuracy of the
models. In the discussion part of this chapter we will review how well different MQAPs
performed on this task during CASP7.

6.2 Short Historical Overview

6.2.1 Verify3D

The 3D-1D-profile method was primarily developed to detect distantly related proteins.13

However, it was later also used to identify incorrect protein models,8 for this purpose it was
later renamed to Verify3D. In retrospect, the Verify3D MQAP has most likely been more
successful than 3D-1D-profile method. Even today Verify3D quite well even compared
with the best MQAPs. While, methods using multiple sequence alignments have been
shown to perform significantly better than 3D-1D-profiles for remote homology detection.
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The basic idea of Verify3D (and 3D-1D-profiles) is to assign an environmental class to
each residue in a protein. In Verify3D the environments are divided into 18 classes based
on the secondary structure, area buried and the fraction of polar contacts. Secondly, the
probability for each amino acid type to be in each type of environment is calculated. When
a model is evaluated the sum of probabilities over a window, or the entire proteins, is
calculated and if the probability is low it is likely that the model is incorrect.

One feature that should be noted in the original 3D-1D-profiles is the use of ‘area buried’
and not ‘fraction buried’. This causes for instance a glycine, which can not have an area
buried larger than the area of its side chain, to be restricted to a few of the 18 environments,
while a large amino acids such as tryptophan could be in all environments.

6.2.2 ProsaII

In parallel with the development of the 3D-1D-profiles several groups developed fold
recognition, or threading, methods based on the contact probability between pairs of
residues.9, 14 Although these methods are not straightforward to use in fold recognition,
as they break the conditions for standard dynamic programming, they showed some great
success in the early rounds of CASPs. However, today these methods have also been outrun
by the rapid increase in sequence database sizes and methods that utilize this information
better. But as for 3D-1D-profiles, the MQAP ProsaII is still very useful.

The basis for ProsaII, and for Threader, is the probability for two residues to be at a
specific distance from each other. In the simplest methods of this type15 only the probability
to be a contact or not is included, while in more sophisticated methods, such as ProsaII, the
amino acid types, the distance as well as the sequence separations are used.16 The distances
are normally calculated from the Cα or Cβ atoms of a residues but the closest distance
from any atom in the side chain can also be used. A typical problem in these methods is
normalization, e.g. how should the fact that hydrophobic residues are more frequent at the
interior of the protein or that side chain sized differs be utilized.

6.2.3 ERRAT

Physical based energy functions are almost always built on the potential of atomic inter-
action energies, while the knowledge-based energy functions discussed so far are based
on residue properties. However, there also exist some knowledge-based energy-functions
that utilize atomistic properties. Colovos et al. (1993) used the distribution of atom-atom
contacts to develop the ERRAT method,17 Melo et al. developed a mean force potential at
the atomic level18 while others have used a distant-dependent atomic potential.19, 20

ERRAT is based on the probability that two atoms of a particular type are in contact. The
major difference in comparison with the residues contact based methods is that ERRAT
does not base it on a sum of probabilities that two atoms are in contact, instead in ERRAT
the fraction of all contacts that is of a particular type is used.

6.2.4 PROCHECK and WHATCHECK

At the same time as the development of statistical methods to evaluate the correctness
of a protein model, methods to evaluate the stereochemical correctness of these models
were developed.3, 21 In these methods the number of residues in disallowed Ramachandran
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plots, the number of strange bond lengths or angels etc. are measured. A clear correlation
between the accuracy of a protein structure and these criteria was found. However, these
criteria are not very useful to evaluate theoretically constructed models as they are easy to
fulfill and nowadays virtually all modeling programs are able to build models with very
good stereochemistry even using alignments that are completely wrong.

6.3 MQAPs Developed to Predict Quality of Models

The methods discussed above have been developed with the main focus to distinguish
between native and non-native structures. However, in even the best protein models for
difficult modeling targets are sometimes not very native-like. Therefore, another objective
of MQAP can be to find the best possible model. A task that is far more difficult than to
simply distinguish between native and non-native structures.

6.3.1 ProQ

ProQ22 was one of the first methods that used protein models with different similarity as a
target function. In ProQ various properties from a model were calculated and used to train
a set of neural networks. Each structure was described by a set of structural features such
as: atom-atom contacts, residue-residue contacts, surface area exposure and secondary
structure agreement and the neural network was trained to predicted the protein model
quality.

6.3.2 Victor/FRST

Victor/FRST23 was one of the top performing MQAPs in CAFASP4 MQAP. It is a statistical
potential with four energy terms representing pairwise, solvation, hydrogen bond, and
torsion angle potentials, combined with a linear weighting function.

6.3.3 ABIpro-h

ABIpro-h is one of the more advanced methods developed by Baldi and coworkers.24 It
combines predicted structural features such as secondary structure, relative solvent acces-
sibility and residue-residue contacts, with physical energy terms for hydrogen bonding,
van der Waals interactions and electrostatics. In addition it also includes statistical terms
for residue solvent environment and local structure residue pairing.

6.3.4 Circle-QA

Circle-QA uses 3D-1D-profile combined with predicted secondary structure.25 The 3D-
1D-profiles are similar to the profiles used in Verify3D and consist of three parameters:
fraction of buried area, fraction of polar area and secondary structure. The main differences
are that the 3D-1D-profiles and the combined scores are difficult dependent. For difficult
targets a larger weight is given to the secondary structure information in the 3D-1D-profile.
The rational for having difficult dependent scores is that different features are important
to distinguish the best models among high quality models compared to among low quality
models. When the model quality is low giving higher scores to models where the secondary
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structure agrees with the predicted is probably a good idea. For high quality models the
secondary structure is most likely already correct and the exact side chain packing becomes
increasingly important.

6.3.5 Meta Methods

Lately a number of methods that combine the output from several other MQAPs have been
used. Two of these are described below.

MetaMQAP. MetaMQAP uses an SVN to predict the CA-CA deviation per residue based on
scores returned by five primary MQAPs. An updated version of the program, MetaMQAPII
uses a regression model instead of an SVN and eight primary MQAPs: Verify3D,8 ProsaII,9

BALA,26 ANOLEA,18 PROVE,27 TUNE,28 REFINER,29 and ProQ.22 This method was not
available when the benchmark was conducted and all references to the MetaMQAP are to
the old method.

QA-ModFOLD. QA-ModFOLD30 is another meta-MQAP that uses artificial neural net-
works and the output scores from MODCHECK,31 ProQ22 and ModSSEA to predict
the protein model quality. ModSSEA is a simple MQAP that was develop together with
QA-ModFOLD. It is based on secondary structure element alignments (SSEA) between
predicted and actual secondary structure assignment.

6.3.6 Consensus Based MQAPs

A completely different set of MQAPs was introduced a few years ago.32 These consensus
MQAPs do not try to evaluate the quality of a model, instead they use the similarity between
a model and many other models. Certainly this type of evaluation is only useful when a
large set of models for the same target. However, nowadays this is frequently the case when
building models using homology.

Pcons. Pcons was the first consensus method. Pcons and other consensus methods utilize
a set of alternative protein models as their input.10, 32, 33 In Pcons a structural superposition
algorithm, Lgscore,34 is used to search for recurring structural patterns in the whole set
of models. Pcons predicts the quality of all models, by assigning a score to each model
reflecting the average similarity to the entire ensemble of models. The idea being that
recurring patterns are more likely to be correct as compared to patterns than only occur in
one or a few models. In addition, Pcons also contains terms from predicted model quality
(ProQ) and any server score attached to the models.

6.3.7 3D-Jury

The 3D-Jury method introduced by Rychlewski and co-workers is a simplified version of
Pcons.35 Here only the similarity between models is used. At the bioinfo.pl meta server
3D-Jury can be used to evaluate different sets of models. In several benchmarks it has been
shown that 3D-Jury, despite its simplicity, performs on par with Pcons.
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6.4 Local versus Global Predictors

Several of the methods described above predict a single global quality measure for each
protein model. One drawback of such a measure is that it does not recognize correct and
incorrect regions in a protein model. High scoring models might contain regions that can
be improved or combined to produce a more accurate model. Thus, an obvious extension
of the global measure is to analyze the details of various structural regions and predict
a local quality score for each individual residue. This knowledge can in turn be used as
a guide during the refinement process to provide confidence measures for what parts of
protein model to trust. ProsaII9 and Verify3D8, 36 are perhaps the most utilized MQAPs for
assessing local quality correctness and they have been used successfully in CASP to select
well- and poorly-folded fragments.37, 38

6.4.1 ProQprof, ProQres and ProQlocal

Three recently developed local quality predictors are ProQres, ProQprof and
ProQlocal.10, 39 ProQres and ProQprof predict the local quality of a residue using different
types of information. ProQres evaluates the structure, while ProQprof base the prediction
on alignment information. These two approaches provide complementary information that
is combined in ProQlocal, e.g. the structure might be OK while the sequence similarity is
low or vice versa. In a recent benchmark, the combined approach was found to be slightly
better than any of the individual methods.39

The structural features used in ProQres are identical to the ones in ProQ,40 i.e. atom-atom
contacts, residue-residue contacts, solvent accessibility surfaces and secondary structure
information. However, in order to achieve a localized quality prediction the environment
around each residue is described by calculating the structural features for a sliding window
around the central residue. Hereby, the quality of the central residue is predicted not
only by its own features, but also by the environment of the whole window, i.e. by all
features (contacts, solvent accessibility and secondary structure) involving the residue in
the window and their contacts.

ProQprof utilize the target-template alignment to achieve its prediction. This type of
analysis was first performed by Tress et al. (2003) where a profile-derived alignment score
were used to predict reliable regions in protein alignments.41 They concluded that positions
in the models with a high profile alignment score were more likely to be correct compared
to positions with lower scores. In ProQprof this idea is extended to a window of profile-
profile scores that are used as input to a neural network trained to predict the local quality
for the central residue in the window.

6.4.2 Pcons – local version

A simple approach to predict the local quality based on consensus analysis is the Pcons-
local method.10, 39 This approach is almost identical to the confidence assignment step
in 3D-SHOTGUN.42 The idea is simple: to estimate the quality of a residue in a protein
model, the whole model is compared to all other models for that protein by superimposing
all models and calculate the S-score for each residue. The average S-score for each residue
then reflects how well conserved the position of a particular residue is in the whole set of
models. It is quite likely that correct positions are well conserved between all models and
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that incorrect positions are less conserved. Obviously, it is only possible to perform the
consensus analysis if there exist a number of models for the same target sequence.

6.5 Performance in CASP7

In CASP7 the importance to be able to predict both the global and local quality was
acknowledged by the CASP organizers, and the Quality Assessment category was divided
into two parts. The goal in the first section was to predict the global quality of protein
models, whereas the goal in the second category was to predict the quality of individual
residues.

6.5.1 Evaluation of Global Quality

Here, GDT TS43 is used as the evaluation measure of model correctness, as this nowadays
is a CASP standard. There are some discrepancies in performance depending on which
evaluation measures that are used, in particular in terms of correlation (see Discussion and
Wallner, 20071), but for the calculation of the overall quality of the models the difference
is marginal.

The analysis is performed using the full-length PDB chains, i.e. not using the domain
definitions provided by the CASP organizers. The reason for this is that the predicted
quality was the quality for the full-length PDB chain and not the quality of the individual
domains.

For assessing the overall performance, two measures were used: (1) average Pearson’s
correlation coefficient per target and (2) the sum of GDT TS for the highest ranked model
(GDT1). During the evaluation other measure such as the best of the top five ranked
models and Receiver Operating Characteristic curves (ROC) were used. However, the
overall ranking using any of these measures is consistent with the two measures used.

6.5.2 Evaluation of Local Quality

To assess the methods predicting local quality, a similar analysis protocol as in Wallner
et al., 2006 was utilized.39 This protocol simplifies the comparison of different methods, by
restricting the analysis to the 10% highest and the 10% lowest scoring residues from each
method and measure the performance by averaging the true local quality measures in the
high and low scoring sets, respectively. Here, two local quality measures are used to assess
performance: average local deviation between equivalent CA atoms in the model and the
native structure and the fraction of wrongly predicted residues defined by residues with
local deviation ≥3A

◦
or ≤ 3A

◦
for the 10% highest and lowest ranked residues, respectively.

The average local deviation, dCA, was scaled using the following formula when calcu-
lating the average:

T = 1

1 + dC A
(6.1)

and then transformed back to a distance using

〈
dCA

scaled

〉 = 1

〈T 〉 − 1 (6.2)
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In addition, the correlation coefficient between the predicted CA-CA deviation between
the native and the actual deviation was calculated for each model. However, it should be
noted that the correlation does not take accuracy into account, but it was found that the
accuracy in general is acceptable when the correlation coefficient is higher than 0.6.

6.5.3 Results

We participated with three MQAPs in the global and four MQAPs in the local quality
assessment category of CASP7, for an overview see Table 6.1. Below we first compare the
performance of our global quality predictors (Pcons, ProQ and ProQprof) with each other
as well as with the best performing groups. Thereafter, we conduct a similar analysis for
the performance of our local quality predictors (Pcons, ProQres, ProQprof and ProQlocal).
In the local category only seven groups participated, thus we did not restrict the analysis to
the best performing groups. In the official CASP statistics nine groups are listed as having
submitted predictions in this category, but two of these have so few predictions that they
were impossible to assess.

6.5.4 Global Quality Assessment

The performance for predicting global quality was assessed by comparing all groups using
correlation coefficient between predicted quality and GDT TS (R GDT) and the sum of
GDT TS for the first ranked models (GDT1). The result for our three MQAPs and the best
performing groups are summarized in Table 6.2.

Pcons shows the highest correlation to GDT TS of all MQAPs (Table 6.2). This high
correlation (R = 0.89) to GDT TS is impressive considering it was trained to predict
another quality measure (LGscore) that does not correlate perfectly with GDT TS (R =
0.90). In this light the correlation of Pcons is probably as close to optimal as it can get, since
it cannot be expected to perform better than the quality measure it is trained to predict. The
superior Pcons correlation is maintained both for easy and hard targets, but the average
correlation is clearly lower for the hard targets, 0.77 vs. 0.96.

Surprisingly, two MQAPs, ABIpro-h and Circle-QA selects models that are equal to
or even slightly better than the Pcons model although their correlations are significantly
worse. Particularly impressive is ABIpro-h that selects better models than Zhang-Server
for hard targets, which no other MQAP is able to do.

ProQ is ranked fourth overall based on correlation and clearly below the top groups
in terms of selecting the best model. It performs similar to QA-ModFOLD which is a
consensus MQAP that uses ProQ as one of its inputs. As expected, ProQ is not able to
perform as good as Pcons (Table 6.2).

The ProQprof method is not a designated global quality predictor; instead the global
prediction is derived from the prediction of local quality scores. Clearly, ProQprof is not
as successful as Pcons or ProQ. In fact it performs rather poorly, especially for the hard
targets where the selected models are no better than randomly selected ones (Table 6.2).
By analyzing which models are actually selected by ProQprof it is evident that the routine,
for generating the target-template alignment from a model and a template structure using
structural alignments, is not optimal. This is most problematic for the hard targets where
the most successful predictors use fragments or multiple templates.



P1: OTA

chap06 JWBK331-Bujnicki November 25, 2008 7:22 Printer: Yet to come

Ta
bl

e
6.

1
O

ve
rv

ie
w

of
di

ffe
re

nt
M

Q
A

Ps
.T

he
in

fo
rm

at
io

n
di

ffe
re

nt
M

Q
A

Ps
ut

ili
ze

an
d

th
e

gl
ob

al
an

d
lo

ca
lq

ua
lit

y
m

ea
su

re
th

at
is

pr
ed

ic
te

d

Pr
ed

ic
te

d
gl

ob
al

Pr
ed

ic
te

d
lo

ca
l

M
Q

A
P

U
til

iz
ed

in
fo

rm
at

io
n

qu
al

ity
m

ea
su

re
qu

al
ity

m
ea

su
re

A
va

ila
bi

lit
y

O
ur

M
Q

A
Ps

Pc
on

s
C

on
se

ns
us

LG
sc

or
e

S-
sc

or
e

ht
tp

://
pc

on
s.

ne
t10

Pr
oQ

St
ru

ct
ur

e,
A

N
N

LG
sc

or
e

S-
sc

or
e

ht
tp

://
pc

on
s.

ne
t44

Pr
oQ

pr
of

Se
qu

en
ce

si
m

ila
ri

ty
A

ve
ra

ge
S-

sc
or

e
S-

sc
or

e
ht

tp
://

pc
on

s.
ne

t39

Pr
oQ

lo
ca

l
St

ru
ct

ur
e+

Se
qu

en
ce

–
S-

sc
or

e
ht

tp
://

pc
on

s.
ne

t39

O
th

er
gl

ob
al

M
Q

A
Ps

LE
E

Si
m

ila
ri

ty
to

ow
n

m
od

el
s

G
D

T
TS

–
N

/A
Q

A
-M

od
FO

LD
C

om
bi

na
tio

n
of

ot
he

r
M

Q
A

Ps
TM

-s
co

re
–

ht
tp

://
w

w
w

.b
io

ce
nt

re
.r

dg
.a

c.
uk

/b
io

in
fo

rm
at

ic
s/

M
od

FO
LD

/30

A
B

Ip
ro

-H
St

ru
ct

ur
e,

A
N

N
–

–
N

/A
45

C
ir

cl
e-

Q
A

3D
-1

D
st

ru
ct

ur
al

pr
ofi

le
s

–
–

N
/A

45

O
th

er
lo

ca
lM

Q
A

Ps
M

ET
A

M
Q

A
P

C
om

bi
na

tio
n

of
pr

im
ar

y
M

Q
A

Ps
–

C
A

-C
A

di
st

an
ce

ht
tp

s:
//g

en
es

ili
co

.p
l/t

oo
lk

it/
C

A
SP

Ita
-F

R
ST

St
ru

ct
ur

e,
di

he
dr

al
s

–
C

A
-C

A
di

st
an

ce
ht

tp
://

pr
ot

ei
n.

cr
ib

i.u
ni

pd
.it

/fr
st

/23

U
C

B
-S

H
I

St
ru

ct
ur

e
–

C
A

-C
A

di
st

an
ce

N
/A

45

St
an

da
rd

M
Q

A
Ps

V
er

ify
3D

3D
-1

D
st

ru
ct

ur
al

pr
ofi

le
s

�
Pr

ofi
le

sc
or

e
Pr

ofi
le

sc
or

e
ht

tp
://

ni
hs

er
ve

r.m
bi

.u
cl

a.
ed

u/
V

er
ify

3D
/8

Pr
os

aI
I

K
no

w
le

dg
e-

ba
se

d
po

te
nt

ia
l

Z
-s

co
re

Z
-s

co
re

ht
tp

s:
//p

ro
sa

.s
er

vi
ce

s.
ca

m
e.

sb
g.

ac
.a

t/p
ro

sa
.p

hp
9



P1: OTA

chap06 JWBK331-Bujnicki November 25, 2008 7:22 Printer: Yet to come

152 Quality Assessment of Protein Models

Table 6.2 Global Quality Assessment. R GDT, Pearson’s correlation coefficient between
predicted quality and GDT TS per target. GDT1, sum of GDT TS for the highest ranked
model for each target. In bold, all numbers that are within one standard deviation from the
best MQAP

ALL EASY HARD

GDT GDT1 unbiased R GDT GDT1 GDT1
MQAP R GDT std = 131 std = 132 std = 117 R GDT std = 61

Pcons 0.89 59.0 58.4 0.96 73.1 0.77 37.1
LEE 0.82 57.6 57.2 0.94 71.8 0.61 35.5
Circle-QA 0.79 58.4 57.4 0.88 72.2 0.65 36.9
ProQ 0.73 56.0 54.7 0.81 70.0 0.59 34.1
Verify3D 0.72 56.9 54.9 0.81 71.0 0.57 35.0
Prosa 0.70 56.7 53.3 0.79 70.5 0.57 35.2
ABIpro-h 0.67 59.3 55.5 0.76 72.2 0.53 39.1
QA-ModFOLD 0.65 56.2 54.8 0.77 70.4 0.46 34.0
ProQprof 0.46 49.3 49.3 0.66 64.8 0.16 25.1
TMscore 0.98 64.0 63.0 0.99 76.4 0.96 44.8
MaxSub 0.97 63.9 62.6 0.99 76.4 0.94 44.3
S-score 0.95 63.5 62.3 0.98 76.2 0.91 43.7
LGscore 0.90 62.2 61.0 0.97 76.0 0.79 40.7
Zhang-Server – 59.3 – – 73.5 – 37.2
Perfect (GDT) 1.00 64.5 63.4 1.00 76.8 1.00 45.4
Random 0.00 46.7 45.8 0.00 59.6 0.00 24.3

6.5.5 Local Quality Assessment

Only seven MQAPs participated in the local quality assessment category of CASP7, four of
these were ours: Pcons, ProQ, ProQprof and ProQlocal, see Table 6.1 for a summary of all
the MQAPs. As in our earlier study the performance for the 10% highest and 10% lowest
scoring residues were evaluated in terms of average local CA-CA deviations, 〈dC A

scaled〉 per
residue, and fraction of wrongly predicted residues for the high and low scoring residues
(Table 6.3). In addition, the correlation coefficient between the predicted CA-CA deviation
from native to the actual deviation was calculated for each model (Figure 6.1).

From Table 6.3 it is obvious that Pcons is better than any other MQAP. The average
CA-CA deviation for the 10% highest ranked residues by Pcons is 0.62 A

◦
and only 2.4%

deviates more than 3 A
◦

. Similarly, for the 10% lowest scoring residues, the average CA-CA
deviation, ≥30 A

◦
, and almost no (0.2%) residues are wrongly predicted. As a reference, the

second best MQAP makes over 15 times as many mistakes as compared to Pcons. Further,
more than half of all predictions made by Pcons correlate better than 0.6, while no other
MQAP show this correlation for more than 25% of the models (Figure 6.1).

It is also notable that ProQlocal, which combines structural information from ProQ
with the evolutionary sequence information from ProQprof, is better than any of these
MQAPs. This shows that there is an advantage to use a combined measure over using just
one of them. It is particularly interesting that despite the poor performance as a global
measure ProQprof is still quite able to predict local quality accurately. In agreement with
earlier results, ProQprof seems better at detecting good regions compared to bad regions.39
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Table 6.3 Local Quality Assessment. R, correlation coefficient between predicted and
actual CA-CA distances calculated per model and averaged over all targets. Measures
calculated for the the 10% highest and lowest scoring residues: dC A

median, the median CA-CA.
FP, false positive rate (fraction of dCA > A

◦
). FN, false negative rate (fraction of dCA < A

◦
).

dCA, CA-CA distance between equivalent residues in the model and the native structure

ALL 10% highest 10% lowest

MQAP R dC A
median FP dC A

median FN

Pcons 0.63 0.61 2.7% ≥15 0.2%
ProQ 0.38 0.42 16.7% ≥15 5.4%
ProQprof 0.38 0.58 12.1% ≥15 10.4%
ProQlocal 0.44 1.7 8.4% ≥15 3.5%
ProsaII 0.14 3.2 34.7% ≥15 24.4%
Verify3D 0.26 1.8 21.2% 3.6 9.3%
MetaMQAP 0.38 0.81 9.8% ≥10 7.6%
CaspIta-FRST 0.19 0.85 23.1% ≥15 13.2%
UCB-SHI 0.20 1.0 26.4% 5.5 22.0%
Perfect 1.00 0.40 0.0% ≥15 0.0%
Random 0.00 2.8 46.1% 2.8 53.9%

A likely explanation for this is that the profile-profile information that ProQprof uses is
optimized to maximize similarity and not dissimilarity .

Besides our MQAPs, MetaMQAP also performed quite well. For the set of MQAPs
only using structural information from single models MetaMQAP is actually the best,
slightly better than ProQ, i.e. the added structural evaluation information from using a meta
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approach provides a small improvement over ProQ alone. However, it does not perform
better than ProQlocal. In Figure 6.1 it can be seen that ProQlocal and ProQprof make
significantly more (but still very few) predictions with a high (≥0.5) correlation coefficient
than the structure-based predictions. Again, highlighting the fact that combining structural
and sequence information is fruitful. In fact, it is likely that a simple sequence conservation
dependent component in MetaMQAP would increase its performance further.

6.6 Discussion

6.6.1 Which is the Best Global MQAP?

Although the Pcons correlation is superior to other MQAPs the highest ranked models are
not significantly better. In fact, two MQAPs ABIpro-h and Circle-QA selects models that
are equal to or slightly better than the Pcons model. This was analyzed a bit further by
investigating from which server method the highest ranked MQAP models originated. It
turned out that almost all models from ABIpro-h (80%) and Circle-QA (70%) originated
either from three methods (Zhang-Server, ROBETTA or Pmodeller6, which might origin
from ROBETTA). As a comparison, Pcons only selects 30% of its models from these
methods. Besides the common feature that these three servers are among the best servers
(with Zhang-Server clearly being the best), certain properties of the MQAP might be similar
to the energy functions used by these three methods. A strong bias towards these particular
methods could result in a large drop in performance if these methods are not present. In
particular any method that always choose the Zhang-Server model would perform on top of
the MQAPs and a method that select Zhang-Server models for easy targets and ROBETTA
models for hard targets would perform even better.

To estimate the effect of a selection bias all models from the most frequently selected
methods, i.e. Zhang-Server, ROBETTA, Pmodeller6 and Pcons6 were removed, and a new
GDT1 unbiased score was calculated (Table 6.2). In this test, the decrease in GDT1 for
most MQAPs is less than 1.0 and can be explained by the fact that many of the best models
are now removed. However, ABIpro-h shows a strong bias towards the removed server
methods with a GDT1 decrease of 3.3. In contrast, Circle-QA and Pcons are among the
least affected by the removal with minor drops in GDT1 (≤0.4). The conclusion is that
the seemingly good performance of ABIpro-h can largely be attributed to the selection
of Zhang-Server and ROBETTA models. Circle-QA, on the other hand, seems not to be
biased and manages to maintain a good performance even when the best server methods
are removed.

Like the MQAPs discussed above ProQ also have a bias towards Zhang-Server and
Pmodeller6, close to 40% of the models selected by ProQ are from these two methods.
However, the bias does not seem to be crucial for its performance, since the performance
is quite well maintained in the GDT1 unbiased test. Pmodeller6 uses ProQ in its quality
assessment step, so it is not a surprise that models from Pmodeller6 is highly ranked by
ProQ. However, ProQ is not trained on Zhang-Server models, indicating that ProQ is able to
recognize the high quality protein-like features of the excellent Zhang-Server predictions.

Interestingly, there are two structural based MQAPs, ABIpro-h and Circle-QA, which
clearly select better models than ProQ. These methods have not been published before, but
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from the CASP7 abstract ABIpro-h is claimed to combine many more structural features
than ProQ does. In particular, it uses both predicted structural features and a physical and a
statistical potential. Circle-QA uses a difficulty dependent 3D-1D-profile, combined with
predicted secondary structure. The success of these two methods shows that structural
based MQAPs can reach almost the same accuracy as consensus methods. The results for
Circle-QA and ABIpro-h on the hard targets are encouraging (Table 6.2).

6.6.2 Future Improvements of MQAPs

One possible improvement might be to make a Pcons version optimized for GDT TS. This
might make Pcons select better models in terms of GDT TS. However, it is not obvious that
this is desirable. This will neither solve the issue described above, when the best models
being outliers in the GDT TS distribution. Therefore, a consensus approach combined with
a structural evaluation could be a step towards future improvement of MQAPs. In fact,
for three Pcons failures all of the structural based MQAPs (ProQ, ABIpro-h or Circle-
QA) select significantly better models than Pcons.1 The idea of combining consensus and
structural evaluation is not new and was actually one of main the reasons for developing
ProQ22 and Pmodeller.40 In Pmodeller, ProQ is used to re-rank the top hits from Pcons
purely based on structural features.33 However, it seems as if this re-ranking should be
restricted to cases when the consensus is weak.

Also, we were quite impressed by two novel structure-based MQAPs, ABIpro-h and
Circle-QA, that actually performed on par with Pcons in the ability to select the best
models, although their correlation with quality was slightly lower. The result by Circle-
QA is especially impressive as its performance is maintained even if the best methods
are removed, while ABIpro-h relay heavily on the predictions from Zhang-Server and
ROBETTA.

Circle-QA uses relatively simple 3D-1D-profiles similar to the one used by Verify3D,8

but whereas Verify3D has one single 3D-1D-profile to evaluate all structures, Circle-QA
has two, one for easy and one for hard targets. This might be an advantage, since different
features might be important to find the best model among mediocre models compared to
high quality models. The score from the 3D-1D-profiles is also combined with a secondary
structure term that is given a higher weight if the target is difficult, i.e. for difficult targets
most of the score will depend on the agreement between predicted and actual secondary
structure.

We also noted that the sequence based MQAP, ProQprof did not perform very well
as a global measure of quality. In particular, on the ‘hard’ targets the performance is not
better than random. There might be two reason for this (a) to obtain an alignment for the
targets we had to perform a structural alignment and that might not represent the alignment
used when generating the models and (b) for hard targets the sequence similarity does
not contain any information. This is in contrast to the local quality prediction, where the
sequence information is quite useful. Here ProQ, ProQprof and MetaMQAP perform quite
similar, and the combination of ProQ and ProQprof into ProQlocal shows that structure
and evolutionary information can be combined to improve identification of correct and
incorrect regions. However, it should be remembered that the performance of any of these
methods lags far behind Pcons, i.e. for local quality prediction consensus based methods
are still superior.
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36. Eisenberg, D., Lüthy, R., and Bowie, J. VERIFY3D: assessment of protein models with three-
dimensional profiles. Methods Enzymol 277:396–404, 1997.

37. Kosinski, J., Cymerman, I. A., Feder, M., Kurowski, M. A., Sasin, J. M., and Bujnicki, J. M.
A “FRankenstein’s monster” approach to comparative modeling: merging the finest fragments
of Fold-Recognition models and iterative model refinement aided by 3D structure evaluation.
Proteins 53 Suppl 6:369–379, 2003.

38. von Grotthuss, M., Pas, J., Wyrwicz, L., Ginalski, K., and Rychlewski, L. Application of 3D-Jury,
GRDB, and Verify3D in fold recognition. Proteins 53 Suppl 6:418–423, 2003.

39. Wallner, B. and Elofsson, A. Identification of correct regions in protein models using structural,
alignment, and consensus information. Protein Sci 15 (4):900–913, Apr., 2006.

40. Wallner, B., Fang, H., and Elofsson, A. Automatic consensus-based fold recognition using Pcons,
ProQ, and Pmodeller. Proteins 53 Suppl 6:534–541, 2003.

41. Tress, M. L., Jones, D., and Valencia, A. Predicting reliable regions in protein alignments from
sequence profiles. J Mol Biol 330 (4):705–718, Jul, 2003.

42. Fischer, D. 3D-SHOTGUN: a novel, cooperative, fold-recognition meta-predictor. Proteins 51
(3):434–441, May, 2003.

43. Zemla, A., Veclovas, C., Moult, J., and Fidelis, K. Processing and analysis of CASP3 protein
structure predictions. Proteins Suppl 3:22–29, 1999.

44. Wallner, B. and Elofsson, A. Can correct protein models be identified? Protein Science 12
(5):1073–1086, 2003.

45. Cozzetto, D., Kryshtafovych, A., Ceriani, M., and Tramontano, A. Assessment of predictions in
the model quality assessment category. Proteins 69 (S8):175–183, 2007.



P1: OTA

chap07 JWBK331-Bujnicki November 25, 2008 9:14 Printer: Yet to come

7
Prediction of Molecular Interactions

from 3D-structures: From Small
Ligands to Large Protein Complexes

Kengo Kinoshita, Hidetoshi Kono and Kei Yura

7.1 Introduction

Proteins are involved in almost all processes in the complex biological systems of living
organisms. Each protein has its own function, such as an enzymatic reaction, and at the
same time it has some roles as part of interaction networks of proteins. The context-free
function, the former role, is called the molecular function, while the context-dependent
function, the latter role, is designated as the cellular function or biological function of the
proteins. Protein functions are realized through interactions with many other molecules,
and thus the molecular interaction is the first step in the function of a protein.

In this chapter, we describe the current knowledge about molecular interactions as a part
of the function identification or prediction for proteins. The chapter is divided according to
the type of partner molecule, small molecules, DNA, RNA and proteins in this order. The
aim of this chapter is not to provide the technical details of the prediction methods, but to
show an overview of the state of the art of this field. The readers should consult the cited
references for details. The web servers that might be convenient for the readers are listed
in Table 7.1.

7.2 Protein–Ligand Interactions

Small molecules are used in various aspects of protein functions, as modulator, cofactors
or reaction substrates. The roles of small molecules cannot be distinguished from their

Prediction of Protein Structures, Functions, and Interactions   Edited by Janusz M. Bujnicki
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interactions with our current knowledge, but prediction methods for small molecule binding
sites have been extensively studied. The methods can roughly be classified into three types,
a docking approach, a similarity search approach, and a pocket search approach. For
simplicity, we will call the small molecules ligands in this chapter, regardless of the role
of the small molecules.

The docking approach is done by optimizing the evaluation function of the fitness of a
ligand molecule on protein structures. The evaluation function can be a certain physical
potential, such as an AMBER potential,1 or may be a statistical potential derived from
known complexes. The optimization should be done by considering the flexibility of the
ligand and the protein at the same time, but the usual practice is to neglect the flexibility of
the protein. This is an approximation to reduce the calculation cost to search for possible
interactions. This treatment may be supported by the observation that the structural change
upon ligand binding is not large on average,2 as compared to the structural diversity of
ligands.3 Many methods have been proposed, and a systematic comparison of the methods
was reported.4

In the similarity search approach, the most reliable information to infer potential binding
sites of small molecules is homology information. If proteins with similar sequences can
be found in the form of complex structures, then the binding mode will be similar when the
sequence similarity is relatively high.5 In a situation where the sequence-level similarity
could not be detected, a fold-level similarity may provide some clues for predicting the
potential ligand-binding site.6, 7 However, the prediction results should be carefully checked
when binding site information from the distantly related protein structures is used to predict
the binding site. In distant homologs, the binding site may be located in a similar place,
but the role of the binding site and/or the kind of the substrate may differ from those of
the related proteins.5 Readers are recommended to refer to the paper by Novotny et al.
for the methods to search for similar folds.8 To detect distant homologs without structural
information, PSI-BLAST9 is widely used, which compares its position specific score
matrix (or profile) and the amino acid sequence. More recently, profile-profile and HMM-
HMM comparisons, where HMM stands for hidden Markov model, have proved to be
more sensitive to detect distance homologs.10, 13

The next level of reliable indicator to infer a functional relation is the similarity of the
spatial arrangement of atoms. Even though the global folds of two proteins are different, and
thus the evolutionary relationship of the two proteins cannot be assumed, the functional sites
or the substrate binding sites can sometimes show surprising similarity. The most famous
case is found between subtilisin and chymotrypsin, where the global folds are completely
different, but the spatial arrangements of the atoms in the active sites of the proteins, the
catalytic triads, are quite similar.14 Another interesting example is the similarity found
between cAMP dependent protein kinase and DD-ligase.15, 16 In this case, the similar part
is limited to the adenine recognition and the phosphate recognition, and the functions
of the two proteins are different. There are a few other examples where the functional
sites are very similar, in spite of the different global folds, but these are rather rare cases.
More generally, the similarity of an atomic configuration beyond the superfamily level is
infrequently found.17, 18 In other words, even though structural comparisons are carried
out, the result is often equivalent to that obtained by a sophisticated sequence similarity
search, although the calculation cost of the structural comparison is far higher than that of
the sequence comparison.
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The reason why the atomic configuration similarity corresponds to the superfamily re-
lation is not clear, but one important factor is the flexibility of protein structures. Even
the same proteins can have different atomic positions, due to the fluctuations of protein
structure. If this is the case, then a ‘template’ type approach may be promising.19, 20 Con-
ceptually, the template is a set of known binding sites, and similarity searches are performed
against the template. Small differences due to structural flexibility can be detected if the
fluctuated structures exist in the known complex. Another possible reason is that the sim-
ilarity score is often based on the number of corresponding atoms. In other words, the
pairs of binding sites with higher numbers of corresponding atoms are considered to be
more similar, and thus the similar main chain trace in the similar fold will generate a
higher similarity score than the correspondence of side-chain atoms in the different fold.
However, even proteins with different folds can have higher scores by the accidental sim-
ilarities of the frequently appearing fragments. This possibility may be supported by the
observation that the structural elements shared by different proteins usually consist of main
chain fragments.15–17 Correspondences between side-chain atoms may be very difficult to
distinguish from accidental similarities. There are several method to assess the significance
of the similarity, but more sophisticated methods may be required.

To overcome the limitation in the similarity of atomic configurations, a similarity search
of the molecular surface is an option. Originally, Rosen et al.21 developed a method to
compare the shapes of molecular surfaces. Kinoshita et al. subsequently extended the
method and developed a web-based interface to search for similar binding sites on the
molecular surfaces along with the electrostatic potentials of the proteins.22–24 It works well
in some cases, but it is one of the final options, when no other information about the binding
site can be obtained. Other options that are not described here are available in the review
papers, such as Watson et al.7 and Kinoshita and Nakamura.25

One of the alternative approaches is to search for a pocket on the protein structure.26 In
this approach, similarity searches against the known structure are not used, and thus the
limitation due to the shortage of complex structures is not a problem. However, this type
of approach is to search for a potential binding site, and it does not yield information about
the potential ligand. Thus, the combination of a pocket search and a similarity search may
be promising in the next step of ligand binding site predictions. For the pocket calculations,
see Laskowski et al.,27 and Kawabata and Go28 for details.

All of the approaches described above suffer to an extent from many false positives.
It is true that some of the false positives can be real binding sites, because the number
of experiments is too small. However, the reliability of the binding site prediction is still
not sufficient, especially when the prediction is done only with the structural information,
although by combining other source of information, such as an evolutionary trace analysis,29

the number of false positives can be reduced.

7.3 Protein–DNA Interactions

To date the genomes of more than 600 species have been sequenced and recorded. But to
understand how individual genes within a genome are regulated, it is necessary to under-
stand how, at the molecular level, proteins interact with specific DNA sequences to regulate
such cellular processes as DNA replication and recombination, and gene expression. We
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amino acid sequence (with 3D structure)

1) DNA binding ?

2) binding sites ?

3) target sequences ?

?

biding residues

biological function, e.g. gene regulation

Figure 7.1 Three ways of predicting protein-DNA interactions. Given an amino acid se-
quence, sometimes with its 3D-structure, we try to predict (1) whether or not the protein
binds DNA and, if so, (2) where the DNA binds and (3) what the target DNA sequences are

will first discuss what is known about how proteins recognize their target DNA sequences.
We will then describe how we compile experimentally obtained data and employ them to
(1) select DNA-binding proteins among all proteins, (2) determine DNA binding sites on
DNA-binding proteins and (3) determine the DNA sequences targeted by DNA-binding
proteins (Figure 7.1).

7.3.1 Thermodynamic and Kinetic Aspects of Protein–DNA Interactions

Although structural studies have provided much information about the important molecular
features that contribute to specific protein-DNA recognition and complex formation, it is
still difficult to quantify the binding affinity with the structural information. However,
this quantity can be obtained through thermodynamic analyses in which protein–DNA
interactions are described in terms of free energy, enthalpy and entropy. Some DNA-
binding proteins bind to the major groove of the DNA, while others bind to the minor
groove. Although both the major and minor groove binders show comparable changes in
Gibbs free energy upon binding, their binding mechanisms differ: proteins binding to the
major groove do so via an enthalpy driven process, whereas those binding to the minor
groove do so via an entropy driven process.30 This difference in the energetic component
is indicative of the distinct features of the hydration of the major and minor grooves.
For example, minor groove binding occurs at AT-rich sequences in which water ordering
within the groove, the so called hydration spine, is the most prevalent.31 This suggests that
understanding hydration is essential to fully understand the mechanisms by which proteins
bind to DNA, especially in the minor groove. Nonetheless, the role of water is not explicitly
considered in most of the prediction methods.

To understand the factors important for determining specificity, it is necessary to analyze
both specific and nonspecific binding. The structures of both cognate and noncognate
protein-DNA complexes provide information about what underlies specificity. We can see
some examples in the structures of protein-DNA complexes involving the DNA-binding
domain of lac repressor, as well as EcoRV, Glucocorticoid repressor and b-ZIP proteins.
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Comparison of the structures of these specific and nonspecific complexes suggests that
nonspecific complexes are more loosely bound, so that there is room at the protein-
DNA interface for water molecules to occupy. This notion was substantiated using the
osmotic stress technique, with which one can probe the difference in the number of water
molecules within sterically sequestered cavities at the interface of specific and nonspecific
protein-DNA complexes.32 That study showed that nonspecific complexes have more water
molecules at the protein-DNA interface than specific ones. Moreover, NMR studies of the
dimeric lac repressor DNA binding domain showed that the same set of residues can
switch from a purely electrostatic interaction with the DNA backbone within a nonspecific
complex to a highly specific interaction with bases in the cognate complex.33 The protein-
DNA interface of nonspecific complexes thus appears to be more flexible, with fewer direct
protein–DNA interactions, than the cognate complex.

7.3.2 Flexibility and Adaptability within Protein-DNA Complexes

Structural studies of protein-DNA complexes have shown that DNA sequence-specific
binding is accompanied by conformational changes in both the protein and DNA com-
ponent. A good example is CAP, which bends the DNA sharply within the CAP-DNA
complex by about 60 to 90 degrees, so that the DNA wraps toward and around the sides
of the CAP dimer.34 As another example, CytR operators bind to their targets having a
variable length of the central spacer by changing their conformation in a manner that is
dependent on the length of the spacer.35 One must therefore consider such conformational
changes when modeling protein-DNA complexes, which makes it difficult to predict their
structures.

To overcome that difficulty, the Varani group developed all-atom statistical potentials to
predict protein-DNA interactions from modeled structures and showed an ability to identify
90% of near-native structures within the best-scoring 10% of structures in a decoy set.36

In addition, the Bujnicki group constructed theoretical models of endonucleases using
an approach that entailed merging the finest fragments of fold-recognition models with
iterative model refinement.37, 38 The resultant models were validated experimentally and
were shown to identify the residues important for DNA binding. The results demonstrated
that modeling the structures of protein-DNA complexes can enable one to infer which
residues are located at the DNA interface.

7.3.3 Prediction of DNA-binding Proteins

Structural genomics projects provide the 3D-structures of proteins that have no sequence
and structural similarity to those in the current databases. It is challenging to annotate the
function of such a protein merely from the determined 3D-structure because the function of
newly discovered proteins are generally annotated by searching the databases for proteins
that are similar in terms of sequence and/or in structure and have known functions.39, 40

Stawiski et al. characterized the structural and sequence properties of protein-DNA
complexes and found that large, positively charged electrostatic patches coincided with the
surfaces of DNA-binding proteins. They further observed that the surface area per residue is
the most important factor for the prediction and successfully distinguished between actual
DNA-binding proteins and other proteins with large positive electrostatic patches that do
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not bind nucleic acids.41 Particularly intriguing was that the distribution of Arg within the
positively charged patches was the key to the success of the prediction.

Ahmad and Sarai focused on aspects of the electrostatic properties in more detail.42

They calculated the electric dipole moment and quadrupole moment tensors as well as the
net charge, and showed that those electrostatic properties alone are sufficient to predict
DNA-binding proteins.

More recently, the Lu group developed a kernel-based machine learning protocol for
predicting DNA-binding proteins and improved the prediction accuracy to 86%.43 The key
factors accounting for the gain in accuracy appear to originate in the ability of the support
vector machines (SVMs) to act as a classifier and the consideration of the largest positively
charged patch.

7.3.4 Prediction of DNA-binding Residues within DNA-binding Proteins

Sequence-based method. Annotation of protein function is usually carried out on the basis
of a comparison of the amino acid sequence. When we find sequences of known function
that are similar to a sequence of interest, that function can be assigned to the target sequence.
If the sequence comparison yields a sufficient number of similar sequences, we can obtain
position-specific scoring matrix (PSSM),44 which can then be used with several machine
learning algorithms to predict DNA-binding residues within DNA-binding proteins (see
Table 7.1 for web tools: DBS-PSSM,45 DB-Bind,46 BindN47 and DISIS48).

Structure-based method. Complementary structure-based methods have also been de-
veloped (see Table 7.1 for web tools: Protein-Nucleic Acid Interaction Sever,49 PreDs50

and DISPLAR51). As expected, the DNA-binding interface of proteins appears to take
on a positive charge to bind to negatively charged DNA. In addition to the electrostatic
score, the size of solvent accessible surface area, amino acid propensity, hydrophobicity
and conservation of the interface have also been characterized and used for detecting the
binding sites.49 The electrostatic score is the most essential characteristic when attempting
to detect DNA-binding residues, but the accuracy of the prediction can be improved by
taking the local and global curvatures of the protein surface into consideration.50

7.3.5 Prediction of DNA Sequences Targeted by DNA-binding Proteins

Regulation of gene expression – i.e. their activation and repression – in higher organisms is
achieved through the activities of a complex network of transcription factors, and various
computational methods have been developed to predict transcription factor binding sites.
Those developed so far can be classified as sequence-based and structure-based. Both
methods assume that each position within the binding site contributes independently to the
binding energy. It is noteworthy, however, that this assumption is not perfect and is only
an approximation in most cases.52

Sequence-based method. To characterize the binding motif for a given transcription
factor, a profile, which is also referred to as PSSM or weight matrix, is generated by
aligning a set of binding sites and determining the base frequencies at each position of the
alignment. Some 398 matrices have been constructed and complied in TRANSFAC release
7.53 One must be cautious when using the profile because their quality is highly dependent
on the sequence alignment. If the aligned sequences are very similar to one another, the
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PSSM becomes highly specific and does not allow any variation in the sequence pattern.
Conversely, when the aligned sequences are highly divergent, the profile is very sensitive
and yields numerous false positives when a genome is scanned for putative binding sites.
Several approaches have been devised to reduce the number of false positives. First, when
searching for putative binding sites, one can limit the search to the promoter regions.
Second, because transcription factors often work with other transcription factors, one can
select only those putative-binding sites that have another binding site nearby or within a
defined distance54 or that maximize the joint likelihood of the occurrence of two binding
site motifs.55 Third, one can compare closely related genomes and choose only conserved
putative binding sites.56–58

It should also be noted that recently developed high-throughput methods, such as cDNA
microarray, SAGE and ChIP, enable one to generate profiles by finding similar sequence
patterns in the promoter region of coexpressed genes.59, 60 In this case, the pattern discovery
is achieved using the EM algorithm61 or Gibbs sampling method62 based on the assumption
that coexpressed genes are regulated by the same transcription factors. A disadvantage of
the sequence-based method is that a set of patterns for constructing the profile must be
somehow obtained for each of transcription factors.

Structure-based method. Structure-based method focuses on the complementarity of
physico-chemical properties between protein and DNA interface. Analysis of many protein-
DNA complexes showed that there are no one-to-one correspondences between bases and
amino acids, but some preferences between them do exist.63–65 One of the merits against
the sequence-based method is that once we convert the preferences into a score or an
energy potential, the score or potential is applicable for any transcription factor without
constructing a profile for each of transcription factors.

To systematically analyze the geometry of the interactions between amino acids and
DNA bases within the structures of large numbers of protein-DNA complexes, certain
coordinates have to be defined.63, 65, 66 Siggers et al. devised a score with which to assess
the similarity between the interface geometries of protein-DNA complexes. They found
that in general the intrafamily interfaces are more similar to one another than interfamily
interfaces, and that even the interfaces of noncognate, intrafamily complexes are more
similar than interfamily ones. This suggests that each family has a strong driving force to
maintain certain contacts.66 Kono and Sarai as well as Donald et al. demonstrated that the
potential derived from the distributions of amino acids around bases can be used to find
target DNA sites63, 67 and can potentially be used for novel DNA-binding protein design.63

Notably, the aforementioned potential can also be derived by calculating the free energy
maps of base-amino acid interactions based on molecular mechanics force fields.68, 69

Another important factor in specific protein-DNA recognition is the indirect readout,
which was demonstrated in experiments showing that mutation of a base not in contact
with any amino acid can affect binding affinity (for example, see a review70 and the
references therein). Indirect readout involves water-mediated contacts, specific sequence-
dependent conformational features, such as the bending and local geometry of a base pair,
and/or binding-induced distortion of DNA. Among these, the contribution made by DNA
deformation to the specificity of protein-DNA binding has been assessed.71–74 Sarai and his
colleagues used simplified base-pair step potentials to quantify the specificity of protein-
DNA recognition on the basis of direct and indirect readout.73–75 The results showed
that some DNA-binding proteins mainly use direct readout, some mainly use indirect
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readout and others use both. When they added the two contributions with weighting, they
observed that the specificity for the target DNA increased for almost all the DNA-binding
proteins tested, suggesting that the direct and indirect readout mechanisms complement
one another.76 Note that for a more detailed description of DNA conformation, sequence-
dependent base-step pair parameters were recently derived using molecular dynamics
simulations.77

7.3.6 Notes for the Application of the Prediction Methods to the Real Issue

We have introduced three prediction methods, each of which has two complementary
approaches: those that are sequence-based and those that are structure-based. Because
they each have their own advantages and disadvantages, we suggest integrating the two
approaches, so as to increase the accuracy of the prediction. In addition, increase in the
experimental data on the binding sites and the structures of the protein-DNA complexes will
further improve prediction accuracy, and will make it possible to predict DNA sequences
targeted by DNA-binding proteins on the basis of the structure of a modeled complex.

7.4 Protein–RNA Interactions

7.4.1 Biological Importance of Protein–RNA Interactions

The central dogma of molecular biology tells that genetic information is transcribed from
a gene to a messenger RNA (mRNA) molecule, after which that molecule is translated
to a polypeptide on the ribosome. In actual cells, especially eukaryotic cells, however,
there are a lot of steps that involve many molecules before the mRNA reaches the ri-
bosome. These post-transcriptional pre-translational processes include, but are not lim-
ited to, 3′-polyadenylation, 5′-capping, splicing, editing, repairing, transport, export and
degradation.78–85 During these processes, mRNAs are modified by proteins and/or ribonu-
cleoproteins (RNPs), which are complexes made up of both proteins and RNAs. It is
estimated that 3% of the genes in the genome of Drosophila melanogaster encode RNA-
binding proteins, and the proportion increases to 8% in the genome of Baker’s yeast.
Application of these ratios to the human genome suggests that between 640 and 2,560
RNA-binding proteins are encoded in the genome.86 The mechanisms and manner by
which these proteins interact with RNA remain unknown, in large part because, despite
the importance of protein–RNA interactions in molecular biology, there are only a limited
number of methods (see Table 7.1) with which to predict the interactions based on the
amino acid sequence and/or the 3D-structure of the proteins.

7.4.2 Prediction of RNA-binding Proteins by Similarity

A recent increase in the number of reported structures of protein-RNA complexes has
spurred analyses of the characteristics of RNA-binding proteins. There are several domains
commonly used to bind RNA, including the widely used RNA-recognition motif (RRM),87

K-homology (KH) domain,88 double stranded RNA binding domain (dsRBD),89 Piwi
Argonaut and Zwille (PAZ) domain90 and Pumilio homology domain (PUM-HD),91 among
others. In some cases, this structural classification of RNA-binding proteins provides a



P1: OTA

chap07 JWBK331-Bujnicki November 25, 2008 9:14 Printer: Yet to come

Protein–RNA Interactions 171

simple means of predicting RNA-binding proteins and their interfaces: if the protein in
question has a 3D-structure or amino acid sequence that is similar to a known RNA-binding
protein, it is likely that the protein in question binds RNA in a similar mode. The fact is,
however, that there are many cases that defy the logic underlying this prediction method. In
addition, there are many other domains that bind RNA. It is therefore clear that structural
similarity to a known RNA-binding protein is neither a necessary nor a sufficient condition
for a protein to bind RNA.

It would be ideal once the 3D-structure of a protein was known, one could calculate
the free energy of protein–RNA complex formation on the basis of a computer simulation
and then assess whether the protein could bind RNA. Unfortunately, this method is still
not sufficiently reliable to use to make predictions, and the calculation remains beyond the
reach of presently available supercomputers. A much easier approach to making predictions
is to calculate only the electrostatic potential; indeed, there have been numerous studies
in which the electrostatic potential of the surface of a given protein was calculated, and
the likelihood that the protein binds DNA/RNA was evaluated. It is logical to assume that
the DNA/RNA-binding interface is a patch with a positive potential, as the DNA/RNA
molecule carries a negative charge, yet calculation of the electrostatic potential is not
sufficiently accurate all the time. This is because the dielectric constants and ionic strength
of the solvent are difficult to estimate, and the results of the calculation depend heavily on
minute changes in the conformations of the side-chains that may only be known for the
crystal structure, which may differ from the structure in solvent.41, 92

7.4.3 Extracting Empirical Rules from the Structures of RNA Protein Complexes

An alternative and more practical approach to predicting the interface between RNA-
binding proteins and RNA is to make use of empirical rules that can be extracted from
data once a sufficient amount has been accumulated. These empirical rules likely aver-
age out all the difficult issues that would be encountered by more straightforward meth-
ods. Below we will discuss the methods used to extract rules from the structures of
protein-RNA complexes and the currently available empirical rules for RNA interfaces on
proteins.

Atoms within RNA interfaces on the surfaces of proteins can be defined in one of the
following ways. The simpler way is to measure the distance between atoms in the RNA
and protein, and if the distance is less than a certain threshold value (e.g. 4 or 5 A

◦
), then the

atom in the protein is defined as being at the RNA interface. The other way is to measure
the solvent accessible surface area (ASA) of every atom of the protein, with and without
the RNA, and if the difference in the ASA (�ASA) is more than a given threshold (e.g.
0 or 1 A

◦ 2), then the atom is defined as being at the RNA interface. The radius of a water
molecule for measuring the ASA is normally set between 1.4 and 1.5 A

◦
. The ASA method

tends to put a greater number of atoms at protein-RNA interfaces than the distance method,
especially when cavities are involved in the interfaces, but it misses atoms located close to
the bound RNA when they are covered by other atoms to prevent access by the solvent. The
discrepancy caused by the difference in the methods of defining interface residues does not
affect the tendencies discussed below.

Types of preferred amino acid residue in RNA interface have been extensively studied.
With such knowledge, one can intuitively judge whether a given patch on the surface of a



P1: OTA

chap07 JWBK331-Bujnicki November 25, 2008 9:14 Printer: Yet to come

172 Prediction of Molecular Interactions from 3D-structures

protein is a likely contributor. A simple count of each type of amino acid at RNA interfaces
tells us that positively charged residues such as Arg and Lys frequently appear in the
interfaces. However, the numbers of the preferred residue types should be normalized to
the numbers on the entire surface, as charged amino acid residues tend to appear at the
surface, irrespective of whether or not they are involve in protein–RNA interaction. With
that in mind, let us consider two approaches to analyzing amino acid preferences at the
RNA interface; one involves a simple count of the amino acid residues,93, 94 while the other
involves weighting the count on the basis of ASA.95, 96 In each case, the propensity for
amino acid type i (Pi) is given by

Pi =
ni

/∑20
j=1 n j

ni

/∑20
j=1 n j

or Pi =
∑ni

j=1 �AS Ai( j)

/∑ni
j=1

∑20
k=1 �AS Ak( j)

∑ni
j=1 AS Ai( j)

/∑ni
j=1

∑20
k=1 AS Ak( j)

, (7.1)

where ni is the count of amino acid type i on the surface of a protein, ni is the count
at the interface, �AS Ai( j) is the jth interface area of amino acid type i, and AS Ai( j) is
the jth surface area of amino acid type i . The simple count method was applied to 86
RNA-protein complexes in Kim et al.94, while the weighted count method was applied to
32 RNA-protein complexes in Jones et al.95 and to 89 protein in Ellis et al.96 The overall
tendencies in propensity Pi were different for some specific amino acid residues, especially
ones with relatively large numbers of atoms in their side-chains. A detailed comparison
of the tendencies is found in Ellis et al.96 Figure 7.2A shows the application of the simple
count method to the latest dataset in the Protein Databank (PDB).97 Arg residues are the
most highly favored at the interface, and they are followed by Lys residues. The overrepre-
sentation of Arg over Lys suggests that more than just electrostatic interactions are involved
at the protein-RNA interface, since, electrostatically, Arg and Lys behave similarly. On the
other hand, twice as many hydrogen bonds are formed between Arg side-chains and the
phosphate oxygens and bases of RNA than are formed by Lys. This tendency to overrepre-
sent Arg is more prominent with RNA than DNA, in part because the RNA-specific 2′-OH
group is primarily hydrogen bonded with the carbonyl oxygen atom of the polypeptide
backbone and Arg side-chains. In addition, the Arg guanidinium moiety stacks onto the
bases of the RNA with a greater preference for uracyl bases than for thymidine bases.98

Compared to the propensity of protein–DNA interactions, van der Waals contacts are
more prevalent in protein–RNA interactions.95 RNA prefers to interact with residues having
aromatic side-chains. The predominant interactions between RNA and these residues are
stacking interactions between a base and an aromatic side-chain. RNA molecules often
interact with proteins in single-stranded forms and bases are ready to interact with proteins.
As a result, the number of atoms of proteins that interact with RNA bases and RNA
backbones are more or less the same. This tendency is quite different from protein–DNA
interactions. The double-stranded forms of DNA, in which the bases are stacked one upon
another in the interior of the molecule, interact with proteins, and consequently, backbone
interactions predominate.95

Examination of their locations revealed that amino acid residues at the interface with
RNA are often spatially clustered. The obvious implication of this clustering is that if a
residue is part of an interface with an RNA molecule, then it is highly likely that its spatial
neighbor is also part of the same interface. Because, as outlined above, there is a propensity
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for certain residues to locate at the interface with RNA, one would also expect there would
be preferences for certain neighboring residues at RNA interfaces. Hereafter, the propensity
of a single residue to locate at an interface with RNA will be called the singlet propensity
and that for a pair of spatial neighbors will be called the doublet propensity. The doublet
propensity can be measured using the following equations,94

Qi j = fi j

fi j
= fi × f j × Ci j

fi × f j × Di j

(
fi j = ni j∑20

i=1

∑20
j=1 ni j

, fi = ni∑20
j=1 n j

)
, (7.2)

where fi j is the frequency at which residue types i and j are neighbors at RNA interfaces.
Two residues are defined as neighbors when the Cβ atoms of the two residues are within
7.0A

◦
. fi is the frequency at which residue type i occurs at RNA interfaces. Hence, Ci j is

a value reflecting the dependency between the two amino acid types appearing in a pair
at RNA interfaces. If Ci j = 1.0, then the frequency at which amino acid types i and j are
neighbors at RNA interfaces is just the product of the frequencies of types i and j , and no
preference for pair occurrence is observed. Pi j = Ci j

Di j
is defined as doublet propensity, and

plots of part of Pi j on a log scale are shown in Figures 7.2B–D. A full description of doublet
propensity can be found in Kim et al.94 Note that among the doublet propensities, Cys tends
to have high values. This reflects the paucity of data for Cys, and these apparent propensities
should not be taken at face value. When interpreting doublet propensity, therefore, it is
important to confirm statistical significance, as the number of residue pairs is sometimes
very limited at RNA interfaces. Arg and Lys show similar tendencies for pairing with 20
types of amino acids; they both have strong singlet propensities but relatively weak doublet
propensities for one another, which means that they do not appear cooperatively at RNA
interfaces. An intriguing tendency is found in the doublet propensities for Ile; the Ile-Ile pair
has a very high doublet propensity (Figure 7.2D). Although the log singlet propensity of Ile
is negative (Figure 7.2A), the log doublet propensity is very highly positive, which means
that Ile pairs are more abundant at RNA interfaces than elsewhere on protein surfaces. In
that regard, we observed a case in which two Ile side-chains formed a planar structure to
accept a uracyl base in a spliceosomal protein.99 The physicochemical background for this
interaction remains unknown.

7.4.4 Prediction of RNA-binding Proteins from Amino Acid Sequence

After the residues at RNA interfaces have been defined and the amino acid preferences
determined, one can build a method for predicting RNA-binding proteins based on these
preferences. There are three questions to be asked when predicting protein–RNA inter-
actions: (1) Among amino acid sequences predicted from genome nucleotide sequences,
which ones are RNA-binding proteins? (2) Where do RNA molecules bind on RNA-
binding proteins? (3) How do RNA and protein molecules interact? The first question can
be categorized as a general problem of inferring function from amino acid sequences.
Information on the general question of predicting function can be found in other textbooks
(e.g. von Mering100). Han et al.101 has developed a prediction method specific to RNA and
implemented it into SVMProt, a web server used to predict a large variety of functions on
the basis of amino acid sequences. It is expected that the functional characteristics of any
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protein will be reflected to some extent in its amino acid sequence. SVMProt uses the fol-
lowing properties of each amino acid residue to extract the characteristics of RNA-binding
proteins from their amino acid sequences: type of amino acid, hydrophobicity, van der
Waals volume, polarity and polarizability. These characteristics are then converted to three
types of descriptors: composition, transition and distribution. The composition descriptor
is the percentage of each characteristic in the amino acid sequence, the transition is the
count of the changes in sign of each characteristic along the amino acid sequence, and the
distribution is the percentage of each characteristic in the first fourth, half, three-fourths and
all of the amino acid sequence. An SVM was trained to use these descriptors to distinguish
between RNA-binding proteins and those that do not bind RNA. SVMProt was reported to
single out the amino acid sequences of 94.1% of all known rRNA/tRNA-binding proteins
and 79.3% of all known tRNA-binding proteins. The principle underlying these success-
ful predictions is that the known RNA-binding proteins share the characteristics outlined
above, which likely reflects the fact that these proteins are derived from a limited number
of common ancestors. Consequently, this method may miss new types of RNA-binding
proteins that are derived from a different origin.

7.4.5 Prediction of RNA Interface Residues from Amino Acid Sequence

The second question, where do RNA molecules bind on RNA-binding proteins, can be
addressed in two ways, depending upon whether one makes use of the amino acid sequence
or the 3D-structure of the protein. Prediction of RNA-binding residues from amino acid
sequences has been achieved using two machine learning techniques: SVM and naive Bayes
classifier. In the SVM method implemented in BindN,102 the characteristics used to identify
RNA-binding residues are the side-chain pKa value, hydrophobicity and molecular mass
of each amino acid in the sequence. These three characteristics are thought to be indicative
of the side-chain ionization necessary for interaction with RNA phosphate groups, the
degree to which the residues necessary for interaction with RNA are buried, and the amino
acid types, respectively. Descriptors of the target residue are built with the values of five
flanking residues on each side along the amino acid sequence (eleven residues in total),
and the SVM is trained to use the descriptors to distinguish between residues that bind
RNA and those that do not. With their BindN web-server, Wang and Brown achieved 66%
sensitivity and 70% specificity.102

With the naive Bayes classifier method implemented in RNABindR,103, 104 a stretch of
fifteen amino acid residues with the target residue at the center of the stretch is designated
as plus if the target residue interacts with RNA, and minus if not. The probability of being
a plus or minus is determined based on the observed frequency of an amino acid type at
the RNA interface, with the premise that the probability of the stretch is the product of
the probabilities of the individual amino acid residues within the stretch. The prediction
is performed by dividing the probability of being a plus by that of being a minus; if the
value was greater than a certain threshold, then the residue at the center of the stretch was
predicted to be at the RNA interface. Terribilini et al. reported that they achieved 91%
sensitivity and 88% specificity with their RNABindR.103, 104 Taking into consideration that
RNA binds to proteins in three-dimensions, the accuracy of these predictions using only
amino acid sequences is surprisingly good. The basis of this accuracy is that RNA-binding
residues cluster not only in space, but also within the amino acid sequence,96, 103 and the
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Figure 7.3 Likelihood that the i + kth residue within an amino acid sequences is at the
RNA interface when the ith residue is at the RNA interface. The horizontal axis is k, and the
vertical axis is the log-odd value. ni,i+k is the residue pair count when both the ith and i + kth
residues within an amino acid sequence are RNA-binding residues, and

∑
ni,i+k is the count

of all possible residue pairs. In 86 entries of protein-RNA complexes in the PDB, 23% of the
residues were identified as RNA-binding, so that the denominator of the equation is 0.23

premise continues to hold on the latest known 3D-structures of protein-RNA complexes
(Figure 7.3). It is natural that neighboring residues within a sequence are close in space,
but residues close in space are not necessarily neighbors within a sequence; consequently,
the distribution illustrated in Figure 7.3 is not trivial.

7.4.6 Prediction of RNA Interfaces from the 3D-structures of Proteins

The advent of structural genomics has enabled us to use the 3D-structures of RNA-binding
proteins as initial input for predicting residues at RNA interfaces. The 3D-structures of
protein-RNA complexes have characteristics that cannot be extracted from amino acid
sequences, including secondary structures, solvent accessibility, spatial neighbors, and
concave and convex structures at the level of the atomic resolution of the RNA interface.
These characteristics are expected to provide additional information that will improve
the performance of the prediction. KYG was the first to include the log-odd score for
singlet and doublet propensities together with the amino acid sequence profile to judge
whether a residue on the surface of a protein likely interacts with RNA, assuming that
the observed frequencies of singlet and doublet within the structure of a protein-RNA
complex are equal to the probabilities of singlets and doublets at the RNA interface.94

Leave-one-out cross-validation experiments showed that the best specificity was around
80%. Without the doublet propensity, the corresponding specificity was around 60%,
and the margin of 20% mainly stemmed from the introduction of doublet propensity.
KYG can be run without multiple sequence alignment, but the best specificity declines
to around 70%. In DISPLAR, Tjong and Zhou51 introduced a neural network technique
for predicting DNA/RNA interface residues based on the 3D-structures of proteins. Two
types of information about each residue were extracted from the 3D-structure: solvent
accessibility and the fourteen spatially neighboring residues. In addition, evolutionary
conservation of the residue in question was extracted from multiple sequence alignment in
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the form of a profile, after which these three characteristics were used to train their neural
network. The best specificity achieved with DISPLAR was 57.1%. One needs to have
accurate multiple sequence alignment to obtain good performance with either prediction
method. The alignment should contain widely varied amino acid sequences, but should not
contain sequences with homologues in proteins that do not bind RNA.

7.4.7 Predicting the Structures of Protein-RNA Complexes

The third question, how do RNA and protein molecules interact, relates to problems of
docking an RNA onto a protein. Docking methods used by macromolecules are explained
in Chapter 9 of this book, and readers should refer to that chapter. One specific issue
relating to the structures of protein-RNA complexes involves predicting the conformation
of the RNA molecule. For tRNA and rRNA, which have extensive stem structures, rigid
body treatment of the RNA is sufficient. Three-dimensional structures of some tRNAs and
rRNAs are known, and those structures can serve as a templates for homology modeling
of other homologous molecules. For other RNAs, such as mRNAs, small nuclear RNAs
(snRNAs) and non-protein-coding RNAs (ncRNAs), however, the 3D-structures have not
yet been determined, and they are expected to be quite flexible. We anticipate that efforts
currently on the way to predicting the 3D-structures of these RNAs (105-107) will advance
our understanding of protein-RNA docking in the near future.

7.5 Protein–Protein Interactions

Each molecular function is realized by a single protein or a stable protein complex, but
cellular function is achieved through dynamic interactions among many proteins. There-
fore, understanding the protein–protein interactions is the first step to grasp insights into
biological functions at the molecular level of proteins. For this purpose, two points should
be addressed, that is, (1) to identify which proteins are involved in each biological function,
and (2) to determine how they interact with each other.

7.5.1 Which Proteins Interact?

To know which proteins interact with each other is one of the most fundamental problems in
the field of molecular biology, and at the same time, it is one of the most difficult problems.
There are several methods to judge if a given pair of proteins can interact or not, but it
is not straightforward to determine the interacting protein pairs on a genomic scale. For
these problems, some high-throughput methods, such as the yeast two-hybrid method,108 a
mass spectrometry-based approach109 or the tandem-affinity purification (TAP) method110

can detect potentially interacting proteins on a genomic scale, but the reliability of these
methods is still limited.111 To overcome this difficulty, filtering techniques to find truly
interacting pairs using high-throughput data have been proposed.112, 113 In the filtering,
homologous interactions, localization in the cell using GO annotation and/or structural
information are considered. When a pair of proteins is known to interact in a certain
species, and homologs to the protein pairs exist in other species, then the interaction of
the pairs in the latter species is considered to be likely and the interactions are called
homologous interactions.
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In spite of the difficulties of large-scale experiments, they are valuable sources to elu-
cidate potentially interacting proteins. Thus, many efforts have been made to collect the
known interactions based on the published reports, and several well-designed databases are
now available. For example, BioGRID114 and IntAct115 integrate as many interactions as
possible, regardless of the experimental scales. The most important point of these databases
is that the data are manually curated, using the publications. Therefore, the numbers of en-
tries in the two databases differ somewhat, according to the policy for handling large-scale
experiments. There is another type of database that concentrates on human data, aiming at
medical applications. Among them, UniHI116 and HPRD117 are updated regularly and are
well organized. A comparison of the human protein–protein interaction databases can be
found in Mathivivanan et al.118

Another source of large-scale information can be obtained by DNA microarray analyses.
Although these analyses do not yield direct information about protein-protein interactions,
the data are strongly correlated with the protein interactions.119 In addition, the data uni-
formity and the DNA microarray databases are now improving, and the quality of the data
is now critically evaluated by MAQC (Micro Array Quality Control) projects.120 There-
fore, the reliability of microarray data has greatly improved. Actually, in the Arabidopsis
field,121, 122 microarray data have been used extensively to identify the potentially inter-
acting proteins. As compared with the Arabidopsis field, the utilization of array data is
rather limited in the mammalian field. Thus, we have constructed COXPRESdb,123 which
provides coexpressed gene networks for human and mouse, in order to facilitate the use of
DNA microarray data in the public databases such as NCBI GEO.124

When each interaction is integrated, a large interaction network will emerge. What
can we learn from the large interaction network? One important observation is that the
interaction network is like a scale-free network,125 where only a small number of proteins
can interact with many different partners, and others only interact with a few partners. The
proteins with multiple partners are called hub proteins, and they are considered to play
a critical role in maintaining the interaction network, because disrupting the hub protein
can dramatically change the topology of the network.125 Han et al.126 further classified
the hub proteins into date hubs, whose interactions with partners are simultaneous, and
party hubs, which interact with other partners a different times or locations, by using
the coexpression profiles obtained by DNA microarray analyses.126 The date hubs are
identified as the proteins with a relatively low average correlation with their partners, while
the party hubs are considered to have relatively higher correlated expression patterns with
their partners. The work done by Han et al. is very interesting from the viewpoint of
network dynamics. The protein–protein interactions are more or less dynamic; that is, the
interaction partners will change according to the state of the cell, but the current large scale
experimental analyses lack the dynamic viewpoint, and thus a computational approach will
be necessary to elucidate the real dynamic view of the protein–protein interaction network.
For this purpose, coexpression networks will be valuable sources of information, and they
are extensively used in the plant fields.127, 128

7.5.2 How Do They Interact?

Once we have the pair of interacting proteins and their three-dimensional structures, the
next problem is to determine their complex structures. This type of problem is known as
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(a) (b)

Figure 7.4 An example of (A) the native complex structure with (B) a decoy complex, de-
picted by space-filling model. The black and grey colored subunit are xylanase inhibitor protein
1 and xylanase, respectively. The backbone structure of xylanase inhibitor was superimposed
and the complex structure was shown in the same orientation

the docking problem. In this textbook, the docking approach is described in Chapter 9, and
thus here we will briefly describe the concept and the problems from our perspectives.

The docking problem consists of two steps, sampling and selection. The sampling is to
search for the possible binding modes in all possible relative rotation and translation space,
and the selection is to choose the answer from the candidates that were enumerated in the
sampling step. In many cases, these steps are carried out at the same time, but we think
there are different types of problems in the two steps.

Docking methods have been critically assessed through the CAPRI community wide
experiment on the comparative evaluation of protein-protein docking, or the Critical As-
sessment of PRediction of Interactions.129 According to the CAPRI evaluation, for the
rigid body docking, where the flexibility of proteins is neglected, the sampling step is
not a serious problem with the current sophisticated algorithms, such as ZDOCK,130 but
the selection step still has many problems. In short, we may be able to create lists of
possible candidates in many cases, and usually the answer is included in the list, but it
cannot be selected before the answer is obtained. Protein flexibility is one of the problems,
because proteins may change their structures upon complex formation. However, the main
problem is that our knowledge about complex structures is rather limited. The number of
heterocomplex in the PDB is quite small. For example, only 15% of all entries in the PDB
are heterocomplexes as of May 2007, and the number of non-redundant heterodimmer is
only around 130. Therefore, a statistical approach and/or a similarity search approach to
select an answer from the many candidates has not worked well so far, in contrast to the
ligand-binding site of proteins. In addition, when we observe the differences between a
native complex with decoy complexes obtained in the sampling step, the differences are
surprisingly small on average (Figure 7.4), and in some cases, we could find better interac-
tions in the decoy complex as compared with the native structure. For example, in the case
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of the complex between xylanase inhibitor protein I and xylanase (PDB: 1tex1), we found
a decoy with a contact area somewhat larger (817 A

◦ 2) than that of the native complex
(376 A

◦ 2), and with a completely different binding mode (r.m.s.d. value of the backbone
structure is 15.5 A

◦
). This is one of the extreme cases, but when we generate possible decoy

structures using our own docking method,131 we can find many decoys with larger contact
area than the native ones. In short, because our knowledge about the interface of proteins
is short, the native heterocomplexes are evaluated as a bad model compared with the decoy
structures.
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8
Structure-based Prediction of

Enzymes and Their Active Sites

James W. Torrance and Janet M. Thornton

8.1 Introduction

Structures can be available for proteins whose function is either not fully understood, or
wholly unknown. The number of such structures has been greatly increased by structural
genomics projects. For this reason, it is useful to be able to predict the function of a
protein based on its structure. This chapter considers those methods for structure-based
function prediction that are applicable to proteins in general, and then focuses on those
methods which are more specifically suited to identifying enzymes. The chapter concludes
by discussing the best strategy for using these methods together to predict function.

There are several levels at which the function of an enzyme can be described. The
different function prediction methods described below vary in the level at which they predict
function. Enzyme function can be described in terms of the Enzyme Commission (EC)
classification.1 This is a numerical, hierarchical classification with four levels. However,
many methods for function prediction aim to predict the function of non-enzymes as
well, and for this reason they frequently make use of the Gene Ontology (GO), which
is a vocabulary of terms for describing the biochemical functions of gene products, and
the biochemical processes and cellular components with which they are associated.2 Some
methods predict the general location of the active site of the enzyme. Other methods attempt
to identify individual residues with key roles in catalysis, and may attempt to discriminate
between those residues which are involved in binding to the substrate, and those which
play a chemical role in catalysis.

Prediction of Protein Structures, Functions, and Interactions   Edited by Janusz M. Bujnicki
©    2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-51767-3
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Protein function can be predicted by identifying a homologue of similar function. Be-
cause protein structure is more conserved than protein sequence, it can be possible to detect
homologues by a comparison of overall protein structure which could not be detected by
sequence comparison methods. These methods depending on overall structure comparison
are relevant to both enzymes and non-enzymes. Because the function of enzymes is depen-
dent on the location of small numbers of residues which are grouped around their active site,
it is possible to identify enzymes and predict their function by searching protein structures
for groups of residues resembling the active sites of enzymes of known function, in the
hope of identifying homologues and cases of convergent evolution. Finally, it is possible to
attempt to identify the location of the catalytic site and the positions of individual catalytic
residues on the basis of their structural properties without deriving this information from
homologues, although this is a difficult task. Function prediction meta-servers exist which
integrate several of these approaches.

8.2 Identifying Homologues Using Overall Protein Structure

It is possible to predict the function of a protein by identifying homologues whose function
is known. Methods for detecting homologues by sequence searching have been discussed in
Chapters 1 and 4. Although far fewer protein structures have been determined than protein
sequences, it is possible to discover more remote homologues by comparing the overall
fold of a protein. Webservers for searching databases of protein structures for those with a
similar fold to a query structure are described in Table 8.1. (Various similar methods exist
for obtaining a structural alignment between a pair of proteins, but only those which carry
out database searching are listed here. Structure comparison methods have been reviewed in
detail by Koehl.3) Most of these fold searching methods do not explicitly provide functional
predictions, although AnnoLite4 provides GO annotation and EC classification predictions,
along with probability values scoring their degree of certainty.

An assessment by Novotny et al.12 of the ability of structure alignment methods to detect
homologues concluded that there was no one overall ‘best’ server, although they found that
Dali,5 VAST,6 CE7 and Matras8 all performed well. They recommend using several servers
to confirm the results. A study by Sierk and Pearson13 analysed the ability of structure
alignment methods to discriminate homologues from non-homologous proteins with the
same topology; this found that Dali was the most discriminating.

How accurate a prediction of enzyme function can be made on the basis of homology? As
the level of sequence identity between a pair of enzymes declines, so the probability that they
have the same EC function declines. Different analyses have reached significantly different
conclusions concerning how rapidly the probability of functional similarity declines as
sequence similarity decreases,14–16 but all agree that below 40% sequence identity the
likelihood of two enzymes sharing the same function as described by the full EC code
declines swiftly.

For some enzyme homologous superfamilies, function is well conserved, and in these
cases identification of a protein as a member of the superfamily on the basis of structure
can imply a shared function. Furthermore, even in functionally diverse superfamilies, some
elements of catalytic function are often conserved. Todd et al. analysed evolution within
31 enzyme superfamilies, each of which included enzymes with a range of functions.14
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Details of catalysis were available for 27 of these superfamilies. The analysis found that
catalytic mechanism was conserved in four of these 27 superfamilies, and that mechanism
is ‘semi-conserved’ (meaning that a common chemical strategy is used in the context of
different overall transformations) in a further 18. Nevertheless, if a protein has homologues
of known function identified using structure comparison that cannot be recognised using
sequence-based methods, generally only a very weak speculation can be made concerning
its function. However, analyses of protein structure that focus on details around the putative
active site can provide stronger evidence concerning protein function.

8.3 Recognising Distant Homologues and Cases of Convergent Evolution
Using Template Matching Methods

The function of an enzyme depends upon the geometry of the catalytic residues and
substrate binding residues. These key residues can have well-conserved geometries in
distantly-related proteins of similar function.17 If residues with a similar arrangement are
found in a distant homologue, this suggests that it may have a similar function; conversely,
if key catalytic residues are missing or have a different geometry, this suggests a change in
function. There are also cases where unrelated enzymes have evolved similar arrangements
of residues which carry out similar functions in catalysis (convergent evolution). Thus, if a
group of residues in a protein of unknown function is found to resemble a group of catalytic
residues in a non-homologous enzyme, this might indicate a similar function- although it is
difficult to assess how practical this is as an approach to function prediction, as discussed
below.

A number of methods exist which search protein structures for groups of residues that
have a particular spatial arrangement. In this chapter, the term ‘structural template’ is used to
describe a predefined spatial pattern of residues which these methods can search for within
a protein. (This should not be confused with the unrelated idea of a template structure in
homology modelling.) These structural templates can correspond to the catalytic residues
of an enzyme (although they can also correspond to any component of a protein structure).

Template matching methods can be used with individual templates created by the user.
However, it can be useful to have a library of structural templates corresponding to known
functional sites. A number of efforts have been made to create such libraries in a systematic
or automated manner; these will be discussed later in this chapter.

The template matching process can be made clearer with an example. There are a number
of unrelated hydrolase enzymes which make use of a combination of Ser, His and Asp
residues playing equivalent roles in catalysis.18 These residues can occur at widely sepa-
rated locations in the protein sequence, and can occur in a different order in the sequence
in different, nonhomologous enzymes. However, they generally occur in very similar posi-
tions in space relative to one another. A structural template can represent the relative spatial
positions of the three residues in one of these enzymes. This structural template can be used
to search other protein structures for occurrences of these three residues in similar arrange-
ments, which may imply the existence of a catalytic site performing a similar function.19

We will begin by discussing methods that have the potential to detect cases of convergent
evolution as well as distant relatives; that is, those methods which match similar patterns
of atoms independently of residue order in the protein sequence, and independently of
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larger structural features such as protein surface clefts. First we discuss the extent to which
these methods can be useful for predicting function, then we describe the details of how
individual methods function.

8.3.1 Usefulness of Templates for Predicting Function

Template searching is a useful complement to methods of function prediction that are based
on recognising homologues using sequence or overall structure, for the following reasons.

1. There are instances when proteins have independently evolved the same configuration
of catalytic residues for carrying out similar reactions. In these cases of convergent
evolution it may be possible to predict the common function on the basis of common
catalytic residue conformation.

2. Catalytic residue conformation in homologous enzymes of similar function may remain
conserved when the rest of the protein structure has diverged to the extent that it cannot
be used to predict function.

3. Even when distant homologues can be identified using sequence methods, their correct
sequence alignment may be ambiguous; a structural comparison of catalytic sites may
resolve the ambiguity and thus suggest which residues are most likely to be involved
in catalysis.

4. Even for homologues identifiable by sequence methods, identifying similar catalytic
sites that are spread over multiple protein chains may be simpler using structural simi-
larity of catalytic sites than by using sequence comparison.

5. Even if two enzymes are clearly recognisable as homologues on the basis of their
sequence or overall structure, they may still have different functions20. If they do have
different functions, they will often not retain the same catalytic residue conformation–
so a consideration of catalytic residue conformation will permit the hypothesis of similar
function to be rejected.

8.3.2 Usefulness of Templates for Identifying Cases of Convergent Evolution

The usefulness of structural templates for detecting cases of convergent evolution of cat-
alytic residues depends upon how frequently this type of convergent evolution occurs, and
how preciely the convergently evolved sites resemble one another. Unfortunately, these
questions are currently difficult to answer.

There are many cases of convergent evolution of overall enzyme function. In principle,
it might be the case that the active sites of these enzymes resemble one another and that
these similarities might form a basis for predicting function by comparing non-homologous
structures. A comparison of the SCOP structural classification and the EC classification
by Galperin and Koonin found 34 EC numbers which occurred in more than one SCOP
superfamily, implying that convergent evolution had occurred.21 However, because the EC
classification only describes the substrates and products of a reaction, these enzymes may
have entirely different mechanisms and active sites.

There are cases where unrelated enzymes catalyse similar reactions using residues with
similar geometries in similar dispositions relative to one another. The best studied example
is the use of combinations of Ser, His, and Asp residues to catalyse hydrolysis reactions
by a nucleophilic substitution mechanism. This has independently evolved on at least six
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occasions, and a number of chemically similar residue groups exist, such as Cys-His-Asp
triads.18 Template matching methods can be used to detect such similarities, and in fact
several of the template matching methods described below have been shown to be capable
of detecting the similar Ser-His-Asp groups in unrelated hydrolase enzymes. Wallace et
al. analysed Ser-His-Asp catalytic triads from several convergently evolved groups of
hydrolases.22 They found that in the majority of these triads, the distance between the
functional oxygens of the Ser and Asp residues was within 1.4 A

◦
of the consensus distance

over all triads. They also found that few non-catalytic Ser-His-Asp associations had this
conformation.

However, at the time of writing no general study exists that assesses how practical the
detection of such cases of convergent evolution is for function prediction purposes. For
this reason, a template match should be interpreted with great caution if there is no other
evidence of homology between the structure used to generate the template and the structure
which was matched.

8.3.3 Usefulness of Templates for Identifying Distant Homologues

Active sites are usually highly conserved in sequence and structure in homologous en-
zymes of similar function. Nevertheless, the ability of structural templates to identify
homologues depends on the degree of structural variability of these active sites in homol-
ogous enzymes. The more structurally variable these sites, the more difficult it will be to
discriminate between matches to homologous active sites and matches which are meaning-
less. An assessment has been carried out of the degree of structural variability occurring
in homologous active sites, and the ability of structural templates to recognise equivalent
catalytic sites in homologues, through an analysis17 of a library of 147 structural tem-
plates representing catalytic sites in the Catalytic Site Atlas (CSA)23 (this library is further
described below, and is available at http://www.ebi.ac.uk/thornton-srv/databases/CSS).

The CSA is a database of catalytic residues in proteins of known structure; the annotation
in this database is manually derived from the scientific literature. For each of the 147
literature-derived catalytic sites in the CSA that were considered in this study, relatives
were identified using the sequence searching program PSI-BLAST.24 Relatives were only
considered if they had identical residue types to the catalytic residues occurring in the
literature entry (according to the sequence entry alignment). Most of these catalytic residues
in homologues were found to differ by less than 1 A

◦
atom coordinate root mean square

deviation (RMSD), even in very distant relatives.
This analysis further examined how well these structural templates could discriminate

between matches to the catalytic sites of homologues of the structure which was the basis for
the template and random matches to non-relatives. The analysis found that these structural
templates could discriminate sites in homologues from random matches with over 85%
sensitivity and predictive accuracy. This high performance is a consequence of the high
degree of structural conservation of catalytic sites described in the previous paragraph.
However, these homologues were identified using PSI-BLAST to identify homologues
recognisable from their sequence, so this study did not address the question of how well
these structural templates can identify homologues which could not also be identified using
sequence searching.
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1
The template that the program will 
search for is represented by a set 
of  features.

2
The protein structure which is to be  
searched is represented within the 
program using a data structure 
which facilitates searching.

3
An  algorithm is used to locate 
matches to the template.

4
The quality of each match 
detected by the algorithm must be  
scored.

Figure 8.1 Components of a template matching method. This figure was prepared using
Pymol (www.pymol.org) (See insert for color representation of figure)

8.3.4 Components of a Template Matching Method

A method for template matching can be divided into four components. These are shown in
Figure 8.1, and listed here.
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1. The method must specify the features that are to be used to represent the template.
Methods which abstract away some of the details of template structure will be less
specific; this may result in more matches that are not biologically meaningful, but may
also allow the detection of functionally similar sites with minor variations in structure.

2. Most methods represent the geometry of the protein structure which is to be searched
using a data structure that aids the search process.

3. The method must have an algorithm for searching within the data structure representing
the protein for groups of residues resembling the template. The choice of algorithm
determines the speed of the method.

4. The quality of the match between the template and the protein structure must then be
scored. The choice of scoring measure is important, since smaller templates will often
have large numbers of matches, and the scoring assigned to these is crucial for deciding
which of these matches are biologically meaningful.

Relevant template matching methods are summarised in terms of these four components
in Table 8.2, which also provides literature references. Each component is considered in
more detail below. Webservers through which these methods can be accessed are described
in Table 8.3.

There are a number of other template matching methods which have been developed,
but which are not described in detail here because the programs are not readily available
for use. These include TESS,19 Fuzzy Functional Forms,25 Functional-group 3D motifs,26

Triads,27 and a method developed by Singh and Saha.28

There have been no studies comparing the effectiveness of different template matching
methods for predicting function, and for this reason it is not possible to suggest which
methods are the most useful, and it is not possible to comment on the best choices for each
of the four components described above, except in broad qualitative terms. The choice of
methods made by a user will depend on whether they wish to supply their own template or
make use of a template library, and if the latter, which types of functional site they wish to
search for.

8.3.5 Features of the Template

A template could be represented by describing the relative positions of all atoms in all rele-
vant residues. However, it can be useful to abstract away some of the details, as this reduces
the amount of storage and memory space required for representing the protein structures
to be searched. It also simplifies and thus speeds up the search process. Abstracting away
sidechains avoids problems due to ambiguities in experimental identification of atoms (such
as sidechain oxygen and nitrogen atoms in asparagine and glutamine residues) and atom
nomenclature (such as the equivalent oxygen atoms in aspartate and glutamate residues).
Abstraction also makes it easier for the template to match structures which have minor
differences in sidechain conformation. The disadvantage of abstraction is the possibility of
lowering template specificity.

Some template matching methods treat the structures as sets of atoms, independent of
residues, and allow the user to decide which atoms to employ in their template definition
(NeedleHaystack,37 Jess38).

Most methods, however, treat structures as sets of residues and define how each residue
is to be represented. PDBSiteScan39 employs backbone atoms; this can be justified by the
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Table 8.3 Webservers for template matching

Method Type of input URL

ASSAM29, 30 Template http://grafss.imfr.net/assam/index.html
PINTS31–33 Template or structure http://www.russell.embl-heidelberg.de/pints
SPASM34, 35 Template http://portray.bmc.uu.se/cgi-

bin/spasm/scripts/spasm.pl
RIGOR (as part of
ProKnow)42

Structure http://proknow.mbi.ucla.edu/index.php

SITEMINE36 Template or structure http://www.ebi.ac.uk/msd-srv/MSDtemplate
NeedleHaystack37 Template and structure http://bioinf.charite.de/haystack
Jess (as part of
CSS)17, 38

Structure http://www.ebi.ac.uk/thornton-
srv/databases/CSS

Jess (as part of
ProFunc)38, 43

Structure http://www.ebi.ac.uk/thornton-
srv/databases/ProFunc

PDBSiteScan41 Structure http://wwwmgs.bionet.nsc.ru/mgs/gnw/
pdbsitescan

Query3d (as part of
PDBfun)41, 44

Template http://pdbfun.uniroma2.it

Note: The ‘Type of input’ column indicates what the user supplies: Do they supply a template which is used to search
a library of structures, or do they supply a structure which is searched using a library of templates? Where either of
these possibilities is an option, the ‘Type of input’ column contains the text ‘Template or structure’; where the user has
to submit a single structure and a single template in order to search the one using the other, the ‘Type of input’ column
contains the text ‘Template and structure’.

argument that backbone conformation is better conserved and more accurately experimen-
tally determined than sidechain positions. Alternatively, a residue may be represented by
one or more pseudo-atoms. These are points which do not fall at the position of any one
atom, but at the average position of all atoms in the residue (SITEMINE36), the average
position of a set of functional atoms (PINTS,31–33 Query3d41, 44) or at some other position
derived from the residue atom coordinates (ASSAM,29, 30 SPASM34, 35).

Some methods only permit residues to match with residues with the same amino acid
type. However, many methods allow similar residues to match one another (for example,
Asp may match Glu).

The only analysis which has compared the function prediction effectiveness of templates
that represent residue positions in different ways is the study of 147 structural templates
derived from the CSA which was described in the section above on using structural
templates to identify distant homologues. This compared the effectiveness of templates
which represented residues using atoms likely to be directly involved in catalysis with the
effectiveness of templates using Cα and Cβ atoms to represent residues.17 Templates using
Cα and Cβ atoms were found to be slightly more effective for discriminating relatives
from random matches.

8.3.6 Data Structures and Algorithms

Template searching methods must use some internal representation of the structure of the
protein(s) being searched (a ‘data structure’). The choice of data structure is closely tied
to the nature of the algorithm used for template searching.
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Some methods employ a relatively direct approach of searching through all possible
combinations of matching residues, without using any elaborate data structure (PINTS,
SPASM, SITEMINE, Query3d). The relatively thorough approach taken by these meth-
ods is possible partly because they represent each residue using only one or two atoms.
Additionally, PINTS only uses conserved hydrophilic residues. All these methods search
through the possible combinations of matching residues, discarding any potential matches
as soon as they are found to involve a single distance pair differing by more than a given
cutoff. Both PINTS and SPASM use a depth-first recursive search pattern to go through
the possible matches.

NeedleHaystack uses a set of three atoms in the template to carry out an initial search.
The three atoms in the template which are most widely separated from one another are
selected for this purpose. All sets of equivalent atoms with similar distances in the structure
being searched are selected. For each of these initial matches, the template and structure
are superposed, and the remaining atoms in the template are assigned the nearest equivalent
atoms in the structure being searched. The superposition of the template and the match is
then optimised using all atoms.

ASSAM makes use of graph theory. There are a number of well-studied algorithms
in graph theory for characterising and comparing subgraphs. If protein structures can be
represented as graphs, then the template matching problem can be reduced to an easily
tractable problem in graph theory. ASSAM’s graph representation of a structure treats the
pseudo-atoms representing residues as vertices in the graph, with edges representing dis-
tances between pairs of atoms. ASSAM uses Ullmann’s subgraph isomorphism algorithm
to carry out template matching.

Jess treats the template as a set of constraints that have to be met by a number of atoms,
and apply these constraints stepwise to potential matches. Jess builds up solutions atom by
atom, finding all those atom combinations in the search proteins that satisfy all constraints
on a subset of atoms from the template, then adding one more template atom to the subset.
In order to increase the efficiency of the search, Jess stores atom data in a data structure
known as a KD-tree. This is suited to handling the geometric aspect of the problem.

8.3.7 Scoring Results

Template matching methods typically return substantial numbers of results. A measure
of the accuracy of the results must be used to distinguish close from distant matches.
The choice of measure is not generally related to the data structures and algorithms used
by the method. Many methods use the coordinate RMSD between equivalent atoms in
the optimally superposed structures of the template and the match. These include TESS,
SPASM, SITEMINE, and Query3d. NeedleHaystack uses a slight variation on RMSD.
ASSAM uses the maximum difference in distances between a pseudoatom pair in the
template and an equivalent pseudoatom pair in the protein. PDBSiteScan uses the largest
single distance between any pair of equivalent atoms in the superposed structures of the
template and the match.

Whilst RMSD is the standard measure of similarity between two molecular structures, it
suffers from not being comparable between different template matches. The other similarity
measures detailed above have the same problem. Template matches with a different number
of atoms are not comparable (since matches with a larger number of atoms will tend to
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have a higher RMSD). Differences in the frequency of residues mean that the residue
composition also affects the significance of a given RMSD.

PINTS attempts to assign an E-value to a template match (an E-value is the number of
matches of the same quality which one would expect to occur at random in the database
being searched). PINTS converts RMSD values into E-values using a general method that
can cope with templates of any size and residue type. The formula used is based on the
geometry of a match with a given RMSD level. Several parameters are derived empirically
from data.

The two webservers that currently employ Jess use different methods. The CSS web-
server uses the same method for providing E-values as PINTS. The ProFunc webserver
ranks matches by comparing the protein environment of the match with that of the original
template. In order to carry out this environment comparison, residues in equivalent posi-
tions in a 10 A

◦
sphere around the template match are paired up. These paired residues are

filtered to include only those where the residues are in the same relative sequence order.
These remaining pairs are scored in a manner that takes into account the number of paired
residues and the number of insertions that would be required in either protein sequence to
bring these residues into alignment. This method of scoring is better suited to detecting
distant homologues than detecting cases of convergent evolution.

A study of 147 structural templates derived from the CSA (described in the section above
on using structural templates to identify distant homologues) compared the effectiveness
of RMSD and E-values calculated using the PINTS method for discriminating between
matches to homologues and random matches.17 This study found that the two scoring
methods were similar in their effectiveness. However, the set of templates used in this
study was largely composed of templates made up of three or four residues. Since one of
the problems of RMSD is that it is not comparable between templates of different sizes, it is
possible that E-values would be more useful when comparing matches between templates
that differ considerably in size.

8.3.8 Template Libraries

When a researcher wishes to search a protein structure of unknown function for the
presence of one specific functional site (perhaps derived from a distant homologue) they
will be able to supply their own template. However, if they wish to search a protein structure
of unknown function for any functional sites it may possess (perhaps when a homologue of
known function cannot be identified), they will need a library of templates. Several of the
template matching methods described above are associated with such a template library.
Attempts to identify enzymes require a library which relates either to catalytic residues, or
to ligand binding.

The program SPASM described above searches a set of protein structures for matches to
a user-defined template. RIGOR is a second program by the same author which performs
the opposite operation, searching a query structure for matches to a library of templates.42

RIGOR uses a database of templates that meet one of three criteria: they consist of a
sequential run of residues of the same type (such as four arginines), they are a spatial
cluster of residues that share a property (all hydrophobic or all hydrophilic), or they all
contact a ligand.34 This last category is the most relevant to enzyme identification.
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PDBSiteScan templates are based on the SITE records of PDB files. These SITE records
are an optional section of the PDB file where its depositors can record any notable features
of the structure, and as such they can correspond to many different types of functional site.
The PINTS server offers three template databases: one where templates are derived from
the SITE records of PDB files, one that focuses on surface residues, and one containing
templates based on residues that are within 3 A

◦
of bound ligands. The Query3d method

is part of the pdbFun resource;44 this permits users to construct templates from a range
of functional sites in proteins, including clefts, ligand binding sites, and catalytic residues
derived from the CATRES45 resource.

A data mining approach was used by the author of SITEMINE to identify common
geometric combinations of residue atoms. This takes into account the symmetry of certain
residues (such as aspartate and phenylalanine) and the fact that groups in some residues are
equivalent (such as the amide groups in asparagine and glutamine). The matches from this
data mining are significant in a geometric sense, but may not be biologically interesting.
The data mining output includes information on ligand interactions in order to aid the
identification of biologically meaningful matches. Each data mining match is converted
into a template representing the average positions of the equivalent atoms from the data
mining match.

As described above, the CSA is a database of catalytic residues in proteins of known
structure. A subset of the catalytic sites described in the CSA have been used as the basis
for a library of structural templates. It is possible to search protein structures for instances
of these templates using the Jess template matching method via the webserver Catalytic
Site Search (CSS).

The ProFunc webserver contains the same set of structural templates derived from the
CSA, and also includes templates representing ligand binding sites and DNA binding sites.
Furthermore, each structure used as a query by ProFunc is used to create a set of ‘reverse
templates’, which are used to search a representative subset of the structures in the PDB.
Like the CSS webserver, ProFunc carries out template matching using the Jess program,
although as noted above the two webservers differ significantly in how they score template
matches.

There have been no formal comparisons of the effectiveness of different template li-
braries for predicting protein function. However, the templates derived from the CSA are
the most likely to be relevant to searches for groups of catalytic residues, whereas the
template libraries associated with RIGOR and PINTS which consist of residues involved
in contacting ligands are the most likely to be relevant to searches for ligand binding sites.

8.4 Other Methods for Matching Parts of Structures

There are several methods for matching portions of protein structures which differ signifi-
cantly from the type of template matching methods discussed above. Webservers for these
other methods are summarised in Table 8.4.

There are methods which require residues to have the same sequence order in the
structures being compared. These methods have been discussed by Eidhammer et al. in
their general review of structure comparison methods.46 Conklin reviewed some early
approaches to discovering this type of structure-sequence motif, and developed his own
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machine learning approach.47 The methods SPratt248 and TRILOGY49 discover common
motifs of this type in groups of protein structures.

Methods exist that focus on protein surface patch or cleft properties; these have the
potential to identify similar active sites. These methods have been reviewed by Via et
al.50 SiteEngine51 is a method that identifies surface patches with similar physicochemical
properties. SURFACE52 is a webserver that matches surface patches in a manner resem-
bling the template matching methods described above. Residues in a template patch are
represented using their Cα atom and a pseudo-atom at the geometric centre of the sidechain
atoms. The program searches through all possible residue pairs in the query structure and
the template patch, looking for matches with similar inter-residue distances. SURFACE
has a surface patch template library constructed using the program SURFNET53 to identify
residues lining major clefts in proteins; these clefts are annotated with functional infor-
mation from the PROSITE54 sequence motif database, and with information concerning
ligands bound in the cleft. pvSOAR55 is a webserver that represents a given surface cleft
by concatenating the sequences of all the portions of the protein lining the cleft.56 This
concatenated sequence is then compared with a database of such cleft-lining sequences
using a dynamic programming sequence comparison method. eF-seek is a method that
predicts ligand binding sites in protein structures by comparing the shape and electrostatic
potential of the surface of the query protein with a database of ligand binding clefts.57

FEATURE58 is a template matching program which represents functional sites in terms of
the average physicochemical properties of a set of concentric spheres surrounding the site.
It is made available through the webserver webFEATURE.59

8.5 Function Prediction without Inferring Function from Homologues

It is also possible to attempt to predict a function for an enzyme, or to attempt to identify
its catalytic residues, without inferring these functional details from homologues of known
function. This is a highly difficult task. Note that some of the methods discussed in this
section do involve the identification of homologues, but these homologues are used purely
for identifying conserved regions; they are not used as sources of functional annotation.
Methods for function prediction which do not infer this function from homologues and are
publicly available are summarised in Table 8.5.

It is possible to make an informed guess at the general location of the catalytic site on
a protein structure without identifying homologues of known function. A study63 using
the cleft analysis program SURFNET53 found that in single chain enzymes, the ligand is
bound in the largest cleft in the protein in over 83% of cases. PatchFinder60 is a method
that identifies conserved patches of surface residues; the authors found that in 63% of
cases, at least half the residues in PDB file SITE records are in the main patch identified by
PatchFinder. These patches are relatively large, averaging 29 residues in size. Evolutionary
trace64, 65 is a method that uses a phylogenetic analysis to identify residues which are either
conserved across all relatives of a protein or else conserved within clusters of relatives;
these residues are likely to be under evolutionary pressure and are therefore likely to be of
functional significance. Functional sites are predicted where clusters of these trace residues
occur in proximity to one another in the protein structure. The largest cluster identified by
evolutionary trace has been found to have a statistically significant overlap with the enzyme
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active site in 97% of enzymes analysed.65 These trace residue clusters can be quite large,
so often only a general region of the protein is identified. Thus both cleft and conservation
methods allow a rough identification of the general region of the active site; however, this
does not provide any information about whether a protein is an enzyme, what the enzyme
function is, or the precise catalytic residues.

There have been a number of attempts to identify individual catalytic residues on the
basis of their structural properties and residue conservation alone. Gutteridge et al.66

attempted to predict catalytic residues on the basis of their residue type, conservation,
depth within the protein, solvent accessibility, secondary structure type and the size of
the cleft which they occur in. A neural network was trained with these parameters using
a training set of known catalytic residues. This neural network can successfully predict
56% of catalytic residues (sensitivity); however, only one in seven predicted residues is
catalytic (specificity). The non-catalytic predicted residues are, however, often close to
the catalytic site. This suggests that residues around the active site can be distinguished
on this basis, but that these parameters do not permit one to distinguish specific catalytic
residues. Another study using machine learning to predict catalytic residues using a similar
set of parameters (this time using a support vector machine approach) had a similar level
of success.67 SARIG62 takes a different approach to active site residue prediction. SARIG
represents proteins as graphs, where residues are the nodes and edges represent interactions
between them. Analysis of these graphs has shown that the ‘closeness’ of a residue – the
mean distance of its graph node to all other nodes – is significantly higher for catalytic and
ligand-binding residues. Using an optimal closeness threshold, it was possible to predict
catalytic residues with 46.5% sensitivity – but only 9.4% specificity.

8.6 Meta-servers for Function Prediction

As described above, function can vary considerably within homologous superfamilies, so
establishing homology between a query protein and a protein of known function on the basis
of structure alone using the overall structural comparison methods described at the start
of this chapter can be a poor guide to function. Furthermore, since convergent evolution
is a relatively poorly studied phenomenon, it is difficult to make functional predictions
on the basis of local similarities of residue groups or clefts in the absence of evidence
of homology. For this reason, it is useful to combine methods for establishing homology
between proteins with methods that carry out local comparisons.

There are a number of meta-servers for protein function prediction which combine the
results of different methods in this manner. These meta-servers run a number of individual
function prediction methods separately on a single protein, and assemble the results in a
format that is convenient for users to inspect. The result is the same as if the user had run the
methods separately, but using the meta-server can save considerable time and effort. There
are two meta-servers which incorporate information from protein structures: ProKnow42

(http://proknow.mbi.ucla.edu/index.php) and ProFunc43 (http://www.ebi.ac.uk/thornton-
srv/databases/ProFunc).

ProKnow incorporates fold comparison using DALI, and template matching using
RIGOR, along with a range of sequence-based methods. ProKnow associates GO an-
notations with the results of each of these search methods (for example, each fold that
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Figure 8.2 Flowchart describing a strategy for function prediction

could be matched by DALI is associated with a set of GO annotations, as is each tem-
plate that could be matched by RIGOR). When a structure is searched using ProKnow,
probabilities are assigned to the GO terms returned by the various search methods which
it incorporates. These probabilities are calculated using a Bayesian approach based on the
strength of each match to a fold/template etc. annotated with a given GO term, the number
of different matches per method which are annotated with that GO term, and the number
of different methods which return that GO term.

ProFunc makes use of the template matching program Jess to search query structures
against structural templates representing a range of functional sites, as described above.
ProFunc also employs a range of other structure-based methods for predicting function,
including fold comparison using SSM, surface cleft analysis using SURFNET, and search-
ing for potentially DNA-binding helix-turn-helix motifs. Furthermore, it includes vari-
ous sequence-based methods, including searching for similar sequences in the PDB and
the UniProt sequence database68 using BLAST, and searching several motif and family
databases. The results from these methods are laid out in a convenient format, but they are
not integrated in any way to produce a general function prediction.

8.6.1 A Strategy for Function Prediction

How should this range of function prediction methods be applied in practice? Each protein
structure presents a unique function prediction challenge, but it is possible to provide broad
guidelines, which are summarised by Figure 8.2. These guidelines refer only to types of
method; as described above, it is difficult to recommend individual methods, since there
are few studies comparing the effectiveness of these structure-based methods for function
prediction, and where such studies do exist (as for the methods for identifying homologues
through overall structure comparison) they are unable offer a conclusive recommendation.
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The most important task is to identify homologues of known function. This can be
approached using the fold comparison methods described in Table 8.1, together with the
sequence comparison methods discussed in Chapters 1 and 4.

If it is possible to identify homologous proteins whose function is known, then predicting
function involves examining the literature concerning these homologues, and examining
local similarities and differences in sequence and structure between the query protein
and these homologues. As part of this process, it may be useful to employ local structural
comparison methods using structural templates (Tables 8.2 and 8.3) or other methods (Table
8.4) in order to ascertain whether key functional sites in the homologues are conserved in
the query protein. A structural template could be derived from these homologues of known
function, or a template library could be employed if it contains templates associated with
the homologues of known function.

If homologues of known function cannot be identified, then it is still possible that search-
ing against a template library using the local structural comparison methods described in
Tables 8.2–8.4 might identify very distant relatives or cases of convergent evolution of
functional sites. However, any function prediction made on this basis would be highly
speculative. Generally, in the absence of homologues of known function the most that can
be obtained is an assessment of the rough location of the active site using the cleft and
sequence conservation methods described in Table 8.5.

All of these different methods of function prediction are complementary, and should be
considered together. The meta-servers described in the previous section provide a conve-
nient way to obtain information from many function prediction methods simultaneously.
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9
The Prediction of Macromolecular

Complexes by Docking

Sjoerd J. de Vries, Marc van Dijk and Alexandre M.J.J. Bonvin

9.1 Introduction

Macromolecular complexes are the molecular machines of the cell. In order to fully un-
derstand how the various units work together to fulfill their tasks, structural knowledge
at the atomic level is required. Only in this way, functional mechanisms such as binding
specificity, signal transduction through conformational change, and molecular scaffolding,
can be fully understood. The number of expected macromolecular complexes will, how-
ever, exceed the number of proteins in a proteome by at least one order of magnitude; a
significant fraction of these will be extremely difficult to study using classical structural
methods such as NMR and X-ray crystallography.

Therefore, the importance of computational approaches such as docking, the process
of predicting the three-dimensional (3D) structure of a complex based on its known
constituents, is evident. In recent years, docking has emerged as an important method,
complementary to experimental structural methods. To monitor the performance of current
protein-protein docking methods, CAPRI (Critical Assessment of Predicted Interactions),
a community-wide blind docking experiment, has been established (http://capri.ebi.ac.uk).
In this experiment, participants are asked to predict by docking a recently solved protein-
protein complex a few weeks prior to its publication. Ten models may be submitted,
and successful predictions are awarded one to three stars depending on their accuracy.
Figure 9.1 shows examples of successful CAPRI predictions of various accuracies. The
accuracy of a prediction is defined based on the fraction of native intermolecular contacts
correctly predicted (Fnat) and on the positional root mean square deviation (RMSD)

Prediction of Protein Structures, Functions, and Interactions   Edited by Janusz M. Bujnicki
©    2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-51767-3
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(a) (b) (c)

Figure 9.1 Example predictions from the CAPRI experiment overlaid onto the experimental
crystal structure. a: a one-star prediction (HADDOCK model #1 for target 27,92 PDB code
2O25); b: a two-star prediction (HADDOCK model #1 for target 26,93 PDB code 2HQS); c:
a three-star prediction (HADDOCK model #1 for target 13,94 PDB code 1YNT).

calculated on all residues within 5A
◦

of the partner molecule termed interface RMSD
(i-RMSD): one-star (acceptable): Fnat ≥ 10% and i-RMSD ≤ 4.0A

◦
; two-star (good):

Fnat ≥ 30% and i-RMSD ≤ 2.0A
◦

and three-star (high quality): Fnat ≥ 50% and
i-RMSD ≤ 1.0A

◦
.

The previous rounds of CAPRI challenge have shown considerable progress.1, 2 In the
earlier rounds, most targets were unbound-bound complexes, meaning that for only one of
the proteins, the free form structure was available, while for the other protein, the structure
within the complex was supplied by the organizers. Although this is a useful computational
exercise, it is not a truly blind prediction. In contrast, all but one targets of the last CAPRI
meeting had to be predicted using only unbound structures or even homology models. Also,
recent targets have a higher representation of biologically interesting signal transduction
complexes, which are difficult to dock. Facing these challenges, successful predictions were
made for several targets that were considered beyond the limits of docking methodology a
few years ago.

Despite this progress, there still are major problems to be addressed.3–6 In the context of
recent CAPRI rounds, these issues have become more pronounced. Here we will discuss
two major bottlenecks: first, molecular flexibility and conformational changes, and second,
the inclusion of experimental or bioinformatic data on the nature of the interaction. In
addition, we will also address protein–DNA docking: compared to protein–protein docking,
development in this particular type of biomolecular docking has lagged behind, despite
the important role of these complexes in recognition and gene expression. A discussion of
the third major bottleneck, the discrimination of correct docking solutions from incorrect
ones (the scoring problem) lies beyond the scope of this chapter, but it will be occasionally
mentioned in relation to other issues.

Finally, we will discuss several practical aspects that must be considered when docking
is performed. In discussing these aspects, we will mainly focus on the docking program
HADDOCK, which was developed in our group; however, they are equally valid for other
docking programs.
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9.2 Flexibility

Initially, most protein–protein docking approaches have been developed based on rigid-
body docking algorithms, thus ignoring any conformational change that might occur
upon binding. Typically, a large number of possible solutions are considered (search-
ing/sampling), which are subsequently ranked according to quantitative criteria (scoring).
The most widely used sampling approach is the Fast Fourier Transform (FFT) algorithm,7

where the protein is represented as one or more values at every point on a discrete grid.
Typically, one protein is rotated, while the other is kept fixed. Docking is then performed
by overlaying the grids of the two proteins using FFT, calculating all possible overlays in a
single step. The values of the grid are chosen such that overlap (interpenetration) between
surface points is favored, while overlap between the protein interiors is penalized.

Other methods to perform a rigid-body docking search are rigid-body energy
minimization8 and rigid-body Monte Carlo minimization.9, 10 Unlike FFT, representing
the proteins as grids is optional, and both rotations and translations can be searched simul-
taneously, although neither of them in a single step.

The rigid-body approximation does not work well for every complex. Although for
targets that show only small backbone conformational changes, excellent predictions can be
obtained, targets for which conformational changes take place upon binding are extremely
challenging (even for backbone RMSD changes as small as 2 A

◦
!).

Therefore, the realization of the importance of flexibility in docking is leading to new
developments. Flexibility can be introduced at several levels: implicitly, by smoothing
the protein surfaces or allowing some degree of interpenetration (soft docking) or by
performing multiple docking runs from various conformations (cross or ensemble docking);
or explicitly, by allowing side-chain and/or backbone flexibility, either during docking or
in a refinement step. Finally, it is possible to perform multi-body or incremental rigid-
body docking, cutting the protein at flexible hinge regions, which must be determined
a priori.

9.2.1 Implicit Flexibility

In grid representations, side-chain (and small backbone) rearrangements can be modeled
by thickening the surface layer for which interpenetration is scored favorably,11 or by
trimming long side-chains.12 Snapshots of a Molecular Dynamics (MD) simulation have
been used to build grids for docking in which only grid points consistently occupied by
all conformations are considered, thus excluding mobile regions from the construction
of the grid.13 One of the drawbacks of this kind of flexibility treatment is that severe
steric clashes are frequently introduced when returning to full-atom representations, so
that further optimization is required.

Alternatively, implicit treatment of flexibility can be achieved by performing rigid-body
docking of ensembles of conformations. In such cases, the docking process is repeated from
various combinations of starting structures (ensemble or cross docking). The ensembles can
be taken from NMR structures, or generated by MD simulations or any other conformational
sampling method. These ensembles can span various degrees of flexibility, from small,
mainly side-chain rearrangements to large-scale global backbone motions.
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Even conformational sampling limited to side-chain rearrangements can be benefi-
cial for improving docking predictions. It has been shown that residues important for
molecular recognition will usually sample bound conformations during MD simulations
of the unbound protein.14, 15 Similarly, exposed side-chains in an ensemble of NMR struc-
tures usually sample various conformations; their use in data-driven docking was shown to
increase both accuracy and hit rate.16 Two rather systematic studies have been published
that investigate the use of MD structures in ensemble docking.17, 18 Both studies indicate
that ensemble docking improves the performance in terms of an increased number of (near)
native solutions, but makes it more difficult to distinguish correct from wrong solutions.

9.2.2 Explicit Flexibility

While rigid body docking has only six degrees of freedom (three rotations and three trans-
lation), this number increases explosively if flexibility is explicitly considered. Therefore,
the amount of flexibility is necessarily restricted. In most docking approaches, flexibility
(often in the form of a short energy minimization) aims not at improving the structure
towards the bound form, but rather at removing clashes and improving the scoring.19 Flex-
ibility can be explicitly introduced in the docking process. For example, ATTRACT20, 21

uses a reduced protein representation together with multiple side-chain copies: switching
between rotamers is performed at various stages during docking and the best conformation
is selected for the next few subsequent EM steps. HADDOCK8 allows explicit flexibility
of both side-chains and backbone during the MD simulated annealing refinement stage.
For the successful predictions obtained with HADDOCK, explicit inclusion of backbone
and side-chain flexibility both increased the quality of the solutions and improved the scor-
ing of the resulting complexes.6, 22 However, the quality increase was mostly caused by
improvements in the fraction of native contacts and not that much by improved backbone
conformations: on average, the backbone got closer to the bound form, but in some cases
it moved away.

In addition, several promising approaches have been reported that allow the sampling of
large conformational changes. Normal mode analysis methods use a graph representation
of proteins to predict large-scale motions, potentially including motions that lead to the
transition from the unbound and to the bound conformation (23 and references therein).
Motions along principal components are treated as additional degrees of freedom in
ATTRACT, allowing the structures to deform along soft harmonic modes to facilitate
the binding process.21, 24 Normal modes have also been applied to the optimization of com-
plexes against electron density maps25, 26 and the refinement of protein–DNA models.27

Such approaches should lead to improved docking results, provided that the identified
modes are relevant to the binding process; this is again related to our ability to predict
motions.

9.2.3 Multiple Docking

Large loop rearrangements are also difficult to model and can thus hinder docking, even
when some degree of backbone flexibility is introduced. A mean-field approach has been
proposed to deal with this problem where multiple loop conformations are considered
simultaneously.28, 29 Even more problematic is the case of protein sub-domains separated
by a flexible hinge or linker. In this case, very large conformational changes can occur.
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FlexDock30 solves this problem by dissecting the protein into sub-domains: once hinge
regions have been identified, a fast two-body rigid docking is performed with the
various combinations of sub-domains. The resulting fragments are then assembled using
a graph theory algorithm. This approach successfully modeled the very large conforma-
tional change that occurs upon the binding of calmodulin to a target peptide. However,
this approach requires the a priori knowledge of hinge regions whose prediction is far
from trivial. Recently, the same group was involved in the development of HingeProt, an
algorithm to predict such regions.23

9.2.4 Flexibility in Protein-DNA Docking

Flexibility is an inherent property of DNA. DNA often exhibits large conformational
changes upon binding to a protein, which can significantly alter the interaction interface
compared to the initial encounter complex. This dynamic behavior is most pronounced
when describing DNA global flexibility in terms of bending and twisting. The global
conformational changes arises, however, from a series of local changes at the level of
individual base pairs and of the sugar phosphate backbone. It is a major challenge in
protein-DNA docking to account for these local and global conformational changes during
the docking while maintaining a relevant (B-)DNA conformation.

Various methods have attempted to incorporate DNA flexibility into docking in different
ways. Implicit flexibility has been used in various forms, ranging from the use of pre-bent
and twisted DNA starting models in rigid body docking to interface overlap in soft-body
docking or a combination of both.31 The use of different starting models in a rigid-
body docking step allows to quickly sample large fractions of the conformational space
but is unable to predict the specific base pair conformations that give rise to the global
deformation. In contrast, the use of soft-body DNA models is able to provide insight into
local conformational changes that improve complex formation. But, as a drawback, this
results in severe steric clashes.

A few approaches incorporate flexibility during the docking using molecular dynam-
ics. Tzou et al.32 modelled the CAP-DNA and Rep-DNA systems from the repressors in
their bound conformation and from canonical B-DNA in a series of molecular mechanics
and dynamics simulations using distance restraints derived from a statistical analysis of
homologous protein-DNA complexes. Knegtel et al. developed MONTY,33 which uses a
Monte Carlo search allowing for flexibility in both protein and DNA, and can account
for experimentally determined contacts to guide the docking. The initial position of the
protein in the predicted complex should, however, not deviate too much from that of
the actual complex; even small deviations can result in DNA curling around the protein.
HADDOCK uses an information driven approach to circumvent the search through se-
quence space and drive the docking; when starting from canonical B-DNA the method
is able to predict the global conformation that the DNA tends to adopt in the complex.
This information is subsequently used to model pre-bent and twisted DNA starting struc-
tures used as input for a second refinement docking round. As such the method is suc-
cessful in modelling large conformational changes without the risk of loosing helical
structure (see Figure 9.2). In addition, the second refinement docking round allows the
sampling of local base pair conformations, thereby improving the convergence of the
results.
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Figure 9.2 Best solutions of unbound flexible docking with HADDOCK starting from a li-
brary of pre-bent and twisted DNA structures. The HADDOCK model is shown in light gray,
superimposed onto the experimentally solved structure in dark gray: Cro-O1R (a), Lac-O1 (b)
and Arc-operator (c). Adapted from van Dijk et al.34 with permission from Oxford University
Press, Oxford, United Kingdom.

All of the docking procedures discussed above are able to make predictions that were
representative of the published complexes in terms of spatial disposition. Only a few
methods allow for flexibility of the DNA and protein side-chains during the docking.
They, however, require extensive knowledge to position the two components relative to
each other32 and problems were encountered in the absence of such information.33 The
combination of information-driven docking, molecular dynamics and DNA libraries in
HADDOCK34 has solved some of these problems but does require convergence of the
global DNA conformation in order to generate custom DNA libraries for the second
docking step.

9.3 The Use of Data in Docking

Ab initio docking programs generate docking models based on the coordinates of the (free)
proteins, disregarding any further knowledge of the system under study. However, inclusion
of such knowledge can be very beneficial for the docking progress by eliminating a large
number of possible outcomes. This has been an important factor for success in the CAPRI
experiment.35

A large number of experimental techniques can give useful information to assist the
docking process (for a detailed review, see van Dijk et al.5) such as, for example, muta-
genesis data, NMR chemical shift perturbation (CSP) data, NMR residual polar couplings
(RDC) and NMR or mass spectrometry-derived hydrogen/deuterium (H/D) exchange data.
Many docking methods have been used in combination with experimental data to filter
the generated solutions. For example, the FFT programs Hex and GRAMM have been
used with mutagenesis data,36–39 DOT has been used with H/D exchange data,40, 41 and
FTDOCK has been used with NMR CSP and RDC data.42, 43 In addition, in recent years
a large number of methods have been developed that aim at predicting protein-protein
interface regions, exploiting for example sequence conservation (for a review, see Zhou
and Qin,44 De Vries and Bonvin,45 and Chapter 7 of this book by Kinoshita et al.). Several
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of these prediction methods have also been used in combination with docking, for example
WHISCY,46 ProMate47 and cons-PPISP.48

Next to filtering, experimental and/or predicted data can also be used directly in the sam-
pling stage of docking. Compared to simple filtering of solutions, the advantage is then that
‘correct’ or ‘near-correct’ configurations should be enriched, provided of course that the in-
formation is correct. This becomes especially important when the number of configurations
is too large to be adequately sampled, as is often the case when flexibility is introduced.

In several FFT methods, information can be used a priori, for example by limiting the
rotational search to certain angles, or by up-weighting49–51 or blocking52 given residues in
the generation of the grid. However, there are very few methods in which data are used to
directly drive the docking. Among the methods that have participated in CAPRI there is
only one, HADDOCK.8, 22 Most experimental and/or predicted data are highly ambiguous
and only provide information about putative interface residues, but not about the specific
contacts made. To reflect this, such data are incorporated into HADDOCK in the form of
ambiguous interaction restraints (AIRs). Prior to docking, the user must supply for every
molecule a list of active residues (residues that are known to make contact within the
complex) and passive residues (residues that potentially make contact). For every active
residue, a single AIR restraint is defined between that residue and all active and passive
residues on the partner. An explicit AIR energy term is introduced into the calculation
through a harmonic potential (becoming linear after a given cutoff distance) that depends
on an effective distance. The latter is calculated through the following formula:

def f
i AB =


Natoms∑

mi A=1

Nres B∑
k=1

Natoms∑
nk B=1

1

d6
mi Ank B




− 1
6

(9.1)

where Natoms indicates all atoms of a given residue and Nres the sum of active and passive
residues for a given protein. An upper limit to the effective distance (typically 2 A

◦
) is

enforced by HADDOCK. If this limit is exceeded, the AIR energy becomes positive and
the active residue experiences an attractive force towards the active and passive residues
of the partner molecule. If not, the restraint is satisfied and the AIR energy and attractive
force are zero for that restraint. Since many atom-atom distances inversely contribute to
the effective distance, an AIR restraint is typically satisfied if a residue comes within
4–5 A

◦
of any active or passive residue of the partner molecule.

In this way (putative) interface residues are enforced to make contact with (a surface
region on) the partner protein, but not with any specific partner residue. These ambiguous
restraints drive the docking in the same way that nuclear Overhauser effect (NOE) distance
restraints drive the calculation of an NMR structure. In fact, if NOEs have been measured
they can be directly included. HADDOCK can deal with a large variety of experimental
data, including among others mutagenesis, NMR chemical shift perturbation data, residual
dipolar coupling, H/D exchange data, cross-linking and NMR relaxation data, but also
interface prediction data.

9.3.1 The Use of Data in Protein-DNA Docking

Proteins can form highly specific complexes with DNA, often based on subtle properties
emerging from the base sequence. This specificity can, however, not be described in terms



P1: OTA

chap09 JWBK331-Bujnicki November 13, 2008 22:29 Printer: Yet to come

218 The Prediction of Macromolecular Complexes by Docking

of a simple recognition code.53 DNA recognition in an initial encounter complex is not
only specific in terms of residue-to-base interactions but also affected by surrounding
base pairs that can facilitate conformational changes leading to a strengthening of the
interaction. This sequence-to-shape interplay is poorly reflected in the geometrical and
physico-chemical properties along the native, highly charged DNA structure.54 This makes
it particularly difficult for an ab initio docking method to resolve a unique conformation,
as both sequence and conformational space need to be sampled at once. The amount of
possible combinations in this scenario quickly explodes.

Most of the current protein-DNA docking methods however are not ab initio. They either
focus on the sequence aspect of recognition or use information driven approaches to bias
the search through sequence and/or conformation space. Methods that focus on sequence
often follow a threading approach in which the base sequence of a fixed canonical DNA
structure is changed.55 Information driven approaches use biochemical and biophysical
information such as conservation data and data from DNA footprinting and mutagenesis
experiments to bias or completely circumvent the search through sequence space.56–58

Sequences or DNA conformations that favor interactions in both approaches are resolved
based on energy scoring functions, knowledge based filters or amino acid to base pairing
propensities. Most of these methods still rely on a rigid body docking approach to facilitate
complex formation and, as such, are often only successful in predicting complexes in which
the DNA does not change conformation much. Flexibility can however not be ignored since
it is an inherent property of DNA. Most efficient protein-DNA docking methods therefore
incorporate some sort of flexibility in the docking process.

9.4 State-of-the-art Methodology in Macromolecular Docking

Table 9.1 shows an overview of state-of-the-art docking programs and their characteristics.
Table 9.2 shows the top-scoring docking predictors for recent CAPRI targets. While there
is a wide diversity in underlying methodology, they all have several common aspects:
all methods use an initial rigid-body stage, followed by a scoring step. ZDOCK,19, 59

MolFit,7 DOT41 and PIPER60, 61 are all FFT algorithms, while in HADDOCK8, 22 the
rigid-body search is performed by data-driven energy minimization. RosettaDock10 and
ICM-DISCO9 use a Monte Carlo minimization in their initial stage. Also, most methods
account for flexibility at some stage. In ICM-DISCO, docking against a soft grid is followed
by Monte Carlo (MC) optimization of the ligand side-chains.9 This procedure is quite
successful in reproducing induced changes in surface side-chains as long as no large
backbone rearrangements take place. In RosettaDock,10 after the initial low-resolution
search, the side-chains are repacked and further optimized in an MC search that includes
rigid-body displacements. Recent developments include the sampling of off-rotamer side-
chain conformations62 and a new solvated rotamer library. Rather impressive results on the
accuracy of side-chain positioning were obtained for previous CAPRI targets that exhibit
only minor backbone conformational changes upon binding.63, 64 As shown in Figure 9.3,
HADDOCK takes into account backbone as well as side-chain flexibility. This is achieved
through the use of Molecular Dynamics (MD) simulations: first, a semi-flexible simulated
annealing of the interface, followed by a refinement in explicit solvent. In CAPRI, MD
simulations were used as well by the teams of Smith65 and Zhou.44
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Table 9.2 Docking methods that scored at least four stars among the most recent CAPRI
targets (round 6–13). For the criteria for one-, two- and three-star predictions, see the main
text. 0: zero-star (incorrect) prediction. – : predictor did not participate for this target

Predictor T20 T21 T24 T25a T26 T27 T28 T29a Total

ZDOCK19, 59 0 * * ** * ** 0 * 6/2/0
HADDOCK8, 22 0 ** 0 * ** * 0 ** 5/3/0
Smith65b 0 0 0 ** ** * 0 * 4/2/0
MolFit7 0 0 0 *** * * 0 * 4/1/1
DOT41 – ** 0 0 0 * 0 ** 3/2/0
PIPER60, 61 0 * 0 ** ** 0 0 0 3/2/0
RosettaDock10, 89c * 0 0 0 ** * 0 0 3/1/0
ICM-DISCO9 – – * ** * – – – 3/1/0
Zhou44d – – 0 0 – ** 0 ** 2/2/0
pyDock86, 87e – – 0 ** 0 0 0 ** 2/2/0
RosettaDock10, 88f 0 ** 0 0 ** 0 0 0 2/2/0

a targets 25 and 29 are bound-unbound docking, not a blind prediction.
bcombination of methods: MolFit and FTDOCK43 for sampling, steered MD and RosettaDock for refinement.
cBaker team.
dcombination of methods: ZDOCK, ClusPro82, 83 (ZDOCK+DOT) and HADDOCK for sampling, MD for refinement.
ecombination of methods: ZDOCK and FTDOCK for sampling, followed by a scoring step.
f Gray team

Figure 9.3 Overview of the HADDOCK docking protocol. Typically, in the order of 10,000
solutions are sampled at the rigid body docking stage with only 1000 saved to disk. The top
20% is then subjected to the semi-flexible refinement and final refinement in explicit solvent.
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For CAPRI targets with large conformational changes, an incremental, multi-body,
multistage docking strategy was successfully applied using MolFit.66 In target 20, it was
clear that a loop must undergo significant conformational changes. The only acceptable
solution was obtained using RosettaDock, by simply ignoring the loop during docking
and rebuilding it in the context of the complex in a loop modeling step. Success was also
achieved (after the submission) using HADDOCK by docking the loop, the rest of the
protein and its partner as three separate bodies.3, 22

Experimental data are also widely used to assist in docking. ZDOCK44 offers the pos-
sibility to block certain regions, whereas in HADDOCK experimental data directly drives
the docking. Both options were used by the team of Zhou,44 using a combination of ex-
perimental data and interface predictions. In addition, MolFit offers the possibility to up
weight putative interface residues in the FFT grid. pyDOCK and Smith’s team also use ex-
perimental data along with physicochemical properties at the scoring stage. Since CAPRI
is not fully automated and human intervention is allowed in selecting the ten submitted
models, experimental data play an important role in the visual inspection and selection of
the solutions, as many groups have stated.

In terms of performance, ZDOCK and HADDOCK are the most successful methods,
with ZDOCK achieving the largest number of successful predictions (6/8 targets) and
HADDOCK achieving the most two-star predictions (3/8 targets). Good predictions were
also made by predictor teams that do not rely on one particular method, but instead select
and refine solutions generated by different methods (Smith, Zhou and pyDOCK).

The only three-star prediction was scored by MolFit for target 25, the easiest of the two
bound-unbound targets. Three-star docking predictions have not yet been submitted for
any unbound CAPRI target. However, RosettaDock’s two-star prediction for target 26 was
nearly of three-star quality; also, three-star docking solutions were generated for target 27
by HADDOCK in the initial stage. For that target, there is some disagreement between the
crystal structure and mutagenesis data from literature, which why the three-star predictions
were not scored at the top.22 The above observations indicate that three-star predictions for
unbound docking are getting within reach.

In conclusion, accurate docking solutions are now routinely obtained for ‘easy’ targets,
i.e. proteins that do not undergo large conformational changes, or for which good experi-
mental data are available. Methods that take explicit flexibility into account and use some
experimental (or predicted) data tend to outperform methods that do not; highly accurate
predictions (three-star according to the CAPRI criteria) are getting within reach for blind,
unbound predictions. However, the prediction of large backbone conformational changes
remains a formidable challenge. Although methods to deal with such large changes have
been and are being developed, success is not yet guaranteed.

9.5 Performance of Docking Servers

Table 9.3 shows the performance of various docking servers in recent rounds of CAPRI.
Although the easiest target, target 25 (bound-unbound), was well predicted, the success of
the servers has been very limited for other targets. In previous CAPRI rounds, the ClusPro
server scored 2 one-star, 1 two-star and even a three-star prediction among the nine targets,
however, all of those successes were bound-unbound docking.2, 67 This suggests that while
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Table 9.3 Docking servers that scored at least one star among the most recent CAPRI
targets (round 6–13). For the criteria for one-, two- and three-star predictions, see the main
text. 0: zero-star (incorrect) prediction. – : server did not participate for this target

Server T20 T21 T24 T25a T26 T27 T28 T29a Total

PatchDock85 – – 0 ** * – – 0 2/1/0
ClusPro82, 83 0 0 0 * 0 * 0 0 2/0/0
GRAMM-X84 – 0 0 ** – 0 0 0 1/1/0
SKE-DOCK90 – 0 0 ** 0 0 0 0 1/1/0
SmoothDock91 0 0 0 ** 0 0 0 0 1/1/0

a targets 25 and 29 are bound-unbound docking, not a blind prediction.

docking can be fully automated in some easy cases, more improvement is needed before
reliable results can be obtained for the average unbound docking target without human
supervision.

9.6 Practical Aspects of Docking

There are many important practical aspects that need to be considered in the docking of
macromolecular complexes. This begins already at the preparation of a docking run. While
almost all docking programs accept the input structures in PDB format, this format is very
loose, and various programs may enforce additional rules. For example, in HADDOCK,
it is required that every PDB ends with an END statement, and that the segid (column
73–76) is empty. Non-protein atoms such as ions are allowed, but their nomenclature must
be compatible to the definitions in the provided topologies; further their electric charge
state should be specified.

Also, the input structures should be of sufficient quality. Missing atoms, clashes, im-
probable conformations and similar irregularities may be tolerated to some extent, but must
otherwise be fixed in the unbound starting structure prior to docking (recommended). In
case there is no unbound structure of the protein available, the user must instead generate a
homology model of sufficiently high quality. Some energies and scores utilized by docking
programs, for example shape complementarity and van der Waals energy, are highly de-
pendent on the quality of the structure. Structure validation programs such as ProCheck,68

WHATIF69 and MolProbity70 can assess the quality of structures and homology models.
The nature of the system under study plays an important role as well. Most docking

methods specialize in protein-protein complexes, but a few programs offer support for
protein-DNA complexes.34, 38, 41, 43 Only one program, HADDOCK, has been applied to a
wide variety of biomolecular complexes: protein-protein,71, 72 protein-peptide,73, 74 protein-
nucleic acid,75, 76 protein-oligosaccharide77 and protein-small ligand78, 79 complexes (see
also http://www.nmr.chem.uu.nl/haddock/publications.html for a list of applications). Each
type of complex has characteristic practical aspects that must be considered. In particular,
small ligands (and oligosaccharides) are difficult for docking methods that use a full-atom
representation. Appropriate force field parameters, such as atom partial charges and allowed
bond angle parameters, are well defined for proteins, but they must be approximated for



P1: OTA

chap09 JWBK331-Bujnicki November 13, 2008 22:29 Printer: Yet to come

Practical Aspects of Docking 223

Figure 9.4 Flowchart of macromolecular docking.

small ligands. Moreover, small ligands typically enjoy considerable conformational free-
dom, up to the point that their conformation may be completely unknown. Fortunately, there
are several programs and web servers for small ligands that can provide information and pa-
rameters for docking such as PRODRG,80 HIC-Up81 and CORINA (http://www.molecular-
networks.com/online demos/corina demo.html). These can also be helpful in case of small
molecules that are part of proteins, such as co-factors and post-translationally modified
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amino acids. These molecules often play a crucial role in the interaction energetics and,
therefore, must be modeled as accurately as possible. In many cases (ions, ATP, phosphory-
lated residues), a net charge is carried by these molecules. In the large majority of docking
programs, electrostatics is an important factor in the sampling and/or scoring of docking
solutions. Therefore, partial charges must be accurately distributed among the atoms in
order to properly compute electrostatic energies.

The problem of proper electrostatics is by no means limited to small molecules. Neutral
histidines, for example, can be protonated at either the delta or epsilon nitrogen. A histidine
can also be positively charged and thus protonated at both nitrogens. Within HADDOCK,
histidines are treated as positively charged by default, but they can be specified as neutral
(delta- or epsilon-protonated) by the user. Again, this may have significant effects on
the electrostatic energies of docking solutions. The protonation state of histidines can be
estimated from the pH at which the starting structure was solved, and programs such as
WHATIF69 can estimate them from the protein hydrogen bonding network of the starting
structure.

A final important aspect of electrostatics is its implementation in the chosen force field,
in particular how the electrostatic energy declines with the distance between charges and
the screening effect of the medium. The latter can be approximated by varying the value of
the dielectric constant (or epsilon parameter): for example, for vacuum epsilon = 1, in the
interior of a protein epsilon = 2–3 and for water epsilon = 70–80. In some cases, epsilon
is made distance-dependent, resulting in a stronger screening of electrostatic interactions.
In HADDOCK, for protein-protein docking, epsilon is set to 10 for the vacuum part of the
protocol (a compromise between the interior of a protein and the screening effect of the
solvent) and to 1 for the final explicit solvent refinement. Other docking programs may
use different values, or use a different model for electrostatics altogether. Regardless of
the docking program, proper electrostatics should be given special attention in the case of
unusual systems, such as for example a transmembrane protein.

As discussed previously, many docking programs take into account flexibility of the
macromolecules that are being docked. This may require a considerable amount of input
from the user’s side. Docking programs may accept multiple starting structures, but they
must be generated by the user, using some of the techniques outlined previously. Ideally,
some of the starting conformation should be closer to the bound form than the initial
unbound structure, but this is notoriously difficult to achieve a priori to docking.

In case of explicit flexibility, additional guidance by the user may be required. For
example, HADDOCK consists of an initial rigid body minimization followed by a simulated
annealing phase and an explicit solvent refinement (Figure 9.3). Flexibility is introduced
in a stepwise manner during refinement: first only for side-chains, and later for both side-
chains and backbone of the interface residues; finally the entire system becomes flexible in
the final cooling phase of the explicit solvent refinement. The user may specify the semi-
flexible regions manually, but also choose to let HADDOCK determine them automatically
from an analysis of contacting residues. Fully flexible segments can also be defined: these
are treated as fully flexible during the entire simulated annealing phase; this might be
appropriate in cases where parts of a structure are disordered or unstructured, for flexible
loops, or when docking small flexible ligands or peptides onto a protein.

Experimental or predicted data used in docking must be treated carefully as well. Inter-
face prediction data and some experimental data such as H/D exchange data are very fuzzy,
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in the sense that not every identified residue may actually take part in the interaction. This
can be translated into a more liberal filtering scheme if data are used to filter the docking
results. In HADDOCK, where data are used to drive the docking, a percentage of the data
can be discarded at random for each docking trial.

Data need not to be limited to lists of interface residues. HADDOCK is a data-driven
docking method rooted in NMR structure determination. Therefore, it can deal with a wide
variety of restraints besides AIRs, such as classical NOEs but also symmetry restraints.
Also, flexibility in HADDOCK can be controlled through the use of restraints between
atoms within one protein. For example, this allows the user to impose secondary structure
restraints to prevent the unfolding of a fully flexible segment, or distance restraints to
prevent a co-factor to drift away. It also allows the use of HADDOCK for ab initio
structure calculations of complexes when classical NMR restraints are available to drive
the folding. It is further possible in HADDOCK to cut a protein into different pieces at
hinge points and to define peptide bond and angle restraints between the segments. The
various pieces are then docked simultaneously (multi-body docking), providing a natural
way of modeling large conformational changes that can take place upon binding. This is
different from the approach followed by FlexDock30 and MolFit,7 where the components
are docked incrementally and the solutions are filtered rather than restrained.

The result of a docking search is always a large number of possible complexes rather
than a single solution. The choice of the correct model is not trivial and is known as the
scoring problem. Docking programs may employ many different scores, filters and energies
in order to rank the solutions. Some of these, but usually not all of them, may have been
used to drive the docking as well. Although a discussion of the various scores is beyond the
scope of this chapter, it should be kept in mind that their relative usefulness depends on the
system under study. There is thus, at present, no general, universal scoring function. For
example, desolvation energy is an excellent score for homodimer complexes, in contrast,
in the case of enzyme-inhibitors, electrostatics play a more important role, and desolvation
energy is inappropriate in a membrane environment. Also, many docking programs allow
the use of experimental data or interface predictions to filter the docking solutions during
scoring; their caveats have been discussed above.

Finally, clustering of solutions is often applied to facilitate scoring. The size of a cluster
may even be used as a score by itself. In HADDOCK, clustering parameters (RMSD cutoff
and minimum cluster size) can be specified by the user, and scoring is done on a per-cluster
rather than per-solution basis. In addition, it is recommended to calculate cluster averages
on a similar number of solutions to avoid cluster size effects and allow easier comparison.

9.7 The Interpretation of Docking Results

After a docking run, a small number of solutions or clusters is typically selected and
presented to the user. How can one know which of these models, if any, is correct? One
way is to validate them against additional experimental data that were not used to derive the
docking models. This could for example data describing the shape of the complex, such as
electron microscopy or SAXS data, or mutagenesis data not use in the docking. Strikingly,
docking models can also be used to guide and predict the outcome of experiments. In the
original HADDOCK paper,8 the most favorable cluster contained a specific salt bridge.
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Mutating one of the residues to an opposite charge abolished the interaction, but mutating
and swapping the identity of both residues restored the interaction. Examples such as this,
as well as recent results in CAPRI, indicate that docking is becoming more and more
reliable, and can be complementary to experimental approaches in the unraveling of the
structural genome.
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10
Protein Function Prediction via

Analysis of Interactomes

Elena Nabieva and Mona Singh

10.1 Introduction

Genome sequencing efforts have resulted in an explosion of organisms whose entire protein
complements have been determined. Nevertheless, for many proteins, little is known beyond
their sequences, and for the typical proteome, between one-third and one-half of its proteins
remain uncharacterized. As a result, a major challenge in modern biology is to develop
methods for determining protein function at the genomic scale.

Computational methods to assign protein function have traditionally relied on identifying
sequence similarity to proteins of known function. In recent years, however, other compu-
tational methods for predicting protein function have been developed (review: 1). Many of
these non-homology based methods still utilize sequence information, but can predict that
two proteins share a function even when they have no sequence similarity. For example, in
gene fusion methods,2, 3 two proteins are believed to be related functionally if they appear
as parts of a single protein in some other organism. Phylogenetic profiles4, 5 predict pro-
teins to be functionally related if they have similar patterns of occurrences across multiple
genomes. Genomic context methods6, 7 predict functional coupling between proteins if
they tend to be contiguous in several genomes.

Increasingly, computational techniques for predicting protein function have analyzed
data resulting from new high-throughput technologies. While there is a fascinating array
of new functional genomics technologies that have enabled prediction of protein function,
in this chapter we examine a family of methods that are based on analyzing large-scale
protein–protein interaction data. Currently, several types of protein interactions have been

Prediction of Protein Structures, Functions, and Interactions   Edited by Janusz M. Bujnicki
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determined via high-throughput experimental technologies. These include interactions be-
tween proteins that interact physically, that participate in a synthetic lethal or epistatic
relationship, that are coexpressed, or where one phosphorylates or regulates another
(review: 8). Together, these interactions comprise the interactome and can be represented as
networks or graphs, where interactions are undirected in the case of symmetric interactions,
and directed otherwise.

Here, we focus primarily on predicting protein function via analysis of networks com-
prised of physical interactions. Most of these methods are based on the principle of guilt-
by-association, where proteins are annotated by transferring the functions of the proteins
with which they interact. The methods differ in whether they use local or global properties
of the interactome in annotating proteins, in which particular topological features of the
interactome they utilize, in whether they rely on first identifying tight clusters of proteins
within the interactome before transferring annotations, and in whether they use guilt-by-
association explicitly or employ some other similarity measure. While the focus of this
chapter is on protein–protein physical interaction networks, it is often straightforward to
apply the same methods to other types of networks. However, as the underlying topological
features of these networks may differ, the methods may perform quite differently on them.
We refer the reader to other reviews9, 10 for alternative viewpoints that additionally consider
function prediction methods that integrate physical interaction networks with network data
derived from other experimental sources.

10.2 Further Background

10.2.1 Physical Interaction Networks

Large-scale physical interaction networks for several organisms have been obtained via
two-hybrid experiments, where an interaction between a pair of proteins is determined via
transcriptional activation in yeast.11 An alternative high-throughput technology determines
interactions of proteins via affinity purification of the target protein followed by mass
spectrometry identification of the associated proteins (review: 12). These two types of
experiments are the most commonly used approaches for large-scale determination of
physical interactions and have uncovered tens of thousands of interactions (see Tables 10.1
and 10.2 for data resources). However, they do impose certain features on the data that may
be less than ideal. The yeast two-hybrid method may discover interactions that do not take
place under physiological conditions and may miss interactions that do. The pull-down
methods do not specify if the interactions inferred for a target protein are direct or are
instead mediated through other associated proteins. Moreover, as with all experiments,
especially high-throughput ones, a certain amount of noise is present in the results; this
amount may differ between different experiments and between subsets of interactions
found by the same experiment. To some extent, this noise can be handled computationally
by incorporating an assessment of interaction reliability into the computational approach
(see Section 10.3). It is worth noting as well that the interactomes determined to date are
incomplete, and that comparisons between existing data sets for the same organism reveal
only partial overlap; the latter is due both to noise in the data as well as different sets of
proteins under consideration.
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Table 10.1 General (multi-organism) interaction databases

BIND/BOND http://bond.unleashedinformatics.com/
BioGRID13 http://www.thebiogrid.org/
DIP14 http://dip.doe-mbi.ucla.edu/
IntAct15 http://www.ebi.ac.uk/intact/
STRING16 http://string.embl.de

10.2.2 Protein Function

Protein function is a broad concept that has different meanings depending on context.
In computational settings, protein function is typically described via terms from one of
several controlled vocabularies. Because of the differing degrees of specificity with which
protein function can be described, these controlled vocabularies are usually arranged as
hierarchies or directed acyclic graphs that relate the different terms to each other. The Gene
Ontology (GO)17 is the most prevalent of such controlled vocabulary systems (see also
Table 10.3). GO classifies protein function into three separate categories, each of which
consists of a set of terms that may be related to each other via is-a or part-of relations;
these relations can be represented as a directed acyclic graph. Protein function in the usual
sense is described by two of the categories, molecular function and biological process. The
molecular function of a protein describes its biochemical activity, whereas its biological
process specifies the role it plays in the cell, or the pathway in which it participates.
Additionally, GO has a cellular component category which describes the places where
the protein is found. These views of protein function are largely orthogonal: for example,
proteins with the same molecular function can play a role in different pathways, and a
pathway is built of proteins of various molecular functions. This distinction affects which
methods are the most applicable for computational prediction of protein function of each
type. Because molecular function corresponds to the intrinsic features of the protein (e.g.
its catalytic activity), it is often predicted based on sequence or structural similarity to
proteins of known function. Biological processes, on the other hand, are fundamentally
collaborative; therefore, it is natural to predict them based on a protein’s interaction partners.
In this chapter, when we refer to a protein’s function, we will typically mean its biological
process, though network analysis of interactomes can also be useful for predicting a

Table 10.2 Network visualization software

Osprey18 http://biodata.mshri.on.ca/osprey/ Software platform for visualization of
complex biological networks

Cytoscape19, 20 http://www.cytoscape.org/ Open source bioinformatics platform
for visualizing molecular interaction
networks and integrating them with
other state data

Pajek21 http://pajek.imfm.si/doku.php General software for large network
analysis

GraphViz22 http://www.graphviz.org/ Open source general graph
visualization software
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Table 10.3 Functional ontologies and pathways

The Gene Ontology17 http://geneontology.org/
MIPS Functional Catalogue23 http://mips.gsf.de/projects/funcat/
KEGG24 http://www.genome.jp/kegg/

protein’s cellular component; for example, several of the clustering methods reviewed here
focus as much on predicting membership within protein complexes (which are described
by cellular component annotations) as on predicting biological processes.

10.2.3 Mathematical Formulation

It is natural to represent the collection of protein physical interactions discovered for an
organism as an undirected graph or network, where the vertices represent proteins and the
edges connect vertices whose corresponding proteins interact. Each vertex is then labeled
with zero or more controlled vocabulary terms corresponding to the protein’s function(s).
The terms used as labels may furthermore participate in a relation described by a system like
the Gene Ontology. The function prediction problem then becomes the task of assigning
labels to all vertices in a network. This labeled graph representation makes the function
prediction problem amenable to the wealth of techniques developed in the graph theory
and network analysis communities. For example, the idea of guilt-by-association, which
is used by most approaches, turns the problem of function prediction into the problem
of identifying (possibly overlapping) regions in the network that participate in the same
biological process (i.e. should be assigned the same vertex label). Broadly speaking, most
of the methods used for the network-based functional annotation utilize and extend well-
understood concepts from graph theory, graphical models and/or clustering.

10.2.4 Notation

More formally, a protein–protein interaction network is represented as a graph G = (V, E),
where there is a vertex v ∈ V for each protein, and an edge (u, v) ∈ E between two
vertices u and v if the corresponding proteins interact. Since we are considering physical
interactions between proteins, these edges are undirected. Throughout the chapter, we
ignore self-interactions. Let N denote the number of proteins in the network. The network
can also be represented by its N × N adjacency matrix A, where Auv = 1 if (u, v) ∈ E and
0 otherwise. Let F be the set of possible protein functional annotations. Each protein may
be annotated with one or more annotations from F . That is, each vertex v ∈ V may have
a set of labels associated with it. The edges in the network may be weighted; typically the
weight wu,v on the edge between u and v reflects how confident we are of the interaction
between u and v. If each interaction given in the network is considered equally trustworthy,
the network may be considered unweighted or with unit-weighted edges.

Many approaches discussed below utilize the ‘neighborhood’ of a protein. Let Nr (u)
denote the neighborhood of protein u within radius r ; that is, Nr (u) is the set of proteins
where each protein has some path in the network to u that is made up of at most r edges.
Then N0(u) consists of protein u, N1(u) consists of protein u and all proteins that interact
with u, N2(u) consists of the proteins in N1(u) along with all proteins that interact with
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any of the proteins in N1(u), and so on. Note that the number of interactions of a protein u
is given by |N1(u)| − 1, since self-interactions are not considered.

10.3 Incorporating Interaction Reliability

All methods for predicting protein function based on interaction networks face the issue of
data quality, as it is well known that high-throughput physical interaction data are noisy,
and that different experimental data sets have varying reliability, even if they are based on
the same underlying technology.25–27 A common practice to address the issue of noise is
to include edge weights that are chosen to reflect the reliability of interactions. Here, we
review a simple scheme for assessing physical interaction reliability,28 that is essentially
the same as the ones used in several approaches for the more general problem of data
integration.29, 30

For each experimental source i (e.g. each high-throughput experiment may be considered
one source, and the collection of all small-scale experiments may be considered as a single
different source), let ri denote the probability that an interaction observed in this experiment
is a true physical interaction. Assuming that the observations and sources of error are
independent for each experimental source, one can estimate the probability of a physical
interaction between proteins u and v as:

1 − �i (1 − ri ), (10.1)

where the product is taken over all experiments i which observe an interaction between
u and v. This estimate can then be used as the weight wu,v of the edge between u and
v. If ri is chosen to be identical for all experimental sources, this approach simply gives
higher reliability to physical interactions that have been observed multiple times. A more
meaningful approach is to estimate ri for each experimental source i by, for example,
computing the fraction of interactions coming from that source that connect proteins with a
known shared function. It has been shown that a wide range of network analysis algorithms
perform better in predicting protein function when utilizing this scheme for assessing
interaction reliability than when considering all interactions as equally likely.28, 31 There
are other alternatives for estimating data set reliability. For example, it is common for
high-throughput experimental publications to report, along with data, some measure of
reliability for each reported interaction; this measure may be as simple as the number of
times an interaction has been observed or may be based on more sophisticated schemes.32

Regardless of the specific method used to assess the reliability of an interaction, the
importance of treating different data sources separately has been demonstrated.33

For well-studied organisms, the reliability of a physical interaction may also be esti-
mated utilizing data integration schemes that attempt to combine many different types of
data (e.g. expression, localization and physical and genetic interaction) in order to func-
tionally link proteins.30, 34–37 Each link is associated with a weight that represents the
probability, or some other confidence measure, that the two corresponding proteins are
functionally related. Physical interaction reliabilities may be justifiably estimated using
functional linkage scores since a higher functional similarity between two proteins sug-
gests that the observed interaction is more likely to be true. More generally, weighted
networks derived via data integration techniques can themselves be used for protein
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function prediction. Note, however, that though the problems are closely related, pre-
dicting functional linkages is not the same as predicting the function of a protein, as a
protein can be linked with varying levels of confidence to several proteins with multiple
biological process annotations; some method or rule, such as one of those reviewed here,
is still necessary to decide which annotations are transferred.

10.4 Algorithms

A wide range of methods have been developed for analysing protein–protein interaction
networks in order to predict protein function. In the discussion below, we review some
of these and categorize them based upon their underlying algorithmic ideas as well as
upon the extent to which they utilize network structure (see also Tables 10.4 and 10.5 and
Figure 10.3).

10.4.1 Neighborhood Approaches

The assumption of guilt-by-association naturally gives rise to a prediction method based
on majority vote that assigns to each protein the biological process that is most frequent
among its direct interactions.38 In this case, the score for assigning to a protein u a particular
annotation a could be the number of proteins that u interacts with that are annotated with
a; alternatively, the score may be computed as the fraction of u’s interactions that have
annotation a. In the case of weighted interaction networks, a weighted sum can be used
instead. This majority or neighborhood-counting method is limited in that it only uses local
neighborhood information and takes no advantage of more global properties of the network;
it also has limited efficiency for poorly annotated proteomes. Subsequent graph-theoretic
approaches have attempted to generalize this principle to consider linkages beyond the
immediate neighbors in the interaction graph, both to provide a systematic framework
for analyzing the entire interactome as well as to make predictions for proteins with no
annotated interaction partners.

A simple way to extend the majority approach is to look at all proteins within a neigh-
borhood of specified radius and use the most over-represented functional annotation39 as
the prediction for the protein of interest. That is, for each protein u and a fixed radius r , this
neighborhood approach considers all proteins in Nr (u) and then for each function, com-
putes a score based on the χ2 test. In particular, the score is computed as ( f −e)2

e , where f
is the number of proteins within the neighborhood having the function under consideration
and e is the number of proteins expected to have that function within the neighborhood,
given the frequency of the function in the entire network. The function with the highest
χ2 score is assigned to the protein. With radius one, this approach is similar to the simpler
majority approach; note, however, that if two functions annotate the same number of a
protein’s direct neighbors, the neighborhood approach favors the one that annotates fewer
proteins in the entire interactome. While this approach moves beyond direct neighbors,
it does not consider the network topology within the local neighborhood. For example,
Figure 10.1 shows an interaction network where proteins u and v have the same count for
each annotation within radius two; thus the neighborhood approach treats these proteins
equivalently when considering a radius of two, despite the fact that the evidence for protein
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Table 10.4 Summary of methods for predicting protein function via network analysis

Neighborhood
approaches

Majority: consider how often a function is seen as annotation of a
proteins’ immediate interactors38

Neighborhood: consider neighborhood of radius 1, 2, or 3 and
compute over-representation of a function in that neighborhood,
as judged by the χ2 test39

Weighted neighborhood: consider neighborhood of radius 2, and
assign function based on weighted paths from the target protein
to neighborhood proteins31

Cut-based Multiway cut: consider all functions simultaneously40 (NP-hard).
Solve approximately via Monte Carlo approach40 or exactly via
ILP28

Mincut: consider one function at a time.41 Solve approximately via
heuristic41 or exactly via flow42

Flow-based Assign functions via simulation of ‘functional flow’ from annotated
nodes28

Markov network Use pairwise potential over interacting proteins43 or assume that
the number of neighbors of a protein that have a particular
function is binomially distributed according to whether the
protein has the function in question or not.44 One function is
modeled at a time

Local graph clustering Find high-density subgraphs of specified size via Monte Carlo
methods45

Starting from a locally dense node as seed, greedily add vertices
according to their local neighborhood density (k-core clustering
coefficient),46 or according to their connectedness to the cluster
while maintaining cluster density and vertex cluster property
above a cutoff47

Spectral analysis: build clusters consisting of nodes corresponding
to the larger components of eigenvectors for positive eigenvalues
of adjacency matrix48

Seeded module
discovery

Add proteins to cluster that have sufficiently reliable paths to any
seed protein49

Add proteins to cluster that are grouped together with the seed
proteins in sufficiently many random networks50

Network-based
hierarchical
clustering

Apply Girvan-Newman (GN) algorithm, building a hierarchical
clustering by removing edges with highest edge-betweenness;51

extend the GN algorithm to weighted graphs and modify to
consider non-redundant paths;52 extend the GN algorithm to
additionally consider local measure (edge commonality);53

perform agglomerative clustering in the reverse order of the GN
edge removal54

Distance-based
hierarchical
clustering

Cluster proteins according to the overlap between their common
interactors using hypergeometric distribution;55 or
Czekanowski-Dice distance56

Cluster proteins according to a distance based on their shortest
path distance and using randomization to break ties57

Cluster proteins according to the similarity of their all-pairs
shortest-path profiles;58 combine this global measure with local
measure based on direct interactors59

(continued overleaf )
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Table 10.4 (continued)

Other graph clustering Starting with a random initial clustering, apply moves to improve
the clustering cost, which favors few missing edges within
clusters and few present edges between clusters60

Cluster proteins that belong to a path of adjacent k-cliques61

Stochastic-flow clustering: alternate random-walk steps with steps
that amplify the inter-cluster distance.62 Has been applied to line
graph transformation of network66

Network alignments Identify conserved pathways64 and complexes65 by network
alignment; use models of interactome evolution;66 permit
arbitrary multiple-species network alignments67

Supervised learning Train SVM utilizing an appropriate kernel that captures the distance
between two proteins in the network. Linear, diffusion, and
locally-constrained diffusion kernels have been applied68, 69

u having the annotation depicted by the color black is much stronger than it is for protein v.
Perhaps because the method completely ignores network topology within neighborhoods,
its biological process predictions are best when considering neighborhoods of radius one.39

Moreover, even the radius-one predictions perform worse than majority vote,28 suggesting
that the decision to penalize more frequent candidate functions may not be optimal; in
fact, some of the methods we consider later in the chapter, such as those based on Markov
network techniques, use a function’s a priori frequency in the opposite way. A recent
extension of the neighborhood approach attempts to include proteins at radius two while
additionally utilizing some information about network topology by assigning weights to
each protein in the neighborhood by favoring the number of shared interactors it has with
the protein being annotated, and then scoring each function based on its weighted frequency
in the neighborhood.31

10.4.2 Graph Cuts

One systematic approach to consider the entire network and its annotations in a way that
uses information about network connectivity is to utilize the concept of graph cuts. A

Table 10.5 Available websites and software for discussed methods

MRF44 http://genomics10.bu.edu/netmark/
MCODE46 http://cbio.mskcc.org/˜bader/software/mcode/
Complexpander50 http://llama.med.harvard.edu/cgi/Complexpander/Complexpander.pl
Cfinder61 http://www.cfinder.org/
MCL62 http://micans.org/mcl/
PRODISTIN56 http://crfb.univ-mrs.fr/webdistin/
UVCLUSTER57 http://www.uv.es/genomica/UVCLUSTER/
PathBlast64, 65 http://www.pathblast.org/
MaWish66 http://www.cs.purdue.edu/homes/koyuturk/mawish/
Graemlin67 http://graemlin.stanford.edu/
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vu

Figure 10.1 A protein interaction graph annotated with two functions, depicted using black
and grey. White nodes correspond to proteins that do not have biological process annotations.
When annotating proteins u and v, a neighborhood approach39 with radius two would make
the same prediction, even though the evidence in favor of predicting the function depicted by
black is much stronger for protein u than for protein v, and vice versa for the function depicted
by grey.

k-cut is defined as a partition of the vertices of a graph into k sets, and the cost of the
cut is sum of the weights of the edges between vertices in different sets. This framework
provides a natural application of the guilt-by-association assumption at the full-network
scale, as the cut problem can be formulated so as to annotate proteins in a way that
minimizes the weighted number of the edges that violate this assumption (i.e. connect
proteins having different function). Several cut-based methods for function prediction have
been developed;28, 40, 41 they can either consider functions simultaneously28, 40 or just one
at a time.41

If all functions are considered at the same time, the function prediction problem is a
generalization of the computationally difficult minimum multiway k-cut problem,70 where
the goal is to partition a graph in such a way that each of the k terminal nodes belongs
to a different subset of the partition and such that the weighted number of edges that are
‘cut’ in the process is minimized. In the more general version of the multiway-cut problem
relevant to the protein functional annotation problem, the goal is to assign a function to all
unannotated nodes so as to minimize the sum of the weights of the edges joining nodes that
have no (assigned or previously known) function in common (i.e. these edges define the
cuts). Formally, the problem in the case of function prediction can be stated as minimizing

−
∑
u,v

Juvδ(σu, σv) −
∑

u

hu(σu), (10.2)

Figure 10.2 A protein interaction graph with two annotated functions, represented as black
and grey nodes. White nodes do not have biological process annotations. There are four ways
to annotate proteins so that only one edge is ‘cut’. However, the second protein from the left
is more likely to have the function depicted by the color black than the second protein from
the right. A single cut of the graph does not take into account such distance effects.
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Figure 10.3 Protein function prediction via network analysis. Experimentally determined
interactions (a) are combined into an interaction network, and proteins are labeled with their
functional annotations (b), when known. The problem then becomes assigning function to
unnannotated proteins. A range of methods have been developed which vary in the extent to
which they exploit local or global network features. Local methods (c) only annotate proteins
that are interacting with other proteins with known annotations; this may be generalized to
include larger neighborhoods as well. Global methods (d) utilize the entire network structure
to perform function annotation; cut, flow, and Markov random field methods typify this class of
approaches. Module-based methods (e) perform functional annotation by first finding modules
in the network and then typically finding enriched functions within modules (f).
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where σu is functional assignment to node u, δ(x, y) = 1 if x = y and 0 otherwise, Juv is the
adjacency matrix for unlabeled vertices, and hu(σu) is the number of classified neighbors
of vertex u labeled with σu .40 For the weighted version, Juv and hu can be easily modified
to reflect edge weights.

In the case where one function is considered at a time, each protein that is known to have
that function is labeled as a ‘positive’ and each protein that is known to have some function
but not the one being considered is labeled as a ‘negative’. The optimization problem in
that case can be stated as minimizing

−
∑

u

∑
v �=u

wu,vsusv, (10.3)

where wu,v is the weight of edge (u, v), and su is 1 if the vertex is labeled with the
function being evaluated and −1 otherwise.41 If the graph is unweighted, wu,v can be set
uniformly to 1. It is straightforward to see that this is a basic minimum cut/maximum flow
problem, and thus exact solutions are obtainable in polynomial time.71 Several techniques
have been applied to solve these cut problems for interactomes. In the case where one
function at a time is considered, a deterministic approximation algorithm has been applied
to obtain a single solution per function.41 In this application, a version is also considered
where edges are assigned (positive) weights based on the correlation of the corresponding
proteins’ expression profiles. In subsequent work, this formulation has been solved exactly
using a minimum cut algorithm.42 In the case where multiple functions are considered
at once, simulated annealing has been applied and solutions from several runs have been
aggregated.40 That is, the score of a function for a particular protein is given by the number
of runs in which the simulated annealing solution annotates the protein with the function.
The simulated annealing approach is a heuristic and thus does not guarantee an optimal
solution to the underlying optimization problem. However, an integer linear programming
(ILP) formulation for the generalized multiway-cut problem has also been proposed.28

While ILP is computationally difficult from a theoretical point of view, in practice optimal
solutions to this ILP, and thus the original optimization problem, can be readily obtained
for existing physical interactomes using AMPL72 and the commercial solver CPLEX.73

An important shortcoming of the basic cut formulation is that it ignores distance in the
network. For example, the network in Figure 10.2 has four minimum cuts of value one, and
the cut criterion does not favor any one cut over the other. However, we expect proteins
that are closer together in the network to have more similar biological process annotations
than those that are further apart. Thus, in the network in Figure 10.2, we would want the
proteins closer to the black node to be annotated with its function, and the proteins closer
to the grey node to be annotated with its function. As suggested by 28, one may begin to
address this problem in the cut-based framework by considering the multiplicity of optimal
solutions. If we find all optimal cuts for the graph in Figure 10.2, we observe that proteins
closer to the black node are found more frequently in the same cut as the black node than
in the same cut as the grey node. Thus, the set of all optimal solutions contains a sense
of distance to annotated nodes. In the earlier simulated annealing approach proposed for
this problem, information from multiple solutions is utilized.40 If each run does indeed
converge to an optimal solution, considering multiple runs amounts to sampling from the
space of optimal solutions. The ILP can also be modified to find multiple solutions.28 The
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score for a function for a protein is then the number of obtained solutions in which this
function is assigned to the protein.

10.4.3 Flow-based Methods

One attempt to overcome the cut-based methods’ ignorance of distances in the network has
been proposed based on another concept from computer science, namely, network flow.28

Intuitively, network flow problems treat the graph as a collection of pipes having limited
capacity (represented as weights), and pose the question of the maximum amount of liquid
that can be sent from a specified source node to a specified sink node using those pipes.
The network flow problem is dual to the notion of graph cut,71 as the size of the minimum
cut between the source and the sink turns out to be the limiting factor to maximum flow,
and vice versa.

Network flow has been used as the inspiration for a simulation method for function
prediction.28 Informally, each protein of known functional annotation is an infinite ‘source’
of ‘functional flow’ that can be propagated to unannotated nodes, using the edges in the
interaction graph as a conduit. Each protein has a ‘reservoir’ which represents the amount
of flow that the node can pass on to its neighbors at the next iteration, and each edge has
a capacity (its weight) limiting the amount of flow that can pass through the edge in one
iteration. Each iteration of the algorithm updates the reservoirs using simple local rules,
whereby flow only spreads from proteins with more filled reservoirs to those with less filled
reservoirs, and a node pushes its flow to its neighbors proportionally to the capacities of the
respective edges. The simulation is run for a fixed number of steps, and a functional score
for each protein is obtained by summing the total amount of flow for that function that
the protein has received over the course of the simulation. This method exploits network
connectivity as multiple disjoint paths between functional sources and a protein result in
more flow to the protein. It also incorporates a notion of distance in the network as the
effect of each annotated protein on any other protein decreases with increasing distance
between them: if the algorithm is run for d iterations, then a source’s immediate neighbor
in the graph receives d iterations worth of flow from the source, while a node that is two
links away from the source receives d − 1 iterations worth of flow, and so on. Similarly,
the number of iterations for which the algorithm is run determines the maximum number
of interactions that can separate a recipient node from a source in order for the flow to
propagate from the source to the recipient. For the protein interaction context, a relatively
small number of iterations has worked well in practice (e.g. less than half the diameter of
the network). The reader is referred to 28 for the exact formulation of the functional flow
algorithm.

In subsequent work, a similar deterministic flow-based simulation approach has also
been applied for finding clusters in protein interaction networks.74

10.4.4 Markov Network-based Methods

Cut-based methods for functional annotation have a more general probabilistic counterpart
in methods based on Markov networks,43, 44, 75 and these formulations can more fully
address some of the weaknesses of the cut-based methods. A Markov network, also known
as a Markov random field, is an undirected graphical model that represents the joint
probability distribution of a set of random variables. It is specified by an undirected graph
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where each vertex represents a random variable and each edge represents a dependency
between two random variables, such that the state of any random variable is independent of
all others given the states of its neighbors. The joint distribution represented by a Markov
random field is computed by considering a potential function over each of its cliques. For
N random variables Xi , the probability of an assignment of the states is given by:

Pr(X1 = x1, . . . , X N = xN ) = 1

Z
e− ∑

k �k (X{k}), (10.4)

where k enumerates all cliques, �k is the potential function associated with the k-th clique,
X{k} gives the states of the k-th clique’s random variables, and Z is a normalizing constant.

In applications to network-based function annotation, one function has been considered at
a time.43, 75 Each protein has a random variable associated with it, and its state corresponds
to whether the function under consideration is assigned to the protein or not. It is assumed
that the joint distribution can be expressed in terms only of cliques of size at most two (i.e.
edges). This means that the potential function evaluating the network is a linear expression
composed of terms over the vertices and edges. So,

Pr(X1 = x1, . . . , X N ) = 1

Z
e−(

∑
u∈V φ1(X{u})+

∑
(u,v)∈E φ2(X{u,v})), (10.5)

where ϕ1 computes the vertex ‘self-term’ and the ϕ2 computes the pairwise edge term. The
self-term potential is chosen to correspond to the prior probability for annotating a protein
with a particular function; it takes into account the frequency of the function in the network.
Note that this is the opposite of what is done by the neighborhood method,39 which prefers
less frequent terms to those that are more frequent. The pairwise edge potential is chosen to
have different values corresponding to the three cases where either the interacting proteins
both have the function under consideration, or they both do not have that function, or
one has that function and the other does not; these values are determined using a quasi-
likelihood method. Note that these values are not necessarily the same for each function.
As noted earlier,76 this model is a generalization of the per-function cut-based method,41

and is similar to that of the multiple function cut formulation.40 In particular, the cut-based
models assume the same fixed value for interactions between proteins of the same function
(or for interactions between a protein of one function and any other), regardless of function;
this may not be the best assumption, as the guilt-by-association assumption may be true
to different degrees for different functions. To make a functional prediction for a protein,
the posterior probability that a protein has the function of interest is computed using Gibbs
sampling, and then if this value is above a chosen threshold, the function is predicted.
Importantly, an exact computation of the posterior probability considers the probability of
all assignments of the random variables, and thus implicitly incorporates a distance effect,
where the impact of a protein’s function on unannotated proteins decreases with distance.

An alternate Markov network approach for protein function annotation44 assumes that the
number of neighbors of a protein that have a particular functional annotation is binomially
distributed according to a parameter that differs depending on whether the protein has that
function or not. The posterior probabilities for each protein are computed via a heuristic
modification of belief propagation (review: 77).
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10.4.5 Module Discovery

Another broad family of methods begins by first identifying components in the interaction
network that are likely to correspond to functional units, and then assigning functions
to proteins based on their membership in the functional unit. The underlying philosophy
for most of these methods is that cellular networks are organized in a modular fashion,78

and that these modules correspond to sets of proteins that take part in the same cellular
process or together comprise a protein complex. Identification of functional modules is
thus a somewhat stronger goal than simple functional assignment. Most of the methods for
identifying modules operate on the underlying assumption that proteins within modules
are more tightly connected than proteins in different modules; one may think of this as the
module-discovery problem’s analog of the guilt-by-association assumption.

Once functional modules, or clusters, are identified, they can be used for annotating
uncharacterized proteins, as the most common functional annotation within a cluster can be
transferred to its uncharacterized proteins. Alternatively, one can look at overrepresentation
instead of frequency and transfer the functions that are enriched in a cluster according to
the hypergeometric distribution. Such an approach computes a p-value for a particular
function in a cluster as:

p = 1 −
i= f −1∑

i=0

(
F
i

) (
N − F
n − i

)
(

N
n

) , (10.6)

where N is the number of proteins in the network, F is the number of proteins in the
network annotated with the function under consideration, n is the size of the cluster, and
f is the number of proteins within the cluster annotated with that function. Like the
neighborhood overrepresentation method,39 if two functions annotate the same number of
proteins within a cluster, this method favors the function that annotates fewer proteins in
the interactome. We also note that one feature of cluster-based function prediction methods
is that it is possible and indeed not uncommon for certain modules not to contain any
annotated proteins, in which case functional assignment to such a cluster cannot be made
in a straightforward fashion.

Cluster analysis is a rich area with applications in many diverse fields. A large number of
clustering methods have been developed, both for the more familiar problem of clustering
general data that comes with some natural measure of similarity, and, to a lesser extent, for
the more specific problem of graph clustering. Many of these methods have been applied to
interactome data. Broadly speaking, the clustering methods we consider are either specific
to the network domain, or are based on standard distance- or similarity-based clustering
techniques; in the latter case, the key issue is typically in deciding on a suitable measure
of distance or similarity between two proteins in an interaction network. Additionally,
the methods differ in the extent to which the network features they exploit are local. In
this regard, we note that some methods use only local neighborhood information when
clustering whereas others use more global features of the network; nevertheless, even
when using local features to cluster proteins, clustering can be performed on the entire
interactome, and thus in some sense, such clustering approaches incorporate the global
organization of the interactome as well.
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10.4.5.1 Network-based Clustering

Of the clustering approaches, those based on network clustering are perhaps the closest in
spirit to the cut-or flow-based annotation schemes: they explicitly attempt to partition the
network into contiguous components in such a way that there are more connections between
proteins within a component than between proteins belonging to different components.
However, unlike the former group of methods, cluster-based approaches typically do not
begin with the prior information about the partial assignment of function to neighbors;
moreover, several graph clustering-based methods focus on the more specific problem of
identifying protein complexes.

Local clustering. A number of local clustering approaches attempt to isolate highly con-
nected or dense components within the larger protein interaction network. The density of a
set of vertices may be defined in many ways. The density of a set of vertices V’ is sometimes
computed as the total number of edges among the vertices in V ′ divided by the total number
of possible edges within V ′ (i.e. ( |V ′|

2 )). Finding the densest subgraph of a particular size
is a computationally hard problem, and thus a number of heuristic approaches have been
developed. In one approach, a Monte Carlo procedure is developed that attempts to find a
set of k nodes with maximum density.45 A special case of the density measure that has also
been exploited to uncover dense components is the clustering coefficient. It is computed
for a vertex v as the density of the neighbors of v (i.e. N1(v) with v excluded). Each vertex
can be weighted using a measure similar to its clustering coefficient, but that instead tries
to exclude the effects of low-degree vertices.46 Low degree vertices are frequent in protein
interaction networks, and may artificially lower the clustering coefficients of highly con-
nected vertices in dense regions of the network that are also connected to several vertices
of low degree. The clustering coefficient is thus computed instead over a k-core of the
neighbors of each vertex, where k-cores are maximal subgraphs of degree ≥k. The vertex
with the highest weight seeds the search process, and clusters are greedily expanded from
it, with vertices being included in the cluster if their weights are above a given threshold.
Once no more vertices can be added, this process is repeated for the next highest weighted
unseen vertex in the network.

A greedy graph clustering approach is also taken where a cluster is grown so as to
maintain the density of the cluster above a particular threshold, and to ensure that each
vertex that is added to the cluster is connected to a large enough number of vertices already
in the cluster.47 The process is initialized by finding the vertex that takes part in the largest
number of triangles (i.e. has the largest number of common neighbors with its neighbors).

Dense substructures within protein networks have also been uncovered via spectral
analysis.48 Here, eigenvalues and eigenvectors of the adjacency matrix of the network are
computed. For each positive eigenvalue, its corresponding eigenvector is used to group
together proteins. In particular, the proteins corresponding to the larger components of the
eigenvector tend to form dense subgraphs. Groupings are further filtered to be of sufficient
size and to have large enough interconnectivity.

Seeded module discovery. Rather than finding clusters in protein–protein physical inter-
action networks without any functional annotations, a few approaches start with a set of
proteins in the interaction network and attempt to identify modules around these ‘seed’
proteins.49, 50 In the context of protein function prediction, the seeds are proteins that are
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known to share some biological process or take part in the same complex. In one approach,49

each interaction is labeled with confidence or reliability value in the range of 0 and 1, and
a protein is added to the cluster if there exists a path from any seed protein to it such that
the product of the reliabilities of the edges in the path is greater than a preselected thresh-
old; for each protein, this corresponds to computing its shortest path to any seed protein
when mapping each edge reliability to its negative logarithm. This approach thus scores the
membership of a protein to the initial seed set using the probability of its connection via the
single-most probable path. In another approach,50 random networks are used to compute
the probability that protein u is a member of the same group as the seed set of proteins.
This probability is estimated as the fraction of random networks in which a path exists from
u to any protein in the seed set. Each random network is generated by taking every edge
in the original network and adding it into the network with probability proportional to its
reliability in the original network. This approach thus attempts to compute the probability
of a connection to the initial seed set using any path in the network.

Divisive hierarchical network clustering. Girvan and Newman have proposed a divisive
hierarchical clustering procedure that is based on edge betweenness.79 For any edge, its
betweenness is defined as the number of shortest paths between all pairs of vertices that
run through that edge. This technique, thus, uses global information about the protein
network. Edges between modules are expected to have more shortest paths through them
than those within modules, and therefore should have higher betweenness values. The
overall hierarchical procedure partitions the network by successively deleting edges with
highest betweenness values. It has been applied to yeast and human interaction data.51

The Girvan-Newman algorithm has also been modified so that shortest paths are computed
on weighted networks. In one approach, instead of counting the total number of shortest
paths through an edge, the total number of ‘non-redundant’ shortest paths through an edge
are counted by considering paths that do not share an endpoint.52 Edge weights are also
considered by this method; in this case, weights correspond to dissimilarities between
endpoints, rather than similarities or edge reliabilities.

The Girvan-Newman algorithm has also been modified so that the edge with lowest
edge clustering coefficient is iteratively deleted.80 The edge clustering coefficient is a
generalization of the usual clustering coefficient, and measures the number of triangles to
which a given edge belongs, normalized by the number of triangles that might potentially
include it. To deal with the special case where the edge is found in no triangles, the edge
clustering coefficient for edge (u, v) is actually defined as:

ECC(u, v) = zu,v + 1

min{|N1(u)| − 2, |N1(v)| − 2} , (10.7)

where zu,v gives the number of triangles that edge (u, v) participates in. Unlike the edge
betweenness measure, the edge clustering coefficient is a local measure; however, in
principle, this definition can be extended to handle higher-order cycles as well. The edge
clustering coefficient has been used to uncover modules in yeast.53 A related algorithm
that combines both the global edge betweenness measure with a local measure similar to
the edge clustering coefficient has also been proposed.53 This algorithm computes a local



P1: OTA

chap10 JWBK331-Bujnicki November 14, 2008 8:1 Printer: Yet to come

Algorithms 247

measure called the commonality index for each edge as

C(u, v) = zu,v + 1√|N1(u) − 1| · |N1(v) − 1| . (10.8)

The edge evaluation measure is then based on the observation that an edge connecting
different modules should have a low commonality and high edge betweenness. Therefore,
the algorithm removes edges (u, v) in the order of decreasing B(u, v)/C(u, v) ratio, where
B(u, v) is the Girvan-Newman betweenness, and C(u, v) is the commonality index.

Divisive methods do not necessarily specify how to get modules or clusters from the
hierarchical grouping process. One proposed approach is to consider a set of vertices
V ′ ⊂ V as a module if, for each of its vertices, the number of interactions it has within
V ′ (its indegree) is greater than the number of interactions it has with vertices in V − V ′

(its outdegree).80 This condition can be weakened so that a module only requires that
the sum of the indegrees for the vertices in the module be greater than the sum of their
outdegrees. The partitioning of the network can now be performed so that an edge with
highest edge betweenness or lowest edge clustering coefficient is only removed if it results
in two modules.80 A modified definition considers a set V ′ a module if the ratio of the
number of edges within V ′ to the number of edges from vertices in V ′ to vertices outside of
this set is greater than one;54 this is almost the same criterion as that for a weak module,80

except that edges within V ′ are not counted twice. This definition has been used to uncover
modules in an agglomerative procedure, where singleton vertices are considered initially
and edges are added back in, using the reverse Girvan-Newman ordering, only if the edge
is not between two modules. Modules have also been defined in terms of the structure
of the hierarchical cluster subtrees.53 Here, a module consists of the nodes of a maximal
subtree where all non-leaf nodes have at least one child being a leaf, and two modules that
have the same parent are merged when the maximal commonality of edges between them
is larger than a pre-defined cut off.

Other network clustering approaches. In one approach,60 an initial random partitioning of
the network is modified by iteratively moving one protein from one cluster to another in
order to improve the clustering’s cost. For each protein, the cost measure considers the
number of proteins within its assigned cluster with which it does not interact, as well as the
number of interactions from it to proteins not assigned to its cluster; both should be small
in ideal clusterings. In order to avoid local minima, the local search is modified so as to
occasionally disperse the contents of a cluster at random. Additionally, a list of forbidden
moves is kept to prevent cycling back to a previous partition. Resulting clusters are then
filtered for size, density, and functional homogeneity.

Another approach for clustering is based on uncovering so-called k-clique percolation
clusters.61 A k-clique is a complete subgraph over k nodes, and two k-cliques are considered
adjacent if they share exactly k − 1 nodes. A k-clique percolation cluster consists of nodes
that can be reached via chains of adjacent k-cliques from each other. An advantage of such
an approach is that each protein can belong to several clusters. Since a protein can have
different roles in the cell, membership in several clusters is biologically meaningful, and it
may be useful to identify a strategy that can recover multiple functions.

A clustering approach based on (modified) random walks within a network has also
been developed.62, 81 The interaction network is transformed into a Markov process, where
transition probabilities from u to v and v to u are associated with each edge (u, v); that
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is, the adjacency matrix is converted to a stochastic matrix. The stochastic-flow algorithm
alternates between an expansion step, which causes flow to dissipate within clusters, and
an inflation step, which eliminates flow between different clusters. In the expansion step,
the probability transition matrix is squared; this corresponds to taking one more step in
a random walk. In the inflation step, each entry in the stochastic matrix is raised to the
r -th power and then normalized to ensure that the resulting matrix is stochastic again;
for r ≥ 1, the inflation step tends to favor higher probability transitions, and thus tends to
boost the probabilities of intra-cluster walks and demote those of inter-cluster walks. This
process is repeated until convergence, at which point the connected directed components
are evident. Note that in this algorithm, the inflation step distinguishes it from simply taking
(traditional) random walks on a graph. This stochastic flow-based clustering procedure has
been applied to a protein interaction network that has been transformed into a line graph.63

Here, each vertex in the new graph represents an interaction in the original network, and
any two vertices are adjacent if the corresponding interactions in original network involve
a common protein. Note that the line graph formulation allows the stochastic flow-based
clustering to place each protein into several clusters.

10.4.5.2 General Distance-based Clustering

Rather than use the guilt-by-association assumption directly and explicitly attempt to keep
connected nodes in the same cluster, many approaches to clustering interactomes rely
instead on assumptions about the similarity of cluster co-members’ patterns of connections
to other vertices in the graph. This makes it possible to use standard distance-based
clustering techniques, such as hierarchical clustering, on the resulting similarity or distance
matrix. Various similarity measures have been proposed for clustering interaction networks.
In one approach,55 the similarity between two proteins is determined by considering each
protein’s interactions, and computing the significance of their number of shared interactions
via the hypergeometric distribution. An alternate approach that also measures the overlap
between the sets of interactions for each pair of proteins uses the Czekanowski-Dice
distance.56 For proteins u and v, this is given by:

C D(u, v) = |N1(u)�N1(v)|
|N1(u) ∪ N1(v)| + |N1(u) ∩ N1(v)| , (10.9)

where � computes the symmetric difference between two sets. In addition to these two
measures,55, 56 there are a number of other ways of computing the similarity or distance
between two proteins by considering only the overlap among their direct interactions.82, 83

In contrast to these purely local measures, a more global measure can be used where the
distance between two proteins is calculated as the shortest path distance between them
in the network.57 In a related earlier approach,58 each protein is associated with a vector
that contains its shortest path distance to all other proteins in the network. A similarity
between two proteins is computed as the correlation coefficient between their corresponding
shortest-path vectors. Since global and local similarity measures may be quite different,
this global shortest-path based similarity measure has also been used in conjunction with a
local connectivity coefficient based on the common interactors of two proteins.59 For any of
these measures, agglomerative hierarchical clustering is then performed by progressively
merging groups of proteins that are closest or most similar to each other. Neighbor-joining84
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has also been used in the context of clustering interactomes;56 it favors merging items that
are close to each other but also considers distances from the remaining items. As discussed
earlier, hierarchical clustering methods do not automatically give the final partitioning of
the network. In one approach,56 the separation into clusters is performed using existing
biological process annotations, whereby each cluster must have at least half of its proteins
annotated by the same term. This function is then transferred to the other proteins in
the cluster. In some applications of distance-based hierarchical clustering, there can be a
problem where distances among several items are identical. This is the case, for example,
when setting the distance between two proteins as their shortest path distance in the
network. One possible solution to this problem is a two phase approach.57 In the first
phase, hierarchical clustering is performed multiple times, and each time there is a ‘tie in
proximity’, a random pair is chosen for merging. Each clustering run is stopped according
to a threshold that considers the distances between all proteins in a cluster. In the second
phase, the fraction of solutions in which each protein pair is clustered together is then used
as a similarity measure for a final round of clustering.

10.4.5.3 Network Alignment Approaches

Network alignments are a relatively new approach to uncover modules within biological
networks.64 As implied from their name, network alignments are a natural counterpart
to sequence alignments: they align subgraphs of interaction networks which consist of
homologous proteins having a similar pattern of interactions among them. The resulting
subnetworks highlight conserved functional modules in the network(s), and thus enriched
biological process annotations may be transferred to proteins within the modules. Network
alignments can be performed between different interactomes, or with one interactome
aligned against itself (to search, e.g. for duplicated pathways), or with a query subnetwork
(e.g. proteins making up a known pathway) that is aligned against an interaction network
to search for similar pathways.64 Network alignment is a research area worthy of its own
review;85 here we briefly mention a subset of early methods. The first method for network
alignment aligned up to two interactomes;64 this was later extended to align multiple
interactomes.65 Evolutionary models of interactome change have been incorporated,66 and
efforts to scale the methods to align arbitrary numbers of interactomes have recentlybeen
made.67 Approaches to globally align interactomes have also developed.86

10.4.6 Kernel-based Learning Methods

Discriminative learning methods are another broad area in computer science that has been
applied to the problem of predicting protein function using interaction networks. The
methods discussed here use support vector machines (SVMs), machine learning methods
which embed positive and negative examples in a feature space and then find a maximal
separating hyperplane in this space between the positive and negative examples.87, 88 In the
context of function prediction via network analysis, SVMs have been applied by considering
each function in turn and labeling each protein as either positive or negative based upon
whether it is annotated with the function of interest.68, 69 The key technical difficulty is how
each protein u in the network is mapped to a point xu in the feature space. If proteins are
‘close’ in the network, then they should also be close in the feature space. The mapping to
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the feature space can be given implicitly via a positive definite kernel matrix K specifying
the inner product (i.e. Kuv = xT

u xv); since the discriminant function for SVMs is specified
via inner products, explicit representations of the points are not necessary.

In the first paper describing kernel-based methods,68 two kernels are considered. First,
a linear kernel is created where each entry Kuv is the dot product of the N-dimensional
vectors representing the interactions of proteins u and v. The more similar the interaction
patterns for the proteins, the larger this value is in the kernel matrix; this kernel is similar in
spirit to local clustering methods based on the similarity of immediate interactors. It does
not capture more global properties of the network. Second, a diffusion kernel89 is created
where the kernel value Kuv can be interpreted as the probability that a random walk starting
from u will be at v after infinite time steps; the transition probabilities between nodes are
dependent on a parameter specifying the rate of diffusion. The diffusion kernel accounts
for all possible paths connecting two proteins, and nodes that are connected with shorter
paths or by several paths are considered more similar. Thus this kernel utilizes some of the
same network features as the flow-based function prediction method and the stochastic-
flow clustering approach. It has been shown that the diffusion kernel captures the global
constraint that the sum of the Euclidean distances between connected samples is bounded,
but that this can lead to large variances in the pairwise distances.69 This observation has
led to the development of a locally constrained diffusion kernel, which captures additional
local constraints requiring that the Euclidean distance between connected samples be more
tightly bound. SVMs using the locally constrained diffusion kernel are found to better
predict protein function than those using the original diffusion kernel.

10.5 Assessment of Prediction Quality

It is natural to ask how different network-based methods for the function prediction prob-
lem perform in comparison to each other. Unfortunately, a comprehensive comparative
evaluation of these methods has not been done. Therefore, we briefly outline a couple of
evaluation frameworks that have been proposed and showcase the performance of some of
the reviewed methods in these frameworks. Overall, it is difficult to judge the comparative
performance of different methods by surveying the literature. This is due in part to differ-
ences in the evaluation frameworks; such differences include the measures used to assess
performance quality, the treatment of multiple annotations and predictions, the selection
of a gold standard for functional annotation, the treatment of the functional hierarchy, and
the precise (and always changing) interaction networks under consideration.

Some common features of evaluation frameworks are that most of the existing testing has
been performed in the baker’s yeast Saccharomyces cerevisiae, because of the quality and
quantity of data available for that organism, and that all frameworks use cross-validation
testing. In this type of testing, the annotations of one (or more) protein are considered as
unknown, and the annotations of the remaining proteins, along with the network, are used
to predict its annotations.

10.5.1 Evaluation frameworks

One way to treat the issue of multiple predictions and multiple annotations is by using each
prediction in the calculation of performance measurements. This is the approach taken
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by,43 using annotations from YPD functional categories90 and considering all predictions
with score above a cutoff. In this work, for each annotated protein u with at least one
annotated interaction partner, it is assumed to be unannotated and its function is predicted.
Then, performance measurements are computed in terms of: ku , the number of known
functions for protein u; pu , the number of predicted functions for protein u; and ou , the
amount of overlap between the set of known and predicted functions. The precision (or
positive predictive value) is defined as:

Precision =
∑

u ou∑
u pu

. (10.10)

The recall (or sensitivity) is defined as:

Recall =
∑

u ou∑
u ku

. (10.11)

In follow up work,76 134 GO biological process terms are chosen for consideration if
they annotate more than 50 proteins and if none of their child biological process terms
annotates the same set of proteins. Since GO is a directed acyclic graph and functional
terms can be related to each other via is-a or part-of relationships, the authors suggest
modifications to this basic scheme to accommodate this hierarchical structure. A possible
weakness in this per-prediction framework is that proteins that have more annotations will
have a larger effect on performance measurements.

An alternative approach28 is to treat each protein as a data point when measuring per-
formance. In particular, for each protein, if the top scoring functional annotation is above
some threshold, it is the prediction for the protein. If a prediction is a known functional
annotation, it is considered a true positive, and otherwise, it is a false positive. Measuring
performance per-protein avoids the problem of proteins with many multiple annotations
or predictions from dominating the results, and makes the performance measures easily
interpretable in terms of the number of proteins that can be annotated at a certain con-
fidence. This criterion still permits ties between top-scoring predictions; in this case, a
protein’s predicted annotation is counted as a true positive if more than half of its top-
scoring predictions are correct, and a false positive otherwise. This approach is taken as a
compromise between two extreme cases. In the first case, a prediction for a protein can be
counted as a true positive if at least one of the predictions made for it is correct; however,
in this case, a method that predicts every protein to participate in every function would
only have true positives in this framework. At the other extreme, a protein can be counted
as a true positive if every prediction made for it is correct. This, however, would count as
false positives those proteins that get many correct predictions and only one incorrect one.
An alternative and perhaps better approach would be to compute the precision and recall
per-protein, and then average the results over proteins. Here, a flat set of functional terms
coming from the MIPS23 functional hierarchy was used for evaluation, with 72 biological
process terms chosen from the second level of hierarchy.

A number of clustering approaches have been evaluated,9 based on how well they
recapitulate known yeast protein complexes. While this is not the same as assessing the
performance of function prediction, there is likely to be a relationship between the two;
moreover, this study is likely to be useful in designing a similar evaluation of clustering
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approaches in the context of function prediction. The clustering algorithms are run both on
simulated networks where complexes are embedded into the graph, and edges are added
and removed at various proportions, as well as on data sets obtained in high-throughput
experiments. Performance is measured by computing recall values (i.e. for each complex,
find the cluster which has the highest fraction of its proteins) and precision values (i.e.
for each cluster, find the maximal fraction of its proteins found in the same annotated
complex). In theory, at least, it is also possible to use either of the above approaches28, 43 to
evaluate how well the enriched biological processes in each cluster predict protein function.
We expect the evaluation of clustering for prediction of complexes to give different results
than clustering for function prediction, as, on the one hand, complex prediction may be a
more specific problem than function prediction, but, on the other hand, the dense network
components that are readily identified by clustering methods may be ‘easy cases’ for
function prediction, while more ambiguous proteins in sparse regions may be left out of
the clusters identified by some of the methods.

10.5.2 Comparative Performance

Nabieva et al.28 test the majority, neighborhood, multiway-cut and flow formulations in two-
fold cross-validation on the yeast proteome using Receiver Operating Characteristic (ROC)
analysis. They find that the flow-based method generally outperforms other methods. They
also find, perhaps surprisingly, that the next best method is majority, which outperforms
neighborhood and multiway-cut formulations and performs as well as the flow-based
method for proteins with at least three neighbors annotated with the same function.

The multiway-cut formulation was previously found to outperform the majority
method.40 However, the measure of success used to judge performance there was the
fraction of times the top prediction for each protein is correct, and the score of the top
prediction was not considered. ROC analysis, with a varying threshold gives a more com-
plete picture of performance, particularly with respect to high-confidence predictions, and
shows that majority outperforms the cut-based method over a large false positive range,
but the cut method is able to make predictions when majority cannot.28 A subsequent
paper42 also finds that a cut-based approach does not outperform a strictly local approach
which predicts function based on the fraction (instead of number) of neighbors with a par-
ticular function. In their case, the cut-based approach considered is the pairwise min-cut
problem.41

Deng et al. find in leave-one-out testing that the Markov network approach 43 outperforms
the majority38 and neighborhood approaches39 on the yeast interactome. The significant
added generality of the Markov network approach over the cut-based approach and its
implicit use of distance in the network may potentially explain why it performs better
than majority whereas the related cut-based methods do not; however, a weakness with the
testing as performed43 is that the functional prediction for a protein is scored according
to its rank when using the majority and neighborhood methods. This means that the
strength of the evidence for a functional prediction from the protein’s neighborhood is
not considered; for example, for the majority method, it does not matter in this testing
framework if the top-scoring function for a protein appears nine times or one time among
its direct interactions – both are treated equivalently. It remains to be seen whether the
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Markov network approach will outperform the local method when scores – not ranks – are
considered.

Other findings revealed in cross-validation testing include the necessity of multiple
solutions for the cut-based method in order to get higher confidence predictions, and a
deteriorating performance of the neighborhood method with increasing radius, reflecting
the peril of using more distant nodes without considering their distance or connectivity to
the target node.28 It is also observed that all methods, including majority, multiway-cut,
and functional flow improve when incorporating interaction reliability.28, 31

These evaluations show that the strength of the functional signal from the local neigh-
borhood is the best indicator of whether or not a high-confidence prediction can be made:
if a protein is interacting with many proteins with known annotation, a majority scheme
performs well, as do other methods. Also, the results suggest that the information from
immediate neighbors can be used directly, and statistical information, such as that used in
the χ2 criterion, is not necessarily helpful. On the other hand, when a protein is known to
interact with only unannotated proteins, local approaches such as majority cannot make
any predictions, whereas the cut, flow, Markov network, and clustering methods can. More
broadly, for proteins with few interactions or few interactions with annotated proteins,
which is likely to be the case for more recently characterized proteomes, more global
methods are necessary for functional predictions. Thus, global methods are likely to be an
important tool in characterizing proteins in unusual or less-studied proteomes.

As mentioned earlier, clustering methods have largely not been evaluated with respect to
function prediction. However, a recent study9 finds that the stochastic flow-based clustering
procedure62 is robust to alterations in the simulated data and clearly outperforms the other
methods tested46, 60, 92 in extracting complexes from high-throughput physical interaction
datasets.

10.6 Conclusions

The emergence of high-throughput techniques for determining protein physical interactions
at the genomic scale has provided large amounts of data that can be used for answering the
challenge of predicting protein function. Here, we have reviewed a number of methods that
have been developed for this problem. There are several promising directions for further
research in this area.

First of all, it is clear that the area of function prediction via network analysis is in need
of a comprehensive and systematic evaluation framework. Such an evaluation will ideally
attempt to answer not only which methods perform better but also why. We expect different
methods to perform well in different circumstances, and ideally an evaluation would bring
to light which method should be used in which situation. In particular, it should be possible
to relate topological features and annotation density of the network to performance. For
example, local methods may be expected to perform well on dense or well-annotated
networks. Since the experimentally determined interactomes of various organisms in their
present state differ with respect to their coverage, network density, and known annotations,
such an evaluation will be vital for guiding researchers towards an appropriate prediction
method for their particular needs.
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In terms of methodological directions, a potentially fruitful area that is in need of
principled exploration is a closer study of protein annotations, and in particular, of the rela-
tionships between functions. One promising line of research is to accommodate functional
relationships between interacting proteins that go beyond guilt-by-association, which forms
the basis of most methods currently used for network-based function prediction. Simply
stated, if guilt-by-association were completely true, all proteins in an organism would be
engaged in the same non-trivial biological process. This is clearly not the case; moreover,
biological ‘cross-talk’ is evident in interactomes,38 as there are many pairs of different
biological processes recurring as annotations for interacting proteins. Understanding and
leveraging the interplay between biological processes should benefit future methods for
predicting protein function. A related research direction involves developing network anal-
ysis function prediction methods that incorporate the hierarchical nature of protein function
ontologies. Currently, many methods address the issue only at the evaluation step, and often
use a flat set of terms which are then treated as unrelated labels; the flat set may include the
leaf terms of the functional hierarchy (i.e. the most specific descriptors), or a hand-picked
or heuristically selected set of terms. In the latter case, more specific functional annotations
may be ‘upcast’ to their ancestor term(s) in the flat set, and less specific annotations are
ignored. The development of methods that more directly exploit the functional hierarchy
as part of their network analysis is likely to be fruitful. Promising research along both of
these lines has been initiated.93, 94 Lastly, an intriguing possibility is to relate modularity
to the distance in the network along which functional connections hold. The assumption
of modularity suggests that guilt-by-association may hold on mezoscale, along the size
of a functional module, but at larger network distances understanding of the hierarchical
and cross-talk relationships between processes may become more relevant for function
prediction.

The area of function prediction via network analysis is based on recently available data
and is thus relatively new, yet its graph-theoretic formulation enables it to tap into decades
of algorithmic and methodological advances in computer science and applied mathematics.
In the coming years, we expect to see further methodological developments in this area, as
well as the establishment of more uniform testing frameworks. Together with the growth
of interaction data and the improvement of the accuracy of experimental techniques for
interaction determination, these developments promise to give network analysis methods
a position of increasing prominence in computational function prediction.
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11
Integrating Prediction of Structure,

Function, and Interactions

Michael Tress, Janusz M. Bujnicki, Gonzalo Lopez and Alfonso Valencia

11.1 Introduction: A Flood of Sequence Data and the Limits
of Homology-based Function Prediction

Dramatic improvements in high throughput sequencing technologies have lead to a sub-
stantial increase in whole-genome sequencing projects. According to Entrez1 there were
24 completed eukaryotic and 599 completed microbial genomes by mid-2008, with an-
other 1,281 genomes in progress or already in the assembly stage. The rapid growth in
sequenced genomes is leading to radical changes in our understanding of genomics and
provides unparalleled opportunities for research. In addition to the genome sequencing
projects, environmental sequencing projects2 are producing colossal numbers of new se-
quences, though the fact that most sequences from environmental sequencing projects are
fragments of whole sequences means that they should be handled with care.3

However, while genome-sequencing projects are generating almost unimaginable num-
bers of protein sequences, these sequences are not annotated with functional information.
The spectacular increase in unannotated sequences is widening the gap between sequenced
genes and known protein functions. Experimental procedures for characterizing protein
function are expensive, time consuming and difficult to automate, so researchers will have
to turn increasingly to computational annotation to close the gap. Providing functional
annotations for the torrent of new sequence information is one of the greatest challenges
facing computational biology today and it is clear that function prediction is becoming an
increasingly important field.4–7
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The sheer range of sequenced prokaryotic species could allow a systematic and complete
categorization of genes and their biological functions. Similarly the sequencing of multiple
related eukaryotic species is a powerful tool to help understand genomes and gene products.
The recent sequencing of 12 related Drosophila genomes8 leads to the prediction of several
thousand new functional elements, including protein-coding genes and exons.

There are two main problems facing researchers when it comes to functional annotation.
The first is that function is often multi-faceted and hard to define. A protein’s function
may be defined by its role and location in the cell, the metabolic pathway or regulatory
network that it forms part of or by the physico-chemical effects that it brings about. In
addition many proteins have more than one cellular role9, 10 and some are even known
to perform different functions in different tissues.11 Functional ontologies such as the
Gene Ontology (GO) terms developed by the GO consortium12 or the nomenclature used
by the Enzyme Commission (EC number, 13) are an attempt to standardize, systematize
and compartmentalize protein functions (for a detailed review see the chapter by Chitale
et al. in this volume). Beyond EC numbers and GO terms protein function can also be
annotated with functional keywords that describe biochemical function and the interaction
with cofactors, substrates, regulators and other cellular components. It is also possible to be
more specific about the function of a protein at the level of individual residues. Some amino
acids are directly implicated in molecular function by having catalytic activity or binding
a substrate. Pinpointing residues of functional interest is especially important for studying
biochemical function at the cellular level and for designing experiments. In addition, a full
description of biological function has to take into account both its spatial and temporal
aspects.14

The second problem is that protein function annotation is still predominantly transferred
by homology, which is typically established from the detection of sequence similarity.
Transference works on the assumption that proteins that are evolutionarily related will
have similar structures and functions. The transfer of general functional information (in
the form of GO terms or keywords) typically requires little more than a simple BLAST15

homology search, but more powerful methods such as profile-based methods16, 17 or hid-
den Markov models18 can also be used (see the chapter by Chitale et al. for a detailed
review of sequence-based function prediction methods). Homology-based prediction of
protein function is widely used, in part because of successes with structure prediction and
in part because it is so simple. However, the identification of a functional relationship by
sequence comparison is nowhere near as reliable as it is with structure (see Chapter 1
by Kaminska et al. and Chapter 7 by Kinoshita et al. in this volume). While there is
a direct relationship between sequence similarity and conservation of protein structure,
the hypothesis holds less true in relation to protein function. For example, while orthol-
ogous genes, related by speciation, are likely to share a common function, paralogous
genes, related by duplication events, are more likely to have divergent functions. How-
ever, orthologs do not necessarily exhibit stronger sequence similarity than paralogs and
disambiguating the two types of relationship by pairwise sequence comparisons is very
difficult.

Common evolutionary origin does not guarantee functional similarity to the same extent
it guarantees structural similarity, and the more distant the evolutionary relationship, the
less reliable the transfer. Large-scale studies have shown that transfer of annotation is only
accurate for highly similar pairs of proteins.19–21 Substrate specificity (approximating to
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the fourth EC number) can be reliably transferred between two proteins that have more
than 60–70% pairwise identity while the 3rd EC number (relating to the broader catalytic
mechanism) tends to be conserved in pairs of proteins that have sequence identities of
35–40% or above (Figure 11.1). However, there are many exceptions to this rule, as
even single residue changes have been shown to cause changes in substrate specificity.22

If two proteins have less than 30% sequence identity or different domain compositions
they are very likely to have significant functional differences. The difficulties of reliable
sequence-based annotation and the intrinsic problem of defining biological function mean
that sequence-based annotation pipelines will introduce many errors during the process of
function annotation.23

Another difficulty is that despite the availability of an increasing number of protein
sequences from a wide range of organisms, it may not always be possible to find homo-
logues for a protein. Although a large fraction of gene products from both genomic and
metagenomics sequencing projects can be assigned to known protein families by homol-
ogy, the number of novel small families of sequences with no detectable similarity to other
sequences continues to grow linearly over time.24 This suggests that we are nowhere near
the limits of the protein function space.25 Because of this, and because of the difficulty
of obtaining completely reliable annotations of protein function through homology-based
transfer, techniques that are capable of assigning function in a more sophisticated manner
have been developed.

11.2 Predicting Function with 1D Sequence Features

If no sequence homologue exists, function must be predicted de novo. A number of
tools have been developed that can predict certain aspects of function purely from short
motifs present in the amino acid sequence. Even when two proteins do not appear to be
homologous, their sequences may contain short conserved sequence motifs characteristic
of a particular functional features. Features that can be predicted are usually collectively
described as 1D features26 and can be associated to a single residue and include features
such as secondary structure, solvent accessibility, post-translational modifications and the
sub-cellular localization of a protein. These methods are particularly suitable for orphan
sequences – those proteins that have no detectable homologues or for protein families that
show no detectable relationship to other families of known function.

The identification of sub-cellular localization is an important first step in identifying
a protein’s functional role in the cell. Experimental high-throughput procedures to de-
termine the subcellular location have been carried out with yeast,27 but in the absence
of experimental results and reliable homology-based annotation, computational predic-
tion is still important. Methods that predict sub-cellular localization use signal sequences,
overall amino acid composition and the evolutionary information contained in profiles.28

Although these methods are reliable, they tend to provide only limited functional in-
formation. For instance there are many methods that predict trans-membrane helices
and likely membrane polarity with high levels of accuracy (reviewed in Chapter 2 by
Majorek et al. in this volume), but they cannot predict where the protein will insert into the
membrane. Post-translational modification prediction methods are also relatively reliable,
at least for those post-translational modifications that have well-known highly conserved
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Figure 11.1 Conservation of function and sequence similarity: (a) conservation of GO terms
plotted against pairwise sequence identity (metric); (b) conservation of the four EC numbers
plotted against pairwise sequence identity in pairs of proteins sharing a given sequence simi-
larity, where a score of 1 indicates that all four numbers are conserved. All four EC numbers
tend to be conserved above 70% pairwise identity
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sequence motifs. Predicted post-translational modifications include phosphorylation sites,
and N- and O-glycosylations.29 However, the existing methods can only predict whether a
given modification is introduced if the substrate is presented to the respective modification
enzyme under appropriate conditions, but are not able to predict whether the same modifi-
cations are introduced or removed dynamically within biological processes. Nonetheless,
the combination of sub-cellular localization and modification prediction can provide use-
ful hints as to the cellular function and process. An example of a computational tool that
integrates these two features is the ProtFun server,30 which uses a neural network to predict
functional classes for proteins with no known homology to functionally characterized pro-
teins. Functional assignment is by enzyme class and Gene Ontology category and is made
directly from the amino acid sequence. The neural network combines predicted sub-cellular
location and post-translational modifications, as well as the length, isoelectric point and
amino acid composition of the polypeptide chain.

Methods focused on 1D features can not predict function with the same level of precision
as homology-based transfer methods, but for those proteins without homologues of known
function these methods can provide predictions with useful levels of accuracy and detail.

11.3 Predicting Function with 3D Structures

While whole-genome sequencing projects are contributing to the growth of sequence
databases, structural genomics projects are helping fuel a similar, but more modest, growth
in the number of proteins with known structures.31 As of July 4, 2008 the Protein Data
Bank (PDB, 32) repository of protein structures contained a total of 63,409 unique chains
of at least 30 residues in length (around 20,000 when non-redundant at 97%). On the
whole the proteins in the PDB are better characterized in terms of function than those
in the sequence databases. However, many of the proteins deposited by structural ge-
nomics initiatives have little associated functional information and indeed the driving
force for the selection of candidates for structure determination is often the lack of ho-
mologues with known function.33 The fact that structural genomics projects preferen-
tially select proteins of unknown function for structure resolution means that the PDB
contains an increasing pool of proteins with determined structure but no known biolog-
ical role. This makes structure-based prediction of protein function both relevant and
necessary.

Protein 3D structure can be of use in predicting function, in particular because struc-
ture is more conserved than sequence between homologous proteins. Homology detec-
tion is easier and more reliable with structure than with sequence (see Chapter 4 by
Kosinski et al. in this volume), so structural data can be used to detect proteins with similar
functions for those proteins whose sequences have diverged beyond a level of similarity
that can be reliably detected using sequence comparison methods. However, besides iden-
tification of homology, there are no simple rules for structure-based functional annotation.
Knowledge of the specific three-dimensional fold adopted by a given protein does not
directly imply a function. For example, there are 27 different homologous superfamilies
that adopt the TIM barrel fold and exhibit as many as 60 different enzymatic functions
according to the EC classification.4 Moreover, while structure may be conserved within a
superfamily of proteins, it is not always true that function is conserved to the same extent.19
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Although the resolution of protein three-dimensional structure rarely leads to direct
function prediction, it can often reveal important specific information. From the structure
it is possible to see which residues are buried in the core of the protein and which residues
are on the surface. The shape and molecular composition of the surface may indicate the
binding of particular ligands (for a review see Chapter 7 by Kinoshita et al. in this volume)
and the surface may have also clefts that might be indicative of catalytic sites (34; see also
Chapter 8 by Torrance and Thornton in this volume).

A further way to use structure to help predict function is to identify short structural motifs
formed by residues that are not necessarily adjacent in sequence. Methods employing this
approach can predict function for known structures with unknown function and no known
functional homologues. For instance the PINTS server35 can suggest possible function by
finding local structural similarities between protein structures. The server compares protein
structures that do not have to have the same fold. Instead the server determines similarity
by evaluating whether the two structures have similar patterns of amino acids clustered in
structural space (for example, catalytic triads).

Another possibility is to use the structure as a target for virtual screening, i.e. computa-
tional docking of a large collection of candidate ligands, in which the best-fitting molecules
are most likely similar to the true ligands that bind to the target molecule in the cell. This
approach has been found to be successful both for small molecules36 and peptides.37 How-
ever, such methods are extremely costly in terms of computing power and require expert
knowledge and preparation of compounds to be docked, thus they are very difficult to
automate and in the near future probably will not become generally available as automated
servers to lay users. At the other end of the spectrum of structure-based methods there are
those that analyze very general features and that are computationally inexpensive, despite
requiring expert knowledge to interpret the results. For example SURF’S UP!38 provides
clues as to the function of proteins of known structure by performing comparative analysis
of surface features such as charge and hydrophobicity. An advantage of this particular
method is its applicability to theoretical models, as long as they correctly reproduce the
most important general features of the structure. Thus, for proteins without known struc-
ture, models may be generated first, e.g. by comparative or de novo modelling approaches
(see Chapter 4 by Kosinski et al., and Chapter 5 by Gront et al. in this volume), and then
used to make general functional inferences: something that would not be possible directly
from sequence.

Structural motifs can be also combined with sequence motifs to form hybrid motifs
and these can be used to predict conserved function for hypothetical proteins with known
structure. For example ProKnow39 integrates structures, sequence information, motifs
and a database of protein features and functional annotations. The server associates se-
quence and structure features of the query structure with the functional annotations in
the database and predicts function in the form of GO terms. As is almost always the
case, the best approach is to use as many structure-based and sequence-based meth-
ods as possible, as this increases the chance of finding similarities. In addition, pre-
dictions are more likely to be reliable if more than one method makes a similar pre-
diction. ProFunc40 is a ‘meta-server’ that was developed as an aid to the prediction of
function for proteins with known structure. It employs a range of separate sequence
and structure-based methods. The range of methods used means that more often than
not one of the methods will provide interesting results and taken together the results
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Figure 11.2 Prediction of protein interactions based on genomic and sequence features.
Information from homologues of proteins P1 and P2 in one species can be used to predict
an interaction between these proteins in another organism: (a) phylogenetic profiling: the
presence/absence of a homologue of the two genes in other species is shown in the matrix on
the right – interaction is predicted if the profiles are very similar; (b) similarity of phylogenetic
trees: phylogenetic trees are derived from multiple sequence alignments built for both proteins
– proteins with highly similar trees are predicted to interact; (c) gene neighbourhood – genome
closeness – interaction is predicted if the genes coding for the two homologues are close to
each other in many organisms; (d) gene fusion – if the genes for the two proteins are fused in
one species, they are predicted to interact in another

from these procedures are often able to provide insight as to the likely function of the
protein.

11.4 Predicting Function from Whole Genome Information

The growing number of completely sequenced genomes allows us to look at protein
function in the context of entire genomes and proteomes across different species. This
class of methods focuses on protein function defined by cellular pathways or the com-
plexes the protein participates in, rather than by suggesting a specific biochemical activity
(Figure 11.2). They exploit the well-known tendency of organisms to physically link genes,
proteins and domains that code for activities that must be spatially brought together in or-
der to carry out some higher-order function. In Prokaryota, genes encoding functionally
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related proteins usually cluster together in the genome and often form operons, in which
transcription is coordinated. Furthermore, genes that appear as independently expressed
ORFs in one organism may be ‘fused’ as part of the same polypeptide sequence in another
organism. Fused composite genes in one genome are strong indicators potential interac-
tions between the unfused orthologous or homologous proteins in other genomes. It has
also been shown that fusion events are particularly common in metabolic proteins.41 This
method may be more applicable to Eukaryota, which possess more multi-domain proteins,
but exhibit very little functional clustering on the level of the genome. Obviously, genes
related by neighbourhood or fusion are even more relevant if they are conserved across dif-
ferent species,42 so the significance of gene proximity can be reinforced by its conservation
in evolutionary distant species.

Another class of genomic methods explicitly considers the evolutionary history of genes.
Phylogenetic analyses can be used to predict protein function by using information from
multiple sequences in two complementary ways: by studying divergent evolution within
homologous families (to discriminate between proteins that preserve common function
and those that could have evolved new functions) and by studying correlated evolution be-
tween families. The first approach, termed ‘phylogenomics’, combines information about
whole genomes with homology-based reconstruction of evolutionary trees, in particular
with respect to gene duplications, losses within genomes and horizontal transfers between
genomes (for a review see 43). The general protocol requires the collection of homolo-
gous sequences related to the query sequence, the constructing of a multiple sequence
alignment, the calculation of a phylogenetic tree, the identifying of sub-trees with statis-
tical support, overlaying the phylogenetic tree with the available experimental data, the
identifying of tree nodes corresponding to gene duplication or speciation, and finally the
inferring of molecular function. Identification of gene duplication or speciation may be
greatly enhanced by including some aspects of context analysis, for instance discrimination
of subfamilies with different domain architectures. An example of a computational tool
for phylogenomic analysis is the recently developed PhyloBuilder web server,44 which
provides an integrated pipeline starting with a user-supplied protein sequence, proceeding
to homologue identification, multiple alignment, phylogenetic tree construction, subfamily
identification and structure prediction.

Phylogenetic analysis can be also used to look for relationships that do not necessarily
rely on homology. The simplest methods compare the patterns of presence and absence
of genes from different families across a set of genomes. A complementary distribution
of two families (a member of one family tends to be present while the corresponding
member of the other family is absent and vice versa) may indicate non-orthologous gene
displacement, an exchange of one gene encoding a particular function for a non-orthologous
(unrelated or distantly related) but functionally analogous gene.45 Thus, protein families
with complementary phylogenetic distribution may exhibit the same function, regardless
of their homology. On the other hand, genes that have the same pattern of presence and
absence over a wide range of genomes are likely to interact. The rationale is that reductive
evolution will remove proteins that form part of pathways that are no longer important, so
genes that are always present or absent together should be in the same pathway. Although
similar patterns may suggest a related functional role, it does not necessarily imply a direct
physical interaction between the proteins. The approach is powerful because it enables the
exploration of interdependencies between proteins. The main drawbacks of this approach
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are that it can only be applied to complete genomes (as only then is it possible to rule out
the absence of a given gene) and that it cannot be used to characterize essential genes that
tend to be universally conserved.46, 47

Similarity in the topology of phylogenetic trees of interacting proteins has been quali-
tatively observed in a number of closely studied cases. For example it has been possible
to show that insulin and its receptors,48 and dockerins and cohesins49 co-evolve because
the corresponding phylogenetic trees show a greater degree of similarity than would be
expected. If these observations are to be extended to a quantitative method for predicting
protein interactions, the correlation between the similarity matrices of the families of the
two proteins must be quantified. Goh et al.50 measured the similarity of the phylogenetic
trees of the two domains of phosphoglycerate kinase using the correlation between the
distance matrices that had been used to construct the trees. This approach has been ex-
tended to predict interactions for large sets of proteins and protein domains.51 Another
related approach looks at correlation at the residue level. Correlated mutations are residues
in pairs of proteins that undergo compensatory mutations that stabilize the interaction be-
tween the two proteins. It has been shown that correlated mutations in interacting surfaces
can help select the correct structural arrangement of two known protein structures.52 This
idea has been extended to predicting pairs of interacting proteins (in silico two-hybrid).
Predictions can be made based on correlated mutations between the interacting proteins
and within individual proteins.53

While these genomic methods can often provide quite reliable predictions, the degree
of coverage provided by each of these methods is relatively small. For example, a study
of the Mycoplasma genitalium genome54 showed that, the gene order method could be
applied to 37% of the genes, but just 11% of the genes could be predicted by phylogenetic
profiles and only 6% by gene fusion. The main use of these methods is likely to be as a
complement to other methods of function prediction and in combination with experimental
methods or homology-based prediction. The combination of computational and experi-
mental approaches will broaden our view of protein interaction networks and allow studies
of key nodes in the networks, the distribution and number of interactions and differences in
network organization from one organism to another. For example, recent network analyses
have revealed interesting new properties of biological interaction networks that may have
consequences for drug design.55, 56

11.5 Function Prediction from Large-scale Experimental
Methods and Networks

While individual proteins are often regarded as having distinct and independent functions,
the molecular bases of cellular operations are largely sustained by macromolecular inter-
actions, in particular those involving proteins. Protein interactions and networks that are
ultimately responsible for much of cellular function and the great majority of biochemical
processes in the cell are regulated by physically interacting protein entities that can come
together either in the form of temporary interactions or in relatively long-lived complexes.
Indeed many of the properties of complex systems seem to be more closely determined by
their interactions than by the characteristics of their individual components.
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It has only recently become possible to combine the traditional study of proteins as
isolated entities with the analysis of large protein interaction networks. As with genome
sequencing projects and structural genome initiatives, recent technological advances are
generating a flood of molecular interaction data. High-throughput experimental techniques
such as yeast two-hybrid,57–59 large-scale mass spectroscopy of protein complexes,60–62 and
genome-wide chromatin immunoprecipitation63, 64 are generating protein-protein interac-
tion data on a genome-wide scale, allowing researchers to study protein–protein interactions
in a number of model species. The available interaction data goes beyond individual pro-
teins and small complexes to encompass the protein–protein interaction network for entire
organisms and opens up new opportunities for investigating cellular biology and disease.
Researchers have sought to analyse this interaction data, leading to the development of
computational approaches that can unravel and complete the large-scale protein–protein
interaction maps for entire proteomes.65, 66 Many recent studies have concentrated on com-
paring and contrasting networks from different species and under varying conditions and
there have also been a plethora of methods that predict protein function based on the data
that comes from large scale interaction experiments.67, 68

The aim of network comparison is to determine which proteins, protein interactions
and complexes have equivalent functions in distinct species and to use these equivalences
to predict function for poorly characterized proteins and interactions. Pairwise alignment
of networks involves identifying analogous (or sometimes also homologous) pairs of in-
teractions from two different molecular interaction networks. Methods to align networks
are computationally hard and their solution usually requires heuristics, such as network
alignment graphs.69 As new information about complete genomes becomes available, these
methodologies are extensively used for comparative genomics. Comparisons of protein-
protein interaction networks across species70, 71 have been used to identify pairs of inter-
actions from the best sequence matches in other species. Network alignments can also be
used to predict protein properties; if many proteins in a sub-network have the same function
the other proteins are also likely to have that function and the network alignment can also
be used to describe protein–protein interactions and links between cellular processes.

Since proteins that interact will be part of the same biochemical pathway, information
in the form of interacting partners and pathways can help in the prediction of broad
protein function. The principle applied here is ‘guilt by association’ – the closer proteins
are to one another in the interaction network the more likely they are to have similar
function. This is more true of certain definitions of function than others, while proximity
in interaction networks is likely to be indicative of similarity in biological process and
cellular localization, it remains unclear to what extent this information can be used to
predict molecular function.

The recent availability of large-scale networks of molecular interactions for model
species have made it possible to develop computational methods that can predict protein
function from interaction network data (see Chapter 10 by Nabieva and Singh in this
volume). In addition methods that can predict function from high-throughput experimen-
tal data are especially attractive because of reduced costs. New interactions, modules,
motifs and functional properties (phenotypes, diseases and others) can be predicted sim-
ply by integrating complementary information from functional and structural interactions.
More recent methods are based on network topology, with the network or multiple net-
works represented as a graph with nodes representing proteins and edges representing the
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interactions. The protein interaction data is often combined with sequence similarity, pro-
tein structural information and gene expression data.

There are two broad types of computational methods, those that predict function di-
rectly from functional information in the network and those that annotate function in
terms of functional modules. Methods for function prediction from large-scale interaction
data include basic neighbourhood counting (where protein function is predicted from the
functions of nearby proteins,72 graph theoretic methods that treat interaction networks as
graphs,68 and integrating data from multiple sources.73 For example one recent method74

integrated gene expression data, protein motif information, mutant phenotype data, and
protein localization data with protein-protein interaction data to predict function (in Gene
Ontology terms) for Saccharomyces cerevisiae genes. Integrating external information with
the interaction data increased recall by 18% and allowed GO terms to be assigned to 463
proteins that had no annotated function.

Even though there are a myriad of different methods for comparing networks and
predicting function, very few of the algorithms are publicly accessible and even fewer have
graphical interfaces for easy viewing.75–77 There are limitations to methods that predict
function from interaction information. The false positive rate from interaction data is
estimated to be as much as or as greater than 50%.78 In addition to being noisy79 protein
interaction data is also partial.80 It is therefore difficult to know which interactions are
real binding events and whether certain interactions only occur under certain conditions. A
further problem is that interaction data from large-scale high throughput techniques comes
from a single tissue type under fixed conditions – interaction data does not come with
spatial or temporal information.

Despite these problems, interaction network analysis is very active research area and
still developing. Network-based function prediction techniques will continue to improve, in
particular because there is still much room for improvement. Some of these problems will
be addressed by the growth in high throughput data, for example false positive interactions
are less likely to be reproduced across many interaction networks.

11.6 Information from Text Mining

Databases and repositories of experimental information are further growth areas. The
challenge here is to retrieve content from text repositories, to filter for biologically relevant
information, and to cross-link the information with data mined from databases that contain
experimental data such as molecular interactions, metabolic pathways, and signalling
cascades. The development of text-mining and information-extraction methods over the
last decade is in direct response to this challenge and the development of text-mining
tools has accelerated the process of database standardization. The prediction of functional
associations between proteins by text mining techniques is driven by the assumption that
protein names that appear together within a sentence, an abstract or even a whole text
are more likely to have a biological relationship. In this way it ought to be possible
to predict whole biological pathways based on the extraction of associations between
proteins. However, reconstructing pathways in this way has turned out to be more difficult
than expected.81
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It is also possible to characterize the biological significance of the interactions. Blaschke
et al.82 proposed sets of expressions to classify the biological relations, such as ‘complex of
protein x and protein y,’ or ‘phosphorylation of protein x by protein y’. Other approaches83

classify protein interactions using natural language processing techniques. However,
the major difficulty for all these systems is the problem of organizing and presenting
the information in a biologically relevant form. The same techniques can also be ap-
plied to the inference of indirect relations. The detection process is best illustrated by the
discovery84 of the potential use of magnesium to treat migraine (‘magnesium loss can have
an effect on stress’ + ‘stress is associated with migraines’). This approach has had some
successes.85

Text mining methods for function prediction have many problems. For example, pre-
dicting relations between enzymes in metabolic pathways is problematic because enzymes
acting in metabolic pathways tend not to be mentioned together. A much bigger problem is
the fact that the use of standard gene and protein nomenclature is not enforced. A further
factor complicates prediction, common functions can be described in many different ways
in many different articles and relating these definitions to a standard definition of function
(for example, the Gene Ontology) is a problem, as the results of the protein annotation
extraction task of BioCreAtIvE (Critical Assessment of Information Extraction systems in
Biology86) challenge shows.

While current text-mining methods are not yet be able to predict function directly and
reliably, they come into their own when integrating information extracted from a range of
sources. With the help of text mining methods it is possible to connect proteins and genes
in ordered pathways and extend them to form model protein networks. The Valencia group
has developed the iHOP (Information Hyperlinked over Proteins87) system, which covers
genes and proteins that co-occur in PubMed.88 Users can navigate (or hop) from one related
sentence to another in a form that is closer to human intuition than conventional keyword
searches. iHOP allows for stepwise and controlled acquisition of information and provides
direct links to the IntAct protein interaction database,89 thus allowing users to superimpose
experimental information onto the network. In this way, novel and existing knowledge can
be explored simultaneously.

11.7 Recent Development and Future Directions

Much of the current work is centered around macromolecular complexes. At any one
time cells may contain hundreds of distinct multi-protein complexes and these functional
modules form a crucial part in almost all biological processes. Complexes have keys roles
in metabolism, transcription and translation, cell signalling and cellular transport, and
complete understanding of the structure and function of these complexes in the context of
the cell would go a long way towards deriving working models of the whole-cell.

Much of the impetus for the work on macromolecular complexes comes from the
recent flood of protein interaction data from high-throughput experimental techniques
such as yeast two-hybrid,57–59 and tandem affinity-purification/mass spectroscopy.60–62

While these experiments have been able to provide detailed lists of the proteins and their
cellular interactions, one drawback is that the interaction data from these studies does
not yet have high levels of coverage or accuracy, and there is little overlap between the
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interactions found with yeast two-hybrid and those detailed by tandem affinity-purification.
Two promising recent analysis of Saccharomyces cerevisiae have attempted to put a value
on the reliability of the interactions.90, 91 Although the data from these studies can give
clues as to which proteins may be involved in complexes, they cannot demonstrate how
the protein sub-units interact physically. Knowledge of the 3D structural arrangement of
the proteins in complexes is vital to deduce cellular function, but up to now relatively few
protein complexes have been crystallized.

Despite recent improvements in crystallization procedures, solving the structures of
the hundreds of unresolved protein complexes by experimental means alone will take
many years. However, improvements in experimental methodologies, such as the mass
spectrometry of complexes92 and, in particular, cryo-electron microscopy93 have been a
huge step forward in the prediction of large 3D complexes. Cryo-electron microscopy can
take two-dimensional electron-microscopy images of three-dimensional cellular structures
from many different angles, allowing researchers to reconstruct low-resolution images
of large complexes. Because the images are recorded in situ in the cell, cryo-electron
microscopy can even construct images of transient complexes, those functional modules
that come together only fleetingly and that cannot currently be treated by crystallization
methods. The low-resolution images generated by these new methods – one combination
of mass spectrometry and electron microscopy94 is particularly promising – will allow
scientists to build up 3D models of complexes based on their constitutive protein subunits.

The first step in reconstructing the large complexes detected by electron microscopy is to
determine the proteins that make up the complex (e.g. with mass spectrometry). Then the 3D
structures of the constituent proteins (obtained by experimental methods or by modelling)
must be fitted into the cellular tomograms. Here the assembly of the individual subunits is
guided by information from the known homologous complexes, contact information that
comes from mass spectrometry95 and by the tomographic image of the complex. The final
models of the complexes have low resolution, and at present only the larger complexes
(such as spliceosomes, or nuclear pore complexes) can be reconstructed, but even low
resolution models can provide atomic level detail sufficient for making hypotheses about
the functioning of the complex, and it will be possible to study smaller complexes as the
imaging capabilities improve.

Aloy et al.96 first used electron microscopy to help model a large set of yeast complexes.
They were able to show that it was possible to model over a hundred complexes in this way,
though many of the complexes were incomplete because the component protein structures
were lacking.

More recently a model for the nuclear pore complex has been described.97 Nuclear pore
complexes are large protein complexes that span the nuclear envelope. They regulate trans-
port between the cytoplasm and the nucleoplasm in eukaryotes.98 The electron-microscopy
images of the complex showed that the nuclear pore complex was formed of two stacked
rings. Within each ring there were eight repeat units and each repeated unit was made up
of approximately 30 different nucleoporins protein.

Structures had only been solved for 5% of the domains in the nuclear pore complex,99

so the remaining domains were assigned folds through a combination of sequence search
and structure prediction methods,99 demonstrating strong synergy between predictive and
experimental methods. The spatial arrangement of the nucleoporin proteins was deter-
mined from restraints calculated from the protein sequences, from ultracentrifugation,
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from immuno-electron microscopy, from the results of affinity purification and from
cryo-electron microscopy. The final model shows that the nucleoporins form a structural
scaffold analogous to vesicle-coating complexes.97, 99

Multi-protein complexes have also been predicted using many other hybrid techniques.
For example, models have been constructed for the synaptic vesicle based on the protein and
lipid composition, vesicle size, density, and mass, and protein copy number.100 Researchers
are also attempting to make predictions of spatial arrangement on a much smaller scale.
Wollacott et al.100 had some success with predicting the orientation of domains from the
same protein by first predicting the form and orientation of the linker regions that join
the two domains and a theoretical model of apolipoprotein B100, a 4,500 residue protein
that stabilizes low density lipoprotein particles has been predicted based on restraints
from physico-chemical properties and a low resolution electron microscopy map.102 Here,
combination of high-accuracy structure prediction, macromolecular docking, and low-
resolution experimental analyses is very likely to help in making functional inferences for
the whole, based on knowledge of activities of individual parts (Figure 11.3).

11.8 Assessment of Function Prediction

Computational prediction of protein function from sequence, structure, and any other source
of information can only become truly useful if the accuracy of predictions can be reliably
estimated. While such estimators of prediction quality have been recently developed in the
field of protein structure prediction (see Chapter 6 by Wallner and Elofsson in this volume),
the field of protein function prediction has still a long way to go. However, the first steps
in this direction have already been made. The Critical Assessment of Structure Prediction
(CASP)103, 104 is an experiment that evaluates the state of the art of structure prediction.
In the CASP experiment known structures are hidden from the predictors, so the structure
predictions are blind. The prediction of function has been included as a category in the
last two editions of the experiment;105, 106 in theory the predictors could use structural
information in the form of models to make their predictions.

Methods for the prediction of function from structure, whether ab initio or by homology,
are not as well developed as those for the prediction of structure from sequence and the
assessment of function prediction from structure suffered from three problems. The first
difficulty (as already mentioned in this chapter) was that the definition of protein function
was difficult to pin down. Function, unlike structure, cannot be defined by atomic co-
ordinates. Secondly, the predictors were actually predicting the function from sequence –
if predictors were to use the target structure in the prediction they would first have to build
a model or predict facets of the structure in some way. Finally, targets are chosen for CASP
because their structures, not their functions, are close to being resolved, so there was little
new functional information available to the assessors. With the exception of bound ligands,
the CASP7 assessors had no more functional information at the end of the experiment
than was available to the predictors during the experiment.106 Even a year after the CASP7
evaluation only a few of the targets had newly annotated GO terms based on experimental
data. The fact that the target proteins had little new functional information complicated the
way that the function prediction category was assessed.



P1: OTA

chap11 JWBK331-Bujnicki November 28, 2008 10:46 Printer: Yet to come

Assessment of Function Prediction 273

Figure 11.3 Integration of different prediction approaches and experimental data. Genomic
context and network analyses can be used to identify various types of interactions and sug-
gesting cellular pathways the protein participates in, rather than by suggesting a specific
biochemical activity. On the other hand, homology-based predictions can be used to make
complementary predictions about biochemical details, starting from identification of putative
active sites of enzymes and suggesting potential reaction types to be catalyzed. De novo
methods are capable of identifying structural and functional analogies between unknown sys-
tems and previously studied systems, regardless of the presence or absence of evolutionary
relationships. Combination of context-based methods with homology-based methods and de
novo predictions (e.g. macromolecular docking of models guided by restraints) can be used
to predict not only which proteins interact, but also how, e.g. what is the structure of the
complex, allowing further inferences to be made about the spatial and temporal aspects of
biological processes (See insert for color representation of figure)

In CASP7, function prediction was evaluated by three different measures, EC numbers,
GO molecular function terms and the prediction of ligand binding residues. The number of
groups making predictions in this section was disappointingly poor given the importance
of function prediction and the number of new prediction servers that had recently become
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available. Many groups that had published methods in this area did not participate in the
experiment. It is almost certainly true that the slow release of functional information that
hampered the assessment was also the cause of this low turnout. However, binding site
predictions were something that could have readily been evaluated, so it was surprising
that only two groups made consistent predictions for this category.

There were a number of difficulties in running a function prediction assessment in CASP,
but nevertheless the function prediction category is important and should be maintained
in some form. At present the main problem is the fact that it may take several years for
the functional annotations of known structures to become public. This is not ideal for a
rapidly developing field where predictors need to make use of the evaluation in order to
refine their methods. Thus, it is imperative for the prediction community to coordinate
its efforts with the experimental community to obtain data that could be readily used
to develop and test new methods. This may be difficult, as the experimental community
shows little coordination towards systematic experimental characterization of proteins
that could be used (in advance) as targets for computational methods. Nonetheless, in
recent years there have been several calls for community action to systematize efforts to
functionally characterize so far uncharacterized protein families. The call to work together
towards deciphering the role of the ‘hypothetical proteins’ encoded in microbial genomes
by Richard J. Roberts was addressed both to bioinformaticians and experimentalists.107 It
was suggested that

a consortium of bioinformaticians [should] produce a list of all of the conserved hypothetical
proteins that are found in multiple genomes, to carry out the best possible bioinformatics
analysis, and then to offer those proteins to the biochemical community as potential targets
for research into their function.

However, one problem to solve would be how to avoid biasing the experimental function
determination by bioinformatics predictions, which can possibly lead to artefacts. In fact,
there are known cases of apparently erroneous computational predictions that seemed
to have been supported by experimental evidence, whose value subsequently become
questioned when the original computational predictions were refuted and replaced by
alternative strongly supported predictions.108

Another related call for community action has been published by Peter D. Karp, who pro-
posed obtaining at least one protein sequence for each previously biochemically character-
ized enzyme (with an assigned EC number) that has no sequence in the public databases.109

This has interesting applications for the computational community, as it requires ‘reverse
prediction’ of sequences for already known functions, and would require a process anal-
ogous to high-throughput ‘virtual screening’. In order to identify sequences (or protein
families) that have the highest likelihood to exhibit the target enzymatic activity, function
prediction (in terms of EC numbers) would have to be carried out for representatives of all
families. The results of such predictions can be more objectively evaluated, as they can be
more easily combined with high-throughput enzymatic screens that do not necessarily take
any particular predictions into account. In any case, progress in protein function prediction
will be achieved only if theoreticians and experimentalists strengthen their collaborations,
analogously to the very successful co-operations in the framework of the CASP experiment.
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